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Abstract

The problem of Simultaneous Localization and Mapping (SLAM) regards the estimation
of the pose of an observer (usually a robot) from sensor observations (i.e., local measure-
ments), while creating, at the same time, a consistent map of the observed environment.
Visual SLAM aims at the solution of the SLAM problem with the use of visual sensors,
i.e., cameras, only.

In this thesis we worked on the development of a multicamera SLAM system able to
operate in real time, on large environments with a generic number of cameras. The un-
derlying methodology is the well known EKF-SLAM (Extended Kalman Filter SLAM)
algorithm, but we introduced numerous improvements. First of all, we deeply reviewed
the parameterizations for monocular SLAM presented in the literature, highlighting some
properties that allow to reduce their computational complexity. Moreover, two new param-
eterizations have been introduced and their differences with previous parameterizations
have been analyzed. A multicamera Visual SLAM system has been developed leveraging
on monocular measurements, and allowing the definition of a flexible system in which
cameras are treated independently, and, possibly, with reduced overlapping fields of view.
The Conditionally Independent (CI) Submapping Framework is introduced in the system
to treat large scale problem. Properties of this system are deeply investigated, bringing to
light problems with ill conditioned matrices. To comply with these issues we reformulated
the EKF SLAM algorithm in the Hybrid Indirect EKF SLAM form, were two common
approaches to the Indirect EKF estimation (a.k.a. Error State EKF) are combined. As a
final contribution, we developed a technique which allows to refine each submap of the
CI-SLAM system with a Bundle Adjustement (BA) optimization. Optimized submaps
are then reinserted in the CI-SLAM submaps collection, allowing the continuation of the
estimation process. Extensive tests and analysis have been performed on simulated envi-
ronments and on real datasets.
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CHAPTER1
Introduction

1.1 Summary

The problem of Simultaneous Localization and Mapping (SLAM) regards the estimation
of the pose of an observer (usually a robot) from sensor observations (i.e., local measure-
ments), while creating, at the same time, a consistent map of the observed environment.
Visual SLAM aims at the solution of the SLAM problem with the use of visual sensors,
i.e., cameras, only; in particular, the problem takes the name of Monocular, Stereo and
Trinocular SLAM when, respectively, one, two or three cameras are used, while the term
multi-camera SLAM refers to a generic number of cameras. Visual SLAM has become a
very attractive and active research field in the last decade due to the richness of the visual
percepts coupled with the affordability and the low power consumption of the sensing de-
vice. In this thesis we work on the development of a multicamera SLAM system that is
able to operate in real time, on large environments and with a generic number of cameras.

The first contribution of this thesis is the development of a generic and modular multi-
camera SLAM system based on the well established EKF-SLAM (Extended Kalman Filter
SLAM) approach, which uses an EKF as the estimator for the joint distribution of the
observer pose and the environment map. Each camera is treated as an independent system
that provides measurements, thus our system operates without any explicit reference to
particular geometric constraints among cameras (e.g., the epipolar geometry for the stereo
cameras or the trifocal tensor for trinocular vision). This approach guarantees a high
level of modularity and flexibility: there are no building constraints on the overlapping
of cameras fields of view and sensors can be added or removed at run time with the only
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Chapter 1. Introduction

requirement of synchronization and relative positioning. This system is inspired by the
BiCAM-SLAM [91] approach proposed in the literature.

Monocular SLAM is the basic building block of the multi-camera SLAM system we
develop and it is treated in the EKF SLAM framework through the use of parameteri-
zations of landmarks. A second contribution of this thesis is the review of the different
parametrizations which allow to treat the initial unknown depth of landmark points per-
ceived by a single camera (a bearing only sensor) in the EKF SLAM framework. This
review presents parameterizations from a novel perspective, highlighting the possibility
of saving space in the state vector by sharing the common anchor point of landmarks
initialized at the same time. This shrewdness, beside increasing the efficiency of the EKF-
SLAM, avoids the introduction of singularities in the covariance matrix. During the review
of parameterizations, we introduced also two novel parameterizations, named Framed Ho-
mogeneous Point (FHP) and Framed Inverse Scale (FIS), that extend the concept of anchor
point to anchor frame. Anchor frames maintain in the filter state the past camera poses
representing milestones along the trajectory. This gives us the base for the development of
further contributions in the thesis. Anchor frame based parameterizations come at the cost
of an increased computational complexity in case of FHP parametrization and an approx-
imation on the estimation of the initial viewing ray in case of FIS parametrization.

The EKF-SLAM approach is not directly applicable when the size of the environment
the robot (or the observer) is exploring becomes significantly large, since the computa-
tional requirements of the basic EKF algorithm increase with quadratic complexity pre-
venting real time performance. To push our system toward real-time performance in very
large environments, we rely on a solution already proposed in the literature, the Condi-
tional Independent Submaps (CI-SLAM) framework, which allows linear complexity in
large maps by decomposing the state into a set of conditional independent submaps. To
the best of our knowledge, this framework has never been implemented before apart in
the original work. Our implementation, although it does not cover all the features of the
original framework, is generic and can be applied with any of the proposed parameteriza-
tions, resulting in a module that acts as a plugin, i.e., it is added to the multi camera SLAM
system to extends its operability to large maps.

A third contribution comes from the introduction of the Hybrid Indirect EKF-SLAM
approach; this approach models the SLAM problem in a indirect form by representing er-
rors in estimates in the state vector instead of directly representing the values of interest.
This approach allows to maintain a local representation of the variables involved in the es-
timation process, easing, in particular, the representation of rotations. The benefits of the
indirect approach regard the state dimension reduction for the frame anchored parameter-
izations, where quaternions get substituted by rotation vectors, and the proper managing
of covariance of rotations, avoiding singularities introduced by quaternions. The Hybrid
EKF-SLAM is developed mixing the two classical approaches to the indirect EKF formu-
lation, i.e., the feedback approach and the feedforward approach; the former is used for the
state vector parts that represents the robot pose while the latter is used for the elements of
the environment. Moreover, the Hybrid EKF-SLAM allows to apply the CI-SLAM frame-
work procedures, while a pure feedback approach would have prevented the usage of this
powerful submapping technique.

A final contribution is the development of a module that performs a refinement of the
EKF state estimates through non linear optimization (i.e., Bundle Adjustment) applied on
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1.2. State of Art and Related works

each submap of the CI-SLAM framework; this is possible leveraging on the novel pa-
rameterizations based on anchor frames. This module acts as a plugin of the whole multi
camera SLAM system, thus it can be used or not, depending on the specific setup. The
Bundle Adjustment is performed with a proper formulation of the optimization problem
such that the results of the optimization may be reinserted in the EKF, allowing the contin-
uation of the estimation and the propagation of non linear optimization improvement to the
EKF machinery. We name the complete system CIBA-SLAM, Conditionally Independent
Bundle Adjusted SLAM.

The complete system has been tested in simulation and on real data and it has proved
to operate in real time on large environments. The main focus of this work was not on the
implementation of a deployable system, but on the development of an EKF SLAM system
that could be considered as a milestone towards a final implementation of a modular system
able to operate in real time on a real robot, possibly on simple platforms. This motivated
us to work on SLAM algorithms based on filtering techniques, although recent trends have
moved the research toward pure optimization based strategies. We believe that filter based
SLAM has still a role in this research field, especially in the direction of moving from fully
fledged multi-core computers to low power embedded system, where high performance
parallel processing, such as GPU (Graphics Processing Unit) based computation, can not
be performed.

1.2 State of Art and Related works

The seminal solution to the SLAM problem is given in [87]. It uses an Extended Kalman
Filter (EKF) as the central estimator for the map, represented by a vector of landmarks, and
the current sensor pose. The estimate are represented as a multivariate Gaussian variable
and the EKF estimates it through the prediction and the update steps. The prediction
step aims at the movement of the sensor pose, the update step aims at the refinement
of the sensor pose and landmarks estimates through measurements given by the sensor
itself. The addition of an initialization step to the EKF machinery allows the environment
exploration: new landmarks are added to the map when perceived for the first time by
composing sensor measurements with the current sensor pose. The computation of the
Jacobian of the addition function allows to compute the covariances of the new inserted
elements with the rest of the map.

One of the first works implementing an on-line stereo SLAM working in real time is
[21]. It used the Shi-Tomasi salient point detector and small patches as feature descriptors
matched by correlation. One of the key aspect presented in this work is the active search
approach to measurements: the EKF-SLAM mechanism allows to predict the projection
of landmarks in the current image, thanks to the measurement step. By computing the
covariance associated with the measure we can obtain a 2D elliptical region, in terms of
Mahalanobis distance around the mean prediction, which bounds the search area in the
image that contains the feature with some given probability. This approach reduce the
research area, cutting down the computational cost and, to some extent, data association
errors.

The system presented in [20] was the first on-line SLAM system working with a sin-
gle camera, i.e., the first monocular SLAM system. The monocular approach is much
more challenging than the stereo: a monocular camera is a bearing only sensor, i.e., it can
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perceive only the direction of the viewing ray of a projected environmental point, but it
can not provide the distance of the observed point. The solution proposed in [20] uses a
delayed approach, i.e., the landmarks are added as 3D points to the filter once a proper
estimation of their depth, performed by an independent particle filter, has been reached.
Consequently, the system needs to be started with a visible known pattern, in order to track
the first movement up to the estimation of the depth of some new landmarks. This work
can be considered the seminal paper in the monocular SLAM research field and it gave
birth to an important research effort. Although it was the first on-line monocular SLAM
system , most of its concepts and techniques are still a valid approach and the multicamera
SLAM system presented in this work is highly based on the original proposal.

The first attempt to abandon the delayed initialization, i.e., to introduce landmarks in
the filter state and use them in the measurement process from the first time they have been
seen, was developed in [89] and [92], with the Federate Information Sharing approach.
This system is an approximation of the Gaussian Sum Filter which introduces landmarks
as a sum of Gaussian hypothesis along the viewing ray of the landmark. When landmarks
are measured, the hypothesis are weighted by their likelihood and the less probable are
pruned after a few steps.

The delayed initialization was definitely abandoned with the introduction of the Uni-
fied Inverse Depth Parameterization (UID), proposed in [65]. This work introduces the
concept of parameterization, i.e., the description of a 3D point representing a landmark
with a different formulation with respect to its Euclidean coordinates that allows to take in
account the initial uncertainty on the unknown depth. The UID parameterization was suc-
cessfully applied in numerous works, like [75], [67] and [100]. Since then, other parame-
terizations have been introduced, like the Inverse Scaling (IS) [62] [63] and the Anchored
Homogeneous Point (AHP) [90] [93]. A good review of these parameterizations, among
with an experimental evaluation of their properties, can be found in [90] and [93]. In this
thesis we present two novel parameterizations, the Framed Homogeneous Point (FHP),
originally presented in [10], and the Framed Inverse Scale (FIS). These parameterizations
are not completely new: a proposal similar to FHP can be found in [43], while a proposal
similar to FIS can be found in [74]. All the parameterizations are presented in this thesis
in a different form with respect to their original formulation. Such a reformulation allows
to point out a state vector size saving, thus a computational complexity reduction, and it
solves some issues related to the use of the CI-SLAM framework with parameterizations.

In [91] an interesting discussion about the monocular approach to multi-camera sys-
tems was proposed with the provocative title “BiCamSLAM: Two times mono is more than
stereo”. In conventional approaches, stereo cameras and multi camera systems are used
taking into account the underlying mathematical and geometrical concepts (e.g., the epipo-
lar geometry for stereo cameras and the trifocal tensor for trinocular cameras) to initialize
3D landmarks by triangulation of corresponding features. In the BiCamSlam approach the
landmarks are added to the filter as if they are perceived by a monocular camera using the
Federate Information Sharing approach. Subsequently measurements of landmarks per-
formed in different cameras are used to estimate the depth of the landmarks in an implicit
way: each observation corresponds to a measurement equation of the system. This gave to
the system an intrinsic flexibility: a landmark can be added to the filter also if it has been
perceived by a single camera, while in a standard stereo approach it is needed to perceive it
in both images to perform triangulation. Moreover, the landmark can be retrieved indepen-
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dently in each camera of the system. This implies that the estimate are updated even when
the landmark is perceived in a single image and this is is particularly useful when field
of view of cameras are only partially overlapped. In a conventional stereo approach land-
marks needs to be matched in both cameras to represent a measure for the system. This
thesis extends the BiCamSlam approach to a multi camera system leveraging on the use of
parameterizations, which were not already introduced when this approach was originally
proposed. Thanks to this we develop a system that rapidly estimates depth of points when
double, in a stereo setup, or multiple, in a multi camera setup, measurements of landmarks
are available and it is able to deal with bearing only (i.e., monocular) measurements too.
Such a system results very flexible due to its modularity: cameras can be just added or
dropped from the system when they are needed. A possible application of this system
is an active SLAM algorithm that turn on or off cameras when needed, augmenting the
precision of the estimation or saving computational power.

The EKF-SLAM algorithm suffers from some limitations. First, the complexity of
the algorithm is dominated by the update step, which is O(n2) where n is the number of
landmarks in the map. This implies that when the number of landmarks grows, i.e., the
environment to explore is not limited to an experimental small setup, EKF-SLAM looses
quickly the ability to run in real time. Secondly, EKF formulation uses a linear approxima-
tions for the Jacobians and this produce optimistic estimation for the covariance matrix that
usually results in an inconsistent behavior of the filter. Sub-Mapping techniques comes the
overcome both limitations by splitting the explored area into several subproblems, each
of them with a bounded number of landmarks. This implies that the computational com-
plexity is bounded and can be considered constant for each submap. The Conditional
Independence Sub-Maps (CI) framework, presented in [78] and [77], represents one of the
smartest and most effective sub-mapping technique. This framework allows to split the
entire map in several small local submaps which share landmarks that can be observed by
more than one map. The term local indicates that each submap of the problem store land-
marks in a local reference frame, while the transformation that links the local reference
frame with the global one is stored apart. Besides reducing the computational complexity,
the usage of small local submaps bound the uncertainty, being each submap started in the
origin with zero uncertainty and this reduces the approximation introduced by lineariza-
tions. The convenience of the CI-SLAM technique lies in the ability to perform large scale
SLAM, i.e., to operate on real dataset, without introducing any approximations besides the
inherent EKF linearizations. Thanks to this properties, the CI-SLAM framework results
the best submapping framework for submaps represented as Gaussian multivariate vari-
able, while other approaches, such that [6] and [17], introduces approximation when they
split the problem in submaps.

Filtering approaches model the problem as an on-line state estimation where the state
of the system consists in the current robot position and the map. Conversely, smoothing
approaches estimate the full trajectory of the robot from the full set of measurements.
These approaches address the so-called full SLAM problem and they typically rely on
least-square error minimization techniques. An intuitive way to address the full SLAM
problem is via its so-called graph-based formulation. Solving a graph-based SLAM prob-
lem involves to construct a graph whose nodes represent robot poses and landmarks and
in which an edge between two nodes encodes a sensor measurement that constrains the
connected poses. The solution of the SLAM problem corresponds to find a configuration
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Chapter 1. Introduction

of the nodes that is maximally consistent with the measurements. This involves solving
a large error minimization problem. The graph-based formulation of the SLAM problem
dates back in 1997 [55]. However, it took several years to make this formulation popular
due to the high complexity of solving the error minimization problem using standard tech-
niques. Recent insights into the structure of the SLAM problem and advancements in the
fields of sparse linear algebra resulted in efficient approaches to the optimization problem.
Consequently, graph-based SLAM methods have undergone a renaissance and currently
belong to the state-of-the-art techniques [49], [35]. These systems have been successfully
applied to the visual SLAM problem and we can cite the impressive real time application
for augmented reality in small environments presented in [46] and [47] named Parallel
tracking and mapping (PTAM). However, applications that use optimization techniques
(a.k.a. Bundle Adjustment techniques) for Visual SLAM are still at an early stage and
their scalability to large maps is still under investigation, although some interesting results
on real datasets are available [95] [97]. Recent comparison between filter based techniques
and optimization based strategies seem to tip the scale in favor of the latter, as supported
by [96] and [98].

In our opinion there are still some reason to push forward research in the filter based
Visual SLAM, especially if we take into account standard architecture and low power
CPU. In this work we choose to rely on consolidate system, aiming at the development of a
modular Visual SLAM system that can be configured to different setups (e.g., monocular,
stereo or multi-camera) and with different target platform (e.g., on real robots with low
power computers or standard PC architectures). Consequently we choose to introduce a
Bundle Adjustment module that works only at a local level, i.e., it refines the estimate of
each submap of the CI-SLAM system. The global map, subdivided in submaps, is still
maintained by the CI-SLAM algorithm. Since the optimization algorithm is integrated
with the CI-SLAM system, it can be seen as a plugin of the entire system: if the system
has a sufficient computational power it can be used to refine the solutions, otherwise it
can be just turned off. We call the entire system developed in this thesis “Conditionally
Independent Bundle Adjusted SLAM (CIBA SLAM)”.

1.3 Structure

The remaining of this thesis is divided in three parts: Part I (Chapters 2 to 5) represents
the basis for the development of the thesis and for the comprehension of a complete Visual
SLAM system, Part II (Chapters 6 to Chapter 10) defines the components of the Visual
SLAM system developed during this work and presents experimental results, conclusion
and future works; Part III (Appendix A) contains tables with detailed results of consistency
analysis performed in Chapter 9. In details,

Chapter 2 introduces 3D geometry, using the notation that is used in the remaining of the
thesis. In particular 3D points and vector and their relative operations are recalled;
frame and reference system relations and transformations are defined and different
formulation for rotation representation are introduced.

Chapter 3 gives a short introduction to computer vision techniques defining the perspec-
tive camera and its mathematical model; it introduces some basic algorithms for
image analysis, referring in particular to feature extraction and tracking.
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Chapter 4 introduces the reader to probability theory by recalling basic concepts with a
special attention to Gaussian variables and their properties. Bayesian Filtering in
the realm of the Gaussian filtering is explained by the description of the Kalman
Filter (KF) and its Extended version (EKF). Lastly, an introduction to Non Lin-
ear Least Square (NNLS) optimization techniques and their application to non Eu-
clidean spaces is provided.

Chapter 5 introduces the SLAM (Simultaneous Localization And Mapping) problem.
Starting from the probabilistic formulation of the SLAM problem, the EKF-SLAM
algorithm is described in a generic way, detailing the key steps, such as landmark
addition and measurement procedures, and describing the arrangements that sim-
plify computation taking advantage from sparsity in the matrices. An alternative
formulation of the SLAM problem, represented as a graph, is then presented and
the strategies that can be adopted to optimize the graph using the NNLS techniques
(namely, the Bundle Adjustment algorithms) are presented. Lastly, the Condition-
ally Independent Sub-Mapping SLAM framework, a technique that allows to handle
large problems with the EKF SLAM algorithm, is presented.

Chapter 6 describes a first contribution of the thesis: a Multicamera SLAM system based
on the monocular EKF SLAM algorithm. Different motion model that can be used
in the prediction step of the EKF are presented together with the parameterizations
introduced in the literature for the monocular EKF SLAM algorithm. Moreover,
some properties of parametrization are highlighted and two new parameterizations,
named Framed Homogeneous Point (FHP) and Framed Inverse Scale (FIS) are pre-
sented.

Chapter 7 introduces a different way of thinking the EKF estimation mechanism: the so
called Indirect EKF or Error State EKF. This approach has allowed us to introduce
the Hybrid Indirect EKF SLAM, a variant of the Indirect EKF that, thanks to the
reformulation of the FHP and FIS parameterizations, allows to solve some issues
related to rotation representation in EKF SLAM.

Chapter 8 describes the last contribution of this thesis: a module that performs Bun-
dle Adjustment on the estimation performed by the Hybrid Indirect EKF SLAM
system. This module is integrated with the CI SLAM framework: it takes initializa-
tions from the estimates performed by the EKF SLAM system, optimizes them with
Bundle Adjustment techniques and propagates the result to the EKF SLAM system,
resulting transparent to the CI SLAM system.

Chapter 9 is aimed at the evaluation of the proposed system. Simulated experiments are
used to evaluate the different parameterizations and their impact on the consistency;
real experiments propose an evaluation of the proposed system and its time perfor-
mances on datasets collected by real robots.

Chapter 10 draws the conclusion of this works, resuming all the contribution provided
by this thesis and it traces some possible future works and research directions.
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CHAPTER2
3D Geometry

In this chapter basic notions about 3D geometry, transformations and time differentiation
are introduced in order to provide a good basis for the comprehension of next chapters
and to fix a common notation for the rest of the thesis. In particular, points and vector are
introduced firstly in Euclidean coordinates, then in Homogeneous coordinates; then 3D
planes are described in Homogeneous coordinates, which results very convenient for this.
Reference systems and frame transformations are described in terms of rototranslations
expressed in Homogeneous coordinates; the rules for transformation composition and in-
version are finally explained. Particular attention is given in the description of rotations, in-
troducing the Euler Angles formalism, the Axis/Angle notation and the three formulations
derived from it: the Rodrigues parameters, the Gibbs vector and the Modified Rodrigues
parameters. Moreover, the use of unit Quaternions for rotation representation is described.
The case of small rotations is treated by the introduction of Taylor first order expansion of
rotation compositions both for rotation matrices and quaternion representations.

2.1 Points, Vectors and Planes

Points are the simplest geometric entity and they represent locations in the space. Vectors,
although they are often confused with points, code directions and distances.
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X

Y

Z

O

x

y

z

P

v

Figure 2.1: A point P in Cartesian space with its coordinates measured with respect to
the origin O and the vector v = P−O applied to the origin itself.

2.1.1 Points

The three dimensional Euclidean space is a geometric model of the physical space around
us. A fourth dimension that is not represented in this model is time. The three dimensions
are commonly referred as length, width and height (or depth) when they are used to de-
scribe object dimensions. When the three dimensions are used to represent a location in
space, a common convention is to describe the distance from the origin (O) of a Carte-
sian coordinate system. The origin, represented by the calligraphic letter O, is located at
the point of intersection of the Cartesian axes (O = [0, 0, 0]T ). With this convention we
refers the axis direction too, i.e., a complete Cartesian reference system. Cartesian axes
(X,Y, Z) are ordered triplets of lines, any two of them being perpendicular; a single unit
length is uniquely defined for all the three axes. The location of a point P is represented
by a triplet [x, y, z]T ∈ R3. The components of the triplet are usually referred as x, y
and z and each of them represents the signed distance from the three planes defined by the
remaining couple of axes (e.g., the x coordinate is the distance of P from the y− z plane).
Figure 2.1 shows an example of a point in Cartesian coordinates and its distance from the
three planes. Points represent locations in the space and they are usually drawn as dots.
When the Cartesian reference system is not obvious, point notation is enhanced referring
to the origin as PO.
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2.1.2 Vectors
Vectors in Cartesian space are often confused with points, but they are very different:
while points are, namely, locations in space, a vector represents a direction and a distance
(also called magnitude or module). A vector v in 3D is still represented by three elements
(v = [vx,vy,vz]

T ), but it is by definition free, i.e., it could be applied to any location in
space. Generally, vectors are drawn by arrows starting at a fixed location in space, i.e.,
they are applied to a reference point. When the Cartesian reference system is not obvious,
vector notation is enhanced with the chosen origin as superscript: v(O). The magnitude of
a 3D vector is ‖v‖ =

√
v2
x + v2

y + v2
z and a v = v

‖v‖ is the unit vector. A unit vector has
magnitude one and it codes a direction.

2.1.3 Relating Points and Vectors
The relationships between points and vectors are described by the following axioms:

• For each pair of points P, Q there exists an unique vector v such that

v = P−Q. (2.1)

i.e., vector v can be generated by the difference of two locations in the space
(points).

• For each point Q and vector v there exists an unique point P such that

P = Q + v; (2.2)

i.e., the point P could be reached by moving from point Q a distance ‖v‖ in direc-
tion v = v

‖v‖ .

• Given three points P, Q and R, these points satisfy

P−R = (P−Q) + (Q−R) ; (2.3)

i.e., naming vRP = P −R, vQP = P −Q and vRQ = Q −R, it is possible to
write the rule for vector composition:

vRP = vQP + vRQ = vRQ + vQP. (2.4)

2.1.4 Vector products
There are two type of products for vectors: the scalar product or inner product and the
cross product or outer product. The scalar product of v and u is explicitly indicated with
the · symbol and could be performed by standard matrix product:

v · u = vTu. (2.5)

It could be also expressed as

v · u = ‖v‖‖u‖ cos(θ), (2.6)
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where θ is the angle between the two vectors. This implies that v · u = 0 if v is perpen-
dicular to u. Notice that ‖v‖ =

√
v · v.

The cross product of two vectors v and u results in a vector w which is perpendicular
to both vectors, being perpendicular to the plane containing them. It is indicated by ×
operator and results in

w = v × u = ‖v‖‖w‖ sin(θ)n, (2.7)

where θ is the angle between the two vectors and n is the unit vector normal to the plane
containing v and u in the direction given by the right-hand rule that will be introduced in
Section 2.2.1. Analytically, the cross product could be expressed by

v × u = det

 i j k

vx vy vz

ux uy uz

 =

vyuz − uyvz

vzux − uzvx

vxuy − uxvy

 , (2.8)

where i, j and k are respectively the unit vector that describe the directions of X , Y and Z
axes. Alternatively, the cross product can be expressed by introducing the operator [·]×:

[v]× =

 0 −vz vy

vz 0 −vx

−vy vx 0

 , (2.9)

it can be defined as
v × u = [v]× u. (2.10)

Cross product is not commutative, in particular v × u = −u × v and, in matrix form,
[v]× u = [u]

T
× v = − [u]× v. Useful properties of [·]× are related to its powers:

[v]
2
× = ‖v‖2

(
v vT − I

)
, (2.11)

[v]
3
× = −‖v‖3 [v]× . (2.12)

2.1.5 Points and Vectors in Homogeneous Coordinates
In the Cartesian coordinate system infinity could not be explicitly represented. Homo-
geneous coordinates allow to represent points at infinity using finite coordinates. This is
achieved by adding a coordinate to the number of dimensions of the space which has to be
represented. A 3D point in homogeneous coordinates will be represented by

Ph = [x, y, z, ω]T , (2.13)

and it is equivalent to the Cartesian point

P =
[x
ω
,
y

ω
,
z

ω

]T
, w 6= 0. (2.14)

The introduction of an additional degree of freedom in the representation makes homo-
geneous points invariant to scale transformations: considering a point Ph = [x, y, z, ω]T

and a scalar element λ 6= 0, the 3D points represented by Ph and λPh are equivalent,
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O

P

n

d

π

Figure 2.2: Description of a plane π through its normal unit vector n and its distance
from the origin d.

i.e., a single point can be represented by infinitely many homogeneous coordinates. More-
over, points at the infinity (or improper points) could be represented with ω = 0: intu-
itively, when ω approach to zero, the point [x, y, z, ω]T moves farther away in the direc-
tion [x, y, z], reaching the infinity when ω = 0. Points at the infinity allow to easily code
directions and they express lines in parametric form: the line starting from a finite point
P = [Px,Py,Pz,Pω] in the direction D = [Dx,Dy,Dz, 0] is given by P + αD. When
‖D‖ = 1 and Pω = 1, α represents the Euclidean distance from P.

Notice that the point [0, 0, 0, 0]T has no meaning, thus 3D homogeneous coordinates
are defined in R4 − [0, 0, 0, 0]T . Similar reasoning could be applied to a 2D Cartesian
space: it is represented in R3− [0, 0, 0]T homogeneous space. Italic bold letters (e.g., p =
[x, y] ≡ λ[x, y, 1] are used to identify points in 2D Cartesian space or in 2D homogeneous
coordinates.

2.1.6 Planes
Planes are easily described in Homogeneous coordinates with a 3D homogeneous coordi-
nate element, i.e., with a 4 element vectorπ = [a, b, c, d]T . It is worth to notice that the de-
scription of planes and points in Homogeneous coordinates share the same notations, i.e., a
4 element vector describes both of them, but the interpretation of the elements, obviously,
differs. Planes inherit the properties of Homogeneous coordinates, thus there are infinitely
many equivalent representation of the same plane constructed by scaling it: π ≡ λπ with
λ 6= 0. Considering a 3D point in Homogeneous coordinates P = [x, y, z, w]T , it lies on
the plane π if and only if πTP = PTπ = 0. All the improper points (i.e., points at the
infinity with w = 0) lie on the plane π∞ = [0, 0, 0, 1]T , which is the plane at the infinity.
As for Homogeneous points, the planes are defined on R4 − [0, 0, 0, 0]T . Without loss of
generality, a plane can be easily coded by a unit vector n normal to it and by its distance d
from the reference system origin as π = [nT d]T , as shown in Figure 2.2.

2.2 Reference Systems and Transformations

More than one Cartesian reference system could be defined in the Euclidean space. Conse-
quently a point location (or any other geometric entity) is defined with respect to a specific
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reference system (or origin or frame); relations between different origins (i.e., relative po-
sition and axes orientation) allow points to be expressed in a different reference system
than the original.

2.2.1 Reference Systems
Origins (or frames or reference systems) will be indicated with a calligraphic symbol, e.g.
O,W orR. For the purpose of this work we will use the right-handed Cartesian reference
system: considering the index finger of the right hand is pointed forward, the middle finger
bent inward at a right angle to it, and the thumb placed at a right angle to both, the three
fingers indicate the relative directions of the X , Y , and Z-axes. Conversely, if the same is
done with the left hand, a left-handed system results.

The right-handed reference system convention establishes the direction of positive ro-
tations. Let consider a rotation by angle θ around an axis. θ is positive if, putting the
Z axis of the right-handed reference system in coincidence with the rotation axis, the X
axis moves in the direction of Y . This rule is know with the name of right-hand thumb or
corkscrew rule.

2.2.2 Frame Transformations

Let consider two different Cartesian reference systems O andW and let name O(O) and
W(W) their origin points respectively in their reference system (see Figure 2.3). The
relative pose ofO with respect toW is indicated by TWO , that is composed by a translation
tWO and a rotation RWO . The existing transformation between frames is a roto-translation,
also called isometry.

The simplest way to encode the translation is provided by considering tWO as a vector
that encodes O(W), i.e. the displacement of the origin O with respect toW , equivalent to
O(W) = W(W) + tWO .

Rotations in 3D are naturally encoded by a rotation matrix, i.e., a 3 × 3 orthonormal
matrix R with these properties:

• R−1 = RT .

• det (R) = 1.

• R =
[
u v w

]
, i.e., each 3× 1 column vector is a unit vector

• u · v = v ·w = u ·w = 0, i.e., any two of the column vectors are perpendicular.

• u× v = w, i.e., the three columns vectors form a right handed reference system.

• R =

rT

sT

t
T

, i.e., each row is a unit vector.

The more intuitive way of reading the RWO matrix is to take columns as the direction of
the axis of frame O with respect toW . Take as an illustrative example the Figure 2.3: the
frame O is placed at point [tx, ty, tz] inW reference system and X axis of O is directed
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W

X

Y

Z
TWO

O

tz

tx

ty

X

Y

Z

Figure 2.3: Example of relative placement of frames. The pose of the origin ofO w.r.t. W
is represented by TWO and it is composed by tWO = [tx, ty, tz] (position of the point
O(W)) and RWO (the directions of axes of O w.r.t. the axes ofW)

as the −Y ofW , Y axis of O is directed as the −X ofW and Z axis of O is directed as

the −Z ofW . Thus, tWO = [tx, ty, tz] and RWO =

 0 −1 0

−1 0 0

0 0 −1



2.2.3 Points and Vectors Transformations

Let consider the same scenario of the previous section with two origin W and O related
by TWO . Suppose to have a point P(O), i.e., a location relative to the reference system O.
The same point expressed in theW reference system is

P(W) = RWO P(O) + tWO . (2.15)

This implies that TWO could be read as the transformation which transforms a point from
the O reference system to theW reference system.

Vectors code directions and distances and they are free, i.e., they could be applied to
any location in space. This implies that, to express a vector v(O) in a different reference
frameW , only the rotation operation has to be applied:

v(W) = RWO v(O). (2.16)

2.2.4 Homogeneous Transformations

Homogeneous coordinates simplify the transformations introduced in the previous sec-
tions. A frame transformation TWO , composed by RWO and tWO is expressed, in Homoge-
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neous coordinates, by a Homogeneous 4× 4 matrix[
RWO tWO
0 1

]
. (2.17)

The transformation of an Homogeneous point P
(O)
h = [P

(O)
x ,P

(O)
y ,P

(O)
z ,P

(O)
ω ]T =

[P
(O)
xyz

T
,P

(O)
ω ]T results in

P
(W)
h =

[
RWO tWO
0 1

][
P

(O)
xyz

P
(O)
ω

]
=

[
RWO P

(O)
xyz + tWO P

(O)
ω

Pω

]
. (2.18)

When P(O) is a real point (i.e., P
(O)
ω 6= 0) Equation 2.18 corresponds to the trans-

formation of the Cartesian point as from Equation 2.15, while when P(O) is an improper
point (i.e., it encodes a direction with P

(O)
ω = 0) it corresponds to the vector transforma-

tion as from Equation 2.16. Notice that transformation of points by the mean of isometries
maintains improper points at infinity and finite points in finite range.

2.2.5 Transformation Inversion

Given TWO , the inverse transformation TOW = TWO
−1, expressed in the two components

tOW and ROW , is

ROW = RWO
−1

= RWO
T
, (2.19)

tOW = −RWO
T
tWO . (2.20)

In homogeneous coordinates this results in the following 4× 4 matrix[
RWO

T −RWO
T
tWO

0 1

]
, (2.21)

that is the inverse of the homogeneous matrix which represents TWO .
Given TWO and a Homogeneous point P(W), it is possible to express P(O) as

P(O) = TOWP(W) (2.22)

= TWO
−1

P(W) (2.23)

=

[
RWO

T
(
P

(W)
xyz − tWO P

(W)
ω

)
Pω

]
. (2.24)

2.2.6 Composition of Transformation

Without loss of generality, let us consider the case of Figure 2.4 with three origins in the
Euclidean space: W , O and S. The known relations are TWO and TOS . The transformation
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Figure 2.4: Example of transformation composition for three framesW , O and S.

TWS , considering homogeneous matrices, is then given by:

TWS = TWO TOS (2.25)[
RWS tWS
0 1

]
=

[
RWO tWO
0 1

][
ROS tOS
0 1

]
(2.26)

=

[
RWO ROS RWO tOS + tWO

0 1

]
. (2.27)

Thanks to this composition rule and to the inverse transformation introduced in the pre-
vious section, it is possible to manage recursively any sequence of references between
origins.

Other ways to express transformations exist, in particular when the relative position
between two frames is expressed with respect to a third reference frame. These alternative
ways are not discussed here being not required for the purpose of this work.

2.3 Rotations Representation

Rotation matrices and their properties were briefly introduced in Section 2.2.2. Although
rotation matrices are very useful in performing rotations, they are not the simplest notation
to code a rotation in 3D space. A rotation in 3D space needs to specify only 3 degrees of
freedom (DoF), while a rotation matrix contains 9 entries related by mathematical prop-
erties (e.g., orthonormality, unit vectors, etc.). Compact notations exist and some of them,
with their properties and useful formulas for conversion, are presented in this section; for
a more complete analysis refer to [23] and [86].
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2.3.1 Euler Angles
Any orientation in 3D space can be reached by performing successive rotations around
three different axis. The three angles of rotation around the axes are referred as Euler
angles. It is worth to notice that 24 different combinations of successive rotations lead to
an orientation (e.g., rotate in order around X ,Y ,Z axes, or X ,Z,Y axes, etc.). One of the
most commonly used rotation sequence is:

1. Rotate around Z axis (Yaw or heading angle, ψ)

2. Rotate around the resultant Y ′ axis (Pitch or elevation, θ)

3. Rotate around the resultant X ′′ axis (Roll or bank, φ)

Notice that Yaw, Pitch and Roll are normally used to name angles in the three aircraft
principal axes, but they are not equivalent to this convention for rotation representation.

The three elementary rotations around Z, Y and X axes are rotation matrices them-
selves:

Rz =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 , (2.28)

Ry =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 , (2.29)

Rx =

1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 , (2.30)

and their effects are shown in Figure 2.5; the combination of them gives:

R = RzRyRx =cosψ cos θ cosψ sin θ sinφ− sinψ cosφ cosψ sin θ cosφ+ sinψ sinφ

sinψ cos θ sinψ sin θ sinφ+ cosψ cosφ sinψ sin θ cosφ− cosψ sinφ

− sin θ cos θ sinφ cos θ cosφ

 .
(2.31)

With this convention the extraction of Euler angles from a rotation matrix is done by:

ψ = atan2 (R21,R11) , (2.32)

θ = atan2

(
−R31,

√
R2

32 + R2
33

)
, (2.33)

φ = atan2 (R32,R33) . (2.34)

The Euler angles convention provides a minimal representation for rotations, i.e., they
use exactly 3 parameters to represent the 3 DoF of rotation, but they present discontinuities.
Moreover, the composition of rotations is not trivial and does not correspond to the sum of
Euler angles. A good choice for the composition of rotation represented by Eluler angles,
is to convert Euler angles to rotation matrices, compose them and then extract the resulting
Euler angles.
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(a) Rotation around Z axis

O X
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Z
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(b) Rotation around Y axis
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X

Y

Z

Y ′

Z ′

(c) Rotation around X axis

Figure 2.5: Elementary rotation around a single axis. Original axis X , Y , Z are in black,
rotated axis X ′, Y ′, Z ′ are in blue.

2.3.2 Axis/Angle
A generic rotation could be expressed in terms of a rotation by an angle θ around a specific
axis. The axis represents a direction and it is coded by a unit vector u. The identity rotation
has many infinitely representations: it is a rotation by 0◦ around any axis, i.e., around any
unit vector. With this representation, a rotation is expressed with 4 parameters, so it is not
minimal. A common choice to obtain a minimal representation from it, called Rodrigues
parameters or rotation vector, is to use a 3-element vector Φ = θu. Thus, θ = ‖Φ‖ and
u = Φ

‖Φ‖ .
The conversion from a rotation vector to a rotation matrix is given by

R(Φ) = e[Φ]× . (2.35)

The Taylor expansion of this equation, for the properties of the power of cross product
matrix (see Section 2.1.4), leads to a closed form, known as the Rodrigues formula:

R(Φ) = I + sin θ [u]× + (1− cos θ) [u]
2
× (2.36)

Alike for Euler angles, the composition of rotations expressed in the Rodrigues param-
eters form can not be performed by adding the two rotation vectors, thus the composition
can be done by using the equivalent rotation matrices and by converting the resulting ma-
trix.

Rodrigues parameters suffers from a discontinuity at 180◦ (π radians): each vector Φ
such that ‖Φ‖ = π represents the same rotation of −Φ.

2.3.3 Gibbs Vector and Modified Rodrigues Parameters
Two evolutions of the Rodrigues parameters notation are the Gibbs vector and the Modified
Rodrigues Parameters (MRP).
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Starting from the Axis/Angle formulation, the Gibbs vector is defined as

g = tan

(
θ

2

)
u, (2.37)

while MRP are defined as

p = tan

(
θ

4

)
u. (2.38)

Gibbs vector cannot represent a 180◦ rotation, while MRP present, alike Rodrigues
parameters, discontinuous jumps in the parameter space when rotation grows.

2.3.4 Quaternions
Quaternions were originally introduced by Sir William R. Hamilton in early 1840’s [37] [38]
and he soon observed that they could be adopted in 3D geometry operations. A quaternion
q can be thought of as either

• a vector with four components: [qw,qx,qy,qz]
T ;

• a scalar plus a vector with three components: [qw,q
T
v ]T ;

• a complex number with three different “imaginary” parts: qw + qx i + qy j + qz k.

Quaternions can be composed by quaternion products operator ⊗. To define these
operations, basic rules of quaternions multiplications are defined as:

i
2

= j
2

= k
2

= i j k = −1, (2.39)

i j = −j i = k, j k = −k j = i, k i = −i k = j; (2.40)

then, the product of quaternions q⊗ p could be defined as

q⊗ p = Q(q)p (2.41)

=


qw −qx −qy −qz

qx qw −qz qy

qy qz qw −qx

qz −qy qx qw

p (2.42)

(2.43)

=

(
qwI +

[
0 −qTv

qv [qv]×

])
p, (2.44)

or

q⊗ p = Q+(p)q (2.45)

=


pw −px −py −pz

px −pw pz −py

py −pz −pw px

pz py −px −pw

q (2.46)

=

(
pwI +

[
0 −pTv

pv − [pv]×

])
q. (2.47)
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The identity quaternion is q = [1, 0, 0, 0]T . The conjugate of a quaternion is q∗ =[
qw, −qTv

]T
, the norm of a quaternion is ‖q‖ =

√
q2
w + q2

x + q2
y + q2

z ≡
√

qq∗; if

‖q‖ = 1 the quaternion is a unit quaternion or it is said to be normalized.
A rotation in the the Axis/Angle formulation (θ, u) can be represented using a quater-

nion as

q =

[
cos

(
θ

2

)
, sin

(
θ

2

)
uT
]T

. (2.48)

Thus, a rotation can be represented by a unit quaternion.
The unit quaternions q and −q represent the same rotation: a rotation by angle θ

around the axis u can be expressed as a rotation by −θ angle around the axis −u. Sim-
ilarly, the inverse of a rotation represented by q is q∗: this comes from the fact that a
rotation by θ around u is “undone” by a rotation of θ around −u.

The quaternion q is converted into a rotation matrix thanks to

R (q) =

q2
w + q2

x − q2
y − q2

z 2 (qxqy − qwqz) 2 (qxqz + qwqy)

2 (qxqy + qwqz) q2
w − q2

x + q2
y − q2

z 2 (qyqz − qwqx)

2 (qxqz − qwqy) 2 (qyqz + qwqx) q2
w − q2

x − q2
y + q2

z

 , (2.49)

and to apply a rotation to a vector v there are two possible ways

(a) Convert the quaternion to a rotation matrix and use Equation 2.16:

v′ = R (q) v; (2.50)

(b) Code the vector in the imaginary part of a quaternion (vq = [0,vT ]T ) and apply

v′ = q⊗ vq ⊗ q∗. (2.51)

Thanks to the quaternion multiplication operation and to the conjugation, quaternions
can be used to represent frame relations. Considering two origins O and W , the trans-
formation TWO is represented by the translation tWO and the rotation qWO . Transformation
inversion is done by

qOW = qWO
∗

(2.52)

tOW = −R
(
qWO
)T

tWO . (2.53)

Notice that R
(
qWO
)T

= R
(
qWO
∗
)

.

It can be verified that the transformation in a 3D rotation matrix of the product of two
quaternions is equivalent to the product of the two matrices generated by the quaternions,
i.e., it is possible to write the relation

R
(
qWS
)

= R
(
qWO
)
R
(
qOS
)

= R
(
qWO ⊗ qOS

)
. (2.54)
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2.3.5 A Note on Small Rotations

Consider the orientation of a reference system O with respect to W composed by the
rotation of a intermediate frame O′ with respect toW and the rotation of O with respect
to O′. Representing both by rotation matrices and quaternions we have:

RWO = RWO′ ⊗RO
′

O , (2.55)

qWO = qWO′ ⊗ qO
′

O . (2.56)

Now, consider that the second transformation is a small perturbation in the local frame and
name these terms respectively as RO

′

O = ∆R and qO
′

O = ∆q.

Considering a small rotation vector ∆Φ, the first order Taylor expansion of Equa-
tion 2.35 and Equation 2.48 gives respectively

∆R = I + [∆Φ]× +O
(
‖∆Φ‖2

)
, (2.57)

∆q =

[
1

∆Φ
2

]
+O

(
‖∆Φ‖2

)
. (2.58)

2.3.6 Time Derivatives

Consider q(t) the orientation of a body at time t and q(t+ ∆t) its orientation after a small
∆t interval of time. Being ω(t) = lim∆t→0

∆Φ
∆t the angular rate vector in body frame

expressed in terms of a small rotation ∆Φ, it is possible to apply the difference quotient to
obtain the derivative in time of the body orientation:

q̇(t) = lim
∆t→0

q(t+ ∆t)− q(t)

∆t
. (2.59)

We can perform these rewritings:

q(t+ ∆t) = q(t)⊗∆q (2.60)

= q(t)⊗

([
1

∆Φ
2

]
+O

(
‖∆Φ‖2

))
(2.61)

' 1

2
Q+ (∆Φ) q(t) (2.62)

=

(
I +

1

2

[
0 −∆ΦT

∆Φ − [∆Φ]×

])
q(t), (2.63)
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where the second order term has been discarded. Thus, the difference quotient can be
rewritten as

q̇(t) ' lim
∆t→0

(
I + 1

2

[
0 −∆ΦT

∆Φ − [∆Φ]×

])
q(t)− q(t)

∆t
(2.64)

=
1

2

[
0 −ω(t)T

ω(t) − [ω(t)]×

]
q(t) (2.65)

=
1

2
q(t)⊗

[
0

ω(t)

]
. (2.66)

Following the same approach, when orientation is represented by a rotation matrix
R(t), the time derivative results in:

Ṙ = R [ω(t)]× . (2.67)

2.3.7 Discussion on Rotation Representation
The comparison of the proposed rotation representations can be faced by different points
of view. Considering the required storage space, we can easily observe that Rotation ma-
trices use 9 elements, quaternions and the native axis/angle representations use 4 elements,
while others representations (the rotation vector, the Gibbs vector, the Modified Rodrigues
parameters and the Euler angles) use 3 elements. The latter are minimal, since they repre-
sent the three degrees of freedom with three elements, while the former are not minimal.

In [30] a detailed analysis on the computational cost of common operations on trans-
formations, such that transformations of points, transformation compositions and transfor-
mation inversions, is performed. It reveals that the use of quaternions or rotation matrix
representation is essentially equivalent. This implies that the computational cost for the
same operations performed with minimal representations, such that Euler angles or Gibbs
vector, is higher, since the representation have to be converted in quaternions or rotation
matrix to be properly composed, adding a significant overhead. A further consideration
stated in [30] considers the computational cost of the normalization of rotation represen-
tations. Being both quaternion and rotation matrices overparametrized, they are subject
to some constraints. In particular, quaternions have to be unitary and rotation matrices
have to be orthogonal with unitary magnitude. These constraints may results violated as
repeated calculations, such that compositions or inversions, are performed, due to round-
off errors. Thus, it is needed to normalize the representations. Quaternions can be easily
normalized by enforcing the unitary module with q = q

‖q‖ . The normalization of rotation
matrices is more complex and can be achieved with several approaches. In [30] a proce-
dure is detailed and the analysis of the computational complexity shows a clear advantage
for the quaternion representation, which results more convenient both in terms of spatial
complexity and computational complexity.

Beside computational complexity, quaternions represent a convenient way of repre-
senting rotations for others accessory properties. Quaternions can be easily converted to
and from convenient and “human ’readable” minimal representations, such that Euler an-
gles or Axis/Angle representations. Quaternions are easily interpolated in a sequence of
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smooth rotations between an initial and a final rotation, while this is not easily achieved
with other representations. Quaternion representation does not suffer of singularities, apart
from the antipodal equality between q and−q, while it is topologically impossible to have
a global 3-dimensional parametrization without singular points for the rotation group, as
stated in [99].
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CHAPTER3
Computer Vision Introduction

This chapter presents a review of the image formation process focusing on standard per-
spective cameras. The thin lenses model is introduced to derive the pin-hole geometri-
cal model of point projection and the algorithms for the compensation of lens distortion.
Moreover, a brief review of salient features that can be identified in images is presented as
a useful reference for the system presented later on this thesis, focusing on salient point
detection and feature tracking systems.

3.1 Perspective Camera and Image Formation

A camera is a sensor that is able to perceive light rays and to record the images formed by
them on a sensible surface. The term camera comes from the Latin terms camera obscura
(“dark chamber”), an early system that allowed to project images. Standard cameras per-
ceive light in the visible spectrum, but other sensors exist which perceive different portions
of the electromagnetic spectrum (e.g., infrared cameras). Modern cameras record images
on a CCD (charge-coupled device) or CMOS (Complementary Metal Oxide Semiconduc-
tor) sensor in order to produce digital images.
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(a) Intensity matrix (b) Gray scale

Figure 3.1: A digital image, represented as (a) an intensity matrix, (b) with a gray scale
mapping.

3.1.1 Image Formation
An ideal, gray levels, image is a mapping between a subset of the two dimensional space,
representing image coordinates, and a real value representing the light intensity:

I : Ω ∈ R2 → R. (3.1)

Color images are represented by three different mappings (IR, IG, IB), each of them
representing the intensity of a color among Red, Green and Blue. Different mappings color
are possible, e.g., CMYK (Cyan, Magenta, Yellow and blacK), HSL (Hue, Saturation and
Lightness) and HSV (Hue, Saturation and Value) but they are not useful for this work.

Real images are represented as a mapping in the discrete domain, both for the image
coordinates and for the intensity:

I : Ω ∈ N2 → Λ ∈ N. (3.2)

A pixel (px) is the unitary element of the image, i.e., the smallest addressable element
in an image and it collects the light integrated both in space (i.e., over the pixel area)
and in time (i.e., during the exposure time). Thus, an image is a bi-dimensional array of
intensities; I(y, x) is the intensity of the pixel of coordinates p = [x, y]. Notice that, when
representing images, a common convention is to use the Y axis pointing down from the top
left corner of the image; the X axis pointing right and Z follow the right hand convention.
An example of an image represented respectively as intensity matrix or mapping intensity
on a gray scale is shown in Figure 3.1(a) and Figure 3.1(b)

More than the sensor, the principal actors of the image formation process are a lens or
a set of lenses, an aperture and a shutter. The role of the lens (or the set of lenses) is to
“direct” the light coming from the environment, i.e., imposing a controlled change in the
direction of propagation of light rays, which can be performed by means of diffraction,
refraction, and reflection. Rays of light are then “selected” by a small aperture. The
shutter is a component that triggers the integration of light for a certain amount of time
on the camera sensor. For further details on image formation process the reader can refers
to [29] and [56].
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3.1. Perspective Camera and Image Formation

3.1.2 Thin Lenses

The role of lenses, i.e., the variation of light direction by means of diffraction, refraction,
and reflection, needs to be simplified in order to allow a simple mathematical treatment.
In particular, the simplest model is the thin lenses model, that explain the ray propagation
geometry. With reference to the Figure 3.2, the model is defined by the optical axis Z,
i.e., the axis normal to the lens with its origin O located at the intersection with the lens
symmetry plane (optical center). Considering a lens which surfaces are part of spheres
forming a convex shape, all parallel rays are deflected by lens ensuring that they converge
on a point at distance f (focal length) from the optical center. Focal length depends on
lens characteristics, but no further details are given here; the interested reader can refer
to [40].

The thin lenses model is a suitable approximation when the thickness of the lens d
is negligible when compared to f , that makes this properties valid: rays through O are
undeflected from the lens. From this follows that rays coming from a 3D point P(O) =
[x, y, z] converge at distance r from the optical center following the Fresnel law:

1

f
=

1

z
+

1

r
. (3.3)

Notice that z →∞ implies r → f . The proof of the Fresnel law is illustrated in Figure 3.2
and comes from the similarities of couple of triangles expressed by

h

y
=

r − f
f

, (3.4)

h

y
=

r

z
. (3.5)

The Fresnel law states that points at different distance from the optical center converge
at a different position. This implies that if the image plane πI (i.e. the camera sensor) is at
a distance l from the optical center, a point is projected to a blurring circle C, as illustrated
in Figure 3.3. To minimize this effect a small aperture of diameter a is used, in order to
avoid the passage of lights coming from the same point with high direction differences. A
point is said to be focused if the diameter of C (Φ(C) = a (l−r)

r ) is smaller than a pixel.
Thus, it is possible to identify a range [z1, z2] (depth of field) for distances that ensures that
points are properly focused. The choice of a proper aperture has a trade-off: the smaller
is the aperture, the larger is the depth of field range but a smaller amount of light arrives
on the camera sensor; shooting time interval needs to be longer and this could cause a
motion blur if the shotted scene is not static (or the camera is moving). Obviously a bigger
aperture prevents good images if the depth range of points is bigger than depth of field.

Considering a sufficiently small aperture and a distance z � f (that implies r ' f ),
the thin lens model could be simplified into the pin-hole model: for each point only a
single ray passes from the optical center and it is focused at distance f . Thus, placing the
image plane πI at distance f allows simple relations between points and theirs projection
on the image plane.
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Z

Y

P

P′

O

f

r

d

h

z

y

Figure 3.2: Thin lens model and Fresnel Law in 2D side view. Two rays starting from
3D P(O) = [x, y, z] are considered: the first cross the optical center O thus it is
undeflected; the second is parallel to the optical axis, thus it cross the optical axis in

−f . Similarities between triangles allow to write (1)
h

y
=

r − f
f

for blue triangles

and (2)
h

y
=
r

z
for green triangles.

Z

Y

P

P′

O

C

a

πI
f

r

l

z

Figure 3.3: Effects of aperture a in point projection: formation of the blurring circle C.
The image plane πI is placed at distance l from the optical center (O), but rays from
point P converge at distance r (all points with distance z converge at distance r).
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Z(O)

Y (O)

P(O)

sP(O)

P′

O

Y (I)

I

f

v

z

y

Figure 3.4: Pin-hole camera model with projection equations for the plane Y − Z. Con-
sidering similarities between the blue triangles allows to write P′ =

[
f xz , f

y
z

]
.

(a) Standard Pin-hole (b) Frontal Pin-hole

Figure 3.5: The pin hole model with (a) the image plane behind the optical center (b) the
image plane ahead the optical center.

3.1.3 The Pin-hole Model

Considering a 3D point P(O) = [x, y, z]T (in Cartesian coordinate) it will be projected
in the 2D point in the image plane at p =

[
f xz , f

y
z

]
. This could be easily proven with

triangles similarities showed in Figure 3.4 for the plane Y − Z. Indeed, all the points that
lie on the same line that join O and P(O), i.e., points sP(O) with s 6= 0 project on the
same image point p.

The image plane is physically placed behind the optical center, but from a mathemat-
ical point of view it is equivalent to consider it placed ahead the optical center, with an
obvious change of direction of the axis of the image plane. This is summarized in Fig-
ure 3.5.

A convenient convention is to introduce a normalized image plane π1 at distance 1
from the optical center. This allow to treat a generic camera as an ideal camera with focal
length equal to 1. Thus, given a 3D point P(O) = [x, y, z]T , its 2D coordinates on the
normalized image plane are

p =
[
x
z ,

y
z

]T
, (3.6)
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while, a given a point [u, v]T in the image is equivalent to
[
u
f ,

v
f

]T
on the normalized

image plane.

3.1.4 Homogeneous Camera Matrix

The projection equations introduced in the previous section need some refinement to model
a real camera. The first issue is due to the reference system on the image plane: it is placed
in the middle of the image, i.e., its origin is placed on the intersection between the optical
axis and the image plane. This is not true in the reality: an image is represented by a
matrix, thus origin is in the top-left corner. Moreover, image coordinate system unit is
the pixel, while 3D points are expressed with metric coordinates. Finally, pixels are not
guaranteed to be squared, while they could be rectangles or parallelograms for structural
reasons, especially in old cameras.

Conversion between metric coordinates and pixels (including the rectangular pixel
case) can be easily achieved by a non uniform scaling; let consider dx, dy the pixel di-
mensions, then fy = f

dx
and fy = f

dy
become the focal lengths in pixel that convert points

from metric coordinates to pixels. To compact the notation f = [fx, fy] is used.
The translation between the centered image plane reference system and the top-left

reference system of digital images could be easily treated by a translation of c = [cx, cy]
pixels, that expresses the position of the central point (i.e., the intersection of the optical
axis with the image plane) in pixel coordinates.

The operations to project a 3D point in an image could be coded by a 3 × 3 homoge-
neous matrix, named the camera matrix:

K =

fx s cx

0 fy cy

0 0 1

 , (3.7)

where the factor s allows to compensate pixel with parallelogram shape. The value of s
is 0 in almost all cases, so it will not be considered hereafter. f and c are usually referred
as intrinsic camera parameters, because they depends on the camera physical structure of
the optical system.

A 3D cartesian point P(O) = [x, y, z]T is projected to the homogeneous 2D point
[x′, y′, ω′]T , equivalent to the 2D point on the image [u, v]T by the following relations:x

′

y′

ω′

 = K

xy
z

 ≡
fx x+ cx z

fy y + cy z

z

 , (3.8)

[
u

v

]
=

[
x′

ω′

y′

ω′

]
≡

[
fx

x
z + cx

fy
y
z + cy

]
. (3.9)

Since all points laying on the same line that join the camera optical center O and
the point P(O) have the same projection in the image, the projection equation could be
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X

Y

W

O

TOW

P(W)

P(O)

Figure 3.6: Projection of point P(W), expressed in a different reference system than the
camera one. Transformation TOW is known, thus P(O) can be easily computed.

rewritten in terms of homogeneous coordinates:x
′

y′

ω′

 = [K 0] P(O) =

fx 0 cx 0

0 fy cy 0

0 0 1 0



x

y

z

w

 . (3.10)

.
Considering a point P(W) in a different reference system and given the TOW that ex-

press the position and orientation of the originW with respect to the camera originO (see
Figure 3.6), the projection of P(W) on the image is given by:

P(O) = TOWP(W), (3.11)x
′

y′

ω′

 = [K 0] P(O). (3.12)

Considering the transformation as an homogeneous matrix

TOW =

[
ROW tOW
0 1

]
, (3.13)

Equation 3.11 and Equation 3.12 givesxy
ω

 =
[
KROW KtOW

]
P(W) = πP(W), (3.14)

where π is the complete projection matrix) i.e., a 3×4 matrix that summarize the intrinsic
camera matrix and the transformation between the two different reference systems. In
particular, TOW express the extrinsic parameters of the camera, i.e., parameters that are
not dependent from the physical device, but they depends only on the position of points
reference system with respect camera reference system.
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3.1.5 Interpretation Line

Given a point p = [u, v] on the image it is not possible to know which 3D points has gen-
erated it, since projection is surjective: all points lying on the same line starting from the
camera optical center O are projected on the same image point, i.e., a camera is a bearing
only sensor and it looses the information about the depth of observed points. From image
points it is possible to calculate the interpretation line, i.e., the direction of all the points
that generates the same image point. This could be done by inverting the Equation 3.8:

K−1 =


1
fx

0 −cx
fx

0 1
fy

−cy
fy

0 0 1

 , (3.15)

d(O) = K−1

uv
1

 =


u−cx
fx
v−cy
fy

1

 , (3.16)

d
(O)

=
d(O)

‖d(O)‖
, (3.17)

p(I) =

[
u−cx
fx
v−cy
fy

]
. (3.18)

where

• d(O) is the non-unit direction vector of the interpretation line. Applying it to the
origin O gives the point projection on the normalized image plane, i.e., at distance
1 from the optical center;

• d
(O)

is the 3D unit vector that represents the direction of the interpretation line
starting from O;

• p(I) is the 2D coordinate of the image point p on the normalized image plane.

P(O)(λ) = λd
(O)

, λ > 0 is the parametric interpretation line of [u, v] being λ the distance
from O (see Figure 3.7).

The interpretation line has been expressed in the camera reference systemO. To obtain
it in a different reference frame, the frame composition rule has to been applied. Given
TOW and P(O)(λ) in homogeneous coordinates, P(W)(λ) is:

TWO =

[
ROW

T −ROW
T
tOW

0 1

]
, (3.19)

P(W)(λ) = TWO

[
P(O)(λ)

1

]
(3.20)

= ROW
T
P(O)(λ)−ROW

T
tOW . (3.21)
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Figure 3.7: The parametric interpretation line P(O)(λ) of image point [u, v].

3.1.6 Lens Distortion

Almost all real cameras produce images that do not correspond exactly to the ideal pro-
jective model due to distortion effects. Distortion comes from non-ideal lenses and affects
mostly low cost cameras and wide angle optics (i.e., with a short focal length). This would
make the pinhole camera model unsuitable unless distortion is compensated by a proper
transformation.

Distortion is a non linear effect and can be separated in tangential distortion and radial
distortion. Radial distortion depends on the distance of the considered pixel from the
central point, while tangential effects are perpendicular to the line that joins a pixel to the
central point. Usually, radial distortion plays a more important role than the tangential
one.

Hereafter we consider the polynomial model to models distortion introduced in [7].
Given a point p = [x, y]T on the normalized image plane (obtained by applying Equa-
tion 3.6 to a 3D point or Equation 3.18 to an image point) the distorted point on the
normalized image plane is given by

r2 = x2 + y2, (3.22)
pd =

(
1 + k1 r

2 + k2 r
4 + k3 r

6
)

p + d, (3.23)

d =

[
2t1xy + t2

(
r2 + 2x2

)
t1

(
r2 + 2y2

)
+ 2t2xy

]
, (3.24)

where r2 is the distance from the image center (the center is in [0, 0] in the normalized
image plane), k = [k1,k2,k3]T are the coefficient of the radial distortion, modeled by a
cubic function of the distance, and t = [t1, t2]T are the coefficient of the additive tangen-
tial distortion part d.

On the other side, given a distorted point p = [u, v], i.e. a point on the image plane,
it does not exist a closed form for the inverse of Equation 3.23 to remove the distortion.
Thus, after the use of Equation 3.18 to obtain the distorted point on the normalized image
plane pd, the iterative solution sketched in Algorithm 1 gives the undistorted point pu.
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Algorithm 1 pu = Undistort(pd, k, t)
1: pu ← pd
2: for i = 1→ n do
3: [x, y]← pu
4: r2 ← x2 + y2

5: k ← 1 + k1 r
2 + k2 r

4 + k3 r
6

6: d←

[
2t1xy + t2

(
r2 + 2x2

)
t1

(
r2 + 2y2

)
+ 2t2xy

]
7: pu ←

pd−d
k

8: end for

3.1.7 Unified Mathematical Notation
The mathematical process described in the previous sections aims to compute how a 3D
point, expressed in Homogeneous or Cartesian coordinates, is projected on a 2D Cartesian
image point, while the inverse process defines the direction of the viewing ray given the
location of a 2D image point.

In particular, the complete projection system of an Homogeneous 3D point Ph referred
to the camera coordinate system, consists in the following steps:

1. convert the homogeneous point Ph into the Cartesian equivalent P with Equa-
tion 2.14,

2. compute the point on the normalized image plane, i.e., the point p with Equation 3.6,

3. apply distortion to p, obtaining pd with Equation 3.23,

4. apply the projection with Equation 3.9, with z = 1, obtaining the true image point
pI .

It can be easily noticed that steps 1 and 2 can be reduced to the step 2 only, since the
projection on the normalized image plane is not influenced by the scale factor. Moreover,
if the original point is in Cartesian coordinates, step 1 has to be skipped.

To compact the notation, in the remaining part of the thesis all these steps will be
referenced with the functional notation

pI = K(P), (3.25)

where all the camera parameters (K camera matrix, lens distortion parameters) are leaved
implicit and we do not take care if the source point is expressed in Cartesian or Homoge-
neous coordinates, leaving to the reader (and to the specific implementation) the choice on
the proper steps to apply. When a multi-camera system is involved, a subscript is used to
identify a particular camera, e.g., Kl(·) and Kr(·) are commonly used for left and right
camera of a stereo rig system.

The inverse process aims to compute the viewing ray direction given a distorted image
point pd, involving
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1. compute the point on the normalized image plane p(I) with Equation 3.18,

2. compute the undistorted point pu with Algorithm 1,

3. append a 1 to pu, resulting in d(O), i.e., the vector that links the camera origin O to
the point the normalized image plane, representing the direction of the interpretation
line (see Equation 3.16),

4. in case, compute d
(O)

with Equation 3.17, i.e., the unit vector direction of the inter-
pretation line.

Steps 1 and 2, i.e., computation of the point on the normalized image plane, will be referred
with KI(pd)−1. When step 3 is performed, i.e., the unnormalized direction vector is
computed, the notation will be simplyK(pd)−1 while including step 4 too, i.e., computing
the unit direction vector, notation will be K̄(pd)−1.

3.1.8 Camera Calibration And Camera Reference System

Intrinsic parameters of the camera are usually estimated by some standard method (among
them we can cite [106] and [41], that inspires the useful Matlab Calibration Toolbox1.),
since nominal values are not sufficiently precise (e.g., there exists differences due to as-
sembling misalignment, lens productive process and so on). Extrinsic parameters could
be estimated too, but this situation is usual only when the camera is fixed (e.g., in a fixed
industrial setup or in video surveillance systems). When camera is mounted on a mobile
robot or generally it is moving, the complete projection matrix needs to be computed at
each time with the current robot position and orientation with respect to a “world” refer-
ence frame.

The convention on camera reference frame covers an important role when the trans-
formation between a reference system and the camera has to be computed. With reference
to Figure 3.8(a), observing a camera, the Cartesian reference system is placed with the Z
axis normal to the the image plane and leaving the camera in the lens direction; the Y axis
points down and X points right on the image. This convention is quite different from what
is normally used, where Z usually points up while direction of X and Y axes depends on
the specific application (e.g., X usually points forward if the reference frame is applied to
a mobile robot, as shown in Figure 3.8(b)).

Considering a camera placed on a robot, its orientation with respect to the robot is

expressed by the matrix RRO =

 0 0 1

−1 0 0

0 −1 0

 whereR is the robot reference frame and

O is the camera reference frame. The Z axis of the camera reference frame coincides
with the X axis of the robot reference frame, the Y axis of the camera reference frame
coincides with the −Z axis of the robot reference frame and the X axis of the camera
reference frame coincides with the −Y axis of the robot reference frame.

1http://www.vision.caltech.edu/bouguetj/calib_doc

37

http://www.vision.caltech.edu/bouguetj/calib_doc


Chapter 3. Computer Vision Introduction

(a) Camera Reference System (b) Robot Reference System

Figure 3.8: The reference system convention (a) for a camera (b) for a standard robotic
system.

3.2 Image Features

In addition to the geometrical aspects of cameras optical system, the computer vision
field aims to give to an artificial system the ability to “understand” the image content.
Although there is no a common or exact definition, the terms feature is used to refer to
an interesting part of the image, where the concept of “interest” strictly depends on the
application domain. Often, in real contexts, only small portions of the images are relevant.
For the SLAM system that will be described in the next chapters, we are interested in
identify 3D points in the world associated to “interesting” features in the 2D projected
image.

Consequently, two basic operations need to be defined: the feature detection and the
feature matching. The former examines an image (or a portion of it) to identify the lo-
cations where a certain characteristic (i.e., a feature) is present; then the feature is stored
through a descriptor that summarizes in a proper way its characteristics. Feature matching
process recognizes a feature in a new image as one of the already observed ones thanks to
the stored descriptor. When the matching is performed over time, i.e., on a sequence of
images, the process is referred as feature tracking.

To the purpose of this work, for which the core operation is feature tracking in image
sequences, the interesting features have to satisfy the following properties:

• Repeatability: the same feature can be found and matched in several images despite
geometric and photometric transformations,

• Saliency: each feature has a distinctive description,

• Compactness and efficiency: a small number (with respect to the number of pixels
of the entire image) of features are able to describe a scene,

• Locality: if a feature occupies a relatively small area of the image it is more robust
to clutter and occlusion.

Some examples of features (see Figure 3.9) are edges, i.e., the boundary between different
regions, corners, i.e., namely intersection between edges but also points with high vari-
ation of intensity in all directions and blobs, i.e., smooth homogeneous areas that define
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(a) Edges (b) Corners (c) Blobs

Figure 3.9: Some example of features in images.

regions. To define a complete feature tracking system three fundamental building block
are:

• a feature detection algorithm,

• a feature descriptor,

• a feature matching algorithm.

The latter algorithm is strongly linked with the specific descriptor, because the matching
process is build up on the ability to retrieve the stored description of a feature in a suc-
cessive image. Similarly, the feature detection process influences the matching process,
since the detection of distinguishable and descriptive features is a key aspect for succes-
sive matching. Consequently, the detection, description and matching/tracking techniques
are strictly coupled.

Next sections describe some standard techniques and how they can be used to build
a feature tracking system. A good review of feature detectors, descriptors and matchers/-
trackers is provided in [101]; other extended reviews and surveys can be found in [84], [64]
and [105]. Recent works on this topic have produced interesting techniques that cover all
the three aspects of feature tracking. Among them we can cite the Scale Invariant Feature
Transforms (SIFT) [54] and Speeded Up Robust Features (SURF) [4]. These feature detec-
tor/descriptors and matchers have the big advantage of being scale and rotation invariant,
i.e., they are able to match features that have been scaled and rotated with respect to the
descriptor taken at feature initialization. Although this seems a very useful characteris-
tic, SIFT and SURF do not provide an adequate repeatability in feature tracking system
applied to SLAM, as shown in [66].

3.2.1 Feature detection
We are interested in detect locally distinguishable features, namely salient points. Al-
though we are describing only the feature detection step, we have to reason in broader
terms: the choice of a good salient point can increase the distinguishability of a feature.
Let consider the image in Figure 3.10(a) and the three features identified by the red squares
and consider the portion of image in the square as the descriptor of the feature itself. If
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(a) First image (b) Second image

Figure 3.10: Example of locally distinguishable features and their matching in different
images. It is easy to understand that features containing corners (the square located
at the peak of the mountain) are more easily recoverable in a different image, while
features on edges (the red square on the mountain slope) could be confused with similar
areas along the same edge. Homogeneous areas (the red square in the sky) are poorly
descriptive.

we imagine to match them in the second image (Figure 3.10(b)), it is easy to understand
that features containing corners (the features containing the mountain peak) have higher
saliency with respect to features taken in homogeneous areas (the features containing the
part of the blue sky). Features around edges (the feature on the mountain slope) are a
bad choice too, because their appears similar along all the edge. Thus, a feature tracking
mechanism can perform better if the features to track are chosen where corners are located.

3.2.1.1 Harris And Shi-Tomasi Salient Point Detectors

A good salient point is located where there is an high variation of intensity in all directions.
This implies that, in addition to proper corners (edges intersections), good salient points
are also isolated points, line endings or points on a curve where the curvature is locally
maximal. Without entering in details, two of the most known salient point detector are the
Shi-Tomasi [85] and the Harris [39] algorithms. Both algorithms consider the weighted
sum of squared differences (SSD) between two patches displaced of (x, y) pixels and
covering an area U × V on the same image I, where U = [u1 . . . un] and V = [v1 . . . vn]
describes a rectangular area by row and column indexes:

S(x, y) =
∑
u∈U

∑
v∈V

w(u, v) (I(u+ x, v + y)− I(x, y))
2

; (3.26)
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Figure 3.11: FAST corner detector: pixel on the circumference with radius r are tested.

where w(· · · ) is a weight function that acts as a smoother on the image. Taylor approxi-
mation allows to write the SSD formula in matrix form

S(x, y) '
[
x y

]
A

[
x

y

]
(3.27)

A =
∑
u

∑
v

w(u, v)

[
I2
x IxIy

IxIy I2
y

]
=

[ 〈
I2
x

〉
〈IxIy〉

〈IxIy〉
〈
I2
y

〉 ] (3.28)

where the angle brackets stands for the weighted sum.
A salient point is characterized by a large variation of S in all directions. This cor-

responds to two “large” eigenvalues of the A matrix. When both eigenvalues of A are
small, the region is homogeneous and it does not contains salient point. When only one of
the eigenvalues is significantly different from zero the region contains an edge, since the
gradient variation is in a precise direction.

The Shi-Tomasi detector considers a point (x, y) to be a salient point if the smallest
eigenvalues of A is greater than a threshold, while the Harris salient point detector avoids
the explicit calculation of eigenvalues by the computation of the metric

ch = det(A)− k trace2(A). (3.29)

and select points which ch value is over a threshold.

3.2.1.2 FAST

FAST (Features from Accelerated Segment Test), presented in [82] [83], is an alternative
approach to corner detection. It tests the pixels on a circumference with radius r around
the candidate point p = (x, y) (see Figure 3.11). If n contiguous pixels are all brighter
than the candidate point by at least a given threshold t or all darker by t, then the candidate
point is considered to be a corner. The test on pixel brightness are conducted in a precise
order, trained by a machine learning algorithm, that allows to build short decision tree and
to perform feature detection in a computationally efficient way. This test is reported to
produce very stable features.
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3.2.2 Feature Description and Matching
The description of a feature, that for our purpose is centered on a point identified with
one of the proposed salient point detectors, could be achieved in different ways, as listed
in [101]. For the aim of this work it is sufficient to consider the description of a features
as the part of the image surrounding the salient point, namely a rectangular patch of the
image, as done in the example of Figure 3.10. To perform feature matching and tracking,
once a salient point is identified, the patch around it is saved to allow successive compari-
son with next images.

3.2.2.1 Template Matching

Template matching is a technique for finding small parts of an image which match a tem-
plate image, i.e., to find the locations where the similarity between the template and the
image is maximized. Lets consider the image I with dimension W ×H and the template
image T with dimension w×h, where w < W and h < H . Notice that the image I can be
a interesting portion of a bigger image where the template matching has to be performed.

The similarity between a w × h area with top left corner located at x, y coordinates
in image I and the template T can be evaluated with the Normalized Cross Correlation
(NCC) as

RNCC(x, y) =

∑
x′,y′ (T(x′, y′) · I(x+ x′, y + y′))

2√∑
x′,y′ T(x′, y′)2 ·

∑
x′,y′ I(x+ x′, y + y′)2

, (3.30)

where

x′ = [0 . . . w − 1], (3.31)
y′ = [0 . . . h− 1]. (3.32)

A different similarity measurement is defined by the Zero-Mean Normalized Correlation
Coefficient (ZMNCO)

RZMNCO(x, y) =

∑
x′,y′

(
T′(x′, y′) · I′(x+ x′, y + y′)

)2√∑
x′,y′ T′(x′, y′)2 ·

∑
x′,y′ I′(x+ x′, y + y′)2

; (3.33)

where

x′ = x′′ = [0 . . . w − 1], (3.34)
y′ = x′′ = [0 . . . h− 1], (3.35)

I′(x+ x′, y + y′) = I(x+ x′, y + y′)− 1

w · h
∑
x′′,y′′

I(x+ x′′, y + y′′), (3.36)

T′(x′, y′) = T(x′, y′)− 1

w · h
∑
x′′,y′′

T(x′′, y′′). (3.37)

that compute the normalized cross correlation between the image region and the template
with their mean removed. Notice that the mean value is not calculated on the entire image
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A
BTBA

P

dA
dB

n

π

Figure 3.12: Warping of patches appearance in feature tracking problem

but only on the area involved in the similarity measure evaluation. Both the similarity
measures assume values in the range [−1, 1], where the value 1 corresponds to a perfect
match between the image area and the template.

The similarity measure has to be repeated by sliding the template over all the consid-
ered image, collecting the results in a matrix R(x, y) with dimensionW−w−1×H−h−1.
The location in which R(x, y) is maximal correspond to the most suitable location of the
template in the image. The template is considered matched at x∗, y∗ = argmaxx,y R(x, y)
if its similarity with the template is above a threshold, i.e., R(x∗, y∗) > smin.

This template matching scheme suffers practical problems in real applications: for in-
stance, as image presents repetitive structures, the template can be matched in more than
one point. Moreover, changes in point of view can affect the match result, due to changes
in scale, orientation or warp of the patch. Although these limitations are important in a
generic framework for feature tracking, considering a video sequence with small move-
ments of the camera between frames (i.e., a sufficiently high frame rate) and non dramatic
changes of the point of view, the method is suitable for a sufficiently reliable feature track-
ing system.

3.2.2.2 Local Planar Patches Warp

Let consider a slightly different setup of the feature tracking problem: suppose that patches
are planar, i.e., the salient point in the image correspond to a point on a local plane in the
scene. With reference to Figure 3.12, let consider two different cameras located at origins
A and B with intrinsic projection matrix respectively KA and KB and relative position
expressed by transformation TBA. Lets name IA and IB respectively the images taken by
the two cameras. Notice that this is a very generic setup: in a standard feature tracking
problem the cameras are namely the same (i.e., KA ≡ KB), and the displacement is given
by the motion in time.

Points of the patch lie on the plane π, identified with respect to the origin A by the
homogeneous description of the plane π(A) =

[
nT d

]T
, where n is the unit vector

normal to the plane and d is the distance from the origin A to the plane. It follows that a
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3D cartesian point P(A) lies on the plane π(A) when

[
nT d

] [P(A)

1

]
= 0, (3.38)

and it is projected to a homogeneous 2D point p(A) in the image of camera A by

p(A) = KAP(A). (3.39)

Changing reference system, the point P(A) is expressed with respect to the frame B as

P(B) = RBAP(A) + tBA, (3.40)

and it is projected on p(B) in the image of camera B by

p(B) = KBP(B) (3.41)
= KBRBAP(A) + KBtBA. (3.42)

The mapping between p(A) and p(B), projection of a point that lies on the plane π, is
given by an homography, i.e., a linear transformation expressed by a 3 × 3 matrix HBA
such that

p(B) = HBA p(A). (3.43)

Equation 3.38 can be rewritten in order to obtain 1 = −nTP(A)

d , thus Equation 3.42 can
be rewritten as

p(B) = KB

(
RBA −

tBAnT

d

)
P(A), (3.44)

and substituted on the left member of Equation 3.43. The right member of Equation 3.43
is substituted with Equation 3.39, giving

HBA = KB

(
RBA −

tBAnT

d

)
K−1
A , (3.45)

from which it is possible to compute how the appearance of the patch around P(A) changes
(under the stated hypothesis). Consequently, it possible to warp the original image aiming
at better feature matching results, which compensates for scale changes (e.g., when the
camera walk up or away) and rotations.

The method for the patch warpint that we consider in this work, although it is not the
unique possible choice is the following. Given a prediction of the feature location p(B) on
the second image and the size of the patch w × h, we can identify the rectangular patch
around the feature location as

p(B)
i = p(B) + pi, i = 1 : 4, (3.46)

where

p1 =

[
−w2
−h2

]
p2 =

[
w
2

−h2

]
p3 =

[
w
2
h
2

]
p4 =

[
−w2
h
2

]
. (3.47)
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Figure 3.13: Patch warping for matching process. A rectangular patch is extracted from
the actual image IB around the predicted position p(B) of a feature, then the cor-
responding points (p(A)

i ) in the original image IA in which the feature was firstly
perceived are computed through the homography HAB . The patch extracted from
the quadrilateral region described in the original image is warped with homography
HBA = HAB

−1 to a rectangular patch and then it can be used for the feature matching
in the actual image.

We can compute the location of these point in the first image, i.e., in the image in which
the feature was firstly perceived by the camera A, as

p(A)
i = HAB p(B)

i , (3.48)

where HAB = HBA
−1. The four points p(A)

i determines a quadrilateral area Q in the image
IA that represents the template that has to be matched in the new image after being warped
to a rectangular patch of w × h pixels. This process is schematized in Figure 3.13. With
simple changes, this procedure can be used to compensate distortion effects too: Equa-
tion 3.43 can be modified in order to consider the non linear transformation induced by the
projection and the distortion model (i.e., the functions KA(·) and KB(·)−1 introduced in
Section 3.1.7). The warp of the patch has to be computed as a mapping between all points
contained in the source Q area to the destination rectangular area. Notice that when a new
feature is perceived we need to store a patch around it which has to be large enough for
subsequent warping.

An obscure point of this procedure, at least with the concepts reported up to here, is
how it is possible to know the relative camera position TBA, the point P(A) location and
the local plane of the landmark π(A). These things will be explained later (see Chapters5
and 6); for now, it is sufficient to say that TBA and P(A) will be adequately estimated,
while π(A) is approximated in the following way. Considering that feature was firstly
perceived in the image of cameraA on point p(A), thanks to Equation 3.18 the direction of
the interpretation line d

(A)

A can be computed. Similarly, given the predicted position of the

feature p(B) in the second image, d
(B)

B can be computed and expressed in the A reference
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frame d
(A)

B through Equation 2.16. The normal to the plane of the feature is approximated,
alike in [15] by the mean of the opposite of the two considered direction vector:

n = −1

2

(
d

(A)

A + d
(B)

B

)
. (3.49)

The geometrical interpretation of this choice is to consider the plane oriented as the bisec-
tor of the angles formed by the two viewing ray. The last element that has to be specified
is the distance d of the plain, that could be recovered by Equation 3.38.

Obviously this simple method suffers from limitations and approximation. First of
all, it is quite far from the reality that regions around corners are planar: most of them
are located on vertex of 3D objects, thus directions of edges have great differences. Sec-
ondly, though the local plane is a good approximation, its normal is obviously not properly
estimated by the proposed approximation.
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CHAPTER4
Filtering and Optimization

This chapter introduces, after a brief recall on probability theory, two basic techniques (Ex-
tended Kalman Filter and Non Linear Least Squares Optimization) that are largely studied
and applied in the solution of SLAM problems. Here only a general introduction to these
techniques is provided, while specific adaptations to the SLAM problem are postponed to
the next chapter.

4.1 Brief Probability Recall

Probability theory is the branch of mathematics concerned with the analysis of random
phenomena. Probability is a measure of the expectation that an event will occur. The
higher the probability of an event, the more certain we are that the event will occur. The
next sections are a brief summary of basics concepts of probability theory, for a more
detailed description refer to [3] and [72].

4.1.1 Axioms of Probability
Considering a process with a random outcome (let us call it an experiment), an eventA is a
set of the possible outcomes of the experiment itself. For instance, consider the outcome of
a rolling die. The possible events are “the outcome is 4”, “the outcome is an odd number”
and so on. The probability p(A) must satisfy the following axioms of probability:

• It is nonnegative: p(A) ≥ 0 ∀A.
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• It is equal to 1 if A = S, where S is the certain event, i.e., the event which contains
all the possible outcomes of the considered experiment: p(S) = 1.

• Considering two mutually exclusive events A and B (i.e. A and B do not have any
common element A ∩B = ∅), the probability of their union is the sum of the event
probabilities:

p(A ∪B) = p(A) + p(B). (4.1)

• It follows that, considering the complementary event of A: A = S\A, where \ is
the set subtraction operation,

p(A) = 1− p(A), (4.2)

and since ∅ ≡ S,

p(∅) = 0, (4.3)

thus, ∅ is the impossible event.

4.1.2 Random Variables and Probability Density Function
A random variable can be tough as a mathematical variable with unknown or uncertain
values. Uncertainty can be due to the fact that an event is not yet occurred and it can not be
predicted with certainty (e.g., the weather of tomorrow) or the imperfect knowledge of the
real value (e.g., the measurement coming from an instrument subject to noises and errors).
A continuous random variable x assume a real value x = ε ∈ R and it has an associated
probability density function (pdf) (or density) px(ε) defined as

px(ε) = lim
dε→0

p(ε− dε < x ≤ ε)
dε

. (4.4)

It follows that the probability that x assumes values in a range (a, b] is

p(a < x ≤ b) =

∫ b

a

px(x)dx. (4.5)

The cumulative distribution function (cdf) is defined as

Fx(b) = p(x ≤ b) =

∫ b

−∞
px(x)dx, (4.6)

and its limit to the infinity is 1, since the certain event S is x ≤ ∞:

lim
b→∞

Fx(b) = p(−∞ < x ≤ ∞) = 1. (4.7)

The expected value of a random variable, also known as its mean or first moment is

µ = E[x] =

∫ +∞

−∞
x px(x)dx, (4.8)

and the variance is defined as

σ2 = VAR(x) = E[(x− E[x])2] =

∫ +∞

−∞
(x− E[x])2 px(x)dx, (4.9)

where σ =
√
σ2 is called standard deviation.
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4.1.3 Joint Probability
Considering two random variables x and y, it is possible to define their joint probability
density similarly to Equation 4.4

pxy(ε, η) = lim
dε→0,dη→0

p({ε− dε < x ≤ ε} ∩ {η − dη < y ≤ η})
dε dη

. (4.10)

Marginalization recovers the individual pdf (called marginal pdf ) by integrating the joint
pdf over one of the two variables:

px(ε) =

∫ +∞

−∞
pxy(ε, y)dy, (4.11)

py(η) =

∫ +∞

−∞
pxy(x, η)dx. (4.12)

Similarly to Equation 4.6, the joint cdf is defined as

Fxy(a, b) = p(x ≤ a, y ≤ b) =

∫ a

−∞

∫ b

−∞
pxy(x, y)dx dy, (4.13)

and its limit to the infinity is 1:

lim
x→+∞,y→+∞

Fxy(x, y) = 1. (4.14)

Besides individual mean values and variances µx = E[x], µy = E[y], σ2
x = V AR[x]

and σ2
y = V AR[y], that can be computed after the marginalization, it is possible to define

the covariance as

σxy = COV(x, y) = E[(x− E[x])(y − E[y])] (4.15)

=

∫ ∞
−∞

∫ +∞

−∞
(x− E[x])(y − E[y]) pxy(x, y) dx dy, (4.16)

for which it holds that COV(x, y) = COV(y, x).
The correlation index, defined as

ρxy =
COV(x, y)√

VAR(x) VAR(y)
, (4.17)

measures the linear relation existing between the two variables. It lies in the interval
[−1, 1] and if its value is ±1 the two variables are linearly dependent (y = ax + b with
a 6= 0), which implies that the value of one of the two variables is sufficient to know the
value of the other one. If the correlation between two random variables is zero, i.e., the
covariance is zero, the variables are independent, i.e. the knowledge on the value of one of
the two variable gives no information on the possible outcome of the second. Moreover,
the expected value of the product of two independent variables is equal to the product of
their expected values if and only if they are independent:

E[x y] = E[x] E[y] ⇐⇒ x, y are independent. (4.18)
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The joint density of two independent random variables is the product of their marginals and
consequently, considering n independent random variables, the product of their marginals
is the joint density:

pxy(x, y) = px(x)py(y)⇐⇒ x, y are independent, (4.19)

px1,...,xn(x1, . . . , xn) =

n∏
i=1

pxi(xi)⇐⇒ x1, . . . xn are independent. (4.20)

4.1.4 Random Vectors

A natural extension of the joint probability of n variables is to consider variables organized
in a random vector

x = [x1, x2, . . . , xn]T , (4.21)

and to express its joint probability as

px(x) = px1,...,xn(x1, . . . , xn). (4.22)

The mean of a random vector is defined as the vector of individual means

µ = E[x] = [E[x1],E[x2], . . . ,E[xn]]
T
, (4.23)

while its covariance is a matrix computed as COV[x] = E[(x−E[(x)])((x−E[(x)]))T ]:

COV[x] =


VAR[x1] COV[x1, x2] . . . COV[x1, xn]

COV[x2, x1] VAR[x2] . . . COV[x2, xn]

...
...

. . .
...

COV[xn, x1] COV[xn, x2] . . . VAR[xn, xn]

 , (4.24)

The covariance matrix is usually referred with the Σ symbol, while elements are referred
with the lowercase σij , indicating in subscript the matrix element, except for the diag-
onal elements, which corresponds to the individual variable variance, indicated with σ2

i

(alternatively they can be identified with σii):

Σ = COV[x] =


σ2

1 σ12 . . . σ1n

σ12 σ2
2 . . . σ2n

...
...

. . .
...

σ1n σ2n . . . σ2
n

 . (4.25)

The covariance matrix is symmetric. If there are no linear dependences between variables
the covariance matrix is positive definite, otherwise it is semidefinite positive.
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4.1.5 Conditional Probability and Bayes Formula

The conditional probability of an event A given an event B is defined as

p(A|B) =
p(A,B)

p(B)
, (4.26)

and similarly, the conditioned density of a variable x given y is

px|y(x, y) =
pxy(x, y)

py(y)
. (4.27)

It is noticeable that if two variables are independent, the Equation 4.27 and Equation 4.19
give px|y(x, y) = px(x), since the knowledge of y gives no additional informations on x.

With the aims of a simplification of the notation, the precise writing of the distribution
function are usually discarded and the notation is simplified as in the following:

px(x) ≡ p(x) (4.28)
pxy(x, y) ≡ p(x, y) (4.29)
px|y(x, y) ≡ p(x|y) (4.30)

i.e., the arguments of the density function are discarded and the meaning of the density
is put in the arguments. This notation allows to treat probability of events and random
variables in a unified manner.

The total probability theorem states that marginal distribution of random variables can
be obtained by conditional probability as

p(x) =

∫ +∞

−∞
p(x, y)dy =

∫ +∞

−∞
p(x|y)p(y)dy, (4.31)

thanks to the definition of conditioned density of Equation 4.27.
The conditional density of variable x given y can be expressed by its reverse condi-

tioning through the Bayes Formula

p(x|y) =
p(y|x)p(x)

p(y)
. (4.32)

A common interpretation of this formula calls p(x|y) the posterior density function and
p(x) the prior:

• the prior p(x) represent an initial degree of belief on the value of the random variable
x,

• p(y|x) is the evidence from the data, i.e., the likelihood of observing y given x,

• the combination of prior belief with the evidence from the data gives the posterior
p(x|y).
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4.1.6 Conditional Independence
Consider the more general case of the conditioned density p(x|y, z), i.e, the probability
density function of a variable x given the couple of variables y and z. The generalization
of Equation 4.27 gives

p(x|y, z) =
p(x, y|z)
p(x|y)

. (4.33)

and x and y are said to be conditionally independent given z if

p(x, y|z) = p(x|z) p(y|z), (4.34)

or equivalently

p(x|y, z) = p(x|z), (4.35)

i.e., y does not provide any additional information on x if z is given. The conditional
independence does not imply the independence, i.e., in general p(xy) 6= p(x)p(y).

4.1.7 Gaussian Random Variables and Vectors
A variable x is a Gaussian or Normal random variable if its pdf has the form

px(x) = N (µ, σ) =
1√
2π σ

e

{
− (x−µ)2

2σ2

}
(4.36)

where the arguments are the mean µ and the standard deviation σ. The notation x ∼
N (µ, σ) is used to indicate that x has a Gaussian pdf. Its generalization to random vectors
is indicated with x ∼ N (µ,Σ) where n is the number of variables in the vector x, µ is
the n element vector of means and Σ is the n× n covariance matrix. The joint pdf is

x ∼ N (µ,Σ), (4.37)

px(x) = N (µ,Σ) =
1

(2π)
n
2 det (Σ)

1
2

exp

{
−1

2
(x− µ)

T
Σ−1 (x− µ)

}
.(4.38)

A very important properties of Gaussian random variables is that they remains Gaus-
sian under linear transformations. Let consider x ∼ N (µ,Σ), i.e., a Gaussian random
vector with n elements, A an m × n matrix and b an n elements real vector. The vector
defined by

y = Ax + b (4.39)

is a Gaussian random vector with the following parameters:

y ∼ N (Aµ+ b,AΣAT ). (4.40)

Moreover, Gaussian Random Vectors have nice properties considering their condi-
tional probability. Let consider a Gaussian random vector y ∼ N (µy,Σy) partitioned in
two vectors x and z:

y =

[
x

z

]
. (4.41)
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It is easy to notice that the mean vector can be easily decomposed in

µy = E[y] =

[
µx

µz

]
=

[
E[x]

E[z]

]
, (4.42)

and the covariance matrix can be partitioned and expressed as a block matrix

Σyy = COV(y) =

[
COV(x,x) COV(x, z)

COV(z,x) COV(z, z)

]
=

[
Σxx Σxz

ΣT
xz Σzz

]
, (4.43)

where COV(z,x) = COV(x, z)T due to the symmetries of the covariance matrix.
The conditional pdf of x given z when x and z are jointly Gaussian is

px|z(x, z) =
pxz(x, z)

pz(z)
=

1√
2π det(Σyy)

exp
{
− 1

2

(
x− µy

)T
Σ−1

yy

(
x− µy

)}
1√

2π det(Σzz)
exp

{
− 1

2 (x− µz)
T

Σ−1
zz (x− µz)

} , (4.44)

and it is possible to demonstrate, after some manipulation, that it remains a Gaussian pdf
with the following parameters

px|z(x, z) ∼ N (µx|z,Σx|z), (4.45)

µx|z = µx + ΣxzΣ
−1
zz (z− µz), (4.46)

Σx|z = Σxx −ΣxzΣ
−1
zz Σzx. (4.47)

The above relations are usually called fundamental equation of linear estimation.

4.1.8 Chi-Square Distributed Random Variables
Given a n-dimensional Gaussian random vector x with mean E[x] = µx and covariance
matrix COV[x] = Σx, the Gaussian (scalar) variable that results from the quadratic form

y = (x− µx)TΣ−1
x (x− µx), (4.48)

can be shown to be the sum of the squares of n independent zero-mean unit-variance Gaus-
sian random variables, resulting in a chi-square distribution with n degrees of freedom.
The chi-square distribution is usually indicated as

y ∼ χ2
n. (4.49)

The mean and covariance of y are respectively E[y] = n and VAR[y] = 2n. The cu-
mulative distribution function of the chi-square distribution is expressed with the function
Fχ2

n
(q), thus the probability of y < q can be expressed as

p(−∞ < y ≤ q) = Fχ2
n
(q). (4.50)

The inverse of the cdf, expressed with F−1
χ2
n

(α), expresses, given a probability α ∈ [0, 1],
the value which the random variable will be at, or below, with α probability.
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4.1.8.1 Mahalanobis Distance

The Mahalanobis distance, introduced in [58] by P. C. Mahalanobis, measures the distance
between a sampled random vector and its expected value taking into accounts the covari-
ances between its elements. Considering a random vector x with mean vector µx and
covariance matrix Σx, the Mahalanobis distance of x from µx is defined as

d =

√
(x− µx)TΣ−1

x (x− µx). (4.51)

It can be noticed that, if the x random vector is distributed as a multivariate Gaussian ran-
dom vector with mean µx and covariance matrix Σx, the square value of the Mahalanobis
distance (d2) is distributed as a chi-square variable with n degrees of freedom, where n is
the cardinality of x vector:

d2 ∼ χ2
n. (4.52)

The Mahalanobis distance is equivalent to the Euclidean distance if the covariance
matrix is the identity matrix, i.e., if x is composed by n independent random variables with
variance equal to 1. When the covariance matrix is diagonal, i.e., variables of the random
vector are independent, but with different variance, the Mahalanobis distance results in an
Euclidean distance weighted with the standard deviation of each variable. In the general
cases, the Mahalanobis distance allows to evaluate the distance in terms of probability:
two samples x1 and x2 of the random vector x have the same Mahalanobis distance if
they are equally distant from the mean value µx with the same probability density. This
concept is intuitively described in Figure 4.1, where the Mahalanobis distance is compared
with the Euclidean distance in a bivariate case.

4.2 Bayesian Filtering and the Extended Kalman Filter

The Bayes Filter (or Recursive Bayesian estimator) is a general probabilistic approach for
estimating an unknown probabilistic density function using indirect measurements and a
model of state transition. A particular implementation of the Bayesian filter is the Kalman
Filter, that works with linear models acting on continuous variables with Gaussian distribu-
tion. The Extended Kalman Filter works on nonlinear models by applying linearizations.
The materials presented in this section can be deepened in [102], [3] and [34].

4.2.1 General Bayes Filter
Consider a generic multivariate random variable xk that changes over the discrete time k
and measurements zk that are observation of the state itself. Under the hypothesis that the
state evolution is a Markov process, the probability density function of the state at cur-
rent time given the previous state value is conditionally independent on the earlier states,
measurements and inputs:

p(xk|xk−1,xk−2, . . . ,x0, zk−1, . . . , z1, ) = (4.53)
p(xk|x0:k−1, z1:k−1) = p(xk|xk−1), (4.54)

where x0:k−1 is a compact notation for x0,x1, . . . ,xk−2,xk−1. This hypothesis is also
known as state completeness, since the knowledge of the last state allows to predict the
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x1

x2

x3

x4

µx

Σx

Figure 4.1: Comparison of Euclidean and Mahalanobis distances. The bivariate random
vector x with the 2 × 2 covariance matrix Σx and the mean vector µx is represented
by the ellipse centered in µx that represents the contours of the density function. Let
consider the pair of sampled points x1 and x2. They lie on the same circumference
centered in µx, thus they are equidistant from the mean µx in terms of Euclidean
distance but x1 is closest to the mean than x2 in terms of Mahalanobis distance, i.e., it
is more probable to obtain the sample x1 than x2 from the random vector x. Consider
now the points x3 and x4. Theirs Euclidean distance from the mean is obviously
different, while the Mahalanobis distance is the same, since they lies on the ellipse
described by Σx centered in the mean. Consequently it is equally probable to obtain
the samples x3 and x4.

current state in the best way. p(xk|xk−1) is the state transition probability and it describes
the stochastic evolution of the state.

Furthermore, if measurements are observed states of an Hidden Markov Model (HMM),
i.e., measurements at current time are conditionally independent of all other states given
the current state, the state xk is sufficient to predict in the best way the measure zk through
measurement probability:

p(zk|x0:k, z1:k−1) = p(zk|xk). (4.55)

The Bayesian optimal filter computes the posterior distribution,

p(xk|z1:k), (4.56)

i.e., the distribution of probability of the state given all the measurement up to the cur-
rent time given the prior distribution p(x0) and the complete measurement sequence z1:k

through two steps: the prediction step and the update step.
The prediction step aims to calculate the probability distribution p(xk|z1:k−1), i.e., the

distribution probability of xk using past measurements (up to z1:k−1). Assuming to know
the distribution

p(xk−1|z1:k−1), (4.57)

i.e., the posterior distribution at the previous time step, the joint distribution of the current
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and the previous state can be computed as

p(xk,xk−1|z1:k−1) = p(xk|xk−1, z1:k−1)p(xk−1|z1:k−1) (4.58)
= p(xk|xk−1)p(xk−1|z1:k−1), (4.59)

and integration over all possible xk−1 gives

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1, (4.60)

that is desired distribution of the prediction step.
The update step complete the calculation of the posterior distribution p(xk|z1:k), that

can be expressed, thanks to the Bayes Rule, in the recursive form

p(xk|z1:k) =
p(zk|xk, z1:k−1)p(xk|z1:k−1)

p(zk|z1:k−1)
(4.61)

=
p(zk|xk)p(xk|z1:k−1)∫

p(zk|xk)p(xk|z1:k−1)dxk
. (4.62)

The update step aims to integrate the current measure zk to refine the prediction carried
out at the first step.

4.2.2 Kalman Filter
The Kalman Filter and generally the family of Gaussian Filters constitute the earliest
tractable implementation of the Bayes Filter for continuous state space. It was introduced
by R. E. Kálmán in 1960 in [44] and it has been the subject of extensive research and
applications, particularly in the area of autonomous or assisted navigation. The underlying
basic hypothesis is that the posterior distribution of Equation 4.56 is a multivariate normal
distribution. This hypothesis is verified under the recurrent formula of Equation 4.62 if the
three next assumptions are valid:

• The initial probability distribution follows a Gaussian distribution

p(x0) ∼ N (µ0,Σ0), (4.63)

with µ0 the n dimensional vector of the initial mean and Σ0 the n×n matrix of the
initial covariance.

• The state transition probability is a linear function of Gaussian variables

xk = Akxk−1 + Buk + ηk, (4.64)

where

– Ak is a n × n time dependent matrix that relates the previous state with the
current state,

– xk−1 is the previous state, normally distributed by assumption,

– uk is a p vector of deterministic external inputs,
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– Bk is a n× p matrix that express how current inputs affects the current state,

– ηk is a zero-mean n elements Gaussian variable that represent unmodeled
noises, i.e., ηk ∼ N (µηk ,Σηk)

• The measurement probability is a linear function of Gaussian variables

zk = Ckxk + δk, (4.65)

where

– Ck is a m× n matrix that transforms the state to the measurement

– δk is a zero-mean m elements Gaussian variable that represents unmodeled
noises in the measurement process, i.e., δk ∼ N (µδk ,Σδk), and it is uncor-
related with ηk.

These assumptions make easy the computation of the distribution after the prediction
step and after the update step. The prediction step stated in Equation 4.64 is a linear
function of Gaussian variables and deterministic terms, thus the distribution p(xk|z1:k−1)
can be easily computed as the resulting Gaussian variable

p(xk|z1:k−1) ∼ N (µ̂k, Σ̂k), (4.66)
µ̂k = Akµk−1 + Bkuk, (4.67)

Σ̂k = AkΣk−1A
T
k + Σηk . (4.68)

For the calculation of the update step, let consider a new variable ε = [xTk , zTk ]T . It is
a n + m elements multivariate Gaussian variable p(ε) = p(xk, zk|z1:k−1) ∼ N (µε,Σε)
with

µε =

[
µ̂k

Ckµ̂k

]
, (4.69)

Σε =

[
Σ̂k Σ̂kC

T
k

CkΣ̂k CkΣ̂kC
T
k + Σδk

]
. (4.70)

To compute the result after the update step p(xk|z1:k) it is possible to condition xk with
zk, that is a new Gaussian variable with

p(xk|zk) ∼ N (µk,Σk), (4.71)

µk = µ̂k + Σ̂kC
T
k

(
CkΣ̂kC

T
k + Σδk

)−1

(zk −Ckµ̂k), (4.72)

Σk = Σ̂k − Σ̂kC
T
k

(
CkΣ̂kC

T
k + Σδk

)−1

CkΣ̂k, (4.73)

that could be rewritten as

S = CkΣ̂kC
T
k + Σδk , (4.74)

K = Σ̂kC
T
k S−1, (4.75)

µk = µ̂k + K(zk −Ckµ̂k), (4.76)

Σk = Σ̂k −KCkΣ̂k, (4.77)
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where S is the covariance matrix of the Gaussian distribution p(zk|z1:k−1) and K is the
Kalman gain, which aims to correct the mean of the estimation thanks to the difference
between the effective values of zk and its prediction from state (Ckµ̂k) and correct the
covariance estimation too.

The complete algorithm that performs an estimation step in the Kalman Filter is sketched
in Algorithm 2.

Algorithm 2 [µk,Σk] = KF(µk−1, Σk−1, uk, zk, Ak, Bk, Ck, Σηk , Σδk )

1: µ̂k = Akµk−1 + Bkuk
2: Σ̂k = AkΣk−1A

T
k + Σηk

3: S = CkΣ̂kC
T
k + Σδk

4: K = Σ̂kC
T
k S−1

5: µk = µ̂k + K(zk −Ckµ̂k)

6: Σk = Σ̂k −KCkΣ̂k

4.2.3 Extended Kalman Filter
Most real systems do not comply with the assumptions made for the Kalman filter. Espe-
cially, the linear relation in the state transition function and in the measurement process is
too strict for most of real problems. Thus, a simple solution that allows to treat nonlinear
functions is to linearize them through first order Taylor expansion.

Let consider the state transition governed by a generic function f(·) such that

xk = f(xk−1,uk,ηk). (4.78)

The prediction step can be performed as

p(xk|z1:k−1) ∼ N (µ̂k, Σ̂k), (4.79)
µ̂k = f(µk−1,uk,ηk = 0) (4.80)

Σ̂k ' FxΣk−1F
T
x + FηΣηkF

T
η (4.81)

where

Fx =
∂f(x,u,η)

∂x

∣∣∣∣
x=µk−1,u=uk,η=0

, (4.82)

is the Jacobian of the function f(·) with respect to the state variable evaluated at the last
estimation of the state mean µk−1, with the current input uk and assuming no noises;

Fη =
∂f(x,u,η)

∂η

∣∣∣∣
x=µk−1,u=uk,η=0

, (4.83)

is the Jacobian of the function f(·) with respect to the noise variables evaluated at the last
estimation of the state mean µk−1, with the current input uk and assuming no noises.

58



4.3. Non Linear Least Squares Optimization

Similarly, the measurement is given by a function h(·) of the state, some noises, and,
to be general, some deterministic input in a q elements vector v:

zk = h(xk−1,vk, δk). (4.84)

The update step can be performed as

S ' HxΣ̂kH
T
x + HδΣδkH

T
δ , (4.85)

K = Σ̂kH
T
x S−1, (4.86)

ĥ = h(µ̂k,vk, δk = 0), (4.87)

µk = µ̂k + K(zk − ĥ), (4.88)

Σk = Σ̂k −KHxΣ̂k, (4.89)

where

Hx =
∂h(x,v, δ)

∂x

∣∣∣∣
x=µ̂k,v=vk,δ=0

, (4.90)

is the Jacobian of the function h(·) with respect to the state variables evaluated at the last
estimation of the state mean µ̂k−1, with the current input vk, assuming no noises, and

Hδ =
∂f(x,v, δ)

∂δ

∣∣∣∣
x=µ̂k,v=vk,δ=0

. (4.91)

is the Jacobian of the function h(·) with respect to the noise variables evaluated at the last
estimation of the state mean µ̂k−1, with the current input vk, assuming no noises.

The complete algorithm that performs an estimation step in the Extended Kalman Filter
is sketched in Algorithm 3.

Algorithm 3 [µk,Σk] = EKF(µk−1, Σk−1, uk, vk, zk, f(·), h(·), Fx, Fη , Hx, Fδ , Σηk ,
Σδk )

1: µ̂k = f(xk−1,uk,ηk = 0)

2: Σ̂k = FxΣk−1F
T
x + FηΣηkF

T
η

3: S = HxΣ̂kH
T
x + HδΣδkH

T
δ

4: K = Σ̂kH
T
x S−1

5: ĥ = h(µ̂k,vk, δk = 0)

6: µk = µ̂k + K(zk − ĥ)

7: Σk = Σ̂k −KHxΣ̂k

4.3 Non Linear Least Squares Optimization

The optimization is the choice of an input value from within an allowed set that max-
imize or minimize a real function. In particular, here two Non Linear Least Squares
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(NLLS) techniques are presented: the Gauss-Newton method and a variation of it named
Levenberg-Marquardt algorithm. A good introduction to non linear least squares methods
can be found in [57], while a more detailed analysis can be found in [33] and [22]. For
The method of least squares is a standard approach to the approximate solution of linear
overdetermined systems, i.e., sets of equations in which there are more equations than
unknowns. The overall solution minimizes the sum of the squares of the errors made in
the results of every single equation. Non-linear least squares is the form of least squares
analysis which is used to fit a set of m observations with a model that is non-linear in n
unknown parameters with m > n.

Let consider the problem of finding the minimum of a function with this form:

F(x) = e (x)
T

Ω e (x) , (4.92)
x∗ = argmin

x
F(x), (4.93)

where

• x is a n elements vector of parameters to estimate,

• e(·) is function Rn → Rm with m ≥ n,

• Ω is a m×m information matrix (i.e., the inverse of a covariance matrix) that acts
as weight on e(·) elements.

Supposing that an initial estimation of x parameters sufficiently close to the optimum is
known, the first order Taylor approximation of F(x + ∆x) can be considered in order to
find the minimum point with an iterative procedure:

F(x + ∆x) = e (x + ∆x)
T

Ω e (x + ∆x) (4.94)

' [e (x) + J∆x]
T

Ω [e (x) + J∆x] (4.95)

= e (x)
T

Ω e (x) + e (x)
T

ΩJ∆x + (4.96)
∆xTJTΩe (x) + ∆xTJTΩJ∆x (4.97)

= e (x)
T

Ω e (x)︸ ︷︷ ︸
c

+2 e (x)
T

ΩJ︸ ︷︷ ︸
bT

∆x + ∆xT JTΩJ︸ ︷︷ ︸
H

∆x (4.98)

= c+ 2bT∆x + ∆xTH∆x, (4.99)

where

J =
∂e (x̃)

∂x̃

∣∣∣∣
x̃=x

, (4.100)

is the m × n Jacobian matrix of the error function evaluated at the current value of the x
parameters and H is the information matrix of the system. The formula in Equation 4.99
is a quadratic form and can be minimized by solving the linear system

H∆x∗ = −b, (4.101)

through Cholesky decomposition, QR decomposition or with iterative methods. A new
point for the linearization is obtained by adding the solution ∆x∗ to the current parameters
vector x

x = x + ∆x∗. (4.102)
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The popular Gauss-Newton minimization algorithm iterates, starting with a initial guess
x0, through the following steps

1. the linearization shown in Equation 4.99,

2. the computation of the solution of Equation 4.101,

3. the update of the estimation of Equation 4.102,

until a given termination criterion is reached. Some common stop criterion are

• Maximum number of iteration reached

• Stability in the update, i.e., ‖x‖ < εx

• Stability in the function value, i.e., |F(x + ∆x)− F(x)| < εF

Algorithm 4 x∗ = Gauss-Newton(x0, e (x̃), ∂e(x̃)
∂x̃ , Ω)

1: x = x0

2: repeat
3: J = ∂e(x̃)

∂x̃

∣∣∣
x̃=x

4: b = e (x)
T

ΩJ
5: H = JTΩJ
6: solve H∆x∗ = −b for ∆x∗

7: x = x + ∆x∗

8: until termination criterion
9: x∗ = x

The complete Gauss-Newton minimization algorithm is sketched in Algorithm 4. It
can be shown (see [22]) that the increment ∆x is a descent direction and, if the algorithm
converges, then the limit is a stationary point for F. Convergence is guaranteed if the re-
gion in which F(x) < F(x0) is bounded and J has full rank in all steps. Notice that if
there is a linear dependency between columns of J, the H matrix becomes singular. Con-
vergence rate can approach quadratic, but in general we must expect linear convergence.

4.3.1 Non-Euclidean Spaces
The considered Taylor approximation of Equation 4.99 and the update step of Equa-
tion 4.102 assume that the space of parameters vector x is Euclidean. In general this
is not true, thus a common approach is to express the increments ∆x in a space different
from x. Moreover, there are cases in which it is necessary to use an over-parametrized
representation of space to avoid singularities (e.g., the case of quaternions, which use 4 el-
ements to represent rotations in 3D) and this causes close to singular or singular H matrix,
thus preventing from convergence of the minimization.

A solution that copes with non-Euclidean spaces is to consider ∆x as a perturbation
vector around x such that the composition of the displacement is not simply the summation
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of the vectors, but a generic function expressed by the operator �. Thus, Equation 4.102
will be changed in

x = x � ∆x, (4.103)

where ∆x is a vector of r elements, with r potentially different from n. Thus, � is a
functional operator Rn × Rr → Rn. This implies that the Equation 4.99 becomes

F(x � ∆x) = e (x � ∆x)
T

Ω e (x � ∆x) (4.104)

' [e (x) + J∆x]
T

Ω [e (x) + J∆x] (4.105)
(4.106)

where

J =
∂e (x̃ � ∆x)

∂∆x

∣∣∣∣
∆x=0, x̃=x

(4.107)

is the m × r Jacobian matrix evaluated at the current estimation x considering a null
increment ∆x.

4.3.2 Levenberg-Marquardt Algorithm
The Levenberg-Marquardt algorithm introduces a scalar constant λ on the main diagonal
of the H to control algorithm convergence, solving

(H + λI) ∆x∗ = −b (4.108)

instead of Equation 4.101. The higher is λ, the smallest is the step ∆x. This is useful
to control the step size on nonlinear surfaces by monitoring the error trend: if the er-
ror decreases with respect to the previous iteration, λ is decreased and a new iteration is
performed, otherwise the previous solution is reverted and λ is increased. Moreover, the
Levenberg-Marquardt is able to treat natively problems where the Hessian matrix H re-
sults to be singular, although this condition has to be avoided, since it is symptom of an
improperly defined problem.
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CHAPTER5
Simultaneous Localization And Mapping

One of the most fundamental problems in mobile robotics, but not solely robotics, is the so
called Simultaneous Localization And Mapping (SLAM) problem. It asks if it is possible
for a mobile robot to be placed at an unknown location in an unknown environment and to
incrementally build a consistent map of this environment while simultaneously determin-
ing its location within this map. A solution to the SLAM problem has been seen as a “holy
grail” for the mobile robotics community as it would make a robot truly autonomous, as
stated in [26].

SLAM has been formulated and solved as a theoretical problem in a number of differ-
ent forms and it has also been implemented in a number of different domains from indoor
robots to outdoor, underwater, and airborne systems. At a theoretical and conceptual level,
SLAM can now be considered a solved problem. However, there are still a large num-
ber of issues that need to be addressed in order to develop and deploy complete SLAM
applications.

In this chapter we introduce the SLAM problem statement, comparing it with the “sim-
pler” problems of localization and mapping. Then we give a short review of the SLAM
history, citing some applications presented in the literature. Starting from the probabilis-
tic formulation of the SLAM problem we describe one of the most studied approach to
the SLAM: the on line EKF-SLAM algorithm. An alternative formulation is the Graph
Formulation, that describes the problem as a optimization problem on a graph. The last
section of this chapter describes a recent framework, i.e., the Conditional Independence
Sub-Mapping SLAM, that can be applied to the EKF-SLAM algorithm to address large
scale problems, i.e., problems with large maps and long explored paths.
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(a) Localization (b) Mapping

Figure 5.1: An intuitive sketch of (a) localization problem, (b) mapping problem. Map
elements (landmarks) are the stars, the triangle is the the robot; ellipses represent
elements with uncertainties; gray landmarks are not mapped yet.

5.1 SLAM Problem Statement

To introduce SLAM problem, it is useful to step back to the simpler problems of local-
ization and mapping. The localization problem can be seen as the ability for a robot (or a
generic mobile device) to answer to the question “where am I?”, i.e., to localize itself with
respect to a known map using proprioceptive information provided by one or more sen-
sors. Let suppose that the robot cannot sense its pose directly (i.e., it does not have a sort
of GPS system), but it can sense where some salient elements of the map (or landmarks)
are. The localization problem can be seen as a problem of coordinate transformation: the
map is known with respect to a global reference system, the observations are referenced to
the actual robot position and the unknown is the robot position with respect to the global
reference system. It should be noticed that localization problem solutions have to take in
account noise in sensor measurements.

On the other hand, the mapping problem can be seen as the ability for a robot to an-
swer to the question “how is the environment in which I operate?”. This can be achieved
by merging time by time the sensors observations to provide a complete map of the en-
vironment, assuming that the position of the robot is precisely known at each time step.
The map building process has to take into account noise in sensor measurements in order
to build a consistent and precise map with information integrated over time. Figure 5.1(a)
and Figure 5.1(b) give respectively a quick view of the localization and mapping prob-
lems, the stars representing the landmarks in the map and the triangles representing the
robot poses in time. Shaded ellipses around objects represent uncertainties: in localization
uncertainties are in the robot pose, while in mapping they are on the landmark position.

The SLAM problem is the combination of the localization and mapping problem. It
asks if it is possible for a mobile robot to be placed at an unknown location in an unknown
environment and to incrementally build a consistent map of this environment while simul-
taneously determining its location within this map. The SLAM problem can be formulated
as the question “How can a mobile robot operate in an a priori unknown environment and
use only onboard sensors to simultaneously build a map of its workspace and use it to
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Figure 5.2: An intuitive sketch of the SLAM problem. Map elements (landmarks) are the
stars, the triangle is the the robot; ellipses represent elements with uncertainties; gray
elements are unknown; gray landmarks are not mapped yet.

navigate?”1. In SLAM the robot incrementally builds the map of the environment while
simultaneously localizing itself in the map. The problem is sketched in Figure 5.2, where it
is clearly shown that uncertainties are both on landmarks positions and robot poses. More-
over, robot pose uncertainty and map uncertainties are correlated, since the localization
is performed on an uncertain map and the map in turn is build using an uncertain robot
pose. Intuitively localization problem and mapping problem are “simpler” than the SLAM
problem.

An underneath issue for all the three presented problems is the so called data asso-
ciation problem [1]. Considering for simplicity the localization problem, we state that
sensors are able to produce some measurements of the surrounding landmarks. These
measurements are useless for localization if they are not associated with specific land-
marks in the map, e.g., it is useless to know that there is a wall at three meters in front
of the robot without knowing if the wall is the northern or the southern of the room. The
difficulty of the data association problem varies depending on the specific application.
Let consider an example: if our robot is moving in a very simple environment with few
landmarks distinguishable by color, the data association can be easily solved by the color
association; more complex is the case in which all landmarks are not distinguishable, for
instance when they are blank circles in the environment. The data association problem
covers an important role in the definition of the algorithms for the solution of localization,

1As stated by Prof. Paul Newman, Principal Investigator of Mobile Robotics Group, Oxford, in an article
appeared on the Issue 4 of SOUE news, the magazine of the Society of Oxford University Engineers (http:
//www.soue.org.uk/souenews/issue4/mobilerobots.html)
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Figure 5.3: The SLAM functional block with its inputs (both proprioceptive and extero-
ceptive) and outputs (the estimated trajectory and the estimated map).

mapping and SLAM problems. Poor performance in data association prevents algorithms
from obtaining a valid solution, and perfect data association is very uncommon in real
applications. For the purpose of this work we consider that the data association is given
but with the presence of some outliers. In particular we consider that the data association
can be performed by some distinguishable characteristics of the landmark perceived by the
measurement apparatuses but this can introduces spurious results that have to be detected
by an outliers rejection system.

In summary, at this stage we consider the SLAM as a functional blocks with inputs and
outputs, reported in Figure 5.3. It receives as input the exteroceptive measurements, i.e.,
the environmental measurements acquired by sensors, and the proprioceptive measure-
ments, i.e., the informations that the robot, or the moving apparatus, knows about its own
movements, e.g., odometric informations, inertial measurements or control inputs. The
proprioceptive measurements can be absent, resulting in a SLAM approach that is based
only on environmental observations. The output of the SLAM system is the estimation
robot trajectory at each time step and the map estimation. The map has to be represented
for the purpose of this work with geometrical entities, e.g., points, lines or planes.

5.2 SLAM History and Applications

The genesis of the probabilistic SLAM problem is set, according to [26], in the 1986
IEEE Robotics and Automation Conference held in San Francisco, California, where a
group of researchers had been looking at applying probabilistic and estimation theoretic
methods to localization and mapping problems. In few years, a number of key papers
were produced and they laid the foundations for successive investigations. Among them
we can cite [87], [25], [88] and [51]. These works put in evidence that the map of the
environment, incrementally build during the exploration as a set of landmark positions,
is fully correlated with the robot position. Consequently, the simultaneous localization
and mapping problem, also know at early stages as concurrent localization and mapping
(CML), has to be addressed by the continuous estimation of the joint state composed by the
vehicle pose and the landmarks, resulting in a huge state vector that grows with the number
of observed landmarks. The computational complexity of the problem was intractable,
thus the most of the following works concentrated in approximating the problem, assuming
or forcing the correlations to be deleted. The most important works in this period were
based on sonar sensors, as in [52] and [80].

A fundamental step was performed when it was demonstrated that approximations in
the estimation process prevent the solution from convergence. This was definitely clear
in [24], where the acronym SLAM was coined. After this, several research groups all
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around the world have deeply investigated the SLAM problem, proposing applications in
indoor, outdoor and underwater environments. Consequently, numerous dedicated session
in conferences and symposium have been attracting an exponential number of researchers
and student. Similarly, summer schools and courses on SLAM techniques have been on
the crest of the wave up to now.

SLAM applications now exists in a wide variety of domains, including indoor envi-
ronment [12] [19], outdoor [28] [36], aerial [45] and underwater [27] [71]. Various exte-
roceptive sensors types have been used, such as sonars [12] [71], laser scanners [18] and,
more recently, vision [19]. In particular, the latter is the context in which this work takes
place, thus more details and references related to Visual SLAM will be given in this and
in the next chapters.

5.3 Probabilistic Formulation

The desired output of a SLAM system, i.e., the solution of the SLAM problem, is the
estimation of the robot trajectory and the map of the explored environment. Estimation
has to take in account noise in sensor measurements, thus a SLAM problem can be de-
scribed in terms of probability distributions. Naming Γ the robot pose (i.e., the position
and orientation of the robot) expressed with respect to a “world” reference frame, the
complete trajectory of the robot can be described by the sequence of random variables
Γ1:T = {Γ1,Γ2, . . . ,ΓT−1,ΓT }. To be general, we assume that the robot knows its
movement at each time step, i.e., it has a set of inputs represented by the random variables
sequence u1:T = {u1,u2, . . . ,uT−1,uT }. These input are usually represented by read-
ings of odometric sensors, by measurements of an Inertial Measurement Unit (IMU) or by
controls given to the motors, but in some cases they can be absent at all. The environment
is represented by a random variable m representing the map. The map m, in turn, is rep-
resented by a set of random variables yi, each of them representing a single landmark of
the environment m = {y1, . . . ,yn}. It can be noticed that the map is independent from
time, i.e., we are assuming that the map, namely each landmark, is static, thus it is not
necessary to estimate mt for each time step t. This is not the unique possible formulation
for the SLAM problem. For instance, it is possible to formulate a more complex problem
discarding the assumption on static landmarks (e.g., in [89]).

Solving the so called full SLAM problem consist in the estimation of the posterior
probability

p(Γ1:T ,m|z1:T ,u1:T ,Γ0), (5.1)

i.e., the joint probability of the trajectory and the map given all environmental measure-
ments, input and the initial pose Γ0. The initial pose is arbitrary and can be chosen freely;
changes in the initial pose result in a roto-traslated solution, therefore it is common to as-
sume the start pose in the origin and to omit the term Γ0 from the probabilistic formulation
to ease notation.

The so called on-line SLAM problem marginalize out all past poses of the trajectory,
focusing on the estimation of the last (or current) pose and the map:

p(ΓT ,m|z1:T ,u1:T ,Γ0), (5.2)
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u1 u2 u3

Γ0 Γ1 Γ2 Γ3

y1 y2 y3 y4 y5 y6

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16

Figure 5.4: Dynamic Bayesian Network (DBN) of the full SLAM problem.

and, considering the Markov assumption on the state completeness we can reformu-
late Equation 5.2 in a recursive form:

p(ΓT ,m|zT ,uT ,ΓT−1). (5.3)

The SLAM problem can be easily and conveniently represented by a Dynamic Bayesian
Network (DBN) too. The DBN for the full SLAM problem, depicted in Figure 5.4,
presents one node for each random variable involved in the estimation process and the
directed edges between nodes represent the conditional dependences. Cyan nodes repre-
sents the observed variables (sensor readings and landmarks measurements), white nodes
are the hidden variables that are the subject of the estimation. The node Γ0 is square to
enhance its particular role, since it is not involved in the estimation.

The connectivity of the DBN follows the Recursive Bayesian Filtering pattern intro-
duced in Section 4.2.1. The state transition probability is expressed by

p(Γk|Γk−1,ut), (5.4)

and it is represented by the two edges entering in a Γ node. The measurement probability

p(zi|Γk,yj) (5.5)

expresses the probability of the i-th measure zi obtained when the robot is located at Γk
and sensors are measuring the j-th landmark. In the DBN formulated above, measure-
ments are represented by the arrows entering in the z nodes.
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5.4 EKF Based On-Line SLAM

In the previous section we introduced the SLAM problem in the realm of recursive Bayesian
filtering. Here, we focus on the use of the Extended Kalman Filter (EKF) presented in Sec-
tion 4.2.3 to solve the on-line SLAM problem, called EKF-SLAM [102]. This is a specific
application of the EKF to recursively estimate, from environmental measurements, the
joint distribution of the actual robot pose and landmarks in the environment as a single
multidimensional Gaussian distribution. In the reminder of this section, the basic tech-
niques that allow to treat the EKF-SLAM problem in real time, taking advantage from the
particular structure of the problem are presented together with the definition of the state
vector, the prediction step equations and the measurement equations. All the involved
equations are introduced in a general form, without any reference to the specific SLAM
implementations based on specific sensorial apparatuses.

5.4.1 State Vector
In EKF-SLAM, the state of the filter xk, at step k, is composed by the current robot pose
Γk, including both translation and orientation, in a world reference frame and the map mk

represented by a set of landmarks mk = {yik}. Each landmark encodes in some way
the position and eventually other characteristics of a single landmark of the environment
with respect to the world reference frame. Some other parameters Λt, describing robot
motion (e.g., tangential and rotational speed or accelerations), could be part of the EKF
state as well and they could be represented with respect to the robot reference frame or
the world reference frame, in accordance with the specific motion model of the system.
This formulation of the EKF SLAM problem is the most intuitive, it is called the world
centric SLAM; it has some nice properties that will be introduced in the next paragraphs.
An alternative formulation is the so called robocentric SLAM, that refers landmarks to
the last robot position. We do not consider this formulation hereafter, although it has good
properties clearly showed in [16] [61] at the cost of an increased computational complexity.

The complete state of the filter is thus represented as:

xt =
[

ΓTk ΛT
k y1

T
k y2

T
k . . . yn

T
k

]T
, (5.6)

and the EKF-SLAM algorithm follows the steps described in Algorithm 5 to update re-
cursively the state mean estimation µk, together with its covariance matrix Σk. In the
following, this algorithm will be explained in details.

5.4.2 Initialization
Unless we have some prior information, at t = 0 we start with an empty map and the
initial robot pose is usually considered as the origin of the world (let name it Γ̄T0 ) with
no uncertainty. Furthermore, if we are considering some parameters to describe the robot
motion, we can initialize them as zero or with a specific mean value (name it Λ̄0), with a
non zero initial covariance (ΣΛ0 ):

µ0 =
[
Γ̄T0 , Λ̄T

0

]
, Σ0 =

[
0 0

0 ΣΛ0

]
. (5.7)
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Algorithm 5 EKF-SLAM

1: # Initialization

2: k ← 0, µk ←

[
Γ̄0

Λ̄0

]
, Σk ←

[
0 0

0 ΣΛ0

]
.

3: loop
4: # Prediction step
5: k ← k + 1

6: µ̂k =

[
fD(Γ̄k−1, Λ̄k−1, ūk,ηk = 0)

m̄k−1

]

7: Σ̂k =

[
FDΣDDk−1F

T
D + FDηΣηFTDη FDΣDmk−1

ΣT
Dmk−1F

T
D Σmmk−1

]
8: # Measurement step
9: h← ∅, z← ∅, H← ∅, R← ∅

10: for all yik do
11: hi = hi(µk,vi, δi = 0)
12: if zi is compatible with hi then

13: h←

[
h

hi

]
, z←

[
z

zi

]
, H←

[
H

Hix

]
, R← diag(R, HiδΣδHiδ)

14: end if
15: end for
16: # Update step
17: if h 6= ∅ then
18: S← HΣ̂kH

T + R
19: K← Σ̂kH

TS−1

20: µk ← µ̂k + K(z− h)

21: Σk ← Σ̂k −KSKT

22: else
23: µk ← µ̂k, Σk ← Σ̂k

24: end if
25: # New landmark addition
26: for all new_measurement s do
27: ȳnew = g(µk, s̄, ξ = 0)

28: µk ←

[
µk

ȳnew

]
, Σk ←

 ΣDDk ΣDmk ΣDDkG
T
D

ΣDm
T
k Σmmk ΣDm

T
kGT

D

GDΣDDk GDΣDmk GDΣDDkG
T
D + GξΣξG

T
ξ


29: end for
30: end loop
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5.4.3 Prediction Step
At each iteration, we perform the prediction step of the Extended Kalman filter; this step
aims at the prediction of the next system state, using prior state values and an optional
control input uk while assuming a non additive Gaussian noise ηk ∼ N (0,Ση) pertur-
bates the motion. With reference to Equation 4.78, the state transition has to be specified
in terms of function xk = f(xk−1,uk,ηk). Since the state vector is partitioned in robot
pose and landmarks, this state transition function can be decomposed as[

Γk

Λk

]
= fD(Γk−1,Λk−1,uk,ηk), (5.8)


y1k

y2k

...
ynk

 =


y1k−1

y2k−1

...
ynk−1

 ; (5.9)

this comes from the fact that landmarks are assumed to be static, i.e., they do not change
location in time, while robot is moving according to a specific motion function.

To update the state covariance matrix we use the Jacobian matrices Fx = ∂f(x,u,η)/∂x
and Fη = ∂f(x,u,η)/∂η evaluated at the current estimation and input and with zero
noise (see Equation 4.82 and Equation 4.83). Thanks to the form of the f(·) function,
these matrices result

Fx =

[
∂fD(··· )
∂(Γ,Λ) 0

0 I

]
=

[
FD 0

0 I

]
, Fη =

[
∂fD(··· )
∂η

0

]
=

[
FDη

0

]
. (5.10)

Exploitation of the sparsity of the Jacobian matrix allows to simplify the prediction step
complexity of the EKF algorithm. In particular, let consider the mean vector µ and the
covariance matrix Σ split in two part , where the first part contains the dynamic part of the
system D = [ΓT ,ΛT ]T and the second part contains the map m (i.e., all the landmarks).
The mean vector and the covariance matrix results

µ =

[
D̄

m̄

]
, (5.11)

Σ =

[
ΣDD ΣDm

ΣT
Dm Σmm

]
. (5.12)

where the over bar indicates that we are referring to the mean values of a variable. The
prediction step performed by Equation 4.80 and Equation 4.81 results

µ̂k =

[
ˆ̄Dk

ˆ̄mk

]
=

[
fD(Γ̄k−1, Λ̄k−1, ūk,ηk = 0)

m̄k−1

]
, (5.13)

Σ̂k =

[
Σ̂DDk Σ̂Dmk

Σ̂T
Dmk Σ̂mmk

]
=

[
FDΣDDk−1F

T
D + FDηΣηFTDη FDΣDmk−1

ΣT
Dmk−1F

T
D Σmmk−1

]
(5.14)
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It can be noticed that a the second part of the mean vector and the bottom right block
of the covariance matrix remains unchanged by the prediction step, thanks to the special
form of the state transition function. Taking in account this special structure it allows to
reduce the computational complexity of the prediction step from O(n3) to O(n), being n
the number of landmarks, that are usually the biggest part of the state vector.

5.4.4 Landmark Addition
In SLAM we aim at the online construction of the environment map, thus we need to
enlarge the filter state each time a new landmark is perceived (see steps 27-28 of Algo-
rithm 5). When a new landmark ynew is created, its initialization is computed as a func-
tion of the actual state vector and some information s that represents the first measure of
the new landmark perturbed by Gaussian noise ξ ∼ N (0,Σξ) , which is, in general non
additive:

ynew = g(x, s, ξ). (5.15)

This new landmark is added to the filter by enlarging the state vector

x∗k = [xTk yTnew]T , (5.16)

so, the mean vector results
µ∗k = [µTk ȳTnew]T , (5.17)

with
ȳnew = g(µk, s̄, ξ = 0). (5.18)

The Jacobians of the g(·) function, evaluated at the current mean values of the state vector
and input, and not considering the noise, are

Gx =
∂g(· · · )
∂x

∣∣∣∣
x=µk,s=s̄,ξ=0

Gξ =
∂g(· · · )
∂ξ

∣∣∣∣
x=µk,s=s̄,ξ=0

. (5.19)

To update the covariance matrix it is possible to consider the addition step as a sort of
prediction step that modifies the state vector by adding the new landmark, while it leaves
unchanged all the dynamic part and the existing map of the state vector. Following a
procedure similar to the one sketched in Section 5.4.3, the new covariance matrix results

Σ∗k =

[
I

Gx

]
Σk

[
I GT

x

]
+

[
0 0

0 GξΣξG
T
ξ

]T
= (5.20)

=

[
Σk ΣkG

T
x

GxΣk GxΣkG
T
x + GξΣξG

T
ξ

]
. (5.21)

It is possible to introduce one more shrewdness. First, it has to be noticed that the function
g(·) that adds a new landmark is usually independent by the existing landmarks. Secondly,
a new landmark is perceived by sensor measurement (s), thus we have to compose the
measurement with the current robot position (Γk) in order to generate its position in world
coordinates and to add it to the current map. This implies that the current map landmarks
are not involved in the addition of a new landmark and the Jacobians of Equation 5.19
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are sparse even more. As in the prediction step, we can split the state vector (before the
landmark addition) in the dynamic part D, the map part m. Then the Jacobian of g(· · · )
with respect to the state vector results

Gx =
[
∂g(··· )
∂D

∣∣∣
D=D̄k,s=s̄,ξ=0

∂g(··· )
∂m

∣∣∣
D=D̄k,s=s̄,ξ=0

]
=
[
GD 0

]
. (5.22)

Consequently, the covariance matrix computation can be simplified even more:

Σ∗k =

 I 0

0 I

GD 0

[ΣDDk ΣDmk

ΣDm
T
k Σmmk

][
I 0 GT

D

0 I 0

]
+

[
0 0

0 GξΣξG
T
ξ

]T
(5.23)

=

 ΣDDk ΣDmk ΣDDkG
T
D

ΣDm
T
k Σmmk ΣDm

T
kGT

D

GDΣDDk GDΣDmk GDΣDDkG
T
D + GξΣξG

T
ξ

 . (5.24)

Although at first glance the latter equation seems to be more complex than the Equa-
tion 5.21, it has to be noticed that GD is a matrix with the number or rows equal to the
dimension of the new landmark vector and columns equal to the dimension of the dynamic
part, while Gx has the number of columns equal to the entire state vector dimension.
Thanks to this, the landmark addition step has a computational complexity of O(n), being
n the number of landmarks in the map.

5.4.5 Measurement
The update step of the standard EKF can be revisited in two different steps in the realm of
EKF-SLAM: the measurement step and the update step.

In a SLAM system, we are assuming that sensors perceive some kind of measure from
surrounding landmarks, but not necessarily for all the landmarks. In fact, real sensors have
operative limits (e.g., maximum and/or minimum distance) and some landmarks that are in
the map cannot be measured, or some landmarks can be temporarily occluded. The mea-
surement step (see steps 9-15 of Algorithm 5) allows, for each landmark yi, to predict the
expected measure according to a measurement model hi(x,v, δi), being δi ∼ N (0,Σδi)
the associated noise model and v some external input related to the specific measure.

It is possible to calculate the value

hi = hi(µk,vi, δi = 0), (5.25)

for each landmark i in the map, representing the expected value of the measure (or mea-
surement prediction). The covariance of the measure can be retrieved by the computation
of the matrix

Si = HxΣkH
T
x + HδΣδiH

T
δ , (5.26)

where

Hix =
∂hi(· · · )
∂x

∣∣∣∣
x=µ,v=vi,δi=0

, (5.27)
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and

Hiδ =
∂hi(· · · )
∂δ

∣∣∣∣
x=µ,v=vi,δi=0

, (5.28)

are the Jacobians of the measurement function with respect to the state vector and the
measurement noise model, evaluated at the current estimation of the vector state.

It is noticeable that Jacobian Hix is a sparse matrix in SLAM. As a matter of fact, the
measurement function hi(· · · ) is as a transformation composition that involves a single
landmark, expressed w.r.t. the world reference frame, and the current robot position w.r.t
the robot reference frame. Therefore it can be reformulated as

hi(Γ,y,v, δi), (5.29)

and the Jacobian matrix shows sparsity

Hix =
[
HiΓ 0 . . . 0 Hiyi 0 . . . 0

]
, (5.30)

being

HiΓ =
∂hi(· · · )
∂Γ

∣∣∣∣
Γ=Γ̄,yi=ȳiv=vi,δi=0

, (5.31)

Hiyi =
∂hi(· · · )
∂y

∣∣∣∣
Γ=Γ̄,yi=ȳiv=vi,δi=0

, (5.32)

where the non zero block are the first (corresponding to the Γ element in the state vector)
and the i-th (corresponding to the measured landmark). The computation of each mea-
surement prediction has constant complexity, consequently the measurement prediction
step has linear complexity in the number of landmarks. The computation of the measure
covariance can be skipped for the landmarks for which the expected value of the mea-
surement reveals that the sensors will not be able perceive them (e.g., points which are
predicted to lie behind a camera), reducing the complexity of the measurement step.

Each measurement prediction hi, together with its associated covariance Si, is a useful
information that allows an individual compatibility test by the evaluation of the innovation,
expressed by the squared Mahalanobis Distance

d = (zi − hi)
TS−1

i (zi − hi). (5.33)

The value assumed by d allows the selection of a set of landmarks which measure zi is
in the “expected range”. Let consider M = {m1,m2, . . . ,mm} ⊂ {1, 2, . . . , n} the set
of the index of the landmarks which expected measure is individually compatible with the
predicted measure, where a measure is said to be individually compatible if

d < F−1
χ2
r

(α), (5.34)

being F−1
χ2
r

the inverse of the cumulative distribution function of a χ2 variable with r

degrees of freedom, where r is the dimension of the measurement vector hi, evaluated at
α percentile. Common values of α are between 0.95 and 0.99.
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This simple test allows to identify some possible outliers, i.e., measurements that as-
sume a very low probable value and thus are probably due to some unmodeled error, e.g.,
a wrong data association. Moreover, the prediction on the measurement value with its
associated covariance allows in some applications, an active search approach, i.e., it is
possible to “ask” the sensor to perform a measure in the predicted range, saving time and
reducing the chance of data association errors. This test does not provide a certain data
association mechanism, thus outliers exists and more complex rejection methods needs to
be considered.

A complete prediction of measurements is obtained by iteratively append the expected
measure hmi with the acquired zmi sensor measure for all the individual compatibles
measurements, i.e., for mi ∈M :

h ← [h; hmi ]; (5.35)
z ← [z; zmi ]; (5.36)

(5.37)

Jacobian matrices and noise model covariances are properly stacked to H and to the
block diagonal matrix R:

H = [H; Hmix], (5.38)

R = diag(R, HmiνΣνHmi
T
ν ). (5.39)

It is noticeable that the H matrix is sparse, being composed by the sparse matrix of Equa-
tion 5.30

H =



∂hm1 (··· )
∂Γ

∂hm1 (··· )
∂ym1

0 0 0
∂hm2

(··· )
∂Γ 0

∂hm2
(··· )

∂ym2
0 0

...
...

...
...

...
∂hmi (··· )

∂Γ 0 0
∂hmi (··· )
∂ymi

0

...
...

...
...

...
∂hmm (··· )

∂Γ 0 0 0
∂hmm (··· )
∂ymm


(5.40)

5.4.6 Update Step
In the measurement step, a set of observations was created and the measurements are
stored in vectors h and z and matrices H and R. The Kalman gain is then computed as

S = HΣ̂kH + R, (5.41)
K = Σ̂kH

TS−1, (5.42)

and the filter state is updated accordingly to Equation 4.88 and Equation 4.89. Notice that,
in case there are no measurements available, the update step is skipped and the prediction
state is assumed as the new state. The complexity of this step is O(mn2 + m2n), being
m the number of measured landmark and n the total number of landmarks. In practical
cases the number of landmark measured per step is significantly lower than the number of
landmarks in the map, thus the complexity of the update step results O(n2).
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5.4.6.1 Iterated Updates

An alternative way to perform the EKF update step reckon on an iterated update step
performed in the following way:

1. stack the measurements in h and z vector in decreasing order of innovation, evalu-
ated with Equation 5.33

2. integrate one measure at the time recomputing its measurement prediction and the
Jacobians at each step.

This procedure provides a better linearization of the Jacobians, since they are recomputed
on the updated state, but it adds complexity to the update steps. Moreover, this procedure
is prone to outliers, since it integrates at first the most innovative measurements (having
high probability of being outliers) with the effect of a big “change” in the state values.
Practically, this kind of updates is suitable in simulation, where the data association is
given and there are no outliers.

5.4.6.2 1-Point RANSAC Update

In practical cases, the method presented up to here for the update of the filter may fail
as well in the presence of outliers, e.g., wrong data associations. With real data, the
update step has to be complemented by a robust data association procedure. Different
techniques have been developed to this extend, in particular one of the simplest and most
effective is the 1-Point RANSAC (RANdom SAmpling and Consensous) technique pre-
sented in [16] [15] that executes two update steps on two disjoint sets of measurements
characterized, respectively, by low and high innovation discarding possible outliers. An
alternative technique is named Joint Compatibility Branch and Bound (JCBB) [68], but it
is not considered in this work.

A single iteration of the 1-Point RANSAC update step selects randomly a measurement
prediction hR from the individually compatible measurements and integrates it performing
an update step of the mean vector only, i.e., it use Equation 4.88 only. Then, the entire set
of measurements {hM} is recomputed (the computation of covariances matrix Si is not
necessary) and the measurements that are close to the corresponding observations zi are
added to the set {hLI}, i.e., the vector of the measurements with low innovation (LI). The
distance between a measurement prediction and its correspondent observation is evaluated
by the standard Euclidean distance. Then, the mean vector of the EKF state previous to
the update step is restored and the random selection is repeated (i.e., a new set {hLI}
is generated) until a termination criterion on the number of iteration has been reached.
The set {hLI∗} with the highest number of elements is stored during the repetition of the
random selection and it is used to perform a complete update step (i.e., using Equation 4.88
and Equation 4.89), named low innovation update step.

After the low innovation update step, the remaining measurements predictions {hj |hj 6∈
hLI∗}, i.e., those that are not in the {hLI∗} set, are reevaluated together with their covari-
ances Sj . The individual compatibility, evaluated with Equation 5.33, of each measure-
ment prediction hj with the observation zj is checked and compatible measurements are
stored in the high innovation measurement set {hHI} and used in a second update step,
the high innovation update step. The remaining measurements, i.e., the onces that are not
individually compatible, are discarded as outliers.
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The RANSAC selection terminates after nit iterations has been performed. The num-
ber of iteration nit is initialized with a given value n0 ant it is adaptively computed as

nit =
log(1− p)

log ε
, (5.43)

where

ε =
#{hM} −#{hLI∗}

#{hM}
. (5.44)

The Equation 5.43 compute the number of iterations, i.e., the number of tested hypothesis,
needed to ensure that at least one set of measurements without outliers has been tested
with an high probability p. Typical values for p are 0.95 or 0.99. Equation 5.44 estimates
ε, the ratio between the number of measures that are not selected as candidates for the
low innovation step and the total number of measurements. The complete update step
performed with the 1-Point RANSAC technique is summarized in Algorithm 6.

Algorithm 6 onePointRansac({hi}, µk, Σk)

1: µI ← µ, it← 0, nit ← n0, {hLI∗} ← ∅
2: # RANSAC selection loop
3: while it < nit do
4: select hR randomly from {hM}
5: µ← EKF update step with hR, zR
6: {hLI} ← {hi|hi ∈ {hM},dist(hi, zi) < dLI}
7: if #{hLI} > {#hLI∗} then
8: {hLI∗} ← {hLI}
9: end if

10: ε← #{hM}−#{hLI}
#{hM}

11: nit ← log(1−p)
log ε

12: it← it+ 1
13: µ← µI
14: end while
15: # Low innovation update step
16: µ,Σ← EKF update step with {hLI∗}, {zLI∗}
17: # High innovation selection, outliers rejection
18: recompute measures prediction of {hM\hLI∗}
19: {hHI} ← {hM\hLI∗| individually compatible with zi}
20: µ,Σ← EKF update step with {hHI}, {zHI}

5.5 Graph Formulation

So far we have focused on the online SLAM problem and how it has been addressed
through the use of a EKF. Here we introduce the full SLAM problem (i.e., the estimation
of the posterior probability p(Γ1:T ,m|z1:T ,u1:T ,Γ0)) and how it can be formulated as a
problem of optimization on a graph (different from the DBN graph), where nodes represent
the variables to optimize and edges represent constraints between nodes.
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x0 x1 x2
e01 e12

(a) Graph example with binary edges

x0 x1 x2

e012e0

(b) Graph example with ternary edges

Figure 5.5: Some graph example. (a) presents three nodes and two binary edges,
(b) presents three nodes with a ternary edge and a unary edge.

5.5.1 Optimization On a Graph
Let consider x, a vector of parameters that has to be estimated, partitioned as:

x =
[
xT1 xT2 . . . xTN−1 xTN

]T
. (5.45)

where each xi, i = 1 : N is itself a vector and it will be represented by a node in a graph
G. Let zij and Ωij be respectively the mean and the information matrix (i.e., the inverse
of a covariance matrix) of a “virtual measurement” between nodes i and j. A virtual
measurement can be tough as function

eij(xi,xj , zij), (5.46)

that is zero when the parameters satisfy fully the expected value zij . Each virtual mea-
sure is represented by an edge in the set of the edges E that links nodes in the graph. To
compact the notation, the edge is usually identified by eij , leaving implicit the parameters.
The presented virtual measurement is represented by a binary edge, since it involves two
nodes. Being more general, an edge can involve a generic number of nodes: for instance,
it can be an unary edge ei(xi, zi) = ei with information matrix Ωi or a ternary edge
eijk(xi,xj ,xk, zijk) = eijk accompanied by information matrix Ωijk. Figure 5.5(a)
shows a graph with three nodes (x0, x1 and x2) and two binary edges (e01, e12), while
Figure 5.5(b) shows a graph with three nodes (x0, x1 and x2), a ternary edge e012 connect-
ing them and a unary edge e0 that represent a constraint on the node x0. Notice that the
edge representation is enhanced in some cases with a square node that clarifies, especially
for non binary edges, the nodes involved in a constraint. Moreover, edges are not directed,
but in graphical representation we prefer to use directed edges to clarify the role of the
nodes involved in the constraint. Let consider, for instance, a binary edge between two
nodes that represents two successive values of a variable in time. It is intuitive to represent
the edge with an arrow going from the oldest node to the new one. When non binary edges
are considered, arrows exit from the square node representing the edge and enter in the
nodes involved in the constraint.

Considering the set E of edges and their respective information matrices of a graph, the
goal of a minimization algorithm is to find the parameters x∗ that minimize the function

F(x) =
∑

e,Ωe ∈E

e(· · · )T Ωe e(· · · ), (5.47)
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where the parameters of the function e are leaved unspecified since they depends on the
single edge structure. The minimization can be performed through one of the Non Linear
Least Square minimization algorithm presented in Section 4.3 after a rewriting of the func-
tion F. First of all, each edge can be expressed as function of the entire parameters vector
x, instead of its own nodes. For instance, a binary edge eij(xi,xj , zij) can be equivalently
expressed as eij(x), where to compact the notation the zij element is skipped. The goal
function can be rewritten as

F(x) =
∑

e,Ωe ∈E

e(x)T Ωe e(x) (5.48)

=
∑

e,Ωe ∈E

e(x � ∆x)T Ωe e(x � ∆x), (5.49)

and considering the first order Taylor expansion

F(x) '
∑

e,Ωe ∈E

(e(x) + Je∆x)TΩe(e(x) + Je∆x) (5.50)

=
∑

e,Ωe ∈E

e(x)TΩee(x) + 2e(x)TΩeJe∆x + ∆xTJTe ΩeJe∆x (5.51)

=
∑

e,Ωe ∈E

ce + 2bTe ∆x + xTHe x, (5.52)

the terms

c =
∑

e,Ωe ∈E

ce, (5.53)

b =
∑

e,Ωe ∈E

be, (5.54)

H =
∑

e,Ωe ∈E

He, (5.55)

shows that this function is equivalent to the one presented in Equation 4.99, thus the system
can be solved by the algorithms presented in Section 4.3.

It is important to say that the matrix H is sparse by construction. The Jacobian matrix
Je of a single edge e

Je =
∂e(x̃ � ∆x)

∂∆x

∣∣∣∣
∆x=0,x̃=x

, (5.56)

is sparse, because the edge e involves only part of the parameters x, i.e., the edge con-
nects a small number of nodes of the graph. For instance, considering a binary edges eij
involving nodes xi and xj with i 6= j, the Jacobian has the following structure

Je =
[
0 · · · 0

∂e(xi,xj ,zij)
∂xi

0 · · · 0
∂e(xi,xj ,zij)

∂xj
0 · · · 0

]
, (5.57)

where the non zero blocks are in the block column i and j. This implies that Je has
a number of non zero blocks equal to the number of nodes involved in the edge. As
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Figure 5.6: An example of a SLAM problem represented on a graph. Γ nodes represent
robot poses, y nodes represent landmarks, eO edges represent relative displacement of
robot poses, eM edges represent the measurement of the landmarks. It can be noticed
that the problem is exactly the same of the one represented in Figure 5.4.

a consequence, the H matrix is sparse, since it comes from the summation of the He

matrices, given by He = JTe ΩeJe. The solution of the system Equation 4.101 can be
computed in a efficient way thanks to sparse Cholesky factorization algorithm. A very
useful tool, freely available with libraries and examples, for the graph based optimization
is the g2o framework presented in [49].

5.5.2 SLAM On a Graph
A SLAM problem can be formulated with the support of a graph formalism, as stated
in [35], considering two types of nodes: the robot pose nodes Γi and the landmark nodes
yi. The edges are of two different types: the first connect pose nodes and impose a con-
straint on the relative displacement between two consecutive poses, e.g., the odometric
measure of robot displacement; the second type connect a pose node and a landmark node,
being a constraint on the measurement of the landmark gathered when the robot was in a
specific position. The edges are named respectively eO(Γi,Γj , zij) and eM (Γi,yj , zij),
representing respectively the constraint due to the odometric data and the constraint due
to the measure of the environment. Edges eO can be omitted in case the information of
the displacement are not available (e.g., if the odometric information are not gathered by
the robot). An example of a graph representing a small SLAM problem is depicted in
Figure 5.6. It can be noticed that it represent exactly the same example of the DBN of
Figure 5.4.

This kind of optimization is known also as Bundle Adjustment and its solution was
widely studied over years in the Structure From Motion research field, as stated in the
survey presented in [104]. In particular, it has been proven that a proper ordering of the
edges allows to treat the problem in a very efficient way. Let consider the nodes ordered
such that robot pose nodes have the lower indexes in the vector of parameters and land-
marks are in the last part. The H and the vector b can be partitioned and the system of
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Equation 4.101 can be reduced to[
HΓΓ HΓy

HT
Γy Hyy

][
∆xΓ

∆xy

]
=

[
−bΓ

−by

]
(5.58)

where the subscript Γ indicates the robot pose nodes and y indicates the landmarks nodes.
Thanks to the Shur complement, the solution can be computed in two steps, the first re-
trieves the solution for ∆x∗Γ from(

HΓΓ −HΓyH−1
yyHT

Γy

)
∆xΓ = −bΓ + HΓyH−1

yyby, (5.59)

and then the solution ∆x∗y for

HΓΓ∆xy = −by −HT
Γy∆x∗Γ. (5.60)

If no odometric edges are used, the HΓΓ is block diagonal, since there exists no edge that
involves more than one camera. If the odometric edges are used, HΓΓ is block tri-diagonal.
In both cases, HΓΓ can be easily inverted. Moreover, in a typical Bundle Adjustment prob-
lem, the number of landmarks is much more larger than the camera poses, thus the solution
of Equation 5.59 can be solved faster despite the additional time spent in calculating the
left side term of the equation.

5.5.3 Gauge of Freedom
The optimization algorithm can be properly executed only if the Hessian matrix H of
Equation 5.55 is invertible, i.e., if it is not singular. In Section 4.3.1 we have explored one
of the conditions that can causes singularity in the Hessian matrix, i.e., the presence of
over parametrized representations of the parameters. This problem has been addressed by
the redefinition of the composition operator for the increments that works in a local space
with a minimal representation. A second source of singularity can originate from the
problem description itself and this is the case of the SLAM problem. The solution of the
off-line SLAM problem is constituted by the complete robot trajectory and the map, i.e.,
the landmark locations. The trajectory and the landmarks can be thought as a rigid body,
consequently a rigid transformation of the solution does not affects the error value F(x) of
Equation 5.47, i.e., the solution is under determined. This characteristic is reflected by the
singularity of the Hessian matrix and more precisely the Hessian matrix is rank deficient
of 6 degrees, i.e., the solution has 6 degrees of freedom and it can not be determined.2

To cope with this problem we have to fix a proper number of elements of the param-
eters vector, i.e., to exclude them from the optimization by consider their values known.
In the SLAM case it is sufficient to fix the elements corresponding to a robot pose node,
which fixes exactly 6 degrees of freedom. Without loss of generality, the first node can
be considered fixed, i.e., the starting pose of the SLAM trajectory and map can be con-
sidered known and fixed, for instance, in the origin. The fixed nodes have to be excluded
from the estimation process, i.e., they do not have to appear in the parameters vector and
in the Hessian matrix. Consequently when the Jacobian of a generic edge is computed,
the computation of the Jacobians of this edge with respect to the fixed nodes have to be
skipped.

2It can be noticed that the solution can not be determined with the Gauss-Newton algorithm, which requires
a full rank Hessian matrix, while the Lenveberg-Marquadt algorithm solves under determined problems thanks
to the use of the variable damping factor λ.
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5.6 Conditionally Independent Sub-Maps SLAM

The EKF-SLAM algorithm suffers from some limitations. First, the complexity of the
algorithm is dominated by the update step, which is O(n2) where n is the number of
landmarks in the map. This implies that when the number of landmarks grows, i.e., the
environment to explore is not limited to an experimental small setup, EKF-SLAM looses
quickly the ability to run in real time. Secondly, EKF formulation uses a linear approxi-
mations for the Jacobians and this produce optimistic estimation for the covariance matrix
that usually results in an inconsistent behavior of the filter.

Sub-Mapping techniques comes the overcome both limitations by splitting the ex-
plored area into several subproblems, each of them with a bounded number of landmarks.
This implies that the computational complexity is bounded and can be considered constant
for each submap. The Conditional Independence Sub-Maps (CI) framework, presented
in [78] and [77], represents one of the smartest and effective sub-mapping technique. Here
the so called local submap version is presented, while the global submap technique is
treated briefly only to explain some basic concepts. The term local indicates that each
submap of the problem store landmarks in a local reference frame, while the transforma-
tion that links the local reference frame with the global one is stored apart. On the contrary,
the global submap approach simply split the entire map in subproblems, but the landmarks
of the maps are stored with respect to an unique global reference system. The advantages
of the local submaps approach, although there is no a formal proof, come from the evi-
dence that local coordinates approaches bound the uncertainty, reducing the approximation
introduced by linearizations. The convenience of the CI slam technique lies in the ability
to perform large scale SLAM, i.e., to operate on real dataset, without introducing any ap-
proximations besides the inherent EKF linearizations. The CI submaps algorithm is briefly
summarized in the following paragraphs, while details are given in the next sections.

Each submap can be treated as an EKF-SLAM algorithm, where as usual the robot
starts in the origin and with no uncertainty, but in general the map is not empty, i.e. some
landmarks are already in the map coming from the previous local submap. When a suf-
ficient number of landmarks is in the current map, or the map has covered an adequate
area, the map is “closed” and a new map started. The pose of the robot in the closed map
represents the starting pose of the new map, thus, to know the global coordinates of a map
it is necessary to compose all the previous relative transformation between maps. The
landmarks in the current map that come from the previous map (let call them the shared
landmarks) have an initial estimate, given by the estimation performed in the previous
map.

The estimation performed in the new map contributes to the refinement of the esti-
mation of the shared landmarks and the new information can be back-propagated to the
previous maps to improve the global estimation in linear time in terms of number of maps.
A special procedure allow to treat loop closures, i.e., the observation of landmarks that are
in a previous maps. Thanks to a different dedicated procedure, sub maps can be reused
when it is useful, i.e., when the robot traverse an area that was already explored. This
last procedure is not explicitly treated and it is not used in this work but it is conceptually
similar to the treated ones; refer to the original work [76] for further details.
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(a) “tail-to-tail”, x and y
conditionally independent
given z
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(b) “head-to-tail”, x and y condi-
tionally independent given z
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(c) “head-to-head”, x and y
independent but not condi-
tionally independent given
z or a descendant node

Figure 5.7: Dynamic Bayesian Network (DBN) of three variables showing conditional
independence and independence properties.

5.6.1 From DBN to CI submap
The Conditionally Independent Sub-Maps SLAM framework is based on the concept of
Conditional Independence between stochastic variables. Although this concept has been
presented in the Section 4.1.6, we have to introduce it again, highlighting its relationship
with the Dynamic Bayesian Network formalism. In this section we explain the theoret-
ical concepts that bring to the comprehension of the CI SLAM framework underlying
mechanism, while in next sections we will give more practical details on its practical im-
plementation.

Figure 5.7 shows three simple DBN. Each of them will be considered in the following
in order to explain and to put in evidence the conditional independence concept, that can
be retrieved in a DBN where the d-separation property exists. This explanation is strongly
inspired from what done in [5], that can be considered by the interested reader for further
details.

5.6.1.1 Independence and Conditional Independence on DBN

Lets consider the simple Bayesian network of Figure 5.7(a), representing the joint prob-
ability p(x, y, z) of the three variable x, y and z. Following the edges it is possible to
express the joint probability as

p(x, y, z) = p(x|z)p(y|z)p(z). (5.61)

By marginalizing z it can be proven that x and y are not independent

p(x, y) =

∫
z

p(x|z)p(y|z)p(z) 6= p(x)p(y). (5.62)

Now consider the conditional probability of x and y given z. By definition it can be
expressed by the following ratio

p(x, y|z) =
p(x, y, z)

p(z)
= p(x|z)p(y|z), (5.63)

that implies that x and y are conditionally independent given z as stated in Equation 4.34.
Graphically it is possible to notice that the node z is tail-to-tail with respect to x and y,
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i.e., it is connected by the tail of the arrows to the nodes x and y, and it acts as a “block”
on the path between x and y.

In Figure 5.7(b) the joint probability p(x, y, z) can be expressed as

p(x, y, z) = p(z|x)p(y|z)p(x), (5.64)

By marginalizing z it can be proven that x and y are not independent

p(x, y) =

∫
z

p(z|x)p(y|z)p(x) 6= p(x)p(y). (5.65)

Now consider the conditioned probability of x and y given z. By definition it can be
expressed by the following ratio

p(x, y|z) =
p(x, y, z)

p(z)
= p(y|z)p(z|x)p(x)

p(z)
= p(y|z)p(x|z), (5.66)

and, thanks to the Bayes rule, it shows conditional independence of x and y given z. The
node z is said to be “head-to-tail” with respect to the path from x to y and it acts as a block
that “mask” x to y node.

In Figure 5.7(c) the joint probability p(x, y, z) can be expressed as

p(x, y, z) = p(z|x, y)p(x)p(y), (5.67)

and in this case the marginalization of z gives

p(x, y) =

∫
z

p(z|x, y)p(x)p(y) = p(x)p(y), (5.68)

thus, x and y are independent if z is not observed, while considering the conditional prob-
ability

p(x, y|z) =
p(x, y, z)

p(z)
=

p(z|x, y)p(x)p(y)

p(z)
6= p(y|z)p(x|z), (5.69)

it can be noticed that x and y are not conditionally independent given z. The node z is said
to be “head-to-head” with respect to x and y and it represents a “block” in the path x-y
when z is not observed, while conditioning on z remove the block, introducing dependence
between x and y.

Considering again Figure 5.7(c), the

p(x, y|w) =

∫
z

p(x, y, z, w)

p(w)
=

∫
z

p(z|x, y)p(x)p(y)p(w|z)
p(w)

, (5.70)

shows that the nodes x and y are not conditionally independent given w. This can be
generalized to any descendant node of z, i.e., to any node that in the path starting from
an head-to-head node is connected only by directed arrows. This implies that x and y are
independent if z or any descendant node of z is not observed.
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5.6.1.2 d-separation on DBN

The generalization of the previous properties of the DBN is the d-separation property. Lets
consider a generic DBN with three non intersecting sets of nodes A, B and C, A ∩ B =
A∩C = B ∩C = ∅ whose union may not cover all the nodes N (A∪B ∪C ⊆ N ). The
sets of nodes A and B are conditionally independent given the nodes C if considering all
the possible path from any node in A to any node in B is blocked. A path v is said to be
blocked if along the path

• ∃ a head-to-tail or a tail-to-tail nodes in C

• ∀ head-to-head node and its descendant are not in C

If all paths are blocked A is said to be d-separated and the conditional independence of A
and B given C is guaranteed.

5.6.1.3 Conditional Independent Sub-mapping on a SLAM DBN

Lets consider the DBN in Figure 5.8 representing an example of a SLAM problem where
the solution is the estimation of p(Γ0:3,y1:5|u1:3, z1:8), as inputs u and observations z
are known. Let suppose to stop the estimation at Γ2, corresponding to the estimation of
p(Γ0:2,y1:3|u1:2, z1:4) and to start a new map. For clarity of explanation, lets consider
the global submaps case and to extend to the local submaps case later. Recalling that Γ
represent the robot pose with respect to a world reference system, it is possible to start a
new map with the initial robot pose estimation correspondent to Γ2, i.e., the last estimated
pose. The landmarks observed by the last robot pose may be observed in the next steps,
thus they constitute a good choice for the initialization of the new map. Thus, the new
map starts as p(Γ2,y3|u1:2, z1:4), that is a marginal distribution of p(Γ0:2,y1:3|u1:2, z1:4).
Then, the new input u3 and the measurements z5:8 produce the evolution of the estimate
up to p(Γ2:3,y3:5|u1:3, z1:8).

Lets consider the sets of nodes A = {Γ0,Γ1,y1,y2}, B = {Γ3,y4,y5} and C =
{Γ3,y3}, zA = {z1, . . . , z4,u1,u2}, zB = {z5, . . . , z8,u3}. The only paths that go
from nodes in A to B are blocked, thus the DBN is d-separated given the nodes in C. This
implies that nodes in A ∪ zA are conditionally independent of nodes in B ∪ zB given the
nodes in C. This property can be expressed by

p(A|B,C, zA, zB) = p(A|C, zA) (5.71)
p(B|A,C, zA, zB) = p(B|C, zB) (5.72)

(5.73)

This implies that, if the nodes inC are known, the two submaps do not carry any additional
information each other.

5.6.1.4 Local Submaps

The previous example shows that a DBN representing a SLAM problem can be thought
in terms of global submaps that are conditionally independent. This solves the first issue
related to EKF SLAM, i.e. the computational intractability of the problem when the ex-
plored area grows. The usage of global submaps does not resolve the second issue, related
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Γ0 Γ1 Γ2 Γ3

u1 u2 u3

y1 y2 y3 y4 y5

z1 z2 z3 z4 z5 z6 z7 z8

Figure 5.8: A DBN of a SLAM problem where the conditional independence properties
can be inferred considering the set of nodes (A ∪ zA) (in cyan), (B ∪ zB) (in green),
(C) (in white), where A = {Γ0,Γ1,y1,y2}, B = {Γ3,y4,y5} and C = {Γ3,y3},
zA = {z1, . . . , z4,u1,u2}, zB = {z5, . . . , z8,u3}.

to the amplification of approximations introduced by linearizations when the uncertainty
grows. A better approach comes from the usage of local submaps, i.e., by starting each
submap in a local origin. This implies that the (local) pose of the robot has zero uncer-
tainty, thus landmarks uncertainty, that is influenced by the uncertainty in the robot pose,
are smaller. This cuts down the effects of linearizion. The relative position of a map with
respect to the previous one is represented by the last robot pose in the previous map and
landmarks shared between the maps have to be transformed in the new reference frame
thanks to the last robot position.

Lets consider the DBN of Figure 5.9. Globally, it expresses the probability

p(Γ
(1)
0:2,Γ

(2)
2:3,y

(1)
1:3,y

(2)
3:5|u1:3, z1:8) (5.74)

where superscript indicates the reference frame of each variable. The first submap is
constructed up to Γ

(1)
2 then the creation of the new map is started. Before this, Γ

(1)
2 is

used to transform the common landmarks between maps, generating in this case y
(2)
3 .

This last element is the common part between the two maps and it ensure conditional
independence of the groups A ∪ zA and B ∪ zB given the nodes in C, where A =

{Γ(1)
0 ,Γ

(1)
1 ,Γ

(1)
2 ,y

(1)
1 ,y

(1)
2 ,y

(1)
3 }, B = {Γ(2)

2 ,Γ
(2)
3 ,y

(2)
4 ,y

(2)
5 } and C = {y(2)

3 }, zA =
{z1, . . . , z4,u1,u2}, zB = {z5, . . . , z8,u3}. Thus, the first submap estimates

p(Γ
(1)
0:2,y

(1)
1:3,y

(2)
3 |u1:2, z1:4), (5.75)

the second submap starts by marginalizing y
(2)
3 with the robot pose in the origin without

uncertainty
p(Γ

(2)
2 ,y

(2)
3 |u1:2, z1:4), (5.76)

and it evolves estimation up to

p(Γ
(2)
2:3,y

(2)
3:5|u1:3, z1:8). (5.77)
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Γ
(1)
0 Γ

(1)
1 Γ

(1)
2 Γ

(2)
2 Γ

(2)
3

u1 u2 u3

y
(1)
1 y

(1)
2 y

(1)
3 y

(2)
3 y

(2)
4 y

(2)
5

z1 z2 z3 z4 z5 z6 z7 z8

Figure 5.9: A DBN of a SLAM problem where the conditional independence properties
can be inferred considering the set of nodes (A ∪ zA), (B ∪ zB), (C), where A =

{Γ(1)
0 ,Γ

(1)
1 ,Γ

(1)
2 ,y

(1)
1 ,y

(1)
2 ,y

(1)
2 }, B = {Γ(2)

2 ,Γ
(2)
3 ,y

(2)
4 ,y

(2)
5 } and C = {y(2)

3 },
zA = {z1, . . . , z4,u1,u2}, zB = {z5, . . . , z8,u3}. Notice that elements of the new
submap are reffered to a different reference system, indicated in the superscript. The
landmark y

(1)
3 , expressed in the reference system of the first submap, is transformed

through Γ
(1)
2 in y

(2)
3 , expressed in the reference system of the new submap. Notice that

it is necessary to share only landmarks between maps, while the robot poses are not
needed.

5.6.1.5 Recovering the Whole Map

Lets rewrite the submaps probability in terms of the sets A, B, C, zA, zB ; notice that this
formulation allows to treat equally both the case of global and local submaps. The first
map corresponds to

p(A,C|zA), (5.78)

while the second map corresponds to

p(B,C|zA, zB). (5.79)

The whole map estimation corresponds to the estimation of

p(A,B,C|zA, zB). (5.80)

where, when considering local submaps, it has to take in account that elements are ex-
pressed in different reference systems, thus some additional operation has to be performed
if a the whole map has to be expressed in a unique reference system. The whole map can
be partitioned as

p(A,B,C|zA, zB) = p(A|B,C, zA, zB)p(B,C|zA, zB), (5.81)

and, thanks to conditional independence (Equation 4.34) it is equal to

p(A,B,C|zA, zB) = p(A|C, zA)p(B,C|zA, zB). (5.82)
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The second terms of the right hand side is exactly the estimation of the second submap,
while the first terms can be obtained, by conditioning on C as

p(A|C, zA) =
p(A,C|zA)

p(C|zA)
. (5.83)

By combining Equations 5.82 and 5.83, the global map distribution results

p(A,B,C|zA, zB) =
p(A,C|zA)

p(C|zA)
p(B,C|zA, zB). (5.84)

5.6.1.6 Loop Closure

Lets suppose the case in which landmarks regarding the map i are measured by a map j >
i. This case is commonly referred as loop closure, i.e., the robot is taking measures from
an already estimated area of the environment, and this needs a special attention in order
to be treated within the conditional independent submapping techniques. To maintain the
conditional independence property, the subset of landmarks L of map i that are involved
in a loop closure have to become part of the shared element between all maps from i to j.
This implies, in case of local submaps, to generate a transformed copy of each landmark
in L.

Lets consider the case of Figure 5.10. The landmark y1 is observed in map 3 with
measurement z14. To maintain conditional independence y

(2)
1 is generated from y

(1)
1 and

Γ
(1)
1 , and then shared between map 1 and 2. Then, y

(2)
1 and Γ

(2)
1 generate y

(3)
1 that is

shared between maps 2 and 3 and measured by z14. Notice that if some landmark involved
in the loop closure is already shared between the map i and some successive map k, they
have to be copied and transformed only in maps k + 1 to j.

5.6.2 Map Transition Step
Lets now consider how to apply the theoretic concepts and formulas presented in the pre-
vious section to the EKF SLAM algorithm. In particular we have to define the three main
steps that allow to implement the CI SLAM framework: Map Transition, Back Propaga-
tion and Loop Closure.

To describe the Map Transition Step, consider an EKF SLAM with vector state {i}x
summarized by the mean vector {i}µ and the covariance matrix {i}Σ, where the bracketed
left superscript i indicates the current sub map number while the common subscript k
that indicate time step is discarded in order to keep compact the notation. Consider that
the state vector is composed by the robot pose {i}Γ expressed with respect to the i-th
map reference frame, optionally the vector of motion parameters {i}Λ and by the set of
landmarks {{i}yj} with j ∈ [1, n]:

{i}x =
[
{i}ΓT , {i}ΛT , {i}y1

T , . . . , {i}yn
T
]T
, (5.85)

Let assume that the current map i needs to be closed and a new map i+1 has to be started.
Map closure criterion can be, for instance, the reaching of a threshold on the number of
landmarks n ≥ nmax and consider a subset of landmarks {{i}yS} ⊆ {{i}y1:n} that are
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Figure 5.10: A DBN of a SLAM problem where a loop closure is performed on landmark
y

(1)
1 . The y

(2)
1 is generated and is shared between map 1 and 2, then y

(2)
1 generates

y
(3)
1 that is shared with map 3 and allows to performs measure z14 that ensure the loop

closure.

selected to be shared between map i and i + 1, where S = {s1, s2, . . . , sm} ⊆ 1 : n
is the set of the indexes of the selected landmarks. A standard criterion for the choice of
landmarks to be shared is to select the landmarks that had been used in the last update step,
since it is likely that they will be measured in the next steps.

5.6.2.1 LandmarkTransformation in the Current Map

The landmarks {{i}yS} need to be copied into the new map to initialize the system and to
allow the continuation of the SLAM algorithm, but these landmarks are expressed in the
reference frame of the map i, thus they need to be referenced to the i + 1 map reference
system before they can be copied. Let enhance the notation of landmarks {i}y to {i}y(i),
where the bracketed right superscript indicates the reference system in which the landmark
is expressed. A transformed version of the landmark referred to the i + 1 map reference
system can be computed as

{i}y(i+1) = lt(T
(i+1)
(i) , {i}y(i)), (5.86)

where the function lt apply the transformation T
(i+1)
(i) , i.e., the rototranslation that express

the position of reference system i expressed in coordinate of i + 1, to the landmarks ex-
pressed in reference system i, obtaining the landmarks in coordinate of reference system
i+ 1. For instance, if landmarks were simple 3D points, the lt(· · · ) function would be the
standard point transformation equation (Equation 2.15). The transformation T

(i+1)
(i) has to

be retrieved by the inversion of {i}Γ, as

T
(i+1)
(i) ≡ {i}Γ−1, (5.87)
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i.e., the last robot pose in the map i is the pose of the reference system i+ 1 expressed in
the reference frame of map i.

The set of landmarks {{i}y(i+1)
S }, obtained by the transformation of {{i}y(i)

S } with
function lt(· · · ), has to be added to the vector state of the EKF representing the map i.
Thus, the mean values of the new landmarks can be computed by evaluating the function
lt(· · · ) in the current mean values of the state vector, while the new covariance matrix
has to be computed with a procedure similar to the one used for the landmark addition
presented in Section 5.4.4.

Let consider the landmark with index sj ∈ S has to be transformed and all the land-
marks with indexes s1 : sj−1 were already transformed. The state vector, and conse-
quently the mean vector, can be partitioned as it follows

{i}µ =

[
{i}

Γ̄
T
,
{i}

Λ̄
T
,
{i}

ȳ
(i)
1

T

, . . . ,
{i}

ȳ(i)
sj

T
, . . . ,

{i}
ȳ(i)
n

T
,
{i}

ȳ(i+1)
s1

T
, . . . ,

{i}
ȳ(i+1)
sj−1

T
]T

=

[
{i}

Γ̄
T
, µ̄Ta ,

{i}
ȳ(i)
sj

T
, µ̄Tb

]T
,

(5.88)

where the landmark {i}ysj ∈ {{i}yS}, i.e., it is the landmark to transform, the vector {i}µ̄a
enclose the (optional) element

{i}
Λ̄(i) and all the landmarks {i}ȳT1:sj−1 and the vector

{i}µ̄b encloses all remaining part of the mean vector, i.e., the landmarks {i}ȳTsj+1:n and
the already transformed landmarks {i+1}ȳTs1:j−1

. The partitioned covariance matrix is

{i}Σ =


{i}ΣΓΓ

{i}ΣΓA
{i}ΣΓsj

{i}ΣΓB

{i}ΣT
ΓA

{i}ΣAA
{i}ΣAsj

{i}ΣAB

{i}ΣT
Γsj

{i}ΣT
Asj

{i}Σsjsj
{i}ΣsjB

{i}ΣT
ΓB

{i}ΣT
AB

{i}ΣT
sjB

{i}ΣBB

. (5.89)

The addition of the transformed landmark {i+1}ysj is done by appending

{i+1}ȳsj = lt(
{i}

Γ̄
−1
, {i+1}ȳsj ), (5.90)

to the mean vector, resulting in

{i}µ∗ =
[
{i}

Γ̄
T
, µ̄Ta ,

{i}ȳTsj , µ̄
T
b ,
{i+1}ȳsj

]T
, (5.91)

and by enlarging the covariance matrix thanks to the Jacobians of lt(· · · ) function

{i}Σ∗ =



I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

JΓ 0 Jy 0




{i}ΣΓΓ

{i}ΣΓA
{i}ΣΓsj

{i}ΣΓB

{i}ΣT
ΓA

{i}ΣAA
{i}ΣAsj

{i}ΣAB

{i}ΣT
Γsj

{i}ΣT
Asj

{i}Σsjsj
{i}ΣsjB

{i}ΣT
ΓB

{i}ΣT
AB

{i}ΣT
sjB

{i}ΣBB




I 0 0 0 JTΓ
0 I 0 0 0

0 0 I 0 JTy

0 0 0 I 0

,
(5.92)
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where

JΓ =
∂lt(Γ−1,y)

∂Γ

∣∣∣∣
Γ={i}Γ̄,y={i}ȳsj

, (5.93)

Jy =
∂lt(Γ−1,y)

∂y

∣∣∣∣
Γ={i}Γ̄,y={i}ȳsj

, (5.94)

are the Jacobians evaluated at the current mean values of the estimation. As for the land-
mark addition procedure, the resulting covariance matrix {i}Σ∗ is an enlarged matrix that
differs from {i}Σ only in the added right band and in the added bottom band, while the top
left block, containing the entire {i}Σ is leaved unchanged. This allow to transform a single
landmark in O(n) time, where n is the total number of landmarks, thus the transformation
of all the shared landmark {{i}yS} has a computational cost of O(nm) where m, i.e., the
number of landmarks to be shared, is obviously lower than n.

5.6.2.2 Parameter Transformation in the Current Map

The optional element Λ in the state vector can be present to specify some motion param-
eters, like the robot translational and rotational speed. These elements needs to be shared
when a map transition is performed. If they are expressed with respect to the map ref-
erence system, they need to be transformed similarly to the landmarks. Naming pt(· · · )
the transformation function, we have to follow the same procedure explained above to
transform the parameters thanks to

{i}
Λ̄

(i+1)
= pt(

{i}
Γ̄
−1
,
{i}

Λ̄
(i)

), (5.95)

to enlarge the mean vector with the {i}Λ̄(i+1) elements and to enlarge the covariance ma-
trix through Jacobians of the transformation function.

5.6.2.3 New Map Initialization

The new map (i.e., the i+1 map), alike in a new EKF SLAM system, starts in the origin Γ0

with zero covariance, since it is a local map. If it is present, the motion parameters variable
{i+1}Λ has to be copied from the i-th map. In case motion parameters are expressed in
robot reference frame, the variable {i+1}Λ is copied from {i}Λ, while if it is expressed
in the map reference frame, it has to be copied from the transformed element {i}Λ(i+1).
Moreover, the motion parameters variable has to be copied twice: the first copy ({i+1}Λ)
will be used in the motion model, i.e., it evolutes in time, while the second copy ({i}Λs)
will not evolve in the prediction step and it will be only affected by the update step. In
fact, it represents the value of the motion parameters at the time in which the new map
was started and the previous one was closed. Finally, all the landmarks that are selected to
be shared have to be copied as {i+1}yj

(i+1) = {i}ysj
(i+1) where j = 1 : m being m the
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number of elements of the set S. Thus, the new state vector results

{i+1}x =



{i+1}Γ
{i+1}Λ
{i+1}Λs

{i+1}y1

...
{i+1}ym


=



{i+1}Γ0

{i}Λ(i+1) or {i}Λ
{i}Λ(i+1) or {i}Λ

{i}ys1
(i+1)

...
{i}ysm

(i+1)


. (5.96)

To copy variables from the EKF that represents the map i to the i+ 1, both mean val-
ues and covariances of the transformed landmarks (and eventually the motion parameters
element) have to be copied. This is done by selecting the corresponding rows in the mean
values vector and the corresponding rows and columns in the covariance matrix of the map
i (i.e., by marginalize out the variables to be copied) and to copy them in the new EKF
mean vector and covariance matrix, taking into account that the top band and the left band
of the covariance matrix is zero, since the initial pose of the new map has zero covariance
and it is initially uncorrelated with the rest of the variables.

5.6.2.4 Shared Elements Between Maps

Correspondences between the variables in the maps are needed by the back propagation
step, thus they have to be stored. Lets name SP = {〈{a}v, {b}w〉} the entire set of pair
of variables that correspond between maps, where a and b are respectively the source and
the destination map index, and v and w the two corresponding variables in the EKF of
the two maps. When a new map i + 1 is created, this set has to be enlarged with the
pairs of variables shared between the two maps. It is important to notice that the shared
variables are not necessarily all the variables that have been copied. In particular, if the
parameters variable {i}Λ is present in the original map, only its second copy {i+1}Λs

represents a shared variable. This comes from the fact that the first copy {i+1}Λ does
not belong to the elements that ensure the conditional independence of the map, but it is
only used to initialize the state of the system properly, i.e., to give to the motion model
the right informations on the robot motion when the map has been started. Thus, the
correspondences set is enlarged by

SP ← SP ∪



〈
{i}Λ(i+1) or {i}Λ , {i+1}Λs

〉〈
{i}ys1

(i+1) , {i+1}y1〉
...〈

{i}ysm
(i+1) , {i+1}ym〉


. (5.97)

Once the map creation process is completed, the EKF slam algorithm proceeds with the
standard steps, i.e., the motion prediction, the measurement step, the update step and the
addition of the new landmarks. Differently from starting an EKF from scratch, the map
transition starts a SLAM sub problem with an initialized structure.
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5.6.3 Back-Propagation Step
The back-propagation step aims at the update of the closed maps thanks to the estimate
obtained with the new observations gathered since the previous back-propagation step.
Thus, starting from the last map i, it is possible to iterate back propagation between pairs
of maps, i.e., to back propagate information from map i to map i − 1, from map i − 1 to
map i− 2 and so on until the first map. Let consider two maps i and i− 1 and to partition
their state vectors as

{i−1}x = [{i−1}xA,
{i−1}xC ] , (5.98)

{i}x = [{i}xB ,
{i}xC ] , (5.99)

where {i−1}xC and {i}xC are corresponding variables in the two maps, i.e., they have been
shared when map i has been created starting from map i− 1, {i−1}xA are the variables in
the map i − 1 that are not shared with the map i and {i}xB are the variable of the map i
that are not shared with the map i− 1. Mean vectors and covariance matrices results

{i−1}µ =
[
{i−1}µA

T , {i−1}µC
T
]T
, (5.100)

{i−1}Σ =

[
{i−1}ΣAA

{i−1}ΣAC

{i−1}ΣAC
T {i−1}ΣCC

]
, (5.101)

{i}µ =
[
{i}µB

T , {i}µC
T
]T
, (5.102)

{i}Σ =

[
{i}ΣBB

{i}ΣBC

{i}ΣBC
T {i}ΣCC

]
. (5.103)

The {i−1}µC and {i}µC variables set should have the same values in terms of mean
vector and covariance matrices, but {i}xC has been estimated using more measures than
{i−1}xC . Thanks to conditional independence it is possible to update the map i−1 estimate
as

{i−1}µ∗ =

[
{i−1}µ∗A
{i}µC

]
, (5.104)

{i−1}Σ∗ =

[
{i−1}

Σ∗AA
{i−1}

Σ∗AC
{i−1}

Σ∗AC
T {i}ΣCC

]
, (5.105)

where

K = {i−1}ΣAC
{i−1}ΣCC

−1 (5.106)
{i−1}µ∗A = {i−1}µA + K ({i}µC − {i−1}µC) (5.107)

{i−1}
Σ∗AC = K {i}ΣCC (5.108)

{i−1}
Σ∗AA = {i−1}ΣAA + K

({i−1}
Σ∗AC −

{i−1}ΣAC

)T
(5.109)

It can be noticed that the shared element mean values and covariances are simply copied
from the new map to the previous, while the non shared elements are updated thanks to a
gain matrix K.
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The complexity of the back propagation between two maps isO(1), since all the matrix
operations are performed on a bounded number of landmarks. Consequently, the complete
back propagation procedure has linear complexity in terms of the number of maps in the
problem. It can be noticed that the back propagation step can be performed in parallel to
the SLAM exploration process on a separate computing unit.

Back propagation needs a special care in the problem formulation to avoid the sin-
gularities in the covariance matrices, since in Equation 5.106 the matrix {i−1}ΣCC , i.e.,
the covariance matrix of the shared elements in the previous map, has to be inverted.
By definition, a covariance matrix is definite positive, but it results semidefinite positive if
some linear relation exist between variables. To apply the Conditional Independent SLAM
framework we have to ensure that the specific model for the robot pose and map represen-
tation in the EKF SLAM algorithm do not introduce singularities in the covariance matrix
or, at least, in the elements that have to be shared between sub-maps.

5.6.3.1 Mathematical Derivation

The equations of the back propagation derive from the conditional independence proper-
ties. The joint probability of the whole map (Equation 5.80) p(A,B,C|zA, zB) is still a
Gaussian variable, where mean vector and covariance matrix are

µABC =
[
{i−1}µ∗A

T , {i}µB
T , {i}µC

T
]T
, (5.110)

ΣABC =


{i−1}

Σ∗AA
{i−1}

Σ∗AB
{i−1}

Σ∗AC
{i−1}

Σ∗AB
T {i}ΣBB

{i}ΣBC

{i−1}
Σ∗AC

T {i}ΣBC
T {i}ΣCC

 . (5.111)

The last two block of the mean vector and the 2 × 2 bottom right block of the covari-
ance matrix are exactly the estimation of the i-th map, i.e., the marginal distribution
p(B,C|zA, zB), while the elements with the star in the superscript indicates the mean
values and the covariances of the variables in the set A that belongs to the map i − 1 but
have been estimated with the measurement of zB too. These elements are not directly
known and the mathematical derivation of their values is in the following.

By marginalizing out the B variable, i.e., removing the second block of the mean vec-
tor and the second row and column of the covariance matrix, the parameters of p(A,C|zA, zB)
are obtained. This can be considered as an updated version of the first map, since it in-
tegrates the measurements zB , while the original estimation of the map has been stopped
early, using only the zA measurements. By conditioning on the C variable it is possible to
express p(A|C, zA, zB); the mean vector and covariance matrix of this distribution can be
calculated with Equation 4.45, resulting in

µA|C,zA,zB = {i−1}µ?A +
{i−1}

Σ∗AC
{i}ΣCC

−1 (xC − {i}µC) , (5.112)

ΣA|C,zA,zB =
{i−1}

Σ∗AA −
{i−1}

Σ∗AC
{i}ΣCC

−1 {i−1}
Σ∗AC

T
. (5.113)

The estimation of the first map, given by the mean vector and covariance matrix re-
spectively of Equations 5.100 and 5.101, express p(A,C|zA). Alike the previous case,
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conditioning on C gives p(A|C, zA) with mean vector and covariance matrices

µA|C,zA = {i−1}µA + {i−1}ΣAC
{i−1}ΣCC

−1 (xC − {i−1}µC) , (5.114)

ΣA|C,zA = {i−1}ΣAA − {i−1}ΣACΣCC
−1 {i−1}ΣAC

T . (5.115)

The conditional independence ensures that p(A|C, zA, zB) = p(A|C, zA), thus, Equa-
tions 5.114 and 5.112 can be equated. By expanding the terms of the equivalence and after
rewriting it with a more clear notation we obtain

{i−1}µ∗A︸ ︷︷ ︸
a

+
{i−1}

Σ∗AC︸ ︷︷ ︸
A

{i}ΣCC︸ ︷︷ ︸
B

−1
xC︸︷︷︸
x

− {i−1}
Σ∗AC

{i}ΣCC
−1 {i}µC︸ ︷︷ ︸

b

= {i−1}µA︸ ︷︷ ︸
c

+ {i−1}ΣAC︸ ︷︷ ︸
C

{i−1}ΣCC︸ ︷︷ ︸
D

−1
xC − {i−1}ΣAC

{i−1}ΣCC
−1 {i−1}µC︸ ︷︷ ︸

d

,

(5.116)

a−AB−1b + AB−1x = c−CD−1d + CD−1x. (5.117)

This equation has to be valid for all x and the unknown are the vector a and the matrix
A that correspond to the mean vector and to the covariance matrix of the shared elements
between the map estimated with all the measurements. The identity can be analyzed sepa-
rating the elements containing the x and the elements containing only constants, obtaining

AB−1 = CD−1, (5.118)
A = CD−1B, (5.119)

{i−1}
Σ∗AC = {i−1}ΣAC

{i−1}ΣCC
−1 {i}ΣCC . (5.120)

Putting Equation 5.118 in Equation 5.117 allows to retrieve a ≡ {i−1}µ∗A as

a = c + CD−1 (b− d) , (5.121)
{i−1}µ∗A = {i−1}µA + {i−1}ΣAC

{i−1}ΣCC
−1 ({i}µC − {i−1}µC) . (5.122)

From the Equations 5.115 and 5.113 it is possible to recover the last unknown term
{i−1}

Σ∗AA as

{i−1}
Σ∗AA = {i−1}ΣAA + {i−1}ΣAC

{i−1}ΣCC
−1
({i−1}

Σ∗AC −
{i−1}ΣAC

)T
. (5.123)

It is possible to notice that Equations 5.120, 5.122 and 5.123 constitute the terms of
the mean vector (Equation 5.104) and covariance (Equation 5.105) matrix after the back
propagation step.

There is still a missing term in the matrix ΣABC of Equation 5.111, that is the covari-
ance {i−1}

Σ∗AB of the variables A with the variables B. It can be noticed that this term is
not required for the estimation with the submapping mechanism; the computation of this
terms can be useful if two submaps have to be fused in a unique one. This term follows by
conditioning p(A,B,C|zA, zB) on C, obtaining p(A,B|zA, zB , C) with the covariance
matrix given by[

{i−1}
Σ∗AA

{i−1}
Σ∗AB

{i−1}
Σ∗AB

T {i}ΣBB

]
−

[
{i−1}

Σ∗AC
{i}ΣBC

]
{i}ΣCC

−1

[
{i−1}

Σ∗AC
{i}ΣBC

]T
. (5.124)
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Due to the conditional independence of A and B given C, the non diagonal blocks have to
be zero. This implies that

{i−1}
Σ∗AB

T
=

{i−1}
Σ∗AC

{i}ΣCC
−1 {i}ΣBC , (5.125)

that, thanks to the relation expressed in Equation 5.120 is equivalent to

{i−1}
Σ∗AB

T
= {i−1}ΣAC

{i−1}ΣCC
−1 {i}ΣBC (5.126)

= K {i}ΣBC . (5.127)

5.6.4 Loop closure

When a loop is detected, i.e., when some incoming observations measure landmarks that
are already added to some map, the conditional independence framework needs to invoke
a special procedure. If the landmarks subject to the loop closure are in the current working
map, no special operation are required, since the loop closure is automatically handled
by the standard EKF slam measurement and update mechanism. Differently, when the
perceived landmarks are not in the current working map, but they are in a previous one,
they have to be copied and passed by all the maps that links the original map with the
current one. Once the landmarks are properly added to the last map a standard update
step can be performed and, after a complete back propagation, all the maps benefit of the
identified loop.

The procedure that allows to measure the landmarks involved in a loop closure between
maps is detailed hereafter. Let consider the case in which a group of landmarks {yL} in the
map i are seen from map j > i. First of all it is necessary to perform a back propagation
at least between map j and i, while the back propagation of maps previous to i can be
postponed. Secondly it is necessary to identify for each landmark yl with l ∈ L the last
map ml ≥ i that contains already the landmark. Each landmark has to be added through
maps ml + 1 to j. This operation can be easily achieved by searching in the landmark
correspondences pairs stored in SP .

Lets illustrate the procedure to add a set of landmarks {yL} that are in the map i to
the map i + 1. The entire loop closure procedure is easily generalizable by iterating the
addition to the successive maps, considering that the set {yL} can grow if some landmark

needs to be copied only on some successive maps. Each landmark
{i}

y
(i)
l with l ∈ L has to

be transformed with the function lt(· · · ), generating
{i}

y
(i+1)
l and added to the state vector

of the EKF with the same procedure of Section 5.6.2.1. Once all landmarks of {yL} have
been transformed, they have to be copied to the map i + 1. Let consider the EKF mean
vector and covariance matrix of the source map i and the destination map i+ 1, where the
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shared variable are added, partitioned as

{i}µ =
[
{i}µTA

{i}µTC
{i}µTL

]T
(5.128)

{i}Σ =


{i}ΣAA

{i}ΣAC
{i}ΣAL

{i}ΣT
AC

{i}ΣCC
{i}ΣCL

{i}ΣT
AL

{i}ΣT
CL

{i}ΣLL

 (5.129)

{i+1}µ =
[
{i+1}µTB

{i+1}µTC
{i+1}µTL

]T
(5.130)

{i+1}Σ =


{i+1}ΣBB

{i+1}ΣBC
{i+1}ΣBL

{i+1}ΣT
BC

{i+1}ΣCC
{i+1}ΣCL

{i+1}ΣT
BL

{i+1}ΣT
CL

{i+1}ΣLL

 (5.131)

where the subscript A indicates the variables of map i that are not shared with i + 1,
C the variables shared between the two maps and L the variables that are forming the
loop closure. In particular, {i}µTL and the bottom band and right band of {i}Σ are the
transformed landmarks in the map i that have to be copied to map i + 1. Since a back
propagation step has been performed, the next equivalences are true:

{i+1}µC = {i}µC , (5.132)
{i+1}ΣCC = {i}ΣCC , (5.133)
{i+1}µL = {i}µL, (5.134)
{i+1}ΣLL = {i}ΣLL, (5.135)
{i+1}ΣCL = {i}ΣCL. (5.136)

This means that the new element in the map i + 1 (the ones with the L subscript) are
simply copied, apart from the {i+1}ΣBL. The latter has to be computed leveraging on the
covariance independence properties by conditioning p(B,L|C, zA, zB) and by imposing
that the covariance between B and L is zero given C and the measurements:

{i+1}ΣT
BL = {i+1}ΣT

CL
{i+1}Σ−1

CC
{i+1}ΣT

BC (5.137)

Finally, the set of correspondences SP has to be updated by adding the new landmarks as
shared variables between the two considered maps.

5.6.5 Summary With An Example
To conclude the presentation of the CI SLAM framework, we reproduce the illustrative
example treated in Section 5.6.1.3 in a more practical way, considering the generation of
the submaps, the back propagation step and a loop closure. In particular, we follow the
evolution of the DBN depicted in Figure 5.9, but, in this case, we discard the input uk and
we assume to describe the robot dynamic state with the Λ element in the robot reference
system.

When the system starts we have to create the first map, that is empty and initialized
with the robot placed in the origin and with the initial values for the robot motion descrip-
tion. To be general, we consider a complete covariance matrix, although we know that
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some elements are zero at initialization time. The complete state of the first map is, at time
0,

{1}µ0 =
[{1}

Γ̄
(1)T ,

{1}
Λ̄T
]T
, (5.138)

{1}Σ0 =

[
{1}ΣΓΓ

{1}ΣΓΛ

{1}ΣT
ΓΛ

{1}ΣΛΛ

]
. (5.139)

Since no landmark exists in the map, the sensor observation triggers the addition of
new landmarks to the map. Let consider the new landmarks are {1}y(1)

1 and {1}y(1)
2 , ex-

pressed w.r.t. the current map reference frame. The EKF state is enlarged, according to
the addition step of the EKF SLAM algorithm as

{1}µ0 =
[{1}

Γ̄
(1)T ,

{1}
Λ̄T , {1}ȳ

(1)
1

T , {1}ȳ
(1)
2

T
]T
, (5.140)

{1}Σ0 =


{1}ΣΓΓ

{1}ΣΓΛ
{1}ΣΓy1

{1}ΣΓy2

{1}ΣT
ΓΛ

{1}ΣΛΛ
{1}ΣΛy1

{1}ΣΛy2

{1}ΣT
Γy1

{1}ΣT
Λy1

{1}Σy1y1

{1}Σy1y2

{1}ΣT
Γy2

{1}ΣT
Λy2

{1}ΣT
y1y2

{1}Σy2y2

 . (5.141)

Subsequently, motion prediction is performed and the landmark y2 is observed, gener-
ating an update step. Moreover, the landmark y3 is perceived and added to the map. The
result of all these steps is the evolution of the EKF state as

{1}µ1 =
[{1}

Γ̄
(1)T ,

{1}
Λ̄T , {1}ȳ

(1)
1

T , {1}ȳ
(1)
2

T , {1}ȳ
(1)
3

T
]T
, (5.142)

{1}Σ1 =



{1}ΣΓΓ
{1}ΣΓΛ

{1}ΣΓy1

{1}ΣΓy2

{1}ΣΓy3

{1}ΣT
ΓΛ

{1}ΣΛΛ
{1}ΣΛy1

{1}ΣΛy2

{1}ΣΛy3

{1}ΣT
Γy1

{1}ΣT
Λy1

{1}Σy1y1

{1}Σy1y2

{1}Σy1y3

{1}ΣT
Γy2

{1}ΣT
Λy2

{1}ΣT
y1y2

{1}Σy2y2

{1}Σy2y3

{1}ΣT
Γy3

{1}ΣT
Λy3

{1}ΣT
y1y3

{1}ΣT
y2y3

{1}Σy3y3


. (5.143)

A new motion prediction is performed, thus the mean vector and the covariance matrix
are coherently modified and they results in {1}µ2 and {1}Σ2. At this time, before perform-
ing the updates, we want to close the first map and to start the second one sharing the
landmark y3. We have to transform the

{1}
y3

(1) to
{1}

y3
(2) element with Equation 5.86
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and add it to the EKF state of the first map, that results

{1}µ2 =
[{1}

Γ̄
(1)T ,

{1}
Λ̄T , {1}ȳ

(1)
1

T , {1}ȳ
(1)
2

T , {1}ȳ
(1)
3

T , {1}ȳ
(2)
3

T
]T
,

{1}Σ2 =



{1}ΣΓΓ
{1}ΣΓΛ

{1}ΣΓy1

{1}ΣΓy2

{1}ΣΓy3

{1}Σ
Γy

(2)
3

{1}ΣT
ΓΛ

{1}ΣΛΛ
{1}ΣΛy1

{1}ΣΛy2

{1}ΣΛy3

{1}Σ
Λy

(2)
3

{1}ΣT
Γy1

{1}ΣT
Λy1

{1}Σy1y1

{1}Σy1y2

{1}Σy1y3

{1}Σ
y1y

(2)
3

{1}ΣT
Γy2

{1}ΣT
Λy2

{1}ΣT
y1y2

{1}Σy2y2

{1}Σy2y3

{1}Σ
y2y

(2)
3

{1}ΣT
Γy3

{1}ΣT
Λy3

{1}ΣT
y1y3

{1}ΣT
y2y3

{1}Σy3y3

{1}Σ
y3y

(2)
3

{1}ΣT

Γy
(2)
3

{1}ΣT

Λy
(2)
3

{1}ΣT

y1y
(2)
3

{1}ΣT

y2y
(2)
3

{1}ΣT

y3y
(2)
3

{1}Σ
y
(2)
3 y

(2)
3


.

(5.144)

The second map, represented by mean vector {2}µ2 and {2}Σ2, where the left super-
scripts indicate as usual the map number and the right subscripts indicate the global time,
is initialized with

• the robot position in the local origin {2}Γ(2)
2 with zero variance and independent

from other variables;

• the robot motion parameters {2}Λ2 copied from {1}Λ2;

• a second copy of the motion parameters {2}Λs that represents the value of the pa-
rameters when the map was initialized;

• the landmark {2}y3
(2)T copied from {1}y3

(2)T .

The new map results initialized as

{2}µ2 =
[{2}

Γ̄
(1)T ,

{2}
Λ̄T ,

{2}
Λ̄s

T , {2}ȳ
(2)
3

T
]T
,

{1}Σ2 =


0 0 0 0

0 {2}ΣΛΛ
{2}ΣΛΛs

{2}ΣΛy3

0 {2}ΣT
ΛΛs

{2}ΣΛsΛs
{2}ΣΛsy3

0 {2}ΣT
Λy3

{2}ΣT
Λsy3

{2}Σy3y3

 . (5.145)

where the following equivalences are true

{2}
Λ̄ =

{1}
Λ̄,

{2}
Λ̄s =

{1}
Λ̄,

{2}ȳ
(2)
3 = {1}ȳ

(2)
3 ,

{2}ΣΛΛ = {2}ΣΛΛs = {1}ΣΛΛ,
{2}ΣΛy3 = {2}ΣΛsy3 = {1}Σ

Λy
(2)
3
,

{2}Σy3y3
= {1}Σ

y
(2)
3 y

(2)
3
.

(5.146)
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To complete the map transition step the map of correspondences SP is populated as

SP =

{
〈 {1}Λ , {2}Λs 〉
〈 {1}y3

(2) , {2}y3
(2) 〉

}
. (5.147)

Notice that the {2}Λ is copied from map 1, but it is not shared between map 1 and 2 since
it will evolve during the robot motion. The shared element is {2}Λs, which represents the
values of the motion parameters when map 2 was initialized.

Estimation goes on with the second map now. The landmark {2}ȳ(2)
3 is observed and

the new landmark {2}ȳ(2)
4 is added to the map. Then a prediction step is performed, the

landmark {2}ȳ(2)
4 is observed and the new landmark {2}ȳ(2)

5 is added to the map. The
complete map results, at time 3, composed by

{2}µ3 =
[{2}

Γ̄
(2)T ,

{2}
Λ̄T ,

{2}
Λ̄s

T , {2}ȳ
(2)
3

T , {2}ȳ
(2)
4

T , {2}ȳ
(2)
5

T
]T
,

{2}Σ2 =



{2}ΣΓΓ
{2}ΣΓΛ

{2}ΣΓΛs
{2}ΣΓy3

{2}ΣΓy4

{2}ΣΓy5

{2}ΣT
ΓΛ

{2}ΣΛΛ
{2}ΣΛΛs

{2}ΣΛy3

{2}ΣΛy4

{2}ΣΛy5

{2}ΣT
ΓΛs

{2}ΣT
ΛΛs

{2}ΣΛsΛs
{2}ΣΛsy3

{2}ΣΛsy4

{2}ΣΛsy5

{2}ΣT
Γy3

{2}ΣT
Λy3

{2}ΣT
Λsy3

{2}Σy3y3

{2}Σy3y4

{2}Σy3y5

{2}ΣT
Γy4

{2}ΣT
Λy4

{2}ΣT
Λsy4

{2}ΣT
y3y4

{2}Σy4y4

{2}Σy4y5

{2}ΣT
Γy5

{2}ΣT
Λy5

{2}ΣT
Λsy5

{2}ΣT
y3y5

{2}ΣT
y4y5

{2}Σy5y5


.

(5.148)

Let consider now to close a loop with {1}y1
(1). First of all, we have to perform the

back propagation step from map 2 to map 1. According to the shared element map SP ,
we split the elements in map 2 in two groups:

{2}xB =
[
{2}

Γ(2)T , {2}ΛT , {2}y
(2)
4

T , {2}y5
(2)T

]T
, (5.149)

{2}xC =
[
{2}Λs

T , {2}y
(2)
3

T
]T
, (5.150)

where {2}xC contains the elements that are shared between map 2 and 1, while {2}xB
contains the elements that are only in map 2. The mean value vector and the covariance
matrix can be partitioned as

{2}µ3 =
[
{2}µTB ,

{2}µTC
]

(5.151)

{2}Σ3 =

[
{2}ΣBB

{2}ΣBC

{2}ΣT
BC

{2}ΣCC

]
, (5.152)
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where

{2}µB =
[{2}

Γ̄
(2)T ,

{2}
Λ̄T , {2}ȳ

(2)
4

T , {2}ȳ
(2)
5

T
]T
, (5.153)

{2}µC =
[
{2}

Λ̄s
T , {2}ȳ

(2)
3

T
]T
, (5.154)

{2}ΣBB =


{2}ΣΓΓ

{2}ΣΓΛ
{2}ΣΓy4

{2}ΣΓy5

{2}ΣT
ΓΛ

{2}ΣΛΛ
{2}ΣΛy4

{2}ΣΛy5

{2}ΣT
Γy4

{2}ΣT
Λy4

{2}Σy4y4

{2}Σy4y5

{2}ΣT
Γy5

{2}ΣT
Λy5

{2}ΣT
y4y5

{2}Σy5y5

 , (5.155)

{2}ΣCC =

[{2}ΣΛsΛs
{2}ΣΛsy3

{2}ΣT
Λsy3

{2}Σy3y3

]
, (5.156)

{2}ΣBC =


{2}ΣΓΛs

{2}ΣΓy3

{2}ΣΛΛs
{2}ΣΛy3

{2}Σy4Λs
{2}Σy4y3

{2}Σy5Λs
{2}Σy5y3

 . (5.157)

Similarly, the map 1 has to be partitioned in two groups according to the shared elements
map SP :

{1}xA =
[
{1}

Γ(1)T , {1}y
(1)
1

T , {1}y2
(1)T , {1}y3

(1)T
]T
, (5.158)

{1}xC =
[
{1}ΛT , {1}y

(2)
3

T
]T
, (5.159)

where {1}xC contains the elements that are shared between map 1 and 2, while {1}xA
contains the elements that are only in map 1. The mean value vector and the covariance
matrix can be partitioned as

{1}µ2 =
[
{1}µTA,

{1}µTC
]

(5.160)

{1}Σ2 =

[
{1}ΣAA

{1}ΣAC

{1}ΣT
AC

{1}ΣCC

]
, (5.161)
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where

{1}µA =
[{1}

Γ̄
(1)T , {1}ȳ

(1)
1

T , {1}ȳ
(1)
2

T , {1}ȳ
(1)
3

T
]T
, (5.162)

{1}µC =
[
{1}

Λ̄T , {1}ȳ
(2)
3

T
]T
, (5.163)

{1}ΣAA =


{1}ΣΓΓ

{1}ΣΓy1

{1}ΣΓy2

{1}ΣΓy3

{1}ΣT
Γy1

{1}Σy1y1

{1}Σy1y2

{1}Σy1y3

{1}ΣT
Γy2

{1}ΣT
y1y2

{1}Σy2y2

{1}Σy2y3

{1}ΣT
Γy3

{1}ΣT
y1y3

{1}ΣT
y2y3

{1}Σy3y3

 , (5.164)

{1}ΣCC =

[ {1}ΣΛΛ
{1}Σ

Λy
(2)
3

{1}ΣT

Λy
(2)
3

{1}Σ
y
(2)
3 y

(2)
3

]
, (5.165)

{1}ΣAC =


{1}ΣΓΛ

{1}Σ
Γy

(2)
3

{1}Σy1Λ
{1}Σ

y1y
(2)
3

{1}Σy2Λ
{1}Σ

y2y
(2)
3

{1}Σy3Λ
{1}Σ

y3y
(2)
3

 . (5.166)

The back propagation equations (Equations 5.106 to 5.109) can be applied and the map 1
results updated with the contributions of the second map observations as

{1}µ∗2 =
[
{1}µ∗A

T
, {2}µTC

]
(5.167)

{1}Σ∗2 =

[
{1}Σ∗AA

{1}Σ∗AC
{1}Σ∗AC

T {2}ΣCC

]
. (5.168)

To perform the loop closure with the landmark {1}y1
(1) we have to follow the next steps

• transform {1}y1
(1) to {1}y1

(2) with Equation 5.86;

• add {2}y1
(2) to the second map, coping it from {1}y1

(2), in particular:

– the mean values {2}ȳ(2)
1 are copied from {1}ȳ

(2)
1 ,

– covariances between the new landmark {2}ȳ(2)
1 and the shared elements {2}xC

are copied from the covariances in the original map, i.e., covariances between
{1}ȳ

(2)
1
{1}xC ,

– covariances between the new landmark {2}ȳ(2)
1 and the elements of the second

map {2}xB are calculated with Equation 5.137;

• the pair
〈
{1}y1

(2), {2}y1
(2)
〉

is added to the SP map of the shared elements.
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CHAPTER6
Mono and Multi Camera EKF Visual SLAM

The generic EKF SLAM presented in Section 5.4 has been successfully applied to the
Visual SLAM problem, i.e., to a particular SLAM problem statement that rely on mea-
surements provided by images perceived by cameras. This chapter provides all the details
that allow to implement a complete EKF Visual SLAM system starting from the generic
description of the algorithms.

6.1 Introduction

Visual SLAM, i.e., a specific application of SLAM that uses cameras as sensors for the
landmark perception and measurement, is considered a very promising application of
SLAM, since cameras are massively diffuse, cheap, low-power and lightweight. More-
over, cameras image streams provide a massive amount of information, since a thousand
pixels wide image is gathered in a fraction of a second. Visual SLAM has gained inter-
est in field different from the pure robotics area; for instance, visual SLAM can be used
to build the map of an environment in which a person is moving freely while holding a
smart-phone in hand.

Visual SLAM takes the names of Monocular SLAM when only a single camera is used,
Stereo SLAM when two cameras are used , Trinocular SLAM when the cameras are three
and Multi Camera SLAM when a generic number of cameras is used. One of the first works
implementing an on-line stereo SLAM working in real time is [21]. It used the Shi-Tomasi
salient point detector and small patches as feature descriptors matched by correlation. One
of the key aspect presented in this work is the active search approach to measurements:
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the EKF-SLAM mechanism allows to predict the projection of landmarks in the current
image, thanks to the measurement step. By computing the covariance associated with
the measure we obtain a 2D elliptical region, in terms of Mahalanobis distance, around
the mean prediction, which bounds the search area in the image that contains the feature
with some given probability. This approach reduce the research area, cutting down the
computational cost and data association errors.

The system presented in [20] was the first on-line SLAM system working with a single
camera, i.e., the first monocular SLAM system. The monocular approach is much more
challenging than the stereo in several ways. First of all, the proposed approach does not
use any odometric information, since the camera is held in the hand of a human operator.
Secondly, a monocular camera is a bearing only sensor; it can perceive only the direction
of the viewing ray of a projected environmental point, but it can not know the distance.
The proposed solution uses a delayed approach, i.e., the landmark are added as 3D point to
the filter once a proper estimation of the depth, performed by a separate particle filter, has
been reached. Consequently, the system needs to be started with a visible known pattern, in
order to track the first movement up to the estimation of the depth of some new landmarks.
This work is the seminal paper that gave birth to an important research effort. Although
it was the first running EKF-SLAM system, most of its concepts and techniques are still a
valid approach and the EKF-SLAM system presented in this work is highly based on the
original proposal.

The first attempt to abandon the delayed initialization, i.e., to introduce landmarks
in the filter state and use them in the measurement process from the first time they have
been seen, was developed in [89] and [92], with the Federate Information Sharing (FIS)
approach. FIS is an approximation of the Gaussian Sum Filter which introduces landmarks
as a sum of Gaussian hypothesis along the viewing ray of the landmark. Once the landmark
starts to be measured, the hypothesis are weighted by their likelihood and the less probable
are pruned after a few steps.

The delayed initialization was definitely abandoned with the introduction of the Uni-
fied Inverse Depth Parameterization (UID), proposed in [65]. This work introduces the
concept of parameterization, i.e., the description of a 3D point representing a landmark
with a different formulation that allows to take in account the initial uncertainty on the
depth of the perceived landmark. The UID parameterization was successfully applied in
numerous works, like [75], [67], [100]. Since then, other parameterizations have been
introduced, like the Inverse Scaling (IS) [62] [63], the Anchored Homogeneous Point
(AHP) [90] [93]. A good review of these parameterizations, among with an experimental
evaluation of their properties, can be found in [90] and [93]. Here we present two different
parameterizations, the Framed Homogeneous Point (FHP), originally presented in [10],
and the Framed Inverse Scale (FIS). These parameterizations are not completely new: a
similar version of FHP can be found in [43], while a proposal similar to FIS is in [74].
Both well-known parameterizations and the new proposals are presented here in a differ-
ent form respect the original formulation. Such a reformulation allows to point out a state
vector size saving, thus a computational complexity reduction, and to solve some issues
related to their use of the CI-SLAM framework.

In [91] an interesting discussion about the usage of the monocular approach to multi-
camera systems was proposed with the provocative title “BiCamSLAM: Two times mono
is more than stereo”. In standard approaches, stereo cameras and multi camera systems are
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used taking into account the underlying mathematical and geometrical concepts (e.g., the
epipolar geometry) to initialize 3D landmarks by triangulation of corresponding features.
The BiCamSlam approach motivates precisely the benefits of the implicit use of a multi
camera system. Basically, the proposal relies on the usage of a monocular approach for
the landmark addition and to perform measurements in all the cameras of the multi camera
system, allowing the use of an active search approach for template matching. Triangulation
is never performed explicitly, but landmarks that are matched in more than one camera
generates measurement equations that updates properly the depth estimation. The author
lists the next reasons for the usage of a BiCamSlam approach:

• Depth of points that are close to the camera are rapidly estimated thanks to the
double, in a stereo setup, or multiple, in a generic setup, measurements.

• Bearing only measurements (i.e., measures from a single camera) allow the estima-
tion of the orientation, especially for the very far landmarks

• Updates can be performed on any landmark that is only visible from one camera.

Moreover, the author indicates that the precise calibration of the relative camera position
and orientation is no longer necessary and it can be performed in the SLAM algorithm
directly.

6.2 Multi Camera EKF-SLAM With Conditional Independance
Submapping

In the remaining of this chapter the algorithm for a multi camera EKF-SLAM system,
based on the BiCamSlam approach and fused in the CI-SLAM framework, will be de-
tailed. In this section, the general algorithm is depicted and its differences with the classi-
cal EKF-SLAM system presented in Section 5.4 are pointed out. In the next sections the
fundamental mathematical components, i.e., the motion models equations and the param-
eterizations of the landmarks, of the system are detailed.

6.2.1 The main loop
The main loop of the multi camera EKF-SLAM system has to prepare the first map, take
images from the streams, measure the landmarks in each camera, i.e., predict their position
in the images and search for them in the expected images regions, update the EKF with the
measurements and manage the map in order to add new landmarks if needed or to delete
unuseful landmarks. Moreover, the main loop has to check if the current map needs to
be closed. In this case it has to trigger a map transition procedure. As a last step, the
prediction of the EKF takes place and the entire loop is repeated for the next frame.

Let consider Algorithm 7; in steps 2− 3 the first map is initialized and added to the set
of maps M . The loop from line 4 to 31 iterate the multi camera SLAM system operations
for each frame. In particular, for each camera of the system (step 6) a new image is
acquired (step 7) and the landmarks in the current map mi are projected in the image
(step 8) according to proper measurement equations. The projection allows to start an
active matching search on the ellipsoidal areas in which the feature is expected to be (step
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Algorithm 7 Main Loop

1: # Initialization
2: initialize map m1

3: M ← m1, i = 1
4: loop
5: # Measurement step
6: for all c in cameras C do
7: acquire image Ic from the stream
8: evaluate measurement predictions in image Ic
9: find correspondences through active search mechanism

10: collect individual compatible measures
11: end for
12: # Update step
13: perform EKF update step
14: # CI-SLAM maps management
15: if map mi has to be closed then
16: perform map transition step, initialize map mi+1

17: M ← {M,mi+1}, i← i+ 1
18: end if
19: # Current map management
20: for all c in CI do
21: search for new landmarks in Ic
22: add landmarks to the map
23: for all d in C\CI do
24: evaluate measurement predictions in image Id
25: find correspondences through active search mechanism
26: collect individual compatible measures
27: end for
28: end for
29: if ∃ matched new landmark then
30: perform EKF update
31: end if
32: delete unstable features
33: # Prediction Step
34: perform EKF prediction step
35: end loop
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9). The matched features are collected in an unique set of the individually compatible
measurements (step 10). After all the cameras are processed the update of the EKF state
can be performed with the complete set of collected measurements. This step is skipped if
no measurements are available, alike at the first step of the execution, where no landmarks
are in the map. After the map is properly updated a condition on the map closure is verified
(step 15) and a new map is stared if necessary with a map transition procedure (step 16-
17). Right before the motion prediction step, the current map is analyzed and processed
(steps 20 to 28) in order to add new landmarks if needed and to delete landmarks that are
not useful anymore.

Landmark addition is performed on a subset CI of all the cameras C. For instance, in a
stereo camera setup the left camera can be used to initialize new landmarks while the right
one only for the measurements. For each camera enabled for the landmark initialization
(step 20), new landmarks are searched in the current image (step 21), then they are added
to the map, i.e., to the EKF (step 22). Subsequently the new landmarks are projected in all
the cameras beside the one in which they have been initialized and then they are matched
through the active search mechanism (steps 23 to 27). If some new landmark has been
properly matched an update of the EKF is performed. Consequently, new landmarks that
have been observed by more than one camera have a properly updated depth, while others
new landmarks are simply added to the map as in the monocular case. The last step of the
map management searches for unuseful landmarks and deletes them from the map (step
32). Landmarks are considered useless, and potentially harmful, when they are predicted
to be in the image for a certain amount of time, but they can not be matched. Before we
restart the main loop, the motion prediction step is performed (step 34) according to the
characteristic of the application (i.e., using odometric information or a constant velocity
motion model).

It has to be noticed that the backpropagation step of the CI-SLAM framework is not
described in the main loop since it can be executed at any time in a parallel thread. In
a sequential implementation it can be executed when a map is closed (after step 15) or
alternatively postponed to the end of the SLAM execution to refine the overall estimate.
Similarly, for the loop closure procedure of the CI-SLAM framework, we have to imagine
that in a complete SLAM implementation, a dedicated procedure for the loop detection
is executed in parallel to the SLAM system to trig the execution of a loop closure pro-
cedure. We will not treat the loop detection problem in this work, the interested reader
can refers to the huge literature, starting from the comparison of loop detection methods
proposed in [13] and exploring the state of art methods, such as the works presented in
[31], [8], [32], [60], [70], [69], [59], [42].

The proposed form of the algorithm for the multi camera SLAM system assumes that
cameras are triggered and they produce images synchronously. If cameras have different
frame rates or the acquisition is not synchronized we can modify the algorithm in order to
process the images at the right time, hypothesizing that they are provided with a precise
timestamp and the same base time. Moreover, the algorithm can be easily adapted to an
active SLAM application, i.e., to an application in which cameras are inserted and removed
from the estimation process at run time. Such an algorithm can be useful, for instance,
when low power consumption is requested and camera could be easily turned on and off
when needed.
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6.2.2 Map management strategies
In this section we describe with more details some map management strategies, i.e., poli-
cies for landmark addition and deletion, that we have applied in our work and experiments.
Some of them are suitable for real experiments while some others are applicable only in
simulation.

6.2.2.1 Landmark Addition Strategies

We have used three different landmarks addition strategies, we name them grid-based
strategy, randomized strategy and perfect-knowledge strategy. The first two of them work
with real images while the third one only in simulation. The goal of a landmark addition
strategy is to guarantee the presence of a sufficient number of landmarks in the image at
each iteration, ensuring a good distribution of points over the entire image. Landmark
addition uses a salient point detector to identify the locations of the interesting features
that describe the landmarks.

The grid-based strategy subdivides the image in a matrix of nC = r × c equal size
cells. The policy looks for new landmarks only if in the current image less than a fixed
threshold nI landmarks are visible, otherwise the addition is skipped. Salient point detec-
tor is applied to the cells which have a number of visible landmark lower than lC = nI

nC
.

The detection of point where it is needed allows to reduce computational requirements,
since non interesting zoneS are not processed. Moreover, the salient point detector is in-
structed to mask the elliptical areas where the visible landmarks are, avoiding landmark
duplication or landmarks too close to existing ones. The maximum number of landmarks
that can be added at the same time is specified by a threshold maxnew, but in the first
frame, were no landmarks are in the image, a different threshold max0 is used to initialize
the map properly.

The randomized strategy tries to find “empty” regions in the image and looks for salient
points in them. A image coordinate p is randomly generated and the number of visible
landmarks in a surrounding area of w × h is computed. If no landmarks are in the area
the salient point detector is applied to the area to detected corners (if any), i.e., new land-
mark candidates. Then, the procedure is repeated until a maximum number of attempts
is reached or the maximum number of landmarks visible in the image nI is reached. In
practical applications we observe substantially equivalent performances between the two
policies, although a deep investigation on this was not carried out.

The perfect-knowledge strategy is a special policy that can be applied only in simula-
tion. With the term “simulation” we mean that no real image is provided, but the coordi-
nates of a set of 3D points coming from a known map are projected in the image knowing
the real robot (or camera) position. This results in a set of 2D points that represent the
landmarks in the images. In this context, we assume to known perfectly the data associ-
ation, i.e., point are described by a unique-id. The perfect-knowledge landmark addition
policy leverages on the a-priori knowledge and selects new landmarks if they are visible
in the current image and they are not in the filter state.

6.2.2.2 Landmark Deletion Strategies

The landmark deletion step aims at purging from the map, then from the filter, the land-
marks that are no more useful to the estimation process or possibly harmful. In particular,
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each landmark is individually tested with a series of boolean predicates that vote for its
deletion. The results of these tests are combined with Boolean algebra operator and the
final result represents the choice on the deletion. We individuate the following predicates,
where the true value correspond to a proposal for deletion:

• Lifetime: a landmark that has been added to the filter more than mint steps ago can
be deleted;

• Match Ratio: a landmark with match ratio α less than minα can be deleted, where
α is the ration between the number of frame in which the landmark is predicted to
be visible and the number of frames in which the landmark has been matched;

• Broken: a landmark is said to be broken if it has some characteristic that makes it
unuseful. Although it can not be completely clear at this point of the explanation,
for the landmark representation we use a landmark is said to be broken if its depth
is negative.

The deletion strategy we adopt is the following:

(Lifetime∧MatchRatio) ∨ Broken, (6.1)

i.e., a landmark is deleted if it is said to be broken or it has matched a low number of times
(it is somehow unstable), although it has been in the filter for a sufficient time. Without
this last condition we risk to delete landmarks too frequently. Consider, for instance a
match ratio α = 0.5. If a landmark is added and then it is not matched in the next frame,
it would be deleted, preventing a possible match in a following frame. The introduction
of the Lifetime predicate add robustness to this test guaranteeing a minimum number of
attempts to the matcher.

A special attention as to be paid in the deletion of landmarks that are shared with a
previous map in the CI SLAM framework. We can adopt two strategies: the first is to
remove landmarks from the current map and from the other maps where it is shared; the
second is to avoid the deletion of such landmarks. We adopt the latter policy to ease the
implementation.

The definition of predicates for landmark selection is particularly useful since, with
simple modifications, the SLAM algorithm can be converted in a visual Odometry system,
which is particularly useful for testing and debugging. If we consider the deletion strategy

(Lifetime∧MatchRatio) ∨ Broken∨ (NotInImage∧Lifetime) , (6.2)

where NotInImage is true if the landmark is predicted to be outside of the image, old
landmarks that are no more visible are deleted, thus the map is forgotten, limiting the
number of landmarks in the filter and allowing a very fast execution.

As a final remark, we do not invoke the landmarks deletion procedure at each iteration
of the SLAM system, but only periodically. This is because deletion of landmarks requires
to resize the filter state and to reorder elements in the mean vector and in the covariance
matrix. Doing this periodically for a set of landmarks save computation time.
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6.3 Motion Models

Let start the detailed description of the multi camera SLAM system components from
the so called motion model, i.e., the state transition probability function that drives the
prediction step of the EKF SLAM algorithm. With reference to Section 5.4.3, and in
particular to Equation 5.8, we have to specify the function fD(· · · ). Here we presents
three different formulations, one of them needs odometric information as input, while the
remaining two assume a constant velocity motion model and they do not require any input
apart from the previous state estimation.

Lets remind the form of the state transition function of Equation 5.8,[
ΓTk , ΛT

k

]T
= fD(Γk−1,Λk−1,uk,ηk), (6.3)

where

• Γk−1 and Γk are respectively the estimation of the current robot pose and the pre-
diction of the next robot pose. From now on Γ is considered as a 7-element variable[
tTk = tWR

T
, qTk = qWR

T
]
, composed by a translation vector and a quaternion, rep-

resenting the pose of the robot (R) with respect to the global reference frame (W ),
i.e., the transformation TWR . Different representations of the robot pose are possi-
ble, in particular for the representation of the rotation, but hereafter we consider the
quaternions;

• Λk−1 and Λk represent the motion parameters. As already explained in Section 5.4.1
this term can be omitted in some cases. In particular, we do not make use of it when
odometric information is provided; in that case only the robot pose is part of the
estimation. Λ is used to represent the robot tangential and rotational velocity when
odometric information is not available. Tangential and rotational velocity are ex-
pressed with two 3-element vector v and ω. In particular, tangential velocity, coded
in a 3-element vector, can be expressed with respect to the robot reference frame R
or with respect to the word reference frame W , depending on the specific model.
Rotational velocity is expressed with a rotation vector in the unit of time referred to
the robot reference system;

• uk represents the control input and in our case we use odometric information. In
particular we consider a complete 6 degree of freedom model, although the odo-
metric information might interest only a subset of them. The odometric input is
represented by a 6-element vector representing the displacement from the last robot
pose in terms of a translation vector ∆tk and a rotation vector ∆rk. These values
are expressed in the robot reference system, since they are perceived by on-board
sensors. If the odometric information are not available, this term is omitted;

• ηk is a zero mean Gaussian noise that models the uncertainty. In the motion model
with odometric information noise is generally considered additive to the input, while
in constant velocity motion models noise refers the unmodeled elements, e.g., accel-
erations. Alike for other elements, it is convenient to consider the 6-elements noise
vector as partitioned in two vectors. In particular, we use ηtk and ηrk to represent
noise respectively on the translation part and on the rotation part when odometric
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information is available; we use ηvk and ηωk to represent noise in motion models
without odometric information.

6.3.1 Motion Model With Odometric Information
When odometric information is available, the element Λ is omitted from the state vector
and the complete motion model equations is

Γk = fODOD (Γk−1,uk,ηk), (6.4)[
tk

qk

]
=

 tk−1 + R (qk−1) (∆tk + ηtk)

qk−1 + 1
2qk−1 ⊗

[
0

∆rk + ηrk

] . (6.5)

These equations come from transformation composition rules: Γk−1 is the robot position
at previous step with respect to the world reference frame, uk represent the new pose of
the robot at step k expressed in the reference system of the robot at time k − 1. Under
the hypothesis of small rotations it is possible to compute the quaternion update equation
from the time derivatives presented in Section 2.3.6.

Beside the motion function definition, we need to compute the Jacobians of the fODOD (· · · )
function as

• ∂fODOD (··· )
∂Γk−1

, i.e., derivatives with respect to the dynamic part of the state vector,

• ∂fODOD (··· )
∂ηk

, i.e., derivatives with respect to the noise of the model.

It can be noticed that in this model ∂f
ODO
D (··· )
∂ηk

=
∂fODOD (··· )

∂uk
, since noises are additive to

the inputs.
Rotations are represented by quaternions with a unitary module. This is true at the

initialization time, where the Γ0 element in the EKF is initialized as the origin (Γ0 =
[0, 0, 0, 1, 0, 0, 0]T ) with zero uncertainty (Σ0 = 07×7) but the motion equation and the
update step of the EKF may result in a non unitary quaternion: ‖qk‖ 6= 1. This problem
can be addressed with a quaternion normalization step that modifies the rotation variable
and imposes the unity of the module

qk =
q̃k
‖q̃k‖

, (6.6)

where the tilde symbol indicates the rotation variable before normalization. This step has
to modify the covariance matrix of the filter through Jacobian of the normalization func-
tion. Since the only involved variable is the rotation itself, it can be shown that the elements
modified in the covariance matrix are the vertical and horizontal band of the covariance
matrix corresponding to the variable position only. This implies that the normalization
step has the same complexity of the prediction step, i.e., O(n) being n the number of
landmarks in the filter.

The noise in the odometry is usually assumed to be independent, thus the covariance
matrix is a diagonal matrix. Empiric considerations and some evidence from experiments
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shows that the more is the robot motion, the more is the uncertainty on the error. Thus, the
non zero elements Σii of the covariance matrix are calculated following the linear rule

Σii = (σ0i + siui)
2
, (6.7)

where σ0i is some minimum standard deviation, used when there is no motion on the
i value of the input vector and si is a scale factor that increments linearly the standard
deviation with the input ui.

6.3.2 Motion Models Without Odometric Informations

When odometric information is not available, e.g., in the case of pure monocular camera
or with a stereo camera in hand, it is possible to consider a constant velocity motion model
as a good approximation of the real motion. In this case the prediction of the next pose is
based on the current robot velocity, represented in the element Λ which is part of the state
vector. Under the hypothesis that the motion is sufficiently smooth, the prediction of the
velocity maintains the same velocity but enlarge its variance to take in account changes
that may happens in the reality, i.e., to model the accelerations.

If no additional information on the initial motion is available, the initial mean values
of the Λ Gaussian variable are all zeros, assuming the robot is initially steady with null
speed, but, to be general, with covariance matrix ΣΛ different from zero. This results in

µ0 =

[
[0, 0, 0, 1, 0, 0, 0]

T

[0, 0, 0, 0, 0, 0]
T

]
. (6.8)

The covariance associated with the initial robot pose is set to zero, so the initial covariance
matrix results

Σ0 =

[
0 0

0 ΣΛ

]
. (6.9)

When the element Λk is composed by the tangential velocity v
(W)
k expressed in world

reference frame and the rotational velocity vector ωk in robot reference frame the motion
model results in [

Γk

Λk

]
= fCSWD (Γk−1,Λk−1,uk,ηk), (6.10)


tk

qk

v
(W)
k

ωk

 =



tk−1 +
(
v

(W)
k + ηvk

)
∆t

qk−1 + 1
2qk−1 ⊗

[
0

(ωk + ηωk) ∆t

]
v

(W)
k−1 + ηvk

ωk−1 + ηωk


, (6.11)

where ∆t is the time of a discrete step. If the tangential velocity is expressed in the robot
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reference frame v
(R)
k the equation changes as[

Γk

Λk

]
= fCSRD (Γk−1,Λk−1,uk,ηk) (6.12)


tk

qk

v
(R)
k

ωk

 =



tk−1 + R (qk−1)
(
v

(R)
k + ηvk

)
∆t

qk−1 + 1
2qk−1 ⊗

[
0

(ωk + ηωk) ∆t

]
v

(R)
k−1 + ηvk

ωk−1 + ηωk


(6.13)

As stated in the previous section, notice that the quaternion element needs to be normalized
after the prediction step in order to ensure that its module is maintained unitary.

The second model (Equation 6.13) is more suitable when some additional information
on the robot motion is available. Lets consider for instance a wheeled holonomic robot
moving on the floor without odometric information. We can assume that the motion has a
“preferred” direction, since the robot can only translate in the forward direction and rotate
around the vertical axis, while it can not fly, thus changes in height are necessarily smooth
and due to changes in terrain slope. At the same manner, rotation around axis parallel to
the ground are quite impossible, and small variations are due to roughness of the ground.
Noises ηk expressed in robot reference frame can be used to properly model these physical
constraints.

6.3.2.1 Use in the CI Slam framework

As stated in the Section 5.6.2.2, the Λ variable has to be introduced in the shared variables
when a new map is created. In particular, in the case of the motion model of Equation 6.10,
this variable needs to be transformed in the new reference system, being the tangential
velocity referred to the world reference frame (i.e., to the current map reference frame).
The transformation function pt(· · · ) of Equation 5.95, expressed only for the tangential
part, is

v
(i+1)
k = R (qk)

T
v

(i)
k , (6.14)

i.e., the tangential velocity expressed in the reference system of the actual map i is rotated
in the current robot reference frame by the inverse rotation expressed by the quaternion of
current the robot orientation.

6.4 Parameterizations

Lets now consider the landmarks and the specific functions that, relying on the current
robot position and on the acquired measure, allow to measure a landmark that is already
in the state vector or to a add a new landmark. Moreover, the use in the CI SLAM frame-
work needs landmarks, referred to the map reference frame, to be transformed in the new
reference frame to be shared with the new map.

Up to now it was not specified precisely what a landmark is. For the purpose of this
work we consider a landmark as a 3D Euclidean point in the environment. However,
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3D points are not suitable to be used directly in the state vector to code landmarks when a
single camera (monocular) visual SLAM system is considered, as stated in the introduction
of this chapter. Different parametrization, i.e., description of a 3D point through a different
formulation, have been developed in the literature, while two new proposal are presented
here. It has to be noticed that we present here well known literature parameterizations in
a slightly different way, providing some considerations that so far remained hidden in the
main presentations done in the literature.

To be general, we assume the camera (or the cameras) to be placed in a different
reference frame with respect to the robot reference frame. Lets name TRCi the pose of the
i-th camera with respect to the robot reference system expressed with a translation vector
tRCi and a quaternion qRCi for the orientation. These transformations can be obtained with
an extrinsic calibration of the cameras and they are used in the landmarks addition and
measurement equation.

6.4.1 Definitions
In this section some terms are clearly defined and then used in the rest of the chapter to
define the possible parameterizations.

6.4.1.1 Landmark Addition

First of all we consider the steps that lead to the addition of a new landmark to the filter
state. In the n-cameras SLAM setup described in the introduction of this chapter we
have to consider that a landmark is perceived by a single camera as a point in the current
image. The camera geometry equations allow to compute the direction of its corresponding
viewing ray, while from a single image it is not possible to known the distance of the
observed point.

Considering the transformation that converts an image point pimg in a direction vec-
tor, lets recall the inverse of the projection equation of Section 3.1.7, expressed through
functionK−1(· · · ), an name r(C) the viewing ray exiting from the camera reference frame
when the image point pimg is considered:

r(C) = K(pimg)
−1. (6.15)

The coordinate of the point pimg may be affected by some noise coming from many
sources, e.g., imprecise calibrations or inaccuracy of the salient point detection mech-
anism. To accommodate these situations we define p̃img as the true image point pimg
affected by an additive zero mean Gaussian noise ξpimg , resulting in

p̃img = pimg + ξpimg , (6.16)

The noise on the two dimension is generally considered uncorrelated, thus the covariance
matrix of ξpimg is diagonal. A common assumption is to consider a standard deviation of

1 pixel for the noise, thus the covariance matrix results in the identity Σξ =

[
1 0

0 1

]
.

The vector r(C) applied to the camera center reach the normalized image plane, i.e., it
has the z coordinate equal to 1, thus the first two element of it represent the 2D coordinate
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of point pπ corresponding to p̃img on the normalized image plane, defined also as pπ =

KI(pimg)−1. Similarly we can consider the image point affected by noise, obtaining
p̃π = KI(p̃img)−1.

The unit vector r(C) can be defined as the ratio between the viewing ray vector and its
module

r(C) =
r(C)

‖r(C)‖
, (6.17)

while, considering noise sources, we define the unit vector r̃
(C)

as

r̃
(C)

=
r̃(C)

‖r(C)‖
. (6.18)

As we stated before, from a single image it is not possible to know the distance of
a 3D point projected on the image, since all points that lie on the viewing ray have the
same projection. This implies that the distance of the observed point from the camera
center is uniformly distributed from zero to the infinity. In the literature it was clearly
demonstrated, and it is intuitively clear, that such unknown distance can not be properly
approximated by a Gaussian distribution. In fact, even if the uncertainty is set to a very
big value, the infinite can not be never included. From this consideration it follows that
an Euclidean 3D point with a Gaussian uncertainty distribution is not a suitable solution.
The description of the depth d in terms of its inverse, i.e., d = 1/% allows to include the
infinity (% = 0) and introduces a good approximation of the theoretic uniform distribution.
When the landmark is firstly perceived, its initial depth is unknown, thus its inverse depth
can be specified with an initial value %0 and an initial associated variance σ2

%0 . Thus, at
initialization we can consider the inverse depth value %̃0 = %0 + ξ%0 , where ξ%0 is a zero
mean Gaussian noise with variance σ2

%0 .
Thanks to the inverse depth it is possible to describe a point that lies on the viewing

ray represented by the unit direction vector divided by the uncertain inverse depth r̃
(C)

%̃ . If

we consider a non unitary direction vector, i.e., r̃(C)

w̃ , the denominator does not describe
directly the distance, but it acts as a scale on the module of the direction vector. In this case,
we prefer to adopt the symbol w instead of %, where the true distance can be recovered as
d = ‖r‖

w . It follows that w̃0 = w0 + ξw0
where σ2

w0
is the variance of ξw0

.
A common choice for the standard deviation σξ% of ξ% is to include the infinite dis-

tance, represented when the inverse depth is 0, in the±kσ confidence interval of the depth
1/%̃0. This implies that %0 − kσξ% = 0, i.e., σξ% = %0

k , where k is usually take between
2 and 3. This choice limits the minimum representable distance to dmin = 1

%0−kσξ%
. A

similar reasoning can be replicated for the inverse scaling factor.
Concluding, landmark addition involves two different terms that come as input: the

image point perceived pimg and the guess for the initial inverse depth %0 or scale w0. The
elements are accompanied by two sources of uncertainty: the first is the noise on the image
point position (ξpimg ) and the second representing the uncertainty on the inverse depth (ξ%)

or scale (ξw). The complete noise vector ξ =

[
ξpimg
ξ%

]
assumes typically the covariance
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matrix Σξ =

1 0 0

0 1 0

0 0 σ2
%0

.

As a final remarks, it has to be noticed that the Jacobian of the K(· · · )−1 function
can not be directly expressed, since this function involve an iterative solution. However,

the inverse function theorem [94] states that ∂f−1(y)
∂y

∣∣∣
y=y

=
[
∂f(x)
∂x

∣∣∣
x=x

]−1

where y =

f(x), i.e., the Jacobian of the inverse function f(·) evaluated in f(x) is the inverse of the
Jacobian matrix of f(·) evaluated in x, if ∂f(x)

∂x

∣∣∣
x=x

is not singular. Thus, the evaluation of

the Jacobians of K(· · · )−1 can be performed by the inversion of the Jacobians of K(· · · ).

6.4.1.2 Landmark Measurement

The landmark measurement function aims at computing the predicted projection of a point
in the image by properly composing the current robot position Γk and a landmark yi to
compute the point projection in the camera. The measurement is performed by a tem-
plate matching between the stored patch that describes a landmark and the zone of the
image around the predicted measure. The result of the template matching mechanism is
affected by noise, that is considered a zero mean additive Gaussian noise δ on the predicted
projection. The covariance matrix Σδ is commonly chosen as an identity 2 × 2 matrix,
representing an independent uncertainty on the two coordinates of the template matching
results with standard deviation of 1 pixel.

6.4.2 Inverse Scaling or Homogeneous Point - IS
The Inverse Scaling parameterization was presented in [62]. Although it was not the first
parameterization to be introduced, it is presented as the first here because it has signifi-
cantly different characteristic from all others parameterization.

6.4.2.1 Definition

A 3D point is represented in IS parameterization with an homogeneous 3D point, i.e., with
a 4-elements vector

yIS =

[
t

w

]
, (6.19)

where t is a vector and w is an inverse scale factor applied to it, as represented in Fig-
ure 6.1(a).

6.4.2.2 Euclidean Point

The transformation of an IS landmark, depicted in Figure 6.1(a), to a 3D point is simply
given by the ratio between the t vector and the scaling factor w:

Y = pIS(yIS) =
t

w
. (6.20)
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Figure 6.1: IS parameterization. (a) definition and transformation to a 3D point (b)
initialization with the gISπ (Γk, s =

{
pimg,TRCi , w0

}
, ξ) function.

The evaluation of the Jacobian of p(·) with respect to the landmark allows to know the
covariance ellipsoid of the 3D point, apart from the approximation introduced by lin-

earizations, through ∂pIS(y)
∂y Σyy

∂pIS(y)
∂y

T

, where the Jacobian is evaluated at the current
estimation of the landmark and Σyy is the block element on the diagonal of the covariance
matrix corresponding to the landmark.

6.4.2.3 Initialization

To initialize a landmark, that is located on the viewing ray referenced in the camera refer-
ence frame r(C) at an unknown distance, we have to compose the current robot pose in the
world reference system and the transformation between the robot and the camera reference
frames. Notice that in the formulas, in order to specify completely the initialization func-
tion, we are considering the viewing ray r̃(C) affected by the noises ξpimg and the initial
depth w̃0 with the zero mean additive noise ξw. This results in the following homogeneous
transformation, that can be followed with the help of Figure 6.1(b),[

R(qk) tk

0 1

][
R(qRCi) tRCi

0 1

][
r̃(C)

w̃0

]
, (6.21)

that generates the following initialization function

yISπnew = gISπ (Γk, s =
{

pimg,T
R
Ci , w0

}
, ξ) =

=

[
R(qk)R(qRCi)r̃

(C) + w̃0R(qk)tRCi + w̃0tk

w̃0

]
.

(6.22)
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r(C)

w0
≡ r(C)

‖r(C)‖w0

r(C)

w0
≡ ‖r

(C)‖r(C)

w0

1

Figure 6.2: Different initialization schema for the new landmarks: in red, landmarks
are assumed initially distributed at equal distance from the camera center, in blue,
landmarks are initialized on a plane parallel to the image plane.

Notice that the r(C) goes from the camera center to the normalized image plane, thus
it has the z coordinate equal to 1. This implies that all the new landmark are initialized on
a plane at a fixed distance 1/w0 from the normalized image plane.

A common choice in the initialization is to assume that points lies on a sphere centered
on the camera center. This results in the two following possible initialization functions

yISNnew = gISN (Γk, s =
{

pimg,T
R
Ci , w0

}
, ξ) =

=

[
R(qk)R(qRCi)r̃

(C)
+ w̃0R(qk)tRCi + w̃0tk

w̃0

]
,

(6.23)

yISSnew = gISN (Γk, s =
{

pimg,T
R
Ci , w0

}
, ξ) =

=

[
R(qk)R(qRCi)r̃

(C) + ‖r(C)‖w̃0R(qk)tRCi + ‖r(C)‖w̃0tk

‖r(C)‖w̃0

]
.

(6.24)

The difference between the two initialization relies on the use respectively of the unitary
viewing ray r̃

(C)
and the use of the viewing ray r̃(C). The scaling factor is properly adapted,

thanks to the equivalence r(C)

w0
≡ r(C)

‖r(C)‖w0
. Notice that it is possible to define a fourth

initialization function gISπs that initialize point on the parallel plane using the unitary
vector r̃

(C)
and the scaled inverse distance w0

‖r(C)‖ , since r̃(C)

w0
≡ r̃

(C)
w0

‖r(C)‖
.

Summarizing, the two different approaches for the initialization produces an initial
distribution of landmark on the surface of a sphere centered in the camera reference frame
or on a plane parallel to the image plane (i.e., to the normalized image plane), as clarified
by Figure 6.2.

Lets take a look to the Jacobians of the three initialization functions with respect to the
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state variables and the noise variables:

GISπ

Γ =
∂gISπ (· · · )
∂(tk,qk)

=

[
w̃0I

∂(R(qk)R(qRCi
)r̃(C)+w̃0R(qk)tRCi)
∂qTt

0 0

]
, (6.25)

GISπ

ξ =
∂gISπ (· · · )
∂(ξpimg , ξw)

=

[
∂R(qk)R(qRCi

)r̃(C)

∂pTimg
R(qk)tRCi + tk

0 1

]
, (6.26)

G
ISN

Γ =
∂gISN (· · · )
∂(tTt ,qt)

=

w̃0I
∂
(
R(qk)R(qRCi

)r̃
(C)

+w̃0R(qk)tRCi

)
∂qTt

0 0

 , (6.27)

G
ISN

ξ =
∂gISN (· · · )
∂(ξpimgξw)

=

∂R(qk)R(qRCi
)r̃

(C)

∂pTimg
R(qk)tRCi + tk

0 1

 , (6.28)

and

G
ISS

Γ =
∂gISS (· · · )
∂(tTt ,qt)

=

[
w̃0‖r(C)‖I ∂(R(qk)R(qRCi

)r̃(C)+w̃0‖r(C)‖R(qk)tRCi)
∂qTt

0 0

]
,

G
ISS

ξ =
∂gISS (· · · )
∂(ξpimgξw)

=

[
∂R(qk)R(qRCi

)r̃(C)

∂pTimg
‖r(C)‖R(qk)tRCi + ‖r(C)‖tk

0 ‖r(C)‖

]
.

(6.29)

It should be noted that the Jacobians of the two initialization functions are perfectly equiv-
alent, but this is true only because we use the module of the nominal viewing ray ‖r(C)‖
to normalize the viewing ray or to scale the initial inverse depth factor. If it had not been
done, spurious correlation between the initial depth uncertainty and the point direction
would be introduced. This can be shown by calculating the bottom left element of the
G
ISS

ξ matrix by using ‖r̃(C)‖ as normalization factor instead of ‖r(C)‖ in the function
definition and noticing that it differs from zero.

It has to be pointed out that the original proposal of [62] use a different initialization
function for this parameterization, where the undistorted coordinate of the image point
are used together with the focal length to describe the direction vector. Here we prefer
to present this formulation, using the normalized viewing ray or the point coordinate on
the normalized image plane, to be more coherent with the parameterization that will be
presented in the following.

6.4.2.4 Measurement function

The IS parameterization measurement equation, shown in Figure 6.3 that aims at the cal-
culation of the predicted location of the projection of the landmark in an image, is:

hIS(Γk,yk,v =
{
TRCi

}
, δ) =

= Ki

(
R(qRCi)

TR(qk)T
(

t

w
− tk

)
−R(qRCi)

T tRCi

)
+ δ.

(6.30)
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Figure 6.3: Measurement of a IS landmark from the current camera position.

t
w − tk is a vector, expressed in the world reference system, that goes from the current
robot pose to the landmark position. This vector is rotated by R(qk)T to be expressed
in the current robot reference system and successively by R(qRCi)

T to be expressed in the
camera reference frame. By subtracting R(qRCi)

T tRCi from the resulting vector we obtain
the vector that goes from the current camera position to the landmark, expressed in the
camera reference frame. The application of the Ki(·) function to the vector computes the
image point that is the predicted projection of the landmark in the image, that is the goal
of the measurement function. Finally, the noise δ is added to model the uncertainty on the
matching process.

The measurement function can be rewritten, thanks to the properties of invariance of
the K function, as

hIS(Γk,yk,v =
{
TRCi

}
, δ) =

= Ki

(
R(qRCi)

TR(qk)T (t− wtk)− wR(qRCi)
T tRCi

)
+ δ,

(6.31)

to avoid division by zero when points are at the infinity (w = 0). Notice that a landmark
can be measured in a different camera with respect to the one used in the initialization only
by using the proper transformation between the camera and the robot TRCi and the proper
Ki function. This constitute an easy way to predict and measure landmarks projection in
a multi-camera rig system.

6.4.2.5 Transformation to a different reference frame

In order to use this parametrization in the CI SLAM framework, it is necessary to spec-
ify how to transform the landmarks in a different reference system through the function
lt(Γ−1

k ,y), introduced in Section 5.6.2.1 through Equation 5.86. In this case, we can
use the transformation of the homogeneous point represented by the landmark variable y,
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resulting in[
R(qk)T −R(qk)T tk

0 1

][
t

w

]
=

[
R(qk)T t− wR(qk)T tk

w

]
, (6.32)

and the use of the Jacobians with respect to Γk and y allows to propagate properly the
covariance.

6.4.3 Unified Inverse Depth - UID
The Unified Inverse Depth parameterization was proposed by Montiel et al. in [65] and
thanks to its introduction it was possible to abandon the delayed initialization of the land-
marks in the filter approach and to introduce a landmark despite its depth being completely
unknown.

6.4.3.1 Definition

A 3D scene point yUID can be defined through the 6 element vector

yUID =


t

ϑ

ϕ

%

 , (6.33)

where t is a 3-element vector representing the position of the camera center with respect to
the world reference frame when the landmark was first perceived; ϑ and ϕ are two angles
in radians representing the azimuth and the elevation of a direction vector applied to the
t position; % represents the inverse depth of the point on the direction vector, as shown in
Figure 6.4(a).

Before continuing the explanation, we point out a particular characteristic of an UID
landmark: the t element represents the position of the camera center with respect to the
world reference frame when the landmark was firstly perceived. It acts as an anchor point
(as noticed in [90]) on the landmark parameterization; thus, UID parameterization is said
to be anchored, while the IS parameterization presented in the previous section is not
anchored. If more than one landmark is initialized at the same time, i.e., it is measured
in the same image for the first time, the anchor point element can be shared between all
the newly added landmarks. Thus the anchor point is added to the filter only one time.
Thanks to this shrewdness, for each new frame containing new landmarks, the state vector
grows of 3 + 3n elements, being n the number of landmarks added in that frame. This
concept was noticed in [43] and [74], but it assumes a greater importance in the CI SLAM
framework, although it was not clearly explained in the reference papers. It can be shown
that multiple copies of the same element in an EKF filter correspond to duplicate block
of rows and columns in the covariance matrix, due to the fact that the copied elements
are perfectly correlated, i.e., they are linearly dependent. This implies that if the shared
version of the UID parameterization is not used, the CI SLAM framework can not be used,
since the inversion of the covariance matrix relative to the shared landmarks between maps
in the backpropagation step may fail due to singularity.
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Figure 6.4: UID parameterization with anchor point. (a) definition and transformation
to a 3D point (b) initialization with the gAP (Γk, s =

{
TRCi

}
) function for the anchor

point and gUID(Γk, s =
{

pimg,TRCi , %0

}
, ξ) function for the UID proper part.

For the afore mentioned reason, here we split the definition of the UID parametrization
in two parts: the definition of the anchor point (AP) and the definition of the proper UID
part. The two parts can be added to the filter as two different landmarks: the anchor
point landmark is added when at least one landmark has to be added at the current time
step, then all the UID landmarks are added. Implementations have to keep trace of the
correspondences between an anchor point and the UID landmarks anchored to it. The
anchor point is simply represented by a 3-elements vector

yAP =
[
t
]
, (6.34)

while the UID parameterization is redefined as the remaining 3 elements of the original
proposal:

yUID =

ϑϕ
%

 . (6.35)

It has to be noticed that the introduction of the shared anchor point introduces some
modifications in the standard algorithm presented for the EKF SLAM. The landmark ad-
dition function is duplicated into the anchor point addition and to the proper landmark
addition. The landmark transformation function is duplicated too since both the anchor
point and the landmark have to be referred to the new reference frame. The landmark
measurement function has to take in input both the anchor point and the proper landmark,
thus its Jacobian matrix is still very sparse, but with three non-zero blocks instead of two.
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Figure 6.5: Azimuth and elevation angles definition. The azimuth angle ϑ is defined in the
z−x plane, while the elevation ϕ is the angle between the vector and its projection on
the z − x plane.

6.4.3.2 Euclidean Point

The transformation of an UID landmark yUID =
[
ϑ ϕ %

]T
, referred to its specific

anchor point yAP =
[
t
]

into a 3D point is performed by

Y = pUID(yAP ,yUID) = t + (1/%) ·m(ϑ, ϕ), (6.36)

where

m(ϑ, ϕ) = [cos(ϕ) sin(ϑ),− sin(ϕ), cos(ϕ) cos(ϑ)]
T
, (6.37)

computes the unit vector from the azimuth and elevation angles, as shown in Figure 6.5.
This unit vector is scaled by the inverse distance and then applied to the anchor point t

6.4.3.3 Initialization of the Anchor Point

The anchor point is the position of the camera center when the landmark was firstly per-
ceived, thus, it is necessary to compose the robot current pose Γk with the camera center
translation tRCi , obtaining

yAPnew = gAP (Γk, s =
{
TRCi

}
) =

[
R(qk)tRCi + tk

]
, (6.38)

Notice that this function simply compose the current robot pose with the known trans-
formation between robot and camera. No external input are involved in the anchor point
addition but only variables that are already in the state vector, thus it is necessary to com-
pute only the Jacobian GAP

Γ = ∂gAP (··· )
∂(tk,qk) =

[
I

∂R(qk)tRCi
∂qk

]
.
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6.4.3.4 Initialization of the UID landmark

The initialization is performed by:

yUIDnew = gUID(Γt, s =
{
pimg,TRCi , %0

}
, ξ) =

θ
(
r̃(W)

)
φ
(
r̃(W)

)
%̃0

 , (6.39)

where

r̃(W) = R(qk)R(qRCi)r̃
(C) , (6.40)

is the viewing ray of pimg in a frame that is oriented as the world reference frame, thanks
to the composition of the robot attitude w.r.t. the world reference frame and the orientation
of the camera w.r.t the robot, while

θ(r) = atan2(rx, rz); φ(r) = atan2(−ry,
√

r2
x + r2

z) , (6.41)

are the azimuth and elevation angles that describe the direction of the viewing ray in world
coordinates.

The Jacobians of the initialization Equation 6.39 with respect to the camera pose Γk =
[tk,qk] and the noises ξ are

GUID

Γ =
∂gUID(· · · )
∂(tTk ,qk)

=


0 ∂θ(r̃W )

∂qt
T

0 ∂φ(r̃W )
∂qt

T

0 0

 , (6.42)

GUID

ξ =
∂gUID(· · · )
∂(ξpimgξ%)

=


∂θ(r̃W )

∂pTimg
0

∂φ(r̃W )

∂pTimg

0 1

 . (6.43)

The information about the sources of uncertainty related to the measurement process (i.e.,
the noise ξpimg ) and the uncertainty in the robot orientation are mixed together in the
viewing ray, due to the fact that the θ(·) and φ(·) are represented in a world aligned frame,
i.e., composed by the actual orientation of the robot with the direction of the viewing ray
in the robot frame.

This initialization equation initializes points at a fixed distance from the camera center,
i.e., on a sphere. To initialize points on a plane parallel to the image plane at distance 1/ρ0

we have to scale the initial inverse depth distance by the module of the viewing ray in
world coordinates, obtaining

yUIDπnew = gUID(Γt, s =
{
pimg,TRCi , %0

}
, ξ) =

θ
(
r̃(W)

)
φ
(
r̃(W)

)
‖r(C)‖%̃0

 . (6.44)
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Figure 6.6: Measurement of a UID landmark from the current camera position.

6.4.3.5 Measurement function

The UID measurement equation uses the yUID landmark and its corresponding anchor
point yAP to compute the predicted location of the projection of the landmark on an image:

hUID(Γk,y
AP
k ,yUIDk ,v =

{
TRCi

}
, δ) =

= Ki

(
R(qRCi)

TR(qk)T
(

t +
m (ϑ, ϕ)

%
− tk −R(qk)tRCi

))
+ δ.

(6.45)

With reference to Figure 6.6, it can be noticed that the internal part of the equation is
basically composed by vector composition operations: the term t + m(ϑ,ϕ)

% sums two
vector to reach the landmark location in world coordinate, then the current i-th camera
position, resulting from the composition tk + R(qk)tRCi is subtracted from the landmark
position to identify the viewing ray in world reference system. The viewing ray has to be
transformed in the current camera reference frame and then the camera projection function
is applied. The equation is rewritten and simplified to avoid division by zero when the
landmark is at infinite distance as

hUID(Γk,y
AP
k ,yUIDk ,v =

{
TRCi

}
, δ) =

= Ki

(
R(qRCi)

TR(qk)T (% [t− tk] + m (ϑ, ϕ))− %R(qRCi)
T tRCi

)
+ δ.

(6.46)

It has to be noticed that the Jacobian of this function with respect to the state variables
is sparse and has three only non zero blocks, corresponding respectively to the deriva-
tives with respect to the robot pose variable, the anchor point variable and the landmark
parameterization.

6.4.3.6 Anchor Point Transformation In CI-SLAM

Alike for the IS parameterization, it is necessary to specify how to transform the land-
marks in a different reference system through the function lt(Γ−1

k ,y), introduced in Sec-
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tion 5.6.2.1, Equation 5.86. For the UID parameterization we have to transform both the
anchor point and the landmark.

The transformation of the anchor point represented by the anchor point variable yAP =
t is [

R(qk)T (t− tk)
]

(6.47)

and through the use of the Jacobians we can propagate properly the covariance.

6.4.3.7 UID Transformation In CI-SLAM

The transformation of the UID part of the landmark requires to rotate the direction vector
described by the ϑ and ϕ angles in the new reference system, while the inverse depth
element remains unchanged. The new element results inθ

(
R(qk)Tm (ϑ, ϕ)

)
φ
(
R(qk)Tm (ϑ, ϕ)

)
%

 . (6.48)

As usual, Jacobians have to be evaluated to compute the covariance matrix of the filter
after the addition of the transformed version of the landmark.

6.4.3.8 UID to Euclidean 3D Point

A landmark represented with the UID parameterization can be converted into an Euclidean
3D point when a test on a linearity index is satisfied, i.e., when the uncertainty on the
depth has been sufficiently reduced. This approach, which has been proposed in [14],
aims to increase the computational efficiency of the UID parameterizations: in its original
formulation, a UID landmark is represented with 6 elements, thus the conversion to a
3D point halves the occupied space in the filter state. However, we have presented the
UID parameterizations in a different form by sharing the common anchor point between
landmarks initialized at the same time. This implies that the conversion from UID to 3D
points has no computational advantages, since a 3 elements UID landmark is substituted
by a 3D point. When all the landmarks which share the same anchor points have been
converted, the common anchor point can be removed from the filter, thus we obtain a
reduction of the state vector dimension. It is clear that the more are the landmarks sharing
the common anchor point, the less is the computational advantage which comes with the
conversion. Similarly, the more are the landmarks sharing the common anchor point, the
less is the probability that all of them will be converted. For these reasons, we will not
treat anymore the conversion of landmarks to Euclidean 3D points, even if it can be easily
applied to all the parameterizations presented in this work.

6.4.4 Anchored Homogeneous Point - AHP
The Anchored Homogeneous Point parameterization comes as an alteration of the UID
parameterization. Although in its original formulation [90] it is presented as a monolithic
parameterization with 7 elements per landmark, it shares with the UID parameterization
the use of an anchor point. Thus, it changes with respect to the UID parameterization only
in the landmark part, i.e., in the last 4 element.
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Figure 6.7: AHP parameterization with anchor point. (a) definition and transformation
to a 3D point (b) initialization with the gAP (Γk, s =

{
TRCi

}
) function for the anchor

point and gAHPN (Γk, s =
{

pimg,TRCi , %0

}
, ξ) function for the AHP part.

6.4.4.1 Definition

An AHP landmark alters the description of the direction vector by the use of a 3 element
vector (not necessarily a unit vector) instead of the minimum representation given in UID
by azimuth and elevation angles and it describe the depth by an inverse scale element.
Thus, the AHP landmark, shown in Figure 6.7(a) is represented by

yAHP =

[
m

w

]
, (6.49)

which corresponds to a direction vector m with a inverse depth scale factor w anchored to
an anchor point yAP . It can be noticed that this corresponds to a 3D point represented in
Homogeneous Coordinates; the anchoring to an anchor point leads to the name Anchored
Homogeneous Point. Moreover, the AHP parameterization can be though as an evolution
of the Inverse Scale parameterization, where an IS landmark is anchored to an anchor
point.

6.4.4.2 Euclidean Point

The transformation of an AHP landmark yAHP =
[
mT w

]T
, referred to its specific

anchor point yAP =
[
t
]

to a 3D point is performed by

Y = pAHP (yAP ,yAHP ) = t + (1/w) ·m. (6.50)

It corresponds to the application of the direction vector, scaled by the inverse scale, to the
anchor point.
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Figure 6.8: Measurement of a AHP landmark from the current camera position.

6.4.4.3 Initialization

An AHP point can be initialized in different ways. Let consider the more natural one

yAHPπnew = gAHPπ (Γt, s =
{
pimg,TRCi , w0

}
, ξ) =

[
r̃(W)

w̃0

]
, (6.51)

which initializes the points on a plane parallel to the image plane at distance w0. On the
other hand, by using the unit vector in world coordinate r̃

(W)
= r̃

(W)

r(C)
as initialization for

the m element, the initialization is performed on the sphere by the function gAHPN (· · · )
(this function is shown in Figure 6.7(b). Similarly, it is possible to initialize the points on
a plane by using the unitary direction vector and scaling properly the initial inverse depth
(gAHPπS (· · · )) or to initialize points on a sphere by using the non unitary direction vector
and scaling the initial inverse depth (gAHPS (· · · )).

6.4.4.4 Measurement Function

The measurement equation of an yAHP landmark (Figure 6.8) applied to the anchor point
yAP is very similar to the UID landmark measurement equation. Here we propose only
the final formula, where the inverse scale factor is at the numerator to avoid division by
zeros:

hAHP (Γk,y
AP
k ,yAHPk ,v =

{
TRCi

}
, δ) =

= Ki

(
R(qRCi)

TR(qk)T (w [t− tk] + m)− wR(qRCi)
T tRCi

)
+ δ.

(6.52)

The only difference between AHP measurement equation and UID measurement equation
lies in the direct presence of the direction vector m for AHP, while the direction vector
has to be computed by the azimuth and elevation angles in UID.
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6.4.4.5 AHP transformation In CI-SLAM

The transformation of the AHP landmark requires to rotate the direction vector m while
the inverse depth element remains unchanged. The new element results in[

R(qk)Tm

w

]
. (6.53)

As usual, Jacobians has to be evaluated to calculate the covariance matrix after the addition
of the transformed version of the landmark.

6.4.5 Framed Homogeneous Point - FHP
The Framed Homogeneous Point parameterization introduces an enhancement of the con-
cept of anchored landmarks: it use a complete anchor frame instead of the anchor point.
An anchor frame is defined as the camera position and orientation when a landmark was
firstly perceived. Following the reasoning done for the anchor points, it is possible to add
an unique anchor frame for more than one landmarks when they are initialized at the same
time.

6.4.5.1 Anchor Frame Definition

The anchor frame is represented by the complete pose of the camera Γ, i.e., it is composed
by camera position t and camera orientation q w.r.t. the world reference frame. Thus, a
landmark yAF representing an anchor frame is composed by 7 elements:

yAF = Γ =

[
t

q

]
. (6.54)

It has to be noticed that during estimation the quaternions module may differ from 1,
due to the update steps that can not guarantee to maintain the proper module. Obviously
it is possible to normalize the quaternion with the formula of Equation 6.6 applied to
each anchor frame, at a total cost of O(n2) being n the number of anchor frame in the
filter. Assuming that an anchor frame has a scant movement during estimation, we can
suppose that the modules of the quaternions representing the orientation of the anchor
frames do not change a lot and that it is not necessary to normalize them continuously,
saving computation time. The normalization is performed in the measurement equations
of the framed parameterization.

6.4.5.2 Anchor Frame Initialization

The initialization of an anchor frame is done, given the current robot position Γk and
the transformation between the robot and the camera TRCi , by the composition of the two
transformations

yAFnew = gAF (Γk, s =
{
TRCi

}
) =

[
R(qk)tRCi + tk

qk ⊗ qRCi

]
. (6.55)
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Figure 6.9: FHP parameterization with anchor point. (a) definition and transformation
to a 3D point (b) initialization with the gAF (Γk, s =

{
TRCi

}
) function for the anchor

frame and gFHPπ (s =
{
pimg, w0

}
, ξ) function for the FHP proper part.

As for the anchor point initialization function, no external inputs affected by uncertainty
are used, thus the anchor frame is basically a copy of the current robot pose composed
with the known transformation to obtain the current camera pose.

6.4.5.3 FHP Definition

The definition of the FHP parameterization with its anchor frame, is shown in Figure 6.9(a).
Since the camera pose is completely specified by the anchor frame, the vector that specifies
the landmark position can be used in the camera reference system and, as usual, an inverse
scale factor is used to scale this vector. Moreover, the direction vector in camera reference
system r̃(C) has a 1 in its third component, since the application of r̃(C) to the camera cen-
ter reach the normalized image plane at distance 1 on the z axis. This implies that the third
element can be excluded from the estimation and the 2D coordinate of the point on the
normalized image plane (i.e., the first two element of r̃(C)), derived from KI

(
pimg

)−1
)

can be used to specify the direction vector. Thus, an FHP point is the 3 element vector:

yFHP =

[
pπ
w

]
. (6.56)
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6.4.5.4 Euclidean Point

An FHP landmark yFHP with its corresponding anchor frame yAF represents the 3D
Euclidean point

Y = pFHP (yAF ,yFHP ) = t +
1

w
R

(
q

‖q‖

)[
pπ
1.

]
(6.57)

The initial camera position has to be summed to the scaled direction vector represented by
the viewing ray in camera coordinate aligned with the initial camera orientation.

6.4.5.5 FHP Initialization

A FHP point can be initialized as

yFHPπnew = gFHPπ (s =
{
pimg, w0

}
, ξ) =

[
KI
(
p̃img

)−1

w̃0

]
. (6.58)

Using this initialization function, the points lie naturally on a plane parallel to the image
plane at distance 1/w0, as shown in Figure 6.9(b). To obtain the spherical initialization it
is necessary to scale the initial inverse depth ‖r(C)‖w̃0, obtaining the initialization function
gFHPS (. . .).

It can be noticed that this initialization function, differently from what happens for the
previous parameterization does not involve any variable from the state vector, but only
externals inputs. This implies that the added landmark is initially uncorrelated by the rest
of the filter. It becomes correlated thanks to successive measurements. This also imply
that the FHP parameterization distinguish natively the uncertainty that comes from the
camera pose, stored in the anchor frame landmark, and the uncertainty that comes from
the perception of the landmark in the first image. We expect that this native separation can
help in the estimation of the sub-pixel corrections on the viewing ray and in the camera
pose, while parameterizations with anchor points can not distinguish the error in the initial
camera orientation from the errors in the initial perception of the landmark in the image.
It can be noticed that the parameterization results to be very similar to the one proposed
in [43].

6.4.5.6 Measurement Function

The measurement equation of yFHP , shown in Figure 6.10, is very similar to the UID and
AHP landmark measurement equations. We have to consider the initial camera orientation
to rotate the direction vector, that is expressed in camera coordinates. Here we report the
final formula, where the inverse scale factor is at the numerator to avoid division by zero:

hFHP (Γk,y
AF
k ,yFHPk ,v =

{
TRCi

}
, δ) =

= Ki

(
R(qRCi)

TR (qk)
T

(
w [t− tk] + R

(
q

‖q‖

)[
pπ
1

])
− wR(qRCi)

T tRCi

)
+ δ.

(6.59)
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Figure 6.10: Measurement of a FHP landmark from the current camera position.

6.4.5.7 Frame Transformation In CI-SLAM

Alike for the anchor point, the transformation of an anchor frame is needed when the CI-
SLAM framework has to be used. The transformation of the anchor point represented by
the landmark variable yAP =

[
tT ,qT

]T
is[

R(qk)T (t− tk)

q∗k ⊗
q
‖q‖

]
, (6.60)

and the calculation of the Jacobians allows to propagate properly the covariance.

6.4.5.8 FHP Use In CI-SLAM

The proper part of the FHP parameterization does not require to be transformed in a differ-
ent reference frame when used in the CI-SLAM framework with local submaps, but only
to be shared (and copied during the map transition step) between maps. This comes from
the fact that the direction vector in FHP is referred to the anchor frame and thus only the
anchor frame has to be transformed.

6.4.6 Framed Inverse Scale - FIS

Analysing the FHP parametrization we can observe that the elements pπ represent, in the
filter state, the initial point coordinates on the normalized image plane. Under the hypothe-
sis of properly calibrated camera and a relatively high resolution, we can assume the initial
point on the normalized plane to be properly initialized and we can assume it will not vary
too much during updates. This implies that we can reduce the FHP parametrization only
to the inverse depth element, obtaining the Framed Inverse Scale parameterization (FIS).
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6.4.6.1 Definition

The FIS parameterization is
yFIS =

[
w
]
, (6.61)

and the initial point pimg0 in the image plane, that allows to recompute pπ , is stored outside
the filter state and it will not be updated. The FIS parameterization needs an anchor frame
yAF to be completely specified.

6.4.6.2 Euclidean point

A FIS landmark yFIS with its corresponding anchor frame yAF and the initial point pimg0
represents the 3D Euclidean point

Y = pFIS(yAF ,yFIS , s = pimg0 , ξ) = t + (1/w)R

(
q

‖q‖

)
r̃

(C)
0 , (6.62)

where

r̃
(C)
0 = K−1(p̃img0), (6.63)

p̃img0 = pimg0 + ξ. (6.64)

The initial camera position t has to be summed to the scaled direction vector represented
by the initial viewing ray r̃

(C)
0 in camera coordinates rotated with the initial camera ori-

entation q. The initial viewing ray is computed through the use of the K−1(·) function
applied on the initial image point pimg0 perturbed by a bidimensional zero mean Gaussian
noise ξ. This noise is introduced to compensate the fact that the initial image point is not
estimated using this parameterization, thus it remains uncertain as at the initialization. The
covariance matrix of ξ can be assumed to be similar to the one used in the initialization
function of the others parameterization, i.e., a diagonal matrix with 1px standard deviation.

6.4.6.3 Initialization

The initialization of the FIS parameterization needs only to specify the initial inverse
depth, while the initial point pimg0 has to be stored outside the filter:

yFISπnew = gFISπ (s = {w0} , ξ) =
[
w̃0

]
(6.65)

Notice that the ξ noise in this case is mono dimensional, i.e., it represent only the uncer-
tainty on the inverse depth, since the uncertainty on the initial point is not needed at this
stage. The spheric initialization can be easily obtained by scaling properly the initial depth
with the module of the viewing ray, defining the function gFISS (· · · ).

6.4.6.4 Measurement Function

The measurement equation of a yFIS landmark applied to the anchor frame yAF is very
similar to the FHP landmark measurement equation, but the initial point has to be used
to compute the direction vector. Since the direction vector is not estimated with the FIS
parameterization, we consider the noise δ as a four element Gaussian noise: the first two

135



Chapter 6. Mono and Multi Camera EKF Visual SLAM

elements are added to the resultant projection, while the last two are added to the initial
point pimg0 on the image to represent the unmodeled uncertainty on the initial point in the
image coordinates. The complete measurement equation results in

hFIS(Γk,y
AF
k ,yFISk ,v =

{
pimg0 ,T

R
Ci
}
, δ) =

= Ki

(
R(qRCi)

TR

(
q

‖q‖

)T (
w [t− tk] + R (q) r̃

(C)
0

)
− wR(qRCi)

T tRCi

)
+ δ12, .

(6.66)

where

r̃
(C)
0 = K−1(p̃img0), (6.67)

p̃img0 = pimg0 + δ34, (6.68)

is the viewing ray in camera reference system recomputed by the initial image point pimg0
with the addition of the last two elements of the Gaussian noise δ.

The 4× 4 covariance matrix of δ is usually considered as a diagonal matrix. The first
two element of the matrix are usually set to 1, to represent the uncertainty in the matching
process, while the last two represent the uncertainty on the initial point image coordinates.
A different choice is to consider exact the initialization by avoiding the insertion of the
additional Gaussian noise δ34. In fact, this additional noise can be interpreted as a co-
variance inflation, i.e., an artificial increase of the covariance of the measurement process
which is used to compensate the unavoidable bias on the viewing ray, which is not contin-
uously estimated. In the following, we will use the FIS0 abbreviation to indicate that we
are not considering the δ34 noise in the measurement model.

As for the FHP parameterization, the FIS landmarks does not need to be transformed
when a map transition of the CI-SLAM framework is performed, since they are expressed
in the camera reference frame.

6.4.7 Remarks On The Parametrizations
Summarizing the characteristic of the parameterizations we can infer three categories: IS
is the unique unanchored parameterizations; UID and AHP are anchored to a point; FHP
and FIS are anchored to a frame.

The importance of the anchoring, either through point or frame, lies in the natural
separation between the elements coming from the state vector and the elements that are
proper of the perceived landmark. The unanchored parameterization mixes up in a single
element both the camera pose (both position and orientation) and the measured direction
of the landmark. The point anchored parameterizations separate the position in which the
landmark has been measured for the first time (i.e., when it has been added to the filter),
but mix the orientation of the camera with the measured direction of the landmark. The
frame anchored parameterizations natively separate the camera pose from the perceived
landmark direction vector.

In [90] it was argued that an anchored parameterizations performs better than the unan-
chored ones (i.e., the IS parameterization) due to the ability to account errors from the an-
chor point to the current robot position, instead of referring measures to the world frame.
Following this reasoning, we can argue that frame anchored parameterizations maintain

136



6.4. Parameterizations

the same properties and they allow the introduction of a more precise separation, since the
complete frame is maintained as an anchor. The more detailed measurement equations of
framed parameterizations allow to distribute errors in a more effective way, i.e., to sepa-
rate errors between the erroneous pose of the anchor frame, the erroneous perception of
the landmark at first time and its uncertainty in the depth. This is the main reason that ex-
plains why inverse scaling parametrization performs worse than all others parametrization,
as shown in [90] and [93]. We have to inform the interested reader that in the literature
some different parameterizations have been presented, but they did not receive a significant
attention by the scientific community, thus they are not considered in our work. Among
them we cite [73], which uses the negative logarithm of the depth instead of the inverse
depth representation, and [107], which develops a parallax parameterization for Bundle
Adjustment algorithms that can be adopted in the EKF SLAM machinery too.

6.4.7.1 The special case of pure monocular SLAM

As a final remarks on the parameterization usage, we have to point out that when a pure
monocular setup is used (i.e., when the odometric input is not used), the translation tRCi ,
representing the camera position w.r.t. the robot reference frame has to be set to zero, i.e.,
we have to consider the robot reference system position coincident to the camera reference
system position, while the rotation term qRCi can be arbitrarily chosen. This limitation
comes from the following consideration: the pure monocular SLAM system reconstruct
the trajectory and the map up to an unknown scale factor s. Let consider a landmark
addition equation, e.g., the anchor frame ones, reported in Equation 6.55:

yAFnew = gAF (Γk, s =
{
TRCi

}
) =

[
t

q

]
=

[
R(qk)tRCi + tk

qk ⊗ qRCi

]
. (6.69)

It can be noticed that the translation part (t) sums two elements that are not in the same
scale: the transformation tRCi is metric, while the current robot pose tk has a unknown
scale. The right composition would have to be carried out as R(qk)tRCi + stk, but this is
not possible, since s is unknown. The erroneous composition does not affect the SLAM
algorithm execution and the estimation of the robot trajectory, but prevents the proper
estimation of the map, since the landmarks are referred to a erroneous anchor frame/point
that can not be properly rescaled.

6.4.7.2 Impact Of Parameterizations On The State Size

Sharing the anchor part of the landmarks has great advantages in terms of dimension of the
state vector, and, consequently, on the computational complexity; this is especially true for
FIS parametrization. Let us initialize n landmarks in the same frame; we can notice that,
for n > 2, FIS representation is more compact than UID, since 7+n < 3+3n. Obviously,
this is not valid for the FHP parametrization that has the same dimension of UID for the
non shared part and a bigger shared part due to the use of an anchor frame instead of an
anchor vector. On the other side, FHP state space is smaller than AHP for n > 4, since
7 + 3n < 3 + 4n. In Table 6.1 we report how the vector state size increases at the addition
of n landmarks. For n > 2 the FIS parameterization is the more economic one. We have to
point out that this theoretical calculus may not be reflected to a real advantage in practical
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Param. Cost n = 1 n = 2 n = 3 n = 4 n = 5

IS 4n 4 8 12 16 20
UID 3 + 3n 6 9 12 15 18
AHP 3 + 4n 7 11 15 19 23
FHP 7 + 3n 10 13 16 19 22
FIS 7 + n 8 9 10 11 12

Table 6.1: Comparison of the state dimension increase due to the addition of n landmark
at the same time, i.e., sharing the same anchor point/frame. In bold are highlighted the
less expensive parameterizations, i.e., IS for n ≤ 2 and FIS for n > 2.

applications. In real situations it may happen that some landmarks have to be deleted after
the initialization because they can not be properly matched in the next images and this
can reduce the number of landmarks that shares the same anchor point/frame. Moreover,
we might not be able to add n points at the same time, although with n = 2 this is quite
unlikely.

As a final remark, we notice how, by storing the full pose of the camera when the
landmarks was perceived the first time, the FIS and FHP parametrizations implement some
sort of key-framed representation embedded in the EKF machinery: every time a landmark
gets updated by the Kalman filter, past camera poses get refined as well. This results in
the ability of storing, inside the vector state a “smoothed trajectory”, constituted by the
camera poses at time steps when at least a landmark has been added to the filter. Although
the EKF-SLAM approach remains an on-line approach, i.e., it estimates the current robot
pose and the static map, the particular representation of the map obtained by FHP and FIS
contains a smoothed estimation of the previous robot poses, being somehow similar to the
FrameSLAM [48] or GraphSLAM [103] approach.

6.4.7.3 Issues With The CI-SLAM Framework

The representation of the landmarks divided in shared part and proper part, i.e., the addi-
tion of an unique anchor point/frame for all the landmarks added at the same time, con-
tributes to limit the growing rate of the state vector, saving computational time. Beside
being an advantage from the computational point of view, it allows the use of the Condi-
tional Independent Submapping [78] [77]). Indeed adding multiple copies of the anchor
point/frame of the landmarks initialized at the same time would introduce fully correlated
variables, resulting in a singular covariance matrix. For the back-propagation step of the
CI-SLAM framework we need to invert the covariance matrix of the shared elements be-
tween maps and this would not be possible if more than one landmark added at the same
time step is present in the shared elements. We can assert that the use of the shared repre-
sentation of the landmarks is not only a shrewdness for efficiency, but a need for the usage
of anchored parameterizations in the CI-SLAM framework.

The CI-SLAM framework suffers a second big issue that needs special attention. When
a framed parameterization is used, the covariance matrix of the EKF tends to be close to
singularity due to the presence of the quaternions. The latter are overparametrized, i.e.,
they uses four elements to represent the 3 dimensional space of rotations in 3D space. This
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implies that a relation, not necessarily linear, between the quaternions elements exists. In
particular, the analysis of the eigenvalues and eigenvectors of a covariance matrix Σ that
contains quaternions shows null eigenvalues λi = 0. Each eigenvector xi corresponding
to a null eigenvalues λi = 0 allows to write a linear equation Σx = λx = 0, that confirm
the singularity of the covariance matrix. It can be shown that each one of the quaternions
in the filter is involved in a linear relation between its covariances elements. The usage
of the CI-SLAM framework needs to avoid the singularity of the covariance matrix of the
shared elements, but this is impossible when a framed parameterization is used, since it
contains quaternions.

Here a partial solution to the problem that revealed to be insufficient for the complete
usage of the CI-SLAM framework functionalities is presented. Considering a normal-
ized quaternion q = [qw,qx,qy,qz]

T , when it is sufficiently close to the identity, i.e.,
[1, 0, 0, 0]T , we can represent it by only the axis part [qx,qy,qz]

T and reconstruct the

fourth element as qw =
√

1−
(
q2
x + q2

y + q2
z

)
. It can be noticed that the axis part repre-

sentation of the small rotations is similar to the approximation for small rotations proposed
in Equation 2.57 with the rotation vector. The CI-SLAM uses local maps, thus the quater-
nions in the filter, when framed parameterizations are used, are reasonably close to the
identity. To use the framed parameterizations in the CI-SLAM framework, before a back-
propagation step, we propose to normalize all the quaternions in the filter state, take the
mean vectors and the covariance matrix Σ in the proposed reduced form, marginalizing
out all the first term of the quaternions. Once the back-propagation has been performed
the missing element of the quaternion can be reconstructed and the Jacobians of the recon-
struction function allow to reconstruct the covariance matrix properly.

The proposed approach has been demonstrated effective when the simple backprop-
agation step is used, but it has shown its limit when the loop closure procedure of the
CI-SLAM framework is used. Recalling Section 5.6.1.6, loop closure management needs
to bring landmarks along all the maps involved in the loop, from the map i, where the
features originally resides, to map j where the loop closure has take place. This implies
that the rotation of the loop closing landmarks expressed in the reference frame of the
intermediate maps may be very far from the identity, invalidating the hypothesis stated
before. This consideration is the motivation that brings to the introduction of the Hybrid
EKF-SLAM presented in the next chapter.

As a final remarks on the CI-SLAM framework, we point out that the map transition
step can not be performed if some landmarks have been added at the last time step when
anchored parameterizations are used. This comes from the fact that the anchor point (or
frame) of the new landmarks is an exact copy of the robot position (or pose). When the
anchor point/frame is composed with the inverse of the robot pose to obtain the anchor
point/frame in the reference frame of the new map, its variance become zero, causing a
singularity in the covariance matrix of the shared elements and preventing the possibility
of the inversion. Two equivalent solution are possible: we can postpone the map transition
until we observe that no landmark has been added at the current step or we can inhibit the
landmark addition step when we need to perform the map transition.

139





CHAPTER7
Indirect EKF SLAM

In this chapter we introduce a different way of thinking the EKF estimation mechanism,
i.e., the so called Indirect EKF or error state EKF, and how this can be adapted to the EKF
SLAM problem, introducing a formulation that we name Hybrid EKF-SLAM. The Hybrid
EKF-SLAM formulation allows to solve the problems related to the usage of framed pa-
rameterizations in CI-SLAM framework, since rotations can be expressed in a minimal
form close to the identity. In the remaining of this chapter the Indirect EKF formulation
is presented, then the Hybrid EKF-SLAM formulation is derived and the motion models
and the framed parameterizations defined in the previous chapter are adapted to the new
formulation.

7.1 The Indirect or Error State EKF

In the conclusion of the previous chapter we have shown the problems related to the usage
of the quaternions in the Conditional Independent EKF SLAM framework. Quaternions
cause singular covariance matrix, since rotations are represented with an over-parametrized
formulation. This implies that the back propagation step of the CI SLAM framework can
not be applied directly, since covariance matrices have to be inverted. In Section 6.4.7.3
we proposed a workaround to this, that use the axis part of the quaternion only, assuming
that represented rotations are small, i.e., close to the identity. Unfortunately, this hypoth-
esis is infringed when loop closure are performed. This last issue can be solved by using
an Indirect (or Error State) EKF instead of a standard Extended Kalman filter.
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Chapter 7. Indirect EKF SLAM

The Indirect EKF (also known as error state EKF) differs mainly from the standard
EKF in how the system is modeled. In the standard formulation the state vector describes
directly the state of the system (e.g. the pose of the robot, its velocity, etc.), thus the
state transition function describes how the state evolves in time. In the indirect approach
the state vector describes the errors with respect to nominal values. Errors and nominal
values evolve in parallel respectively with error-state transition function and nominal-state
transition function. Measurement equations involves both the nominal and the error state,
updating the estimation of the errors. Errors can be reset and integrated in the nominal
values, ensuring that the error state estimation remains always close to zero.

Lets introduce the mathematical notation that will be used hereafter. The nominal
values of a variable are referred with the variable name x, while the error part, i.e., the
differences between the nominal values and the true values are indicated with δx and it
will be indicated hereafter as the delta part. The state vector of the EKF contains only the
error (delta) variables, since the nominal values are assumed to have no uncertainty. The
true value, i.e., the full estimate state (the total state) of the system, x̃ is then given by the
composition of the nominal values and the error part

x̃ = x � δx, (7.1)

where � indicates a composition function that may differs from the algebraic sum. Notice
that, thanks to this general formulation, it is not necessary for x and δx to have the same
dimension.

All the operations of the EKF have to be specified both for the nominal values and
for the error state. Consider for instance the motion model: it is necessary to specify the
function fD(· · · ) for the prediction of the nominal values and the function δfD(· · · ) for
the error part. Notice that the Jacobian computation and evaluation need to be done only
on the latter function, since only it involves the state variables δx while nominal values
are not involved in the estimation process. With reference to the general motion model
of Equation 5.8, the complete definition of the motion model functions for the Indirect
EKF-SLAM can be expressed as[

Γk

Λk

]
= fD(Γk−1,Λk−1,uk), (7.2)[

δΓk

δΛk

]
= δfD(Γk−1,Λk−1, δΓk−1, δΛk−1,uk,ηk), (7.3)

being Equation 7.2 the motion model for the nominal part and Equation 7.3 for the delta
part. Similarly, landmark addition has to be defined both for the nominal values and for the
error state. The measurement equation remains unique, but it involves in the parameters
both the nominal values and the delta values.

There are two possible approaches to the development of an indirect EKF: the feed-
forward indirect EKF and the feed-back indirect EKF. In the feed-forward approach the
nominal values evolve independently and the delta values represent, at each time step, the
estimation of the differences between the true state and the nominal values. In the feed-
back approach the nominal values are corrected with the error estimation and the delta
values are reset to zero. The latter is considered the best approach to the indirect filtering,
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7.1. The Indirect or Error State EKF

since the values in the filter state are always maintained close to the zero, while in the
feedforward approach they can grow unbounded.

Let explain how the delta values are reset and integrated in the nominal values when the
feed-back approach is considered. First of all, when the composition function of the delta
and nominal values (Equation 7.1) is simply the algebraic sum, the nominal values can be
updated with the delta values, the delta values set to zero and the covariance matrix does
not change, since a mean shift does not affect the covariance of a Gaussian variable. In
general, composition is a non linear function and a general procedure to integrate the delta
values in the nominal values, reset the delta and properly update the covariance matrix
has to be developed. First of all, the new nominal values has to be computed by the
composition of the current nominal values and the mean of the delta values

x+ = x � δx, (7.4)

where the δx are the current mean values of the delta values in the state vector. To reset
the delta values and update properly the covariance matrix we can consider the follow-
ing equation, derived from Equation 7.1 by considering two equivalent composition of
different nominal and delta values:

x̃ = x+ � δx+ = x � δx. (7.5)

In general, the same true value x̃ can be expressed by different compositions of nominal
and delta values, thus if we change the nominal values, we have to change the delta values
according to them. Substituting the Equation 7.4 into Equation 7.5, i.e., considering the
nominal value with the integrated mean of the delta values, we obtain(

x � δx
)
� δx+ = x � δx, (7.6)

and, naming � the inverse of �, by isolating the δx+ terms we obtain

δx+ =
(
x � δx

)
� (x � δx) . (7.7)

The last equation allows to compute properly the Jacobian

∂δx+

∂δx

∣∣∣∣
δx=δx

, (7.8)

i.e., the Jacobian of the delta transformation function with respect to the current error
state variable δx and to propagate covariance properly. Notice that the variable δx is, in
general, just a part of a big state vector, thus the covariance propagation modifies only the
vertical and horizontal bands of the covariance matrix corresponding to the variable δx.
This implies that the delta reset of each variable has O(n) complexity, being n the number
of variables in the filter state.

7.1.1 Hybrid EKF-SLAM
The use of an indirect EKF in a SLAM application, taking into account the CI SLAM
framework too, needs some adjustment with respect to a standard indirect EKF system.
Obviously, all the considerations about the sparsity of the Jacobians of the principal func-
tions of the EKF are still valid, i.e., the prediction and the landmark addition steps can be
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performed in linear time with the number of landmarks, the Jacobians of the measurement
equations are sparse and so on, but the delta reset procedure of the feedback approach add
computational cost to the system.

In the choice between the feedback and the feed-forward approach, we tend to the first
one, since it ensure to maintain all the variables in the vector state close to the zero, in-
cluding rotations that can be represented with a minimal representation. A feed-forward
representation does not offer the same guarantees, since the state vector can growth indef-
initely. On the contrary, a straightforward application of the feedback indirect EKF to the
SLAM problem may results in an excessively high computational cost. Reset the deltas of
all the variables in the state vector has an additional cost of O(n2), being n the number of
landmarks in the state. Although the overhead of this operation has the same complexity
of the EKF SLAM algorithm, the computation time required by this operation may results
excessively high for a real time system implementation. Since landmarks are static, we
can suppose that the errors on their estimate remain sufficiently bounded during the esti-
mation process. Thus, a hybrid approach may be used: the feed-back formulation is used
for the dynamic part of the state vector, while landmarks are maintained in a feed-forward
formulation, i.e., the delta of the landmarks are never reset. Consequently, the delta are
reset only for the robot pose Γk and the motion parameters Λk, while landmarks variables
are never reset. We name this approach Hybrid Indirect EKF-SLAM. It can be noticed that
the application of the delta reset procedure to the subset of the variables representing the
dynamic of the robot bounds the complexity of this operation to O(n).

There is a second motivation under the use of an hybrid approach between the feedback
and feedforward formulation. If we suppose to use a pure feedback approach, i.e., to reset
the delta of all the variables in the EKF state vector, including the landmarks, we can
easily conclude that the CI-SLAM framework can not be applied directly. Considering
the back-propagation Equation 5.107, it can be noticed that the differences between the
mean values of the estimation of the shared variables in the two maps is performed on the
delta values in the filter state. This implies that, if the deltas of the landmarks were reset,
the difference become always 0 and the back propagation can not update the estimation of
the shared landmark properly. Moreover, the covariances are linearized around a different
point if the delta are reset, thus the covariance update in the back propagation will not be
performed properly too. The presented hybrid approach fixes the initial nominal values of
the landmarks and consequently the delta values are directly comparable between them,
allowing the use of the CI SLAM procedures unchanged. Notice that the reset of the deltas
on the motion parameters does not introduce any issue in the back propagation since the
values in the new map are copied twice and the shared one remains static to take trace of
the initial speed of the map and its delta are never reset.

In the remaining of this chapter, all the proposed function for the motion models and
for the parameterizations are redrawn for the proposed Hybrid Indirect EKF formulation.

7.2 Motion Models

To define the motion models in the indirect form, we have to specify the two functions of
Equations 7.2 and 7.3, which describes respectively the nominal motion model and the
error (delta) motion model.

The true robot pose Γ̃ is represented by a translation vector t̃ and a quaternion q̃. The
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translation nominal values and delta values are respectively represented by the vectors t
and δt. The true value of the translation is defined by the sum of the two vector, thus
t̃ = t + δt. The orientation nominal values are represented by a quaternion q and the
delta values are represented by the rotation vector δθ. Notice that in this case the delta
values uses only 3 elements instead of the 4 used by the quaternion. The true value of the
orientation is obtained through the small rotations approximation (see Section 2.3.5) as

q̃ = q⊗ δq, (7.9)

being δq =

[
1
δθ
2

]
.

The motion parameters Λ̃, if used in the problem specification, are composed by the
tangential and rotational velocity vectors ṽ and ω̃. Composition of nominal and delta
values are simply given as

ṽ = v + δv, (7.10)
ω̃ = ω + δω. (7.11)

The delta reset of variables which composition is done by sum is very simple. Let us
consider the translation vector δt; new nominal values can be computed as t+ = t + δt.
The delta reset Equation 7.7 results in δt+ = t + δt − t − δt = δt − δt and it is easy
to verify that the evaluation at δt = δt guarantees to reset the deltas. The Jacobian of the
reset with respect to δt is the identity, thus the covariance is not affected by the delta reset
procedure. Similarly this happens for v and ω variables.

7.2.0.1 Quaternion delta reset function

The case of the quaternion is a little bit more complex. First of all, the new nominal value

can be computed as q+ = q⊗ δq = q⊗

[
1

δθ
2

]
. Let us write the Equation 7.5 as

q+ ⊗ δq+ = q⊗ δq, (7.12)

and, moving q+ to the right, we obtain, after some manipulation, the delta reset function
of Equation 7.7

δq+ = q+∗ ⊗ q⊗ δq (7.13)
=

(
q⊗ δq

)∗ ⊗ q⊗ δq (7.14)

= δq
∗ ⊗ q∗ ⊗ q⊗ δq (7.15)

= δq
∗ ⊗ δq. (7.16)

Then it is possible to substitute the delta quaternion with the rotation vector, obtaining[
1

δθ+

2

]
= η

[
1

− δθ2

]
⊗

[
1
δθ
2

]
, (7.17)
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where η is a normalization factor that guarantees that the scalar value of the resulting
quaternion is equal to 1. This equation has to be manipulated as follow to obtain an
explicit expression for η and δθ+.[

1

δθ+

2

]
= ηQ

([
1

− δθ2

])[
1
δθ
2

]
(7.18)

= η

I +

 0 δθ
2

T

− δθ2
[
δθ
2

]
×

[ 1
δθ
2

]
(7.19)

= η

[ 1
δθ
2

]
+

 δθ
2

T
δθ
2

− δθ2 +
[
δθ
2

]
×
δθ
2

 , (7.20)

where the quaternion multiplication is expressed with the 4×4 matrix Q(·). From the first
element of the vector it is possible to compute the normalization factor

η =
1

1 + δθ
2

T
δθ
2

, (7.21)

and then the last three elements can be computed as

δθ+ = η

(
δθ − δθ +

[
δθ

2

]
×
δθ

)
. (7.22)

The function resets the deltas in the state when evaluated in δθ = δθ and the computation
of the Jacobians w.r.t δθ allows to propagate properly the covariance, i.e., to linearize it
around the reset deltas.

7.2.1 Motion Model With Odometric Informations
Lets specify the motion model in the indirect form when the odometric information is
available. The prediction function for the nominal values

Γk = fODOD (Γk−1,uk), (7.23)

is the standard equation for the position and orientation evolution with a translation vector
and a rotation vector as inputs[

tk

qk

]
=

 tk−1 + R (qk−1) ∆tk

qk−1 + 1
2qk−1 ⊗

[
0

∆rk

] . (7.24)

The delta propagation function

δΓk = δfODOD (Γk−1, δΓk−1,uk,ηk), (7.25)

results in[
δtk

δθk

]
=

[
δtk−1 + R (qk−1)

(
− [∆tk]× δθk−1 + ηt + [δθk−1]× ηt

)
δθk−1 −

[
rk + ηr

2

]
× δθk−1 + ηr

]
. (7.26)
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7.2.1.1 Mathematical Derivation

Lets explain in details how to derive the Equation 7.25. Let consider the first order deriva-
tive of the robot true pose w.r.t the time ˙̃Γ split in the two terms ˙̃t, ˙̃q. Consider the instan-
taneous tangential velocity ṽ = v + ηv and rotational velocity ω̃ = ω + ηω :

˙̃t = R (q̃) ṽ, (7.27)

˙̃q =
1

2
q̃⊗

[
0

ω̃

]
. (7.28)

The previous equations can be rewritten in terms of the nominal values, obtaining

ṫ = R (q) v, (7.29)

q̇ =
1

2
q⊗

[
0

ω

]
, (7.30)

and using the Eulero method integrations on the ∆t interval, we obtain

tk = tk−1 + R (qk−1) vk∆t, (7.31)

qk = qk−1 +
1

2
qk−1 ⊗

[
0

ωk∆t

]
, (7.32)

and by substituting vk∆t = ∆tk and ωk∆t = ∆rk the prediction function of Equa-
tion 7.24, i.e., for the nominal values, is obtained.

Since t̃ = t + δt, the time derivative of t̃ results

˙̃t = ṫ + δ̇t. (7.33)

Substituting the Equation 7.27 in the left member of the latter and Equation 7.29 to ṫ in
the right member we obtain

R (q̃) ṽ = R (q) v + δ̇t. (7.34)

Now the δ̇t can be isolated and the equation expanded thanks to quaternion small rotation
approximations

δ̇t = R (q̃) ṽ −R (q) v (7.35)

= R (q)
[
I + [δθ]× + o

(
‖δθ‖2

)]
(v + ηv)−R (q) v (7.36)

' R (q) [δθ]× v + R (q)ηv + R (q) [δθ]× ηv (7.37)
= −R (q) [v]× δθ + R (q)ηv + R (q) [δθ]× ηv, (7.38)

and the time integration in the ∆t interval gives

δtk = δtk−1 + ∆t R (qk−1)
(
− [vk]× δθk−1 + ηv + [δθk−1]× ηv

)
= δtk−1 + R (qk−1)

(
− [∆tk]× δθk−1 + ηt + [δθk−1]× ηt

)
,

(7.39)
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being ηv = ∆tηt. It can be noticed that, apart from the last term, the evolution of the
error of the position is linear, since the state elements are δtk−1 and δθk−1. The last terms
involves both the noise and the state element δθk−1, but we can consider it sufficiently
small, since delta values are reset at each step of the EKF.

The prediction of the error state for the orientation terms has to be derived considering
the time derivative of the true value of the orientation

˙̃q =
∂ (q⊗ δq)

∂t
= q̇⊗ δq + q⊗ ˙δq. (7.40)

Now, substituting Equation 7.28 in the left term and Equation 7.30 in the q̇ element of the
right term we obtain

1

2
q̃⊗

[
0

ω̃

]
=

1

2
q⊗

[
0

ω

]
⊗ δq + q⊗ ˙δq, (7.41)

and thanks to the definition of q̃ = q⊗ δq we can isolate the ˙δq term:

1

2
q⊗ δq⊗

[
0

ω̃

]
=

1

2
q⊗

[
0

ω

]
⊗ δq + q⊗ ˙δq, (7.42)

˙δq =
1

2
δq⊗

[
0

ω̃

]
− 1

2

[
0

ω

]
⊗ δq. (7.43)

Now we can approximate ˙δq with

[
0
˙δθ
2

]
and δq with

[
1
δθ
2

]
obtaining

[
0

˙δθ

]
= δq⊗

[
0

ω + ηω

]
−

[
0

ω

]
⊗ δq (7.44)

=
[
Q+(ω + ηω)−Q(ω)

]
δq (7.45)

=

[
0 (−ω − ηω + ω)

T

ω + ηω − ω − [ω + ηω]× − [ω]×

]
δq (7.46)

=

[
0 −ηTω
ηω − [2ω + ηω]×

][
1
δθ
2

]
, (7.47)

that results in the system 
0 = −ηTω

δθ

2

˙δθ = ηω − [2ω + ηω]×
δθ

2
.

(7.48)

The first equation gives no useful informations for the determination of the prediction of
the orientation error, while the integration in time of the second vectorial equation gives
the prediction of δθk:

δθk = δθk−1 + ∆t

(
ηω −

[
ωk +

ηω
2

]
×
δθk−1

)
(7.49)

= δθk−1 −
[
rk +

ηr

2

]
×
δθk−1 + ηr, (7.50)
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being ηr = ∆tηω .

7.2.2 Motion Model Without Odometric Informations

The motion model in the indirect form when the odometric information is not available,
i.e., using a constant velocity motion model, for nominal values is

Γk = fCSRD (Γk−1,Λk−1), (7.51)

is the standard equation for the position and orientation prediction, while current tangential
and rotational velocity are maintained constant


tk

qk

vk

ωk

 =


tk−1 + R (qk−1) vk−1∆t

qk−1 + 1
2qk−1 ⊗

[
0

ωk−1∆t

]
vk−1

ωk−1.

 . (7.52)

The delta propagation function

δΓk = δfCSRD (Γk−1,Λk−1, δΓk−1, δΛk−1,ηk), (7.53)

results in 
δtk

δθk

δvk

δωk

 =


δtk−1 + ∆t R (q)

(
− [v]× δθ + δv + [δθ]× δv

)
δθk−1 + ∆t

(
δω −

[
ωk + δω

2

]
× δθk−1

)
δvk−1 + ηv

δωk−1 + ηω

 . (7.54)

7.2.2.1 Mathematical Derivation

Lets split the true robot pose Γ̃ in the true robot position t̃ and the robot orientation q̃.
Similarly, the motion parameters are expressed by the true tangential velocity in ṽ = ṽ(R)

expressed in robot frame and the rotational velocity ω̃.
Alike what done for the motion model based on the odometric information, lets con-

sider the first order derivatives of the true values

˙̃t = R (q̃) ṽ, (7.55)

˙̃q =
1

2
q̃⊗

[
0

ω̃

]
, (7.56)

˙̃v = ηv̇, (7.57)
˙̃ω = ηω̇, (7.58)
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and the derivatives of the nominal values

ṫ = R (q) v, (7.59)

q̇ =
1

2
q⊗

[
0

ω

]
, (7.60)

v̇ = 0, (7.61)
ω̇ = 0. (7.62)

The integration, using the Eulero method, of the last equations gives the prediction func-
tions for the nominal values of Equation 7.52.

The time derivative of ˙̃t is

˙̃t = ṫ + δ̇t, (7.63)

and, by substituting Equation 7.55 in the left member of the Equation 7.63 and Equa-
tion 7.59 in the ṫ of its right member we obtain:

R (q̃) ṽ = R (q) v + δ̇t. (7.64)

The δ̇t term can be isolated and, thanks to the small rotations properties, the following
steps can be performed

δ̇t = R (q)
[
I + [δθ]× + o

(
‖δθ‖2

)]
(v + δv)−R (q) v (7.65)

' R (q) [δθ]× v + R (q) δv + R (q) [δθ]× δv (7.66)
= −R (q) [v]× δθ + R (q) δv + R (q) [δθ]× δv. (7.67)

It can be noticed that only the last term introduces a non linearity, while the others are
linear in the state variable δv and δθ. The discrete time integration gives the prediction
function in the error state formulation for the position term:

δtk = δtk−1 + ∆t R (q)
(
− [v]× δθ + δv + [δθ]× δv

)
. (7.68)

Lets now consider the time derivative of the orientation

˙̃q =
∂q⊗ δq
∂t

= q̇⊗ δq + q⊗ ˙δq. (7.69)

By substituting Equation 7.56 in the left member and Equation 7.60 in the q̇ of the right
member we obtain

1

2
q̃⊗

[
0

ω̃

]
= q̇⊗ δq + q⊗ ˙δq, (7.70)

1

2
q⊗ δq⊗

[
0

ω + δω

]
=

1

2
q⊗

[
0

ω

]
⊗ δq + q⊗ ˙δq. (7.71)
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The term ˙δq can be isolated and δq and ˙δq can be respectively approximated with

[
1
δθ
2

]

and

[
0
˙δθ
2

]

˙δq =
1

2
δq⊗

[
0

ω + δω

]
− 1

2

[
0

ω

]
⊗ δq, (7.72)[

0

˙δθ

]
=

[
Q+ (ω + δω)−Q (ω)

]
δq (7.73)

=

[
0 (−ω − δω + ω)

T

(ω + δω − ω) − [ω + δω]× − [ω]×

][
1
δθ
2

]
(7.74)

=

[
0 −δωT

δω − [2ω + δω]×

][
1
δθ
2

]
, (7.75)

that results in the system 
0 = −δωT δθ

2

˙δθ = δω − [2ω + δω]×
δθ

2
.

(7.76)

The first equation gives no useful informations for the determination of the orientation
prediction term, while the integration in time of the second vectorial equation gives the
prediction of δθk:

δθk = δθk−1 + ∆t

(
δω −

[
ωk +

δω

2

]
×
δθk−1

)
(7.77)

Consider now the tangential velocity term ṽ. Its derivate is ˙̃v = v̇ + ˙δv. The left
member can be substituted by Equation 7.57, while v̇ in the right member is zero thanks to
Equation 7.61. This implies that ˙δv = ηv̇, thus δvk = δvk−1 + ηv, being ∆t ηv̇ = ηv.
The same reasoning leads to the prediction equation of the error state for the rotational
velocity.

We do not treat the case of the motion model without odometric information with the
velocity expressed in the world reference system; it can be derived by following the same
procedure sketched in this section.

7.3 Parameterization

Hereafter two of the parameterizations proposed in the previous chapter are modified to be
used in the Hybrid Indirect EKF-SLAM. The chosen parameterizations are Framed Ho-
mogeneous Point and the Framed Inverse Depth, i.e., the two parameterizations with the
anchor frame. The use of the indirect EKF formulation is very helpful for these parameter-
izations for two reasons. Firstly, the presence of the quaternion in the anchor frame makes

151



Chapter 7. Indirect EKF SLAM

unusable the Conditional Independent SLAM framework, since the covariance matrix be-
comes singular when a quaternion is present. Secondly, the use of the indirect formulation
allows to insert a rotation vector, which dimension is 3, instead of a quaternion, which di-
mension is 4 in the EKF vector state. This implies that the dimension of the anchor frame
decreases from 7 to 6 elements, reducing the complexity a bit further.

7.3.1 Anchor Frame
The anchor frame is represented by its nominal part translation vector t and quaternion q,
and by its error-state part: the translation delta vector δt and the rotation vector δθ. The
true translation t̃ and the true rotation quaternion q̃ are respectively given by t + δt and

by q̃ = q⊗

[
0
δθ
2

]
.

7.3.1.1 Anchor Frame Initialization

The initialization of an anchor frame has to be specified both for the nominal part and
for the error state part. Given the current nominal robot pose Γk = [tTk ,q

T
k ]T , the delta

position δΓk = [δtTk , δθk]T and the transformation between the robot and the camera TRCi ,
the function that initialize the new nominal part of the anchor frame is

yAFinew = gAFi(Γk, s =
{
TRCi

}
) =

[
R(qk)tRCi + tk

qk ⊗ qRCi

]
, (7.78)

while the function that initialize the delta elements is

δyAFinew = δgAFi(Γk, δΓk, s =
{
TRCi

}
) =

 δtk −R(qk)
[
tRCi
]
× δθk

qC
2
w δθk+2 qCw [δθk]×qCθ−[qCθ ]×[qCθ ]×δθk

1 + qCTθ

[
δθk
2

]
×

qCθ

 ,
(7.79)

where the rotation quaternion of the camera w.r.t the robot frame has been decomposed as
qRCi =

[
qCw, qC

T
θ

]T
. Notice that we indicate with the subscript i the indirect formulation

of the anchor frame.

7.3.1.2 Mathematical Derivation

The nominal part of the anchor frame is derived by the standard frame composition rules
applied to the nominal values of the translation and rotation. By considering the same
equation on the true value it is possible to express the new true frame, composed by t̃ and
q̃ as

t̃ = R(q̃k)tRCi + t̃k, (7.80)

q̃ = q̃k ⊗ qRCi . (7.81)

The left members can be substituted by the definition of the frame true value, while the
right members can be expanded with the composition of the robot pose nominal and delta
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values:

t + δt = R(qk)
[
I + [δθk]× + o

(
‖δθk‖2

)]
tRCi + tk + δtk, (7.82)

q⊗

[
1
δθ
2

]
= qk ⊗

[
1
δθk
2

]
⊗ qRCi . (7.83)

In the first equation it is possible to substitute the term t in the left member with the
first part of the nominal vector of Equation 7.78 and, after discarding the second order
terms, it results

δt ' R(qk) [δθk]× tRCi + δtk, (7.84)

which is equivalent to the first part of the delta anchor frame initialization expressed in
Equation 7.79.

Similarly, by substituting the q term with the second part of the nominal anchor frame
of Equation 7.78, we obtain

qk ⊗ qRCi ⊗

[
1
δθ
2

]
= η qk ⊗

[
1
δθk
2

]
⊗ qRCi , (7.85)

where η is a normalization factor. By isolating the term

[
1
δθ
2

]
in the left member we obtain

[
1
δθ
2

]
= η qRCi

∗ ⊗

[
1
δθk
2

]
⊗ qRCi . (7.86)

The quaternion composition can be expressed with the Q(·) and Q+(·) matrix, resulting
in[

1
δθ
2

]
= η Q

(
qRCi
∗)

Q+
(
qRCi
)

= η

[
qCw qC

T
θ

−qCθ qCwI− [qCθ]×

][
qCw −qC

T
θ

qCθ qCwI− [qCθ]×

][
1
δθk
2

]

= η

[
qC

2
w + qC

T
θ qCθ − qC

T
θ [qCθ]×

δθk
2

− [qCθ]× qCθ +
(
qC

2
w − 2qCw [qCθ]× + qCθqC

T
θ + [qCθ]× [qCθ]×

)
δθk
2

]
.

(7.87)

The first line allows to derive the η normalization factor:

η =
1

qC2
w + qCTθ qCθ − qCTθ [qCθ]×

δθk
2

=
1

1 + qCTθ
[
δθk
2

]
× qCθ

, (7.88)

where qC
2
w + qC

T
θ qCθ = 1 since the camera orientation w.r.t. the robot reference frame

is a unit quaternion. Once the η normalization factor has been expressed, the second part
of Equation 7.87 allows to compute the orientation part of the error state frame:

δθ = η
(
qC

2
w − 2qCw [qCθ]× + qCθqC

T
θ + [qCθ]× [qCθ]×

)
δθk, (7.89)

where it has to be noticed that the term [qCθ]× qCθ is zero.
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7.3.1.3 Frame Transformation

When used in the CI SLAM framework, in order to perform the map transition step, the
anchor frame needs to be transformed in the reference system of the new map, i.e., it has
to be composed with the inverse transformation that describe the robot pose in the current
map. This has to be done both for the nominal and the error state part: given the anchor
frame yAFi =

[
tT ,qT

]T
, the nominal part of the transformed anchor frame is given by[

t+

q+

]
=

[
R(qk)T (t− tk)

q∗k ⊗ q

]
, (7.90)

where tk and qk are as usual the robot position and orientation in the current map. The
new error state part of the frame has to be calculated by yAFi and its error state part δyAFi
as [

δt+

δθ+

]
=

[(
I− [δθ]×

)
R (qk)

T
(δt− δtk)− [δθ]×R (qk)

T
(t− tk)

2ηq̌θ

]
, (7.91)

where q̌θ are last three elements, i.e., the axis part, of the quaternion

q̌ = q∗ ⊗ qk ⊗

[
1

−θk2

]
⊗ q∗k ⊗ q⊗

[
1

−θ2

]
, (7.92)

and η is given by the inverse of the scalar element of the quaternion q̌

η =
1

q̌w
. (7.93)

7.3.1.4 Mathematical Derivation

Lets consider the current true robot position t̃k = tk + δtk and orientation q̃k = qk ⊗

δqk = qk ⊗

[
1
δθk
2

]
and the anchor frame expressed by t̃ = t + δt and q̃ = q ⊗ δq =

q ⊗

[
1
δθ
2

]
. The inverse composition of the true current robot pose and the true anchor

frame gives [
p̃+

q̃+

]
=

[
R (q̃k)

T (
t̃− t̃k

)
q̃∗k ⊗ q̃

]
. (7.94)

The expansion of the left and the right members of the first equation gives, discarding the
terms with order greater than 1:

t̃+ + δt̃+ '
[
R (qk)

(
I + [δθk]×

)]T
(t + δt− tk − δtk) , (7.95)

then, considering the nominal part of the transformed anchor frame t+ = R (qk)
T

(t− tk)
we obtain

δt̃+ '
[
R (qk)

(
I + [δθk]×

)]T
(δt− δtk) + [δθk]

T
×R (qk)

T
(t− tk) (7.96)

=
(
I− [δθk]×

)
R (qk)

T
(δt− δtk)− [δθk]×R (qk)

T
(t− tk) . (7.97)
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The expansion of the left and right member of the second part of the Equation 7.94 gives

q+ ⊗

[
1

δθ+

2

]
= η

[
1

− δθk2

]
⊗ q∗k ⊗ q⊗

[
1
δθ
2

]
, (7.98)

where the η term was inserted to normalize the members. The nominal part of the left
member q+ can be substituted with q∗k ⊗ q and can be moved to the right terms, giving[

1

δθ+

2

]
= η q∗ ⊗ qk ⊗

[
1

− δθk2

]
⊗ q∗k ⊗ q⊗

[
1
δθ
2

]
. (7.99)

Naming q̌ the right member but η, gives the possibility to write[
1

δθ+

2

]
= η

[
q̌w

q̌θ

]
, (7.100)

then it is possible to compute η from the first line and δθ+ from the last part of the vectors.

7.3.2 Indirect Framed Homogeneous Point - FHPi
The extension of the framed homogeneous point parameterization to the indirect formula-
tion is simple: the true value of the landmark ỹFHPi =

[
p̃π
T w̃

]T
is simply given by

the sum of the nominal and delta part

ỹFHPi = yFHPi + δyFHPi , (7.101)[
p̃π
w̃

]
=

[
pπ
w

]
+

[
δpπ
δw

]
. (7.102)

7.3.2.1 Euclidean Point

A FHP landmark, composed by its nominal yFHPi and delta values δyFHPi , applied to
its anchor frame yAFi , δyAFi , correspond to the 3D Euclidean point

Y = p̃FHPi
(
yAFi , δyAFi ,yFHPi , δyFHPi

)
= (7.103)

= t + δt +
1

w + δw
R (q)

[
I + [δθ]×

] [pπ + δpπ
1

]
. (7.104)

7.3.2.2 FHP Initialization

The initialization function has to be split in the nominal part and in the delta part as:

yFHPiπnew = gFHPiπ
(
s =

{
pimg, w0

})
=

[
KI
(
pimg

)−1

w0

]
(7.105)

δyFHPiπnew = δgFHPiπ
(
s =

{
pimg, w0

}
, ξ
)

= (7.106)

=

[
KI
(
p̃img

)−1 −KI
(
pimg

)−1

ξw

]
(7.107)

(7.108)
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The δyFHPiπnew is obtained by subtracting the nominal values yFHPiπnew from the values
ỹFHPiπnew , defined as

ỹFHPiπnew =

[
KI
(
p̃img

)−1

w0 + ξw

]
. (7.109)

The computation of the mean values of δyFHPπnew results in a null vector, but the formula
was explicitly written in this form to underline that the Jacobians w.r.t the input noises are
not null, as results from the next equation

∂δgFHPiπ (· · · )
∂ξ

=

∂KI(p̃img)
−1

ξpimg
0

0 1

 . (7.110)

7.3.2.3 Measurement Function

The measurement function of a FHPi landmark yFHPik , δyFHPik involves the current robot
pose Γk, δΓk, the anchor frame yAFik and δyAFik to obtain

h̃FHPi(Γk, δΓk,y
AFi
k , δyAFik ,yFHPik , δyFHPik ,v =

{
TRCi

}
, δ) =

= Ki

(
R(qRCi)

TR (q̃k)
T

(
w̃
[
t̃− t̃k

]
+ R (q̃)

[
p̃π
1

])
− w̃R(qRCi)

T tRCi

)
+ δ.

(7.111)

where the elements indicated with the tilde have to be computed trough composition of

their nominal values and delta values (e.g., t̃k = tk + δtk, q̃k = qk ⊗

[
1
δθ
2

]
, etc.).

As stated for the standard formulation of the FHP parameterization, the landmark are
expressed in the camera reference system stored in the corresponding anchor frame. This
implies that also in the indirect formulation the proper landmark part has only to be shared
with the new map, without any transformation. Obviously both the nominal and the delta
part has to be shared and properly copied.

7.3.3 Indirect Framed Inverse Scale - FISi
The FIS parameterization in its indirect formulation is given by the linear summation of
the inverse depth nominal value and delta value, thus the true value ỹFISi =

[
w̃
]

is given
by

ỹFISi = yFISi + δyFISi , (7.112)
w̃ = w + δw. (7.113)

7.3.3.1 Euclidean Point

A FISi landmark, composed by its nominal inverse scale yFISi and delta inverse scale
δyFISi , applied to its anchor frame yAFi , δyAFi and accompanied by the image point in
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which the landmark was firstly perceived pimg0 , correspond to the 3D Euclidean point

Y = p̃FISi
(
yAFi , δyAFi ,yFISi , δyFISi , s = pimg0 , ξ

)
= (7.114)

= t + δt +
1

w + δw
R (q)

[
I + [δθ]×

]
r̃

(C)
0 , (7.115)

where

r̃
(C)
0 = K−1(p̃img0), (7.116)

p̃img0 = pimg0 + ξ, (7.117)

and the additional ξ noise is introduced to compensate the initial uncertainty on the point
that is not estimated during the estimation.

7.3.3.2 Initialization

The initialization of the FISi parameterization has only to define the nominal and delta
value of the inverse depth, thus

yFISiπnew = gFISiπ (s = w0) = w0, (7.118)
δyFISiπnew = δgFISiπ (ξ) = ξw; (7.119)

this comes from w̃ = w + δw = w0 + ξw. The initial point pimg0 has to be stored for the
successive measurements of the point.

7.3.3.3 Measurement Function

The measurement function of a FISi landmark yFISik , δyFISik involves the current robot
pose Γk, δΓk, the anchor frame yAFik and δyAFik to obtain

h̃FISi(Γk, δΓk,y
AFi
k , δyAFik ,yFISik , δyFISik ,v =

{
TRCi

}
, δ) =

= Ki

(
R(qRCi)

TR (q̃k)
T
(
w̃
[
t̃− t̃k

]
+ R (q̃) r̃

(C)
0

)
− w̃R(qRCi)

T tRCi

)
+ δ,

(7.120)

where the elements indicated with the tilde have to be computed trough composition of

their nominal values and delta values (e.g., t̃k = tk + δtk, q̃k = qk ⊗

[
1
δθ
2

]
, etc.), apart

from the viewing ray in camera coordinate r̃
(C)
0 that is

r̃
(C)
0 = K−1(p̃img0), (7.121)

p̃img0 = pimg0 + δ34, (7.122)

where, as in the standard formulation, we provide an additional noise δ34 to model the
uncertainty on the initial point.

As for the FHPi parameterization, FISi landmarks need only to be copied and shared
with the new map at the map transition step of the CI-SLAM framework.
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CHAPTER8
CIBA-SLAM: Conditional Independent

Bundle Adjusted SLAM

The SLAM problem plays a key role towards the complete autonomy of mobile robots.
Consequently, a strong requirement for a practical SLAM implementation is to operate in
real time on large environments. The EKF SLAM algorithm represents one of the most
studied and well-founded solution to the SLAM problem, but it suffer two important limi-
tations: firstly, it can not handle large environments without losing the ability of operate in
real time; secondly, the inconsistency caused by the linearizations performed in the EKF
limits the solution reliability and precision. The CI-SLAM framework solves the issue of
large maps by partitioning the problem in several local submaps without any information
loss, bounding the computational cost of a single map toO(1) and providing procedures to
update the complete solution and perform loop closures. Moreover, the use of local maps
limits the loose of consistency, since each map is started in a local origin with zero uncer-
tainty. Consequently, with a vision that tends to provide a system more close as possible to
a deployment on a real robot, we consider the CI-SLAM framework a good choice in the
panorama of the SLAM techniques, although it does not reach the precision of the method
based on non linear optimization, also known as Bundle Adjustment. A different aspect of
the CI-SLAM framework, that has remained hidden up to now, is that it can be considered
as an additional module of an EKF SLAM system, since it adds additional functionalities
without modifying the underlaying mechanism. In terms of software engineering it can be
though as an add-on or plug-in to the EKF SLAM basic technique that can be “installed”
on the system when needed, otherwise it can be easily avoided.
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Algorithm 8 µ∗,Σ∗ = CIBA-SLAM(µ,Σ)

1: [G, E ] = EKF2Graph (µ,Σ)
2: G∗ = optimize_graph (G, E)
3: µ∗,Σ∗ = Graph2EKF (G∗,µ,Σ)

In this chapter we ask if it is possible to develop a further module that acts as a plug-in
to the CI-SLAM and solves, at least partially, the issues related to linearizations. Such
module is developed as a Non Linear Lest Squares optimization (i.e., Bundle Adjustment)
applied to each local map of the CI-SLAM system, performed at each map transition step
and propagated to the source map, maintaining unchanged the CI-SLAM framework struc-
ture. We use the abbreviation CIBA-SLAM (Conditionally Independent Bundle Adjusted
SLAM) for the proposed method. The proposed module acts as an add-on to the SLAM
system and in a real application we can choose to activate it if the computational resources
of the running system are sufficient, otherwise it can be just turned off. Section 8.1 ex-
plains how information are transfered from a Gaussian submap of the CI-SLAM system to
an optimization graph, in Section 8.2 the graph structure is formalized in terms of nodes
and edges and Section 8.3 explains how the graph optimization solution is propagated back
to the original Gaussian submap, completing the operation performed by the CIBA-SLAM
plugin. The operations performed by the CIBA-SLAM plugin are summarized in Algo-
rithm 8, which has to be invoked at each map transition step of the CI-SLAM framework.
The algorithm has three step: the first converts the Gaussian map represented in the EKF
state into a graph, the second optimizes the graph and the third converts back the optimized
graph to the Gaussian representation of the EKF.

8.1 From Gaussian Local Map To Graph Optimization

In Chapter 5 the SLAM problem has been presented in two different graphical formu-
lations: as a Dynamic Bayesian Network (DBN) and as an optimization problem on a
Graph. The first was solved in an on-line fashion with the EKF-SLAM approach, while
the second can be solved as a batch optimization problem with Bundle Adjustment (or
Non Linear Least Squares techniques).

In the EKF on-line formulation, past poses of the robot and past measurements are
marginalized out, thanks to the Markov property. Unfortunately, the presence of non lin-
ear functions in the mathematical model of the system introduces approximations which
results in a non optimal solution computed with the EKF mechanism. Despite this, the
provided solution is a good starting point for the computation of a better estimation using
a Non Linear Least Square technique. A straightforward method can be easily developed
by initializing an optimization graph with the robot pose estimates collected in time and
the landmarks converted in Euclidean 3D points. This approach is used in [95], where
the landmarks are represented with the UID parameterization in an Information Filter and
converted to 3D points to initialize a Bundle Adjustment system. It can be noticed that
using this approach, the landmarks are estimated with the complete set of available mea-
surements, while estimates of robot poses are simply collected during time, since they are
marginalized out from the filter state at each prediction step. This implies that past robot
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u1 u2 u3

Γ0 Γ1 Γ2 Γ3 · · ·

c0 c1 c3

y1 y2 y3

z1 z2 z3 z4 z5 z6 z7 z8

Figure 8.1: The DBN of a small SLAM problem addressed with a framed parameteriza-
tion. Gray nodes represent the robot poses that are progressively marginalized out by
the prediction step (i.e., the new robot pose is predicted and the old one is discarded).
A dashed red link connects each landmark, expressed with the FHP parameterization,
with its anchor frame.

poses are not updated by successive measurements, thus theirs estimates may result more
imprecise than the ones obtainable if the robot poses are maintained in the filter state, alike
what happens in a Kalman smoother. The use of anchored parameterization in the EKF
SLAM mechanism overcomes this issue, since some past pose remains in the state vector.
In the next we show how it is possible to construct an optimization graph starting from
the state vector of an EKF SLAM estimation (and from its equivalent Dynamic Bayesian
Network).

8.1.1 DBN analysis

Considering the so called framed parameterizations presented in the previous chapters
(i.e., the FHP and FIS parameterizations, both in their direct and indirect formulations),
where the anchor frame is shared between all the features initialized at the same time, we
can observe that the DBN of the SLAM assume a particular form, since some past robot
poses are maintained in the filter as anchor frames. This happens when new landmarks are
added to the filter state: a unique new common anchor frame, which represents the current
pose of the camera is added to the filter, then the landmarks are referred to this anchor
frame.
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Lets comment the DBN of Figure 8.1 that shows a small example of a monocular
SLAM problem addressed with a framed parameterization; in the next we will use this
example to introduce the proposal of the CIBA-SLAM method. We follow the evolution of
the net during the estimation problem.

At first time step, the robot pose Γ0 is initialized and a new landmark is perceived. A
new landmark (y1) is added to the net using measure z1. The use of framed parameteri-
zation allows the description of the landmark in the camera reference system, i.e., without
any dependence on the current robot pose, thus the node y1 results connected only to the
measure z1. This would not have happened if a point anchored parameterization (i.e., UID
or AHP parameterization) had been used: the landmark description would have been built
by the current robot attitude and the external measure. The camera pose c0 is added to the
net (and to the filter) as an anchor frame thanks to the composition of current robot pose
with the known transformation TRC . Notice that here we prefer to change a little bit the
notation with respect to the EKF formulation, where the anchor frames are named yAFi
and the landmarks yFHPj , to ease the remaining part of the chapter. The TRC is a known
parameter and it is not drawn in the figure to avoid the use of too many nodes and arcs.
A dashed red edge connects y1 and c0 to recall the relation between the landmark and its
anchor frame, although it does not have any meaning in the DBN formulation.

Successively, odometric data u1 composed to with robot position Γ0 generate robot
pose Γ1. The original pose Γ0 is marginalized out, i.e., it is no more available in the filter
state, due to state completeness assumption. We enhance this fact in the DBN by filling in
gray the nodes that are no more in the filter state. At this time the landmark y1 is observed
through measure z2, involving the current robot pose Γ1 and the anchor frame c0. It has to
be noticed that the transformation between the robot and the camera is needed to compute
the projection of the landmark in the image, but this detail is skipped to avoid confusion in
the graph. At the same time a new landmark y2 is initialized through measure z3 and the
current camera pose c1 is generated from Γ1. In the next iteration of the SLAM algorithm,
landmarks y1 and y2 are measured respectively through z4 and z5. No landmark is added
and consequently no anchor frame is generated in the filter.

At last time step a new landmark y3 is added to the net, the camera pose c3 is generated
as the anchor frame of the new landmark and the landmarks y1 and y2 are measured
respectively through z6 and z7 in the current robot pose Γ3. At the end of the execution
we have in the filter (i.e., in the final DBN) the last robot pose Γ3, the three anchor frames
(c0,c1,c3) and the three landmarks (y1,y2,y3), while past robot pose nodes (Γ0, Γ1, Γ2)
have been marginalized out. The state elements have been estimated with measures z1:8

and inputs u1:3, thus, for instance, the anchor frame elements, i.e., the camera poses at
the times in which a landmark was firstly observed, differs at the end of the estimation
process from the original pose in which they have been generated and they represent a
sort of milestones or keyframes of the trajectory followed by the cameras. Notice that the
granularity of the milestones depends on the frequency of landmark addition.

Let us do some considerations on the elements that are in the filter at the end, i.e.,
the elements that have not been marginalized out. Consider any two camera poses (i.e.,
two anchor frames) ci and cj with j > i. They represent the pose of the camera w.r.t. the
world (or the current map) reference system, i.e., respectively the transformations TWCi and
TWCj . Moreover, they have been generated from the robot pose w.r.t. world at time i and j
composed with the known transformation TRC and they are linked by the set of odometric
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u1 u2 u3

Γ0 Γ1 Γ2 Γ3 · · ·

c0 c1 c3

y1 y2 y3

z1 z2 z3 z4 z5 z6 z7 z8

Figure 8.2: The same DBN of Figure 8.1. Gray nodes represents the robot poses that
are progressively marginalized out by the prediction step. All arrows exiting from
the marginalized nodes are grayed too. A dashed red link connects each landmark,
expressed with the FHP parameterization, with its anchor frame. Orange arrows high-
light the hidden relations between nodes: the measurement zi can be performed in
the an anchor frame instead of the robot pose and the odometry can be transformed
to connect camera poses instead of robot poses. Measurement z4 and z5 are grayed
because they are referred to a camera pose that is not present in the filter.

inputs {ui+1:j}, equivalent to the relative transformation TRiRj between the robot pose at
time i and j. Consequently we can express the relation betwee the two camera poses
directly in terms of the odometric inputs as

TWCj = TWCi ⊗
(
TRC
)−1 ⊗TRiRj ⊗TRC . (8.1)

This is highlighted in Figure 8.2, that represent exactly the same net of Figure 8.1 with
the addition of orange arrows linking successive camera poses and the odometric mea-
surements to the camera poses that they generates. Notice that in this figure all the edges
exiting from nodes that are not in the filter at the end of the estimation are grayed.

In the case in which odometric inputs are not used in the SLAM formulation, the input
ui disappear from the net, and the nodes Λi, representing the parameters of the motion,
are added. As it happens for the robot poses, only the last node of motion parameters
remains in the net, while previous are marginalized.

Consider now the measurements of landmarks, and focus on, for instance, the observa-
tion z2. By definition, a measurement depends on the anchor frame (c0), on the landmark
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u1 u2 u3

c0 c1 c3

y1 y2 y3

z1 z2 z3 z6 z7 z8

Figure 8.3: The same net of Figure 8.2 but the marginalized nodes and the inactive mea-
surements.

(y1), on the current robot pose (Γ1) and on the transformation TRC . Practically, the mea-
surement is taken from the camera position, thus without considering the robot pose Γ1,
we can introduce an equivalent measurement equation that measures landmark y1 in the
camera position c1. The latter is generated by the composition of the robot pose Γ1 and
the known transformation TRC . We highlight this by the addition of orange arrows to the
DBN of figure Figure 8.2. This allows to express measurements in terms of nodes that are
still in the DBN at the end of the estimation. Only measurements evaluated when at least a
landmark has been added, i.e., on the milestones of the camera trajectory can be expressed
in this venue, while others can not be directly expressed with the elements that are in the
filter state at the end of the on-line estimation, thus their nodes are filled in gray in the
DBN (look at nodes z4 and z5). We call these measurements inactive, since theirs values
can not be recomputed with the elements that are maintained in the state vector.

8.1.2 Map Bundle Adjustment
The deletion of marginalized nodes, inactive measurements and last robot pose from the
DBN of Figure 8.2 gives the net of Figure 8.3. From the on-line estimation performed
with the EKF SLAM algorithm we have an estimate of the probability

p(c0,1,3,y1,2,3|z1,2,3,4,5,6,7,8,u1,2,3), (8.2)

(where the last robot pose was marginalized out), while the new net describes the proba-
bility

p(c0,1,3,y1,2,3|z1,2,3,6,7,8,u1,2,3). (8.3)

The two problems are not equivalent, but lets hypothesize that the dropped details (i.e.,
the inactive measurements z4 and z5) are not so much relevant with respect to the errors
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introduced by the linearizations of the EKF mechanism. Under this hypothesis we can
formulate a proposal for a refinement of the estimation as it follows.

We can define a graph for a Non Linear Least Square optimization which mimics the
structure of the considered DBN, where nodes are camera poses (i.e., anchor frames) and
landmarks and edges represent measurements and odometric information. The initializa-
tion for the optimization process is directly taken from the mean values estimated in the
EKF machinery, while, after the optimization, the resulting estimates are reinserted in the
EKF, both in terms of mean values and covariances. In the next this method will be detailed
properly, starting from the precise formulation of the structure of the graph to optimize.

Starting from the DBN presented above, it is possible to create an equivalent graph by
considering all the camera nodes ci and the the landmark nodes yj in the DBN and by
connecting them with edges representing the measurements z. In particular, we have two
different kind of edges. An unary edge eIyi expresses the first measurement of the land-
mark, i.e., its position in the first image where it has been perceived; this is independent
from the camera position. A ternary edge eMciyjck represents the measure of the landmark
yj , anchored to the camera position ci, in the image of the camera ck. Odometric in-
puts are accumulated when camera nodes are not consecutive, expressed into the camera
reference system and expressed in the form of binary edges eOcicj (e.g., the edge eOc1c3

is
generated by u2 and u3). Remember that odometry edges may not be present in the graph
depending on the specific problem.

The result of the conversion of the DBN represented in Figure 8.3 in a corresponding
optimization graph is shown in Figure 8.4. It has to be noticed that this is a particular
formulation of the Bundle Adjustment problem. Standard approaches consider landmarks
as 3D points connected to cameras by binary edges representing measurements, as in [95].
With standard formulation it is intuitively more difficult to propagate the result of the Bun-
dle Adjustment to the EKF state, which is the goal of our approach. Indeed, the proposed
formulation create a graph that reflects directly the DBN structure and this allows to treat
easily the multi camera SLAM setup too. Assuming that the landmarks are initialized in a
single camera, observations in different cameras are representable in the DBN with addi-
tional measurement nodes that can be easily translated in edges in the graph formulation.

In the remaining of this chapter we describe all the details of our approach: firstly, the
mathematical formulation of the nodes and the edges will be given, then the integration in
the CI-SLAM framework is presented.

8.2 Graph Formalization

We want to maintain a structure of the nodes in the graph that is more similar as possible
to the EKF state description. We consider the Hybrid Indirect EKF-SLAM formulation
presented in Chapter 7 and in particular the FHPi parameterization, later we extend the
formulation to the use of FISi parameterization. The direct formulation of the EKF-SLAM
is discarded since it is known to have problems in managing rotations due to the presence
of quaternions in the CI SLAM setup.
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c0 c1 c3

y1 y2 y3

eOc0c1
eOc1c3

eIy1
eIy2

eIy3

eMc0y1c1
eMc0y1c3

eMc1y2c3

Figure 8.4: The graph corresponding to DBN of Figure 8.3 where only the elements avail-
able in the state vector after the estimation are used, resulting in a sub problem of the
full SLAM graph since camera node c2 and relative measurements are discarded.

8.2.1 Nodes in the graph

Recalling the indirect formulation, the variables in the EKF state vector that have to be
converted to nodes are the set of anchor frames ỹAFii and the set of FHPi landmarks
ỹFHPij . Each of them can be decomposed in the nominal part and in the error state part
respectively as ỹAFii = yAFii � δyAFii and ỹFHPij = yFHPij � δyFHPij . To comply with
the Hybrid Indirect EKF-SLAM formulation we can not change the values of the nominal
part of the landmarks, i.e., yAFii and yFHPij . Consequently we want that only the error
state part will be updated during the iteration of the optimization algorithm.

Considering a generic node x in the graph, we have to consider that it is composed
by three elements: xN is the nominal values that will never change, xδ is the part subject
to the optimization and ∆x are the increment computed in the optimization process and

integrated in xδ at each iteration. Thus, we redefine the composition operator as
∆
� to

update the error state part with a NNLS techniques as xδ
+

= xδ
∆
�∆x, while the complete

composition is given by xN � xδ
+

= xN �
(
xδ

∆
�∆x

)
.

8.2.1.1 The camera pose node

The camera pose node ci, equivalent to an anchor frame in the EKF, is composed by three
different parts as

ci = cNi � cδi
∆
�∆ci, (8.4)
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and we can further split it in the translation and rotation terms

ti = tNi + tδi + ∆ti, (8.5)

qi = qNi ⊗

[
1

θδi
2

]
⊗

[
1

∆θi
2

]
. (8.6)

The cNi represents the nominal values and it is copied from the values of the yAFii , i.e., the
nominal values of the EKF state variable. It is represented by a translation vector tNi and
a quaternion qNi ; these elements will be never modified by the optimization, i.e., they act
as a sort of fixed parameters. The cδi element corresponds to the error state part δyAFi of
the anchor frame in the EKF state. It is composed by a translation vector tδi and a rotation
vector θδi . Finally the ∆ci part is composed by a translation vector ∆ti and a rotation
vector ∆θi.

At each iteration of the optimization algorithm the element cδi has to be composed

with the increment ∆ci, thus we have to define the
∆
� operator. The composition of the

translation part is simply given by the vector sum

tδ
+

i = tδi + ∆ti. (8.7)

The composition of the local rotational part can be performed by considering local approx-
imation of the quaternions [

1

θδ
+

i

2

]
= η

[
1

θδi
2

]
⊗

[
1

∆θi
2

]
, (8.8)

resulting in

η =
1

1 + θδi
T

∆θi
, (8.9)

θδ
+

i = η

(
∆θi − θδi +

[
θδi
2

]
×

∆θ

)
. (8.10)

The complete composition is given by cδ
+

i = cδi
∆
�∆ci =

tδ
+

i

θδ
+

i

2

.

8.2.1.2 The landmark node

A landmark is represented by nodes yi that corresponds to the indirect FHPi parameteri-
zation. The composition of nominal values, error state element and increments is simply
given by the sum:

yi = yNi + yδi + ∆y. (8.11)

All the involved terms have three elements, two representing the coordinate on the normal-
ized image plane of the viewing ray of the landmark and the third representing the inverse
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W
TWCi

Ci

TWCj

Cj

TRC

Ri

TRiRjRjTRC

Rje

Figure 8.5: Frame transformations that express the odometric edge formulation.

distance: the nominal vector yNi is composed by pNπi and wNi , the error state vector yδi is
composed by pδπ and wδi and the increments ∆yi are composed by ∆pπi and ∆wi. The
composition of the increments with the current value is simply given by

yδ
+

i = yδi + ∆y. (8.12)

8.2.2 The Odometric Edge
As already stated, we have three different types of edges: one represents the odometric
measure, one represents the measurement at the landmark initialization, i.e., its perception
in the first frame, the last represents the observation of landmarks in a different camera
pose. Here we give the complete mathematical formulation of the edges and we introduce
a fourth edge that represents the measurement of landmarks in a multi camera setup.

Odometric measurements are translated in binary edges eOcicj ,with j > i, that links two
camera poses. The edge formulation has to express the error e between relative camera
poses, expressed by the two nodes ci and cj , and the relative transformation expressed by
the odometry. By manipulating Equation 8.1 we obtain

e =
(
TWCj

)−1

⊗TWCi ⊗
(
TRC
)−1 ⊗TRiRj ⊗TRC . (8.13)

This can be verified in Figure 8.5, where the transformation composition can be followed
graphically. Notice that we have transformed the odometry between two robot poses TRiRj
in camera coordinate system by the known transformation TRC . The error is null (i.e., it
represents the identity transformation) when the camera nodes satisfy the measurements
provided by the odometry.

Lets details better the error formulation. First of all we can express the odometry in
the camera reference frame as the transformation

Todo =
(
TRC
)−1 ⊗TRiRj ⊗TRC , (8.14)

that expresses the relative position of camera cj w.r.t ci with the odometric information.
The transformation composition of Equation 8.13, expressed with homogeneous matrices
results [

RWCj
T −RWCj

T
tWCj

0 1

][
RWCi tWCi

0 1

][
Rodo todo

0 1

]
. (8.15)
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Considering only the rotation part we obtain

Re = RWCj
T
RWCi Rodo, (8.16)

and coming back to quaternions gives

qe = qWCj
∗ ⊗ qWCi ⊗ qodo =

[
qw qTθ

]T
. (8.17)

When the relative orientation of the two camera nodes satisfies the relative orientation
measured by the odometric information, the previous formula results in the identity. Thus
we can express the error in the rotation with a rotation vector θe, leveraging on the small
rotation approximations equations, as[

1
θe

2

]
= η qe = η qWCj

∗ ⊗ qWCi ⊗ qodo, (8.18)

i.e., the error is

θe = 2 η qθ, (8.19)
(8.20)

with

η =
1

qw
. (8.21)

For the translation part we obtain from Equation 8.15 the error as

et = RWCj
T
RWCi todo + RWCj

T
(
tWCi − tWCj

)
(8.22)

The complete error function of the edge is composed by the 6-element vector

eOcicj = eodo

(
ci, cj ,T

Ri
Rj

)
=

[
et

θe

]
(8.23)

but we have to consider the following substitution that comes from the camera nodes for-
mulation introduced in Section 8.2.1.1:

TWCi = cNi � cδi
∆
�∆ci (8.24)

TWCj = cNj � cδj
∆
�∆cj (8.25)

We recall that to perform the optimization the Jacobians of the edge error function with
respect to ∆ci and ∆cj has to be computed and evaluated in the nominal values cNi , cNj ,
with the current estimation cδi , cδj and considering null increments.
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8.2.2.1 Odometry composition

The edge that express the relative position of two cameras may involve more than one odo-
metric measurement. This because cameras are milestones in the trajectory, taken when
at least a new landmark has been added to the filter. In addition to the transformation in
the camera reference frame, odometric data have to be iteratively composed and the co-
variances properly propagated. The odometric inputs ui+1,...,j , split in the translation part
∆ti+1,...,j and rotation part ∆ri+1,...,j can be iteratively composed in the transformation
TRiRk , in turn composed by the translation vector tRiRk and the rotation vector θRiRk as

TRiRk =

[
tRiRk
θRiRk

]
= codo

(
TRiRk−1

,uk

)
=

{
tRiRk−1

+ R (q) ∆tk

2η qθ
(8.26)

where

η =
1

qw
(8.27)

q =

[
qw

qθ

]
=

[
1
θodo

2

]
⊗

[
1

∆rk
2

]
. (8.28)

The composition has to be iterated on k = i + 1, . . . , j starting with the identity trans-
formation TRiRi , i.e., a null vector for tRiRi and θRiRi . To compose the covariance of the
odometry it is necessary to evaluate the Jacobians of the previous function and to compose
iteratively a covariance matrix. In particular, starting with a null 6 × 6 covariance matrix
ΣRiRi , we have to iterate

ΣRiRk =
∂codo(· · · )
∂TRiRk−1

ΣRiRk−1

∂codo(· · · )
∂TRiRk−1

T

+
∂codo(· · · )

∂uk
Σk

∂codo(· · · )
∂uk

T

(8.29)

for k = i + 1, . . . , j, where Σk are the covariance matrices of the odometric inputs and
the Jacobians are evaluated at current odometric input and cumulated odometry values.
The composition results has to be transformed in camera coordinate reference frame with
Equation 8.14.

8.2.2.2 Edge Information Matrix

The Equation 8.23 defines the edge error function, involving two camera nodes and the
(cumulated) odometry between them, but we need to specify the information matrix ΩO

cicj

associated with the edge, i.e., the inverse of the covariance matrix ΣO
cicj . The covariance

matrix ΣO
cicj can be expressed through the linearization of the error function w.r.t. the

odometric data, since it has an associated covariance ΣRiRk . The information matrix can be
computed as

ΩO
cicj =

(
∂eodo (· · · )
∂TRiRj

ΣRiRj
∂eodo (· · · )
∂TRiRj

T
)−1

(8.30)

Notice that at each iteration of the optimization algorithm the information matrix has to be
updated, since the changes in the camera nodes ci and cj affect the covariance propagation
of Equation 8.30.
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8.2.3 Landmark Initialization Edge
The first type of edge that involves landmarks is the initialization edge. A landmark yi =
[pTπi , wi] is expressed in the camera reference frame as the position of the image point on
the normalized image plane (pπi ) (i.e., the first two elements of the direction vector) with
its inverse scale factor (wi). The unary edge on the landmark acts as a sort of constraint
on the direction vector of the landmark, specified at the first landmark perception. Since at
initialization the depth is not observable, this edge does not put any constraint on it. The
error function of the edge is

eIyi = K(pπi)− pimg + δ, (8.31)

where pimg is the image point in which the landmark was firstly perceived (i.e., the salient
point detector output) and δ is a Gaussian zero mean bivariate noise with Σδ that repre-
sents the uncertainty on the perception. We remind that the landmark yi is composed by
yNi + yδi + ∆yi, thus

pπi = pNπi + pδπi + ∆pπi . (8.32)

The evaluation of the Jacobian of the error function has to be performed with respect to the
∆yi element, resulting in a 2 × 3 matrix where the last column is zero, since the inverse
scale element is not involved in the edge error function. The information matrix of the
edge is simply given by the inversion of the covariance matrix of the δ noise:

ΩI
yi = Σ−1

δ . (8.33)

A common choice is to consider Σδ as a identity matrix, representing a 1 pixel standard
deviation.

8.2.4 Landmark Measurement Edge
A landmark measurement edge aims at the evaluation of the projection error of the land-
mark yj , referred to the camera pose ci, in the camera at pose ck. The equation of the
error, which results very similar to the measurement equation of an FHPi landmark in the
EKF formulation, is

eMciyjck = K

(
R (qk)

T

(
wj [ti − tk] + R (qi)

[
pπj
1

]))
− zIjk + δ, (8.34)

where it has to be remembered that ci can be decomposed in the translation vector ti and

in the quaternion qi resulting from the composition cNi � cδi
∆
�∆ci (see Section 8.2.1.1).

The same consideration has to be applied to the second camera ck, while, for the landmark
yj the formulation is simpler, since only a summation of the nominal, delta and increment
terms is requested. To perform optimization, the Jacobians of eMciyjck(· · · ) w.r.t. the two
cameras increments ∆ci and ∆ck and the landmark ∆yj increment have to be computed.

The terms δ is a zero mean bivariate Gaussian noise with covariance Σδ that represents
the error on the measurement process. Since it is additive the information matrix associated
with the edge is simply the inverse of the covariance matrix. Usually it is considered an
identity matrix, representing a 1 pixel standard deviation in the measurement process.
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8.2.5 Landmark Measurement In Multi Camera Setup
The landmark measurement edge presented in the previous section assumes that the cam-
era pose in which the landmark was initialized and the camera pose in which it is measured
are the same physical camera, i.e., they have the same calibration. In a multi camera setup a
landmark yj , initialized in camera pose ci, may be observed by a different camera, which
pose is given by the composition of the camera pose ck and the relative transformation
TCICO where the CI indicates the camera in which the landmark has been initialized and CO
indicates the observing camera. The projection parameters are encoded in the KO(· · · )
function. The resulting edge equation eMO

ciyjck
is

KO

(
R(qCICO )TR (qk)

T

(
wj [ti − tk] + R (qi)

[
pπ
1

])
− wjR(qCICO )T tCICO

)
− zOjk + δ

(8.35)
If the multi camera setup involves n different cameras, for each tern ci,yj , ck it is

possible to have n − 1 edges e
MOs
ciyjck , i.e., one edge for each observation performed in a

different camera. This is very similar to what happens in the multi camera EKF SLAM
setup, where more measurements per landmark can be performed.

The optimization requires the evaluation of the Jacobians w.r.t. the camera increments
∆ci, ∆ck and landmark increments ∆yj . The information matrix is simply given by the
inversion of the covariance matrix Σδ associated to the δ additive noise, that is usually
chosen as a 2× 2 identity matrix.

8.2.6 Graph Initialization And Optimization Strategies
In Section 8.1 we have introduced how it is possible to convert a DBN representing the
final estimation of an EKF slam machinery into a graph for the optimization. Here we
formalize the graph construction process through the formal definition of an algorithm.

First of all we have to add two small modifications to the EKF SLAM algorithm. As the
EKF SLAM algorithm starts we add an anchor even if no landmarks has been added: we
can consider this camera position as a fixed frame, since it is local and it has no uncertainty.
In particular, its very uncommon that in the first frame no landmarks are initialized, but this
can happen especially when the submapping with the CI-SLAM framework is considered.
In this case it is possible that a sufficient number of landmarks shared with the previous
map prevent new landmarks addition. The second modification is to add the last anchor
frame to the filter, even if no landmarks are added. This allows to consider the last camera
pose in the graph optimization, i.e., to provide a graph that covers the estimation process
from the start to end, although some intermediate pose of the camera and its associated
observations are dropped if compared to a full SLAM estimation problem.

With reference to Algorithm 9, let details precisely how to construct a graph from an
EKF state vector, how to initialize properly the nodes values, (i.e., how to provide a valid
initialization point to the NNLS algorithm), and which nodes need to be fixed in order to
perform the optimization. For each anchor frame in the EKF state vector a camera node
has to be inserted in the graph G (step 4). These nodes have to be initialized with nominal
and delta values from the EKF estimate (step 6 and 7). Similarly, a FHP landmark node
yj has to be created for each landmark in the state vector (step 10); also in this case the
initial estimation is provided by the nominal and delta values (step 12 and 13). If the
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Algorithm 9 EKF2Graph

1: G = ∅, E = ∅
2: # Nodes Creation
3: for all yAF in EKF state vector do
4: G ← {G, newci}
5: i← i+ 1
6: cNi = yAF

7: cδi = δyAF

8: end for
9: for all yFHP in EKF state vector do

10: G ← {G, newyj}
11: j ← j + 1
12: yNj = yFHP

13: yδj = δyFHP

14: end for
15: # Edges addition
16: if ∃ odometry information then
17: for all ci, cj , j > i ≥ 0,@cr, i < r < j do
18: cumulate odometry TRiRj by ui+1,...,j

19: E ←
{
E , eOcicj

}
20: end for
21: end if
22: for all yi in G, i ≥ 0 do
23: E ←

{
E , eIyi

}
24: end for
25: for all ci,yj , ck, i, j, k ≥ 0 do
26: if ∃ zIjk in CI then

27: E ←
{
E , eMciyjck

}
28: end if
29: for all cameras CO, CO 6= CI do
30: if ∃ zOjk in CO then

31: E ←
{
E , eMO

ciyjck

}
32: end if
33: end for
34: end for
35: # Start up
36: Fix node c0 in G
37: if Monocular setup without odometry then
38: Fix yk in G, k : ∀h# meas(yh) ≤ # meas(yk), h, k ≥ 0
39: end if
40: remove nodes with few measurements
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data is available the pairs of successive camera poses are selected (step 17), the cumulate
odometry is computed (step 18) and the edge is added to the set of edges E (step 19). For
each landmark node an edge eIyi is added (step 23). Then for all available measurements
performed in the same camera of the initialization of a landmark, an edge eMciyjck is added
(step 27). For measurements performed in cameras different from the one used to initialize
landmarks an edge eMO

ciyjck
is added (step 31).

To perform the optimization on the graph we have to fix an adequate number of degree
of freedom to prevent the singularity of the Hessian Matrix, as illustrated in Section 5.5.3.
A SLAM problem has 6 free degree of freedom, since the map can be rotated and translated
obtaining the same solution. Moreover, if we setup a pure Monocular SLAM problem, i.e.,
we have no edges on the odometry, we obtain an additional degree of freedom, that comes
from the unobservable scale of the system. The first 6 degree can be fixed by specifying a
camera as fixed in the graph, i.e., by excluding it from the optimization. In particular, we
fix the first camera node, i.e., the position of the camera when the map start, that is fixed
in the EKF too, since it has no uncertainty (step 36).

In a pure monocular setup we have to fix an additional degree of freedom. From a
theoretical point of view, we can fix the depth of one landmark to determine the entire
scale, but practical considerations, also related to implementation strategies, suggest to fix
an entire node. We choose to fix a landmark and in particular the node that is involved
in the highest number of edges, i.e., that has been measured the greatest number of times
(step 38). With this choice two excessive degrees of freedom are fixed, but we consider
this a good compromise: well known solution in literature (e.g., [95]) fix two consecutive
cameras in the monocular contest, with a surplus of 5 degree fixes.

Step 40 aims at the deletion of the nodes that are measured an insufficient number of
times. Landmarks that are only initialized, but never measured result disconnected from
the rest of the optimization, thus they are removed. Similarly, landmarks that are measured
a very few times (e.g., 2 or 3 times) may results in a very poor estimation, thus we consider
a threshold on the number of measurement to remove nodes from the graph.

8.2.6.1 Usage with FIS parameterization

Up to here it was supposed to start from an indirect EKF SLAM setup with FHP param-
eterization. The graph construction can be easily adapted to the FIS parameterization. In
particular, we can create exactly the same graph, but the initialization of landmark nodes
yj is performed by copying the inverse scale value from the FIS element in the EKF
state vector and by calculating the direction vector from the initial point perception, that
is stored outside the filter in the FIS parameterization. The graph optimization allows
the estimation of this direction vector, which is considered exact by the FIS model and
this allows to overcome a possible issue with the FIS parameterization, i.e., to correct the
unmodeled error on the direction of the viewing ray.

8.2.7 Sub map setup
Lets consider to use the proposed graph construction algorithm with a state vector corre-
sponding to a submap different from the first one. Let indicate the camera nodes and the
landmarks that were initialized in a previous map respectively with ci, with i < 0, and yj ,
with j < 0 and let refers to them informally as “old” nodes. Intuitively there is an high
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probability of dropping too many measures of old landmarks in the graph formulation.
For instance, consider a landmark yi initialized very far in the past (e.g., a landmark on
the sky in an outdoor setup); it remains visible in the camera for long time, while other
landmarks disappear quickly (e.g., landmarks on walls where robot is passing by). When
a new map is created the landmark yi will be shared, but lots of camera poses in which
it has been measured will not be shared with the new map. When this new map will be
closed, the optimization graph looses a lot of information about the “old” landmarks and
consequently its optimization may result in a wrong solution.

In the EKF mechanism the information about old measurements is summarized by
correlations (i.e., covariances). We propose here the formulation of a particular n-ary
edge that links together all the old cameras and landmarks, acting as a prior on their values
thanks to the covariance estimated by the EKF algorithm.

8.2.7.1 Submap Prior Edge

Let consider the set cold = {ci}, with i < 0 of the old cameras, i.e., the cameras poses
corresponding to anchor frames initialized in a previous map and shared with the current
one. Similarly, lets call yold = {yj} , j < 0 the set of old landmarks. All these elements,
i.e., nodes in the graph, will be involved in a unique edge ePcold,yold which size is 6n+3m,
being n the cardinality of the old cameras set and m the cardinality of the old landmarks
set. The edge is formulated by considering the error between the mean value estimated in
the EKF and the current solution of the optimization. The information matrix associated
with this edge comes directly from the covariance estimated by the EKF. This implies that,
intuitively, the elements that are properly estimated, i.e., with a low covariance, are more
constrained by the edge, while the elements that are poorly observed (i.e., a landmark that
was observed a few number of times in the previous map) are more free to be “moved”.

Lets split the error vector ePcold,yold in n + m elements, where the firsts n elements
(ec−n , ec−n+1 , . . . , ec−1 ) represent priors on the camera nodes and the last m elements
(ey−m , ey−m+1 , . . . , ey−1 ) represent priors on the landmarks. The prior on a camera node
can be decomposed in the translation and orientation error

eci =

[
eti

eθi

]
. (8.36)

The camera node is composed as ci =

[
ti

qi

]
where

ti = tNi + tδi + ∆ti, (8.37)

qi = qNi ⊗

[
1

θδi
2

]
⊗

[
1

∆θi
2

]
, (8.38)

and the mean values from the EKF estimation are composed by the nominal part and the
delta part as

ti = tNi + δti, (8.39)

qi = qNi ⊗

[
1

δθi
2

]
. (8.40)
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It has to be noticed that the nominal part are exactly the same, since both in the EKF and in
the graph optimization they are not modified. It is convenient to express the error between
a camera node in the graph and its constraint values obtained by the EKF estimation by
transformation composition using homogeneous matrices:[

R
(
qj
)T −R

(
qj
)T

tj

0 1

][
R (qj) tj

0 1

]
=

[
R
(
qj
)T

R (qj) R
(
qj
)T (

tj − tj
)

0 1

]
.

(8.41)
Consequently , the rotation part can be expressed as

qe = η q∗j ⊗ qj (8.42)

= η

[
1

− δtj2

]
⊗ qNj

∗ ⊗ qNj ⊗

[
1

θδj

]
⊗

[
1

∆θj
2

]
(8.43)

= η

[
1

− δtj2

]
⊗

[
1

θδj

]
⊗

[
1

∆θj
2

]
, (8.44)

and considering the small angles approximation, the orientation error results

eθj = 2η qeθ , (8.45)

η =
1

qew
, (8.46)

where qe = [qewqTeθ ]T .
The translation part of the error results

etj = R (qj)
T (

tNj + tj − tNj − tδj −∆tj
)

(8.47)

= R (qj)
T (

tj − tδj −∆tj
)
, (8.48)

The prior on the landmark is simply given by the difference between the landmark
node value and the mean of the landmark value in the EKF:

eyi = yNi + yδi + ∆yi −
(
yNi + δy

FHP

i

)
(8.49)

= yδi + ∆yi − δy
FHP

i (8.50)

where δy
FHP

i is the mean value of the landmark estimation, represented by its delta values
in the indirect formulation.

The complete edge formulation is given by collecting all the cameras error and land-
marks errors in a unique vector

ePcold,yold =



ec−n

. . .

ec−1

ey−m

. . .

ey−1


. (8.51)
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This edge has to be accompanied with a (n + m)× (n + m) information matrix that can
be computed through Jacobians propagation as

Ωcold,yold =

(
∂ePcold,yold

∂δx
ΣP

cold,yold

∂ePcold,yold
∂δx

T)−1

, (8.52)

where the Jacobians of the edge is computed w.r.t. the delta elements of the EKF state
vector, i.e., the elements that compose the covariance matrix Σcold,yold , obtained by se-
lecting the corresponding block of the EKF covariance matrix. It has to be noticed that the
Jacobian matrix is sparse, in particular it is block diagonal:

∂ec−n
∂δyAF−n

. . .
∂ec−1

∂δyAF−n
∂ey−m
∂δyFHP−m

. . .
∂ey−1

∂δyFHP−1


. (8.53)

The computation of the information matrix associated with the edge take advantage of this
sparsity. Moreover, the Jacobians associated with the landmarks

∂ey−i
∂δyFHP−i

are the negative
identity matrix (−I). It has to be noticed that the computation of the information matrix
has to be performed at each iteration of the minimization algorithm, since changes in the
nodes values reflects on changes in the covariance matrix.

8.2.7.2 The Resulting Graph

The creation of the prior edge for the elements that comes from a previous map has to be
performed in the Algorithm 9 by adding the Algorithm 10 in the “Edges addition” section
(after step 15). Moreover, if we are in a pure monocular setup and the map to optimize
is not the first, we do not need to fix a landmark to remove the 7th degree of freedom,
since the prior edge cover this issue. On the other hand, when odometric information are
available an edge between the last old camera pose and the first camera pose of the current
map is added.

Lets take a look to the resulting graph of a small SLAM problem in a submap different
from the first, i.e., that involves a prior edge, reported in Figure 8.6. Here we suppose that
the landmarks y−2 and y−1 have been shared with the previous map. They are respectively
referred to the anchor frame represented by c−2 and c−1, that are shared too. The prior
edge is created on all these nodes to summarize the lost measurements. Observation of old
landmarks in the new maps are treated as usual with ternary measurement edges.

8.3 From Graph Optimization To EKF

In the previous sections it was described how to start an optimization on a graph corre-
spondent to the EKF state vector structure. The missing step, that will be explained here,
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Algorithm 10 PriorEdgeCreation

1: ePcold,yold ← ∅
2: for all ci, i < 0 do

3: ePcold,yold ←

[
ePcold,yold

eci

]
4: end for
5: for all yi, i < 0 do

6: ePcold,yold ←

[
ePcold,yold

eyi

]
7: end for
8: E ← ePcold,yold

c−2 c−1 c0 c1 c3

y−2 y−1 y1 y2 y3

ePc−1c−2y−1y−2

eOc0c1
eOc1c3

eOc−1c0

eIy1
eIy2

eIy3

eMc0y1c1
eMc0y1c3

eMc1y2c3
eMc−2y−2c0

eMc−1y−1c0

Figure 8.6: The graph of a map successive to the first that involves the prior edge ePcold,yold
on cameras and landmarks initialized in a previous map.
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regards the propagation of the result of the optimization performed on the graph to the
Gaussian map memorized in the EKF. The goal of the propagation is to maintain active
the CI-SLAM framework mechanism and supply it the new estimations.

8.3.1 Reconstruction Of The Gaussian Map
To reconstruct the Gaussian representation of the map we have to create the mean vector
and the covariance matrix of the solution of the optimization. The mean vector can be
easily created by appending in a vector µO, in the correct order, all the node values at the
end of the optimization. We have to take only the proper values of the node (e.g., cδi ),
while the nominal values (e.g., cNi ) are not changed by the optimization. The covariance
matrix ΣO is obtained by the inversion of the Hessian matrix H of the last iteration, that
is the information matrix associated with the solution.

There are some variables that are in the EKF state vector that are not represented
by nodes in the graph. For instance, if no odometry is provided, the motion parameters
variable Λ is in the filter, but not in the graph. Moreover, the last robot pose is in the state
filter, but not in the graph and some landmarks can be excluded from the optimization if
they have been not measured a sufficient number of times. To propagate new values to
the Gaussian map in the EKF we use the same approach of the backpropagation step of
the CI-SLAM framework. Calling µA and ΣAA respectively the mean and the covariance
of the elements that are in the EKF state vector, but not in the optimized graph, µC and
ΣCC the original mean and covariance of the element in the graph, i.e., their estimations
performed with the EKF SLAM algorithm, and ΣAC = ΣT

AC the covariance block, we
can apply the following equations

K = ΣACΣ−1
CC , (8.54)

µ∗A = µA + K (µO − µC) , (8.55)
Σ∗AC = KΣO, (8.56)

Σ∗AA = ΣAA + K (Σ∗AC −ΣAC)
T
, (8.57)

to find the new values of the current map elements, that is composed by

µ =

[
µ∗A
µO

]
, (8.58)

Σ =

[
Σ∗AA Σ∗AC

Σ∗AC
T

ΣO

]
. (8.59)

8.3.1.1 FIS parameterization

If we are using the FIS parameterization we have to adapt the mean vector µO and the
covariance matrix ΣO by removing the estimation about the viewing ray. In particular
we have to extract from the mean vector the viewing ray information and to copy them in
the scalar values maintained in the FIS parameterization. This allows to correct the initial
estimate of the viewing ray direction, that is not continuously estimated in the FIS param-
eterization. The rows and columns of the covariance matrix corresponding to the first two
elements of each landmark have to be deleted, to discard the information on the direction
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vector that is not represented in the FIS parameterization. After this, Equations 8.54-
Equation 8.57 can be applied.
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CHAPTER9
Experimental Results

In this chapter we propose an experimental evaluation of algorithms and techniques pre-
sented in previous three chapters. In particular, the parameterizations presented for the
standard formulation (presented in Chapter 6) and for the Hybrid Indirect formulation
(presented in Chapter 7) of the multi camera EKF-SLAM system are evaluated both in a
simulated setup and on real datasets. Framed parameterizations (FHP and FIS), when used
in the standard formulation of the EKF SLAM, are not able to perform the loop closure
procedure of the CI-SLAM framework due to the use of quaternions. This is verified with
a simulated example that demonstrates how the Hybrid Indirect formulation solve this is-
sue. The CIBA SLAM approach (presented in Chapter 8) is then evaluated on simulated
and real datasets. All the experiments have been conducted using MoonSLAM, a C++
framework for EKF-SLAM developed during this thesis work. Finally, the time perfor-
mance of the implemented system are evaluated to validate the capability of the real time
execution of the system.

9.1 Parameterization Evaluation

In this section, we present some numerical results showing the behavior of the previously
presented parametrizations for Visual EKF-SLAM both in the standard formulation and in
the Hybrid Indirect formulation. The simulated data have been obtained in a setup similar
to the one proposed in [90] and [93], while real data are taken from the publicly available
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datasets of the RAWSEEDS1 project [9].

9.1.1 Evaluation On Simulated Data
The evaluation performed on simulated data, in addition of being an important step during
the development process for checking implementation correctness, allows the evaluation
of the consistency of the state estimation and the analysis on how it is affected by the use
of different parameterizations. Formally, an estimate is said to be consistent if it identifies
the underlying truth, i.e., if the real value is contained in the estimated probability dis-
tribution with a sufficient probability. Since SLAM, in general, is a nonlinear estimation
process, no provably consistent estimator can be constructed for it and the consistency of
every estimator has to be evaluated experimentally. In particular for the standard EKF-
SLAM algorithm, there exists significant empirical evidence showing that the computed
state estimates become easily inconsistent [90] [93] [2].

We perform the evaluation of the consistency in a setup similar to the one proposed
in [90] [93]: a Montecarlo simulation of a SLAM experiment; the repetition of the same
experiment, driven by simulated data with the addition of random noise, is conducted mov-
ing the robot on a nominal trajectory and generating image projections from a known map.
The motion model of the EKF SLAM takes odometric input corrupted by noise sampled
from a Gaussian distribution, thus the camera does not follow the nominal trajectory ex-
actly. The coordinate of point projections on the images are corrupted by Gaussian noise
too, thus measurements differ from the nominal values. Alike what done in [90] [93] [10],
we are interested in the evaluation of the average Normalized Estimation Error Squared
(NEES) [2] during the entire robot trajectory. NEES is evaluated for each time step
k = 0 : T as the Mahalanobis distance between the robot true pose Γ∗k and the esti-
mation of it. The pose estimation is expressed with Γnk , Σn

k , which are respectively the
mean values and the covariance matrix at time k during each trial n = 1 : N of the Mon-
tecarlo simulation. The rest of the variables in the filter, i.e., the landmark estimations,
are not considered, since we assume that if the trajectory is properly estimated, the map is
consequently correct, being them estimated simultaneously in SLAM.

The average NEES value at time k is defined by:

ε̄k =
1

N

N∑
n=1

(Γnk − Γ∗k)T (Σn
k )−1(Γnk − Γ∗k). (9.1)

Consistency is evaluated by checking the 95% confidence interval of ε̄t, which is in turn
distributed as a χ2

N×6 random variable. In the computation of NEES, quaternions are
converted in Euler angles and uncertainty is propagated through this transformation to
compute Σn

t in Equation 9.1. The conversion of the rotation representation is needed since
quaternions covariances matrix are singular, i.e., not invertible as required by Equation 9.1.
The filter is considered too optimistic (i.e., errors in camera pose are underestimated) if the
NEES value is above the upper bound (H) of the confidence interval , conservative when
it is below the lower bound (L) of the confidence interval and consistent if it operates
between the two bounds.

We evaluate the average NEES both in the monocular and the stereo setup, running
a set of experiments that differ in the followed trajectory, in the noise that corrupts the

1http://www.rawseeds.org
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motion and in the initialization of the inverse depth of the points (both in the mean value
and standard deviation). Points are initialized at equal distance from the camera center.
We have verified that when multiple spherical initialization functions for the same param-
eterization are possible, the results in terms of consistency are very similar.

We propose to evaluate the average NEES by comparing the percentage of time in
which the filter operates in the consistent range and in the optimistic range (the remaining
percentage represents the conservative behaviour). Moreover, for the time steps in which
the filter operates in the optimistic range we evaluate the average inconsistency (AI), i.e.,
a value computed as

AI =

∑
t:ε̄t>H

ε̄t −H
Tε̄t>H

, (9.2)

where Tε̄t>H is the number of frames in which the filter operates in optimistic range and
the sum is performed only on steps performed in the optimistic range. The higher the value
of the average inconsistency, the more average NEES is far from consistency.

We have to point out that, differently from the setup proposed in [90] and related
works, we use parameterizations with shared anchor points/frames, as proposed in Chap-
ter 6. This does not change the estimation results, since the replicated information (i.e.,
the non shared anchor point/frame) are linearly correlated and the changes on one element
reflects on the others. Another difference is in the landmark addition procedure: our sys-
tem adds all the new landmarks available in an image when their are at least 5, while the
original setup add at least one point per image apart in the first image, when 10 landmarks
are initialized. Our policy enhances the use of the shared parametrization and we experi-
enced that this has good effects on the consistency of the filter too, if compared with the
results obtained with the policy of [90]. The EKF is updated using the iterative proce-
dure explained in Section 5.4.6.1 and in particular using only the first 10 most informative
measurements. We have verified that different update schema do not produces significant
changes in the NEES evaluation. Inconsistent (i.e., landmarks with negative inverse depth)
and unstable landmarks (i.e., landmarks not matched for at least 50% of the time they have
been projected on the image plane) are removed from the map. In the stereo case cameras
have a distance of 20 cm on the horizontal axis, landmarks are initialized in the left camera
and measured in both cameras. For the experiment we simulate a 640× 480 camera with
a focal length of 320px, corresponding to a 90◦ angle of view. The first two coefficient of
the radial distortion function are set to 0.1 , while the third and the tangential distortion
parameters are null.

The FIS parameterization represents a special case in the panorama of the inverse
depth/scale parameterizations: it does not estimate the direction of the viewing ray and
it considers as exact the value provided at initialization, i.e., the output of the salient point
detector. This is obviously a weakness in the ability of estimation, since the viewing ray
can not be refined with new measurements. To test explicitly this aspect, we repeat the
experiments in two different setup: without the random noise addition in the initialization
and with a random noise on the first perceived point. Since we expect that the errors
introduced by the simplified model proposed for FIS have to decrease growing the camera
resolution, we perform experiments also with a high resolution simulated camera (2520×
1920).

A last comment on the FIS parameterization is about its measurement model: in Equa-
tion 6.66 the noise δ34 is added to the coordinates of the point perceived when the land-
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Figure 9.1: A screenshot of MoonSLAM framework working in the simulated cloister

mark was initialized. This noise is considered to be independent from the measurement
noise (i.e., δ12) and we assume its covariance matrix equal to a 2×2 identity, i.e., with a 1
pixel standard deviation on each coordinate. Differently from other parameterizations, the
uncertainty on the initial point can not be reduced, thus the presence of the δ34 element
may results in an artificial covariance inflation of the measurement that influences the av-
erage NEES analysis. To perform a fair comparison we evaluate the FIS parameterization
setting the covariance matrix of δ34 in two different ways: as the identity matrix and as a
zero matrix. The latter is equivalent to remove the additional noise from the model and it is
referred in the following experiments as FIS0. Moreover, we give en empirical evaluation
of the behavior of the covariance estimation for FIS and FIS0 with respect to the others
parametrization by plotting the estimate errors and the confidence interval calculated on
the estimated covariance in a selected experiment. FHP, FIS and FIS0 are evaluated both
in the standard formulation of the EKF SLAM and in the proposed Hybrid Formulation,
i.e., with the indirect parameterization named FHPi, FISi and FIS0i.

Experiments are performed with a map of 72 points distributed in a cloister-like envi-
ronment, as the one originally introduced in [90], of 12x12 meters on two different planes,
respectively at the height z = −0.5 and z = 0.5 meters (a screenshot of MoonSLAM
framework working in the simulated cloister is shown in Figure 9.1).

Two different nominal motions for the camera are used: the first is a simple planar
motion where the robot performs a circular trajectory with a 10 meter diameter on the
plane z = 0 and the camera points forward in the direction of the motion. The second
motion is generated by adding a sinusoidal motion to the radius of the circle. Moreover
the robot orientation changes in time: it performs complete rotation around the x axis, i.e.,
the axis that points in the motion forward direction, and it oscillates around the y and z
axis. Figure 9.2 shows the resulting trajectory with some salient robot orientations. The
robot performs a complete turn in 1000 steps and 4 complete loops are performed.
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Figure 9.2: The second trajectory proposed for the simulations. A sinusoidal motion is
added to the radius of the circle and the orientation of the robot is varied during the
motion around all the axes.

9.1.1.1 Monocular Simulated Experiments

We performed 7 experiments differing in camera motion and in the noise added it. For each
experiment we tested three different initialization depths for the landmarks. Parameters
for all these experiments are summarized in Table 9.1, where experiments are identified
by progressive numbers followed by a letter to identify different initializations. Letter
“a” indicates that the initialization is performed with an initial inverse depth of 1m−1

with a standard deviation of 1m−1, letter “b” indicates initial inverse depth of 0.1m−1

(depth 10m) with 0.5m−1 standard deviation and “c” initializes point inverse depth with
0.01m−1 (depth 100m) with 0.5m−1 standard deviation. These experiments are repeated
in three different setup: in the first one the initial perception of landmark in the image is
exact, i.e., the exact viewing ray is used to initialize the features. In the second setup, the
initial landmark perception is corrupted by a Gaussian random noise with 1 pixel standard
deviation, as done in [90]. In the third repetition we corrupt the initial landmark perception,
but a high resolution simulated camera (with 2520× 1920 pixel per image) is used.

In Experiments 1 and 2 the robot moves on a plane forward on x axis by 8cm at each
time step and rotates of 0.9◦ around the z axis, performing a complete loop in 400 time
steps. In Experiment 1 the motion is corrupted with a Gaussian noise with 2.5mm standard
deviation on each axis and 0.025◦ around each axis; the covariance matrix of the noise of
the motion model is set with the same values used in the random noise generation. In
Experiment 2 the noise is halved. Experiment 3 and 4 are performed with halved motion,
thus the robot completes a turn of the cloister in 800 steps. In this case, the applied noise
is double in Experiment 4 with respect to Experiment 3. The latter has the same noise of
Experiment 1. Experiments 5, 6 and 7 use the 3D trajectory of Figure 9.2 and the noise is
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Table 9.1: Experiments setup for the Monocular (between 1 and 7) and Stereo simulated
environment (between 8 and 14). Experiments differ in motion, noise added on motion,
and feature inverse depth/scale initialization

#
Motion Noises Initialization

∆X ∆Ψ ∆t ∆ω ρ σ
[m] [◦] [mm] [◦] [m−1] [m−1]

1.a, 8.a

0.08 0.9

2.5 0.025
1 1

1.b, 8.b 0.1 0.5
1.c, 8.c 0.01 0.5
2.a, 9.a

1.25 0.0125
1 1

2.b, 9.a 0.1 0.5
2.c, 9.a 0.01 0.5

3.a, 10.a

0.04 0.45

2.5 0.025
1 1

3.b, 10.b 0.1 0.5
3.c, 10.c 0.01 0.5
4.a, 11.a

5.0 0.05
1 1

4.b, 11.b 0.1 0.5
4.c, 11.c 0.01 0.5
5.a, 12.a

3D 3D

1.25 0.0125
1 1

5.b, 12.b 0.1 0.5
5.c, 12.c 0.01 0.5
6.a, 13.a

2.5 0.025
1 1

6.b, 13.b 0.1 0.5
6.c, 13.c 0.01 0.5
7.a, 14.a

5.0 0.05
1 1

7.b, 14.b 0.1 0.5
7.c, 14.c 0.01 0.5
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doubled in each experiment, starting from the noise value of Experiment 2.
The results with the exact initial point are reported in Table 9.2 and Table 9.3, respec-

tively for the behavior of the filter and for the mean inconsistency; some average NEES
results are plotted in Figures 9.3 to 9.8 allowing visual comparison. For each experiment
we highlight in bold the maximum value of the operative time in the consistent range and
the minimum value for the optimistic range for IS, UID, AHP, FHP and FHPi parameter-
izations. FIS0 and FIS0i parameterization are treated apart and their values are highlight
only when they are better than the others parameterizations, while FIS and FISi results are
not extensively commented in the next since theirs results are not directly comparable to
the others parameterizations due to covariance inflation, as stated in the beginning of this
section. In all the experiments IS shows poor performance in NEES, as already shown
in [90], [93] and [10]2, i.e., it almost never operates in consistent range, so its results
will not be discussed in the following. In all the experiments but 7, we notice that FIS
parametrization operates always in consistent or conservative range and it almost never
falls in the optimistic case. This result has to be considered as not directly comparable
with the other parameterizations, since NEES evaluation on FIS takes advantage from the
noise addition in the measurement model, thus it is reported in the last two columns and
not directly compared with the others. In the last part of this section we perform a simple
analysis of these effects by comparing the covariance estimation on a single run.

In Experiment 1.a no one of the parameterization is able to operate in the consistent
range for more than the 50% of the time. In particular UID, AHP, FHP and FHPi show
similar performance, approaching the 50% of time in the consistent range. The FIS0
parameterization, and its indirect variant FIS0i stops at 13% of time in the consistent
range, but the analysis of the mean value of inconsistency (Table 9.3) shows that when
FIS0 falls in the optimistic range, its mean value of inconsistency is comparable with the
other parameterization, i.e., when it is in the optimistic range, it operates very close to the
consistency range. IS results the worst parameterization for the consistency: it operates
in the consistent range only for the 2% of the time. On the contrary, FIS and FISi never
fall in the optimistic range and they remains in the conservative range for the most of the
time. Since the behavior of IS and FIS parameterizations reflects these results in all the
next experiments, we skip hereafter to comment their performances, concluding that IS
is the worst parameterization in terms of consistency and FIS consistency values are not
directly comparable with the other parameterizations, mainly due to the presence of the
additional noise in the measurement model. All these conclusions can be drawn also from
the observation of Figure 9.3, which reports the value of the average NEES in the time for
each parameterization.

Experiment 1.b repeats the Experiment 1.a but with a different initialization of the
unknown depth of the point, which passes from 1 meter to 10 meters. The change in the
initialization greatly improves the consistency: UID, AHP, FHP and FHPi operates now in
the consistent range for more than 90% of time. FIS0 and FIS0i reach the 80%, showing
the greatest improvement from the previous experiment. Moreover, the analysis of the
mean inconsistency for this experiment shows that all the parameterization are very close
to consistency also when they operates in the optimistic range. The same considerations

2The results for FHP here presented differ from the ones presented in [10] because in the article FHP points
were initialized on a plane instead of the sphere and this results in a better NEES results that is not directly
comparable to the others.
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Table 9.2: Monocular NEES evaluation- Consistency analysis, exact initialization

# IS UID AHP FHP FHPi FIS0 FIS0i FIS FISi

1.a Cons % 2 40 48 48 49 13 13 30 29
Opt % 98 59 52 52 50 87 87 0 0

1.b Cons % 7 93 92 93 93 80 81 32 31
Opt % 93 4 6 5 5 20 19 0 0

1.c Cons % 3 96 96 97 97 75 76 23 22
Opt % 97 3 2 1 1 25 24 0 0

2.a Cons % 3 41 47 49 48 32 33 60 60
Opt % 97 59 53 51 51 68 67 0 0

2.b Cons % 12 74 81 81 83 77 81 46 45
Opt % 88 26 19 18 17 23 19 0 0

2.c Cons % 4 80 76 75 76 73 73 45 44
Opt % 96 20 24 24 24 27 27 0 0

3.a Cons % 5 47 40 45 46 15 14 4 4
Opt % 95 53 60 55 54 85 86 0 0

3.b Cons % 5 29 34 33 34 49 44 7 7
Opt % 95 71 66 67 65 51 56 0 0

3.c Cons % 5 48 50 52 54 49 48 8 9
Opt % 95 52 50 48 46 51 52 0 0

4.a Cons % 1 3 4 4 4 2 2 78 78
Opt % 99 97 96 96 96 98 98 5 6

4.b Cons % 4 7 7 7 7 2 2 75 76
Opt % 96 93 93 93 93 98 98 17 16

4.c Cons % 2 5 4 4 5 3 3 88 88
Opt % 98 95 96 96 96 97 97 5 5

5.a Cons % 1 86 77 83 88 77 82 18 30
Opt % 99 14 23 17 12 23 18 0 0

5.b Cons % 2 98 97 95 98 78 87 13 12
Opt % 98 2 2 5 2 22 12 0 0

5.c Cons % 2 99 98 98 98 90 88 16 16
Opt % 98 1 1 0 2 10 11 0 0

6.a Cons % 1 29 30 31 27 14 14 37 34
Opt % 99 71 70 69 73 86 86 0 0

6.b Cons % 2 29 28 31 44 19 16 33 43
Opt % 98 71 72 69 56 81 84 0 0

6.c Cons % 1 46 60 62 56 25 17 53 48
Opt % 99 54 40 38 44 75 83 0 0

7.a Cons % 1 1 2 1 1 1 1 25 27
Opt % 99 99 98 99 99 99 99 66 64

7.b Cons % 0 1 2 2 2 0 0 33 30
Opt % 100 99 98 98 98 100 100 58 62

7.c Cons % 0 1 1 1 1 0 0 26 32
Opt % 100 99 99 99 99 100 100 71 65
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Table 9.3: Monocular - Mean inconsistency, exact initialization

# IS UID AHP FHP FHPi FIS0 FIS0i FIS FISi
1.a 149.3 1.1 0.8 0.8 0.8 1.4 1.4 0.8 0.8
1.b 27.7 0.3 0.4 0.4 0.4 0.4 0.4 – –
1.c 55.2 0.2 0.2 0.2 0.2 0.5 0.4 – –
2.a 110.5 2.0 1.3 1.3 1.2 0.8 0.8 0.0 0.0
2.b 19.1 0.7 0.6 0.6 0.6 0.5 0.6 – –
2.c 39.9 0.7 0.7 0.7 0.7 0.6 0.5 – –
3.a 181.6 0.6 0.6 0.6 0.6 1.8 1.8 0.7 0.7
3.b 60.1 0.9 0.7 0.7 0.7 0.8 1.1 – –
3.c 64.3 0.5 0.5 0.5 0.5 0.7 0.6 – –
4.a 908.2 13.1 12.7 12.7 12.9 13.0 13.3 0.6 0.6
4.b 151.4 11.6 11.3 11.4 11.3 16.0 15.9 0.4 0.4
4.c 300.7 11.9 11.6 11.6 11.5 15.0 15.0 0.4 0.4
5.a 81.8 0.3 0.4 0.4 0.3 0.4 0.5 0.4 0.4
5.b 12.7 0.2 0.2 0.3 0.2 0.5 0.5 – –
5.c 25.3 0.3 0.3 0.2 0.2 0.3 0.4 – –
6.a 167.0 1.3 2.0 1.5 1.7 2.5 2.5 1.8 1.8
6.b 26.5 1.5 2.2 1.6 1.4 2.0 2.1 – 0.7
6.c 52.2 1.2 1.0 1.3 1.0 1.4 2.2 – –
7.a 858.1 22.7 22.3 23.2 22.8 26.2 25.2 4.2 3.7
7.b 230.3 20.0 19.8 19.3 22.3 26.3 27.4 3.1 4.4
7.c 527.9 22.8 22.4 22.2 20.9 23.9 25.5 5.5 4.4
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Figure 9.3: Average NEES values for Experiment 1.a (Monocular) with exact initializa-
tion of viewing ray for each parameterization. The confidence interval of consistency
is delimited with two horizontal dashed red lines. The IS parameterization performs
worst than others and it looses quickly the consistency (notice the ordinate axis is in
logarithmic scale). UID, AHP, FHP and FHPi perform very similar, thus differences
between theirs curves are not appreciable, apart from a peak on the NEES value of
UID parameterization which overtake the value 10 just before iteration 700; the av-
erage NEES is included in the confidence interval for about half of the time and it
remains close to the consistency range also when the NEES value is over the highest
threshold. FIS0 and FIS0i, i.e., the Framed Inverse Scale parameterization without the
introduction of Gaussian noise in the measurement equation on the initial viewing ray,
show substantially equal performance and they perform slightly worst than UID, AHP
and FHP; although they operates for the most of the time in the optimistic range, they
are quite close to consistency. The FIS and FISi curves are substantially equal too,
but they evidence that noise in the measurement equation gives better performance in
average NEES: the curve is below the lower limit of the confidence interval for the
most of the time. 190
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can be applied to the results of Experiment 1.c, where the initial depth is increased to 100
meters. In this case, FIS0 and FIS0i worsen a little bit their performances, but they rest
consistent for the most of the time.

Experiments 2.a, 2.b and 2.c use the same motion speed of the relative experiments of
set 1, but the additional noise standard deviation is halved. The analysis of the consistency
shows that the change in the noise does not affect so much the performance of UID, AHP,
FHP and FHPi, while it affects much more FIS0 and FIS0i. Considering Experiment 2.a
we notice that only FIS0 and FIS0i parameterizations improve their performance from a
13% of time in the consistent range to more than 33%. The performance of UID, AHP,
FHP and FHPi degrade in Experiments 2.b and 2.c about, respectively, 10 and 15 percent
points with respect to Experiments 1.b and 1.c. FIS and FIS0 performance remains more
similar to the results of Experiments 1.b and 1.c, approaching the performance of other
parameterizations. Moreover, the analysis of the mean inconsistency value shows that
FIS0 and FIS0i are more close to the upper bound of the consistency range than other
parameterizations, especially in Experiment 2.a. This can be observed in Figure 9.4 too,
where the average NEES value of each parameterization for Experiment 2.a are plotted.

From these two experiments we can draw a first conclusion: all the parameterizations
suffers initialization of the unknown depth close to the camera and, in particular, the FIS0
and FIS0i parameterizations are especially affected by this problem.

In Experiments 3 and 4 the motion speed is halved with respect to the first two ex-
periments, resulting in a 800 step complete loop of the cloister. In Experiment 3.a all
the parameterizations maintain similar performances to the one obtained in Experiments
1.a and 2.a, approaching the 50% of time in the consistent range for UID, AHP, FHP
and FHPi parameterizations. Differently from what happens in Experiments 1.b, 1.c, 2.b
and 2.c, in Experiments 3.b and 3.c the change in the initialization does not reflects in
improvement in consistency and this is especially evident for UID, AHP, FHP and FHPi
parameterization, while FIS0 and FIS0i gain consistency and they result the more consis-
tent parameterizations in Experiment 3.b, which is shown in Figure 9.5. In Experiment 4
the noise is doubled with respect to Experiment 3 and, in this case, no parameterization is
able to operate in the consistent range (see Figure 9.6). The analysis of the mean value of
inconsistency shows that in this case FIS0 performs a little bit worst than others.

Experiments 5, 6 and 7 use the complex motion in 3D from Figure 9.2. In Experiment
5, the one with the lower value of noise added to the motion, all the parameterizations
show a consistent behavior for the most of the time and FIS0 confirms to suffer from
closest initialization, but it has a quite low value of mean inconsistency, i.e., not very far
from the consistent behavior. In Experiment 6 the noise is doubled and in this case the
FHP and FHPi parameterizations perform better than others. In Experiment 7 the noise
is doubled once more and parameterizations loose their consistency with a high value
of average inconsistency. Differences in performances in Experiment 6.c, where the filter
operates for the most in the consistent range, and 7.a, where it operates in optimistic range,
can be appreciated by the comparison of Figure 9.7 and Figure 9.8.

These experiments are run a second time adding the corruption of the initial point. The
complete results are reported in Appendix A in Table A.2 and Table A.3; here we give only
a general comment on the experiments. As expected, both FIS and FIS0 performs worst
than others: they never operate in the consistency range, while other parameterizations
perform a little worst than in the first set of experiments due to the inexact initialization of
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Figure 9.4: Average NEES values for Experiment 2.a (Monocular) with exact initialization
of viewing ray. The results of IS parameterization are the worst: the consistency is not
reached for the most of the time and only at frame 400, where a complete turn is per-
formed, the average NEES values for IS approaches the upper bound of the confidence
interval; notice that ordinate axis is in logarithmic scale for IS. Alike the previous case,
all the other parameterizations work in the consistent range for about the half of the
time. UID, AHP, FHP and FHPi loose consistency between steps 100 and 400 and this
is more evident for UID, which presents a peak at about step 350. They re-enter in the
consistent range after step 400, where a turn is completed. FIS0 and FIS0i results are
substantially equal, the same happens for FIS and FISi, meaning that the use of indi-
rect parameterization does not introduces significant differences in average NEES. FIS
tends to be close to the lower bound the consistency and to fall below this level, i.e., to
perform in the conservative range; FIS0 is close to the upper bound and operates in
the consistent and optimistic range but it does not suffer of big inconsistency in the first
loop of the cloister, i.e. before frame 400, as it happens for other parameterizations.
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Figure 9.5: Average NEES values for Experiment 3.b (Monocular) with exact initializa-
tion of viewing ray. The results of IS parameterization are the worst: the consistency
is loosed before frame 100; notice that ordinate axis is in logarithmic scale for IS.
UID, AHP, FHP and FHPi show very similar performance; they maintain consistency
for about 30% of the time. FIS0 and FIS0i curves are substantially equal, the same
happens for FIS and FISi, meaning that the use of indirect parameterization does not
introduces differences in average NEES. FIS performs in the conservative range, i.e.,
under the lower bound of the confidence interval for the most of the time; FIS0 and
FIS0i operate in optimistic range for longer time (about 50%) than UID, AHP and
FHP parameterizations, resulting the parameterizations with the best performance in
the consistency analysis.
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Figure 9.6: Average NEES values for Experiment 4.a (Monocular) with exact initialization
of the viewing ray. The results of IS parameterization are the worst: the consistency
is loosed before frame 100; notice that ordinate axis is in logarithmic scale for IS.
AHP, FHP and FHPi show very similar performance, while UID is slightly different
(e.g., between steps 600 and 700). FIS0 and FIS0i curves are substantially equal, the
same happens for FIS and FISi, meaning that the use of indirect parameterization does
not introduces significant differences in average NEES. All the parameterizations but
FIS and FISi loose consistency quite early. FIS0 and FIS0i perform slightly worst,
especially around time step 600, where their average NEES is the highest. FIS and
FISi maintain consistency in almost all the experiment, revealing the good effects on
the NEES of the noise added in the measurement equation.
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Figure 9.7: Average NEES values for Experiment 6.c (Monocular) with exact initialization
of viewing ray. The motion in this case is not planar, but it follows a 6DoF trajectory.
The results using IS parameterization are the worst: the consistency is loosed before
frame 100; notice that ordinate axis is in logarithmic scale for IS. AHP and FHP
show very similar performance, while UID performs slightly worse (e.g., between steps
2000 and 3000). FHP shows the best performances, although differences with others
parameterizations are very small. FIS0 and FIS0i differences are very small; these
parameterizations operate at the limit of consistency range between frame 0 and 2000,
while they exit from the consistent range after step 2000. FIS and FISi are similar
too but the noise addition in the measurement equations guarantee consistency: they
operates at the limit of the conservative behavior.
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Figure 9.8: Average NEES values for Experiment 7.a (Monocular) with exact initialization
of viewing ray. The motion in this case is not planar, but it follows a 6DoF trajectory.
The results of IS parameterization are the worst: the consistency is loosed very early;
notice that ordinate axis is in logarithmic scale for IS. UID, AHP, FHP, FHPi, FIS0
and FIS0i parameterizations show similar performance, but the NEES value is very far
from the consistency range. FIS and FISi have the better performance and they loose
consistency only after step 1000.
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the viewing ray.

A third run of the experiment is performed with the high resolution camera. Complete
results on the consistency analysis are reported in Appendix A with Table A.4 and Ta-
ble A.5. The performance in NEES of all the parameterizations but FIS (in all its versions)
are worse than the performance obtained with the low resolution camera. This can be ex-
plained considering that the high precision in the measurement process has negative effects
on the correction of the state performed by the update step of the EKF. This is observed
in [53], where it is stated that the larger the covariance matrix of measurement noise, the
less the effect on inconsistency. In our case the covariance matrix is always the same, but
the change in the camera resolution corresponds to a lower covariance in the measure-
ment, since the higher resolution in the image corresponds to higher angular resolution in
the viewing ray. The average NEES values of FIS parameterizations do not degrade with
the high camera resolution setup, thus FIS performances results more similar to others
parameterizations, although they are far from operate in the consistency range. Figure 9.9
shows the comparison of the average NEES values for the standard camera and the high
resolution camera in Experiment 1.c, while Figure 9.10 shows the same comparison for
Experiment 6.a.

To summarize the analysis of consistency for the monocular experiments we calculate
the mean percentage of time in which the filter operates in the optimistic range and the total
value of the average inconsistency for all the experiments in the three different proposed
setup (i.e., with exact initialization, with noised initialization and with noised initialization
using the high resolution camera). To compute the mean time in which the filter operates
in the optimistic range we weight the optimistic percentage of each experiment with the
experiment length. In Table 9.4 the summarized results are reported within an average
value over all the three different setup; these results are plotted in Figure 9.11 too. AHP,
UID, FHP and FHPi perform substantially equal, with a very small advantage for FHPi.
IS and FIS (in all its versions) perform bad, being optimistic for the most of the time
(obviously this is not true for the FIS with exact initialization). The reason for the poor
performances in IS are in absence of the anchor point/frame in the parameterization. FIS
poor performance are due to the wrong assumption on the exactness of the initial viewing
ray. The total value of the average inconsistency is computed by summing up the values
of the average inconsistency for all the experiments in the three different setup. Results
are reported in Table 9.5 and plotted in Figure 9.12. They show that UID, AHP, FHP and
FHPi parameterization have similar value of mean inconsistency, i.e., when they are opti-
mistic they reach similar values of NEES. IS performs very bad: its average inconsistency
is more than 100 times higher than the better parameterizations. FIS parameterization per-
forms definitely worse than UID, AHP, FHP and FHPi but has the good property to limits
inconsistency when using high resolution cameras: the average value of inconsistency is
more than 5 time higher for FHP passing from standard to high resolution camera, while
it is only doubled for FIS.

We perform here also a different comparison between parametrizations; we take a sin-
gle run of the first experiment and we analyze the estimation error for each coordinate and
angle around axis with respect to the ground truth considering the±3σ confidence interval
of the filter standard deviation. The aim of this comparison is to evaluate the impact of
the additional noise δ3,4 in FIS parametrization. Results are shown in Figure 9.13. As ex-
pected, IS underestimates the covariance and makes large errors. FHP, AHP and UID show
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Figure 9.9: Average NEES values for the parameterizations with noised initialization in
Experiment 1.c. The plots compare the standard resolution camera (640× 480 pixels)
with the high resolution camera (2520× 1920 pixels). Solid lines with same colors of
the previous plot are used for the standard camera, while dashed orange lines are used
for the high resolution camera. It is noticeable that for all the parameterizations but
FIS (in all its versions) the average NEES value increases with in the high resolution
camera setup (orange lines). For FIS this is less evident, although FIS is still far from
consistency.
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Figure 9.10: Average NEES values for the parameterizations with noised initialization in
Experiment 6.a. The plots compare the standard resolution camera (640× 480 pixels)
with the high resolution camera (2520 × 1920 pixels). Solid lines with same colors
of the previous plot are used for the standard camera, while dashed orange lines are
used for the high resolution camera. It is noticeable that for all the parameterizations
but FIS (in all its versions) the average NEES value increases with in the high reso-
lution camera setup (orange lines), resulting in a behavior that is quite far from the
consistency range. FIS performance are slightly affected by the use of the high reso-
lution cameras, thus its performance are more close to the results obtained by others
parameterizations.
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Table 9.4: Summary of results for the mean time the filter operates in the optimistic range.
Weighted average is performed on the percentage of operative time in the optimistic
range from Tables 9.2, A.2 and A.4 with the experiment length (800 for Experiments
1.a to 4.c, 4000 for Experiments 5.a to 7.c). These results are graphically shown in
Figure 9.11. In bold the parameterization that reach the best results for the three dif-
ferent setup and the overall best. Notice that FIS parameterization, in all its versions,
is not compared to others parameterization, since it performs very well with the exact
initialization and very bad with the noised initialization, due to its particular formula-
tion.

IS UID AHP FHP FHPi FIS0 FIS0i FIS FISi
Exact init. 97.9 55.8 55.0 54.0 53.0 65.1 64.8 17.6 17.2

Noised init. 99.6 78.6 78.8 78.5 74.9 100 100 99.9 99.9
Noised init. HD 99.9 93.1 93.3 93.1 93.1 100 100 100 100

Mean 99.0 75.8 75.7 75.2 73.7 88.4 88.3 72.5 72.4

Figure 9.11: Graphical summary of results for the mean time in which the filter operates
in the optimistic range of Table 9.4 in the three different setup (i.e., with exact initializa-
tion, with noised initialization and with noised initialization using the high resolution
camera). The bar height corresponds to the mean value reported in the table; each bar
is partitioned in the value of the three different setups.
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Table 9.5: Summary of results of the total of average inconsistency (AI) value. The to-
tal inconsistency is calculated by summing the values of average inconsistency of Ta-
bles 9.3, A.3 and A.5. In bold the parameterizations that reach the best results for the
three different setup and the overall best. Notice that FIS parameterization, in all its
versions, is not compared to other parameterizations, since it performs very well with
the exact initialization and very bad with the noised initialization, due to its particular
formulation.

IS UID AHP FHP FHPi FIS0 FIS0i FIS FISi
Exact init. 3182 114 112 112 112 135 138 18 18

Noised init. 4529 125 121 123 123 2961 2995 1209 1190
Noised init. HD 92694 630 624 625 620 6105 6086 1243 1242

Total 100405 869 857 860 855 9201 9220 2470 2450

Figure 9.12: Graphical summary of results of the total of average inconsistency value
Table 9.5 in the three different setup (i.e., with exact initialization, with noised initial-
ization and with noised initialization using the high resolution camera). The bar height
corresponds to the mean value reported in the Table 9.5; each bar is partitioned in the
value of the three different setups, but it has to be noticed that the logarithmic axis
on ordinate prevents comparisons between values of parameterizations that performs
significantly different.
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Figure 9.13: Estimation errors (continuous lines) and estimated standard deviation
(dashed lines) of a single run of Experiment 1. UID (red), AHP (green) and FHP
(blue) standard deviation estimate are very similar, thus their dashed curves overlaps;
IS and FIS0 (cyan) underestimate the standard deviations compared to UID, AHP and
FHP, while FIS (magenta) overestimate a bit the standard deviations, evidencing the
benefits of the addition of the noise in the measurement model. It is noticeable that IS
inconsistency is more evident in the translation part, while are comparable to the other
parameterization in the rotation part.

a very similar behaviour while FIS0 underestimates covariance with respect to them. FIS
shows very similar covariances with respect to other parameterizations (except IS), con-
firming that the choice of 1px as standard deviation of additional noise δ3,4 is appropriate
and it does not favour FIS too much.

9.1.1.2 Stereo Simulated Experiments

All the experiment performed for the monocular case are repeated in a stereo setup too
to evaluate the proposed multi-camera SLAM system. These experiments are referred
with numbers from 8 to 14 in Table 9.1. Table 9.6 reports the complete results of the
consistency analysis for the case in which the initial viewing ray is exact, while the average
inconsistency (AI) values are reported in the Appendix A in Table A.1; results for the case
in which the viewing ray is corrupted with noise and for the case in which the viewing ray
is corrupted but a high resolution camera is used are reported respectively in Tables A.6,
A.7 and Tables A.8, A.9 in the Appendix A.
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Table 9.6: Stereo - Consistency analysis, exact initialization

# IS UID AHP FHP FHPi FIS0 FIS0i FIS FISi

8.a Cons % 0 2 3 3 3 8 9 76 74
Opt % 100 99 97 97 97 92 92 2 2

8.b Cons % 16 93 97 97 96 82 77 4 4
Opt % 84 7 3 3 4 19 23 0 0

8.c Cons % 8 92 97 97 95 78 71 3 3
Opt % 92 8 3 3 5 22 29 0 0

9.a Cons % 1 7 6 6 6 13 12 45 43
Opt % 99 93 94 95 94 87 88 0 0

9.b Cons % 17 97 92 92 91 51 51 16 19
Opt % 83 3 8 8 9 49 49 0 0

9.c Cons % 8 93 91 93 93 66 65 15 18
Opt % 93 8 9 8 7 34 35 0 0

10.a Cons % 0 0 1 1 3 19 17 28 24
Opt % 100 100 99 99 97 82 83 2 2

10.b Cons % 10 97 97 97 97 56 57 13 12
Opt % 90 2 3 2 2 44 43 0 0

10.c Cons % 4 95 94 95 94 78 77 12 12
Opt % 96 4 5 4 5 22 23 0 0

11.a Cons % 0 2 2 2 3 19 17 61 62
Opt % 100 98 98 98 98 81 83 1 1

11.b Cons % 7 95 95 95 94 80 82 6 6
Opt % 93 2 3 2 4 20 18 0 0

11.c Cons % 2 94 90 91 93 82 78 6 6
Opt % 98 4 8 7 5 18 22 0 0

12.a Cons % 0 0 1 1 2 53 66 9 10
Opt % 100 100 99 99 98 47 34 0 0

12.b Cons % 36 93 88 86 96 80 82 8 8
Opt % 64 6 11 14 4 20 18 0 0

12.c Cons % 3 87 96 97 79 71 73 9 6
Opt % 97 13 2 3 21 29 27 0 0

13.a Cons % 0 0 0 0 0 49 63 10 11
Opt % 100 100 100 100 100 51 37 0 0

13.b Cons % 14 72 83 74 73 45 56 9 12
Opt % 86 28 17 25 26 55 44 0 0

13.c Cons % 2 65 67 62 56 52 51 16 13
Opt % 98 35 32 38 43 48 49 0 0

14.a Cons % 0 0 0 0 0 52 46 15 30
Opt % 100 100 100 100 100 48 54 1 1

14.b Cons % 12 80 83 80 65 44 48 34 27
Opt % 88 19 17 20 35 56 52 0 0

14.c Cons % 3 56 46 51 39 60 40 27 37
Opt % 97 44 54 49 61 40 60 0 0
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The comparison of Table 9.6 and Table 9.2, i.e., consistency for the stereo setup and the
monocular with exact initialization, evidences that the use of the multi camera setup tends
to increase inconsistency when close initialization is used and to improve the consistency
with far initialization. For instance, Experiment 1.a (monocular) shows consistency for
about 50% of the time, while its corresponding Experiment 8.a (in stereo setup) is clearly
inconsistent. The same happens for 2.a and 9.a, evidencing also that a close initialization
of the unknown depth of landmarks may be dangerous. For a more detailed analysis, let
first consider only the UID, AHP, and FHP (both in the standard and in the indirect formu-
lation) parameterizations. We can affirm that far initialization improves the consistency
in the stereo setup: considering the couple of Experiments 3.c and 10.c we notice that in
the stereo setup the filter operates in the consistent range in almost the entire range, being
optimistic only in about the 5% of the cases. Experiments 11.b and 11.c, compared with
4.b and 4.c, show significant increment in the consistency for the stereo setup with respect
to the monocular case which is optimistic for the most of the time.

The analysis of the Experiments 12 to 14, i.e., the ones with the complex motion in 3D,
confirms that the use of the stereo camera increases greatly the consistency with respect
to the monocular case if the landmarks are initialized quite far from the camera (with 10
meters and 100 meters initialization). For instance, Experiment 14.b shows good consis-
tency behavior with respect to 7.b which is almost never consistent. Comparison between
Experiments 12.a and 5.a reveals one more time that close initialization is dangerous: the
monocular case shows consistency while the stereo setup loose consistency. The FIS0 pa-
rameterization shows a different behavior: in monocular case it tends to loose consistency
when points are initialized close to the camera, while in the stereo setup it shows good
performance in some of these cases, as in Experiments 12.a, 13.a and 14.a, where it per-
forms better than other parameterizations. In particular, in these experiments, FIS0 is the
unique parameterization that reaches a good level of consistency. On the other side, FIS0
suffers far initializations in the stereo setup in other experiments.

The addition of random noise on the initial viewing ray (Table A.6 and Table A.7 in
the Appendix A) does not affect performance in consistency, although we have an obvi-
ous degradation of the NEES average value. As expected, FIS parameterization performs
worse, since it is not able to correct the initial direction of the viewing ray. The use of
the high resolution camera has bad effects on the consistency, as already observed for the
monocular case, reaching a complete inconsistent behavior in almost all the experiments.
For detailed results in this case see Table A.8 and Table A.9 in the Appendix A.

IS parameterization was never considered up to here since it performs worse than oth-
ers, but in a stereo setup there are some cases in which it is quite consistent: this is the case
of Experiment 12.b and 13.b, in which it performs similarly to the other parameterizations
when the initial viewing ray is initialized without noise addition. Comparison between the
three runs of Experiment 12.b, i.e., with the exact initialization, the noised initialization
and the noised initialization in the high resolution camera setup, are shown for a visual
comparison respectively in Figure 9.14, Figure 9.15 and Figure 9.16.

We summarize the results obtained with the stereo setup in the same way we do for the
monocular case, computing the mean time in which the filter operates in optimistic range
and the total value of mean inconsistency in the three different setup. Results are reported
in Table 9.7 and Table 9.8 and plotted respectively in Figure 9.17 and Figure 9.18. In this
case, the AHP parametrization performs a little better than UID, FHP and FHPi, while IS
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Figure 9.14: Average NEES values in Experiment 12.b of the stereo setup, with the exact
initialization of the viewing ray. In this experiment IS performance is comparable
to other parameterizations. Dashed red lines are the limits of the 95% confidence
interval. All parameterizations ensure a good level of consistency: average NEES
value is, for the most of the time, between the bounds of the confidence interval. FIS
and FISi parameterizations tend to be conservative, i.e., they are close to the lower
bound of the confidence interval.
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Figure 9.15: Average NEES values in Experiment 12.b of the stereo setup, with the noised
initialization of the viewing ray. Comparison with Figure 9.14, where the exact initial
of the viewing ray was used, shows that FIS parameterizations (in all its versions)
loose the consistency, while average NEES values are slightly increased for others
parameterizations and they tend to be optimistic. FHPi shows the best performances,
remaining in the consistent range for most of the time.
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Figure 9.16: Average NEES values in Experiment 12.b of the stereo setup, with the noised
initialization of the viewing ray using the high resolution camera. Comparison with
Figure 9.15, where the standard resolution camera was used, shows that all average
NEES values are slightly increased for all parameterizations but FIS. FIS parameter-
ization (in all its versions) performance is slightly improved by the use of the high
resolution camera, although it remains far from the consistency range.
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Table 9.7: Summary of results for the mean time in which the filter operates in the opti-
mistic range in stereo experiments. Weighted average is performed on the percentage
of operative time in the optimistic range from Tables 9.6, A.6 and A.8 from Appendix A
with the experiment length (800 for Experiments 8.a to 11.c, 4000 for Experiments
12.a to 14.c). These results are graphically shown in Figure 9.17. In bold the parame-
terizations that reach the best results for the three different setup and the overall best.
Notice that FIS parameterization, in all its versions, is not compared to other param-
eterizations, since it performs very well with the exact initialization and very bad with
the noised initialization, due to its formulation.

IS UID AHP FHP FHPi FIS0 FIS0i FIS FISi
Exact init. 92.6 46.5 45.4 46.8 50.3 44.6 43.2 0.2 0.2

Noised init. 97.5 64.9 63.3 62.8 63.0 100 100 100 100
Noised init. HD 99.9 95.8 95.5 95.7 95.5 100 100 100 100

Mean 96.7 69.1 68.1 68.4 69.6 81.5 81.1 66.7 66.7

and FIS perform bad. The analysis of total inconsistency shows that FIS0 inconsistency
grow less than other parameterizations with the high camera resolution and it decreases
when the FIS is used with the additional noise variance equal to 1.

9.1.2 Hybrid EKF SLAM Test with Loop Closure
In this section we want to show the problems that the frame anchored parameterizations
(i.e., FHP and FIS) have when a loop closure step of the Conditional Independent SLAM
framework is performed and we want to verify that the Hybrid Indirect EKF SLAM ap-
proach, with its parameterizations expressed in the indirect form, solves this problem.
Moreover, we want to show that the point anchored parameterizations, such as UID, do
not suffer of issues in loop closure, since problems are given by the use of quaternions.

Recalling briefly Section 5.6.1.6, when a loop is detected some landmarks that are al-
ready in a submap are seen from a different map. The landmarks involved in the loop
have to be copied from the original map to the current map along all the intermediate
submaps. This implies that, if FHP or FIS parameterizations are used, the anchor frames
of the landmarks have to be transformed and expressed in the current map reference sys-
tem. Doing this, the orientation of some anchor frames coming from different maps may
results in a rotation which is far from the identity rotation. Consequently, the scalar ele-
ment of the quaternion in the anchor frame results far from 1 and the approach proposed in
Section 6.4.7.3, which is based on the representation of quaternions with the axis part only
is not applicable. This does not happens with the hybrid approach proposed in Chapter 7,
since rotations are always represented in a local form. The point anchored parameteriza-
tions (i.e., UID and AHP) do not suffer from this problem, since rotations are not used to
represent landmarks, but they are used only in the current robot pose description.

We run a simulation in a cloister-like environment using the Conditional Independent
SLAM approach. The cloister has a size of 22x22 meters on two different planes, respec-
tively at the height z = −0.5 and z = 0.5 meters. The robot performs a circular trajectory
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Figure 9.17: Graphical summary of results for the mean time in which the filter operates
in the optimistic range of Table 9.7 in the three different setup (i.e., with exact initializa-
tion, with noised initialization and with noised initialization using the high resolution
camera). The bar height corresponds to the mean value reported in the table; each bar
is partitioned in the value obtained in the three different setups.

Table 9.8: Summary of results of the total of average inconsistency value in the stereo
setup. The total inconsistency is calculated by summing the values of average incon-
sistency of Tables A.1, A.7 and A.9 from Appendix A. In bold the parameterizations
that reach the best results for the three different setup and the overall best. Notice that
FIS parameterization, in all its versions, is not compared to other parameterizations,
since it performs very well with the exact initialization and very bad with the noised
initialization, due to its formulation.

IS UID AHP FHP FHPi FIS0 FIS0i FIS FISi
Exact init. 2164 45 43 44 44 20 20 9 9

Noised init. 2084 49 46 46 47 4478 4564 1965 1919
Noised init. HD 18717 477 451 451 465 4621 4620 1277 1299

Total 22964 571 540 541 556 9119 9205 3251 3227
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Figure 9.18: Graphical summary of results of the total of average inconsistency value
Table 9.8 in the three different setup (i.e., with exact initialization, with noised ini-
tialization and with noised initialization using the high resolution camera). The bar
height corresponds to the mean value reported in the table; each bar is partitioned
in the value of the three different setup, but it has to be noticed that the logarithmic
axis on the ordinate prevents comparisons between values of parameterizations that
perform significantly different.

of 20 meter diameter on the plane z = 0 and the (monocular) camera points forward in
the direction of the motion. A complete turn of the cloister is completed in 800 steps. The
SLAM system does not use odometric information, thus it uses a constant velocity motion
model. The submap system performs a map transition when the number of landmarks in
the map is greater than 50 and generates 6 different maps. A loop closure is triggered at
step 700, when some landmarks of the first map are seen in the sixth map. We stop the
execution at step 850, i.e., after the completion of a loop of the cloister. The simulation is
performed with the UID parameterization, the FHP parameterization and the FHPi param-
eterization, i.e., with the indirect version of the FHP parameterization used in the Hybrid
Indirect EKF SLAM system.

Let analyze first the behavior of the FHP parameterization to show the problems it
has in the back propagation step. First of all, we propose a visual inspection of what
happens when a loop closure is performed with the FHP parameterization. Figure 9.19(a)
shows the estimated robot trajectory up to the last closed submap with a gray line, the
trajectory estimated in the current map with the blue line and the landmarks, represented
by the black and green points just before the loop is detected. After the loop is closed the
robot pose and the map suffer an erroneous correction, thus they disappear from view, as
shown in Figure 9.19(b). The analysis of the covariance matrices of the shared element
between submaps after the loop closure is performed, i.e., after the landmarks involved in
the loop closure step have been copied through the submaps, shows that the presence of
quaternions that represent big rotations causes the ill conditioning of the matrix, since the
representation of rotation with the only axis part is not adequate to this case. When FHP
parametrization is used the condition number3 assumes values greater than 1019, while

3Refer to [11] for details on linear algerbra and condition number.

210



9.1. Parameterization Evaluation

(a) Before Loop Closure (b) After Loop Closure

Figure 9.19: Two screenshots from the execution of a SLAM problem in a simulated clois-
ter with the FHP parameterization. The Conditional Independent SLAM system is used
and a loop closure is triggered when the robot revises landmarks that are already in
the map. Figures show the estimated robot trajectory up to the last closed submap with
a gray line and the trajectory estimated in the current map with a blue line. The land-
marks are represented by colored points: black points represent landmarks in the map
that are not currently visible while green points represent landmarks in the map that
are currently visible. The reference system of each submap is indicated by a Cartesian
reference system, where x, y and z axis are represented respectively by red, green and
blue arrows. (a) is taken just before the loop is detected, while Figure (b) is taken after
the loop closure. In (b) the current robot pose and the landmarks are disappeared,
since the estimate suffers an erroneous correction due to the presence of an ill condi-
tioned covariance matrix.

with UID parameterization and FHPi parameterization it is lower that 109. This confirms
that the FHP parameterization generates an ill conditioned problem, while the use of the
Hybrid Indirect EKF SLAM system allows the use of framed parameterizations such that
FHPi.

UID and FHPi parameterizations, respectively applied to the direct and Hybrid Indirect
SLAM formulation, are able to treat the loop closure problem and we use this example to
compare their behavior in the estimation process. We analyze the smoothed trajectories,
i.e., the trajectories reconstructed by the sequence of anchor points or frames stored in the
shared part of the landmarks after the entire estimation has been performed. Consequently,
we do not have an estimation of the robot pose at each time step, but only some milestones
or keyframes of the trajectory, corresponding to the time step in which some new landmark
has been added to the map. It has to be noticed that using UID we can reconstruct only
the past robot positions, which are stored in the anchor points of the landmarks, while
FHPi allows to reconstruct the complete past robot poses, thanks to the presence of anchor
frames. We compare only the past robot positions, while the orientation information that
are available with the FHPi parameterization are not evaluated. The trajectory is said to be
smoothed since past robot poses are refined using also successive measurements performed
in the system.
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Figure 9.20: Top view of the estimated smoothed trajectory for the UID (red points) and
FHPi (blue points) parameterizations compared with the nominal trajectory, i.e., the
ground truth (GT) in black.
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Figure 9.21: Errors committed in the estimation by the two parameterizations on x, y and
z component and the Euclidean distance from the exact position.
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Since the experiment we run uses a single camera and the odometry is not used in the
motion model, the trajectory and the map result reconstructed up to an unknown scale fac-
tor. Consequently, to compare the solutions, reconstructed trajectories have been scaled to
the nominal 20 meters diameter circular trajectory. Figure 9.20 shows the top view of the
estimated smoothed trajectory for the UID and FHPi parameterization compared with the
nominal trajectory (i.e., the ground truth). From this view it is not possible to distinguish
if a parameterization performs better or worse than the other, since both the trajectories
are accurately reconstructed and the loop was properly closed. Figure 9.21 shows the er-
rors committed in the estimation by the two parameterizations on each component of the
position and the Euclidean distance from the exact position. From this analysis can be
concluded that the two approaches perform substantially equal, although there is a small
advantage, i.e., a lower error in the estimation, for the FHPi parameterization. This con-
firms what was emerged from the parameterization evaluation presented in Section 9.1.1.

9.1.3 Evaluation On Real Data

We tested the proposed parametrizations also in a real setup, always using the MoonSLAM
framework. As for the simulated experiments, we use the odometry of the robot as input
in the motion model of the system. We have tested both the monocular and the stereo
setup using almost4 the entire indoor dataset Bicocca_2009-02-27a from the RAWSEEDS
project [9], covering a path of about one kilometer. The architectural map of the building
in which the dataset was collected and the path covered by the robot is sketched in Fig-
ure 9.22(a) and the robot, equipped with various sensors, is shown in Figure 9.22(b) The
monocular camera has a resolution of 320 × 240 pixels with a focal length of about 200
pixels, it captures images at 30Hz and we used about 57000 frames (32 minutes). Each
camera of the stereo dataset has a resolution of 640 × 480 pixels, with a focal length of
about 660 pixels and a frame rate of 15fps; the baseline of the rig is about 18cm and we
consider the same path as for the monocular case which totals about 28500 frames. Fig-
ure 9.23 shows a screenshot which has been taken during the execution of a monocular
run.

Both monocular and stereo algorithms perform active-search-based SLAM as for the
simulated experiments. For the monocular case we initialize at most 16 landmarks in the
first frame and search for new landmarks when less than 50 landmarks are predicted in the
current image, with a limit of minimum two landmarks added each time. For the stereo
case we initialize at most 25 landmarks in the first frame and search for new landmarks
when less than 25 landmarks are predicted in the current image, without limits in addition.
The difference in the initialization policies are due to an empirical tuning of the system. In
the stereo case, landmarks are always initialized in the left camera reference frame, while
measurement are obviously performed on both cameras.

Each landmark is described by a patch of 11x11 pixels area around a salient point,
which is detected by FAST [83], while matching is done by normalized cross-correlation.
Initial depth is set to 10 meters (corresponding to 0.1m−1 of inverse depth) with uncer-
tainty on the inverse depth of 0.5m−1 both for monocular and stereo case. The update step
is performed using the 1-Point RANSAC technique [16], which was briefly introduced in

4We limit the analysis of the dataset on the part where the extended ground truth (GT), i.e., a reference for
the real trajectory, is available. For this dataset the GT covers the initial 80% of the dataset.
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(a) Architectural map (b) Robocom robot

Figure 9.22: (a) The architectural map of the building in which the dataset was collected
and the path covered by the robot. (b) The robot used to collect RAWSEEDS datasets.
It is equipped with four laser scanner, a sonar belt, a monocular camera, a trinocular
camera and an omnidirectional camera.

Figure 9.23: A screenshot of the MoonSLAM framework performing monocular SLAM on
a real dataset.
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Section 5.4.6.
The submapping technique is applied with a maximum map size of 70 landmarks. We

have to underline that the presented implementation does not perform the loop closure
procedure of the CISLAM system, being not implemented in our framework the loop
detection procedure. It has to be noticed that loop closure could reset the errors cumulated
along the path before the loop closure point; in our case the cumulation of errors continues
and this provides and idea of the accuracy obtained by the different parameterizations.

Figures 9.24 and 9.25 summarize the results respectively of the Monocular and Stereo
SLAM for the parametrizations UID, AHP, FHP, FHPi, FIS0 and FIS0i while IS is not
treated in this run due to its poor performance. The extended ground truth (GT), i.e., a
reference on the real trajectory available for the RAWSEEDS datasets, is plotted to allow
comparison together with the robot odometry. Figures show the top view of the smoothed
trajectory, i.e., of the trajectory reconstructed by the sequence of anchor points or frames
stored in the shared part of the landmarks taking advantage of the back-propagation step
in the Conditional Indipendent Submapping. Figures 9.26(a) and 9.26(b) show the top
view of the map points (with crosses) on top of the smoothed trajectory for the FHPi
parametrization respectively for the monocular and the stereo case.

From these experiments we see how all parametrizations show quite good performance
in the reconstruction of the trajectory and the map. Since we used the odometry in the
motion model for the monocular case we do not observe any significant scale drift phe-
nomenon, as already observed in [15]. It looks like that the use of the stereo setup does
not produce improvements with respect to the monocular setup, but we have to consider
that the real dataset presents several possible sources of errors that may influence the final
results. Thus, we do not concentrate our attention on the comparison between monocular
and stereo systems.

It is difficult from these results to state which parametrization is the best, if any; when
using real data, there are several sources of errors, which are not properly modelled in the
state of the art approaches, so it might be difficult to discriminate whether the performance
gain (or loss) is fully due to the parametrization or other error sources. Different setups
(e.g., changes in standard deviation of the noise considered in the model, different depth
initialization, etc.) could also affect the results. On the other hand, a qualitative conclusion
that can be safely drawn, is that the FIS0 parametrization and its indirect corresponding
FIS0i parametrization shows a good performance also in a real setup, although they can
not re-estimate the direction of the initial viewing ray.
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(a) UID and AHP (b) FIS0 and FIS0i

(c) FHP (d) FHPi

Figure 9.24: Robot smoothed trajectory estimates on the real data for the Monocular
setup. The trajectory is reconstructed by the positions stored in the anchor frames/-
points from the EKF state.
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(a) UID and AHP (b) FIS0 and FIS0i

(c) FHP (d) FHPi

Figure 9.25: Robot smoothed trajectory estimates on the real data in the stereo setup. The
trajectory is reconstructed by the positions stored in the anchor frames/points from the
EKF state.
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(a) Monocular (b) Stereo

Figure 9.26: (a) Robot trajectory and map estimate on the real data in the Monocular
setup with the FHPi parameterization. (b) Robot trajectory and map estimate on the
real data in the Stereo setup with the FHPi parameterization.

9.2 CIBA Slam Evaluation

In this section we propose the evaluation of the proposed CIBA SLAM system both in
simulated and real experiments. In particular, we test the CIBA SLAM system:

• in a simulated cloister-like environment,

• in a annotated real dataset, i.e., in a dataset where the data association is given,

• in a real dataset from the Rawseeds project.

In all these cases, results are compared with estimation performed without the Bundle
Adjustement optimization of submaps.

9.2.1 Simulated Scenario
To test the proposed CIBA SLAM system we run a simulated experiment on a cloister sim-
ilar to the one used for experiments of Section 9.1.1, but we perform here a pure monocular
SLAM, i.e., we do not use the odometric data as input in the motion model. The simulated
trajectory covers a planar circle with 10 meters radius in 800 frames. Random noise is
added to the measurements and loop closure is not applied, thus the estimated trajectory
accumulates errors even when a complete turn is performed. We compare the trajecto-
ries estimated by the CI SLAM and the CIBA SLAM system, i.e., respectively without
and with the Bundle Adjustment on the submaps. Being in a pure monocular contest, we
rescale the two solutions to the real trajectory to obtain a fair comparison between them.

The back propagation step is applied at each map transition and 4 submaps are gener-
ated in this specific experiment. Figure 9.27 reports both the on-line estimated trajectory
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Figure 9.27: Robot trajectory estimates on the simulated scenario with CI SLAM and
with CIBA SLAM. Solid lines represent the trajectories estimated online, while the
dotted are the trajectories extracted from the anchor frames that are in the filters at
the end of the estimation after last back propagation step. Discontinuities in the online
trajectories are due to the back propagation, which updates the last robot pose of each
map, corresponding to the starting frame of the successive map.

(a) On Line Trajectory Error (b) Smoothed Trajectory Error

Figure 9.28: Error between the real robot pose and and its estimate, (a) for the on line
trajectory, (b) for the smoothed trajectory. Discontinuities in the online trajectories
are due to the back propagation, which updates the last robot pose of each map, cor-
responding to the starting frame of the successive map.
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(a) Architectural map (b) The robot and the landmarks

Figure 9.29: (a) Sketch of the path the robot traveled through the DLR building. (b) The
robot used to collect the dataset and the artificial circular disks on the floor.

(with solid line) and the smoothed trajectory, i.e., the trajectory reconstructed by the pose
of the camera maintained in the submaps as anchor frames at the end of the experiment.
The on-line trajectory obtained with the bundle adjustment of submaps results closer to
the real trajectory, and this is valid for the smoothed trajectory too. This can be observed
also in Figure 9.28(a) and Figure 9.28(b) where the error between the real trajectory and
the estimated one, respectively for the on-line estimation and for the smoothed trajectory
is reported. Notice that this experiment is not comparable with the one proposed in Sec-
tion 9.1.2: here we use different value for the covariance of the noise to “stress” the system
and to test it in a harder context.

9.2.2 Annotated Dataset

In this experiment we use the dataset presented in [50]. The dataset was recorded at the
DLR (Deutsches Zentrum für Luft und Raumfahrt) Institute of Robotics and Mechatronics
building using a mobile robot controlled by hand. The building covers a region of 60× 45
meters and the robot path consists of three large loops within the building (plus a small
outside path) with a total length of 505 meters discretized in 3297 steps. On the way the
robot visits 29 rooms, as shown in the architectural map in Figure 9.29(a). The dataset
provides the 2D odometric information, i.e., the relative movements on the x and y axis
and the angular displacement around the z-axis. The odometry is accompanied with the
3 × 3 associated covariance matrix. Circular disks were outlaid on the floor throughout
the building. The frames grabbed from a monocular camera, which had been intrinsi-
cally and extrinsically calibrated with respect to the robot reference frame, were processed
with an artificial vision algorithm which detects the landmarks and transforms them with
the underlying camera model to pure geometric measurements in robot coordinates. In
each frame, each visible circular disk has a x, y-coordinate describing the position of the
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landmarks with respect to the robot reference system and a corresponding covariance ma-
trix describing the measurement error. The dataset is annotated, i.e., each landmark has
a unique label (i.e., an identifier) manually identified to provide data association ground
truth.

The authors of this work aimed at collect a dataset which could be used by researchers
to test and compare their algorithms in feature-based SLAM and in particular data asso-
ciation. We use here this dataset in a different way: since data association is given, we
use the ground truth of the data association to feed our SLAM algorithms. In particular,
since the dataset is provided in 2D, we have simply converted the odometric information
in 3D, by adding null movement on the z axis and null rotation around x and y axis, and by
creating a 6 × 6 covariance matrix with small variance on the diagonal of the axis which
are not subject to movement. The landmarks measurements, which are provided as 2D
points in robot reference frame, have been converted in image points thanks to the cam-
era calibration parameters. The evaluation of the Jacobians of the projection function has
been performed to propagate (linearly) the covariance associated with the 2D measures in
image coordinates. By doing this we obtain a dataset for a 6 degree of freedom SLAM
system.

We generate a reference ground truth on the trajectory and the landmark positions by
using g2o [49] on the 2D data. We create a graph with two types of nodes: the robot poses,
each represented as 2D position and orientation, and the landmark positions, each repre-
sented as 2D points. Nodes are connected with two types of edges: consecutive robot poses
are connected by an edge that contains the odometric information while each landmark is
connected to the robot poses in which it has been observed by measurement edges. The so-
lution of this problem with the Gauss-Newton algorithm results in the estimated trajectory
and in the estimated map that we use as reference for the comparison.

We perform three different solutions with our system: the first is a monocular SLAM
using UID parameterization, the second uses the Hybrid Indirect EKF SLAM system with
FHPi parameterization and the third execution uses the FHPi parameterization and the
Bundle Adjustement on the single submap, i.e., the complete CIBA SLAM system. Since
the robot closes numerous small loops (e.g., it enters and exits from small rooms), we set
the limit on the number of landmarks per map to 250 to allow the “automatic” detection
of loops. This comes from the fact that landmarks that are in the active submap can be
observed when the robot travels on an already explored area, while if landmarks are in
different maps we need to call the loop closure procedure explicitly. We perform a single
loop closure between submaps at frame 3000 (near the end of the dataset), when the robot
closes a large loop after it had traveled the entire building.

Figure 9.30 shows the estimated smoothed trajectory (see Section 9.2.1 for details) for
the three configurations and the reference ground truth coming from the 2D optimization.
At a first glance, all the three solutions are equivalent, since their trajectories are almost
overlapped. The analysis of the estimation error with respect to the ground truth, plotted in
Figure 9.31, allows the analysis of the differences between the solutions. We can conclude
that CIBA SLAM performs slightly better than the FHPi parameterization, although their
errors are very similar. UID performs differently, but the maximum values of errors are
comparable to FHPi, although it presents some high peaks, especially at the end of the
dataset.

It has to be considered that this experiment has been conducted on a very particu-
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Figure 9.30: Robot smoothed trajectory estimate on the annotated dataset of DLR building
with UID parameterization, FHPi and the CIBA SLAM system with FHPi parameter-
ization. A solution obtained by 2D optimization of the dataset is used as ground truth
reference.
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Figure 9.31: Error between estimates on the annotated dataset of DLR building with UID
parameterization, FHPi and the CIBA SLAM system with FHPi parameterization and
the ground truth. Error is reported in the x, y and z components and as the Euclidean
distance from the ground truth.
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lar dataset, which does not reflect the typical structure of the Visual SLAM application.
In this dataset the robot has a rather large movement at each step, while the typical as-
sumption in Visual SLAM is that the frame rate of the camera is sufficiently high to have
small movements between frames. Moreover, in Visual SLAM, we assume to have about
ten or twenty points visible per each image, while in this dataset the number of circular
landmarks for image is very small. We conclude that, although it seems that the use of
the CIBA SLAM system does not provide relevant improvements, it is not easy to draw
definitive conclusions from this single experiment.

9.2.3 Real Experiments
We tested the proposed CIBA SLAM system also in a real setup, always using the Moon-
SLAM framework. In particular we use the same dataset of Section 9.1.3 but in this case
we do not use the odometry of the robot as input in the motion model. We tested both
a monocular and stereo setup with a constant velocity motion model for the prediction
step of the filter. These can be considered the hardest case for a Visual SLAM system,
in particular for the monocular case: a single camera does not offer information on the
depth, the estimation of the motion without the aiding of the odometric information results
particularly challenging. Moreover, in this setup the camera looks in the motion direction
which is the worse case since few information on the parallax is generated. In particular, in
the dataset, the robot performs in place rotations at the end of corridors while the camera
is looking to a wall with a few number of features. We choose to test this case because it
is quite common that cameras are mounted frontally on real robots, although this is not the
best placement for the motion estimation.

In the monocular setup we stop the execution after about 12000 frames, i.e., 400 sec-
onds at 30Hz, when a complete loop of a building is completed. We consider not meaning-
ful to continue the execution after this point, since the error accumulated is quite big and it
can not be reset since we have not implemented a system for the loop detection when real
data are used. In the stereo setup we stop the execution at the same point, corresponding
to frame 6000, since the cameras in the stereo rig acquires image at 15Hz.

Figure 9.32 shows the trajectories estimated in the monocular setup with the FHPi
parameterization with and without the bundle adjustment optimization of the single maps,
i.e., with and without the CIBA SLAM system, compared with the ground truth available
in the dataset. The trajectories have been rescaled to the ground truth, since they come
from a monocular system and they are estimated up to a scale factor. The top views of the
trajectories shown in Figure 9.32(a) are not very significant: both the trajectories are quite
far from the ground truth reference. It can be noticed that big errors are accumulated at the
end of corridors, where the robot turns in place and the rotation is not properly estimated.
Figure 9.32(b) shows a side view of the trajectories. It can be noticed that in this case the
effects of the CIBA SLAM system is evident: the trajectory estimated remains close to
the z = 0 plane, while the trajectory estimated by the FHPi parameterization without the
Bundle Adjustment step falls below the ground plane more than 10 meters.

Figure 9.33 shows the trajectories estimated with the stereo setup with the FHPi pa-
rameterization with and without the bundle adjustment optimization of the single map, i.e.,
with the CIBA SLAM system, compared with the ground truth available in the dataset. The
top view of the trajectories shown in Figure 9.33(a) confirms the benefits coming from the
application of bundle adjustment: the estimated trajectory is closest to the ground truth and
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(a) Top view

(b) Side view

Figure 9.32: Estimation performed in a “pure” monocular setup, i.e., without the use of
odometric information and with the same covariances on the velocity motion model for
all the axes. The figures compare the trajectory estimated by the Hybrid Indirect EKF
SLAM system using the FHPi parameterization with the CIBA SLAM system, which
uses the same parameterization but performs Bundle Adjustment at each submap. (a)
shows the top view of the trajectories, (b) shows a side view. The result shows how the
Bundle Adjustement correction is useful: the estimation of the z coordinate, i.e., the
vertical quote of the robot, which has to be zero, since the robot is moving on a plane, is
properly estimated by the CIBA SLAM system, while it is estimated erroneously without
it.

226



9.2. CIBA Slam Evaluation

(a) Top view

(b) Side view

Figure 9.33: Estimation performed in a “pure” stereo setup, i.e., without the use of odo-
metric information and with the same covariances on the velocity motion model for
all the axes. The figures compare the trajectory estimated by the Hybrid Indirect EKF
SLAM system using the FHPi parameterization with the CIBA SLAM system, which
uses the same parameterization but performs the Bundle Adjustment at each submap.
(a) shows the top view of the trajectories, (b) shows a side view. The latter result shows
how the Bundle Adjustement correction is useful: the estimation of the z coordinate,
i.e., the vertical quote of the robot, which has to be zero, since the robot is moving on a
plane, is better estimated by the CIBA SLAM system, while it is estimated erroneously
without it.
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in place rotation are estimated with better precision. The analysis of Figure 9.33(b), which
reports a side view of the trajectories, shows that the use of bundle adjustment corrects the
estimation of the quote of the robot, that remains more close to the z = 0 plane. It can
be noticed that without the application of bundle adjustment, the attitude of the robot is
poorly estimated in presence of in place rotations and this results in the wrong estimation
of the trajectory, which moves away from plane z = 0.

These results show that, differently from what happened in the experiment of Sec-
tion 9.2.2, the contribution of the CIBA SLAM system is not negligible when real datasets
are used.

9.3 Time Performances Evaluation

The performance, in terms of execution time, of the EKF SLAM has been evaluated with
both simulated and real experiments in order to validate whether we can obtain real-time
performances on a standard PC. The experiments were conducted on a laptop equipped
with an Intel Core2 Duo T9300 CPU running at 2.50GHz per core with 3.4GB of DDR2
RAM.

9.3.1 Simulated Experiments

Figure 9.34 shows the running frequency in one of the simulated experiments presented in
Section 9.1.1.1, in particular Figure 9.34(b) shows the frequency for each parametrization
at each iteration and Figure 9.34(a) shows the number of landmarks in the filter at each
iteration. At iteration 400 the first turn of the cloister is completed; this implies that all the
landmarks are already in the filter and the computation time becomes constant hereafter.
Assuming a real-time nominal frequency of 30Hz for the camera, results show that all the
parameterizations reach higher operative frequency also when the number of landmarks
is about 70. The number of anchor frames/points generated during the execution is 11.
In particular, the addition of 5 landmarks sharing the same anchor point/frame enhances
FIS performance, especially in its indirect formulation, where the anchor frame dimension
is reduced to 6 elements in the filter. AHP is the slowest parameterization, since it has
the biggest landmark part, while FHP and FHPi perform a little better, similarly to IS.
UID performance is in the middle, reaching the operative rate of about 100Hz. We should
notice here that in simulated experiments the update step is conducted with an iterative
procedure that negatively affects performance, since Jacobians are recomputed several
times per iteration. Moreover, the iteration time is the cumulation of all the operations that
are involved in the SLAM algorithm, including accessory operations such as the simulation
of the nominal motion and the projection of the map points.

Figure 9.35 shows the performance in one of the simulated experiment from section-
Section 9.1.1.2, where the stereo configuration is used. The slowdown is evident, but it
can be noticed that the limit of 30Hz frequency is slightly exceeded only by the slowest
parameterizations. Also in this configuration we have about 70 landmarks in the filter state
with 11 anchor points/frames.
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(a) Number of landmarks in the filter (b) Operative frequency

Figure 9.34: Performance of EKF SLAM in simulated monocular experiments. In (a) the
number of landmarks in the filter at each iterations; in (b) the operative frequency at
each iteration; a cyan dashed line at 30Hz is provided as reference real-time perfor-
mance.

(a) Number of landmarks in the filter (b) Operative frequency

Figure 9.35: Performance of EKF SLAM in simulated stereo experiments. In (a) the num-
ber of landmarks in the filter at each iterations; in (b) the operative frequency at each
iteration; a cyan dashed line at 30Hz is provided as reference real-time performance.
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(a) Cumulated time (b) Operative frequency

Figure 9.36: Performance of EKF SLAM in the Monocular real data experiments. The
use of the Conditional Independent Submapping framework allows a complexity of
O(1) for each submap; this can be observed in (a), where the cumulated execution
time is roughly linear in the number of iterations. (b) shows the operative frequency
at each iteration and the legend reports the mean operative frequency for the different
parameterizations.

9.3.2 Real Experiments

Figure 9.36 shows the performance of all the parametrizations in the analysis of 21000
frames of a monocular dataset from Rawseeds5 performed in Section 9.1.3. The Moon-
SLAM framework has been developed without any particular care to performance, thus
no parallel thread execution is used and, in order to reduce overheads, the visualization is
performed only one time every 30 frames. Moreover, the back propagation step of the CI
SLAM framework is never performed here, since it can be implemented to be executed in
parallel to the rest of the operations. Notice that in this case the update step is conducted
with the 1 Point Ransac procedure, thus performance is not directly comparable to the
simulated one. The map maximum size is incremented to 100 landmarks, since this limit
is sufficient to guarantee real time performances.

The use of the Conditional Independent Submapping framework [78] [77] allows a
complexity of O(1) for each submap. This could be observed in Figure 9.36(a), where
the cumulated execution time is roughly linear in the number of iterations. From Fig-
ure 9.36(b) we notice that all parametrizations, with a maximum number of 100 landmarks
per map, allow the EKF based SLAM algorithm, in monocular case, to perform at a higher
frequency than the camera frame rate (30fps). FISi is the fastest parametrization (71Hz),
followed by UID (68Hz), FIS (57.5Hz) and AHP (51Hz), FHPi (49Hz) and FHP (41Hz).
From the simulated experiment we might expect better performance from FIS, but in this
case it is slower than UID. This can be explained considering that in real cases some points
that have been initialized may be lost and succesively deleted, reducing the advantage of
the shared FIS parameterization.

Figure 9.37 shows the performance of all the parametrizations in the analysis of 11000

5The Rawseeds datasets are provided as a sequence of images (one image per file). This greatly slow down
performances due to the high number of OS request to open and close files. We choose to evaluate time perfor-
mances on uncompressed videos that were generated only on the initial part of the dataset.
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(a) Cumulated time (b) Operative frequency

Figure 9.37: Performance of EKF SLAM in the Stereo real data experiments. The use
of the Conditional Independent Submapping framework allows a complexity of O(1)
for each submap; this can be observed in (a), where the cumulated execution time
is roughly linear in the number of iterations. (b) shows the operative frequency at
each iteration and the legend reports the mean operative frequency for the different
parameterizations.

frames of the stereo dataset from Rawseeds. In this case the camera frame rate is 15 fps
and UID results the fastest parametrization (28Hz), followed by FIS, FISi, AHP and FHPi
(more than 22Hz) and by FHP, that reaches the 20Hz. In this case we have no stressed the
addition of a minimum number of landmarks, thus the advantages of the shared param-
eterizations are not enhanced and UID results the fastest parameterization. Considering
that the stereo camera frame rate is 15Hz we can conclude that our system is still able to
operate in real time in this setup.

9.3.3 CIBA Slam
We are interested in the evaluation of the performance of the system when the Bundle
Adjustement of the submaps is used. We record execution time per step of the experiment
presented in Section 9.2.1. Obviously, the addition of the bundle adjustment system im-
pacts on the time performance, since at each map transition the map is optimimized, but it
does not prevent the system from running in real time.

The addition of the bundle adjustment step, which has a constant cost per map, de-
creases the mean operating frequency from 53.7Hz to 45.9Hz but maintains the system in
the real time operative range, although the operations performed at map transition, i.e., the
bundle adjustment and the back propagation step, introduce a temporary overruns from the
30Hz limit frequency, as shown in Figure 9.38. We verify these considerations also with
the real data experiments, concluding that the additional cost for the Bundle Adjustment
step of each submap is tolerable and it does not prevent the system for running in real time.
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Figure 9.38: Operative frequency of the CIBA SLAM system in the simulated experiment
proposed in Section 9.2.1. The addition of the Bundle Adjustment step decreases the
mean operating frequency from 53.7Hz to 45.9Hz. When map transition is performed
the operative frequency falls down also when the Bundle Adjustment is not performed,
since, for this experiment, the back propagation step is performed at each map transi-
tion. Notice the logarithmic scale on the y axis and a dashed black line that represents
a reference at 30Hz for real time performances.
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CHAPTER10
Conclusions and Future Works

In this chapter we draw some conclusion about this work and we introduce possible future
activities and research directions.

10.1 CIBA SLAM System

In this work a modular approach to the solution of the multi camera SLAM problem is
proposed following the next steps:

1. the parameterizations for monocular SLAM, have been deeply reviewed, extending
what done in [90], [93] and [10] and two new parameterizations (FHP and FIS, see
respectively Section 6.4.5 and Section 6.4.6) have been presented;

2. a multi camera large scale SLAM system is developed leveraging on the Bi-Cam
SLAM approach proposed in [91] and [89] in conjunction with the the Conditional
Independent submapping framework proposed in [78] (see Section 6.2);

3. the feedback and feedforward approach to indirect EKF have been mixed up in the
proposed Hybrid Indirect EKF-SLAM setup (see Section 7.1.1) to solve issues re-
lated to the use of the CI SLAM framework with framed parameterizations; motion
models (see Section 7.2) and the framed parameterizations (FHP and FIS) have been
redefined in this formulation (see Section 7.3);

4. an additional module for Bundle Adjustment has been added to the CI-SLAM frame-
work, performing a refinement of the maps, resulting in the CIBA SLAM system
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(see Chapter 8). The optimization takes advantages of the particular structure of
the Dynamic Bayesian Network (DBN) correspondent to the filter when the Hybrid
Indirect EKF-SLAM with the framed parameterizations, creating a correspondent
optimization graph which results are propagated to the filter state (i.e., to the Gaus-
sian map) maintaining real time performance of the entire system.

The review of point parameterizations in the literature, in particular for UID [65] and
AHP [90], has highlighted some concepts that have been usually leaved to the margins of
the discussion. First of all we have highlighted the possibility to share the common anchor
point, saving space in the state vector, as also observed in [43]. Moreover, sharing the
common part of the state vector is mandatory for the use of the Conditional Independent
SLAM framework, although this was not properly clarified, to the best of our knowledge,
in the references works [78], [77] and [76]. The introduction of the so called framed
parameterizations has enhanced the concept of anchor from the anchor point of UID and
AHP to the anchor frame of FHP and FIS, introduced respectively in [10] and in this
work1. Experimental results shows that there is no strong evidence to support any of
those: they performs similarly in the consistency analysis and show similar results in real
experiments. FIS parameterizations, although its assumption on exactness of the viewing
ray introduces approximations, has shown the better performance in terms of operative
frequency. Beside this, we have motivated the choice of the framed parameterizations
(i.e., FHP and FIS) in order to develop the CIBA SLAM system, which takes advantage
of the characteristics of these parameterizations to perform a non linear refinement of the
maps, thanks to the storing of past camera poses (i.e., anchor frames) in the filter state.

We choose to develop a flexible and modular system, which can operate with a generic
number of cameras. We take strong inspiration from the Bi-Cam SLAM approach pro-
posed in [91] and [89] but we discard the implementation of the proposed auto calibration
features of the algorithm to concentrate the attention on the SLAM system. This results in
a modular system for visual SLAM that operates on a calibrated multi camera system. The
system is built on the solution for the monocular case, since the addition of cameras corre-
sponds simply to the addition of measurement equations without any particular structure
or proper geometrical concepts (e.g., stereo SLAM is treated without any explicit refer-
ence to the epipolar geometry). The major advantage of this approach lies in the flexibility
that it guarantees, since points may be observed in each camera independently from the
others and consequently partially overlapped field of view or not overlapping field of view
at all can be simply considered.

The use of the indirect form of the EKF allows storing in the filter only the estimate
of errors between the true values and nominal values. Errors are local, thus close to zero,
consequently rotations can be represented with a minimal representation, avoiding the use
of quaternions in the filter. This has two main advantages: first, the number of elements
needed to represent an anchor frame in the state vector is decreased to 6 instead of 7; sec-
ond, the local representation of rotations avoids singularities in the covariance matrix. The
analysis of the two possible approach to the indirect filtering, i.e., the feedback approach
and the feedforward approach has driven the development of the Hybrid Indirect approach.
The feedback approach has the advantage of resetting errors (i.e., integrate the state vec-
tor elements in the nominal values) at each iteration of the EKF, while in the feedforward

1As already observed, FHP and FIS parameterizations results very similar to the ones presented respectively
in [43] and [74].
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approach deltas may grow indefinitely. The delta reset procedure performed on the entire
state vector has a complexity of O(n2), that may results in a too high computational cost.
Considering that landmarks are static, we avoid to reset the deltas of landmarks, resulting
in the Hybrid Indirect EKF-SLAM, that use a feedback approach for the variables in the
state vector that represent the robot motion information, and the feedforward approach
for the landmarks part. The Hybrid Indirect approach maintains the benefits of the indi-
rect formulation, i.e., it reduces the size of anchor frames stored in the vector state and it
allows the representation of rotations with minimal representations avoiding singularities
in the covariance matrix, but it limits the complexity of the delta reset step to O(n), i.e.,
equivalent to a prediction step.

The use of the Hybrid Indirect EKF-SLAM has positive effects on the CI-SLAM
framework too. First, if a standard EKF formulation is used, framed parameterizations
result in singular covariance matrix due to the presence of quaternions. Although this is-
sue can be solved by considering the covariance of the last three elements of quaternions
during the back propagation step of the CI-SLAM, ax explained in Section 6.4.7.3, when
non small rotations are involved, i.e., during a loop closure step, this approach fails. The
indirect formulation of the EKF SLAM problem solves natively this issue by maintaining
in the state vector only local rotations. The second reason lies in the need for maintaining
the same nominal values between landmarks shared by different maps, to ensure the proper
operation of the back propagation step of the CI-SLAM. The Hybrid Indirect EKF-SLAM
approach copes with this requirement, since landmarks are treated with the feedforward
approach, i.e., delta values are never integrated in the nominal values.

The particular structure of the EKF resulting from the use of framed parameteriza-
tions allows to extract information from the filter estimate, perform a refinement of the
map through Bundle Adjustment techniques and reinsert the result of the optimization in
the filter. Bundle Adjustment is performed on a graph that is constructed directly from
the EKF estimate (i.e., the mean vector and the covariance matrix), as described in Sec-
tion 8.1, before performing a map transition procedure of the CI-SLAM system. The
particular structure of the graph eases the task of insert the results of the optimization pro-
cess in the EKF solution (see Section 8.3). In particular, the optimization module has been
developed to work on the Hybrid Indirect EKF-SLAM system with the FHP and FIS pa-
rameterizations. Particular care has been taken in the development of this module in order
to obtain a plugin of the CI-SLAM framework: the module treats properly the monocular
and the multi camera case, both when odometric data are available or not; moreover, spe-
cial care has been taken in the construction of optimization graphs corresponding to maps
successive to the first, as described in Section 8.2.7.

The implementation of the system described in this thesis has shown good perfor-
mances, being able to operate in real time on monocular and stereo real dataset. The re-
sults on real datasets show that different parameterizations performs differently, although
they show very similar performances in the NEES analysis on simulated data. This has
been observed in [93] too, although experiments on real datasets have been conducted in
a different setup, i.e., with a visual odometry system in a robocentric formulation. The
addition of the local bundle adjustment on each submap improves the solution adding a
computational cost that does not prevent the system from operating in real time on a stan-
dard PC.
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As a conclusion, lets spend some words on the debate between the usage of filtering
techniques for SLAM or to abandon them in favor of non linear optimization strategies.
The recent trends in this research fields, strongly motivated by [96] and [98] tip the scale
in favor of the non linear optimization techniques. We do not want to enter here in theoret-
ical aspects regarding the comparison of the two solutions, but we want to underline some
aspects that in our opinion motivates to push forward research in the filter based Visual
SLAM. A first reason resides in the ability for the filter based visual SLAM system to
drive the matching process of visual features in images, thanks to the active search mecha-
nism based on measurement prediction in terms of mean and covariances, and to the ability
of discarding outliers from the estimation process (e.g., with the 1Point RANSAC tech-
nique presented in [16] and used in this work). The feature matching and tracking process
is usually discarded when comparing filter based and optimization based visual SLAM
techniques (e.g., data association is assumed known in [98]), but it plays a key role in the
estimation process, since the presence of outliers in the measurement process negatively
affects the ability of trajectory and map estimation. The use of filtering techniques allows
to manage the operation of tracking features and discarding outliers with cheap and easy
solutions that run on standard CPU, in contrast with the request for complex algorithm
of feature tracking based on parallel execution on graphical processing units (GPU) (e.g.,
in [95] the GPU based implementation of [79] is used). On the other hand, the filter driven
matching process may results in monolithic structure that prevents from the development
of a modular and well engineered software architecture based on available implementa-
tions (e.g., a feature tracker has to cope with elliptical research area that are not commonly
considered in standard algorithms). A second reason that motivates the research in the
filter based visual SLAM is the proven ability of operate in real time on standard computer
architecture, that open the door to an effective deployment of visual SLAM applications
on real robots equipped with low power computers or hand held devices based on micro
controllers, although the introduction of low cost portable devices with very high perfor-
mances may tip the scale further in favor of optimization based algorithms. As usual,
when moving from pure research issues to engineered solutions some trade off needs to
be found and we believe filtering techniques could rise from their current unpopular status
and gather an important role in some practical application.

10.2 Future Works

We can spot numerous cues for further development of the proposed system. First of all,
the problem can be extended to an auto-calibration setup, as originally proposed in [91]
and [89], both for the CI-SLAM framework and for the CIBA SLAM framework. The only
additional requirement regards the addition of parameters subject to calibration in the EKF
state and in the optimization graph and their use in the measurement and update process
of the EKF machinery and the definition of proper edges in the optimization graph.

To limit further the inconsistency due to the linearizations performed in the EKF sys-
tem a robocentric approach can be applied, as done in [16]. This increases the complexity
of the EKF-SLAM system, since each landmark has to be transformed to a new reference
system at each iteration, resulting in an additional complexity of O(n2) that slow down
the performances. Despite this, robocentric approach has been demonstrated able to run in
real time on small maps and consequently it has been succesfully used in Visual Odometry
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applications. We can imagine to use the Conditional Independent submapping framework,
properly adapted to the robocentric formulation of the SLAM problem, to perform a robo-
centric large scale SLAM. The optimization performed by the CIBA SLAM system can
be easily adapted to this formulation too, and we can imagine to develop a new instance of
the system presented in this work.

In order to realize a more complete SLAM system we have to introduce in our imple-
mentation a loop detector functionality that trigger the execution of a loop closure step of
the CI-SLAM framework, as done in [77]. Moreover, the system has to be extended with
the map reuse procedure provided by the CI-SLAM framework that have not be treated in
this work. This will results in a complete visual SLAM system that may be deployed on a
real robot to operate in real time.

To extend the multi camera system feature, some work on omnidirectional cameras
has been done in our research group [81] but it has not been described in this thesis. The
results of Monocular SLAM with omnidirectional camera are very promising and this can
be explained with the richness of information provided by a 360◦ view of the environment.
We expect that a multicamera system that involves both perspective and omnidirectional
cameras may results in a high precision Visual SLAM system.

From a pure research point of view we believe that a deep comparison between fil-
ter based and optimization based visual SLAM systems is still missing. The available
comparisons focus mainly on pure computational complexity in simulated setup where
data association is known and the environment is controlled (e.g., noises are really Gaus-
sian, odometry does not present slippages, etc.), while a complete comparison that takes
into account the feature matching problem, which is differently addressed by the two sys-
tems, outliers rejection mechanisms, unexpected and unmodeled noises has never been
performed to the best of our knowledge.
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APPENDIXA
Consistency Analysis

In this appendix we report the complete results of the consistency analysis performed in simulated
experiments of Chapter 9. Refer to Section 9.1.1.1 and Section 9.1.1.2 for details on the experiments,
respectively for the monocular and the stereo case. Table A.1 reports the results of the average incon-
sistency for the stereo simulated experiments when the viewing ray of the landmarks is considered
exact. Table A.2 and Table A.3 report respectively the consistency analysis and the average inconsis-
tency value of monocular experiments with noised initialization of the initial viewing ray; Table A.4
and Table A.5 refer to monocular experiments with noised initialization of the initial viewing ray
using a high resolution camera; Table A.6 and Table A.7 refer to stereo experiments with noised
initialization of the initial viewing ray; Table A.8 and Table A.9 refer to stereo experiments with
noised initialization of the initial viewing ray using a high resolution camera.
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Appendix A. Consistency Analysis

Table A.1: Stereo - Mean inconsistency, exact initialization

# IS UID AHP FHP FHPi FIS0 FIS0i FIS FISi
8.a 342.9 4.9 5.4 5.2 5.2 4.1 3.8 0.3 0.3
8.b 6.1 0.3 0.3 0.3 0.3 0.4 0.5 – –
8.c 20.3 0.3 0.3 0.3 0.3 0.4 0.4 – –
9.a 251.6 3.5 2.9 2.8 2.8 1.9 2.2 – –
9.b 4.4 0.4 0.3 0.3 0.3 0.6 0.6 – –
9.c 17.3 0.4 0.3 0.3 0.3 0.5 0.5 – –

10.a 371.0 6.2 6.2 6.0 5.9 1.5 1.5 2.3 2.2
10.b 6.0 0.3 0.3 0.2 0.2 0.7 0.6 – –
10.c 25.7 0.3 0.3 0.4 0.3 0.5 0.5 – –
11.a 551.5 5.9 6.5 6.7 7.1 2.2 2.1 5.0 5.0
11.b 8.1 0.3 0.2 0.2 0.3 0.4 0.5 – –
11.c 33.8 0.2 0.3 0.3 0.4 0.5 0.5 – –
12.a 154.4 3.9 2.7 2.6 2.6 0.7 0.6 0.1 0.1
12.b 1.0 0.3 0.4 0.3 0.2 0.5 0.5 – –
12.c 9.5 0.4 0.3 0.3 0.5 0.5 0.5 – –
13.a 180.9 5.9 6.2 6.4 6.5 0.8 0.7 0.8 0.8
13.b 1.6 0.5 0.4 0.5 0.4 0.8 0.7 – –
13.c 12.3 0.6 0.5 0.6 0.7 0.7 0.7 – –
14.a 150.0 9.0 7.9 8.3 7.9 0.8 0.9 0.9 0.9
14.b 2.1 0.6 0.4 0.5 0.7 0.9 0.9 – –
14.c 13.4 0.8 1.1 1.1 1.5 0.6 1.0 – –
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Table A.2: Monocular - Consistency analysis, noised initialization

# IS UID AHP FHP FHPi FIS0 FIS0i FIS FISi

1.a Cons % 1 3 4 5 4 0 0 0 0
Opt % 99 97 96 96 96 100 100 100 100

1.b Cons % 3 37 36 38 40 0 0 1 1
Opt % 97 63 64 62 60 100 100 99 99

1.c Cons % 3 20 21 21 21 0 0 1 1
Opt % 97 81 79 80 80 100 100 99 99

2.a Cons % 3 25 29 30 30 0 0 0 0
Opt % 98 75 71 70 70 100 100 100 100

2.b Cons % 8 65 76 78 76 0 0 1 1
Opt % 92 35 24 22 24 100 100 99 99

2.c Cons % 5 69 76 77 77 0 0 1 1
Opt % 95 31 24 23 23 100 100 99 99

3.a Cons % 4 15 17 17 17 0 0 0 0
Opt % 96 85 83 83 84 100 100 100 100

3.b Cons % 5 41 62 62 59 0 0 0 0
Opt % 96 59 38 38 42 100 100 100 100

3.c Cons % 4 21 48 36 44 0 0 0 0
Opt % 97 80 52 64 56 100 100 100 100

4.a Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

4.b Cons % 1 1 1 1 1 0 0 0 0
Opt % 100 99 99 99 99 100 100 100 100

4.c Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

5.a Cons % 0 34 37 46 52 0 0 0 0
Opt % 100 66 63 54 48 100 100 100 100

5.b Cons % 1 33 49 40 56 0 0 0 0
Opt % 99 67 51 60 44 100 100 100 100

5.c Cons % 1 61 33 40 52 0 0 0 0
Opt % 99 39 67 60 48 100 100 100 100

6.a Cons % 0 12 14 10 10 0 0 0 0
Opt % 100 88 86 90 90 100 100 100 100

6.b Cons % 0 29 25 21 26 0 0 0 0
Opt % 100 71 75 79 74 100 100 100 100

6.c Cons % 0 16 10 15 17 0 0 0 0
Opt % 100 84 90 85 83 100 100 100 100

7.a Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

7.b Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

7.c Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100
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Appendix A. Consistency Analysis

Table A.3: Monocular - Mean inconsistency, noised initialization

# IS UID AHP FHP FHPi FIS0 FIS0i FIS FISi
1.a 203.7 2.6 1.9 1.9 1.8 107.9 107.3 38.3 38.2
1.b 45.1 0.6 0.6 0.6 0.5 102.4 99.5 36.3 35.8
1.c 68.4 1.0 0.8 0.8 0.8 93.9 101.7 36.9 37.7
2.a 124.9 2.4 2.2 2.1 2.1 76.9 76.7 33.8 33.5
2.b 19.3 0.4 0.4 0.3 0.3 73.1 74.5 31.9 31.7
2.c 32.4 0.4 0.4 0.4 0.4 72.3 72.7 30.7 30.6
3.a 162.1 1.2 1.1 1.1 1.2 153.6 156.7 56.2 56.3
3.b 42.5 0.5 0.4 0.4 0.4 170.0 174.1 62.4 62.8
3.c 76.4 0.9 0.5 0.6 0.5 141.7 144.6 59.3 59.2
4.a 1018.5 12.9 12.4 12.9 12.7 215.7 212.3 64.3 64.0
4.b 304.7 12.1 11.9 12.1 12.1 217.2 216.9 63.9 64.2
4.c 393.2 13.0 12.6 12.7 12.6 213.6 212.3 58.0 58.1
5.a 78.5 0.8 0.7 0.6 0.6 120.2 127.2 79.3 78.8
5.b 14.2 0.8 0.6 0.7 0.6 146.9 138.0 84.7 87.4
5.c 33.1 0.5 0.7 0.6 0.5 131.2 131.4 97.8 92.5
6.a 185.8 2.4 1.9 2.6 2.4 114.3 107.0 45.3 44.6
6.b 41.4 1.7 1.6 1.9 1.2 124.5 126.8 63.0 62.2
6.c 76.5 1.7 2.1 1.8 1.5 133.7 131.2 88.7 85.5
7.a 710.0 23.9 22.6 23.8 24.1 161.4 166.8 43.2 41.6
7.b 303.2 22.2 21.9 21.7 23.6 204.0 207.3 63.5 57.4
7.c 595.4 23.4 23.3 23.1 22.8 186.5 210.1 71.6 67.5
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Table A.4: Monocular - Consistency analysis, noised initialization, high res. camera

# IS UID AHP FHP FHPi FIS0 FIS0i FIS FISi

1.a Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

1.b Cons % 1 4 4 4 4 0 0 0 0
Opt % 99 96 96 96 96 100 100 100 100

1.c Cons % 0 2 2 2 2 0 0 0 0
Opt % 100 98 98 98 98 100 100 100 100

2.a Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

2.b Cons % 3 66 73 72 73 0 0 0 0
Opt % 97 34 27 28 27 100 100 100 100

2.c Cons % 2 61 63 63 62 0 0 0 0
Opt % 98 39 37 37 38 100 100 100 100

3.a Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

3.b Cons % 0 3 3 3 3 0 0 0 0
Opt % 100 98 98 98 98 100 100 100 100

3.c Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

4.a Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

4.b Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

4.c Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

5.a Cons % 0 2 1 2 2 0 0 0 0
Opt % 100 98 99 98 98 100 100 100 100

5.b Cons % 0 32 29 33 30 0 0 0 0
Opt % 100 68 71 67 70 100 100 100 100

5.c Cons % 0 18 18 15 18 0 0 0 0
Opt % 100 82 82 85 82 100 100 100 100

6.a Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

6.b Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

6.c Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

7.a Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

7.b Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

7.c Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100
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Table A.5: Monocular - Mean inconsistency, noised initialization, high resolution camera

# IS UID AHP FHP FHPi FIS0 FIS0i FIS FISi
1.a 7726.6 11.7 12.2 12.2 12.2 130.9 134.3 35.5 35.5
1.b 215.3 2.7 2.7 2.7 2.6 127.0 125.6 32.4 32.6
1.c 524.8 2.6 2.6 2.6 2.6 131.4 130.7 32.1 32.1
2.a 1632.1 5.2 4.6 4.6 4.6 83.1 83.0 29.7 29.7
2.b 48.3 0.6 0.5 0.5 0.5 104.1 104.8 28.7 28.7
2.c 103.6 0.7 0.6 0.6 0.6 116.3 116.6 29.7 29.6
3.a 3879.8 12.3 12.0 12.0 12.1 223.3 222.3 54.0 54.0
3.b 449.6 5.9 5.8 5.8 5.9 218.1 220.7 55.9 55.8
3.c 899.7 7.9 8.1 8.1 8.0 218.5 218.0 55.3 55.2
4.a 16515.3 59.3 59.0 59.0 56.9 645.9 644.9 87.1 87.1
4.b 7219.0 62.2 62.1 62.1 61.9 777.6 778.0 96.7 96.6
4.c 7953.2 59.9 59.7 59.8 59.9 771.4 772.6 94.5 94.4
5.a 907.8 2.7 3.4 3.2 2.5 119.4 120.4 41.3 40.2
5.b 56.7 1.3 1.5 1.2 1.4 145.5 143.0 48.4 48.6
5.c 129.3 1.4 1.6 1.7 1.3 181.8 180.1 55.2 57.8
6.a 3683.6 16.2 16.6 16.6 16.9 138.5 136.2 47.8 48.1
6.b 486.1 15.1 15.3 15.2 14.7 168.1 163.7 46.9 44.3
6.c 974.4 17.6 15.8 16.1 15.9 196.9 196.1 43.6 43.6
7.a 24840.5 110.0 104.7 104.6 105.0 449.4 441.8 97.1 96.1
7.b 4899.7 119.0 118.6 120.2 117.6 574.3 570.6 110.3 111.5
7.c 9548.8 115.2 116.7 116.5 116.7 583.2 582.9 120.7 120.2
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Table A.6: Stereo - Consistency analysis, noised initialization

# IS UID AHP FHP FHPi FIS0 FIS0i FIS FISi

8.a Cons % 0 2 1 1 1 0 0 0 0
Opt % 100 98 99 99 99 100 100 100 100

8.b Cons % 13 77 86 83 87 0 0 0 0
Opt % 87 23 14 17 13 100 100 100 100

8.c Cons % 4 68 78 79 77 0 0 0 0
Opt % 96 32 23 21 24 100 100 100 100

9.a Cons % 1 10 11 11 10 0 0 0 0
Opt % 99 90 89 89 90 100 100 100 100

9.b Cons % 13 85 91 91 91 0 0 1 1
Opt % 88 15 10 10 9 100 100 100 100

9.c Cons % 5 82 88 88 89 0 0 1 1
Opt % 95 18 12 12 11 100 100 100 100

10.a Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

10.b Cons % 5 91 85 85 92 0 0 1 1
Opt % 95 9 16 15 8 100 100 100 100

10.c Cons % 3 89 83 87 85 0 0 0 0
Opt % 97 11 17 13 15 100 100 100 100

11.a Cons % 0 1 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

11.b Cons % 3 88 92 92 90 0 0 0 0
Opt % 97 12 7 8 10 100 100 100 100

11.c Cons % 1 78 81 80 78 0 0 0 0
Opt % 99 22 18 19 22 100 100 100 100

12.a Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

12.b Cons % 8 85 72 85 88 0 0 0 0
Opt % 92 14 28 15 12 100 100 100 100

12.c Cons % 3 78 82 84 73 0 0 0 0
Opt % 97 21 18 16 27 100 100 100 100

13.a Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

13.b Cons % 3 26 57 51 58 0 0 0 0
Opt % 97 74 43 49 42 100 100 100 100

13.c Cons % 1 31 27 26 28 0 0 0 0
Opt % 99 69 73 74 72 100 100 100 100

14.a Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

14.b Cons % 3 21 25 23 23 0 0 0 0
Opt % 97 79 75 77 77 100 100 100 100

14.c Cons % 1 23 16 16 12 0 0 0 0
Opt % 99 77 84 84 88 100 100 100 100
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Table A.7: Stereo - Mean inconsistency, noised initialization

# IS UID AHP FHP FHPi FIS0 FIS0i FIS FISi
8.a 286.2 5.3 5.4 5.3 5.4 187.1 188.4 72.2 72.3
8.b 7.2 0.5 0.5 0.5 0.4 213.6 210.8 95.2 96.8
8.c 19.6 0.6 0.7 0.6 0.6 195.4 196.5 93.4 94.1
9.a 251.3 3.5 3.3 3.3 3.4 167.3 176.1 67.4 67.4
9.b 6.4 0.5 0.4 0.4 0.4 226.9 224.7 73.5 74.1
9.c 23.9 0.4 0.5 0.5 0.5 223.3 225.0 76.8 77.1

10.a 366.0 4.9 4.8 5.0 4.8 91.2 88.9 50.5 50.6
10.b 9.1 0.3 0.4 0.4 0.3 160.6 161.4 57.4 57.0
10.c 31.9 0.5 0.5 0.5 0.4 160.4 165.6 57.2 54.6
11.a 510.2 6.5 6.1 6.1 6.3 137.4 126.1 44.2 45.4
11.b 9.5 0.3 0.3 0.3 0.4 179.8 183.4 52.5 52.5
11.c 32.6 0.5 0.4 0.5 0.5 200.8 196.0 56.1 56.5
12.a 157.7 4.1 3.8 4.3 4.4 223.4 241.0 137.7 131.4
12.b 1.9 0.3 0.5 0.4 0.4 300.0 336.3 192.9 184.1
12.c 11.3 0.5 0.4 0.4 0.5 370.2 304.5 183.3 177.2
13.a 145.4 6.2 5.9 6.1 6.0 231.1 230.6 107.8 115.6
13.b 3.0 1.0 0.6 0.6 0.6 289.1 330.9 157.8 132.1
13.c 14.8 0.9 1.1 1.0 1.1 247.3 266.0 139.9 139.0
14.a 178.1 10.0 8.2 7.5 7.7 209.9 206.0 80.7 81.5
14.b 4.0 1.3 1.3 1.2 1.4 244.3 274.4 86.1 81.5
14.c 13.5 1.1 1.2 1.5 1.5 219.3 231.6 82.5 78.2
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Table A.8: Stereo - Consistency analysis, noised initialization, high resolution camera

# IS UID AHP FHP FHPi FIS0 FIS0i FIS FISi

8.a Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

8.b Cons % 0 19 18 18 20 0 0 0 0
Opt % 100 81 82 82 80 100 100 100 100

8.c Cons % 0 1 1 1 1 0 0 0 0
Opt % 100 99 99 99 99 100 100 100 100

9.a Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

9.b Cons % 2 20 25 25 23 0 0 0 0
Opt % 98 80 75 75 77 100 100 100 100

9.c Cons % 0 1 1 1 1 0 0 0 0
Opt % 100 99 99 99 99 100 100 100 100

10.a Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

10.b Cons % 0 1 1 1 1 0 0 0 0
Opt % 100 99 99 99 99 100 100 100 100

10.c Cons % 0 11 11 11 11 0 0 0 0
Opt % 100 89 89 89 89 100 100 100 100

11.a Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

11.b Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

11.c Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

12.a Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

12.b Cons % 0 17 16 15 18 0 0 0 0
Opt % 100 83 84 85 82 100 100 100 100

12.c Cons % 0 0 2 2 1 0 0 0 0
Opt % 100 100 98 98 99 100 100 100 100

13.a Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

13.b Cons % 0 7 8 7 8 0 0 0 0
Opt % 100 93 92 93 92 100 100 100 100

13.c Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

14.a Cons % 0 0 0 0 0 0 0 0 0
Opt % 100 100 100 100 100 100 100 100 100

14.b Cons % 1 9 10 10 9 0 0 0 0
Opt % 99 91 90 90 91 100 100 100 100

14.c Cons % 0 4 4 4 4 0 0 0 0
Opt % 100 96 96 96 96 100 100 100 100
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Appendix A. Consistency Analysis

Table A.9: Stereo - Mean inconsistency, noised initialization, high resolution camera

# IS UID AHP FHP FHPi FIS0 FIS0i FIS FISi
8.a 1414.4 39.6 40.5 40.7 42.6 193.2 198.9 59.0 59.9
8.b 9.1 3.1 3.0 3.0 3.2 214.6 220.3 61.9 62.7
8.c 29.3 7.1 7.1 7.1 7.1 225.3 204.7 62.0 62.1
9.a 1067.2 22.9 20.6 20.6 20.2 169.0 186.8 70.6 72.1
9.b 9.8 1.9 1.9 1.9 1.9 209.0 200.1 77.1 77.5
9.c 38.4 4.2 4.3 4.3 4.3 184.6 178.7 69.1 66.6

10.a 5511.7 115.5 98.5 98.3 101.2 150.9 154.7 52.7 53.7
10.b 32.2 13.3 13.1 13.1 13.1 181.7 181.6 48.4 48.4
10.c 34.5 3.9 3.9 3.9 3.8 181.6 180.7 57.3 55.4
11.a 3487.3 72.4 68.4 68.5 69.8 191.4 197.3 29.1 29.2
11.b 36.9 14.4 14.4 14.4 14.3 217.3 215.5 35.5 35.5
11.c 113.4 27.1 26.8 26.8 26.6 201.5 202.3 36.4 36.4
12.a 1292.5 13.4 12.9 12.9 13.7 256.8 267.3 127.3 137.7
12.b 5.0 1.7 1.9 1.9 2.1 252.1 240.5 93.7 94.9
12.c 31.6 5.7 5.8 6.0 5.8 263.1 266.4 89.1 93.8
13.a 2827.6 39.0 38.0 38.0 39.7 361.8 376.5 65.8 65.0
13.b 4.9 2.5 2.4 2.4 2.8 260.9 247.8 64.2 64.6
13.c 26.9 6.6 6.6 6.5 7.3 194.2 209.6 62.4 61.2
14.a 2718.5 72.9 71.4 71.1 74.5 259.2 236.9 37.9 41.8
14.b 4.6 2.8 2.8 2.8 3.5 229.2 217.7 37.7 37.8
14.c 21.1 6.6 6.5 6.5 7.3 223.6 236.1 39.4 42.6
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