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Abstract

This thesis deals with the mechanical characterisation and constitutive
modelling of coated woven fabrics that are employed in tensile structures.
These are made of thin surfaces that can carry only tension and no com-
pression or bending, like membranes, cable nets or pneumatic structures.
Tensile architecture is increasingly present in the urban environment, not
only to cover large span spaces. An evolution towards a wider range of ap-
plications is noticeable today, which include canopies, solar shading struc-
tures, performance enhancing façades, photovoltaic integrated surfaces, and
so on.

Tensile structures are highly efficient structural forms, which leave space
to reduction of weight, costs and environmental impact. Since they are
minimal, they require an accurate design, for which a considerable know-
how is indispensable. Specific knowledge is needed also for the construction,
which allows only for little tolerances. Moreover, new composite materials
are being created every day; therefore, well-framed technical information
is fundamental to keep up with the continuous innovation of this design
branch. These are the reasons why only a few designers and constructors
currently posses the expertise that is needed to build tensioned structures.

The increasing demand of the market on the one hand, and the need of
a very specific expertise on the other hand, have led to the rise of projects
that aim at connecting European researchers, engineers, architects, manu-
facturers and installers. They are all aware of the need of harmonising and
standardising the design procedures and of coordinating the existing and
future research to meet the stakeholders’ requests for specific output. This
thesis has been developed within one of these projects, which started in 2008
at Politecnico di Milano to promote the diffusion of lightweight structures
in Italy, and to support the transfer of knowledge from the cutting-edge
Italian sectors of membrane production and installation to the more tradi-
tional one of constructions. Several research groups have been gathered in
a multi-disciplinary cluster on innovative textiles, named ClusTEX, with
the aim of systematizing and enhancing their expertise on the subject of
advanced composites.

The present thesis provides a series of contributions that are consistent
with the ClusTEX objectives. First of all, an extensive literature review is
carried out to assess the current state of the art about the design of tensile
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structures. Besides the load analysis, which is common to all types of con-
structions, there are two phases that are typical of tensioned structures,
namely form-finding and cutting pattern generation. The multiplicity of
methods employed in these phases is described within a unified framework:
this represents a first effort towards the homogenisation of the heteroge-
neous design procedures. The scarcity of references about the cutting pat-
tern generation, which are very few if compared to the ones concerning
form-finding, highlights the need of further research in this field; it may
be partially attributed to the absence of an accurate constitutive model for
coated fabrics, which is a prerequisite for the generation of cutting patterns.

Then, the thesis focus is placed on membrane materials for tensile struc-
tures. These are mainly composite materials made of a polymeric matrix,
which is reinforced by means of woven yarns. The production process and
the main technical characteristics of these composites are investigated, be-
cause they represent essential knowledge, in view of understanding their
mechanical behaviour, which turns out to be extremely influenced by their
internal meso-structure.

The mechanical behaviour of such materials is deeply explored in this
thesis. First, the main mechanical characteristics of coated woven fabrics
are inferred from the literature: anisotropy, nonlinearities, hysteresis are
only some among the aspects that characterise their complex response.
Subsequently, tests on coated fabrics directly performed by the author
with the biaxial machine of ClusTEX are described, and their results com-
mented. Among these tests are noticeable the ones performed under strain
control, which employ a new testing procedure: this shows great potential
as instrument to evaluate the compensation factors needed for the installa-
tion and retensioning of membranes, as well as to provide information that
is complementary to the one of the typical stress controlled biaxial tests.

The last part of the thesis deals with the constitutive modelling of
coated fabrics. An investigation about the existing constitutive models
is presented, which highlights the difference between the ones used for re-
search purposes and the ones employed by designers. The first are often
too complex and computationally expensive; moreover, they involve many
parameters, which are then difficult to calibrate. On the other hand, in the
current design practice, the orthotropic linear elastic model is used, which is
too rough to adequately reproduce the highly nonlinear behaviour of coated
fabrics, as confirmed by the difficulties arisen during the identification of
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the elastic moduli.
Hyperelastic modelling at finite strains seems to be promising to easily

model the nonlinear behaviour of coated fabrics. The Holzapfel-Gasser-
Ogden hyperelastic constitutive model for biological tissues is chosen first
for the analogy between these materials and fibre reinforced composites.
Then, a new energy term is added to capture the strong interaction between
warp and fill yarns due to the weaving (crimp interchange). A validation
of the new model is performed through some simple benchmark problems,
of which the analytical solution is evaluated with a code developed within
Mathematica. The comparison of the results with experimental data shows
that the model can reproduce well the stress-strain behaviour of coated
woven fabrics for bias and biaxial tests. The predictive capabilities of the
new model are also assessed.

Finally, the proposed constitutive law is implemented into a FEM user
subroutine for ABAQUS, and the same validation examples are solved nu-
merically, with results that are consistent with the analytical solution. This
implementation into a general purpose finite element software opens the
doors to the application of this model to overall structural analysis. How-
ever, some numerical issues have still to be solved: extremely large stresses
at very large strains, difficulty of Newton’s method in predicting a rea-
sonable displacement correction when the stiffness is low, discontinuous
derivatives of the strain energy due to deactivation of the compressed fi-
bres, are all aspects that should be considered for the development of an
ad hoc solution algorithm able to overcome these difficulties.
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Introduction

1.1 Context of the present research
The term tensile or tension structures describes a category of structures in
which the load bearing capacity is achieved through an appropriate tension
field combined with an adequate shape. Indeed all these structures show
essentially two states: they are taut or slack depending on the presence
or not of prestress, thus they are also named taut structures (Pauletti &
Pimenta, 2008).

The above mentioned category covers a wide range of structures and ap-
plications. According to Lewis (2003), tension structures can be grouped
into three main typologies: boundary tensioned membranes, pneumatic
structures and pre-stressed cable nets. The first type of structures (Fig-
ure 1.1) is built by stretching a membrane (coated fabric or foil) to meet
fixed boundaries; these boundaries can be assembled with flexible cables or
rigid frame beams. Pneumatic structures (Figure 1.2) are thin membranes
stressed by means of an internal air pressure, which may be subdivided
into air-supported and air-inflated: the first typology consists of a single
membrane that encloses a functionally useful space, whose internal pressure
is slightly different from the external one; the second typology is realised
with inflated building elements (e.g. cushions), while the internal volume
of the building remains at atmospheric pressure. Finally, pre-stressed cable
nets (Figure 1.3) represent a sort of discretised membrane structure, where
cables can be tensioned directly using rigid supports (such as compression
ring beams) or flexible edge cables.

1
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Figure 1.1: SAGA Headquarters Amenity Building, Folkston, UK, 2002 (from
www.skyspan.com).
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Figure 1.2: Allianz Arena in Munich, Germany, 2002 (from www.osram.it).

Figure 1.3: West German Pavillion at the 1967 Expo in Montreal, Canada,
designed by Frei Otto and Rolf Gutbrod (from the National Archives of Canada).
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Tensile structures represent the most advanced result of a constant re-
search of lightness and free forms in architecture. They are characterised
by thin surfaces, whose shape is defined such that they are able to equili-
brate the applied loads only by means of tensions, with no compression or
bending. This results in highly efficient structural forms, where the ratio
between the weight and the carried loads is extremely low.

Tents employed as protection against rain, wind and sun represent one
of the earliest form of construction in the human history. Nevertheless,
the first tensile structures as intended today were built in the fifties, when
Frei Otto conducted an extensive experimental campaign about soap films
and minimal surfaces, which provided architects and engineers with the first
design tools for tensioned structures. Most of the earliest tensioned surfaces
were realised as cable nets, sometimes covered with membranes. Some
examples of cable net structures designed by Frei Otto are the West German
Pavillion for the 1967 Expo in Montreal (Figure 1.3) and the Olympic
Stadium built in 1972 in Munich (Figure 1.4).

Figure 1.4: Olympic Stadium in Munich, Germany, 1972, designed by Frei Otto
and Gunther Behnisch (from www.archdaily.com).

Since that time, examples of tensile structures have been constructed
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worldwide, especially in UK, Germany, Spain, France, USA, Australia, and,
in the last years, China and Japan. Modern fabric structures employ poly-
meric fibre reinforced membranes, like PVC coated polyester fabrics and
PTFE coated glass fabrics. These materials, which come from the aerospace
industry, have been introduced in the construction sector only from the sev-
enties. Today, membrane structures are increasingly employed as efficient
solutions to cover large span areas with low weight, cost and environmental
impact. One of the most popular applications is for sport arenas (Fig-
ure 1.5).

Figure 1.5: Olympic Stadium in London, UK, 2012 (from www.wikipedia.org).

At present, an evolutionary trend towards a wider range of applications
of these membranes is noticeable. Technical textiles are incorporated into
more complex hybrid structures, satisfying specific demands in terms of
energy saving, sound absorption, translucency, flame retardancy, and so
on. Multiple layer systems, ETFE cushions, air-inflated beams (Figure 1.6),
performance enhancing textile façades (Figure 1.7), photovoltaic integrated

5
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surfaces, are all products of continuous innovation in this field.

Figure 1.6: Garage Park in Montreux, Switzerland, 2004, realised with Ten-
sairty beams (from www.canobbio.com).

Since tensile architecture is “minimal”, a considerable know-how is needed
for its design and construction. Specific knowledge is also required to keep
up with the technical innovation of the advanced composite industry, which
everyday introduces new materials in the market. These are the reasons
why only a few designers and constructors currently possess the expertise
that is needed to build tensioned structures.

Moreover, the rapid growth of this structural typology has led to the
current heterogeneity of design procedures and to fragmentation of the
technical knowledge that membrane producers have at their disposal. This
situation is exacerbated by the absence of a European Standard for the
regulation of the matter.

Within this context, new projects have been created to connect Euro-
pean researchers, engineers, architects, producers and installers. The main
scope of these is to harmonise the design procedures and to coordinate the
existing and future research, in order to meet the sector needs. The first
association of this type, which is named TENSINET (www.tensinet.com),

6
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Figure 1.7: R&D center in Dogern, Switzerland, 2010 (from www.detail-
online.com).

was created in 2001 with the aim of shearing basic and multi-disciplinary
information about tensile architecture and identifying gaps in the current
knowledge about the topic, in order to stimulate the scientific research in
those areas.

The TENSINET activity has represented a starting point for the institu-
tion of a European Committee for Standardization (CEN TC 250), which is
currently preparing a preliminary document for the development of the Eu-
rocodes for tensile membrane structures design (CEN/TC 250/WG5) and
for testing and modelling of fibre reinforced polymer materials (CEN/TC
250/WG4).

Italy is trying to boost its competence and relevance in this field, by
joining the aforementioned international activities. Despite its cutting-edge
sector of membrane installers, tensile architecture is currently not widely
employed in Italy. Some remarkable realisations include the Olympic Sta-
dium in Rome (1927), the Palasport in Genova (1961, Figure 1.8), the
membrane covering Piazza Italia during the Grand Exhibition of April in
Milan (1986), the Delle Alpi Stadium in Turin (1988), the Juventus Sta-

7



i
i

“thesis” — 2014/10/9 — 15:35 — page 8 — #36 i
i

i
i

i
i

CHAPTER 1. INTRODUCTION

dium in Turin (2011, Figure 1.9). Incidentally, Leo Finzi, to whom the
memorial scholarship that has funded this research is devoted, was among
the designers of Palasport in Genova (Maier, 1963a,b; Finzi & Maier, 1964).

Figure 1.8: Palasport in Genova, Italy, 1961 (from genova.repubblica.it).

To promote the development of lightweight structures in Italy, and to
support the transfer of knowledge from the extremely competitive sectors
of membrane production and installation to the more traditional one of
constructions, a cluster has been created in 2008 at Politecnico di Milano.
This multi-disciplinary cluster on innovative textiles is named ClusTEX,
and it gathers several research groups and departments at Politecnico di
Milano. It aims at systematizing and enhancing their expertise on the
subject of textile materials and advanced composites and it manages a
laboratory with one among the most advanced biaxial testing rigs currently
available in Europe.

The present thesis is a contribution in line with the ClusTEX goals. Its
objectives and structure are detailed in the next Sections 1.2 and 1.3.

8
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Figure 1.9: Juventus Stadium in Turin, Italy, 2011 (from wikimapia.org).

1.2 Research objectives

Within the framework described in the previous Section 1.1, the main aim
of this thesis is to increase the knowledge about the structural aspects of
tensile structure design, with focus on coated woven fabrics that are em-
ployed as membranes. This objective may be particularised in the following
specific goals:

• To carry out an extensive literature review, in order to assess the
current state of the art about the design of membrane structures.

• To investigate the production process of the materials employed as
membranes in tensile structures, in order to understand their techni-
cal and mechanical characteristics.

• To thoroughly characterise the mechanical behaviour of coated woven
fabrics, by both employing data from the literature and performing
biaxial tests of different types.

9
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• To investigate the stress-strain behaviour of coated woven fabrics
through a new typology of strain-controlled biaxial tests.

• To define the current framework of constitutive models available for
coated fabrics.

• To implement the procedure of the MSAJ/M-02:1995 (1995) Japanese
Standard for the identification of the elastic moduli and to apply
it to the experimental data obtained from the previously performed
biaxial tests, in order to highlight the issues related to this commonly
adopted approach and to constitute a term of comparison for the more
advanced constitutive model proposed in this thesis.

• To develop a modified version for coated woven fabrics of the HGO
hyperelastic model, which was created by Holzapfel et al. (2000) for
biological tissues. Such modified HGO model is characterised by the
addition of a new term to the free-energy function, that aims at cap-
turing the strong interaction between the yarns due to the so-called
crimp interchange.

• To calibrate the parameters of the new hyperelastic model using the
same biaxial test data previously employed for the identification of
the orthotropic linear elastic model parameters, and to compare the
obtained results.

• To validate the new hyperelastic model through some simple bias ex-
tension tests and cruciform biaxial tests, whose results will be com-
pared to experimental data.

• To implement the new constitutive law into a general purpose finite
element code, in order to make it useful for the overall analysis of
membrane structures.

1.3 Thesis layout
The present thesis has the following structure:

• Chapter 2 contains an extensive literature review on the design pro-
cedures employed for tensile structures. More in detail, an attempt

10
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is made of describing, within a unified framework, the heterogeneity
of approaches currently used in the form-finding and cutting pattern
generation phases, which are peculiar to tensioned membranes.

• Chapter 3 describes the main types of architectural membrane ma-
terials. Details are given concerning their technical properties. The
production process is presented, together with the single components
of these materials, which both contribute to their macroscopic me-
chanical behaviour.

• Chapter 4 investigates the main aspects of the mechanical behaviour
of coated woven fabrics employed in textile architecture. In the first
part of the chapter, this information is inferred from the literature
about the topic. Additional knowledge is added in the second part,
where uniaxial and biaxial tests performed directly by the author
with the biaxial machine at ClusTEX laboratory are described, and
their results commented. Several materials are tested and various
testing procedures are employed. A new testing protocol, based on a
strain-controlled loading profile, is proposed as an instrument for the
evaluation of the compensation factors needed for the installation, as
well as for furnishing information that is complementary to the one
obtained from stress-controlled biaxial tests.

• Chapter 5 reports a summary of the existing constitutive models for
coated fabrics, which are classified into mesostructural and contin-
uum models. A least squares identification of the elastic moduli from
biaxial test data is also performed, according to the current design
practice, which employs the orthotropic linear elastic law to model
coated fabric stress-strain behaviour.

• Chapter 6 presents a new hyperelastic constitutive model for coated
fabrics at finite strains. First, the nonlinear continuum mechanics
framework is described and a definition of the tensors and perti-
nent quantities employed is provided. Then, the Holzapfel-Gasser-
Ogden (HGO) model for biological tissues is described and modified
by adding a new energy term, which is intended to capture the strong
transversal fibre interaction due to the weaving, namely the crimp in-
terchange. Finally, the parameters of the new proposed model are

11
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estimated with the use of least squares applied to the biaxial test
data acquired from the previous Chapter 4.

• Chapter 7 describes the implementation of the new constitutive model
into the general purpose finite element code ABAQUS. The developed
user subroutine is illustrated and verification examples are provided
to demonstrate the correctness of the coding.

• Chapter 8 validates the new model by comparing the analytical and
numerical solutions of some simple biaxial and bias extension tests,
with the available experimental data. The predictive capability of
the model is also assessed through the results of some biaxial tests
that are performed at constant values of warp to fill stress ratios not
employed in the calibration of the material parameters.

• Chapter 9 summarises and comments the main results obtained with
this work; future developments of the present research are also out-
lined.

• Appendix A collects the graphical representation of the experimental
data concerning the biaxial tests performed in the context of this
research.

12
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2
Design of tensile structures

The design of tensile structures is a complex process, which involves sev-
eral steps: shape definition, creation of the engineering model, form-finding,
cutting pattern generation, load analysis, detailing and construction stud-
ies. Even though these phases follow each other in a linear fashion, many
iterations may be required; thus, it often happens that going back and
revisiting the previous phases becomes necessary.

In this Section the attention is put on the two design steps that are pe-
culiar to tensile structures, namely form-finding and cutting pattern gener-
ation. Form-finding is the earliest engineering phase, which determines the
shape that the membrane (or the cable net) must assume to equilibrate the
prestress loads, while fitting the predefined boundaries. Cutting pattern
generation is the process of defining the shape, direction and dimension
of the strips that must be cut from the planar roll of membrane material,
such that the final 3D surfaces can be reproduced once the strips have been
positioned and prestressed.

The variety of methods currently employed to perform the aforemen-
tioned design phases has led to quite heterogeneous notations and ap-
proaches. An attempt is made here of systematising the current state of the
art, by presenting them within a unified framework. Form-finding methods
are described in Section 2.1, while cutting pattern generation is treated in
Section 2.2.

13
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2.1 Form-finding

Tensile structures belong to the category of form active structures (Vee-
nendaal & Block, 2011; Beccarelli et al., 2011): these mechanical systems
display the ability to alter their own configuration and form in response
to possible changes of the environmental loads. In particular, the shape of
membrane and pneumatic structures is not known a priori, since it depends
on the applied prestress and on the boundary conditions. This peculiarity
determines the need of a preliminary step in the design process, which is
called form-finding or shape-finding. This aims at defining an appropriate
reference prestressed configuration of the membrane, which is the shape
that equilibrates the applied forces in a given boundary with respect to
a certain stress state. Since the found equilibrated configuration is em-
ployed as initial or reference configuration for the subsequent load analysis,
form-finding is sometimes called initial equilibrium problem in the technical
literature (Haber & Abel, 1982a).

Form-finding is a complex process that must consider several factors
simultaneously, as pointed out by Maurin & Motro (2013). First, the level
of prestress has to be managed to avoid wrinkling, slackening or excessive
tension, while providing the geometric stiffness that is needed to carry
environmental loads. Second, boundary conditions (anchoring points and
lines) must be defined on the basis of aesthetic reasons, but also in a way
apt to satisfy architectural requirements and to allow water evacuation.
According to Haber & Abel (1982a), the problem is further complicated
by the fact that some of the loads acting in the reference configuration
are shape-dependent, e.g. self-weight and inflation pressure (in the case
of pneumatic structures). The solution must also satisfy all structural,
architectural and constructional requirements.

The basic parameters involved in the initial equilibrium problem are:
surface topology, body forces, surface tractions, geometry boundary condi-
tions, internal stress distribution and surface geometry. The actual surface
geometry is treated as unknown during the form-finding process, therefore
boundary conditions are necessary to ensure a unique solution. Moreover,
the initial pre-stress distribution is a crucial design parameter, since suffi-
cient tensile stresses must be provided to avoid wrinkling and to produce
the desired degree of stiffness (Haber & Abel, 1982a).

14
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Once prestresses and boundary conditions are defined, the definition of
the corresponding equilibrated membrane shape can be carried out using
different methods. According to Lewis (2008), who provides a review of
form-finding methods for fabric structures, prior to 1970 form-finding of
tension membrane structures was based on the construction of physical
models made of reduced-scale fabric or soap films. Then, in 1972, the
design of the Munich Olympic Stadium marked the departure from the
exclusive use of physical models in favour of computational form-finding
techniques.

As described in the European Design Guide for Tensile Surface Struc-
tures (Forster & Mollaert, 2004), the art of form-finding with physical mod-
els (soap films, fabric and wire models) dates back to the 1950’s, when
architect Frei Otto started to realise membrane structures based on the
concept of minimal surfaces (Otto et al., 1973). These are defined as the
surfaces that have the smallest area within a particular set of boundaries,
thus requiring the least amount of potential energy. Minimal surfaces show
a uniform stress distribution, which is particularly convenient to avoid wrin-
kles and stress concentrations. Although physical modelling is cumbersome
and may display limited accuracy, it is useful to the designer for the de-
velopment of an intuitive understanding of membrane structure working
principles. For example, by building physical models it is easy to under-
stand that planar boundary configurations result in planar minimal sur-
faces, while doubly curved surfaces are obtained within three-dimensional
boundaries. Moreover, curved surfaces are classified into synclastic (if the
principal curvatures in two orthogonal directions have the same sign) and
anticlastic (if the principal curvatures in two orthogonal directions display
opposite signs): synclastic shapes can be obtained only for air inflated
structures, while mechanically prestressed membranes always give rise to
anticlastic shapes.

Currently, computational form-finding is the most widely used. In the
last five decades several methods have been developed and implemented in
commercial and research computer codes (Figure 2.1), which can be classi-
fied, according to Veenendaal & Block (2012), into three main categories:

• Stiffness matrix methods: also called transient stiffness methods
(Lewis, 2008), they are based on using standard stiffness matrices,
which are the sum of the elastic and geometric contributions;
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CHAPTER 2. DESIGN OF TENSILE STRUCTURES

• Geometric stiffness methods: only geometric stiffness is employed,
therefore no material definition is needed;

• Dynamic equilibrium methods: the static equilibrium solution is
obtained as steady-state of an equivalent dynamic problem.

In all these approaches the membrane is discretised into inter-connected
elements (cable or surface elements) and different procedures are used to
solve the initial equilibrium problem. Both the type of discretisation and
the solution approach strongly influence the theoretical formulation of each
form-finding method, as well as the accuracy of the solution. This has been
confirmed by the extreme variability of the results obtained with the round
robin exercise in Gosling et al. (2013).

Details about the existing shape-finding methods, divided by category,
are given in the following subsections. Indications about their advantages
and critical aspects are provided as well.
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CHAPTER 2. DESIGN OF TENSILE STRUCTURES

2.1.1 Stiffness matrix methods

The stiffness matrix methods are among the oldest form-finding approaches.
This category is the least well-defined, especially because there is no consen-
sus on how to name it in the existing literature: nonlinear network compu-
tation (Schek, 1974), Newton-Raphson iteration (Barnes, 1977), nonlinear
displacement analysis (Haber & Abel, 1982a,b), transient stiffness (Lewis,
2003, 2008), Stuttgart direct approach (Linkwitz, 1999a,b), grid method
(Siev & Eidelman, 1964). However, Veenendaal & Block (2012) claim that
the references for stiffness matrix method (Siev & Eidelman, 1964; Argyris
& Scharpf, 1972; Haug & Powell, 1972; Argyris et al., 1974a; Tabarrok &
Qin, 1992) are largely equivalent.

According to Veenendaal & Block (2011), which presents a single com-
putational framework for the comparison of different form-finding methods,
each stiffness matrix method tries to minimize the residual force vector r to
achieve static equilibrium. Vector r at each node is defined as the difference
between the external loads (collected in vector p) and the internal forces
(vector f):

r = p� f (2.1)

In a general network or membrane, which is not in equilibrium, r is different
from the null vector. Applying Newton-Raphson’s iterative method, the
new configuration at time step n + 1 can be evaluated starting from the
known geometry at time step n, according to the following relation, until
convergence is reached:

x

(n+1)
= x

(n)
+K

�1
r

(n)
= x

(n)
+K

�1
(p

(n) � f

(n)
) (2.2)

where K is the global stiffness matrix, which is the sum of elastic K

e and
geometric K

g stiffness contributions (for the definition and construction of
geometric and material (elastic) stiffness matrices see e.g. Zienkiewicz &
Taylor (2000, vol. 1-2).

Linkwitz (1999a) particularizes Equations (2.1) and (2.2) to a network
of branches and nodes. To achieve this, the structural topology is defined
via the connectivity matrix (C), sometimes also called branch-node matrix.
For a network with m branches and n nodes in a three-dimensional space,
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C is a [3m⇥ 3n] matrix constructed as follows:

C =

2

4
C

C

C

3

5 (2.3)

where the components of each submatrix C are:

Cij =

8
><

>:

+1 if node j is the head of branch i
�1 if node j is the tail of branch i
0 otherwise

(2.4)

The connectivity matrix can be partitioned into two submatrices:

C = [Ci Cf ] (2.5)

where Ci and Cf contain the columns of C associated with the interior
(i.e. free) and with the fixed nodes, respectively. Analogously, the [3n⇥ 1]

vector of nodal coordinates:

x =

2

4
x

y

z

3

5
=

2

4
x = [x1 x2 . . . xn]

T

y = [y1 y2 . . . yn]T

z = [z1 z2 . . . zn]T

3

5 (2.6)

can be partitioned similarly:

x =


xi

xf

�
(2.7)

Then, the coordinate difference vector u can be written as a function of C
and x:

u =

2

4
u

v

w

3

5
= Cx = [Ci Cf ]


xi

xf

�
(2.8)

where u, v and w are vectors, each containing m coordinate differences
in the corresponding Cartesian directions. Writing the internal forces f in
terms of the branch forces g, expressed as a function of coordinate differ-
ences u, Equation (2.1) reads (Linkwitz, 1999a):

r = p�C

T
i g(u) (2.9)
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Therefore, by applying the Newton-Raphson method, the following solution
is obtained (Linkwitz, 1999a):

x

(n+1)
= x

(n)
+ [C

T
i Jg(x)]

�1
[p

(n) �C

T
i g(u)

(n)
] (2.10)

where Jg(x) is the Jacobian of the branch forces g with respect to the nodal
coordinates x. The analogy between Equations (2.2) and (2.10) shows
that C

T
i Jg(x) = @f/@x is the global stiffness matrix of the system. The

derivation of this matrix for a linear one-dimensional element can be found
in Argyris & Scharpf (1972). The element elastic and geometric stiffness
matrices can be written in global coordinates as follows:

ˆ

k

e
=

bE bA
bL


ââ

T �ââ

T

�ââ

T
ââ

T

�
(2.11a)

ˆ

k

g
=

bT
bL


I� ââ

T �(I� ââ

T
)

�(I� ââ

T
) I� ââ

T

�
(2.11b)

where the cap symbol denotes element quantities. More in detail, bE is
the Young’s modulus of the material, bA is the branch cross section area,
bL is the element length, bT is the axial force inside the bar and â is the
unit vector that defines the branch direction (vector of direction cosines),
written as:

â

T
= [ cos↵x cos↵y cos↵z ] (2.12)

being ↵x, ↵y, ↵z the angles between the bar and the global coordinate
axis ex, ey, ez, respectively. All the element quantities can be grouped
into diagonal matrices in which each row corresponds to one branch, thus
E = diag( bEi), A = diag( bAi), L = diag(bLi) and T = diag(bTi). Then, it
is possible to construct the global matrices E, A, L and T by following
the same procedure previously employed for the connectivity matrix C in
(2.3).

The last ingredient for the assembly of the global stiffness matrix con-
sists in writing the global matrix of direction cosines as UL

�1, where it has
been assumed that U = diag(u). The global elastic and geometric stiffness
matrices are finally obtained by the assembly:

K

e
= C

T
i L

�1
EAU

2
L

�2
Ci (2.13a)

K

g
= C

T
i L

�1
T(I�U

2
L

�2
)Ci (2.13b)
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so that:
K = C

T
i Jg(x) = K

e
+K

g (2.14)

The stiffness matrix method solves the initial equilibrium problem (Equa-
tion (2.2) or (2.10)) within a Total Lagrangian Formulation, which means
that variables are referred to the initial configuration �0. Since the method
assumes a linear dependence of deflections upon forces, it is critically de-
pendent on the assumption of small displacements and rotations. Therefore
large changes in geometry, which are common in the initial steps of form-
finding, would results in lack of convergence. A transient stiffness matrix
(Argyris & Scharpf, 1972; Argyris et al., 1974a; Lewis, 2008), which is up-
dated at each iteration, can be used to improve convergence. However, to
include material properties is unnecessary, computationally expensive and
may lead to difficulties in reaching stable convergence (Barnes, 1977; Haber
& Abel, 1982a; Nouri-Baranger, 2004; Lewis, 2008).

Another difficulty related to the use of stiffness matrix methods is that,
to start the iterative algorithm, an initial geometry is required, which is
usually unknown at this step of the design process. To partially overcome
this problem in the case of cable nets, Linkwitz (1999a) suggests to parti-
tion the net into an interior and a boundary part. The internal elements
have a fixed initial slack length (or cutting pattern length), while in the
boundary zone cutting pattern lengths are unknown and can be evaluated
by setting the tension values in the boundary elements. Only by trial and
error, changing the forces in the boundary zone, it is possible to obtain
a satisfactory tension distribution in the inner part. Anyway, Linkwitz
(1999a) admits that “many trials may be necessary until a figure of equilib-
rium satisfying both requirements of form and forces has been found ”.

Geometric stiffness methods, discussed in the following section, can ad-
dress the above described difficulties inherent to the use of the total stiffness
matrix.

2.1.2 Geometric stiffness methods

Form-finding is in principle a geometric problem, thus material indepen-
dent, even if some shape-finding methods (namely the stiffness matrix and
the dynamic relaxation methods) require the designation of (sometime fic-
tious) material properties. Geometric stiffness methods are based on this
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observation, indeed they consider only the geometric stiffness contribution.
Even if the methods belonging to this category have been developed inde-
pendently, Veenendaal & Block (2012) conclude that the main references
for geometric stiffness methods (Linkwitz & Schek, 1971; Linkwitz et al.,
1974; Schek, 1974; Haber & Abel, 1982a; Singer, 1995; Maurin & Motro,
1998; Bletzinger & Ramm, 1999; Sánchez et al., 2007; Pauletti & Pimenta,
2008) are conceptually equivalent.

The force-density is the oldest geometric stiffness method, which was
first introduced by Linkwitz for the form-finding of the cable roof of the
Stadium for the 1972 Olympic Games in Munich. It was first published in
Linkwitz & Schek (1971) and then extended by Linkwitz et al. (1974) and
Schek (1974). Like in the stiffness matrix method applied to nets (Linkwitz,
1999a), the membrane is modelled as a system of straight bars and nodes,
but with the force-density method it is possible to compute the coordinates
of the free nodes, hence the structural geometry, solving the equilibrium
equations without knowing any initial coordinates, but the ones of fixed
nodes.

The force-density method performs a linearization of Equation (2.9) by
introducing the definition of force density. The forces in a network of elastic
bars are determined by an initial stress and an elastic term. If the elastic
term is neglected, as typical of form-finding based on geometric stiffness,
the element forces can be evaluated as follows:

f = C

T
i g(u) = C

T
i UL

�1
t (2.15)

where t is the vector that contains the tensile forces distribution. The so
called force densities (Schek, 1974) or tension coefficients (Barnes, 1977)
are defined as the force-to-length ratios:

q = L

�1
t (2.16)

The coefficients of q depend on the actual lengths L. Nevertheless, the
linear force-density method assumes constant force densities, which are
evaluated using the (updated) reference lengths Lref and the prescribed
forces t0:

q = L

�1
reft0 (2.17)

Using relation (2.8), Q = diag(q) and the following identity:

Uq = Qu (2.18)
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system (2.9) can be written as:

r = p�C

T
i Uq = p�C

T
i QCixi �C

T
i QCfxf (2.19)

By setting Di = C

T
i QCi and Df = C

T
i QCf , Equation (2.19) becomes:

r = p�Dixi �Dfxf (2.20)

Since Equation (2.20) is now linear, iterative solution methods like Newton-
Raphson are not further required. Thus, the coordinates of the internal
nodes can be computed by solving the system of equilibrium r = 0 with
the classical methods used for linear systems. The symbolic solution is:

xi = D

�1
i (p�Dfxf ) (2.21)

where it can be noted that only the coordinates of the fixed nodes must be
provided as input, hence there is no need of knowing the initial slack lengths
of the bars. After the solution in terms of nodal coordinates is known, the
prestress can be computed a posteriori with the following expression:

s = A

�1
t = AL

�1
q (2.22)

while the unstressed lengths are obtained as follows:

L0 = L(I+ EA

�1
t)

�1 (2.23)

where I is the identity matrix of dimensions [m⇥m].
The number of shapes that can be generated with the force-density

method is theoretically infinite. However, from the practical point of view,
only networks with a more or less uniform stress distribution are acceptable.
Since the stress field is evaluated only a posteriori (from Equation (2.22)),
it is not possible to control the final stress distribution using the force
density method. Moreover, it is clear that a constant value of force density
in all the branches does not produce a uniform tension field, unless the
calculated lengths of the elements happen to be constant. According to
Schek (1974) and Linkwitz (1999a), values of force densities that produce
reasonable stress distributions are equal to 1 for all inner cables and to a
value inversely proportional to the length for boundary cables.
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An extension of the force density method from cable nets to membrane
surfaces has been proposed by Singer (1995) and Maurin & Motro (1998).
In the first case, a fictitious stress variable is introduced, that represents the
isotropic stress inside the triangular area delimited by three linear elements:
the force densities are then expressed as a function of this new variable, thus
allowing for the stress control during the form-finding procedure. In the
second case, the membrane is discretised by means of triangular elements
with isotropic Cauchy stress and the stress densities are defined as the
stress to area ratios in each surface element. Both the strategies are useful
to obtain a uniform isotropic plane stress distribution, which is conceptually
equivalent to find a minimal surface (a surface characterised by the property
of minimal area within a given boundary), as demonstrated by Bletzinger
& Ramm (1999).

More recent modifications of the force density method that include the
characteristic of preserving a constant tension field in the membrane are
presented in Sánchez et al. (2007) and Pauletti & Pimenta (2008). On the
one hand, Sánchez et al. (2007) maintain the branch-node discretisation,
which is computationally advantageous, and introduce two alternative non-
linear procedures aimed at adjusting the found shape to obtain a uniform
force or stress distribution (these are respectively called multi-step force
density method with force or stress adjustment). Since the use of iterative
solution algorithms increases the calculation time, Sánchez et al. (2007)
propose a technique to reduce the number of elements and nodes used
in the shape-finding process: after the initial equilibrated shape has been
found, parametric surfaces (NURBS) can be employed to obtain a smooth
membrane surface by fitting of the net nodes. On the other hand, the nat-
ural force density method presented by Pauletti & Pimenta (2008) employs
a cable element and a triangular element which are formulated sticking to
the concept of natural strains introduced by Argyris et al. (1974b) for the
finite element analysis of membranes. This method preserves the linearity
that characterises the original force-density formulation and, at the same
time, overcomes the difficulties in coping with irregular triangular finite
element meshes. Nevertheless, to prescribe a uniform stress field it is once
again necessary to invoke iterative solution procedures.

Further developments of the force-density method have been introduced
to include additional constraints, such as the preservation of rectangular
or equidistant meshes, fixed node distances, force constraints or fixed un-
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strained lengths (Schek, 1974). In such cases, these conditions are intro-
duced in the formulation by means of additional (usually nonlinear) equa-
tions: the number of these equations is identical to the number of additional
restraints and independent of the number of nodes, therefore this nonlinear
approach is more efficient than the nonlinear displacement method. Nev-
ertheless, if the formulation becomes nonlinear, the force-density method
loses some of its attractiveness.

The force-density method is a special case of the more general assumed
geometric stiffness method presented by Haber & Abel (1982a). Once
again, only the geometric stiffness matrix K

g is considered to write the
equilibrium equations. The coefficients of Kg are in general nonlinear, since
the geometric stiffness is a function of the unknown nodal coordinates. The
assumed geometric stiffness method consists in prescribing the geometric
stiffness element, so that they are no longer dependent on the coordinates:
this linearises the system of equilibrium equations, which can be then solved
directly. For a structure composed entirely of pin-joined bar elements, the
definition of the geometric stiffness matrix coefficients is equivalent to se-
lecting the force densities in the elements, i.e. the force to length ratios bT/bL
in matrix (2.11b). A common criticism to this method is that geometric
stiffnesses (hence force densities) are not intuitive quantities, therefore the
designer can hardly establish their values because the developed shape is
not easily foreseeable and the stress distribution is difficult to be evaluated.

To overcome the drawbacks of the assumed geometric stiffness method,
a more practical design approach, called iterative smoothing, is put for-
ward by Haber & Abel (1982a), in which the designer prescribes only the
stress distribution: the system of equilibrium equations remains nonlinear
and iterative procedures are needed to find a solution. At each step, the
geometric stiffness matrix is computed based on current values of coordi-
nates, while an approximate solution for each of the unknown coordinates
is obtained as a weighted average of the forces acting on the node and the
coordinates of the adjacent nodes:

xi =

2

4
Fi �

3(n�1)X

j=1

K

g
ijxj

3

5 1

K

g
ii

j 6= i (2.24)

The method is named iterative smoothing because iterative coordinate av-
eraging may be viewed as a surface smoothing technique. Haber & Abel
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(1982a) claim that one apparent problem of this method is that it is difficult
to predict the surface shape based on a prescribed stress pattern, therefore
an interactive computer graphics environment has been implemented in
Haber & Abel (1982b), that allows the designer to see the found shape at
each iteration and to stop computations, if necessary, to alter the stress
values.

At last, as pointed out by Bletzinger & Ramm (1999), the geometric
stiffness matrix is singular with respect to tangential shape variations: the
total area content of the membrane element or the total length of the cable
are not altered by these shape modifications, since they would map the
surface back to itself. As a consequence, shape variations cannot be chosen
arbitrarily, while they must display a normal component at any point of
the surface.

Bletzinger & Ramm (1999) present an alternative form-finding method,
which is based on a different formulation called homotopy mapping. This
is a mathematical method that is employed to approach a solution of a
singular problem. If the problem consists in finding the minimum of a
function f(x) and this function is assumed to be singular at the solution,
the related problem of finding the minimum of its derivative f 0

(x) is not
singular. The function f 0

(x) can be then used to regularize the problem by
mapping with the continuation factor �, which varies from 0 to 1:

minf�(x) = min[�f(x) + (1� �)f 0
(x)] (2.25)

The solution of the minimisation problem (2.25) approaches that of the
original problem. The continuation factor � determines for each step how
the forces referred to the (updated) reference and actual configurations
are interpolated. Different strategies are suggested by Bletzinger & Ramm
(1999) to trace � towards the optimal solution, but the one that shows the
best convergence properties is the so-called update reference strategy, which
employs the last calculated shape as a new updated reference configuration
for the next step and uses a constant value of � small enough to ensure
regularity of the stiffness matrix.

2.1.3 Dynamic equilibrium methods

Dynamic relaxation is the king of dynamic equilibrium methods. It was
developed to study marine streams and its first application to tensile struc-
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tures and hanged roofs was carried out in 1965 by Day (1965). Then came
the works of Barnes (Barnes, 1977, 1975, 1988, 1999) on form-finding of ca-
ble nets, membranes and inflatable structures. Currently the method has
been applied to many fields of mechanics, such as tyre analysis (Oakley &
Knight, 1995a,b; Oakley et al., 1995), form-finding of grid shells (Douthe
et al., 2006; Tysmans et al., 2011), wrinkling (Zhang & Yu, 1989; Lee &
Youn, 2006; Kashiwa & Onoda, 2009), biomechanical models for computing
of intra-operative organ deformations (Joldes et al., 2011) and so on.

The main advantage of dynamic relaxation is that it does not require the
estimation of the tangent stiffness matrix K, which can be computation-
ally expensive. Evaluation of K is usually needed for material/geometric
nonlinear problems in order to solve the governing discretised equations
for structural static equilibrium (2.2). This effort is not required with the
dynamic relaxation method because it makes use of fictitious masses and
damping to induce a pseudo-oscillation about the equilibrium position of
the membrane. The trick is to obtain a static solution by integrating the
damped equation of motion to find the steady state of an equivalent dy-
namic problem.

Let x

(n), ˙

x

(n), ¨

x

(n) be the nodal displacement, velocity and accelera-
tion vectors respectively at the nth time step. The dynamic equilibrium
equations read:

M

¨

x

(n)
+C

˙

x

(n)
+Kx

(n)
= p

(n) (2.26)

where M is the lumped mass matrix, C is the damping coefficients matrix,
K is the stiffness matrix and p

(n) is the external loads vector.
Equation (2.26) is integrated using the central difference explicit tech-

nique, because it shows, according to Krieg (1973) the best properties
among the explicit time-stepping algorithms: it is simple to implement,
it shows the largest stability limit for second-order accurate integration
formulas and, in combination with the adoption of a lumped mass matrix,
it permits the separate computation of each uncoupled component with no
need for assembly or factorization. According to central difference integra-
tion method and supposing a constant time step �t , the acceleration term
is represented by the variation of velocities over the time interval, and the
velocity term as an average over the same interval:

¨

x

(n)
=

˙

x

(n+1/2) � ˙

x

(n�1/2)

�t
(2.27a)
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˙

x

(n)
=

˙

x

(n+1/2)
+

˙

x

(n�1/2)

2

(2.27b)

Thus vector of residuals (2.1) can be evaluated using Equations (2.26)
and (2.27):

r

(n)
= p

(n) �Kx

(n)
=

= M

˙

x

(n+1/2) � ˙

x

(n�1/2)

�t
+C

˙

x

(n+1/2)
+

˙

x

(n�1/2)

2

(2.28)

Hence, from Equation (2.28), the linearised equation for the mid step ve-
locity vector reads:

˙

x

(n+1/2)
=

✓
M

�t
+

C

2

◆�1 ✓
M

�t
� C

2

◆
˙

x

(n�1/2)
+ p

(n) �Kx

(n)

�
(2.29)

and the incremental displacement at step n + 1 is evaluated as follows:

x

(n+1)
= x

(n)
+

˙

x

(n+1/2)
�t (2.30)

The iterative algorithm consists of a repetitive use of Equations (2.29)
and (2.30) until the residuals are close to nought.

In the dynamic relaxation method mass matrix, damping matrix and
time interval must be defined so as to guarantee stability and convergence.
Since the central difference method is not unconditionally stable, the time
interval �t needs to be small to satisfy the Courant-Friedrichs-Levy con-
dition (Courant et al., 1928). �t must be selected as the smallest period
of vibration of the system, so that the initial conditions may not be ar-
tificially amplified by the numerical algorithm. Barnes (1994) gives the
following criterion for ensuring convergence of the solution:

�t 

s

2

Mij

Kij

(2.31)

Different choices of M, C and �t lead to different variants of the method.
In Zhang et al. (1994) a critical review of the merits and disadvantages
of the existent dynamic relaxation versions is presented and a physical
approach is used to develop a modified adaptive algorithm with improved
efficiency.

More in detail, concerning the evaluation of the mass matrix M, Zhang
et al. (1994) enumerate four methods to do it:
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1. set M = I (Rushton & Laing, 1968);

2. select different values Mii of mass in different directions (i = 1, 2, 3)
through the analysis of individual problems (Rushton, 1968);

3. assume that the value of Mii in one direction is proportional to
the corresponding diagonal stiffness matrix component Kii, which
is equivalent to set the time interval in condition (2.31) as a constant
value, usually equal to 1 (Brew & Brotton, 1971; Papadrakakis, 1981);

4. satisfy the inequality that guarantee the iteration stability according
to Gerschgörin’s theorem (Underwood, 1983; Zhang & Yu, 1989):

Mii �
(�t)2

4

NX

j=1

|Kij| . (2.32)

Zhang et al. (1994) claim that 4 is the only mathematically reasonable
method, because it is based on a stability condition that limits the enlarge-
ment of the fictitious time interval. More recently, Joldes et al. (2009) have
proposed a diagonal lumped mass matrix which is scaled at each node to
align the maximum eigenvalues of all the elements in the mesh: this im-
proves the convergence rate by reducing the condition number of matrix
M

�1
K, leading to a decrease in the spectral radius, and guarantees the

convergence by assuring that the maximum eigenvalue of the same matrix
is an over-estimation of the actual one.

Also a proper selection of the fictitious damping can improve the con-
vergence rate of the dynamic relaxation method. In its original form, first
introduced in 1965 by Day (1965), the method makes use of viscous damp-
ing and a mass-proportional damping matrix C = cM is assumed, ac-
cording to Rayleigh formulation. Zhang et al. (1994) describe five main
approaches that have been proposed in the published literature to estimate
the damping factor c:

1. set c = 2!0, where !0 is the lowest circular free-vibration frequency
(Rushton & Laing, 1968; Frieze et al., 1978);

2. take c = 2!� when

� =

��
x

(n+1) � x

(n)
��

kx(n) � x

(n�1)k (2.33)
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approaches a constant value, where !� is the lowest circular frequency
corresponding to the constant � (Papadrakakis, 1981);

3. calculate the lowest circular frequency at the nth time step with the
Rayleigh quotient for linear problems (Underwood, 1983):

c = 2

"
x

T(n)
K

(n)
x

(n)

x

T(n)
M

(n)
x

(n)

#1/2

(2.34)

where K

(n) is a diagonal matrix whose elements are evaluated as
follows (summation over repeated index j ):

K

(n)
ii =

Kijx
(n)
j �Kijx

(n�1)
j

�t ˙x
(n� 1

2 )
i

; (2.35)

4. assume that the critical damping factor at the nth time step can be
evaluated with the Rayleigh quotient as (Zhang & Yu, 1989):

c =


x

T(n)
K

(n)
x

(n)

x

T(n)
M

(n)
x

(n)

�1/2
; (2.36)

5. take a constant value of c throughout the whole process (Cassell &
Hobbs, 1976; Turvey & Salehi, 1990).

According to Zhang et al. (1994), methods 3 and 4 are more reasonable,
since they are based on the same idea of Rayleigh quotient, but 4 is much
better because it does not require extra computation of matrix K

(n) and
practical applications show that it is more efficient and stable than 3. More-
over, an alternative to the use of viscous damping is represented by kinetic
damping, introduced by Cassel et al. (1968). The idea behind kinetic damp-
ing is to stop the iterations as soon as a local kinetic energy peak is ob-
served and to restart the analysis from the current configuration, setting
to zero the initial velocity components. This approach relies on the ob-
servation that, in simple harmonic motion, a maximum of kinetic energy
corresponds to a minimum of potential energy, therefore to an equilibrium
configuration.
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Another dynamic equilibrium method for form-finding has been pro-
posed by Kilian & Ochsendorf (2006). This approximates the structure
with a particle-spring system, which is composed of lumped masses, called
particles, that are connected by linear elastic springs. Each spring has an
assigned constant axial stiffness, an initial length and a damping coeffi-
cient. External forces are applied to the masses. The system is usually not
in equilibrium when the simulation is started, hence masses move until the
system reaches its equilibrium position. In the context of graphical statics,
the particle-spring method is equivalent to finding a funicular polygon.

In conclusion, the main disadvantage of dynamic equilibrium methods
is that they require too many parameters to control stability convergence.
Moreover, mass and damping parameters are fictitious, therefore they may
not be meaningful or easy to set. However, as pointed out by Lewis (2008),
these methods perform a small amount of arithmetic operations at any one
time, since the computations concern only one node in turn, rather than all
nodes simultaneously: this minimises computational round-off errors and
contributes to the accuracy of the solution.

2.2 Cutting pattern

The fabrication of the membrane shape resulting from the form-finding
process is realised by assembling cut flat pieces of coated fabric. The defi-
nition of the cutting pattern, which is called patterning, is a complex pro-
cess, where many parameters must be taken into account: definition of the
cutting lines on the 3D shape, flattening of the curved strips and tension
compensation by size reduction.

As summarised by Maurin & Motro (2013), the choice of the seam lines
is a compromise between different parameters:

• Technology : size of the fabric roll (usually 1.8-3m wide), welding
equipment;

• Cost : a higher number of seams increases the accuracy but also the
fabric cutting wastage;

• Geometry : to minimise deflection and distortion, the principal mate-
rial directions (warp and weft) should coincide with the main direc-
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tions of curvature (Figure 2.2) and smaller panels should be arranged
where the surface curvature is high;

• Mechanics : to reduce the deflection under loading, warp direction
(the stiffer one) should coincide with the main bearing direction (Fig-
ure 2.3);

• Fabric behaviour : usually orthotropic, with higher strength and rigid-
ity in warp direction;

• Aesthetics : the pattern of seams should be aesthetically pleasing.

Two main strategies are used to determine the seam lines: geodetic lines or
intersecting planes. According to the first one, the cutting lines should fol-
low geodetic paths over the surface, which are the shortest routes between
the two points of a curved surface (i.e. the equivalent of straight lines on
plane surfaces). This method is recommended by the European Design
Guide for Tensile Surface Structures (Forster & Mollaert, 2004) for rea-
sons of material economy and accuracy and to avoid wrinkling in the final
surface form (Figure 2.4). However, designers sometimes use intersecting
planes to determine the cutting lines, which therefore result straight, like
in the canopy for the German Federal Chancellery Court of Honour (Brew
& Lewis, 2013). According to Gründig et al. (2000), there are some situa-
tions where intersecting planes may be the best choice, e.g. in symmetrical
surfaces, central strips running along the symmetry axes, cloth areas close
to connections with rectilinear supports. Automated procedures for cut-
ting pattern generation usually allows the user to define either geodesic or
non-geodesic lines (see, e.g., Gründig et al., 1996).

Once the 3D strips have been defined, these must be flattened, since
the fabricator cuts them out of a 2D fabric roll. As shown in Figure 2.5,
the projection results in plane strips with curved edges: these are convex
for surfaces with positive Gaussian curvature (synclastic) and concave for
surfaces with negative Gaussian curvature (anticlastic). Synclastic surfaces
can be developed exactly, but most of the fabric membranes are doubly
curved (anticalstic), therefore it is impossible to map them onto a 2D plane
without distortion. As pointed out by Maurin & Motro (2013), the solution
proposed to map the Earth demonstrate this impossibility, since they can
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Figure 2.2: Layouts with strips in the main directions of curvature (from Seidel,
2009).

Figure 2.3: Strips layout with warp in the main bearing direction (from Seidel,
2009).

Figure 2.4: Comparison of non-geodesic (orange) and geodesic (blu) cutting
pattern generation (from Forster & Mollaert, 2004).
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preserve either areas (equivalent flattening), distances (equidistant flatten-
ing) or angles (conformal flattening), but never all of them simultaneously.
As a consequence, one of the main patterning issues is to find the cutting
pattern that minimises the final distortion.

Figure 2.5: Curved strips for synclastic (top) and anticlastic (bottom) surfaces
(from Seidel, 2009).

The last step of the patterning process is named compensation and con-
sists in a reduction in size of the planar panels. This is necessary because,
if the strip sizes were not modified, there would be no pretension in the
3D assembled membrane. Compensation (or sometimes decompensation)
values depend on the material properties, hence they are generally different
for warp and weft and usually lower along warp direction. Stretch values
vary along a strip, thus they are typically graded along the panel. More-
over, where the strips are connected to boundary cables or rigid elements,
the compensation is removed at the boundary (decompensation) and then
gradually increased over a short length, so that after 1m into the panel the
full compensation value is applied.

According to Maurin & Motro (1999), the most common methods for
cutting pattern generation employ decomposition into two distinct oper-
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ations: a first step of flattening followed by a reduction of the strip. For
example, this is the case of the Simple Triangulation Method (STM), which
performs a triangulation of the 3D surface and then flattens it by keeping
unvaried the triangle side lengths, as it has been described by Maurin &
Motro (1999) and by Ishii (1999). Another method consists in determining
the geometry of the strips on the 3D surface and then flattening them onto
the plane (Ishii, 1999).

Different algorithms have been proposed for the flattening, which aim
at reducing distortions by minimising errors: such techniques include both
purely geometric criteria and use of minimum strain energy (Gründig &
Bäuerle, 1990; Yu et al., 2000). Some advanced features allow the user
to handle darts (i.e. removal of material) and gussets (i.e. insertion of
material), for instance the algorithm presented by McCartney et al. (1999).
However, constitutive law of the material and stress distribution in the strip
are not considered by these approaches: they are only introduced during
the subsequent step of compensation.

Separation of the flattening and reduction phases leads to lost of infor-
mation about the stress field generated in the membrane after installation.
Moreover, the reduction is usually related to the experience of the engi-
neer, so that significant errors may occur. To overcome these drawbacks,
an alternative approach has been proposed by Maurin & Motro (1999),
named Stress Composition Method (SCM), which combines the operations
of flattening and reduction. The problem of minimising the difference be-
tween the desired prestress and the stress field arising from installation has
inspired also the cutting pattern procedure presented by Ishii (1999).

One of the most recent approaches to cutting pattern generation is the
one by Brew & Lewis (2013). It presents some interesting enhancements
of the existing methods. Firstly, it assures compatibility between adjacent
panels by forcing the stresses along the their edges to be equal to the design
values. Secondly, it minimises distortions by projecting the 3D surface onto
a closer developable surface, instead of a plane. Finally, it employs splines
to describe the panels, which enables flattening solutions to be generated
in analytical form.

Concluding, cutting pattern generation requires further research, as
demonstrated by the scarcity of references. Most of the available articles
are from conference proceeding, therefore they are not easily accessible.
One of the causes could be the fact that this stage is usually in charge of
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the installer, not of the designer, so that it is essentially based on experi-
ence. Moreover, an accurate estimation of the cutting pattern involves the
use of reliable material models, whose development is cutting-edge research
at present.
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Membrane materials for tensile

structures

Membrane materials employed for tensile structures may be essentially clas-
sified into two categories: films and coated woven fabrics (Figure 3.1). Even
if foils are increasingly used in tensile architecture (e.g. ETFE foils), these
are not treated in this thesis, where the focus is on the mechanical behaviour
of coated woven fabric membranes.

Architectural membranes usually consist of a polymeric matrix that may
be reinforced with fibres in the form of laminates or fabrics. Coated woven
fabrics are the most widely used, since the weaving increase the loading ca-
pability and eliminates delamination issues. There exists single-component
coated fabrics, like PTFE coated PTFE woven fabrics (Tenara®Gore), and
multi-component coated fabrics, like Silicone or PTFE coated glass fabrics
and PVC coated polyester fabrics.

When selecting a membrane for structural purposes, the most impor-
tant qualities to consider are the mechanical tensile strength and the elastic
properties. On the basis of these properties, PVC/polyester and PTFE/glass
fabrics are classified according to Figure 3.2 (Forster & Mollaert, 2004).
Other aspects that are fundamental in the material selection include dura-
bility, insulation, light transmission, fire protection, foldability and cost.
For instance, glass fabrics are not suitable to be employed for deployable
systems (Mollaert et al., 2006; De Temmerman et al., 2007; De Laet et al.,
2009; Van Mele et al., 2010), because of the brittleness of glass yarns.

Coated fabrics are composite materials, hence their constitutive be-
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Figure 3.1: Membrane materials for tensile structures.

haviour and their properties depend on the mechanical characteristics of
each component and on their mutual interaction. These will be discussed
in the following Section.

3.1 Architectural membrane components

Coated fabrics used for architectural purposes are made of different lay-
ers, as shown in Figure 3.3. The middle layer is the raw fabric, which
is realized interlacing yarns with different techniques (weaving, braiding,
knitting, stitching). Then, the fabric is covered with a prime coat that sta-
bilises the geometry and protects yarns against environmental sources of
damage, like rainwater, pollution, UV rays, abrasion, and so on. A second
thin and chemically distinct coating, named top coat, is added to protect
the prime coat. Finally, the outer layer consists of a surface treatment that
allows the sealing or printing, where necessary, by chemical compatibility
of the components.
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(a) PVC/polyester types

(b) PTFE/glass types

Figure 3.2: Categorization of coated fabrics based on their mechanical proper-
ties (adapted from Forster & Mollaert, 2004).
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Figure 3.3: Architectural membrane layers (from Forster & Mollaert, 2004).

Among the thousands of coated fabrics that are on the market, the most
commonly used for tensile structures are PVC (Poly Vinyl Chloride) coated
polyester fabrics and PTFE (Poly Tetra Fluoro Ethylene) or Silicone coated
glass fabrics. More recently, PTFE coated PTFE fabrics have been adopted
in some cases. The choice of which type of coated fabric has to be used
in a membrane structure realization is based on several factors: durability,
structural lifespan, deformability, cleanability, fire resistance, toxicity of
some components. All these aspects will be breafly discussed later on.

In the next Sections each coated fabric component will be described in
detail, following the hierachical organization of architectural membranes:
yarns, fabric, coating.

3.1.1 Yarns

Yarns are realized with natural or chemical fibres of small diameter (be-
tween 3 and 25µm): the first ones have a limited length, so they are bound
up in strands; the second ones have pontentially endless length and are
called filaments (Houtman & Orpana, 2000). Two or more yarns can be
twisted together to obtain a thread of higher strength.

As pointed out by Houtman & Orpana (2000), it is almost always dif-
ficult to determine the transversal area of very small fibres. Therefore, an
average cross section can be calculated by multipling the specific weight of
the material by a quantity named titer or count, which is provided by the
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Material

Density

Tensile Extension Elasticity

strength at break modulus

[g/cm3] [GPa] [%] [GPa]

Polyester 1.38-1.41 0.97-1.17 11-15 12-15
Glass 2.6 2.4 4.5 73
Aramid 1.45 3.32 1.5 160
Nylon 1.14 1.0 15-20 5-6
LCP 1.4 3.28 2.5 104
Cotton 1.5 0.35-0.7 6-15 4.5-9
PTFE 2.1-2.3 0.16-0.38 2-4 130-150

Table 3.1: Mechanical properties of yarns.

producers. The count is the weight of a fibre with a certain length and its
unit of measure in the International System of Units is tex: 1 tex is the
weight in g per 1000m length. In USA and UK denier is more commonly
used as unit of measure for the linear mass density of fibres: 1 denier is the
weight in g per 9000m length.

Another important aspect that influence the mechanical behaviour of
a yarn is the twisting. The more the thread is twisted around its centre
the more its elastic compliance decreases compared to the one of the fibres.
Information about the number of twists per meter and their direction (s is
for left-hand twist, z is for right-hand twist) is usually added to the fibre
description. Hence, a thread is characterized by its count and number of
fibres, followed by the twists (t0 if it is not twisted). For example, a thread
that is designated with 2200 dtex f200 z60 has a titer of 2200 dtex, made
out of 200 fibres, and it is right-hand twisted 60 times per meter.

Different kind of fibres can be applied in membrane structures. Polyester
and glass fibres are the most widely used and are obtained from extrusion
spinning. Other yarns that are used in this field are polyamides (aramid
or, more rarely, nylon) and LCP (Liquid Crystal Polymer based on aro-
matic polyester), which are made from a solution. Moreover, cotton fibres
are sometimes used for short term constructions due to their susceptibility
to staining and moisture. Finally, PTFE fibres have been adopted more
recently. Table 3.1 shows the properties of these yarns.
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Polyester yarns

Synthetic polymer fibres that constitute the base of polyester fabrics are
made of PET (Poly Ethylene Terephthalate), which is also named PES
in textile jargon: actually, this is incorrect, because in material science
PES already stands for thermoplastic Poly Ether Sulphone. Together with
fibreglass, PET yarns are the most common standard product in textile
architecture.

As described by Seidel (2009) and in the European Design Guide for
Tensile Surface Structures (Forster & Mollaert, 2004), to produce polyester
yarns, the granulate is melted and sent to a heated spinning manifold.
Then the melted mass is pressed at high temperature through a spinning
shaft that forms it into filaments. After that, filaments are solidified by
air blowing and elongated with a variable-speed roller system: during this
step, crystallisation and orientation of macromolecular chains occurs that
increases filaments strength and tenacity. Finally, fibres are twisted to-
gether to form a yarn. The process is depicted in Figure 3.4.

Figure 3.4: Polyester fibres method of production (from Forster & Mollaert,
2004).
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Polyester yarns have high tenacity and they are characterized by a ten-
sile strength of at least 0.97GPa. This material permits small corrections
during installation, thanks to its considerable elongation before yielding
(Houtman & Orpana, 2000), but it tends to creep over time, a phenomenom
that is common to all polymers. PET yarns have high flexibility and buck-
ling resistance, thus they are often used for ropes, belts and sewing threads,
besides coated fabric membranes.

Figure 3.5 shows the force-extension curve of a PET yarn. Three regions
can be identified, which correspond to changes in the material stiffness: this
is typical of all polymers, whose behaviour is called rubbelike elasticity.
Region I delimits the zone of linear elasticity. Region II is characterised by
a relatively low stiffness, which corresponds to the uncoiling of elastomer
chains. Once the chains have been completely uncrimped, higher forces
are required to stretch also the primary chemical bonds, thus resulting in
a stiffer stress-strain behaviour in region III.

Figure 3.5: Force-extension diagram of polyester yarns (from Forster & Mol-
laert, 2004).

Regarding the behaviour of the material against light and high temper-
atures, polyester fibres exhibit the typical properties of polymers. They
present low resistance to UV radiation, which causes ageing and deteri-
orates the mechanical properties. Moreover, they are flammable at high
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temperatures, even if they self esinguish after ignition. All these disadvan-
tages may be reduced with a PVC coating.

Finally, polyester is sensitive to hydrolysis, since it is an organic material
characterized by an ester group. PVC coating represents again a barrier
that protects PET yarns from oxidation. Alternatively, fibres are some-
times treated with a substance that prevents water absorption (hydrophobic
treatment). As described in the European Design Guide for Tensile Surface
Structures (Forster & Mollaert, 2004), when the coating shows pinholing
or does not penetrate into the cloth, a phenomenon named wicking may
appear, which consists in the migration of water between yarns, resulting
in yellow or brown lines due to growth of bacteria and fungi. This leads to
a reduction of adhesion that may cause seam problems or delamination of
the coating.

Glass yarns

Fiberglass is one of the most utilized materials in textile architecture, to-
gether with polyester yarns. It is produced with the melt spinning process
depicted in Figure 3.6. The glass raw components are melted down in a
furnace over several days, homogenised and forced trough spinning nozzles.
Then, using a winding machine that rotates fast, filaments are stretched to
about 40000 times their original length.

Figure 3.6: Glass fibres method of production (adapted from Knippers et al.,
2011).

Glass yarns are isotropic, therefore they exhibit the same mechanical
properties in longitudinal and transversal directions. Figure 3.7 shows the
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force-extension behaviour of glass fibres, which is linear elastic up to brittle
failure. Thanks to the small diameter they are flexible, even if they are
rather sensitive to buckling in comparison with other fibres.

Figure 3.7: Force-extension diagram of glass yarns (from Forster & Mollaert,
2004).

The strength of glass filaments depends on their diameter (3-5µm),
since they are produced by cooling a melt substance. As a result, outer
layers cool faster than inner ones, thereby compressive residual strains in
the axial direction arises that strengthen the yarns core with respect to
tensile loading. This means that glass fibres with large diameter can carry
higher tensile loads, because they have a larger prestressed cross section.
Nevertheless, fibreglass brittleness is higher for large diameter filaments,
thus yarns used in textile architecture have a diameter of no more than
3µm.

Moreover, brittleness of this kind of fibres is partially overcome with
the polymeric coating that is added to the glass fabric, usually consisting
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of PTFE or Silicon. Covering prevents also reduction of the yarns tensile
strength due to moisture. Therefore, coating makes the lifetime of glass
fabrics longer.

Finally, glass is resistant to high temperatures, UV light and wether.
Like all inorganic fibres, glass filaments show good dimensional stability
since they exhibit very little creep. Last but not least, glass fibres do not
burn if exposed to fire.

Aramid yarns

According to the definition reported by Knippers et al. (2011), aramid
fibres are very lightweight fibres that consists of aromatic polyamides. They
are strong synthetic fibres which were discovered simultaneously by Akzo
(Twaron fibre) and DuPont (Kevlar fibre).

As described by Knippers et al. (2011) and illustrated in Figure 3.8,
aramid fibres are not produced with a melt spinning process, since they do
not exhibit a distinct melting behaviour. Instead, aromatic polyamide is
dissolved with an acid ad spun to form fibres.

Aramid yarns have high tensile strength, but their compressive strength
is much lower than the tensile one (asymmetric mechanical behaviour),
hence they are suitable for applications involving only tension (ropes and
membranes). However, they are only rarely employed in the building in-
dustry because they are too tough and therefore difficult to machine.

Lastly, aramid threads are chemically resistant and their characteristic
failure behaviour enables them to absorb impact energy. As drawbacks,
they present low strain at break and bad resistance against UV light and
high temperature. In addition, they tend to absorb moisture.

Nylon yarns

Polyamide 6.6 (Nylon) fibres, which are produced with the melt spinning
method, were used in the first membrane structures. Nowaday they are not
of great importance in textile architecture, since they have several disad-
vantages: bad resistance against UV rays and high temperatures, swelling
in length when they absorbs moisture and, more important, they are sub-
jected to severe elongation, that causes drop in the prestress. Instead,
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Figure 3.8: Aramid fibres method of production (adapted from Knippers et al.,
2011).

Nylon fibres are more largely applied in the sailing industry thanks to their
lightness and high strength.

LCP yarns

Liquid Crystal Polymers (LCP) are a class of aromatic polyester polymers
that exhibit order similar to an ordinary solid crystal. As described by
Hearle (2001), these polymers are thermotropic (or melt-orienting). This
means that, in a molten state they consist of very rigid chain-like molecules
positioned into randomly oriented domains, as shown in Figure 3.9. Ex-
trusion through very small holes and subsequent cooling down cause high
orientation of the internal material structure, which results in a high ten-
sile strength and modulus of the fibres. Because of this high orientation,
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drawing after spinning is not necessary.

Figure 3.9: Molecular chain structure of standard and liquid crystal polymers
(from Hearle, 2001).

Typically, LCP fibres have a high mechanical strength at high temper-
atures, extreme chemical resistance, inherent flame retardancy, and good
weatherability.

Cotton yarns

Cotton represents the only organic fibre used in membrane structures. In
the past, it was largely used by Frei Otto to realize its tensile structures
and nowadays it is applied for some tents. Since it is an organic material,
its lifespan is very short (about 4 years) because it is sensitive to moisture
and fungi.
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PTFE yarns

In comparison with other polymeric yarns, PTFE fibres have lower strength,
but they show a high tear propagation resistance, which is a very use-
ful property in membrane structures realization. Moreover, the high light
trasmittance of PTFE fabrics (up to 40%) is particulary important for ar-
chitectural design. The high flexibility and resistance to bending, as well as
the tendency to creep under costant loading, are all factors that contribute
to prefer their utilisation for convertible roofs rather than for permanent
structures.

Other characteristics of PTFE fibres are high resistance to chemicals
and moisture, good UV stability and self-cleaning (anti-adhesive) surface.
Finally, they are not readily combustible in air.

3.1.2 Fabrics and foils

Woven fabrics

A woven fabric is produced interlacing weft yarns between two layers of
warp yarns at 90° with respect to the weft yarns. The weaving process con-
sists in the repetition of five steps, described by Sen & Damewood (2001):

1. The first step is the shedding of the warp threads. These are kept
in a harness and divided into two layers: the sequence of threads in
the upper and lower layers (e.g. one up one down, two up two down,
ect.) determines the type of weave pattern.

2. One weft thread is passed through the enclosure between the upper
and lower layers.

3. The third step is named beating up: the new weft thread is pushed
against the already made fabric and the intensity of the force used to
do this influences the surface weight of the fabric (measured in g/m2).

4. The position of upper and lower harnesses is exchanged. As a conse-
quence, the new weft thread is enclosed by the warp threads.

5. The procedure is repeated from the second step, with a new weft
thread, untill the fabric is completed.
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During the weaving process, the completed fabric is winded on a roll at
a certain speed, which depends on the weaving velocity. Hence, in the final
roll the warp threads are positioned along the longitudinal direction, while
the weft threads are in the transversal direction.

As anticipated before, the configuration of threads in the harnesses de-
termines the type of weave. The types of weaving used to make fabrics for
membrane constructions are plain weave and 2-2 basket weave (or panama),
which is a sort of modified plain weave (Figure 3.10). The yarns crimp is
lower in panama weave (Forster & Mollaert, 2004).

(a) Plain weave (b) Basket or panama weave

Figure 3.10: Weave patterns used for membrane constructions (from Forster &
Mollaert, 2004).

Independently of the type of weave pattern, the warp threads in a fabric
have a more streched profile, while the weft ones are more crimped. This
is due to the weaving process, beacuse warp yarns are kept under tension
during the fabric realisation. As a result, the weft stress-strain curves show
a lower slope than the warp ones, at least at low stresses, thus giving rise
to an orthotropic behaviour of the fabric at the macroscale.

The French manufacturing company Serge Ferrari adopts the so called
Précontraint® system, that can provide more balanced fabrics. Using this
techinque, which was initially developed to produce fabrics with the same
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level of crimp in warp and fill directions, it is possible to realize membranes
with a level of crimp in the two weaving directions that is specified in order
to obtain a certain prestress for a given structure and a specific assembling
procedure. As claimed by Bridgens (2005), the Précontraint® system is
useful especially when the fill prestress is introduced by restraining the
fabric in the fill direction and then tensioning it in the warp direction: this
may result in negative fill strains and raising of fill stress and the use of a
Précontraint® fabric can solve the problem.

Knitted fabrics

Knitting is the second most used technique in textile production, even if
it is less used in techical textile applications (Kuusisto, 2010). A knitted
fabric is produced interlooping one or more yarns to form a continuous
structure. As a consequence, yarns are subjected to lower stress than in
woven fabrics and this allows the use of delicate fibres, like aramid and
glass.

If compeared to other types of manufacturing, knitting seems to be
more versatile and rapid. This technique can easily meet every design
requirements (shape, dimension, details) without waste of material and at
a low cost. Nevertheless, knitted architectural fabrics are still rare: they
are seldom used for sun shade membranes.

Multiaxial multiply fabrics

The European standard EN 13473 defines a multiaxial multiply fabric as
follow:

“A textile structure constructed out of one or more laid par-
allel non-crimped not-woven thread plies with the possibility of
different orientations, different thread densities of single thread
plies and possible integration of fibre fleeces, films, foams or
other materials, fixed by loop systems or chemical binding sys-
tems. Threads can be oriented parallel or alternating crosswise.
These products can be made on machines with insertion de-
vices (parallel- weft or cross-weft) and warp knitting machines
or chemical binding systems.”.
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The so called weft-inserted warp-knitted fabrics, sometimes used for
textile architecture, belong to this category of textile materials. They are
realized superimposing two layers of warp and weft yarns to form a web and
then fixing them with a thin knitted yarn. Hence their production makes
use of a machine that is composed by two main parts: a weft insertion
device and a knitting unit. In this kind of fabrics the yarn crimp is very
low, thus the mechanical strength is improved, but the shear resistance is
reduced with respect to woven fabrics.

Nonwoven fabrics

Nonwoven fabrics are membranes that are produced bonding the base mate-
rial chemically, mechanically or thermally. Nonwoven fabrics provide spe-
cific functions, so possible applications are filters, geotextiles, insulation.
They are not used as architectural membranes.

As described by Kuusisto (2010), nonwovens manufacturing consists of
three stages: web or batt forming, web bonding and finishing. Web forming
can make use of different techniques: drylaid (from textile industry), wet-
laid (from paper industry), spunlaid or polymerlaid. The second step is the
bonding: this may be chemical, mechanical, thermal, or even a combination
of these techniques. The type of bonding influences the final properties of
the nonwoven, such as the finishing, which can be dry or wet.

ETFE Foils

ETFE is a copolymer of Ethylene and TetraFluoroEthylene with a melting
temperature of 250

�C and very good chemical resistance. It is used to
create large thin sheets, named foils or films, with a thickness of 50 to
300µm. These are the most employed films in the building industry for
loadbearing enclosing components.

As described by Knippers et al. (2011) and Seidel (2009), ETFE foils
are manufactured with a thermoplastic process called extrusion. The gran-
ulate is melted at temperatures above 380

�C, then it is trasported in a
heated metal barrel containing a rotating plasticising screw that generates
a pressure and forces the material through a die. Depending on the die ge-
ometry, two types of products can be obtained: on the one hand flat foils,
manufactured with a wide slot die and downstream chill rolls; on the other
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hand tubolar foils, obtained passing the molten resin through an annular
die and expanding it into a tube by air blowing. Figure 3.11 illustrates the
two types of extrusion processes. Blown films present lower quality, worse
homogenity and more thickness variations, hence they are not used very
often in the building industry.

ETFE films have high traslucency (up to 90%) and high absorption of
sun radiation, which makes them excellent for green houses. Their mechan-
ical behaviour is elastic and isotropic. Moreover, they are very resistant to
aggressive environments (acids, alkalis, UV radiation, . . . ). All these ben-
efits makes ETFE ideal for membrane and tensile structures.

Finally, ETFE foils can be used in single or multi-layer applications.
A multilayer ETFE cladding is obtained by clamping and sealing two ore
more ETFE films together and inflating the space between the foils to
create a cushion. Furthermore, welding is used to join together pieces of
ETFE foil in order to obtain a larger sheet. The welding does not require
chemical substances, but it is done applying heat (approximatively 280

�C)
and pressure to a 10 to 15mm overlap between two foils. Hence weldability
represents another characteristic that makes ETFE film very suitable for
the realisation of membrane structures.

3.1.3 Coatings

Before applying the coating, the fabric is protected with a finish, usually
on both sides. This increases the compatibility between fabric and coating,
which means a good wettability of the fibers by the liquid resin and then
a good adhesion between fabric and coating. Hence, the choice of the type
of finishing depends on both the fabric and the coating. For instance,
polyester fabrics finish has a hydrophobic compound that avoids moisture
diffusion at the fibre/resin interface; PTFE base coat is applied to provide
flexibility; aramid fabrics need a special chemical modification of the fibres
surface to avoid delamination with the coating (Forster & Mollaert, 2004).

The coating function is to protect the base fabric against moisture, UV
radiation, fire, fungi attack and so on. In addition, it influences the me-
chanical properties of the final composite material. Three types of coating
are usually employed for architectural textiles: PVC, PTFE and Silicone.

Finally, a top coating is added to ensure good cleanability, weldability,
waterproofness, resistance against fungi attacks, and to offer a barrier for
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Figure 3.11: Foil extrusion: (a) flat foil (b) tubolar (blown) foil (adapted from
Knippers et al., 2011).

plasticiser migration to the surface and weather influences. For PVC coated
fabrics the top coat may be of acrylics, PVDF (PolyVinyliDene Fluoride),
PVDF/acrylic mixtures, PVD (PolyVinyl Fluoride), while for PTFE coated
fabrics FEP (FluoroEthylenePropylene copolymer) is mostly used.
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PVC coating

PVC coating has different components, described in the European Design
Guide for Tensile Surface Structures (Forster & Mollaert, 2004). The main
one is the PVC paste, which is an emulsion containing significant quan-
tities of emulgators, whose concentration and type have a strong impact
on the thermal and cleaning properties of the surface. The second major
component is the plasticiser, that determines the flame retardant properties
as weel as the dirt pickup. Phosphates are the most efficient plasticisers
in term of flame retardancy, but they have a high tendency to migrate
to the surface and are subjected to biological attack. On the other hand,
phtalates have a very good compatibility with PVC that makes them the
most widely used plasticisers, even if they are also subjected to migration
and hydrolysis. Chlorinated paraffines are a third type of plasticisers used,
with good flame retardant properties, but they have a strong tendency to
migrate to the surface, resulting in dirt pickup.

Most of the times, PVC coating is pigmented, usually in white. Pig-
ments are not added merely to color the fabric, but they play an important
role in the UV stability and opacity, thus they affect the light stability
of the material. Moreover, stabilisers are often added to the emultion to
overcome oxidation, UV ray degradation, dirt pickup and thermal effects.
Also flame retardant additives are sometimes used.

PVC coated fabrics can be recycled with a process patented by Solvay.
Using a selctive chemical solvent (ketonic solvent) at 115

�C, the PVC is
dissolved and PET fibres remain in suspension. Then the fibres are sep-
arated by filtration and drying, while the PVC solution is precipitated at
room temperature, so both the components may be reused.

PTFE (Teflon) coating

PTFE coating is applied by dipping the glass fabric in a PTFE dispersion,
then drying and sintering at 350-380 �C (sintering is a process for fusing
particles together by helding the powdered material in a mold and then
heating it below the melting point). Compared to the raw PTFE fabrics,
the coated ones are weldable and watertight. However, PTFE shows high
tendency to creep, thus the pretensioning values must be low and the spans
limited (Knippers et al., 2011).
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As claimed in the European Design Guide for Tensile Surface Structures
(Forster & Mollaert, 2004), PTFE is a material with outstanding properties.
Firstly, it has one of the strongest bonds in organic chemistry, since its
structure is characterised by long chain molecules with a carbon based core
and an outer sheath of fluorine atoms that shields the core against chemical
attack. Secondly, it can resist to temperatures from �200

�C to +260

�C
and temperature variations have no influence on its lifespan. Moreover, it
is inflammable, insulating, inert against all the environmental polluttants.
PTFE coating is anti-adhesive, hence it is self cleaning and water repellent.
Finally, its hydrophobic properties protect the glass yarns against moisture,
preventing the loss of thensile strength due to humidity exposure.

Silicone coating

Silicone coating is based on silicone rubber, which shows mechanical re-
sistance in a wide range of temperatures (�50

�C to +200

�C) even in ag-
gressive atmospheres (Forster & Mollaert, 2004). This is particulary ad-
vantageous for the use in hot climate countries. Moreover, silicone is very
resistant to ageing thanks to its extraordinary chemical resistance.

As pointed out by Knippers et al. (2011), silicone coating presents some
positive characteristics if compared with PTFE or PVC coatings. One of
them is the high flexibility, that makes the fabrics coated with silicone
easy to handle and more resistant to flectional cracking than PTFE coated
fabrics. Compared to PVC, silicone coating shows a light tranmittance
which is three times higher.

Despite the above mentioned advantages, there are some factors that
limit the use of silicone in the building industry (Knippers et al., 2011).
First of all, it tends to attract static electric charges, thus it is subjected to
soiling. Secondly, silicone is not weldable since it does not have a distinct
melting point; as a consequence, joints must be realised with vulcanisation
or gluing, which are both complex and expensive methods. Finally, because
of the additives used for siclicone coating, this can only be classified as
readily flammable, despite the fact that silicone itself is incombustible.
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Mechanical properties and testing of

coated fabrics

Coated fabrics producers provide datasheets containing the main charac-
teristics and properties of their products. An example of how one of these
sheets looks like is shown in Figure 4.1. The information that is typically
provided may be subdivided into the following categories:

• technical characteristics of the base fabric, yarns, coating and coated
fabric (e.g. material, weight, yarn count, thickness, . . . );

• mechanical characteristics of the coated fabric (e.g. tensile strength,
elongation at break, tear strength, coating adhesion, . . . );

• other important properties (e.g. fire reaction, light transmission, age-
ing, seamability, . . . ).

Characteristics provided in datasheets are evaluated through the proce-
dures described in International (ISO, International Organization for Stan-
dardization) and European (EN, European Norm) standards when avail-
able. Otherwise, national standards are used as reference; for instance, NF
(France), DIN (Germany), BS (United Kingdom), ASTM (United States
of America). Moreover, laboratories have their internal protocols to de-
termine some characteristics that are usually not reported in datasheets,
but are anyway very important to understand the mechanical behaviour
of coated fabrics. The complete list of standards employed for this aim is
given in Tables 4.1 to 4.3.
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Figure 4.1: Example of a coated fabric datasheet.

The main international standards cited in Tables 4.1 to 4.3 are mostly
focused on uniaxial tests, due to the relatively simple and common testing
equipment that is required. The values of ultimate tensile strength, tear
resistance and adhesion are easily determined by means of uniaxial tests
and commonly reported in the technical datasheets.

However, an adequate characterisation of the mechanical behaviour of
coated fabrics is possible only through biaxial tests, which are carried out
with specific testing equipments able to pull both warp and fill directions
at the same time.

Moreover, the information contained in the current datasheets often
does not match the designer needs, because it is not sufficient to correctly
model the mechanical response of coated fabrics. This is reflected by the
high factors of safety (between 5 and 10) used in the current tensile struc-
ture design practice (Bridgens et al., 2004b).

In consideration of all these aspects, further research is needed to broaden
the knowledge about coated fabrics, in order to enhance the modelling of
their mechanical behaviour. This is the aim of the present Chapter, which
has been structured in two parts:

• Section 4.1 reports information about the mechanical characterisation
of coated fabrics collected from the literature.

• Section 4.2 contains a description of a series of uniaxial and biaxial
tests that have been performed at Politecnico di Milano, together
with some provided by Newcastle University, and comments on their
results.
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4.1. MECHANICAL PROPERTIES OF COATED FABRICS

4.1 Mechanical properties of coated fabrics

4.1.1 Uniaxial tensile behaviour

The generalised load-extension curve of an uncoated fabric subjected to
uniaxial loading is shown in Figure 4.2(a). It displays three regions where
the behaviour of the fabric is governed by different mechanisms. First, the
initial high stiffness is mainly due to the frictional resistance to bending of
the threads. Once the friction is overcome, a relatively low slope is recorded,
which is governed by the force needed to unbend the yarns in the direction
of the load; at the same time, the yarns in the direction transversal to the
applied load increase their crimp (see Figure 4.3), according to a process
called crimp interchange (Freeston et al., 1967; Treloar, 1977; Testa & Yu,
1987; Bridgens et al., 2004a). When the crimp of the threads aligned with
the force cannot decrease any more, the load rises very steeply and, as
a result, the stiffness of the fabric is mainly due to the load-extension
properties of the yarns themselves.

(a) Uncoated fabric (b) Coated fabric

Figure 4.2: Typical uniaxial load-extension curves of uncoated (from Lin, 2010)
and coated (from Bridgens & Gosling, 2008) fabrics.

The uniaxial behaviour of a coated fabric is slightly different, even if
the same basic mechanisms must be present. As the coating inhibits the
movement between the yarns, the crimp interchange starts immediately, as
it can be figured out by looking at Figure 4.2(b), which reports the results
of two uniaxial tests in warp and fill direction performed on a coated fabric.
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CHAPTER 4. MECHANICAL PROPERTIES AND TESTING OF COATED FABRICS

Figure 4.3: Crimp interchange (from Bridgens et al., 2004a).

It can be noticed that the decrimping region is narrow for warp threads,
as they are initially almost straight in the virgin fabric, because of the
weaving process. Moreover, the addition of the coating produces some
resistance to crimp interchange, which is overcome only gradually as the
load level increases (Testa & Yu, 1987); therefore the stiffness of the fabric
in the decrimping region is mostly related to the one of the coating.

Uniaxial tensile behaviour of architectural coated fabrics strongly de-
pends on the direction of loading. More in detail, if the loading direction
is increasingly biased against the principal directions of the material (warp
and weft), the initial stiffness and the tensile strength become lower, while
the corresponding breaking strain increases.

Figure 4.4 illustrates the test results obtained by Chen et al. (2007).
A group of seven specimens of a polyester woven fabric with PVC coating
were tested until tensile failure: the warp direction was biased 0°, 15°, 30°,
45°, 60°, 75° and 90° against the loading direction. The material behaviour
is consistent to the one described earlier. It can be noted that, although the
fabric count was the same in warp and fill direction, the tensile behaviour
is different (0° and 90° curves): this is due to the weaving and coating
processes, in which the fabric is held uniformly in warp direction, leaving
fill direction free of tension (hence more crimped).
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Figure 4.4: Stress-strain behaviour of a PVC-coated polyester fabric under bias
tensile loading (from Chen et al., 2007).

Figure 4.5: Stress-strain behaviour of a PVC-coated polyester fabric with
Précontraint® technology under bias tensile loading (from Zhang et al., 2012).
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The same bias tensile test was carried out in Zhang et al. (2012) on
a polyester fabric coated with PVC using Précontraint® technology. As
shown in Figure 4.5, the difference between warp and weft (0° and 90°
curves) is not significant, which is contrary to the results obtained by Chen
et al. (2007). The reason for this come from the Précontraint® coating
technology, that holds both warp and weft threads during the manufactur-
ing process, leading to a reduction of the difference between the mechanical
behaviours along the two principal material directions.

Figure 4.6 illustrates the test results obtained in a previous work (Zhang
et al., 2010) on a PTFE coated glass woven fabric. The behaviour is close
to the one of PVC/polyester fabrics, with tensile strength and modulus
gradually decreasing, and breaking strain increasing, with increasing bias
angles. It must be noticed that, contrary to what is done in Figures 4.4
and 4.5, the bias angles in Figure 4.6 are referred to the weft directions,
thus warp curve is indicated with 90° and fill with 0°. Again the warp and
weft curves are different because of the weaving process and, more in detail,
warp direction is stiffer than fill.

Figure 4.6: Stress-strain behaviour of a PTFE-coated glass fabric under bias
tensile loading (from Zhang et al., 2010).

Three types of failure mechanisms in the specimens subjected to bias
tensile loading are observed by Chen et al. (2007) and Zhang et al. (2010,
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2012): pure tensile failure, pure shear failure and mixed shear and tensile
failure. The first one takes place in the samples that are loaded along the
material principal directions, where the crack propagation is perpendicular
to the loading direction. Pure shear failure is shown in 45° samples: failure
happens at the interface between fibres and coating and yarns are pulled
out from the matrix. The mixed failure mechanism is observed for interme-
diate bias angles, where part of the yarns are drawn out from the coating
and the remaining yarns break when their tensile strength is reached. It
can be concluded that the shear strength becomes the dominant strength
component for intermediate angles of orientation: in this case coating plays
an important role, since it provides the fabric with a shear resistance, which
would be otherwise null.

Moreover, Chen et al. (2007) and Zhang et al. (2010, 2012) show that
the strength of coated woven fabrics under uniaxial load can be predicted by
the Tsai-Hill criterion (see Figure 4.7. Among the several strength criteria
used for composite materials, the Tsai-Hill criterion (Tsai, 1968) is the
most appropriate, since it takes into account the interaction between the
longitudinal and transverse direction and it satisfies the requirements of
coordinate trasformation, but its mathematical equation is nethertheless
simple. It represents a particularisation of the Hill yield criterion for metals
(Hill, 1948) to composite laminae, which are transversally isotropic and
subjected to plane stress states.

For what concern the dependence on loading rate of the uniaxial tensile
response of coated fabrics, it has been ascertained, for example by Galliot
& Luchsinger (2011a), that it is not significant. Figure 4.8 displays the
results form uniaxial tensile tests in warp and fill directions, which have
been carried out at different loading velocities. They show that the strain
rate has a certain influence on the material behaviour, but it is actually
negligible.

4.1.2 Biaxial and multiaxial behaviour

Service loads acting on architectural membranes induce complicated stress
fields, that arise not only from the applied prestress but also from the
natural environment (snow, rain, wind, . . . ). Therefore, investigation about
how the tensile strength of coated fabrics is affected by the multiaxiality
of applied loads is a particularly important issue. Nevertheless, only a

67



i
i

“thesis” — 2014/10/9 — 15:35 — page 68 — #96 i
i

i
i

i
i

CHAPTER 4. MECHANICAL PROPERTIES AND TESTING OF COATED FABRICS

Figure 4.7: Comparison of the experiment data and prediction of Tsai-Hill
criterion (from Zhang et al., 2012).

Figure 4.8: Influence of the loading rate measured with uniaxial tensile tests in
warp and fill directions (from Galliot & Luchsinger, 2011a).
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little work has been done until now and the performance of architectural
membranes is still expressed through the uniaxial tensile strength in warp
and weft directions.

A test that could be used to determine the biaxial strength of mem-
branes is the bursting test, also called bubble inflation test. A circular
specimen is clamped along its edge and this flat membrane is deformed
by means of a lateral air pressure into a spherical shape until the sam-
ple bursts. Anyway, this type of test is not suitable for fabrics because it
shows several drawbacks if applied to anisotropic materials, as outlined by
Reinhardt (1976) and in the European Design Guide for Tensile Surface
Structures (Forster & Mollaert, 2004). First, the ratio between warp and
weft stresses cannot be varied. Second, the deformed shape only approxi-
mate a sphere, so the assumptions on which the stress and strain calculation
is based are not completely correct. For these reasons the bursting test is
not widely used to test coated fabrics, while it is sometimes applied to foils
(Figure 4.9).

Figure 4.9: Bubble inflation test carried out on an ETFE foil (adapted from
Galliot & Luchsinger, 2011b).

Another test that is suitable to investigate the biaxial behaviour of
membranes is the cylinder test (Figure 4.10). This employs cylindrical
specimens that are subjected to axial tension and inflated: the ratio be-
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tween the stress components can be easily varied, since the axial tension
and air pressure are independent of each other. The cylinder test has been
often used in the past to study the mechanical properties of fabrics, e.g. by
Alley & Faison (1972), but, as pointed out by Reinhardt (1976), one or two
symmetrical seams must be realised to create the specimen, that strongly
influence the test results.

Figure 4.10: Cylindrical test carried out on a coated fabric (from Alley &
Faison, 1972).

The plain biaxial test is selected by Reinhardt (1976) as the most suit-
able method to determine the biaxial strength. Moreover, in that article
it is claimed that, with a slitted cruciform specimen like the one in Fig-
ure 4.11, the fracture runs trough the biaxially stretched central square of
the sample, hence the true biaxial strength can be evaluated. The author
concludes that the value of biaxial strength obtained with the slitted cru-
ciform sample is equal to the uniaxial strength. Nonetheless, the failure
load of biaxial specimens does not coincide with the failure strength of the
material, as pointed out by Zhang et al. (2012), since the failure always
starts from one of the slits, thus it is due to a concentration of stress at
the end of the cut. This is confirmed in the European Design Guide for
Tensile Surface Structures (Forster & Mollaert, 2004, p. 305), where it is
highlighted that biaxial tests are not intended for strength measurement.
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In Zhang et al. (2012) the biaxial failure load of the samples is evaluated
with a cruciform specimen with slits, but the ratio between the applied
warp and weft loads is 1, while in Reinhardt (1976) it is 1.1.

Figure 4.11: Fractured slitted cruciform specimen (from Reinhardt, 1976).

An interesting modification of the sample shape that allows multiaxial
plane loading of the membrane is proposed by Chen et al. (2008). It is
a gear shaped specimen with short and large arms, like the one in Fig-
ure 4.12, that guarantees a uniform strain distribution in the central part
and a good interaction between the loading directions, which is instead
dramatically reduced if long arms are used. Figures 4.13 to 4.15 from Chen
et al. (2008) show the results obtained on a PVC coated polyester fabric
subjected to uniaxial, biaxial (with warp to fill loading ratio of 1) and
multiaxial plane loading. It can be outlined that the tensile strength and
elongation at break is always higher under uniaxial loading than those un-
der biaxial and multiaxial loading: this confirms that it is not possible to
evaluate the strength of structural membranes on the base of their uniaxial
tensile strength in warp and fill direction. Moreover, the stiffness of the
material increases under biaxial and multiaxial loading, therefore the ten-
sile performance of construction membrane materials takes advantage of
the interaction between warp and fill yarns that arise when the membrane
is loaded along more than one direction.
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CHAPTER 4. MECHANICAL PROPERTIES AND TESTING OF COATED FABRICS

Figure 4.12: Gear shaped specimen for multiaxial tensile tests (from Chen
et al., 2008).

Figure 4.13: Stress-strain curves in warp direction under uni-, bi- and multi-
axial tensile loads (adapted from Chen et al., 2008).
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Figure 4.14: Stress-strain curves in fill direction under uni-, bi- and multi-axial
tensile loads (adapted from Chen et al., 2008).

Figure 4.15: Stress-strain curves in 45° direction under uni- and multi-axial
tensile loads (adapted from Chen et al., 2008).
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The results of biaxial and multiaxial tests on coated fabrics have shown
that the stress-strain curves of these materials depend on the load ratio
(or stress ratio) in warp and fill direction (see, e.g., Testa & Yu, 1987;
Bridgens et al., 2004a; Galliot & Luchsinger, 2009, 2011a). The reason is
that when the yarn directions are loaded simultaneously, both warp and fill
fibres try to straighten, but this cannot happen independently, because of
the weaving. Therefore, coated fabrics show a sort of Poisson’s effect, which
causes the deformation in one direction to be influenced by the force applied
in the transversal direction. This behaviour is consistent with the practice
of characterising their biaxial behaviour by employing several stress-strain
diagrams, which are obtained at different load ratios Figure 4.16.

Figure 4.16: Initial stress-strain behaviour of a PTFE coated glass fabric re-
produced by the work of Day (1986) (from Bridgens et al., 2004a).

The biaxial response of a coated fabric is also dependent on the load
history. Because of the crimp interchange effect, the previously applied
loads determine the configuration of the fibres in terms of crimp, which can
be of three types:

• straight warp yarns and curved fill yarns, resulting in a stiffer be-
haviour of warp direction;

• straight fill yarns and curved warp yarns, resulting in a stiffer be-
haviour of fill direction;

• an intermediate configuration, between the previous two.
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If several cycles are repeated at the same load ratio, after 3-5 cycles the
residual strain after the unloading becomes negligible, and the response
of the coated fabric can be considered repeatable (until the load ratio is
varied). This is shown in Figure 4.17, where the effect of cycle repetition
on a PVC coated polyester fabric is represented.

Moreover, Figure 4.17 displays that coated fabrics loading/unloading
behaviour is characterised by hysteresis. This can be attributed to the loss
of energy due to the friction between fibres and between the yarns and the
coating (Bridgens et al., 2004a).

Figure 4.17: Influence on a PVC/PES fabric of cyclic loading at 1:1 load ratio
(from Galliot & Luchsinger, 2011a).

Finally, since membranes are flexible, they have no bending stiffness,
hence they can only support tension. To guarantee that the membrane
will not experience compressions when subjected to various environmental
loads, a prestress is applied during installation (Bridgens et al., 2004b).
Galliot & Luchsinger (2011a) studied the influence of prestress level on
coated fabric behaviour. A higher prestress leads to a stiffer material be-
haviour in fill direction during the first loading, as demonstrated by Fig-
ure 4.18. However, the warp yarns seems to be not influenced by the initial
prestress level: the cause is in the weaving geometry of the virgin fabric. In
fact, fill fibres are initially more crimped, hence they require the application
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of a tensile load to be straightened, while the warp fibres are yet straight
in the unstressed configuration.

Figure 4.18: Influence of the initial prestress level in warp and fill directions on
a coated fabric biaxially loaded at 1:1 load ratio for the first time (from Galliot
& Luchsinger, 2011a).

4.1.3 Shear behaviour

Even if the most suitable stress field for a coated fabric does not involve
shear, there exist several cases where real membrane structures experience
shear loading conditions. For instance, the the shear deformations allow flat
fabric patterns to be developed into complex forms. In addition, inflated
beams show large shear deformations under bending loads (Cavallaro et al.,
2003). Therefore, an accurate estimation of the shear stiffness of architec-
tural coated fabrics is fundamental to correctly predict their behaviour.

Despite the importance of the shear issue in structural engineering,
very few studies have been done so far on the coated fabric shear response.
Currently, most of the works that are present in the literature treat the
problem for raw fabrics (Skelton, 1976; Potluri et al., 2006; Cao et al., 2008;
Hivet et al., 2012), because in-plane shear is the dominant deformation
mode for woven fabrics during industrial processes of composite forming
(Potluri et al., 2006; Cao et al., 2008). These studies demonstrate that the
shear resistance of uncoated woven fabrics is negligible with respect to their
biaxial tensile strength.
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Whereas uncoated fabrics offer almost no resistance to shear deforma-
tion, in coated fabrics this deformation is resisted by the coating. Testa
& Yu (1987) comments the results of an off-axis (45°) uniaxial tensile test
performed on a Teflon (PTFE) and a silicone coated fabrics, which are
reported in Figure 4.19. Testa & Yu (1987) claims that it is not surpris-
ing that the shear responses are found to be essentially elastic, since the
resistance to shear deformations arises almost entirely from the coating.

Figure 4.19: Shear response of a Teflon and a Silicone coated fabrics (from
Testa & Yu, 1987).

According to Galliot & Luchsinger (2010b), most of the present studies
focused on coated fabrics provide not a single value of the shear stiffness,
but a range of possible values. From these results, it appears that PTFE
coated glass fabrics have a shear modulus of 30-70 kN/m, while for PVC
coated polyester fabrics it lies in the range 10-50 kN/m. The majority of
the considered studies furnished a single value of shear stiffness, which is
equivalent to consider the shear response as linear elastic. However, as
pointed out by Galliot & Luchsinger (2010b), only in one of them (Testa &
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Yu, 1987) the measured stress-strain curve was linear. Indeed, fabric shear
response is nonlinear and hysteretic (Bridgens et al., 2004a).

Several test methods have been developed to investigate the shear be-
haviour of coated and uncoated fabrics. A summary of these methods is
provided by Galliot & Luchsinger (2010a), who states that the bias exten-
sion test and the picture frame test are probably the most popular among
the others. These are illustrated in Figure 4.20. In both the two the sam-
ple is loaded at 45° with respect to the yarn directions, in order to get a
trellis shear deformation in the sample. The bias test is the simplest, but
the obtained shear strain is not uniformly distributed in the sample: the
trellis shear deformation mode is localised in region 3 of Figure 4.20(a). On
the other hand, the tangential strain field developed by the picture frame
method is almost homogeneous within the sample.

Figure 4.20: Test methods used for the investigation of the fabric shear response
(adapted from Galliot & Luchsinger, 2010a).

The bias test have been utilised, for example, by Chen et al. (2007) and
Zhang et al. (2010, 2012) to investigate the behaviour of PVC/PES and
PTFE/glass fabrics for several angles of application of the tensile force.
The results of these tests have been previously commented in Section 4.1.1.
Although the bias test is really simple and requires small specimens to be
carried out, the picture frame is the method suggested by the MSAJ/M-
01:1993 Japanese Standard for the determination of the in-plane shear stiff-
ness of membrane materials.

For architectural coated fabrics, a modification of the picture frame test
has been proposed by Jackson et al. (2009). According to the described test
protocol (see Figure 4.21), a cruciform specimen is first prestressed and
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Figure 4.21: Biaxial and shear protocol for architectural fabrics: (a) previous
biaxial loading and (b) subsequent picture frame test (from Jackson et al., 2009).

Figure 4.22: Load-extension curves obtained from picture frame tests of differ-
ent coated fabrics (adapted from Jackson et al., 2009).
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conditioned with a standard biaxial testing rig. Then, a frame is installed
on the conditioned specimen, which is removed and tested with the classical
picture frame procedure. As pointed out by Jackson et al. (2009), the
most significant advantage of this modified picture frame method is that
any biaxial stress state can be applied to the test specimen through the
conditioning, and then maintained during the shear testing.

The experimental results presented in Jackson et al. (2009) show that
the coated fabric behaviour is nonlinear and hysteretic (see Figure 4.22).
The shape of the hysteretic curve was found to be similar for all the tests,
and more influenced by the loading history than by the loading rate.

Finally, a new shear testing methodology, which is named shear ramp,
has been proposed by Galliot & Luchsinger (2010a,b). It consists in the
bixial loading of a cruciform sample, where the forces are applied so that
stresses along each side of the central square vary linearly Galliot & Luchsinger
(2010a). This allows the simultaneous determination of yarn-parallel and
shear properties of a coated fabric with a single sample and a unique test.

The results obtained with the shear testing procedure have been com-
pared by Galliot & Luchsinger (2010b) with the ones of an equivalent off-
axis biaxial tests of a specimen with 45° rotated fibres (Figure 4.23). The
resulting stress-strain curves for repeated cycles confirm that the shear be-
haviour of coated fabrics is hysteretic. Moreover, the measured loading
curves illustrated in Figure 4.24 underline the characteristic nonlinearity of
the shear response, which is typical of several coated fabrics.

4.2 Coated fabric testing

4.2.1 Uniaxial testing

In absence of European standards on biaxial testing, the tensile strength of
coated fabrics is currently determined by means of uniaxial tensile tests. As
reported in Table 4.1, the tensile strength and elongation at break of coated
fabrics can be measured according to several national and international
standards, where the most widely used is EN ISO 1421:1998 “Rubber- or
plastics-coated fabrics – Determination of tensile strength and elongation
at break”.

Two testing methods are described in the EN ISO 1421:1998 Stan-
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Figure 4.23: The shear ramp test method (Shear 0°) and the equivalent off-
axis biaxial test (Shear 45°) proposed by Galliot and Luschinger (from Galliot &
Luchsinger, 2010b).
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Figure 4.24: Stress-strain curves obtained with the shear ramp test method
(Shear 0°) and with the equivalent off-axis biaxial test (Shear 45°) for different
coated fabrics (from Galliot & Luchsinger, 2010b).
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4.2. COATED FABRIC TESTING

dard: the strip test and the grab test, whose samples are illustrated in
Figure 4.25(a) and Figure 4.25(b), respectively. The first method tests a
strip of material gripped in the jaws for the full width and provides both
the Ultimate Tensile Strength (UTS) and the elongation at break. The
second technique, called grab test, performs the tensile test on a sample
that is gripped in the jaws only in its central part and it is limited to the
determination of the tensile strength.

(a) Strip method (b) Grab method

Figure 4.25: The specimens employed for uniaxial tensile tests, according to
EN ISO 1421:1998 Standard.

The strip test has been employed to perform the uniaxial tests described
in this Section 4.2.1. According to this methodology, two sets of samples
must be cut form the roll: one set of five pieces in the longitudinal (warp)
direction and the other one in the transversal (fill) direction. Each specimen
shall be 50 ± 0.5 mm wide and of sufficient length to allow a distance
of 200 ± 1 mm between tha jaws of the test machine, as illustrated in
Figure 4.25(a).

Each sample is then gripped in the jaws of a constant rate of extension
(CRE) tensile testing machine and loaded with a pretension of 2 -10N that
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makes it tight. The uniaxial tests described in this Section have been
performed with the biaxial testing rig that belongs to the Research Cluster
on “Innovative Textiles” (ClusTEX) of Politecnico di Milano, which will be
described in detail in the next Section 4.2.2.

After the pretensioning, the clamps are moved apart at a constant rate
of 100 ± 10 mm/min, until the sample breaks. The force at break and
the correspondent maximum elongation are recorded. Then, the test is
repeated for all the other specimens.

Once the test has been performed on each of the five specimens in
both the longitudinal and transversal direction, the mean values in each
direction are determined: these correspond to the UTS and to the maximum
elongations in warp and fill directions. Any test result where the test piece
breaks within 5mm of the face of a jaw should be disregarded.

The values of UTS and elongation at break in warp and fill directions
are usually evaluated by the producers and provided within the techni-
cal datasheet available with most of the coated fabrics on the market. The
majority of the fabrics tested for this thesis are commercial products, there-
fore there were no need of uniaxial testing. However, part of the biaxial
tests described in the next Section 4.2.2 have been performed for research
purposes on four new types of Polyurethane (PU) coated polyester fabrics
(PU/PES), which are named material A, B, C, and D hereafter.

In order to mechanically characterise these new types of coated fabrics,
and to determine the warp and fill UTS values to be employed in the
construction of the biaxial loading profiles, a series of uniaxial tensile tests
have been performed on each of the four materials (A, B, C, and D), whose
results are reported in Tables 4.4 to 4.7.

The estimated values of UTS for materials A, B and D (Tables 4.4, 4.5
and 4.7) are similar to the ones of a PVC/polyester of Type I, therefore
possible applications of these materials in the structural field are canopies
and shade structures with a limited span. In consideration of their water-
proof property, they could be used also to realise pneumatic structures with
a limited internal pressure. Material C has a very low weight (400 g/m2)
and, consequently, a low UTS (see Table 4.6), which is comparable to the
one of blinds for internal solar protection.
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Direction

S
a
m

p
l
e

Force

UTS

Elongation Mean

at break at break elongation

[daN/5 cm] [daN/5 cm] [%] [%]

Warp 1 300

276

70.39

73.50
2 280 72.24
3 288 71.97
4 251 75.89
5 262 77.00

Fill 1 267

268

74.24

73.10
2 280 72.22
3 269 72.58
4 Failed Failed
5 256 73.35

Table 4.4: Uniaxial test results (material A).

Direction

S
a
m

p
l
e

Force

UTS

Elongation Mean

at break at break elongation

[daN/5 cm] [daN/5 cm] [%] [%]

Warp 1 295

283

70.97

72.52
2 293 71.72
3 282 70.80
4 286 72.94
5 261 76.17

Fill 1 272

269

72.59

72.58
2 Failed Failed
3 269 72.05
4 264 73.12
5 269 72.56

Table 4.5: Uniaxial test results (material B).
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Direction

S
a
m

p
l
e

Force

UTS

Elongation Mean

at break at break elongation

[daN/5 cm] [daN/5 cm] [%] [%]

Warp 1 Failed

157

Failed

18.70
2 139 17.01
3 170 20.16
4 171 20.05
5 149 17.61

Fill 1 102

113

19.80

21.13
2 94 18.30
3 120 22.50
4 120 21.31
5 130 23.76

Table 4.6: Uniaxial test results (material C).

Direction

S
a
m

p
l
e

Force

UTS

Elongation Mean

at break at break elongation

[daN/5 cm] [daN/5 cm] [%] [%]

Warp 1 274

285

22.87

23.44
2 286 23.54
3 Failed Failed
4 278 22.85
5 304 24.51

Fill 1 244

263

21.87

22.43
2 284 23.23
3 271 22.42
4 Failed Failed
5 255 22.20

Table 4.7: Uniaxial test results (material D).
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4.2.2 Biaxial testing

Currently, there are no international standards or design codes in Europe
concerning plane biaxial testing. In spite of that, biaxial tests are funda-
mental for the design and realisation of tensile structures: they are com-
monly employed for material quality control, evaluation of compensation
values, determination of tear strength and strain measurement under pre-
scribed loadings and thermal conditions. Furthermore, biaxial tests are
essential for researchers to assess validity and reliability of material mod-
els.

Biaxial tests of coated fabrics are usually performed on cruciform spec-
imens with a central area bigger than (160⇥160)mm. According to Becca-
relli et al. (2011), biaxial testing rigs that are apt to carry out this kind
of tests are relatively not common and based on different operating prin-
ciples. At present, the European testing centres that own these types of
apparatuses are (see Figure 4.26):

1. Research Cluster on “Innovative Textiles” (ClusTEX), Politecnico di
Milano (I);

2. Newcastle University (UK);

3. Centre for Synergetic Structures at Swiss Federal Laboratories for
Materials Science Technology (EMPA), Dübendorf (CH);

4. Laboratorium Blum, Stuttgart (D);

5. University of Duisburg-Essen (D);

6. City University of London (UK);

7. Universität Stuttgart (D);

8. Bauer Membranbau, Freising (D).

Not only the listed testing centres have biaxial machines based on different
operating principles, but they have developed their own internal protocols
for the definition of the biaxial testing procedure. This is mainly due to the
absence of international standards that would define a unique biaxial testing
protocol, so that several approaches for the mechanical characterisation of
coated fabrics and foils are currently employed.
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The level of reproducibility of a test represents an important aspect,
especially in this case of extreme variability of approaches. An important
contribute to the definition of the reproducibility of biaxial tests in the Eu-
ropean contest is given by the round-robin exercise presented in Beccarelli
et al. (2011). It consists in a biaxial test that was carried out with a unique
loading profile and on samples cut out from the same batch of PVC coated
polyester fabric 1302 produced by Serge Ferrari S.A.S. The cruciform spec-
imens were cut out and tested according to the internal protocols adopted
by each laboratory. Finally, the test results were compared to asses the
level of accuracy of biaxial information commonly used in the design ad
realisation of membrane structures. The experiment has recorded a level
of precision equal to the one commonly present in the design of tensile
structures, even if the testing apparatuses were completely different. The
Research Cluster on “Innovative Textiles” (ClusTEX) of Politecnico di Mi-
lano has taken part to the round-robin exercise, but the results concerning
this test are not presented by Beccarelli et al. (2011) because it has been
performed after the publication of the article since the biaxial testing rig
was under construction at that time. However, the results have shown a
level of accuracy which is in line with the one of the other involved testing
centrers.

At present, the only national standards available as reference for the de-
velopment of biaxial testing protocols are the Japanese MSAJ/M-02:1995
“Testing Method for Elastic Constant of Membrane Materials” and MSAJ/M-
01:1993 “Testing Method for In-plane Shear Stiffness of Membrane Materi-
als”. The procedure established by the Membrane Structure Association of
Japan is generally applied with slight variations, which aim at improving
the experimental results and customising the test on the base of its scope.

Some of the biaxial tests presented in this thesis were carried out by
the author with the biaxial testing rig belonging to the Research Cluster
on “Innovative Textiles” (ClusTEX) of Politecnico di Milano, while part of
them were kindly provided by the research team of Prof. Peter Gosling at
Newcastle University (UK), where the author spent the period from the
beginning of April to the end of August 2013 as visiting Ph.D. student.
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Sampling procedure

The testing protocol adopted by the author starts from the definition of the
sampling procedure. Biaxial tests have been performed on cruciform spec-
imens with slits. The Japanese standard MSAJ/M-02:1995 prescribes the
minimum dimensions of the cross and imposes the use of slitted arms that
improve the load transfer from the clamps to the centre of the specimen (see
Figure 4.27). According to these prescriptions, the cross samples employed
by the author have a central square area of (300⇥300)mm and a clamp
interval of 900mm, with two slits for each arm, as shown in Figure 4.28.

Figure 4.27: Slitted cross-shaped specimen according to the Japanese standard
MSAJ/M-02:1995 (from MSAJ/M-02:1995).

90



i
i

“thesis” — 2014/10/9 — 15:35 — page 91 — #119 i
i

i
i

i
i

4.2. COATED FABRIC TESTING

(a) Politecnico di Milano (b) Newcastle University

Figure 4.28: Slitted cross-shaped specimen employed at Politecnico di Milano
(Polimi) and at Newcastle University (NCL).

It has been widely demonstrated that slitted cross-shaped specimens
can effectively reproduce a homogeneous stress distribution in the central
area of the sample (Reinhardt, 1976; Bridgens, 2005; Galliot & Luchsinger,
2009). Moreover, as pointed out by Bridgens (2005), the use of full-length
slits with arm strips clamped independently solves the problem of large
shear deformations in the arms, even if it results in slightly higher variation
in stress across the central square of the cruciform. The solution adopted
in this thesis is the one with 2 slits and independent clamps, while the tests
carried out at Newcastle University employed 9 slits and a single clamp for
each arm (see Figure 4.28).

Even if cross samples with slits have been accepted as the best shape
for plane biaxial test, there is still a wide variety of dimensions for both
the central area and the clamp interval, as well as in the number of slits.
The dimension of the central area adopted by the author has been chosen
according to Bridgens (2005), who demonstrates that a length of 300mm is
large enough to ensure that a sufficient number of yarns have been included
to obtain a good distribution of yarn properties and to ensure that the con-
tribution of any single yarn is negligible. Moreover, Bridgens (2005) claims
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that a larger cross specimen would led to practical problems if tested until
failure, because of the increased rig dimensions and high loads required.
However, some testing centres adopt different, e.g. EMPA (500⇥500)mm,
University of Duisburg-Essen (200⇥200)mm (see Beccarelli et al., 2011;
Beccarelli, 2010).

For what concern the number of specimens, the Japanese standard
MSAJ/M-02:1995 recommends a minimum of three samples for each weav-
ing direction. These should be cut out from the part of the roll which
is 1/10 of the overall width from each selvage, and excluding more than
100 cm from either edge. However, the number of tests depends on the
objective: to obtain average values of the material properties three tests
are enough, whereas a significantly greater number of tested specimens is
required to establish the 5% fractile.

Test rig and experimental setup

Part of the tests presented in this thesis have been performed by the au-
thor at Politecnico di Milano with the biaxial machine in Figure 4.29, that
belongs to the Research Cluster on “Innovative Textiles” (ClusTEX). This
has been designed by Paolo Beccarelli (Beccarelli, 2010) to test fabrics and
foils used in structural applications.

The above mentioned test rig has a rigid square frame realised by means
of steel profiles with a rectangular hollow section. The frame, with a net
internal distance of 1852 mm, is designed to counterbalance an estimated
maximum force of 140 kN on each side.

Each side of the frame has a battery of three independent servomotors,
which consist of an electromechanical motor that controls a ball screw1

(actuator) coupled with a sensor for position feedback (transducer). The
tensile force is applied to the membrane sample by means of these actuators,
which are equipped with:

• load cells, that provide a tension force from 1 up to 25 kN for each
clamp (100mm wide);

• force transducers, which measure the force applied at each clamp.
1

A ball screw is a mechanical linear actuator, which is made with a screw inserted in

a planetary gearbox: it is employed to translate rotational motion into linear motion

with little friction.
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Figure 4.29: Biaxial testing rig of the Research Cluster on “Innovative Textiles”
(ClusTEX), Politecnico di Milano.

The motors allow a maximum speed of 240mm/min and a maximum stroke
of 512mm.

The above described actuators are free to move along the side of the
frame and to rotate around an axis perpendicular to the sample plane. The
first degree of freedom is allowed thanks to a couple of low friction rollers
for each actuator. The out-of-plane rotation is released by means of a ball
joint placed at the extremity of each ball screw. This type of kinematics
assures that only axial forces and no bending moment are applied to the
components.

The clamping system is composed by two superimposed grooved steel
plates 100mm wide for each actuator, one fixed and the other removable
in order to easily place the sample inside the hem sleeve. Each arm strip is
wound up around a steel bar and held within the enclosure formed between
the two bolted plates.

Once the slitted cruciform specimen has been positioned, the sample
equilibrium is achieved by balancing the total force applied on each side
through the computerised control system. A master/slave option is avail-
able, which automatically satisfies this requirement, but there is also the
possibility of moving each electric motor independently (all master): this
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option can be useful for asymmetric tests, e.g. of structural details or
seams.

Elongations (hence strains) in the central square of the cross-shaped
specimen are acquired through two contact extensometers, which are posi-
tioned along warp and weft directions with an initial base of about 100mm.
The base length is chosen so that, on the chance that a fracture started from
one of the slits propagates across the central square, the tear would pass ex-
actly through the gauge position avoiding the damage of the extensometer.
More in detail, the biaxial machine is equipped with four potentiometers
Penny & Giles SLS095/0030/1.2K/R/50 with a closed size of 90mm and a
maximum stroke of 30mm.

Instead, the biaxial tests provided by Newcastle University (UK) have
been performed with a biaxial testing rig that represents a unicum in this
field (Figure 4.30). It has been developed by Architen Landrell (Chepstow,
UK; www.architen.com) and the School of Civil Engineering & Geosciences
of the University. Its design is based on the floating frame concept: loads
are applied in warp and weft directions by two reaction frames, of which the
lower one is fixed and the upper one is mounted on four spherical bearings
that make it free to move in the plane of the fabric.

Figure 4.30: Biaxial testing rig of Newcastle University (from Bridgens et al.,
2004a).
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The floating frame approach allows the spontaneous alignment of the
uniaxial load with the weaving directions, which are not always orthogo-
nal because the fabric manufacturing process results in bowing of the weft
yarns. This aspect is particularly important, since the weaving directions
represent the material principal directions, hence the alignment of the load
with them is fundamental to exclude unwanted shear effects. The same
result is obtained in the biaxial testing rig of Politecnico di Milano thanks
to the translational and rotational degrees of freedom of the actuators de-
scribed above.

The design adopted for the biaxial machine of Newcastle University
is particularly convenient from the economical point of view, because it
leads to a considerable optimisation of the testing equipment. Indeed, the
tensile loads are applied by means of only two hydraulic actuators, one
for each direction, which are connected to an external hydraulic pump
able to develop a maximum force of 150 kN. The force is applied to two
sides of the cruciform specimen, while the stress on the opposite sides are
generated through the reaction forces provided by the frame. Each actuator
is equipped with a pancake load cell, which measures the force transmitted
by the actuator to the clamps.

The clamping system is based on the same principle of the one described
above for the biaxial machine of Politecnico di Milano. The only difference
is that there is a single clamp 300mm wide for each side, therefore the arm
strips are clamped together and not separately.

Also the extensometers employed for the strain measurement are the
same, even if at Newcastle University there is the possibility of using scan-
ning laser extensometers (Hounsfield 500L) if a more accurate non-contact
strain measurement is required. This is particularly advantageous when
a material with a low fracture energy is tested, because the holes made
by the gauges could cause the propagation of tears. Moreover, the use
of optical strain measurement equipment is fundamental to test very thin
membranes or materials with a little number of yarns per cm, because in
these cases the contact extensometers could be unstable, thus providing
inaccurate measurements.
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Test outline

The scope of a test represents one of the most crucial aspects in developing
a testing protocol. Indeed, mechanical behaviour of foils and coated fabrics
is different in the initial stage, during service life, at break, as well as in long
term (creep) and dynamic conditions. Therefore the loading profile and the
type of control that are employed in a test must be selected according to
its aim.

Tables 4.8 and 4.9 provide an outline of the biaxial tests that have
been carried out during this research, together with some that have been
provided by Newcastle University (UK). According to their aim, such tests
may be grouped as follows:

1. Test VUB 001 A has been performed to investigate the effect of the
preconditioning cycles prescribed by the MSAJ/M-02:1995 Standard.

2. Tests F702 MSAJ and B18089 MSAJ aim at recording the mechanical
response of two types of coated fabric, a PVC/PES and a PTFE/glass
fibre, when subjected to the loading profile that is in accordance with
the MSAJ/M-02:1995 Standard prescriptions.

3. Tests F1202T2 ALR and B18059 ALR contain additional cycles with
respect to the MSAJ/M-02:1995 loading profile, which investigate the
material behaviour for loading ratios that are intermediate between
the ones considered by the Japanese Standard.

4. Tests NTT 011 1 BX, NTT 010 2 BX, NTT 001 A BX, NTT 002 A BX,
NTT 001 B BX and NTT 002 B BX have been realised (according to
the MSAJ/M-02:1995 Standard) on several new types of Polyurethane
(PU) coated polyester fabrics with the intent of mechanically char-
acterising the new materials and establishing their potential applica-
tions and target.

5. Tests TEN 008 A, TEN 015 A, TEN 018 A and TEN 019 A represent
an innovative typology of biaxial tests, which are strain-controlled
(a strain history is assigned in the central part of the specimen) and
have the scope of furnishing additional information about the material
behaviour that may be meaningful for the installation process.
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6. Test TEN 001 A is a stress-controlled biaxial test that has been car-
ried out according to the MSAJ/M-02:1995 loading profile, but at
lower value of stress, coinciding with the one currently employed in
the pretensioning of structural membranes; it constitutes a prelimi-
nary phase intended to estimate the compensation factors (see Sec-
tion 2.2) and to set up the strain loading profile to be used for tests
TEN 008 A, TEN 015 A, TEN 018 A and TEN 019 A.

The force-controlled biaxial tests from 1 to 4 will be described and
commented in Section 4.2.3, while the strain-controlled biaxial tests 5 and
their corresponding preliminary force-controlled test 6 will be presented in
Section 4.2.4.
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4.2.3 Force-controlled biaxial tests

Tests F702 MSAJ and B18089 MSAJ have been carried out according to
the MSAJ/M-02:1995 Japanese Standard loading profile (see Figure A.2(a)
and Figure A.3(a)). This is intended to estimate the elastic constants of
a linear orthotropic elastic material model, which aims at reproducing the
fabric service behaviour. For this reason, a cyclic load pattern is employed,
which would simulate the loading conditions of an in situ membrane that
has been prestressed during erection and exposed to environmental loads
(e.g. wind and snow).

As prescribed by the MSAJ/M-02:1995 Standard, the load is applied
up to a maximum level of 25% UTS (ultimate tensile strength, see Sec-
tion 4.2.1), that Happold et al. (1987) demonstrated to be the load at which
approximately tear propagation occurs. Moreover, this range of load covers
the one of membrane materials in use, since 4 is currently the worldwide
accepted minimum factor of safety for the design of tensioned membranes
(Bridgens et al., 2004b).

A minimum load is applied to the cruciform specimen in order to re-
move the slackness, which would distort the strain measurement in the
central part of the sample. Different values of prestress have been adopted
in the literature (and in the tests here presented), ranging from 1.3% UTS
for PVC coated polyester fabrics to 2.5% UTS for PTFE coated glass fa-
brics (see, e.g., Bridgens et al., 2012). A lower prestress value is usually
associated with PVC/polyester fabrics, because these show residual strains
of 5-10% at the end of a biaxial test, which are not as high as the 15%

typically recorded for a highly crimped PTFE/glass fabric (Bridgens et al.,
2012). Although sometimes higher values of prestress have been used, for
instance in test VUB 001 A, these are never larger than 10% UTS, which
is the safety factor employed by the designers for simulations of the instal-
lation process (Bridgens et al., 2004b).

A constant rate of extension of 2-4mm/min is prescribed for the whole
test by the MSAJ/M-02:1995 Standard. However, this requirement can be
checked only after the test, because in coated fabrics stiffness varies with
load and significant deformation occurs in the cruciform arms, hence the
actual rate of extension in the central part of the specimen can be evaluated
only a posteriori.

The MSAJ/M-02:1995 Standard prescribes to attach the slitted cruci-
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form sample to the biaxial testing machine so that warp and weft directions
are aligned with the loading axes. Then, the suggested testing procedure
consists of the following steps:

1. A minimum load is applied to remove the slackness without occur-
rence of crimp interchange, which can be achieved by using the so-
called natural force ratio (Testa & Yu, 1987)1 between warp and weft
directions.

2. While maintaining a warp to fill load ratio of 1:1, a biaxial load
is applied at a constant rate up to 25% of the UTS in the weaker
weaving direction (fill), and then removed at the same rate and load
ratio. This cycle should be repeated three times (preconditioning
cycles).

3. The load is applied and removed again at a constant predetermined
load ratio of interest. The maximum load coincides with the 25%

UTS of the weaving direction that currently has the larger load ap-
plied. The forces and strains measured during this step are the ones
employed for the stress-strain curves construction and for the estima-
tion of the material model parameters.

4. The procedure 2-3 is repeated throughout the sequence of predeter-
mined load ratios. The MSAJ/M-02:1995 Standard suggests to em-
ploy the sequence of load ratios in Table 4.10.

It may be worth noticing that step 3 might be reproduced more than
once, in order to investigate the material behaviour under cyclic loading.
This has been done in tests F702 MSAJ and B18089 MSAJ, as well as
in test VUB 001 A. Anyway, only the first cycle can be employed in the
estimation of the material model parameters, since it starts from a fixed
reference configuration of yarn crimp, which coincides with the one obtained
after 3 cycles at 1:1 load ratio (step 2).
1

According to (Testa & Yu, 1987), a natural crimp state is a curve that uniquely defines

the crimp strain in a fabric that is loaded from the reference state, either at constant

warp to fill load ratio and monotonically increasing load level, or at constant load

level and monotonically increasing load ratio of fill to warp stress. By extension, a

natural force ratio is a load ratio that does not change the crimp state in fabric, either

for increasing or decreasing applied loads.
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Direction of yarns Load ratios

Warp direction 1 2 1 1 0
: : : : :

Fill direction 1 1 2 0 1

Table 4.10: Combination of load ratios which should be used in biaxial tests
according to the MSAJ/M-02:1995 Japanese Standard.

With reference to step 2, preconditioning is a commonly employed pro-
cedure that attempts to simulate the effect of cyclic environmental loads. It
is employed for that materials that show an initial behaviour which is com-
pletely different from the mechanically conditioned one. In fact, the initial
behaviour of a virgin coated fabric that is loaded for the first time tends
to be not repeatable. Therefore, the stress-strain response during the sub-
sequent load cycles is typically different. The initial behaviour is usually
established by ad hoc “compensation tests” to determine the parameters
for patterning and installation (see Section 2.2), whereas preconditioning is
needed if the repeatable service behaviour of a coated fabric has to be in-
vestigated for medium and long-term structural design purposes. To better
understand the importance of this aspect, a test have been performed on a
PVC coated polyester fabric (VUB 001 A, Figure A.1(a-b)), which follows
the MSAJ/M-02:1995 Standard procedure with removing of the precondi-
tioning cycles: the results will be commented in the next subsection.

In addition, the load ratios in Table 4.10 are such that the space of
feasible stress states for the fabric is wholly explored by means of radial
load paths, as shown by Figure A.2(b) and Figure A.3(b), which corre-
spond to two biaxial tests that have been performed in accordance with
the MSAJ/M-02:1995 Standard prescriptions. This approach does not ex-
clude the possibility of investigating other load ratios. For example, tests
F1202T2 ALR and B18059 ALR, whose loading profiles are reported in
Figure A.4(a-b) and Figure A.5(a-b) respectively, have considered four ad-
ditional load ratios (0.3:1 (path F), 1:0.3 (path G), 0.7:1 (path H), 1:0.7
(path I)), which are intermediate between the ones in Table 4.10. The
scope of these two tests is providing further information on the coated fa-
bric mechanical behaviour, which will be useful to validate the predictive
capability of a model calibrated with the cycles associated with the stan-
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dard load ratios in Table 4.10.
Lastly, NTT 011 1 BX, NTT 010 2 BX, NTT 001 A BX, NTT 002 A BX,

NTT 001 B BX and NTT 002 B BX have been performed on a series of
anonymous PU coated polyester fabrics. These are not among the most
utilised materials for membrane structures, mainly because of their impos-
sibility to be welded, which leads to the more expensive use of glued joints
between panels. Anyway, they are waterproof materials, thus suitable to be
employed, for instance, in air-inflated structures. Moreover, their use for
little structures, which do not require welding, is growing. The load profile
for these tests has been prepared in accordance to the MSAJ/M-02:1995
Standard (see Figures A.6(a-b) to A.11(a-b)). They aim at identifying in
a quite standard manner the mechanical characteristics of these new types
of materials, in order to establish their potential applications.

Discussion on force-controlled test results

Classical stress-strain plots have been produced using results from the pre-
viously described tests. More in detail, separate graphics have been ex-
tracted for each (first) loading curve that is subsequent to the group of
three preconditioning cycles. This means that the stress-strain plots pre-
sented here represent the mechanical behaviour of the coated fabric when
loaded along one of the radial paths in Figures A.1(b) to A.11(b).

Along these paths the load ratio between the warp and fill directions
has been considered constant. Actually, this is not correct, because the
radial load paths start from the prestress, rather than from zero. However,
since the prestress value is low, considering that loads are applied at a fixed
warp to fill stress ratio leads to negligible errors.

Separate stress-strain curves have been constructed for warp and fill di-
rections. Since the constitutive modelling that will be presented in Chap-
ter 6 is based on the large strain theory, it is here fundamental to specify
which kind of stress and strain have been employed. The graphs have
been built by using nominal stresses and engineering strains, calculated as
specified further on.

On the one hand, the nominal stress has been evaluated through the
division between the force applied by the actuators along one direction of
the cruciform sample and the width of the arm (0.3m, see Section 4.2.2).
This value has been multiplied by a reduction factor (sometimes also called
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cruciform factor) of 0.95, which accounts for the fact that the stress level
in the central square is less than the one applied at the clamps, because
part of the load is absorbed by the arms (Bridgens, 2005; Bridgens et al.,
2004a; Galliot & Luchsinger, 2009).

On the other hand, the engineering strain has been computed by the
relation " = �L/L0 = (L � L0)/L0, where L0 and L are the initial and
final lectures of the extensometers. To permit the comparison between the
stress-strain curves associated to different load ratios, the residual strain
at the end of each group of preconditioning cycles has been removed from
the test data of the subsequent loading cycle.

The stress-strain behaviours of a PVC/polyester fabric (test F702 MSAJ)
and of a PTFE/glass fabric (B18089 MSAJ) for different fixed load ratios
are shown in Figure 4.31 and Figure 4.32, respectively. The characteristics
of the two typologies are different, but they both show high nonlinearity
and anisotropy. The key features of the fabric response are (Bridgens et al.,
2004a):

• sudden changes in gradient;

• multiple values of stress for a given strain;

• negative strains, even when tensile loads are applied.

Initial large strains at low stresses are due to the crimp interchange and
to the initial slackness of the yarns. Then, an increase of the tensile stiffness
occurs when the crimp interchange is complete and the yarn stretching
becomes the dominant deformation mechanism. This behaviour is more
evident in the PTFE coated glass fabrics (Figure 4.32), because glass yarns
are initially more crimped than polyester yarns (see Figure 4.33): this
expedient is employed by the coated fabric producers to make the glass
fabrics appear more stretchable, otherwise they would break at very low
strains.

Another important characteristic that is highlighted by Figures 4.31
and 4.32 is that the material response is hysteretic. Due to the coating and
fibre properties and to the frictional effects between yarns, the unloading
stress-strain curves follow a different path with respect to the loading ones,
which results in residual strains at the end of each cycle.

Lower values of residual strain are recorded, if the preconditioning cy-
cles are performed before. A comparison between the experimental results
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(a) Warp (b) Fill

Figure 4.31: Stress-strain curves of a PVC/PES fabric for different warp to fill
load ratios (test F702 MSAJ).

(a) Warp (b) Fill

Figure 4.32: Stress-strain curves of a PTFE/glass fabric for different warp to
fill load ratios (test B18089 MSAJ).
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Figure 4.33: Cross section of a PTFE/glass and a PVC/polyester virgin fabrics:
glass yarns show a more severe crimp. (from Bridgens et al., 2004a).

obtained from tests VUB 001 A (Figure 4.34) and F702 MSAJ (Figure 4.31)
may clarify this point. Both the tests have been performed on a PVC/PES
fabric, but the hysteretic behaviour recorded in Figure 4.34 seems to be ex-
tremely emphasized, if compared to the one in Figure 4.31. The reason is
in the absence of preconditioning cycles, which have been eliminated from
the loading profile of test VUB 001 A.

Moreover, preconditioning is employed to make the fabric response re-
peatable. Again with reference to tests VUB 001 A and F702 MSAJ, Fig-
ure 4.35 shows a plot of the warp and weft stress-strain curves for three
repeated cycles at load ratio 1:1. More in detail, these curves have been
constructed using the test data from cycles 1-3 in Figure A.1(a) for test
VUB 001 A, and from cycles 4-6 in Figure A.2(a) for test F702 MSAJ.
It is evident that the preconditioning guarantees the repeatability of the
stress-strain behaviour, as demonstrated by the low values of residual strain
measured in Figure 4.35(a). This condition is obtained through an inter-
nal arrangement of the yarns, which reach an equilibrated state of crimp
after the preconditioning cycles. In addition, Figure 4.35(b) displays the
large discrepancy between the first and the subsequent loading behaviours,
typical of coated fabrics.

Like tests F702 MSAJ and B18089 MSAJ, tests F1202T2 ALR and
B18059 ALR have been performed on a PVC/PES and a PTFE/glass fa-
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(a) Warp (b) Fill

Figure 4.34: Stress-strain curves of a PVC/PES fabric for different warp to fill
load ratios, obtained without preconditioning (test VUB 001 A).

(a) With preconditioning (b) Without preconditioning

Figure 4.35: Warp and fill stress-strain curves of a PVC/PES fabric for three
repeated cycles at 1:1 load ratio, obtained with and without preconditioning
(tests F702 MSAJ and VUB 001 A, respectively).
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bric, respectively. Their load profile has been constructed according to the
MSAJ/M-02:1995 Standard, but four additional load ratios (0.3:1, 1:0.3,
0.7:1, 1:0.7), which are intermediate between the ones in Table 4.10, have
been added. In Figures 4.36 and 4.37 are reported the stress-strain curves
associated with the traditional five load ratios in Table 4.10: the same
observations made for Figures 4.31 and 4.32 are still valid.

Figures 4.38 and 4.39 depict the mechanical behaviour of the same fa-
brics for the additional stress ratios. As expected, the obtained stress-strain
curves are intermediate between the ones associated with the traditional
five load ratios (reported in gray in the graphics). This supplementary
information about the fabric behaviour will be useful to validate the pre-
dictive capability of the new model presented in Section 6.4.

Finally, Figures 4.40 to 4.45 illustrate the stress-strain curves of four
types of PU coated polyester fabrics, which have been named material A,
B, C and D. The behaviour of these materials is qualitatively similar to
the one of PVC coated polyester fabrics. In materials A and B, the energy
dissipated because of internal friction is higher than for PVC coating, as
shown by the larger area of the hysteresis loops in Figures 4.40 and 4.41.
All the tested PU/PES woven fabrics present strains after unloading that
are greater that the ones of PVC/PES fabrics, which means that PU offers
a weaker resistance to crimp interchange thanks to its higher compliance.
In conclusion, PU coated polyester fabrics could be employed in place of
PVC/PES in applications where it is required that the membrane could be
stretched by applying low tension forces, for instance in tents.

4.2.4 Strain-controlled biaxial tests

As previously commented, the testing procedure for biaxial tests is cur-
rently described by few national Standards, namely MSAJ/M-02:1995 and
ASCE55-10, and, due to the absence of a widely recognised procedure, lab-
oratories and engineers have developed their own internal protocols. The
procedures are generally based on stress profiles, which reproduce the level
of prestress assumed in the design phase and/or the expected stress due to
the external loads, such as wind and snow.

In addition, some procedures prescribe a predetermined displacement
rate (see, e.g., MSAJ/M-02:1995), like it is commonly required for uniaxial
displacement driven tests. However, due to the cruciform shape, the speed
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(a) Warp (b) Fill

Figure 4.36: Stress-strain curves of a PVC/PES fabric for different warp to fill
load ratios (test F1202T2 ALR).

(a) Warp (b) Fill

Figure 4.37: Stress-strain curves of a PTFE/glass fabric for different warp to
fill load ratios (test B18059 ALR).
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(a) Warp (b) Fill

Figure 4.38: Stress-strain curves of a PVC/PES fabric for some warp to fill
load ratios additional to the ones in Figure 4.36, which are here reported in gray
(test F1202T2 ALR).

(a) Warp (b) Fill

Figure 4.39: Stress-strain curves of a PTFE/glass fabric for some warp to fill
load ratios additional to the ones in Figure 4.37, which are here reported in gray
(test B18059 ALR).
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(a) Warp (b) Fill

Figure 4.40: Stress-strain curves of a PU/PES fabric (material A) for different
warp to fill load ratios (test NTT 011 1 BX).

(a) Warp (b) Fill

Figure 4.41: Stress-strain curves of a PU/PES fabric (material B) for different
warp to fill load ratios (test NTT 010 2 BX).
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(a) Warp (b) Fill

Figure 4.42: Stress-strain curves of a PU/PES fabric (material C) for different
warp to fill load ratios (test NTT 001 A BX).

(a) Warp (b) Fill

Figure 4.43: Stress-strain curves of a PU/PES fabric (material C) for different
warp to fill load ratios (test NTT 002 A BX).
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(a) Warp (b) Fill

Figure 4.44: Stress-strain curves of a PU/PES fabric (material D) for different
warp to fill load ratios (test NTT 001 B BX).

(a) Warp (b) Fill

Figure 4.45: Stress-strain curves of a PU/PES fabric (material D) for different
warp to fill load ratios (test NTT 002 B BX).
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of the actuators is not directly related to the strain rate in the centre of the
sample. The displacements that occur at the clamps are mainly absorbed
by the arms of the specimen, with potential discordant strain between the
centre and the arms.

The tests illustrated in this Section represent an innovative contribu-
tion to the field of biaxial testing, which has been presented at the Tensinet
Symposium 2013 (Beccarelli et al., 2013). The novelty is in the type of con-
trol: these are biaxial tests in which the strain histories in a central portion
of the specimen are prescribed. This approach has the advantage that the
“loads” are applied directly on the portion of the cruciform sample that is
of interest for the measurements, because there the stress and strain fields
may be considered homogeneous. Moreover, the results obtained by such
new experimental procedure can provide further insight into the mechanical
behaviour of coated fabrics and can give valuable information in connec-
tion with membrane installation processes. For example, the knowledge of
the stress level achieved in a membrane when it is stretched by following
specific strain paths, is certainly of interest for both installation and load
analyses.

Focusing on the installation process, accurate knowledge of the material
properties is needed to estimate how much smaller the unstressed textile
panels must be with respect to their final dimensions, in order to obtain
the desired prestress. Indeed, as previously discussed in Chapter 2, pre-
stress in tensile structures is essential to ensure that the membrane, which
can carry load only by means of tensile stress, remains in tension under
all loading conditions, and to reduce deflections. In the current practise,
biaxial stress-controlled testing of samples from each roll of fabrics are car-
ried out at prestress loading to determine the percentage length reduction
(compensation factors, see Section 2.2) required in warp and fill direction
at installation (Bridgens et al., 2004b).

A simple case of installation of a flat membrane that must be fixed to
a rectangular rigid frame has been considered here (Figure 4.46). First,
the coated fabric is stretched along one of the material directions (warp
or fill) and fixed to the rigid support. Then, the membrane is stretched
parallel to the other weaving direction and fixed to the boundary frame.
Therefore, two different loading paths have been utilised: in tests of type
A (TEN 008 A and TEN 015 A in Table 4.9) the direction that is stretched
first is warp, in tests of type B (TEN 018 A and TEN 019 A in Table 4.9)
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is fill.

Figure 4.46: Imposed strain-paths (a,c) and histories (b,d) for tests of type A
and B.

A preliminary stress-controlled biaxial test (TEN 001 A in Table 4.8)
has been performed up to an established prestress level to estimate the
compensation factors. A value of 2 kN/m, which is equal to 2.5% of the
UTS in the weakest direction of the tested material, has been employed as
feasible value of prestress, according to the current design rules (see Forster
& Mollaert, 2004, p. 192-193). As shown in Figure A.12(a-b), the cruciform
sample has been loaded with five cycles from 0.1 kN/m to 2 kN/m at a
constant rate (0.1 kN/s) and using a load ratio of 1:1 between warp and fill
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direction. The resulting strain histories are plotted in Figure A.12(c): the
maximum values of warp and fill strains turned out to be equal to 0.33%
and 0.21%, respectively. It can be noticed that these values remain almost
constant for repeated load cycles. They have been employed as final values
of strain to be imposed during installation to the ideal initially unstressed
membrane panel (compensation factors).

In the strain-controlled tests (Table 4.9), a strain rate of 0.001% per
second has been adopted in both warp and fill directions, which implies
that the final strain state ("w = 0.33%, "f = 0.21%) is reached at time
t = 540 s. The actual strain profiles adopted in the experiments have been
extended in time beyond t = 540 s, by enforcing five cycles in order to
investigate the gradual stabilisation of the material behaviour (see Fig-
ures A.13 and A.16). As previously stated, the strain histories employed
for tests of type A (TEN 008 A and TEN 015 A) and B (TEN 018 A and
TEN 019 A) differentiate themselves thanks to the first loaded direction,
which is warp for type A (Figure A.13(a) and Figure A.14(a)) and fill for
type B (Figure A.15(a) and Figure A.16(a)).

For each test, deformations in the central part of the specimen and
forces at the clamps have been measured with a frequency of 2Hz. The
recording began immediately after the initial tensioning of the membrane
at a very low stress level (0.2 kN/m), which is necessary to make the sample
tight and to enable the extensometers to measure the deformation correctly.

The employed testing procedure requires a dedicated feedback control
system: the strains measured by the extensometers are compared (in real
time) to the assigned, programmed values and the loading system automat-
ically adjusts to minimise the discrepancy. This type of control is integrated
in the biaxial machine belonging to the Research Cluster on “Innovative
Textiles” (ClusTEX), at Politecnico di Milano. At present, it represents a
unicum among the facilities offered by the existing European biaxial testing
rigs.

The mentioned control system is based on the following strategy: the
strain to be imposed along each of the material directions drives the dis-
placements at the clamps of the two specimen arms aligned with the direc-
tion in point. This avoids the ambiguity linked to the fact that the strain
in one direction may be changed by means of a stretch applied in either the
same or the transversal direction (because of the Poisson’s effect).

Finally, the three clamps at the end of each arm have been made to
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have the same displacement. This implies that the corresponding forces
are slightly different; however, the effect on the stress distribution in the
central area of the specimen (where the strain are measured) is negligible.

Discussion on strain-controlled test results

Although it is common practice (Bridgens et al., 2004a; Galliot & Luchsinger,
2009) to apply a reduction coefficient to the applied stresses at the ends
of the arms in order to obtain the ones in the central area, this approach
has not been adopted for the strain-controlled biaxial tests here presented.
In the following results, stresses are evaluated from the measured forces
at the clamps, without any reduction. The approximation implied in this
choice is comparable to other uncertainties inherent in the adopted testing
procedure.

As previously illustrated, two kinds of tests, labelled A and B, have
been performed: in tests of type A (B) the specimen is first stretched in
the warp (fill) direction, while keeping a null value of the fill (warp) strain;
then, the fill (warp) direction is stretched, while keeping constant the warp
(fill) strain. Two tests of type A (TEN 008 A and TEN 015 A) and two of
type B (TEN 018 A and TEN 019 A) have been carried out, as outlined in
Table 4.9.

The obtained stress responses are shown in Figures A.13(c) to A.16(c).
Both kinds of test show a behaviour that is qualitatively the same in each
cycle, with maximum stress values that remain almost constant. The strain-
controlled linear loading in warp (fill) direction induces a nearly linear
increment of the stresses. Moreover, it can be noticed that the change of
loading direction determines a modification of the stress curves slopes: the
change in slope is evident also during unloading, and it is more marked in
the fill direction.

By comparing tests of the same type, namely Figure A.13(c) to Fig-
ure A.14(c) and Figure A.15(c) to Figure A.16(c), it may be noticed that
the obtained results in term of stresses are more variable along the fill
direction, especially during the first loading. In addition, this variability
between the measured stresses of different specimens is larger for tests of
type A. This unevenness of the results is due to the fabric weaving, char-
acterised by a greater crimp in the weft direction. Indeed, when the fill
yarns are stretched first (test of type B), the stress response is less vari-
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able, thanks to the crimp interchange, which reduces the level of crimp of
the weft yarns. The highlighted phenomenon might be even more marked
for coated fabrics that are manufactured using the Précontraint® technol-
ogy (that consists in applying the coating under tension, thus reducing the
differences between the behaviour along the principal material directions).

Figure 4.47: Warp and fill stress histories at first loading of a PVC/PES fabric
subjected to strain controlled biaxial tests of type A and B.

Figure 4.47 shows the stress responses at first loading, i.e. until time
t = 540 s. This time interval is the one corresponding to the installation
process, which starts loading the fabric from its virgin state. Experimental
results indicate that higher stresses are required to achieve the prescribed
strains if the fill direction is stretched first (test of type B). In fact, a
maximum warp stress of 2.02 kN/m and 2.08 kN/m and a maximum fill
stress of 4.14 kN/m and 3.57 kN/m have been recorded in tests TEN 008 A
and TEN 015 A; on the other hand, a maximum warp stress of 3.60 kN/m
and 3.66 kN/m and a maximum fill stress of 5.17 kN/m and 5.26 kN/m have
been recorded in tests TEN 018 A and TEN 019 A.
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Furthermore, the stress ratio between the warp and weft directions is
variable during the strain loading. The final value of such ratio represents
the final state of prestress at the completion of the installation procedure,
therefore the prestress value to be imposed in the structural analyses. It
may be observed that the mean stress ratio required in order to achieve the
prescribed maximum value of strain is:

• 0.54 in tests of type A (2.02/4.14 = 0.49 for test TEN 008 A and
2.08/3.57 = 0.58 for test TEN 015 A);

• 0.7 in tests of type B (3.06/5.17 = 0.70 for test TEN 018 A and
3.66/5.26 = 0.70 for test TEN 019 A).

Therefore, none of the type of tests considered has induced a balanced
prestress (load ratio of 1:1), which is usually the most suitable condition
for a membrane, because it is the closest to a minimal surface obtained
with a soap bubble (Otto et al., 1973; Gosling, 1992).

Anyway, if the fill direction is stretched first (tests of type B), the final
load ratio is higher, which would suggest to employ this sequence for the
installation. However, other factors should be considered in addition, to
determine the optimal sequence of tensioning to be used in the erection
(Seidel, 2009): for instance, how large are the forces required in warp and
weft direction. According to Seidel (2009), to determine the primary ten-
sioning direction, it should be considered how large the force necessary to
pull the tensioning travel is and how much the associated erection cost is.

Finally, Figures 4.48 and 4.49 display the stress-strain curves resulting
from the strain-controlled biaxial tests presented here. The first loading
curves, in both warp and fill directions, have a slope that is slightly dif-
ferent from the one of the subsequent cycles: this is reasonable, since the
crimp interchange in the material is not stabilised yet. However, one load-
ing/unloading is sufficient to reach the stabilised condition for that specific
stress level. Loading and unloading segments have the same slope, which
confirms that the material can be treated as elastic in a certain stress/strain
range, even if residual strains are show up at the end of the experiment.
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(a) TEN 008 A (b) TEN 015 A

Figure 4.48: Stress-strain curves of a PVC/PES fabric from two strain-
controlled biaxial tests of type A (TEN 008 A and TEN 015 A), where the
warp direction is stretched first.

(a) TEN 018 A (b) TEN 019 A

Figure 4.49: Stress-strain curves of a PVC/PES fabric from two strain-
controlled biaxial tests of type B (TEN 018 A and TEN 019 A), where the fill
direction is stretched first.
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5
Constitutive models for coated fabrics

Coated fabrics are composite materials that belong to the category of fibre-
reinforced materials. As described in Chapter 4, they display a quite com-
plex mechanical behaviour, which is chiefly affected by the local weaving ge-
ometry. This makes the mechanical response of these membranes not only
nonlinear, but highly dependent on the way the membrane is stretched.
Considering the close relationship between the global mechanical response
and the internal structure of fabrics, most of the available constitutive mod-
els are built starting at least from the meso-scale, which is a scale that is
intermediate between the micro- (yarns) and the macro- (coated fabric)
scales (Figure 5.1). Indeed, it is very difficult to capture the deformation
mechanisms that are typical of coated and uncoated fabrics (e.g. the crimp
interchange effect) without considering the interaction between the threads.

Although coated woven fabrics shall be considered as very complex ma-
terials, since they show high degree of anisotropy and nonlinearity, only
simple material models are often used to represent their mechanical be-
haviour in relevant numerical simulations. This is mainly due to the fact
that existing nonlinear models for fabrics require a large computational time
or, in some cases, expensive experimental tests. The mechanical behaviour
of raw and coated fabrics has been modelled with different approaches,
which can be grouped into two main categories:

• Mesostructural models : based on the fabric structure, they emphasize
the influence of local wave geometry and mechanisms on the global
behaviour. Almost always, they turn out prohibitively computation-
ally expensive, if used for the analysis of large membrane structures.
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Figure 5.1: The three scales of a reinforced composite (from Charmetant et al.,
2011).

• Continuum models : they treat fabrics as a continuum, usually by
deriving a strain-energy function or a potential energy function from
the underlying mesostructure, or sometimes using homogenization
techniques. In the current engineering design practice orthotropic
linear elastic models under the plane stress assumption are widely
used for the computational analysis of membrane structures: these
do not require large computational time, but need a lot of test data
to be calibrated and some of them are too rough to satisfactorily
describe the complex behaviour of coated fabrics.

The following subsections describe the main mechanical models devel-
oped for coated and uncoated fabrics, divided into the two categories out-
lined above. In addition, the Orthotropic Linear Elastic (OLE) model with
the plane stress assumption, which is the most widely used in the current
design practice, is then calibrated using biaxial test data on PVC/polyester
and PTFE/glass fabrics from Section 4.2. The identification of OLE model
parameters is conducted using least squares. The solutions found by means
of both classical differential approach and pattern search method are then
compared. Such a calibration highlights the already known limits of us-
ing OLE model for coated fabrics, and provides results that are useful for
comparison purposes, with respect to the new constitutive model that is
presented in the next chapter.
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5.1 Mesostructural models
Mesostructural models are based on the description of the fabric mesostruc-
ture. They describe the behaviour of a unit cell1, which should be repre-
sentative of the whole membrane. If calibrated through experimental test
data, these kind of models are usually able to satisfactorily represent the
mechanical behaviour of coated woven fabrics. Nevertheless, they require a
computational effort which looks too large for their engineering application.
In addition, all these models are too much strictly related to particular ge-
ometries and loading conditions and their extension to account for more
general conditions would probably lead to extreme complications.

The model developed by Peirce (1937) is usually cited as the first math-
ematical treatment of the mechanical behaviour of fabrics. It provides a
mathematical description of the fabric geometry, where yarns are supposed
to display two-dimensional trajectories and circular transverse cross sec-
tions (Figure 5.2). Yarns are considered as elastic, axially rigid and with-
out bending capacity. Although Peirce’s assumptions oversimplify the true
fabric response, his model allows the crimp interchange effect to be studied.

Figure 5.2: Yarn geometry adopted by Peirce (from Peirce, 1937).

Several researchers have developed models based on that by Peirce,
introducing modifications to account for the nonlinear mechanical charac-
teristics of fabrics. For instance, models that include yarn extension and
1

The unit cell is the smallest repeated unit in the fabric. For plain woven fabrics it

consists of two crossed yarns, of which half wavelength is considered.
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bending are the ones by Olofsson (1964, 1966), Freeston et al. (1967), Testa
et al. (1978), Huang (1979a,b) and Leaf & Anandjiwala (1985). Various
forms of material inelasticity (resulting from yarn and coating viscoelas-
ticity, plastic deformations and dissipative mechanisms) have been also
considered by several authors (Freeston et al., 1967; Thomas & Stubbs,
1984; Kato et al., 1997, 1999; Pargana et al., 2007). Moreover, several
nonlinear mechanical characteristics of fabrics, such as noncircular or de-
formable cross sections, different yarn waveforms (specifically polynomial),
yarn extension and bending effects, have been incorporated into a Peirce’s
geometry-based model by Sagar et al. (2003). In Sagar et al. (2003) the
deformed configuration of the fabric is then found by minimization of the
potential energy.

Concerning the yarn cross section, it is known from direct observation
that the hypothesis of being it circular is actually invalid. Peirce (1937)
considers also the case of elliptic threads, but not in a rigorous manner: the
same equations derived using circular yarns are employed and the diameter
of the circular threads is merely replaced with the minor axis of the elliptic
cross section. To reduce the errors due to approximation of the yarn ge-
ometry, alternative shapes for the yarn cross section have been proposed.
For instance, Kemp (1958) makes use of a section that is rectangular with
semi-circular ends, termed the racetrack section (Figure 5.3). Pargana et al.
(2007) and Bridgens & Gosling (2008) employ a rhombus, which provides
more accurate representation of the flat yarns used in architectural fabrics,
as claimed by Bridgens (2005).

Another key aspect of the models derived from the one by Peirce (1937)
is the yarn waveform. The yarn path is influenced by the way the contact
between yarns is modelled, as a point or as a finite contact length (Peirce,
1937). A point contact combined with negligible bending stiffness gives
rise to the family of the sawtooth models (Menges & Meffert, 1976; Stubbs
& Fluss, 1980; Pargana et al., 2007; Bridgens & Gosling, 2008): this as-
sumption enables the crimp interchange to be treated by the equilibrium of
forces, but it results in lack of geometric consistency between the warp and
fill yarns. The former type of contact is employed also by Wang (2002) and
Bridgens & Gosling (2008), who propose a sinusoidal shape for the yarn
path, in order to minimise the discrepancy between the actual and the
modelled yarn lengths, thus capturing the crimp interchange more accu-
rately. A finite contact length at yarn crossovers (Figure 5.4) is adopted by
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Figure 5.3: Racetrack yarn cross section adopted by Kemp (from Kemp, 1958).

Olofsson (1964, 1966), who developed a model with a yarn weave geometry
that is not fixed a priori, but the result of the load application on the initial
set (i.e. the configuration of the yarns in terms of crimp at the beginning
of the loading). By employing finite contacts, the yarn weaveform fits the
orthogonal yarn cross section throughout the contact length (Figure 5.5),
so that the model can be considered geometrically consistent (Boisse et al.,
2001; Hivet & Boisse, 2008; Wendling et al., 2014).

Since Pierce geometry is fairly detailed, other authors have proposed
simpler models based on the representation of yarns through truss elements
(sawtooth models). In Kawabata et al. (1973), for example, a simple pin-
joined truss geometry is used to build a series of models able to describe
biaxial, uniaxial and shear deformation of fabric membranes. The authors
demonstrated that the compressibility of yarns has a great influence on the
tensile properties of the fabric. They state that the yarn compressibility
is related not only to the crushing force, but also to the applied tension;
therefore, they model this coupled behaviour by assuming that the yarn
crushing mechanism is a function that interpolates the yarn responses under
the lowest and highest level of tension. Replacement of the smooth Peirce
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Figure 5.4: Olofsson’s fabric model with finite contact length (adapted from
Olofsson, 1964).

Figure 5.5: Geometrically consistent fabric model by Boisse et al. (adapted
from Boisse et al., 2001).
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geometry with a sawtooth profile simplifies the mathematical treatment
and makes the model more efficient, but Kawabata’s model does not look
very accurate, probably because the crushing response modelling is too
simple to capture the real material behaviour.

Another model that takes into account yarn crushing is presented in
Kato et al. (1997, 1999). Short and long term behaviour of a PTFE coated
glass fibre fabric are investigated through a nonlinear constitutive model
that considers material viscosity. More in detail, the unit cell of the fabric
is reproduced with a series of trusses (fabric lattice model, Figure 5.6),
some of them representing the yarns (active only in tension) and some rep-
resenting the coating (active both in tension and in compression). Each
truss displays a viscoelastic mechanical behaviour: trilinear for the axial
behaviour of yarns and bilinear for the crushing elements. It is shown that
the model reproduces very well the experimental stress-strain curves, de-
spite the fact that it neglects the effect of axial yarn tension upon yarn
crushing. Some considerations on the long term relaxation are presented
as well. The drawback of the fabric lattice model is that it needs mea-
surements of the geometry and knowledge of the mechanical response of
the fabric components, which are not easily obtainable. Moreover, if large
structures are modelled, the large amount of elements makes the model
computationally prohibitive.

Also in Pargana et al. (2007) the unit cell consists of a series of trusses
(Figure 5.7). Three kinds of elements are considered to model the yarns
(nonlinear elastic, frictional elements and rigid links), all having a non-
linear mechanical behaviour. An isotropic plate is then employed for the
coating. The yarn crushing is modelled by Pargana et al. (2007) with non-
linear crushing elements located at the yarn crossover point, which cause
the transverse cross section and the axial stiffness of the yarns to change. It
is shown that this model appears able to faithfully represent the main de-
formation mechanisms of fabrics, namely crimp interchange, yarn extension
and crushing, friction, coating deformation and shear.

Most of mesostructural fabric models do not account for the coating.
The presence of the coating significantly influences the fabric behaviour,
for example by enhancing the shear resistance, which is almost absent in
uncoated fabrics. In addition, it reduces crimp interchange and slippage
between yarns. As already stated, Pargana et al. (2007) model the coating
as an isotropic linear elastic plate. Another approach consists in repre-
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Figure 5.6: Fabric lattice model by Kato et al. (from Kato et al., 1999).

senting the coating by using springs (Figure 5.8) that are placed between
crossovers (Menges & Meffert, 1976; Bridgens & Gosling, 2008).

Two simplified mesostructural models are presented in Bridgens & Gosling
(2008). Both a sawtooth and a sinusoidal model are used to represent the
fabric unit cell, while springs between crossovers represent the coating. One
advantage of these models is that there is no need to know the yarn crushing
stiffness, since a constant cross-sectional area is adopted. Despite the fact
that the sinusoidal model represents the fabric geometry in a more realistic
way than the sawtooth model, it does not provide results that display the
same good correlation with test data. The authors claims that probably
this is due to the fact that the sawtooth model compensates the absence of
out-of-plane restraint provided by the coating with a shorter yarn length,
which leads to underestimate the decrimping strains. They add that also
the yarn bending stiffness, which is not considered in these models, may
induce significant effects on the scale of the unit cell. Since the models
presented in Bridgens & Gosling (2008) are not calibrated for a specific
fabric, while they try to be truly predictive of the behaviour of PTFE-glass
fibres and PVC-polyester fibres membranes in general, it is not surprising
that they cannot reproduce the coated fabric behaviour exactly, because of
the high degree of approximation. Improvements introducing the coating
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Figure 5.7: Coated fabric model proposed by Pargana (from Pargana et al.,
2007).
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Figure 5.8: Menges & Meffert’s model with springs representing the coating
(from Menges & Meffert, 1976).

out-of plane restraint and the yarn bending may be useful to obtain results
closer to the experimental data, but would inevitably complicate the model
and might make it not useful for the large amount of tests needed for the
parameter estimation.

Finally, the most recent application of mesostructural models for coated
fabrics consists in the unit cell finite element modelling (Bigaud & Hamelin,
1997; Glaessgen et al., 1996; Gasser et al., 2000; Boisse et al., 2001; D’Amato,
2001; Tarfaoui et al., 2001; Tarfaoui & Akesbi, 2001; Zhu, 2003; Durville,
2008; Chen et al., 2011). Finite elements provide a powerful tool for mod-
elling coated fabrics, because they allow for higher detail. Indeed, both the
yarn geometry (Gasser et al., 2000; Boisse et al., 2001; Durville, 2008) and
the contact between yarns (Tarfaoui et al., 2001; Tarfaoui & Akesbi, 2001)
can be faithfully modelled. Moreover, it is possible to easily represent com-
plex weaving patterns (D’Amato, 2001). The finite element approach can
be used to explore and predict the mechanical behaviour of coated fabrics
(Chen et al., 2011), without the need of expensive experimental testing;
moreover, it represents a basic feature for the homogenisation techniques
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described in the following section.

5.2 Continuum models

The pioneering works of Testa & Yu (1987) and Day (1986) represent a first
attempt to model the complex mechanical behaviour of coated fabrics. In
both articles, the shear and tensile responses are assumed to be uncoupled,
because the stresses are defined in a coordinate system whose axes coincide
with the principal material directions, namely warp and fill (or weft).

On the one hand, Testa & Yu (1987) suggest to additively split the strain
into an elastic component (due to the fibre stretching) and an inelastic
component (related to the crimp interchange). Elastic strains are derived
from a complementary strain energy function in polynomial form: the use
of the complementary energy is justified with the observation that it is more
convenient to express strains as a function of stresses, since the stresses are
varied independently in biaxial tests. An exponential evolution law for the
calculation of the inelastic strains is then provided, which is based on the
experimental evidence that crimp depends on the warp to fill load ratio
and on the load level. Moreover, shear strains are assumed to be linearly
dependent on the shear stresses by Testa & Yu (1987).

On the other hand, in the article by Day (1986) the mean stresses and
strains �a = (�w+�f )/2 and "a = ("w+"f )/2 are related to stress and strain
differences, namely ⌧ = (�w � �f )/2 and � = ("w � "f )/2. As described by
Bridgens & Gosling (2004), the biaxial tensile behaviour of coated woven
fabrics is approximated by Day (1986) by the following equations:

�a = f 1
("a) + f 2

(�) (5.1)
⌧ = f 3

("a) + f 4
(�) (5.2)

where f 1, f 2, f 3 and f 4 are four nonlinear functions, while shear stress and
strain are related by an independent linear function f 5:

�wf = f 5
("wf ) (5.3)

The five functions f 1 to f 5 are determined by fitting experimental data, e.g.
using polynomials or a linear interpolation between data points. In both
articles by Day (1986) and Bridgens & Gosling (2004) it is demonstrated
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that Day’s model is able to fit well the experimental stress-strain curves
for the load ratios employed in the definition of the five functions f 1 to f 5.
Moreover, Bridgens & Gosling (2004) try to analyse the predictive capabil-
ity of Day’s model by considering additional load ratios: in the absence of
test data, the response curves for these new load ratios are derived by linear
interpolation. The comparison of these pseudo-experimental data with the
response surfaces generated using the model shows that Day’s equations
give highly unpredictable results if load ratios other then the ones used
in the calibration are considered. Anyway, further investigation with real
experimental data is needed to asses the validity of the model proposed by
Day (1986).

Despite that the works of Testa & Yu (1987) and of Day (1986) show
that coated woven fabrics present a marked nonlinear behaviour, in the cur-
rent design practice, the most widely used continuum material model for
architectural membranes is the plane stress orthotropic linear elastic. The
main reasons for that are its numerical efficiency and the fact that it em-
ploys parameters that are compatible with the available structural analysis
software. Moreover, the lack of an extensive set of experimental data does
not facilitate the constitutive modelling of coated fabrics, which requires
further research. The fact that many articles (Blum, 2002; Forster & Mol-
laert, 2004; Bridgens & Gosling, 2004, 2010; Minami, 2006; Gosling, 2007)
describe how to fit the compliance (or stiffness) matrix to the experimental
data to obtain the material elastic constants confirms this design practice.
Prescriptions about that are provided also in the American guidelines for
tensile membrane structures (ASCE55-10) and in the Japanese guidelines
for the evaluation of elastic constants of membrane materials (MSAJ/M-
02:1995).

Besides the fact that an orthotropic linear elastic model cannot repre-
sent well the behaviour of a strongly anisotropic material, such as the one
used for architectural fabrics, another tricky aspect of fitting orthotropic
elastic models to experimental data on membranes is the symmetry of the
compliance matrix. Unconstrained fitting provides four independent elastic
parameters, i.e. two Young’s moduli and two Poisson’s ratios, which do not
satisfy the reciprocity relationship ⌫fw/Ew = ⌫wf/Ef . It is possible to force
the compliance matrix to be symmetric, but this operation causes loss of
fitting accuracy, as demonstrated by Bridgens & Gosling (2010). However,
Gosling (2007) argued that a compliance matrix not satisfying the reci-
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procity constraint is admissible, considering that coated woven fabrics are
not homogeneous, hence the obtained matrix coefficients may be regarded
as arbitrary parameters that define a best fit plane, more than elastic con-
stants with a mechanical meaning. Even if this approach provides a good
correlation with experimental data on PTFE-glass and PVC-polyester fa-
brics, nonetheless the unconstrained identification of the elastic moduli can
only be regarded as a fitting and not as a constitutive model.

As proposed by Minami (2006) and in the Japanese guidelines MSAJ/M-
02:1995, it is possible to perform a multi-step linear approximation of the
so-called response surfaces (see Figure 5.9). These are the surfaces that
the biaxial test data, consisting in orthogonal stresses (�w, �f ) and strains
("w, "f ), create in the stress-stress-strain coordinate systems (�w � �f � "w
and �w � �f � "f ). Their multi-step linear approximation is conducted
dividing them into several quadrilaterals or triangles. In each area the ma-
terial is assumed to be orthotropic linear elastic and subjected to a plane
stress state; hence, four compliance matrix coefficients can be estimated
within each zone. The main disadvantages of this method are the large
computational time and the high amount of test data required to accu-
rately describe the material behaviour. In addition to these drawbacks,
the multi-step linear approximation provides snapshots of the coated fabric
behaviour and is not suitable for computer analysis without interpolation.

In Galliot & Luchsinger (2009) a simple modification of the orthotropic
linear elastic model is proposed to describe the biaxial tensile behaviour of
PVC-coated polyester fabrics for an efficient use in finite element analysis.
Since the stress-strain behaviour of the material varies depending on the
load ratio between warp and fill directions, Young’s moduli are expressed as
linear functions of the normalized load ratios �w and �f , which are defined
as follows:

�w =

�wq
�2
w + �2

f

, �f =

�fq
�2
w + �2

f

(5.4)

The material model proposed by Galliot & Luchsinger (2009) has been
implemented in the finite element software ANSYS and a comparison of
the results with the classical linear orthotropic response shows that the
new model can better predict the mechanical behaviour of PVC-coated
fabrics, especially in the case of load ratios different from 1:1. Due to its
simplicity and efficiency, the model is particularly adequate for its use in
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Figure 5.9: Biaxial stress-stress-strain response surfaces (from Minami, 2006).
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finite element analysis of membrane structures.
Another procedure for predicting the effective nonlinear elastic moduli

of textile composites is by homogenization (Dasgupta et al., 1996; Takano
et al., 1999; Byström et al., 2000; Peng & Cao, 2000; Carvelli & Poggi, 2001;
Ivanov & Tabiei, 2001; Peng & Cao, 2002; Yu et al., 2002). A summary
of this technique is given by Takano et al. (1999), who explain that this
method is based on a hierarchical modelling of the considered material,
thus it is also called multi-scale material characterization approach. The
process is illustrated in Figure 5.10. First, the effective elastic constants of
the yarns (which are regarded as unidirectional composites) are predicted
by homogenization of the fibre properties. A unit cell (also named reference
volume) is then built to enclose the characteristic periodic pattern of the
textile composite. Numerical tests are performed on the unit cell and on a
single finite element (usually a shell element) with the same outer size of the
reference volume. By correlating the obtained force-displacement curves,
the effective nonlinear stiffness tensor of the homogenized composite can
be obtained.

The homogenization method has been successfully applied to the pre-
diction of the mechanical behaviour (Peng & Cao, 2000, 2002; Carvelli &
Poggi, 2001) and thermal properties (Dasgupta et al., 1996) of textile rein-
forced composites. Homogenization techniques guarantee convergence and
can allow for mesoscopic fracture in fibre bundles and matrix, including fila-
ment cracking, matrix cracking, debonding, and so on (Takano et al., 1999).
Despite the accuracy of the method, a huge computational cost limits its
application. Moreover, an exact knowledge of the geometrical and mechan-
ical characteristics of the representative unit cell is needed, which requires
difficult measurements with specific devices that are not always available.
As demonstrated by Byström et al. (2000), the first scale predictions, which
are the tow properties, are the most critical, because uncertainties in this
information may cause large differences in the results obtained from the
final homogenized model.

A homogenisation technique has been used also by Yu et al. (2002) to
develop a non-orthogonal constitutive model for woven fabrics reinforced
thermoplastic composites. Non-orthogonal constitutive laws take into ac-
count the effect that the modification of the angle between warp and weft
yarns induces on the material response; this aspect is particularly important
for uncoated textiles, but it still exists in coated woven membranes, even if
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Figure 5.10: Multi-scale material characterization approach (from Peng & Cao,
2002).

mitigated by the presence of the coating. In Yu et al. (2002) a structural net
composed of warp and weft fibres is considered and the matrix is supposed
to be attached to the yarns at the net intersection points. Then, stresses
are calculated by homogenization, starting from the structural parameters
and the fibre properties, while the material stiffness (relating stresses and
strains) is created using the kinematics and the force equilibrium of the
net.

A validation of the analytical model presented by Yu et al. (2002)
demonstrates that it properly accounts for the effect of the differences in
fibre strength and orientation on the anisotropic behaviour. For validation
purposes, the model was implemented as a material user subroutine (VU-
MAT) in the finite element code ABAQUS. Investigations about in-plane
shear, pure shear, uniaxial extension and 3D draping problems ware per-
fomed, with good results concerning the capability of the model to predict

138



i
i

“thesis” — 2014/10/9 — 15:35 — page 139 — #167 i
i

i
i

i
i

5.2. CONTINUUM MODELS

the material mechanical behaviour, according to the authors. However, as
stated by Peng & Cao (2005), the derivation by Yu et al. (2002) is based on
a small deformation assumption and the paper does not present the stress
distributions and characteristic force-displacement responses obtained in
the numerical analyses: therefore, further validation would be needed.

A non-orthogonal constitutive model for woven composite fabrics that is
not based on the small strain assumption is the one presented by Xue et al.
(2003). Three coordinate systems are considered by Xue et al. (2003): a
global Cartesian (i.e. orthogonal) reference frame and two local coordinate
systems, one orthogonal and having the x-axis aligned with the warp direc-
tion and one non-orthogonal, with the two in-plane directions aligned with
the warp and fill threads. The relationship between stresses and strains in
the global coordinate system is obtained with a rigid body rotation of the
material matrix, written in the local Cartesian coordinate system, which is
derived with a stress and strain analysis conducted in both the orthogonal
and non-orthogonal local coordinate systems. The nonlinear coefficients of
the material matrix are evaluated by fitting experimental data from biax-
ial and shear tests: a definition of effective strain is introduced to allow
the expression of the material elastic matrix coefficients as functions of one
variable only, without losing the biaxial interaction between the weaving
directions. A comparison between numerical results and experimental data
from a shear test on a plane weave composite sheet confirms the validity
of the model. Nevertheless, the physical meaning of the stress definition
in the non-orthogonal system is not very clear, as outlined by Peng & Cao
(2005).

An alternative non-orthogonal constitutive model for woven fabrics un-
der large deformation is presented by Peng & Cao (2005). As pointed out
by the authors, a nonlinear constitutive model based on a non-orthogonal
coordinate system is indispensable to correctly characterize the anisotropic
behaviour of fabrics during forming, since the effective elastic properties
of these materials in conventional Cartesian coordinates are very sensitive
to the fibre orientation. Moreover, woven fabrics experience large angular
variation between warp and weft during deformation. Even if architectural
membranes are less subjected to variation of the angle between the weav-
ing directions thanks to the coating, orthogonality between warp and weft
threads may be modified by shear loading; hence, the model proposed by
Peng & Cao (2005) looks still applicable.
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The material model by Peng & Cao (2005) (as the one by Xue et al.
(2003)) is based on the assumption that direct and shear stresses are un-
coupled. This results in a convenient block-partitioned elastic matrix, thus
facilitating the identification of the nonlinear matrix components by uni-
axial and bias tensile tests. The assumption of a partitioned contravariant
elastic matrix is justified by experimental evidence, which has confirmed
the uncoupling between direct and shear stresses for woven fabrics (Boisse
et al., 2001; Buet-Gautier & Boisse, 2001).

Again, in Peng & Cao (2005) the equivalent material properties are ob-
tained by fitting experimental data of tensile and bias extension tests. A
model validation is provided, by comparing numerical results with experi-
mental data of bias extension tests and shear tests. The obtained results
are quite close to the real material behaviour in the considered examples,
but the effect that changing the biaxial warp to fill load ratio has on the
deformation response was not investigated. Moreover, the model presented
in Peng & Cao (2005) does not consider the presence of a coating mate-
rial, which supplies a fundamental contribute to the shear resistance of real
architectural fabrics.

Standard continuum constitutive models are unable to capture yarn-
level-based deformations. Indeed, many of the typical aspects of the fabric
behaviour, such as crimp interchange and locking, are difficult to be mod-
elled with a continuum approach, because they are essentially due to the
yarn interaction. Parallel multiscale models (Boljen & Hiermaier, 2012),
also called mesostructurally-based analytical models (King et al., 2005), are
particularly advantageous, since they combine the robustness and simplicity
of continuum constitutive laws with the capacity of capturing some char-
acteristics that are strictly related to the kinematics of yarns. In this type
of modelling, from the deformation of an integrated kinematic model rep-
resenting the fabric mesostructure, the macroscopic response of the fabric
is derived, in terms of effective deformation gradient. Then, a continuum
constitutive model calculates the effective stress tensor.

Within the framework of parallel multiscale modelling, an approach for
developing continuum models for the mechanical behaviour of woven fa-
brics based on the mesostructure is proposed by King et al. (2005). Firstly,
it is necessary to select a geometric model for the representative unit cell,
coupled with a constitutive model of the yarns mechanical behaviour. Sec-
ondly, the fabric structural configuration is defined starting from the unit
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cell defined previously. Once the fabric configuration is known, it is related
to the macroscopic deformation by an energy minimisation method, and
it is used to calculate the loads carried by the yarns, which are then em-
ployed to estimate the macroscopic stresses. In the article by King et al.
(2005) it is demonstrated how a mesostructurally-based continuum model
can capture the effects of yarns configuration on the macroscopic reponse,
with an application to a Kevlar® plane weave fabric.

A drawback of the method described by King et al. (2005) is the huge
number of parameters involved. The configuration of the plain weave fa-
bric analysed in the article requires five parameters to be defined, but more
complicated representative geometries will have a larger number of free
parameters. As a consequence, the conditional free-energy function associ-
ated with the unit cell configuration may not have a single global minimum,
which means that a given state of macroscopic deformation corresponds to
more than one stable state at the meso-scale. Moreover, a high number of
parameters results in greater computational time, which makes its applica-
tion to the finite element analysis of large structures not convenient.

Another disadvantage of the approach discussed in King et al. (2005) is
the fact that most of the parameters are related to the internal structure
of the fabric. Therefore, they require measurements of quantities at the
meso-scale, that are not always simple to be achieved, since they need spe-
cific devices. These instruments are not always available and information
about the weaving geometry is not complete in the datasheets provided
by the producers. Thus, the difficulties that arise in the calibration of the
corresponding constitutive laws make this kind of modelling unsuitable for
structural engineering applications.

Other parallel multiscale models for fabrics are presented by Boljen &
Hiermaier (2012) and Antonietti et al. (2011). The kinematic model em-
ployed by Boljen & Hiermaier (2012) uses sixteen degrees of freedom, which
are reduced to six by introducing internal kinematic constraints. Material
parameters for three different aramid woven fabrics have been identified
and it is shown that the model is able to reproduce some specific aspects of
aramid fabrics behaviour, such as rate dependency of aramid fibres, crimp
interchange, yarns trellising and shear locking. The constitutive model
presented by Antonietti et al. (2011) is characterized by an effective strain
energy functional obtained by superposition of a matrix contribute and
two contributes related to the fibres (two families of yarns with different
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mechanical properties). The equilibrated configuration of the fabric is de-
termined by minimizing the associated strain energy function with respect
to the position of the internal nodes. It is shown that this method can
easily deal with complex textile topologies, like the tricot textile (a type of
warp knitting shown in Figure 5.11).

Figure 5.11: Tricot textile (from Antonietti et al., 2011).

In the current literature, plasticity is not often included in the modelling
of the macro-mechanical behaviour of coated woven fabrics. One among few
articles about this topic is that by Odegard et al. (2001), where a continuum
elastic-plastic constitutive law for woven fabric/polymeric matrix compos-
ites is proposed. The model is formulated within a large strain framework
and it makes use of a plane stress assumption. A scalar hardening pa-
rameter, function of the applied stress state, is introduced to determine the
plastic strain increment. The authors show that the proposed model is able
to accurately describe the nonlinear mechanical behaviour of two different
coated woven fabrics, for different biaxial stress states, using experimental
data from the literature. Nevertheless, the constitutive law presented by
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Odegard et al. (2001) displays a lot of parameters; thus, it can be very
hard to estimate their values, especially if there is not a large amount of
available experimental data.

Finally, creep behaviour is another topic that is not very popular in the
present literature about constitutive modelling of coated fabric membranes.
As pointed out by Yu et al. (2006), due to the polymeric nature of the
coating material and, in some cases, of the textile reinforcement, coated
fabrics deform gradually over time, at constant stress and temperature.
Therefore, it is extremely important to include the creep behaviour into
constitutive laws for textile reinforced composites; for example, n view of
evaluating the tension that must be applied to compensate the excessive
creep deformation after some time from the installation of the structure.
The multi-axial anisotropic creep model for coated textiles proposed by
Yu et al. (2006) is based on a three-parameter potential which is used to
derive the creep strain rate. Moreover, an associated flow rule links the
effective creep strain rate to the conjugate effective stress, as in the theory
of plasticity. Lastly, an expression that relates the creep strain rate to the
effective stress through four experimentally-determined functions completes
the creep model, enabling to calculate the proportional factor that appears
in the flow rule. It is shown that the presented model is able to reproduce
the anisotropic creep behaviour of coated polymeric textiles under uniaxial
stress states (bias tensile tests). The possibility of predicting the creep
deformation under multi-axial stress states is also discussed by Yu et al.
(2006).

5.3 Identification of Orthotropic Linear Elastic
(OLE) model parameters

Biaxial test data are often employed to estimate Young’s moduli and Pois-
son’s ratios, which are needed to model coated fabrics as an orthotropic
linear elastic material. As commented by Bridgens & Gosling (2010), this
enables the complex non-linear behaviour of coated fabrics to be approxi-
mated by parameters that are compatible with available structural analysis
software. Indeed, even if general purpose finite element software generally
includes more complex material laws, analysis of tensile structures presents
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characteristic phases (form-finding, cutting pattern generation), as illus-
trated in Chapter 2, which require tailored software, wherein only simple
material constitutive equations are often implemented.

In the hypothesis of small strains, the well-known linear elastic consti-
tutive law can be expressed as:

��� = C : """"""""" , �ij = Cijhk"hk (5.5)

where ��� and """ are the nominal stress and infinitesimal strain tensors, while
C is the fourth-order elasticity tensor. The inverse constitutive relationship
is therefore:

""" = C�1
: ��� , "ij = C�1

ijhk�hk (5.6)

where C�1 is the compliance tensor. Both C and C�1 are fully symmet-
ric (minor and major symmetries) and positive definite. Equations (5.5)
and (5.6) can be rewritten in Voigt’s notation as follows:
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Architectural coated fabrics are typically modelled in a plane stress frame-
work, so that Equations (5.7) and (5.8) become:
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Finally, coated fabrics are almost always orthotropic: the two material
directions coincide with the weaving warp (index 11) and weft (index 22)
directions. Therefore, one gets:
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where E1 and E2 are Young’s moduli in the warp and weft directions respec-
tively, ⌫12 and ⌫21 are Poisson’s ratios and G12 the in-plane shear modulus.
More in detail, ⌫12 (⌫21) represents the opposite of the fill (warp) strain
caused by a unit strain in the warp (fill) direction.

More than one method has been proposed to evaluate the elastic mod-
uli (E1, E2, ⌫12, ⌫21 and G12) from biaxial test data. Laboratorium Blum
has developed its internal testing protocol and identification method, which
are described in detail in the European Design Guide for Tensile Surface
Structures (Forster & Mollaert, 2004, pp. 305-315). The Japanese Standard
MSAJ/M-02:1995 suggests various approaches, namely the least squares,
the minimax and the multistep linear approximation methods. The least
squares approximation of biaxial test data is also prescribed by the Amer-
ican Standard ASCE55-10. At present, it has not been established yet
which one of the proposed estimation procedures meets the real structural
behaviour best, but research activity is being performed on the topic (Uh-
lemann et al., 2014).
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The determination of the elastic constants has been carried out in this
thesis according to the MSAJ/M-02:1995 Standard and following the rec-
ommendations contained in an interesting conference paper by Bridgens &
Gosling (2010), who comment on the effects of some choices on the result
of the least squares identification, which will be explained in Section 5.3.1.

5.3.1 Least squares identification of OLE model param-
eters

The least squares method is a standard method used for fitting. It consists
in minimising a function (objective or discrepancy function) that is the
sum of squared residuals, a residual being the difference between measured
data and calculated values provided by a model. The model employed in
this paragraph is the Orthotropic Linear Elastic (OLE), as suggested by
the Japanese Standard MSAJ/M-02:1995, whose constitutive relationships
have been previously recalled (Equation (5.11), in terms of stress, or Equa-
tion (5.12), in terms of strain).

As described in Section 4.2.2, during a biaxial test performed with the
procedure prescribed by MSAJ/M-02:1995, the loads are aligned with the
warp and weft directions. Since the weaving directions coincide with the
principal material directions, the responses to normal and shear stresses
are uncoupled and can be considered separately. This means that the biax-
ial test procedure described in MSAJ/M-02:1995 is specifically studied to
determine only Young’s moduli and Poisson’s ratios (E1, E2, ⌫12, ⌫21); the
shear modulus G12 can be estimated separately, by using another typology
of test, which is illustrated in the MSAJ/M-01:1993 Japanese Standard.
Hence, the following reduced forms of Equations (5.11) and (5.12) have
been employed in the identification procedure presented in this paragraph:
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The symmetry of the elasticity tensor implies that Young’s moduli and
Poisson’s ratios are not independent, rather constrained by the reciprocity
relationship:

C1122 = C2211 ) ⌫21
E2

=

⌫12
E1

(5.15)

The MSAJ/M-02:1995 Standard applies this constraint to the calculation
of the elastic moduli. Gosling & Bridgens (2008) argued that the enforce-
ment of the reciprocity constraint, which is an energetic requirement, is
not compulsory for coated fabrics, since they are not homogeneous materi-
als, but show energy losses due to frictional effects at crossovers, inelastic
yarn crushing and inelastic coating extension. Therefore, the identifica-
tion of elastic moduli should be intended as a best-fitting of biaxial test
data, more than a constitutive modelling procedure. However, Bridgens
& Gosling (2010) demonstrated that inclusion of the reciprocity restraint
only makes a small difference to the estimated elastic constant values. Since
the identification that has been carried out in this thesis aims at comparing
OLE model results to the ones of the new hyperelastic model later presented
in Chapter 6, the symmetry of the elasticity tensor has been enforced in
the following calculations.

The first step of the least squares method is the choice of the objective
function. Residuals can be written in terms of stress or of strain. In the
former case, the objective function �(���) expressed in terms of stress is:

�(���) =
NX

i=1

(�c
11,i � �m

11,i)
2
+

NX

i=1

(�c
22,i � �m

22,i)
2 (5.16)

where c stands for calculated, m for measured and N is the number of
experimental points that are used for the calibration procedure. The stress
values are evaluated with Equation (5.13), so that:

�(���) =
NX

i=1

(C1111"
m
11,i + C1122"

m
22,i � �m

11,i)
2
+

+

NX

i=1

(C1122"
m
11,i + C2222"

m
22,i � �m

22,i)
2

(5.17)

where the reciprocity constraint has been already enforced. Analogously,
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the objective function �(""") can be expressed in terms of strain as:

�(""") =
NX

i=1

("c11,i � "m11,i)
2
+

NX

i=1

("c22,i � "m22,i)
2 (5.18)

that, using Equation (5.14) to determine the calculated strains and enforc-
ing the elasticity tensor symmetry, becomes:

�(""") =
NX

i=1

(C�1
1111�

m
11,i + C�1

1122�
m
22,i � "m11,i)

2
+

+

NX

i=1

(C�1
1122�

m
11,i + C�1

2222�
m
22,i � "m22,i)

2

(5.19)

Once the objective function has been defined, the second step is its
minimisation, which determines the best fitting values of the searched pa-
rameters. The minimisation can be carried out either analytically or nu-
merically: the first approach is illustrated in the MSAJ/M-02:1995 Stan-
dard. The analytical procedure consists in evaluating the derivatives of
the objective function with respect to the parameters, and in setting these
derivatives equal to nought in order to obtain a system of equations, whose
solution renders the best fitting values of the parameters. If the objective
function is written in terms of stresses (Equation (5.17)), the final system
becomes: 8

>>>>>>>><

>>>>>>>>:

@�(���)

@C1111
= 0

@�(���)

@C1122
= 0

@�(���)

@C2222
= 0

(5.20)

where:
@�(���)

@C1111
= 2

NX

i=1

(C1111"
m
11,i + C1122"

m
22,i � �m

11,i)"
m
11,i (5.21)
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@�(���)

@C1122
= 2

NX

i=1

(C1111"
m
11,i + C1122"

m
22,i � �m

11,i)"
m
22,i+

+ 2

NX

i=1

(C1122"
m
11,i + C2222"

m
22,i � �m

22,i)"
m
11,i

(5.22)

@�(���)

@C2222
= 2

NX

i=1

(C1122"
m
11,i + C2222"

m
22,i � �m

22,i)"
m
22,i (5.23)

If the objective function is written in terms of strains (Equation (5.19)),
the final system is: 8

>>>>>>>><

>>>>>>>>:

@�(""")

@C�1
1111

= 0

@�(""")

@C�1
1122

= 0

@�(""")

@C�1
2222

= 0

(5.24)

where:
@�(""")

@C�1
1111

= 2

NX

i=1

(C�1
1111�

m
11,i + C�1

1122�
m
22,i � "m11,i)�

m
11,i (5.25)

@�(""")

@C�1
1122

= 2

NX

i=1

(C�1
1111�

m
11,i + C�1

1122�
m
22,i � "m11,i)�

m
22,i+

+ 2

NX

i=1

(C�1
1122�

m
11,i + C�1

2222�
m
22,i � "m22,i)�

m
11,i

(5.26)

@�(""")

@C�1
2222

= 2

NX

i=1

(C�1
1122�

m
11,i + C�1

2222�
m
22,i � "m22,i)�

m
22,i (5.27)

The measured stresses and strains can be collected in vectors, such that:

���m
11 = [�m

11,1 �
m
11,2 . . . �m

11,N ]
T (5.28)

���m
22 = [�m

22,1 �
m
22,2 . . . �m

22,N ]
T (5.29)

"""m11 = ["m11,1 "
m
11,2 . . . "m11,N ]

T (5.30)
"""m22 = ["m22,1 "

m
22,2 . . . "m22,N ]

T (5.31)
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In terms of these vectors, the sums in previous Equations (5.21) to (5.23)
and (5.25) to (5.27) can be restated as dot products. For instance:

NX

i=1

"m11,i"
m
11,i = """m11 · """m11 (5.32)

Therefore Equations (5.21) to (5.23) become:

@�(���)

@C1111
= 2 (C1111"""

m
11 · """m11 + C1122"""

m
22 · """m11 ����m

11 · """m11) (5.33)

@�(���)

@C1122
= 2 (C1111"""

m
11 · """m22 + C1122"""

m
22 · """m22 ����m

11 · """m22)+

+ 2 (C1122"""
m
11 · """m11 + C2222"""

m
22 · """m11 ����m

22 · """m11)
(5.34)

@�(���)

@C2222
= 2 (C1122"""

m
11 · """m22 + C2222"""

m
22 · """m22 ����m

22 · """m22) (5.35)

while Equations (5.25) to (5.27) become:

@�(""")

@C�1
1111

= 2

�
C�1

1111���
m
11 ·���m

11 + C�1
1122���

m
22 ·���m

11 � """m11 ·���m
11

�
(5.36)

@�(""")

@C�1
1122

= 2

�
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1111���
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11 ·���m

22 + C�1
1122���
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11 ·���m
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2222���
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22 ·���m

11 � """m22 ·���m
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@�(""")

@C�1
2222

= 2

�
C�1

1122���
m
11 ·���m

22 + C�1
2222���

m
22 ·���m

22 � """m22 ·���m
22

�
(5.38)

Using this compact vectorial notation, the system 5.20, which minimises
the objective function written in terms of stress, can be reformulated in a
convenient matrix form:

2

4
"""m11 · """m11 """m11 · """m22 0

"""m11 · """m22 """m11 · """m11 + """m22 · """m22 """m11 · """m22
0 """m11 · """m22 """m22 · """m22

3

5

2

4
C1111

C1122

C2222

3

5
=

=

2

4
���m

11 · """m11
���m

11 · """m22 +���m
22 · """m11

���m
22 · """m22

3

5

(5.39)
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System 5.39 can be solved analytically or numerically to get the best fitting
values (in terms of stress) of C1111, C1122 and C2222, which are the elasticity
tensor components. In addition to the already considered symmetry, the
following additional constraints have been imposed:

C1111 > 0 (5.40a)
C2222 > 0 (5.40b)
C1111C2222 � (C1122)

2 > 0 (5.40c)

which guarantee the positive definiteness of the elasticity tensor. Using the
estimated values of C1111, C1122 and C2222, Young’s moduli and Poisson’s
ratios can be obtained as follows:

E1 = C1111 �
(C1122)

2

C2222
(5.41a)

E2 = C2222 �
(C1122)

2

C1111
(5.41b)

⌫21 =
C1122

C1111
(5.41c)

⌫12 =
C1122

C2222
(5.41d)

Analogously, the system 5.24, which minimises the objective function
written in terms of strain, can be reformulated as follows:

2

4
���m

11 ·���m
11 ���m

11 ·���m
22 0

���m
11 ·���m

22 ���m
11 ·���m

11 +���m
22 ·���m

22 ���m
11 ·���m

22

0 ���m
11 ·���m

22 ���m
22 ·���m

22

3

5

2

4
C�1

1111

C�1
1122

C�1
2222

3

5
=

=

2

4
"""m11 ·���m

11

"""m11 ·���m
22 + """m22 ·���m

11

"""m22 ·���m
22

3

5

(5.42)

System 5.42 can be solved analytically or numerically to get the best fit-
ting values (in terms of strain) of C�1

1111, C�1
1122 and C�1

2222, which are the
compliance tensor components. Once again the positive definiteness of the
compliance tensor is guaranteed by imposition of the following constraints:
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C�1
1111 > 0 (5.43a)

C�1
2222 > 0 (5.43b)

C�1
1111C�1

2222 � (C�1
1122)

2 > 0 (5.43c)

which guarantee the positive definiteness of the elasticity tensor. Using the
estimated values of C�1

1111, C�1
1122 and C�1

2222, Young’s moduli and Poisson’s
ratios can be obtained as follows:

E1 =
1

C�1
1111

(5.44a)

E2 =
1

C�1
2222

(5.44b)

⌫21 = �C�1
1122

C�1
2222

(5.44c)

⌫12 = �C�1
1122

C�1
1111

(5.44d)

The MSAJ/M-02:1995 Standard recommends disregarding warp data
for the 0:1 load ratio and fill data for the 1:0 load ratio because they results
in errors if a differential solution method (e.g. the analytical approach
previously described) is used to minimise the objective function. However,
as pointed out by Bridgens & Gosling (2010), these load ratios are relevant
for membrane structure design, because anticlastic membranes becomes
highly tensioned in one direction and almost slack in the other if subjected
to extreme load conditions. To obviate the removal of part of the data,
the minimisation should be carried out with a numerical method that does
not require the computation of the objective function derivatives, e.g. the
patternsearch algorithm employed by Bridgens & Gosling (2010). Both
the differential solution (DS) and patternsearch (PS) methods have been
employed in this thesis in order to compare the discrepancy between the
results obtained with the two methods.

More in detail, the numerical minimisation has been performed using the
patternsearch algorithm available in MATLAB. Pattern search is a family
of numerical optimisation methods that do not require the gradient of the
problem to be optimised. These methods finds a local minimum by the
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following procedure, which is called polling. The search starts at an initial
point (i.e. the vector containing the initial guess of the elastic moduli
values). In the first step the current point is set coincident to the initial
point, then:

1. A pattern of points is generated, which is centered on the current
point. This is typically plus and minus the coordinate directions,
times a mesh size.

2. The objective function is evaluated at each point in the pattern.

3. If the objective function value at some point in the pattern is lower
than the value at the current point, then the poll is successful, and
the following happens:

(a) The minimum point becomes the current point.
(b) The mesh size is incremented (usually it is doubled).
(c) The algorithm proceeds from Step 1.

4. If the poll is not successful, then the following happens:

(a) The mesh size is reduced (usually it is halved).
(b) If the mesh size is below a threshold, the iterations stop.
(c) Otherwise, the current point is retained, and the algorithm pro-

ceeds from Step 1.

Using the methods previously described, calibration of the OLE model
has been performed on the experimental data from the following biaxial
tests (see Section 4.2):

• Test A: B18089 MSAJ;

• Test B: B18059 ALR;

• Test C: F702 MSAJ;

• Test D: F1202T2 ALR;

• Test E: VUB 001 A.
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As described in Section 4.2.2, tests A-B have been performed on PTFE
coated glass fabrics, while tests C-E have been performed on a PVC coated
polyester fabric. Only the first loading curves have been considered for
each load ratio. The residual strain and the prestress have been removed
at the beginning of each load ratio of interest. This is possible because the
fabric is in a known state of crimp and stress, which is the one setted by the
conditioning cycles. Therefore, the calibrated OLE model will approximate
the elastic behaviour of the membrane when it is loaded starting from this
known reference state. For each loading curve, a number of 21 experimental
points equally spaced in time have been considered. This reduction in the
number of data points with respect to the measured ones facilitates the
identification procedure, since it reduces both the time required for the
calculations and the measurement noise, without loosing information about
the stress-strain curve trend.

Test

E1 E2 ⌫21 ⌫12 RSS

[kN/m] [kN/m] [1] [1] [kN2/m2]

D
S

A 2498 1545 0.33 0.53 8.30E+03
B 2604 1825 0.46 0.66 1.13E+04
C 555 494 0.23 0.26 1.40E+02
D 970 969 0.24 0.24 7.06E+02
E 852 400 0.09 0.19 1.61E+03

P
S

A 3417 1931 0.31 0.55 3.13E+05
B 2016 1234 0.39 0.65 1.18E+05
C 442 396 0.40 0.45 5.71E+02
D 564 807 0.57 0.40 4.22E+03
E 560 346 0.28 0.45 2.64E+03

Table 5.1: Values of the elastic moduli obtained by minimising the objective
function written in terms of stress and employing both the differential solution
(DS) and pattern search (PS) methods.

Table 5.1 shows the results of the identification procedure carried out
with the objective function written in terms of stress. For each test the
table reports the estimated values of the elastic parameters and the value
assumed by the Residual Sum of Squares (RSS), which is a measure of the
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quality of fit defined as follows:

RSS =

NX

i=1

(Y c
i � Y m

i )

2 (5.45)

where N is the number of experimental points, Y m
i are the measured values

(of stress, in this case), and Y c
i are the corresponding calculated values,

which are predicted using the estimated values of the model parameters. In
the present context, RSS assumes the same value of the objective function
in Equation (5.17) when evaluated at the solution point. Both the results
obtained with the differential solution (with removal of 0:1 warp and 1:0
fill data) and patternsearch (no data removal) methods are presented.

First of all, looking at Table 5.1, it can be noticed that Young’s moduli
of PTFE/glass fabrics (tests A and B) resulted to be greater that the ones of
PVC/polyester fabrics (tests C to E). This result was expected, since glass
fibres are initially more crimped than polyester yarns (Figure 4.33) and this
causes an apparent higher tensile stiffness during the crimp interchange.
Moreover, glass is notoriously stiffer than polyester, therefore the trend
is confirmed also at large strains, when the crimp interchange has been
completed. In additon, the difference between the warp (E1) and weft
(E2) Young’s moduli is lower for tests C and D, which are performed on
PVC/polyester fabrics produced with Précontraint® technology. Indeed,
this method of production is intended to reduce the level of anisotropy of
the coated textile (see Section 4.1.1).

In Table 5.1, there are some cases of Poisson’s ratio greater than 0.5:
these are indispensable to model the strong interaction between warp and
fill threads, which causes large negative strains in the woven fabric un-
der some biaxial loads. Moreover, values of Poisson’s ratio in excess of
0.5, or even larger than 1, are common for composites (see, e.g., Sun &
Sacks, 2005; Peel, 2007; Uhlemann et al., 2014). As it is well known, such
values of this parameter are thermodinamically inadmissible for isotropic
materials, because they lead to negative strain energy under certain loads.
However, Lempriere (1968) demonstrated that the limit of Poisson’s ratio
smaller than 0.5 does not hold for orthotropic materials. In that case, the
aforementioned thermodynamic constraint, which is equivalent to the pos-
itive definitiveness of the elasticity matrix, is expressed by the following
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constraints on the elastic moduli (plane stress assumption):

E1, E2, G12 > 0 (5.46a)
|⌫21|� (E2/E1)

1/2 < 0 (5.46b)
|⌫12|� (E1/E2)

1/2 < 0 (5.46c)

0 <
1

2

[1� ⌫2
21(E1/E2)] <

1

2

(5.46d)

These constraints are all satisfied by the material parameters in Table 5.1,
hence the thermodynamic requirements are not violated.

Concerning the comparison between the differential solution and the
pattern search methods, the last one generally estimated slightly lower val-
ues of Young’s moduli and higher values of Poisson’s ratios. This result is
opposite to the one obtained by Bridgens & Gosling (2010), but in that ar-
ticle the fitting was performed by minimising an objective function written
in terms of strain, so that a direct comparison is not possible. In Brid-
gens & Gosling (2010), as well as in this thesis, the pattern search method
produced higher values of RSS, which means a worse quality of fit. How-
ever, the differential solution is only apparently better, since it improves
the correlation by neglecting part of the experimental data.

Figures 5.12 to 5.16 show the comparison between the calibrated OLE
model stress-strain curves and the experimental data. These graphics are
useful to check the quality of the fit. It can be noticed that the OLE
model can reproduce satisfactorily the mechanical behaviour of PVC coated
polyester fabrics (tests C and D), but is unsuitable to model the behaviour
of PTFE coated glass fabrics (tests A and B), which show a higher degree
of nonlinearity due to the more severe crimp of glass yarns. This fact is
confirmed by the extreme sensibility of the numerical solution (i.e. the
elastic moduli values) to the choice of the initial guess employed to start
the pattern search algorithm.

Despite the fact that the OLE model is usually easier to calibrate in the
case of PVC/polyester fabrics, Figure 5.16 seems to contradict this state-
ment. The result is confirmed by the high objective function values shown
in Table 5.1 for each identification method applied to test E. The cause is in
the testing procedure, since test E was performed without preconditioning
cycles. This highlights again the extreme importance of preconditioning to
obtain repeatable stress-strain curves and to create a unique initial refer-
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ence state (in terms of crimp and prestress) for each loading cycle that will
be employed in the calibration procedure.

Finally, Figures 5.12 to 5.16 show that the pattern search method does
not improve appreciably the quality of the fit with respect to the differential
solution: the curves with positive strain are worse approximated, while no
significant improvement in the fitting of the curves with negative strain is
obtained. This is the reason why the differential solution identification is
employed in the following chapters for the comparison with the new model
presented in Chapter 6.

Although the identification results obtained with the objective function
written in terms of strains are not reported, the same considerations can be
made. The strain approach usually results in a better fit, but is not appli-
cable for nonlinear constitutive models, which are not invertible. Since the
new model presented in Chapter 6 is nonlinear, only the stress approach
can be employed in its calibration. An attempt of using the objective func-
tion written in terms of strains was made, but it was too computationally
expensive, since an iterative algorithm was required for the computation of
the strains values at each point and for each trial value of the model param-
eters. Therefore only the OLE model calibrated with the stress approach,
which has already been presented, will be used later for comparison.
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Figure 5.12: Comparison of the cali-
brated OLE model stress-strain curves
with the experimental data [EXP]
(test A). Both differential solution
[OLE(DS)] and pattern search solu-
tion [OLE(PS)] are displayed.
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Figure 5.13: Comparison of the cali-
brated OLE model stress-strain curves
with the experimental data [EXP]
(test B). Both differential solution
[OLE(DS)] and pattern search solu-
tion [OLE(PS)] are displayed.
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Figure 5.14: Comparison of the cali-
brated OLE model stress-strain curves
with the experimental data [EXP]
(test C). Both differential solution
[OLE(DS)] and pattern search solu-
tion [OLE(PS)] are displayed.
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Figure 5.15: Comparison of the cali-
brated OLE model stress-strain curves
with the experimental data [EXP]
(test D). Both differential solution
[OLE(DS)] and pattern search solu-
tion [OLE(PS)] are displayed.
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Figure 5.16: Comparison of the cali-
brated OLE model stress-strain curves
with the experimental data [EXP]
(test E). Both differential solution
[OLE(DS)] and pattern search solu-
tion [OLE(PS)] are displayed.
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6
A new hyperelastic constitutive model

for coated fabrics at finite strains

Coated fabrics experience large deformations when subjected to uniaxial
loading. Moreover, in the biaxial tests described in Section 4.2.2, engineer-
ing strains that are higher than 2% have been measured; by considering
that the applied loads were only up to one fourth of the ultimate tensile
strength of the tested materials, it can be easily understood that coated
fabrics should be realistically modelled within a large strain framework.

This aspect is well-known in the field of forming analyses. In fact, during
the forming process, the fabric reinforcement undergoes large displacements
and large strains, both in terms of extension and of modification of the an-
gle between the yarns. Hyperelastic modelling at finite strains has been
claimed to be particularly suitable to model anisotropic large displacement
behaviour (Vidal-Sallé et al., 2014). It has been recently successfully em-
ployed in forming analyses of raw fabrics (Aimene et al., 2008, 2009; Boisse
et al., 2010; Charmetant et al., 2011, 2012).

Nevertheless, on the top of the author’s knowledge, this kind of approach
has not been applied to coated fabrics yet, at least in the structural field, as
it has emerged from the literature review on constitutive models reported
in Chapter 5. In this Chapter, a new hyperelastic constitutive model for
coated fabrics is presented.

First, the framework of nonlinear continuum mechanics is briefly sum-
marised in Section 6.1. Then, the Holzapfel-Gasser-Ogden (HGO) hypere-
lastic constitutive model for soft tissues, which is based on Spencer’s theory
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for strongly anisotropic solids (described in Section 6.2), is chosen as suit-
able to model coated woven fabrics mechanical behaviour. Details about
HGO model are provided in Section 6.3. After that, HGO model is modi-
fied, to account for the strong interaction between warp and fill directions
due to the weaving, and the effects of such modification are illustrated
(Section 6.4). Finally, in Section 6.5, the parameters of the new proposed
model are estimated for different materials, through the use of experimental
biaxial test results from Section 4.2.2.

6.1 Nonlinear continuum mechanics framework

In this section a framework of continuum mechanics at large strains is briefly
presented in order to introduce the notation to be used subsequently. For
a more extensive treatment of this topic the reader is referred e.g. to the
books of Holzapfel (2000), Ogden (2003) and Gurtin et al. (2010).

6.1.1 Kinematics and strain measures

A body B embedded in a three-dimensional Euclidean space is consid-
ered (Figure 6.1). According to the continuum or macroscopic approach,
a body B is conceived as a continuous (or at least piecewise continuous)
distribution of matter in space and time and is composed by a set of parti-
cles P 2 B, which are named material points. The position of each particle
in the Euclidean space can be described by means of a position vector,
whose components are expressed with respect to a reference frame: this
consists in an orthonormal right-handed basis, centered at a fixed origin O,
whose unit basis vectors are labeled ei, i = 1, 2, 3.

At time t = 0 the considered body occupies a region ⌦0, named initial
configuration. The initial configuration of a body is usually assumed to be
the undeformed or reference (fixed) configuration. Then the body moves
from ⌦0 to occupy a region ⌦ at time t: this is named current or deformed
configuration. Consequently, the generic particle P 2 B moves from the
point described by the reference position vector X to the one described by
the current position vector x. The two position vectors can be expressed as
X = XIEI and x = xiei, where XI and xi are the material (or referential)
and the spatial (or current) coordinates, respectively. More in general,
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6.1. NONLINEAR CONTINUUM MECHANICS FRAMEWORK

Figure 6.1: Configuration and motion of a continuum body (from Holzapfel,
2000).

all the quantities that are referred to the reference configuration are called
material (Lagrangian description of motion), whereas all the quantities that
are expressed with respect to the current configuration are named spatial
(Eulerian description of motion). When possible, upper case letters will be
employed for material quantities and lower case letters for spatial quantities.
For the sake of simplicity, the same reference frame is employed in the
following for both the referential and current configurations (Ei = ei), so
that X = XIEI = XIei.

The so called motion of body B is the vector field � that defines the
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spatial position x for all X 2 ⌦0 and at all times t:

x = �(X, t) , xi = �i(X1, X2, X3, t) (6.1)

Displacement, velocity and acceleration vector fields can be derived starting
from the body motion. Moreover, the motion of a body will generally
change its position and orientation, in addition to its size and shape. A
time-independent motion � is called deformation and it characterises the
change in shape and size of a deformable body.

The most important measure of deformation in Continuum Mechanics
is the deformation gradient, which is defined as follows:

F(X, t) =
@�(X, t)

@X
= Gradx(X, t) , FiI =

@�i

@XI

=

@xi

@XI

(6.2)

The deformation gradient is a second-order non-symmetric tensor, which
linearly maps a material tangent vector dX into a spatial tangent vector dx.
It is a two-point tensor as it involves both the reference and current con-
figurations, therefore it has one material coordinate index (uppercase I)
and one spatial coordinate index (lowercase i). The determinant of the
deformation gradient measures the change in volume between the reference
and the current configuration at time t. Thus, it is called volume ratio or
Jacobian determinant:

dv = J(X, t)dV (6.3)

with:
J(X, t) = detF(X, t) > 0 (6.4)

At each point X 2 ⌦0 and each time t, the deformation gradient F

admits a unique polar decomposition:

F = RU = vR , FiI = RiJUJI = vijRjI (6.5)

In Equation (6.5), U and v are unique, positive definite, symmetric ten-
sors, which are named right (or material) stretch tensor and left (or spatial)
stretch tensor, respectively. They represent a measure of the local stretch-
ing along the directions defined by their eigenvectors. R is a proper orthog-
onal two-point tensor, having properties detR = 1 and R

T
R = RR

T
= I,

which is called rotation tensor, because it represents a local rotation. The
mutually orthogonal and normalised eigenvectors of U are the material
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6.1. NONLINEAR CONTINUUM MECHANICS FRAMEWORK

principal directions of strain, which are rotated through tensor R onto the
corresponding spatial principal directions of strain, namely the mutually
orthogonal and normalised eigenvectors of v. Moreover, U and v share
the same eigenvalues, which are the principal stretches. Since the stretch
tensors are measures of pure deformation, they can be used to define strain
tensors.

While displacements are measurable, strains are calculated quantities
introduced to perform deformation analysis. Hence, several strain ten-
sors have been proposed in the literature. Every strain measure should be
objective, thus accounting for only relative lengths and angles changes, ne-
glecting rigid body movements. Strain tensors that meet this requirement
can be expressed in the Lagrangian and Eulerian description as:

⇤ = logU � = log v if n = 0 (6.6)

⇤ =

1

n
(U

n � I) � =

1

n
(v

n � I) if n 6= 0 (6.7)

where I is the second-order identity tensor. From Equation (6.7), setting
n = 2 one obtains the material Green-Lagrange strain tensor:

E =

1

2

(U

2 � I) =

1

2

(F

T
F� I) , EIJ =

1

2

(FiIFiJ � �IJ) (6.8)

where the product:

C = U

2
= F

T
F , CIJ = FiIFiJ (6.9)

is named right Cauchy-Green strain tensor. Both E and C are second-order
symmetric tensors. Again, from Equation (6.7), setting n = �2 one obtains
the spatial Euler-Almansi strain tensor:

e =

1

2

(I� v

�2
) =

1

2

(I� F

�T
F

�1
) , eij =

1

2

(�ij � F�1
Ii F�1

Ij ) (6.10)

where the product:

b = v

2
= FF

T , bij = FiIFjI (6.11)

is named left Cauchy-Green (or Finger) strain tensor. Both e and b are
second-order symmetric tensors.
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Tensor type Push-forward Pull-back

1st-order
�⇤(•)[ = F

�T
(•)[ ��1

⇤ (•)[ = F

T
(•)[covariant

1st-order
�⇤(•)] = F(•)] ��1

⇤ (•)] = F

�1
(•)]contravariant

2nd-order
�⇤(•)[ = F

�T
(•)[F�1 ��1

⇤ (•)[ = F

T
(•)[Fcovariant

2nd-order
�⇤(•)] = F(•)]FT ��1

⇤ (•)] = F

�1
(•)]F�T

contravariant

Table 6.1: Push-forward and pull-back operators.

When a Lagrangian approach is used, it is always possible to obtain the
spatial tensors associated to the material ones by means of the so called
“push-forward” operation. Analogously, when an Eulerian approach is em-
ployed, the material tensors associated with the spatial ones can be calcu-
lated with a “pull-back” operation. Table 6.1 summarises the push-forward
and pull-back operators to be applied on covariant and contravariant1 ten-
sors of first (vectors) and second order. For example, the Euler-Almansi
strain tensor can be obtained with a push-forward operation applied on the
covariant tensor E:

e = �⇤(E
[
) = F

�T
EF

�1
=

1

2

(I� F

�T
F

�1
) (6.12)

Analogously, the Green-Lagrange strain tensor can be obtained with a pull-
back operation on the covariant tensor e:

E = ��1
⇤ (e

[
) = F

T
eF =

1

2

(F

T
F� I) (6.13)

The push-forward and pull-back operations are applicable also on the stress
tensor fields presented in the following section.

Finally, a decomposition of the deformation gradient other than the one
in Equation (6.5) considers a multiplicative split of F into a dilatational
1

Notation: covariant tensors are labeled with [, whereas contravariant tensors are

labeled with ]. In the following chapters covariant strain tensors will be used in

combination with contravariant stress tensors.
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(volume-changing) and a distortional (volume-preserving) part:

F = (J1/3
I)F = J1/3

F (6.14)

where J1/3
I is associated to the volume-change deformation, while F, which

is called modified deformation gradient, is such that detF = 1 (volume-
preserving). Tensors C and b can be decomposed analogously:

C = (J2/3
I)C = J2/3

C (6.15)
b = (J2/3

I)b = J2/3
b (6.16)

where C and b are named modified right and left Cauchy-Green tensors,
respectively, and J is once again the volume ratio defined in Equation (6.3).
This split is particularly useful for materials that behave quite differently
for the bulk and shear response components. According to the definition
of Holzapfel (2000), a material for which dilational changes require much
higher external work than volume-preserving changes is called nearly in-
compressible.

6.1.2 Stress measures

In order to introduce the concepts of traction vector and stress, the de-
formable body B, whose motion has been described in the previous section,
is thought to be cut into two pieces in both the reference and current con-
figurations (Figure 6.2). Let x be a point lying on one of the two opposite
surfaces generated by the cutting in the spatial configuration ⌦. Point x

is surrounded by an infinitesimal spatial surface element ds 2 @⌦ having
outward normal n. The material quantities corresponding to x, ds and n

are X, dS and N.
Since the two parts of the body interacts, forces are transmitted across

the corresponding internal surfaces. The infinitesimal resultant force df

acting on the infinitesimal surface element can be calculated with the fol-
lowing relationship:

df = tds = TdS (6.17)

Omitting the distributed resultant couples (non-polar continuum), the Cauchy
traction vector t and the first Piola-Kirchhoff traction vector T must sat-
isfy the Cauchy’s postulate, which states that the surface traction (t or T)
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Figure 6.2: Traction vectors acting on infinitesimal surface elements with out-
ward unit normals (from Holzapfel, 2000).

at a point (x or X) depends on the surface (ds or dS) on which the point
lies only through the oriented unit normal (n or N) of the surface itself at
the considered point:

t = t(x, t, ds) = t(x, t,n) (6.18)
T = T(X, t, dS) = T(X, t,N) (6.19)

Vector T has the same direction of its spatial counterpart t, but it measures
the force per unit reference area dS.

The second-order stress tensors��� and P are defined through the Cauchy’s
theorem, which states that there exist unique ��� and P such that:

t(x, t,n) = ���(x, t)n , ti = �ijnj (6.20)
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T(X, t,N) = P(X, t)N , Ti = PiJNJ (6.21)

The spatial tensor ��� is called Cauchy (or true) stress tensor and is sym-
metric as a consequence of the balance of angular momentum: its eigenval-
ues are the principal stresses and its eigenvectors the principal directions
of stress. Moreover, its columns represent the traction vectors acting on
planes perpendicular to the reference system versors. The two-point ten-
sor P is named first Piola-Kirchhoff stress tensor and is not symmetric, in
general. Tensors ��� and P are related through the Piola transformation:

P = J���F�T , PiI = J�ijF
�1
Ij (6.22)

Many other stress tensors have been proposed in the literature, which
not always admit a physical interpretation in terms of surface traction but
show advantages when used in nonlinear analyses. Among the spatial stress
tensors, it is often convenient to work with the symmetric Kirchhoff stress
tensor ⌧⌧⌧ , which is defined as:

⌧⌧⌧ = J��� , ⌧ij = J�ij (6.23)

The pull-back operation on the contravariant tensor field ⌧⌧⌧ gives the ma-
terial second Piola-Kirchhoff stress tensor:

S = ��1
⇤ (⌧⌧⌧ ]

) = F

�1
(⌧⌧⌧ )F�T , SIJ = F�1

Ii ⌧ijF
�1
Jj (6.24)

The second Piola-Kirchhoff stress tensor is a symmetric second-order ma-
terial tensor. It is related to the first Piola-Kirchhoff stress tensor through
the following expression:

P = FS , PiI = FiJSJI (6.25)

Other definitions of stress tensors exist, which are not recalled here. The
reader is referred to the previously mentioned books by Holzapfel (2000),
Ogden (2003) and Gurtin et al. (2010) for further insight.

6.2 Constitutive theory for strongly anisotropic
solids

In Spencer (1984), a theoretical framework for the constitutive modelling
of the so-called strongly anisotropic materials at large strains is described.
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Spencer focused on composite materials that are composed by a matrix with
oriented reinforcing fibres: this results in material mechanical properties
that are highly dependent on direction. Even if in that case the source of
anisotropy has to be identified with the systematic arrangement of fibres,
the main ideas discussed by the author are applicable to strongly anisotropic
materials in general sense. Specifically, the fact that Spencer’s formulation
is based on the presence of fibres drowned in a ground substance makes
it particularly suitable to describe coated fabrics mechanical behaviour,
because these are similarly made of threads and coating.

The constitutive theory defined by Spencer (1984) treats strongly aniso-
tropic materials as an equivalent continuum. Clearly, fibre reinforced com-
posites are not continuum bodies, since it is often possible to distinguish
between matrix and reinforcement. Nethertheless, if such material is ob-
served at a different scale, namely at the macroscale, it is possible to de-
scribe it as a continuum: this approach is allowed if the fibres are systemat-
ically arranged in the matrix and if they represent a substantial part of the
composite. Again, this is what happens in coated fabrics, where the rein-
forcement consists of long threads that are weaved, thus they are arranged
in a regular pattern with very little spacing between them.

As stated above, Spencer (1984) identifies the fibres as source of anisotropy:
if the reinforcement shows one or more preferential orientations, these de-
fine the material directions of anisotropy. In the material model proposed
by Spencer (1984), each group of aligned fibres is named family of fibres
and its direction is characterized by a referential unit vector a0↵, where
↵ = 1, . . . , n denotes the family of fibres that is being considered. For in-
stance, when there is only one preferential direction (↵ = 1) the material
is transversely isotropic. However, the most common pattern for coated
fabrics presents two families of fibres, which are defined by the weaving
directions: warp (↵ = 1) and fill or weft (↵ = 2).

After a transformation described by the deformation gradient tensor F,
the current orientation of the reinforcing fibres is defined through the spatial
unit vector that is obtained with the push-forward of a0↵:

a↵ = �⇤(a
]
0↵) = F(a

]
0↵) , (a↵)i = FiJ(a0↵)J (6.26)

Vectors a↵ also provide the stretches in the directions of the fibres (i.e.
|a↵|).
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In Spencer (1984) elastic and plastic behaviour at both small and large
deformations are treated. For the sake of brevity, only the elastic large
strains approach is summarized here: the reader is referred to the original
article by Spencer (1984) for more details.

Spencer (1984) calculates the stress tensor by derivation of a strain-
energy function  with respect to the strain tensor, which means that
the modelled material is considered to be hyperelastic (or Green-elastic).
Employing a Lagrangian approach, the Helmoltz free-energy function  
per unit reference volume is defined as follows:

 =  (C,A01, . . . ,A0n) (6.27)

where C is the elastic right Cauchy-Green strain tensor defined in Equa-
tion (6.9) and A0↵ with ↵ = 1, . . . , n are n structural tensors, one for each
family of fibres, which are defined as follows:

A0↵ = a0↵ ⌦ a0↵ , (A0↵)IJ = (a0↵)I(a0↵)J (6.28)

Objectivity requires that the free-energy  remains unchanged if the
reference configuration of the fibre reinforced composite undergoes a rota-
tion through a proper orthogonal tensor1

Q. In Spencer (1984) this concept
is equivalently expressed by stating that the strain-energy  must be an
isotropic invariant of C and A0↵, with ↵ = 1, . . . , n. The requirement is
satisfied if the following equation holds:

 (C,A01, . . . ,A0n) =  (QCQ

T,QA01Q
T, . . . ,QA0nQ

T
) (6.29)

According to Spencer (1984), in order to satisfy Equation (6.29), the free-
energy must be a function of the following invariants:

I1(C) = tr(C) = C : I (6.30a)

I2(C) =

1

2

[tr(C)

2 � tr(C

2
)] (6.30b)

I3(C) = det(C) = J2 (6.30c)
I4↵(C, a0↵) = a0↵ ·Ca0↵ = C : A0↵ (6.30d)
I5↵(C, a0↵) = a0↵ ·C2

a0↵ = C

2
: A0↵ (6.30e)

1
An orthogonal tensor Q is a linear transformation satisfying the condition Qu ·Qv =
u · v for all vectors u and v. If detQ = +1, Q is said to be proper.
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I6↵�(C, a0↵, a0�) = (a0↵ · a0�)a0↵ ·Ca0� (6.30f)
I7↵�(a0↵, a0�) = (a0↵ · a0�)

2 (6.30g)

More precisely, I1, I2 and I3 are invariants of the strain tensor, while the
others are named pseudo-invariants of C and A0↵, because they describe
the properties of the fibre families and their interaction with other material
constituents. It can be easily shown that invariants I4↵ are the squares of
the stretches along the fibre directions (see Holzapfel, 2000, p. 268), while
I5↵,I6↵�,I7↵� do not display a clear physical interpretation.

Once the shape of the Helmholtz free-energy function is defined, the
constitutive equation may be derived from the Clausius-Plank form of the
second law of thermodynamics. For perfectly elastic materials and if ther-
mal effects are ignored (purely mechanical theory), such inequality degen-
erates into the following equality:

Dint = wint � ˙

 = S :

˙

E� ˙

 = 0 (6.31)

where Dint is the internal dissipation or local production of entropy, which
is required to be null for an elastic material; S is the second Piola-Kirchhoff
stress tensor, defined in Equation (6.24); ˙

E is the Green-Lagrange strain
rate, that is the material time derivative of the Green-Lagrange strain ten-
sor defined in Equation (6.8). S and ˙

E represent a work-conjugate pair pro-
ducing a rate of internal mechanical work per unit reference volume wint.
Relation C = 2E + I that holds between the right Cauchy-Green and the
Green-Lagrange strain tensors may be substituted into Equation (6.31),
giving:

Dint = S :

1

2

˙

C� ˙

 =

✓
S� 2

@ 

@C

◆
:

1

2

˙

C = 0 (6.32)

Since the increment of strain ˙

C (or ˙

E) can be chosen arbitrarily, the sec-
ond Piola-Kirchhoff stress tensor components can be derived from the free-
energy as follows:

S =

@ 

@E
= 2

@ 

@C
= 2

@ (Ii)

@Ii

@Ii
@C

, SIJ = 2

@ 

@CIJ

(6.33)

where summation over the dummy index i is implied.
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Even if the second Piola-Kirchhoff stress tensor does not admit a phys-
ical interpretation, it is often used in the formulation of constitutive equa-
tions since it is a symmetric contravariant material tensor field parameter-
ized by material coordinates. Through the inverse Piola transformation, it
is possible to find the Cauchy (or true) stress tensor ���, which has a clear
physical meaning, since its columns represent the traction vectors acting
on planes perpendicular to the reference system versors (see Section 6.1.2).
The application of this transformation to Equation (6.33) leads to:

��� = J�1
FSF

T
= J�1

F

✓
2

@ 

@C

◆
F

T , �ij = 2J�1FiI
@ 

@CIJ

FjJ (6.34)

It can be noticed that the inverse Piola transformation is equivalent to the
push-forward of the contravariant stress tensor S divided by the Jacobian
determinant J defined in Equation (6.3). Another tensor that is often used
in the Eulerian description of stress is the Kirchhoff stress tensor, which is
obtained multiplying ��� by J :

⌧⌧⌧ = J��� = F

✓
2

@ 

@C

◆
F

T , ⌧ij = 2FiI
@ 

@CIJ

FjJ (6.35)

6.3 Holzapfel-Gasser-Ogden (HGO) hyperelas-
tic constitutive model

An exisiting constitutive model that is based on Spencer’s constitutive the-
ory for fibre-reinforced materials is the one proposed by Holzapfel, Gasser
and Ogden (HGO model), which is described in many journal articles
(Holzapfel et al., 2000, 2002, 2004; Holzapfel & Gasser, 2001; Gasser &
Holzapfel, 2002; Gasser et al., 2006; Holzapfel & Ogden, 2010). This model
was proposed to describe passive mechanical response of arterial tissues,
which are composed by layers of a soft matrix material (ground substance)
reinforced by two families of fibres (collagen). Hence, within a macroscopic
framework, arterial layers may be considered anisotropic, since they show
structural properties that have strongly directional dependency. Moreover,
their anisotropy is totally due to fibres, while the ground substance may
be regarded as isotropic.
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These characteristics are very close to the ones of coated fabrics used
for membrane structure realizations and represent the main reasons why
the HGO model has been used as a starting point for the development of
the new constitutive law for coated fabrics proposed in this thesis. In this
paragraph the HGO model for soft tissues is described in detail, while the
new model for coated fabrics will be presented in the next paragraph.

Both arterial wall tissues and coated fabrics are not proper hyperelastic
materials, since residual strains are often present after loads removing. In-
deed, the first loading behaviour of both shows a high degree of variability.
Anyway, if the material is preconditioned by performing a certain number
of loading-unloading cycles, a sort of arrangement of the internal structure
occurs; as a consequence, the stress-strain relationship becomes repeat-
able (stresses and strains are uniquely related in each loading or unloading
branch of a specific cyclic process, as shown in Figure 4.35). This allows
one to treat the inelastic material as an elastic material during loading and
another elastic material during unloading. This is particulary convenient,
because thus it is possible to define a free-energy function, from which
stresses can be derived. In Fung et al. (1979) the authors name this way of
modelling pseudoelasticity and add:

“Pseudoelasticity is, therefore, not an intrinsic property of the
material. It is a convenient description of the stress-strain re-
lationship in a specific cyclic loading. By its use the description
of the very complex property of the artery is simplified ”.

6.3.1 Free-energy function

HGO model postulates the decoupling of the Helmholtz free-energy func-
tion  defined in Equation (6.27) into a volumetric (or dilational),  vol,
and an isochoric (or deviatoric, or distortional),  , part:

 =  vol(J) + (C,A01, . . . ,A0n) (6.36)

where J and C are the volume ratio and the modified right Cauchy-Green
strain tensor defined in Section 6.1.1.

The only requirement for  vol(J) is that it must be a strictly convex
function, with a unique minimum in J = 1, hence different functions has
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been employed in the literature. The shape that has been most frequently
utilised for compressible materials is the following:

 vol(J) =
1

D1

✓
J2 � 1

2

� ln(J)

◆
(6.37)

where D1 is a constant parameter that represents the compressibility of the
material, therefore it is related to the inverse of the bulk modulus and it
has the the same dimension of the inverse of a stress. If an incompressible
material (like arterial tissues) is considered instead,  vol(J) is substituted
by �p(J�1), which is a Lagrange contribution that enforces the kinematic
constraint associated with the incompressibility condition (i.e. J = 1) by
incorporating it into the strain-energy. In that case, the volumetric part
of the strain-energy  vol(J) vanishes and scalar p may be determined only
by means of equilibrium equations and boundary conditions; p represents
a workless reaction to the kinematic incompressibility constraint on the
deformation field.

Concerning the isochoric part  of the strain-energy, the HGO model
assumes an additive split into two parts, one related to the isotropic re-
sponse and the other one associated with the anisotropic response. Fibres
represent the source of anisotropy of the material, therefore the depen-
dency of the free-energy on the structural tensors A0↵ appears only in the
anisotropic term:

 =  iso(C) + aniso(C,A01, . . . ,A0n) (6.38)

As already seen in Section 6.2, frame invariance of the free-energy  
requires that it is expressed as a function of the invariants Ii defined in
Equation (6.30). More precisely,  should depend on the invariants I i,
which are evaluated using only the distortional part of the right Cauchy-
Green strain tensor. One can note that invariant I3 is constant for the
incompressibility assumption, as well as I7↵� because of the orthogonal-
ity of threads in coated fabrics. As a consequence, the deviatoric part of
Helmholtz free-energy function  may be restated in terms of invariants as
follow:

 =  iso(I1, I2) + aniso(I1, I2, I4↵, I5↵, I6↵�) (6.39)

A further simplification of the model is proposed by Holzapfel et al.
(2000), where the following reduced form of the strain-energy is considered,
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in order to minimize the number of involved parameters:

 =  iso(I1) +
nX

↵=1

 aniso(I4↵) (6.40)

Based on experimental evidences, a classical neo-Hookean model is used
by Holzapfel et al. (2000) to particularize the isotropic matrix contribution
in Equation (6.40):

 iso(I1) =
µ

2

(I1 � 3) (6.41)

where µ is a material parameter with the dimension of a stress. On the
other hand, the fibres contribution is captured with an exponential function,
which is suitable to catch the strong stiffening at large strains. More in
detail, this is the expression proposed:

 aniso(I4↵) =
k1
2k2

nX

↵=1

{exp[k2(I4↵ � 1)

2
]� 1} (6.42)

where k1 is a material parameter with the dimension of a stress and k2 is
a dimensionless parameter. They describe the mechanical behaviour of the
collagen fibres and are assumed to be the same for each family of fibres.
Since the reinforcing fibres can handle only tensile stresses, the energetic
contribute  aniso(I4↵) is activated only when the fibre stretch is greater
than zero, i.e. I4↵ > 1 (since I4↵ represents the squared stretch in the ↵th

fibre direction), otherwise it is disregarded.

6.3.2 Stress

The separation of the volume-dependent and volume-independent energy
contributions results in an additive splitting of the second Piola-Kirchhoff
stress tensor into volumetric Svol and deviatoric S stress components:

S = Svol + S (6.43)

where the volumetric stress is calculated as follows:

Svol = 2

@ vol(J)

@C
= 2

@ vol

@J

@J

@C
= 2ep @J

@C
(6.44)
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and the deviatoric stress is evaluated as:

S = 2

@ (C,A01, . . . ,A0n)

@C
= 2

@ 

@C
:

@C

@C
=

e
S :

@C

@C
(6.45)

with the constitutive equations for the hydrostatic pressure ep and the fic-
titious second Piola-Kirchhoff stress tensor e

S defined by:

ep =

@ vol

@J
, e

S = 2

@ 

@C
(6.46)

The following relations from tensor analysis (see Holzapfel, 2000, pp. 228-
229) can be employed:

@J

@C
=

1

2

JC�1 (6.47a)

@C

@C
= J�2/3PT (6.47b)

where PT is the transpose1 of the fourth-order tensor P, which is the pro-
jection tensor with respect to the reference configuration:

P = Is � 1

3

C

�1 ⌦C , PIJKL = IsIJKL � 1

3

C�1
IJ CKL (6.48)

P furnishes the physically-correct deviatoric operator in the Lagrangian
description, thus [P : (•)] : C = 0 (see, e.g., Federico, 2009).

Incidentally, the unit tensor Is in equation Equation (6.48) is the fully-
symmetric fourth-order identity tensor, which is different from the diagonal-
symmetric fourth-order identity tensor I. Is is defined such that, for every
symmetric second order tensor A

s, Is : A

s
= A

s
: Is = A

s. It can be
written in a compact tensorial form by means of two special tensor products,
the so-called tensor-up and tensor-down products: these are represented
with the symbols ⌦ and ⌦, respectively. According to Rizzi & Carol (2001),
given three second-order tensors A, B, and C, the tensor-up and tensor-
down products are defined as:

(A⌦B) : C = ACB

T (6.49)
(A⌦B) : C = AC

T
B

T (6.50)
1

The transpose AT
of a fourth-order tensor A is such that AT

IJKL = AKLIJ .
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so that, in Cartesian components:

(A⌦B)ijkl = AikBjl , (A⌦B)ijkl = AilBjk (6.51)

By using these special tensor products, the fully-symmetric fourth-order
identity tensor Is can be written as:

Is = 1

2

(I⌦I+ I⌦I) =

1

2

(I+ T) , Isijkl =
1

2

(�ik�jl + �il�jk) (6.52)

It can be noticed that the identity tensor in Equation (6.52) coincides with
the fourth-order tensor S defined in Holzapfel (2000, p. 24), which maps
any second-order tensor into its symmetric part. The tensors I and T
in Equation (6.52) are the fourth-order unit tensor and the transposition
mapping respectively, which are defined by Rizzi & Carol (2001) and in
Holzapfel (2000, p. 23) as follows:

I : A = A , T : A = A

T (6.53)

where A is a generic second order tensor. It may be demonstrated that the
identity tensor I possesses only the major symmetries, whereas the fully-
symmetric fourth-order identity tensor Is possesses all the major and minor
symmetries1.

Going back to the stress computation, by substituting Equation (6.47a)
into Equation (6.44) one obtains:

Svol = epJC�1 (6.54)

Analogously, substituting Equation (6.47b) into Equation (6.45) the fol-
lowing expression of S is obtained:

S = J�2/3e
S : PT

= J�2/3P :

e
S (6.55)

It is possible to demonstrate the equivalence e
S : PT

= P :

e
S in Equa-

tion (6.55) by expressing both e
S : PT and P :

e
S in component form. The

1
Given a fourth-order tensor A of components Aijkl, it may display three types of

symmetries: (a) Major symmetry : if Aijkl = Aklij (b) First minor symmetry : if

Aijkl = Ajikl (c) Second minor symmetry : if Aijkl = Aijlk. A is called symmetric

or diagonal-symmetric if it displays the major symmetry and fully-symmetric if it

possesses all the major and minor symmetries.
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former looks:

e
S : PT

=

eSMNPIJHK(eM ⌦ eN) : [(eH ⌦ eK)⌦ (eI ⌦ eJ)] =

=

eSMNPIJHK(eI ⌦ eJ)[(eM ⌦ eN) : (eH ⌦ eK)] =

=

eSMNPIJHK(eI ⌦ eJ)[(eM · eH)(eN · eK)] =
=

eSMNPIJHK�MH�NK(eI ⌦ eJ) =

= PIJHK
eSHK(eI ⌦ eJ) (6.56)

The latter is:

P :

e
S = PIJHK

eSMN [(eI ⌦ eJ)⌦ (eH ⌦ eK)] : (eM ⌦ eN) =

= PIJHK
eSMN(eI ⌦ eJ)[(eH ⌦ eK) : (eM ⌦ eN)] =

= PIJHK
eSMN(eI ⌦ eJ)[(eH · eM)(eK · eN)] =

= PIJHK
eSMN�HM�KN(eI ⌦ eJ) =

= PIJHK
eSHK(eI ⌦ eJ) (6.57)

In summary, by applying Equation (6.46) to the HGO model free-energy
function defined in Section 6.3.1, the following function that describes the
hydrostatic pressure ep is obtained for compressible materials:

ep =

@ vol

@J
=

1

D1

J2 � 1

J
(6.58)

whereas ep = �p is the Lagrange multiplier that enforces the incompress-
ibility constraint when an incompressible material is considered. Moreover,
the fictitious second Piola-Kirchhoff stress tensor e

S results to be the sum
of the following contributions:

e
Siso = 2

@ iso

I1

I1
@C

= µI (6.59a)

e
Saniso = 2

@ aniso

I4↵

I4↵
@C

= 2k1

nX

↵=1

{(I4↵ � 1) exp[k2(I4↵ � 1)

2
]A0↵} (6.59b)

Then, by employing Equations (6.54) and (6.55), the volumetric and
isochoric components of the second Piola-Kirchhoff stress tensor S may be
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calculated:

Svol = epJC�1 (6.60a)
Siso = µJ�2/3P : I (6.60b)

Saniso = 2k1

nX

↵=1

{(I4↵ � 1) exp[k2(I4↵ � 1)

2
]J�2/3P : A0↵} (6.60c)

Finally, the Cauchy stress tensor ���, which describes the stress in the
spatial configuration (true stress), may be estimated through Equation (6.34).
The following push-forward operations have been employed for this aim:

�⇤(C
�1
) = FC

�1
F

T
= F(F

T
F)

�1
F

T
= FF

�1
F

�T
F

T
= I (6.61)

�⇤(I) = FIF

T
= FF

T
= b (6.62)

�⇤(A0↵) = FA0↵F
T
= Fa0↵ ⌦ a0↵F

T
= Fa0↵ ⌦ Fa0↵ = A↵ (6.63)

where b is the left Cauchy-Green strain tensor defined in Equation (6.11)
and A↵ is the spatial structural tensor associated with the ↵th family of
fibres. Moreover, if a material second-order tensor A is considered, whose
correspondent spatial tensor is a, the push-forward operation applied to
the double contraction P : A may be performed as follow:

�⇤(P : A) = F(Is : A)F

T � 1

3

F

⇥
(C

�1 ⌦C) : A

⇤
F

T
=

= FA

s
F

T � 1

3

F

⇥
(A : C)C

�1
⇤
F

T
=

= FA

s
F

T � 1

3

Tr(A)FC

�1
F

T
=

= a

s � 1

3

tr(a)I =

= a

s � 1

3

(a : I)I =

= Is : a� 1

3

(I⌦ I) : a = P : a (6.64)

where A

s and a

s are the symmetric parts of A and a respectively, while
P is the spatial counterpart of P (i.e. fourth-order projection tensor with
respect to the spatial configuration reported in Equation (6.48)), which is
defined as:

P = Is � 1

3

I⌦ I , Pijkl = Isijkl �
1

3

�ij�kl (6.65)
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P defines the physically-correct deviatoric operator in the Eulerian descrip-
tion, so that [P : (•)] : I = 0 (see, e.g., Federico, 2009).

Therefore, by employing Equations (6.61) to (6.64), the Cauchy stress
tensor ��� of the HGO model results to be the sum of the following contri-
butions:

���vol = J�1
FSvolF

T
= epI (6.66a)

���iso = J�1
FSisoF

T
= µJ�5/3P : b (6.66b)

���aniso = J�1
FSanisoF

T
= 2k1

nX

↵=1

{(I4↵ � 1) exp[k2(I4↵ � 1)

2
]J�5/3P : A↵

(6.66c)

6.3.3 Elasticity tensor

The finite element solution of nonlinear initially boundary-valued problems
is usually performed by solving a series of linearised equations through the
use of iterative solution techniques, e.g. of Newton’s type. This solution
strategy requires the linearisation of the material constitutive law in the
neighbourhood of a known configuration and it is based on the assumption
that small displacements from a known configuration are governed by the
so-called tangent behaviour of the material. Within this framework, the
elasticity tensor or tensor of the tangent moduli, describes how infinitesimal
variations of the strain affect the stress tensor. In spite of its name, the
elasticity tensor can be defined for both elastic and inelastic materials.

According to Holzapfel (2000), to determine the elasticity tensor in the
material description the following total differential may be considered:

dS = 2

@S(C)

@C
:

1

2

dC = C :

1

2

dC (6.67)

where the following definition of fourth-order elasticity tensor has been
introduced for the material description:

C = 2

@S(C)

@C
, CIJKL = 2

@SIJ

@CKL

(6.68)

By using the Green-Lagrange strain tensors E = (C�I)/2, Equation (6.68)
may be reformulated as follows:

C =

@S(E)

@E
, CIJKL =

@SIJ

@EKL

(6.69)

183



i
i

“thesis” — 2014/10/9 — 15:35 — page 184 — #212 i
i

i
i

i
i

CHAPTER 6. A NEW HYPERELASTIC CONSTITUTIVE MODEL FOR COATED
FABRICS AT FINITE STRAINS

It can be noticed that C possesses all the minor symmetries (i.e. it is
symmetric in its first and second pairs of indexes), thanks to the symmetries
of the right Cauchy-Green tensor C and of the second Piola-Kirchhoff stress
tensor S. As pointed out by Holzapfel (2000), this symmetry condition
holds for all elastic materials (not only for the hyperlastic ones), because
it is independent of the existence of a strain-energy function.

If a hyperelastic material is considered, the stress tensor S is obtainable
from the free-energy derivation, which is performed by employing Equa-
tion (6.33). Thus also the elasticity tensor can be derived from the strain-
energy  :

C = 4

@2
 (C)

@C@C
, CIJKL = 4

@2
 

@CIJ@CKL

(6.70)

In this case, C possesses also the major symmetry, which is therefore equiv-
alent to the existence of a strain-energy function.

Finally, the elasticity tensor in the spatial description may be obtained
with the following push-forward operation of C:

C = �⇤(C) = F : C : FT , Cijkl = FiAFjBFkCFlDCABCD (6.71)

where the use of the fourth order tensors F = F⌦F and FT
= F

T⌦F

T

permits a convenient coordinate-free expression.
Other details on HGO model may be found in Holzapfel et al. (2000,

2002, 2004), Holzapfel & Gasser (2001), Gasser & Holzapfel (2002), Gasser
et al. (2006), Holzapfel & Ogden (2010).

6.4 A modified HGO model for coated fabrics

It has been largely proved by several authors that the HGO model discussed
in Section 6.3 is able to describe the hyperelastic (or pseudoelastic) mechan-
ical behaviour of soft tissues, like blood vessels. However, a large number
of applications may be found in industry and structural engineering, when-
ever composite materials with strongly direction-dependent properties due
to continuously distributed fibre reinforcement are employed. Typical ap-
plications are sporting goods construction, lightweight wheelchairs real-
ization, prosthesis construction, automobiles and planes building, musical
instruments realization and so on.
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This kind of strongly anisotropic behaviour characterises also coated
fabrics that are used in membrane structures and textiles façades. The
decoupling of stress into an isotropic contribution related to the matrix
and an anisotropic contribution due to the fibres is particularly suitable to
describe PVC coated polymeric fabrics and PTFE coated glass fabrics, the
materials that are most widely used in these two applications; yet, HGO
model does not take into account the interaction between yarns arising
from weaving, which has overall a strong influence on the mechanical re-
sponse of these materials. The modification of HGO model presented in
this paragraph aims at capturing this fibre interaction and at formulating
a new predictive constitutive law for coated fabrics.

6.4.1 Free-energy function

The first difference between the modified HGO model proposed in this
thesis and the original version by Holzapfel et al. (2000) is in the part of the
free-energy function that represents the fibre contribution. Coated fabrics
have two families of orthogonal fibres, warp and weft, but these are not
mechanically equivalent, as widely explained in Chapter 4. Instead, warp
yarns are stiffer than weft/fill yarns, because of the weaving process, which
acts as a sort of pretension of warp threads and makes them less crimped.
As a result, parameters k1 and k2 of HGO model cannot be the same for
warp and weft yarns. Indeed, HGO model has been yet formulated in a
more general form, with different values of the fibre parameters, for instance
in application to the human cornea modelling (Pandolfi & Manganiello,
2006; Pandolfi & Holzapfel, 2008). By using labels 1 and 2 to denote the
warp and fill direction respectively, Equation (6.42) becomes:

 aniso =

2X

↵=1

k1↵
2k2↵

{exp[k2↵(I4↵ � 1)

2
]� 1} =  1 + 2 (6.72)

where:

 1 =
k11
2k21

{exp[k21(I41 � 1)

2
]� 1} (6.73a)

 2 =
k12
2k22

{exp[k22(I42 � 1)

2
]� 1} (6.73b)
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Analogously to HGO model, it has been chosen to deactivate the aniso-
tropic energetic contributions  1 and  2 when the correspondent family
of fibres experiences negative stretches, i.e. when I4↵ < 1. This is equiva-
lent to substitute the terms (I4↵� 1) in Equation (6.72) with the following
function:

f(I4↵) = H(I4↵ � 1) · (I4↵ � 1) =

(
I4↵ � 1 if I4↵ � 1

0 if I4↵ < 1

(6.74)

where H(I4↵�1) is the Heaviside step function. The reason for this assump-
tion is that the reinforcing fibres can handle only tensile stresses, because
their crimp increases if they are compressed. Therefore the contribution of
the yarns to the stiffness of the composite is null if they are not stretched.

A more substantial modification to the HGO model is the introduction
of a new energy term ( 12), which tries to capture the interaction between
the fibres. Due to the weaving, the tensile behaviour of warp (fill) threads is
modified by the application of a load in the transverse fill (warp) direction.
For example, if a load is applied along the fill direction, the crimp level
of fill yarns gradually decreases; that reduction of crimp in the transversal
direction causes an increasing of crimp in the warp direction (crimp inter-
change), which results in a reduction of longitudinal stiffness. Therefore,
the greater is the transversal load, the larger will be the stress experienced
by the longitudinal yarns at an arbitrary fixed value of stretch.

The just described mechanical behaviour, which is a direct consequence
of the crimp interchange between the weaving directions, would require a
series of ad hoc tests to be deeply explored. For instance, several uniaxial
tensile tests could be performed at different arbitrary fixed levels of stretch
in the direction that is transverse to the loading axis. This series of tests
should be repeated for both warp and weft directions. The use of a cruci-
form sample could help to obtain a uniform stress state in the central part of
the specimen. The proposed procedure would require displacement control,
which may easily lead to the breaking of the sample due to propagation of
the slits in its arms, therefore a system for non-contact strain measurement
is highly recommended, e.g. Digital Image Correlation (DIC). Moreover,
the DIC could be useful to obtain the actual values of strain (or stretches) in
the central square of the cross, which can be widely different from the ones
measured at the clamps. Thanks to the completeness of the data provided
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by this full-field measurement technique, DIC is increasingly employed for
the characterization of anisotropic materials (see, e.g., Garbowski et al.,
2011; Maier et al., 2013).

Because of the high demand of material needed and of the absence
of a non-contact strain measurement system, which will be added to the
biaxial machine available at Politecnico di Milano only later, it has not
been possible to perform the described tests. Therefore, the analytical
law for the additional energy term that describes the fibre interaction has
been formulated empirically, by basing it on a simple observation, which is
discussed further on.

The interaction between fibers due to crimp interchange is equivalent to
some extent to a nonlinear Poisson’s effect. Indeed, a load applied in one
direction causes an increase of crimp in the transversal direction, which is
equivalent to an apparent negative strain. If a biaxial loading is considered,
where the forces are applied along the weaving directions, it is possible to
derive a small strain approximation of the original HGO model, which
looks: 

�11

�22

�
=


4µ 2µ
2µ 4µ

� 
"11
"22

�

| {z }
Matrix

+


4k11 0

0 4k12

� 
"11
"12

�

| {z }
Fibres

(6.75)

as it will be demonstrated in Section 6.5. By observing Equation (6.75), it
is easy to understand that the Poisson’s effect is completely assigned to the
matrix (coating), since the off-diagonal terms of the elastic matrix contain
only parameter µ.

Such characteristic of the original HGO model represents a big limita-
tion in its application to coated woven fabrics modelling. Thanks to the
weaving, the Poisson’s effect in these materials is extremely emphasised,
because of the interaction between the yarns. Therefore, by attributing all
the transverse interaction to parameter µ, an overestimation of the coating
axial stiffness 4µ is obtained. As a consequence, the initial stiffnesses of
the yarns (i.e. 4k11 and 4k12) are underestimated.

A modification of the HGO model is here proposed, which aims at over-
coming the aforementioned issues by introducing in the elastic matrix an
off-diagonal term attributed to the fibres. Since the model that is presented
in this thesis is hyperelastic, the stresses must be obtained through deriva-
tion from a free-energy function, as illustrated in Section 6.3. Therefore, a
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new strain-energy term  12 has been added to capture the yarn interaction.
The idea that has been used to find a function for the additional strain-

energy term  12 is similar to the one employed by (Milani & Nemes, 2004)
to model the fibre-matrix interaction, even if the solution proposed in this
thesis has been thought and developed independently. In that case, the
authors created the following energy term:

 int =
m

2

(I1 � 1)| {z }
Matrix

[(I41 � 1) + (I42 � 1)]| {z }
Fibres

(6.76)

where the matrix and fibres contributions were multiplied. In the present
context, a suitable form for the new energy term is the following:

 12 = k3 (I41 � 1)| {z }
Warp fibres

(I42 � 1)| {z }
Fill fibres

(6.77)

which multiplies the warp and fill fibre contributions.
It is underlined that the proposed form of the energy term  12 respects

the condition to be null in the unstrained reference configuration, where
I41 = I42 = 1. Moreover, by employing  12 in Equation (6.77), the small
strain approximation of the modified HGO model for plane stress biaxial
loading, which will be derived in Section 6.5, becomes:


�11

�22

�
=


4µ 2µ
2µ 4µ

� 
"11
"22

�

| {z }
Matrix

+


4k11 4k3
4k3 4k12

� 
"11
"12

�

| {z }
Fibres

(6.78)

where the new off-diagonal term 4k3 associated to the yarns has appeared.
Figure 6.3 represents the shape assumed by the new energy term. The

function has been adimensionalised and plotted for arbitrary fixed values
of the stretch ratio �1/�2. By looking at Figure 6.3(a), which represents
the behaviour in warp direction, it may be noticed that the new energy
term vanishes in the unstrained configuration (i.e. for �1 = 1). In ad-
dition, when the warp yarns are stretched (�1 > 1), the interaction terms
diminishes if the stretch ratio increases (direction of the red arrow). On the
other hand, when the warp yarns experience negative strains (�1 < 1), the
interaction term is present, but its magnitude is limited: this behaviour is
close to the physics of the problem, because the threads can increase their
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level of crimp only up to a certain limit (asymptotic value), after that the
crimp interchange effect does not increase further. Figure 6.3(b) shows an
analogous behaviour in fill direction.
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(a) Warp direction
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(b) Fill direction

Figure 6.3: Shape of the new interaction energy term 12 for increasing values of
the stretch in warp and fill direction: the adimensionalised function is represented
for arbitrary fixed values of the stretch ratio �1/�2 (red arrows indicate the
direction of increasing values for this ratio).

The adopted  12 function (Equation (6.77)) results in the following
deviatoric contribution to the second Piola-Kirchhoff stress tensor, which
is obtained by derivation, according to Equations (6.46) and (6.55):

S12 = J�2/3P :

e
S12 = J�2/3P :

⇥
2k3(I42 � 1)A01 + 2k3(I41 � 1)A02

⇤

(6.79)
One may note that the effect of a (squared) stretch in the fill direction (i.e.
I42) on the warp yarns has been introduced in the warp stress contribution
(tensor A01) through the quantity 2k3(I41�1). Analogously, the effect of a
(squared) stretch in the warp direction (i.e. I41) on the fill yarns has been
introduced in the fill stress contribution (tensor A02) through the quantity
2k3(I41 � 1).

A plot of these two stress terms is shown in Figure 6.4. This illustrates
the effect in terms of stress variation of a stretch applied in the transversal
direction. If the transversal stretch is � = 1, no stress is added to the longi-
tudinal direction, because the fibre interaction due to crimp interchange is
not active. If the transversal stretch is of tension (� > 1), an increment of
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the stress in the longitudinal direction is recorded, which grows proportion-
ally to the transversal stretch itself, because the crimp in the longitudinal
direction is trying to increase against the stretch due to the applied tensile
load. On the opposite side, if � < 1, the longitudinal stress decreases.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
!2

!1

0

1

2

Λ2

S#
1

2
,1

1
!

2
k

3

(a) Warp stress

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
!2

!1

0

1

2

Λ1

S#
1

2
,2

2
!

2
k

3

(b) Fill stress

Figure 6.4: Plots of the warp and fill adimensionalised stress variation due to
the fibre interaction, i.e. (I42 � 1) and (I41 � 1).

In summary, the free-energy function adopted for the modified HGO
model is the following:

 =  vol + iso + 1 + 2 + 12 (6.80)

It is the sum of several contributions, namely: the volumetric ( vol), the
isotropic due to the matrix ( iso), the anisotropic due to the warp fibres
( 1), the anisotropic due to the fill fibres ( 2) and the new term that
captures the interaction between the two families of fibres ( 12).

The above mentioned contributions are particularised as follows:

 vol =
1

D1

✓
J2 � 1

2

� ln(J)

◆
(6.81a)

 iso =
µ

2

(I1 � 3) (6.81b)

 1 =
k11
2k21

{exp[k21f(I41)2]� 1} (6.81c)

 2 =
k12
2k22

{exp[k22f(I42)2]� 1} (6.81d)

 12 = k3(I41 � 1)(I42 � 1) (6.81e)
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where f(I4↵) is the function defined in Equation (6.74). Then, the strain
energy depends on nine parameters: D1 is a constant that has the same di-
mension of the inverse of a stress; µ, k11, k12 and k3 are material parameters
with the dimension of a stress; k21 and k22 are dimensionless constants.

If an incompressible material is considered, the volumetric part  vol(J)
of the free-energy (Equation (6.81a)) vanishes and it is substituted by
�p(J � 1), which is a Lagrange contribution that enforces the kinematic
constraint associated with the incompressibility condition (i.e. J = 1). In
that case, scalar p represents a workless reaction to the kinematic incom-
pressibility constraint on the deformation field and may be determined only
by means of equilibrium equations and boundary conditions.

The materials that are analysed in this thesis has been modelled as
incompressible. Indeed, it is not easy to establish if coated fabrics em-
ployed in tensile structures are incompressible or not, because they are
used as membranes, therefore measurements of the out of plane behaviour
are not easily obtainable. The existence of this issue is confirmed by the
fact that existing constitutive models for coated fabrics are based on op-
posite assumptions: for instance Xue et al. (2003) considers the material
as incompressible, while Galliot & Luchsinger (2009) do not. Nevertheless,
according to the authors’ knowledge of the literature about the topic, there
is currently no demonstration that helps to assume a definitive position on
incompressibility of coated fabrics.

However, some general considerations can be made about the volumet-
ric behaviour of coated fabrics. Unlike what happens in raw fabrics, where
during tensile loading the quantity of air inside the yarns diminishes, lead-
ing to a reduction of the total volume, in coated fabrics the matrix prevents
this effect. As a consequence, the threads of a coated fabric display changes
in their shape that are extremely larger than their changes in volume. This
is also the reason why most of the meso-scale constitutive models assume in-
compressibility of the yarns (see, e.g., Jeon et al., 2003; Bridgens & Gosling,
2008). In addition, polymers in general, therefore also the PVC and PTFE
that are employed to coat architectural fabrics, are very similar to a liq-
uid, because they are made of densely packed monomers. This means that
they can hardly change their volume, while they can easily change their
shape. According to the ABAQUS User’s Manual, fibre-reinforced elas-
tomers have very little compressibility compared to their shear flexibility,
and, in applications where these materials are not highly confined, the de-
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gree of compressibility is typically not crucial. In conclusion, the materials
that are analysed in this thesis has been reasonably modelled by enforcing
incompressibility, even if a more rigorous assessment of this property would
be needed.

Finally, a difference between the modified HGO model here presented
and its original version is related to the fact that the reference configuration
that is created with the preconditioning cycles in a biaxial test is not stress-
free. This is because the present model aims at reproducing the behaviour
of an in situ fabric, which is always prestressed to avoid wrinkling, slack-
ening or excessive tension and to providing the geometric stiffness that is
sufficient to carry environmental loads. To account for this, all the stresses
evaluated with the present model, hence by derivation of the free-energy,
have been considered to be increments with respect to a known initial stress
field.

6.4.2 Stress

As illustrated in Section 6.3, the second Piola-Kirchhoff stress tensor S

can be obtained by deriving the strain energy function in Equation (6.80)
with respect to the right Cauchy-Green strain tensor C. In the case of
the modified HGO model here presented, it is the sum of the following
contributions:

S = Svol + Siso + S1 + S2 + S12 (6.82)

First of all, it is necessary to evaluate the hydrostatic pressure ep and the
fictitious second Piola-Kirchhoff stress tensor e

S, which have been defined
in Equation (6.46). The former is equal to:

ep =

@ vol

@J
=

1

D1

J2 � 1

J
(6.83)

whereas ep = �p is the Lagrange multiplier that enforces the incompressibil-
ity constraint when an incompressible material (J = 1) is considered. The
fictitious second Piola-Kirchhoff stress tensor is the sum of the following
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terms:

e
Siso = 2

@ iso

I1

I1
@C

= µI (6.84a)

e
S1 = 2

@ 1

I41

I41
@C

= 2k11f(I41) exp[k21f(I41)
2
]A01 (6.84b)

e
S2 = 2

@ 2

I42

I42
@C

= 2k12f(I42) exp[k22f(I42)
2
]A02 (6.84c)

e
S12 = 2

@ 12

I41

I41
@C

+ 2

@ 12

I42

I42
@C

= 2k3(I42 � 1)A01 + 2k3(I41 � 1)A02

(6.84d)

where f(I4↵) is the function in Equation (6.74), which deactivates the fibre
contribution when the yarn is compressed.

Then, by employing Equations (6.54) and (6.55), it is possible to par-
ticularise the stress contributions in Equation (6.82) as follows:

Svol = epJC�1 (6.85a)
Siso = µJ�2/3P : I (6.85b)
S1 = 2k11f(I41) exp[k21f(I41)

2
]J�2/3P : A01 (6.85c)

S2 = 2k12f(I42) exp[k22f(I42)
2
]J�2/3P : A02 (6.85d)

S12 = 2k3(I42 � 1)J�2/3P : A01 + 2k3(I41 � 1)J�2/3P : A02 (6.85e)

It is here recalled that P is the fourth-order projection tensor with respect
to the reference configuration, which has been defined in Equation (6.48).

Finally, the Cauchy stress tensor ��� of the modified HGO model may be
estimated as illustrated in Section 6.3.2 for the original HGO model. By
employing Equations (6.61) to (6.64), it is possible to evaluate the Cauchy
stress additive contributions through the push forward of the second Piola-
Kirchhoff stress tensor S:

���vol = J�1
FSvolF

T
= epI (6.86a)

���iso = J�1
FSisoF

T
= µJ�5/3P : b (6.86b)

���1 = J�1
FS1F

T
= 2k11f(I41) exp[k21f(I41)

2
]J�5/3P : A1 (6.86c)

���2 = J�1
FS2F

T
= 2k12f(I42) exp[k22f(I42)

2
]J�5/3P : A2 (6.86d)
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���12 = J�1
FS12F

T
= 2k3(I42 � 1)J�5/3P : A1 + 2k3(I41 � 1)J�5/3P : A2

(6.86e)

where it is recalled that P is the fourth-order projection tensor with respect
to the spatial configuration, which has been defined in Equation (6.65).

In addition, if an incompressible material is considered, the second
Piola-Kirchhoff and the Cauchy stress tensors may be written in a simplified
form. The former, whose components have been defined in Equation (6.85),
becomes:

S = �pC�1
+

Matrixz}|{
µI +

2

64

Warp fibresz }| {
2k11f(I41) exp[k21f(I41)

2
] +

Fibre interactionz }| {
2k3(I42 � 1)

3

75A01+

+

2

4
2k12f(I42) exp[k22f(I42)

2
]| {z }

Fill fibres

+ 2k3(I41 � 1)| {z }
Fibre interaction

3

5
A02 (6.87)

while the latter, which is the sum of the components in Equation (6.86), is
simplified as follows:

��� = �pI+

Matrixz}|{
µb +

2

64

Warp fibresz }| {
2k11f(I41) exp[k21f(I41)

2
] +

Fibre interactionz }| {
2k3(I42 � 1)

3

75A1+

+

2

4
2k12f(I42) exp[k22f(I42)

2
]| {z }

Fill fibres

+ 2k3(I41 � 1)| {z }
Fibre interaction

3

5
A2 (6.88)

It is here recalled that the stresses evaluated by means of Equations (6.87)
and (6.88) are intended as increments from an initial prestress field, which
is considered to be known.

6.5 Identification of the modified HGO model
parameters and preliminary validation

In this Section, the modified HGO model presented in the previous Sec-
tion 6.4 is calibrated by using the biaxial test data on PVC/polyester and
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8
><

>:

x1 = �1X1

x2 = �2X2

x3 = �3X3 =
1

�1�2
X3

Figure 6.5: Kinematical description of a planar biaxial test (pure homogeneous
deformation, incompressible material).

PTFE/glass fibres from Section 4.2. The results are then compared with the
ones obtained in Section 5.3, where the Orthotropic Linear Elastic (OLE)
model parameters were identified from the same test data. Finally, a first
validation is presented in the last part of this Section, where stress-strain
curves that have not been used in the calibration process are employed to
check the predictive capability of the new model.

First of all, it is necessary to particularise the material stress response for
a biaxial test, of which a simple geometric description is given in Figure 6.5.
The load is applied along the fibre directions, namely a01 = [1 0 0]

T (warp)
and a02 = [0 1 0]

T (fill or weft), which correspond to the principal axes of
stretch. If the attention is restricted to the central part of the cruciform
specimen, the test represents a case of pure deformation, because the strain
magnitude does not vary with position and the principal axes of stretch do
not vary in direction relative to an inertial frame either with strain or with
position. Moreover, it has been widely demonstrated (Reinhardt, 1976;
Bridgens, 2005; Galliot & Luchsinger, 2009) that the use of a sample with
arms creates an almost homogeneous state of deformation in the central
area, where the strain measurements have been performed.

Then, the matrix form of the deformation gradient tensor F is diagonal,
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with diagonal elements being the principal stretches:

F =

2

4
�1 0 0

0 �2 0

0 0 �3

3

5 (6.89)

Since coated fabrics for tensile structures have been considered incom-
pressible in this thesis, the enforcement of the incompressibility constraint
J = detF = �1�2�3 = 1 results in the following form of the deformation
gradient:

F =

2

4
�1 0 0

0 �2 0

0 0 ��1
1 ��1

2

3

5 (6.90)

Once the components of the deformation gradient F have been defined,
it is possible to evaluate the left and right Cauchy-Green tensors, which
read, according to Equations (6.9) and (6.11):

b = FF

T
=

2

4
�2
1 0 0

0 �2
2 0

0 0 ��2
1 ��2

2

3

5
= F

T
F = C (6.91)

In addition, the structural tensors in the material configuration, which have
been defined in Equation (6.28), look:

A01 = a01 ⌦ a01 =

2

4
1 0 0

0 0 0

0 0 0

3

5 (6.92)

A02 = a02 ⌦ a02 =

2

4
0 0 0

0 1 0

0 0 0

3

5 (6.93)

so that, according to Equation (6.63), their corresponding spatial counter-
parts are:

A1 = Fa01 ⌦ Fa01 =

2

4
�2
1 0 0

0 0 0

0 0 0

3

5 (6.94)

A2 = Fa02 ⌦ Fa02 =

2

4
0 0 0

0 �2
2 0

0 0 0

3

5 (6.95)
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As a consequence, the pseudo-invariants I41 and I42 assume the following
expressions:

I41 = C : A01 = tr(A

T
01C) = �2

1 (6.96)
I42 = C : A02 = tr(A

T
02C) = �2

2 (6.97)

where the relationship C = C, which holds for the incompressibility as-
sumption, has been used.

By employing the estimated quantities, the Cauchy stress tensor can be
evaluated through Equation (6.88). In the present context (biaxial test),
the true stress tensor is diagonal and its only non-zero components coincide
with the principal stresses, which are:
8
<

:

�11 = �p+ µ�2
1 + 2k11f(�2

1) exp[k21f(�
2
1)

2
]�2

1 + 2k3(�2
2 � 1)�2

1

�22 = �p+ µ�2
2 + 2k12f(�2

2) exp[k22f(�
2
2)

2
]�2

2 + 2k3(�2
1 � 1)�2

2

�33 = �p+ µ��2
1 ��2

2

(6.98)

The prestress has been removed to simplify the identification procedure,
and to stick to the assumption that the calculated stresses are increments
with respect to a reference configuration which is not a natural one (i.e. it
is not stress-free).

The assumption of plane stress has been adopted, therefore the La-
grange multiplier �p that enforces the incompressibility constraint is such
that:

�33 = 0 ) �p = �µ��2
1 ��2

2 (6.99)
Eventually, the planar Cauchy stress components turn out to be described
by the following functions:
⇢

�11 = µ
�
�2
1 � ��2

1 ��2
2

�
+ 2k11f(�2

1) exp[k21f(�
2
1)

2
]�2

1 + 2k3(�2
2 � 1)�2

1

�22 = µ
�
�2
2 � ��2

1 ��2
2

�
+ 2k12f(�2

2) exp[k22f(�
2
2)

2
]�2

2 + 2k3(�2
1 � 1)�2

2

(6.100)
The corresponding nominal stresses, which are the components of the

first Piola-Kirchhoff stress tensor P, may be evaluated through Equa-
tion (6.22):

8
<

:

P11 = �p��1
1 + µ�1 + 2k11f(�2

1) exp[k21f(�
2
1)

2
]�1 + 2k3(�2

2 � 1)�1

P22 = �p��1
2 + µ�2 + 2k12f(�2

2) exp[k22f(�
2
2)

2
]�2 + 2k3(�2

1 � 1)�2

P33 = �p�1�2 + µ��1
1 ��1

2

(6.101)
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which are further simplified, as previously done with the true stress com-
ponents, by enforcing the plane stress condition (P33 = 0):
⇢

P11 = µ
�
�1 � ��3

1 ��2
2

�
+ 2k11f(�2

1) exp[k21f(�
2
1)

2
]�1 + 2k3(�2

2 � 1)�1

P22 = µ
�
�2 � ��2

1 ��3
2

�
+ 2k12f(�2

2) exp[k22f(�
2
2)

2
]�2 + 2k3(�2

1 � 1)�2

(6.102)
Before starting with the description of the identification procedure, to

better understand the physical meaning of the modified HGO model pa-
rameters, the stress components in Equation (6.100) have been reconducted
to the small strain case. The Taylor’s series expansion of Equation (6.100)
up to the first order, evaluated at �1,�2 ! 1

+ (reference configuration),
leads to:
8
><

>:

�11(�1,�2 ! 1

+
) = �11|�1=1

�2=1
+

@�11
@�1

���
�1=1
�2=1

(�1 � 1) +

@�11
@�2

���
�1=1
�2=1

(�2 � 1)

�22(�1,�2 ! 1

+
) = �22|�1=1

�2=1
+

@�22
@�1

���
�1=1
�2=1

(�1 � 1) +

@�22
@�2

���
�1=1
�2=1

(�2 � 1)

(6.103)
where:

�11|�1=1
�2=1

= 0 (6.104)

�22|�1=1
�2=1

= 0 (6.105)

as expected, since the reference configuration must be stress-free, while the
other terms in Equation (6.103) look:

@�11

@�1

����
�1=1
�2=1

= 4µ+ 4k11 (6.106)

@�22

@�1

����
�1=1
�2=1

= 2µ+ 4k3 (6.107)

@�11

@�2

����
�1=1
�2=1

= 2µ+ 4k3 (6.108)

@�22

@�2

����
�1=1
�2=1

= 4µ+ 4k12 (6.109)
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Therefore, Equation (6.103) may be rewritten as:
⇢

�11(�1,�2 ! 1

+
) = (4µ+ 4k11)(�1 � 1) + (2µ+ 4k3)(�2 � 1)

�22(�1,�2 ! 1

+
) = (2µ+ 4k3)(�1 � 1) + (4µ+ 4k12)(�2 � 1)

(6.110)

Equation (6.110) represents the small strain approximation of the modified
HGO model presented in the previous Section 6.4, which is equivalent to
the following matrix form:


�11

�22

�
=


4µ 2µ
2µ 4µ

� 
"11
"22

�

| {z }
Matrix

+


4k11 4k3
4k3 4k12

� 
"11
"12

�

| {z }
Fibres

(6.111)

where the isotropic contribution due to the matrix and the anisotropic term
related to the fibres have been separated. Concerning the first one, by com-
paring it with the isotropic linear elastic model, it is easy to understand
that µ is the coating shear modulus. On the other hand, consistency of the
second term with the plane stress orthotropic linear elastic model gives a
physical meaning to the fibre parameters: k11 and k12 represent the initial
fibre stiffnesses (at small strains), while k3 appears as an off-diagonal coef-
ficient, which reproduces a sort of Poisson’s effect. The introduction of k3
is the most important modification to the HGO model that has been in-
troduced in this thesis, whose aim is to capture the fibre interaction due to
the weaving. In addition, it is worth noticing that the parameters k21 and
k22, which are contained in the modified HGO model at large strains, are
not included in the small strains approximation, because they are related
to the slope of the stress-strain curves at large strains.

Going back to the calibration of the new hyperelastic model proposed in
this thesis, the identification of its parameters has been performed employ-
ing an unconstrained least square minimisation of the objective function
described by Equation (5.16). The calculated values of stress that appear
in Equation (5.16) has been estimated with Equation (6.102). The optimi-
sation has been carried out by means of the MATLAB function lsqnonlin,
which is a tool for the solution of nonlinear least squares problems. The
Levenberg-Marquardt solution algorithm has been employed, which is a di-
rectional search method that interpolates between the Gauss-Newton and
the gradient descent methods (Levenberg, 1944; Marquardt, 1963).

It is briefly recalled that the biaxial tests employed for the calibration
are the followings (see Section 4.2):

199



i
i

“thesis” — 2014/10/9 — 15:35 — page 200 — #228 i
i

i
i

i
i

CHAPTER 6. A NEW HYPERELASTIC CONSTITUTIVE MODEL FOR COATED
FABRICS AT FINITE STRAINS

• Test A: B18089 MSAJ;

• Test B: B18059 ALR;

• Test C: F702 MSAJ;

• Test D: F1202T2 ALR;

• Test E: VUB 001 A.

where tests A-B have been performed on PTFE coated glass fabrics, while
tests C-E on a PVC coated polyester fabric. Only the first loading curves
have been considered for each load ratio. Moreover, the residual strain
and the prestress have been removed at the beginning of each load ratio
of interest. For each loading curve, a number of 21 experimental points
equally spaced in time have been considered, which is sufficient to reduce
the calculation time required by the fitting procedure and the measurement
noise, without loosing information about the stress-strain curves trend.

The results of the identification procedure applied to the modified HGO
model presented in this thesis are shown in Table 6.2 and Figures 6.6 to 6.10.
For each test, Table 6.2 reports the estimated values of the model parame-
ters and the Residual Sum of Square (RSS), as defined in Equation (5.45).
Figures 6.6 to 6.10 display the stress-strain curves of the calibrated model
and compare them with the experimental data and with the OLE model,
whose parameters has been calculated in Section 5.3 from the same biaxial
tests.

200



i
i

“thesis” — 2014/10/9 — 15:35 — page 201 — #229 i
i

i
i

i
i

6.5. IDENTIFICATION OF THE MODIFIED HGO MODEL PARAMETERS AND
PRELIMINARY VALIDATION

T
e
s
t

µ
k

1
1

k

2
1

k

1
2

k

2
2

k

3
R

S
S

[k
N

/m
]

[k
N

/m
]

[1
]

[k
N

/m
]

[1
]

[k
N

/m
]

[k
N

2

/m
2

]

A
1.

32
E

+
02

5.
48

E
+

02
1.

22
E

+
02

2.
49

E
+

02
1.

09
E

+
02

1.
87

E
+

02
3.

38
E

+
03

B
2.

44
E

+
02

6.
02

E
+

02
3.

55
E

+
01

2.
79

E
+

02
7.

04
E

+
01

2.
56

E
+

02
4.

60
E

+
03

C
4.

41
E

+
01

1.
12

E
+

02
-6

.8
2E

+
01

9.
28

E
+

01
-4

.3
7E

+
01

1.
08

E
+

01
1.

27
E

+
02

D
5.

57
E

+
01

2.
36

E
+

02
-1

.0
0E

+
02

2.
00

E
+

02
-8

.3
0E

+
00

3.
09

E
+

01
6.

26
E

+
02

E
3.

74
E

+
01

2.
55

E
+

02
-3

.5
7E

+
02

1.
14

E
+

02
-1

.0
9E

+
02

7.
46

E
+

00
8.

18
E

+
02

T
ab

le
6.

2:
Le

as
t

sq
ua

re
s

id
en

ti
fic

at
io

n
re

su
lt

s
fo

r
th

e
m

od
ifi

ed
H

G
O

m
od

el
:

va
lu

es
of

th
e

be
st

-fi
tt

in
g

m
od

el
pa

ra
m

et
er

s
an

d
of

th
e

R
es

id
ua

lS
um

of
Sq

ua
re

s
(R

SS
).

201



i
i

“thesis” — 2014/10/9 — 15:35 — page 202 — #230 i
i

i
i

i
i

CHAPTER 6. A NEW HYPERELASTIC CONSTITUTIVE MODEL FOR COATED
FABRICS AT FINITE STRAINS

Test

G = E1/20 µ

[kN/m] [kN/m]

A 125 132
B 130 244
C 28 44
D 49 56
E 43 37

Table 6.3: Comparison between the
values of the shear modulus obtained
from the fitting of the new hyperelas-
tic model presented in this thesis with
the ones estimated by using the empiri-
cal rule adopted by engineers.

The first column of Table 6.2
reports the estimated values of µ,
which is the shear modulus of the
coating. A comparison between
tests A and B and tests C to
E shows that the shear modulus
of PTFE is higher than the one
of PVC. The same conclusion can
be made by looking at the shear
modulus values from the literature,
which are summarised in the article
by Galliot & Luchsinger (2010b).
Therein, the authors propose a new
test method for the investigation of
coated fabric shear behaviour and
apply it to several coated fabrics,
eventually concluding that PTFE/glass fabrics have a much higher shear
stiffness than PVC/polyester fabrics. However, the shear moduli estimated
in this thesis are one order of magnitude grater than the ones measured
by Galliot & Luchsinger (2010b), which lie in the range of 37-58 kN/m
for PTFE/glass and in the range of 9-17 kN/m for PVC/polyester. Never-
theless, the empirical equation that is currently employed by engineers to
calculate the shear modulus for structural fabrics (i.e. G = E/20, where
G=shear modulus and E=Young’s modulus) furnishes values that fits well
the ones of µ in Table 6.2, as demonstrated by Table 6.3 (the Young’s mod-
uli E1 are the ones from Table 5.1), especially in the case of PTFE coated
glass fabrics (tests A and B).

The values of k11 in Table 6.2 are higher than the ones of k12. This
is reasonable, since warp fibres are stiffer because of the weaving process.
By analysing data in Table 6.2, this difference can be quantified: it results
that warp yarns show a value of k11 that is 216-224 % higher than the
correspondent value of k12 for tests A, B and E. This difference is reduced
to 118% in test C and 121% in test D, because the tested samples were
produced with the Précontraint® technology described in Section 4.1.1.
Moreover, the estimated values of the parameters k11 and k12 are larger
for PTFE/glass fabrics than for PVC/polyester fabrics, which is again in
accordance with the experimental behaviour of these materials.
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The best-fitting values of k21 and k22, which are the parameters related
to the large strain stiffening of the yarns, appears to be of the same order
of magnitude for warp and weft fibres in each test. In addition, the uncon-
strained least squares estimation of these parameters has lead to positive
values of k21 and k22 for PTFE/glass fabrics (tests A and B) and negative
values for PVC/polyester fabrics (tests C to E). Although such negative
values are not compatible with the constraint k2 > 0, which is setted by
Holzapfel et al. (2000) in order to predict a response that is physically
reasonable for arterial tissues, these may be acceptable for coated fabrics.
In fact, the PTFE/glass stress-strain curves show an increment of stiffness
at large strains, where, on the contrary, PVC/polyester fabrics present a
decreasing slope, as it can be seen from Figures 6.6 to 6.10.

However, Holzapfel et al. (2004) demonstrated that, by assuming k1 > 0

and k2 > 0, convexity and material stability are guaranteed, because the
strong ellipticity condition (see, e.g., Zee & Sternberg, 1983) is satisfied.
Anyway, according to Holzapfel et al. (2004), more data are needed in
order to assess whether or not strong ellipticity should be considered as
a prerequisite condition to be satisfied by realistic material models. In
addition, strong ellipticity may hold also for negative values of k21 and
k22, because the demonstration by Holzapfel et al. (2004) does not exclude
this instance. A check of material stability for the new hyperelastic model
presented in this thesis should be performed, but it goes beyond the goals
of this work. Moreover, it is suggested that a different function for the
energy contribution related to the fibres (i.e.  aniso =  1 +  2) could be
more appropriate to model the PVC/polyester stress-strain behaviour: for
example a logarithmic term might replace the exponential one.

Again, by looking at the last column of Table 6.2, one can notice that
the RSS values are larger in the case of PTFE/glass fabrics (tests A and
B). The reason is in the higher nonlinearity of their behaviour with respect
to the PVC/polyester fabrics, which has been ascertained also by the OLE
model calibration, whose results are reported in Section 5.3.1. The poorer
quality of the fitting results for the PTFE/glass fabrics can be figured out
also by comparing the graphics in Figures 6.6 and 6.7 with the ones in
Figures 6.8 to 6.10.

Finally, Figures 6.6 to 6.10 show also that the new hyperelastic consti-
tutive law proposed in this thesis is able to model the material response
for both PTFE/glass and PVC/polyester coated fabrics better than OLE
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model. The improved quality of the fitting is confirmed by the fact that
RSS values in Table 6.2 are lower than RSS values in Table 5.1 for all the
five tests. This result is even more significant, because in the OLE model
fitting conducted according to the Differential Solution (DS) method, part
of the experimental data have been disregarded, so that the corresponding
RSS values are “artificially decreased ”. In addition, by focusing on load ra-
tios 1:0 and 0:1 in Figures 6.6 to 6.10 it is possible to see that the modified
HGO model can capture the stiffening at large strain that is displayed by
PTFE/glass fabrics.

Now, the next step consist in a preliminary validation of the new hy-
perelastic model that is proposed in this thesis (modified HGO model).
Validation of a constitutive law is the process of determining the degree to
which it constitutes an accurate representation of the material mechanical
behaviour. More in detail, the predictive capability of the modified HGO
model is assessed hereafter.

Among the biaxial tests that have been previously employed for cal-
ibration purposes, there are two tests, namely B and D, that have been
performed with a particular loading profile. The peculiarity of this profile
is that specimen are tested also for load ratios other than the five that are
prescribed by the MSAJ/M-02:1995 Standard (see Section 4.2.2). More in
detail, four additional load ratios are considered, which are intermediate
between the usual five ones: they are 1:0.3, 0.3:1, 1:0.7 and 0.7:1. These
have been added at the end of the typical loading profile and analogously
separated by preconditioning cycles.

The stress-strain response curves for the additional load ratios in tests
B and D have been constructed with the same rules employed for the other
load ratios. This means that the residual strain and the prestress have
been removed at the beginning of each loading curve (reference state of
crimp and prestress) and that the number of experimental points has been
reduced to 21 to diminish the calculation time.

Then, by using the engineering warp and fill strains from test data, the
nominal stresses have been calculated according to the new constitutive
law. In particular, Equation (6.102) has been employed, which represents
the plane stress form for a biaxial test of the new hyperelastic constitutive
model presented in Section 6.4. In Equation (6.102), the warp and fill
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stretches have been evaluated with the following relations:

�1 = "1 + 1 , �2 = "2 + 1 (6.112)

which calculate the stretches �1 and �2 as a function of the engineering
strains in warp and weft direction, i.e. "1 and "2 respectively. Indeed, if L0

is the initial distance between two points of a body and L is the final one,
after stretching, the stretch comes from the following relation:

� =

L

L0
=

L0 +�L

L0
=

�L

L0
+ 1 = "+ 1 (6.113)

where �L is the length variation and " = �L/L0 is the definition of engi-
neering strain.

Hence, the stress-strain curves that represent the model response have
been represented in Figures 6.11 and 6.12. The analytical curves for both
PTFE/glass (test B, Figure 6.11) and PVC/polyester (test D, Figure 6.12)
fabrics show good agreement with the correspondent experimental curves.
This demonstrates that the model proposed in this thesis possesses good
predictive capability regarding the biaxial tensile behaviour of coated fa-
brics under warp to fill load ratios that have not been tested in the exper-
iments.
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Figure 6.6: Comparison of the cal-
ibrated modified HGO model [mod-
HGO] stress-strain curves with the ex-
perimental data [EXP] and with the
OLE model [OLE(DS)] calibrated in
Section 5.3 (test A).
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Figure 6.7: Comparison of the cal-
ibrated modified HGO model [mod-
HGO] stress-strain curves with the ex-
perimental data [EXP] and with the
OLE model [OLE(DS)] calibrated in
Section 5.3 (test B).
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Figure 6.8: Comparison of the cal-
ibrated modified HGO model [mod-
HGO] stress-strain curves with the ex-
perimental data [EXP] and with the
OLE model [OLE(DS)] calibrated in
Section 5.3 (test C).
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Figure 6.9: Comparison of the cal-
ibrated modified HGO model [mod-
HGO] stress-strain curves with the ex-
perimental data [EXP] and with the
OLE model [OLE(DS)] calibrated in
Section 5.3 (test D).
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Figure 6.10: Comparison of the cal-
ibrated modified HGO model [mod-
HGO] stress-strain curves with the ex-
perimental data [EXP] and with the
OLE model [OLE(DS)] calibrated in
Section 5.3 (test E).
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Figure 6.11: Comparison of the calibrated modified HGO model [modHGO]
stress-strain curves with the experimental data [EXP] for the additional load
ratios that have not been employed in the identification of the model parameters
(test B).
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Figure 6.12: Comparison of the calibrated modified HGO model [modHGO]
stress-strain curves with the experimental data [EXP] for the additional load
ratios that have not been employed in the identification of the model parameters
(test D).

212



i
i

“thesis” — 2014/10/9 — 15:35 — page 213 — #241 i
i

i
i

i
i

7
Constitutive model implementation in

ABAQUS and verification tests

At present, finite element analyses (FEA) are widely employed in the de-
sign of structures, especially when it is necessary to deal with complex
behaviours at the material and/or structural level. Of course, this is the
case of nonlinear problems at finite strains. Therefore, an important step is
the implementation of a new constitutive model into an overall procedure
of structural analysis. The new hyperelastic constitutive model for coated
fabrics (modified HGO model) presented in Chapter 6 is here implemented
into a general purpose commercial finite element code, namely ABAQUS.

The Holzapfel-Gasser-Ogden (HGO) model, in its original form for bi-
ological tissues, is already available in ABAQUS as embedded material,
but with a limitation: the parameters that are related to the mechanical
behaviour of the reinforce must be the same for each family of fibres. As
discussed previously in Chapter 6, this assumption is not suitable to model
architectural coated fabrics, because they display a greater stiffness of warp
threads due to the weaving process. However, the embedded HGO material
has been useful to validate the correct implementation of the new constitu-
tive law. This is one of the reasons why ABAQUS has been chosen among
the other popular commercial nonlinear FEA packages.

The second reason is that ABAQUS allows the user to interact with
the built-in finite element solver through a series of subroutines written
in FORTRAN language. This possibility represents a great advantage for
research purposes. More in detail, in ABAQUS/Standard, which is the
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implicit solver of the software, there are two types of constitutive user sub-
routines that can be employed to model anisotropic hyperelasticity: they
are named UANISOHYPER and UMAT. The former is specifically con-
ceived to model a user-defined anisotropic hyperelastic constitutive law,
while the latter represents a more general tool apt to implement any kind
of user material model.

The new hyperelastic model introduced previously in Chapter 6 has
been implemented using UANISOHYPER. The details are reported in the
next Section 7.1, together with the reasons for having chosen this type of
user subroutine.

In the same Section 7.1, the verification tests that have been performed
to check the correctness of the code implementation are also described.
Verification consists in assessing if the code gives the correct solution to a
set of benchmark problems for which analytical or highly accurate numer-
ical solutions are available. When possible, the closed-form solution has
been evaluated with an independent solver, which has been implemented
by the author with Mathematica software. Some of the tests have been
performed by switching off parts of the implemented user material in order
to re-conduct it to a simpler built-in ABAQUS material: the numerical
solution produced with the embedded material model has been employed
for comparison.

7.1 User subroutine UANISOHYPER

The user subroutine UANISOHYPER is available in ABAQUS to model
anisotropic hyperelastic materials. When implementing incompressible hy-
perelastic materials, UANISOHYPER is recommended over UMAT by the
ABAQUS User’s Manual. Moreover, the UANISOHYPER subroutine dis-
plays several advantages:

• it is easier to implement than UMAT, because it requires only the
strain energy and its first, second and third derivatives;

• it allows the user to switch between incompressible and compressible
materials, while UMAT can handle incompressibility only by means
of the penalty method;
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• it can be employed with both continuum and structural (for instance
membrane) finite elements, without any modification of the code;

• it allows the user to define material behaviours that are dependent
on field variables or state variables;

• it automatically derives the matrix of tangent moduli (elasticity ten-
sor, in continuum mechanics);

• it supports the plane stress assumption, if needed, while UMAT must
be written in a different way for plane stress or 3D stress elements.

For these reasons, it has been chosen to code the new constitutive model
within a UANISOHYPER, even if it shows three drawbacks:

• it does not provide access to the Cauchy stress tensor or to the elas-
ticity tensor, which are instead implemented directly by the user in
the UMAT subroutine;

• the total deformation gradient is not available;

• it is less general than UMAT, because it allows only for modifications
of the strain energy function.

Indeed, the main limit of UANISOHYPER is that it gives less control on
the solution procedure, which is quite important when dealing with complex
nonlinear anisotropic materials.

There are two versions of UANISOHYPER:

• UANISOHYPER_INV can be used to define the strain energy po-
tential as a function of an irreducible set of scalar invariants;

• UANISOHYPER_STRAIN can be used to define the strain energy
potential as a function of the components of the Green-Lagrange
strain tensor.

Since the modified HGO model has been previously formulated in terms of
invariants (see Chapter 6), the first type of subroutine has been employed.

The scalar invariants of the modified right Cauchy-Green tensor (de-
viatoric strain invariants), which have been defined in Equation (6.30),
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Model invariants I1 I3 I41 I42

AINV invariants I⇤1 I⇤3 I⇤4 I⇤8

Table 7.1: Corrispondence in the enumeration of the deviatoric strain invariants.

are provided to the user subroutine by ABAQUS through the array AINV.
Table 7.1 shows the correspondence in the enumeration between the invari-
ants I i employed in the modified HGO model and the invariants I⇤i that
are contained in AINV.

The quantities that must be defined by the user are the strain en-
ergy potential (array UA) and its first (array UI1), second (array UI2) and
third (array UI3) derivatives with respect to the deviatoric strain invari-
ants. Firstly, the deviatoric part of the strain energy density  associated
with the modified HGO model, whose contributions have been defined in
Equations (6.81b) to (6.81e), is stored in the second component of UA as
follows:

UA(2) =

µ

2

(I⇤1 � 3) +

k11
2k21

{exp
⇥
k21hE1i2

⇤
� 1}+

+

k12
2k22

{exp
⇥
k22hE2i2

⇤
� 1}+ k3E1E2 (7.1)

where:
E1 = I⇤4 � 1 , E2 = I⇤8 � 1 (7.2)

are functions of the strains in warp and weft direction respectively. The
operator h•i stands for the Macauley bracket and is defined as:

h•i = 1

2

(| • |+ •) = max(•, 0) (7.3)

It is employed to switch off the fibre contribution when the yarn is com-
pressed (negative strain), therefore it is equivalent to the function in Equa-
tion (6.74).

The total strain energy density UA(1) is equal to UA(2) in the case
of incompressible material. If compressibility is considered, the following
term is added to the strain energy to take into account the volumetric
contribution:

UA(1) = UA(2)+

1

D1

✓
J2 � 1

2

� ln(J)

◆
(7.4)
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where D1 is a material parameter related to the bulk modulus. The value
of the volume ratio J is provided by ABAQUS among the invariants and
more in detail it coincides with the invariant I⇤3 .

Once the strain energy potential  has been stored in the UA array, its
first derivatives with respect to the scalar invariants (@ /@I⇤i ) are stored in
the UI1 array. Thus, the nonzero components of UI1 in the incompressible
case are:

UI1(1) =

µ

2

(7.5a)

UI1(4) = k11hE1i exp
⇥
k21hE1i2

⇤
+ k3E2 (7.5b)

UI1(8) = k12hE2i exp
⇥
k22hE2i2

⇤
+ k3E1 (7.5c)

If a compressible material is considered, the volumetric term of the strain
energy adds the following term to the first derivatives:

UI1(3) =

1

D1

✓
J � 1

J

◆
(7.6)

Furthermore, array UI2 contains the second derivatives of the strain
energy potential  with respect to the scalar invariants (@2

 /@I⇤i @I
⇤
j ). Its

nonzero components result to be (incompressible case):

UI2(4,4) = k11
⇥
H(E1) + 2k21hE1i2

⇤
exp

⇥
k21hE1i2

⇤
(7.7a)

UI2(8,8) = k12
⇥
H(E2) + 2k22hE2i2

⇤
exp

⇥
k22hE2i2

⇤
(7.7b)

UI2(4,8) = UI2(8,4) = k3 (7.7c)

where H(E↵) is the Heaviside function:

H(E↵) =

(
1 if E↵ � 0

0 if E↵ < 0

(7.8)

For compressible materials, there is another component of the array UI2

that is not null:
UI2(3,3) =

1

D1

✓
1 +

1

J2

◆
(7.9)

Finally, for compressible materials with a hybrid formulation, it is re-
quired to furnish @3

 /@I⇤i @I
⇤
j @J , which are the derivatives with respect to
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J of the second derivatives of the strain energy potential (i.e. the ones
stored in UI2). Such derivatives are stored in array UI3, which displays
only one nonzero component for the modified HGO model, namely:

UI3(3,3) = � 1

D1

1

J3
(7.10)

It is recalled that a hybrid or mixed formulation is a multi-field variational
principle, which is employed in place of the standard displacement based
method (i.e. Galerkin method) to overcome the numerical difficulties that
are known as locking phenomena. These consist in poor numerical perfor-
mances, such as penalty sensitivity and ill-conditioning, that arise, for ex-
ample, when almost incompressible materials are modelled with a Galerkin
approach, especially at large strains. In that case, a very small change in
displacement produces extremely large changes in pressure, so that a purely
displacement-based solution is too sensitive to be useful numerically. To
solve this problem, the hybrid finite element approach discretizes the pres-
sure stress and treats it as an independent variable, which is additional to
the usual interpolated displacement field (multi-field approach). The pres-
sure and displacement fields are coupled through the constitutive theory
and the compatibility condition, with this coupling implemented by the
Lagrange multiplier method. For more details about the hybrid formula-
tion the reader is referred to the books by Zienkiewicz & Taylor (2000),
Hughes (2000) or Holzapfel (2000).

7.2 Verification tests
Verification of the model implementation is extremely important. It con-
sists in determining if the written code can accurately represent the solution
to a set of benchmark problems. As suggested by Dunne & Petrinic (2005),
verification of material models includes:

• development of an independent solver for uniaxial and shear problems
to compare its results with that obtained using the subroutine;

• testing of a single and, where appropriate, multiple elements, for uni-
axial and pure (or simple) shear conditions, using both displacement
and load control;
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• comparison with multiaxial problems having non uniform strain and
stress distributions, for which the solution is known.

The last type of test is important, but a closed-form solution of problems
that generate non uniform stress and strain fields is almost always not
available. To overcome this obstacle, if it is possible to switch off parts of
the implemented user constitutive law and re-conduct it to a simpler built-
in material, a numerical solution produced with such embedded material
model can be employed for comparison. The aforementioned verification
tests have been executed and their results are presented hereafter.

7.2.1 Single element uniaxial test

A unit square (1⇥1 m) has been considered, which is composed by a single
plane stress continuum finite element with four nodes (CPS4 in ABAQUS
notation). The element has two active degrees of freedom, namely the
translations in the horizontal and vertical directions (labelled with 1 and 2,
respectively). A thickness of 1mm is assigned to the cross section. More-
over, restraints are applied to the left and bottom edges of the square, to
prevent horizontal displacement along the left side and vertical displace-
ment along the bottom side.

The unit square has been subjected to different uniaxial loading con-
ditions. Usually, the element is tested for condition of both displacement
and force control: the former is used for checking the direct stress com-
ponents, while the latter is employed to search for errors in the Jacobian
(see, e.g., Dunne & Petrinic, 2005). Since the subroutine UANISOHYPER
automatically derives the matrix of tangent moduli, only the displacement
controlled tests have been carried out in this thesis.

The adopted material is the one described by the incompressible ver-
sion of the modified HGO model. The material parameters in Table 7.2
have been employed, which correspond to the ones estimated for test B
in Table 6.2. The warp yarns are aligned with the global direction 1, so
that a01 = [1 0 0]

T, while the fill yarns are aligned with direction 2, thus
a02 = [0 1 0]

T.
In the first test (Figure 7.1), a total displacement of 65mm in direction

1 has been enforced along the right edge of the square. The external action
has been applied over the step by means of linear increments, to permit the
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µ [MPa] k11 [MPa] k21 [1] k12 [MPa] k22 [1] k3[MPa]

244 602 35.5 279 70.4 256

Table 7.2: Material properties employed in the numerical analyses.

construction of the associated stress-strain curve. This loading condition
produces a uniform stress state in the plane of the element, which can be
compared with a closed-form solution. This has been obtained with an
independent code developed by the author with the software Mathematica.

(a) Sketch (b) Stress-strain curves

Figure 7.1: Analytical and numerical model response to an applied uniaxial
displacement in direction 1.

In Figure 7.1(b) the analytical and numerical stress-strain curves in
direction 1 are reported. The numerical solution is completely overlapped
to the analytical one, therefore the subroutine correctly reproduces the
model response in the case of a uniaxial displacement applied in the warp
direction.

An analogous test has been performed by applying the displacement in
direction 2 (Figure 7.2). Once again, the resulting analytical and numerical
stress-strain curves coincide. Moreover, by comparing the curves in Fig-
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7.2. VERIFICATION TESTS

ure 7.2(b) to the ones in Figure 7.1(b) it is possible to notice that the fill
fibres have a lower stiffness, especially at the beginning: this behaviour is
consistent with the physics of the problem.

(a) Sketch (b) Stress-strain curves

Figure 7.2: Analytical and numerical model response to an applied uniaxial
displacement in direction 2.

To test the model behaviour in a pure shear condition, the unit square of
the previous examples has been subjected to a deformation that preserves
the area (Figure 7.3). A horizontal displacement of 200mm has been im-
posed along the right side, which has been incremented linearly over the
step. At the same time, the top edge has been moved of 166.667mm to-
ward the bottom to enforce the conservation of the in-plane area. The warp
and fill yarns, which represent the principal directions of the material, are
rotated of 45 ° clockwise with respect to the horizontal direction, so that
a01 = [

p
2/2 �

p
2/2 0]

T and a02 = [

p
2/2

p
2/2 0]

T.
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(a) Sketch (b) Stress-strain curves

Figure 7.3: Analytical and numerical model response to pure shear loading.
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8
Validation of the new constitutive

model for coated fabrics

Validation is the process of determining the predictive capability of a com-
putational model by comparison with experimental data (Anderson et al.,
2007). In this Chapter, the new hyperelastic constitutive model for coated
fabrics proposed in Chapter 6 is validated through simple examples, for
which experimental data are available.

When possible, the solution to these problems is found first analytically,
by means of an independent solver developed by the author with Mathemat-
ica software. Then, the same problems are discretised with finite elements
and solved with ABAQUS, by employing the user subroutine described in
the previous Chapter 7. Finally, the analytical and numerical stress-strain
curves are compared to the experimental ones and the predictive capability
of the model is commented.

Firstly, in Section 8.1, the new constitutive model is tested for uniaxial
and bias loading. A series of uniaxial tests are performed, having a different
inclination of the fabric yarns with respect to the loading direction. The
solution is compared with experimental data from the literature.

Subsequently, in Section 8.2, several biaxial tests at various load ratios
are performed. The model predictions are compared with the experimental
results from test B18059 ALR, which has been described in Chapter 4 and
for which an estimation of the model parameters have been carried out in
Chapter 5.

Finally, Section 8.3 reports some issues experienced by the author during
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the numerical analyses. A possible explanation of the causes is provided
and suggestions for further developments are furnished, with the aim of
overcoming such difficulties in the future.

8.1 Uniaxial and bias tests

Uniaxial and bias tests have been described in Section 4.1.1. Essentially,
they are the same kind of test, since they both consist in loading a strip of
material along one direction. What differentiates uniaxial from bias tests is
the direction of the yarns with respect to the load: in the former, the warp
or fill threads are aligned with the loading direction, while in the latter,
warp fibres are biased with respect to the applied force.

In a textile specimen that is stretched along one direction, the stress field
is not uniform, especially in the neighbourhoods of the clamps. Anyway,
in the central part of the strip, it can be approximated as homogeneous
(see, e.g., Galliot & Luchsinger, 2010a). In the numerical examples that
are illustrated in this paragraph, a square of unit area (1⇥ 1 m) has been
considered (Figure 8.1), which simulates the mechanical behaviour in the
central area of the strip. Thanks to the uniformity of the stress field, which
leads to a unique value of the stress components for all the Gauss points,
it has been possible to compare the numerical solution with an analytical
result evaluated in the material point.

A thickness of 1mm has been assigned to the unit square employed for
the numerical analyses. Its bottom side has been constrained with rollers,
which block vertical displacement. Again by means of rollers, the horizontal
translation of the left edge has been prevented.

The square of unit area has been divided into 4 finite elements (2⇥ 2).
Since the stress field is expected to be uniform, a single element would be
enough: this subdivision has been introduced to check the capability of
the numerical implementation to deal with more than one finite element
(examples with an increasing number of elements have been performed,
but their solution is not reported in this thesis). Plane stress continuum
elements with four nodes (CPS4 in ABAQUS notation) have been employed
for the mesh.

In all the considered problems, a horizontal displacement (direction 1)
has been applied to the right side of the square, while the top edge has been
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8.1. UNIAXIAL AND BIAS TESTS

Figure 8.1: Sketch of the geometry employed for the numerical simulations of
uniaxial and bias tests.

left free. First, the tests has been executed with the warp fibres aligned
with direction 1. Secondly, the test has been repeated with the fill yarns
in the direction of the load. After that, the example has been reproduced
for several bias angles ✓ of the warp threads with respect to the applied
displacement.

The material employed is a PTFE coated glass fabric, whose commercial
name is B18059. The new hyperelastic model proposed in this thesis has
been calibrated in Chapter 5 for this material, by using biaxial test data
from Chapter 4 (test B18059 ALR). The estimated values of the material
parameters are the ones reported in Table 7.2.

Since no uniaxial or bias testing results were available for the material
employed in the numerical analyses, experimental data from the literature
have been employed for comparison. More in detail, Zhang et al. (2010)
illustrates the stress-strain behaviour of a PTFE coated glass fabric which
has an ultimate tensile strength similar to the one of B18059 (Figure 4.6).
Even if a quantitative comparison is not possible, Figure 4.6 has been used
as reference for a qualitative assessment of the new model here proposed.
It may be noticed that, in the article by Zhang et al. (2010), the bias angles
are referred to the weft directions, rather than to the warp direction; thus,
attention must be paid to the identification of the correct curves during the
comparison with the results obtained in this Section.
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Figure 8.2(b) illustrates the results of two uniaxial tests in warp (bias
0 °) and fill (bias 90 °) direction, together with the one of a 45 ° bias test.
The curves represent the stress-strain behaviour in the loading direction.
In the perspective of large deformation theory, it is necessary to specify the
adopted measures of stress and strain: the Cauchy (or true) stress and the
logarithmic strain have been employed in this graph (and in the following
ones).

(a) Experimental data (b) Model response

Figure 8.2: Validation of the new constitutive model for uniaxial loading in
warp and fill direction, and for a 45 ° bias test.

Figure 8.2(a) shows the experimental data obtained by Zhang et al.
(2010). The stress-strain curves that correspond to the analytical and nu-
merical solutions in Figure 8.2(b) have been highlighted with the same col-
ors. Qualitatively, the model is able to reproduce the material behaviour
in the considered cases. More in detail, the stiffness increase, due to the
complete flattening of the yarns, is captured in both the uniaxial tests.

The 90 ° bias test points out that the model considers the fill yarns stiffer
than they actually are, as demonstrated by the small difference between the
final displacements recorded at the end of the uniaxial tests in warp and
fill direction. This difference, which is lower than the one measured in
the experiments, is reduced by the fact that the model parameters have
been estimated on a preconditioned fabric; in fact, preconditioning cycles
straighten the fill yarns, which are highly crimped in a virgin fabric, causing
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8.1. UNIAXIAL AND BIAS TESTS

an apparent increase of the stiffness. Probably, preconditioning is also the
reason for the stiffer behaviour recorded at 45 °.

Figures 8.3 and 8.4 compare the experimental, analytical and numerical
results for the 15 °, 75 °, 30 ° and 60 ° bias tests. Once again, the new
constitutive model is able to reproduce the real behaviour of the coated
fabric. As expected, the stress-strain curves in Figures 8.3 and 8.4 are
intermediate between the ones of the uniaxial tests (reported in gray in
the graphs). As in the previous cases, the material behaviour is stiffer
than in the experiments, because of the preconditioning employed in the
calibration.

(a) Experimental data (b) Model response

Figure 8.3: Validation of the new constitutive model for 15 ° and 75 ° bias tests.

In conclusion, the new constitutive model presented in Chapter 6 is able
to qualitatively reproduce the behaviour of a PTFE coated glass fabric. The
main advantage with respect to the orthotropic linear elastic model is that
the use of a large strain approach permits to capture the change in the
stress-strain curve slope, which is due to the straightening of the yarns.
This is done only by setting up a strain energy function, without involving
evolution variables and complex plastic or viscous formulations, which are
instead needed if a small strain approach is employed.
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(a) Experimental data (b) Model response

Figure 8.4: Validation of the new constitutive model for 30 ° and 60 ° bias tests.

8.2 Biaxial tests

The tests presented in this Section have been performed using the same
material of the previous Section 8.1. It is here recalled that it was a B18059
PTFE coated glass fabrics, whose model parameters, which are reported in
Table 7.2, have been estimated in Chapter 5 by means of the experimental
data from a biaxial test illustrated in Chapter 4, namely test B18059 ALR.

As commented in Section 4.2.2, biaxial tests are usually performed on
cruciform specimens, therefore the stress field is variable over the sam-
ple. However, in the central square, where the strain measurements are
performed, it can be considered uniform. For this reason, the same unit
square of the previous validation tests has been employed for the biaxial
simulations as well. The only difference is in the applied load, which is of
course biaxial in this case.

The right edge of the square has been subjected to a horizontal dis-
placement, while the top side has been translated upward. The imposed
displacement histories have been constructed on the basis of the experimen-
tal strain measurements, which have been recorded by the extensometers
placed in the central part of the sample during the test.

Different loading cases have been considered, one for each warp to fill
load ratio explored in the biaxial test used as reference (test B18059 ALR
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in Chapter 4). The aforementioned test has been performed according to
the MSAJ/M-02:1995 Japanese Standard, which considers five load ratios
(1:1, 2:1, 1:2, 1:0, 0:1); other load ratios, which are intermediate between
the previous ones, have been investigated during the experiment (namely
0.3:1, 1:0.3, 0.7:1, 1:0.7). It is here briefly recalled that only the stress-
strain curves obtained from the standard load ratios have been employed
in the identification of the new constitutive model parameters. For further
details about the test assumptions, the reader is referred to Chapter 4.

Figure 8.5 shows the legend of the graphics presented in this Section.
They represent the comparison of the experimental data (EXP) to the an-
alytical (ANA) and numerical (NUM) outputs of the adopted constitutive
model.

Figure 8.5: Legend of the graphics representing the biaxial tests results.

A biaxial test at 1:1 load ratio is illustrated in Figure 8.6. The numeri-
cal response is overlapped to the analytical one (obtained with an indepen-
dent code written by the author in Mathematica), which is a proof of the
correct implementation of the user subroutine. The comparison with the
experimental data confirms the capability of the model of reproducing the
material behaviour, at least qualitatively.

The material response for the biaxial tests 2:1 and 1:2 is almost perfectly
reproduced by the model, both qualitatively and quantitatively, as shown
in Figures 8.7 and 8.8.

The 1:0 and 0:1 load ratios are the most critical, as expected, because
they are equivalent to a uniaxial test performed on a preconditioned and
pretensioned membrane. By looking at Figures 8.9 and 8.10 it can be
noticed that the model fails to predict the material behaviour in the un-
stressed transversal direction. However, the stress values in the stretched
direction are not far from the measured ones. Moreover, the change in the
curve slope is captured by the model, even if at a strain level that is larger
than the actual one.

The biaxial tests considered until now are the ones associated with
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(a) Sketch (b) Stress-strain curves

Figure 8.6: Analytical, numerical and experimental response to a biaxial load-
ing, applied at constant warp to fill load ratio of 1:1.

(a) Sketch (b) Stress-strain curves

Figure 8.7: Analytical, numerical and experimental response to a biaxial load-
ing, applied at constant warp to fill load ratio of 2:1.

230



i
i

“thesis” — 2014/10/9 — 15:35 — page 231 — #259 i
i

i
i

i
i

8.2. BIAXIAL TESTS

(a) Sketch (b) Stress-strain curves

Figure 8.8: Analytical, numerical and experimental response to a biaxial load-
ing, applied at constant warp to fill load ratio of 1:2.

(a) Sketch (b) Stress-strain curves

Figure 8.9: Analytical, numerical and experimental response to a biaxial load-
ing, applied at constant warp to fill load ratio of 1:0.
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(a) Sketch (b) Stress-strain curves

Figure 8.10: Analytical, numerical and experimental response to a biaxial load-
ing, applied at constant warp to fill load ratio of 0:1.

the experimental loading curves employed in the estimation of the model
parameters. Therefore, they represent an assessment of the quality of the
fit, more than of the predictive capabilities of the new constitutive law. In
order to check this aspect, other biaxial loadings have been used, which
have been excluded from the least square calibration. The results, which
are illustrated in Figures 8.11 to 8.14, show good agreement between the
model response (both analitycal and numerical) and the experimental data
for all the considered loading cases.

In summary, the validation of the new hyperelastic constitutive law pro-
posed in this thesis for biaxial loading has been performed in this Section.
It has been demonstrated that, not only the new model is able to reproduce
the material stress-strain curves for the experimental data employed in the
identification of its parameters, but also it shows good predictive capabili-
ties for biaxial loading paths not considered in the calibration procedure.
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(a) Sketch (b) Stress-strain curves

Figure 8.11: Analytical, numerical and experimental response to a biaxial load-
ing, applied at constant warp to fill load ratio of 0.3:1.

(a) Sketch (b) Stress-strain curves

Figure 8.12: Analytical, numerical and experimental response to a biaxial load-
ing, applied at constant warp to fill load ratio of 1:0.3.
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(a) Sketch (b) Stress-strain curves

Figure 8.13: Analytical, numerical and experimental response to a biaxial load-
ing, applied at constant warp to fill load ratio of 0.7:1.

(a) Sketch (b) Stress-strain curves

Figure 8.14: Analytical, numerical and experimental response to a biaxial load-
ing, applied at constant warp to fill load ratio of 1:0.7.
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8.3 Numerical issues

The verification tests performed in Section 7.2 on the single finite element
have been solved in ABAQUS/Standard, which is the implicit solver of
the software, by executing static analyses. In that case, ABAQUS uses
by default the Newton-Raphson method to solve the nonlinear equilibrium
equations.

However, it has not been possible to solve the validation tests in this
Chapter with the same method. In the early simulations, ABAQUS was
even unable to complete the first increment. Sometimes, the required time
increment was so small, that the analysis became cumbersome, especially
considering that only 4 finite elements were being used.

The aforementioned numerical problem was particularly evident in the
uniaxial and bias loading cases, where the displacements in one of the two
in-plane directions were not imposed, so that it was task of the solver to
compute the entity of the transversal contraction. Also some attempts of
simulating the experiments in force control, instead of applying displace-
ments, failed.

One of the causes of this issue may be identified in the discontinuity
of the strain energy term related to the fibres. In fact, the yarns are de-
activated when shortened, according to Equation (6.74). Especially at the
beginning of the analysis, when the strains are small, it is possible that the
solver alternatively predicts contraction or extension of the yarns, causing
continuous jumping between two different values of stiffness.

To overcome such problem, the examples previously presented in this
Chapter have been solved by performing quasi-static implicit dynamic anal-
yses. For details about a such analyses the reader is referred to Sec-
tion 2.1.3, where it has been described among the form-finding meth-
ods with the alternative name of dynamic relaxation. A mass density of
10

�9 N s2/mm4, which is about one tenth of the steel density, has been as-
signed to the membrane material. Thanks to this added inertia, the solver
is helped to follow a displacement path which does not oscillate between
compression and tension states.

To better understand the reasons of the experienced numerical issues,
the solution procedure adopted in a static analysis that employs the New-
ton’s algorithm is summarised hereafter. The considered body is in equi-
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librium if the external and internal forces are balanced at every node of the
finite element discretisation. This is equivalent to a set of (usually non-
linear) equations, whose solution must respect the boundary constraints of
the model.

Since the problems considered in this thesis are nonlinear, their solution
cannot be found in only one large step, as in the case of linear analyses;
instead, the load must be applied incrementally over the step, which is thus
broken up into a certain number of increments. Within each time incre-
ment, Newton’s method employs multiple iterations to find the equilibrated
solution.

According to the Newton-Raphson numerical technique, the displace-
ment correction from the initial guessed configuration is evaluated through
the tangent stiffness, which is equivalent to assuming that the nodal dis-
placements vary linearly over the increment. The configuration is then
updated on the basis of the estimated correction, and the internal forces
are changed accordingly. If the residual between the external and internal
forces is sufficiently small, with respect to a fixed tolerance, the algorithm
is stopped and the system is assumed to be in equilibrium. Otherwise, the
tangent stiffness is evaluated in the updated configuration and the proce-
dure is repeated until convergence.

Newton’s method works well for convex load-displacement curves, like
the one in Figure 8.15(a). This is not the case of HGO constitutive model
(and of its modified version, presented in this thesis), which is characterised
by concave curves of exponential type. As illustrated in Figure 8.15(b), for
concave load-displacement curves, Newton-Raphson algorithm has prob-
lems in predicting reasonable values of the displacement correction. The
issue is emphasised when the initial slope of the curve is very low: in that
case, the displacement correction is so large that it cannot be equilibrated.

In addition, the use of exponential functions in the description of the
stress-strain behaviour produces an extremely sharp increase in the stress
values at large strains. Even if this is consistent with the physical behaviour
of the fabric yarns, which provide further stiffness to the material once
their crimp has been reduced by an applied tension, large stress values
cause numerical issues. This situation exacerbates the Newton’s algorithm
difficulties, by reducing the range of admissible displacement corrections.

In conclusion, the numerical issues emerged during the analyses have
been summarised in this Section. A possible explanation of the causes has
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(a) Convex curve

(b) Concave curve

Figure 8.15: Issues associated with the use of Newton’s method for concave
load-displacement curves with low initial slope.
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been provided, which includes: large stress values due to the use of expo-
nential stress-strain functions, difficulty of Newton’s method in predicting
a reasonable displacement correction when the stiffness is low, discontin-
uous derivatives of the strain energy due to deactivation of the shortened
fibres. These issues could be overcome by employing different solution al-
gorithms: for instance, the fictitious dynamic approach has successfully
fixed the problems connected to the discontinuity of the yarn stiffness in
the neighbourhood of the unstrained configuration.
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9
Concluding remarks and future

developments

This work has been devoted to characterise and model the mechanical be-
haviour of coated woven fabrics employed in tensile structures. Biaxial
testing and hyperelastic constitutive modelling at large strains have been
the scientific core of the thesis. Nevertheless, other contributions have been
provided, which aim at enhancing the know-how about tensioned structures
at Politecnico di Milano, according to the objectives of ClusTEX group.

The main results achieved may be summarised as follows:

• The state of the art about the design of tensile structures has been
deeply explored with an extensive literature review. A lot of refer-
ences have been found that regard the form-finding methods: these
have been described in a unified framework, which shall represent a
contribution to the harmonisation of the employed approaches. On
the other hand, only a few articles look available about the cutting
pattern generation, mostly from conference proceedings. One of the
causes of the lack of information might be the absence of an accu-
rate constitutive model for coated fabrics, which appears an essential
prerequisite for the generation of cutting patterns.

• The materials used in membrane structures have been studied in de-
tail. Since most of them are composite materials, their internal struc-
ture, as well as their production process, have been investigated, to
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gather information which is useful to understand the mechanical be-
haviour of such materials. It has emerged that coated woven fabrics,
especially PVC/polyester and PTFE/glass, are the most commonly
employed for tensile structures. Therefore, the subsequent constitu-
tive modelling has been focused on these two types of material.

• Information about the mechanical behaviour of coated woven fabrics
has been collected from the literature on the topic. The main aspects
that influence the highly nonlinear response of such materials are:
level of crimp of the threads, crimp interchange, dependence on the
load ratio between warp and fill direction (in biaxial tests), inclination
of the yarns with respect to the loading direction, stiffer behaviour if
the material is loaded biaxially or multi-axially, hysteresis, difference
between the first loading and the subsequent loading responses. Non-
linear behaviour is more marked in PTFE coated glass fabrics than
in PVC coated polyester fabrics.

• Uniaxial and biaxial tests have been performed by the author with
the biaxial testing rig owned by the Research Cluster on “Innova-
tive Textiles” (ClusTEX) of Politecnico di Milano. Several materials
and different loading profiles have been investigated. Among them,
four new types of PU coated fabrics have been tested according to
the MSAJ/M-02:1995 Japanese Standard, to explore possible appli-
cations in the construction field. It has been found that they possess
a resistance similar to the one of PVC/polyester of Type I, but they
are more stretchable and cannot be welded; therefore they could be
employed for tensile structures of small dimensions that require a high
stretchability.

• Some biaxial tests have been also described, which have been kindly
provided by the group of Prof. Peter Gosling at Newcastle Univer-
sity, where the author spent 5 months as visiting PhD Student in
2013. These have been executed according to the MSAJ/M-02:1995
Japanese Standard. They have been useful to calibrate the new con-
stitutive model presented in Chapter 6, as well as to identify the elas-
tic moduli associated to the classical orthotropic linear elastic model
for comparison with the new hyperelastic one proposed here. More-
over, two of these tests have explored additional load ratios, which
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have been employed for the validation of the model proposed in this
thesis.

• A biaxial test on a PVC/polyester fabric, namely VUB 001 A, have
been carried out by the author to investigate the effect of the precondi-
tioning cycles. The loading profile of the MSAJ/M-02:1995 Japanese
Standard has been modified by eliminating the three cycles at 1:1
load ratio that are performed before each cycle of interest. The ob-
tained experimental data have confirmed the usefulness of the pre-
conditioning procedure, in order to achieve the repeatability of the
stress-strain curves. Moreover, the unique crimp configuration that
is reached after the preconditioning cycles has been adopted as refer-
ence undeformed (but not stree-free) configuration in the subsequent
constitutive modelling.

• An innovative biaxial testing procedure has been proposed, which
applies to the specimen loading profiles that are driven by the ex-
tensometers placed in the central part of the crux (strain-controlled
biaxial tests). Several tests have been performed by the author with
this approach. It has resulted that such tests could be useful to
evaluate the compensation factors for the cutting pattern genera-
tion and the subsequent installation, as well as for the retensioning
procedures. Moreover, if carried out at higher levels of stress, the
strain-controlled biaxial tests can give further information about the
material behaviour, which is complementary to the one of classical
force-controlled biaxial experiments.

• A review of the existing constitutive models for raw and coated fabrics
has been presented in Chapter 5. Because of the nature of fabric
reinforced composites, two different approaches are employed in their
modelling: the meso-structural ones are based on the description of
the geometry of a unit cell, while continuum models approximate
the composite as a continuum (macro-scale). The advantages and
disadvantages of both are discussed. However, in the current design
practice, the orthotropic linear elastic model is the most widely used.

• An identification of the Orthotropic Linear Elastic (OLE) model pa-
rameters have been carried out for several materials. The experimen-
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tal data employed in the calibration have been taken from Chapter 4.
As expected, this has pointed out the limit of such an approach: the
OLE model is too simple to correctly reproduce the complex nonlinear
behaviour of coated woven fabrics and this has made the identification
cumbersome and actually not accurate.

• The Holzapfel-Gasser-Ogden (HGO) model has been proposed as suit-
able to model coated woven fabric behaviour, thanks to some simi-
larities between these materials and arterial tissues. The formulation
of the HGO model has been described in detail. Nonetheless, this
hyperelastic model cannot capture the interaction between the re-
inforcing fibres. Therefore, a new energy term has been added to
the HGO free-energy function to model the interaction due to the
weaving. Such new hyperelastic model operates within a large strain
framework. It has been calibrated by employing the same biaxial
data previously used for the OLE model. A comparison between the
HGO and OLE models have demonstrated the better performance
of the new hyperelastic model in predicting the coated woven fabrics
stress-strain behaviour.

• The proposed new model has been implemented into a general pur-
pose finite element code, namely ABAQUS. The code has been veri-
fied by means of several benchmark tests. This implementation opens
the doors to an extensive testing of the model performances for sev-
eral boundary valued problems, as well as to its future applications
in the practical design of tensile structures.

• Lastly, the new hyperelastic model for coated fabrics has been vali-
dated through a series of simple reference tests. The uniaxial, bias,
and biaxial responses are correctly reproduced. Some biaxial tests
performed by loading the fabric at a constant load ratio have as-
sessed also the predictive capability of the model with respect to load
ratios that have not been employed in the identification of its param-
eters. The results are encouraging, even if some existing numerical
issues have been pointed out.
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9.1 Future developments

The present work represents a contribution towards the expansion of the
specific expertise that is needed to design membrane structures in a reliable
way. As pointed out earlier, there is currently a wide variety of design pro-
cedures and testing methods in the field of tensioned structures, which is
mainly due to the absence of Standards. Therefore, the preliminary system-
atisation of the present know-how is fundamental, but it requires further
time. Moreover, the harmonisation of the current procedures, which is be-
ing carried out through several international projects, is highlighting some
issues that require further research to be solved.

Some possible future developments of the present work are listed below:

• The modelling of coated fabric behaviour requires an extensive exper-
imental campaign, which should be specifically planned according to
the modelling needs. This would be useful also in view of the devel-
opment of a probabilistic approach to the design of tensile structures,
where the material properties and its resistance are associated to a
certain probability level.

• The new hyperelastic model for coated fabrics proposed in this thesis
cannot capture the actual material response under cyclic loading. The
history-dependent behaviour could be described by an enriched model
endowed with appropriate evolution variables.

• The polyconvexity of the proposed free-energy function should be
assessed. This mathematical requirement is extremely important in
large strain elasticity, since it guarantees the global existence of the
solution to the elastic problem. The involved mathematics does not
look too easy, but this work is fundamental for the development of a
robust formulation of the new model.

• An implementation of the new model into the more general user sub-
routine UMAT is essential to make possible further future enhance-
ments (for example to add the inelastic behaviour of the material).
This work has been started by the author, but results were not re-
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ported in this thesis, since they represent ongoing research. One
objective is of course the completion and verification of such a code.

• An extensive validation of the new constitutive model should be car-
ried out, by solving other additional benchmark examples. More in
detail, the model response to planar boundary valued problems gen-
erating non-uniform stress and strain fields should be checked (e.g.
the reproduction of a cruciform biaxial test). Numerical simulations
of membrane structures in the 3D space should also be performed,
to assess the model performance in view of its employment in the
practical design.
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Graphical representation of biaxial

test data

This Appendix contains a graphical representation of the experimental data
from the biaxial tests described in this thesis. Each figure fully describes
a biaxial test by furnishing three types of information within three sub-
figures:

(a) Adopted loading profile, which can be in terms of applied forces
(kN/m) or applied strains (%), depending on the type of control as-
sociated with the test.

(b) Visualisation of how the loading history paths cover the plane of
feasible warp and fill stresses (in the case of force-controlled tests) or
strains (for strain-controlled tests).

(c) Record of the measured warp and fill strain (for force-controlled tests)
or stress (for strain controlled tests) histories.

In the figures associated with force-controlled tests, the capital letters (A,
B, C, . . . ) identify a specific radial path, which is characterised by an
almost constant warp to fill load ratio. On the other hand, in the graphics
of strain-controlled tests, the capital letters are employed only to indicate
some reference points (in red), which are used in the thesis to describe the
applied strain paths.
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