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Abstract

FOr the aerodynamic design of aeronautical components Computational Fluid Dy-
namics (CFD) plays a fundamental role. Pure CFD analyses are usually suffi-
ciently accurate for a wide range of problems. However, when the deformability

of the structure cannot be neglected or rigidly moving parts appear in the fluid domain,
different disciplines (such as Fluid-Structure Interaction), methodologies (such as Fi-
nite Element Method) and strategies (such as Multibody System Dynamics) are also
required.

Beside the usual aeronautical examples where an accurate study of the interaction
between the fluid and the structure is a key part of the design process (e.g. wings,
aircraft, helicopter blades), another important field is represented by turbomachinery,
where in particular in the literature aeroelastic investigations are not widely performed
yet. A recent research trend is also represented by open rotors and propfans.

Together with the availability of more and more powerful computing resources, cur-
rent trends pursue the adoption of such high-fidelity tools and state-of-the-art technol-
ogy even in the preliminary design phases. Within such a framework Graphical Pro-
cessing Units (GPUs) yield further growth potential, allowing a significant reduction of
CFD process turn-around times at relatively low costs.

The target of the present work is to illustrate the design and implementation of an ex-
plicit density-based URANS coupled aeroelastic solver, called AeroX, for the efficient
and accurate numerical simulation of multi-dimensional time-dependent compressible
fluid flows on polyhedral unstructured meshes. Turbomachinery and open rotors exten-
sions are also implemented to handle complex compressor, turbine and propfan cases.
The solver has been developed within the object-oriented OpenFOAM framework, us-
ing OpenCL for GPGPU programming and CPU-GPU interfacing. Different conver-
gence acceleration techniques, such as Multi Grid and Local Time Stepping, are im-
plemented and opportunely tuned for GPU executions in order to allow an implicit-like
residuals convergence. Dual Time Stepping is also implemented to allow time-accurate
simulations of unsteady cases of aeronautical interest, such as wings and blades flut-
ter. For what concerns aeroelasticity, Radial Basis Functions are employed to interface
the aerodynamic and the structural meshes. The modal representation of the struc-
tural behavior is adopted thanks to its accuracy and computational efficiency. Inverse
Distance Weighting is used to update the aerodynamic mesh points knowing the wall
displacements. The solver is specifically designed to exploit cheap gaming GPU archi-
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tectures which exhibit high single precision computational power but a limited amount
of global memory. Equations are solved in a non-dimensional form to reduce numer-
ical errors. The solver is also natively compatible with more expensive HPC GPUs,
allowing the exploitation of their high double precision computational power and their
higher amount of memory. Thanks to OpenCL, AeroX is also natively compatible with
multi-thread CPU executions.

The credibility of the proposed CFD solver is assessed by tackling a number of
aeronautical, turbomachinery and open rotor benchmark test problems including the
2nd Drag Prediction Workhop, the 2nd Aeroelastic Prediction Workshop (AePW2),
the HiReNASD wing, the AGARD 445 wing, the NASA’s Rotor 67 blade, the 2D/3D
Standard Configuration 10 blades, the Aachen turbine and the SR-5 propfan blade. The
recent AePW2 benchmark case, in particular, proves that AeroX is capable to predict
flutter with an accuracy level that is comparable with the state-of-the-art aeroelastic
compressible URANS solvers, requiring just a cheap gaming GPU. In the literature
it is difficult to find static aerelastic investigations of turbomachinery blades. Thus,
the trim of the NASA’s Rotor 67 fan blade is here investigated, showing that the high
blade stiffness is responsible for the very small wall displacements. This is translated
in negligible differences between the aeroelastic and the purely aerodynamic solutions
for such configurations.

The focus of this work is also on computational aspects. With AeroX an average
one order of magnitude speed-up factor is obtained when comparing CPUs and GPUs
of the same price range.

Keywords: Aeroelasticity, Open Rotors, Turbomachinery, GPGPU, OpenCL
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Sommario

LA fluidodinamica computazionale (CFD) costituisce un ruolo fondamentale per la
progettazione di componenti aeronautici. Solitamente analisi puramente aerodi-
namiche sono sufficienti per una vasta gamma di problemi. Tuttavia, quando la

deformabilità della struttura non può essere trascurata oppure quando nel dominio flui-
do sono presenti parti rigide in movimento, altre discipline (come l’interazione fluido-
struttura), metodi (come il metodo agli elementi finiti) e strategie (come la dinamica
dei sistemi multi-corpo), risultano necessarie.

Accanto ai soliti esempi aeronautici dove un accurato studio dell’interazione tra il
fluido e la struttura è un punto chiave nel processo di progettazione (ad es. ali, interi
aerei, pale di elicottero), un altro campo è rappresentato dalle turbomacchine, dove in
letteratura analisi aeroelastiche statiche non sono ancora ampiamente effettuate. Un
trend recente è inoltre rappresentato dagli open rotor e dai propfan.

Assieme alla disponibilità di risorse di calcolo sempre più potenti, l’idea attuale
è quella di adottare strumenti in grado di restituire soluzioni accurate già nelle fasi
preliminari di progettazione. All’interno di questo concetto le schede grafiche (GPU)
permettono una significante riduzione dei tempi di calcolo a costi relativamente bassi.

Lo scopo di questo lavoro è quello di illustrare la progettazione e implementa-
zione di un solutore aeroelastico esplicito, comprimibile, viscoso (URANS), chiama-
to AeroX, adatto alla simulazione efficiente ed accurata di casi instazionari e multi-
dimensionali, compatibile con mesh poliedriche non strutturate. Nel solutore sono an-
che implementate estensioni riguardanti turbomacchine e open rotor per poter gestire
casi di compressori, turbine e propfan. Il solutore è stato sviluppato nel contesto del-
l’ambiente orientato ad oggetti OpenFOAM, usando OpenCL per la programmazione
GPGPU e per interfaccia CPU-GPU. Diverse tecniche di accelerazione della conver-
genza, quali Multi Grid e Local Time Stepping, sono implementate e ottimizzate per
esecuzioni su GPU in modo da ottenere andamenti di convergenza simili a un solutore
implicito. Inoltre, il Dual Time Stepping è implementato poter sfruttare queste tecni-
che anche con casi instazionari di interesse aeronautico come il flutter di ali e palette.
Per quanto riguarda l’aeroelasticità, le Radial Basis Function sono utilizzate per inter-
facciare mesh strutturali e aerodinamiche. La rappresentazione modale del comporta-
mento strutturale è adottata per via della sua accuratezza ed efficienza computazionale.
L’Inverse Distance Weighting è usato per aggiornare la posizione dei punti della mesh
aerodinamica sulla base degli spostamenti della parete. Il solutore è progettato per
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sfruttare le architetture delle GPU da gioco che sono caratterizzate da un’elevata po-
tenza di calcolo in singola precisione ma una limitata quantità di memoria globale. Le
equazioni sono risolte in forma adimensionale per ridurre gli errori numerici. Il solu-
tore è inoltre nativamente compatibile con le più costose GPU da HPC, permettendo di
sfruttarne l’elevata potenza di calcolo in doppia precisione e la maggiore quantità di me-
moria. Grazie a OpenCL il solutore è inoltre nativamente compatibile con l’esecuzione
multi-thread su CPU.

Il solutore è stato validato con diversi casi aeronautici, di turbomacchine e open ro-
tors come il 2nd Drag Prediction Workshop, il 2nd Aeroelastic Prediction Workshop
(AePW2), l’ala HiReNASD, l’ala AGARD 445, la pala del Rotor 67 della NASA, la
pala della Standard Configuration 10 (2D e 3D), la turbina Aachen e la pala del prop-
fan SR-5. Il recente benchmark AePW2, in particolare, prova che AeroX è capace di
completare analisi di flutter con un livello di accuratezza comparabile a quello fornito
dallo stato dell’arte dei solutori comprimibili URANS aeroelastici, richiedendo sempli-
cemente l’uso di un’economica GPU da gioco. In letteratura è difficile trovare analisi
aeroelastiche statiche di palette di turbomacchine. In questo lavoro è quindi stata ef-
fettuata l’analisi di trim della pala del Rotor 67, mostrando che la sua elevata rigidezza
è il motivo per cui i suoi spostamenti sono ridotti e di conseguenza le differenze tra
soluzioni aeroelastiche e soluzioni puramente aerodinamiche sono trascurabili.

In questo lavoro l’attenzione è stata posta anche sugli aspetti computazionali. Uno
speed-up medio di un ordine di grandezza è stato ottenuto confrontando CPU e GPU
della stessa fascia di prezzo.

IV
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CHAPTER1
Introduction

The aim of this first chapter is to introduce the fundamental concepts that motivate
this work. The reader will be provided with an overview of the current state-of-art
approaches in the numerical aeroelastic analyses of typical aeronautical cases. An
important part of this work is also dedicated to the role played by GPUs in acceler-
ating the solver computations. Thus, a brief introduction of the modern technologies
adopted to accelerate numerical simulations is showed. Exploiting General Purpose
GPU (GPGPU) to reduce the simulation times is in fact a very relevant trend in a wide
range of numerical applications, from CFD to finance and cryptography. One of the
aim of this work is to build a general purpose solver, called AeroX, that is also capable
of performing turbomachinery and open rotors simulations thanks to dedicated exten-
sions. Finally the structure of the thesis is presented alongside a brief introduction of
the most important concepts presented in each chapter. This work can be also viewed
as a continuation of what started by Romanelli and Serioli [136] and Romanelli [127]
with the AeroFoam solver, pursuing the goal of obtaining fast and accurate solutions
at the very beginning of the design phases of the aeronautical component.

1.1 Background, CFD/FSI and HPC state-of-the-art

Computational Fluid Dynamics (CFD) is nowadays a fundamental tool for the aerody-
namic design in the aeronautical field. CFD allows to simulate almost every kind of
aeronautical component, from simple airfoils to entire jet fighters.

In CFD, like in every other kind of simulation, three fundamental aspects must be
considered: the mathematical/physical modelization of the reality, the discretization of
the problem through numerical formulations and the computational side.

Depending on which physical effects are required to be modeled in a particular
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Chapter 1. Introduction

case, different formulations and algorithms can be used to obtain the final solution.
Obviously as more and more physical effects are modeled, the simulation cost in term
of computational time is increased. Thus, the usual approach in every engineering field
is based on an iterative process. Computationally inexpensive formulations are adopted
for the initial design of the aerodynamic component when high results accuracy is not
necessary. As the development of the particular component progresses, more accurate
numerical and experimental results are required in order to verify that the performance
and efficiency will reach the prefixed target. Often, a final optimization loop is adopted
in order to find the best parameters that satisfy all the project requirements.

As said, accurate formulations are computationally expensive, thus it is the engi-
neer’s job to figure out the perfect trade-off between results accuracy and simulation
times. Results accuracy and computational power are always related. When CFD was
born the computational power of a personal computer was orders of magnitude lower
than what we can find today in a cheap smartphone. Nowadays it is basically possi-
ble to buy a true computer for 5$ (Raspberry Pi Zero [30]) with a 1GHz ARM CPU.
Obviously the first approaches to CFD were largely restricted by the limited amount
of available FLOPS (Floating Point Operations Per Second) and memory. Histori-
cally the first adopted methods were represented by Doublet Lattice Method (DLM)
by Morino, exploiting a linearization of the aerodynamic problem under small distur-
bances hypotheis. Full potential formulations where implemented firstly in [57,83] ’70
eventually in a finite volume framework [84] (1977). These methods are now relatively
inexpensive and can be adequate when it can be safely hypotized that strong nonlinear
effects such as shocks and separations do not appear in the flow. It must be noted that
using a Non Linear Full Potential (NLFP) formulation [66, 115, 116] it is easily possi-
ble to handle cases with weak shocks, when they are not strong enough to invalidate
the isoentropic hypotesis. However, a state-of-the-art formulation [115, 122] for the
NLFP can be adopted to handle this occurrence. These methods are still used to pro-
vide, today in matter of seconds/minutes [66] on desktop computers, a general idea of
the performances that can be provided by an airfoil/wing/rotor/aircraft. After the initial
design decisions, usually performed with a workstation, it is then possible to perform
a round off by running more accurate and computationally expensive simulations on
more powerful cluster computers.

Historically as more and more accurate results were required and higher computa-
tional power became available, potential methods were surpassed by the Euler formu-
lation in 1980s. Again, viscous effects are neglected, however strong compressible non
linear effects given by shock waves can be modeled. Euler methods are an order of
magnitude faster with respect to more expensive compressible viscous simulations and
usually provide enough accurate results when it is known that strong viscous effects
are not likely to occur in the particular test case under analysis [130, 131, 136]. Thus,
compressible Euler formulations can be viewed as an alternative to the NLFP or panel
methods for the initial design phases of the aeronautical component. It must be noted
however that in a compressible Euler approach we have to deal with all the 5 conser-
vative variables (density, momentum vector, and total energy), while in a one-field or
two-field NLFP approach it reduces down to only one or two variables (velocity po-
tential or density and velocity potential) with obvious advantages in term of memory
consumption and simulation times.
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The next logical step, following both the computers evolution and the typical engi-
neering work flow for an aeronautical component design, is the introduction of a way
to model viscous effects [120]. Directly solving the full compressible Navier–Stokes
(NS) equations in what is called Direct Numerical Simulation (DNS) is correct from a
mathematical and physical point of view. However the computational cost of the DNS
is today still prohibitive for a wide range of typical aeronautical cases of interests with
high Reynolds numbers. The problem is not strictly related to the computational cost of
solving the NS equations inside a single discretized entity of the continuum. The main
drawback arises from the necessity of discretizing the fluid domain up to the smallest
scales of the turbulence [120]. Nowadays with the available computational power DNS
simulations are limited to relatively low Reynolds and peculiar cases. Of course the
situation is likely to change in the future thanks to the research in both the mathemat-
ical/numerical and computational sides. Currently two main alternatives to DNS are
available when the continuum hypothesis is considered and an eulerian or ALE (Arbi-
trary Lagrangian Eulerian) space formulations are adopted (thus excluding approaches
like Boltzmann/Lattice-Boltzmann/SPH): (U)RANS and LES (and their combinations
like DES/DDES). The idea behind (U)RANS, (Unsteady) Reynolds Average Navier–
Stokes, resided in the "modelization" of the small scales turbulence effects, thus ex-
cluding the necessity of their effective "resolution". This is usually done using the
Boussinesq hypothesis [120] and eventually by solving additional partial differential
equations (i.e. the turbulence equations associated to the particular chosen model).
Since (U)RANS represents a modelization of the reality, different models were devel-
oped in the last decades. Mixing Length [54], Spalart–Allamaras [140], k − ω [152],
k− ε [53], SST [107,108] are just few examples in a very rich literature. Some models
were developed and opportunely tuned for specific problems. As an example, k − ω
performs well in near wall regions, k− ε instead performs well far from the wall and in
free shear layers, Spalart–Allmaras is specifically designed for aeronautical cases with-
out boundary layer separations (wings, airfoils in normal conditions). Mixing Length
models (e.g. Smagorinsky [139] and Baldwin-Lomax [43]) are usually less accurate
and more dissipative than one or two equations models, requiring damping functions
like Van Driest [148] for the near wall regions. However, the main advantages of ML
models is their relatively low computational requirements since no additional PDEs
are required to compute the turbulent viscosity. Some models are meant to be general
purpose, providing quite accurate results on a wide range of different cases. As an ex-
ample, k − ω SST was developed in order to exploit the advantages offered by both
k − ω and k − ε models, allowing to simulate both near wall and far from the wall
flows. The literature offers many papers describing corrections and optimiziations for
existing (U)RANS models in order to better describe particular cases (e.g. on [1] it is
possible to see 7 variants just for the SST model). Sometimes (U)RANS models can be
opportunely tuned with experimental results. Another important aspect is represented
by the so called wall functions. In fact, usually (U)RANS models require a fluid do-
main discretization up to the viscous sublayer (e.g. k − ω, k − ωSST and SA), where
the non-dimensional wall distance (y+) is in the order of 1. This, of course, is directly
translated in a mesh refinement near the wall regions that, together with the costs given
by the discretization of viscous terms and the resolution of the the turbulence equations,
is the main reason of the greater computational costs with respects to an Euler simula-
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tion. Wall functions and automatic wall treatment [88, 121] are developed to asses this
problem by lowering the near-wall discretization requirements. This way it is possible
to perform (U)RANS simulations using a mesh where the wall distance of the first cell
is such that y+ > 30 obtaining at the same time accurate viscous effects. Automatic
wall treatments can be also used to automatically switching on and off wall functions
depending on the value of y+. This is done by using near-wall formulations in regions
where the near-wall discretization allows to resolve the viscous sublayer and at the
same time by using the log-law formulations in regions where the near wall discretiza-
tion is reduced. Another advantage of this approach is that it is not needed an iterative
procedure of building meshes until the one that exactly matches the y+ values for which
the adopted turbulence model is supposed to produce accurate results, over all the dis-
cretized wall surface, is found. It must be noted, however, that turbulence is a strictly
unsteady and 3D phenomena. Thus, using (U)RANS for steady and/or 2D cases means
hiding further approximations. Furthermore (U)RANS represents a cheap modeliza-
tion of the turbulence effects. Thus (U)RANS models have an intrinsic limited range of
applicability. In particular, complex phenomena like separations, boundary layer-shock
interactions and transition from laminar flows still represent a challenge for (U)RANS
simulations. More complex models were also developed (e.g. RSM, Reynolds Stress
Models) in order to improve results accuracy of (U)RANS simulations. In RSM models
the idea is to discard the Boussinesq hypothesis and directly model each component of
the Reynolds stress tensor. Of course this is translated in more expensive simulations
due to the necessity to solve more turbulence equations than Spalart–Allmaras and SST
models. Besides the fact that different turbulence models may perform well in some
peculiar cases and poorly in other cases for which they are not opportunely tuned, when
approaching a new case an important aspect is also given by user experience. For aero-
nautical components like airfoils, wings, airplanes, turbomachinery blades and open
rotor blades usually models like SST and SA are the first choice for a good trade-off
between results accuracy and computational requirements [127].

The future represented by compressible DNS for all aeronautical cases is still far
away. However an intermediate point between (U)RANS and and DNS is already avail-
able today and is represented by the Large Eddy Simulation (LES) and the Detached
Eddy Simulation (DES, and eventually DDES for Delayed Detached Eddy Simula-
tions). It must be noted however that LES represents currently a very active research
field [147]. Roughly speaking in the LES approach the user is able to choose the par-
ticular scale that divides what is resolved (as in the DNS) and what is instead modeled
(as in (U)RANS) in term of turbulence effects. Very small scales, that negligibly con-
tribute to the final solution are just modeled, in a (U)RANS fashion. Bigger scales
of an engineering interest are instead fully resolved. LES simulations are however at
least one order of magnitude more expensive in term of simulation times with respect
to (U)RANS ones. Although LES are not yet the standard in the aeronautical field,
they surely represents the next future for viscous simulations. An important advan-
tage of LES over (U)RANS is that the LES solution converges to the DNS solution by
improving the mesh refinement. For (U)RANS equations instead, mesh convergence
analyses should always be performed since from a mathematical point of view there is
no guarantee to converge to the DNS solution. A less expensive alternative to LES is
represented by the concept of DES. One of the main advantages provided by DES for-
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mulations is that they can usually be implemented as simple modifications to an existing
(U)RANS model [108,142]. The so-called DDES (Delyaed DES) formulation was also
introduced [141]. In near wall regions and zones where the turbulent scales are smaller
than grid dimensions the model is switched to the (U)RANS mode. Where instead the
turbulence scales are bigger than the grid dimensions, the model is switched to the LES
mode. DES strategies can provide better results in strongly unsteady simulations than
plain (U)RANS formulations with relatively lower computational requirements with
respect to plain LES formulations.

LES surely represents the future but is still years away from an adoption as the de-
fault approach both in academic and industrial fields. (U)RANS and DES, opportunely
tuned with experimental data, provide nowadays enough accuracy for a wide range of
cases and operating regimes. Thus they will still represent the default approach for
viscous cases in the next years.

Once the most suitable model is chosen, after considering both its accuracy and
costs, the next problem is represented by the numerical aspects of its solutions. Of
course there are problems for which the analytic solution can be easily found. However,
when considering the solution of compressible Navier–Stokes equations for arbitrary
geometries, with particular initial and boundary conditions, eventually with moving
walls, some sort of numerical discretization is required.

A plethora of numerical schemes, algorithms and formulations can be found in lit-
erature to discretize the same particular problem. Let us consider the solution of the
compressible URANS equations which are the main goal of this work. URANS repre-
sents a system of partial differential equations with temporal terms, convective terms,
diffusion terms and source terms. They contain spatial and temporal derivatives of
the unknowns and require consistent initial and boundary conditions to be specified in
order for the problem to be well posed. The numerical discretization of the problem
starting from its analytic representation is mandatory in order to be implemented as an
algorithm that can be processed by a computer. Thus, analytic operators such as spatial
and temporal derivatives have to be substituted by their numerical counterparts. The
idea is to express the problem in a form that can be processed by a computer.

Different domain discretization approaches can be used. Usually the geometry of
the problem is firstly specified (e.g. with an STL file) and then a mesh is generated
using software like gmsh, gambit, icem, blockmesh, pointwise. However mesh-free
approaches exist in which there is no particular connectivity between the numerical
points on which the solution is defined. The Smoothed Particle Hydrodynamics (SPH)
approach represents an example and is particularly used among Multi Body Systems
(MBS) analyses. The main difference between the classical Finite Volume Method
(FVM) and the SPH approach is that in the former case an Eulerian representation of
the fluid is adopted (eventually an ALE formulation if considering mesh deformation),
while in the latter a Lagrangian representation is adopted. In CFD, FEM is usually
adopted for incompressible low Reynolds simulations. FVM is instead used usually for
compressible and incompressible high Reynolds simulations. Both FEM and FVM for-
mulations can be formally obtained from the representation of the (U)RANS equations
in weak form. Usually a Petrov-Galerkin approach is adopted, in which the functional
space of the test functions is the same adopted for the solution. However a Bubnov-
Galerkin approach can be used as well, allowing to use two different functional spaces.

9
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Within an FVM framework, a cell-centered formulation or a node-centered formulation
can be adopted. In the former case usually the solution is considered uniform over the
entire numerical cell [66, 127, 136]. In the latter, usually a linear interpolation (similar
to a FEM approach) can be adopted to represent the solution [115].

Based on the chosen unknowns to describe the problem, two main families are
usually adopted in CFD: pressure-based methods [102] and density-based methods
[127, 136]. In particular, in density-based approaches [124] the unknowns are rep-
resented by the density, the momentum and the specific total energy, i.e. conserva-
tive variables. These would be the only unknowns in an Euler (inviscid) formulation.
In (U)RANS formulations further variables, related to the turbulence model adopted,
must be taken into account for the solution. Density-based schemes are usually well-
suited for subsonic, transonic and supersonic cases. However when the Mach num-
ber approaches 0, they are usually characterized by convergence problems. Different
strategies, based on preconditioning [58, 96, 150] can be adopted to obtain an all-Mach
formulation. In general, if a density-based formulation is chosen, different convective
numerical fluxes can be adopted, such as Roe [94, 95, 136], AUSM+ [97], CUSP [145]
and Jameson [85,86]. These are different examples of upwind fluxes that guarantee sta-
bility during the convergence but have the main drawback to be only one order accurate.
This problem can be tackled through the use of flux limiters [136] and automatically
switch to a second order formulation wherever is possible in the computational do-
main. In particular, in near-shock regions the second order contribution is switched off,
to avoid oscillations. while it is fully recovered in smooth regions. Another important
aspect is represented by the entropy fix (e.g. by Harten and Hyman [117]), necessary
to avoid non-physic results.

For what concerns viscous fluxes, different numerical schemes with different costs
and accuracy levels can be adopted to compute the required gradients. One of the
most simple and robust scheme is represented by the Gauss formulation, well suited
for cell-centered approaches. In this case the cell gradient is assembled adding up the
contributions of the faces, contributions that are computed directly from the cell and
neighbor cells. Since no upwind-like concepts are required for the viscous terms, a
simple and cheap weighted average between the cells values is enough. Another pos-
sible formulation is represented by the Least Square scheme (LS) [66] mostly used in
node-centered approaches. This is less robust and more expensive but usually provide
more accurate results.

For what concerns the temporal discretization of the problem, two main formu-
lations exists: explicit and implicit schemes. Explicit schemes can be easily imple-
mented, are easily parallelizable (since the solution at the new time depends only from
the values stored at the previous times) and they require a small amount of memory
since the matrix storage is avoided. Their main disadvantage is represented by the CFL
constraint that limits the maximum value of the allowed time-step. On the other side,
the solution of implicit iterations is more costly since it basically requires the solution
of a linear system. The problem is also represented by the fact that Navier–Stokes equa-
tions are non-linear, meaning that some sort of linearization is required to compute the
solution. Of course Newton–Raphson method can be employed to perform this task,
however it basically requires to perform multiple factorizations at each physical time
step (although the same factorized matrix can be used for multiple iterations [115]).
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One of the main drawbacks from a computational point of view of implicit schemes
is represented by the high memory requirements, since the system matrix has to be
stored (although in a sparse format). The main advantage of implicit methods is repre-
sented by the possibility of using large time-steps (thus big CFL values) without severe
stability problems. Segregated methods consists in a mixed approach between a fully
implicit and a fully explicit scheme. Basically some equations are solved using lin-
ear systems, like a typical implicit scheme. However other variables are updated in
an explicit-like manner, usually the turbulence equations. These strategies allow a re-
duction of the size of the system that would be required in a full implicit approach, at
the cost of inferior convergence performances. A staggered approach [66] can be also
implemented. As an example the solution of some equations is computed using the
values previously obtained from the solution of other equations in the same iteration.
That said, considering the allowed values of time-steps and the costs of each iteration,
explicit method are usually preferred when small time-steps are required, e.g. when
studying acoustics. Implicit schemes are instead preferred when large time-steps are
required, e.g. to reach a steady-state solution. Different strategies can be adopted in
order to speed up the convergence of explicit schemes, bypassing the CFL limit without
actually violating it. The most important strategies are represented by the Local Time
Stepping (LTS), Residual Smoothing (RS), Multi-Grid (MG) [48]. These schemes can
be combined together to damp residuals and achieve convergence rates comparable to
what provided by implicit formulations. These convergence acceleration techniques
speed up the convergence of explicit methods to reach steady solution whith null resid-
uals but cannot directly adopted in unsteady simulations. This is due to the fact that
the time, at this point "pseudo time" loses its physical meaning. Dual Time Stepping
(DTS) [48] can be adopted to perform unsteady simulation with explicit methods while
maintaining convergence acceleration active. The idea behind DTS is basically to con-
verge from one physical time to the next one by solving a steady problem with source
terms representing the physical temporal derivatives. This way all the CFL problems
are related to the pseudo time handled with LTS, while the physical time step can be
chosen independently. With DTS it is possible to employ physical time steps that are
not limited by CFL restrictions, allowing to reconstruct only the frequencies of interest,
reducing the computational effort with respect to a global time stepping strategy.

The DTS technique can be used to solve the fully non-linear URANS equations
in the time domain. This can be profitably used when unsteady complex non-linear
phenomena are investigated on a generic computational domain. A subclass of aero-
nautical problem is represented by turbomachinery and recently by the renewed interest
in open rotors/propfans, which are usually characterized with time and spatial period-
icity. Thus, in this class of problem, when the hypothesis of spatial and/or time pe-
riodicity is valid, simplifications can be adopted to reduce the computational costs of
the simulations. In particular, beside the non-linear time-domain schemes, also time-
linearized [63] and the Harmonic Balance (HB) techniques [63] can be adopted. Time-
linearized techniques allow a drastic computational effort reduction with respect to time
domain strategies but cannot be adopted when strong non-linear phenomena such as
separations and shocks occurs in the flow. However the Harmonic Balance technique
can be adopted to provide a full non-linear frequency domain formulation. Generally,
time-linearized and HB techniques reduce the total computational costs when a single
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particular frequency has to be analyzed, since with a non-linear time domain approach
an entire unsteady solution would be required. However as will be presented in this
work, by exploiting an opportunely crafted aeroelastic system input it is possible to ex-
cite a wide range of frequencies in a single unsteady analysis. This supports the choice
of a non-linear time-domain solver, especially for flutter analyses.

Alongside CFD simulations that involves purely aerodynamic effects, a primary re-
search field is represented by aeroelasticity. Reality is intrinsically aeroelastic, there is
no non-deformable structure. Some structures are such that displacements under aero-
dynamic loads are negligible from an engineering point of view. However there are
important cases, like aircraft wings, where accounting for the structural response pro-
vides more accurate results [115, 127]. This is more and more relevant as the adoption
of innovative materials (i.e. composite [39]) and technologies advances (i.e. 3D print-
ing [149]). This is particularly true for static aeroelasticity. The most important aeroe-
lastic phenomenon in the aeronatical world is represented by flutter. This is a dynamic
instability of the aeroelastic system, when structural and aerodynamic subsystems are
considered coupled. Flutter must be investigated as it is directly related to self-sustained
vibrations, thus fatigue life, thus safety. At the beginning of the first century of flight
aeroelasticity was ignored during the design process. However catastrophic failures
occurred and therefore it was evident that aeroelastic analyses needed to be part of the
safety-check procedures during the design of new components. Nowadays the trend is
to introduce aeroelastic analysis since the very beginning of the design process, leading
to the requirement of high efficiency solvers, capable to fully exploit the state-of-the-
art computational hardware. However, aeroelasticity is still nowadays an open problem.
This is confirmed by the fact that the most recent (2015/2016) effort to asses the the ac-
curacy of state-of-the-art aeroelastic solvers is represented by NASA’s Aeroelastic Pre-
diction Workshop 2 (AePW2) [81], with the purpose of comparing results provided by
different research groups from all over the world. In the past the AePW1 [80] was also
adopted to pursue this goal with the HiReNASD and BSCW wings. The AGARD 445.6
wing flutter investigation [156] is another well know benchmark case. Benchmark cases
for turbomachinery aeroelastic investigations also exist, like the SC (Standard Config-
uration) [69] cases, e.g. SC10. While in turbomachinery aeroelastic investigations the
aerodynamic damping analysis seems to be the most important kind of investigation, in
literature it is not common to find static aeroelastic analyses. This is probably due to
the higher stiffness of blade configurations with respect to more classical aeronautical
wings. Besides turbomachinery, open rotors/propfans represent a recent trend in the
aeronautical field. The first studies for this kind of configurations are from 1975 by
NASA. At their very beginning CROR (Counter Rotating Open Rotors) [78] configu-
rations were affected by high noise levels. The current need to find new high efficiency
solutions for aeronautical propulsion indicated open rotors as a possible candidate, re-
newing the interests over this kind of configurations [122]. Figures 1.1 show examples
of pushing and pulling CROR configurations. As for turbomachinery and helicopter
blades, open rotors represent a challenge from the numerical point of view. In fact
with the need to account for compressibility and viscous effects from the purely CFD
point of view, the structural deformability due to both aerodynamic and centrifugal ef-
fects should be taken into account. This clearly suggests that for this kind of rotors
what is often called multi-physics approach is required. Figure 1.2 shows the Collar’s
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Figure 1.1: Examples of CROR puller (on the left) and pushing (on the left) configurations [122],
www.redstar.org, www.gfdiscovery.blogspot.it.

triangle [47], highlighting the connection between different subsystems [127]. These
triangle can also be modified adding the control subsystem [127]. The control subsys-
tem is particularly important for different applications, e.g. gust alleviation [68]. These
interactions could also trigger non-linearities [127]. Accurate aeroelastic simulations

Figure 1.2: Collar’s triangle, interaction between subsystems.

requires CFD formulations to be coupled with algorithms that allow mesh deformation.
In particular, Radial Basis Functions (RBF) interpolation schemes can be adopted to
build the so-called aeroelastic interface between the usually different structural mesh
and aerodynamic mesh wall discretizations [52, 123]. An option is represented by In-
verse Distance Weighting (IDW) algorithm [137, 154] that can be also used to update
aerodynamic mesh internal nodes location by knowing wall displacements.

The schemes and algorithms chosen for the numerical discretization of the prob-
lem are strictly related to computational aspects. As previously said, even smartphones
have nowadays orders of magnitude the computational power of the computers of few
decades ago. When performing numerical simulations with a computer, at least a basic
knowledge of how computers work, from a software and hardware point of view, is
required. This is necessary in order to efficiently implement the numerical algorithms.
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Chapter 1. Introduction

Roughly speaking, from the hardware point of view, when performing simulations, the
two most important aspects are represented by the total amount of memory available
and the Floating Point Operations Per Seconds (FLOPS) achievable. Memory is strictly
related to the problem size that can be handled: more memory means bigger problem
sizes. FLOPS are instead related to the speed at which the computations can be per-
formed: more FLOPS means that more computations can be performed per unit of
time. It must be noted that the computational time required to obtain the solution does
not depend only by the available computational power. Fundamental aspects are also
represented by the convergence properties of the implemented schemes. In fact, let us
consider a scheme A that requires very small time per iteration, but it requires a lot
of iterations to reach convergence, and scheme B that is more costly in term of time
per iteration but requires much less iterations to reach convergence. Since the goal is
to obtain the solution as soon as possible, the scheme B could be the candidate to be
implemented. Another important aspect from the computational point of view is that
the choice of the algorithm must take into account also the particular architecture of the
machine over which it will be executed. As an example, if a quad-core CPU is avail-
able, in order to exploit the full available computational power, the chosen algorithm
must be capable of split the work in chunks that will be distributed among cores. If
instead the algorithm is intrinsically serial, 3/4 of the available computational power
will be wasted.

Multi-core CPUs are available for personal computers since a decade. Until the
first years of 2000 CPUs were basically single core processors. From year to year new
architectures were presented with the goal of improving serial performances, mainly
by allowing higher frequencies to be reached. As an example, Intel was publicizing
its Pentium 4 processors with their GHz-range frequencies. Transistor scales where re-
duced up to nanometers, approaching not only engineering limitations but also physical
limitations. It was clear that the single-core performances, thus serial performances of
processors were reaching their intrinsic physical limits with the available technology.
Furthermore, increasing core frequencies to over 3 or 4 GHz became very difficult.
Thus, in order to improve CPU performances, different strategies were adopted. First
of all the multi-core concept. Basically the idea is to have multiple independent con-
nected computational units, sharing memory, on the same socket. Modern operating
systems like Windows, OSX and Linux distributions support multi-tasking thanks to
concepts like processes, threads, time slices. When the operating system kernel is ex-
ecuted on a multi-core CPU, it is allowed to schedule processes/threads for execution
over the available cores. This way, when performing numerical simulations, with the
right algorithm, it is also possible to distribute the work among the available cores.

Besides the CPU, another powerful chip installed in basically every modern com-
puter is the GPU, the Graphical Process Unit. As the name suggests, the main purpose
of this device is to accelerate computations strictly related to graphics. When perform-
ing graphical computations, the same operation has to be performed on a large amount
of pixel or vertexes, meaning that GPUs are intrinsically SIMD (Single Instruction Mul-
tiple Data) devices. As an example, in order to draw a triangle on the screen and then
translate it, basically it is needed to translate each vertex that compose the triangle. This
job can be directly performed by the GPU in a parallel way by translating each vertex
that compose the triangle, effectively offloading the CPU from the computations. Let us
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consider now the sum of two vectors: the same operation has to be performed on each
couple of numbers. This is basically the same operation needed to compute the new
vertexes positions given the initial positions and the translation vector. Since GPUs are
specifically designed to perform this kind of computations, it easily understandable why
they outperform CPUs of the same price level in specific SIMD computations. The idea
behind GPGPU (General Purpose GPU) is, as the name suggests, to use GPUs to per-
form general purpose numerical computations. Of course, since the GPU architecture
is inherently SIMD, only data-parallel algorithms can truly exploit its computational
power. When this is possible, and the code is opportunely tuned, one order of mag-
nitude speed-up can be potentially achieved by using a GPU instead of a CPU of the
same price level. This might seem impressive, especially considering that almost every
computer has nowadays a GPU that can be exploited to offload the CPU and accelerate
specific type of computations. However it must be noted that GPGPU programming is
somehow cumbersome and exposes numerous limitations with respect to classical CPU
programming. Figure 1.3(a) clearly shows the differences between theoretical floating
point computational power of CPUs and GPUs and in particular the trend of last years.
It can be seen that AMD and NVIDIA GPUs exhibit higher theoretical FLOPS perfor-
mances considering single precision. The comparison between Single Precision (SP)
and Double Precision (DP) performances is a fundamental aspect that will be discussed
in detail in this work. Figure 1.4 shows the advantages provided by GPU acceleration
in term of performances to costs ratio. Besides the fact that the numbers showed in
the figure are highly dependent from the particular chosen CPU/GPU combination, it
is clear that adding GPUs to an HPC system contributes to reduce the performances to
costs ratio. What is important to notice is not the numbers themselves, but the order of
magnitude of the advantages given by using GPUs with respect to a CPU-only system.
Obviously it is reminded that these are just theoretical numbers since when tackling
a numerical problem it is not always possible to exploit the intrinsically GPU SIMD
architectures. The first GPGPU approaches [77] were based on mapping the numerical
problem to a graphical problem in order to exploit the graphical API (Application Pro-
gramming Interfaces), communicate with the GPU and ask it to perform computations.
Translating numerical algorithms into pixel/vertexes operations was very difficult at the
beginning of GPGPU. Later, in 2007, NVIDIA launched CUDA, providing an easier
way to access the computational power of GPUs for generic numerical computations.
ATI (nowadays AMD), the main NVIDIA’s competitor in GPU market, launched its
SDK for GPGPU programming, called ATI Stream. Nowadays different modern SDK
and languages can be adopted for GPGPU computing, such as CUDA (NVIDIA only)
and OpenCL (multiple CPU, GPU and FPGA vendors). OpenCL and CUDA offers
a low level GPGPU programming capabilities. Other languages, such as OpenACC,
offer more high level interfaces to GPGPU.

GPGPU is exploited in very different numerical fields such as CFD, finance, cryp-
tography, machine learning, medics, signal and image processing, etc. Different soft-
ware from different software houses offer the possibility of GPU acceleration. Further-
more, wrappers and libraries for numerical computations are today available to exploit
GPGPU by getting rid the user from low-level GPU programming. Examples are rep-
resented by ViennaCL [35] or MATLAB.

Despite the advantages given by GPGPU, the programmer must face different draw-
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Chapter 1. Introduction

(a) Single Precision theoretical performances

(b) Single precision performances per Watt

Figure 1.3: CPU vs. GPU performances trend, [2].

backs and limitations when programming GPUs for general numerical computations.
Concepts like branch divergence and coalesced memory access must be taken into ac-
count in every algorithm that has to be implemented. Furthermore, a typical GPU
exhibit less memory than the typical amount of system memory (RAM) available on
a workstation. This means that explicit algorithms are preferred over implicit algo-
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Figure 1.4: Performances to costs ratio, GPGPU advantages [3].

rithms, thanks to the avoided matrix storage and intrinsically local memory footprints.
Alongside these problems, debugging and profiling GPU code is quite hard with re-
spect to typical CPU code. Particular attention must be dedicated to memory accesses
since buffer overflows could lead to unexpected crashes. Finding the exact line of code
where buffer bounds are not respected can be very hard. Recently, a debugger was
developed, called Oclgrind [27] that basically allows the programmer to obtain a Val-
grind-like [34] debugging tool for OpenCL-based applications. Another feature of this
great debugger is the possibility of checking for possible data-races.

An important aspect in GPGPU world is given by the differences between gaming
GPUs (such as NVIDIA GeForce product line and AMD Radeon product line) and
HPC GPUs (such as NVIDIA Tesla product line and AMD FirePro). Usually high-
end gaming GPUs exhibit about the same single-precision (SP) computational power
provided by HPC GPUs but just a fraction of their double-precision (DP) computational
power [37, 38]. Furthermore HPC GPUs have nowadays more than 10GB of memory,
while high-end gaming GPUs have only about 4 − 8GB. Finally HPC GPUs features
ECC (Error Correcting Code) compliant memory. One of the goal of this project is to
develop a solver that is capable of exploiting the single-precision computational power
of gaming GPUs since they are usually one order of magnitude cheaper than HPC GPUs
with about the same SP computational power. Of course using SP for the solution of
Navier–Stokes equations often requires particular tuning of the code when precision
loss could be a problem.

Finally, it must be noted that GPUs have better performances per Watt than CPUs
as can be seen in figure 1.3(b). Thus there are also important advantages in using them
(when it is possible) from the point of view of energy consumption. This and other
aspects regarding GPGPU will be discussed in details in this work.

Usually numerical solvers run on CPUs, eventually with the possibility to exploit
multi-core architectures through multi-threading, or clusters with multiple nodes using
multi-processing through message-passing strategies. Few programs have the possibil-
ity to offload part of the computations to GPUs in order to accelerate specific compu-
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Chapter 1. Introduction

tations. Here the idea is instead to use OpenCL to parallelize almost all the solver’s
algorithms in order to exploit SP performances of modern cheap gaming GPUs. How-
ever, the idea is to obtain a solver that is natively compatible with both CPUs and GPUs
thanks to the OpenCL runtime libraries and device drivers offered by the most impor-
tant CPU and GPU vendors (Intel, AMD, NVIDIA). This way with a single source code
set it is possible to achieve compatibility with the widest range of devices.

It is worth to note that despite the main target of this work is accelerating simulations
through hardware/software-based techniques, other strategies like parametric comput-
ing and reduced order methods can be exploited to further reduce computational times
and increase simulation complexity [133].

1.2 Overview of the thesis

Here an overview of the chapters is presented. First of all the numerical formulations
implemented in the solver are showed alongside the explanations of the choice from
both a numerical and a computational point of view, considering that the main goal is a
GPU-optimized solver with turbomachinery and open rotors extensions. Then GPGPU
main concepts are presented, considering in particular the choice of the OpenCL API
and language. Next, the software architecture of the solver is presented, with a detailed
view of how GPGPU concepts are translated in the parallelization of different CFD/FSI
tasks. Computational benchmarks are then used to assess the speed-up advantages of
using GPUs instead of CPUs for the solver execution. Finally numerical results are
presented in order to validate the solver’s numerical formulations. Different kind of
test cases are adopted at this stage, raging from steady to unsteady, from aerodynamic
to aeroelastic, from classical aeronautical to turbomachinery/open rotors cases.

Chapter 2

This chapter presents the numerical formulations implemented in the solver to solve the
Navier–Stokes equations in an ALE framework. This is required to handle steady and
unsteady aeronautical cases with fixed and deformable meshes. As previously said the
OpenFOAM framework is adopted for the pre-processing phase, thus a finite-volume
cell-centered formulation is adopted. The implemented convective numerical fluxes are
here briefly presented, alongside strategies for high resolution, flux limiters and entropy
fix. The convective fluxes formulations take into account also the ALE terms necessary
for moving and deforming meshes. The implemented schemes for viscous fluxes are
then briefly introduced with the implemented automatic wall treatment strategy. The
most important boundary conditions for aeronautical cases are here introduced, con-
sidering also transpiration boundary conditions to emulate moving boundary effects
without actually updating wall points positions. For what concerns aeroelastic simula-
tions, the adopted RBF-based strategy is here described to handle the interface between
the aerodynamic and structural meshes. IDW algorithm is described to update internal
point positions. Convergence acceleration techniques such as Local Time Stepping,
Multi-Grid and Residual Smoothing are here described as the strategies to speed up the
convergence of the explicit solver. Dual Time Stepping is also showed for unsteady
simulations. The procedures for steady, unsteady, trim, flutter and forced oscillations
analyses are also described in this chapter.
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Chapter 3

In this chapter an introduction to turbomachinery and open rotors problems and simu-
lations is firstly provided. After the introduction of purely aeronautical cases formula-
tions, this chapter is dedicated to the extensions implemented into the general-purpose
solver that are required to handle rotating cases for turbomachinery and open rotors.
The main purpose of these formulations is to speed up convergence of cases that ex-
hibit spatial and temporal periodicity. MRF allows to simulate rotating domains without
actually rotate the mesh. Cyclic boundary conditions are adopted to reduce the compu-
tational domain to an N-blade sector when spatial periodicity is supposed to be related
to N blades. Strictly related to this, IBPA and delayed boundary conditions concepts
are presented, useful for unsteady cases when adjacent blades vibrates with a particular
phase angle. Mixing plane strategy is then introduced to simulate the interface between
two communicating blade rows (e.g. one stator row and one rotor row). Again, this is
useful when used in conjunction with cyclic BCs in steady simulations. A comparison
with other strategies of Navier–Stokes equations solution specifically designed for tem-
poral periodic cases (time-linearized and Harmonic Balance) is also briefly presented
alongside the reasons supporting the implemented approach (non-linear time march-
ing).

Chapter 4

This chapter is aimed to introduce the reader to GPGPU concepts. The most important
advantages and limitations of using GPUs to perform numerical computations are here
presented. Concepts and problems related to branch divergence and sequential memory
access are here explained. The attention is focused on OpenCL since it is chosen in this
work as the API and language for GPU programming. The most important abstractions
(e.g. devices, platforms, kernels) provided by OpenCL are here explained. Examples
are provided to better explain when GPUs can be used to accelerate computations. This
is used to understand the programming choices adopted in the solver. This chapter is not
aimed to be an OpenCL or GPGPU tutorial but anyway could be useful to understand
if a particular algorithm can be efficiently ported on GPU architectures.

Chapter 5

After the introduction of the main concepts related to both the numerical and the com-
putational sides of the problem, this chapter is aimed to explain the computational
aspects of the solver architecture, how the different subsystems communicate and how
the solver algorithms are implemented and tuned. The solver uses C, C++ and OpenCL
languages. In particular, two different source sets have to be created, one for the "host"
that enqueue work and one for the "device" that actually performs aeroelastic computa-
tions. In this chapter pieces of host and device code will be showed to provide a better
feel of what really runs under the hood. Furthermore, this chapter better explain the
possible bottlenecks with hybrid/unstructured meshes and why some algorithms are in-
stead very efficient if run on a typical GPU architecture. The connection between the
solver, AeroX, and the OpenFOAM framework is also showed. Furthermore strategies
to improve numerical robustness and convergence are presented.
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Chapter 6

This chapter shows the results for what concerns the purely computational side of the
problem. The main purpose of using OpenCL is to obtain a solver that can exploit GPU
acceleration with devices provided by the main GPU vendors, while retaining CPU
multi-thread compatibility. In particular, an important advantage provided by OpenCL
is the fact that there is no need to write different codes for different architectures: every
CPU and GPU that is compatible with OpenCL can be immediately used by the solver
(provided that the correct runtime is installed). This is translated into compatibility
with a wide range of devices, and, for the purpose of this chapter, an easy way to
compare the simulation times of CPU and GPU executions. In this chapter the speed-up
obtained with different CPU and GPU architectures, provided by different vendors such
ad AMD, NVIDIA and Intel is showed. As said AeroX is compatible with CPUs and
GPUs but is tuned for GPU executions, so it is expected to perform better with this kind
of devices. An APU (Accelerated Processing Unit) from AMD is also used for these
benchmarks. The speed-ups are also analyzed considering isolated kernels in order
to perform an accurate investigation of the computational efficiency of the different
implemented algorithms. One of the main goals of this work is to exploit cheap gaming
GPUs instead of more expensive, specifically designed HPC GPUs. Thus, the solver is
here tested to check for possible problems due to the use of single precision instead of
double precision and for possible differences due to the lack of ECC memory in gaming
GPUs. This is done in order to respond to the most criticisms encountered by following
the gaming GPUs choice. Obviously the solver is also natively compatible with HPC
GPUs, double precision and ECC memory.

Chapter 7

In this chapter the solver is validated for the purely aerodynamic formulations side.
Here, different test cases and benchmarks are used to show the capabilities of the solver
to provide accurate inviscid and viscous solutions in a reasonable amount of time, con-
sidering the fact that it can be executed on a relatively cheap desktop computer instead
of computer clusters and high-end workstations. In this chapter typical aeronautical ge-
ometries are adopted for the validation, such as the RAE and Onera M6 wings and the
2nd Drag Prediction Workshop. This kind of cases are used to show the capability of
the solver to accurately predict viscous and compressible effects, with different range
of Reynolds and Mach numbers. These cases are investigated before rotating (turboma-
chinery and open rotors) cases and unsteady cases with mesh deformation in order to
validate the solver for what concerns purely aerodynamic formulations for aeronautical
cases.

Chapter 8

After the analysis of the purely aerodynamic aeronautical cases, in this chapter the
solver is validated for what concerns static and dynamic aeroelasticity. Static aeroelas-
ticity is assessed using a steady test case with deformable structure. For this purpose
the well-known HiReNASD wing is adopted for the validation. For what concerns un-
steady cases with moving walls, the solver capabilities are investigated through forced
oscillations and flutter analyses. Flutter investigations are performed with the AGARD
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445.6 wing and the BSCW wing, the latter within the recently presented Aeroelas-
tic Prediction Workshop 2. It is highlighted that the HiReNASD and AGARD 445.6
wings aeroelastic investigations are well-known test cases in the aeroelastic aeronauti-
cal world, created ad-hoc to investigate the aeroelastic solvers capabilities to reproduce
experimental results with numerical simulations. The AePW2 is instead the most recent
effort to asses the state-of-the-art in FSI numerical simulations and is here adopted to
compare the results provided in this work to what currently produced by other research
groups over the world using state-of-the-art aeroelastic solvers.

Chapter 9

After the validation of the aerodynamic/aeroelastic formulations with aeronautical test
cases, the implemented turbomachinery/open rotors extensions are here investigated
for what concerns steady cases. Numerical simulations are performed on cases with
different levels of complexity. 2D and 3D cases with rotors and stators are investigated.
Different formulations specifically designed for turbomachinery and open rotor cases
are here validated, such as MRF, cyclic boundary conditions and mixing plane formula-
tions. In particular, the validation is started with a simple 2D stator blade in which only
cyclic boundary conditions are adopted. For this purpose the Goldman blade case is
used. Then the mixing plane formulation is validated through the simulation of the 1.5
stages Aachen turbine with a stator-rotor-stator blades configuration. Finally an open
rotor case from Stuermer is investigated.

Chapter 10

This is the last chapter regarding numerical results. Here the solver is validated with
steady and unsteady aeroelastic turbomachinery and open rotor cases. In particular the
steady aeroelastic solution of the NASA Rotor 67 is computed. This test case is used
to demonstrate the capabilities of the solver to compute the blade deformations of a
rotor blade under aerodynamic loads. This is a particularly important result since in
the literature it is difficult to find this kind of investigations. However, as the results
will show, the steady aeroelastic solution is basically identical to the steady aerody-
namic solution, hence it is possible to say that with this kind and similar geometries
the steady aeroelastic simulation can be avoided. However, with the efficient imple-
mented strategies, the aeroelastic solution has basically the same computational costs
of a classical steady aerodynamic solution, thus it is worth to try to perform a trim
simulation when facing a new geometry in order to verify if static blade deformations
are negligible from an engineering point of view. Next, the attention is focused on
the computation of the aerodynamic damping of the well-known two-dimensional and
three-dimensional Standard Configuration 10 (SC10) test cases. These are used to val-
idate the solver when performing unsteady turbomachinery simulations with forced
oscillations. In particular, delayed boundary conditions are here exploited in order to
simulate different IBPAs while retaining the single-blade domain reduction to reduce
the overall computational costs when the spatial periodicity is not related to a single
blade domain anymore. Finally a propfan blade, SR-5, is investigated for flutter condi-
tions. In this case a single-blade spatial periodicity is supposed and the same strategy
for flutter computation adopted for classical aeronautical cases is adopted. This com-
pletes the aeroelastic investigations.
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CHAPTER2
Fluid dynamics and aeroelastic system

formulations

The target of this work is the implementation of a finite-volume, cell centered, explicit
aeroelastic compressible URANS solver. This means that AeroX is a general purpose
solver. Formulations regarding turbomachinery and open rotors will be added as exten-
sions later. Thus, it is necessary to firstly introduce the equations that physically and
analytically model the problem to be solved. After the presentation of the equations
for the aerodynamic and structural system, the focus will be posed on the numerical
discretization schemes. For what concerns the aerodynamic system the implemented
schemes to discretize convective and viscous fluxes will be briefly introduced. This
is also valid for turbulence models and the adopted wall treatment strategy. After the
description of the purely aerodynamic aspects, the schemes and algorithms required
to solve aeroelastic problem will be investigated. In fact, a connection between the
aerodynamic and structural meshes is required, alongside a strategy to update the aero-
dynamic mesh based on the displacements of the moving walls. These are required
both for static and dynamic aeroelastic analyses. The focus will be also posed on the
description of the procedures behind the solution of trim, free and forced oscillations
and flutter problems.

2.1 Aerodynamics formulations

First of all, the equations of the purely aerodynamic system are presented and dis-
cussed. With the aim of obtaining an aeroelastic solver capable of handling unsteady
cases with mesh deformation, the ALE (Arbitrary Lagrangian Eulerian) framework is
then presented and the equations are consistently modified with the introduction of the
material velocity. The discretization schemes adopted to numerically solve the Navier–
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Chapter 2. Fluid dynamics and aeroelastic system formulations

Stokes equations are then briefly showed. Numerical convective fluxes are firstly in-
troduced, which are sufficient for an inviscid analysis (Euler equations). Then, viscous
fluxes are discussed, allowing to effectively solve compressible viscous cases. The im-
plemented turbulence models are then presented to complete the RANS equations. The
focus is then posed on boundary conditions and wall treatment. Finally Local Time
Stepping (LTS), Residual Smoothing (RS) and Multi-Grid (MG) are briefly discussed
alongside the Dual Time Stepping (DTS) strategy that allows the exploitation of such
convergence acceleration techniques also for unsteady cases. Most of the formulations
discussed here, in particular convective fluxes, boundary conditions and cell-centered
discretization, are discusses in a more detailed way in [48, 127, 136].

2.1.1 Navier–Stokes equations

With the aim of implementing a compressible URANS solver, the Navier–Stokes equa-
tions are here introduced and briefly discussed. Next, the Unsteady Reynolds Aver-
age Navier–Stokes formulation are presented as a modification of the original Navier–
Stokes system, allowing the adoption of different turbulence models. More in detail,
for compressible systems the Favre equations are adopted [48].

From a mathematical point of view, Navier–Stokes equations consist in a system of
mixed non-linear Partial Differential Equations (PDE). The system of equations must be
coupled with consistent boundary and initial conditions. However, as will be showed,
some sort of modelization for what concerns the viscous terms, the equation of state of
the fluid, the conduction term, and turbulence effects is introduced to close the problem
and to ease the solution from a computational point of view. Navier–Stokes equations
can be used to describe the behavior of the fluid flow when the continuum hypothesis
holds. This is strictly related to the Knudsen number, Kn = λ

L
, where λ is the mean

free path (the average distance traveled by a moving particle between two successive
collisions), L is the representative physical length scale. The continuum hypothesis
holds when Kn << 1, thus when the length scales typical of the investigated phe-
nomenon are larger than the mean free path. From the engineer point of view this is
translated in the possibility of using the approach adopted in this work for the majority
of aeronautical cases (such as wings, planes, turbomachinery and open rotors blades
in subsonic, transonic and supersonic regimes). However, other important study fields
related in particular to space applications (such as the reentry of an hypersonic vehicle
in the atmosphere) usually requires different formulations based on statistical methods.

Equation 2.1 shows the well-known integral form of the Navier–Stokes equations,
expressed in an Eulerian framework, using conservative form variables, for the descrip-
tion of the dynamics of the flow of a compressible, viscous and conductive fluid:

d
dt

∫
V

U dV +

∮
S

f(U) · n̂ dS −
∮
S

g(U) · n̂ dS =

∫
V

h(U) dV (2.1)

In these equations the control volume V and its boundary S are considered fixed in
space, thus the equations describe the evolution of the variables U(x, t) inside it.
U(x, t) is the vector of the unknown conservative form variables [124] and depends
from the time t and the considered space location x. In this work the conservative form
variables, the density ρ(x, t), the momentum m(x, t) = ρ(x, t)u(x, t), and the total
energy Et(x, t) = ρ(x, t)et(x, t), are adopted as the unknowns: U = {ρ,m, Et}. u
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represents the velocity, n̂(x) the boundary surface normal unit vector. f(U) represents
convective fluxes, g(U) represents viscous fluxes and h(U) finally represents source
terms.

As shown in equations 2.2, Navier–Stokes equations can be also expressed in differ-
ential form, again in an Eulerian framework:

∂U

∂t
+∇ · f(U) = ∇ · g(U) + h(U) (2.2)

The arrays of convective and viscous fluxes are defined as follows

f(U) = {ρu, ρu⊗ u + P [I],u(Et + P )}
g(U) = {0, τ, τ · u + q} (2.3)

where P is the pressure field, τ is the stress tensor, q is the power exchanged by the
conduction, and [I] is the 3x3 identity tensor. For what concerns the source term h(U),
it can be used to account for the gravitational field effects and other kind of volume
forces. However, it must be noted that since gravitational effects are negligible, the
gravitational terms can be neglected. As shown in 3.6, a source term is also needed for
the MRF formulation [46].

As previously introduced, some sort of modelization and hypotheses are necessary
to close the problem. In particular, the pressure field P (x, t) must be expressed as a
function of the chosen unknown (U). For this work the gas is modeled as a Polytropic
Ideal Gas (PIG) [125]. This is true for the majority of aeronautical cases and turboma-
chinery cases with the exception of particular applications, like ORCs (Organic Rank-
ine Cycles) [59, 76, 79], that require different gas models in order to correctly describe
complex phenomena like expansion shocks and mixed waves [66]. Usually this kind of
phenomena are investigated using gas models like Van Der Walls [125] that can, from
a mathematical point of view, catch phenomena typical of the dense gas region [66].

In this work the PIG model is implemented for what concerns the thermodynamics
relations. This allows the pressure P and the temperature T fields to be expressed as
function of the unknowns U as follows:

P = (γ − 1)

(
Et − 1

2
ρ|u|2

)

T =

(
Et − 1

2
ρ|u|2

)
ρCV

(2.4)

where γ is the specific heats ratio γ = CP
CV

, CP and CV are the molar heat capacity at
constant pressure and at constant volume respectively.

Now, after the brief introduction of the thermodynamics model, the discussion is
focused on the definition of the stress tensor τ . Using the well-known Newtonian fluid
hypothesis [125] it is possible to express the stress tensor as proportional to the defor-
mation velocity. Again, this is true for most of the aeronautical, turbomachinery and
open rotors cases, in which the considered fluid is usually air or other kind of Newto-
nian gas (e.g. freon). However, there exists specific cases in which the fluid behavior
is fully non-Newtonian (e.g. ketchup), requiring different kind of modelization of the
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stress tensor. In this work the stress tensor is expressed as a function of the velocity
field as follows:

τ =
µ

2

[
(∇⊗ u) + (∇⊗ u)T

]
+ λ∇ · u [I] (2.5)

where µ(T ) is the molecular dynamic viscosity and λ(T ) is the bulk viscosity. These
two viscosity coefficients depend from the temperature T , however they can be kept
constant during the simulation if the temperature range is limited. As an example,
the value of the molecular dynamic viscosity for the air at a reference temperature of
T0 = 291.15K is µ0 = 1.827 · 10−5 Pa s. In this work it is also implemented a model
that describes the molecular viscosity change with the local temperature. In particular,
the Sutherland’s formula is adopted:

µ(T ) = µ0
T0 + C

T + C

(
T

T0

) 3
2

(2.6)

where C is a constant that has a particular value for the considered gas, e.g. for the
air is 120K. For what concerns the bulk viscosity λ, this is related to the molecular
dynamic viscosity µ through the Stokes’ condition [124]:

λ =
3

2
µ (2.7)

Another important modelization introduced in the equations is related to the power
exchanged by conduction term, q. Using the Fourier relation it is possible to express
this term as a function of the temperature gradient, which, in turn, can be expressed as
a function of the unknowns, as seen in 2.4. Using Fourier relation q is expressed as
proportional to the temperature gradient through a constant K:

q(T ) = K ∇T (2.8)

K is a constant that is expressed as a function of the Prandtl number (Pr, which is usu-
ally 0.72), the molecular dynamic viscosity (µ), and the molar heat capacity at constant
pressure (CP ):

K =
µCP
Pr

(2.9)

In order to completely close the Navier–Stokes equations system it is also necessary
to introduce boundary conditions (U(x, t)|x∈S = US(t)) over the entire domain bound-
ary. The implemented boundary conditions are briefly presented in 2.1.8. Furthermore,
initial conditions (U(x, t)|t=0 = U0(x)), consistent with boundary conditions, have to
be specified inside the whole domain for the initial time. It is worth to say that, from
a numerical point of view in particular, when performing steady-state simulations em-
ploying convergence acceleration techniques, initial conditions assume the meaning of
an initial guess solution, without any particular physical meaning. Furthermore, time
loses its physical meaning, and it’s often called pseudo time at this point. This concepts
are described in detail in 2.1.11, 2.1.10, 2.1.12.

At this point, the Navier–Stokes PDE system is completely closed and could be
potentially solved from a mathematical point of view. From the numerical and compu-
tational point of view these are the equations that have to be solved when employing
the DNS formulation. However, as briefly introduced before, solving DNS nowadays
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is confined to particular problems that are still far from the typical aeronautical, turbo-
machinery and open rotors cases. This is basically due to the mesh discretization levels
that DNS requires and thus the huge computational power that is necessary to complete
the simulations. Different formulations are nowadays available to bypass this problem,
such as RANS, LES, DES and DDES. In all of the listed strategies, the research field is
still very active. Of course, bypassing the direct solution of Navier–Stokes equations in-
troduces some kind of errors in the results. However, from an engineering point of view,
a trade-off between simulations times and accuracy is mandatory. Furthermore, it must
be noted that when simulating aeronautical components it is perfectly legit to neglect
the detailed simulation of some kind of localized phenomena, provided that they don’t
affect the searched results. Nowadays RANS are the default approach for the anal-
ysis of both simple and complex aeronautical components such as wings, airplanes,
and turbomachinery blades. (U)RANS provide both a good level of results accuracy
and computational effort. LES represents the future for compressible viscous simula-
tions. However, today LES are still a very active research field and LES simulations
requires orders of magnitude more computational power to investigate the flow-field
around a typical aeronautical component. With all of these aspects in mind, (U)RANS
is the chosen formulation in this work to handle turbulence effects. Different turbulence
models are implemented in the AeroX, as better shown in 2.1.7. Furthermore DES and
DDES formulations are also implemented as extensions to improve results accuracy for
unsteady cases.

Here the mathematical procedure required to obtain the (U)RANS equations from
the original Navier–Stokes equations is not described and the reader is referred to
[48, 120]. However, it is necessary to briefly discuss the main differences between
(U)RANS and the original equations system. Different kind of (U)RANS approaches
can be adopted, here we are using the turbulence models coupled with the Bussinesq hy-
pothesis. With the Bussinesq hypothesis, all the modelization of the turbulence appear
in RANS equations through a coefficient called turbulent viscosity or eddy viscosity
µT . Without discussing all the mathematical details, the idea is basically to express
the Reynolds stress tensor as function of the trace-less mean strain tensor and a term
related to the turbulent kinetic energy. Despite the Bussinesq-based turbulence mod-
els here adopted, other kinds of (U)RANS approaches that don’t use this hypothesis
are available, e.g. Reynolds-Stress Models (RSM) that directly model the tress tensor.
In any case the original Navier–Stokes system is not only modified in its terms since,
with the exceptions of Mixing-Length based models, additional PDEs are required. As
an example, Spalart–Allmaras model requires one additional PDE while SST model re-
quires two additional PDEs. The implemented turbulence models are briefly introduced
in 2.1.7.

Extending the Navier–Stokes solver to the (U)RANS formulation with the Bussi-
nesq approach is straightforward, since after the averaging procedure, all the equations
terms are basically the same except for some coefficients. In particular, the molec-
ular dynamic viscosity is substituted by the effective dynamic viscosity µEFF that is
computed as the sum of the molecular dynamic viscosity and the eddy viscosity:

µEFF (x, t) = µ(x, t) + µT (x, t) (2.10)

The same concept is also extended to compute the effective bulk viscosity and the
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effective conductivity:

λEFF (x, t) = λ(x, t) + λT (x, t) (2.11)

KEFF = K(x, t) +KT (x, t) (2.12)

whereKT , is computed with the same formula 2.9, but using the turbulent Prandtl num-
ber (usually PrT = 0.8). It is worth to notice that using the Bussinesq hypothesis and
models like SA and SST, the additional equations are used to compute µT (x, t) from the
additional turbulence model variables. Once a Navier–Stokes solver is implemented,
the extension to (U)RANS formulation is straightforward. Thus the implemented solver
has the ability to solve both the original Navier–Stokes system and the (U)RANS sys-
tem with a chosen turbulence model. Anyway, a simplification to the Navier–Stokes
system can be employed, the Euler system, when viscous effects are negligible for the
purpose of a particular investigation, as shown in 2.1.2. This way, the solver can be
used to solve Navier–Stokes equations, (U)RANS equations and Euler equations in a
trade-off between results accuracy and computational costs.

2.1.2 Euler equations

Euler equations are obtained from Navier–Stokes equations by removing specific terms
related to viscosity (λ = 0, µ = 0) and conductivity (k = 0). This assumption is
valid when simulating high Reynolds flow-fields where complex viscous phenomena
like separations are not expected to happen. This is true for an aerodynamic body with
a small angle of attack α. In fact, with such kind of flow-field, the bulk of viscous and
conduction effects is confined in the small boundary layer attached to the wall.

Within an Eulerian framework the Euler equations are represented in integral con-
servative form as follows:

d
dt

∫
V

U dV +

∮
S

f(U) · n̂ dS =

∫
V

h(U) dV (2.13)

or in the corresponding differential conservative form as follows:

∂U

∂t
+∇ · f(U) = h(U) (2.14)

Basically, viscous terms g(U) disappear from the system. It is worth to notice that
Euler equations represent a system of non-linear hyperbolic partial differential equa-
tions employed to model a compressible, non-viscous and non-conductive fluid. An-
other important differences between Euler and Navier–Stokes system regards boundary
conditions. In fact with Navier–Stokes equations, Dirichlet boundary conditions for
velocity are employed on solid walls in order to enforce the same velocity between
the solid and the fluid (which is 0 for fixed walls or a specified vector when using
MRF 3.6 or moving walls 2.2.5 in unsteady simulations). With Euler system, instead,
only the normal component of the wall velocity has to be specified. In steady simu-
lations without MRF, this is null and the corresponding boundary condition is often
called "non-penetration" or "slip" boundary condition since no restrictions are enforced
on the tangential component of the velocity vector over the wall. Anyway, when us-
ing MRF, unsteady cases with moving walls 2.2.5 or transpiration boundary conditions
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2.2.7, a non-null normal component of the velocity vector can be prescribed. This is
still representing a consistent non-penetration boundary conditions but accounting for
wall velocity. Transpiration boundary conditions, discussed more in details in 2.2.7,
represent a computationally cheap alternative to mesh deformation since it is possible
to simulate wall displacements effects without actually change mesh points positions,
thus without recomputing mesh metrics.

Euler formulation is implemented in the solver as an alternative to RANS equations.
This is done for several reasons. First it is simple from the programmer point of view:
given the implemented architecture of the solver (see 5), all is need is to avoid the
computation of the neglected RANS terms. This has also the advantage of a reduced
memory requirement since the allocation of many arrays (e.g. gradients and turbulence
variables) can be avoided. This is translated in bigger cases that can be executed with
the same available GPU memory and smaller time per iteration per cell (a measure of
algorithm efficiency related to the underlying hardware architecture, see 6.2).

Of course when the flow-field exhibit complex viscous effects such as separations
and interactions between the boundary layer and shocks, Euler equations must be dis-
carded in favor of the more expensive but more accurate RANS equations. Furthermore
Euler equations are capable to predict pressure distribution on the surface of the body
quite well, allowing to compute lift, pressure and induced drag. However when viscous
drag is required, even without complex viscous effects happening in the fluid domain,
RANS equations have to be employed.

2.1.3 ALE formulation

Here, Navier–Stokes/RANS and Euler equations systems are modified with the intro-
duction of the Arbitrary Lagrangian Eulerian (ALE) formulation [48, 127] required to
handle unsteady cases with mesh deformation and steady/unsteady cases with moving
reference of frame (see 3.6). Up to this point the Eulerian formulation was adopted to
describe Navier–Stokes equations 2.1 and Euler equations 2.13, thanks to the use of a
fixed control volume.

Consider a field a(x, t) within an Eulerian formulation. Here, x represents a fixed
location in space, while t represents the time. If we chose a particular value for the
location x1 and then we plot the value of a(x, t)|x=x1 , we would see the values of a
of different fluid particles that are moving through x1 while time is passing. This is
the usual approach in CFD when a steady simulation or an unsteady simulation with
fixed boundaries is performed. Lagrangian formulation, instead, is mainly adopted for
structural analyses. Within a Lagrangian description of the continuum, we consider
a field A(X, t), here X is used to recognize a particular continuum particle that was
at location X at t = t0. Thus, if we want to see the evolution of the value of A
for a particle X through time, we have to keep X constant and let the time t change.
Obviously Eulerian and Lagrangian are nothing but different choice of the meaning of
the spatial coordinates when defining a field. Thus, it is possible to interface the two
descriptions when the particle trajectory function Φ(X, t) is defined. Φ(X, t) represents
a reversible transformation. This function gives the spatial location of the particle X at
time t. It is straightforward that the following relation holds:

a(x, t)|x=Φ(X,t) = A(X, t) (2.15)
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The main advantages of the Lagrangian description are exploited in structural anal-
yses where small displacements of the material particles have to be handled. In these
kind of analyses particle tracking is important, alongside tracking of free surfaces and
interfaces between different materials. The drawbacks of a Lagrangian formulation are
represented by the inability to follow large distortions of the computational domain that
would require re-meshing. Large displacements of the continuum are instead typical of
fluid dynamics, where Eulerian description of the continuum is instead the default ap-
proach. It is straightforward that the main drawback of the Eulerian description within
CFD is represented by an accuracy loss when tracking particles or investigating flow
details. Finally, ALE formulation tries to exploit the main advantages of both Eulerian
and Lagrangian Framework, minimizing their drawbacks.

With ALE formulation, the considered control volume, when mathematically de-
scribing the continuum, is not represented by a fixed control volume, neither by a
control volume that is moving with the local flow velocity. Instead, a velocity vector
v(x, t), called material velocity, is defined all over the volume boundary and repre-
sents the velocity with which the volume boundary is changing. This velocity vector
is in no way related to the velocity of the flow u, since the control volume is allowed
to evolve independently from the fluid that flows through it. The reader is referred
to [48, 124, 127] for a detailed description of the mathematical point of view and the
procedure required to obtain the Navier–Stokes equations for an arbitrary moving con-
trol volume. However, here it is necessary to highlight some particular findings related
to the ALE framework.

Equation 2.16 represents the integral form of the Navier–Stokes equations system
introduced in 2.1.1 modified for an arbitrary evolving control volume, for a compress-
ible, viscous and conductive fluid:

d
dt

∫
V (t)

U dV +

∮
S(t)

[f(U)−Uv] · n̂ dS−
∮
S(t)

g(U) · n̂ dS =

∫
V (t)

h(U) dV (2.16)

It is easy to see that the main differences are represented by the control volume and
control volume boundary dependency from time t and an additional term Uv · n̂ inside
the surface integral. Another important difference is that when considering a fixed
control volume the time derivative of the first term of 2.16 can be directly applied to
the argument of the integral, meaning:

d
dt

∫
V

U dV =

∫
V

dU

dt
dV (2.17)

but:
d
dt

∫
V (t)

U dV 6=
∫
V (t)

dU

dt
dV (2.18)

this is not possible anymore with ALE formulation since the integration domain is
now a function of time itself. This aspect will be important when discretizing Navier–
Stokes/RANS/Euler equations, for what concerns unsteady simulations in particular, as
shown in 2.1.11 and 2.1.4.

As previously said, ALE formulation is implemented in the solver in order to handle
two different kind of simulations: unsteady cases with moving and deforming grids, and
cases with MRF. Of course ALE is also used in unsteady cases when MRF and mesh
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deformation are coupled. MRF formulation and its exploitation of the ALE framework
is described in 3.6, while the formulations required for mesh deformations in unsteady
cases are described in 2.2.

2.1.4 Numerical discretization

Here, the aspects related to the numerical discretization of the spatial domain are briefly
introduced. The choices are strictly related to the underlying OpenFOAM software
framework for the mesh handling and pre-processing. The strategies for the numerical
discretization of the Euler and RANS equations are basically the same adopted for the
AeroFoam solver [127,136]. The Cell-Centered (CC) Finite-Volume (FV) formulation
implemented in the solver is well known and the literature is full of material describing
it in detail from both mathematical and numerical point of view. For a detailed descrip-
tion see [48, 94, 95, 127, 136]. Here just the fundamental concepts required for the next
sections are showed.

The computational domain is decomposed in NV polyhedral cells of volume Ωi, de-
limited by a set of Nf faces Γij = Ωi ∩Ωj , where i and j are the indexes of the i-th and
j-th cells respectively. Thanks to the OpenFOAM pre-processing API and mesh con-
version tools, hybrid unstructured meshes can be easily handled, allowing the solver to
be compatible with the mesh generated by different software (e.g. snappyHexMesh,
HyperMesh, GAMBIT, ICEM). There are different kind of grids. In structured grids
the hexaedra cells are identified by a unique triplet (i, j, k) allowing to easily identify
neighbor data. Faces are quadrilateral. Unstructured grids are more general purpose,
and there is no such kind of simple connection between cells. Thus, in unstructured
grids cells and faces have no particular ordering. Structured grids have advantages
from computational point of view since the cell neighbor addressing intrinsically char-
acterize the mesh, while in unstructured grids this addressing has to be saved in memory
and recalled every time numerical cell residuals are assembled. However, unstructured
grids can easily handle complex geometries. Since the aim of this work is to obtain a
general purpose solver, compatible with complex geometries and different mesh gen-
eration software, unstructured grids are supported. Obviously, a CFD solver capable
to handle unstructured grids is also directly capable to compute solutions over struc-
tured grids, eventually without computational efficiency advantages. Another kind of
meshes are represented by hybrid meshes, where different cells feature different num-
ber of faces, thus different number of cells neighbors. AeroX is capable to handle also
this kind of mesh. Hybrid meshes are useful especially in RANS cases where the in-
ternal domain could be discretized with tetrahedra, while the boundary layer near the
wall is refined with hexahedra. With hybrid meshes, however, the computational do-
main could contain a mix of hexahedra, prisms, pyramids and thetraedra without any
restriction. Unstructured and hybrid meshes allow the solver the be employed for very
different kind of demands, however they pose performance issues, especially for GPU
execution due to reduced memory coalescing and branch divergence. This is discussed
in detail in 4.3.

Within a Finite-Volume Cell-Centered framework, the solution field U(x, t) of the
unknown conservative form variables is translated in an array of cell’s solutions Uh

i .
With this notation, i refers the i-th cell, while h represents the h-th time index. As
explained in [48] temporal discretization and spatial discretization can be carried out
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separately. This way it is possible to combine different temporal and spatial discretiza-
tion schemes without any particular problem.

By applying the numerical spatial discretization to the Navier–Stokes/RANS equa-
tions 2.16 the initial Partial Differential Equations (PDE) system is translated to a sim-
pler Ordinary Differential Equation (ODE) system. The following equations shows the
system after the numerical discretization:

d(Ωi(t)Ui(t))

dt
= −

n∑
j=1

Γij(t)(Fij(t)−Gij(t)) + ΩiHij(t) = Ri(t) (2.19)

where, since the temporal numerical discretization has not been employed yet, the ex-
plicit time t dependency is highlighted. For each face ij that cell i has in common with
its neighbor cell j, convective fluxes Fij(t) and viscous fluxes Gij(t) have to be com-
puted in order to assembly residuals. Γij(t) represents the product between the ij face
area Sij(t) and the n̂ij(t) unit normal vector of the face ij. Ωi(t) is the cell volume.
It must be underlined that geometrical properties, like cell volume and faces depend
from time t when unsteady simulations with mesh deformation are performed, employ-
ing ALE framework. Furthermore, as explained in 2.1.3, in the first term of 2.19 the
temporal derivative is applied not on the conservative form unknowns Ui(t) but on the
product between the unknowns and the volume. This is required in order to obtain a
consistent formulation valid for unsteady simulations with mesh deformation.

When inviscid simulations, i.e. Euler simulations, are performed, equation 2.19
loses the viscous fluxes term leading to:

d(Ωi(t)Ui(t))

dt
= −

n∑
j=1

Γij(t)Fij(t) + Ωi(t)Hij(t) = Ri(t) (2.20)

this way it is easy to understand that if a NS/(U)RANS solver is implemented, perform-
ing inviscid simulations just means avoiding the computation of Gij(t) (and of course
choosing consistent boundary and initial conditions).

The next step is the discretization of the time derivative. This problem is handled
in 2.1.10 and 2.1.11. As mentioned, the aim of this work is the implementation of
an explicit solver, thus an explicit time discretization has to be employed. Euler dis-
cretization can be easily implemented. This is the most simple time discretization and
the less robust one. However, as presented later in 2.1.10, more complex Runge–Kutta
(RK) [48] time schemes can be easily implemented, improving the robustness of the
formulation and allowing better damping properties, which are crucial for steady-state
simulations. Furthermore, as presented later in 2.1.10 and 2.1.11, due to CFL limi-
tations, unsteady cases are handled through convergence acceleration techniques and
Dual Time Stepping (DTS) formulation. Also, it is understood that when a (U)RANS
simulation is performed, the turbulence model equations (if required) have to be dis-
cretized too, obtaining a set of equations similar to 2.19, with temporal term, convective
and diffusive fluxes and source terms. The implemented turbulence models and their
equations are briefly described in 2.1.7. Finally, it is reminded that Euler/NS/(U)RANS
equations have to be coupled with opportunely defined initial and boundary conditions.
Boundary conditions are briefly described in 2.1.8. For what concerns initial condi-
tions they could be just guess solution fields if a steady-state solution is the aim of the
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simulation or opportunely defined true initial conditions if a time accurate simulation
is performed.

2.1.5 Convective fluxes

Different well-known numerical schemes for convective fluxes are implemented in the
solver, such as Roe [94,95, 136], AUSM+ [97] and CUSP [145] fluxes. They represent
first order upwind schemes that are required to guarantee stability. However, this comes
at the price of a low-order spatial discretization. Upwind schemes help prevent oscilla-
tions near shocks, but could degrade the overall solution accuracy where not required.
Thus, in order to increase the spatial discretization order of the solution up to the sec-
ond order wherever is possible inside the fluid domain, an high resolution strategy is
also implemented and coupled with the numerical fluxes schemes. The main idea is
to blend the first order upwind flux with a second order centered flux through the use
of a limiter. Entropy fix is also required for Roe fluxes in order to avoid non-physical
solutions. In this work the entropy fix by Harten and Hyman [117] is adopted. All
the schemes are opportunely modified in order to take into account ALE velocity to
correctly handle unsteady cases with mesh deformation and with moving reference of
frames (MRF). The strategy adopted to achieve second order accuracy is based on the
work [136] and uses the concept of extended cells. Basically for each face a set of 4
cells is adopted to compute the convective fluxes. Two cells are directly related to the
face. The two additional cells are found alongside the face normal direction and are
neighbor of the two primary cells. In this work a Van Leer limiter [95] is adopted.

For a more detailed view of the analytic aspects of the implemented strategies
see [136] as here this is beyond the purposes of the work. Details regarding the im-
plementation of convective fluxes can be found in 5.3.2.

2.1.6 Gradients computation

These schemes are required only for the solution of the NS/(U)RANS equations since
Euler equations only require convective fluxes discussed in 2.1.5. A simple and ro-
bust Green–Gauss scheme is adopted to compute the gradients of different quantities
required for both original NS equations and additional turbulence models equations.
Let’s consider the computation of the gradient of a scalar quantity Φ on cell k. This can
be computed as follows:

∇Φk '
1

Ωk

neigh∑
j

(WkjΦk + (1−Wkj)Φj)Skjn̂kj (2.21)

where Ωk is the k-th cell volume, Skj is the area of face kj belonging to both cells k
and j, n̂kj is the face unitary normal vector. Wkj is the weight related to the couple of
cells that shares the face kj. The weight can be computed in different ways. In this
work this is computed considering the distance between the cell center and the face.

Details regarding the implementation of automatic wall treatment can be found in
5.3.5.
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2.1.7 Turbulence models

The implemented turbulence models are here briefly presented. These models are re-
quired when solving Navier–Stokes equations in the form of (U)RANS equations, thus
introducing the modelization of turbulence effects. In particular, the implemented mod-
els require the Bussinesq approximation [120]. This basically means that turbulence
effects appear in (U)RANS equations in the form of an additional viscosity coefficient,
the turbulent (or eddy) viscosity, that, added to the molecular viscosity, gives the effec-
tive viscosity as explained with equation 2.10. The detailed description of the imple-
mented turbulence models is beyond the purposes of this work as it can be easily found
on publicly available papers. The two implemented turbulence models are represented
by Spalart–Allmaras and k−ω SST. Details regarding Spalart–Allamaras model can be
found in [140], while for SST see [107, 108]. Furthermore, in order to improve results
accuracy for unsteady cases when the mesh is particularly refined, the so-called DES
and DDES variants of the models are also implemented [108,142]. A great source of in-
formation regarding the possible modifications of these turbulence models is also [33].
As previously mentioned Spalart–Allmaras turbulence model is specifically designed
for the simulation of attached flows when investigating aerodynamic bodies. SST is
obtained blending k − ω and k − ε turbulence models and opportunely tuned to be a
general purpose model, accurate for both near-wall and free shear simulations. AeroX
couples these turbulence models with an automatic wall treatment (see 2.1.9) in order
to handle different levels of near-wall discretizations.

2.1.8 Boundary conditions

The detailed description of the implemented boundary conditions is beyond the pur-
poses of this work. As this is a general purpose Eluer/(U)RANS solver with turboma-
chinery and open rotors extensions, specific boundary conditions are required. Further-
more, the solver is designed such that the user prescribes the values of velocity, temper-
ature and pressure over the boundary and it’s the solver job to convert them into con-
servative form variables and to decide which of the prescribed values use, based on the
physical properties of the boundary. In classical aeronautical cases with open domain
a far-field is present. In this case different boundary conditions can be adopted based
on the Mach number and the fact that a particular boundary is considered inlet or out-
let. Over a subsonic-inlet boundary, zero-gradient conditions are enforced on pressure
while temperature and velocity are interpolated using user-prescribed and internal val-
ues. On subsonic-outlet boundaries instead the pressure is enforced using interpolation
with user-prescribed data and internal cells solutions, while zero-gradient conditions
are enforced for what concerns the velocity and temperature. Finally a strategy that can
automatically switch between inlet on outlet conditions is also implemented, based on
local characteristics variables values, as explained in [75, 136]. The advantages of this
strategy are represented by the fact that it is intrinsically based on the physical aspects
of the boundary and the fact that it leverages the user the decision of what is effectively
inlet and outlet. Far-field boundary conditions are also adopted for open rotors cases.
Instead, for turbomachinery simulations it is usually needed to enforce total pressure,
total temperature and velocity direction on the inlet boundary. This is useful when
investigating turbomachinery performances. This boundary condition is discussed in
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details in 3.9. Wall boundary conditions for viscous simulations are briefly discussed
in 2.1.9. For inviscid simulations slip (or non-penetration) boundary conditions have to
be enforced on walls. In this work boundary conditions are enforced using the ghost
cell approach, meaning that a virtual cell is build with conservative form variables such
to enforce the correct boundary conditions on the boundary face of the aerodynamic
mesh. One important advantage of the ghost cell approach is the possibility to directly
use the same algorithms for fluxes computations adopted for internal faces once the
virtual cell is built. A detailed description of the implemented ghost cell approach can
be found in [136].

Details regarding the implementation of boundary conditions can be found in 5.3.4.

2.1.9 Wall treatment

Here the description of the implemented wall treatment is provided. When perform-
ing viscous simulations with (U)RANS turbulence models, usually two different ap-
proaches for the near-wall discretization can be adopted. The first approach relies on
the capability of the turbulence model to accurately predict the flow properties inside
the viscous sublayer, which is the nearest turbulence layer to the true wall boundary.
This means that the turbulence models have to consistently reconstruct the flow veloc-
ity up to very small y+ values, in the order of 1 (y+ < 5 [120]). Otherwise it is possible
to use wall functions to predict the flow properties inside the logarithmic region, for
higher values of y+, usually for y+ > 30 [120]. Instead, in this work an "automatic"
wall treatment based on a blended approach is implemented. Basically both viscous
sublayer and log region formulations are implemented and the two contributions are
opportunely blended based on the y+ estimation. Thanks to an opportunely defined
blending function it is possible to obtain high accuracy also inside the buffer layer (for
y+ values between 5 and 30), between the viscous sublayer and the log region. The
approach implemented is based on [88, 121]. Using a Newton–Raphson algorithm,
opportunely optimized for GPU executions, for each wall face at each pseudo time
iteration, the wall values, like y+ and uτ , are estimated. These values are then used
in the next pseudo time iteration to compute viscous fluxes when enforcing boundary
conditions on wall boundaries. This way when pseudo time convergence is reached
the wall boundary condition is enforced with the correct y+ value, raging from y+ in
viscous sublayer to log region, without requiring the user to actually performing the
switch between the two formulations.

Details regarding the implementation of automatic wall treatment can be found in
5.3.3.

2.1.10 Convergence acceleration techniques

There are advantages and drawbacks in using explicit algorithms for the numerical so-
lution of a problem, both regarding computational aspects. One of the main advantages
of explicit formulations is the fact that it is easily implementable and parallelizable. In
fact, since the solution update depends only upon the previously stored solution, each
domain cell can be updated independently and concurrently. Thus, this job can be eas-
ily distributed among hundreds or thousands of GPU cores. The same advantage is also
exploitable in CPU-based shared and distributed memory architectures. As a practical
example, a for loop over the cells can be easily parallelized on a multi-core CPU with
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multi-threading using OpenMP, or in the case of this work using OpenCL and by
choosing the CPU as the computational device (see 4). In distributed memory systems,
where multiple computational nodes are connected together with high-bandwidth low-
latency connections, the easiest way to distribute work is by decomposing the compu-
tational domain in multiple sub-domains, distributed among the nodes, and by reducing
communications to sub-domain boundaries only. An important trend is the exploitation
of hybrid CPU-based parallel architectures A.4.4 where each computational node is
part of a cluster architecture in a distributed memory fashion, while inside each node the
work is distributed using a shared-memory work-flow among cores. Anyway, it is eas-
ier to reach high computationally efficiency in parallel architectures by implementing
explicit algorithms rather than parallelizing linear system solution algorithms required
by implicit formulations. Another advantage of explicit algorithms is represented by
the lower memory requirements due to the fact that there is no matrix to be stored like
in implicit formulations. Obviously all of the advantages of explicit algorithms come
with a price. The main drawback in fact, is represented by their slow convergence rate,
especially if a steady-state solution is searched. This is due to the fact that when us-
ing explicit algorithms, CFL represents a quite restrictive limitation for the majority of
aeronautical aeroelastic simulations due to the frequency content of interest. Basically
the physical time-step is limited to values that are orders of magnitude lower than what
is required for the majority of cases. However, it must be noted that this situation is
inverted with peculiar unsteady simulations in which very small physical time-steps are
mandatory, leading explicit algorithms to be preferable over implicit algorithms. This
is the case of acoustics and high speed impacts where with explicit algorithms the max-
imum allowed physical time step that satisfy the CFL requirements is also nearly in the
order of the time scales of interests. This leads to smaller simulation times with respect
to implicit algorithms thanks to smaller time per iteration per cell due to the avoided
linear system solution. However, usually in aeronautical aerodynamic and aeroelastic
cases a steady-state solution is required, and in unsteady simulations the time scales of
interest are orders of magnitude higher than the maximum allowable time step.

As previously mentioned, in this work an explicit formulation is chosen because of
its efficient parallelization on GPU architectures and because of its limited memory re-
quirements that allows the solver to be executed on cheap gaming GPUs. However, in
order to reach implict-like residuals convergence rates, convergence acceleration tech-
niques are required. CFL requirements must be satisfied in order to have a stable for-
mulation but with some techniques they can be somehow bypassed.

Different convergence acceleration techniques are implemented in the solver and
combined together with the aim of the total computational time reduction by increas-
ing the residual damping rate. It must be noted that these techniques are implemented
as algorithms that have to be executed at each explicit iteration. Thus they obviously
increase the time per iteration per cell (see 6.2) with respect to a simple explicit aerody-
namic solver. The point here is the reduction of the product between the iteration cost
and the total number of iterations required to reach convergence, i.e. the reduction of
the total computational time required to reach a steady-state converged solution.

First of all, Local Time Stepping (LTS) [48] is described. This is the core technique
around which the other strategies are built. The idea behind LTS is very simple: CFL
requirements apply to each cell and not to the entire domain. Thus, since different cells
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have different geometrical and flow properties, different cells could potentially advance
with different time step values. Obviously having different cell advancing with different
values of time step would break the physical meaning of the time. However, from the
CFL point of view, no rules are violated. Usually in unsteady simulations with explicit
formulations what is done is computing the time step value from each cell and then take
the most conservative over the discretized domain and use it to advance the solution in
time. This way CFL is still respected everywhere and different cells advance in time
consistently, eventually with a time step smaller than what they could potentially offer.
With LTS instead, different cells advance in time with their maximum CFL-allowed
time step. Thus, the physical meaning of the "time" is lost. At this point, the time step
computed with LTS is usually called "pseudo time step" and indicated with τ instead of
t to underline that it has only a numerical meaning and not a physical meaning anymore.
Inside each cell, the pseudo time-step is computed as follows:

∆τ = C
∆xi

|ui|+ ci +KνEFFi /∆xi
(2.22)

where i represents the i-th cell index, C is a user-defined constant, ∆xi is a measure of
the cell length (usually the cubic root of the cell volume or the cell volume to surface
ratio), ui is the local flow velocity, ci is the local sound speed,K is a constant and νEFFi

is the local effective kinematic viscosity. As mentioned, LTS cannot be used for un-
steady simulations because of the time step value inconsistency between different cells.
However, when the goal is a steady simulation, LTS can be adopted with no problem.
In fact, considering equation 2.19, if the aim of the simulation is to reach steady state,
the real goal is to damp residuals Ri(τ) in each cell until ∆Ui

∆τ
= 0 that is the defini-

tion of steady-state. When, at convergence, this condition is satisfied in every cell, the
steady state is reached. Thus, with LTS the idea is to reach a steady-state condition
that satisfy the steady form of Euler/NS/RANS discretized equations without regard-
ing of the (pseudo) time step value of each cell. LTS provides convergence advantages
since each cell is allowed to advance with its maximum allowed time step value. De-
spite turbomachinery cases, in a typical aeronautical case (wings, airplanes), usually
the aerodynamic object is immersed in the fluid domain, with an external far-field. The
farfield is located numerous airfoil/wing/airplane length away from the object. The
goal is to investigate the flow field around the object and on its walls, while what hap-
pens near the farfield has negligible interest. Thus, the mesh is well discretized near the
object and much coarser near the farfield. Given the geometrical and flow properties,
the cells near the object require smaller time step values with respect to the cells near
the farfield. Thus, with LTS farfield cells are allowed to advance with greater pseudo
time steps, effectively damping residual faster, favoring steady-state convergence.

LTS has another important advantage, especially with GPU architectures. By allow-
ing the cells to just use their pseudo time step, a global reduction operation to find the
most restrictive value is avoided. Pseudo time step computation is easily distributed on
GPU cores since the same expression 2.22 has to be evaluated independently (see 5.3.1.

With LTS pseudo time has no physical meaning but time discretization is anyway
required. This can be performed using the simplest explicit formulation, i.e. Explicit
Euler (EE). However, first and second order multi-stage Runge–Kutta (RK) schemes
can also be employed, as showed in [48]. With respect to EE, RK requires multiple
stages. This practically means intermediate residual evaluations inside each pseudo
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time step. This leads to greater computational requirements with respect to EE. How-
ever, RK schemes guarantee higher CFL values, greater than 1, as explained in detail
in [48]. At each stage of the RK scheme, intermediate residuals are evaluated with
different weights, opportunely tuned to improve the damping properties and thus con-
vergence and robustness. RK schemes can be also extended to second order. It is worth
to remind that both EE and RK are directly applied to the solution of the single cell
equations, thus they can be directly coupled with LTS to further help damping resid-
uals and accelerate convergence to steady-state while maintaining the efficient work
distribution (parallelization) of an explicit scheme. The general RK scheme is here
presented:

U
k+1,(0)
i = Uk

i (2.23)

U
k+1,(1)
i = U

k+1,(0)
i − α1

∆τi
Ωi

R
k,(0)
i

U
k+1,(2)
i = U

k+1,(0)
i − α2

∆τi
Ωi

R
k,(1)
i

...

Uk+1
i = U

k+1,(0)
i − αm

∆τi
Ωi

R
k,(m−1)
i

where in U
k+1,(z)
i , i represents the i-th cell index, k the pseudo time iteration and z

the z-th RK stage. The RK stage coefficients αg are opportunely tuned for accuracy
and damping, as showed in [48]. Finally the residuals Rz−1

i are evaluated at each RK
stage. RK schemes are also memory efficient since from stage to stage residuals are
overwritten and only the the solution of the previous pseudo time has to be kept stored
and available at each RK stage.

The previous described techniques help damping residuals with algorithms that ap-
plies on the single computational cell. Both LTS and RK schemes are implemented in
AeroX since they are well suited for the GPU multi-core SIMD parallelism. However,
two other convergence acceleration techniques are implemented and directly applied to
residuals. These are represented by a modified Residual Smoothing (RS) and a simpli-
fied Multi-Grid (MG) approach, an adaptation to unstructured grids of the formulation
originally proposed by Denton. During each explicit aerodynamic iteration, before the
cell solution update, residuals are assembled considering, as presented in equation 2.19,
faces convective fluxes, viscous convective fluxes and finally source terms if present.
At this point, when cells residuals are computed and ready to be used to update the
cells solution, MG and RS are applied on them. After the execution of RS and MG
algorithms, residuals can be used to update cells solutions as usual. Roughly speaking,
the idea behind the CFL restriction is that in each cell the time step value has to be
small enough that from one time step to the next one, the information is not allowed
to travel for an amount of space bigger than the cell size itself. The idea behind both
RS and MG is "bypassing" CFL restriction by smoothing each cell residuals with the
residuals of the surrounding cells. This way, residuals are damped faster thanks to
the smoothing effects provided by the residuals information propagation through the
domain. What happens to the residuals when RS and MG algorithm are employed is
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basically represented by the following expression:

Rk+1,smooth
i = αiR

k+1,orig
i + βiCi(R

k+1,orig
0 , ...,Rk+1,orig

NV ) (2.24)

Basically the smoothed residuals Rk+1,smooth
i are used to update the cells solutions

instead of the original residuals Rk+1,orig
i obtained after the other LTS and RK acceler-

ation techniques have been applied. The term Ci(R
k+1,orig
0 , ...,Rk+1,orig

NV ) is computed
by applying the smoothing algorithm behind the RS or MG strategy. Depending from
the underlying algorithm, coefficients αi and βi are opportunely tuned to weight the
contribution of the original cell residuals and the smoothed residuals.

The implemented RS algorithm is quite simple and easily parallelizzable, especially
for the GPU architecture. The computation of Ci is performed in a loop of multiple
stages. First of all for each cell, neighbor cells residuals are agglomerated and stored.
Thus, Ci depends only upon the immediately cell neighbors residuals. Next, expres-
sion 2.24 is evaluated providing the smoothed cells residuals that are used to update
the original cells residuals. At this point one stage of the RS algorithm is performed.
However, multiple RS stages can be performed, by simply applying again the just pre-
sented RS algorithm, evaluating Ci with the just smoothed residuals. With just one RS
stage smoothing effects are confined to the cell immediately neighbor region. More RS
stages means more smoothing effect but also an increase on the computational effort for
each explicit iteration. Usually 2-3 stages provide a good trade-off between smoothing
effects and computational requirements. This is all repeated the next explicit iteration.

The implemented MG algorithm is more effective than the adopted RS strategy
thanks to the fact that cells residuals are somehow propagated to a more extensive
region of the computational domain. This also means that each cell residual is mod-
ified with the residual contribution of a large number of cells located around the cell
itself. This not only include the cell’s neighbor but also, in smaller magnitude, more
distant cells. Thus, despite the RS strategy, with a single stage of MG, the cell residual
is smoothed thanks to a term Ci that depends from an higher number of surrounding
cells. With MG, from the original "finer" mesh multiple levels of "coarser" meshes
are obtained. Each level is obtained agglomerating the cells of the underlying level.
However, each level is not saved as a complete mesh metrics structure, since the im-
plemented simplified MG algorithm works just on residuals. This is different from the
usual MG approach where at each MG level the Euler/NS/(U)RANS equations are ef-
fectively solved. With the implemented approach instead, only the addressing between
each level coarse cell and the underlying level finer cells that form the coarse cell is
required. What happens is basically that residuals from the finer mesh cells are ag-
glomerated to compute the residuals of the cells of the next mesh level. This is done
sequentially for all the available mesh levels. Then, for each of the original finer mesh
cell i, the term Ci is computed by opportunely weighting the residuals of the coarser
cells that includes the cell i at the different levels. The main idea is that transients are
dispersed more quickly on the coarser levels, as larger time steps are allowed, while
retaining the spatial accuracy of the finest [49, 91].

It is reminded that all the briefly presented convergence acceleration techniques are
useful only to accelerate steady state convergence. However thanks to Dual Time Step-
ping (DTS) formulation described in 2.1.11 it is possible to exploit these techniques
also for unsteady simulations.
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The computational aspects behind the GPU implementation of the RK and MG con-
vergence acceleration techniques are discussed in 5.3.8.

2.1.11 Temporal discretization for unsteady simulations

Here the Dual Time Stepping [48] formulation is described. This formulation allows the
solver to perform unsteady simulations while retaining all the convergence acceleration
techniques previously described in 2.1.10. As previously mentioned, a global physical
time stepping formulation could be implemented to perform unsteady simulations, but
since the very restrictive CFL requirements it would not be efficient for the aeronautical
aeroelastic cases of interest of this work.

As the name suggest, the idea behind DTS is to have two different concepts of
time inside the formulation. One is the pseudo time already presented when describ-
ing LTS in 2.1.10, and the other is of course the physical time used to describe the
evolution of the unsteady phenomenon. With DTS both the physical time deriva-
tive and the pseudo time derivative are present in the Euler/NS/(U)RANS/Turbulence
equations. Basically, with DTS, converging to the next physical time step is trans-
lated to converging to a steady-state solution characterized by a new term in the Eu-
ler/NS/(U)RANS/Turbulence equations related to the physical time derivative of the
conservative form unknown. This way, the goal of the simulation is again to damp
residuals, thus reaching a steady-state solution with respect to the pseudo time deriva-
tive. However, with respect to an effective steady-state simulation, this time residuals
are defined differently, with the addition of the new physical unsteady term. Equa-
tion 2.25 shows the modified version of the equation 2.19 with the new additional term
added to recovery the physical time derivative:

∆(ΩiUi)
(k,h)

∆τ ki
+

∆(ΩiUi)
(k,h)

∆t
= R

(k,h)
i (2.25)

Indexes require explanation. i represents, as usual, the i-th cell index. Index k repre-
sents the pseudo time iteration, used for aerodynamic convergence to the next physical
time step. Index h represents the physical time iteration. ∆t is kept fixed during the
simulation, thus there is no dependency from h and of course, differently from the
pseudo time step, all the cells have the same user-prescribed value of ∆t. It is under-
lined that the pseudo time step ∆τ ki depends both from the geometrical properties of
the i-th cell and flow properties at the k-th iteration, due to LTS algorithm (see 2.22.
At each physical time step h the aim is to find the new value of the solution, i.e. Uh+1

i ,
knowing the solution of the previous physical time step Uh

i with an iterative procedure
in pseudo time that produces different potential solutions U

(k+1,h)
i before convergence.

It must be noted that when performing unsteady simulations with mesh deformation
Ωh+1
i and Ωh

i are usually different. Each of the potential solution is obtained by as-
sembling residuals R

(k,h)
i that are computed from the solution at the previous iteration

U
(k,h)
i . Equation 2.25 can be expressed with all the explicit terms (supposing for sim-

plicity the use of Explicit Euler for both physical time and pseudo time discretization)
as follows:

Ωh+1
i U

(k+1,h+1)
i

∆τ k+1
i

− Ωh+1
i U

(k,h+1)
i

∆τ k+1
i

+
Ωh+1
i U

(k+1,h+1)
i

∆t
− Ωh

i U
h
i

∆t
= R

(k,h)
i (2.26)
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then, the equation is rewritten in order to explicitly identify the searched term at each
pseudo time iteration:

Ωh+1
i U

(k+1,h+1)
i

∆τ k+1
i

(
1 +

∆τ k+1
i

∆t

)
= R

(k,h)
i +

Ωh+1
i U

(k,h+1)
i

∆τ k+1
i

+
Ωh
i U

h
i

∆t
(2.27)

now subtracting the term
Ωh+1
i U

(k,h+1)
i

∆τ k+1
i

(
1 +

∆τ k+1
i

∆t

)
to both the left hand side and

the right hand side it is possible to write:

Ωh+1
i U

(k+1,h+1)
i − Ωh+1

i U
(k,h+1)
i

∆τ k+1
i

(
1 +

∆τ k+1
i

∆t

)
= R

(k,h)
i +

Ωh+1
i U

(k,h+1)
i

∆t
+

Ωh
i U

h
i

∆t
(2.28)

Ωh+1
i U

(k+1,h+1)
i − Ωh+1

i U
(k,h+1)
i

∆τ k+1
i

(
1 +

∆τ k+1
i

∆t

)
= R̂

(k,h)
i

this way a new definition of residual R̂
(k,h)
i is provided. The advantage of the DTS

formulation is that the same convergence acceleration techniques used to damp residu-
als for steady-state simulations, can now be exploited to converge to the next physical
time step by damping the just defined residuals. A new source term is however added
that takes into account the solution of the previous physical time step. Furthermore, the
value of the physical time step ∆t is independent from the CFL constraints since this is
a problem handled with LTS regarding the pseudo time step value. This way, the user
can choose the ad-hoc physical time step based on the time scales of the phenomenon
under investigation, in a similar way with implicit time stepping schemes. Another
important aspects is that, as showed in [106], the here presented DTS formulation is
not afflicted by convergence problems when the physical time step and the pseudo time
step are of the same order of magnitude. Thus, small time steps can also be employed
without particular convergence problems. In the unsteady test case under investiga-
tion in this work, usually about 100 − 2000 pseudo time step iterations are required to
guarantee aerodynamic convergence between two physical time steps.

2.1.12 Aerodynamic steady analyses

Here the general aspects of the procedure implemented to perform steady-state sim-
ulations without mesh deformation is described. Steady analyses are very important
for academic and industrial cases both when the flow fields around the aerodynamic
component is supposed to be steady and when, instead, the solution is intrinsically un-
steady (e.g. oscillatory) but the aim is to obtain an average solution. In fact, it must
be noted that turbulence is intrinsically a 3D unsteady phenomena, however, thanks to
(U)RANS formulation, an averaging operation is performed, allowing to obtain reason-
able results for both 2D and 3D steady cases. Beside the case when a steady solution
with fixed geometry is the aim of the simulation, steady computations are also required
to initialize trim simulations (see 2.2.8 or to provide initial conditions for subsequent
unsteady analyses with fixed walls (see 2.1.13 or moving walls (see 2.2.9 and 2.2.10).
In fact, thanks to the previously described formulations and strategies like DTS and
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convergence acceleration techniques, the steady-state solver provides also the core for
the purely aerodynamic convergence required by the other mentioned kind of analyses.

Here the procedure adopted to perform a steady analysis with fixed geometry is
briefly presented with the focus on the connection between the previously described
Euler/NS/(U)RANS numerical formulations.

1. First of all, the user-provided initial guess solution is read alongside the mesh;

2. Mesh pre-processing is performed to compute mesh metrics (cell volumes, cell
center, face areas and normals, etc);

3. The first step in the aerodynamic convergence algorithm is the computation of the
cells pseudo time steps, using the LTS formulation 2.1.10 and code 5.3.1;

4. Internal faces convective fluxes are computed using one of the described numerical
fluxes (see 2.1.5 and code 5.3.2). If it is a (U)RANS simulations this involves also
turbulence models equations convective fluxes computations, see 2.1.7. If it is
a rotating case using MRF (see 3.6 and code 5.3.10), ALE formulation is also
employed to adjust convective fluxes with consistent faces velocities;

5. Now it’s the turn of viscous fluxes, see 5.3.5. If it is an inviscid (Euler) simula-
tion, viscous fluxes are not computed, saving computational time. If it is a laminar
Navier–Stokes simulation viscous fluxes are computed considering just the molec-
ular dynamic viscosity µ. If instead is a RANS simulation, the effective dynamic
viscosity µEFF is computed from the sum of the molecular viscosity µ and the
turbulent viscosity µT , thanks to the Bussinesq hypothesis. The latter is computed
from the turbulence models described in 2.1.7. Eventually, Sutherland formula,
described in 2.1.1 can be employed to update the value of µ from the temperature
field;

6. Boundary conditions convective and viscous fluxes are computed (see 2.1.8 and
code 5.3.4), based on the particular kind of boundary. If it is a RANS simulation,
this is performed also for turbulence models equations;

7. Convective and viscous fluxes are added together in order to provide a single nu-
merical flux to be used for the cell solution residuals update (see strategy 5.3.5);

8. Cells residuals are computed by adding up pseudo time derivative terms and nu-
merical fluxes (see code 5.3.6);

9. Source terms are computed. This is usually the case with turbulence models and
when MRF is employed for rotating cases;

10. At this point residuals computation is complete and it would be possible to update
the cells solutions. However, convergence acceleration techniques, such as MG
and RS algorithms (see 2.1.10 and 5.3.8), if active, are now invoked in order to
help dissipating residuals;

11. Knowing residuals, pseudo time steps, cells volumes and previous iteration solu-
tion it is finally possible to update the cell solution (see code 5.3.9). This involves
both conservative form variables and, if not an inviscid simulation, turbulence
models variables;
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It is worth to notice that since the aim of this simulation is obtaining a steady-state
flow field, the "initial" conditions are in fact user-prescribed initial guess conditions.
For typical aeronautical cases, values of pressure, temperature and velocity have to be
specified over the farfield, using one of the described boundary conditions in 2.1.8. On
walls, depending if an inviscid or viscous analysis has to be performed, slip conditions
or non-slip conditions have to be employed, eventually with automatic wall treatment
described in 2.1.9 (see also code 5.3.3).

2.1.13 Aerodynamic unsteady analyses

Unsteady analyses with fixed geometry are performed when the focus is posed on the
evolution of some peculiar aerodynamic phenomena, like the development of complex
shocks structures or complex viscous phenomena. As explained in the previous sec-
tions, thanks to the implementation of LTS, convergence acceleration techniques and
DTS, converging to the next physical time step basically means performing a steady-
state simulation with opportunely modified Euler/NS/(U)RANS equations. Thus, the
same algorithm showed in 2.1.12 is employed, but it is repeated each physical time
step until the user-prescribed final time. Usually 100 − 2000 pseudo time steps are
performed between two physical time steps depending on the test case under investiga-
tion. According to DTS techniques (2.1.11), the only other difference with respect to
steady-state algorithm is given by the temporal derivative that appears in the equations
as a source term and that must be taken into account when assembling cells residuals;.

2.2 Aeroelasticity

After the discussion of the purely aerodynamics formulations, it is time to introduce
the schemes adopted to handle steady and unsteady cases that involve structure de-
formability. First of all the aeroelastic equations system is presented, The implemented
strategies for mesh deformation and structural-aerodynamic grid interfacing are then
introduced. Next, the transpiration boundary conditions are showed in order to repre-
sent a computationally potentially cheaper alternative to mesh deformation. Finally the
previously introduced formulations are combined together and the strategies for trim
analyses, forced oscillations analyses, free oscillations analyses and flutter analyses are
presented.

2.2.1 Aeroelastic system

Since this work covers both numerical and computational aspects, in order to pro-
vide the reader a balanced view, the mathematical and numerical formulations be-
hind the aeroelastic system are introduced. These formulations are based on the works
[127,136], thus the reader is referred to these works for a more detailed view, especially
for what concerns the structural subsystem. Furthormore, when considering turboma-
chinery and open rotors problems, details regarding the analytical and numerical point
of view can be found in [122], especially for what concerns structural modelization.

Euler/NS/(U)RANS equations are employed to study the aerodynamic point of view
of the problem, since they are used to investigate what happens inside the fluid domain.
However, when considering the coupling between the fluid and the structure a new
set of equations is required in order to represent the solid domain point of view. The
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Chapter 2. Fluid dynamics and aeroelastic system formulations

structural domain is usually discretized using a Finite Element Method (FEM) and by
running software that allow to perform Finite Element Analyses (FEA). In aeronautical
field usually different type of FEM elements can be used, like beams, plates, shells,
and solid elements, considering a proper trade-off between results accuracy and com-
putational costs. Wings, thanks to their high aspect ratio and internal structure can be
usually discretized with beams characterized with particular sectional properties. This
is usually not true for turbomachinery and open rotors blades [122] where shell or solid
elements are usually preferred. For example, a beam model is adopted to discretize the
structural properties of the HiReNASD wing (8.1, [127]), providing good results for
trim analyses, i.e. static aeroelastic analyses. At the same time solid elements are used
to discretize the Rotor 67 blade (10.3) while shell elements are adopted for the structural
model of the SR-5 propfan (10.4, [122] and the AGARD 445.6 wing (8.2, [127]). In
any case, when discretizing the solid continuum within a FEM framework, the system
2.29 is obtained:[

M̄
]
{üs(t)}+

[
C̄
]
{u̇s(t)}+

[
K̄
]
{us(t)} = {fs(t)} (2.29)

where
[
M̄
]

is the mass matrix,
[
C̄
]

is the damping matrix,
[
K̄
]

is the stiffness matrix
and {us(t)} is the vector of structural degrees of freedom. Mass and stiffness matrices
can be directly assembled from the FEM model, eventually with some tuning like mass
lumping. For what concerns the damping matrix, the situation is more complicated,
as usually it is not straightforward its computation. Different strategies can be used to
obtain the damping matrix (e.g. from experimental data or by opportunely combining
mass and stiffness matrices), however this is beyond the scope of this work. Within
a FEM framework, usually {us(t)} array is represented by structural nodal degrees of
freedom and they represent localized displacements of the deformable solid. {fs(t)} is
the vector of external loads, aerodynamic loads in this particular work, and again they
are defined on structural nodes. Thus, when performing aeroelastic simulations, from
the aerodynamic point of view we have the Cell-Centered Finite-Volume discretized
Euler/NS/(U)RANS system opportunely coupled with boundary conditions that take
into account wall displacements and velocities due to mesh deformation (due to struc-
tural properties). Instead, from a structural point of view, we have system 2.29 that
responds under the external aerodynamic loads {fs(t)}. For the sake of trim and flutter
analyses the aerodynamic and structural subsystems coupling is investigated from the
structural point of view, i.e. considering system 2.29. This means that from the point of
view of the aeroelastic analyses, the focus is on the structural system and aerodynam-
ics is considered the external loads. When performing unsteady aeroelastic analyses,
the unsteady variation of the aerodynamic loads due to structural motion is computed.
This means that aerodynamic loads become function of the structural motion itself, thus
function of us(t). At this point it could be also possible to translate aerodynamic forces
into mass, damping and stiffness contributions to assemble the final aeroelastic system,
expressing the aeroelastic mass, damping and stiffness matrices.

Using the structural nodal degrees of freedom, directly obtained from the FEM
model is not the only way to describe the behavior of the elastic solid domain. In
fact from these d.o.f, it is possible to obtain other kind of representations thanks to op-
portunely defined transformations. For the sake of flutter and trim analysis covered in
this work, the modal representation of the structural behavior is here presented along-
side with the motivations behind this choice. The structural behavior of the elastic solid
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is represented using modal degrees of freedom as follows:

[M ] {q̈(t)}+ [C] {q̇(t)}+ [K] {q(t)} = {Q(t)} (2.30)

where [M ] is the modal mass matrix, [C] is the modal damping matrix, [K] is the
stiffness matrix, {q(t)} is the array of displacements in modal coordinates, also called
generalized displacements. Finally, {Q(t)} is the array of external loads in modal co-
ordinates, also called array of generalized forces. It must be underlined that system
2.29 and system 2.30 have the same information content. Modal displacements can be
obtained from nodal displacements using the following transformation:

{q(t)} = [U ]T {us(t)} (2.31)

where [U ] is the modal shape matrix. At the same time, structural nodal coordinates
can be obtained from modal coordinates using the following expression:

{us(t)} = [U ] {q(t)} (2.32)

Besides displacements transformation, the relation applies also to external loads. Thus
it is possible to compute generalized forces from nodal forces as follows:

{Q(t)} = [U ]T {fs(t)} (2.33)

and similarly to 2.32 the following relation also holds:

{fs(t)} = [U ] {Q(t)} (2.34)

The previous transformations are important when performing steady and unsteady aeroe-
lastic analyses since structural behavior is considered in the solver through modal rep-
resentation. In order to obtain modal properties from the initial FEM model an eigen-
analysis has to be performed on the free system version of 2.29:[

M̄
]
{üs(t)}+

[
K̄
]
{us(t)} = {0} (2.35)

where for simplicity the damping matrix is not showed. This is often the case since
damping matrix is both difficult to assembly and usually provides negligible effects on
final results. Anyway, the modal analysis can be performed using different FEA solvers
like NASTRAN, Code_Aster, Abaqus. Modal analyses provide modal shape matrix
(eigenvectors) and modal frequencies (eigenvalues, eventually complex). By applying
the transformation 2.32 and by projecting into modal space (pre-multiplying by [U ]T )
it is possible to rewrite system 2.35 as:

[M ] {q̈(t)}+ [K] {q(t)} = {0} (2.36)

An important point when performing modal analyses with rotating components is that
the rotation effects have to be taken into account. This is explained in details in [122].
In any case, modern FEA software like the ones previously mentioned provide this ca-
pability. It is highlighted that the modal representation here presented is obtained from
the structural system alone, without external loads. Thus modal shapes and frequen-
cies represent just structural properties. In order to obtain aeroelastic modal properties,
different techniques can be adopted. As mentioned, to obtain the aeroelastic system,
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a way to compute aerodynamic loads as function of the displacements is required in
order to close the aerodynamics-structure loop. This is discussed in 2.2.2.

The modal representation of the structural behavior is here showed and implemented
in AeroX for different reasons, mainly in search of a trade-of between accuracy and
computational efficiency, as explained also in 2.2.8. As previously mentioned, the
aeroelastic system represented using FEM nodal degrees of freedom is completely
equivalent to the same system expressed in modal coordinates. However, the main
advantage of using the modal representation is that it can be used to perform a model
reduction. This means that it is possible to accurately represent structural properties
with a reduced number on modal degrees of freedom. This is immediately translated in
computational efficiency advantages since the number of d.o.f. required for the solu-
tion of the forced system 2.30 becomes orders of magnitude smaller than system 2.29
if the model reduction is employed. In particular, as explained in [127] and later in this
chapter in 2.2.8 few modal shapes and frequencies are usually sufficient to accurately
perform both static and dynamic aeroelastic analyses. Since modal analyses algorithms
(using FEA solvers) are able to extract a user defined number of low-frequency modes,
modal analysis is usually efficient. Then, using the aeroelastic solver developed in this
work, the solution of the structural system is performed on CPU, both when a CPU or
a GPU is used to perform aerodynamic computations. Since this requires a CPU-GPU
data transfer through PCI-Express bus (as explained in chapter 4) it is important to
keep the GPU fed with available work, reducing the time spent on the CPU. Thus it
is preferable an efficient but nonetheless accurate solution of the structural system. A
reduced model based on the modal representation is the perfect choice for this purpose.
Furthermore, the modal analysis is performed only once before any aeroelastic simula-
tions, i.e. trim and flutter analyses, thus the computational effort is basically negligible
with respect to the time spent for the next aeroelastic solver runs.

It must be noted that when performing steady and unsteady analyses the small per-
turbations hypothesis holds, thus it is possible to consider the generalized matrices
constant. This is also true when considering rotating cases like in turbomachinery and
open rotors [122].

2.2.2 Aerodynamic transfer function matrix

Flutter analyses can be performed by just checking the response of the system after the
introduction of a small perturbation, checking the evolution of the interaction between
the fluid and the structure. This is correct, but can be computationally inefficient. In
fact if the aim is to find the flutter dynamic pressure, multiple expensive unsteady Fluid-
Structure Interaction simulations have to the performed in an iterative manner until the
conditions of self-sustained oscillations are found. This is basically what is done for the
BSCW wing of the AePW2 (see 8.3) where starting from a guess dynamic pressure, the
damping related to the wing pitch degree of freedom is checked. Computational flutter
conditions are found when the amplitude of the oscillations is constant in time, meaning
that the damping g is null and thus oscillations are self-sustained.

Here a more efficient strategy is presented, following [115, 122, 127, 136]. The idea
is to use CFD simulations as a sort of experimental procedure to identify a Reduced
Order Model (ROM) of the aerodynamic loads. This is done by performing a series of
unsteady simulations in which the unsteady variation of the aerodynamic loads, with
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respect to a reference steady-state solution due to the structural motion, is computed. It
is highlighted that the steady-state solution could feature highly non-linear phenomena,
like shocks, separations and complex interactions between boundary layer and shocks.
However, even if the steady-state solution is characterized by such high non-linear phe-
nomena, this is not necessarily true for the unsteady variations of the aerodynamic loads
due to the structural motion. Structural motion have to be both large enough to provide
results above the numerical error threshold but small enough to guarantee that the small
perturbations hypothesis is still satisfied [127].

Considering the frequency domain, the so called aerodynamic transfer function re-
lates generalized displacements and generalized aerodynamic forces as follows:

{Q(s)} = [Ham(p,M∞, Re)] {q(s)} (2.37)

where s = σ + iω is the complex frequency (i.e. in Laplace domain), p = sLa/V∞
is the complex reduced frequency, La is the aerodynamic reference length, V∞ is the
reference air speed. M∞ is the Mach number, Re is the Reynolds number and finally
[Ham(p,M∞, Re)] is the aerodynamic transfer function matrix. It is underlined that
Ham is defined in Laplace domain and not directly in time domain. Ham matrix is
defined in Laplace domain, however it is usually numerically computed in Fourier do-
main (through FFT) as Ham(k), where k = iω is the reduced frequency, thus computed
along the imaginary axis. Numerical methods can be employed to extrapolate Ham for
non general values of s with non null real part σ. How the aeroelastic solver is used to
compute input and output from which the aerodynamic transfer function is computed
is showed in 2.2.9, but here it is briefly presented. The first step is the computation of
the reference equilibrium steady solution. This means finding the so called trim solu-
tion, explained in detail in 2.2.8, which is basically the steady-state aeroelastic solution
characterized by certain values of generalized displacements due to structural deforma-
tions under aerodynamic loads. The next step is the already mentioned use of CFD as
a sort of experimental setup where the unsteady variations of generalized aerodynamic
forces {Q(t)} are computed due to opportunely prescribed excitation time history of
generalized displacements {q(t)}. In particular one unsteady simulation is performed
for each considered generalized displacements, i.e. for each opportunely normalized
modal shape. After the j-th simulation, exciting the j-th generalized displacement, the
j-th column of the aerodynamic transfer function matrix can be computed:

[Ham(k)|j] =
F ({Q(t)})
F (qj(t))

(2.38)

Thanks to the Fast Fourier Transform (FFT) algorithm, performing the transformation
of the numerator and denominator is very fast, in the order of seconds. Furthermore it is
understood that the computation ofHam is basically a post-processing operation and its
assembly can be performed in parallel by computing each column independently [127],
by exciting the structure with different generalized displacements.

At this point, the problem is to find a suitable time law for the structural displace-
ments qj(t) in order to properly obtain the column {Q(t)} and perform the FFT. Dif-
ferent kind of time laws could be employed, each one has advantages and drawbacks.
The harmonic input could be used. The problem is that this kind of input only excites
one frequency, thus one entire unsteady simulation for each desired frequency has to
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be performed. Another option is the impulsive input: theoretically it is able to excite
all frequencies simultaneously, but obviously from a numerical point of view it is im-
possible to introduce an ideal impulse and, if using a so called real impulse, very small
physical time steps are required, degrading computational efficiency. A step input could
be employed, with the advantage of a more accurate identification of the static gain and
low frequency range. However, the derivative of this input is again an impulse, and it is
easy to understand that the kinematic contribution to boundary conditions given by wall
is afflicted by numerical problems. Thus, the best choice is represented by a blended
step that combines the advantages of the step input for the static gain and low frequen-
cies but at the same time bypasses the numerical problem of discretizing an impulse for
the kinematic contribution. The blended step input is modeled as follows:

q(τ) =


Aq
2

[1− cos(kqτ)] if τ < τq

Aq if τ ≥ τq
(2.39)

where q(τ) represents the generalized displacement amplitude as a function of the di-
mensionless time τ = tV∞/La (not to be confused with pseudo time) that basically
represents the number of aerodynamic reference length La traveled at the asymptotic
speed V∞. The other parameters are described in a moment. From expression 2.39, the
time derivative q(τ) of the generalized displacement amplitude can also be computed:

q̇(τ) =


Aqkq

2
sin(kqτ) if τ < τq

0 if τ ≥ τq
(2.40)

As mentioned, no particular numerical problems are faced during the discretization of
the time laws 2.39 and 2.40. The problem is now the choice of the various parameters.
kq = k∞/2 and τq = 2π/k∞ are opportunely chosen in order to excite the low frequen-
cies of interest in the interval k ∈ [0, k∞]. For what concerns Aq, the final amplitude
of the step, as previously mentioned, should be large enough to provide a solution over
the numerical error threshold but small enough to guarantee the small perturbations
hypothesis. The choice of Aq is not straightforward, however one strategy that can be
adopted is using the value computed with the following expression:

Aq =
4Laε

max ([U |j]) k∞
(2.41)

where [U |j] is the j-th column of the modal shape matrix showed in 2.32, ε is defined
as follows:

ε =
max ({u̇s})

V∞
= tan(1◦) (2.42)

in order to have an opportunely small maximum nodal velocity with respect to the flight
velocity.

After the aeroelastic unsteady simulation, a post-processing operation has to be per-
formed in order to compute the j-th column of the aerodynamic transfer function ma-
trix using 2.38. However, as explained in [127] it is better to modify the numerator
and denominator of the expression and to consider the so-called "deficiency" of the
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generalized aerodynamic forces and the "deficiency" of the generalized displacements:

[Ham(k)|j] =
{Q∞}+ ikF ({Q(t)} − {Q∞})

F (qj(t)− qj,∞)
(2.43)

The previous expressions are related to the Fourier frequency k domain, strictly re-
lated to the FFT algorithm applied to the solver results. Assuming that the aerodynamic
subsystem is asymptotically stable (this is experimentally verified for the aerodynamic
subsystem alone, but the situation may change when coupled with the structural sub-
system to form the aeroelastic system), and is excited with casual input signals, it is
possible to obtain the generalized forces in time domain:

{Q(t)} =

∫ ∞
0

[ham(t− τ,M∞, Re)] {q(τ)} dτ (2.44)

where [ham(t− τ,M∞, Re)] is the so called aerodynamic impulsive response matrix.
Again, the dependency from the Mach number and the Reynolds number is highlighted.
System 2.30 can be rewritten considering that external aerodynamic forces are now ex-
pressed as function of the structural displacements themselves, leading to a free aeroe-
lastic system:

[M ] {q̈(t)}+ [C] {q̇(t)}+ [K] {q(t)} −
∫ ∞

0

[ham(t− τ)] {q(τ)} dτ = {0} (2.45)

The aeroelastic system 2.45 in Laplace domain assumes the following expression:(
s2 [M ] + s [C] + [K]− [Ham(p)]

)
{q} = {0} (2.46)

using definition 2.37. If the characteristic time Ta = La/V∞ that characterize the aero-
dynamic side of the problem is very small with respect to the structural characteristic
time Ts = 2π/ω, the so-called quasi-steady approach can be employed, significantly
reducing the mathematical complexity of the problem. This is due to the fact that when
considering constant flight conditions and the fact that the aerodynamic transfer func-
tion matrix is constant in p = 0, Ham can be expanded in Taylor series near p = 0
providing mass, damping and stiffness terms as follows:(

s2

(
[M ]− L2

a

V 2
∞

[Ma]

)
+ s

(
[C]− La

V∞
[Ca]

)
+ ([K]− [Ka])

)
{q} = {0} (2.47)

that in time domain is translated in:(
[M ]− L2

a

V 2
∞

[Ma]

)
{q̈}+

(
[C]− La

V∞
[Ca]

)
{q̇}+ ([K]− [Ka]) {q} = {0} (2.48)

with the understandable simplifications with respect to the original system 2.45. An
important aspect is that the aerodynamic transfer function matrix is analytic, allowing
to compute its derivatives in any direction.

As previously mentioned, flutter analyses can be performed by checking the aeroe-
lastic responses of the system when a perturbation is introduced in the equilibrium
configuration, as explained in 2.2.10. However, using all the presented aeroelastic
mathematical framework it is possible to perform more computationally efficient flutter
analysis simulations as explained in 2.2.9 and 2.2.3.
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2.2.3 Aeroelastic system stability and flutter

Flutter is the instability of the aeroelastic system 2.45 which represents the linearization
of the aerodynamic and structural problem for small perturbations around a reference
equilibrium condition. This is an important kind of numerical and experimental anal-
ysis since oscillations are self-sustained and could lead to fatigue life reduction of the
flexible aerodynamic components with catastrophic consequences. The problem with
flutter is that the aerodynamic subsystem and the structural subsystem, when consider-
ing non null structural damping, are both asymptotically stable. However, by closing
the loop between the two subsystems, there is no guarantee that the final aeroelastic
system is asymptotically stable for certain conditions. In fact, due to the fluid-structure
interaction, by increasing flight speed from 0, the original structural eigenvalues of the
structural subsystem 2.36 may be shifted up to unstable conditions, by passing through
the imaginary axis at some conditions, flutter conditions. Obviously more than one
aeroelastic eigenvalue may become unstable, however the investigation is focused on
the minimum flight speed V∞ for which the system becomes simply stable. This is
often studied by considering the aeroelastic frequency ω and damping g, defined as:

g = 2σ/
√
ω2 + σ2 (2.49)

where σ is the real part of the considered aeroelastic eigenvalue s = σ + iω, and ω is
its imaginary part. At flutter conditions, since σ = 0 also g = 0 holds. The aeroelastic
system 2.45 can be represented in a more convenient way as follows:

[A(s, V∞)] {q} = {0} (2.50)

remembering the dependency of Ham from flight conditions. In order to find flutter
conditions it is possible to enforce that the real and imaginary parts of the determi-
nant of matrix [A(s, V∞)] are null. This way, two scalar equations are obtained and the
solution provides flutter speed VF and frequency ωF . Then, these parameters can be
used to extract the flutter eigenvector {q (ωF , VF )} in order to see its particular shape.
However, usually it is useful to study the behavior of the aeroelastic system eigenval-
ues with respect to the flight speed V∞, using a root-tracking procedure, starting from
V∞ = 0 when the aeroelastic system eigenvalues are identical to the purely structural
eigenvalues.

Now, the numerical strategies adopted for flutter analyses will be briefly discussed.
As previously mentioned, there is a problem in computing the aerodynamic transfer
function matrix in Laplace space. This is due to the fact that the numerical procedure al-
lows to evaluate the aerodynamic transfer function matrix over just the imaginary axis,
providing Ham(k), and not Ham(p) over the whole complex domain. Thus, a strategy
to extrapolate the values of Ham for generic values of p is required. Two strategies
are usually adopted to handle the problem: a non-linear method and the so called PK
method. The idea behind the PK method is that by considering small damping values,
thus considering p = ε + ik with ε << 1, and considering that Ham is analytical in
p = 0, it is possible to expandHam(p) using a Taylor series around p0 = ik0 as follows:

[Ham(p)] ' [Ham(k)|k=k0 ] + [H ′am(k)|k=k0 ] (p− ik0) +
1

2
[H ′′am(k)|k=k0 ] (p− ik0)2

(2.51)
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this way it is easily possible to directly perform the eigenanalysis of the aeroelastic
system 2.50 near-by the flutter velocity VF .

Another strategy is represented by a non-linear method. The idea is to solve the free
aeroelastic system of non-linear homogeneous equations 2.50 for the eigenvector {q}
and for the eigenvalue s, alongside with an eigenvectors normalization equation used
to close the problem. This is done as follows:[A(s, V∞)] {q} = 0

1

2
{q}T [W ] {q} = 1

(2.52)

where [W ] is a weighting matrix and it’s highlighted the dependency of the system
from the flight speed V∞. The solution procedure of the system 2.52 is based on the
well known Newton–Raphson method that requires the linearized form of the previous
system (see [127]). With the non-linear strategy it is possible to obtain eigenvectors {q}
and eigenvalues s for any input velocity V∞. The usual strategy is to start from V∞ = 0,
thus with the eigensolution provided by the purely structural subsystem 2.36 and then
start the root-tracking procedure in order to draw the V∞ − ω and V∞ − g diagrams.
This last strategy is adopted for the flutter investigation of the AGARD 445.6 wing, see
8.2.

2.2.4 Aeroelastic interface

Usually, in aeroelastic simulations, the discretization of the solid and the fluid domains
is performed independently. This is due to the fact that CFD and FEA formulations
have different continuum discretization requirements that depend on the particular phe-
nomena happening in the fluid and solid domain. Thus the wall boundaries in common
between the aerodynamic and structural meshes usually feature different discretiza-
tions, meaning that the set of aerodynamic mesh wall nodes {xa} differs from the
set of structural mesh wall nodes {xs}. As an example, when performing (U)RANS
simulations over a wing, the near-wall domain is opportunely discretized in order to
reconstruct boundary layer effects and/or accurately predict shocks location. At the
same time, the wing could be structurally modeled with beam elements. It is evident
that this way an interface between structural mesh wall points and aerodynamic mesh
wall points is mandatory. In this section the strategy adopted in the solver to compute
the interface between the aerodynamic and structural meshes is briefly described, based
on [127, 132].

When performing aeroelastic simulations it is required a way to project aerodynamic
loads from aerodynamic (mesh) wall nodes {fa(t)} to structural (mesh) wall nodes
{fs(t)} and a way to project structural wall nodes displacements {us(t)} to aerody-
namic wall nodes displacements {ua(t)}. This is due to the fact that aerodynamic loads
are computed by the CFD solver using the aerodynamic mesh and thus the aerodynamic
mesh wall discretization, while the structural properties are computed from the FEM
model that features its own wall discretization. In fact if the structural properties are
represented with a full FEM model the structural response has to be computed by solv-
ing system 2.29 that requires aerodynamic loads in structural nodal coordinates {fs(t)}
and gives solid point displacements {us(t)} again in structural nodal coordinates. At
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this point the projection of aerodynamic loads from aerodynamic wall nodes to struc-
tural wall nodes is required. Then, after the system solution, in order to compute the
aerodynamic solution around the updated solid shape, the aerodynamic mesh has to
be updated. To perform this update wall displacements defined on aerodynamic mesh
wall nodes are required and have to be computed from structural wall nodes displace-
ments obtained from the solution of the forced structural system. The same is also true
when, like in this work, the structural behavior is represented by a modal reduction. In
this case in fact system 2.30 has to be solved by providing generalized aerodynamic
forces {Q(t)} and obtaining then generalized displacements {q(t)}. However general-
ized forces and displacements are still related to structural nodal counterparts through
relations 2.31 and 2.34. Thus, the aforementioned problem of projecting forces and
displacements between aerodynamic and structural meshes arises also when employ-
ing modal reduction.

Considering the formulation explained in [132], the aeroelastic interface between
aerodynamic and structural wall nodes displacements is represented by means of a lin-
ear operator [I]:

{ua(t)} = [I] {us(t)} (2.53)

thus the relation between the two sets of wall nodes displacements can be represented
through a rectangular matrix. This relation is used after the structural system solution,
when the just computed wall displacements have to be used to update the aerodynamic
mesh. It must be noted that relation 2.53 binds only aerodynamic mesh wall nodes and
structural mesh wall nodes, while the rest of internal nodes of the aerodynamic mesh
have to be updated with a different strategy, as explained in 2.2.6.

As explained in [132], a fundamental requirement for the aeroelastic interface is
the conservation of momentum and energy exchanged between the aerodynamic and
the structural subsystems. This means that the virtual work made by the aerodynamic
forces, {fa(t)}, for the structural displacements interpolated on the aerodynamic nodes
{ua(t)}, must be equivalent to the virtual work made by the aerodynamic forces inter-
polated on the structural nodes, {fs(t)}, for the structural displacements, {us(t)}. This
has a very handful consequence since the transpose of the aeroelastic interface operator
can be used to obtain the aerodynamic forces on structural nodes from aerodynamic
forces on aerodynamic nodes:

{fs(t)} = [I]T {fa(t)} (2.54)

The interface matrix [I] can be assembled using different strategies in order to weight
the contribution of the set of aerodynamic wall nodes over each structural wall node.
As an example, an Inverse Distance Weighting (IDW) approach can be used, eventu-
ally by neglecting the contribution of too distant nodes. In this work a different strategy
is employed, however IDW is adopted for the aerodynamic mesh internal nodes posi-
tion update described in 2.2.6. The approach here adopted is based on a Moving Least
Squares (MLS) technique and the use of Radial Basis Functions. The detailed descrip-
tion of the numerical aspects is beyond the purpose of this work, for more details the
reader is referred to [132]. When using RBF, the influence between the structural and
aerodynamic nodes is weighted using functions that depend only by the relative dis-
tance between the two type of nodes:

Φ(xs,xa) = Φ (||xs − xa||) (2.55)
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where xa is the aerodynamic mesh wall node position and xs is the structural mesh wall
node position. Different kinds of function can be used to compute each element of the
interface matrix, but they all satisfy the form of 2.55.

It is again highlighted that the interface matrix only binds the nodes from the aero-
dynamic mesh and the structural mesh that reside on the surface of the deformable ge-
ometry. This means that the interface matrix is only useful to update the aerodynamic
mesh wall shape, but another kind of strategy is required to fully update aerodynamic
mesh internal nodes, as will be explained in 2.2.6.

There are some important computational aspects that must be discussed, in partic-
ular since the aeroelastic solver is GPU-accelerated. The computation of the interface
matrix can be quite costly, however it is computed only once before any steady or un-
steady simulation. In particular the interface matrix is computed from aerodynamic
wall nodes and structural wall nodes locations of the original undeformed geometry.
The interface matrix is stored in system memory and read every time the shape of the
object under investigation has to be updated due to aerodynamic loads or to enforce
oscillations. This is performed at each physical time step in unsteady simulations,
as described in 2.2.9 and 2.2.10 for forced and free oscillations analyses respectively.
The interface matrix is also required at each structural iteration when performing static
aeroelastic analyses, i.e. trim analyses, as explained in 2.2.8. In any case, the aeroe-
lastic interface is usually represented by a full matrix, thus its storage could be quite
costly when handling thousands of wall nodes. Interface matrix is stored on system
RAM and the computations related to expression 2.53 and 2.54 are performed on CPU.
This reduces GPU memory consumption allowing to perform aeroelastic simulations
on bigger cases on gaming GPUs that feature few GB of memory. However, this choice
does not represent a particular bottleneck for GPU executions since, as mentioned,
between two shape updates hundreds or thousands of purely aerodynamic explicit iter-
ations are required. Furthermore, the CPU-GPU data exchange through PCI-Express
bus is limited to just the wall nodes data, since, as will be showed in 2.2.6, aerodynamic
mesh internal nodes update and mesh metrics update are performed instead on GPU.
Considering all of these aspects, the time spent to perform mesh interface operations
on CPU and data transfer between the CPU and the GPU is negligible with respect to
purely aerodynamic convergence iterations performed on GPU.

2.2.5 Moving Boundaries

Excluding temporarily cases with rotating components, a key difference between steady-
state analyses with mesh deformation and unsteady analyses with mesh deformation is
represented by the fact that in the latter case not only ALE formulation is used when
computing convective fluxes on internal and boundary faces, but also by the fact that
wall boundary conditions must be opportunely modified in order to take into account
the wall velocity. Furthermore, when considering also MRF formulation (see 3.6) the
contributions of the rotation and the deformation have to be added up. As said the
approach adopted in this work to enforce boundary conditions is based on the ghost
cell concept. Thus, enforcing a non-null boundary velocity basically means enforcing
particular values of ghost cell conservative form variables. It must be noted that when
performing inviscid simulations the only important component is the velocity normal
to the boundary face as it is the only information required to enforce slip boundary
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conditions. Boundary faces velocities are computed alongside displacements on CPU
and then transferred to the GPU. It is reminded that this does not particularly reduce
computational efficiency since boundary faces velocities and displacements are com-
puted once every physical time step. Thus all the pseudo time iterations between two
wall faces boundary conditions updates can be performed without data-transfers, leav-
ing the GPU continuously loaded. Boundary wall faces velocities are computed using
relations 2.53 and 2.32 but using {q̇(t)} instead of {q(t)}, {u̇s(t)} instead of {us(t)}
and {u̇a(t)} instead of {ua(t)}. In this work aerodynamic mesh wall nodes displace-
ments are always referred to the undeformed configuration rather than being defined as
incremental values between two different wall displacements.

2.2.6 Aerodynamic mesh internal nodes update

As said in 2.2.4 the interface matrix only binds aerodynamic mesh wall nodes and struc-
tural mesh wall nodes. Thus a way to update the location of the rest of the aerodynamic
mesh internal nodes is required. This can be performed through different formulations
like Laplacian Smoothing [87]. Other strategies are based on the analogy between the
continuum and an elastic solid [52]. Mesh deformation is particularly important also for
what concerns shape optimization problems [92]. Here, a strategy based on the Inverse
Distance Weighting (IDW) [153] formulation is instead adopted, thanks to its combi-
nation of results quality and high computational efficiency when exploiting GPUs. The
implemented strategy is based on the formulation presented with more details in [132].
Here the strategy is briefly presented, with the focus on computational aspects.

The idea behind IDW is to compute the displacements of each aerodynamic mesh
internal node

{
uka
}

by opportunely weighting the displacements contributions of the
moving wall nodes {uia} as follows:

{
uka
}

=

∑Nwall
i=0 Wk−i {uia}∑Nwall

i=0 Wk−i
(2.56)

Following the definition of "IDW", the weights Wk−i are computed from a power of
the inverse of the distance between the internal node k and the wall node i:

Wk−i =
1

|xk − xi|p
(2.57)

where the exponent p can be used to adjust the smoothness of the results. Usually
p = 2 or p = 3 provides good results. Expression 2.56 has to be evaluated for each in-
ternal aerodynamic mesh point. For each aerodynamic mesh internal point a loop over
the aerodynamic mesh wall nodes is required. Here we have two different operations
to be performed: weights computation and displacements computations. Considering
that thousands of wall nodes are usually used to discretize the shape of a deformable
aerodynamic object and millions of nodes are instead used for the internal mesh, it is
understood that both represent heavy computational operations. However this is basi-
cally a data-parallel operation, perfectly suited for the GPU architecture. As explained
in 2.2.5, wall nodes displacements are always computed as absolute displacements from
original wall nodes positions. This is true also for internal nodes displacements. This
way the weights that are required at each physical time step, in unsteady simulations, or
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at each mesh update step in trim simulations could be computed just once before start-
ing the aeroelastic simulations. Next, the weights could be stored and reused whenever
is required to update the aerodynamic mesh. However this is not how the strategy of
updating internal mesh node positions is implemented. In fact, what is done is that
each time the mesh requires an update, weights are all recomputed and displacements
are then computed accordingly, even if the weights are kept constant through the en-
tire simulation. Furthermore, this is all performed on the GPU. The explanation of
this choice is based on the advantages and drawbacks related to CPUs and GPUs ar-
chitectures. As said, the whole operation of computing weights can be performed in
a data-parallel fashion since all the internal nodes have to loop an all the wall nodes
to compute the weights. This operation can be efficiently performed by the GPU, ex-
ploiting the sequential memory access to load nodes locations, and the capabilities of
its hundreds/thousands of cores to perform the floating point operations required by
expression 2.57. Similarly, GPU architectures are also well suited to compute the dis-
placements using expression 2.56 by reloading weights (that, as said, are kept constant
during the simulation) from memory and computing internal nodes displacements by
spreading the work on thousand of cores. The problem in this strategy is that with the
aim of exploiting low-cost gaming GPUs that exhibit few GB of GPU memory, this in
unfeasible due to the large amount of memory required by the storage of all weights. As
an example, if an aerodynamic mesh features 10k wall nodes and 1M internal nodes,
considering 4 bytes to store each weight, a total amount of over 37GB would be re-
quired. At the same time this operation could be performed by the CPU, by computing
the weights once before the aeroelastic simulation and recalling them when updating
internal nodes position. This would theoretically solve the problem with memory con-
sumption provided that enough RAM is installed in the system. However, this is again
not feasible since each time the mesh is updated the CPU has to compute displacements
using a nested loop formed by the internal nodes loop and wall nodes loop. Perform-
ing this operation on the CPU is orders of magnitude slower than performing it on the
GPU. By using the CPU to update the aerodynamic mesh internal points positions the
advantages provided by the GPU to speed-up the aerodynamics convergence would be
avoided by the time spent waiting the CPU for the internal nodes update. Thus, the
strategy that allows to both speed up IDW computations and at the same time allows
low memory requirements is represented by performing on GPU, each time the mesh
is deformed, the re-computation of the weights and, of course, the internal nodes dis-
placements. Thanks to the efficient implementation of IDW and the fact that, as for the
aeroelastic interface related computations (see 2.2.4), this operations is performed only
once every few hundreds/thousand of purely aerodynamic iterations, the time spent by
the GPU to perform IDW operations is negligible with respect to the time required for
purely aerodynamics convergence. This is better shown in 6.2.2 when discussing about
benchmark results and profiling the different kernels.

After the update of the aerodynamic mesh internal nodes, mesh metrics have to be
recomputed, alongside, for unsteady simulations, the faces ALE velocities. It is under-
stood that both operations can be efficiently parallelized on a typical GPU architecture
since basically the same operations have to be performed over thousand/millions of
elementary mesh objects like cells volumes, faces areas, face material velocities. It
is highlighted that in this work mesh metrics update just means updating cells shapes
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and cells/faces related quantities while mesh connectivity is preserved. Consequently
after each mesh update all the addressing arrays are preserved. The discussion about
how to compute such mesh metrics is beyond the scope of this work. The strategy here
adopted to compute faces material velocities for the ALE framework when performing
simulations with mesh deformation is described in details in [127]. Roughly speaking
the ALE velocity at each physical time step of each face is computed as the ratio be-
tween the volume crossed by the face in the unit of time in the face normal direction,
divided by the face area.

The implementation of the IDW algorithm is presented in 5.3.11.

2.2.7 Transpiration boundary conditions

Transpiration boundary conditions are implemented in the solver as a computationally
cheaper alternative to the effective mesh deformation when simulating unsteady cases
with wall movements. The main idea of transpiration boundary condition is to emulate
the effects of wall displacements and velocities by employing an opportunely crafted
non-penetration boundary condition, bypassing the need of true mesh deformation. The
main advantage given by this strategy is the fact that the costs of updating mesh points
positions and mesh metrics is avoided, thus simulations times are reduced. However,
this comes at the cost of a limited range of applicability and a reduction of results
accuracy. As showed by the results in [136], far small wall movements, transpiration
boundary conditions can provide good results, comparable with the more accurate but
expensive mesh deformation with ALE formulation. Anyway, if some kind of complex
wall movements, particular flow-field phenomena, or just bigger displacements have to
be taken into account, mesh deformation could be the only available choice to provide
enough accurate results. A complete description of transpiration boundary conditions
is available in [136]. Here just the final expression of the transpiration speed is showed,
considering the non-linear finite-difference approach. The following expression shows
the implemented transpiration speed:

Vn = −V∞ ·∆n̂ + ṡ · n̂0 + ṡ ·∆n̂ (2.58)

where Vn is the wall face velocity normal component. This is used to alter the true
slip boundary condition (for which Vn = 0) and emulate wall movements. V∞ is the
asymptotic speed, ∆n̂ is the face normal unitary vector rotation, ṡ is the wall face speed
and n̂0 is the original face unitary normal vector.

It must be noted that in this work, thanks to the GPU acceleration of the mesh de-
formation algorithms and thanks to DTS, simulations performed using transpiration
boundary conditions and true mesh deformation have about the same computational
costs. This way in this work true mesh deformation is always preferred thanks to supe-
rior results accuracy.

The implementation of the transpiration boundary conditions is discussed in 5.3.11.

2.2.8 Trim analyses

Trim analyses are aimed to provide a static aeroelastic solution. The idea is to inves-
tigate the effects of the static structural behavior of the aerodynamic component under
aerodynamic loads. Trim solution are useful for two different purposes.
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First of all they provide more accurate steady solutions with respect to more classi-
cal steady analyses with fixed geometry. By allowing the wall boundaries to be freely
deformed under the aerodynamic loads, the purely aerodynamic behavior of the com-
ponent is coupled with its structural properties. As will be discussed in the results
sections of this work, this is particularly important for some kinds of aeronautical com-
ponents like airplanes and wings (e.g the trim of the HiReNASD wing described in 8.1)
where the differences between the purely aerodynamic steady solution and the static
aeroelastic solution are easily appreciable. However, there are also cases in which trim
solutions provide only negligible accuracy improvements on the final solution. This is
the case with the trim simulation of the NASA’s Rotor 67 investigated in 10.3 where the
characteristic curves given by the static aeroelastic simulations are basically overlapped
to the ones provided by the purely aerodynamic simulations. In fact, given the shape
and the properties of the adopted material, the blade of the Rotor 67 is relatively stiffer
with respect to the HiReNASD wing. Thus in the entirely operating regime of the ro-
tor, aerodynamic loads are unable to deflect the blade more than a fraction of the blade
thickness. In a typical plane wing instead (e.g. the HiReNASD case), wing tip dis-
placements are usually multiple of the airfoil thickness. This means that in the case of
the Rotor 67, given the small blade displacements, negligible differences are obtained
locally in the flow field. Consequently this is also translated in negligible differences
for what concerns the integral parameters such as the characteristic points values.

The second purpose of a static aeroelastic simulation is to provide the initial con-
ditions for a subsequent dynamic aeroelastic simulation. In fact, unsteady aeroelastic
simulations are usually performed by studying vibrations around equilibrium condi-
tions. Since the unsteady aeroelastic simulation involves the mechanical properties of
the investigated aerodynamic component, the equilibrium conditions themselves must
consider also the structural behavior of the aerodynamic component. As an example,
in the flutter analysis of the BSCW blade of the AePW2 (see 8.3), before starting the
unsteady analysis, a trim simulation is performed in order to provide the equilibrium
initial conditions. These conditions are characterized by a particular wing vertical dis-
placement, wing rotation and the related aerodynamic fields. This way, the expensive
unsteady simulation that would be required to go from initial guess conditions up to the
steady aeroelastic equilibrium solution is avoided. The BSCW blade of the AePW2 pre-
sented in this work is characterized by two rigid degrees of freedom, pitch and plunge.
However, trim simulations can obviously be performed also with a modal representa-
tion of the structural behavior, provided that modal shapes and stiffness are computed
with a FEM solver.

From a mathematical and numerical point of view, trim analyses are basically steady
analyses in which the static structural behavior is taken into account (only stiffness
without inertial and damping properties). Thus, all the convergence acceleration tech-
niques previously described in 2.1.10 can be adopted to accelerate convergence. DTS,
described in 2.1.11 is not employed. Thus, given a certain mesh size, the costs of a
trim analysis are in the order of a steady analysis, lower then a fully unsteady anal-
ysis. The costs of a trim analysis with respect to a steady aerodynamic analysis are
bigger since mesh deformation is required and convergence is checked not only on
aerodynamic residuals but also on structural residuals. Anyway, it is expected that if
the converged trim simulation is characterized by small displacements with respect to
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the original configuration, with the implemented strategies the computational time re-
quired by a trim simulation is of the same order of magnitude of the one required for a
purely aerodynamic steady simulation.

When performing trim analyses, system 2.30 is reduced to its steady form, i.e.:

[K] {q} = {Q} (2.59)

so the purpose of the simulation is to find the generalized displacements (thus the ob-
ject shape) under aerodynamic loads. Obviously aerodynamics depends from the object
shape itself, so an iterative algorithm must be employed. It must be noted that when
performing trim simulations of rotating components like turbomachinery and open ro-
tors blades, the effects of the rotating solid domain must be taken into account since
they change the structural properties with respect to the non-rotating case [122].

Here, the strategy adopted in the solver to provide the trim solutions is presented
and discussed:

1. The first step is the computation of the possible deformations of the aerodynamic
component. This means rigid degrees of freedom or modal shapes degrees of
freedom. As an example, for the BSCW wing of the AePW2, see 8.3, the wing
vertical displacement and wing rotation are selected as the only possible degrees
of freedom. In the case of the trim of the HiReNASD wing 8.1 or the Rotor 67
10.3 blade, instead, a modal reduction is performed before the trim simulation,
using a FEM solver (like NASTRAN or Code_Aster). The FEM analysis is
performed considering an unloaded model of the aerodynamic object. Anyway,
for this step the requirements are: a set of possible object deformations (modal
shapes or rigid d.o.f) and the correspondent stiffness values. As explained in 2.2.4,
RBF are used to assembly the interface matrix between aerodynamic mesh wall
nodes and structural mesh wall nodes. This operation is performed only once and
the same interface matrix can be used also for subsequent dynamic aeroelastic
analyses;

2. The aerodynamic solver is started using the undeformed mesh. The purely aerody-
namic solution is obtained with the fixed geometry (see 2.1.12). This will provide
the initial guess for the true aeroelastic simulation;

3. Once the purely aerodynamic solution is obtained, the solver is restarted in trim
mode. The original mesh is read alongside the steady-state solution fields to be
used as initial guess;

4. Now aerodynamic loads have to be computed. If the free degrees of freedom are
rigid displacements, pressure and viscous stresses are integrated over the object
walls and projected in the 6 directions (3 forces and 3 moments). If a modal repre-
sentation of the structural behavior is employed, the situation is more complicated.
In fact, this means that alongside the aerodynamic mesh, also the structural mesh
is provided. Thus, recalling 2.2.4 and in particular equation 2.54, loads are pro-
jected from the aerodynamic wall nodes to the structural wall nodes. Now using
equation 2.33 loads on structural wall nodes are translated to generalized forces
thanks to the modal shapes matrix. This way, after this step of the trim algorithm,
forces related to the available degrees of freedom are now available;
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5. The next step is the solution of the system 2.59 for the generalized displacements,
knowing the degrees of freedom stiffness and and the related forces. Thanks to
the modal representation of the structural behavior the total number of free de-
grees of freedom is limited (usually in the order of 10). Thus the solution of the
system requires an amount of computational time that is basically negligible with
respects to other algorithms inside the trim analysis, especially with respect to the
GPU-accelerated aerodynamic convergence and mesh deformation. At the end
of this step generalized displacements {q} related to free degrees of freedom are
known and the aerodynamic mesh has to be updated accordingly. Relative residu-
als related to degrees of freedom are computed employing a normalization of the
difference from the previous computed values. These residuals are used to check
convergence from the structural point of view;

6. Next, it is necessary to update the shape or the position and rotation of the object
accordingly to the static structural response. Thus, first of all wall displacements
are computed. With rigid degrees of freedom this is straightforward. The situa-
tion is more complicated with the modal representation. In fact, from the previous
step the generalized displacements are known but they need to be mapped to the
structural nodes. Thus, expression 2.32 must be employed to translate general-
ized displacements into structural nodes wall displacements. Then, by exploiting
the interface matrix 2.53 it is possible to compute aerodynamic mesh wall nodes
displacements from structural mesh wall nodes displacements;

7. Now, from aerodynamic mesh wall nodes displacements it is possible to compute
the aerodynamic mesh internal nodes displacements. This can be done in exactly
the same way described in 2.2.6;

8. Knowing the new positions of internal nodes it is possible to update the mesh
metrics: this involves cell volumes, cell centers, face centers, face normals, face
areas;

9. The entire algorithm is repeated until both the aerodynamic residuals and struc-
tural displacements residuals are converged or the maximum number of iterations
is reached;

Few aspects of the strategy require attention. The trim solver could be directly
started from a user-prescribed guess solution, without firstly performing a steady-state
simulation with the completely rigid structure. However, starting from an already con-
verged steady-state solution with rigid structure is better, because, if small displace-
ments are expected, the trim solution should converge relatively fast, with a computa-
tional cost in the order of a purely aerodynamic steady simulation. Otherwise, if the
trim solver is started from e.g. a constant pressure, temperature and velocity fields, this
could slow down the convergence, since not only aerodynamics is involved but also
structural displacements. Another important aspect, especially related to GPU execu-
tions, is that the purely aerodynamic computations are repeated for a certain number
of iterations between two consecutive mesh updates. This is done in order to allow a
better aerodynamic convergence before the next mesh update. In fact, since an explicit
solver is implemented in this work, it is unlikely that a single aerodynamic (pseudo
time) iteration is sufficient to reach convergence over the new wall shape. Furthermore,
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from a computational point o view, since the mesh update requires CPU-GPU data
transfer, it is better to reduce the total number of times that data is exchanged, without
undermining convergence properties. As will be described in 10.3 and 8.1 for a turbo-
machinery blade and wing cases respectively, good trade-off values are represented by
500 − 2000 purely aerodynamic iterations between two consecutive mesh updates and
about a total of 20 − 50 mesh updates. Obviously these numbers are purely indicative
and they depend from the particular case under investigation, especially from the mag-
nitude of the expected deformations. Usually 50000 explicit aerodynamic iterations are
sufficient for trim convergence by restarting the solver from a steady-state solution with
fixed geometry. Considering that a steady solution with fixed geometry requires about
20000 − 50000 iterations (depending if Euler or RANS equations are employed) and
that mesh deformation algorithms are GPU-optimized, the computational time required
for a trim solution is basically in the same order of magnitude of what required to obtain
a steady solution with fixed geometry.

Other important aspects are related to the idea of performing the structural model
reduction with the modal representation of the structural behavior. As explained, the
modal reduction of the structural behavior provide both an accurate and efficient repre-
sentation of the elastic solid. When the free response on the aerodynamic component
have to be computed, both in a steady and unsteady simulation, if the starting model is
a FEM model, theoretically all the FEM degrees of freedom have to be used to compute
the structural response. This computation is done on CPU while the GPU is waiting for
the displacements update. Since the focus in this work is on the reduction of the wasted
GPU time, a modal reduction is preferred over a full FEM representation. This way
the system that needs to be solved is smaller with the modal approach. As previously
explained, this is true when the solid behavior is described with a number of modal
shapes, stiffness and masses that is smaller than the one provided by the original FEM
model. The choice of the total number of adopted low stiffness modes is not straightfor-
ward. However, with the aim of a trim simulation, different checks can be performed in
order to asses the correct reconstruction of the elastic behavior with the modal represen-
tation. First of all modal convergence can be checked by computing trim solution with
N modes and then compute again the trim solution with N + 1 modes. After a certain
small number of adopted low frequency modes, the contributes of higher modes be-
come negligible for what concerns the final shape of the aerodynamic object. Another
useful check for modal convergence is related to the elastic energy. When the blade
or wing structure is deformed under aerodynamic loads, modal degrees of freedom as-
sume certain values that allow the structure to be in equilibrium with external loads.
Thus, considering each mode stiffness and generalized displacement, it is possible to
compute the elastic energy related to each mode. If an unitary mass normalization is
employed, it is possible to directly compare the elastic energy of each mode. The idea
is that modes with higher stiffness can be neglected if their contribution to the total
elastic energy of the equilibrium configuration is negligible. All of these aspects will
be used with the NASA’s Rotor 67 trim test case in 10.3, where it is possible to see that
the first two modes contributes for over the 95% of the total elastic energy and using 3
or 4 modes to describe the elastic behavior provides only negligible differences.

It must be noted that trim analyses, as much as steady analyses in general, could
be potentially performed also through an unsteady simulation. In this case it could be
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possible to perform an unsteady simulation starting from an initial guess (e.g. constant
pressure, temperature and velocity fields and non-deformed geometry) or re-starting
from a steady solution with non-deformed geometry. Then, the unsteady analysis is
started with the introduction of the structural behavior and mesh deformation and by
leaving the aerodynamic component to be free to be deformed (this procedure is de-
scribed in details for true unsteady analyses in 2.2.10. Obviously this second strategy
that employs unsteady simulations should provide the same results of the true steady-
state aeroelastic strategy described in this section (provided that a steady-state solution
in the investigated conditions effectively exists). It is easy to understand, however, that
a steady trim analysis is order of magnitude computationally cheaper than an unsteady
aeroelastic analysis converged to a steady-state solution.

2.2.9 Forced oscillations analyses

Here the strategy adopted to perform forced oscillations analyses is described. These
are unsteady analyses where the deformation of the aerodynamic component is en-
forced and not computed as an aeroelastic response due to aerodynamic loads. Forced
oscillation analyses can be used for different purposes. They can be used when the case
effectively involves the movement of the aerodynamic component described through a
time law. Forced oscillations simulations can be employed for stability analyses such as
flutter analyses or aerodynamic damping analyses (for turbomachinery). Flutter analy-
ses, in particular, can be performed using two different strategies. In fact it is possible
to perform a free response analysis due to an initial perturbation, as better described
in 2.2.10 and by checking if oscillations are sustained. The second strategy takes ad-
vantage of what described in 2.2.3, enforcing modal shapes deformations through an
opportunely specified time law. For what concerns aerodynamic damping analyses, the
concept is similar to the latter idea: a particular deformation of the blade is enforced
using an oscillatory time law and then at post-processing it is possible to compute the
aerodynamic damping value using energetic concepts. This is described in details later
in 3.4.

Here, the algorithm adopted for forced oscillations analyses is presented:

1. The first step is the computation of the possible degrees of freedom of the aero-
dynamic component. This means rigid displacements or modal shapes. As an ex-
ample, for the aerodynamic damping computation of the SC10 2D and 3D cases
(see 10.1 and 10.2) pitch and plunge rigid displacements are considered. Instead,
for what concerns the flutter analysis of the AGARD 445.6 wing (see 8.2) a modal
analysis is performed before the unsteady aerolastic analysis, providing the modal
frequencies and shapes that will be enforced using an opportunely specified time
law. The modal analysis is performed once using a FEM solver, considering the
unloaded aerodynamic component and discretizing it with an opportunely choice
of FEM elements (e.g. beams for wings and shells for turbomachinery blades).
With rotating cases, during modal analysis centrifugal effects must be taken into
account. If modal shapes are adopted as degrees of freedom, the interface matrix
has to be computed knowing aerodynamic wall nodes positions and structural wall
nodes positions. This is performed only once before the aeroelastic simulations,
as explained in 2.2.4;
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2. The purely aerodynamic steady-state solver 2.1.12 or trim solver 2.2.8 is executed
to perform the steady analysis of the aerodynamic component over its original
shape. This is done in order to provide initial conditions for the next unsteady
aeroelastic analysis. Depending on the particular case a steady analysis with fixed
geometry could be sufficient. This is the case of the AGARD 445.5 wing since
equilibrium is reached with symmetrical conditions;

3. The aeroelastic solver is restarted from the just computed steady-state solution
and deformed mesh. The user has to specify the time law that describes the evo-
lution of the prescribed displacements. For aerodynamic damping analyses this
is usually an oscillatory time law (i.e. a (co)sinusoidal time law as for the SC10
cases). For the flutter computation used for aeronautical components, like for the
AGARD 445.6 wing, modal shapes are enforced using an opportunely specified
time law. This could be a rounded step time law allowing to excite a particular
frequency range;

4. The time law is evaluated at the current physical time in order to compute the cur-
rent values of displacements and velocities of the considered degrees of freedom.
This is true both for rigid degrees of freedom and generalized modal displace-
ments. This is required in order to compute aerodynamic mesh points displace-
ments and faces velocities for the ALE formulation;

5. If the considered degree of freedom is a rigid movement then it is straightforward:
a loop over the aerodynamic mesh wall points is performed to compute their dis-
placements and velocities. In case of translations a uniform field of displacements
and velocities is computed. In case of rotations, the rotation center has to be spec-
ified. If the considered degrees of freedom are represented by modal shapes, the
computation of wall nodes displacements and velocities involves the use of the in-
terface matrix between the structural mesh and the aerodynamic mesh. The modal
shape matrix is also involved. First of all, using expression 2.32, structural nodal
displacements and velocities are computed from generalized displacements and
velocities. Then, aerodynamic mesh wall nodes displacements and velocities are
computed from structural wall nodes displacements and velocities using relation
2.53;

6. The next step of the algorithm involves the update of the aerodynamic mesh inter-
nal points displacements and the update of internal faces velocities (for the ALE
formulation). The former is accomplished using the IDW algorithm previously
described in 2.2.6. The latter is explained in details in [127];

7. Knowing the updated internal nodes positions it is possible to update the mesh
metrics: this involves the computation of new cell volumes, cell centers, face
centers, face unitary unitary vectors. At the end of this step the new mesh is
known;

8. Now the purely aerodynamic solution is computed over the updated mesh, using
the ALE framework and the DTS strategy in order to exploit the same convergence
acceleration techniques adopted for steady analyses (see 2.1.12). Using DTS for-
mulation, purely aerodynamic explicit iterations are performed until aerodynamic

62



i
i

“thesis” — 2016/12/24 — 15:47 — page 63 — #75 i
i

i
i

i
i

2.2. Aeroelasticity

convergence. In particular, the aerodynamic solution is considered converged if
about 3 orders of magnitude of aerodynamic relative residuals are lost. Eventually
the solution is also considered converged if a maximum number of iterations is
reached. The DTS formulation requires the solution of the previous time step to
be stored;

9. In order to compute generalized loads, expressions 2.54 and 2.33 are employed;

10. The algorithm is repeated for the next physical time step;

An important aspect that must be underlined about forced oscillations analyses re-
gards the computational point of view and GPUs executions. In order to perform un-
steady aeroelastic computations, besides the adoption of the DTS strategy it would be
also possible to advance the solution in physical time by deactivating LTS and other
convergence acceleration techniques and use a global (very) small physical time step
that satisfy CFL conditions everywhere in the computational domain. This way using
a single explicit aerodynamic iteration it would be possible to advance the solution in
physical time. However, this would also mean that for each aerodynamic iteration, the
mesh would be updated. Since the interface matrix and the computation of the aero-
dynamic mesh wall displacements and velocities from structural mesh displacements
and velocities are performed on the CPU, this would mean a CPU-GPU data exchange
for each aerodynamic iteration. Thus, this strategy is not implemented in the solver
since it would be a bottleneck for GPU executions. Furthermore, as already mentioned,
when using an explicit global time step formulation very small physical time steps are
required. The choice of the physical time step value is strictly related to the frequencies
of interest. Despite some peculiar applications (e.g. acoustics), usually in aeronautical
fields when studying wings and blades for flutter analyses, aerodynamic damping anal-
yses and forced oscillations analyses the frequencies of interest are related to structural
frequencies (and their fractions). The main advantage of implicit time step formulations
over explicit formulations is the possibility to adopt higher physical time steps in order
to reconstruct and analyze only the frequencies of interest, dissipating whatever is out-
side the frequency range. DTS is here adopted in order to keep an explicit formulation
to exploit GPUs architecture and convergence acceleration techniques. At the same
time this allows to use implicit-like physical time step values to save computational
time that would be wasted if employing a fully explicit global time step strategy.

It must be noted that when employing this kind of aeroelastic analyses with the aim
of flutter prediction through the computation of the Ham aerodynamic transfer function
matrix, the effects of the rotating speed must be considered within the initial FEM
computation. The Ham(Ω) matrix thus becomes a function of the angular speed Ω.

2.2.10 Free oscillations analyses

Free oscillations analyses are similar to the previously described trim and forced os-
cillations analyses. These are unsteady analyses in which the structure is free to re-
spond due to its structural properties. This is similar to trim analyses since the wall
displacements (and also velocities in this case) are not enforced by the solver by a user-
provide time law (like what happens in forced analyses) but they are naturally obtained
from the solution of the structural system 2.30, forced with aerodynamic loads. This
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means that despite trim analyses, now also the structural mass matrix (and eventually
the damping matrix) is involved in the solution of the structural system. The common
points with forced oscillations analyses are the algorithms adopted after the computa-
tion of the rigid or generalized displacements and velocities. However, as said, this
time the computation of rigid/generalized displacements and velocities is performed
differently, through the solution of system 2.30. This kind of analyses is adopted for
different purposes. In literature they are usually adopted for flutter analysis, although
a more computationally efficient strategy is described in 2.2.3 using forced oscillations
strategy and post-processing. The idea behind performing stability analyses using free
oscillations is quite simple. First of all, an aeroelastic equilibrium configuration is com-
puted. In order to asses if the aeroelastic system is asymptotically stable, simply stable
(fixed amplitude oscillations, flutter) or unstable, starting from the equilibrium solu-
tion, a small perturbation is introduced in the system (e.g. enforcing small structural
displacements or velocities as initial conditions for the unsteady analysis). This is the
strategy adopted for the flutter analysis of the BSCW wing for the AePW2 8.3, where
the aeroelastic solver is restarted from trim conditions with a small initial perturbation
applied on the wing pitch speed. The wing is then left free and the evolution of pitch and
plunge degrees of freedom is monitored. Multiple simulations have to be performed in
order to find the exact dynamic pressure that leads to sustained pitch oscillations with
constant amplitude (meaning null damping).

Here the procedure adopted to perform free oscillations analyses is described. As
previously mentioned, this procedure has common aspects with trim and forced oscil-
lations analyses.

1. First of all the degrees of freedom of the aerodynamic component are computed.
This is exactly the same step performed with trim and forced oscillations analyses.
The free degrees of freedom could be rigid displacements (like what happens with
the BSCW wing of AePW2) or modal shapes (like the AGARD 445.6 wing).
Anyway, each degree of freedom shape is coupled with its mass, stiffness and
eventually damping structural values obtained from the FEM analyses and other
sources for corrections (e.g. identification). If modal shapes are adopted as free
degrees of freedom, the interface matrix between the structural mesh wall nodes
and the aerodynamic mesh wall nodes is computed. This is computed only once
for the entirely simulation;

2. As for the forced oscillations analyses 2.2.9, at this point, depending from the case
under investigation, a simple steady-state purely aerodynamic analysis with fixed
geometry could be performed, if (like what happens for the AGARD 445.6 flutter
analysis) the aeroelastic equilibrium configuration is symmetrical. Otherwise, a
static aeroelastic analysis (2.2.8) has to be performed to provide the correct initial
conditions for the unsteady solver (like what happens for the flutter analysis of the
BSCW wing in AePW2);

3. The aeroelastic solver is restarted from the steady/trim solution (by reading saved
flow fields, original mesh and absolute displacements). Like with the trim solver,
the structure is now free to deform due to aerodynamic loads and like with the
forced oscillation solver, DTS and ALE face velocities are now employed. As
with the trim solver, the first step is the integration of the aerodynamic loads over
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the deformable walls. If rigid degrees of freedom are adopted, aerodynamic loads
(pressure and stress wall fields) are integrated over the moving boundaries in or-
der to compute forces and moments around the rotation center. If modal shapes
are instead adopted as degrees of freedom, the operation is more complicated. In
this case in fact, the first operation is using expression 2.54 to translate loads de-
fined over the aerodynamic wall nodes to loads defined over structural wall nodes.
This is performed thanks to the pre-computed interface matrix, using RBFs. Next,
modal shape matrix is used to translate structural mesh wall nodes loads into gen-
eralized forces, see 2.33;

4. The aim of this step is the computation of the structural response under rigid or
generalized forces. For this purpose, similarly to what happens inside the trim
algorithm, the structural system with aerodynamic forces (2.30) has to be solved
in order to compute rigid/generalized displacements and velocities. This operation
is performed on the CPU and two options are available. The system can be solved
using an implemented system solver or by coupling the aeroelastic solver with
an external structural solver, like MBDyn, thanks to the socket-based interface.
In any case, the system 2.30 is solved knowing the structural properties and the
previously computed aerodynamic forces in order to obtain displacements and
velocities. The degrees of freedom displacements and velocities solution at the
previous physical time step is also required;

5. In this step aerodynamic mesh wall nodes displacements and velocities has to
be computed. With rigid degrees of freedom this is straightforward since, with
translations, displacements and velocities are uniform fields. With rotations the
rotations center has to prescribed. The situation is more complicated with gen-
eralized displacements, where expression 2.32 has to be employed in order to
compute structural wall nodes displacements. Then, using the interface matrix
and expression 2.53, aerodynamic mesh wall nodes displacements and velocities
are computed. At the end of this step aerodynamic mesh wall nodes displacements
and velocities are known;

6. From aerodynamic mesh wall nodes displacements, internal nodes displacements
are computed using the IDW algorithm described in 2.2.6. After this operation,
internal faces ALE velocities can be computed. Furthermore, mesh metrics is
updated;

7. Now the purely aerodynamic formulations 2.1.12, coupled with DTS formulation
and ALE framework, are employed to obtain the solution over the updated mesh.
DTS requires the aerodynamic solution of the previous time step. As mentioned
in 2.2.9, thanks to DTS formulation, steady-state convergence acceleration tech-
niques can be exploited to obtain the new aeroelastic solution. In particular, using
DTS instead of a global physical time-stepping strategy, multiple purely aerody-
namic iterations (with LTS) are performed before the next physical time step, thus
before the next mesh update. Aerodynamic iterations are performed until residual
convergence or until the user-specified maximum number of iterations is reached.
Residuals are considered converged if 3 orders of magnitude are lost during ex-
plicit iterations;
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8. The algorithm is repeated for the next physical time step until the user-specified
physical final time is reached;

Few aspects have to be discussed regarding free oscillation unsteady simulations.
First of all, as previously discussed in 2.2.9, free oscillations analyses could be per-
formed using global physical time-stepping strategies instead of DTS. However, the
problems are the same as for the forced oscillations analyses. With global physical
time stepping, due to CFL requirements, the chosen physical time step is usually or-
ders of magnitude smaller than the minimum requirements related to the frequency
content of interest (excepts for some particular analyses like high speed impacts and
acoustics). Thus, in order to obtain an implicit-like computationally efficient solver
and allowing the aeroelastic simulation to proceed with the desired physical time step
value, DTS is preferred. This is true for aeroelastic analyses, like flutter analyses,
where low frequencies (in the order of structural frequencies) are involved in flutter
mechanism. The second problem is related to the fact that, as previously said, with
a global physical time-stepping strategy the aerodynamic mesh would require updates
every explicit aerodynamic time step. Since data transfer between the CPU and the
GPU would be required to perform this operation, DTS is again preferred over global
physical time-stepping.

Another important aspect when performing this kind of simulation is related to the
choice of the integration scheme for the solution of the system 2.30. In fact, as dis-
cussed in [104], different integration schemes possess different accuracy orders and ac-
cumulate a different amount of error regarding solution phase and amplitude. Different
time schemes are implemented in the solver, like IE (Implicit Euler, very dissipative,
requires very small time step to provide accurate solutions), BDF2 (Backard Differ-
ence Formula, 2nd order, more accurate than IE both on amplitude and phase) and CN
(Crank Nicholson, 2nd order, no errors on amplitude and phase but could lead to nu-
merical problems). Besides the implemented formulations to accomplish this purpose,
the solver can be also coupled with external structural solvers like MBDyn thanks to
the socket-based interface.

Finally, as better described in 8.3 with the example of the flutter analysis of the
BSCW wing for the AePW2, a critical user choice is the value of the physical time step
that is used both for the aerodynamic and structural side of the unsteady aeroelastic
simulation. In fact, in this particular test case, as also noticed by other research groups,
a dependency of the aeroelastic damping factor g from the chosen physical time step
seems to be present. This means that, especially when performing flutter analysis with
free oscillation strategy, it is fundamental to give attention to numerical parameters like
the physical time step. Thus, a sensitivity analysis with respect to adopted numerical
parameters should be performed to obtain reliable results. Performing flutter analyses
with free oscillation strategy is often found in literature. However it is worth to remind
that flutter analyses can also be performed using a forced oscillation strategy with a
specifically tuned time law coupled with post-processing operations, as better described
in 2.2.3.

As for the other kind of aeroelastic analyses, when performing turbomachinery or
open rotors simulations, the effects of the angular velocity over the structural behavior
must be taken into account [122].
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Turbomachinery and Open Rotors extensions

As said in the introduction, the main purpose of this work is to implement a GPU-
accelerated general-purpose solver capable to handle complex aeronautical cases. How-
ever, when dealing with turbomachinery and open rotors, further formulations and nu-
merical schemes are required. Turbomachinery and open rotors represent very different
applications in the aeronautical world. Some formulations and schemes are required to
correctly model the problem, such as the use of modified inlet boundary conditions
(turbomachinery only) to enforce particular values of total pressure and temperature.
Furthermore, when the solution is expected to be cyclic (both for turbomachinery and
propfans), it is possible to exploit the intrinsically axial symmetry of the case to improve
computational efficiency. In this case periodic boundary conditions can be adopted for
a single-blade domain reduction. However, when performing unsteady analysis with
IBPA values different from 0, the single-blade periodicity is broken. Nonetheless, the
single-blade domain reduction can be still adopted by implementing a modified ver-
sion of periodic boundary conditions, the so called "time-delayed" boundary condi-
tions. These are capable to emulate the effects of the delayed oscillations of adjacent
blades without the need to actually discretize them in the computational domain. This
formulation is specifically designed for unsteady solvers working in the time domain
rather than in the frequency domain (e.g. linearized or harmonic balance formulations).
Another fundamental formulation is represented by the Multiple Reference of Frame
(MRF) that allows rotating domain analyses, such as for turbomachinery and propfans,
without the need to actually rotate the mesh.
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Chapter 3. Turbomachinery and Open Rotors extensions

3.1 Turbomachinery and open rotors

Here a brief introduction of the turbomachinery and open rotors fields is provided,
focusing on the most important problems and current research areas. Nowadays the
need of configurations that guarantee both high efficiency and performances is much
important as other kind of requirements like: safety, acoustics, emissions. A good
introduction to the nowadays turbomachinery problems is found at [61, 62] and here
the most important concepts useful for this work are reported. Among the different
challenges, that the aeronautical industry has to face, the most important are represented
by:

• A design that leads to excessive high NOx emissions could not be accepted;

• A design that has high efficiency in a normal undistorted flow but produces exces-
sive stress levels under asymmetric conditions could not be accepted;

• An aerodynamic efficient design will not be accepted if the associated noise levels
are too high;

It is easy to understand that numerous aspects have to be simultaneously considered
when designing a turbomachinery. This is also valid for open rotors, especially for
what concerns the noise levels [122]. Blade vibrations due to resonance or flutter rep-
resent an hazard since the oscillatory behavior is strictly related to the fatigue life of
blades. As an example, there have been reported cases of blades detachments in the
past. Obviously this situation has to be avoided since it represents a serious safety
problem. As [62] explains, during the early days of axial-flow compressors develop-
ment, different configurations experienced dangerous vibrations at part speed (below
the design point rotating speed) operations. After investigations, it was found that the
oscillatory behavior could be attributed to flutter. Furthermore, flutter conditions could
be also encountered after start-up, e.g. with high flight speed at low altitude conditions.
In general, three phenomena related to blade vibrations can be considered:

• Resonance;

• Acoustic resonance;

• Flutter;

The analysis of turbomachinery resonance has many aspects in common with a typical
helicopter rotor resonance investigation. Figure 3.1 shows a typical turbomachinery
Campbell diagram. It is possible to recognize the similarities with a typical helicopter
rotor case. From the high RPM values on the x axis it is clear that this is a turbo-
machinery case rather than an helicopter rotor. Anyway the concepts are the same: at
the design point, resonance must be avoided. The problem here is that during the start-
up procedure, the turbomachinery could encounter resonance due to the intersection
between the lines representing multiples of the rotating frequency and the curves repre-
senting the modal frequencies (1F for first bending and 1T for first torsion). However,
as for helicopters blades, resonance conditions are encountered for a very small time
period, avoiding possible structural damages. Resonance is a phenomenon strictly re-
lated to structural properties, while "acoustic resonance" is instead strictly related to the
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Figure 3.1: Typical turbomachinery Campbell diagram [62].

flow properties. Acoustic resonance could happen when conditions of subsonic axial
flow are encountered and the geometric properties are such that:
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(3.1)

where V ±p is the propagation speed of small perturbations in the two directions along-
side the blade cascade, ω is the blade vibration frequency, σ is the Inter-Blade Phase
Angle (IBPA) and v is a positive integer. The concept of IBPA will be explained in de-
tails later in 3.8 when discussing time-delayed boundary conditions. Roughly speaking
it represents the phase angle related to the delay between the vibration of two adjacent
blades. As for the resonance, acoustic resonance must be avoid because it could lead to
a reduction of aerodynamic damping (see 3.4) and large vibratory stresses.

Finally, flutter is another source of vibratory stresses that could reduce the blades
fatigue life, leading to fractures. Flutter, for definition, is the instability of the aeroelas-
tic system, thus structural and aerodynamic subsystems have to be considered coupled
when investigating such phenomenon. Though flutter could be investigated analyzing
the stability of the aeroelastic system with classical methods adopted for aeronautical
cases described in 2.2.3, for what concerns turbomachinery an energetic approach is
usually adopted (see 3.4). If blades are disturbed aerodynamically, they tend to vibrate
with their natural modes, with small amplitudes. This in turn leads to aerodynamic
forces perturbations that influence the blades themselves. At certain conditions it is pos-
sible that this phenomenon is such that a net work is done on the blades and vibrations
are self-sustained. The vibrations could increase from their initial small amplitude and
lead to a limit cycle due to the nonlinearity of the phenomenon. In these conditions of
self-sustained vibrations the blades fatigue life could be drastically reduced, leading to
potential failures. The investigation of rotor stability using the concept of aerodynamic
damping is discussed in 3.4 while the formulations to perform such kind of unsteady

69



i
i

“thesis” — 2016/12/24 — 15:47 — page 70 — #82 i
i

i
i

i
i

Chapter 3. Turbomachinery and Open Rotors extensions

simulations involving mesh deformation have been already discussed in 2. In this work
the flutter analysis of a typical propfan configuration is performed in 10.4 using the
numerical tools already presented in 2.2.3. In 10.1 and 10.2, the aerodynamic damping
analysis of the 2D and 3D SC10 (Standard Configuration 10) is performed using the
energetic concepts that will be described in 3.4. Besides this kind of stability investi-
gations the literature does not present many cases of turbomachinery static aeroelastic
investigation. Thus, in 10.3 the trim analysis of the NASA’s Rotor 67, a well known ax-
ial rotor configuration, will be performed. Using the same tools presented in 2.2.8, this
will allow to determine the possible advantages offered by taking into account blade
deformability due to aerodynamic loads when computing turbomachinery performance
curves (see 3.3). The possibility of extending such a technology also to turbomachinery
applications is very important given the recent effort towards design and development
of turbomachinery components with advanced, highly deformable materials (e.g. com-
posite).

The importance of turbomachinery aeroelastic stability investigation is also con-
firmed by the recent researches regarding the concept of mistuning. Roughly speaking
mistuning means breaking, at certain measures, the axial symmetry of the rotor by
changing the blades geometry or structural properties. As explained in [61, 62, 109]
mistuning can be exploited in order to improve the aeroelastic stability of a rotor or
even stabilize a rotor that is unstable under certain conditions. As an example, figure
3.2 [62] shows the stabilization effects provided by an ad-hoc blades mistuning. It is

(a) Tuned configuration (b) Mistuned configuration

Figure 3.2: Advantages that could be achieved with an opportune mistuning in turbomachinery [62]:
on the left the real and imaginary part of the less stable eigenvalue at different IBPA angles with a
tuned configuration, on the right with a mistuned configuration. With specific mistuning it is basically
possible to stabilize the system for all IBPA angles.

possible to see that after employing mistuning the system is stable, i.e. the less stable
eigenvalue get negative real values for all IBPA angles. It must be noted, however,
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that investigating this kind of asymmetries increases the computational effort of sim-
ulations. This is due to the fact that many domain reduction techniques, e.g. single
blade domain reduction, could not be directly employed when non-null IBPA values
are considered.

Another recent trend in turbomachinery is represented by Organic Rankine Cycle
(ORC) applications [59, 76]. The idea here is the use of specific fluids and operating
conditions to reach the dense gas region [66]. This is done mainly in order to obtain
higher efficiency, thanks to the fact that within specific conditions the entropy jump
across a shock is quite small. However, these applications represent a challenge from
the point of view of numerical simulations. In fact, in dense gas conditions unusual
phenomena could happen, like expansion shocks or mixed waves. Figures 3.3 [56, 66]
show a simple NACA 0012 airfoil under specific dense gas flow conditions. It is clearly
visible the expansion shock. As can be seen from the varying γ, for this kind of case

(a) CP (b) γ

Figure 3.3: BZT phenomena, expansion shocks [66] over a NACA 0012 airfoil at null angle of attack.
On the left it is possible to see the CP (pressure coefficient) jump from higher values to lower values
(expansion shock). On the right it is highlighted the fact that for these particular dense gas region
cases the specific heats ratio cannot be considered constant.

the usual simple PIG model, for which γ = CONST cannot be employed. In fact,
the PIG model is specifically designed to model fluids inside the ideal gas region and
is unable to represent the aforementioned phenomena. Thus, real gas models have to
be adopted. A simple real gas model is represented by the Van Der Waals model that is
capable to reconstruct expansion shocks and mixed waves when adopted in the dense
gas region and at the same time provide results that are consistent with the PIG model
when adopted in the ideal gas region. Many other real gas models have been developed
and adopted in CFD solvers.

As for other aeronautical components like helicopter blades and wings, CFD has a
fundamental role in blades geometry optimization. Optimization loops can be used in
order to test different configurations until an optimum shape is found. Many different
algorithms like genetic algorithms can be adopted for this purpose to search the values
that minimize a prescribed optimization function. Basically, given a set of parameters,
a particular shape can be built and a CFD simulation can be executed in order to find the
value of the function to be optimized. As the optimization loop could require dozens of
CFD simulations it is easy to understand that the bulk of computations is given by the
numerical solution of the flow around the geometry. It is thus easy to understand that a
fast and at the same time accurate solver is required in the early stages of the wing/blade
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design. These two requirements are satisfied in this work through GPU acceleration and
the implemented compressible (U)RANS formulations, allowing the solver to quickly
and accurately reconstruct both compressible and viscous phenomena.

Alongside turbomachinery, open rotors are nowadays an interesting research field
since they could represent the next generation of aircraft propulsion systems. A very
good introduction of the open rotors world is represented by [122]. Roughly speaking,
an open rotor is a gas turbine whose fan stage is not within the nacelle. As an example,
figure 3.4 shows the experimental setup of the SR-5 propfan propeller investigated in
this work. The 10-blade wind tunnel model was designed by Hamilton Standard in
early 80’s during the Advanced Turboprop Project [78]. Very different configurations

Figure 3.4: SR-5 open rotor configuration [78].

can be found such as pusher, where the propellers are mounted at the front of the engine
and puller, where the propellers are mounted behind the turbine stages. Furthermore,
Contra-Rotating Open Rotors (CROR) configurations have been developed, where, as
the name suggests, two propeller rows rotates in different sense. The main advantage
of this configuration is a reduced fuel consumption. This allows also a reduction of
the rotor diameter and the possibility to obtain a certain thrust with respect to single
propeller configurations. CRORs are usually adopted for pusher configurations while
single propellers are generally employed in puller configurations. One of the most
important problems of open rotors is represented by the produced noise. With CRORs
the reduced angular velocity allows a reduction of the noise, but at the same time the
aerodynamic interaction between the two propellers represents an additional source of
noise. The concept of CROR is not new, as in 1975 NASA started investigating CROR
capabilities. However, the research was slowed down due to noise problems and the
reduction of the oil barrel price and thus the need for an high efficient solution for
aircraft propulsion. Nowadays however, the open rotor concepts were resumed due
to the need of fuel costs saving and the more stringent limitations on NOx emissions.
The two main concepts to possibly achieve these targets are currently represented by
Ultra-High Bypass Ratio engines and CRORs.

As for any aeronautical component, alongside performances investigation, aeroelas-
tic investigations are required to guarantee safety in all operating conditions. Figure 3.5
shows the flutter boundaries of a typical open rotor configuration. As it is possible to
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Figure 3.5: Flutter boundaries for a typical open rotor configuration [78].

see, at low Mach numbers stall flutter could occur due to separations. With relatively
high Mach numbers, over 0.6, the classical flutter could occur. Problems related to
forced excitation generally occur over the entire flight envelope due to unsymmetrical
flow produced by gusts and fan-wing interactions. All of the presented aspects highlight
the importance to perform numerical computation for this kind of trending configura-
tions, both for what concerns steady-state solutions for performance assessment (see
9.3) and for what concerns flutter investigation (see 10.4).

Turbomachinery and propfans represent quite different aeronautical applications.
Nonetheless, they share important basic physical mechanisms and thus many numerical
formulations can be adopted for both applications. The purpose of this introduction was
to briefly show some of the most recent trends in turbomachinery and open rotor fields,
highlighting the fact that these kinds of configurations represent an important challenge
from a numerical point of view.

Very specific applications like CRORs and ORCs are beyond the scope of this work.
Here the focus is mainly posed on aeroelasticity. In particular, the target is represented
by the steady-state and flutter computation of typical open rotors configurations and the
steady-state, trim and aerodynamic damping analyses of turbomachinery cases.

3.2 Aerodynamics and modelling

One of the goal of this work is to implement a general purpose solver capable to handle
classical aeronautical and turbomachinery/open rotors cases. In order to reach this tar-
get, from the point of view of the formulations purely related to aerodynamics, the focus
is on a non-linear time-accurate solver. Here this choice is briefly explained alongside
the introduction of other possible formulations with their advantages/disadvantages.
As [62] suggests, alongside the non-linear time-accurate formulations adopted in this
work, the other two strategies usually adopted for the turbomachinery CFD are repre-
sented by the time-linearized approach and the harmonic balance method. Both these
formulations work in frequency domain, exploiting the temporal periodicity typical of
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turbomachinery cases, with the aim of drastically reducing the computational effort.

3.2.1 Time linearized approach

This approach exploits the fact that usually in turbomachinery unsteadiness is relatively
small when compared to the mean flow quantities. The idea is to decompose the flow
in a mean flow plus an unsteady perturbation. This perturbation is supposed to be
small, such that linearization is possible. Considering also the small perturbations to
be periodic in time, it is possible to switch from time domain to frequency domain,
exploiting Fourier series with spatially varying coefficients. The result is a set of partial
differential equations in frequency domain called "time-linearized" equations.

Let us consider the 2D Euler equations for simplicity:

∂U

∂t
+
∂fx
∂x

+
∂fy
∂y

= 0 (3.2)

where fx and fy represent the convective fluxes. It is possible to decompose the solution
in a mean (Ū) and unsteady small periodic perturbations (U′) components:

U(x, t) = Ū(x) + U′(x)ejωt (3.3)

Substituting 3.3 in 3.2 the first order terms give:
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)

= 0 (3.4)

The zeroth-order non linear steady equations that provide the mean flow Ū are solved
using usual non-linear CFD methods. The time-linearized equations are basically steady
equations since there is no dependence from time t and can be thus solved with the
same convergence acceleration techniques presented in 2.1.10. It is thus possible to
add a pseudo time derivative term [62] and advance the solution in pseudo time until
convergence to a steady-state condition, where the pseudo time term is null.

The main disadvantage of the linearized approach relies in the linearization itself: if
unsteadiness is high the strategy cannot be employed. However, a non-linear frequency
domain formulation is possible: the harmonic balance technique. The main advantage
of the time-linearized approach is nonetheless its high computational efficiency since
the equations are linearized and thanks to the Fourier transformation the temporal de-
pendency is avoided.

3.2.2 Harmonic balance

This technique allows a fully non-linear frequency domain approach. As for the time-
linearized approach the flow is considered periodic in time. For turbomachinery cases
the flow could be also periodic in space or a certain time delay related to the IBPA
concept can be considered. This will be better explained in 3.8. The idea behind har-
monic balance is to express the solution variables as a Fourier series. As an example
the density can be expressed as:

ρ(x, t) =
∑
n

Rn(x)ejωnt (3.5)
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this is done also for momentum and energy. The coefficients maintain the spatial depen-
dency and the series are truncated after N terms. The next step is to substitute the series
in the equation 3.2. This way an expanded Fourier series is obtained and terms can
be grouped by frequency since each frequency component must vanish. The resulting
equations have the following form:

∂ f̃x(Ũ)

∂x
+
∂ f̃y(Ũ)

∂y
+ S̃(Ũ) = 0 (3.6)

where Ũ is the vector of the Fourier coefficients of the conservative variables. The
coefficients related to convective fluxes are nonlinear functions of Ũ. The computation
of these fluxes is difficult and computationally expensive and difficulties arise when
turbulence models are also considered for a viscous approach. Further details can be
found in [62].

One of the reasons behind the choice of the non-linear time-accurate approach is
represented by the fact that AeroX should be a general purpose solver, aimed to be used
also for classical aeronautical cases like wings and aircraft. This means that it should be
able to process both steady and unsteady cases with or without any temporal of spatial
periodicity. Frequency-based formulations have the advantage of allowing to perform
single frequency simulations with computational costs in the order of an equivalent
steady-state simulation. The same simulation with a time-accurate solver would require
a computationally expensive full unsteady simulation. However, as explained in 2.2.2,
with a single time-domain simulation it is possible to excite a wide range of frequencies,
exploiting a blended time step displacement law. In this case, when investigating flutter
in classical aeronautical cases, non-linear time-domain formulations reveals their true
power.

When performing turbomachinery simulations, different levels of discretization and
modelization can be employed for the same case. Let us consider a multi-stage axial
compressor. For the same case it is possible to perform a 2D single-row single-blade
steady-state inviscid simulation or a full 360◦ multi-row multi-stage unsteady viscous
simulation. Obviously a trade-off between results accuracy and computational costs
is required in order to obtain results that are meaningful from an engineering point
of view and that can be obtained in a reasonable amount of time. Different domain
reduction techniques can be employed in order to avoid the discretization of the whole
rotor/stator rows while retaining spatial periodicity effects. As an example, if a 1-blade
spatial periodicity is supposed, then discretizing the whole blade row is potentially a
waste of computational power. In fact a single blade can be discretized and the so-called
periodic boundary conditions can be employed to emulate the presence of the other
blades without actually discretizing them. AeroX implements multiple computational
domain reduction techniques for turbomachinery analyses, such as periodic boundary
conditions 3.7, time-delayed boundary conditions 3.8, mixing plane, MRF 3.6. All
these techniques will be described in this chapter. The same techniques can be also
exploited for open rotors.
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3.3 Turbomachinery performance map

Turbine and compressors are made by rotor and stator blades. They can be axial or
centrifugal and made by multiple stages/rows. The so-called characteristic curves or
performance maps represent the most important indicator of the performances that they
can guarantee. Here a brief introduction regarding turbomachinery performances is
provided. For more details, e.g. velocity triangles, notation for angles..., the reader is
referred to [61, 62]. Figure 3.6 shows a typical compressor stage performance map.
Different curves appear in the figure. The x-axis is usually used for the mass flow. It

Figure 3.6: Typical compressor performance map, total pressure ratio, [62] (here modified). The vertical
curves represent operating regimes with constant angular speed (in % with respect to the design
angular speed).

can be the true mass flow or, like in the picture, a normalized mass flow. One normal-
ization is usually represented by dividing the mass flow for the choke mass flow. This
way the normalized mass flow at choke conditions is 1 and for higher total pressure
ratio is < 1. The different vertical curves represent operational conditions at different
constant rotation speeds of the rotor, moving to the right for increasing speeds. The
y-axis in this case is represented by the total pressure ratio between compressor inlet
and outlet. Let us consider a single curve with constant angular velocity. What happens
is that moving from the bottom to the top of the curve, the mass flow is reduced while
the incidence on the blade, the loads on the blade, the work performed by the blade on
the flow are increased. This allows to obtain a certain value of the total pressure ratio.
It can be seen that the design point is located on the 100% rotational speed curve and
for high total pressure ratios. If, for some reasons, e.g. disturbances, the incidence on
the blades is increased, this could be high enough for stall conditions to appear. The
surge/stall limit line represents this limit for different angular speeds. It is important for
the design point to stay at a sufficient distance from this line. Numerical simulations
are usually concerned with the computation of the 100% angular velocity curve. In this
work, for example, the performance curves of the NASA’s Rotor 67 fan are computed,
see 10.3. Alongside the total pressure ratio curve, the total temperature ratio and ef-
ficiency curves are usually computed. From the numerical point of view computing
a compressor performance map means performing multiple steady-state simulations,
one for each point used to discretize the curve. This is usually done by enforcing to-
tal temperature, total pressure and flow velocity direction on the inlet and changing
boundary conditions on static pressure on the outlet. In AeroX inlet boundary con-
ditions of this kind are enforced using what explained in 3.9. On the outlet, instead,
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for each performance point two strategies could be employed. It is possible to start by
enforcing on the outlet a static pressure equal to the inlet total pressure, to simulate
choke conditions. Then the outlet static pressure is increased and when the simulation
is converged a new performance curve point is found. This is done until stall conditions
are reached. This is the strategy adopted in this work as it is quite stable and easy to
implement. The main disadvantage is represented by the fact that it is more difficult
to discretize the curve near stall, where for little outlet static pressure changes an high
mass flow change is obtained. The other strategy is represented by an outlet boundary
condition that allows to directly enforce a user-defined mass flow value. Differently
from the first strategy, this allows an easy performance curve discretization near stall
conditions. However, it comes with difficulties near choke conditions where the per-
formance curve is basically vertical. The main disadvantage of the enforced mass flow
boundary condition is represented by the fact that it is difficult to enforce this quantity
on an explicit solver that adopts a ghost cell approach for boundary conditions and use
conservative variables. Instead, this strategy is straightforward in other formulations,
e.g. with pressure-based solvers like in [102]. It must be noted that performance map
computations are somehow the equivalent of the steady CL − α curve of an aircraft
or wing: it is computed supposing effective steady-state conditions without any rela-
tion between different points, i.e. without supposing any kind of transition between
one point and the next one. When blade dynamics is considered, new problems like
resonance and flutter can be investigated.

3.4 Turbomachinery aeroelasticity

Steady-state aeroelastic simulations, i.e. trim simulations, represent a very important
step for a complete aeroelastic investigation with classical aeronautical cases. However,
in turbomachinery literature it is very difficult to find such kind of simulations. The fo-
cus is usually on flutter analyses exploiting the so-called energetic approach. One of
the purposes of this work is to perform the trim of a typical turbomachinery configu-
ration. In particular, the NASA Rotor 67 axial fan rotor trim is investigated in order
to assess if performing this kind of simulations is effectively useful to improve results
accuracy. As noted in [122] for an open rotor configuration, as an example, the effects
of aerodynamic loads are basically negligible with respect to centrifugal effects, in such
a way that a steady-state purely aerodynamic solution is sufficient to achieve good re-
sults accuracy. A good resource regarding the analytic and numerical modelization of
a typical open rotor blade can be found in [122]. Another good resource regarding the
structural modelization of turbomachinery can be found in [61]. Anyway, it must be
noted that the structural modelization of open rotors and turbomachiney rotors is quite
similar since in both cases the in-vacuum blade deformation has to be computed and
modal shapes are computed considering centrifugal effects. It must be noted that as for
helicopter blades, the in-vacuum turbomachinery/open rotors mode frequencies depend
from the rotating speed. This can be easily viewed in the Campbell diagram 3.1 where
a parabolic trend is obtained by increasing the rotational speed from 0RPM . This
behavior can be modeled as follows:

ω2
n (Ω) = ω2

n,0 +KnΩ2 (3.7)
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This basically means that for a certain mode n, at a certain angular speed Ω, the square
of the modal frequency is basically given by the sum of the squared non-rotating fre-
quency ωn,0 plus a term that depends from the squared angular speed multiplied by a
certain factor Kn. Aeroelastic investigations are usually performed at a certain angular
speed. Changing the speed requires to perform again the computations of the result-
ing modal shapes and frequencies. An important aspect is given by the fact that when
performing aeroelastic analyses with the concepts introduced in 2.2.3, the aerodynamic
transfer function matrix Ham must be considered a function of the angular velocity Ω,
Ham(Ω). This is valid both for for what concerns dynamic stability analyses and trim
analyses since the structural behavior becomes dependent from the effects given by
blades rotation.

As said, for safety reasons it is necessary to guarantee that in usual operating con-
ditions flutter is not present. However it is possible that this kind of self-excited phe-
nomenon is encountered when operating far from the the design point. Dowell [62]
offers a very good picture of the problem. Figure 3.7 shows a typical compressor map
with flutter boundaries. Although flutter conditions can be classified from a qualita-

Figure 3.7: Flutter boundaries for a typical compressor map [62].

tive point of view based on the flow compressibility and viscous phenomena, it is still
defined as the instability of the aeroelastic system. Region I is related to the subson-
ic/transonic stall flutter. In these conditions the mass flow is reduced while the blades
incidence is high. Separations could occur in the flow. Rotating stall happens at part-
speed conditions and is characterized by a circumferentially asymmetric flow in axial
compressors. In these conditions, regions of reduced or reversed flow rotate in the same
direction of the rotor speed but slower. These regions could coalesce into patches. The
conditions at which this phenomenon occurs and the number of patches still represent
a challenge from a numerical point of view. What is more important is that the rotating
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stall is a strictly aerodynamic phenomenon, there is no dependency from the structural
properties of the rotors. However, the unsteady flow that derives from rotating patches
is translated to unsteady periodic loads on the blades, thus vibrations. This could lead
to resonant conditions or self-excited oscillations (flutter) if certain structural and aero-
dynamic conditions are met. Stall flutter is a deeply nonlinear phenomenon and usually
the related blade shape vibrations follow the shape of the first torsional mode. Region
Ia is related to the so-called system mode instability. In these conditions the blade in-
cidence and load are high. Nonetheless, separations are not the essential part of the
flutter mechanism. Instead, what happens is that the Mach number over the blades
could exceed the value of 1, leading to oscillatory shocks. Blade vibrations could com-
bine to oscillatory shocks in such a way to pump energy into the system, leading so
self-sustained oscillations, i.e. flutter. Region II is related to choke flutter. At choke
conditions the inlet total pressure is in the range of the outlet static pressure and the
blade incidence is quite low with respect to operating conditions with a given angular
speed. Choking flutter usually occurs in the middle stage of multi-stage compressors
at part-speed conditions. The mechanism of choke flutter is not fully understood but is
related to both compressibility effects and separations. What happens is that blade vi-
brations and separations could change the throat location (related to the minimum flow
area between adjacent blades where the flow reaches sonic conditions) in such a manner
to pump energy into the system and sustain the oscillations. Region III is related to low
incidence supersonic flutter. At these conditions the axial component is subsonic and
the blades incidence is low. As figure 3.7 suggests these conditions could be encoun-
tered following the operating line when overspeed conditions are met, i.e. when the
angular velocity exceed the design limits. Region IV is responsible for high incidence
supersonic flutter. Here the blades incidence is high and the pressure ratio is over the
normal operating conditions. Blade vibrations coupled with the presence of in-passage
oscillatory shocks are responsible for the instability mechanism. Thus, compressibil-
ity effects are fundamental here. Finally in region V, supersonic bending flutter, is
again characterized by high compression ratio. This region is near the stall line and the
instability mechanism involves the stall phenomenon. Here both compressibility and
viscous effects are fundamental as alongside with stall a detached bow shock is present
at each blade passage entrance. From this flutter qualitative introduction it is possible
to see that when performing aeroelastic investigations on turbomachinery, both com-
pressibility and viscous effects are important. Thus, to accurately simulate this kind of
phenomena a compressible RANS solver is required. Furthermore, complex phenom-
ena like oscillating shocks and interactions between shocks and separations suggest the
use of a full non-linear solver rather than a linearized formulation.

As explained in [62] turbomachinery blades are usually made of aluminum alloys,
steel or stainless steel, and recently also titanium and beryllium. When considering
aeroelastic phenomena like flutter and forced oscillations the fluid/structural mass ratio
is defined as [98]:

Cmass =
m

ρπ
(
C
2

)2 (3.8)

where m is the mass per unit span of the blade/arifoil, ρ is the air/gas density, C is
the chord length. The mass ratio in turbomachinery applications can be such that the
critical mode and frequency may be taken to be one or a combination of the modes cal-
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culated/measured in vacuum. As explained in [109] the mass ratio of turbomachinery
blades is generally higher than those of airplane airfoils. As noted in [61, 105], one of
the main consequences is that since usually the instability involves a single d.o.f. per
blade (torsional or bending) and with the aforementioned kind of materials aeroelastic
modes are basically equal to in vacuum modes, the so-called "assumed-mode" unsteady
aerodynamic analysis can be employed. The idea is basically to evaluate the net work
done by aerodynamic loads by enforcing blade oscillations with certain structural fre-
quency and amplitude. The aerodynamic damping basically represents a normalization
of this net work and is positive for stable motions. Assuming a sinusoidal blade mo-
tion, it is possible to calculate the energy input per cycle due to aerodynamics and blade
displacements as follows [61]:

W =

∫
T

Fg dxg =

∫ 2π
ω

0

Fg (t) ẋg dt (3.9)

where Fg is the force acting on its work-conjugate displacement xg, T is the oscillation
period and ω the correspondent pulsation. It is possible to rewrite the work by defining
a non-dimensional coefficient, Cw:

W =
1

2
ρV 2c2∆rCw (3.10)

where ρ is the flow density, V the reference flow speed, ∆r the reference span length
and Cr is the non-dimensional work coefficient. Considering a plunge or pitch move-
ment it is possible to write the aerodynamic damping as follows:

ξh = − Cw
πh2

ξα = − Cw
πα2

(3.11)

for the plunge and pitch movements respectively. h and α represent the plunge and pitch
oscillation amplitudes respectively. The aerodynamic damping is basically a normaliza-
tion of the aforementioned work per cycle coefficient for the considered displacement
amplitude. The aerodynamic damping may become negative in some flow conditions,
forcing the structure into an unstable mode. Aerodynamic loads are usually small when
compared to inertial and elastic forces. However, if the blades are such that structural
damping is very low, the negative aerodynamic damping could be higher in magnitude,
leading to unstable behavior. It must be noted, as showed in [109] that despite the fact
that the final value of the aerodynamic damping is obtained through an integration over
the entire blade surface, different blade regions could locally contribute to instability
while others to stability. The aerodynamic damping investigation could be question-
able in some modern applications, especially when using composite materials or high
aspect ratio fan blade. As explained in [109], in fact, with small mass ratio values the
aerodynamic coupling cannot be neglected in the aeroelastic behavior. As an example,
considering the same blade, with titanium a value of Cmass = 105.8 is obtained, while
with composite materials a value of Cmass = 36.3 is obtained, which is multiple times
smaller. Wings airfoils typically have one order of magnitude smaller mass ratio values
with respect to turbomachinery blades [98]. Nonetheless, the energy approach is very
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simple from a computational point of view: once the purely structural blade modes are
identified (accounting also for rotating effects), an unsteady simulation is performed,
enforcing periodic oscillations with a specified mode. Then, at post-processing, in-
put oscillations displacements and output loads are multiplied together and integrated
following definition 3.9. This way the searched value of the aerodynamic damping (af-
ter normalization) is obtained. Obviously, the entire procedure has to be repeated for
each IBPA (see 3.8) value under investigation. This approach to flutter investigation
is adopted in this work to asses the stability of the SC10 2D and 3D configurations,
as showed in 10.1 and 10.2 respectively. As can be seen, this strategy implies certain
hypotheses that could be quite limiting. Thus, when performing the flutter investiga-
tion of the SR-5 propfan in 10.4, the classical aeronautical strategy 2.2.3 is instead
adopted, considering the true aeroelastic modes, taking into account both centrifugal
and aerodynamic effects.

3.5 Turbomachinery and open rotor formulations

In the following sections, formulations specifically designed for turbomachinery and
open rotor cases will be presented. It must be noted that with the formulations pre-
sented in chapter 2 the solver is potentially already capable to perform such kind of
simulations. The following formulations represent strategies to drastically reduce (in
terms of orders of magnitude) the computational effort required by cases where axial
symmetry can be exploited. For each formulation the related justification of the com-
putational effort reduction is provided.

3.6 Moving Reference of Frame

The Moving Reference of Frame (MRF) formulation is used to allow the solver to per-
form steady-state or unsteady simulations with rotating domains without the necessity
to actually rotate the mesh, reducing the computational effort due to the avoided mesh
metrics update. Without MRF, in fact, one idea to perform computations with rotat-
ing domains would be to perform an unsteady simulation employing mesh deformation
(simple rotation) and ALE formulations. Despite the fact that this strategy would re-
quire an expensive unsteady simulation with DTS even when a steady-state solution is
searched, at each physical time a mesh update would be required, further increasing
the computational costs. The formulation adopted in this work is based on [46] where
it is possible to find the full mathematical procedure. Here, just the conclusions are
presented and, in particular, the terms that must be added to the solver to fully imple-
ment the formulation. A fundamental advantage of this strategy is its easy implemen-
tation from a computational point of view. In fact, it exploits the already implemented
ALE formulation and just requires an additional source term and a modification of the
wall boundary conditions. Since one of the purposes of the solver is to perform dy-
namic aeroelastic computations, ALE is already implemented. Another advantage of
this MRF formulation is that, since it exploits ALE formulation, the solution is always
computed in absolute reference of frame. This way, momentum obtained from the con-
servative solution directly represents the complete vector, considering the flow velocity
relative to the blade plus the rotation speed of the entire domain. The relative momen-
tum/speed/Mach number can be obtained by post-processing the solution, knowing the
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MRF velocity of each cell.

3.6.1 Exploiting ALE formulation

Following the guidelines of [46] the ALE framework already implemented for mesh
deformation is exploited for MRF. This means that considering equation 2.16, the term
v for mesh face i is computed as follows:

vi = Ω× (Ci −OΩ) (3.12)

where vi is the ALE velocity of face i, Ω is the rotor angular velocity, Ci is the face
center position, OΩ is the origin of the rotation (due to the cross product it is important
only the distance from the face center to rotation axis). This is computed for both
internal and boundary faces. It is important to say that with the aim of convective
fluxes computation, just the face normal component of vi is important.

Alongside ALE face velocities, boundary conditions have to be modified consis-
tently. Basically, wall velocity has to be changed in order to be consistent with the
rotation:

ui|wall = Ω× (Ci −OΩ) (3.13)

where ui|wall is the boundary condition value on the boundary face i, Ω is the rotor
angular velocity, Ci is the boundary face center, OΩ is the origin of the rotation. In
this case, with respect to vi, also the tangential face component is important in viscous
cases.

3.6.2 Source terms

To complete the implementation of MRF, a source term must be added on momentum
equations. This is represented by:

SΩ,k = −Ω×mk (3.14)

which is added to the momentum residuals after a multiplication for the k-th cell vol-
ume. mk is the momentum solution inside cell k.

3.6.3 Few considerations

It must be noted that when performing unsteady simulations with mesh deformations
and rotating domains, like for the propfan flutter investigation in 10.4, the contributions
of MRF and mesh deformation are added together to compute the final face velocity:

vi,MRF+defo = vi,MRF + vi,defo = (Ω× (Ci −OΩ)) + vi,defo (3.15)

where vMRF is the ALE contribution given by the MRF strategy while vdefo is the
contribution given by mesh deformation. Wall boundary conditions are also adjusted
accordingly.

As mentioned, with MRF momentum is computed in an absolute reference frame.
Often, in turbomachinery, the relative Mach number field is required (as for post-
processing purposes in Rotor 67 test case, see 10.3 ). This can be easily computed:

uk,rel = uk − vk,MRF (3.16)
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where in this case vk,MRF is the rotation velocity of cell k due to MRF. The cell velocity
is computed using 3.12 but with the cell center location instead of the face center loca-
tion. Anyway, relative components are computed by post-processing the solution, since
the absolute velocity is directly computed from density ρk and (absolute) momentum
mk conservative solutions.

Furthermore, it must be considered that concerning its GPU implementation, MRF
is quite efficient. Boundary conditions are just modified in their values when building
the ghost cell and this is just a matter of pre-processing. The ALE formulation is in
general computationally efficient since face velocities are required by the convective
fluxes kernel that has an high floating point operations to global memory accesses ratio
(see 6.2). Finally the source term requires few floating point operations and is computed
in the same kernel adopted for turbulence models source terms computation.

3.7 Cyclic boundary conditions

Cyclic boundary conditions allow to reduce the whole 360◦ rotor/stator domain to an
arbitrary number of blades sectors. In fact, if for certain flow/geometry conditions it is
possible to hypothesize that the solution will be N-blade periodic, simulating dozens of
blades is just a waste of computational resources, both in term of memory and floating
point power. The idea is to reduce the 360◦ computational domain to an N-blades sector
and enforce the same solution on the two periodic boundaries. Usually a perfect 1-blade
periodicity is supposed, reducing the aerodynamic mesh to a single-blade domain. This
is done especially for steady-state simulations when design conditions are investigated
and the flow is supposed to be free from strong disturbances. However, there are com-
plex phenomena, such as rotating stall, where the flow forms stalled regions that can
coalesce and rotate along the blade cascade. In this case a single-blade reduction cannot
be employed. The idea behind periodic boundary conditions is quite simple. Consider
as an example the 2D Goldman turbine blade mesh of figure 9.1(a). The solution on the
top boundary must be the same of the solution on the bottom boundary if the consid-
ered domain is representative of a single-blade periodic solution. The cyclic boundary
conditions apply on those two boundaries. AeroX uses a ghost cell approach to imple-
ment boundary conditions, allowing to use convective fluxes in the same way adopted
for internal faces. Thus, in AeroX, basically periodic boundary conditions are adopted
to find the ghost cell values of each periodic boundary, using the solution on the other
side of the domain. Since the solver implements an explicit time advancing scheme, it
is possible to use the solution of the previous pseudo time iteration of the internal cells
of one periodic boundary and enforce it as the ghost cell value on the other periodic
side. From an analytic point of view periodic boundary conditions can be expressed as
follows, for steady-state conditions:

U(x)|x∈b1 = U(T(x))|T(x)∈b2 (3.17)

where x is a location on the first periodic boundary b1 and T is the operator that applied
to that location returns the correspondent location on the other periodic boundary b2.
As said, AeroX stores the solution inside cells (CC-FVM), while boundary conditions
are enforced using ghost cells. Thus, equation 3.17 cannot be directly used. Basically,
when assembling convective fluxes on a face f ∈ b1 two solutions are required: the one
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provided by the internal cell attached to f and the one provided by the ghost cell. The
value of the ghost cell is taken from the internal cell related to the face correspondent to
f but located on boundary b2. This location is obtained with the transformation operator
T. This is easy when both periodic boundaries are discretized in the exact same way,
i.e. with faces of same size and correspondent location. Problems arise when the two
boundaries are discretized differently. In this case an interpolation is required in order
to build the ghost cell value. Basically, the solution on the ghost cell related to face f
on boundary b1 is computed as follows:

UGC
f∈b1 =

Nb2∑
i=1

UCELL
i Wf,i (3.18)

where Nb2 is the total number of faces on boundary b2, UCELL
i is the solution of the

internal cell related to face i on boundary b2 and Wf,i is the weight related to face i on
boundary b2 and face f on boundary b1. This weight is computed from the overlapping
area between faces f and i. Obviously, in order to speed up computations, the sum
related to face f is performed only on faces i having a non-null weight Wf,i. This is
implemented using addressing arrays that for each face f associate the list of faces i
with non-null weights Wf,i. The computation of addressing and weights arrays is per-
formed in pre-processing by OpenFOAM. The interpolation, addressing and weights
are performed in the same way also for 3D cases. The main differences between 2D and
3D cases is given by the fact that in 2D cases the two periodic boundaries are related to
a translation transformation. In 3D, instead, the transformation from boundary b1 to b2

is also related to a rotation since the single-blade sector has a specific periodicity angle.
As an example, a single-blade sector of a 4 blades rotor has a periodicity angle of 90◦.
For an 8 blades rotor the single-blade sector angle is 45◦ and so on. The problem is
that when interpolating the solution from one boundary to build the ghost cell solution
of the other boundary, the momentum solution of the previous pseudo time must be
opportunely rotated to obtain a consistent boundary condition. This implies that for
each periodic boundary a consistent rotation tensor must be built and used to correct
momentum after the interpolation procedure:

mGC,1
f = Rb1m

GC,0
f (3.19)

where mGC,0
f is the ghost cell momentum obtained with the interpolation 3.18, mGC,1

f

is the momentum corrected with the rotation, Rb1 is the rotation tensor for boundary b1.
The two periodic boundaries have different rotation tensors since the relative rotation
angles are one the opposite of the other. The rotation tensor for each boundary is
computed in pre-processing by OpenFOAM.

3.8 IBPA and time-delayed boundary conditions

Time-delayed boundary conditions [128] represent an ad-hoc modification of periodic
boundary conditions in order to handle unsteady cases with non-null IBPA values (us-
ally denoted by σ). The computational advantage provided by these boundary condi-
tions is that they allow to exploit the single/N-blade domain reduction. First of all, let us
discuss the concept of IBPA introduced by Lane [93] and explained also in [61]. IBPA
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is the core of the so-called traveling wave approach. Roughly speaking the Inter-Blade
Phase Angle (IBPA) is the phase angle related to delay of the periodic oscillations of
two adjacent blades. If all the rotor blades are oscillating with σ = 90◦ this means
that two adjacent blades in the row are oscillating with the same period T , shape and
amplitude but with a time delay of T/4. If σ = 180◦ then the delay is T/2 and so on.
Despite the fact that numerical simulations could be carried out with arbitrary IBPA
values thanks to time-delayed boundary conditions, the fundamental IBPA value is:

σ =
2π

N
(3.20)

where N is the total number of row blades. IBPA is the non-dimensional spatial fre-
quency of a periodic disturbance that travels circumferentially down-rotor or up-rotor
blade to blade. IBPA is probably the most important parameter in turbomachinery
aeroelasticity. Let us consider, as an example, a rotor with N blades and 1 vibration
d.o.f. (e.g. blade torsion) for each blade. If blades are identical and the hub and shroud
are supposed to be perfectly rigid, a total number of N degrees of freedom is found
in the structural system. With a modal analysis, a total number of N modes with the
same frequency would be found since there is no possibility for each blade to commu-
nicate with any other from a structural point of view (while this is still possible with
aerodynamics). The allowable N discrete values of IBPA are (n = 0, 1, ...N − 1):

σn =
2πn

N
= 0,

2π

N
, ...,

2π (N − 1)

N
(3.21)

This can be also re-written considering the angles from −π to π − 2π
N

, associating
positive values to the forward traveling waves (i.e. in the direction of rotation) and
negative values to the backward traveling waves. The so-called traveling wave approach
assumes that all blades are equal to each other due to cyclic symmetry, that all blades
vibrate harmonically with the same frequency and, as said, a delay σ from one blade to
the next one is taken into account. Knowing the delay between two blades in term of σ
and the vibration frequency ω of the blades it is possible to find the value of the time
lag:

∆Tσn =
σn
ω

(3.22)

this time lag is the concept at the basis of the time-delayed boundary conditions [128]
implemented in AeroX. Basically, equation 3.17 is modified in:

U(x, t)|x∈b1 = U(T(x), t−∆Tσn)|T(x)∈b2 (3.23)

Time-delayed boundary conditions are very similar to usual periodic boundary condi-
tions: they share the same interpolation and faces/weights addressing concepts along-
side the need of a rotation tensor to correct momentum in 3D cases. The main difference
is that when building the ghost cell value on face f on boundary b1, the solution that
is taken from internal cells of boundary b2 is searched between the stored solution of
previous physical times, accordingly to delay ∆Tσn .

An important aspect of the numerical implementation of delayed boundary condi-
tions is given by the fact that the solution is stored at discrete physical times that depend
from the user-prescribed physical time step ∆t used to perform the unsteady simula-
tion. However, when using these boundary conditions the solution at a physical time
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Chapter 3. Turbomachinery and Open Rotors extensions

between two stored physical times could be required. This is due to the fact that in
general ∆Tσn is not a multiple of ∆t. In this work this is tackled using a linear inter-
polation of the two stored solutions right after and right before the required physical
time.

From the computational point of view, the strategy adopted in [128] is here imple-
mented to reduce the memory consumption required to store the solution at different
times. Since the delay related to the chosen IBPA and the physical time step ∆t adopted
to advance the solution are known before the simulation, a fixed-size memory block is
allocated to store the boundary cells solution at multiple times. This memory block
is treated as a list that is continuously overwritten on its older values in a circularly
manner at each new physical time step.

It must be noted that using time-delayed boundary conditions is not the only way
to perform computations with non-null IBPAs. As an example, with a 2-blades com-
putational domain and periodic boundary conditions it is possible to directly perform
computations with σ = 180◦ (by enforcing vibrations with the right delay on the two
blades) and with a 4-blades domain an IBPA of σ = 90◦ can be investigated (with the
four blades vibrating with the right delay). The advantage of time-delayed boundary
conditions relies on the fact that all IBPA values can be investigated with a single-blade
computational domain, reducing the mesh size but requiring the storage of the boundary
solution at previous physical time steps.

3.9 Total pressure and temperature inlet boundary conditions

Usually, in aeronautical problems the computational domain for wings and aircraft in-
vestigations relies on the presence of a farfield boundary where asymptotic flow con-
ditions are enforced. These conditions are applied on velocity, static pressure and
static temperature. Then they are converted in the correspondent conservative values of
density, momentum and total energy and can be applied using subsonic/supersonic in-
let/outlet or characteristics-based boundary conditions through the ghost cell approach
(see 2.1.8, [136]). This is also valid when simulating open rotors. In turbomachinery,
however, the situation is more complicated since one of the goals is the computation
of the performance map that involves quantities like total pressure ratio and total tem-
perature ratio between the inlet and outlet boundaries. In this kind of simulations the
following quantities have to be enforced on the inlet boundary:

• Total pressure P0|inlet;
• Total temperature T0|inlet;

• Flow direction w|inlet =

(
u

|u|

)∣∣∣∣
inlet

;

Furthermore, a way to enforce these quantities using the ghost cell approach is required.
The user provides the aforementioned quantities that are in turn used to build the ghost
cell solution. This solution, alongside the internal cell solution is processed by convec-
tive fluxes algorithms, see 2.1.5. Here, the algorithm adopted to obtain static pressure,
static temperature and velocity from the user-prescribed quantities is briefly showed:

1. A zero-gradient static pressure condition is considered: P |inlet = Pinternal;
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3.9. Total pressure and temperature inlet boundary conditions

2. Using internal cell solution for pressure, β is computed: β = Pinternal
P0|inlet

;

3. This is in turn used to compute static temperature: T |inlet = β
γ−1
γ T0|inlet;

4. A parameter, z, is computed: z =
√

2CP (T0|inlet − T |inlet);

5. The velocity vector is computed as: u|inlet = zw|inlet;
6. From these boundary values the ghost cell values are obtained through interpola-

tion using internal cell values;

Isentropic gasdynamics relations are used through the β parameter to link temperature
with pressure and kinetic energy with temperature.
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CHAPTER4
GPGPU

The aim of this chapter is to introduce the fundamental concepts of the General Purpose
GPU (GPGPU). The chapter begins describing the history of GPGPU, starting for the
first approaches, that were cumbersome but effective, until the modern languages like
CUDA and OpenCL. In particular, the most important aspects of the language here
adopted, OpenCL, will be presented. The most important differences between GPUs
and CPUs architectures will be covered. Examples of using GPGPU to accelerate com-
putations with respect to modern multi-core CPUs will be showed. Finally, the most
important limitations and efficiency problems that must be kept in mind when pro-
gramming GPUs will be explained. This chapter is not aimed to be a detailed OpenCL
tutorial, but can still be useful to understand if a particular algorithm can be adapted
to the GPU architecture in an easy and/or efficient way. Here the focus is on GPGPU.
Some basic concepts related to parallel computing are presented in appendix A.

4.1 History of GPGPU

Reconstructing the history of GPGPU is not easy. In fact, before the current standards
like OpenCL [24] and NVIDIA CUDA [26] numerous and non-standard approaches
have been tried in the years before the launch of NVIDIA CUDA SDK in 2007. Earlier
GPGPU approaches were born in the first years after 2000 thanks to the growing GPU
performances and the possibility to program the graphical processors in more flexible
ways. From the very beginning, GPU architectures were specifically designed with
the aim of achieving high data parallelism, which is exactly what is needed to perform
graphical computations. However, with GPU development, from both hardware and
software sides it appeared more and more feasible to program GPUs for other purposes
rather than graphics. The first approaches in GPGPU were somehow cumbersome since

89



i
i

“thesis” — 2016/12/24 — 15:47 — page 90 — #102 i
i

i
i

i
i

Chapter 4. GPGPU

the numerical problem that exhibit high data parallelism had to be mapped to an equiv-
alent graphical problem in order to be processed by the GPU. This basically means that
functions applied to data arrays had to be mapped to transformations applied to buffers
of pixels and vertexes [77]. Thus, initial approaches to GPGPU were based on the
use of graphical APIs and libraries like OpenGL and DirectX. Later, in 2007 NVIDIA
launched NVIDIA CUDA, initially compatible with the 8*** GPU series. This was a
breakthrough in GPGPU since an API and C-like programming language were specif-
ically developed in order to use NVIDIA GPUs to perform general purpose numerical
computations. The main advantages provided by CUDA were represented by a more
direct control over GPU hardware, without the need to translate numerical operations
into graphical operations. The concept of "kernel", a function that is executed in par-
allel by thousands of GPU threads performing operations on "buffers", i.e. data arrays,
led to a more intuitive way of programming GPUs for general purpose computations.
Despite this kind of easiness, however, GPGPU requires anyway more effort than the
usual CPU programming. The main "disadvantage" of CUDA is represented by the
fact that only GPUs of its company, NVIDIA are supported. Almost in the same period,
AMD/ATI launched the Close To Metal (CTM) technology, a low-level programming
interface aimed to GPGPU programming for their own hardware, especially for the
X1*** GPU series. However, CTM approach was more low-level than CUDA and af-
ter its initial release, AMD focused its efforts on OpenCL. In fact in 2008, the Khronos
Group [24] released the OpenCL 1.0 specifications, a CPU API and C-like GPU pro-
gramming language specifically designed for heterogeneous computing, mainly aimed
to ease GPGPU programming. Since the very beginning OpenCL was supported by a
consortium composed by the most important hardware vendors, like Intel, AMD, IBM,
and NVIDIA itself. Thanks to the runtime compilation concept, the same source code
can be compiled and executed on a very wide range of devices (CPUs, GPUs, FPGAs,
and other kind of accelerators like Intel Xeon Phi, at least in its first versions), indepen-
dently form the underlying hardware architecture. Despite the fact that today OpenCL
and CUDA represent the two most important adopted GPGPU approaches, other so-
lutions are available. As an example, OpenACC [28] provide GPGPU capabilities at
very high level, exploiting the OpenMP way of parallelizing the code through the use
of # pragma keyword. At the time of writing version 8.0 of CUDA SDK and provi-
sional specifications for OpenCL version 2.1 are available.

4.2 CPU vs GPU architectures

CPUs and GPUs have very different hardware architectures and programming tools
specifically designed for their main purposes. It is highlighted that despite GPGPU
could accelerate computations up to one order of magnitude with respects to a CPU of
the same price range or power consumption, GPUs are not aimed to substitute CPUs.
Rather, GPUs are aimed to offload CPUs for some very specific kind of numerical
computations. The main differences between a typical CPU parallel architecture and a
typical GPU parallel architecture are given by the fact that CPUs are optimized for MP-
MD/MIMD parallelism and GPUs are optimized for SPMD/SIMD/SIMT parallelism
(see appendix A). Graphical computations require the same operations to be performed
on large data sets. Thus due to the particular optimization of the GPU architecture,
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4.2. CPU vs GPU architectures

also GPGPU concepts can be efficiently exploited only when the algorithm expose data
parallelism. CPUs on the other part, are more general purpose as they can be usually
programmed to satisfy all SIMD/MIMD/SPDM/MPMD paradigms. However, with the
same price or power consumption, GPU SIMD performances are much higher than
what provided by the CPU counterpart. Figure 4.1 shows schematically the most im-
portant elements in a typical CPU and GPU architectures. We can see that a typical

Figure 4.1: CPU vs. GPU architecture [4];

CPU has few cores (nowadays starting from 2 for cheap CPUs, up to more than 8 for
expensive server-oriented CPUs). A typical GPU features hundreds, even thousands of
cores. As an example, the AMD Fury X GPU has 4096 cores running at 1.05GHz,
while Intel i7 3930K CPU has 6 cores running at 3.2GHz. Usually, GPU cores have
lower frequencies than CPU cores. It is immediately understood that parallelizing an
algorithm on GPU just to use one or few GPU cores is not convenient. In fact, if the
algorithm is poorly parallelized or exhibit task parallelism instead of data parallelism,
the GPU could slow down the execution even by orders of magnitude with respect to
a serial CPU execution. CPU cores are optimized to execute the same or different
instructions streams concurrently. The latter is exactly what required for a typical desk-
top computer where the user wants to execute different applications at the same time.
This is also useful for servers that provide contents to multiple users at the same time.
Thus, GPU cores are numerous but less general purpose than CPU cores. CPU cores
have also SIMD capabilities thanks to instructions sets like SSE or AVX. However,
modern GPUs usually exhibit one order of magnitude higher single precision floating
point performances (GFLOPS) with respect to CPUs, especially when the same price-
level is considered. As an example, Intel declares for the i7 3930K 182GFLOPS [5]
while AMD declares 8600 theoretical single precision GFLOPS for Fury X [37]. It
must be noted that usually these values are just theoretical values that can be reached
only with opportunely tuned algorithms that exploit specific hardware functions, like
FMA (Fused Multiply-Add) instruction. An important difference between CPUs and
GPUs is that usually CPUs have half the computational power when performing dou-
ble precision operations (due to how SSE/AVX works) with respect to single precision,
while for GPUs this is not necessarily true. HPC oriented GPUs usually exhibit a frac-
tion of the computational power in double precision (like 1/2 or 1/4) with respect to
single precision performances. Cheaper gaming GPUs double precision performances
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are more limited. Usually, double precision performances are one order of magnitude
smaller than single precision performances on this kind of GPUs. Furthermore, the cost
of an HPC-compliant GPU is usually one order of magnitude higher than the cost of a
gaming GPU. This means that while a gaming GPU costs hundreds USD, an HPC GPU
usually costs thousands USD. As an example, the AMD Fury X gaming GPU has 1/16
performances in double precision with respect to single precision. One of the goals of
this work is the tuning of the solver for single precision executions in order to exploit
cheap gaming GPUs. Anyway, the solver is also compatible with double precision.
A test in order to search for possible results discrepancies between single and double
precision executions was performed in this work. Benchmark results are showed in
6. Performing GPGPU computations in single precision also have memory occupancy
advantages since float variables requires half the memory of double variables.

Another difference between CPUs and GPUs is represented by the fact that a CPU
has bigger cache with respect to a typical GPU architecture. Without going into details
related to the different cache levels, a modern CPU has different MB of cache, while a
modern GPU usually a couple or less than 1MB of cache. GPUs in fact are optimized
to provide high floating point throughput by processing the data streams read from GPU
memory in a sequential manner, while CPUs cache are optimized to reduce latency.
Following the previous example, Intel i7 3930K has 12MB of cache while AMD
Fury X has 2MB of cache.

Alongside the architecture of the processor itself, differences between CPUs and
GPUs also regard the adopted memory, in term of quantity, technology, bandwidth and
latency. In fact, CPUs rely on the system RAM, while GPUs rely on their own on-
board memory. For what concerns the quantity, usually system RAM is bigger than
GPU memory. This is due to the fact that the CPU has to handle the operating system
and hundreds of other processes alongside the application that the user want to run. On
GPUs memory, instead, only data specific for few particular applications are stored.
This data concerns graphical textures/vertexes/pixels and general purpose buffers for
GPGPU applications. In a typical mid-range gaming desktop machine it is usually
found 8GB or 16GB of system memory and ∼ 4GB of GPU memory. The situ-
ation is different for workstations where more system memory is required to handle
simulations, thus 64GB of RAM are frequent. HPC GPUs instead feature more mem-
ory than gaming GPUs, thus while typical gaming GPUs have 4 − 8GB or memory,
typical HPC GPUs have 12− 24GB of memory. AeroX tackles the limited amount of
memory available on GPUs, especially on gaming GPUs by supporting single precision
floating point representation that halves the memory requirements of double precision
computations. Furthermore the solver employs an explicit time stepping scheme that
reduces memory requirements from a numerical point of view (avoiding matrix stor-
age). For what concerns memory technologies, CPUs nowadays use DDR3 or DDR4
technology while GPUs use GDDR5 technology and recently the HBM (High Mem-
ory Bandwidth) technology. The purpose of CPUs memory is mainly to reduce latency
while the purpose of GPU memory is mainly to improve bandwidth. In fact high band-
width is required in graphical and SIMD GPU computations when millions of threads
executing on thousands of cores have to be fed with data. On CPUs, low latency mem-
ory guarantees system responsiveness in a multi-task scenario. GPU memory latency
could be a bottleneck for GPU executions, and as explained in 4.3, in order improve
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computational efficiency, numerous threads and core private memory operations are
executed between two memory accesses. This way it is possible to use the time spent
waiting data coming from memory in order to perform computations. Thus, the solver
developed in this work has been specifically tuned to reduce GPU memory bottlenecks
as much as possible. Usually GPUs memory have one order of magnitude higher band-
width than CPUs memory. Has an example the HBM memory of the AMD Fury X GPU
theoretically provides 520GB/s, while a typical DDR4 system provide a bandwidth in
the order of 50GB/s (the value depends from frequency and number of channels). A
peculiar aspect of CPU/GPU HPC-oriented memory is represented by the ECC (Error
Correcting Code) feature. Server-oriented memory has this kind of feature in order to
provide higher reliability for some peculiar applications. HPC GPUs usually features
ECC memory too. The goal of this work is to use gaming GPUs where ECC memory is
not employed. Obviously the solver is also compatible with GPU ECC memory since
from the programmer point of view this feature is not directly manageable. In order to
asses if the lack of ECC memory could lead to differences in results, in this work a test
with an ECC-compliant HPC GPU was also performed (see 6.2.4).

Despite the CPU, the GPU is not running an operating system kernel. Thus, a CPU
is always required in order to organize the work to be sent to the GPU, since the GPU
cannot work autonomously. The GPU is used as an accelerator that helps the CPU to
perform specific data parallel computations. The CPU is used to pre-process the data
and compile the code that will be executed on the GPU. This means that before data and
code are stored in GPU memory, they are stored in system RAM and accessible by the
CPU. When the CPU offloads computations on the GPU it firstly needs to send code and
data to the GPU memory, which is specifically designed with high memory bandwidth
to keep the GPU cores fed with work. This data transfer is achieved through the bus
that connects the GPU to the rest of the system, which is the PCI-Express bus. PCI-
Express is a general purpose and flexible standard bus that in its current fastest version
(version 3.0, 16x) allows a bandwidth up to about 16GB/s. By considering this num-
ber, the role of GPU memory is immediately understood. In fact, PCI-Express band-
width is one order of magnitude lower than a typical GPU memory bandwidth, which
is in the order of 100GB/s. Thus, a continuous data-transfer between the CPU and the
GPU would lead to a bottleneck. GPU memory is aimed exactly to tackle this problem.
Even if system RAM is faster than PCI-Express, data transfer between GPU and CPU
is still limited to the slowest bus in the chain, i.e. PCI-Express. Thus, the idea in
GPGPU is to firstly transfer input data and code from system RAM to GPU memory
and then allow the GPU processor to perform computations by exchanging data with
its on-board memory. CPU-GPU data transfer is anyway required since sooner or later
the results have to be recovered. In the particular case of this work intermediate results
have to be checked for convergence (see 5.2.2) and saved on disk. Thus, an opportunely
defined trade-off between computations and results checking is fundamental.

Important differences between CPUs and GPUs regard costs and power consump-
tion. Since GPU cores are specifically designed to provide high floating point compu-
tational performances for algorithms that are mapped to the SIMD/SPMD model, it is
easy to understand that for specific kinds of numerical problems modern GPUs pro-
vide higher GFLOPS/Watt ratios with respect to modern CPUs, up to about one order
of magnitude. Figure 4.3(a) shows schematically the power efficiency improvements
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provided by both kind of hardware during last years. Though this may not be that rel-
evant for a single desktop computer, it is a critical factor when hundreds or thousands
of CPUs and GPUs are assembled to build a cluster or a supercomputer. In fact super-
computer power consumption can easily reach the MW order. Power consumption is
somehow related to the so called TDP, Thermal Designed Power [6], which is the max-
imum amount of heat generated by the CPU/GPU that the cooling system is required
to dissipate in typical operations. It is underlined that the TDP is related to the cooling
system and not directly to power requirements of the processor. However, it can still
be useful to do some considerations. Considering the two aforementioned CPU and
GPU, the Intel i7 3930K has 130W TDP and provide 182GFLOPS while the AMD
Fury X has 275W TDP and provide 8600GFLOPS. It is evident that this high-end
gaming GPU has double the TDP of the CPU. However, since the computational power
is one order of magnitude higher than the one provided by the CPU, it is evident that
the GFLOPS/Watt ratio of the GPU is one order of magnitude higher with respect to the
CPU. Roughly speaking, if it is possible to execute a particular algorithm on the GPU
in a computationally efficient way, multiple CPUs would be required to provide the
same computational power, leading to higher power consumption and more dissipated
heat with respect to the use of a single GPU. Furthermore, it must be noted that moth-
erboards that support multiple CPUs are very expensive (in the order of 1000USD)
and connecting multiple CPU nodes requires hardware to be duplicated (RAM, CPU,
motherboard, hard disk, network cards, cases...) with all the related costs, plus an
interconnecting bus. Instead, nowadays, multiple GPUs can be easily installed on a
single motherboard, even on cheap desktop-oriented motherboards in a price levels of
150USD, thanks to AMD CrossFire and NVIDIA SLI or simply thanks to the avail-
ability of multiple PCI-Express 16x slots. Also, roughly speaking, having 4 GPUs
on the same workstation requires less space than any solution that provides 4 multi-
core CPUs. Another aspect related to GFLOPS/Watt ratio is that, especially in cluster
and supercomputer, opportunely sized air conditioning systems have to be employed
in order to guarantee that the hardware will be used within a correct range of temper-
ature. Air conditioning means again power consumption and space. Thus, if one GPU
installed in a single workstation can be effectively exploited to provide the same com-
putational power provided by, even a small, computer cluster, the advantages in term of
space, heat and power consumption are evident. However, it must be underlined again
that only peculiar numerical fields can take advantage of GPGPU. Thus is not the case,
CPU-based architectures are anyway required.

4.2.1 When using GPGPU

GPGPU can be exploited basically where heavy data-parallel computations are re-
quired. It is quite simple to get an idea of the many possible applications of GPGPU by
just visiting the BOINC project website. BOINC is an open source software for vol-
unteer grid computing. Among the different projects, the GPU accelerated algorithms
include:

• Astronomy, astrophysics and astrobiology;

• Mathematics;

• Cryptography;
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• Proteins-related simulations;

It is also worth to cite a different grid computing project, Folding@home [19], focused
on protein folding. In particular, Folding@home released its first GPGPU client back
in 2006. Despite the aforementioned projects, other GPGPU applications may include
structural and fluid simulations, like in this work.

Due to the nature of graphical computations, the GPU architectures perform very
well with algorithms that exhibit embarrassingly parallel [36] workloads, i.e. when
little or no effort is needed to separate the problem intro a number of parallel tasks.
An example is represented by brute-force algorithms for password cracking. Roughly
speaking, the password is somehow gathered in some transformed form. This could
mean hashed form or anyway in a form obtained after the application of a specific algo-
rithm. Anyway the plain-text password is not available. The transformation algorithms
are opportunely designed in such a way that should not be possible to reverse the op-
eration and recover the plain-text form of the password. The idea behind password
brute-forcing is to generate a password list, apply the known transformation algorithm
to each password candidate and finally check if the transformed candidate is equal to
the transformed password to be cracked. The transformation algorithm can be applied
to each password candidate concurrently, without any form of collaboration between
different candidates. It is thus easy to understand that GPUs can outperform CPUs in
this kind of applications, thanks to the their intrinsically data-parallel architecture. As
an example, using the John the Ripper [23] software, the AMD 380X GPU resulted
42× faster than the AMD A10-7700K CPU in cracking WPA-PSK of a previously
captured Wi-Fi 4-way handshake [17]. Both these CPU and the GPU were adopted in
this work and are actually installed in the same desktop computer. The obtained speed-
up could seem very high, especially if we consider that the GPU costs just 1.5× the
CPU. However, it is noted that in other kinds of applications, like CFD, the situation is
different since somehow collaborative effort between different computational units is
required. As an example, if we distribute face fluxes computations among GPU cores
by assigning one GPU core to one mesh face, how can we deal with the fact that two
different cores may have to update the same cell residuals concurrently? The mapping
of the CFD/FSI algorithm to the massively parallel GPU architecture will be discussed
later in 5.

4.2.2 Gaming GPUs

One of the most important ideas of this work is to accelerate computations by exploit-
ing cheap gaming GPUs. First of all, the choice of gaming GPUs is done thanks to their
relatively low cost with respect to specifically-designed HPC GPU that are available to-
day and that exhibit about the same single-precision performances. A mid-range price
gaming GPU today is available for less than 300USD and features over 5TFLOPS
in single precision [37, 38]. Usually the same single precision computational power
in HPC GPUs is offered at more than 2500USD. Furthermore, today basically ev-
ery new and few years old pc features a GPU capable of GPGPU through OpenCL,
even if it is a very cheap GPU. This is possible thanks to the fact that despite NVIDIA
CUDA, OpenCL is compatible with both NVIDIA and AMD GPUs. Obviously HPC
GPUs are more expensive but offer more. In particular, as previously said, HPC GPUs
offer higher double precision computational performances, bigger on-board memory
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and ECC memory technology. Figure 4.2(a) shows the single precision computational
power of last years CPUs, gaming GPUs and HPC GPUs, while figure 4.2(b) shows
the same regarding double precision performances. The comparison is repeated in

(a) Single Precision

(b) Double Precision

Figure 4.2: Modern CPUs and GPUs theoretical floating point computational power [2].

figures 4.3(a) and 4.3(b) for what concerns the performance per Watt for single and
double precision respectively. In AeroX different strategies have been implemented
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(a) Single Precision

(b) Double Precision

Figure 4.3: Modern CPUs and GPUs computational power to power requirements ratio [2].

in order to bypass the requirement of an HPC-class GPU. The adopted strategies to
exploit gaming-class GPUs are discussed in 5.2.3. Benchmarks comparing the differ-
ences between the use of single and double precision were performed and the results
are showed in 6. During AeroX benchmarks it appeared that just negligible differences
are obtained between the single and double precision in terms of results accuracy. For
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what concerns memory limitations of gaming GPUs with respect to HPC GPUs, this
problem is tackled by implementing an explicit time-stepping scheme. This way there
is no system matrix to be stored, allowing cases with millions of cells to be simulated
even using a mid-range gaming GPU, like one of the GPUs adopted in this work (see
6.1). Explicit time-stepping schemes are also well suited for the SIMD/SPMD/SIMT
architecture of GPUs thanks to the fact that the total work can be easily split among the
hundreds/thousands of cores available on modern GPUs. In fact, since no linear solver
algorithms are employed, cells can be updated independently, by simply knowing the
solution from the previous pseudo time step. Furthermore, GPU memory limitations are
also tackled naturally with the use of single precision with respect to double precision,
thanks to the fact that memory requirements are basically halved (excepts for arrays of
integers). The choice of an explicit scheme is also supported by the perfect mapping of
numerical schemes into the SPMD/SIMD hardware architecture of a typical GPU.

Figure 4.4, already presented in the introduction of this work, shows the advantages
provided by the exploitation of GPGPU in terms of performances (GFLOPS) to costs
(USD) ratio. The important aspect is not the numbers themselves since they are just the-
oretical values and depend from the chosen CPU/GPU couple. What is important is the
fact that, when the numerical problem exhibits the possibility of GPGPU exploitation,
the advantages in term of performances/costs given by GPUs are evident.

Figure 4.4: Performances to costs ratio, GPGPU advantages [3].

ECC memory is a typical feature for HPC GPUs due to the requested higher reli-
ability. However, in this work no problems were faced with the use of gaming GPUs
without ECC memory. Different cases were simulated with both gaming GPUs and
an ECC-compliant HPC-level GPU (a relatively old, at the time of writing, NVIDIA
Tesla C1060) but no differences attributable to memory problems were encountered,
see 6.2.4. Obviously, thanks to OpenCL and the implemented typedef-based single/-
double precision switch, the solver is natively compatible also with HPC GPUs, with
double precision and with ECC memory without requiring any sort of source code
modifications or tuning.
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4.3 Advantages and drawbacks of GPGPU

In this section the most important aspects of GPU programming are introduced. These
aspects are strictly related to the underlying hardware architecture of the GPU proces-
sor and memory but must be taken into account by the programmer in order to achieve
an efficient GPU execution. In fact, these aspects have to be considered since the very
beginning, when designing the algorithm, before its actual implementation. Otherwise,
bottlenecks could be so relevant that the GPU execution could be slower than a CPU se-
rial execution, even by orders of magnitude. Porting an algorithm from CPU to GPU in
an efficient manner could require to re-think the entire algorithm in order to be adapted
to a SIMD/SPMD/SIMT model.

4.3.1 Problem size

The GPU architecture is optimized to execute thousands, millions of threads concur-
rently on a processor composed by hundreds or few thousands of cores. Due to the
underlying hardware architecture, high computational efficiency is reached only when
enough threads are scheduled for execution on the GPU processor. When a single core
of a GPU is compared to a single core of a CPU, the CPU core is more powerful in se-
rial executions. CPUs are in general faster than GPUs also when executing few threads
concurrently. This is due to the fact that the computational power of the remaining hun-
dreds/thousands of GPU cores would be wasted, leading to an effective computational
power orders of magnitude smaller than the theoretical peak performances. In fact, in
order to achieve speed-ups that truly show GPGPU advantages, at least few thousands
of threads have to be scheduled, meaning that the numerical case under investigation
has to be big enough to fully load all the GPU cores. However, problem size is not
the only aspect that has to be considered when designing GPGPU code. Other sources
of problems, e.g. branch divergence and non-coalesced memory accesses could led to
slow executions if not opportunely addressed. These phenomena lead to bottlenecks
that basically waste computational time by letting GPU cores waiting for data from
memory or waiting for other GPU cores that are following different program paths,
even if thousands of threads are scheduled for execution. Problem size is not a particu-
lar problem in CFD applications, like in this work, since usually meshes of hundreds of
thousands or millions of cells are employed. These numbers are more than enough to
keep the GPU processor fully loaded. An investigation of the performances dependence
of AeroX from the mesh size is performed in 6.2.3.

4.3.2 Branch divergence

This is an aspect intrinsically related to GPU processor architecture and its SPMD/SIMD/SIMT
model. When a kernel does not contain any conditional statement, each thread executes
the same instructions on different data, following SIMD approach. In short terms,
branch divergence problems happen when different GPU threads instead follow dif-
ferent paths of the same kernel, thus follow two different instructions streams. This
situation by definition is allowed in SPMD since the two code paths belong to the same
program. Besides CPU SSE/AVX instruction sets that follow a tightly SIMD approach,
SPMD/SIMT and GPUs in general allow multiple program path to be followed concur-
rently. In a typical CPU architecture, different cores can follow different instructions
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streams without any particular computational efficiency issue. However this is not true
for typical GPU architectures. Even though in GPGPU multiple code paths are allowed
to be executed "concurrently", the underlying GPU hardware is not advanced enough
to allow different cores to perform different operations "simultaneously". Roughly
speaking, as showed in figure 4.5, when branch divergence happens, some cores are
performing the 1st instructions set while the other, that need to perform instructions
sets 2 and 3, are waiting. This means that branch divergence reduces GPU cores load-

Figure 4.5: Branch divergence [from internet]. Blue arrows represent threads, pink boxes represent
groups of instructions. From the branch two code sub-paths are followed by different threads.

ing, leading to computational efficiency reductions. When all the sub-paths related to
branch divergence are completed, all the threads converge back to the same unique ex-
ecution path. Thus it is fundamental to avoid or at least reduce branch divergence in
GPGPU programming. Sometimes this is not entirely possible but if opportunely lim-
ited does not particularly reduce the computational efficiency of the entire algorithm.
This is just a quick explanation of branch divergence related issues. The situation is
more complicated. In fact branch divergence problems are also related on the thread
scheduling strategies adopted by the particular GPU architecture. As an example, in
NVDIA Fermi architecture when a SM (Stream Multiprocessor, basically a group
of GPU cores (a Compute Unit in OpenCL notation), executes a thread block (called
work-group in OpenCL notation), basically a group of threads, the block is subdivided
in sub-groups of 32 threads. Each group is called "warp" and executes concurrently
with other warps. A warp executes one instruction at time, so maximum efficiency is
achieved when all the 32 threads in the same warp perform the same operation, follow-
ing the same execution path. However if branch divergence occur among threads of the
same warp, the execution is slowed down. When instead different warps follow differ-
ent paths but all threads inside the same warp follow the same path, peak computational
efficiency is still reached. AMD architectures have a similar concept of warp which is
called "wavefront" but with 64 threads width. The same discussed concepts can still be
applied to wavefronts. It is understood that branch divergence has not to be seen as a
limitation of the GPU architecture. As for the sequential memory access problems (see
4.3.3), branch divergence on GPU is just a consequence of the underlying GPU proces-
sor hardware design that is tuned to reach peak efficiency when all cores are performing
the same operation. In fact, this is what required for graphical computations where the
same operations have to be performed on numerous graphical entities like pixels. In
AeroX one source of branch divergence is the capability of the solver to handle hybrid
meshes, where different cells have different numbers of neighbors. This is translated in
different number of operations when each thread is assigned to each cell and a loop over
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the cell faces is performed. Obviously, when a particular GPGPU algorithm is known
to exhibit branch divergence it is possible to limit the performance loss by accurately
tune the algorithm on the basis of the underlying warp/wavefront size, but this would
bind peak performances to a particular underlying hardware architecture.

4.3.3 Memory coalescing

This is an aspect related to GPU memory. As for branch divergence, the problems with
memory coalescing have not to be seen as some kind of GPU memory architecture
limitations. In fact GPU memory is specifically designed to maximize performances
for graphical computations, where sequential memory accesses are required. Roughly
speaking the idea is that sequential graphical entities are expected to read sequential
data from memory since the same operation has to be performed on a grid of entities.
As previously mentioned, GPU processors have smaller cache memory than CPUs.
Following the SIMD paradigm the idea is to apply the same stream of instructions on
a stream of data using different cores that are working in parallel, each one on its own
data. Since GPUs are aimed to graphical computations, their entire design is opti-
mized for this kind of numerical computations. Maximum GPU computing efficiency
is reached when the cores are processing private data, using private memory and regis-
ters installed on the GPU processor, reducing the GPU global memory read and write
accesses to the initial input of data and the final results writing. The concepts of private
memory and global memory will be explained later in 4.4.2. Since accessing the main
GPU memory (global memory) requires different clock cycles, when GPU cores are
accessing this memory they are wasting computational time. Private core memory is
instead fast enough to fed cores with data without slowing down execution. Anyway
this problem is partially masked by the fact that usually thousands/millions of threads
are scheduled on hundreds/thousand of available GPU cores. However, it is very im-
portant for GPGPU to design the code such that data is firstly fetched by GPU cores
from GPU global memory. Then as much floating point computations as possible are
performed in a fully SIMD approach (trying also to minimize branch divergence pre-
viously described in 4.3.2) exploiting private memory. Finally results are written back
to GPU global memory by each core. In order maximize bandwidth when accessing
data on GPU global memory, memory accesses are coalesced, meaning that multiple
data requests can be combined together in a single memory transaction [7]. Briefly, for
NVIDIA GPUs what happens is that when all threads inside a warp read data in sequen-
tial order (i.e. thread 0 is reading at location 0, thread 1 is reading at location 1, and
so on...) all these accesses can be combined together in a single memory read request,
speeding up memory access and thus execution. For AMD GPUs the same applies for
wavefronts (which is the equivalent of NVIDIA’s warps). This is just a brief introduc-
tion to memory coalescing as different architectures have different hardware features
that could improve memory access in the case of non perfectly sequential requests or
misalignment [7]. However, if memory coalescing is poorly exploited in the code, GPU
cores could waste computational time, waiting for multiple memory transactions to be
performed. In this case the execution could be slowed down until a point in which
GPGPU is not providing advantages over CPU executions. It must be noted, how-
ever, that sometimes it is not possible to fully exploit memory coalescing, especially
when some kind of memory mapping/addressing is required, e.g. with unstructured
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meshes in this work. The, although small, cache installed in GPU processors could
also help. Furthermore, when some kind of collaboration between cores is required, as
explained in 4.4, the so called "local memory" (OpenCL notation) or "shared memory"
(NVIDIA CUDA notation), installed on GPU processor, can be exploited to speed-up
data exchange between threads of the same thread block (NVIDIA CUDA notation) or
work-group (OpenCL notation). However, the general idea is to optimize the code as
much as possible to minimize the total number of memory transactions and maximize
core private computations, minimizing also branch divergence. As said, in this work
one source of problems with memory access is related to the capability of the solver
to handle unstructured mesh. Since addressing arrays have to be used, memory cannot
always be accessed sequentially.

4.3.4 Debugging and profiling

Here, GPGPU applications debugging and profiling is briefly discussed. This topic will
be covered also later in 5.2.4 and 5.2.5 when discussing the AeroX implementation
details. With CPUs debugging and profiling is quite simple. Over the years numer-
ous different tools were developed, both command line based and GUI based. Nowa-
days modern IDEs (Integrated Development Environment) usually provide profiling
and debugging capabilities. However, especially in Linux environments, different well
know command line tools, like grprof [22] for profiling, gdb [21] and valgrind [34]
for debugging are available. valgrind in particular is very useful in case of buffer
overflows/segmentation faults since it can easily detect, a the cost of a slowed down
execution, the line in the code were memory is not correctly accessed. On CPU, the
operating system kernel handles the processes. If errors due to numerical problems
(e.g. division by 0) or memory issues (e.g. trying to execute instructions from a data
segment in virtual memory) happen, the user is warned about the problem. On GPU
instead there is no operating system kernel (not to be confused with the OpenCL kernel
concept) running on the graphical processor. Thus, when numerical problems happen
or the memory is not correctly accessed, the user is not directly warned. Obviously if
divisions by 0 are performed the results will likely contain NaN (Not a Number) val-
ues. However it is not easy to find the exact line of code where an array is accessed in
write/read over its bounds. Usually, when memory is not correctly handled, two execu-
tions of the solver with the same configuration (mesh, solver parameters, boundary and
initial conditions) provide two different results due to the fact that memory could be
read over the array size from locations that contain "random" numbers. In this case de-
bugging could be difficult. AMD, NVIDIA and Intel provide SDKs to program, debug
and profile OpenCL applications alongside with runtime libraries. However, in order
to track and correct memory issues a new tool has been developed, Oclgrind [27]. As
the name suggests, it can be used in a similar way to valgrind. The computations are
slowed down but the tool is able to tell the user the lines of GPU code where memory is
not properly accessed. It can also warn for possible data-races (e.g. when two different
threads are attempting to concurrently write to the same memory location). For what
concerns profiling, OpenCL API directly offers functions that can be used to monitor
the computational time spent by each kernel.
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4.4 OpenCL

Here the most important concepts related to OpenCL API and OpenCL C program-
ming language are introduced. This is not aimed to be a detailed presentation since
details can be found in numerous books [40, 71, 90, 111, 113, 114, 134, 146] or directly
inside OpenCL specifications [24]. As mentioned in the previous sections, the solver
parallelization is realized through OpenCL, thanks to its ability to allow the program-
mer to write one source code that is than natively compatible with a wide range of
devices, such as CPUs, GPUs, FPGAs, and other kind of accelerators like Intel Xeon
Phi (at least the first version for now). In particular, the solver has been tested on AMD
CPUs, AMD GPUs, AMD APUs, Intel CPUs and NVIDIA GPUs without encountering
any problem. When an OpenCL application is executed on a GPU, the work is split in
thousands/millions of threads executed concurrently by the GPU cores. When instead
the application is executed on a typical CPU architecture, the work is split between few
threads in order to maximize performances for the underlying shared-memory multi-
core CPU architecture A.4.2. Depending on the CPU implementation of the OpenCL
specifications, when executed on CPU, the code could be also automatically vectorized
in order to exploit SSE/AVX instruction sets A.4.1.

It must be noted that from the first release of the OpenCL specifications in 2008,
with version 1.0, numerous specifications followed, i.e. versions 1.1, 1.2, 2.0, 2.1, 2.2.
The main problem is represented by the fact that usually OpenCL specifications, like
other specifications as C/C++, are not completely supported by their implementation
when they are introduced. As an example, at the time of writing, while AMD supports
OpenCL 2.0, NVIDIA supports up to OpenCL 1.2. Since NVIDIA GPUs represents
a wide fraction of the GPUs installed on modern machines and since one of the aim
of the use of OpenCL in this work is to provide maximum portability, the solver has
been written using OpenCL version 1.2. It must be noted, however, that OpenCL 2.X-
compliant devices feature backward compatibility with OpenCL 1.X. Thus, basically
every OpenCL 1.X and 2.X compatible device is able to run the solver. Furthermore,
the main differences between OpenCL 2.X and OpenCL 1.X are mainly focused on
features like C11 atomics, CPU-GPU shared memory, and others [24], that are not
directly exploited in this work.

The wide hardware compatibility provided by OpenCL is guaranteed by its clever
abstractions and the runtime kernel compilation concept. When programming with
OpenCL, two sets of source code have to be written. One set, written in C/C++, is for
the "host". In the host source code OpenCL API functions and data types are used. The
host is basically the CPU that organizes the work to be sent to the "device". The device
is instead the physical processor that effectively execute numerical operations. The de-
vice could be the CPU itself, the GPU or other kind of OpenCL-compliant devices (like
FPGAs or other compatible accelerators). Anyway the second set of sources is written
for the device using OpenCL C language, a subset of C99 (in the case of OpenCL
1.X) with some restrictions. The device sources contain the so-called "kernels", basi-
cally functions that are compiled and executed on the device. One important thing has
to be underlined. The host C/C++ code includes the OpenCL header, is pre-compiled
using usual compilers such as gcc [20] and is linked with the OpenCL library. This
means that an executable is created and can be launched like any other application. The
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situation is different for the device code, as it is usually compiled at run-time (although
it is still possible to pre-compile it for a particular device architecture). This is basically
what happens with OpenGL shaders [24]. The host code has to be opportunely written
in order to read the device code from disk, compile it with the device-specific runtime
OpenCL compiler and then run it on the selected device. The runtime device code
compilers are usually shipped with the vendors SDKs and drivers. This way if on a
single system an Intel CPU is installed alongside an AMD GPU and an NVIDIA GPU,
three different OpenCL runtime environments have to be installed in order to allow
the execution of the device code on all the three available devices. The idea here is
that the programmer or the user does not need to worry about the underlying hardware
architecture but has just to choose at runtime which device use to run kernel code. This
way, the OpenCL host and device code written for a CPU is exactly the same as the
code for a GPU, and the code written for an AMD GPU is exactly the same as the code
for an NVIDIA GPU. Since for what concerns the host code free compilers like gcc
can be used alongside the OpenCL header file and library freely provided by device
vendors and since the runtime device code compilation is performed by the implemen-
tations, basically programming and executing OpenCL applications can be done for
free. One of the most important goals of this work is to obtain a solver that, thanks to
the OpenCL concepts, is compatible with the widest range of CPUs and GPUs from
the most important vendors.

Now the most important concepts and abstractions of OpenCL are briefly presented.

Opencl host

The host is basically the CPU that is used to manage the work that has to be performed
by the device. On the host the code written in C/C++ that uses the OpenCL API
(functions and types) is executed. The host code includes the OpenCL header file, is
compiled using the usual compilers such as gcc and is linked with the OpenCL library.
The host is basically used to pre-process and enqueue work on the device that is instead
the hardware on which numerical computations are effectively performed.

OpenCL platform

Roughly speaking a platform is a vendor-specific OpenCL implementation. Thus, in
a system with an NVIDIA GPU, an AMD GPU and an AMD CPU two platforms are
available, one for the NVIDIA device and one for both AMD devices. This is one of
the most important concepts on which the OpenCL abstraction is based. Thanks to it
the programmer does not need to think about the underlying hardware but has just to
choose at runtime the desired platform to be used to execute kernel code.

OpenCL device

Considering the example of a system composed by one NVIDIA GPU, one AMD CPU
and one AMD GPU, a total of three devices are installed. At runtime when the program
queries the system for the available devices, one device for the NVIDIA platform will be
available and two for the AMD platform. In particular, for the latter, one device of the
type CL_DEVICE_TYPE_CPU and one of type CL_DEVICE_TYPE_GPU will be
obtained, with the obvious meaning of the strings. The device is basically the hardware
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that executes the kernels and is where effectively the bulk of numerical computations is
performed. As for the platform, the device on which kernel code is executed is chosen
by the user at runtime. A device could be a CPU, a GPU, or other kind of accelerators
(like Intel Xeon Phi, at least in the first versions, or FPGAs).

OpenCL kernel

Roughly speaking, kernels are C-like functions written in OpenCL C, a language sim-
ilar to standard C but with some restrictions (e.g. function pointers are not allowed).
Kernels are executed by the device, thus by a CPU, a GPU or an accelerator. These
are the functions that actually performs numerical computations and are compiled at
runtime (although off-line compilation is usually available for specific architectures)
for the devices chosen for execution. Thanks to OpenCL abstractions it is possible to
realize applications that exhibit both data parallelism and task parallelism. The latter
is done with concepts like multiple queues, out-of-order queues and the clEnqueue-
Task function. However, for the purposes of this work, the focus is on using OpenCL
to achieve data parallelism in order to exploit the SPMD/SIMD/SIMT architectures of
GPUs. This way, the work is scheduled for execution on the device using the clEn-
queueNDRange function as will be showed in 5.

OpenCL context

A context defines the environment in which kernels are defined and executed. A context
consists of:

• A collections of devices on which numerical computations are performed;

• A list of kernels that will be executed on the chosen devices. It is possible to run
different kernels on different devices at the same time;

• Program objects: they are obtained from the device source code and contain one
or multiple kernels. Program objects are compiled using the OpenCL compiler
provided by the vendor implementation;

• Memory objects: these are objects visible in the device memory and accessible
within kernels. Memory objects, like buffers, are defined on the host and explicitly
between the host and the devices. Since different devices and hosts may have
different architectures, memory objects provide compatibility and portability to
the code when exchanging data between different hardware architectures. Buffers
and images are memory objects;

It must be noted that different devices from the same platform can be used in the
same context while this is not possible with devices from different platforms. In the
most general case, it is possible to allow data exchange between devices from different
platforms but in this case data must pass through the host. In this case the host code has
to be opportunely programmed to do so.

OpenCL queue

As previously said, host code is used to organize and send work to the device. This
is performed using the queue abstraction. Basically, has the name suggests, the host
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enqueues commands to be executed on the device. As an example, a command could
be a kernel scheduling for execution on the device or a data exchange between the host
and the device through buffers. Queues can be "in-order" or "out-of-order" depending
if commands reordering is allowed (for the latter case). However, AeroX, for now, only
uses in-order queues. At least one queue is necessary to send commands from the host
to the device. Multiple queues are allowed for a device. Multiple queues could be used
to potentially allow task parallelism on a single device. From the underlying hardware
point of view, when a command is enqueued, data or kernels are exchanged between the
CPU and the GPU. It must be noted that in order to improve performances the functions
called from the host to enqueue commands on the device are non-blocking, meaning
that they return almost immediately. The actual execution of the command could be
instead delayed. This is the default behavior. However, when the host wants to read
back results from the device, specific options must be used in order to wait the true end
of data transfers before post-processing results on the host. Otherwise, meaningless
data could be read by the host from buffers.

OpenCL buffer

As previously mentioned when discussing memory objects, the concept of buffer is
adopted to achieve portability and compatibility when exchanging data between the
host and the device or between multiple devices. A buffer is basically a memory array.
A buffer can be of various types, i.e. float, double, int. Buffers are contiguous block
of memory available to kernels and can be used to read and write global memory data.
The idea is to fill input buffers on the host during pre-processing, transfer them to the
device, read them within kernels executing on devices, write results to output buffers,
transfer back output buffers to the host to be post-processed. Buffers are shared between
devices of the same context. Data exchange between devices of different contexts,
instead, must be explicitly handled by the host. Buffer and images are memory objects,
although in this work only buffers are used. Particular attention must be given to read
and write data from the host. In fact host code has to be explicitly programmed to safely
access buffers when the device is not accessing them simultaneously. This is due to the
aforementioned default non-blocking nature of commands enqueuing.

4.4.1 OpenCL work subdivision

Here, OpenCL concepts related to how the work is subdivided during execution, in
order to achieve data parallelism, are discussed. When a kernel is executed on a device,
multiple kernel instances are executed concurrently by numerous so called work-items
(called threads in CUDA notation). In this work the word "thread" and "work-item" is
used with the same meaning when referring to GPU executions. It must be noted that
when considering the CPU as the device the equivalence is not completely true. Ba-
sically every work-item executes the same kernel code, in a true SPMD approach. As
mentioned, different threads could potentially execute different paths due to branches,
leading to the aforementioned problems with branch divergence. When considering
GPU executions, thousands or millions of work-items are executed concurrently by the
hundreds or thousands available GPU cores. Obviously in a CFD simulation there will
be more work-items than cores, thus the GPU has to schedule work-items for their
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execution. When the device on which the kernel is executed is instead a CPU, al-
though the same millions of work-items have to be executed, just few operating system
threads are created to hanlde work-items on the few available CPU physical or vir-
tual (if e.g. using Intel HyperThreading) cores. This means that when the device is
a CPU, a single operating system thread will be responsible for multiple work-items.
Furthermore, as explained in [8] the Intel implementation has also the ability, through
implicit vectorization, to also distribute work on SSE/AVX units automatically wher-
ever is possible. It must be noted that work-items execute the same kernel but different
work-items could follow different paths inside the same kernel, leading to branch di-
vergence problems, especially for GPU architectures (see 4.3.2). Work-items can be
grouped to form work-groups (called thread blocks in CUDA notation). This is espe-
cially useful when work-items collaboration is required. Considering the OpenCL ab-
straction and a typical GPU architecture few aspects is worth to underline. Work-items
are scheduled for execution on "processing elements", following the OpenCL abstrac-
tion, that are basically mapped to GPU cores. Work-groups are scheduled for execution
on "compute units", following the OpenCL abstraction, that are basically mapped to
SM (Streaming Multiprocessor) in NVIDIA Fermi architecture (or similar, like SMX
for NVIDIA Kepler, SMM for NVIDIA Maxwell). The same is valid for what AMD
calls Compute Units (CU) for its GCN GPU architecture. Finally, while in CUDA
notation a thread grid is executed for a particular kernel (i.e. the complete 1D/2D/3D
work-item array), the same concept is called NDRange in OpenCL. From the program-
mer point of view, thinking about how to parallelize the code is a little bit different than
the usual OpenMP approach for CPU multi-threading for numerical applications (see
A.4.2). In fact, with OpenMP the programmer focuses the attention on the for loop that
requires parallelization. Using the compiler directives it is possible to split the work by
assigning fractions of the total work to few different threads, usually in the same num-
ber of the available physical/virtual CPU cores. Each thread is assigned to a range of
loop index values using a private loop index variable. In OpenCL, instead, the focus is
shifted on the kernel. There is no for loop: each work-item executes one instance of the
kernel. The work is differentiated between different work-items using an index variable
that is private and assumes an unique value for each work-item. This value is returned
by some specific function like get_global_id(). Since each different work-item uses
the private index value to access buffers, SPMD/SIMD/SIMT parallelism is achieved.

As said, work-items are assigned to processing element, basically GPU cores, while
work-groups are assigned to compute units. Usually, what happens in GPU architec-
tures is that the difference between two GPUs of the same architecture but different
performance levels is represented by the total number of active compute units (SM for
NVIDIA Fermi architecture or CU for AMD GCN architecture). In fact, usually within
the same GPU architecture each SM and CU has the same features and number of cores
(e.g. in NVIDIA Fermi architecture each SM is composed by 32 cores). Thus by in-
stalling on the chip more SMs or CUs it is possible to increment the total number of
cores in a very modular way, with a consequent performances improvements. Figure
4.6 represents the concept.
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Figure 4.6: GPU scalable architecture [114].

4.4.2 OpenCL memory model and consistency

In the OpenCL abstraction, multiple memory levels are available for computations,
each of which has particular features and accessing speeds. The memory levels avail-
able in OpenCL are basically mapped to the underlying hardware memory levels avail-
able on modern CPU and GPU architectures. The most important memory levels are
represented by:

• Private memory: also called local memory in CUDA notation. This memory
can be accessed only by the owner work-item in the same kernel execution, thus
cannot be accessed by other work-items of the same work-group, by work-items
of different work-groups or by the host. This is the fastest available memory and
thus should be used for the bulk of computations. This memory is physically
installed on the GPU chip and is limited;

• Local memory: also called shared memory in CUDA notation. This memory
can be accessed by the work-items of the same work-group in the same kernel
execution. It is slower than private memory but is faster than global memory. It is
exploited when the algorithm requires some sort of collaboration between work-
items of the same work-group. However, care must be taken since two different
work-items cannot directly write on (or one writing and the other reading) the
same local memory location concurrently. In order to avoid this kind of problems
barriers have to be employed. This memory is physically installed on the GPU
processor on each compute unit. The local memory values seen by work-items
inside the same work-group are guaranteed to be consistent only at work-group
synchronization points. Not all algorithms can exploit this memory level;

• Global memory: called global memory also by CUDA. This memory can be
accessed by all work-items of the same kernel execution in read or write mode.
This is basically the physical GPU memory that uses the GDDR5 or HBM tech-
nology and its size is in the order of GB. This is were inputs and outputs of
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kernels are stored, since this is the memory used to exchange data between the
host and then device. Here is where buffers are stored. Two work-items from
different work-groups of the same kernel execution cannot write (or one write and
the other read) at concurrently on the same global memory location. However,
two work-items from the same work-group can do that if properly measures are
used (e.g. barriers). The main problem is that this cannot be done for different
work-items from different work-groups of the same kernel execution. In any case
when the kernel execution is completed, work-items of subsequent kernel execu-
tions don’t have any problem reading/writing the same global memory location,
since an implicit barrier is placed at the end of any kernel. This means that for
certain algorithms where some kind of collaboration (by exchanging global data)
between work-items from different work-groups is required, multiple kernel ex-
ecutions are required. Global memory is the slowest memory level, orders of
magnitude slower than local memory and private memory. This is due to the fact
that global memory is off-chip. Thus, it should be only used to read input data and
write results in order to maximize computational efficiency;

• Constant memory: called constant memory also by CUDA. This is physically
implemented on the global memory from the hardware point of view but can be
accessed faster than read/write global memory. This memory level can only be
accessed in read mode and its size is limited;

• Host memory: this memory can only be accessed from the host and resides in
the process virtual memory (from the hardware point of view the RAM);

Figures 4.7 shows the memory hierarchy, the relations between the different memory
levels and the different OpenCL units.

(a) Relations between compute units, processing elements, host,
device [111]

(b) Relations between work-items, work-groups, kernels [71]

Figure 4.7: OpenCL memory levels.

It must be highlighted that not all algorithms can exploit efficiently all the mem-
ory levels, especially the local memory level. It is worth to remind that when global
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Chapter 4. GPGPU

memory locations have to be accessed by work-items from different work-groups af-
ter a writing, multiple kernel executions have to be employed. Recently, with the new
versions of OpenCL, atomic operations have been improved (using the C11 memory
model), however they cannot be employed for every algorithm.

4.4.3 OpenCL code example

Here a simple example is provided in order to show different sources of problems that
can slow down GPU execution, even to a level at which a single CPU core is faster. Here
the aim is not to provide optimization hints, but rather show in which cases GPGPU is
helpful and where instead CPU execution would be preferred. The example of the
OpenCL C code to perform the sum of two vectors is firstly presented. The focus
here is firstly posed on the conceptual differences between OpenMP and OpenCL for
what concerns how to think about parallelism. Then the attention is posed on GPGPU
performances, by showing why the simple vector sum is not that fast on GPUs. Then,
the code will be modified to show in which kind of computations the GPGPU approach
provides effective advantages over CPUs.

Listing 4.1 shows the kernel code that implements the sum of two vectors. This
is the OpenCL C equivalent to the OpenMP-parallelized version A.1. While with
OpenMP a for loop is employed and parallelized, here the focus is instead on the
single work-item. Thanks to the fact that get_local_id(0) returns different values to
different work-items the SIMD paradigm is realized allowing to use index i to access
different data by different work-items.

Listing 4.1: Vector sum kernel code

__kernel void vectorSum
(

__global float* a,
__global float* b,
__global float* c

)
{

int i = get_global_id(0);

c[i] = a[i] + b[i];
}

Alongside the kernel code, on the host buffers related to arrays a, b and c are allocated
with size vectorSize. These buffers reside in global memory, while the variable i is
stored in each work-item’s private memory as it is declared within the kernel. The
host enqueue the kernel execution using host code 4.2 where it also specifies the total
number of work-items to be spawned.

Listing 4.2: Vector sum host code for kernel execution

err = clEnqueueNDRangeKernel(queue, vectorSum, 1, NULL, vecSize, NULL, 0, NULL,
NULL);

The host code related to OpenCL environment initialization, finalization and buffers
allocation is not showed here for simplicity. Kernel code for vector sum is composed
by two global memory reads (a[i], b[i]), one floating point operation (+) and one global
memory write (c[i]). These operations are performed by each of the total vectorSize
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number of work-items. Let’s consider now the execution of both the OpenMP version
on a notebook CPU (Intel i5 2410m, 2.3GHz, 2 core, 4 threads (HyperThreading),
∼ 40GFLOPS single precision) and the OpenCL version on the same notebook on
the GPU (NVIDIA GT540m,∼ 250GFLOPS single precision). The overall speed-up
provided by the GPU when the sum is performed over 10k elements is 0.07, meaning
that the CPU is orders of magnitude faster than the GPU. This poor result could be
obtained due to small vector size, such that the time required to fire up the OpenCL
environment is bigger than what required by the actual computations. Trying with
10M elements the speed-up is 0.14. Again the CPU is faster even tough theoretically
the GPU has more GFLOPS. The problem here is given by the fact that, as said in 4.4.2,
global memory is relatively slow with respect to GPU cores speed, requiring different
clock cycles for data to be fetch, even when, like in this case, memory coalescing is
possible. The problem here is that for two global memory reads, just one floating point
operation is performed. This is confirmed by the fact that when using a kernel with
an high floating point operations to global memory reads ratio like in 4.3 the speed-up
achieved is 37.48×.

Listing 4.3: Vector sum kernel code

__kernel void heavyFun
(
__global float* a,
__global float* b,
__global float* c
)
{

int i = get_global_id(0);

real ap = a[i];
real bp = b[i];
real cp = 0;

for(int i = 0; i < 30; i++)
{
cp = 2.025*ap - 3.253*bp + 0.225*ap/(bp+1)/(cp+1);
ap = 1.205*bp + 0.151*bp/(cp+1) - 0.107*ap/(cp+1);
bp = 4.545*cp - 0.181*bp/(ap+1) + 0.654*cp/(bp+1);

}
}

This is an important concept because in the solver high speed-ups can be achieved, es-
pecially for the convective fluxes computations (see 5.3.2) wherever numerous floating
point operations are performed between the initial global memory input reads and final
writes.

Finally, it is noted that since basically all the kernels implemented in this work do
not make use of work-group collaborative operations, multi-dimensional NDRanges or
local memory, the syntax 4.4 can be wrapped up using a macro as follows:

Listing 4.4: Vector sum host code with wrapper

err = runKernel(queue, vectorSum, vecSize);
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CHAPTER5
GPU implementation

In this chapter the architecture of the solver will be presented. The solver is based on
the OpenFOAM framework and uses OpenCL as the API and programming language
to achieve GPU acceleration. OpenCL is preferred over CUDA thanks to its wider
compatibility in terms of vendors and types of processor. As discussed in chapter 4,
AeroX is composed by two sets of source code files: one for the host and one for the
device. The most important concepts related to the implementation of the algorithms
discussed in 2 and 3.5 for the solution of aerodynamic and aeroelastic problems will be
presented, with the focus on the computational efficiency reasons behind each choice.
In particular, since one of the targets of AeroX is the compatibility with unstructured
hybrid meshes, the efficiency problems behind this goal will be analyzed. The imple-
mentation choices are made with the aim of obtaining a fast GPU solver by distributing
work chunks among the hundreds/thousands available GPU cores. However, thanks to
the available CPU implementations of OpenCL, the solver is also natively compati-
ble with multi-core CPU architectures without any source code modification. It must
be noted that numerous algorithms implemented in the solver are written from scratch,
while others are obtained from a specific tuning of what already available from the open
source AeroFoam solver [127, 136].

5.1 Solver programming language and libraries

The aim of this section is to briefly introduce the reasons behind the use of some pecu-
liar libraries and tools and how they are used inside the solver. These are represented
by OpenCL and OpenFOAM.
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Chapter 5. GPU implementation

5.1.1 OpenFOAM

As said, the main purpose of this work is the development of a GPU-accelerated aeroe-
lastic compressible (U)RANS solver with turbomachinery and open rotors extensions.
The bulk of the computations is related to aerodynamics and, in a smaller weight, to
structural computations and mesh deformation. These computations have to be per-
formed several times during a steady or unsteady simulation. However, there are kinds
of computations that are performed only once for simulation. In particular, several pre-
processing algorithms required to read the mesh and generate all the mesh metrics are
performed just once at the very beginning of the solver execution. Depending on the
mesh size, these algorithms are executed in few milliseconds or seconds while the aero-
dynamic convergence could require minutes/hours/days. Following the very basic ideas
of profiling, it is worth to focus the attention on the optimization of the parts of the code
where more computational effort is required. Furthermore, code reuse is always a good
choice when the available code is reliable, optimized, compatible and exhibit several
features. Following these ideas, the OpenFOAM framework is here employed for the
pre-processing and post-processing stages of the simulations. OpenFOAM provides a
very powerful C++ API (classes, functions, types,...) and is well suited for the coupling
with the C-based OpenCL API. OpenFOAM sources come with a wide range of pre-
implemented solvers, opportunely designed and tuned to solve ad-hoc CFD problems.
The advantage provided by OpenFOAM is represented by the fact that the 3 phases of a
typical solver execution (i.e. pre-processing, processing, and post-processing) are well
separated. This way, it is possible to focus the attention on building the OpenFOAM-
based solver, i.e. writing just the code for the processing phase that satisfy the specific
requirements, without taking too much care of the pre/post-processing phases which are
instead delegated to OpenFOAM. Thanks to the fact that OpenFOAM exploits C++
objected oriented concepts, the solver can be written at a very high level syntax which
is very similar to equations written on paper. This is accomplished thanks to classes
and operators overloading. The user does not have to take care of how equations are
mapped to low level memory objects (arrays, matrices and systems to be solved). This
is all done under the hood by OpenFOAM. OpenFOAM is an open-source project, so
any programmer can modify the OpenFOAM code to fully achieve the prefixed goals
when certain algorithms are not yet implemented. Code re-use is the idea behind the
use of OpenFOAM in this work. However, due to the low-level nature of OpenCL
to achieve GPU acceleration, the object-oriented mentioned way of implementing new
OpenFOAM-based solver could not be directly adopted. This is due to the fact that
OpenFOAM is intrinsically CPU-based, eventually with multi-process parallelization
through MPI and domain decomposition. For the aims of this work, OpenFOAM
is completely bypassed for what concerns the CFD/FSI computations. However, the
OpenFOAM API, as mentioned, is still used for certain mesh metrics pre-processing
and the final post-processing. An important advantage is given by the OpenFOAM
output format compatibility with ParaView [29] that ease results visualization. In par-
ticular, while OpenCL is here adopted to provide portability and compatibility with
a wide range of devices, OpenFOAM is adopted thanks to its compatibility with a
wide range of mesh types and formats. Thanks to OpenFOAM mesh metrics routines,
AeroX is fully compatible with structured, unstructured and hybrid meshes. Further-
more, thanks to the numerous OpenFOAM utilities, it is possible to convert the most
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used mesh formats (e.g. msh) to the OpenFOAM native format, guaranteeing com-
patibility with many mesh generation tools. During this work, mesh generated with the
most adopted tools, from academic world to industry, like gmsh, gambit, HyperMesh
and Icem were successfully processed.

OpenFOAM uses the concept of "field" to store face-based and cell-based scalar,
integer and vector data. Fields are basically C++ classes built around more low-level
arrays. Fields provide high-level interfaces to the programmer. Thanks to C++ classes,
the programmer interacts with fields rather than low-level arrays to store data, since
they provide an easy and intuitive interface to access face-based and cell-based data
and to perform post-processing.

The developed solver, AeroX, that actually performs CFD/FSI computations is writ-
ten from scratch due to the use of OpenCL and the fact that the chosen CFD/FSI formu-
lations are not directly found inside OpenFOAM sources or they are slightly different.

5.1.2 OpenCL

The solver host code is written in C/C++. OpenCL API functions and data types are
used in the host code in order to:

• Initialize the OpenCL environment;

• Select the device aimed to execute kernels;

• Read and compile device code;

• Create and transfer buffers from/to the host to/from the device;

• Enqueue kernels execution on the device;

• Free buffers memory;

• Finalize the OpenCL environment;

Like with any other library, when programming a C/C++ application, in AeroX host
code the #include directive is used to include the OpenCL header file. This is usually
CL/cl.h. The host code is compiled like any other application using gcc and the oppor-
tunely specified optimization flags. Also, the OpenCL shared library (libOpenCL.so)
is dynamically linked to the solver executable. From the host code point of view what
described is just what required for any other application development. The computa-
tion offloading to the device is handled by the OpenCL implementation and device
drivers at runtime, effectively freeing the programmer from this effort. This is one of
the strengths of OpenCL.

In order to achieve the widest hardware compatibility, at the time of writing, the
code uses OpenCL version 1.x. This is due to the fact that NVIDIA does not cur-
rently support OpenCL 2.x while Intel and AMD are already shipping it within their
drivers/libraries/runtime implementations. One of the goals of the solver is to achieve
wide GPU compatibility, in order to exploit the computational power already avail-
able in workstations, without requiring to buy new devices. Since NVIDIA is currently
the most important GPU vendor alongside AMD, it is basically mandatory to achieve
compatibility with its hardware.
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5.1.3 Interfacing OpenCL and OpenFOAM

As said, one of the most important problems when writing the solver code is inter-
facing OpenFOAM and OpenCL. This is due to the fact that OpenFOAM has its
own C++ classes to store arrays of data and the programmer has to use them to ac-
cess mesh data structures during pre-processing and to easily save data structures for
post-processing purposes. When writing an OpenFOAM-based solver using the native
API, data is saved in fields that contains cell-based and face-based information. Fields
are also equipped with useful functions allowed to process that data. However, the
problem here is that the code that actually performs CFD/FSI computations is written
in OpenCL and cannot directly interacts with the OpenFOAM framework. As ex-
plained in 4.4, when programming with OpenCL, buffers must be used to exchange
data between the host and the device. Furthermore, buffers are accessed by the device
during kernel execution. This basically means that when executing kernels, i.e. when
solving CFD/FSI equations, OpenFOAM-based high-level objects like fields cannot be
directly adopted. Buffers are basically low-level arrays of data without any particular
C++ method built around them. Thus for each field of data that has to be accessed by a
kernel to perform CFD/FSI computations, a buffer has to be allocated. Buffers can be
read-only with respect to the device and filled during the pre-processing stage on the
host with data contained in fields. This is the case of mesh addressing data since the
mesh deformation strategy adopted in AeroX does not rely on re-meshing algorithms.
All the other buffers are created with the read-write flag. This is true both for CFD so-
lution data and for mesh metrics data (e.g. cells volumes, faces areas) when performing
FSI simulations with mesh deformation. For certain buffers for which it is known that
they are written by the device before any possible read, they are just allocated without
being filled, thus saving computational time. This is the case of buffers that contain
residuals. Instead, other buffers, like the ones that contain the Navier–Stokes solution
(i.e. mass, momentum and total energy) have to be filled before kernels computations
with initial/guess conditions. Furthermore, care is required during post-processing. In
fact, in order to use the OpenFOAM post-processing API, fields have to be used. How-
ever, fields have to be filled with data computed by kernels and stored into buffers. This
means that data within buffers has to be copied back from the device to the host and
finally to the fields.

OpenFOAM is an open-source project used by many researchers. Currently, differ-
ent versions of OpenFOAM are available. Despite the necessity to release new features
and bug fixes, different versions of OpenFOAM are also available due to forks hap-
pened during last years. The adopted version at the time of writing is OpenFOAM
2.2. Newer versions, like 2.3, 2.4, 3.0 could potentially be used. However, this is not
strictly necessary because, as said, OpenFOAM API is just used for pre-processing and
post-processing. It is underlined that all the code that actually performs CFD and FSI
computations is represented by kernels written in OpenCL C language from scratch,
thus it is completely independent from the OpenFOAM API and formulations. The
equations have to be solved through low-level programming, without the possibility of
taking advantage of the OpenFOAM high-level, object-based syntax to represent the
different equation terms.

An important aspect for GPU acceleration is the exploitation of single-precision
floating point computations. The main idea is to use cheap gaming GPUs as devices,
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thus single precision (SP) executions, while maintaining the native compatibility with
HPC-specific GPUs that exhibit high double precision (DP) performances. Open-
FOAM framework does not directly use double or float types but rather defines the
"scalar" type. This is basically an alias to the actual underlying C float of double
data type. In particular the floating point precision of OpenFOAM can be chosen
before compilation using an environment variable, WM_PRECISION_OPTION that
could be SP or DP with obvious meanings. This means that two different compilations
of the OpenFOAM framework are required to allow the solver to completely switch
between SP and DP. Similarly, in the solver host code that uses the OpenFOAM frame-
work, the scalar type is adopted, requiring again two independent AeroX compilations
to achieve both SP and DP capabilities. Before using any OpenFOAM-based solver
or utility, the OpenFOAM environment has to be loaded. The switching between SP
and DP is easily achieved by choosing between SP and DP OpenFOAM environments.
The situation is instead different for what concerns the device code, i.e. kernels. Ker-
nels are written in OpenCL C. Here a typedef using an alias called real is adopted
to achieve the same concept of the OpenFOAM scalar type. However, since device
code is compiled at runtime, a way to tell to the device the underlying precision of the
real type is required. All kernels files are merged into a single device code file that
is compiled at runtime. The idea used to switch between SP and DP on the device is
to create a device code header file that contains the definition of the real type. This is
placed as the first file before the device code merging, allowing subsequent kernels to
know if real means float or double. This way, by selecting the correct header before
the runtime compilation, it is possible to obtain the same floating point precision both
on the host and the device. Obviously this is not the only way to achieve this goal but
is nonetheless very simple and reliable.

Since OpenFOAM is used in this work for the pre-processing stage, it is worth to
briefly discuss the most important data structures regarding the mesh since these are
then handled by the solver host code and kernel code. The user has to provide the
mesh in the OpenFOAM format. If this is not directly possible, different utilities,
provided by the OpenFOAM framework, can be used to perform the required conver-
sion. Initial conditions, boundary conditions and solver settings are read at runtime
from specific files. constant/polyMesh/boundary contains the physical type of each
boundary. system/controlDict contains the solver settings. The 0 folder contains the
values of initial conditions and boundary conditions. This is better explained in [136].
At runtime the first operation performed by the solver is the read of the mesh through
the OpenFOAM API. This way the mesh is stored in the native OpenFOAM format.
In order to better understand the data structures accessed in kernel code showed later
in this chapter it is worth to introduce some details about how OpenFOAM organizes
mesh data during pre-processing. Each mesh is composed by Nv cells and Nf faces.
Among the Nf faces, Nfi faces are internal faces while Nfb faces are located on bound-
aries. OpenFOAM handles the mesh in such a way that the IDs of boundary faces start
after the last internal face ID. Furthermore, faces of the same boundary have sequen-
tial IDs. In OpenFOAM a single boundary is called patch and is composed by a set
of faces sharing the same boundary type. Different types can be used, e.g. wall to
tell OpenFOAM to use the patch for wall distance computations, patch to tell Open-
FOAM that it is a generic patch, cyclicAMI to tell OpenFOAM to perform addressing
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computations to find matching faces on periodic boundaries. It is worth to remind that
faces of each patch have a global ID that has to be greater than Nfi and in the same patch
the IDs are consecutive. Thus, it is also possible to compute an ID local to the patch
and directly related to the work-item ID if a boundary condition kernel is executed with
an NDRange composed by a number of work-items equal to the number of patch faces.
Each internal face is characterized by a cell "owner" and "neighbor" that represent the
two cells that share that face. The unit normal vector is directed from the owner to the
neighbor. A boundary face has only the owner cell and its normal vector is exiting the
fluid domain. OpenFOAM API provides also other useful information regarding the
connectivity. For each cell it is possible to extract the global face IDs of surrounding
cells and faces. This is useful for assembly operations concerning e.g. residuals and
gradients, as will be showed in this chapter. It is reminded here that while all these
structures are provided by OpenFOAM in a very intuitive object-based C++ interface,
when implementing the solver using OpenCL, buffers that are basically C-like arrays
of data must be adopted. Thus, multi-dimensional structures must be re-mapped into
one-dimensional buffers with proper addressing. In order to understand how the ad-
dressing is performed it is worth to show an example. The example is specific for the
residual assembly computation but the same concepts can be applied also for other kind
of addressing. The data structure under investigation provides for each domain cell the
global IDs of the surrounding faces. This is fundamental in the code since the idea is
to save fluxes in buffers of Nf elements, storing each single flux, (e.g. density flux), in
buffer location i. Thus, during residual assembly, the work-item k assigned to cell k
need to know the global IDs of faces surrounding it. Listing 5.1 shows the host code
that exploit OpenFOAM API to extract this information:

Listing 5.1: Cell to faces adrressing host code

// Allocation of 1D array containing for each cell k the the cumulated
// total number of surrounding faces.
labelList cellFacesDelimiter(Nv + 1);
// First element set to 0
cellFacesDelimiter[0] = 0;
// Lopp over cells
for( int k = 0; k < Nv; k++ )
{

// Extract total number of faces of cell k
label numFaces = mesh.cells()[k].size();
// Fill the array with the number of faces for cell k (cumulated)
cellFacesDelimiter[k + 1] = cellFacesDelimiter[k] + numFaces;

}

// Allocation of 1D array containing for each cell k the sequence of surrounding
// cells
labelList cellFaces(cellFacesDelimiter[Nv]);
// Loop over cells
for(int k = 0; k < Nv; k++ )
{

// Extract the array of faces surrounding cell k
labelList faces = mesh.cells()[k];
// Find the starting location in the array to begin writing data
label startFace_idx = cellFacesDelimiter[k];
// Extract total number of faces for cell k
label numFaces = cellFacesDelimiter[k+1] - cellFacesDelimiter[k];
// Extract faces global ID and use them to fill the array
for( int i = 0; i < cellFaces )
{

cellFaces[startFace_idx + i] = faces[i];
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}
}

The first line is used to allocate a labelList, an OpenFOAM class that defines basically
an array of integers with useful public methods. The size of this array is set to Nv + 1
and the first element (element 0 in C/C++) is set to 0. This is done because data in this
array will be used for two purposes inside kernels. Inside the first loop the mesh object
is used to extract the total number of faces of cell k using the mesh.cells()[k].size()
public method. The result is temporarily stored in the numFaces variable. This is
used to store inside the cellFacesDelimiter the cumulated number of faces of each
cell k. The reason behind this will be explained in a moment. After the first loop,
the last element of cellFacesDelimiter is used to allocate a new array, cellFaces that
will contain for each cell k the IDs of surrounding cells. Inside the loop, first the array
containing the faces of cell k is obtained through the public method mesh.cells()[k].
Then, the previous filled array, cellFacesDelimiter, is accessed with the cell ID, k, to
obtain the starting point, startFace_idx to access cellFaces. Thanks to the strategy
of cumulated number of faces it is possible to store in a single array all the faces of all
the cells, even if it is an hybrid mesh where each cell has different number of faces. In
fact it is also possible to obtain with the same array the total number of faces, num-
Faces, surrounding cell k. The last step is a loop over the faces in order to store the
faces global IDs into the cellFaces array in the correct startFace_idx position. The
way these particular buffers are accessed inside kernels is explained in details when
discussing residuals assembly in 5.3.6 and gradients computations in 5.3.5. It is noted
that this addressing strategy is used also for other purposes, e.g. to access data of nodes
surrounding faces and cells surrounding cells. Obviously, when employing addressing
strategies on GPU architectures performance issues related to non-sequential memory
accesses and branch divergence could happen with hybrid unstructured meshes. The
presented strategy is basically performed in order to map arrays of arrays into linear
memory positions.

5.2 Solver architecture details

5.2.1 Overall scheme

Here the general scheme of the solver is showed. It must be noted that due to obvious vi-
sual limitations this does not represent a detailed view of every solver sub-components
and their relations. However it is anyway useful to better understand how the formula-
tions described in 2 and GPGPU concepts are translated in the solver in multiple mod-
ules exchanging data with each other. Figure 5.1 briefly shows the scheme of the solver.
From the figure it is possible to see that the mesh generated with different tools can be
imported in AeroX after the processing with the right OpenFOAM mesh conversion
utility. Then, the mesh is directly read by AeroX using the OpenFOAM pre-processing
API. This block is also used to read boundary and initial conditions (BC/IC) using the
files located in the 0 folder of the OpenFOAM case file structure. BC/IC can be also
read from re-start files. The same block is also used to read AeroX settings through
the system/controlDict and other files. After the OpenFOAM pre-processing, AeroX
pre-processing host code is executed, using OpenCL API types and functions in or-
der to build buffers and other useful objects. This block is also used to execute some
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Figure 5.1: AeroX software architecture. Blue: input/output files; Red: host execution; Green: device
execution.

AeroX specific algorithms not included in OpenFOAM, e.g. searching for extended
cells for high resolutions schemes. The plain-text kernels code is compiled at runtime
using ad-hoc OpenCL API and using the OpenCL implementation distributed by In-
tel, NVIDIA and AMD with their drivers/SDKs. When both the host and the device are
ready for CFD/FSI computations, the host enqueues work on the chosen device. Dur-
ing computations the host and the device exchange just the essential data (convergence
check, wall forces and displacements). Finally, the solution is read back from the de-
vice to the host and is firstly post-processed by AeroX specific code (e.g. to convert
conservative variables into pressure, temperature and velocity). Then, OpenFOAM
post-processing API is called to export the solution in order to be graphically processed
with Paraview [29] or other OpenFOAM utilities.

5.2.2 Convergence check

As mentioned, within an OpenCL application, the host job is to organize and enqueue
work on the device, while the device actually performs numerical computations. One
important problem faced in writing a CFD/FSI solver is the check for results conver-
gence. There are peculiar applications for which it is known a-priori the total number
of computations to be performed. In this case the host just enqueues all the work to the
device and waits until completion. However in CFD/FSI simulations the total number
of iterations required to reach convergence is not know a-priori. The problem here is
the separation of jobs between the host and the device. The host has the ability to en-
queue further work to the device if the convergence is not yet reached but is the device
that is actually computing the solution and thus is storing residuals in the global mem-
ory. It is therefore necessary to send data from the device back to the host to check
the current convergence state. As explained in 4.2, data is exchanged between the host
and the device using the PCI-Express bus, potentially leading to bottlenecks. The
host needs to read data from buffers shared with the device and it has to be guaranteed
that the device is not simultaneously writing those buffers to prevent race conditions.
With OpenCL it is possible to overlap host-device buffer data transfers and kernels
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executions without any problem if the currently executing kernel is not using the buffer
that is being transferred. However, in AeroX there are certain regions where the device
execution has to be stopped to allow data exchange before continuing with CFD/FSI
computations since essential data like the solution and residuals are required on the
host. This kind of data are in fact required in numerous kernels. Thus, it is better to
temporarily block the device computations to perform data transfers. One could argue
that this could lead to an excessive overhead, slowing down the entire execution. This
problem is tackled by checking convergence not every pseudo time iteration but every
N pseudo time iterations, usually multiple of 1000. In fact, this is an explicit solver,
thus if the solution is far from convergence at the K− th iteration, it is improbable that
it is converged at the (K + 1)-th iteration. However it could be at the (K + 1000)-th
iteration. A check for convergence every multiple of 1000 iterations represents a per-
fect trade-off between the need to allow the device to perform as much computations
as possible without data-transfer overhead and the need to check convergence by the
host to stop the simulation as soon as convergence is reached to avoid wasting compu-
tational time. By employing this strategy the time required for convergence check is
basically negligible over the entire simulation. In fact, it must be noted that only the
buffers required to check convergence are transferred. Other data is kept on the device
and remains out-of-date on the host until explicitly required by the host, e.g. to perform
post-processing.

Here a C-like pseudo-code of the procedure is showed to clarify the idea:

Listing 5.2: Convergence check

// Loop until convergence or max toatal iterrations reached
while( !coverged() && totalIter < maxTotalIter )
{

// Internal loop, check convergence every maxCheckIter iterations
for(checkIter = 1; checkIter < maxCheckIter; checkIter++)
{

// Perform aerdynamic computations (i.e. run kernels)
aerodynamicIteration();
totalIter++;

}
// Exchange data device -> host
readDataFromGPU();
// Finally check convergence and eventually exit the while loop
checkConvergence();

}

where, as explained, a good trade-off value for maxIterCheck is 1000.

5.2.3 Numerical tricks for single precision

The possibility of using single precision floating point representation allows AeroX to
exploit the high computational power offered by modern cheap gaming GPUs along-
side the single and double precision power offered by (more expensive) modern HPC
GPUs. SP provides both speed-up and memory advantages with respect to double
precision due to GPU processor architectures and the fact that floats require half the
memory space of doubles (4 bytes instead of 8 bytes). Obviously the most important
problem when exploiting SP is the reduced precision with respect to DP. For certain
applications DP is mandatory. This could be true also in CFD fields, especially when
some kind of high order formulations is adopted. The purpose of this solver is however
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to provide a fast solution using high resolution compressible (U)RANS formulations.
For this purpose DP is perfectly adequate, although SP could be used with some pre-
cautions to reduce numerical errors. Both industry and academic oriented CFD solvers
have usually the option to use DP or SP. The nature of the problem relies in the fact
that when performing numerical simulations using computers, due to the finite memory
and computational power available, it is necessary to trunk the total number of digits
of a number at a certain point. Problems arise when two numbers with very different
orders of magnitude are combined together in an arithmetic operation. As an exam-
ple, if a very small number is added to a very big number, it could be possible that the
differences between the orders of magnitude of the numbers are such that the sum is
numerically equal to the biggest number. This is due to the nature of the floating point
finite-precision. Of course this basically means that the smallest number is negligible
with respect to the biggest number and from an engineering point of view neglecting
the small number could be perfectly legit. However this is acceptable as soon as this
operation is performed once. This leads to problems instead when the operation is re-
peated hundreds/thousands of times and an effective variation of the results is expected.
Consider as an example a reduction operation where millions of small values are added
up. If this operation is performed serially, using a single precision variable to store the
sum and sequentially adding each element to the sum, it is possible that when the sum
variable reach an high enough value, the subsequent small values are neglected. This
could lead to wrong results on the final sum. Consider the following code:

Listing 5.3: Sum reduction

#include<iostream>
#include<stdlib.h>

int main(int argc, char* argv[])
{

// Initialize the iter variable and the sum in double and single precision
int iter = 0;
double DPsum = 0;
float SPsum = 0;

// Read user input (total number of iterations)
iter = atoi(argv[1]);

// Perform sum computation in DP and SP
for( int i = 0; i < iter; i++ )
{

DPsum += 1.0e-6;
SPsum += 1.0e-6;

}

// Finally print the sum in DP and SP
std::cout << "DPsum: " << DPsum << std::endl;
std::cout << "SPsum: " << SPsum << std::endl;

return(0);
}

when executed for 1k iterations leads to the following results:

when executed for 1M iterations leads to the following results:
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One way to reduce the problem could be splitting the entire reduction into multiple
sub-reductions and finally adding up the intermediate results. The idea is to try, as
much as possible, to add up values with similar orders of magnitude. This is basically
the strategy usually adopted to perform reductions on many-cores architectures like
GPUs [9] although in that case the main purpose is the full exploitation all the GPU
cores. In any case, this kind of problems are particularly important during the initial
iterations.

Despite sum, division and multiplication could potentially suffer from numerical
problems, especially when using SP. The problem here mainly represented by overflow
conditions when the result of an operation is bigger than the maximum number that can
be represented with SP. This can happen when for some reasons two big numbers are
multiplied together or when a big number is divided by a very small number. Consider
as an example the following piece of code related to the SST turbulence model:

Listing 5.4: Possible overflow 1

real Yomega = beta*trho*twTur*twTur;

which is basically the source term βρω2 (see 2.1.7 [107, 108]). It is possible to see that
the turbulence model variable ω is raised to the power of two. ω is usually relatively
big near walls, especially when very fine wall discretization is employed (very small
y+). It must be noted that, in theory, the value of ω should be infinite on the wall. This,
alongside the fact that during the first iterations the value of ω could change by orders
of magnitude from the guess values, floating point overflow problems could happen. To
tackle this, the maximum value of ω is limited to a maximum value. In fact the greatest
number that SP can represent has exponent +38. A good maximum value for ω is
represented (e.g.) by 1.0 · 1015Hzs. It must be noted that usually, in solutions obtained
by both when the near wall discretization allow y+ inside the viscous sublayer and in
the log region, ω does not reach these orders of magnitude. However, these orders of
magnitude could be reached during the first iterations starting from the initial guess.
Thus, to prevent NaN and Inf values, this this strategy is adopted. Once a NaN or
an Inf is obtained it rapidly propagates to the entire computational domain, leading to
simulation failure. It is noted that if the simulation fails for these reasons on GPUs, the
user is warned only after the results are read back to host. After the initial iterations the
value of ω usually starts to converge to reasonable values and the bounding strategy is
not necessary anymore. This is just an example, as in the solver there are other places
where this strategy can be successfully applied. Floating point overflows, in fact, could
happen also when divisions are performed between big numbers at the numerator and
small numbers at the denominator or when the denominator approaches the value of
0. This again could lead to results as NaN or Inf that rapidly invalidate the entire
solution but that can be prevented with simple strategies. The idea is again the fact that
this kind of problems happens during the initial iterations while near the final solution
the variables should contain values that do not lead to any of this kind of numerical
problems. Consider another example, again concerning SST turbulence model:

Listing 5.5: Possible overflow 2
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real KW_wTurWall( real rho, real mu, real y, real wTurMax )
{

return (real)(10*6.0)*mu/( ( (real)KW_beta1*rho*y*y ) + (real)SMALL );
}

this represents a simple function to compute the value of ω|wall as a wall boundary
condition. It is possible to see that if the near wall region is discretized such as y is very
small, the denominator could reach very small values, leading to possible overflows. In
order to tackle this problem, a SMALL value is added. This is basically a strategy to
avoid Inf /NaN and at the same time to limit the maximum value of ω|wall before its
computation. Another operation that could potentially lead to problems is sqrt, when
its argument, that normally should be positive, becomes small and finally negative.
Again, if it is known that from its physical meaning the argument has to be positive
but during the first iterations it becomes negative, the strategy is to force the argument
to be at least bigger than a certain small value, bounding it through max(argument,
SMALL) function.

Furthermore, it must be noted that SP computations could improve convergence with
respect to DP due to purely numerical dissipative effects. Anyway, it is mandatory to
check and validate the solver for both SP and DP. The idea is to simulate the same case
using both DP and SP, using DP solution as reference to check for possible local and
integral differences between SP and DP solution. This is showed in 6.2.4.

Besides this kind of "tricks" to bypass single precision numerical issues related
to Inf /NaN problems it is also necessary to minimize numerical accuracy degra-
dation due to reduced precision (with respect to DP). The idea is to solve the Eu-
ler/NS/(U)RANS equations in their non-dimensional form. Basically, the user inserts
boundary and initial/guess conditions in their intuitive dimensional form. Then, when
the solver is launched, all the input fields are transformed in their non-dimensional
equivalent. The equations are solved using non-dimensional variables. Finally results
are transformed back to dimensional form for easier post-processing. The idea here
is to try to have all the variables with different physical meanings in similar orders of
magnitude aiming to reduce numerical accuracy loss due to the floating point nature.

5.2.4 Debugging the device code

It is worth to discuss few aspects about how the device code has been debugged during
AeroX development. As said, the solver is composed by the host code and the device
code. Debugging the host code is done in the same way as for any other application
with usual tools like gdb and valgrind, especially when encountering segmentation
faults and floating point exceptions during execution.

The situation is different for what concerns the kernel code, written in OpenCL C
and compiled at run-time by the selected OpenCL implementation for the execution
on the selected device. Debugging kernel code is more difficult for different reasons.
However, few tools and strategies are enough to solve almost any problem. Here, the
debugging of the two most important source of bugs, floating point exceptions and
memory accesses errors for the device code are briefly discussed. One of the reasons
behind the difficulties in debugging device code is that on GPUs there is no operating
system kernel in execution, thus there is no checking and signaling for memory and
arithmetic errors. Thus, these checks must be performed in other ways.
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For what concerns floating point problems, they usually manifest themselves in
solver crashes due to floating point exceptions or NaN /Inf printed in residuals and
solutions. In fact, if a NaN /Inf is obtained in kernel it is then propagated in residuals
and consequently the solution. When these are read back to the host the user can easily
see that a problem occurred. As said in 5.2.2, residuals and solutions are obtained from
the GPU every user-defined number of iterations, and, since there is no direct check
by the GPU over arithmetic errors, it is possible that the problem manifested itself dur-
ing an iteration performed before the iteration immediately preceding the residuals and
solution check. Thus, it is important to find the exact iteration where the problem hap-
pened. Then it is possible to find the kernel where the problem happened and finally
the kernel code line. The strategy adopted to find the iteration and the specific ker-
nel involved in problems consists in reading back to the host all the buffers written by
the kernels just after their execution and search for possible NaN /Inf values between
the buffers elements. The latter operation can be easily performed with a for loop and
the isnan() and isinf() functions provided by the C/C++ standard library. The adopted
code is wrapped using macros and called right after kernels executions. For every buffer
involved in each executed kernel the macro showed in listing 5.6 is called:

Listing 5.6: Search for NaN/Inf inside kernels

# define checkNaN( gpuBufferName, cpuArrayName ) \
clEnqueueReadBuffer( queue, gpuBufferName##_GPU, CL_TRUE, 0, \

sizeof(cl_real)*gpuBufferName##_SIZE, &cpuArrayName[0], \
0, NULL, NULL ); \

{ \
for(label k = 0; k < cpuArrayName.size(); k++) \
{ \

if( isnan( cpuArrayName[k] ) || isinf ( cpuArrayName[k] ) \
{ \

std::cout << "At iteration " << N << " " \
<< "after " << KERNEL_NAME << " " \
<< #cpuArrayName << "[" << k << "]" \
<< " is NaN/Inf" << std::endl; \

found++; \
} \

}

The idea is to firstly read the buffer from the device into the host using the clEn-
queueReadBuffer function provided by the OpenCL API. Then it is possible to check
every element of the buffer for NaN and Inf values. Every buffer is read in blocking
mode. Obviously this slows down the executions due to the necessity of read multiple
buffers for different iterations before finding the exact point in the execution when the
problem is raised. Once the iteration and the kernel are found it is possible to check
for the exact operation involved with the arithmetic issue and possibly fix it. The pro-
grammer can be helped by the use of the printf() function. At the time of writing Intel,
NVIDIA and AMD implementations support OpenCL extensions that allow the use of
printf() function inside kernels. With this function it is possible to write on screen re-
sults of the computations while executing kernels. This function is supported by the
aforementioned device vendors both for CPU and GPU executions. It is also a good
choice to force the execution on a single core. This is also useful to perform bench-
marks. It is worth to notice a problem related to debugging, especially with SP. For
regular CPU code, the programmer writes a code that is then translated into the un-
derlying machine code by the compiler. During compilation and execution, however,
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instructions re-ordering could be applied for optimization. A possible drawback could
be that also on GPU modifying the code to print variables could result in a different
operations reordering. This in turn could influence the original code that involves the
numerical issue, resulting into a more difficult debugging. This could happen especially
when employing SP since operations could be quite sensible to numerical errors.

When programming with performance-oriented languages like C and C++ there is
no direct check on array bounds. Array boundary checks have to be explicitly imple-
mented by the programmer. It is possible that a programming error could result in
reading or writing in wrong memory locations. This would lead to buffer overflows.
When this happens, usually the involved process receive a segmentation fault signal
from the kernel. When this kind of bugs afflicts GPU executions what is seen during
this work is that either the solver crashes with NaN /Inf results or it crashes with an
error raised by the OpenCL API. Finding this kind of bugs is quite difficult. However a
relatively new tool, oclgrind [27] has been developed. As mentioned before, with this
tools it is possible to check buffers read/write operations for possible overflows. It is
also possible to check for possible data-races.

It must be noted that when the CPU is selected as the device, since the threads
are handled by the operating system kernel, memory accesses and arithmetic problems
are more easily caught. Furthermore vendors usually provides their own debug tools
alongside with their OpenCL SDK packages, e.g. CodeXL for AMD.

5.2.5 Profiling the device code

It is worth to discuss few aspects on how the kernel code has been profiled during this
work. Here the focus is on profiling single kernels and not entire executions. Thus
the aspects here showed are not directly exploited for the results showed when bench-
marking overall GPU executions against CPU executions (see 6.2.1). It is useful to
benchmark single kernels, rather than overall executions, in order to check if a strat-
egy performs better than another, especially when non-sequential memory accesses or
branch divergence cannot be avoided for a particular formulation. At the same time
it is reminded that one of the purposes of this work is to obtain a solver compatible
with the widest possible range of devices. Thus, general optimization is preferred over
architecture-specific optimization (e.g. considering warps/wave fronts sizes). Kernel
profiling can be done using the tools provided by specific OpenCL implementations,
e.g. CodeXL for AMD. Alongside with third-party tools, the OpenCL API itself of-
fers the possibility to directly profiling kernel executions, providing execution times.
Basically, in the host code, when asking for kernel execution, the call to clEnqueueN-
DRangeKernel showed in 4.4.3 can be bound to an OpenCL event that is used to
measure the execution time. Furthermore, for CPU executions it is possible to enforce
the use of a single thread (thus a single CPU core) on both AMD and Intel platforms.
This is useful to analyze how the solver scales when using multiple CPU cores (see 6).

5.3 Algorithms and formulations implementation

Here, some of the kernel code parts related to the most important solver components are
described. This is done in order to show how the numerical formulations are mapped
to the GPU architecture and OpenCL concepts described in 4. Obviously it is not
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possible to discuss all the details of all the implemented strategies here in this document.
However, some of the concepts behind the code that will be presented here are also
directly applied to other kernels that are not showed here. As an example, here the
implementation of the Roe fluxes is briefly described. However, the same concepts
regarding how the algorithm is mapped on the GPU architecture can be directly applied
also to AUSM+ and CUSP convective fluxes. The same idea regards SA and SST
turbulence models. Turbulence models consist in additional equations. Thus, what can
be said for the single SA equation can be also extended to the two SST equations.

5.3.1 Local Time Stepping and computationally similar kernels

The first kernel executed is related to the pseudo time step computation. The code is
quite simple and the formulation is explained in 2.1.10. In listing 5.7 the LTS code is
showed.

Listing 5.7: Local Time Stepping kernel

__kernel void computeDeltaT
(

real gamma,
real CFL,
__global real* dx,
__global real* Wr,
__global real* Wx, __global real* Wy, __global real* Wz,
__global real* We,
__global real* mu, __global real* muTur, __global real* magV,
real Pr, real PrTur,
__global real* dt

)
{

// Extract work-item ID
int k = get_global_id(0);

// Extract cell’s size from global memory buffer and store it as private
variable

real tdx = dx[k];

// Read the solution from global memory buffers and store it into private
memory

real rho = Wr[k];
real Ux = Wx[k]/rho;
real Uy = Wy[k]/rho;
real Uz = Wz[k]/rho;

// Perform the required LTS computations
real magU = sqrt( Ux*Ux + Uy*Uy + Uz*Uz );
real p = ( gamma - 1.0 )*( We[k] - 0.5*rho*magU*magU );
real c = sqrt( gamma*p/rho );

real SRc = max( magU, magV[k] ) + c;
real SRv = gamma/rho*( mu[k]/Pr + muTur[k]/PrTur )/( tdx + VSMALL );

// Finally write pseudo-time step value back to global memory buffer
dt[k] = CFL*tdx/( SRc + SRv );

};

First of all the kernel is declared alongside its arguments. Then the work-item ID
(k) is returned by the get_global_id(0) function. Basically a one-dimensional array
(NDRange) of work-items is generated with one work-item assigned to one domain
cell (k) in order to compute the pseudo time step of that cell. The next lines are used to
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read data from buffers for what concerns the solution of the previous iteration (or the
initial guess if this is the first iteration). dx represents a measure of the size of the cell.
In this work dx is computed as the ratio between the cell volume and the cell surface,
although different strategies can be employed, e.g. cubic root of the volume. The read
variables are used to compute the quantities SRc and SRv, as explained in 2.1.10. It’s
evident here that within this kernel there are few floating point operations with respect
to the total number of global memory write and read operations. Considering that
accessing global memory requires O(100) clock cycles it is evident that this kernel will
not achieve huge speed-ups. Nonetheless, it is easy to see that index k is used in every
memory access, meaning that no addressing is necessary and that memory accessed
sequentially. No branch divergence is possible in this kernel as there are no branches.
From the host point of view the kernel is enqueued specifying an NDRange size equal
to the total number of cells, i.e. Nv. The host code employed to enqueue the kernel
execution is the following:

Listing 5.8: Local Time Stepping Host Code

runKernel( computeDeltaT, Nv, queue );
# include "debugger.C

It is reminded that, as explained in 4.4.3, runKernel() is not the standard OpenCL API
but just a C wrapper macro adopted in this work that ease the syntax when enqueing
simple 1D NDRanges. It is possible to see that, right after the kernel launch, the code
to perform debugging is placed but executed only if specifically requested by the user.
This is done to avoid useless overhead due to continuous data transfer between device
and host to check for NaN /Inf values. The debugging strategy is explained in 5.2.4.

AeroX has different kernels that exhibit about the same memory access pattern and
about the same ratio between memory access and floating point computations here de-
scribed. As an example, the kernel that updates the molecular viscosity based on the
temperature (Sutherland), as explained in 2.1.1, has basically the same structure: no
branch divergence, no addressing of any kind but few floating point operations (with
respect to global memory accesses). Furthermore data is read sequentially from global
memory. The kernel that computes terms for unsteady simulations through DTS strat-
egy has again the same structure.

5.3.2 Convective Fluxes for internal faces

Here, the focus is on convective fluxes computation. Only the most important aspects of
the implementation of the Roe fluxes will be presented. From the computational point
of view the same concepts can be directly applied to the implementation of AUSM+
and CUSP fluxes. AeroX is capable to handle hybrid unstructured grids. Since with
unstructured grids there is no simple index-based way to access data in memory, no per-
fect sequential memory access (see 4.3.3) is possible for this kind of kernel. However,
depending on mesh entities ordering and the underlying hardware architecture [7], it is
still possible to coalesce some memory accesses. Perfect coalesced memory access is
lost due to the fact that the kernel is executed in one instance for each internal face (i.e.
assigning one work-item to one internal face) while accessing data of the 4 neighbor
cell. Each face has 2 direct neighbor cells. However, in order to achieve second order
spatial discretization through high resolution strategy, two other cells are required. This
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allows to obtain an extended cell set [136]. It must be noted that when employing the
4 cells strategy a proper pre-processing algorithm is required. During pre-processing,
for each face, the 2 extended cells have to be found. This algorithm is computationally
expensive and not well suited for the GPU architecture. Thus, it is performed during
the pre-processing stage on CPU. It must be noted however that the algorithm is per-
formed only once since the extended cells IDs are kept constant for each face during the
entire simulation, even when mesh deformation is employed. Furthermore, this process
is parallelized on CPU using OpenMP since this stage can take few seconds when the
mesh is composed by millions of cells.

The host code adopted to enqueue the kernel execution on the device is here showed:

Listing 5.9: Internal faces convective fluxes kernel enqueuing

// Convective fluxes kernel enqueue
runKernel( makeInternalFluxesInviscid, Nfi, queue );
# include "debugger.C"

the idea is basically to assign each of the Nfi internal faces to each work-item. In
a typical mesh for industrial or academic applications, usually millions of faces are
employed. This means that each GPU core (Processing Element) will be handling
thousands of work-items. The switch between the different formulations, i.e. Roe,
AUSM+, CUSP is handled through pre-processor directives inside kernel code in order
to avoid the use of conditional statements. Kernels related to convective fluxes exhibit
very high number of floating point operations to global memory accesses ratio. This
is why, as showed in 6.2.2 by profiling these kind of kernels, it is possible to achieve
the highest speed-ups. Since convective fluxes kernels contain numerous floating point
operations it is important to check for possible numerical problems, especially when
employing SP. Again, after the kernel execution, the user has the possibility to call the
debug code to investigate possible numerical issues. In fact, during the development
of AeroX, convective fluxes kernel code appeared to be one of the most susceptible of
numerical problems.

Given the way OpenFOAM handle the mesh, each face features an "owner" and a
"neighbor" cell, basically the cell on one side of the face and the cell on the other side.
Furthermore, in this work also "extended owner" and "extended neighbor" are defined
to achieve second order through high resolution. These buffers of integer type basically
provide the addressing required to read from memory the cell solution of the previous
explicit iteration in order to compute the fluxes. Other buffers that contains quantities
that are directly associated to the internal face, like unit vectors and face area and ALE
velocity, are instead directly accessed with the face index. This means that when inves-
tigating a case with an unstructured mesh, due to the aforementioned addressing, there
is a performance loss due to non-sequential memory accesses. It is possible to improve
performances by using the renumberMesh tool provided by OpenFOAM to reorder
mesh entities indexes. Anyway, as previously mentioned, the purpose of this work is
to obtain a general purpose solver capable to handle the widest possible mesh formats.
This means that in order to be compatible with all kind of unstructured meshes a per-
formance loss is inevitable. It must be noted, however, that despite the clock cycles
lost due to non-coalesced memory accesses, the convective fluxes kernel exhibits an
high number of heavy floating point operations, such as trascendental functions. Thus,
the performance loss due to memory access is partially masked by the high number of
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floating point operations and scheduled work-items. Furthermore it must be noted that
modern hardware is usually capable to coalesce some memory accesses even when no
perfect sequential accesses are employed [7]. Thus, mesh renumbering usually provide
advantages thanks to the fact that faces with consecutive indexes are usually related
to cells with near indexes. Listing 5.10 shows the first stage of the convective fluxes
kernel, where data stored in global memory is read from buffers and temporarily saved
in work-item private memory.

Listing 5.10: Input stage of convective fluxes kernel

// Work-item ID extraction
int i = get_global_id(0); // Interface label

// Addressing face -> cells
int id_L = owner[i]; // "owner" cell index
int id_R = neighbour[i]; // "neighour" cell index
int id_LL = owner[i]; // "extended owner" cell index
int id_RR = neighbour[i]; // "extended neighbour" cell index

// Face-related quantities
real Sf = S[i]; // face area
real n[3] = { nx[i], ny[i], nz[i] }; // face unitary normal vector
real t[3] = { tx[i], ty[i], tz[i] }; // face unitary tangent vector
real b[3] = { bx[i], by[i], bz[i] }; // face unitary vector to complete the tern
real Cf[3] = { CCfx[i], CCfy[i], CCfz[i] }; // face center
real Vf[3] = { ALEx[i], ALEy[i], ALEz[i] }; // ALE velocity

// Cells-related quantities
real C_LL[3] = { CCcx[id_LL], CCcy[id_LL], CCcz[id_LL] }; // ext. owner cell center
real C_L[3] = { CCcx[id_L], CCcy[id_L], CCcz[id_L] }; // owner cell center
real C_R[3] = { CCcx[id_R], CCcy[id_R], CCcz[id_R] }; // neighbour cell center
real C_RR[3] = { CCcx[id_RR], CCcy[id_RR], CCcz[id_RR] }; // ext. neigh. cell

center

// Solution of the previous iteration
// ext. owner solution
real W_LL[5] = { Wr[id_LL], Wx[id_LL], Wy[id_LL], Wz[id_LL], We[id_LL] };
// owner solution
real W_L[5] = { Wr[id_L ], Wx[id_L ], Wy[id_L ], Wz[id_L ], We[id_L ] };
// neighbour solution
real W_R[5] = { Wr[id_R ], Wx[id_R ], Wy[id_R ], Wz[id_R ], We[id_R ] };
// ext. neighbour solution
real W_RR[5] = { Wr[id_RR], Wx[id_RR], Wy[id_RR], Wz[id_RR], We[id_RR] };

It is understood that here the __kernel keyword with all the arguments is not showed
for simplicity. The work-item ID is returned by the usual get_global_id(0) function
and stored in the private memory variable i which represents the absolute internal face
index. It is reminded that internal faces indexes in OpenFOAM come before boundary
faced IDs. The index is then used to access the addressing buffers in order to obtain
the four cells indexes. These indexes are subsequently used to get cell data, like cells
centers and obviously the solution of the previous explicit iteration. The second stage
is the actual call to the function that contains the Roe algorithm: ,

Listing 5.11: Convective fuxes algorithm selection

// Fluxes initialization
real F_LR[5] = { 0.0, 0.0, 0.0, 0.0, 0.0 };

#if FLUXES == ROE
// Call Roe algorithm
RoeCenteredFlux( gamma, n, t, b, Vf, W_L, W_R, W_LL, W_RR, F_LR);
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#elif FLUXES == AUSM
// Call AUSM+ algorithm
#else
// Call CUSP algorithm
#endif

Basically the data read from memory is passed to the user-selected fluxes function
thanks to aforementioned mechanism that employs pre-processor directives and run-
time compilation to avoid the use of C conditionals. Here the F_LR function argument
represents the output while the other arguments represent the inputs. Finally, in listing
5.12 the final stage of the kernel is showed: here the work-item private array is finally
stored into global memory buffers in order to be available to subsequent kernels, like
residual assembly.

Listing 5.12: Storing convective fluxes into global memory

// Write fluxes in buffers
Fr[i] = F_LR[0]*Sf;
Fx[i] = F_LR[1]*Sf;
Fy[i] = F_LR[2]*Sf;
Fz[i] = F_LR[3]*Sf;
Fe[i] = F_LR[4]*Sf;

Now it’s time to discuss what happens when the Roe fluxes function is called. Inside the
function there are no global memory or local memory operations: all memory accesses
are work-item private. This means that all the work-items can proceed with their work
concurrently. This is basically the heaviest algorithm within AeroX from a floating
point operation count. For these reasons and since there is nothing particularly interest-
ing to be noted from a computational point of view (e.g. branch divergence or coalesced
memory accesses), it is not convenient to show here all the lines of code. However it is
easy to understand that such kind of heavy and parallel computations are well suited for
the massively parallel GPU architecture. This is why, as said before, high speed-ups are
obtained by this kernel, as benchmarks show in 6.2.2. It is worth to briefly introduce
how the Roe algorithm is handled in 3D alongside with the high-resolution limiter and
the necessary entropy fix. The strategy is discussed in details in [136]. Here the most
important steps of the Roe algorithm are introduced:

1. The solution stored as conservative variables is locally adjusted in order to take
into account the material velocity through ALE formulation (2.1.3);

2. The adjusted solution is then projected from the global cartesian reference frame
to a face-local reference frame, where the face normal n represents the first direc-
tion. This allows to employ the 1D Roe formulation on a 3D problem;

3. From the solution defined in the local reference of frame, different quantities,
useful for the Roe algorithm, are computed, such as the Roe’s average state;

4. Eigenvalues and eigenvectors are computed using the information provided by the
owner and the neighbor cells;

5. Eigenvalues are opportunely modified using the Harten and Hyman entropy fix in
order to avoid non-physical solutions;

6. 2nd order centered fluxes are computed using the solution of the owner and neigh-
bor cells;
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7. The variable jumps are computed: between the owner and neighbor, between the
extended owner and the owner and between the extended neighbor and the neigh-
bor;

8. The jumps are processed by the Van Leer flux limiter;

9. The Roe 1st order upwind fluxes are assembled;

10. Centered and upwind fluxes components are added together;

11. Fluxes are adjusted to take into account ALE formulation;

12. Fluxes are transformed from the face-local point of view to the global reference
of frame;

This algorithm eases the application of the flux limiter, thanks to the 4 cells strategy,
to achieve high resolution. However, it could be also possible to reduce the total com-
putational costs by directly implementing the final expressions of the Roe’s fluxes, as
explained in [48]. This would reduce the number of floating point operations required to
perform the different steps as independent stages. The key difference is that using such
a strategy it is not possible to directly apply the 1D concepts to achieve high resolution.
However, high resolution could be implemented through a slope limiter strategy by
considering opportunely modified right and left states obtained from the interpolation
of the solutions of the four cells. The interpolation algorithm itself however requires
non-negligible computational effort, that is instead not required using the previously
described strategy. Thus, on one side the first strategy requires high computational ef-
fort due to different explicit transformations to allow the use of the 1D formulations.
On the other side, with the interpolation strategy, the additional effort is related to the
interpolation algorithm. From the point of view of results accuracy the two strategies
are equivalent. However from tests it seems that slightly more numerical robustness is
obtained with the first strategy in SP executions.

It must be noted that when performing RANS simulations with SA or SST turbu-
lence models, the convective fluxes related to the additional turbulence models equa-
tions are computed in the same kernel, alongside Roe’s fluxes. Listing 5.13 shows the
bulk of kernel code for RANS convective fluxes computation. The structure of the code
is identical to what previously presented.

Listing 5.13: RANS convective fluxes

#if TURBULENCE == SA
// SA convective flux initialization
real Fn = 0.0;

// SA solution is read
real nuTilda_L = nuTilda[id_L];
real nuTilda_R = nuTilda[id_R];

// SA convective flux computation
SA_advection( n, Vf, W_L, W_R, nuTilda_L, nuTilda_R, &Fn );

// SA convective flux is stored to global memory
FnuTilda[i] = Fn*Sf;
#elif TURBULENCE == KW
// SST convective fluxes initialization
real Fk = 0.0;
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real Fw = 0.0;

// SST solution is read
real kTur_L = kTur[id_L];
real kTur_R = kTur[id_R];
real wTur_L = wTur[id_L];
real wTur_R = wTur[id_R];

// SST convective fluxes computation
KW_advection( n, Vf, W_L, W_R, kTur_L, kTur_R, wTur_L, wTur_R, &Fk, &Fw );

// SST convective fluxes are stored to global memory
FkTur[i] = Fk*Sf;
FwTur[i] = Fw*Sf;
#endif

It must be noted that in this work convective fluxes are computed and then saved in
fluxes buffers instead of being directly employed to update residuals buffer. This is the
same strategy adopted in [66]. The main reason behind this choice is given by the GPU
architecture and OpenCL specifications. In fact, the more intuitive way to approach the
problem would be to execute a convective fluxes kernel and directly write the internal
face fluxes inside the two related cells (owner and neighbor) residuals. However this
is not directly possible since for the same cell residuals stored in global memory mul-
tiple work-items from different work-groups would write in the same global memory
locations concurrently. Another strategy would be to execute a kernel assigning one
work-item to one domain cell. Each work-item would loop over the faces, compute
the fluxes and then directly update the cell residuals. However, the same face fluxes
would be computed two times, wasting computational time. Furthermore, with hybrid
meshes this would lead to branch divergence, since different work-items would loop on
different number of faces.

5.3.3 Wall treatment

Here the attention is focused on the most important computational aspects regarding
the kernel code for automatic wall treatment described in 2.1.9. This is useful only for
viscous simulations. In particular, the value of uτ is required over wall faces in order
to compute τ = −ρu2

τ used to compute wall viscous fluxes. As will be presented in
5.3.4, convective and viscous fluxes over boundary faces are computed inside boundary
conditions kernels. However, those kernels are executed once the input arguments are
ready. The idea is to allocate a buffer, uTau, to be used inside boundary conditions
and in other kernels that requires wall data. Considering the wall face k assigned to
work-item k, the uTau[k] value of the previous pseudo time iteration is used as input
argument to the wallFunction() function through the private variable uTauPriv. The
value returned by the function is then stored in uTau[k]. It worth to discuss what hap-
pens inside wallFunction() for what concerns computational aspects. This is showed
in 5.14:

Listing 5.14: wallFunction function

real wallFunction( real y, real dU, real rho, real mu, real uTauPriv )
{

// Set the same number of iteration for each work-item and perform the
// Newton-Rapson loop
int maxIter = 20;
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for ( int iter = 0; iter < maxIter; iter++ )
{

real f = dU/uTauPriv - uPlus( y, rho, uTauPriv, mu );
real df_du = dU/(uTauPriv*uTauPriv) + duPlus_dyPlus( y, rho, uTauPriv, mu

)*y*rho/( mu + SMALL );
real duTau = f/( df_du + SMALL );
uTauPriv += duTau;

}
return uTauPriv;

}

The idea is to compute the value of uτ using an iterative procedure based on the
Newton–Raphson algorithm. As explained in 2.1.9 the idea is to implement a par-
ticular wall treatment that allows the solver to automatically switch between the vis-
cous sublayer and the log layer formulations on the basis of geometric and flow condi-
tions. The switch is not performed using a step function but through a smooth function
that weights the two contributions. The wallFunction() function is executed by each
work-item, each one for its particular wall face. The function showed in 5.14 is called
from a kernel that basically reads global memory data, passes it to the wallFunction()
function and finally writes results in uTau buffer at location k. However, inside the
function all the memory accesses are performed with private memory variables. Due
to the Newton–Raphson loop and the called functions numerous floating point opera-
tions are performed inside wallFunction(). duPlus_dyPlus() and uPlus() functions
are called to evaluate and blend the contributions given by viscous sublayer and log
region but are not here discussed as they are not important from the GPGPU point of
view. The Newton–Raphson loop is performed 20 times equally for each work-item.
This all means that an high floating point operations to global memory accesses ratio is
achieved inside the kernel. The Newton–Raphson for loop is repeated 20 times without
any convergence check in order to avoid possible branch divergence due to different
work-items reaching convergence with different number of iterations. 20 iterations are
enough for every possible situation, especially during the first iterations. It is also re-
minded that the value of uTau from the previous pseudo time iteration is used as a guess
solution for the Newton–Raphson procedure, reducing possible convergence problems.
As it is possible to see, SMALL values are adopted to avoid floating point issues, espe-
cially with SP. It is reminded also that these 20 iterations are performed for each wall
face inside a single pseudo time iteration. Thus, if for some reasons 20 iterations are
not enough inside a single pseudo time iteration, further pseudo time iterations (and
thus Newton–Raphson iterations) are anyway performed to reach convergence. This is
another advantage provided by the use of the pseudo time concept.

5.3.4 Boundary conditions

Here, the implementation of boundary conditions is briefly presented. As explained
in 2.1.8, different kinds of boundary conditions are implemented in AeroX. Here the
focus is just on computational aspects. The adopted strategy for boundary conditions
is to write one kernel for each type of boundary condition. From the point of view of
execution and memory accesses all the kernels related to boundary conditions are very
similar. With OpenFOAM, boundary faces of the same patch have consecutive IDs.
The idea here is to execute a kernel for each patch and assign one work-item to one
boundary (patch) face. The host job is to loop over all patches and enqueue for execu-
tion the correct kernel based on the physical properties of the boundary. The physical
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type of each patch is specified by the user in the constant file of the OpenFOAM case
files hierarchy. Listing 5.15 shows the simplified host code that performs this operation:

Listing 5.15: Host code for boundary conditions handling

// loop over all patches
forAll( mesh.boundaryMesh(), iPatch )
{

// extract physical type from OpenFOAM dictionary
word physicalType = mesh.boundaryMesh().physicalTypes()[iPatch];

// extract first face ID and total number of faces
label startFace = mesh.boundaryMesh()[iPatch].start();
label nFaces = mesh.boundaryMesh()[iPatch].faceAreas().size();

// ... if/else statements to choose the correct kernel
else if( physicalType == "exampleBC" )
{

// variable kernel arguments setting
setKernel( exampleBC, 0, startFace );

// exampleBC kernel enqueueing
runKernel( exampleBC, nFaces, queue );
# include "debugger.C"

}
// ... if/else statements to choose the correct kernel

}

It is possible to see that the mesh object provided by the OpenFOAM API is used to
loop over the patches specified in the boundary dictionary. This dictionary is then used
in the loop to extract the physical type of the patch (e.g. wall, periodic, characteristic-
based,...), the first face ID of the patch (startFace) and the total number of faces. The
physical type of the patch is used to choose the correct kernel to be executed using an
if/else statements list (this could be also done using a switch statement). The total num-
ber of faces (nFaces) is directly used to set the total number of work-items composing
the NDRange. The startFace integer is passed as an argument to the kernel sched-
uled for execution using the setKernel wrapper macro that calls OpenCL API under
the hood. The reason to pass startFace to the exampleBC kernel will be explained
shortly.

Another strategy to handle boundary conditions would be to execute one single ker-
nel for each of the Nfb faces and then handle the different kinds of patches using con-
ditional statements inside the kernel. However, this would lead to different problems.
In fact this would mean that conditional statements would be required inside kernel
code to opportunely switch between numerical formulations based on face ID. Fur-
thermore different boundary conditions require different data stored in global memory.
This would mean that, in different kernel paths, accesses to different global memory
buffers would be required, leading to branch divergence and non-coalesced memory
accesses. The only drawback of the implemented strategy is that usually the number
of faces that compose a patch is two or three orders of magnitude smaller that the total
number of domain cells Nv and internal faces Nfi. As an example, the mesh for the
DPW2 case (see 7.3) contains 2 · 106 cells, 4.5 · 106 internal faces, 1 · 103 faces for the
symmetry plane, 5 ·102 far-field faces and 8 ·104 faces for the aircraft surface. Consider
that nowadays a mid-range gaming GPU has around 2 · 103 cores it is easy to see that
in some cases the total number of work-items is smaller that the total number of avail-
able cores. It must be noted however that kernels that execute boundary conditions are
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heavy for what concerns floating point operations as they have to compute both con-
vective and viscous fluxes. Thus, even if the total number of work-items is in the order
of the total number of GPU cores, computational efficiency is not particularly affected
when considering the overall execution.

Here the skeleton of a boundary condition kernel is briefly presented. The focus is
again on the computational aspects rather than the numerical formulations. Listing 5.16
represents an example of a boundary condition kernel:

Listing 5.16: Kernel code for boundary conditions

__kernel void exampleBC
(

int startFace,
// other arguments

)
{

// Extract the global face ID and
int ii = get_global_id(0);
int i = ii + startFace;

// Load face-cell connectivity and metrics
loadConnectivityMetrics();

// Load the solution
real rho_B = Wr[id_L];
real mx_B = Wx[id_L];
real my_B = Wy[id_L];
real mz_B = Wz[id_L];
real Et_B = We[id_L];

// Build the ghost cell solution
real rho_B, mx_B, my_B, mz_B, Et_B;
buildGhostCell();

// Build 4-cells solution arrays
real W_LL[5] = { Wr[id_LL], Wx[id_LL], Wy[id_LL], Wz[id_LL], We[id_LL] };
real W_L[5] = { Wr[id_L ], Wx[id_L ], Wy[id_L ], Wz[id_L ], We[id_L ] };
real W_R[5] = { rho_B, mx_B, my_B, mz_B, Et_B };
real W_RR[5] = { rho_B, mx_B, my_B, mz_B, Et_B };

// Save boundary values for gradients
updateBoundaryValues();

// Call convective fluxes aglorithm
#if FLUXES == ROE
RoeCenteredFlux( gamma, n, t, b, Vf, W_L, W_R, W_LL, W_RR, F_LR);
#elif FLUXES == CUSP
// call CUSP fluxes
#else
// call AUSM fluxes
#endif

// Save convective fluxes
Fr[i] = F_LR[0]*Sf;
Fx[i] = F_LR[1]*Sf;
Fy[i] = F_LR[2]*Sf;
Fz[i] = F_LR[3]*Sf;
Fe[i] = F_LR[4]*Sf;

// Perform the same operation for viscous fluxes
viscousFluxes();

// Perform the same operation for turbulence models
turbulence();

}
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At the beginning, global memory is accessed using loadConnectivityMetrics() macro
to extract geometrical and connectivity data for the current face and its owner cell (see
5.1.3). The startFace value is here used to extract the global face ID, ii, from the
patch-local face ID, i, (i.e. the work-item ID). The global ID is used to access the faces
owner cells array, obtain the owner cell ID (id_L) and access all the cell required data
(solution and geometrical properties). This is also done for the extended cell (ID given
by id_LL) for high resolution. Knowing the solution and the physical type of the patch
it is possible to build the ghost cell solution. For simplicity the code related to viscous
computations is not showed. However, the work flow, from a computational point of
view, is similar to what seen when discussing convective fluxes. Finally, fluxes are
stored in global memory using the global face ID, ii, in order to be consistent with the
final residual assembly (see 5.3.6). The very last step is related to turbulence models
since they require convective and viscous fluxes computation as well.

5.3.5 Viscous fluxes

It is important to introduce the fundamental aspects related to viscous fluxes compu-
tation. The computation of the viscous fluxes themselves is somehow similar to the
previously discussed convective fluxes 5.3.2. In fact, the idea is again to assign one
work-item to one internal face, use the addressing buffers to access the neighbor and
owner cells data, compute the fluxes through a dedicate algorithm and finally store the
fluxes into global memory to be used for later residual assembly 5.3.6. As with con-
vective fluxes, this is done not only for the Navier–Stokes equations but also for the
turbulence models equations related to SA and SST turbulence models. From the point
of view of the total number of floating point operations, viscous fluxes require less
computational effort than convective fluxes, however they require more global mem-
ory accesses. Thus the computational efficiency is lower, as showed in 6.2.2. Despite
the fact that accessing extended cells solution is not required for viscous fluxes, the
gradients of velocity and temperature are required. Since velocity is a vector field, its
gradient is a tensor field. Thus 9 float/double have to be read for both the owner and
neighbor cells for each work-item i computing viscous fluxes of face i. The same is
valid for the 3 scalars related to the temperature gradient of each cell. Furthermore,
when performing RANS simulations, 3 scalars are also read from global memory for
what concerns ν̃ gradient for SA. 6 scalars, for ω and k gradients, are instead required
for SST. Alongside these variables, other variables have to be read from global mem-
ory within the viscous fluxes kernels. These are represented by solution variables of
the previous iteration, geometrical faces data, molecular viscosity µ (since by using the
Sutherland model each cell has its own independent value based on local temperature),
turbulent viscosity (due to Bussinesq hypothesis). These quantities are read from global
memory for both owner and neighbor cells related to each face (work-item).

As explained in 2.1.6 the Gauss formulation is here adopted to compute the required
gradients on cells. The Gauss formulation represents a good trade-off between results
accuracy and computational efficiency, especially for GPU executions. In fact, another
possibility would be the use of a least squares approach. This was successfully adopted
for a GPU accelerated full potential explicit solver [66]. The least squares strategy,
however, would be quite expensive from a computational point of view in this work
since for each variable of each domain cell the solution of a linear system is required
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and, as explained before, the gradients of velocity, temperature and turbulence models
variables are required. The main problem, however, is represented by GPU executions
with hybrid meshes, where different cells could have different numbers of neighbors,
thus different system sizes, thus different computational effort for each GPU core, thus
branch divergence. Non-coalesced memory accesses could be also a problem with un-
structured meshes. Furthermore, especially for SP executions, a least square approach
could lead to numerical problems when solving the linear system with particular cell
centers alignments. The Gauss algorithm here adopted still suffers from a slight effi-
ciency loss when employing hybrid meshes. During gradients assembly, using expres-
sion 2.1.6 the idea is in fact to execute a kernel of Nv work-items, one for each cell.
Since the assembly of the cell gradient is performed with a loop over the cell faces
which can differ in number between different cells, different work-items could need to
perform a different numbers of operations. Here, the bulk of the code for the Gauss
algorithm is presented. In order to compute the k-th cell gradient for a variable X, the
values of X over the faces of k are required. Thus, the first stage of the algorithm is
the interpolation of the cell values over the faces. Boundary faces values are computed
separately, inside boundary conditions kernels, where the solution have to be computed
anyway. Listing 5.17 shows the kernel code for the interpolation of solution values over
the internal faces:

Listing 5.17: Internal faces value interpolation

__kernel void gradientsInternalFaces
(
// arguments
)
{

int i = get_global_id(0);

// For each internal face, find the ID of the two cells (owner and neigh.)
int id_L = localOwner[i];
int id_R = localNeighbour[i];

// Extract the interpolation wheights for the two cells of face i
real w_L = linearInterpolate[i];
real w_R = 1.0 - w_L;

// Interpolate the solution first (conservative variable)
real rho_I = w_L*Wr[id_L] + w_R*Wr[id_R];
real mx_I = w_L*Wx[id_L] + w_R*Wx[id_R];
real my_I = w_L*Wy[id_L] + w_R*Wy[id_R];
real mz_I = w_L*Wz[id_L] + w_R*Wz[id_R];
real Et_I = w_L*We[id_L] + w_R*We[id_R];

// From the interpolated solution, find the face value of U,T and turb.
quantities

Uix[i] = mx_I/rho_I;
Uiy[i] = my_I/rho_I;
Uiz[i] = mz_I/rho_I;
Ti[i] = ( Et_I - 0.5*( mx_I*mx_I + my_I*my_I + mz_I*mz_I )/rho_I )/( rho_I*Cv

);
# if TURBULENCE == SA

NuTildai[i] = w_L*NuTilda[id_L] + w_R*NuTilda[id_R];
# elif TURBULENCE == KW

KTuri[i] = w_L*KTur[id_L] + w_R*KTur[id_R];
WTuri[i] = w_L*WTur[id_L] + w_R*WTur[id_R];

# endif
}
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One work-item is assigned to each internal face of the domain for a total of Nfi faces.
Thus the host code for kernel enqueuing looks similar to 5.9, except for the different
kernel name. It is worth to explain few aspects of this kernel. First of all the work-item
ID, thus the internal face index, is obtained as usual. Then the owner and neighbor
cells ID are obtained from the addressing buffers. A buffer, linearInterpolate, stored
in global memory, is used to store the weights for the two cells related to the face i.
Obviously the same cell features different interpolation weights depending on the con-
sidered face. In order to be consistent and to reduce memory requirements, just the
owner weight is stored, the neighbor weight is clearly computed as the complemen-
tary to 1.0. It must be noted that different strategies could be adopted to compute the
weights. In any case weights are computed once during pre-processing by the host
code on CPU. In this work the weights are directly obtained by the OpenFOAM im-
plementation. In any case it is possible to see that in this kernel the solution is accessed
through addressing, thus with a potential performance loss due to non-coalesced ac-
cesses. Another aspect regards the interpolation. Here the strategy is to firstly perform
the interpolation on conservative variables and then convert the conservative variables
into the required variables for gradients, i.e. temperature and velocity. Another pos-
sibility would be to firstly convert conservative variables to velocity and temperature
and then perform the interpolation. No particular differences in results were obtained
with this second strategy. However, this second strategy requires more floating point
operations since the computations of velocity and temperature need to be performed
twice, one for the owner cell and one for the neighbor cell. The last lines of the kernel
are related to the final storing of the interpolated values to buffers in global memory.
Here, the results of the conversion from conservative variables to velocity and tempera-
ture are directly stored without the necessity of intermediate work-item private memory
variables. Finally, for what concerns turbulence, no particular floating point operations
are required, since equations just require the gradients of the solution itself. This is true
both for SA and SST.

The last stage of the gradients computation is the use of the Gauss algorithm. At
this point buffers Uix, Uiy, Uiz, T (and eventually NuTildai, KTuri and WTuri) contain
internal and boundary faces values. Thus, the final stage kernel in gradients assembly
is represented by listing 5.18:

Listing 5.18: Gradient assembly through Gauss algorithm

__kernel void assemblyGradient
(
// arguments
)
{

int k = get_global_id(0);

// Variables initialization
real tTx = 0.0;
real tTy = 0.0;
real tTz = 0.0;
// same with velocity variables
// same with turbulence model variables

// extract total number of face of cell k
int numFaces = cellFacesDelimiter[k+1] - cellFacesDelimiter[k];
int startFace_idx = cellFacesDelimiter[k];
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for( int i = 0; i < numFaces; i++ )
{

// extract f-th face index of cell k
int ii = cellFaces[startFace_idx + i];

// extract "signum" of face k
int tsgn = signum[startFace_idx + i];

// build face area vector
real tS = tsgn*S[ii];
real Sx = tS*nx[ii];
real Sy = tS*ny[ii];
real Sz = tS*nz[ii];

// extract face value of variable
real tTi = Ti[ii];
// same with velocity variables
// same with turbulence model variables

// integrate over cell boundaries, Gauss formula
tTx += ( tTi *Sx );
tTy += ( tTi *Sy );
tTz += ( tTi *Sz );
// same with velocity variables
// same with turbulence model variables

}

real wn = RELAX_GRAD; // user-defined variable
real wo = 1.0 - wn;

// extract cell volume to complete Gauss formula
real tVV = VV[k];

// update gradient values through relaxation
gradT_x[k] = gradT_x[k]*wo + tTx /tVV*wn;
gradT_y[k] = gradT_y[k]*wo + tTy /tVV*wn;
gradT_z[k] = gradT_z[k]*wo + tTz /tVV*wn;
// same with velocity variable
// same with turbulence model variables

}

It is noted that here for simplicity only the lines of code related to the temperature gra-
dient are showed. The computation of the velocity gradient is conceptually identical
but from a mathematical point of view a tensor will be produced, which is translated
in a matrix from a computational point of view. For what concerns turbulence models
variables, again they are conceptually identical to temperature since they all represent
scalar fields and their gradients are represented by vector fields. The algorithm and its
kernel implementation are straightforward. The idea is to execute Nv instances of the
kernel, one for each domain cell, assigning the k-th work-item to the k-th cell. Firstly
the gradients are defined as private memory variables and initialized to 0. This is done
in order to store the gradients into temporary variables and to update the global mem-
ory data only at the end, right after a relaxation procedure. The next step is to extract
the total number of faces of the k-th cell. This is done using an integer buffer, cell-
FacesDelimiter that is filled using the strategy presented in 5.1.3. This buffer is used
both to extract the total number of faces surrounding the cell and to find the starting
point inside the cellFaces and signum buffers to extract k-th i-face related data. ii is
the OpenFOAM global ID of the i-th face of cell k and is used to extract the area of
the face (from buffer S) and the unitary vector (from buffers nx, ny, nz) in order to
build the face area vector. The signum buffer just contains +1 or −1 and is used to
correct the direction of the face area vector. This is done in order to reduce memory
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consumption since otherwise it would be necessary to store the unit vector for each face
twice, once for each cell sharing the face. This could also be performed by checking
if the k-th cell is the owner or the neighbor of the i-th cell. However the implemented
strategy is slightly more efficient since the other proposed strategy would require the
use of conditional statements and thus would lead to branch divergence issues. After
the extraction of the temperature value over the face, the contribution is accumulated
in the private variable previously defined. This way it is possible to proceed with the
numerical integration. Finally, after the loop, the result is divided by the volume to
complete the Gauss algorithm and obtain the gradient reconstruction. However, the re-
sult is not directly used to store the gradient in global memory. A relaxation strategy
is instead performed using a user-defined variable RELAX_GRAD. Gradients relax-
ation is another strategy employed to help convergence. It can be applied thanks to the
fact that a single pseudo time iterations has no physical meaning. Otherwise, with an
unsteady global time stepping strategy, this would not be possible since full gradients
would be required. Gradients relaxation helps convergence especially during the first
iterations.

Due to the aforementioned addressing and the quite low floating point computations
to global memory accesses ratio, the kernels related to viscous fluxes exhibit less com-
putational efficiency with respect to the convective fluxes kernels. In order to try to
tackle this problem, all the kernels related to viscous fluxes are computed every N ex-
plicit iterations, while convective fluxes are computed within each explicit iteration. N
is a user-defined parameter. The key idea here is to try to find a good balance between
convergence rate and computational effort. From the tests performed in this work it
seems that usually using N = 5 do not afflict convergence rate too much, while it allows
to reduce the time/iteration/cell value (see 6.2.1). Obviously the advantages vary from
case to case. Anyway the possibility to execute all the kernels every explicit iteration is
still possible. Listing 5.19 better explains this strategy with pseudo host code. Recall-
ing the pseudo host code previously showed to explain the convergence check strategy
5.2, here inside the aerodynamicIterations() function the following code is present:

Listing 5.19: Viscous fluxes trade-off strategy

// Convective fluxes host code and kernel launch for internal faces
internalConvectiveFluxes();

if(totalIter % N == 0)
{

// Gradients and viscous fluxes related host code and kernels launch for
internal faces

computeGradients();
internalViscousFluxes();

}

// Sum inviscid and visocus fluxes
sumInviscidViscousFluxes();

Since viscous fluxes have to be kept constant for N iterations while convective fluxes
are computed every iteration, convective and viscous fluxes are stored in independent
buffers. However, they are added up every explicit iteration, as showed in listing 5.20:

Listing 5.20: Convective and viscous fluxes sum

__kernel void sumInviscidViscous
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(
// kernel arguments
)
{

int k = get_global_id(0);

Fr[k] += Gr[k];
Fx[k] += Gx[k];
Fy[k] += Gy[k];
Fz[k] += Gz[k];
Fe[k] += Ge[k];

# if TURBULENCE == SA
Fn[k] += Gn[k];

# elif TURBULENCE == KW
Fk[k] += Gk[k];
Fw[k] += Gw[k];

# endif
}

Gr[k] is the viscous flux related to density and face k. The other buffers are related
to momentum, energy and turbulence models variables. This code is enqueued for
execution inside sumInviscidViscousFluxes(). The idea here is to add to convective
fluxes the contribution of viscous fluxes. The only floating point operations here are
the subtractions. It can be seen that coalesced memory reads from global memory are
possible as the index k is directly used to access memory without addressing.

5.3.6 Residual assembly

After the computation of convective and viscous fluxes over internal and boundary
faces, they are used to assembly cells residuals. This is done in the following kernel:

Listing 5.21: Residual assembly

__kernel void assembly
(
// arguments
)
{

int k = get_global_id(0);

int numFaces = cellFacesDelimiter[k+1] - cellFacesDelimiter[k];
int startFace_idx = cellFacesDelimiter[k];

// initialization
real tRr = 0.0;
// same for momentum, energy and turbulence

// Sum local contribution with convention owner < neighbour
for( int i = 0; i < numFaces; i++ )
{

int face = cellFaces[startFace_idx + i];
int tsgn = signum[startFace_idx + i];
tRr -= tsgn * Fr[face];
// same for momentum, energy and turbulence

}
Rr[k] = tRr;
// same for momentum, energy and turbulence

}

Again, for simplicity, only the assembly of the density residual is showed. Momentum,
energy and turbulence variables residuals are assembled the same way. The kernel is
structured in the same way of the gradient assembly kernel showed in 5.3.5. In fact the
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algorithm is very similar: one work-item is assigned to one cell and a loop over the
cell faces is performed to add faces contributions to the cell residual. The addressing
buffers adopted are the same described when discussing about gradients. The kernel is
executed in Nv instances. Due to the compatibility with unstructured meshes, it is not
possible to achieve perfect memory coalescing. However, partial coalescing, depending
on hardware capabilities and mesh entities numbering is possible. Furthermore, with
hybrid meshes branch divergence occurs due to the fact that different cells have to
iterate over a different number of surrounding faces. However, as showed in 6.2.3,
hybrid meshes do not particularly afflict the time/iteration/cell performance parameter.

5.3.7 Source terms

A single kernel is used to perform the computation of all the source terms. From the
computational point of view this kernel is very similar to the previously described ker-
nel for pseudo time step value computation (see 5.3.1). A total number of Nv work-
items in the NDRange are assigned to domain cells. Memory related to cells solution
is accessed sequentially using the work-item index k. For what concerns Euler and
Navier–Stokes equations, the only source term is given by the MRF as explained in
3.6. The bulk of the computations is instead related to turbulence models. The last
step performed in this kernel is the application of the point implicit strategy described
(see 2.1.7 to improve numerical stability. The point implicit strategy is applied directly
here for two reasons: avoid the execution of another kernel that will require again the
read of residuals and the fact that this step must be performed before the residuals are
processed by convergence acceleration techniques.

5.3.8 Convergence acceleration techniques

Right after the residual assembly and before the solution update, the kernels related to
convergence acceleration techniques are executed. This includes Multi-Grid and Resid-
ual Smoothing. As explained in 2.1.10 this is done in order to provide and implicit-like
convergence ratio to residuals damping. Due to the fact that this is the last step in
residuals manipulation, after the convergence acceleration techniques algorithms resid-
uals are opportunely multiplied by the factor ∆τ

∆V
to complete the pseudo time stepping

strategy and update the solution. Without going into details for what concerns the con-
vergence acceleration techniques implementation, it is possible to do some considera-
tions related to computational efficiency. The algorithm behind RS here implemented
is computationally similar to what previously discussed during gradients and residuals
assembly. In fact during the first stage of the algorithm, one work-item is assigned to
one domain cell (for a total number of Nv work-items) and a loop over neighbor cells
is performed in order to accumulate their residuals. The second and final stage is again
performed on each cell and is aimed to modify a fraction of the cell residual with the
result of the previous stage. This is done in a consistent manner (i.e. with an opportune
normalization based on the number of cell neighbors). This two stages can be repeated
multiple times in a trade-off between computational effort and residual smoothing ef-
fects. Anyway, like the residual assembly kernel, branch divergence and non-coalesced
memory accesses could lead to performance loss with hybrid unstructured meshes. The
total number of floating point operations is relatively small (just the sum operations to
perform the residuals accumulations) with respect to global memory reads (residuals
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of surrounding cells). The MG algorithm is somehow similar. Two stages are required,
one for residuals accumulation on each grid level and one to finally update the residuals
of each cell. The first stage is composed by multiple kernel executions, one for each
MG level. For each cell k of level L, a loop over the cells of the finer mesh level L-1 con-
tained in k is performed. The first level is represented by the real mesh, while coarser
levels are obtained in pre-processing using OpenFOAM API and a mesh nodes-based
agglomeration strategy written from scratch [127]. MG is very effective in damping
residuals. The main drawback from the computational point of view is represented by
the high branch divergence effects and non-sequential memory accesses. This is due to
the fact that different cells from level L could contain very different numbers of cells
of the L-1 level. Since during kernel execution each cell k of level L is assigned to one
work-item and it loops over the cells of the L-1 level, it is easy to see that this could be
quite expensive from a computational point of view. Furthermore, on a mesh of about
1 · 106 cells about 8 MG levels can be obtained from GAMG algorithm. Usually, a
good trade-off between computational effort and residuals damping is obtained with 6-
8 levels. It must be noted that different meshes could perform differently depending on
how the GAMG algorithm behaves, especially for what concerns the GAMG ability to
agglomerate about the same number of cells inside a single cell of the coarser level (in
order to reduce the effects of branch divergence). The other problem is represented by
non-sequential memory accesses since addressing is required inside each cell to obtain
residuals from cells of the finer level. The total number of global memory reads can
be reduced if cells agglomerated in the same cell of the coarser level have similar IDs.
Renumbering the mesh with the OpenFOAM renumberMesh utility usually slightly
speed up the algorithm. Due to the fact that the solver is mainly aimed to handle un-
structured meshes it is not possible to directly bypass problems with memory accesses
and branch divergence.

5.3.9 Solution update

The update of the solution is the last step to be performed. When residuals are ready,
after their assembly and manipulation with convergence acceleration techniques, they
can be used to update the solution. Listing 5.22 shows the kernel code used to update
the solution:

Listing 5.22: Solution update

__kernel void update
(
// arguments
)
{

int k = get_global_id(0);

// Previous solution is read and store in
real tW0r = W0r[k];
// Same for momentum, energy and turbulence

Wr[k] = tW0r + limit( Rr[k], tW0r, LIMIT );
// Same for momentum, energy and turbulence

// Update effective viscosity
};
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For simplicity just the code related to density is showed. However the same code can
be applied to momentum, energy and turbulence models variables. The idea here is to
update the solution after the residuals are processed by the limiter strategy explained in
5.2.3 to help convergence during first iterations. It is important to notice that here, once
turbulence models variables are updated, it is possible to update the effective viscosity
µEFF and other quantities related to turbulence that will be required during the next
explicit iteration. This kernel is executed by a 1D NDRange composed by Nv work-
items.

5.3.10 ALE and MRF

As explained in 2.1.3 and 3.6 the ALE framework is adopted to perform unsteady sim-
ulations with mesh deformation and exploited to implement MRF for turbomachinery
and open rotor applications. Here the focus is on MRF. As explained, MRF is imple-
mented using 3 components: ALE velocities, wall velocity boundary conditions and a
momentum equations source terms. ALE face velocities and wall velocity boundary
conditions are computed on the host during pre-processing and their values are trans-
ferred on the device through buffers that are then read when computing convective and
viscous fluxes. When performing simulations with rotating domains the user provides
the rotational axis direction and position, and angular velocity. Knowing the internal
and boundary faces centers it is possible to compute the face velocities using the host
code showed in listing 5.23:

Listing 5.23: Host code for MRF pre-processing

// Loop over all faces
for( int i = 0; i < Nf; i++ )
{

// Extract face center
vector Point( CCfx[i], CCfy[i], CCfz[i] );

// Extract MRF velocity
vector Velocity = Omega ^ ( Point - Origin );

// Fill MRF arrays that will be transferred on device
ALEx[i] = Velocity.x();
ALEy[i] = Velocity.y();
ALEz[i] = Velocity.z();

}

// Loop over all patches
forAll( mesh.boundaryMesh(), iPatch )
{

// Select just wall boundaries
if( mesh.boundaryMesh().types()[iPatch] == "wall" )
{

// Loop over all faces of the patch
forAll( mesh.boundaryMesh()[iPatch].faceAreas(), ii )
{

// Addressing
label i = ii + mesh.boundaryMesh()[iPatch].start();

// Copy ALE velocity into velocity field boundary conditions
U_bcx[i-Nfi] = ALEx[i];
U_bcy[i-Nfi] = ALEy[i];
U_bcz[i-Nfi] = ALEz[i];

}
}
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}

ALE velocity is applied over all faces (internal and boundary), thus a loop over all the
Nf = Nfi + Nfb faces is performed. For each face i, the user-prescribed angular velocity
Omega is combined, with the operator ˆ used in OpenFOAM for vector product, with
the distance between the rotation center Origin and the face center Point in order to
compute the ALE Velocity. This operation can be easily performed using C++ objects
and operators thanks to OpenFOAM API. The final storage is performed using 3 ALE
arrays related to OpenCL buffers that will be transferred to the device. The second
loop is performed over patches. Using the if statement, wall type boundaries are se-
lected. This is done since it is necessary to consider the wall velocity due to rotation
within boundary conditions computations. Index ii is local to the iPatch patch but it
is necessary to extract the global index i in order to correctly access data structures.
The global index is used to access ALE arrays since they are defined over all the mesh
faces. Instead, i-Nfi is used to access boundary conditions values since they are defined
just over the Nfb = Nf - Nfi boundary faces, in order to save device global memory.
This code can be executed once during the simulation or multiple times by gradually
applying MRF velocity in order to help convergence, as explained in 5.2.3. ALE and
boundary conditions velocities are used in kernels whenever convective and viscous
fluxes have to be computed.

Finally, as explained in 3.6, source terms on momentum equations have to be added.
Basically, the the following lines have to be added to source terms computation kernel:

Listing 5.24: MRF source term

__kernel void makeSources
(
// arguments
)
{

int k = get_global_id(0);

// Extract solution
real tWx = Wx[k];
real tWy = Wy[k];
real tWz = Wz[k];

// Extract cell volume
real tV = V[k];

// Compute MRF source term
real Cx = -tV*( Omegay*tWz - Omegaz*tWy )*isRotor[k];
real Cy = -tV*( Omegaz*tWx - Omegax*tWz )*isRotor[k];
real Cz = -tV*( Omegax*tWy - Omegay*tWx )*isRotor[k];

// Update residuals
Rx[k] += Cx;
Ry[k] += Cy;
Rz[k] += Cz;

// Computations for turbulence models
}

As explained in 5.3.7 the source terms kernel is executed spreading Nv work-items, one
for each domain cell. First the solution is extracted from global memory and temporar-
ily stored in private memory alongside the cell volume value. Omegax, Omegay and
Omegaz are stored in global memory as single real values (thus as single 4-bytes or
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8-bytes variables depending on the chosen floating point precision without the need of
entire buffers) since they are constant in the rotor domain. isRotor is a buffer of Nv in-
teger elements filled with just 1 or 0. This is used to activate the source term only in the
rotor sub-domain. This way, since angular velocity is constant, a single integer buffer
plus 3 real values are used. Another strategy would be to use 3 buffers with Nv elements
each, to store for all the domain cells the angular velocity with an obvious increment
in memory consumption (due to storage of 0s in stator domains). Furthermore it would
be also possible to avoid reading the solution for the cells of the stator sub-domain with
an if statement based on the isRotor[k] value. However this would lead to branch di-
vergence issue depending on mesh numbering. Anyway here data is sequentially read
using index k for all the necessary quantities. This way memory accesses coalescing is
exploited. Finally, another strategy would be to execute this kernel just over rotor cells,
but this would require some sort of pre-processing and addressing. Furthermore if rotor
cells IDs were not consecutive then non-coalesced memory accesses could represent a
problem for performances. As explained in 5.3.7, at the end of the source terms kernel,
turbulence models source terms are computed and stored in global memory.

5.3.11 Mesh deformation

It is reminded, as explained in 2, that for performances reasons and thanks to the DTS
strategy, aeroelastic interface building, modal interface computations and wall nodes
displacements/velocities computations are performed on the host, i.e. by the CPU.
Thus these stages are not discussed here. The focus here is on the most important for-
mulations directly accelerated by the GPU regarding mesh deformation. In particular,
here the implementation of the IDW algorithm (see 2.2.6) is discussed. The kernel code
is quite simple and showed in listing 5.25:

Listing 5.25: IDW kernel code

__kernel void inverseDistanceWeighting
(
// arguments
)
{

// Exctract node ID
int k = get_global_id(0);

// Extract original node position
real X = Rx[k];
real Y = Ry[k];
real Z = Rz[k];

// Initialize provate data for nodes displacements
real dX = 0.0;
real dY = 0.0;
real dZ = 0.0;
real NORM = 0.0;

// Each node loops on patch nodes of deformable patches
for ( int i = 0; i < size; i++ )
{

// Compute distance betwen node k and patch node i and (directly storage
avoided)

real dx = ( X - Cx[i] );
real dy = ( Y - Cy[i] );
real dz = ( Z - Cz[i] );
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// Compute weight based on a power of the inverse distance
real dd = dx*dx + dy*dy + dz*dz;
real IDW = 1.0/( dd + SMALL );

// Extract patch node i displacemnets weight it and sum its contribution
dX += IDW*Dx[i];
dY += IDW*Dy[i];
dZ += IDW*Dz[i];

// Compute total weight for subsequent normalization
NORM += IDW;

}

// Normalize the displacements and update node position
Px[k] = X + dX/NORM;
Py[k] = Y + dY/NORM;
Pz[k] = Z + dZ/NORM;

}

Here Nv instances of the kernel are executed, assigning one work-item to each aero-
dynamic mesh node. AeroX handles absolute displacements, i.e. displacements are
always defined with respect to the original undeformed mesh configuration (the mesh
at time 0 for unsteady simulations or the guess mesh for trim simulations). Thus, the
first step is the extraction from global memory of the original nodes positions. When
work-item k reaches the loop, size iterations are performed, one for each patch node
i where displacements are enforced. This includes not only wall nodes of deformable
boundaries but also wall nodes of rigid patches since they contribute with null displace-
ments but with non-null weights. Furthermore, also the contributions given by faces of
other kind of patches, like periodic boundaries, are taken into account. This is due to the
fact that on farfield, inlet and outlet patches and periodic patches the mesh geometry is
kept fixed. Thus, to obtain a consistent internal mesh deformation the contribution with
null displacements of these boundaries is taken into account through weights. Inside
the loop the first operation is the computation of the distance between node k and patch
node i. The reason behind the use of Cx, Cy and Cz arrays is the fact that patch dis-
placements are actually defined on faces centers rather than mesh nodes. These ease the
handling of cases where two adjacent patches are one rigid and one deformable since
it is not directly possible to decide if the common mesh nodes are meant to be fixed
or movable. The next step is the computation of the weights based on a power of the
distance, as explained in 2.2.6. A SMALL value is added to avoid numerical problems,
especially in SP executions with meshes exhibiting a very fine near-wall discretization.
Then, the displacements contribution of patch node i over node k is accumulated in dX,
dY and dZ. The weights are accumulated in NORM private memory variable. Finally,
after the loop, the k-th node position is updated. It is reminded here, as explained in
2.2.6, that although weights are fixed due to the use of absolute displacements, they are
recomputed every time instead of just being stored in global memory. This is done in
order to avoid excessive device global memory usage. As will be showed in 6.2.2 the
implementation of the IDW algorithm is quite efficient on GPU thanks to the high num-
ber of floating point operations due to the high number of internal nodes and the fact
that all work-items require the same wall nodes data. This way GPU cache memory is
exploited.

The next step is mesh metrics update. It is reminded that connectivity is preserved.
Metrics computation is performed using two kernels, one for faces and one for cells.
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The adopted strategies are here briefly discusses without going into details. For what
concerns faces the kernel is executed in Nf instances. An addressing array is adopted to
find the point composing the edges of each face. The addressing strategy is inspired on
what presented for gradients and residuals assembly (see 5.1.3). However, here, instead
of faces surrounding cells, the focus in on points surrounding faces. The computation of
the face metrics kernel regards the update of area, normal unit vector, face center and, if
required, ALE velocity. ALE velocity is updated using the formulation presented [127]
considering the volume swept by the face during the physical time step and the faces
normal direction. Once the face metrics is updated, another kernel is executed in Nv
instances to update cell metrics: cell center and volume. The employed strategy is
similar to the Green–Gauss formulation, considering face centers to compute the cell
center and face areas to compute the cell volume. Thus from the same computational
aspects discussed for gradients and residuals assembly are also valid for cell metrics
update.

Alongside mesh deformation and the ALE velocities computation for both internal
and boundary faces, the wall velocity boundary conditions must be opportunely ad-
justed. The host is responsible to compute both wall faces displacements and velocities.
These are then transferred to the device and read inside boundary conditions kernels.
Wall velocities are used to build the ghost cells solution before calling the convective
fluxes algorithm. The chosen convective fluxes algorithm is then called by passing
the internal cell solution (and the extended cell solution for high resolution), the ghost
cell solution (and the extended ghost cell solution for high resolution) built considering
wall velocity. ALE velocity is also considered for convective fluxes computations and
passed as one of the arguments of the convective fluxes function. This way it is possible
to obtain a consistent formulation for both inviscid and viscous simulations.

It is also worth to briefly discuss the implementation of the transpiration boundary
conditions. As explained in 2.2.7, the idea is basically to opportunely alter the non-
penetration boundary conditions, enforcing an opportunely crafted speed. This is done
by the kernel showed in listing 5.26:

Listing 5.26: Transpiration kernel

__kernel void transpiration
(
// arguments
)
{

int k = get_global_id(0);

// Addressing
int i = wallAddressing[k];
int ii = i - Nfi;
int id_L = localOwner[i];

// Air velocity
real Ub[3] = { Wx[id_L]/Wr[id_L], Wy[id_L]/Wr[id_L], Wz[id_L]/Wr[id_L] };

// Moving wall velocity
real Vb[3] = { VelX[ii], VelY[ii], VelZ[ii] };

// Unit vector variation
real dnb[3] = { RotX[ii], RotY[ii], RotZ[ii] };

// Original unit vector
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real nb[3] = { -nx[i], -ny[i], -nz[i] };

// Transpiration velocity, non-linear formulation
Vn[ii] = ( Ub[0]*dnb[0] + Ub[1]*dnb[1] + Ub[2]*dnb[2] )

- ( Vb[0]*( nb[0] + dnb[0] ) + Vb[1]*( nb[1] + dnb[1] ) + Vb[2]*( nb[2]
+ dnb[2] ) );

}

A different strategy is here employed to execute the transpiration kernel with respect
to what presented when discussing boundary conditions (see 5.3.4). Rather than ex-
ecuting one kernel for each patch where transpiration is employed, a single kernel is
executed involving all the wall faces. In fact, differently from the case with boundary
conditions, here there is no branch divergence since boundary faces from different wall
patches execute the same algorithm. However, an addressing buffer, wallAddressing
is used to find the global face ID given the face ID defined among the set of wall faces
(i.e. the work-item ID k). This addressing buffer contains for each wall face the corre-
spondent face global ID, i, that can be used to access buffers like the already introduced
localOwner. In order to save global memory, buffers containing data that is mean-
ingful only for boundary faces, like the face velocity VelX, VelY and VelZ, and the
face normal unit vector rotation RotX, RotY and RotZ, a new index ii is computed by
subtracting Nfi (the first boundary face ID). The transpiration kernel is relatively cheap
from a floating point operations content, since the bulk of computations is performed
on the last line of code where the results are also directly saved into global memory.
Again, index ii is used to write to global memory the transpiration speed, since it is
defined just over boundary patches.

The transpiration kernel is scheduled for execution using the following host code
5.27:

Listing 5.27: Transpiration host code

runKernel( transpiration, Nwall, queue );
# include "debugger.C"

Nwall represents the total number of wall faces in the mesh, a subset of the bound-
ary faces. After its computation the transpiration speed can be used inside boundary
conditions kernels by opportunely modified slip boundary conditions. As usual, this is
enforced indirectly by building the ghost cell solution and by passing internal and ghost
cells solutions to the convective fluxes algorithm.

5.3.12 Cyclic boundary conditions

When performing turbomachinery and open rotors simulations supposing N-blade do-
main periodicity, periodic boundary conditions can be used to reduce the entire compu-
tational domain to N blades, as explained in 3.7. OpenFOAM provides the cyclicAMI
boundary condition type that can be used to implement periodic boundary conditions.
As explained in 3.7, the idea is to employ an interpolation of the solution on periodic
patch A (considering the internal cells values of boundary faces) in order to allow the
computation of fluxes on the other side of the domain on patch B (through ghost cell ap-
proach). The purpose of the interpolation is to find for each face of each periodic patch,
the correct ghost cell solution, related to the solution on the other patch. Obviously
the aim is to compute the fluxes that correctly represent periodicity. The interpolation
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procedure requires addressing and weights buffers. In particular, for each face F of
patch A it must be known the set of faces on patch B with which F communicates,
and the weights related to them. The computation of the addressing and weights is
completely performed during pre-processing by the OpenFOAM, on CPU. Thus, the
solver host code job is just to build and transfer buffers with this data on the device.
It is not worth to discuss the details behind the host job here. The actual computation
of periodic boundary conditions is instead entirely performed by the device. Here, the
implementation of periodic boundary conditions is just briefly discussed since from a
GPGPU point of view the computational efficiency problems are similar to what en-
countered with residuals/gradients assembly. Two kernels are used: one to perform the
interpolation and one to effectively apply the boundary conditions. The kernel related
to the interpolation is executed for each periodic patch independently with a number
of work-items equal to the number of patch faces. It must be noted that for what con-
cerns momentum, the rotation tensor is required for 3D cases, as discussed in 3.7. This
means the read of 9 scalar values for each patch. These scalars are shared between all
the faces of that patch. This way cache can be exploited. The first operation performed
in the interpolation kernel is, as always, the extraction of the work-item ID, i, and the
related face global ID. The next step is to find for each patch face i the faces on the other
patch that can be overlapped to i due to periodicity. This is done by using an addressing
buffer to obtain both the total number of overlapping faces (in order to set the size of the
next loop) related to face i and the starting point of the arrays that are actually used to
extract the IDs and weights of the faces on the other patch. This addressing strategy is
conceptually identical to what is used for residuals and gradients assembly. A for loop
is then used to iterate over the overlapping faces on the other patch to proceed with the
solution interpolation. As whit residuals and gradients assembly kernels branch diver-
gence happens when different faces i have to deal with different numbers of faces on
the other side of the domain. This is due to the fact that a different number of for loop
iterations have to be performed. However, if faces from the two periodic patches are
perfectly matching, no branch divergence happens since the loop would be performed
in just one iteration, with a single weight equal to 1. However, this is rarely the case.
For what concerns memory accesses, addressing is required to extract weights, global
faces IDs, cells IDs and the solution. This inevitably reduce performances. In any case
the time spent in this kernel is small since few thousands of faces are processed in a
mesh of about one million cells. The structure of the kernel that actually applies cyclic
boundary conditions is identical to what presented in 5.3.4 for other boundary condi-
tion types. The key difference here is that instead of reading boundary conditions from
user-supplied data, they are directly obtained from what previously computed by the
interpolation kernel. Since these values are stored sequentially, face after face, and in
boundary conditions kernel are sequentially read with the face index, memory coalesc-
ing can be exploited.

5.3.13 Delayed periodic boundary conditions

As explained in 3.8, the key idea of delayed boundary conditions is the manipulation of
periodic boundary conditions in order to apply on the two boundaries an opportunely
chosen solution previously stored during the simulation at a particular physical time.
This way it is possible to simulate the phase-shifted blades vibration with the advantage
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Chapter 5. GPU implementation

of reducing the whole 360◦ domain to an N-blades sector (usually 1-blade sector). The
procedure is implemented in 3 stages. First a pre-processing stage is performed on the
host in order to compute addressing and weights thanks to OpenFOAM. This is done
in the same manner as for periodic boundary conditions. However, here the host has
more work to do. The solution over delayed patches (i.e. the solution of the faces
owner cells, since a ghost cell approach is adopted) has to be stored for a specific
number of physical times. This is due to the fact that in successive physical times
the previous solutions will be required in order to perform the time interpolation. All
solutions are saved on the device global memory in order to speed up the interpolation
procedure without requiring a continuous data transfer between the host and the device.
Obviously it is not possible neither useful to save the solution of all physical times.
Knowing the delay and the physical time step size it is possible to pre-compute the
total number of snapshots of the "periodic" patch solutions (solution of the internal cells
owner of the patch faces) that are required for later interpolation. It is thus possible to
cyclically overwrite previous solutions not useful anymore [128]. Roughly speaking
this is implemented through a circularly linked list. Inside the explicit pseudo time
iterations of the same physical time step the same physical time interpolated solution
obtained from older physical times is read from global memory while the actual patch
solution is updated every pseudo time iteration. Thus face fluxes on delayed patches
faces are computed using the previous pseudo time cell solutions for the internal cells
and the physical time interpolated solution of the previous physical time steps for the
ghost cells. The same spatial interpolation discussed in 5.3.12 for perdiodic boundary
conditions is also employed here when the faces of the two delayed patches are not
perfectly matching. The kernel that actually applyies the delayed boundary condition
is the same discussed in 5.3.12, except for the fact that now the ghost cell solution
is computed in a different way that is not the simple weighted interpolation of the
solution on the other side of the domain. In fact it is the interpolated solution on the
other side of the domain at a specific previous physical time, obtained by a physical
time interpolation between two physical times. It is the host (CPU) job to find, given
the delays and the current physical time, the two physical times to use to perform the
time interpolation. It is the device job to effectively interpolate the two solutions with
GPU acceleration. This strategy requires the transfer of just few bytes of memory
between the host and the device that represents the IDs of the two physical time, used
as starting points of patch solution arrays. The other job of the device is the storing of
the current pseudo time solution overwriting the previous solution (using the cyclic list
idea [128]). The kernel that actually perform the interpolation is not showed here since,
once the host has found the right time IDs, it is very similar, from the computational
point of view, to a simple vector sum (see 4.4.3) since one work-item is assigned to one
boundary face and the solutions of the two times are read, weighted, added and finally
stored in global memory. Thus no branch divergence happens and perfect memory
coalescing is reached, though the floating point to global memory reads ratio is small.
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CHAPTER6
Computational Benchmarks

The goal of this work is to obtain a solver that is both fast and accurate. The former
feature is realized through the solution of the compressible (U)RANS equations inside
an aeroelastic framework. The latter is realized through the GPU acceleration. Thus,
it is also mandatory to investigate the speed-up advantages provided by GPU execu-
tions with respect to typical multi-core CPUs. In this chapter, before the validation of
the solver through a comparison of literature and experimental results, the investiga-
tion is focused on purely computational aspects. The important concept of the time
per iteration per cell will be introduced and adopted as a meter of comparison for the
solver capability to accelerate simulations when executed on GPUs. The focus will
be also posed on the possibility of the solver of taking advantages of cheaper gam-
ing GPUs with respect to specifically designed HPC GPUs. The differences between
results achieved using single precision and double precision will be investigated both
for what concerns the speed-ups and possible CFD results accuracy problems. Finally,
an investigation of the efficiency of the solver among different kinds of unstructured
meshes, both hybrid and non-hybrid will be showed. This is done in order to asses the
capabilities of the solver to maintain high computational efficiency with different types
of meshes.

6.1 Hardware aspects

Here the most important hardware aspects related to the machines adopted to perform
benchmarks are showed and briefly discussed. During this work different workstations
were used for the source code development and debugging and obviously to perform
useful simulations. CPUs and GPUs from different vendors were tested to guarantee
maximum compatibility since this was one of the main goals of this work. CPUs from
Intel and AMD, and GPUs from NVIDIA and AMD were used as OpenCL devices.
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The purpose of this section is to briefly describe the main features of the devices used
to perform speed-up benchmarks. As explained in 4.4.1, when a CPU is chosen as
computational device, a multi-thread approach is adopted by the underlying OpenCL
implementation, eventually with the use of implicit vectorization [8]. This assures that a
fair comparison is performed between CPU and GPU execution times, by exploiting all
the available physical (and eventually virtual with Intel HyperThreading) CPU cores.
Furthermore, with environment variables, BIOS settings or other tricks it is possible
to enforce a user-defined number of CPU cores to be used for kernel executions. This
way it is possible to investigate the capability of the solver to scale over an increased
number of CPU cores in a shared memory architecture.

Different CPUs and GPUs with different prices and performance levels were used
for benchmarks. One of the goals of this section is to show that higher performance to
price and higher performance to power consumption ratios can be obtained with GPU
acceleration. As explained in 4.2.2, alongside the reduction of simulation times, power
efficiency is a non-secondary aspect.

It must be noted that since the available devices come from different time periods, it
is not straightforward to directly compare their performances with respect to their price
level as, for example, a new mid-end GPU could beat an old (and maybe still) more
expensive high-end GPU.

6.1.1 GPUs

Tables 6.1 and 6.2 show the GPUs employed in this work for the simulations and speed-
up benchmarks. Specifications were obtained from [37, 38]. It is possible to see

Table 6.1: GPUs used for simulations and computational benchmarks, 1/2.

Vendor Model Cores Freq. Glob. mem. BW SP DP
NVIDIA Tesla C1060 240 602MHz 4GB GDDR3 102.4GB/s ∼ 930GFLOPS ∼ 80GFLOPS

AMD A10-7700K 384 720MHz N/A DDR3 N/A ∼ 550GFLOPS ∼ 34GFLOPS
NVIDIA GTX 660 960 960MHz 2GB GDDR5 192GB/s ∼ 1800GFLOPS ∼ 80GFLOPS

AMD 380X 2048 970MHz 4GB GDDR5 182.4GB/s ∼ 4000GFLOPS ∼ 250GFLOPS
AMD 290X 2816 1040MHz 4GB GDDR5 320GB/s ∼ 5600GFLOPS ∼ 700GFLOPS
AMD Fury X 4096 1050MHz 4GB HBM 512GB/s ∼ 8600GFLOPS ∼ 530GFLOPS

Table 6.2: GPUs used for simulations and computational benchmarks, 2/2.

Vendor Model Price TDP Time SDK
NVIDIA Tesla C1060 ∼ 1700USD 188W 2009 CUDA SDK

AMD A10-7700K ∼ 150USD 95W 2014 AMD APP SDK
NVIDIA GTX 660 ∼ 200USD 130W 2012 CUDA SDK

AMD 380X ∼ 230USD 190W 2015 AMD APP SDK
AMD 290X ∼ 400USD 290W 2013 AMD APP SDK
AMD Fury X ∼ 650USD 275W 2015 AMD APP SDK

that DP performances are usually a fraction of SP performances in gaming GPUs. At
the time of writing the NVIDIA Tesla C1060 is a very old HPC GPU (its cost of
1700USD is referred to year 2009). Nonetheless this device was used to check for
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possible advantages offered by ECC memory, see 6.2.4. It is reminded that the SP and
DP performances showed in the table are just theoretical values that can be achieved
only when the code is perfectly optimized for the underlying architecture, usually by
exploiting FMA (Fused Multiply Add) instructions and coalesced memory accesses.

6.1.2 CPUs

Tables 6.3, 6.4 show the CPUs employed in this work for the simulations and speed-up
benchmarks. It must be noted that independently from the fact that a CPU or a GPU
is used as device, the CPU is always used as the host. This means that a small fraction
of the computational power offered by the CPU is used to organize the work to be
sent to the device. This is not particularly a problem when not all the CPU cores are
used for kernels execution. In fact, thanks to multi-threading, the thread(s) that execute
kernel code and the thread that execute host code can be scheduled for execution by
the operating system kernel on different available cores. However, if all the available
CPU cores are employed for device computations, host operations will lead to a slight
overhead. The specifications showed in the tables were obtained from [5, 36] and

Table 6.3: CPUs used for simulations and computational benchmarks, 1/2.

Vendor Model Cores Freq. SP DP
AMD Phenom II X4 840 4 3.2GHz ∼ ? ∼ ?
AMD A10-7700K 4 3.4GHz ∼ 110GFLOPS ∼ 55GFLOPS
Intel i7 3930K 6 3.2GHz ∼ 150GFLOPS ∼ 75GFLOPS
Intel i7 5930K 6 3.5GHz ∼ 300GFLOPS ∼ 150GFLOPS

Table 6.4: CPUs used for simulations and computational benchmarks, 2/2.

Vendor Model Price TDP Time SDK
AMD Phenom II X4 840 ∼ 100USD 95W 2011 AMD APP SDK
AMD A10-7700K ∼ 150USD 95W 2014 AMD APP SDK
Intel i7 3930K ∼ 500USD 130W 2011 Intel OpenCL Runtime
Intel i7 5930K ∼ 600USD 140W 2014 Intel OpenCL Runtime

from other different websites on the internet. Different parameters are showed in the
tables. It must be noted that it is quite difficult to find the price of a device. It is
basically possible to consider the vendor suggested price or what can be found on e-
commerce websites. Here no details are provided for what concerns global memory size
or technology, since basically for CPUs it depends on what the user decides to install
as on-board RAM. At the time of writing this could be DDR3 or DDR4 technology
with different frequencies, sizes and number of channels, depending on what supported
by the CPU/motherboard and the user choices. Here just the CPU itself is considered.
Despite GPUs architectures, with CPUs the theoretical DP performances are basically
one half of SP performances due to how SSE/AVX works. It is reminded that SP
and DP performances are just indicative and can be reached only when the code is fully
optimized to use SIMD extensions. It is also quite difficult to find the official theoretical
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Chapter 6. Computational Benchmarks

GFLOPS values concerning CPUs from both AMD and Intel. The values showed in the
tables may be slightly inaccurate.

6.1.3 APUs

The AMD A10-7700K is a so-called APU (Accelerated Processing Unit). It is basi-
cally a combination of a CPU and a GPU on the same chip which is installed on the
motherboard [10] like an normal CPU. However, an APU has both CPU cores and GPU
cores and therefore is showed in all tables 6.3, 6.4, 6.1 and 6.2. It must be noted that
the GPU global memory is not showed since it can be changed by the user accessing
the BIOS options as it is basically implemented using the system RAM. From the point
of view of OpenCL and AeroX, the user can choose to use the GPU cores or the CPU
cores but they cannot be directly combined to form a unified device. Anyway it can
be seen that the SP performances provided by the 384 GPU cores are higher than what
provided by the 4 CPU cores. With APUs the idea is to exploit CPU cores for serial op-
erations while offloading heavy SIMD floating point computations to GPU cores. The
PCI-Express bandwidth bottleneck is not a problem since the GPU is not installed on
a discrete card. However the bandwidth provided by system memory, DDR3, is any-
way lower than what provided by GDDR5 or HBM technologies of modern GPUs. As
for the amount of global memory, the bandwidth is not showed in tables 6.1 and 6.2
since it strictly depends on the frequency of the RAM banks installed by the user on the
motherboard slots.

6.2 Benchmark cases and results

6.2.1 Overall speed-up and multi-thread scalability

Here the results concerning the overall speed-up achieved by AeroX with GPU accel-
eration are illustrated [129]. A comparison between GPU executions and CPU single-
thread or multi-thread executions is performed and the overall speed-up is discussed.
This means the speed-up regarding entire pseudo time iterations, without profiling each
single kernel (that instead will be performed in 6.2.2). The adopted performance met-
rics is the time per iteration per cell. Basically the solver is executed for a certain
amount of pseudo time iterations, e.g. 10000, and the spent computational time is
normalized by the total number of domain cells and the total number of iterations per-
formed. This way it is possible to obtain an indicator of the computational efficiency of
the chosen device that is independent from the mesh size and the convergence proper-
ties of the adopted case. However, the dependency from the type of elements and how
mesh entities are indexed could trigger branch divergence and non-coalesced memory
accesses performances issues. These aspects are investigated in more details in 6.2.3.

Adopting a test case specifically designed to maximize the GPU speed-up would
not be fair. Thus, the idea is to benchmark the solver using a useful test case. Here the
NASA’s Rotor 67 fan blade test case is adopted to investigate the overall speed-up of
AeroX when GPU acceleration is enabled. This case is discussed in details for what
concerns the CFD results in 10.3. The mesh has about 1 million hexaedra cells. This
means that it has enough cells and faces to keep all the devices listed in 6.3, 6.4, 6.4,
6.1 and 6.2 fully loaded for the entire simulation. This is not an hybrid mesh, thus there
is no branch divergence during assembly kernels like residuals and gradients. However
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it is an unstructured mesh. Depending from the device architecture, performances may
be afflicted by a reduced memory accesses coalescing. The mesh is firstly renumbered
with the renumberMesh OpenFOAM utility in order to try to reduce the overhead
due to global memory accesses. Here a steady solution is searched. Thus, for now,
kernels related to mesh deformation and metrics update are not considered. This is not
a problem because, as will be explained in 6.2.2, even for unsteady cases with mesh
deformation and trim cases, the bulk of computations is still related to steady kernels
thanks to DTS approach. All convergence acceleration techniques are active and SP is
exploited to maximize both GPUs and CPUs performances. Kernels related to viscous
fluxes are executed at each pseudo time iteration. Tables 6.5, 6.6 and 6.7 show the
time/iteration/cell obtained with the available CPUs and GPUs respectively. Tables

Table 6.5: Time/iteration/cell (seconds) with different CPUs with SP, 1/2.

Phenom 1C Phenom 4C APU CPU 1C APU CPU 4C i7 3930K 1C i7 3930K 6C
5.99e− 6 1.74e− 6 2.41e− 6 9.30e− 7 1.82e− 6 3.67e− 7

Table 6.6: Time/iteration/cell (seconds) with different CPUs with SP, 2/2.

i7 5930K 1C i7 5930K 6C
1.28e− 6 2.34e− 7

Table 6.7: Time/iteration/cell (seconds) with different GPUs with SP.

APU GPU GTX 660 380X 290X Fury X
2.80e− 7 6.37e− 8 5.40e− 8 2.81e− 8 2.70e− 8

6.5 and 6.6 show for the employed CPUs both results with 1 and all the cores (4 or 6
depending on the particular model) loaded in order to investigate how well the solver
scales when using multiple cores. The AMD A10-7700K is used both in CPU and GPU
mode in order to check for advantages given by the APU concept when offloading
numerical computations to the GPU cores. Tables 6.5, 6.6 and 6.7 show raw results
that can be elaborated to show relative speed-ups between devices. The main idea is
to check the overall speed-ups provided by GPUs over CPUs in multi-threading mode.
In literature sometimes authors show the GPU speed-up relative to a single-core CPU
execution. However this is probably not a fair comparison since the CPU is not entirely
exploited. Table 6.8 shows the acceleration obtained by the available GPUs with respect
to the available CPUs when all CPU cores are loaded with kernels computations. It is
possible to see that except for the low-end APU in GPU mode, all GPUs are faster than
CPUs (that are using all cores), and in particular faster then the high-end 6-cores Intel
i7 5930K CPU. It is possible to do some considerations. The Phenom CPU is the
slowest and oldest one (2011) and it is easy to recognize that it is basically the slowest
device. However, it is a low-end CPU since it is in the 100USD price range. This CPU
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Table 6.8: Speed-ups with SP, GPU relative to CPU with multi-thread enabled.

APU GPU GTX 660 380X 290X Fury X
Phenom 4C 6.21× 27.3× 32.22× 61.9× 64.4×

APU CPU 4C 3.32× 14.6× 17.2× 33.1× 34.4×
i7 3930K 6C 1.31× 5.76× 6.79× 13.1× 13.6×
i7 5930K 6C 0.84× 3.67× 4.33× 8.35× 8.67×

is installed in a desktop computer alongside the GTX 660 GPU. This GPU is from
around the same period, 2012, but in the 200USD price range, which is twice the cost
of the CPU. However, when analyzing performances, it is possible to see that using
SP in a real test case the GPU is over 27× faster than the CPU using which is using
all its 4 cores. Considering also that this GTX660 GPU has a TDP of 130W while
the Phenom CPU has a TDP of 95W it is easy to see the advantages provided by the
GPU from a power consumption point of view. This is more evident if a recent CPU,
the i7 5930K, from 2014 is considered. This CPU is over 7× faster than the Phenom
CPU. However the i7 is an high-end CPU in the price range of 600USD and the two
CPUs have 3 years difference in their architectures (e.g. i7 supports AVX that increase
floating point performances). Nonetheless the GTX 660 is still almost 4 times faster
than this high-end i7 CPU while costing 1/3 and being 2 years older. Furthermore, the
i7 5930K TDP is slightly higher than the one of the GTX 660: 140W for the former
and 130W for the latter. These aspects suggests, as an example, that if the goal is to run
the solver on a workstation, instead of performing an expensive hardware upgrade by
changing CPU, memory and motherboard with high-end components, it would be also
possible to obtain performance improvements by just installing a relatively inexpensive
GPU on the PCI-Express slot and installing the freely available OpenCL runtimes
and GPU drivers form AMD/NVIDIA. These are aspects mainly related to budget or
old workstations. From the table it is also possible to see that the AMD Fury X is
64 times faster than the Phenom CPU. However, this comparison is not fair as the
two devices belong to two very different time periods and price ranges. This way the
technology and monetary gap is too wide to directly make comparisons. However,
high-end GPUs such as the AMD 290X and the AMD Fury X can be compared to
the two high-end i7 CPUs since the time periods and price ranges are comparable. In
particular the i7 5930K and the Fury X belong nearly to the same time period (2014
for the CPU and 2015 for the GPU) and the same price range (600USD for the CPU
and 650USD for the GPU). However, the TDP is quite different since the i7 5930K
has 140W while the Fury X has 290W , more than twice. When considering these
two devices and their relative speed-up, it is easy to see that the GPU is almost one
order of magnitude faster (8.67 times for this study-case). This means that in order to
reach the same performances provided by the Fury X multiple high-end workstations
would be needed and combined together using an high bandwidth inter-connection.
Otherwise server-class CPUs would be required. Anyway this would mean spending
at least one order of magnitude more money than what required for the single Fury X
GPU. Furthermore, nowadays motherboards, even mid-range motherboards, allow the
installation of multiple GPUs. As an example, both the 290X and Fury X GPUs are
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installed on the PCI-Express slots of the motherboard that also hosts the i7 5930K
CPU. This means that the two GPUs can be used concurrently to perform simulations
on two different cases at the same time. In any case the installation of a second or
third GPU just requires the bought of the GPU(s), and eventually an adequate Power
Supply Unit (PSU). In fact, power consumption becomes important for this kind of
multi-GPU configurations since it can be seen from tables 6.3, 6.4, 6.1 and 6.2 that the
sum of the TDPs of the 3 devices is around 700W . However, if the same TDP would
be related to purely CPU power, performances would be lower. It is worth to remind
that installing multiple CPUs on the same motherboard or in any case dealing with
multiple interconnected CPU nodes requires specifically designed hardware that is in
any case multiple times more expensive than having two GPUs on the same workstation
or gaming PC.

Finally, it is worth to spend some words about the APU in GPU mode. As it is
possible to see from the benchmarks, when the APU is used in GPU mode, the com-
putations are performed 3.3 times faster (with respect to the 4-core CPU execution or
8.6 times with respect to the CPU single-thread execution), leading to a significant re-
duction of simulations times. It must be reminded that this is a low-budget APU, in
the price range of 150USD. Furthermore GPU cores comes already installed on the
CPU, without the need to buy a dedicated PCI-Express compatible card. This way,
it is worth to exploit all the APU capabilities. This APU in GPU mode proves to be
just slightly slower (around 16%) than the high-end Intel i7 5930K CPU using all the
6 available cores. The i7 5930K CPU costs around 600USD, which is around 4 times
the price of the APU. The two devices are both from 2014 and thus directly comparable
for what concerns their prices. This is thus a good example to show where OpenCL
and GPUs provide advantages in terms of both money and energy savings. In fact,
the power consumption (the TDP to be correct) of the APU is 47% lower than what
required by the i7 5930K CPU. Finally it must be noted that this is just a comparison
between GPU cores of the APU and CPU cores of the i7 5930K CPU. The CPU cores
of the APU are not exploited. Exploiting the CPU cores of the APU alongside its GPU
cores would lead to further advantages in terms of performances if considering the same
overall TDP value. Finally a note regarding the direct comparison between APU results
in CPU mode and i7 5930K results. While both CPUs come from the same time period
(2014) and have around the same frequency (3.4GHz for the APU and 3.5GHz for the
i7) they have very different architectures (they are from different vendors and different
consumer targets). In particular, the i7 5930K has more cache than the A10-7700K
(15MB SmartCache vs. 4MB L2 cache). Furthermore with the APU CPU cores,
when using AVX instructions, two cores shares the same 256 bit AVX unit, while each
core of the i7 5930K has its own 256 bit AVX unit. Obviously the rest of the differences
are given by the two more cores of the i7 5930K, the HyperThreading support, the
DDR4 memory support (while the APU supports the older DDR3 technology). All of
these differences justifies the higher multi-thread performances of the i7 5930K with
respect to the APU in CPU mode. This also means that while with AeroX the APU in
GPU mode could be very competitive with the i7 CPU in term of performances, price
and power consumption, if the aim of the workstation is instead to perform other kinds
of heavy CPU-based computations the i7 would be easily be preferred. This is obvi-
ously related to the fact that, as explained in 4, GPUs are not aimed to substitute CPUs
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in numerical computations but to help CPUs whenever is possible by the underlying
algorithm.

Table 6.9 shows the speed-ups obtained with multi-thread CPU executions with re-
spect to single-thread CPU execution in order to asses the capability of the solver to
scale in a multi-thread CPU environment. The speed-ups obtained with each CPU are
referred to the same CPU in single-thread execution. It is possible to see that the low-

Table 6.9: Speed-ups with SP, CPU only, multi-threading enabled.

Phenom 4C APU 4C (CPU only) i7 3930K 6C i7 5930K 6C
3.44× 2.59× 4.96× 5.47×

end Phenom CPU obtains a 3.44× speed-up using all the 4 cores, the A10-7700K
obtain a 2.59× speed-up in CPU mode with all 4 cores, the i7 3930K obtains a 4.96×
speed-up using all its 6 cores and the i7 5930K obtains a 5.47× speed-up using all its
6 cores. It can be seen that the code scales quite well up to 4 and 6 cores using multi-
threading. Obviously the slowest CPU is the older and cheaper one, the AMD Phenom,
that has just 4 cores. Performances are also consistent between the two i7 CPUs, with
higher performances provided by the newer CPU, since they come from different time
periods (2011 and 2014) and thus have slightly different architectures. The newer CPU
has slightly higher frequency (3.5GHz vs. 3.2GHz) and slightly more cache (15MB
vs 12MB). They both have 6 cores and 256 bit AVX units that can be exploited through
implicit vectorization provided by Intel OpenCL SDK. For what concerns the APU in
CPU multi-thread mode, it is possible to see that the speed-up is only 2.59× when us-
ing all its 4 cores. This is probably due to the underlying "Steamroller" x86 AMD
architecture of CPU cores. The cores in this CPU are grouped in modules of 2 physical
cores sharing the 256 bit AVX unit. What happens is that probably this allows to use the
entire 256 bit AVX unit when a single thread is used to perform the simulation while
when 4 threads a used, only two 256 bit AVX unit are available instead of 4. A speed-up
greater than 2 can be probably justified by the fact that not only floating point opera-
tions are required to execute the solver. Thus, using 4 cores provides benefits for the
overall execution. The Phenom CPU has only 128 bit SSE units, one for each core.
This is probably why in single thread executions 1 core of the A10-7700K is more the
twice faster than one core of the Phenom CPU although they have similar frequencies.
However, it must be noted that the Phenom CPU is 3 years older than the APU. Thus,
also the architectures are quite different. For what concerns the CPU results related to
the SSE/AVX utilization, the presented are just a considerations. More accurate profil-
ing, assembly code/compiler and hardware architecture analyses are required to better
justify the encountered behaviors. However, this is beyond the purposes of this work.

6.2.2 Kernels speed-up

Here, instead of analyzing the speed-up obtained when considering entire pseudo time
iterations, single kernels profiling is employed. This allows a fine grained investigation
of the computational efficiency of each kernel, thus each formulation and implemen-
tation strategy. As with any other application profiling, the focus here is on the most
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time consuming kernels. This regards both kernels with high floating point compu-
tations and kernels with an high number of memory accesses. As explained in 5.2.5,
OpenCL directly provides profiling capabilities as part of the API. Thus, it is possible
to directly check the computational time required for the execution of each kernel with-
out using third party tools. During profiling, slightly different results were obtained for
the computational time required by the same kernel if profiled multiple times. These
are normal fluctuations. Thus, for the same combination of kernel and device, several
executions were performed and an averaging operation was employed to improve re-
sults reliability. The test case chosen for this analysis is again the NASA’s Rotor 67 fan
blade, described in details in 10.3. This time AeroX is executed in trim mode, thus it
is possible to perform the profiling for both CFD and mesh deformation kernels. The
tests are performed on the Intel i7 5930K CPU using all the 6 cores and on the AMD
Fury X GPU. Single precision is employed to maximize performances of both devices.
Table 6.10 shows the speed-ups obtained with the GPU over the CPU for each kernel
set. The "Convective" column shows the speed-up related to the execution of the Roe

Table 6.10: Kernels execution speed-up with GPU with SP.

Convective Periodic BC Viscous Residuals Assembly IDW Mesh metrics
Speed-up 97.4× 6.67× 16.1× 5.97× 13.25× 6.98×

fluxes device code, using the extended cells strategy discussed in 5.3.2. The "Periodic
BC" column is referred to the kernel that performs the solution interpolation over the
periodic patches, see 5.3.12. The "Viscous" column considers to the sum of the times
required for the executions of the kernels related to viscous fluxes. This means con-
sidering both gradients kernels and the kernels related to the effective viscous fluxes
computation, as explained in 5.3.5. "Residuals Assembly" column is related to the
assembly kernel alone, discussed in 5.3.6. "IDW" column is related to the Inverse Dis-
tance Weighted formulation kernel alone (see 5.3.11). Basically it is just the kernel
adopted to update the aerodynamic mesh points positions. Finally "Mesh metrics" col-
umn represents kernels for mesh metrics computation. These are executed after mesh
deformation. Both kernels for faces and cells metrics update are considered. From the
table it is possible to see that different kernels exhibit different speed-ups. In particu-
lar the kernel related to convective fluxes achieve the higher speed-ups. This is due to
the fact that, as explained in 5.3.2, a very high amount of floating point operations is
performed between the initial global memory reads and the final fluxes writes. How-
ever there is no branch divergence that could afflicts performances. This allows very
high computational efficiency on GPU architectures. For what concerns periodic BCs
the speed-up is lower due to the face addressing required for interpolation that triggers
both branch divergence and non-sequential memory accesses. For what concerns vis-
cous fluxes the speed-up is governed by two aspects. On one side the kernels related
to gradients assembly are basically memory bounded since just few floating point op-
erations are required thanks to the Gauss algorithm (see 2.1.6 and 5.3.5). In case of
hybrid meshes the gradients assembly kernel will lead to a performance loss also due
to branch divergence (but this is not the case with the mesh here employed). On the
other side the kernel that actually computes the viscous fluxes, face by face, has a bet-
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ter floating point operations to memory accesses ratio. However this is not as high as
with the convective fluxes kernel. This justifies the lower speed-up provided by viscous
formulations kernels with respect to convective fluxes kernel. The lowest speed-up, as
expected, is obtained with the residuals assembly kernel. As explained in 5.3.6 this
kernel is heavily memory bounded but anyway its use allows to directly handle meshes
of any kind (hybrid unstructured meshes). Few floating point operations are performed
inside this kernel with respect to the total number of global memory accesses since
the only required operation is the sum of the fluxes of the faces surrounding each cell.
For what concerns the IDW algorithm the GPU is one order of magnitude faster than
the CPU, providing a speed-up of over 13×. As explained in 5.3.11, this kernel is es-
sentially composed by a for loop over wall nodes in order to extract and weight wall
nodes displacements. There is no branch divergence since all the aerodynamic mesh
nodes (mapped to work-items) have to loop over the same wall nodes. Cache can be
exploited since the same wall nodes data is used by all work-items. Even though there
is no branch divergence the total number of floating point operations is relatively small
with respect to the total number of global memory reads. Thus the speed-up is smaller
with respect to what obtained with convective fluxes. Finally, the speed-up provided
by mesh metrics computations, both for faces and cells, is about 7×. Again this is due
to the fact that, especially for faces metrics update, an high number of global mem-
ory reads in a non-sequential manner is required. Although this is not the case, if the
mesh features faces with different number of points, branch divergence issues are also
triggered since the kernel is composed by a loop over faces edges and each work-item
is assigned to each face. For what concerns cell metrics update, the algorithm imple-
mented in the kernel is computationally similar to the Green–Gauss gradient algorithm
and residuals assembly computations. Again a relatively small number of floating point
operations is coupled with global memory reads/writes. Anyway the high speed-up is
enough to justify the use of GPU if the prices of the CPU and the GPU are considered,
alongside power consumption and the other aspects already discussed.

As said, table 6.10 shows the speed-ups provided by different kernels. The speed-up
values are obtained computing the ratios between the computational times required by
kernels on different devices. As it is possible to see from table 6.8 considering the i7
5930K CPU and the Fury X GPU, an overall speed-up of 8.67× is obtained. This is
smaller then e.g. the speed-up obtained for convective fluxes. Even though different
kernels are characterized by different speed-ups, they are also characterized by different
execution times. This is translated in different weights on the overall speed-up value.
This is also the reason why, thanks to DTS, the computational time spent for mesh
deformation is basically negligible with respect to purely aerodynamics kernels, when
considering the overall aeroelastic simulation. As an example, for the Rotor 67 test
case, the computational time spent for each pseudo time iteration for the convective
fluxes is around 1700µs with the Fury X and 170000µs for the i7 5930K (using alle
the 6 cores). This leads to a speed-up of about 100 for the convective fluxes kernel
alone. However the residuals assembly requires 2000µs for the GPU and 12000µs for
the CPU, leading to a speed-up of about 6×. It is possible to see that due to the different
architectures between the GPU and the CPU, the computational time spent by the GPU
for the residual assembly is around the same of convective fluxes. However, with the
CPU one order of magnitude gap between the two kernel execution times is obtained.
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Consequently, with GPU acceleration, one order of magnitude difference in speed-up
values is obtained with the same kernel This is also the reason why the overall speed-
up is around 10× instead of 100× when considering this CPU and GPU combination.
The execution times for the IDW algorithm are 1900000µs and 25000000µs for the
GPU and the CPU respectively, leading to a speed-up of around 13×. It is possible to
see that this kernel execution time is 1000× higher than what required at each iteration
for convective fluxes. However, while convective fluxes are computed at each pseudo
time iteration, alongside with the other required kernels (e.g. viscous fluxes, assembly,
convergence acceleration, boundary conditions...) IDW is performed only once for each
physical time iteration or once for each trim iteration. For the particular case of the trim
of the Rotor 67 here adopted for profiling, several thousands of purely aerodynamic
pseudo time iterations are required between two mesh updates (see 10.3). The number
of iterations is in the order of O(104). Thus, the computational time spent by IDW and
mesh update kernels becomes negligible with respect to the overall time required for
pure aerodynamic iterations. As an example, a single purely aerodynamic pseudo time
iteration with the Rotor 67 test case requires 112000µs using the Fury X. With the
same GPU, 1900000µs are required to perform the complete mesh update (the metrics
update time is negligible with respect to IDW). Considering a single mesh update every
500 iterations it is easy to see that the overall computational time spent updating the
mesh is negligible with respect to the overall simulation time. In fact, with a single
mesh update performed every 500 explicit iterations, only the 3% of overall execution
time is occupied by mesh deformation. This is also true for unsteady simulations,
where, thanks to DTS, one physical time iteration is performed every about 500-1000
pseudo time iterations (depending of convergence and user-defined parameters). In
this case mesh deformation would account for just 1.6% of the computational time of
each physical time iteration. This further justify the choice of the DTS formulation
strategy for the GPU implementation for AeroX. In fact, using a global physical time
stepping strategy for unsteady simulations with mesh deformation rather than DTS, the
mesh deformation kernels have to be executed every explicit iteration, slowing down
the simulation.

Figure 6.1 finally shows the speed-up provided by each GPU both in single and
double precision mode, with respect to the high-end Intel i7 5930K CPU using as
baseline (1× speed-up) the 6-cores multi-thread execution in single precision.

6.2.3 Mesh dependency

AeroX is a solver capable to perform simulations with unstructured hybrid meshes
thanks to the compatibility with a wide range of mesh generation software provided by
the OpenFOAM API and conversion tools. This means that the solver is compatible
with meshes composed by different kinds of elements, such as tetrahedra, prisms, hex-
aedra, polyhedra. However, this important solver feature comes at the cost of a possible
performance loss with GPU executions due to the need of addressing buffers, reducing
coalesced memory accesses and possibly introducing branch divergence problems. It
is thus worth to check how the solver behaves with meshes featuring different types of
elements [129]. Furthermore, it is noted that high GPU speed-ups are obtained with
meshes big enough to keep all GPU cores fully loaded. Obviously, due to branch diver-
gence and non-perfect memory coalescing, the performances of AeroX will somehow
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Figure 6.1: GPU speed-ups. Baseline: Intel i7 5930K using 6 cores in SP mode.

depend upon the particular mesh under investigation. Here the idea is to analyze the
AeroX GPU speed-up sensitivity by changing mesh properties (size, kind) indepen-
dently. This means using meshes with different sizes, and different kinds of elements.
Meshes with different sizes basically change the total number of work-items instan-
tiated by kernel executions for both face-based and cell-based kernels. Meshes with
different types of elements instead change the number of operations performed inside
each kernel instance when an assembly operation is involved (e.g. residuals assembly
or gradients computation), possibly triggering branch divergence if the mesh is hybrid.
The goal is to tune the solver in order to obtain performances as much as possible in-
dependent from the mesh properties. The adopted test case is a simple NACA 0012
wing (with chord c = 1m and span b = 10m) in a rectangular (40× 10× 10m) wind
tunnel. Steady inviscid simulations are performed, considering both memory-intensive
(e.g. residuals assembly) and computational-intensive (e.g. convective fluxes) kernels
running. The same case is simulated with the following unstructured (and some also
hybrid) meshes, all with approximately Nv ' 1.0 · 106 cells:

• a) Fully tetrahedral mesh;

• b) Fully prismatic mesh;

• c) Fully hexaedral mesh;

• d) Mixed mesh with approximately 60% tetrahedra, 20% prism, 20% hexaedra
cells;

• e) Hexaedra-dominant mesh created with snappyHexMesh featuring 5% of poly-
hedral cells, with up to 18 faces per cell;

All meshes are firstly renumbered using the OpenFOAM renumberMesh tool based
on the Cuthill–McKee algorithm in order to minimize band and optimize as much as
possible the memory layout of each case. Figure 6.2 shows the time/iteration/cell ob-
tained using all the 6 cores of the Intel i7 3930K CPU while figure 6.3 the values
obtained with the NVIDIA GTX 660 GPU. These two figures show the AeroX solver
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sensitivity to the mesh type of the computational cost metrics with a typical high-end
CPU architecture and a typical mid-end GPU architecture. As expected, the computa-
tional cost metrics shows a negligible dependency from the mesh type in the multi-core
CPU case, with a relative standard deviation below 4%. Viceversa, the computational
cost metrics shows higher sensitivity to mesh type in the GPU case, with a relative stan-
dard deviation of approximately 12%. In particular the time per iteration per cell varies
only slightly (due to slightly number of faces) for cases a), b) and c), while it increases
significantly for cases d) and e) due to presence of cells with different number of faces,
triggering branch divergence in assembly operations (e.g. residuals). Such a penalty is
however limited as it does not jeopardize the observed speed-ups.

It is also worth to check the speed-up dependency from the mesh size. Since GPUs
have nowadays thousands of cores and are optimized for thousands of concurrent work-
items, they can reach peak performances with meshes exhibiting a sufficient number of
cells. Mesh size is not particularly a problem for CPUs since they usually have few
cores, thus they can be easily fully loaded just with small meshes. The dependency
of the GPU speed-up from the mesh size is investigated simulating the same test case
multiple times, changing every time the total number of cells and checking the time/it-
eration/cell performance metrics. This is done for both the i7 5930K CPU and the Fury
X GPU. The adopted test case is the NACA 0012 airfoil, fully discretized with hexae-
dral cells. Single precision is employed. Results with different number of cells and
devices are showed in table 6.11. From the table it is possible to see that, as expected,
the GPU requires meshes with enough cells to achieve high speed-ups. In order to ex-
ploit as much as possible the 4096 cores of the Fury X computational power, millions
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Table 6.11: Time/iterations/cells (seconds) and speed-up dependency from mesh size, SP.

5k 10k 50k 100k 500k 1M 2M

i7 5930K 2.20e− 7 1.84e− 7 1.72e− 7 1.71e− 7 1.72e− 7 1.73e− 7 1.72e− 7
Fury X 2.92e− 7 1.47e− 7 3.75e− 8 2.39e− 8 1.36e− 8 1.27e− 8 1.20e− 8

Speed-up 0.75× 1.25× 4.59× 7.18× 12.5× 13.5× 14.25×

of cells have to be employed. The CPU provides around the same time/iteration/cell
for all mesh sizes. In particular, for meshes with more than 50k cells there is basi-
cally no difference in CPU performances. For the GPU the situation is quite different.
In fact, it is possible to see that one order of magnitude difference in performances is
obtained between mesh sizes of 5k and 2M cells. Furthermore, mesh dependency is
quite relevant for meshes with sizes below 500k cells. This confirms the fact that, as in
any other GPU application, the problem must be big enough to fully exploit the GPU
architecture. From the table is is also possible to see that the speed-up provided by
GPU acceleration increases until a plateau. Figures 6.4 show graphically, for the dif-
ferent mesh sizes, the speed-ups that can be achieved with the aforementioned devices
and the time/iteration/cell for the two devices, highlighting that at least 1 million cells
are required to achieve high efficiency for the AMD Fury X GPU. The CPU instead
reaches the plateau with just few thousands of cells.
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Figure 6.4: Performance parameters trend with different mesh sizes.

6.2.4 SP vs DP and ECC memory validations

One of the key ideas of this work, at the base of the chosen formulations and strategies
is the exploitation of gaming GPUs that are one order of magnitude cheaper than HPC
GPUs but provide basically the same SP computational power. The main drawbacks
are: reduced global memory, reduced DP performance, lack of ECC memory capability.
The purpose of this section is to prove that the solver is capable to provide accurate
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results using SP instead of DP and to provide correct results without the need of ECC
memory support.

As explained in 5.2.3, multiple strategies were implemented in the solver to avoid
numerical problems when employing SP, such as non-dimensional equations. This is
done in order to provide the same results accuracy level provided by DP execution.
This problem is investigated by performing two simulations of the same test case, re-
peating the simulation for both floating point representations and finally checking for
differences in results. This investigation is performed again on the NASA’s Rotor 67
fan blade, in order to perform the checks using a real test case rather than an ad-hoc
case. Different quantities can be checked to asses the reliability of SP simulations, e.g.
checking residuals, integral quantities like the mass-flow at choking, and local quan-
tities like the Mach number field at choking conditions. Here the outlet mass-flow at
choke conditions for the Rotor 67 test case is adopted to perform the investigation. The
simulation is performed using the AMD 290X GPU with SP and is then repeated with
DP support. The difference obtained with the two floating point representations is be-
low 0.05% on a mass-flow value of 1.562Kg/s obtained with SA turbulence model.
With such a small difference it is possible to say that using SP with non-dimensional
equations provides the same results accuracy obtained with DP support. No local vis-
ible differences where found inside local fields. It must be underlined that thanks to
non-dimensional equations and the other strategies to avoid numerical issues with SP,
alongside with results accuracy, SP executions have also the same convergence rate of
DP executions. This is translated in the fact that SP and DP executions requires ba-
sically the same number of pseudo time iterations to reach convergence. This way it
is directly possible to check the speed-up advantages provided by SP over DP in term
of computational time. This also means that the time/iteration/cell parameter can be
directly adopted to perform comparisons between SP and DP executions.

As said, the solver is specifically designed to exploit SP peak performances of cheap
gaming GPUs and satisfy the limited global memory available on this kind of hardware.
However, thanks to the typedef strategy (see 5.1.3) it is very easy to switch to DP mode.
Obviously this feature guarantees the possibility to fully exploit HPC GPUs that exhibit
bigger global memory and higher DP performances. Anyway it is worth to investigate
how the solver behaves in DP executions with gaming GPUs. As showed in tables 6.3,
6.4, 6.1 and 6.2, due to how SSE/AVX works, CPUs DP performances are the half of
their SP performances. For GPUs the situation is different since the architectures are
very different from what found inside CPUs. With GPUs, DP performances are usually
opportunely limited by GPU vendors for gaming GPUs to just a fraction of SP perfor-
mances. Here the benchmarks presented in 6.2.1 are repeated with the same devices and
test case with DP instead of SP. As it is possible to see from tables 6.1 and 6.2 the DP
performances of gaming GPUs are just a fraction of SP performances, while for what
concerns CPUs (tables 6.3, 6.4) they are just one half due to how SSE/AVX units work.
As an example the AMD 380X GPU theoretical DP performances are just 1/16 of the
SP counterpart. However, this is just the ratio between the two theoretical GFLOPS
values when all cores are fully loaded. In real life applications, with the possible over-
head due to branch divergence and memory accesses, these number cannot be easily
reached. This means that in reality due to this kind of bottlenecks the gap between
SP and DP performances could be different. Theoretical SP performances cannot be
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easily reached in a every application. Furthermore provided the same global memory
bandwidth, accessing double precision variables requires more data to be transferred
than with single precision variables. This could further slow down kernel executions
when employing DP. As for SP, tables 6.12 and 6.13 shows the results for CPUs and
GPUs respectively. Table 6.14 shows the speed-ups provided by the GPUs over CPU

Table 6.12: Time/iteration/cell (seconds) with different CPUs with DP.

Phenom 1C Phenom 4C APU CPU 1C APU CPU 4C i7 5930K 1C i7 5930K 6C
7.96e− 6 2.45e− 6 3.26e− 6 1.35e− 6 1.54e− 6 2.72e− 7

Table 6.13: Time/iteration/cell (seconds) with different GPUs with DP.

APU GPU GTX 660 380X 290X Fury X
1.26e− 6 2.86e− 7 1.34e− 7 6.65e− 8 6.37e− 8

multi-thread executions. As expected, the speed-ups provided by GPUs are lower using

Table 6.14: Speed-ups with DP, GPU relative to CPU with multi-thread enabled.

APU GPU GTX 660 380X 290X Fury X
Phenom 4C 1.94× 8.58× 18.3× 36.8× 38.5×

APU CPU 4C 1.07× 4.73× 10.1× 20.3× 21.2×
i7 5930K 6C 0.22× 0.95× 2.02× 4.09× 4.27×

DP with respect to SP. As an example, from table 6.14 it is easy to see that the Fury
X with DP is about 2.35× slower than with SP though theoretically the ratio should be
16 due to hardware limitations. For what concerns the AMD 290X the obtained ratio
is 2.36 with a theoretical ratio of 8. With the AMD 380X the two ratios are 3.14 and
8. With the NVIDIA GTX 660 the two ratios are 4.5 and 24. Finally for the APU
the two ratios are 4.29 and 16 using GPU cores. These discrepancies can be justified
with the aforementioned explanations, i.e. due to overhead not related to purely float-
ing point operations. It is reminded that alongside the obvious advantages provided by
faster executions, SP also allows the execution of bigger cases thanks to lower memory
requirements.

For what concerns CPU executions in DP mode it is possible to compare tables 6.5,
6.6 and 6.12 to check for the advantages provided by SP in terms of execution times.
As explained, the speed-up due to how SSE/AVX works should be theoretically two.
However it is possible to see that the speed-up with SP is around 1.41 for the Phenom
CPU, 1.45 for the APU in CPU mode and 1.16 for the i7 5930K. This is probably due to
the fact that inside kernels, besides pure floating point operations, computational time is
also spent for memory accesses and other instructions not directly related to numerical
computations. It must be noted that, as with GPUs, using SP has also advantages in
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term of memory consumption, allowing to simulate bigger cases with the same amount
of system memory.

Finally, the solver is tested for possible differences obtained due to the lack of ECC
memory in gaming GPUs. It is worth to say that during the entire development of
the solver no errors were obtained that could be attributed to hardware memory issues.
Anyway the check for possible problems related to the lack of ECC, and thus the pos-
sible need of ECC-complaint GPU, could be performed in different ways. As showed
in [45, 151] it is possible to stress the ECC-compliant hardware first with ECC on and
then with ECC off. Finally results are checked for possible differences that could be
attributable to hardware memory errors, errors that could have been detected and/or
corrected by ECC. It is also possible to stress the same GPU by performing the same
simulation several times in a row and check for possible differences in results between
the runs. In this work the NVIDIA Tesla C1060 HPC-class ECC-compliant GPU was
used to check for memory problems. At the time of writing this GPU is quite old,
with low FP performances, comparable to a nowadays low-end GPU. However it is
still useful for this investigation in order to asses possible ECC advantages. The same
test case, again the Rotor 67 fan blade, was run on the Tesla C1060 and the AMD
290X ten times but no differences in results were obtained between different runs on
the same GPU. Very small differences, comparable to the numerical threshold were in-
stead obtained between the results provided by the Tesla C1060 and the AMD 290X.
However, these differences can be justified with different implementations and instruc-
tions reordering by the NVIDIA and AMD implementations since the same differences
are encountered all the 10 times with exactly the same numbers. Basically the same
conclusions found in [45, 151] can be applied also to this work.
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CHAPTER7
Fixed wing aerodynamic applications

After the analysis of the speed-up advantages provided by GPU executions, the solver
is now validated in terms of results accuracy. In this chapter, in particular, purely aero-
dynamic test cases will be investigated. This is an important step required before the
aeroelastic framework validation, since it is necessary to guarantee that the solver is ca-
pable to provide accurate inviscid and viscous results for a wide range of aeronautical
cases before proceeding with the more complex aeroelasticity formulations validation.
Alongside typical steady aeronautical cases of wings like the Onera M6 and the RAE
2822 airfoil, the 2nd Drag Prediction Workshop is adopted to asses the capability of the
solver to provide accurate compressible viscous results. This is an important bench-
mark used to demonstrate that the solver is capable to correctly predict lift and drag
coefficients.

It is worth to present different cases in order to demonstrate that AeroX is indeed a
general purpose solver capable to simulate very different configurations such as airfoils,
wings, aircraft and rotors.

7.1 Onera M6

In this first section the Onera M6 wing test case is analyzed. This is a 3D inviscid
case used to validate the solver for what concerns convective fluxes and high resolution
formulations. While details about this test case can be found in [136] it is still worth
to briefly introduce the case. This is a transonic test case with an asymptotic Mach
number of M∞ = 0.84 and an angle of attack of α = 3.06◦. Figure 7.1 shows the detail
of the wing discretization. Slip boundary conditions are enforced over the wing and
the symmetry wall at the wing root, while characteristics-based boundary conditions
are enforced on the farfield in order to automatically switch between inlet and outlet
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Figure 7.1: Onera M6 mesh, wing detail.

boundary conditions. The mesh is composed by 340k tetrahedral cells. This is a non-
hybrid unstructured mesh, thus there is no branch divergence in the residual assembly
kernel. The solver is executed searching for a steady-state solution with all convergence
acceleration techniques active. EE is used to advance the solution in pseudo time. Roe
fluxes with HR and extended cells strategy are adopted for the simulation. The required
computational time is 239 s on the AMD 380X GPU and convergence is reached in
20 · 103 iterations. The validation of the solution is performed comparing the solution
provided by AeroX with experimental data provided in [135]. Experimental data is
available for what concerns the CP (pressure coefficient) over sections at various span
locations (from 0.2 to 0.99). Figures 7.2 show the solution at different span locations,
from 20% to 99%: It is possible to see that the curves provided by AeroX are in good
agreement with experimental data. From figure 7.3 it is evident in the solution the
presence of a shock over the wing that justify the rapid pressure change in CP curves.
In this figure a comparison is made between the solution provided by AeroX and the
solution provided by AeroFoam [136]. It is clear that the solution provided by the two
solvers is in good agreement.

7.2 RAE

This is a well-know test case that is here adopted to show the capabilities of AeroX
to simulate flows with interaction between compressible and viscous effects. De-
tails regarding the case, reference numerical and experimental data can be found in
[44,44,51,60,70]. For this test case different configurations can be investigated thanks
to the available experimental data for what concerns both pressure and friction coeffi-
cients. Due to the particular airfoil shape and farfield conditions these cases are quite
challenging for numerical solvers due to separations and shocks. Different solvers im-
plementing different numerical schemes could lead to different shock positions and
separation bubbles. Here three different conditions are investigated. These are showed
in table 7.1. In all the three cases the Mach number is high enough to allow the for-
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Figure 7.2: CP at different span locations.

mation of a shock wave on the upper side of the airfoil. Furthermore, as mentioned
before, a separation could occur on the upper side of the airfoil at the given angle of
incidence. AeroX is here adopted to perform steady-state RANS simulations using SA
and SST turbulence models and Roe fluxes with extended-cells high resolution strat-
egy. The mesh adopted for these tests is composed by 38400 quadrilateral cells and the
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(a) AeroX (b) Reference, AeroFoam

Figure 7.3: Pressure field.

Table 7.1: RAE 2822 test cases.

Case name M∞ Rechord α

case 9 0.730 6.5 · 106 3.19◦

case 10 0.750 6.2 · 106 3.19◦

standard case 0.729 6.5 · 106 2.31◦

wall refinement allows values of y+ in the order of 1.5, thus in the viscous sublayer, all
over the airfoil. This is easily handled by the automatic wall treatment. For what con-
cerns the total simulation time, this is about 120 seconds for each case on the NVIDIA
GTX660 GPU, corresponding to 50 · 103 pseudo time iterations. Figures 7.4 show the
results for what concerns the CP distribution over the airfoil for the three cases under
investigation. As it is possible to see the results provided by AeroX are in good agree-
ment with experimental data for all the three cases. In particular, the shock location
and pressure jump seem to be caught quite well, especially using SA turbulence model.
Furthermore the CP distributions on both the upper side and the lower side of the airfoil
accurately follow the reference values. SST appears to predict shock positions slightly
upstream of the experimental data. This behavior, however, is also obtained in other
numerical analyses like [11] using SST. In this reference it is possible to see that SA in
general produces better results for what concerns the shock position, similarly to what
happens with AeroX here. It must be noted that, as noticed by other authors like [44],
case 10 is quite challenging due to the difficulty to reach a steady-state solution. An
oscillatory trend is obtained also with AeroX. This is just for case 10, as standard case
and case 9 easily converge to a steady-state solution. Figures 7.5 show instead the CF
distribution over the airfoil for the three analyzed cases. It must be noted that for case
9 and case 10 results are taken from [44] (called "Experimental, NASA" in the legend)
and reference [51] (called "Experimental, EUROVAL" in the legend), while for what
concerns the standard case they are not directly available on the website [11] and thus
the reference values are taken from the numerical simulation provided by another com-
mercial software. For what concerns the standard case it can be seen that the AeroX
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Figure 7.4: CP distribution over the airfoil.

results with SA correctly match the reference data for the most part of the airfoil. How-
ever, with this turbulence model, differences are encountered on the upper side, right
after the shock, where the friction coefficient seems to be overestimated with respect
to the reference numerical solution. Using SST a general overestimation of the friction
coefficient is obtained both on the upper and the lower side of the airfoil. Furthermore,
due to the different shock locations, the friction coefficient jump is located slightly be-
fore the location provided by SA and reference data. For what concerns case 9 it is
possible to see that before the shock the results provided by AeroX with SA match
well experimental data of [51] while overestimate data provided by [44]. Using SST
for the same case a general overestimation of the CF is again present. However, after
the shock in this case SST seems to better predict the value of the friction coefficient.
A key difference between SA and SST in this case is given by the fact that while SA
predicts a separation, for a very small region of the airfoil, on the upper side right after
the jump, this is not obtained with SST. In this region SST better predict experimental
data. Finally, for what concerns case 10 the same considerations of case 9 are valid
before the shock for SA: the model is more in agreement with the experimental data
provided in [51] while overestes reference data of [44]. This is also true for AeroX
with SST. After the shock AeroX with both SA and SST predicts a separation over a
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Figure 7.5: CF distribution over the airfoil.

wide region of the airfoil, basically up to almost the trailing edge. In this setup only one
experimental point seems to be available from both experimental data sources after the
shock on the upper side, thus it is not easy to understand if a separation should occur
and how wide it has to be.

7.3 2nd Drag Prediction Workshop

Here the geometry of the 2nd AIAA CFD Drag Prediction Workshop is investigated. In
particular, the geometry of the DLR-F6 configuration that represents a twin engine body
aircraft of Airbus type is employed. This is a specifically designed test case [50] used to
check the capabilities of numerical solvers to correctly simulate the flow around a typ-
ical aircraft geometry where both compressible and viscous effects have a determinant
weight. In fact, the challenge is to accurately compute both lift and drag coefficients at
different angles of attack in steady-state conditions. With these data it is then possible
to compute the polar curve of the aircraft. Drag prediction is a critical challenge in the
aeronautical field as it is strictly related to fuel consumption and costs. It is thus manda-
tory for a general purpose compressible RANS solver to be able to accurately predict
the drag coefficient for the entire airplane. Numerical results provided by AeroX are
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compared with literature results provided by an implicit pressure-based compressible
RANS solver with SST turbulence model [102, 103] and experimental data. Both SA
and SST turbulence models are well suited for this particular test case. Thus they are
both employed for the simulations with AeroX to check for possible results accuracy
differences, especially with high angles of attack. Even tough different angles of attack
are here investigated, all the coefficients are obtained through steady-state simulations,
thus there is no investigation on the effects of rapid change in the angle of attack of the
aircraft.

Though this is a well-known test case, it is worth to discuss few details about the
flight conditions. For the design Mach number M∞ = 0.75 and Reynolds number
Re = 3′000′000 the reference lift coefficient CL is about 0.5. Different angles of at-
tack, α ∈ [−4.8◦, 1.82◦] are investigated. Due to the model shape, positive lift values
are obtained with negative angles of attack, as will be showed. Figure 7.6 shows the
detailed view of the whole aircraft wall discretization. Figure 7.7 shows the detail of
the boundary layer discretization. It is possible to see that the aircraft geometry is

Figure 7.6: DLR-F6 mesh discretization near the aircraft.

surrounded by a boundary layer in order to accurately predict viscous effects and thus
drag coefficients at all the angles of attack under investigation. The boundary layer
discretization guarantees y+ values raging from inside the viscous sublayer up to about
40 for all the angles under investigation. Thanks to the implemented automatic wall
treatment this is perfectly fine using the blending strategy. Figure 7.8 shows the overall
computational domain. Basically, a symmetry wall is adopted to reduce the computa-
tional domain since both the geometry and flight conditions are symmetrical. The com-
putational domain is about 30 times the size of the aircraft in order for the employed
boundary conditions to be representative of a true farfield situation. It is possible to see
that there is enough distance between the aircraft and the farfield. Furthermore farfield
cells are relatively big with respect to the aircraft size. The adopted computational mesh
contains 2 · 106 cells. This is an hybrid mesh composed by tetrahedral cells (∼ 61%)
and prisms (∼ 39%), thus branch divergence performance loss is expected. Nonethe-
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Chapter 7. Fixed wing aerodynamic applications

Figure 7.7: DLR-F6 boundary layer discretization.

Figure 7.8: DLR-F6 far-field discretization.

less with the AMD 290X GPU a time/iteration/cell value of 2.74 · 10−8 s is obtained
using SA turbulence model and 3.04 · 10−8 s using SST turbulence model. These are
results using SP. Thus it is possible to see that these values are in agreement with what
showed in 6.2.1 for this GPU for the Rotor 67 test case, even when with an hybrid mesh
branch divergence is present. Each investigated angle requires around 40 · 103 pseudo
time iterations to reach convergence. In particular with SA the case with α = 0.02◦

took 2234 s to reach convergence and 2499 s for SST. Simulation times for the remain-
ing angles are comparable with the same GPU. The same mesh is also adopted with
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the implicit pressure-based compressible RANS solver with SST turbulence model to
provide comparative results. Furthermore the pressure-based solver is also used with a
mesh composed by 8.3 · 106 hexaedra cells.

Figure 7.9 shows the results for what concerns the pressure field over the aircraft. In
particular here a comparison is performed with AeroX results using inviscid simulation
(Euler), AeroX with SA, and finally reference results with the pressure-based solver
previously mentioned. Results with SST are basically comparable with what obtained

(a) AeroX, Euler

(b) AeroX, Spalart–Allmaras

(c) Reference, SST

Figure 7.9: Pressure distribution with AeroX and reference numerical results.

with SA, thus they are not showed. It is possible to see that the results obtained with
AeroX and SA are in good agreement with what obtained with the reference solution.
The situation is different for what concerns the Euler solution since it does not take into
account viscous effects. Euler solutions in this case tends to overestimate lift. As an
example at null angle of attack the lift coefficient provided by inviscid simulations is
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around 0.7 while viscous simulations predict about 0.5. This is a quite big difference.
Thus in this case performing a viscous simulation not only allows to predict the correct
drag but also improve lift prediction. It is now possible to analyze results regarding lift
and drag. Figure 7.10(a) shows the value of lift coefficient with respect to the angle
of attack. Figure 7.10(b) shows the value of the drag coefficient with respect to the
angle of attack. Finally figure 7.10(c) shows the combination of these data in the polar
curve of the aircraft. From the results it is possible to see that AeroX provides good
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Figure 7.10: DLR-F6 performance coefficients.

results using both SA and SST turbulence models. Both models provide comparable
results, with slightly better results from SST for higher angles of attack. SA in fact is
specifically designed for this kind of analysis of aeronautical components (especially
airfoils) when no separation is present in the flow. With the employed mesh a slight
constant overestimation in lift coefficient is obtained, while for what concerns drag a
slight overestimation with high angles of attack is obtained. Combining these data into
the polar curve it is possible to see again that AeroX provides good results with this
mesh. It must be noted however that the polar curve is directly obtained combining CL
and CD values but there is no direct reference of the angle related to those values inside
the curve. Nonetheless these slight differences are probably related to the mesh itself

180



i
i

“thesis” — 2016/12/24 — 15:47 — page 181 — #193 i
i

i
i

i
i

7.3. 2nd Drag Prediction Workshop

since it is possible to see that the pressure-based implicit solver provides differences in
results just by changing to the adopted mesh.
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CHAPTER8
Fixed wing aeroelastic applications

After the validation of the purely aerodynamic formulations implemented in the solver,
convective and viscous fluxes in particular, it is now time to analyze the fluid-structure
interaction framework. Steady and unsteady cases will be presented. Here the focus
is on classical aeronautical cases. Turbomachinery and open rotors aeroelastic cases
will be presented in a next chapter. The well-known HiReNASD wing benchmark case
is here adopted for the validation of the static aeroelastic solution, i.e. the trim so-
lution. Another test case, the AGARD 445.6 wing will be adopted to investigate the
flutter prediction capabilities of the solver, both in subsonic and supersonic regimes.
Results for the 2nd Aeroelastic Prediction Workshop (AePW2) are here presented for
what concerns the trim and flutter analyses. This in particular is a recent benchmark
case specifically designed to asses computational capabilities in flutter and forced os-
cillations response prediction.

8.1 HiReNASD wing trim

Here the well known HiReNASD (High Reynolds Number Aero-Structural Dynamics)
project wing [55] is investigated through a steady rigid and an aeroelastic (trim) anal-
ysis. In particular, the case No. 132 is considered. For this particular case, reference
data provided by FUN3D numerical solver is also available from NASA [55] alongside
experimental data. Furthermore, numerical results are also available in [127] and [115]
for what concerns AeroFoam and ST solvers, Euler/RANS and full potential formu-
lation respectively. This case is important since trim analyses will be also performed
subsequently for the Rotor 67 blade fan. Thus, it is better to firstly validate the solver
with a classical aeronautical case and then proceed with a turbomachinery test case
that is more complex due to the use of MRF and periodic boundary conditions. The
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experimental setup of the HiReNASD test case is showed in figure 8.1: Basically it is a

Figure 8.1: HiReNASD wing experimental setup.

ceiling-mounted semi-span clean-wing configuration with a leading-edge sweep angle
ΓLE = 34◦, a span b = 1.2857m and a mean aerodynamic chord c̄ = 0.3345m. From
the figure it is possible to see that the wing is composed by three regions built with
three different airfoils. Furthermore, a generic fuselage is included in the geometry in
order to reduce the influence of the wall boundary layer during testing. Details about
the geometry are available in [55,127]. For the test case No. 132 the Reynolds number
corresponding to the aeroelastic response of the wing-body couple is Re = 7 · 106,
while the Mach number is M∞ = 0.8. The dynamic pressure is q∞ = 40055Pa. Dif-
ferent angles of attack are investigated: α ∈ (−1.5◦, 0.0◦1.5◦, 3.0◦, 4.5◦). Numerical
and experimental data is available for comparisons regarding the CP distribution at dif-
ferent span locations: η ∈ (14.5%, 32.3%, 65.5%, 95.3%). Furthermore the values of
the vertical displacements of the point at coordinates (0.87303, 1.24521) on the wing,
referring to figure 8.1, near the wing tip, are also available for the validation of the
static aeroelastic response. Aeroelastic cases requires both aerodynamic and structural
models. The purpose of the developed aeroelastic solver is to combine those indepen-
dent models to provide the aeroelastic solution. Thus now it is time to discuss both the
structural and aerodynamic models here adopted for the HiReNASD test case.

8.1.1 Structural model

The structural model here adopted is taken from [127]. The HiReNASD project pro-
vides structural models obtained through a Finite Element discretization of the wing
including the body attached to symmetry wall. There, the discretization is performed
using solid elements for a total of 200 · 103 grid points. As explained in 2.2.1 the strat-
egy adopted in AeroX is based on a modal reduction of the structural behavior in order
to accelerate as much as possible the host-based aeroelastic computations, trying to
reduce the CPU overhead and keep the GPU as much as possible loaded during sim-
ulations. Here the trim validation is performed using a beam-based structural model
with a limited number of d.o.f., opportunely tuned to match both the modal shapes and

184



i
i

“thesis” — 2016/12/24 — 15:47 — page 185 — #197 i
i

i
i

i
i

8.1. HiReNASD wing trim

frequencies obtained by the Ground Vibration Tests (GVT) measurements. In particu-
lar, the beam-based structural model here adopted is composed by 62 nodes distributed
along the wing span, each of which is connected to 4 additional nodes (located at the
trailing and leading edges and on the upper and lower wing surfaces) through rigid ele-
ments. This is done in order to improve the accuracy of the reconstruction of rotations
by just using translations d.o.f. when assembling the aeroelastic interface between the
structural and aerodynamic mesh. Table 8.1 shows the frequencies of the first 8 modes
here adopted to represent the structural behavior of the HiReNASD wing. Figure 8.2

Mode ID Frequency. (Hz) Description
1 25.95 1st bending
2 82.42 2nd bending
3 117.58 1st in-plane bending
4 168.42 1st bending-torsion
5 258.38 3rd bending
6 273.20 4th bending
7 275.29 2nd in-plane bending
8 275.29 2nd bending-torsion

Table 8.1: Modal frequencies and shapes of the first 8 modes of the HiReNASD wing.

shows the shape of the first two modes and allows a better understanding on the beam-
based structural discretization: It is important to say that modes are adopted in the

Figure 8.2: Beam-based structural mesh discretization and shape of the first two modes (1st (left) and
2nd (right) bending).

solver using a unitary mass normalization. This way it is possible to directly compare
generalized displacements in order to guarantee the convergence of the modal repre-
sentation of the structural behavior through the analysis of the elastic energy related to
the participation of each single mode. This criterion will be also used for the trim of
the Rotor 67 fan blade. However, in that case, few modes will be enough to correctly
represent the structural behavior of the fan blade.

8.1.2 Aerodynamic model

After the description of the structural model it is time to discuss the aerodynamic mesh
adopted for the discretization of the fluid domain and the solver settings adopted to con-
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verge to a steady aeroelastic solutions. The trim validation is performed using AeroX
with both Euler and RANS formulations, using SA turbulence model for viscous sim-
ulations. All the convergence acceleration techniques are employed. It is noted how-
ever that trim convergence is considered reached when both aerodynamic and modal
residuals are below certain tolerances, since this investigation involves also the struc-
tural behavior of the elastic wing. It is possible to choose how many purely aerody-
namic pseudo time iterations perform between two mesh updates. In this case a good
trade-off is represented by 500 pseudo time iterations. This value allows good per-
formances both for inviscid and viscous simulations with all the considered angles of
attack. Pseudo time iterations are performed using EE formulation since no particular
convergence problems have been encountered that would require specific smoothing
capabilities provided by Runge–Kutta schemes. An hybrid mesh composed by a total
number of 1.9 · 106 cells is adopted for the RANS simulations. This mesh is composed
by 43% thetrahedra and 57% prisms. Thetrahedra are obviously used around the wing
to discretize the boundary layer up to y+ ' 100. This value is perfectly in the range
supported by the automatic wall treatment. Since no complex phenomena, such as sep-
arations, should occur in the investigated conditions, this wall discretization allows to
speed up computations while maintaining a good level of results accuracy. Prisms are
used far from the wing up to the farfield with cells of increasing sizes in order to help
smoothing residuals wherever is possible. This can be easily understood with figure 8.3
where the overall and the detailed views of the wing are showed: Since the mesh is un-

(a) Overall mesh view (b) Leading edge detailed view

Figure 8.3: HiReNASD mesh for RANS simulations, overall view of the body/wing part and detail view
of the leading edge and boundary layer discretization.

structured and hybrid, branch divergence occurs during assembly operations. However
with the AMD 380X GPU it is still possible to achieve a time/iteration/cell of about
4.66 · 10−6 seconds.

8.1.3 Trim analysis

Here the results concerning the static aeroealstic simulations are discussed. The focus
is mainly on RANS results, though inviscid simulations are also performed to provide
comparative data. First, it is worth to spend few words about the purely computa-
tional aspects of the problem. This case is simulated using the AMD 380X GPU. As
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said 500 pseudo time iterations are used between two consecutive mesh updates. Basi-
cally, around 30 aeroelastic iterations are required to reach trim convergence for each
angle of attack using RANS. This is equivalent to about 15 · 103 pseudo time purely
aerodynamic iterations. Each trim simulation requires about 1500 seconds using the
aforementioned GPU. It must be noted, however, that at each angle the trim simu-
lation is started from a purely aerodynamic steady-state solution which is previously
obtained with a purely aerodynamic steady-state simulation. Each purely aerodynamic
solution requires about 20 · 103 iterations, that are translated to about 30 minutes of
computational time. This basically means that a RANS trim solution for a single angle
requires about less than one hour to be performed using the ∼ 2M cells mesh. Figure
8.4 shows the results for what concerns the convergence history of the first 4 gener-
alized displacements and generalized forces with respect to pseudo time iterations for
the RANS analysis at α = 1.5◦. It is possible to see that basically the solution is con-
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Figure 8.4: Generalized forces and displacements convergence for HiReNASD trim at α = 1.5◦, RANS
simulation.

verged after just 15 aeroelastic iterations. However, in order to guarantee maximum
results accuracy for the α = 1.5◦ case, a total number of 30 aeroelastic iterations are
anyway performed. It is possible to see that the first three modes are characterized by
the bigger generalized displacements. Considering that, as said, modes are scaled using
a unitary mass normalization, it is possible to say that the first two modes account for
almost all (over 95%) the elastic energy accumulated by the structure. Obviously the
trend of generalized displacements and forces is characterized by steps. This is due to
how the aeroelastic algorithm is implemented (between two successive jumps, purely
aerodynamic iterations are performed). Furthermore, it is possible to see from figure
8.5(a) that the final shape of the wing basically reproduce the shape of the first mode
(the one with the lowest frequency), i.e. the first bending mode. It must be noted that
the displacements are opportunely magnified by a factor of 5× in order to easily un-
derstand the structural deformation under aerodynamic loads. Figure 8.5(b) also shows
the pressure coefficient CP distribution over the wing. It is possible to see that a shock
is present over the wing but smoothed due to viscous effects.

Figures 8.6 show at each of the aforementioned sections the CP distribution. It is
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Chapter 8. Fixed wing aeroelastic applications

(a) Wing shape, 5× magnification

(b) CP distribution

Figure 8.5: HiReNASD wing trim at α = 1.5◦, RANS simulation.

possible to see that the numerical solution provided by AeroX is in good agreement
with both numerical and experimental data using RANS simulations. Important dif-
ferences are instead obtained with inviscid simulations since it is possible to see that
the shock location and the CP jump are quite different from reference data. It is also
important to notice that there are differences in CP distributions between the purely
aerodynamic and aeroelastic solutions. These are mainly encountered on the two sec-
tions with higher span values, the ones characterized by higher displacements. The
results provided by AeroX are also compared with those provided by FUN3D [55]. It
is possible to see that for the first two sections both solvers provide basically the same
results for what concerns the viscous aeroelastic solution. Differences are found on
the section at 65.5% span where FUN3D better reconstructs the shock location, though
slightly overestimate the CP near the leading edge on the upper surface. For what con-
cerns the last section, again, results provided by AeroX seem to be slightly more in
agreement with experimental data near the leading edge of the upper surface with re-
spect to FUN3D, while for x/c > 0.4 the situation is reverted with FUN3D providing
slightly more accurate results than AeroX.

Finally, figure 8.7 shows the vertical displacements of the considered wing point
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(c) 65.5% span section
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Figure 8.6: Pressure coefficient at different span sections for the HiReNASD test case, α = 1.5◦, RANS
simulation.

near the wing tip in a comparison between AeroX results, experimental data and numer-
ical results from FUN3D. It is possible to see that inviscid results provided by AeroX
overestimate the displacements with all the considered angles. This is due to the fact
that, as it is possible to see from figures 8.6, Euler formulation predicts slightly dif-
ferent shocks locations, thus different pressure distributions, thus different wing loads
and consequently different wing deformations. With the RANS simulations instead it
is possible to see that results for the first angles are in very good agreement with both
experimental data and reference numerical data. However the vertical displacements
seem to be slightly underestimated with α = 4.5◦. Nonetheless it is possible to see that
an underestimation in displacements is also obtained with reference numerical results
though the error is slightly smaller.

8.2 AGARD 445.6 wing flutter

This is a well-know benchmark used to validate the capabilities of aeroelastic solvers
to accurately predict transonic flutter conditions. The detailed description of this un-
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Figure 8.7: Near-tip point vertical displacements comparison.

steady aeroelastic test case can be found in [127]. Experimental data from the NASA
Transonic Dynamics Tunnel (TDT) campaign can be found in [156]. Here the strat-
egy adopted to compute flutter conditions is described in 2.2.3. Basically the idea is
to firstly find trim conditions and then perform unsteady aeroelastic simulations by en-
forcing single modal shapes with a particular time law (rounded step). However, in this
particular test case both the geometry and boundary conditions are symmetrical. Thus,
the trim solution is basically equivalent to a simple steady-state rigid solution. From
this solution the solver is restarted to perform unsteady aeroelastic simulations with en-
forced displacements. Flutter conditions, i.e. flutter speed VF and flutter frequency ωF ,
are computed using the root tracking strategy. More precisely, the Flutter Speed Index
and Frequency Ratio are computed as follows:

FSI =
VF

Laωt
√
µ

(8.1)

FR =
VF

Laωt
√
µ

(8.2)

where La represents the reference aerodynamic length, ωt is the first torsional fre-
quency and µ is the mass ratio. Flutter is basically investigated as part of a post-
processing procedure performed over numerical results computed from unsteady sim-
ulations. The entire procedure is repeated for different Mach numbers, i.e. M∞ =
(0.678, 0.901, 0.960, 1.072, 1.140), covering the whole transonic regime. Inviscid and
RANS results provided by AeroX will be compared with both experimental results
obtained with an experimental campaign carried out by NASA Transonic Dynamics
Tunnel in 1961 and numerical data available in literature. In particular, the reference
numerical data is obtained from ST [115], AeroFoam [127] and FUN3D [138] nu-
merical solvers. This is an interesting test case since it shows the so-called transonic
dip phenomenon, with the characteristic drop of flutter velocity in the transonic regime.
Even though this is a well-know study case, under investigation for decades by numeri-
cal solvers, a general overestimation of the flutter speed is typically obtained, especially
for Mach values over 1. Recently [138], a numerical study suggested also that with su-
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8.2. AGARD 445.6 wing flutter

personic Mach numbers it is important to consider more than 2 modes when performing
inviscid simulations. The reason why will be showed later in results. The experimen-
tal setup for this case is depicted in figure 8.8 where it is possible to see that this is a
sidewall-mounted, clean-wing configuration (weakened model No. 3) with a quarter-
chord sweep angle Γc/4 = 45◦, a span b = 0.762m, a root chord cr = 0.558m and a
taper ratio λ = 0.66. The wing is symmetrical and uses NACA 65A004 airfoil all over
the span.

Figure 8.8: Experimental setup for the AGARD 445.6 wing flutter investigation.

8.2.1 Structural model

The structural model here adopted is taken from [127] where it is possible to find
more details regarding the Finite Element discretization strategy and material prop-
erties. However it is worth to briefly describe few aspects here. The structural model
is obtained through a Finite Element model that fits Ground Vibration Tests (GVT)
literature data. The FE model is assembled in Code_Aster using 121 nodes and 200
homogeneous orthotropic triangular plate elements. The thickness distribution of the
plate is opportunely tuned thanks to the use of Genetic Algorithms. This allows to ob-
tain the modal frequencies showed in table 8.2 with a maximum relative error under
5%. The modal shapes corresponding to these frequencies are showed in figure 8.9

Mode ID Exp. Frequency. (Hz) FEM Frequency (Hz) Error Description
1 9.60 9.57 0.30% 1st bending
2 38.17 39.28 2.90% 1st torsion
3 48.35 50.35 4.15% 2nd bending
4 91.54 93.63 2.10% 2nd torsion

Table 8.2: Modal frequencies and shapes of the first 8 modes of the HiReNASD wing.

As for the HiReNASD wing the obtained modes are scaled through an unitary mass
normalization.
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Chapter 8. Fixed wing aeroelastic applications

Figure 8.9: First 4 modes for the AGARD 445.6 wing used for flutter analysis.

8.2.2 Aerodynamic model

Here the details of the aerodynamic mesh adopted for the URANS simulations are
described. However, all the simulations are also repeated using Euler formulation in
order to check for possible differences due to viscous effects. Obviously the main dif-
ferences between URANS and Euler meshes regard the presence of a boundary layer
to refine the near wall region. This consequently lead to an higher number of cells for
the URANS mesh. The unstructured hybrid mesh adopted for the URANS simulation
is composed by a total number of 488 · 103 cells with 23% prisms, 69% tetrahedra
and 8% hexahedra. The mesh is obtained using gmsh and OpenFOAM utilities in
order to add the boundary layer discretization. An opportune near-wall boundary layer
refinement is employed to guarantee y+ values around 20 for the M∞ = 0.960 steady-
state solution. This is perfectly in the range of the automatic wall treatment through
the blended log layer/viscous sublayer approach. Figures 8.10 show both the over-
all view of the computational domain and a detailed view of the wing discretization.
It is possible to see that the computational domain is composed by an hemispherical
farfield with the wing located in the central position and attached to a symmetry wall.
The farfield is about 10 chords distant from the wing. Slip boundary conditions are
enforced on the symmetry wall while characteristics-based automatic boundary condi-
tions are employed over the farfiled. Finally non-slip boundary conditions are enforced
over the wing for the (U)RANS simulations and slip boundary conditions for the Eu-
ler simulations. Again, in order to help smoothing residuals far from the wing, cells
with increasing sizes are employed from the wing to the farfield. Wing walls are dis-
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8.2. AGARD 445.6 wing flutter

(a) Overall view of the computational domain (b) Near-wing detail view of the RANS mesh

Figure 8.10: Overall view and near-wing detail view of the AGARD 445.6 aerodynamic mesh.

cretized using 13 · 103 faces in order to guarantee the correct reconstruction of loads.
The GPU used for the simulations is the AMD 380X. About 50 · 103 iterations are
required to reach steady-state solution for the M∞ = 0.960 case. This is translated
to about 1200 seconds of simulation time with a time/iteration/cell of about 4.7 · 10−8

seconds. All convergence accelerations techniques are active and viscous computations
are performed every pseudo time iteration. RANS simulations are performed using SA
turbulence model which is perfect for this kind of analysis since it is specifically de-
signed for aeronautical cases with attached flows. Unsteady simulations are carried out
with the described DTS formulation. An aeroelastic interface is assembled between the
aerodynamic and structural meshes using RBF. Modal shapes are gradually enforced
with a blended step time law thanks to the modal framework. IDW is used for mesh
deformation and thanks to the optimized implementation, the computational time spent
at each physical time step for the mesh update is basically negligible with respect to the
effort required for purely aerodynamic convergence. One unsteady RANS simulation,
corresponding to the introduction of a single modal shape requires about 4300 seconds
of simulation time on the AMD 380X GPU. It must be noted that since 4 modes are
required for each Mach number and 5 Mach numbers are investigated, a total compu-
tational time of about 24 hours is required to perform a complete compressible RANS
flutter investigation with this single cheap gaming GPU. About 13 hours are instead
required for the entire Euler-based flutter investigation.

8.2.3 Trim analysis

As mentioned, since the wing geometry (NACA 65A004 sections) and asymptotic con-
ditions (α = 0◦) are symmetrical, there is no need to perform a true aeroelastic steady-
state simulation. The reference equilibrium solution does not involve the deformation
of the wing structure. The purely aerodynamic steady-state solution is adopted as initial
conditions for the subsequent unsteady simulations.
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Chapter 8. Fixed wing aeroelastic applications

8.2.4 Flutter Analysis

As explained in [127] it is worth to perform a dynamic linearity check when choosing
the blended step amplitude. The displacements in fact have to be opportunely small in
order to avoid triggering non-linear behaviors that would corrupt the small perturba-
tions hypothesis but at the same time they have to be big enough to be clearly higher
than the numerical errors threshold, especially with single precision executions. The
blended step time laws are here chosen following what explained in 2.2.2 and follow-
ing the suggestions provided in [127]. The idea is basically to choose a modal shape
(e.g the first bending mode), perform a simulation with a given input amplitude, store
the resulting generalized forces and repeat the simulation doubling the input amplitude.
If the ratio between the generalized force amplitudes is around two then the linear be-
havior is respected with the tried amplitudes. Using a threshold value of ε = tan 1◦

appears to be a correct choice to satisfy the aforementioned requirements.
It is now time to discuss the aeroelastic unsteady results provided by AeroX solver

in order to proceed with the validation of the flutter prediction capabilities.
Figures 8.11 shows the results for the previously defined Flutter Speed Index and

Frequency Ratio parameters within a comparison between AeroX executed in viscous
mode with SA turbulence model, AeroX inviscid, ST full potential solver, AeroFoam
solver in viscous and inviscid mode, FUN3D inviscid and viscous with SA turbulence
model and experimental results. For what concerns AeroX both results obtained con-
sidering just the first 2 modes (first bending and first torsion) and all the 4 modes are
showed. In general it is possible to see that, as expected, viscous simulations with
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Figure 8.11: Flutter indexes for AGARD 445.6 wing at different Mach number.

SA turbulence model provide better results with respect to inviscid simulations. This
is true for both AeroX and FUN3D solvers. For Mach numbers smaller than 1 basi-
cally all solvers provide very good results for the Flutter Speed Index. The situation
slightly changes for Mach numbers over 1 where a general overestimation of the same
index seems to be common between all the numerical solutions. Though all numeri-
cal solutions predicts the aforementioned transonic dip phenomenon, within supersonic
conditions viscous solutions are clearly more accurate than the inviscid counterparts.
For what concerns the Frequency Ratio, a general slight overestimation of this index
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8.3. 2nd Aeroelastic Prediction Workshop wing flutter

is encountered for the solution with the smallest Mach number. This is true for both
viscous and inviscid solutions provided by AeroX. Very good results are obtained with
M∞ = 0.901 and M∞ = 0.960 both with Euler and SA by AeroX. Similarly to what
happens with the Frequency Speed Index, for Mach numbers over 1 a general overes-
timation of the Frequency Ratio is encountered. Nonetheless it is possible to see that
both Euler and SA solutions provided by AeroX are in agreement with experimental
data and are of comparable or better accuracy with respect to the reference numerical
solutions. In general it is worth to notice the good results provided by the full potential
solver ST , which are in general comparable to RANS solutions.

As it is possible to see from the results provided by AeroX and other solvers, this
case still represents a challenge for numerical aeroelastic solvers. Differences are ob-
tained considering just 2 or all the 4 modes using the described flutter prediction proce-
dure that involves the assembly of aerodynamic transfer function matrices. A recent pa-
per [138] opened a new question for what concerns the inviscid case withM∞ = 1.140.
The paper explains that if more than the first two modes are investigated it appears that
for these particular conditions the 3rd mode is the responsible for flutter. However, in
the literature many inviscid simulations are carried out with just the first two modes,
providing misleading results. With AeroX it appears that considering URANS and Eu-
ler simulations with 2 modes all Mach numbers suggest the flutter instability of the first
aeroelastic mode. This is also true when considering 4 modes with RANS. However
when considering 4 modes with Euler it appears that the case with M∞ = 1.140 is
characterized by an instability of the third mode which is exactly what suggested by
the reference. In particular, both the first and the third modes become unstable, but the
third mode becomes unstable at a smaller dynamic pressure. This is the reason for the
differences in the Frequency Ratio between the Euler solution with 2 modes and the
Euler solution with 4 modes, since the third aeroelastic mode features bigger frequen-
cies than the first mode. In order to ease the view of the Frequency Ratio trend the last
point of this simulation is not depicted. However its value is 1.43 which is a reasonable
value considering that the third structural mode (at null speed) frequency is about 5×
higher than the first mode.

8.3 2nd Aeroelastic Prediction Workshop wing flutter

The 2nd Aeroelastic Prediction Workshop represents the most recent effort to asses the
state-of-the-art of modern computational methods in predicting unsteady flow fields
and aeroelastic response [81]. This workshop proposes different cases to be investi-
gated, ranging from unsteady unforced, forced oscillations to flutter prediction analy-
ses. The geometry under investigation is represented by the Benchmark Supercritical
Wing (BSCW). The experimental setup is showed in figure 8.12. Details regarding the
experimental setup are available in the official AePW2 paper [81].

As the paper suggests, the aeroelastic unsteady response of the BSCW wing is in-
vestigated in conditions such that the influence of the separated flow is considered to
be minimal, yet a shock is still present. Thus, even if turbulence models are not exces-
sively stressed due to complex phenomena like separations are recirculation bubbles,
an accurate reconstruction of the interaction between viscous and compressible effects
is required. Consequently this is a perfect benchmark to validate the flutter prediction
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Figure 8.12: Experimental setup for the BSCW wing of the 2nd Aeroelastic Prediction Workshop.

capabilities of aeroelastic compressible URANS solvers such as AeroX. As mentioned
in the AePW2 paper, different kind of investigations are available. Here the choice
is focused on flutter prediction. The strategy here adopted to find the flutter dynamic
pressure is different from what showed for the AGARD 445.6 wing. Here the strategy
explained in 2.2.10 is instead adopted. The idea is basically to perform an unsteady sim-
ulation starting from steady-state trimmed conditions, introducing a small disturbance
and then letting the wing freely move under aerodynamic loads. The time history of
the pitch and plunge d.o.f. is stored and post-processed in order to check for unstable
behaviors, i.e. flutter. In particular, as explained in the paper, the idea is to find the dy-
namic pressure that leads to the unstable behavior of the wing pitch oscillations. This
can be easily done by performing multiple simulations with different asymptotic dy-
namic pressure values q∞, checking the damping g value of the pitch d.o.f. and through
a bisection iterative algorithm change the dynamic pressure up to the value related to
g = 0, i.e. flutter conditions. At the time of writing, preliminary reference numerical
results, provided by other teams participating to the workshop, can be found at [82].

The experiments on the BSCW wing were conducted using two different mount
systems: PAPA and OTT. The Oscillating TurnTable (OTT) was used to provide forced
pitch oscillation data, while the flexible Pitch And Plunge Apparatus (PAPA) mount
system was used to provide aeroelastic results. The BSCW wing is mounted on a
splitter plate with an opportune offset from the wind tunnel wall in order to minimize

196



i
i

“thesis” — 2016/12/24 — 15:47 — page 197 — #209 i
i

i
i

i
i

8.3. 2nd Aeroelastic Prediction Workshop wing flutter

the effect of the wind tunnel wall boundary layer. Here the focus is on flutter prediction,
thus the focus is on results related to the PAPA configuration. The flexible PAPA mount
system is used to provide the BSCW wing pitch and plunge d.o.f. with specific stiffness
values. Experimental data is available at experimental flutter conditions. From figure
8.12 it is possible to see that the BSCW wing has a span b = 0.8128m, a chord c =
0.4064m, null sweep angle and a rounded tip. The reference area is A = 0.3303m2.
The wing is composed by NASA SC(2)-0414 airfoil all over the span. For the PAPA
configuration the pitch axis is located at 50% of the chord and pressure sensors are
located at 60% and at 95% of the span for unsteady pressure measurements. The focus
is on the Case 2 of the workshop, which is characterized by an asymptotic Mach number
M∞ = 0.74, a Reynolds number based on the chord ofRe = 4.450 ·106 and an angle of
attack α = 0.0◦. The gas adopted for experiments is not air but the R-12 gas (γ = 1.136,
R = 68.765 J

KgK
). As the AePW2 paper suggests, these conditions should not lead to

complex shock-induced separations. Other details regarding the asymptotic conditions
of the tests are available in 8.3 and here are not reported for brevity.

8.3.1 Structural model

As the paper suggests the wing was designed with the goal of being (nearly) rigid. The
first modes of the BSCW wing are the following: a spanwise first bending mode with
a frequency of 24.1Hz, an in-plane first bending mode with a frequency of 27.0Hz
and the first torsion mode with a frequency of 79.9Hz. Despite these wing modes,
in numerical simulations the wing itself is supposed to be perfectly rigid, leaving all
the deformability to the flexible mount system. This basically means that two rigid
d.o.f., wing pitch and wing plunge, with a certain stiffness and inertial properties, are
adopted to represent the structural behavior of the aeroelastic system. The FE model
adopted by the authors of the AePW2 is showed in figure 8.13. Basically, the FEM

Figure 8.13: Structural model adopted for the flutter prediction of the BSCW wing.
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model is characterized by a nearly rigid flat plate with the same size of the BSCW
wing connected to a fixed point with two simulated springs at the pitch rotation axis.
As previously mentioned for the PAPA configuration the pitch axis is located at 50%
of the chord. Point 2 is located at wing root at the axis of rotation and allows only
pitch and plunge displacements. This basically means that with AeroX it is possi-
ble to represent the structural behavior with two rigid d.o.f. characterized by spe-
cific inertial and stiffness values. In particular, the pitch movement is characterized
by an inertia of 2.777 slug − ft2 (3.765 kg m2) and a stiffness of 2964 lbf − ft/rad
(4018.44N m/rad). For the plunge d.o.f. the mass is 6.0237 slugs (87.91 kg) while
the stiffness is 2637 lbf/ft (38484.12N/m). This leads to a plunge mode frequency of
3.33 Hz and a pitch mode frequency of 5.20Hz. Since the d.o.f. are considered rigid,
there is no need of an aeroelastic interface for this investigation as aerodynamic forces
and moments, computed through an integration of normal and tangential loads over the
wing surface, can be directly used to compute the structural response of the pitch and
plunge d.o.f. at each physical time step.

8.3.2 Aerodynamic model

Different meshes are available on the AePW2 NASA website [12] with different dis-
cretization levels and total number of cells. All meshes are characterized by different
millions of cells. However, for this work two meshes are built from scratch using the
BSCW geometry with two different discretization levels and total number of cells. In
this and subsequent subsections these two meshes will be referred as "coarse" and "fine"
mesh. Figures 8.14 show the overall view of the computational domain alongside with
a detail view of the mesh discretization near the leading edge regarding the fine mesh.
It is possible to see the presence of a boundary layer discretization in order to cor-

(a) Overall view of the computational domain (b) Mesh discretization detail near the leading edge

Figure 8.14: Computational domain for the BSCW wing flutter analysis.

rectly refine the near-wall region for (U)RANS computations. From the overall view
it is possible to see that the wing is attached to a symmetry wall. While over the wing
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non-slip boundary conditions are employed with the automatic wall treatment, on the
symmetry wall slip boundary conditions are instead adopted. It must be noted that, as
for the meshes available from NASA, there is no specific discretization of the wind tun-
nel wall and the splitter plate. Finally, a farfield, opportunely distant from the wing, is
subjected to characteristics-based boundary conditions. The fine mesh, generated with
HyperMesh, features a total number of 1.1 · 106 cells. It is an hybrid mesh with 32%
prisms and 68% tetrahedra, the latter mainly used to discretize the boundary layer. It is
thus an hybrid unstructured mesh that allows a time/iteration/cell of 4.07 ·10−8 seconds
on the AMD 380X GPU adopted for the simulations. The near wall wing discretiza-
tion allows y+ values around 5 − 30, perfectly in the range of the blended approach.
As already mentioned there should be no complex phenomena like separations, thus
the near-wall discretization adopted is sufficient to guarantee both results accuracy and
computational efficiency. The coarse mesh is instead composed by 0.5 · 106 cells and
with the AMD 380X a time/iteration/cell value of 3.9 · 10−8 seconds is obtained. The
coarse mesh is generated with Pointwise and the near-wall refinement allows y+ values
around 100. All convergence acceleration techniques are active and, again, the domain
is discretized with cell sizes opportunely chosen to exploit LTS. Finally figures 8.15
shows the different wing discretization levels provided by the coarse and fine mesh. In
particular it is possible to see that the rounded tip is better reconstructed with the fine
mesh. For this investigation AeroX is executed using the usual Roe scheme with high

(a) Coarse mesh (b) Fine mesh

Figure 8.15: Wing discretization comparison between coarse and fine meshes.

resolution and SA turbulence model.

8.3.3 Trim results

The first step for the analysis is the computation of the steady-state aeroelastic solution.
This will be used as the initial condition for the subsequent unsteady simulation. In par-
ticular, the purpose of the trim simulation is to provide the initial pitch and plunge dis-
placements from which start the flutter investigation. Another strategy would be to start
the unsteady simulation directly from initial guess conditions, let the wing converge to
a steady aeroelastic configuration and then start the flutter investigation. However this
strategy would lead to an unnecessary computational effort since the trim solution can
be directly found using the steady-state aeroelastic procedure already adopted for the
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HiReNASD investigation. This strategy is also supported by the fact that, as explained
in the AePW2 paper, the asymptotic conditions for the flutter investigation should not
lead to complex and intrinsically unsteady phenomena such as shock induced separa-
tions.

Results for what concerns trim are related to the steady-state values of the wing pitch
angle and vertical displacement. The convergence history of both is represented in fig-
ures 8.16 where it is possible to see that no particular convergence problems, such as
oscillating behaviors, are obtained. Again this is what can be expected since the asymp-
totic conditions should not trigger complex phenomena like shock induced separations.
From the figures it is possible to see that when the equilibrium is reached between
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Figure 8.16: Wing trim displacements convergence history.

aerodynamic loads and spring forces the wing is characterized by a positive vertical dis-
placement and a negative wing rotation (leading edge down, trailing edge up). It must
be noted that two results are showed for what concerns the fine mesh, one for the speed
related to numerical flutter conditions obtained with this mesh (U∞ = 112.0m/s) and
one for the experimental flutter conditions (U∞ = 114.51m/s). Since with the coarse
mesh both numerical and experimental flutter conditions share the same asymptotic dy-
namic pressure (the differences are negligible), just one result is showed. It is possible
to see that at experimental flutter conditions both meshes are in agreement for the trim
pitch angle. However with the same experimental flutter conditions slightly different re-
sults are obtained with the two mesh for what concerns the wing vertical displacement.
On the AePW2 paper preliminary numerical results at experimental flutter conditions
suggest a steady-state aeroelastic solution with a pitch angle of about −1◦ which is in
agreement with AeroX results with both meshes.

Figures 8.18 show the CP field around the wing at the 60% and 95% span sections,
the same sections that will be used to post-process unsteady data. It is possible to see
that no particular complex phenomena occurs in the flow field.

Table 8.3 shows the lift, drag and moment coefficients obtained with the fine and
coarse meshes with numerical and experimental flutter asymptotic conditions. In the
table both coefficients obtained with a simple steady-state (purely aerodynamic) solu-
tion and trim (aeroelastic) solution are showed. From the table it is possible to see
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(a) 60% span (b) 95% span

Figure 8.17: Pressure coefficient field at different spans, fine mesh, experimental flutter conditions.

Mesh Speed (m/s) Trim CL CD CM,c/2

Fine 112.00 YES 0.1330 0.01549 −0.06308
Fine 112.00 NO 0.2101 0.01736 −0.04148
Fine 114.51 YES 0.1254 0.01534 −0.06691
Fine 114.51 NO 0.2118 0.01788 −0.04315

Coarse 114.51 YES 0.1456 0.01553 −0.06644
Coarse 114.51 NO 0.2256 0.01809 −0.04376

Table 8.3: Trim coefficients with different meshes and speeds.

that, as expected, the trim solution provide different coefficients since the pitch an-
gle is about −1◦, thus different from the completely rigid steady-state case (which is
considered null).

Finally it is worth to say that trim convergence is reached in about 20 aeroelastic
iterations for the coarse mesh and about 30 aeroelastic iterations for the fine mesh.
Considering also the steady-state solution from which the trim procedure is started,
this is translated in a total computational time of 638 seconds for the coarse mesh and
1701 seconds for the fine mesh using the AMD 380X GPU. Between each aeroelastic
iteration a total number of 500 pseudo time iterations are performed.

Finally a comparison can be performed between AeroX results and experimental
results for what concerns the pressure coefficient distribution over the wing at the two
investigated sections. Figures 8.18 show the aforementioned quantities at the 60% and
90% span sections respectively. It is possible to see that numerical results are in good
agreement with experimental data. All the solutions with different meshes and asymp-
totic conditions are quite similar, both when considering the steady rigid solution and
the steady aeroelastic solution. The main differences between numerical and experi-
mental results are obtained near the trailing edge over the lower surface for both sec-
tions. This behavior is encountered also with the preliminary results provided by other
research groups [82].
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Figure 8.18: Pressure coefficient field at different span locations, steady rigid and aeroelastic solutions,
fine and coarse meshes, numerical and experimental flutter dynamic pressures.

8.3.4 Flutter results

The AePW2 paper suggests to investigate what happens at both the experimental flutter
dynamic pressure qf,exp = 168.8 psf = 8082.19Pa and the predicted numerical flutter
dynamic pressure qf,num (to be found). The more these two value are similar, the more
accurate flutter prediction is provided by the numerical solver. AeroX is restarted from
the just computed trim solution with the DTS formulation activated. In order to trigger
oscillations, the solver is restarted from trim conditions using the computed pitch and
plunge displacements but introducing an opportune perturbation on the initial pitch
velocity of −1rad/s. This provides energy in the system and leads to pitch and plunge
oscillations. The focus here is to check if pitch oscillations are subsequently damped
(g > 0, qnum < qf,num, stable), sustained with constant amplitude (g = 0, qnum =
qf,num, neutrally stable, i.e. flutter), or divergent (g < 0, qnum > qf,num, unstable). As
the paper suggests, the focus of the investigation is on the behavior of pitch oscillations
only.

An important point for this investigation is represented by the choice of the physical
time step ∆t. In fact, as noticed by other research groups it seems that there is a
dependency of the aeroelastic damping from the physical time step value. This basically
means that changing the physical time step leads to a change in the numerical predicted
value of flutter dynamic pressure qf,num. In particular, it seems that with higher physical
time steps, higher damping values are obtained, pushing the numerical flutter conditions
to higher dynamic pressure values. A good value for ∆t, suggested by one of the
groups, is represented by ∆t = 2.4 · 10−4 s. This value is here adopted with both
the coarse and fine meshes for the unsteady simulations. The unsteady simulation is
performed for about 9.0 seconds of physical time, which represents a good trade-off
between computational effort and information content. In fact it must be noted that for
about 3.0 seconds of physical time the solution is influenced by the initial transient due
to the perturbation. After that, it is possible to collect the useful data to be used for
post-processing purposes.

As already mentioned when discussing the trim results, the speed related to the
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dynamic pressure at experimental flutter conditions is Uf,exp = 114.51m/s. Using
AeroX it was possible to estimate a numerical flutter speed on Uf,num = 112.0m/s
with the fine mesh. For what concerns the coarse mesh instead, using experimental
flutter asymptotic conditions provides a damping value on the pitch oscillations that is
basically negligible. Thus experimental flutter conditions are also considered numerical
flutter conditions for the coarse mesh. Obviously it would be expected better accuracy
with the fine mesh. As will be shown in the FRF (Frequency Response Function) this is
more likely to be a coincidence due to balancing errors. It is worth to briefly show the
results for what concerns the unsteady behavior of the wing displacements and force
coefficients. Figures 8.20 and 8.19 show the values of CL and CM obtained with the
fine and coarse meshes with the different asymptotic dynamic pressures. It is possible
to see that the coefficients oscillates around a mean value represented by the trim value.
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Figure 8.19: Evolution of lift and pitch moment coefficients through time, coarse mesh.
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Figure 8.20: Evolution of lift and pitch moment coefficients through time, fine mesh.
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Figures 8.22 and 8.21 show instead the unsteady values of the wing pitch rotation
alongside the wing vertical displacement. Again it is possilbe to see that the wing
basically oscillates around trim values. The measured experimental flutter frequency
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Figure 8.21: Evolution of wing pitch and plunge degrees of freedom through time, coarse mesh.
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Figure 8.22: Evolution of wing pitch and plunge degrees of freedom through time, fine mesh.

is 4.3Hz. With AeroX the flutter frequency obtained at numerical flutter conditions are
4.286Hz for the fine mesh and 4.288Hz for the coarse mesh respectively. Thus the
flutter frequency obtained with both meshes is in agreement with experimental data.

As said the oscillations are triggered by introducing a perturbation on the initial
pitch velocity of −1.0 rad/s. This is done since it seems a good value to maintain the
small oscillations hypothesis and at the same time to introduce enough energy in the
aeroelastic system. This is also a value that seems to be in accordance to what used in
the original AePW2 overview paper 8.3 from the available figures. Obviously as the
amplitude of the oscillations are related to the initial pitch velocity and this value can
be arbitrary chosen, in order to obtain a meaningful comparison with other research
groups, the idea is a normalization of the output oscillations based on the pitch angle.
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In particular the comparison between experimental data and numerical data provided
by other research groups is performed using the measure suggested in the overview
paper, defined by 8.3. ∣∣∣∣CPΘ (f ∗)

∣∣∣∣ vs.xc (8.3)

The idea is basically to save at each physical time step the CP value over the two span
sections (60% and 95%) and normalize these with the current pitch angle value. The
obtained value is then processed using the FFT algorithm in order to provide for each
x/c point an imaginary and real values that will be converted in magnitude and phase.
Magnitude and phases will be then directly compared with experimental and numeri-
cal reference data from other research groups. Figures 8.23 show the comparison, at
60% span section, between experimental data and what provided by AeroX with the
two different meshes and dynamic pressures (experimental and numerical flutter con-
ditions). In figure 8.24 instead, the same is repeated for the 95% span location. In
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Figure 8.23: Magnitude and phase of the indicator, 60% span.

general it is possible to see that a good agreement is obtained with AeroX with both
meshes and experimental data. In particular, the best results are obtained with the fine
mesh at the computational flutter dynamic pressure. For what concerns the magnitude
of the indicator 8.3, numerical results are in agreement with experimental data, except
for a slight underestimation near the trailing edge for what concerns the lower surface at
60% span. For what concerns the phase, it is possible to see that at 60% span numerical
results are in good agreement over almost all the chord length, while an overestimation
of the phase angle is obtained on the upper surface near the trailing edge. At span 95%
instead it is possible to see that a good agreement between numerical and experimental
data is obtained basically on the entire x/c range. It is noted that the FRF of the in-
dicator is performed after 3.0 seconds of physical time in order to discard the possible
influence given by the initial transient. Furthermore, while the simulation is carried out
with a physical time step of ∆t = 2.4 · 10−4 s, the solution is re-sampled such that the
FFT is performed considering a time step of ∆t = 4.8 ·10−3 s without any aliasing-like
or information loss problems. Results provided by AeroX are in agreement also with
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Figure 8.24: Magnitude and phase of the indicator, 95% span.

preliminary numerical results provided by other research groups [82] participating to
the AePW2. However at the time of writing there is still no official paper that collects
all data but just preliminary plots. Thus the comparison with numerical results from
other research groups is not presented here.

Figures 8.25 show the different dynamic pressure values investigated during the
convergence procedure until the computational flutter dynamic pressure was found. In
particular, figure 8.25(a) shows the damping values, while figure 8.25(b) shows the
frequencies. It is possible to see that with the coarse mesh smaller aeroelastic damping
but higher frequencies are found.
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Figure 8.25: AePW2 BSCW wing flutter investigation with different dynamic pressure values.

Finally a note concerning the computational effort of performing such kind of sim-
ulation. Using a physical time step of ∆t = 2.4 · 10−4 s for a total physical simulation
time of 9.0 s requires the simulation of 37500 physical time steps. Using the AMD
380X GPU this is translated in a total required computational time of 133 hours for the
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fine mesh and 27 hours with the coarse mesh.
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CHAPTER9
Turbomachinery and open rotor blades

aerodynamic applications

This chapter is aimed to validate the turbomachinery and open rotor extensions imple-
mented in AeroX alongside the general purpose CFD schemes for classical aeronautical
schemes. This step is obviously performed after the validation of the solver with classi-
cal aeronautical cases, in order to separately validate the general-purpose aerodynamic
formulations and later the turbomachinery/open rotors extensions. Cases with differ-
ent levels of complexity will be presented, from a simple 2D turbomachinery case to
a 3D case with multiple MRF zones and blades communicating through mixing plane
interfaces. In particular, for what concerns the 2D case, the Goldman test case will
be presented and results will be compared with experimental data and other available
numerical results. The well-known NASA’s Rotor 67 axial compressor rotor blade is
useful to demonstrate the ability of the solver to perform 3D compressible RANS sim-
ulations in a typical turbomachinery configuration. However, instead of presenting this
case here, it will be discussed in the next chapter when performing turbomachinery
aeroelastic simulations, in a comparison between steady rigid and steady aeroelastic
results. The Aachen turbine test case is presented here to show the capability of AeroX
to simulate multi-row cases. In this case two stator rows and one rotor row are mod-
eled. Again, numerical results are compared with both experimental and numerical data
available in literature. Finally the validation of the solver is also performed with a typ-
ical open rotor configuration. This latter case represents an hybrid between a classical
aeronautical case (e.g. wing) and a turbomachinery case. Nonetheless this is presented
now since it shares the same formulations required to simulate turbomachinery rotors.
Open rotors and propfans represent a current trend, thus it is worth to asses the AeroX
capability to handle such cases.
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9.1 Goldman turbine blade

Here the focus is on the work of Goldman at al. [73, 129]. This is a two-dimensional
turbulent simulation of a stator blade at mid-span section. Since this case involves a
2D stator domain, MRF formulation is not required. However, there are important dif-
ferences between this case and a typical aeronautical airfoil case. Figure 9.1(a) shows
the discretization of the computational domain. Since this is a 2D simulation, the front

(a) Domain discretization for the Goldman 2D sta-
tor blade case

(b) Pressure field

Figure 9.1: Mesh and pressure field results for the Goldman blade case.

and back boundaries are represented by OpenFOAM empty patches, directly avoiding
fluxes computation, saving computational time. On the top and bottom patches periodic
boundary conditions are applied in order to reduce the computational domain to a single
blade passage. As explained in 3.7, the use of periodic boundary conditions is subor-
dinated to the hypothesis of a perfect symmetry of the flow over the blade row. This
is the case and as will be presented with results, the use of this computational domain
reduction technique allows to obtain accurate results while reducing the total compu-
tational effort. On the left, at the inlet boundary, total quantities boundary conditions
are enforced, with user-defined values of the total temperature T0 = 287.91K and total
pressure P0 = 101325Pa. Thanks to this inlet boundary condition the flow is allowed
to automatically adjust itself to the correct values of static temperature, static pres-
sure and velocity vector. Finally, subsonic outlet boundary conditions are enforced on
the outlet boundary. There is no need to use characteristics-based automatic boundary
conditions since the flow is subsonic and no complex phenomena, like recirculations,
occurs. Basically at the outflow boundary the ghost cell is constructed such as to obtain
a zero-gradient boundary condition on velocity and temperature, while the pressure is
computed interpolating the user-defined value of 71583Pa and the internal cells val-
ues. Finally, non-penetration non-slip boundary conditions are enforced over the blade
through the the blended automatic wall treatment. The mesh adopted for the simulation
is characterized by 7.2 · 103 cells, composed by 17% hexahedra for the near-wall dis-
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cretization and by 83% prisms for the rest of the computational domain. This is thus an
hybrid unstructured mesh. It must be noted that, as explained when performing compu-
tational benchmarks, with such a small number of domain cells, GPUs basically do not
provide useful speed-ups with respect to CPUs. The case is nonetheless simulated in
under 10 s by all the GPUs presented in tables 6.1 and 6.2 considering that just 10 · 103

pseudo time iterations are enough for convergence as it is possible to see from figures
9.2(a), where the residuals history is showed. The case is here presented mainly to
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Figure 9.2: Residual and mass flow convergence rate with SA for Goldman case.

perform the validation of turbomachinery formulations like periodic and total bound-
ary conditions. Based on the free-stream velocity and the chord length, the Reynolds
number is Re = 5 · 105 and the Mach number is M∞ = 0.2. As it is possible to see
both Reynolds and Mach number are relatively low with respect to a typical aeronau-
tical case. In figure 9.1(a) it is possible to see the boundary layer discretization with
hexaedra cells (it is reminded that OpenFOAM only handles 3D meshes, 2D cases are
computed with the empty patches "trick"). With this kind of boundary layer discretiza-
tion, y+ values in the order of 200 are obtained, values that are correctly handled by
the automatic wall treatment. The adopted turbulence model is SA that behaves well
on this kind of simulations without complex viscous phenomena like separations and
recirculations, as it is possible to see in figure 9.1(b) where the pressure field inside the
domain is represented.

To complete the validation of the solver for this simple 2D stator case, figure 9.2(b)
shows the comparison between AeroX, experimental data and numerical data provided
by FLUENT with SST turbulence model. It is possible to see that the numerical re-
sults provided by AeroX are in good agreement with both experimental and reference
numerical data.

9.2 Aachen 1.5 stages axial turbine

This well-known test case is a 1.5 stages cold air axial turbine built at the Institute of Jet
Propulsion and Turbomachinery at Aachen Technical University (IST RWTH Aachen,
DE). This is an important test case that has been investigated by numerous authors.
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Chapter 9. Turbomachinery and open rotor blades aerodynamic applications

Details regarding this test case can be found in [89, 119, 126, 129]. It is a multi-row
3D axial turbine case and it’s important for the validation of AeroX turbomachinery
features since it requires the mixing plane formulation in order to handle the interface
between the 3 sub-domains, allowing at the same time the reduction of each blade
row to a single blade sector, exploiting periodic boundary conditions. Figure 9.3(a)
shows the 3 computational subdomains. The turbine is characterized by an hub radius

(a) Computational subdomains

(b) Hubs mesh discretization detail

Figure 9.3: Overall and detail of the mesh discretization for the Aachen 1.5 stages turbine.

of 145mm and a shroud radius of 300mm. The blades of the first and second sub-
domains share the same geometry. Basically, the first and third subdomains represent
single-blade sectors of stator rows composed by 36 blades, while the central subdomain
represents a single-blade sector on a rotor row composed by 41 blades. Thus, MRF is
applied only on the second subdomain. The angular speed for this row is 3500RPM .
Between the first and the second subdomains and between the second and the third
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9.2. Aachen 1.5 stages axial turbine

subdomains mixing plane interfaces are employed. While periodic boundary condi-
tions allow the single-blade computational domain reduction when a single blade row
is investigated, mixing planes allows the same kind of computational domain reduction
when multiple communicating blade rows, with different periodicity values, have to
be investigated. In fact, the single blade periodicity angle of the first and third subdo-
main is 360◦/36 = 10◦ while for the second is 360◦/41 = 8.78◦. The computational
advantages provided by the mixing plane strategy come at the price of an accuracy re-
duction since the different periodicity is bypassed using a circumferential averaging of
the solution. Nonetheless, as will be showed when comparing numerical results pro-
vided by AeroX and experimental data, the solver is capable to provide accurate results
for this test case when employing the mixing plane formulation. The mesh adopted
for this investigation is composed by 7.5 · 105 hexaedra cells (non-hybrid unstructured
mesh). For this test case, modeling the entire 360◦ rows would require around 40×
the computational effort needed with the here employed domain reduction strategy. It
must be noted, however, that the single-blade domain reduction is subordinate to the
hypothesis of a perfect axial symmetry of the solution. Thus with this strategy it is
not possible to directly study complex phenomena like rotating stall. Nonetheless this
kind of effects are not expected in this test case for the investigated conditions. Thus,
the use of mixing planes combined with periodic boundary conditions is fine. As it is
possible to see in figure 9.3(b), a near-wall boundary layer discretization is employed,
allowing y+ values in the order of 50, which is good for the automatic wall treatment
(log region). For this case, non-slip non-penetration boundary conditions are enforced
all over the hub, shroud and blade walls. At the inlet of the first sub-domain total pres-
sure (P0 = 152100Pa) and total temperature (T0 = 305.65K) are enforced while at
the outflow of the third subdomain subsonic outlet boundary conditions are enforced,
with a static pressure of P = 109863Pa. The investigation is performed using SA
turbulence model.

Convergence is reached in about 15 · 103 iterations, corresponding to a total com-
putational time of 13 minutes on the AMD 380X GPU that for this case reaches an
iteration/time/cell value of 6.35 · 10−8 s seconds. Differently from the Goldman case,
the adopted GPU is here fully exploited with the given mesh.

For what concerns the validation, figure 9.3(a), already presented, shows the cutting
planes adopted to extract the data used for the comparison with experimental and nu-
merical reference results. The comparison is performed between AeroX results using
SA turbulence model, experimental data and numerical data provided by a commercial
code using SST turbulence model. More in particular, what is compared is the absolute
flow angle at different normalized span locations. The absolute flow angle used for the
comparison is defined as follows:

γ = arctan(Uθ/Ux) (9.1)

where Uθ is the absolute circumferential flow speed and Ux is the absolute axial flow
speed. The results are showed in figures 9.4. Figure 9.4(a) shows the absolute flow
angle 8.8mm behind the trailing edge of the first vane (first subdomain). Figure 9.4(b)
shows the absolute flow angle 8.8mm behind the trailing edge of the rotor (second
subdomain). Finally figure 9.4(c) shows the absolute flow angle 8.8mm behind the
trailing edge of the second vane (third subdomain). It is possible to see that a gen-
eral good agreement between AeroX results and both numerical reference results and
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(a) Absolute flow angle, 8.8mm behind the trailing edge of
the first blade (stator)
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(b) Absolute flow angle, 8.8mm behind the trailing edge of
the second blade (rotor)
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(c) Absolute flow angle, 8.8mm behind the trailing edge of
the third blade (stator)

Figure 9.4: Absolute flow angle at the three considered locations.

experimental data is obtained. On both the stator sections AeroX tends to slightly un-
derestimate the absolute flow angle with relative errors of approximately 2−3%, while
on the rotor section AeroX tends to slightly overestimate the absolute flow angle with
significant relative errors, especially in proximity of the hub. This is probably due to a
spurious interaction of the mixing plane with the turbulent quantities. In fact, this effect
is not significant in 360◦ unsteady simulations, as shown in [155].

Figure 9.5 shows the Mach number field inside the domain at the mid-span section
of the Aachen turbine.

Finally, AeroX predicts a mass flow of 6.984 kg/s. This value is in agreement with
what can be found in literature both for what concerns experimental data and numerical
results. In particular, in [155] a value of 7 kg/s is considered which is in agreement
with what obtained with AeroX.
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Figure 9.5: Aachen turbine Mach number field.

9.3 Open Rotor

The last case presented in this chapter is represented by a typical open rotor configura-
tion. This is described in details in [144] and [122] which are also the sources of data
here used for comparisons. In particular, in [122] the solution is provided by an implicit
non-lienar full-potential aeroelastic solver, ST [115]. The DLR TAU code [72] solver,
using Chimera formulation [99], is instead adopted to provide RANS results [144] with
Spalart–Allmaras turbulence model. Here, AeroX solutions are provided with both an
inviscid analysis and a RANS analysis with SA turbulence model in order to provide a
comparison with both full potential and RANS reference results. The RANS analysis
is also provided as a complementary solution in order to check for possible results ac-
curacy improvements due to considering viscous effects with respect to the plain Euler
solution. Different pitch angles are investigated for a single flight condition. Without
going into details for what concerns the blade geometry, figure 9.6 shows the near-blade
detail of the mesh here adopted for the steady-state inviscid simulation for the partic-
ular pitch angle of 56◦. The pitch angle here adopted, β75%, is referred to the plane of
rotation of the rotor disk and the 75% blade span section. This is an 8-blades open ro-
tor. In order to reduce the computational effort a single blade passage in computed and
periodic boundary conditions are employed. Furthermore MRF formulation is active
in order to allow the simulation of the rotating geometry without actually employing a
true unsteady simulation with mesh rotation. From figure 9.6 it is possible to see: the
blade (green), the hub (purple), and the two periodic boundaries (red and light grey).
The blade is attached to an hub that is rotating at 895RPM . Within a single flight
condition different pitch angles are taken into account for the analysis: 56◦, 57◦, 60◦

and 62◦. The meshes here adopted are composed by around 975k tetrahedra and are
generated with GAMBIT. These are thus unstructured non-hybrid meshes for which no
branch divergence is expected. The rotor diameter is D = 4.2672 m with a hub-to-tip
ratio of d/D = 0.355, while the blade features a transition from NACA 65-series to
NACA 16-series airfoil from the root to the tip. The investigation is performed with a
Mach number M∞ = 0.75, an altitude of h = 10668m which correspond to a static
pressure of P∞ = 26500Pa and a density of ρ∞ = 0.4135, Kg/m3. This, alongside
the blade rotational speed is translated into a blade tip Mach number of about 1, leading
to weak shocks over the blade surface.

Figures 9.7 show the obtained results for what concerns the thrust coefficient CT ,
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Chapter 9. Turbomachinery and open rotor blades aerodynamic applications

Figure 9.6: Open rotor mesh for pitch angle of 56◦, blade and hub.

the torque coefficient Cl, the power coefficient CP (not to be confused with the pressure
coefficient) and the propeller efficiency η here defined:

CT =
T

ρn2D4
(9.2)

Cl =
C

ρn2D5

CP = 2πCl

η =
CT
Cl

J

2π

where n = Ω/2π is the propeller rotational speed, J = V∞/(nD) is the advance
ratio, V∞ is the asymptotic speed, C = ρn2D5Cl is the torque. From the results it is
possible to see that AeroX with Euler formulation seems to slightly overestimate the
values of CT , Cl, CP and η, the latter especially for what concerns low pitch angles
with respect to the two sets of numerical reference data. However, AeroX using RANS
provides better results, in good agreement with literature. It must be noted that, as
explained in [122], the fact that the full potential solution seems to perform better than
AeroX with inviscid formulation is probably due to numerical dissipation related to the
methods implemented in ST . Finally figures 9.8 and 9.9 show the comparison between
ST and AeroX Euler results for what concerns the blade Mach and CP distributions
for the aforementioned flight conditions and the pitch angle of 60%. It is possible to
see that despite small local differences, the overall solution is basically in agreements
between both solvers.
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Figure 9.7: Thrust, torque, power coefficient and efficiency of the open rotor at different pitch angles.

For what concerns computational aspects, using the AMD 380X GPU, for each
computed angle about 500 s are required to obtain the RANS solution with a time/iter-
ation/cell of 4.51 · 10−8 s, while for the inviscid solution it boils down to about 300 s
and a time/iteration/cell of 2.67 · 10−8 s.
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(a) ST (b) AeroX, Euler

Figure 9.8: Mach distribution comparison, pitch angle of 60◦.

(a) ST (b) AeroX, Euler

Figure 9.9: Pressure coefficient distribution comparison, pitch angle of 60◦.
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CHAPTER10
Turbomachinery and open rotor blades aeroelastic

applications

The next step after the validation of the aeroelastic framework with classic aeronautical
cases is the validation with typical turbomachinery and open rotors test cases. In this
chapter static and dynamic aeroelasticity analyses will be performed on three of the
most important benchmark cases available in literature. In particular, the KTH’s Stan-
dard Configuration 10 (SC10) and the NASA’s Rotor 67 (R67) blades are chosen for
the validation of the turbomachinery formulations. 2-dimensional and a 3-dimensional
meshes are available for the SC10 case, allowing to asses the effects on the solution
given by the 2D assumption. The SC10 represents a turbine blade, thus no MRF is
required for the analysis. For the SC10 cases the aerodynamic damping analysis for
a wide range of IBPAs is performed and results are compared together (2D and 3D
versions) and with other numerical results available in literature. The R67 test case is
instead adopted to asses the effects of considering the blade deformation due to aerody-
namic loads, i.e. static aeroelasticity. As it will possible to see from the results, despite
other typical aeronautical cases (e.g. the HiReNASD wing trim previously presented),
due to the high blade stiffness, aerodynamic and steady aeroelastic analyses provide
nearly the same results. R67 results are compared with experimental data available in
literature. Finally, the flutter of a typical propfan configuration, the SR-5 blade, is ana-
lyzed in order to asses the capability of AeroX to simulate such kind of configurations
that currently represents an interesting research field.

10.1 SC10 2D aerodynamic damping

The KTH’s Standard Configuration 10 (SC10) is the first case analyzed here and is
extracted among different well-known benchmark cases [69]. This is a single-blade
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computational domain extracted from a two-dimensional compressor cascade. The air-
foils are basically represented by modified NACA 0006 profiles and they are operating
at subsonic inlet and outlet conditions. The investigation here is focused on the aerody-
namic damping prediction. This is a simple 2D inviscid test case which is here adopted
to validate the time-delayed boundary conditions implemented in the solver. As ex-
plained in 3.8 this particular boundary condition represents a smart modification of
the usual periodic boundary conditions in order to allow to perform simulations with
non-null IBPA values, even if a single blade domain reduction is employed. Thus, the
key concept here is the IBPA. Mesh deformation alongside DTS formulation are here
simultaneously employed to perform multiple time-accurate simulations, one for each
investigated IBPA value. The idea is to combine results from all simulations in order
to build the IBPA vs. aerodynamic damping diagram. The aim is to check if, for the
given flow conditions, it is possible for this configuration to experience instability. As
explained in 3.4 this can be viewed from an energetic point of view. If the aerodynamic
damping is positive the flow is pumping energy into the system. It must be noted how-
ever, that differently from the analysis performed for the AGARD 445.6 wing flutter
and the 2nd AePW BSCW wing flutter benchmarks, the investigation performed here
is not a fully aeroelastic stability (flutter) investigation. In fact, here we are not search-
ing for the true aeroelastic modes with certain frequencies and shapes and trying to find
the conditions that lead to the aeroelastic instability. Here the investigation is limited
to figure out if for the given geometry and flow conditions the aerodynamic loads are
supporting or not the enforced movements.

Figure 10.1, taken from [69] describes the SC10 configuration. Without going into
details, the adopted airfoil is built by superimposing the thickness distribution of a
modified NACA 0006 airfoil on a circular-arc camber line. The stagger angle (an-
gle between the chord and the axial direction) is γ = 45◦ while the chord/gap ratio
is τ = 1.0. From this data it is possible to build the computational domain, that for
this investigation is depicted in figure 10.2. It is possible to see that a single blade is
discretized. Since this is an inviscid investigation there is no need to employ a bound-
ary layer discretization. As mentioned, periodic/time-delayed boundary conditions are
adopted to reduce the total computational domain to a single blade, while retaining
the effects of the presence of other blades. In figure 10.2 it is possible to see that the
solver has to deal with 5 boundaries. On the top and the bottom of the domain periodic
boundary conditions or time-delayed boundary conditions are employed for steady and
unsteady aerodynamic damping simulations with non-null IBPA values respectively.
It is noted that an unsteady simulation with a null value of IBPA can be performed
directly using simple periodic boundary conditions rather than more expensive time-
delayed BCs. On the left of the computational domain it is possible to see the inlet
boundary while on the right the outlet boundary. As mentioned this is a subsonic case,
thus it is possible to use subsonic outlet boundary conditions on the right boundary. At
the inlet total pressure and total temperature are enforced. Different numerical analyses
have been performed on this test case. Reference data from RPMTURBO solver and
results from Verdon and from Hall can be found in literature. Sources of these data
are represented by [13, 14]. These data are here used to perform the comparison both
for what concerns steady and unsteady results. This is an insviscid test case, thus it is
analyzed with AeroX using Euler formulation. This is useful because it is possible to
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10.1. SC10 2D aerodynamic damping

Figure 10.1: Standard Configuration 10 cascade composed by modified NACA 0006 airfoils.

Figure 10.2: Standard Configuration 10 cascade mesh.

compare unsteady results provided by mesh deformation and by transpiration boundary
conditions. The solver implements an optimized mesh deformation strategy. Due to the
small differences in computational effort between transpiration boundary conditions
and true mesh deformation, it is usually better to directly perform unsteady investiga-
tions with the latter strategy. However, this test case is here exploited to demonstrate
the possibility of using transpiration boundary conditions also for turbomachinery test
cases. Since inviscid simulations are performed, slip boundary conditions are enforced
on the airfoil. The adopted mesh is composed by 31 · 103 cells, not enough to fully
exploit the AMD 380X GPU but anyway enough to obtain accurate results with the
Euler formulation.

For this case comparison data is available for two different sets of flow conditions.
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Here the subsonic set is investigated. This is characterized by the following inlet condi-
tions: M1 = 0.7 and β1 = −55◦. At these conditions there is no shock over the airfoil.
Observing figure 10.1 it is possible to see that due to the stagger angle value, the airfoil
is subjected to an angle of attack of 10◦. For this test case just the average inlet Mach
number and angle are specified. Thus, inlet and outlet boundary conditions are oppor-
tunely tuned in order to reach the specified inlet conditions. In this investigation this can
be accomplished using inlet boundary conditions of T0 = 300K and P0 = 101300Pa
(and the flow velocity direction) and outlet static pressure of P = 88000Pa.

10.1.1 Steady results

The steady-state investigation is required in order to find the correct initial conditions
that will be later used to re-start the solver for time-accurate simulations. As said, pe-
riodic boundary conditions are employed. With the aforementioned inlet and outlet
conditions AeroX provides the Mach distribution showed in figure 10.3 in a compari-
son with results available from [13]. It is possible to see that for these conditions, as

(a) AeroX (b) Reference numerical results

Figure 10.3: Mach number comparison.

expected, there are no complex compressible phenomena like shocks. The computa-
tional domain is opportunely rotated in order to ease the comparison with reference
data. The results provided by AeroX are in good agreement with reference data. It is
possible to see that the computational domain of the reference data is slightly different
from what used with AeroX. This is not a problem since anyway periodic boundary
conditions are adopted on the top and bottom boundaries. The steady-state solution is
computed in 30 seconds by the AMD 380X GPU.

10.1.2 Aerodynamic damping results

With this two-dimensional configuration the two investigated degrees of freedom are
represented by the airfoil plunge and pitch around the point located at (0.5, 0.05) which
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can be easily located thanks to figure 10.1. Furthermore, for the aforementioned sub-
sonic boundary conditions, different unsteady investigations with different reduced fre-
quency k values can be performed. Here the focus is on both pitch and plunge oscil-
lations considering k = 0.5, based on the blade chord. Different numerical results are
available in literature from RPMTURBO, Verdon and Hall [13]. These data will be
used for the comparison. As for the flutter analysis of wings, given the modal shape
(in this case rigid pitch and plunge displacements) and the frequencies to be excited,
another important parameter is represented by the amplitude of the displacements. As
previously said this must be small enough to not jeopardize the small perturbations hy-
pothesis but at the same time must be large enough to be clearly distinguishable from
numerical errors. Following the guidelines presented in [128], a pitch angle of ∆α = 2◦

is directly employed for the pitch d.o.f.. For what concerns the plunge movement an op-
portune amplitude is chosen considering both the flow speed and the blade maximum
oscillation speed such as to obtain about the same value of ∆α = 2◦. The adopted
physical time step is ∆t = 1.0 · 10−3 s that is small enough to correctly discretize the
frequencies of interest and large enough to save computational time. The simulations
are carried out using DTS for 0.5 s of physical time. The simulations are repeated for
the different IBPA values with steps of 10◦.

Let’s first analyze the pitch oscillations case. Figures 10.4 show the blade response
in term of CY alongside the time history of the enforced pitch oscillations for four dif-
ferent IBPA angles. It is clearly possible to see that the delay between the displacement
input and the aerodynamic load output is different for the different angles, leading to
different values of the aerodynamic damping. In particular, the delay obtained with
transpiration BCs is slightly higher, leading to slightly higher values of aerodynamic
damping ξ. The unsteady simulations with all the IBPA values are re-started from
the same null IBPA steady-state solution. The unsteady solutions experience an initial
transient before reaching a periodic behavior. Therefore, the data used for the post-
processing and computation of the aerodynamic damping is taken after 0.15 s. Figure
10.6(a) finally shows the IBPA vs. aerodynamic damping curves. It is possible to see
that results provided by AeroX are in agreement with reference numerical solutions.

Now the same investigation is performed for what concerns the plunge d.o.f.. In
this case the aerodynamic damping is computed considering the rotation of the blade
around the previously defined point and the aerodynamic loads given by the moment
coefficient. Figures 10.5 show the response in term of moment coefficient in a com-
parison between the aerodynamic output and the displacement input. Again, it is pos-
sible to see that with different IBPA values different delays between the input and the
output are obtained, leading to different aerodynamic damping values. The response
provided with transpiration BCs is characterized by slightly higher delays, leading to
slightly higher aerodynamic damping values ξ. As for the pitch investigation, the post-
processing is performed after 0.15 s in order to cancel out the effects of the initial
transient from steady-state conditions. Figure 10.6(b) shows the IBPA vs. aerodynamic
damping curves. It is possible to see that also in this case AeroX provides results that
are in agreement with other numerical reference data.

It is important to notice that reference data is obtained by means of linearized invis-
cid solvers while AeroX provides fully non-linear time-accurate solutions. In general
with both plunge and pitch degrees of freedom the aerodynamic damping values pro-
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Figure 10.4: Comparison at different IBPAs between input (pitch rotation) and output (load coefficient
CM ) for the SC10 2D case.

vided by non-linear solutions obtained with AeroX appear to be higher than those ob-
tained with reference linearized solvers. As in [128] results obtained in this work agree
more with reference results obtained with linearized solvers with high IBPA values
where the flow-field is dominated by the time-delayed/phase-lagged mutual interaction
between neighbouring blades. This is because in these conditions non-linearities as-
sociated to average flow are not fully triggered yet. The general overestimation of ξ
relative to the pitch case at null IBPA with respect to linearized solutions is observed
also in [112] where again a non-linear approach is employed. Finally for what concerns
the results obtained with transpiration boundary conditions it can be seen that they are
in agreement with those obtained with a true mesh deformation, though a general over-
estimation of the aerodynamic damping seems to be obtained. As said, with AeroX it
is better to directly use the mesh deformation algorithm since the computational cost
difference between the two formulations is very small while the better results accu-
racy provided by true mesh deformation can be easily appreciated. In any case all the
presented results at all IBPA angles are characterized by ξ > 0 meaning that for this
geometry and flow conditions no instability is found.
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Figure 10.5: Comparison at different IBPAs between input (plunge displacement) and output (load
coefficient CY ) for the SC10 2D case.

10.2 SC10 3D aerodynamic damping

Here the same investigation performed for the Standard Configuration 10 two-dimensional
test case is repeated using a three-dimensional domain. This test case was proposed by
Matthew Montgomery and Joe Verdon in [110]. Data can be also found in [15]. The
hub radius is 3.395 chord lengths while the shroud is located at 4.244 chord lengths.
The blade is composed by the same modified NACA 0006 airfoil adopted for the 2D
investigation. There is no tip clearance between the shroud and the blade tip. As for
the 2D configuration, different numerical reference results are available in literature.
Here the comparison is performed between results computed by AeroX and numeri-
cal results available in [15, 118] for what concerns the RPMTURBO solver. Again,
the investigation is carried out with Euler unsteady simulations through a re-start from
steady-state null-IBPA initial conditions. The strategy for the computation of ξ is the
same adopted for the 2D configuration (10.1): the aerodynamic damping is computed
as a post-processing operation carried out over different unsteady simulations, one for
each IBPA value. Figures 10.7 show the computational domain adopted for the simu-
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Figure 10.6: Aerodynamic damping ξ for different IBPAs for the SC10 2D configuration, plunge and
pitch d.o.f..

lations alongside the detail of the mesh discretization. This is basically a single blade
sector extracted from a 24-blades stator row. With respect to the 2D case where just few
cells were employed, here the mesh is composed by 190 · 103 hexaedra. With this kind
of discretization the AMD 380X GPU adopted for the simulation is almost fully loaded.
At the same time the adopted discretization level is enough for an inviscid simulation.
Again, the steady-state solution is obtained at null IBPA with simple periodic boundary
conditions on the top and the bottom of the domain while the same patches are treated
with time-delayed boundary conditions for unsteady computations with non-null IBPA
values. Slip boundary conditions are enforced on the hub and the shroud of the domain.
Total temperature, total pressure and flow direction are enforced on the inlet boundary.
In particular, for this analysis the inlet conditions are M1 = 0.7 and β1 = −55◦, i.e. the
same inflow conditions adopted for the 2D analysis. These conditions are obtained by
enforcing on the inlet T0 = 300K and P0 = 101300Pa, as suggested in [15]. On the
outlet boundary, subsonic outlet boundary conditions are employed, enforcing a static
pressure of P = 87600Pa, a value which is very similar to the one adopted for the 2D
investigation.

10.2.1 Steady results

The steady-state solution with the given flow conditions is obtained in 148 s with a
time/iteration/cell of 3.150 · 10−8 seconds and 20 · 103 pseudo time iterations using
the AMD 380X GPU. Figures 10.8 show the comparison between AeroX results and
numerical results from [128] for what concerns the pressure field. It is possible to see
that the numerical results obtained in this investigation are in agreement with refer-
ence numerical results. As for the 2D configuration, with these conditions there are no
strong compressible phenomena like shocks. The validation is completed comparing at
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(a) Single blade sector computational domain (red)

(b) Mesh discretization detail

Figure 10.7: 3D computational domain for the aerodynamic damping analysis of SC10.

different span sections the isentropic Mach distribution defined as:

Miso =

√√√√√√
(P0

P

)γ − 1

γ − 1

 2

γ − 1
(10.1)

The comparison is performed with numerical results available in [15] for the 3D invis-
cid set. Figures 10.9 show the comparison for four different span sections. It is possible
to see that results provided by AeroX are in good agreement with reference numerical
results.
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(a) AeroX solution (b) Reference numerical solution

Figure 10.8: Pressure field comparison for steady-state solution of SC10 3D configuration.
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Figure 10.9: Isentropic Mach distribution at different span sections for the SC10 3D case blade.
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10.2. SC10 3D aerodynamic damping

10.2.2 Aerodynamic damping results

From the steady-state solution the solver is re-started multiple times with different IBPA
values. As for the 2D case, steps of 10◦ are employed to obtain a smooth aerodynamic
damping curve. Each unsteady simulation is performed for 0.05 seconds of physical
time. A physical time step of ∆t = 5.0 · 10−5 s is used in a trade-off between compu-
tational effort and the accurate reconstruction of the interesting frequencies. As for the
2D case the reduced frequency is k = 0.5 but here just the pitching movement d.o.f. is
considered. The adopted pitching oscillation amplitude is ∆α = 1◦ and as for the 2D
case oscillations are performed around the point at (0.5, 0.05) with respect to the blade
airfoil coordinates.

Figures 10.10 show the blade response for four different IBPA values, comparing the
input signal, i.e. pitching rotation, and the output signal, i.e. moment coefficient CM .
As for the 2D cases it is possible to see that the delay between input and output signals
are different and those differences will be also found in the final aerodynamic damping
curves. The simulations are performed both with transpiration boundary conditions
and true mesh deformation. As for the 2D case transpiration provides higher delays
and thus higher aerodynamic damping values.
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Figure 10.10: Comparison at different IBPAs between input (pitch rotation) and output (load coefficient
CM ) for the SC10 3D case.
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Figure 10.11 finally shows the IBPA vs. aerodynamic damping curve. It is pos-
sible to see that results provided by the non-linear time accurate solver AeroX are in
agreement with numerical reference data, both for what concerns true mesh deforma-
tion and transpiration. As expected, transpiration BCs provide slightly higher values of
aerodynamic damping with respect to mesh deformation. The same considerations pre-
sented for the 2D case are valid also here for what concerns the comparison between
a full non-linear solver and the numerical reference results provided by a linearized
solver. Finally, for what concerns computational costs, a single unsteady simulation for
this 3D case requires around 2600 seconds on the AMD 380X GPU using full mesh
deformation.
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Figure 10.11: Aerodynamic damping ξ for different IBPAs for the SC10 3D configuration, pitch d.o.f..

10.3 NASA Rotor 67 trim

To complete the aeroelastic investigation of turbomachinery configurations, in this
section the trim of the well known NASA’s Rotor 67 (R67) fan blade is performed
[100, 103, 129]. This is an important test case for the validation of AeroX since it
involves the use of numerous different formulations simultaneously. These are repre-
sented by MRF, the modal representation of the structural behavior, IDW, aeroelastic
interface, cyclic and total boundary conditions. Here the R67 is modeled as an iso-
lated rotor. For this configuration two experimental data sets are available: one from
1989 [143] and one from 2004. This data will be used to compare results provided
by compressible RANS simulations obtained with AeroX and thus perform the solver
validation for this kind of configurations. Furthermore, for this transonic axial fan test
case different CFD performance predictions have been published [42,74]. The purpose
of this investigation is to find the characteristic curves (performance curves, see 3.3) of
the rotor, i.e. the mass flow vs. total pressure ratio and the mass flow vs. efficiency
curves. The investigation will be firstly performed using a simple steady-state simula-
tion considering the geometry to be perfectly rigid. Then the same investigation will
be repeated as a static aeroelastic simulation, i.e. a trim simulation, and a comparison
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10.3. NASA Rotor 67 trim

between the two sets of curves will be performed in order to asses the possible advan-
tages provided by taking into account the blade deformation under aerodynamic loads.
Again, experimental data will be used to check for possible advantages provided by
blade trim results. As for the previous cases analyzed, a single blade domain reduc-
tion is here adopted to reduce the computational domain under the hypothesis that the
solution around a single blade is the same for the other 22 blades of the rotor. Thus,
periodic boundary conditions are adopted.

Figure 10.12 shows the computational domain and its division in multiple bound-
aries. Differently from the previously analyzed SC10 3D configuration, here a tip clear-
ance of 1mm is employed, separating the blade tip from the shroud wall.

MRF is employed since the rotor angular speed is 16043 rpm. As usual, total pres-
sure and total temperature are enforced at the inlet boundary. In particular these values
are P0 = 101325Pa and T0 = 288.15K. On the outlet, instead, subsonic boundary
conditions are enforced, starting with P = 101325Pa, to catch choke conditions. In
order to build the entire characteristic curves, what is done is starting from computing
the choke point and then gradually increase the outlet static pressure in order to find
other operating points. This procedure is repeated until stall conditions. This can be
done with multiple simulations starting from initial guess conditions. Here, in order
to save computational time, the solver is each time re-started from the just computed
performance point for which the flow conditions should be near the current point under
investigation. More in detail, the solver is not re-started at all: when the solution is
converged over a user-specified outlet static pressure, the solution is saved, and the out-
let boundary conditions are adjusted to satisfy the new performance point conditions.
This allows to save the pre-processing computational time required to read the mesh
and build mesh metrics that would be instead required by truly re-starting the solver for
each performance point.

Figure 10.12: Rotor 67 single blade computational domain. Boundaries: inlet (yellow), periodic bound-
aries (grey and blue), blade (purple), hub (green), outlet (red). The shroud is not shown.

10.3.1 Structural model

As for the HiReNASD wing let’s begin with the structural model. The structural mesh
is composed by about 80 · 103 tetrahedrons (solid elements). Only the blade is modeled
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with FEM elements, while the hub and the shroud are supposed to be perfectly rigid.
Thus, it is possible to directly perform the FEA on the clamped blade since there is no
way for the other blades to communicate from a structural point of view. The structural
analysis is performed using Code_Aster in order to extract modal shapes and frequen-
cies. As will be presented, just the first 3 modes are potentially sufficient to perform
the trim investigation in an accurate and computational efficient manner. However, 4
modes are extracted in order to further improve the results accuracy of the static aeroe-
lastic solution. Using 5 or more modes leads to just negligible differences in numerical
results. Table 10.1 shows the frequencies and the description of the first 4 modes, while
figures 10.13 show the shape of those mode. Basically the first two modes are flexural
while the third shape is torsional. The fourth mode is mixed. From the figures it is pos-
sible to see that the hub is considered perfectly rigid. The modal analysis is performed
accounting for rotational effects.

Mode Frequency (Hz) Description
1 760.3 1st bending
2 2174 2nd bending
3 3146 1st torsional
4 4920 Mixed

Table 10.1: First 4 modes of the Rotor 67 blade.

10.3.2 Aerodynamic model

The aerodynamic mesh is composed by 1.1 · 106 hexahedra cells with a boundary layer
discretization that allows y+ ' 0.5. This kind of discretization allows the near-wall
solution to be is inside the viscous sublayer. This is perfectly compatible with the
blended wall treatment. Spalart–Allmaras turbulence model is adopted. Figure 10.14
shows the detail of the discretization of the R67 blade and the hub. It is noted that in the
figure the actual computational domain is replicated 5 times just for visual purposes. It
can be seen that the blade is well discretized both in span and chord directions. The
same is valid also for the hub. Alongside the near-wall refinement, this is done in order
to accurately reconstruct both compressible and viscous phenomena around the blade.
In fact, the characteristic curves are computed from choke conditions up to the stall
region, where separations could occur. Anyway when separations occur in the flow it is
very difficult to obtain accurate solutions. Concerning the computational aspects of this
investigation, the mesh is unstructured but not hybrid since the mesh is composed by
100% hexaedra cells. Thus, there is no branch divergence afflicting assembly kernels.
The simulations were performed on the AMD 290X GPU for which a time/iteration/cell
of 2.81 · 10−8 seconds was obtained, as already discussed in 6.2.1. Considering 50 · 103

total pseudo time iterations required to reach the steady-state rigid solution at choking
conditions, a total simulation time of 25min is required. It is noted that this is just
needed to reach choke conditions starting from the initial guess. From this point to the
next performance point (and so on with the other performance points requested) less
iterations are required.
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 10.13: Rotor 67 modes shapes, displacements magnitude from blue to red.

10.3.3 Trim results

Here the steady aeroelastic results are discussed in a comparison with purely aerody-
namic results and experimental reference data. First of all, few notes regarding the
computational aspects of the simulations. The trim investigation at different user-
prescribed performance points (enforcing gradually different outlet static pressures)
is started from the steady-state purely aerodynamic solution at choke conditions. As
said, this is obtained in 25 minutes with the AMD 290X GPU. From this solution the
solver requires another 10 minutes to reach the static aeroelastic (trim) solution, again
at choke conditions. From there, the trim solutions for the next performance points
are computed using as initial guess the already computed trimmed performance point
(thus without restarting from the purely aerodynamic steady-state solution of the cor-
respondent outlet static pressure). This allows to speed up the computations since there
is no need to completely re-start the solver, saving the time required to read the mesh
and perform pre-processing operations. Furthermore the displacements of the previous
trimmed performance point are also used as guess conditions. 500 purely aerodynamic
explicit iterations are performed between each mesh update. It must be noted that it
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Figure 10.14: Hub and blade mesh detail. The real computational domain is here replicated 5 times for
visual purposes only.

is not simple to define the total computational time required to simulate the entire per-
formance curve of the rotor since the curve can be discretized arbitrarily with different
steps of outlet static pressures, leading to different number of computed performance
points from choke to stall conditions. For what concerns this investigation, in order
to obtain smooth characteristic curves, both for the aerodynamic and the aeroelastic
solutions, 30 performance points are used from choke to stall conditions. This is trans-
lated in a total computational time of about 6 hours for the trim solution curve. As
already said thanks to the efficient GPU-accelerated mesh deformation algorithms the
difference between the two computational times (purely aerodynamic and aeroelastic)
is quite small. This is also due to the fact that, as will be showed, the blade displace-
ments are relatively small with respect to what can be found for classical aeronautical
cases like the HiReNASD wing presented in 8.1. Thus from the aeroelastic point of
view numerical convergence is dominated by aerodynamics rather than the structural
behavior or the coupling between them. This behavior was encountered also for the
trim of a typical centrifugal compressor configuration [101], again using AeroX.

Now the results regarding purely CFD aspects will be presented. At choke con-
ditions AeroX predicts a mass flow value of 1.570 kg/s which is in good agreement
with the experimental value of 1.589 kg/s, with an error of just 1.76%. Figures 10.15
show with colors and displacements the blade deformation at choke conditions. Figure
10.15(a) shows the overall displacements of the blade at the aforementioned conditions.
It is possible to see that the shape is basically the same of the first mode. In fact this
is the mode that provides the higher values of generalized displacements. It must be
noted that the modes presented in table 10.1 are unitary-mass normalized. Thus they
are directly comparable for what concerns the elastic energy content. Figure 10.15(b)
shows instead the detail of the deformation near the blade tip and the blade trailing
edge. It is possible to see that at these conditions the tip displacement is very small,
just a fraction of the blade tip thickness. This is very different with respect to what
happens with a typical aeronautical wing (e.g. HiReNASD), where the trim solution is
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(a) Colors from blue to red (b) True displacements of the blade, tip-trailing edge detail

Figure 10.15: Rotor 67 blade deformation at choke conditions.

in general characterized by tip displacements that are usually in the order or multiple
of the tip airfoil thickness. The particular behavior of the R67 blade is justified by the
fact that considering the material and the blade shape, the blade stiffness is higher than
what can be found in a typical aeronautical wing. The blade frequencies, as an exam-
ple, are one order of magnitude higher than what obtained with the HiReNASD wing.
Figures 10.16 show the characteristic curves of the Rotor 67 concerning the efficiency
and total pressure ratio, comparing the purely aerodynamic simulation, the aeroelastic
simulation and the two sets of experimental data. The showed mass flow is normalized
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Figure 10.16: Characteristic curves for the Rotor 67 test case.

by the choke value. It must be noted that the data set from 1989 presents high uncer-
tainties. Anyway the two numerical curves are in good agreement with both sets of
experimental data. In particular, the two curves are very similar to 2004 data set for
what concerns the peak efficiency point while are significantly lower than 1989 mea-
surements. The trim solution is here computed using the 4 modes previously presented.
Anyway, it can be seen that the differences between the rigid and the aeroelastic curves
are basically negligible. The trim solution, however, produces a slightly higher curve
for the pressure ratio, especially near the peak efficiency point. In general, the small
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differences between the rigid and trim solution could also be inferred considering the
very small displacements encountered at choke conditions. This is again due to the
high blade stiffness that limits the blade deformation under aerodynamic loads. Figure
10.17(a) shows the generalized displacements ({q}) of the four considered modes dur-
ing the convergence over different performance points, starting from choke conditions,
up to the stall region. The curves are composed by multiple steps representing the con-
vergence over different performance points. It is reminded that the considered modes
are opportunely processed with a unitary mass normalization. Thus, knowing the gen-
eralized displacements it is possible to compute the elastic energy of each considered
mode on each considered trimmed performance point. Basically almost the entire elas-
tic energy is related to the first mode, as could be expected since in figure 10.15(b) the
displacements are mainly represented by the first modal shape. The second, third and
fourth modes contributions on the elastic energy are basically two orders of magnitude
smaller. This justify the fact that just 3-4 modes are enough to correctly represent the
structural behavior of the blade. Using just 3 modes basically the same results are ob-
tained. From the figure it is possible to see that the generalized displacements of the
fourth mode are basically negligible over the entire characteristic curve. Thus, using
5 or more modes with higher stiffness only leads to further negligible contributions in
results. To provide a complete view of the trim investigation through modal represen-
tation of the structural behavior, figure 10.17(b) shows the generalized aerodynamic
forces {Q} of the four considered modes. It is possible to see that, as for the displace-

-5x10
-6

 0

 5x10
-6

 1x10
-5

 1.5x10
-5

 2x10
-5

 2.5x10
-5

 3x10
-5

 3.5x10
-5

 4x10
-5

 4.5x10
-5

 5x10
-5

 0  50000  100000 150000 200000 250000 300000 350000 400000

G
e

n
e

ra
liz

e
d
 M

o
d
a

l 
D

is
p

la
c
e

m
e

n
ts

 [
-]

Aerodynamic Explicit Iterations [-]

Mode 1
Mode 2
Mode 3
Mode 4

(a) Generalized displacements

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0  50000  100000  150000  200000  250000  300000  350000  400000

G
e
n

e
ra

liz
e

d
 A

e
ro

d
y
n

a
m

ic
 F

o
rc

e
s
 [

-]

Aerodynamic Explicit Iterations [-]

Mode 1
Mode 2
Mode 3
Mode 4

(b) Generalized forces

Figure 10.17: Modal response for the trim of the Rotor 67 test case over the entire performance curves.

ments, the curves are made by multiple steps representing the convergence to successive
performance points. Figures 10.18(a) and 10.18(b) show the detail of the characteristic
curves near the peak efficiency point for what concerns efficiency and total pressure
ratio respectively. In particular, four different curves are showed, representing the em-
ployed modal representation of the structural behavior using an incremental number of
low frequency modes. From the results it is possible to see that using 3 or 4 modes,
as said, leads to negligible differences since the two curves are basically overlapped.
Small differences are instead obtained when just 1 or 2 modes are employed. Consider-
ing these results, the modal representation can be considered converged using 3 modes.
Finally figures 10.19(a) and 10.19(b) show the comparison at two span sections, 10%
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Figure 10.18: Peak efficiency point detail of the performance curves for the Rotor 67 test case.

and 30% respectively, of the relative Mach number. The comparison is performed be-
tween numerical results provided by AeroX and experimental data. It is possible to
see that numerical results are in good agreement with experimental data. Furthermore,
negligible differences are obtained between the purely aerodynamic solution and the
aeroelastic solution. This highlights the fact that not only integral quantities like per-
formance curves show small differences between the two kind of simulations for this
particular test case. Also local fields, like the relative Mach number, are character-
ized by small differences. Thus, it is basically possible to say that for this kind of
configurations, trim solutions provide just negligible differences over classical purely
aerodynamic solutions. To complete the investigation, the analysis is also performed
considering an elastic modulus equal to 1/10 of the original value. The blade shape
obtained at choke conditions with the modified elastic modulus is represented in figure
10.20. It is possible to see that in this case the blade deformation is more appreciable
since now it is greater than the blade tip thickness. However, it must be noted that to
obtain these behavior a non-existent material is adopted in the structural modelization.
Furthermore, with this magnitude of displacements, deforming the mesh is very diffi-
cult since the maximum displacements are in fact located at the tip clearance where the
aerodynamic mesh cells are opportunely small in order to better represent the possible
interactions between the blade (rotating) and the shroud (fixed). Thus, with this kind
of blade deformations the aerodynamic mesh cells are very stretched. Nonetheless, this
kind of analysis could be more and more relevant in the future due to the adoption of
new technologies and applications with composite materials and 3D printing.

10.4 Open rotor blade flutter

In order to complete the validation of AeroX for aeroelastic cases with rotating com-
ponents, here the flutter analysis of a typical open rotor configuration is performed.
The adopted case of the SR-5 propfan is described in details in [64, 65, 78, 122]. Here
the case is briefly introduced and numerical results are discussed. The investigation
is performed using Euler formulation since the prime target of the investigation was a
comparison between the results provided by an Euler solver and the full potential solver
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Chapter 10. Turbomachinery and open rotor blades aeroelastic applications

(a) 10% span

(b) 30% span

Figure 10.19: Relative Mach number comparison for the Rotor 67 test case.

ST with extensions for open rotors simulations. The results provided by AeroX are
compared with those provided by ST [122] and data available in the aforementioned
literature. This case is quite challenging since different formulations are simultane-
ously involved, such as MRF, ALE, periodic BCs, IDW, RBF, modal shapes, DTS. In
particular, here, the ALE formulation is used both for MRF and for mesh deformation.
The geometry under investigation is a 10-blade propfan designed by Hamilton Stan-
dard in early ’80s. The blade has a tip sweep of 60◦, a medium chord of 7.67 cm and
a span of about 30 cm. The propeller encountered flutter above M∞ = 0.7 during the
performance testing in wind tunnel and could not achieve its design point. The goal
here is to predict the same flutter conditions with AeroX. The strategy adopted is the
same used for the AGARD 445.6 wing, thus after the computation of the trim solution,
one unsteady simulation for each considered mode is performed, enforcing the specific
shape through a blended step time law. The actual flutter prediction is performed by
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10.4. Open rotor blade flutter

Figure 10.20: Rotor 67 blade displacements at choke conditions with reduced elastic modulus.

post-processing the responses of the propeller with the computation of the aerodynamic
transfer matrix and the algorithm previously described.

10.4.1 Structural model

The structural model here adopted is taken from [122], thus here is just briefly pre-
sented. The blade is discretized with CQUAD4 shell elements using NASTRAN. The
blade is clamped at its base. The hub is supposed to be perfectly rigid, thus the modal
analysis of a single blade alone is sufficient. In fact, without the hub deformation there
is no way for different blades to communicate from a structural point of view. Thus
there is no possible mode that could involve different blades experiencing different de-
formations. This is basically the same structural modelization strategy adopted for the
Rotor 67 fan blade 10.3. Table 10.2 shows the first 6 modal frequencies obtained with
the blade discretization, considering the blade rotating at 6800RPM . It is important
to notice that here the influence of centrifugal loads is non-negligible, thus the modal
analysis is carried out considering the contributions provided by the blade rotation. Fig-

Mode Frequency (Hz)
1 160.9
2 287.0
3 595.9
4 670.7
5 863.2
6 1013.4

Table 10.2: Propfan modal frequencies at 6800RPM .

ures 10.21 show the shape of the first 4 rotating modes. Although it is more difficult to
describe with words the modes shapes with respect to what happens usually with aero-
nautical wings, it is possible to say that the first two modes are mainly bending modes
while the third is basically a torsional mode.
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(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4

Figure 10.21: First 4 modes shape at 6800RPM .

10.4.2 Aerodynamic model

Figure 10.22 shows the near-blade mesh discretization. As said, this investigation is
performed using Euler formulation, thus there is no need of a boundary layer discretiza-
tion. The mesh is generated with GAMBIT and showed in figure 10.22. It is possible to

Figure 10.22: Near-blade mesh detail.

see the blade attached to the hub. As for the open rotor configuration investigated in 9.3,
periodic boundary conditions are adopted in order to reduce the computational domain
to a single blade sector. The investigation is carried out supposing that all the blades
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10.4. Open rotor blade flutter

respond the same way, or in turbomachinery terms, with a null Interblade Phase Angle
(IBPA). This way the configuration is supposed to be perfectly axial-symmetrical, not
only from a purely structural point of view but also for what concerns aerodynamics
and aeroelastic response. The mesh is basically a sector of a cylinder and at the two
bases inlet and outlet boundary conditions are enforced. On the external surface of the
cylinder characteristics-based boundary conditions are employed, while on the blade
and the hub slip boundary conditions are enforced. The mesh is composed by 168 · 103

tetrahedra while the blade is discretized with about 2700 wall faces. This is enough to
perform an inviscid simulation and allows to drastically reduce the computational time
with respect to a full compressible (U)RANS analysis.

Two different parameter sets are adopted for the analysis and are showed in table
10.3. These two cases are referred as case 2 and case 3. For these conditions reference
data is available to perform the validation of the solver.

Case ID RPM No. of blades β75% V∞ (m/s) Density (Kg/m3) M∞
2 6000 10 69.0◦ 263.86 1.0067 0.80
3 6800 10 69.0◦ 237.13 1.0433 0.70

Table 10.3: Operating conditions for the different cases.

10.4.3 Trim results

Before performing the unsteady computations for the flutter analysis, the steady-state
solution has to be computed, in order to have a solution from which starting to perform
the small perturbation simulations. In theory the solution from which the unsteady
simulations are started should be a true aeroelastic steady solution, characterized by
the deformations provided by centrifugal and aerodynamic loads effects. However, as
explained in [122] for this geometry aerodynamic loads contributions are negligible.
Thus, the geometry is deformed only by centrifugal loads and the modal shapes and
frequencies adopted for the unsteady simulations are directly taken from the structural
modal analysis, considering centrifugal effects only. Roughly speaking, the trim solu-
tion here is obtained by executing AeroX to find a simple purely aerodynamic steady-
state solution, without any kind of mesh deformation. The adopted geometry for the
aerodynamic mesh is however the one affected by centrifugal loads. For the conditions
of table 10.3 the blade tip reaches transonic conditions. This can be easily seen in fig-
ures 10.23 where a comparison between AeroX and ST is performed for the conditions
of case 3. From the figure it is possible to see that the results provided by the two
solvers are in agreement and transonic conditions are reached in some regions of the
blade, especially near the tip, where the effects of the blade rotation are maximized.
Due to the different rotating speeds and the asymptotic flow speed, the angle of attack
at 75% of the span is respectively 8◦ and 14◦ for the case 2 and case 3. Figure 10.24
shows the pressure coefficient distribution over the blade for case 3. Again the results
provided by the two solvers are in agreement with each other.

Using the AMD 380X GPU the trim solution is obtained in 88 seconds with a time/it-
eration/cell of 2.975 · 10−8 seconds. It must be noted that for this GPU, the adopted
mesh size is not enough to fully exploit the available computational power. Nonethe-
less, the mesh discretization is good enough for an inviscid simulation and to perform
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(a) AeroX, Euler formulation (b) ST , full potential formulation

Figure 10.23: Mach number comparison for case 3.

(a) AeroX, Euler formulation (b) ST , full potential formulation

Figure 10.24: Pressure coefficient comparison for case 3.

a direct solution accuracy comparison with the CPU-based ST solver using the same
mesh.
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10.4. Open rotor blade flutter

10.4.4 Flutter results

The last step is to re-start the solver from trim conditions and perform unsteady simula-
tions by enforcing each blade modal shape through a blended step time law. Results de-
tails (e.g. aerodynamic modal response and aerodynamic transfer functions) for AeroX
and ST are available in [122]. Here just the overall results for the flutter prediction are
presented. Table 10.4 shows the reference chord and mean sweep of the blade that are
used for the V − g and V − ω flutter diagrams. VS = V∞ · cos(Λ) instead of V∞ is

Case ID Chord c (m) Sweep angle Λ (deg)
2 0.07366 50.109
3 0.07367 50.138

Table 10.4: Geometric parameters for the different cases.

adopted for the flutter investigation. As for the AGARD 445.6 the blended step time
law parameters are computed with what explained in 2.2.2 and flutter is computed as a
post-processing procedure after performing the unsteady analyses, triggering for each
independent simulation a different modal shape.

As said, the first 6 rotational modes are here used for the flutter investigation. The
correspondent aeroelastic modes frequencies and damping values for case 2 are showed
in figures 10.25 and 10.26 respectively. For what concerns conditions of case 3, the
VS − ω and VS − g diagrams for the 6 aeroelastic modes are instead showed in figures
10.27 and 10.28 respectively. As explained at the beginning of this investigation, the
blades encountered flutter in the experimental setup for these conditions and geometry.
This is correctly predicted by the numerical results provided by both solvers. Flutter
is encountered with the instability of the second aeroelastic mode, which is a bending
mode. The aeroelastic instability manifests itself basically in a bending-torsional shape
since the frequencies of the second (bending) and third (torsional) aeroelastic modes
tend to get closer. In general, from the figures it is possible to see that numerical results
provided by inviscid AeroX simulations are in agreement with those provided by ST

solver and with literature reference data.

(a) AeroX: grey, ST : black (b) Reference data

Figure 10.25: Case 2, frequencies comparison for the 6 aeroelastic modes.

243



i
i

“thesis” — 2016/12/24 — 15:47 — page 244 — #256 i
i

i
i

i
i

Chapter 10. Turbomachinery and open rotor blades aeroelastic applications

(a) AeroX: grey, ST : black (b) Reference data

Figure 10.26: Case 2, damping values comparison for the 6 aeroelastic modes.

(a) AeroX: grey, ST : black (b) Reference data

Figure 10.27: Case 3, frequencies comparison for the 6 aeroelastic modes.

(a) AeroX: grey, ST : black (b) Reference data

Figure 10.28: Case 3, damping values comparison for the 6 aeroelastic modes.
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CHAPTER11
Concluding Remarks

In the present work we illustrated the design and implementation of a GPU-accelerated
aeroelastic compressible RANS solver with turbomachinery and open rotors exten-
sions. From the purely computational point of view different goals were achieved:

• the possibility to exploit the single precision performances of cheap gaming GPUs.
This is done in order to avoid the necessity of using expensive HPC GPUs that
nonetheless exhibit higher double precision performances, bigger global mem-
ory and ECC support. The implemented algorithms are opportunely designed to
save memory (thanks to explicit time stepping with convergence acceleration) and
guarantee accurate results with single precision support (thanks to non-dimensional
equations). However, thanks to the AeroX flexibility, the solver is natively com-
patible with HPC GPUs and their aforementioned features;

• the backward compatibility with CPUs. Thanks to OpenCL abstractions for paral-
lelism and the freely available implementations from different vendors, the solver
is natively compatible with both CPUs and GPUs. This allows an easier debug-
ging stage and to asses the advantages provided by the GPU acceleration through
benchmarks;

• the native compatibility with a wide range of devices, from CPUs to GPUs and
APUs. Devices from the nowadays most important vendors (Intel, AMD and
NVIDIA) were successfully employed to perform computational benchmarks and
to obtain CFD/FSI results;

• the interface between the solver and OpenFOAM, allowing an easy pre-processing
and post-processing phases, guaranteeing the compatibility with hybrid unstruc-
tured meshes generated with the most important modern mesh generation tools;
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Chapter 11. Concluding Remarks

In this work the effort was balanced between computational aspects and CFD/FSI
formulations. The idea was to choose and adapt CFD/FSI formulations to the GPU
architecture. For this purpose different formulations and strategies developed in [127,
136] were opportunely tuned and translated into OpenCL kernels in order to exploit
GPU acceleration. Around these low-level schemes, turbomachinery and open rotors
extensions were built in order to expand the application fields of AeroX. Thus, from
the purely numerical formulations point of view, the following formulations were suc-
cessfully implemented, and explained in their GPU-oriented tuning:

• Hybrid unstructured meshes handling;

• Roe convective fluxes with high resolution;

• Spalart–Allmaras and SST turbulence models with automatic wall treatment;

• Mesh deformation for steady and unsteady aeroelastic analyses;

• Turbomachinery and open rotors extensions;

Concerning the purely aerodynamic and aeroelastic point of view, the solver was val-
idated using well-known and recent-trend cases. The 2nd Drag Prediction Workshop
was adopted to asses the capability of the solver to perform steady-state simulations of
aircraft shapes and to correctly catch both compressible and viscous effects in transonic
and high Reynolds number conditions. A typical open rotor geometry, investigated by
Stuermer, was adopted to validate the solver for steady-state solutions. Results were
also compared with the recently developed full potential implicit solver ST [115, 122]
capable to provide accurate and fast solutions for this kind of geometry. Concern-
ing turbomachinery, the well-known Goldman blade and the 1.5-stages Aachen turbine
were analyzed to complete the validation of AeroX for steady-state analyses. Then,
the focus was posed on aeroelasticity, starting with the solver validation with the well-
known HiReNASD and AGARD 445.6 wings for trim and flutter respectively. Then,
the most recent challenge in flutter prediction, i.e. the BSCW wing for the 2nd Aeroe-
lastic Prediction Workshop, was accepted. The solver demonstrated the capability to
provide accurate and fast results by using just a single cheap desktop computer with a
mid-range gaming GPU. Another challenge was represented by the trim of the Rotor
67 fan blade due the apparent lack of literature results for such kind of investigation.
The aeroelastic analyses were finally concluded by the flutter prediction of the SR-5
propfan blade, in a comparison with the ST solver.

This work can be viewed as a step forward after the work of Serioli and Romanelli
[136] and Romanelli [127] with their effort in the development of AeroFoam aeroe-
lastic solver. Despite the specific test cases under investigation, the idea that is still
pursued is to try to provide even cheaper, fast but accurate solutions at the very begin-
ning of the design phases of the typical aeronautical component, raging from wings/air-
craft to turbomachinery and open rotor blades. However, in order keep pursuing this
goal, some effort is still required for the following challenges, regarding both the both
computational and aeroelastic aspects:

• Extension to a fully hybrid shared/distributed memory architecture, using MPI and
the OpenFOAM support for domain decomposition. This is useful for different
reasons as will be explained in next points;

246



i
i

“thesis” — 2016/12/24 — 15:47 — page 247 — #259 i
i

i
i

i
i

• Exploitation of the most recent OpenCL 2.x features like shared memory (partic-
ularly for APUs) and C11 atomics extensions;

• Exploitation of the capabilities offered by other accelerators like Intel Xeon Phi,
through some code porting (OpenMP + AVX-512). A porting of AeroX has
been completed. Preliminary tests showed that using a developer workstation
equipped with an Intel Xeon Phi 7210 (1.30GHz, 64 cores, 256 threads, 16GB
MCDRAM + 96GB DDR4) an average time/iteration/cell of 5.0 · 10−8 s can be
achieved using SP. This device has around 5 − 6TFLOPS SP computational
power. DP computational power is halved. The porting has been done exploit-
ing OpenMP for multi-threading and compiler auto-vectorization for AVX-512
instructions.

• Exploitation of the OpenCL heterogeneous computing capabilities. The idea is
to allow the solver to automatically split work in a balanced way among the avail-
able devices, using different CPUs, GPUs and accelerators simultaneously. Nowa-
days, in fact, it is possible to find clusters that exhibit multi-core CPUs installed
alongside GPUs on the same node. Eventually it would be possible to exploit
the different device architectures to assign each job to the most appropriate kind
of device, taking advantage of multiple OpenCL queues and concurrent kernel
execution or just the OpenFOAM MPI-based framework, assigning one process
to each device. OpenFOAM allows to control domain decomposition assigning
different number of cells to different subdomains. This can be exploited to bal-
ance work distribution when the available hardware is composed by devices with
different computational power and memory. Another advantage of this approach
would also be to combine devices from different vendors (e.g. an NVIDIA GPU
with an AMD GPU). Preliminary tests show that combining the computational
power of the GPU cores of the AMD 7700K APU with the GPU cores of the
AMD 380X GPU it is possible to obtain a time/iteration/cell of 5.4 · 10−8 s us-
ing a 1 : 5 subdomains cells ratio on a test case. For the same case the AMD
380X (4000GFLOPS SP) alone achieves a time/iteration/cell of 6.4 · 10−8 s
and the GPU cores of the AMD 7700K APU (550GFLOPS) alone achieve a
time/iteration/cell of 4.2 · 10−7 s. It is clear that even if the two devices are quite
different from a performance point of view, it is possible to reduce the overall
time/iteration/cell by combining them. Combining an NVIDIA GTX 560Ti GPU
(1300GFLOPS SP) with an AMD 380X GPU (4000GFLOPS SP) a time/iter-
ation/cell of 3.4 · 10−8 s was achieved on the DPW2 test case, while for the same
case the AMD 380X GPU alone achieves a time/iteration/cell of 4.5 · 10−8 s.

• New addressing strategies to improve memory coalescing and reduce branch di-
vergence, in order to reach even higher GPU efficiency;

• A more complete investigation of the recent trends in open rotors and turboma-
chinery, especially for what concerns open rotors and CROR and ORCs;

• Extension to a wider range of multi-physics applications (e.g. thermoaeroelastic
analyses, investigation of indirect effects of potential drag reduction technologies,
geometry automatic optimization);
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Chapter 11. Concluding Remarks

• Investigation of the state-of-the-art techniques related to parametric computing
and reduced order methods. The idea is to further speed-up simulations by com-
bining hardware/software-based strategies (like in this work) with the aforemen-
tioned methods. This would allow not only to save computational time but also to
increase the complexity of the simulations.
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APPENDIXA
Introduction to parallel computing

A.1 Introduction to parallel computing

Internet nowadays is a great and reliable source of informations for what concerns
programming and computer science in general. On the internet it is possible to find free
tutorials and examples, free ebooks and free tools to learn and use parallel programming
in order efficiently solve different kinds of problems. Even on YouTube it is now
possible to find good tutorials about programming. Thus, it is important to understand
that in computer science, internet is a great source, like any other paper and article.
This chapter has been written mainly using the information from [25] and by mixing
information from websites like wikipedia.org [36], stackoverflow.com [31] and other
sources like [66].

Nowadays parallel computing is basically everywhere, from servers providing web
services, supercomputer executing simulations and small smartphones running multi-
ple apps at the same time. The focus of this work is the exploitation of the modern
GPUs computational power to accelerate CFD/FSI simulations. In numerical simu-
lations many algorithms and schemes naturally exhibit parallelism. This is true for a
wide selection of research fields like physics, engineering, biology, economy, medicine,
cryptography. The growing interest in parallel computing in recent decades, both on
hardware and software sides, has been particularly affected by the reaching of tech-
nological limits of serial architectures. After the race to the GHz of the CPUs in the
2000s, the technological and economical focus has been moved to the multi-core pro-
cessor approach both in server and desktop applications. The technological limitations
associated with serial processors are mainly concerned with the fact that the informa-
tion in the CPU propagates at "just" a speed in the order of light speed. Is is there-
fore necessary to reduce the distance between CPU elements to increase performances.
However, there are physical and technological limits that have been reached for the
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Appendix A. Introduction to parallel computing

miniaturization of CPU elements: the most recent CPU architectures uses nanometers
scales. These limits are such that it is economically and technologically more conve-
nient to focus on parallel architectures. There are several advantages in using parallel
computing:

• time saving: throwing more resources at a task will shorten its time to completion,
with potential costs savings. This is very important in numerical fields. As an
example weather prediction simulations have strictly solution time requirements
in order to be useful;

• problem size: many problems are too large to be handled by a single computa-
tional unit, both for what concerns pure computational power and memory re-
quirements. For this reasons supercomputers and clusters are employed;

• concurrency capabilities: with a parallel architecture it is possible to perform true
multitasking. This is very important in server applications, e.g. to provide web
services to thousands of users simultaneously;

• distributed resources: in parallel architectures it is possible to distribute tasks to
resources that are not physically close. As an example, in BOINC [18] projects
thousands of volunteers spread over the planet are contributing to solve problems
by offering their computational power;

A.2 The GPGPU way

Here, first an introduction to GPGPU (General-Purpose computing on Graphical Pro-
cessing Units) is provided as it is the main approach adopted in this work to accelerate
numerical computations. More details are available in chapter 4. The main idea behind
GPGPU, as the name suggests, is very simple: using the graphical processor to perform
general purpose numerical computations instead of graphical computations. The main
reason of the success of GPGPU is given by the total computational power that mod-
ern GPUs exhibit. In fact, when talking about theoretical floating point performances,
GPUs are up to one or two orders of magnitude more powerful than CPUs. This is
due to the fact that GPUs have hundreds, thousands of cores and their architectures are
specifically designed to perform graphical computations, where the same operation is
performed on large data sets. This does not generally mean that one or two orders of
magnitude speed-ups can be easily achieved since numerous aspects have to be con-
sidered when talking about GPU parallelization. In order to obtain high speed-ups the
implemented algorithms must be opportunely designed and optimized to exploit the un-
derlying GPU hardware architecture, minimizing the possible bottlenecks. This is due
to the fact that from the hardware point of view GPUs architectures are very different
from CPUs architectures since they are designed for different purposes. In fact, GPU
architectures are tuned for SIMD/SPMD/SIMT algorithms, while CPUs are more gen-
eral purpose. Programming on GPU is more difficult than programming on CPU since
from the very beginning of the code developing, the programmer has to think about
what is going to happen on the GPU processor and memory at each line of the code.
This is due to the fact that it is very easy to degrade the overall speed-up of a GPU-
accelerated application with just few lines fo code due to possible bottlenecks. This
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could also potentially mean that if the algorithm is not opportunely tuned for the GPU
architectures, the GPU execution would results in computational times that are orders
of magnitude bigger than what can obtained with the correspondent CPU execution.
Another different kind of problems in GPGPU is related to debugging and profiling.
Debugging on GPU is more difficult with respect to what can be done on CPU. Think-
ing about a typical linux programming machine, tools like gdb, valgrind and gprof
cannot be directly employed with GPU code. The situation is problematic with GPU
since every vendor have its own debugging/profiling framework and in general debug-
ging a C-like GPU code requires more time than debugging a C-like CPU code. Since
there is no operating system kernel running on the GPU processor, it is very difficult
to catch buffer overflows or floating point errors. GPGPU is still a relatively new field
with respect to CPU programming and from both hardware and software point of view
the situation changes basically every year with the presentation of new hardware ar-
chitectures increasing performances and introducing new features. Despite the general
effort that a programmer has to spend when programming a GPU, it must be noted that
GPGPU provides advantages for peculiar numerical fields, like CFD, finance, FEA,
cryptography. Not all algorithms can be parallelized on GPU, especially algorithms
that for their nature are intrinsically serial, like most of the operations performed by an
operating system. Thus, GPGPU is not aimed to replace classic CPU programming.
GPGPU is aimed to assists CPU executions for some peculiar numerical computations.
This is why it is often possible to read something like "offloading the work to the GPU"
or "accelerating with GPUs". In fact, as mentioned, since there is no kernel running
on GPUs, a CPU is always needed in a GPGPU application, at least to organize and
enqueue work to be sent on the GPU. Furthermore the most powerful supercomputers
available today in the world (see Top 500 [32]) exhibit hybrid/heterogeneous architec-
tures, where multiple nodes of multi-core CPUs are combined to GPUs or other kind
of accelerators (e.g. Xeon Phi) to accelerate algorithms wherever is possible or conve-
nient. It is again reminded that multi-core CPUs assembled in multi-node clusters are
still required since some algorithms cannot be efficiently parallelized on GPUs and in
any case GPUs requires CPUs to feed them with instructions and data streams. Talking
about cluster and supercomputers, GPUs are employed for other very important rea-
sons: costs and power efficiency. This may not seem a really big problem for a single
computer desktop but when the power consumption is in the order of MW, it could
be a determinant factor. In fact, if an algorithm could be easily and efficiently paral-
lelized on GPU this could potentially mean that a single GPU can substitute numerous
muli-core CPUs. Considering that the GFLOPS to power consumption ratio of modern
GPUs is usually one order of magnitude (see 4.3(a) [2]) higher than modern CPUs the
advantages are clear. This could potentially mean that a single desktop workstation
with one or multiple high-end GPUs could potentially substitute a small cluster if the
code is properly tuned, with evident advantages in term of electricity bills related to the
power consumption of computational hardware itself and the eventual air conditioning
system.
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A.3 Flynn Taxonomy

The Flynn taxonomy [67] is here introduced. Flynn taxonomy is basically a way to
classify serial and parallel architectures with respect to their capabilities to handle a
single or multiple streams of instructions and data. Considering the two streams of data
and instructions and their possible states, single and multiple, a total of four combi-
nations are possible: SISD (Single Instruction Single Data), SIMD (Single Instruction
Multiple Data), MISD (Multiple Instructions Single Data), MIMD (Multiple Instruc-
tions Multiple Data).

SISD

This is the most simple architecture. A single stream of instructions is applied to a sin-
gle stream of data. This is basically what happens in a serial CPU execution, when no
kind of parallelism is employed in the code. In this case the execution is deterministic,
i.e. executing multiple times the SISD compiled/parsed code the results are exactly the
same provided that the same data is used for each execution. It must be noted, how-
ever, that there is still no guarantee that the instructions are executed by the CPU with
the same order provided by the original source code, since compiler and CPU instruc-
tions reordering and further optimization could be employed to increase performances.
Furthermore, instruction level parallelism is usually employed to improve single-core
CPU performances by overlapping CPU operations in order to exploit multiple CPU
components at the same time. Figure A.1 shows the SISD approach: data A and B are
loaded from memory, C is then computed and finally stored back to memory.

Figure A.1: SISD architecture [25]

MISD

With this combination of data and instruction streams, multiple operations can be per-
formed on the same data. This is the first example of parallel architecture. However,
this strategy is rarely adopted since there are very few problems on which this kind of
parallelism results useful. Basically, what happens is that multiple computational units
are executing independent instruction streams on the same shared data stream at the
same time. This is depicted in figure A.2 where it is possible to see that n instruction
streams are performing different operations on the same data (A(1)) read from memory.

SIMD

SIMD is the first useful example of parallel architecture. With SIMD the same instruc-
tion stream is performed by different computational units on different data streams.
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Figure A.2: MISD architecture [25]

This is usually what needed in numerical applications where the same operation have
to be performed on large data sets. As an example, this kind of parallelism can easily
speed up the the sum of two vectors, since the same operation (sum) has to be per-
formed on each couple of numbers. Figure A.3 shows the typical instruction and data
streams pattern of SIMD parallelism: the same stream of instructions is performed by
each of the n computational units. However the different units are handling different
data, A(1) for the first unit, A(2) for the second and so on. Today architectures ex-
hibit SIMD capabilities in different ways. As an example, in a multi-core CPU with 4
cores it is possible to program each core to perform the same set of instructions applied
to different data streams. However, with modern CPUs, SIMD parallelism can be ex-
ploited in another way, by using specialized instructions and registers available on the
underlying hardware architecture. As an example, SSE (Streaming SIMD Extensions,
in all versions) and AVX (Advanced Vector eXtensions) instruction sets are used in x86
and x86-64 architectures to accelerate SIMD operations. It must be noted that with
SSE/AVX each single core of the CPU is capable to perform SIMD operations (e.g.
operate on 4 floats at the same time with SSE). Thus it is also possible to further speed
up SIMD-like algorithms by exploiting SSE/AVX and multiple cores at the same time.
GPU architectures, exhibit SIMD-like parallelism, thus they are well suited for data-
type of parallelism. However, GPU cores offers more the just pure SIMD parallelism.

Figure A.3: SIMD architecture [25]

MIMD

This is the most general purpose kind of parallelism in the Flynn taxonomy. Basi-
cally MIMD means that each computational unit can perform different operations on
different data at the same time. More specifically, different instruction streams are
processed by different computational units and applied to independent data streams.
Modern multi-core CPUs exhibit this kind of parallelism. This is thus the most popular
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kind of parallelism nowadays, thanks to its advantages. As showed by figure A.4 the
n computational units are performing completely different operations on independent
data sets. This kind of parallelism is helpful for any server, desktop or mobile devices,
where the operating system has to perform multiple different operations at the same
time (e.g. browsing the internet while listening music). This kind of parallelism is well
suited for task parallelism where different tasks have to be performed at the same time
on different data. This is useful e.g. when a server needs to process different requests
from multiple users concurrently. Numerical applications can also take advantage from
MIMD parallelism: as an example certain computational units could be used to assem-
bly a matrix and the other could be used to assembly residuals. An important aspect is
that with MIMD determinism could be lost, meaning that starting from the same initial
data it could be possible to obtain slightly different results. This usually happens with
parallel reduction operations due to finite-precision nature of floating point arithmetic
and the fact that with different executions the order of floating point operations could
be slightly different, leading to the aforementioned little differences in results.

Figure A.4: MIMD architecture [25]

SPMD

Single Program Multiple Data is a definition outside the original Flynn taxonomy.
SPMD basically means that the same program is executed in parallel on different
data by different computational units. Here the key difference between SPMD and
SIMD/MIMD is the fact that the same program and not the same instruction stream is
shared between the computational units. Basically different computational units could
be in different points of the same shared program at the same time. This usually hap-
pens when the code has branches. Thus, this is different from true SIMD since more
freedom is allowed for what concerns instruction streams on different computational
units. However SPMD is also different from MIMD since this freedom is limited to the
single shared program. SSE/AVX instruction sets of CPUs does not allow this kind of
parallelism but only true SIMD. GPUs instead satisfy the SPMD model allowing each
GPU core to execute the same program on different data at the same time. However,
as will be showed in A.5, branches, although are allowed, reduce GPU execution effi-
ciency. This kind of parallelism is often called in other ways like SIMT [114] (Single
Instruction Multiple Threads) by NVIDIA, meaning that the same program is instanti-
ated with multiple threads spread among the GPU cores, allowing different threads to
execute different program paths while managing different data. OpenCL and NVIDIA
CUDA GPGPU programming languages uses SPMD concepts to ease GPGPU pro-
gramming thanks to the so-called kernels.
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MPMD

Multiple Program Multiple Data is a more general purpose kind of parallelism with
respect to SPMD, since different computational units are allowed to perform different
instructions streams from different programs at the same time. This is similar to MIMD,
however, as said, with MPMD different instruction streams from different programs
can be executed in parallel on the available computational units. Again this is useful
for both applications like browsers, games and for numerical applications.

Data parallelism

As Wikipedia suggests: "Data parallelism is a form of parallelization of computing
across multiple processors in parallel computing environments. Data parallelism fo-
cuses on distributing the data across different parallel computing nodes.". Roughly
speaking it is possible to talk about data parallelism when the same operation has to
be performed on different data. Thus, the idea is to use multiple computational units
programmed to perform the same operation feeding them with different data. As an
example, the sum of two vectors could be easily mapped to an algorithm that exhibit
data type of parallelism, by simply spreading the total work among all the available
computational units and assigning different data to different units. This way each com-
putational unit is responsible to perform the sum of different vectors elements. This
kind of parallelism is very useful in numerical simulations, and represents basically the
core idea of this work. The idea is to perform the same operation, e.g. fluxes computa-
tion, of different data of the same kind, e.g. cells solutions.

Task parallelism

Again, from Wikipedia: "Task parallelism (also known as function parallelism and con-
trol parallelism) is a form of parallelization of computer code across multiple proces-
sors in parallel computing environments. Task parallelism focuses on distributing tasks,
concretely performed by processes or threads, across different processors.". Roughly
speaking task parallelism is allowed when different tasks can be performed (eventually
on different data) at the same time. Thus, total work is split in different tasks that are
spread among the available computational units. This kind of parallelism is usually
achieved on CPUs using operating system concepts like threads and processes.

A.4 Parallelization strategies overview

Here a brief overview concerning the parallelization strategies, especially for CPUs,
that are nowadays usually adopted is provided. The discussion is focused mainly on
software and conceptual aspects, but anyway these are strictly related to the underlying
hardware architectures. Depending on the underlying hardware and software architec-
tures, usually parallelization involves concepts like shared memory, distributed mem-
ory, SIMD extensions, (N)UMA platforms. These will be briefly explained since the
solver can use a combinations of these during executions, especially on CPU.
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A.4.1 SIMD Extensions

Nowadays, CPUs, even the cheaper ones, have multi-cores architectures. As previ-
ously explained in A.1 they exhibit MIMD/MPMD parallelism, meaning that differ-
ent instruction streams and even different programs are allowed to run on different
cores concurrently, working on different data streams. Obviously, since this is the
most general purpose kind of architecture, it is also possible run a multi-core CPU in
SIMD/SPMD mode, by executing the same instruction stream or program on differ-
ent cores and feed them with different data streams. As an example, the sum of two
vectors on a dual-core CPU could be achieved by coding a program that is executed
with one process and two threads. Each thread runs on each physical core and com-
putes one half of the results, potentially allowing to reduce by a factor of 2 the total
computational time required. However, this is not the only way a modern CPU can
perform SIMD operations, i.e. it could be also done through SIMD extensions. As
an example, x86-64 CPU architectures usually feature multiple SIMD extensions like
MMX, 3DNow!, SSE (in all of its versions like SSE, SSE2, SSE3, SSE4) and AVX
(in all its versions like AVX, AVX2, AVX-512). ARM architectures have something
similar called NEON. In any case, the idea is to allow a single CPU core to perform the
same operation on multiple data. This is different from the previous described multi-
thread approach since this time just one core is capable of SIMD operations. As an
example, SSE registers have 128 bit width, meaning that each CPU core can perform
the same operation on 4 floats (32 bits each) or 2 doubles (64 bit each). AVX has 256
bit registers width and AVX-512 have 512 bit width. Figure A.5 shows a single-core
SIMD approach applied to the aforementioned vector sum example, using 4 floats in
128 bit width registers. It is easy to understand that combining multi-core (through
multi-thread) and SIMD extensions it is possible to potentially achieve high speed-ups
in numerical applications, just by efficiently exploiting the available hardware. How-
ever, it must be noted that while multi-thread programming is nowadays quite simple,
e.g. by using OpenMP introduced later, usually SIMD programming with SSE/AVX
requires a more advanced programming knowledge. This is due to the fact that often,
in order to achieve high computational efficiency, some assmbly-level programming is
required. However, modern compilers like GCC have the so called auto-vecotrization
capability, usually activated with flags like -ftree-vectorize, meaning that they try to
vectorize code (especially for loops) and produce SIMD instructions automatically, in
order to optimize the code without requiring the user to explicitly write SIMD assem-
bly code. This is also done by the Intel implementation of OpenCL on CPUs where,
thanks to implicit vectorization [8], AVX instructions are used whenever is possible.
This means that in this work, when the solver is executed on CPUs, SIMD capabilities
are automatically exploited. However it must be noted that usually efficiency peaks are
obtained by the programmer writing low-level assembly SIMD code.

A.4.2 Shared memory system and multi-threading

Shared memory parallel computer processors, with respect to distributed memory par-
allel computer processors, have the capability to access all memory as a global address
space. This architecture allows different processors to perform the same or different
tasks by anyway sharing the same memory resources. Roughly speaking if a processor
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Figure A.5: SSE example [16]

changes a variable in memory, the change is visible by all the other processors sharing
the same memory. However, the reality is not exactly this simple. There are two im-
portant implementations of shared memory concept: UMA (Uniform Memory Access)
and NUMA (Non Uniform Memory Access).

UMA [25] shared memory systems are usually called SMP (Symmetric Multi Pro-
cessor). In this architecture processors have equal access priority and access time to
all the shared memory. However, all processors have their own private cache mem-
ory, thus memory coherence problems arises. What happens is that when a processor
update a variable that is cached in its own private memory, this change is obviously
immediately visible to that processors but the variable is not immediately updated in
the shared memory. The same variable could be also cached in other processors. A way
to obtain a uniform view of the same variable is thus required. This problem is solved
using CC-UMA (Cache Coherent UMA) that uses hardware mechanisms to guarantee
that all processors will see the correct updated variable when required. Example of this
kind of architecture are represented by earlier dual-processors computers. Figure A.6
shows schematically the UMA architecture concept. In this work different multi-core
desktop CPUs were used for benchmarks and debugging. These represents examples
of SMP systems where each CPU core has the same rights of access the whole system
RAM.

Figure A.6: UMA architecture [25]

NUMA [25] shared memory systems are made by physically linking more SMPs.
Each SMP has its own privileged part of the global shared memory that can be accessed
quickly. However, since NUMA is anyway a shared memory system, all processors
shares the same global address space. What happens is that each SMP can access the
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privileged memory of another SMP through an interconnect bus but with longer access
times with respects to its own privileged part of the global shared memory. The meaning
of "Non Uniform" is exactly related to the concepts of having different access times for
different memory regions. This is done in order to improve performances since what
happens is that most of the time each SMP just need data stored in its own privileged
memory. However, if data stored in another memory region is requested, its recovery
is always allowed by any SMP. Example of NUMA systems are modern multi-core
multi-processor architectures, where on the same motherboard two or more processors
are installed alongside with multiple RAM banks. Some RAM banks are flagged as
privileged to a particular processor, allowing it to have the access priority. However, all
RAM banks can be always accessed by other processors, although with higher access
times, through the use of buses like Intel QPI or HyperTransport. Figure A.7 shows
schematically the NUMA architecture concept.

Figure A.7: NUMA architecture [25]

Shared memory systems have advantages over distributed memory systems (that will
be explained in a moment) thanks to the fast data sharing between different tasks and
thanks to the user-friendly perspective of the memory provided by the global shared
address space. However, the main drawback of this architecture is given by its lack of
scalability when the total number of processors increases, due to the excessive overhead
of keeping the shared memory concept working. Another disadvantage is given by
the fact that the programmer is responsible to correctly access a shared variable from
different tasks.

Multi-thread From the software and programming point of view, shared memory
systems can be exploited with multi-threading programming model. A thread is the
smallest sequence of programmed instructions that can be managed independently by
an operating system scheduler. A thread is basically a light-weight process: a sin-
gle heavy-weight process can be split into multiple threads executed concurrently to
achieve task or data parallelism. As an example, in multi-core CPUs different threads
from the same process (or different processes) can be executed by different cores si-
multaneously. Different operating systems manage threads in slightly different ways.
In windows the distinction between processes and threads is marked. In linux instead,
process and threads are basically the same things, "tasks", with the particularity that
threads are tasks that shares memory pages. In any case threads of the same process
have their own private memory and a shared memory that complies with the shared
memory model and that can be used to achieve threads inter-communication. Threads
of different processes don’t share memory. In order to allow communication between
different processes, other kinds of mechanism must be employed, like message passing,
usually used in distributed memory systems. Despite communications, another advan-
tage offered by the multi-thread approach over the multi-process approach is given by
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its light-weight nature: spawning multiple threads is cheaper that forking multiple pro-
cesses, requiring less CPU time and less memory. This is due to the fact that by their
own nature threads share memory, but during process fork memory has to be dupli-
cated. Different tools are nowadays available to programmers in order to easily create
multi-threaded applications. Here, a brief description of OpenMP is provided to the
reader, thanks to its simplicity. This is not the only choice to achieve this goal since
other ways like POSIX Threads can be used. However, as will be showed, OpenMP
is probably one of the most simple and flexible.

OpenMP Roughly speaking, OpenMP is an API that comprises three components:
compiler directives, runtime library routines, environment variables. The simplicity
behind the use of OpenMP is based on the use of compiler directives. These allows
the programmer to initially write its own serial version of the code and then modify
it with few lines of OpenMP complier directives in order to parallelize the execution
through multi-threading. Despite other approaches like pthreads, with OpenMP the
user just have to tell the compiler which part of code parallelize, while it is actually the
compiler itself that generates the code required for multi-thread executions. OpenMP,
like other standards, is just a set of specifications, while the compilers are required to
implement its features. The most important compilers, like GCC, support OpenMP
natively. Besides the relatively simplicity provided by OpenMP, the programmer still
have to explicitly tell the compiler what to do with shared variables, i.e. shared vari-
ables accesses must be opportunely protected in order to avoid problems when multiple
threads try to write (or one read and one write) on the same shared memory location.
Thus, the user still have to take care of some important shared memory concepts like
synchronization. In example A.1 the usual two vectors sum source code is showed in
a C serial implementation, alongside the OpenMP multi-thread parallelization. It is
possible to see the OpenMP simplicity.

Listing A.1: Vector sum with OpenMP

#pragma omp parallel
for( int i = 0; i < vec_size; i++)
{

c[i] = a[i] + b[i];
}

What happens during execution is that the program is started as a process with a single
thread. When the execution reaches a parallel region, multiple threads are created in or-
der to split the work into multiple chunks, managed by multiple threads, that are spread
among the available cores. Considering the example A.1, what happens is that when the
single-thread execution reaches the parallelized for loop, the process is subdivided into
multiple threads and different chunks of arrays a, b, c are handled by different threads.
Work is split through the use of the loop iteration index i: different threads are basically
looping over different values of i. Thus, i represents a thread-private variable while the
three arrays are stored in shared memory and thus accessible by all threads. In this par-
ticular case each thread is accessing the shared memory without any overlapping. Thus,
there is no need to protect arrays accesses. However, an implicit barrier is located at
the end of the loop in order to guarantee that after the parallel region every thread can
access every memory location of c without problems. In any case, when the user wants
to protect the access to a shared variable from the possibility of two threads writing on

259



i
i

“thesis” — 2016/12/24 — 15:47 — page 260 — #272 i
i

i
i

i
i

Appendix A. Introduction to parallel computing

the same memory location or the possibility of one threads writing and another reading
the same memory location, a so called "critical" region can be employed through the
use of # pragma omp critical directive. This ensure the correctness of operations on
shared variables but could slow down the execution.

As previously mentioned, the multi-thread approach can be coupled with SIMD ex-
tensions in order to exploit the whole floating point power of modern CPUs. This could
be done by coupling OpenMP with auto-vectorization, or by using the new OpenMP
directives (e.g. # pragma omp simd) specifically designed to tell the compiler to
generate SIMD code.

OpenMP is a very powerful and easy-to-use tool. At the time of writing, the latest
version of the standard introduced the possibility of heterogeneous computing, in a sim-
ilar approach adopted by OpenACC, through the use of compiler directives. However,
for now it is basically used for CPU parallelization through multi-threading. OpenCL
rather than OpenMP is preferred in this work because, thanks its low-level nature,
allows a more clear view of how the source code is translated in the underlying hard-
ware operations and allows more control on it. Furthermore, OpenCL is specifically
designed for heterogeneous computing and allows from its very first versions to just
write a single source code and at runtime decide on which computing device (CPUs,
GPUs or other accelerators) perform the actual computations. At the time of writing
it is possible to download and use for free OpenCL libraries and tools from the most
important hardware vendors like Intel, NVIDIA, AMD. OpenACC instead is basically
fully supported by commercial compilers.

In this work, OpenMP is adopted in some pre-processing stages of the solver, before
the OpenCL execution over GPU. This is done for specific algorithms like extended-
cell search that due to their nature cannot be efficiently parallelized on GPU archi-
tectures. Another important aspect related to multi-threading in this work is the fact
that when an OpenCL-compliant program uses a CPU as a device to run the so called
"kernels" (the functions that requires hardware acceleration (see 4.4)), parallelism is
achieved through multi-threading, in a shared-memory manner. In this work different
multi-core Intel and AMD CPUs were used to perform benchmarks and debugging.
During CPU solver executions the total work is split and assigned to different threads
running on different cores of the same CPU. The important advantage provided here by
the use of OpenCL is that all the multi-thread management is handled by the underlying
implementation provided by Intel/AMD OpenCL libraries at runtime. The program-
mer just have to write a single source code that will be also used for GPU executions.
Furthermore, OpenCL allows the coupling of multi-thread and SIMD capabilities [8].

The usual approach in numerical applications to exploit multi-threading is to try to
parallelize some specific stages during the simulation. This means that a single process
is started with a single thread but multiple threads are used wherever the simulation
approaches a point of the code with an algorithm that can be easily mapped to a multi-
thread execution. This could mean for example that when convective fluxes have to
be computed, different faces are assigned to different threads, possibly scheduled for
execution on different cores. However, cell conservative values are kept shared among
threads in order to avoid useless memory duplication and to speed up data exchange
between different workers (threads). This is also what is usually done with GPGPU
and in particular in this work both for CPU and GPU executions.
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A.4.3 Distributed memory systems

In distributed memory systems there is no global shared memory and each processor
can directly access only its local memory. This is immediately translated in the fact that
every update operation of a memory variable inside a processor private memory is not
visible to other processors. In this architecture the concept of cache coherence is thus
meaningless. However communications between different processors are still allowed
thanks to an interconnect network. It must be noted that the network latency and band-
width are usually orders of magnitude respectively higher and lower with respect to pro-
cessors accessing their own private memory. This means that network communications
have to be minimized as much as possible to achieve high computational efficiency.
Usually, in distributed memory systems, clusters composed by multiple nodes are con-
nected through network protocols like Infiniband, optical fiber or even just Ethernet.
In any case, from the programmer point of view communications between different
nodes have to be explicitly programmed in source code in order to tell each node when
and with which other node communicate. Communications between different nodes
are usually achieved in distributed memory systems through the concept of message
passing. The de-facto standard is represented by MPI. The most important advantage
of distributed memory systems is the fact that it is easily possible to increase the to-
tal number of processors and memory by just connecting new nodes to the network.
Another advantage is represented by the fact that when the parallelized software is op-
portunely tuned and network communications are reduced, each node basically uses
only its own local memory, allowing to reach high efficiency without any overhead
due to cache-coherence related operations with high number of computational units.
However, the most important disadvantage of the entire architecture is exactly the fact
that if the application is poorly optimized and network communications are frequent,
these data-exchange leads to bottlenecks for the entire execution. Figure A.8 shows
the scheme of a typical distributed memory architecture. As said, MPI is the de-facto

Figure A.8: Distributed memory architecture [25]

standard in message passing. Like OpenMP and OpenCL, MPI is just specifications.
Different implementations are available, such as OpenMPI and MPICH. In any case,
MPI implementations provide the programmer an API composed by a set of functions
and types. These are used to initialize and terminate the MPI environment and explicitly
perform inter-process communications at particular execution points. The idea behind
MPI parallelization is in fact to run different processes on different nodes and allow
communications between nodes through the network. In any case, the user has only to
worry about when and how exchange data between nodes, while the actual communi-
cation operations are handled by the underlying implementation. The implementation
handles also possible incompatibilities when exchanging data between nodes with dif-
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ferent hardware architectures, guaranteeing portability. Obviously MPI could be also
used to parallelize an application with multi-process on a single multi-core CPU though
in this case a multi-thread parallelization is more efficient.

The usual approach when using MPI to parallelize work in numerical applications
is given by the concept of domain decomposition. This means that the solver is exe-
cuted in many different instances by different nodes managing different pieces of the
computational domain. Inter-process communications only occur when data has to be
exchanged between different sub-domains. This way network communications bottle-
necks are minimized.

A.4.4 Hybrid and heterogeneous systems

Finally, hybrid and heterogeneous architectures are obtained by mixing concepts from
distributed memory systems, shared memory systems, SIMD extensions and GPUs.
The idea is to try to exploit the advantages provided by the aforementioned strategies
while trying to minimize their drawbacks. This can be easily understood with fig-
ure A.9. Multiple shared memory systems are connected together through distributed

Figure A.9: Hybrid architecture [25]

memory system concepts. The total work is initially split using domain decomposition
techniques and an instance of the program, i.e. a single process running the program,
is executed on each node. This way each node is responsible for each sub-domain of
the whole problem. Inside each node parallelism is handled through multi-threading,
exploiting shared memory features and splitting the work at finer level, i.e. assigning
sub-domain cells to each thread (thus each CPU core). Inside each CPU core, thus
inside each CPU thread, parallelism is exploited through SIMD extensions in order to
parallelize also simple operations like sum and multiplication. Only when different
subdomains require interaction the message passing mechanism is employed to han-
dle inter-nodes communications. Furthermore, communications are limited to only the
couple of subdomains that share a boundary. In all this view, inside each node one
or more GPUs can be installed to accelerate some peculiar operations for which high
SIMD/SPMD performances are required, by offloading the CPUs or by working to-
gether with them. This way, by combining different hardware architectures sharing the
work, a true hybrid/heteroegenous architecture is achieved, allowing to exploit all the
CPU and GPU available features. It must be noted that this represents an ideal view,
since not every numerical problem can be mapped to such kind of architecture.
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A.5 Performance aspects

Parallel programs are more complex than serial programs since the programmer has to
think about multiple data and/or instruction streams and their interaction. Two perfor-
mance indicators are mainly adopted to asses the advantages provided by paralleliza-
tion: speed-up and scalability capabilities. Both of them are strictly related to the
software-hardware combination and not only to the program itself. Another important
aspect is represented by code portability. Here all these aspects are briefly discussed.

Speed-up

Speed-up is probably the most important parameter used to check the advantages given
by the parallelization of the code. One of the goal of parallelization is the reduction
of the total computational time required to execute a specific job. It is easy to think
that if a numerical algorithm can be parallelized, the total computational time can be
reduced by allocating more computational resources. However, the situation is more
complicated than this. In fact, it is nearly impossible to efficiently parallelize every
single part of a program. There will be always some parts of the code that must be
executed in a serial way or in any case that leads to bottlenecks with parallel executions.
This basically means that parallelization can reduce the total time required to perform
some specific parts of the program that can be parallelized while cannot affects all the
intrinsically serial parts. This concept is strictly related to the Amdahl’s law [41]. It
states that, given the parallel fraction of the code P , given the serial fraction of the code
S = 1 − P , and given the number of processors N , the potential program speed-up of
the parallel version with respect to the serial version is:

SUAL(P,N) =
1

P

N
+ S

=
1

P

N
+ (1− P )

(A.1)

This means that, for example, if only 50% of the code can be parallelized (P = 0.5,
S = 0.5) the maximum theoretical speed-up that can be achieved, even with an infinite
number of processors (N →∞) is 2. Figure A.10 shows the behavior of Amdahl’s law
SUAL(N,P ) as a function of the available processors N and parametrized with respect
to the parallelizable fraction P . It is possible to see that with different values of P the
maximum allowable speed-up changes, and in any case the maximum speed-up reaches
a plateau by increasing the number of processors N .

It must be noted that the Amdahl’s law is just a theoretical law that gives the max-
imum speed-up that can be reached considering the two parameters P and N . In the
reality it is basically impossible to reach such speed-ups. First of all it is very difficult
to find the exact value of P for a particular program, even by profiling each part of the
code and thinking about which one can be parallelized. Furthermore the Amdahl’s law
supposes that using N processors it is possible to exactly reduce by N times the time
required to perform the parallelizzable fraction of the code. In real executions there are
various overheads due to the necessity to split the total work that can be parallelized
into different chunks and sending them to different processors, usually through the use
of buses or other kind of interconnection. Furthermore during execution, except in the
case of the so called "embarrassingly-parallel" algorithms, different processors has to
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Figure A.10: Amdahl’s law [66].

exchange data, further reducing the real speed-up. Anyway the Amdahl’s law is use-
ful to obtain the order of magnitude of the maximum speed-up that could be achieved
thanks to the parallelization of the program.

Scalability

"Scalability is the ability of a problem and its solution algorithm to efficiently handle a
growing amount of work" [36]. Basically there are two types of scaling: strong scaling
and weak scaling, depending on how the work is split among processors. In strong
scaling the total amount of work is fixed as more processors are added: this way it is
possible to reduce the total solution time by increasing the total number of available
processors. In weak scaling, instead, the idea is to add more processors in order to
perform more computations: this way the problem size per processor is fixed while the
total amount of work increases as more processors are added. This means that the total
solution time is kept fixed as more processors are added but in the same amount of time
more cases can be solved or a bigger problem can be solved. The type of scaling strictly
depends on both software and hardware employed during the simulation.

Portability

Portability is not directly related to parallelization performances but is anyway a funda-
mental concept in numerical simulations. In order to increase productivity, a numerical
solver should be as more compatible as possible with different underlying software and
hardware architectures. This is very important, especially nowadays with concepts like
heterogeneous computing where more than one kind of processors are used to perform
a particular task, exploiting the different advantages provided by different kind of ar-
chitectures. In parallel computing field portability is important since sometimes the
same solver has to be executed on different hardware architectures (e.g. x86, PowerPC,
GPUs,...) and software architectures (e.g. Linux, Windows, OSX,...). This way, in
order to reduce maintenance costs and time, it is better to have software that is natively
compatible with different architectures rather than have different versions of the source
code for each different case. Nowadays the most important parallelization API for
CPUs help the programmer to asses this problem. Different API and specifications that
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are available to handle shared and distributed computing on CPU, like OpenMP, MPI
are also focused on portability. Nowadays portability issues in parallel programming
are not as serious as in the past years, however for the same specifications different
implementations could behave differently. Thus it is still possible that in order to guar-
antee portability small changes inside the code are required.

Portability is one of the fundamental goals of this work. The idea is to have an
aeroelastic solver natively compatible with both GPUs and CPUs with different archi-
tectures and from different vendors. Programming on GPUs is usually more difficult
then programming on CPUs since the programmer always has to think about how each
line of source code is translated in graphical processor and memory operations in or-
der to achieve the best efficiency. This sometimes means re-think an entire algorithm
when porting a code from CPU to GPU. Despite the conceptual problem of adapting
an algorithm to the thousands cores of a GPU, from a purely software point of view
source code porting is not straightforward due to the fact that usually GPUs are pro-
grammed at a lower level than CPUs. In this work the problem of portability is tackled
using OpenCL API and OpenCL C language. In fact, OpenCL is specifically aimed
for heterogeneous computing allowing to potentially write source code that can be com-
piled and executed on every device that is compatible with it. This means CPUs, GPUs,
FPGAs and other kind of accelerators (like Intel Xeon Phi, at least in its first version).
Portability with OpenCL is cleverly handled through concepts like runtime compila-
tion and thanks to the library implementation and support of the OpenCL API an C
language by a consortium composed by different vendors like Intel, NVIDIA, AMD,
IBM, thus by a consortium composed by the most important CPU and GPU vendors.
As an example, another kind of GPGPU API/language, NVIDIA CUDA, is nowadays
widely adopted among researchers. However, NVIDIA CUDA with respect to OpenCL
it allows the same source code to be compatible just with NVIDIA GPUs, although it
usually provides better performances on NVIDIA hardware than OpenCL.
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