
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

On the use of

Deep Boltzmann Machines for

Road Signs Classification

AI & R Lab

Laboratorio di Intelligenza Artificiale
e Robotica del Politecnico di Milano

Relatore: Prof. Matteo Matteucci
Correlatore: Ing. Francesco Visin

Tesi di Laurea di:
Carlo D’Eramo, matricola 782024

Anno Accademico 2013-2014

II

Contents

Abstract XI

Riassunto XIII

1 Introduction 1

2 State of the art 3

2.1 Neural networks and objects classification 4

2.2 Boltzmann Machines . 6

2.2.1 General Boltzmann Machines 6

2.2.2 Restricted Boltzmann Machines 11

2.2.3 Deep Belief Networks 12

2.2.4 Deep Boltzmann Machines 17

2.2.5 Multi-Prediction Deep Boltzmann Machines 19

3 Objects recognition 23

3.1 Image and preprocessing . 23

3.2 Neural networks and images 24

3.3 Object recognition with generative models 26

3.3.1 German Traffic Sign Recognition Benchmark dataset . 27

4 Project architecture and implementation 31

4.1 Libraries . 31

4.2 Learning parameters . 32

4.2.1 General parameters 33

4.2.2 Restricted Boltzmann Machine and Deep Boltzmann

Machine parameters 34

4.2.3 Deep Boltzmann Machine finetuning parameters . . . 34

4.2.4 Multi-Prediction Deep Boltzmann Machine parameters 35

4.3 Code implementation . 35

4.3.1 German Traffic Sign Recognition Benchmark wrapper 36

III

4.3.2 Gaussian Restricted Boltzmann Machine training . . . 36

4.3.3 Deep Boltzmann Machine training 37

4.3.4 Training of Multi-Prediction Deep Boltzmann Machine 40

4.4 German Traffic Sign Recognition Benchmark preprocessing . 43

4.4.1 Enhancing contrast . 44

4.4.2 Comments . 47

5 Experimental results 49

5.1 MNIST . 49

5.1.1 Greedy layer-wise pretraining 50

5.1.2 Deep Boltzmann Machine training 50

5.1.3 Deep Boltzmann Machine finetuning 52

5.2 German Traffic Sign Recognition Benchmark 52

5.2.1 Preliminary experiments for parameters tuning 54

5.2.1.1 Gaussian Restricted Boltzmann Machine train-

ing . 54

5.2.1.2 Greedy layer-wise pretraining 56

5.2.1.3 Deep Boltzmann Machine training 56

5.2.1.4 Deep Boltzmann Machine finetuning 58

5.2.2 Experiments with preprocessed images 58

5.2.3 Final experiments . 62

5.2.4 Multi-Prediction Deep Boltzmann Machine experiments 63

6 Conclusion and future developments 67

6.1 Future developments - The German Traffic Sign Detection

Benchmark dataset . 68

Bibliography 70

IV

List of Figures

1 General Boltzmann Machine XIV

2 Restricted Boltzmann Machine XV

3 Deep Boltzmann Machine . XVI

4 MLP ottenuto da una DBM XVII

5 Immagini facili di GTSRB . XVII

6 Immagini difficili di GTSRB XVIII

7 Immagini standard di GTSRB e loro trasformazione dopo il

preprocessing . XIX

2.1 Feedforward neural network 5

2.2 General Boltzmann Machine 7

2.3 Restricted Boltzmann Machine 11

2.4 A semi-infinite directed belief net with tied weights 13

2.5 Hybrid network with RBM on top 15

2.6 A three-layer Helmholtz machine 15

2.7 A Deep Belief Network and a Deep Boltzmann Machine . . . 16

2.8 The weights during the pretraining procedure and after the

stacking of RBMs . 18

2.9 DBM finetuning . 19

2.10 Multi-Prediction training . 21

3.1 Example of MNIST images 25

3.2 Some easy GTSRB images . 27

3.3 Some difficult GTSRB images 28

3.4 Three different images in order of proximity 28

4.1 The preprocessing GRBM at the bottom of the DBM 38

4.2 Input augmentation for DBM finetuning; the neurons marked

in black are on and the white ones are off 40

4.3 Standard GTSRB examples 44

V

4.4 Results of the application of pixels intensities rescaling to the

images in Figure 4.3 . 45

4.5 Results of the application of histogram equalization to the

images in Figure 4.3 . 45

4.6 Results of the application of adaptive histogram equalization

to the images in Figure 4.3 46

4.7 Results of the application of adaptive histogram equalization

to the images in Figure 4.3 converted in L*a*b* space 46

4.8 Results of the conversion of images in Figure 4.3 in HSV (left)

and chromaticity (right) spaces 47

5.1 MNIST exampes reconstructions 51

5.2 MNIST - Test error diagram 53

5.3 Standard GTSRB reconstructions 56

5.4 GTSRB - Test errors diagram for preliminary experiments . . 59

5.5 Pixels intensities rescaling reconstructions 60

5.6 Histogram equalization reconstructions 60

5.7 RGB - Adaptive histogram equalization 60

5.8 L*a*b* - Adaptive histogram equalization 60

5.9 HSV space reconstructions . 61

5.10 Chromaticity space reconstructions 61

5.11 Dropout vs Standard backpropagation 63

5.12 DBM and MP-DBM test errors diagram 65

6.1 Examples of GTSDB images 69

VI

List of Tables

5.1 MNIST - First and second RBMs parameters for greedy layer-

wise pretraining . 50

5.2 MNIST - DBM parameters for training 51

5.3 MNIST - MLP parameters for finetuning 52

5.4 MNIST - MLP parameters for finetuning with dropout 53

5.5 GTSRB - GRBM parameters 55

5.6 GTSRB - First and second RBM parameters for greedy layer-

wise pretraining . 57

5.7 GTSRB - DBM parameters for training 57

5.8 GTSRB - MLP parameters for finetuning with dropout . . . 58

5.9 Best model errors for standard GTSRB 58

5.10 Classification errors for each preprocessing method 61

5.11 MLP final parameters . 62

5.12 Final results . 63

5.13 MP-DBM parameters for training 64

VII

VIII

List of Algorithms

4.1 Greedy layerwise pretraining 39

4.2 DBM training script . 41

4.3 Complete DBM training procedure 42

IX

X

Abstract

The Deep Boltzmann Machine (DBM) has been proved to be one of the

most effective deep machine learning generative models in discriminative

tasks. They have been able to overcome other generative, and even discri-

minative models, on relatively simple tasks, such as digits recognition, and

also on more complex tasks such as objects recognition. However, there are

only a few published results of DBM performance on rather complex data-

sets. In this work we evaluate the efficiency of DBM, and its variant Multi-

Prediction Deep Boltzmann Machine (MP-DBM), in classifying a complex

dataset composed of road signs and we show how we have been able to train

both models to reach, at the best of our knowledge, the best discriminative

results of generative models on the road signs dataset.

XI

XII

Riassunto

In questa tesi abbiamo deciso di approfondire e testare le prestazioni di

reti neurali generative profonde nella classificazione di immagini complesse.

Queste reti neurali appartengono alla famiglia dei modelli generativi, ossia

modelli capaci di generare nuove istanze di esempi di un dataset su cui sono

stati allenati, a differenza dei modelli discriminativi che invece apprendono

come classificare (i.e., determinare la classe di appartenenza) tali esempi.

Vari esperimenti hanno mostrato come modelli generativi possano essere

efficaci anche per classificare gli esempi su cui sono stati allenati, e non solo

di generarne di nuovi.

In [32], Hinton e Salakhutdinov mostrano come sia possibile allenare il

modello generativo denominato Deep Boltzmann Machine (DBM) al fine di

ottenere ottime prestazioni di classificazione su dataset di immagini. Questi

risultati superano quelli di altri modelli generativi, e anche quelli di alcu-

ni modelli discriminativi, e mostrano le promettenti possibilità delle DBM.

Tuttavia, finora, non esistono molte altre pubblicazioni che dimostrino l’ef-

ficacia delle DBM su dataset differenti rispetto a quelli utilizzati da Hinton

e Salakhutdinov. In questo lavoro abbiamo quindi deciso di approfondire

l’argomento al fine di testare le prestazioni di classificazione delle DBM su

un dataset scelto appositamente per verificare l’effettiva utilità di questo

modello nella classificazione di immagini complesse.

Prima di spiegare le DBM e presentare il problema che abbiamo affronta-

to, è opportuno presentare alcuni modelli generativi da cui le DBM traggono

spunto, al fine di fornire una panoramica più completa su di esse.

Boltzmann Machines

General Boltzmann Machine

Una Boltzmann Machine (BM) è un modello appartenente alle reti neurali

generative, rappresentabile come un grafo indiretto e caratterizzato da una

funzione energia. Una BM contiene un insieme di unità visibili v ∈ {0, 1}V

XIII

Figura 1: General Boltzmann Machine

che modellano l’input della rete (e.g., pixel di un’immagine binaria) e un

insieme di unità nascoste h ∈ {0, 1}U che agiscono come feature detectors

(Figura 1). Ad ogni stato {v,h} corrisponde una funzione energia definita

come:

E(v,h; θ) = −1

2
vTLv − 1

2
hTJh− vTWh (1)

dove θ = {W,L, J} sono i parametri del modello e rappresentano rispetti-

vamente le connessioni tra neuroni visibili e nascosti, tra neuroni visibili e

altri neuroni visibili, e tra neuroni nascosti e altri neuroni nascosti. Questa

funzione energia è utilizzata per definire la probabilità che il modello assegna

ad una configurazione {v,h} degli stati:

Pmodel(v,h; θ) =
1

Z(θ)
e−E(v,h;θ) (2)

dove Z(θ) è la funzione di partizione utile allo scopo di trasformare un

numero generico in un numero indicante una probabilità. La probabilità

che il modello assegna ad un vettore di unità visibili v è invece calcolata

sommando su tutte le possibili configurazioni di h:

Pmodel(v; θ) =
1

Z(θ)

∑
h

e−E(v,h;θ). (3)

La BM viene allenata aumentando la probabilità degli stati che permettono

di generare una ricostruzione fedele di un dato esempio del training set.

A tal fine, si allenano i pesi e i bias della BM in modo da abbassare il

valore della funzione energia per gli stati che generano uno degli esempi

provenienti dal training set. Allo stesso tempo si diminuisce la probabilità

degli stati che generano esempi non provenienti dal training set aumentando

XIV

Figura 2: Restricted Boltzmann Machine

l’energia relativa a questi stati. Con questa procedura è possibile allenare

una BM, tuttavia i tempi di calcolo sono elevati e ne rendono praticamente

inapplicabile l’apprendimento; con opportune limitazioni alla struttura della

BM è però possibile diminuire significativamente i tempi di apprendimento

al punto da renderlo praticabile. Nelle prossime sezioni sono spiegati alcuni

modelli di BM che implementano tali limitazioni.

Restricted Boltzmann Machine

Le Restricted Boltzmann Machine (RBM) [25] sono un tipo di BM con

due strati in cui il primo contiene tutte le unità visibili e l’altro tutte le

unità nascoste (Figura 2). Inoltre non sono presenti nè connessioni tra unità

visibili nè connessioni tra unità nascoste. Di conseguenza la funzione energia

di uno stato {v,h} per una RBM si limita al termine:

E(v,h; θ) = −vTWh. (4)

Un algoritmo di apprendimento di una RBM proposto da Hinton in [26],

consiste nel minimizzare la cosiddetta Contrastive Divergence (CD), ossia

la Kullback-Leibler (KL) Divergence tra le distribuzioni P 0 ‖ P 1
θ , in cui P è

la configurazione degli stati dei neuroni al passo di Gibbs sampling indicato

dall’apice, il pedice θ precisa che lo stato è ottenuto utilizzando il vettore

θ dei parametri del modello corrente, il simbolo ‖ indica la KL Divergence

tra le due distribuzioni e l’apice indica il numero di passi di Gibbs sampling

effettuati: 0 indica lo stato iniziale utilizzando un esempio del training set

e 1 indica lo stato dopo un passo di Gibbs sampling utilizzando lo stesso

esempio. Il passo di Gibbs sampling è effettuato al fine di ottenere una

ricostruzione dell’esempio del training set e tale ricostruzione verrà poi usata

nella formula di aggiornamento dei pesi.

Una RBM è un ottimo modello per trovare buone features, ma le sue

prestazioni possono essere migliorate impilando ulteriori RBM allenate. Una

volta appresa la prima RBM, è infatti possibile utilizzare le accensioni dei

XV

Figura 3: Deep Boltzmann Machine

suoi stati nascosti come dataset per una successiva RBM da collocare al di

sopra della prima, e cos̀ı via ricorsivamente. Con opportune operazioni, il

modello che ne scaturisce è identificabile come una pila di RBM allenate e

prende il nome di Deep Boltzmann Machine (DBM).

Deep Boltzmann Machine

Le DBM [32], essendo composte da RBM impilate, non hanno nè connes-

sioni all’interno di uno stesso strato nè connessioni tra strati non adiacenti

(Figura 3). Questi modelli possono essere allenati con il classico algoritmo

per BM posto che le RBM siano state precedentemente allenate. Difatti,

il semplice algoritmo di apprendimento di una BM non avrebbe prestazio-

ni accettabili senza un preallenamento delle RBM componenti il modello.

Infine, una volta appresa la DBM, è possibile trasformarla in un modello

discriminativo chiamato Multi-Layer Perceptron (MLP), da allenare in mo-

do supervisionato per ottimizzare ulteriormente i pesi al fine di renderli più

efficienti per operazioni di classificazione (Figura 4).

Multi-Prediction Deep Boltzmann Machine

Le Multi-Prediction Deep Boltzmann Machine (MP-DBM) [22] sono una

variante del modello di DBM che prevede un diverso tipo di algoritmo di

apprendimento. Tale algoritmo è capace di far apprendere alla rete pesi e

bias efficienti senza servirsi della fase di preallenamento delle RBM, ridu-

cendo cos̀ı significativamente il tempo di allenamento del modello. Nello

stesso articolo viene mostrato come le MP-DBM possano ottenere risultati

leggermente migliori delle DBM sugli stessi dataset.

XVI

Figura 4: MLP ottenuto da una DBM

Figura 5: Immagini facili di GTSRB

German Traffic Sign Recognition Benchmark

Il dataset che abbiamo scelto per verificare le prestazioni discriminative delle

DBM su immagini complesse è il German Traffic Sign Recognition Bench-

mark (GTSRB) [4], utilizzato nella International Joint Conference on Neural

Networks (IJCNN) nel 2011. Questo dataset è composto da immagini di 43

classi di cartelli stradali divisi in 39209 esempi nel training set e 12630 esempi

nel test set. Le immagini sono in formato RGB, non necessariamente qua-

drate e hanno dimensioni che variano da 15× 15 a 250× 250. Le Figure 5 e

6 mostrano come il dataset GTSRB contenga immagini sia facili sia diffici-

li. Infatti, in molti esempi, il cartello stradale può essere sfocato, troppo o

troppo poco illuminato, non centrato, ruotato, in cattive condizioni o avere

ostacoli di fronte. Queste caratteristiche sono state prese in considerazione

negli esperimenti svolti da noi al fine di migliorare le prestazioni del modello.

XVII

Figura 6: Immagini difficili di GTSRB

Note sull’implementazione

Abbiamo implementato il codice della procedura di allenamento della DBM

utilizzando un framework di machine learning scritto in Python [14] chiama-

to Pylearn2 [23] che utilizza la libreria Theano [18, 19] per effettuare i calcoli

di algebra lineare e operazioni simili coinvolte nell’allenamento dei modelli.

Tale libreria ci ha anche permesso di utilizzare una GPU per effettuare i

nostri esperimenti diminuendo significativamente i tempi di esecuzione di

ogni esperimento.

La procedura è stata implementata in un unico codice comprendente

tutte le fasi dell’allenamento della DBM secondo la procedura descritta da

Hinton e Salakhutdinov. A tal fine abbiamo sfruttato gli algoritmi già pre-

senti in Pylearn2 e implementato i mancanti, unendoli in un solo script di

training da eseguire per ogni esperimento. Inoltre abbiamo dovuto program-

mare anche l’importazione del dataset in una struttura dati che Pylearn2

sarebbe stato capace di usare per effettuare gli esperimenti; nello stesso co-

dice, prima di importare i dati, tutte le immagini sono state ridimensionate

per renderle utilizzabili dalla rete neurale e la distribuzione dei loro pixel è

stata normalizzata1.

Esperimenti e risultati

Gli esperimenti sono stati effettuati in tre fasi:

• tuning dei parametri di apprendimento,

• verifica del metodo di preprocessing migliore,

• esperimenti finali per ottenere il miglior modello.

Nella prima parte abbiamo svolto vari esperimenti per capire quale fosse la

configurazione migliore dei parametri di apprendimento per ciascuna fase

1La distribuzione dei pixel è stata forzata ad avere media uguale a zero e varianza

uguale a uno.

XVIII

Figura 7: Immagini standard di GTSRB e loro trasformazione dopo il preprocessing

dell’allenamento. Una volta trovati i migliori parametri di apprendimen-

to, abbiamo effettuato ulteriori esperimenti per decidere quale metodo di

preprocessing fosse il migliore. Il metodo che ci ha permesso di ottenere

le migliori prestazioni è denominato equalizzazione adattiva dell’istogram-

ma, un metodo che interagendo sull’istogramma di un’immagine permette

di aumentarne il contrasto con i risultati mostrati in Figura 7. Gli esperi-

menti conclusivi sono stati effettuati modificando ulteriormente i parametri

di apprendimento del MLP trovati inizialmente, utilizzando i parametri che

ottenevano il miglior risultato sul validation set. Durante questa fase ab-

biamo scoperto che modelli più piccoli erano capaci di ottenere prestazioni

migliori di quelli precedentemente usati e abbiamo perciò deciso di allenare

una DBM composta da meno neuroni nascosti. Il modello finale ci ha per-

messo di ottenere un test error pari al 4.15%, un risultato migliore rispetto

al 4.32% ottenuto con il miglior modello generativo, su questo dataset, che

abbiamo trovato.

Infine, gli esperimenti svolti utilizzando le MP-DBM, ci hanno permesso

di abbassare questo risultato a 3.81%; tale risultato ha confermato la ca-

pacità delle MP-DBM di riuscire ad avere prestazioni leggermente migliori

rispetto a quelle delle DBM anche sul dataset GTSRB. Questo risultato col-

loca le DBM al terzo posto nella classifica dei migliori modelli sul dataset

GTSRB, preceduto da modelli discriminativi puri, tra cui un modello co-

stituito da reti neurali convoluzionali profonde che ha permesso di ottenere

un errore pari a 0.54% sul test set, che è il miglior risultato pubblicato [21]

attualmente per il dataset GTSRB. La posizione in classifica mostra come

le DBM sono state capaci di raggiungere prestazioni inferiori solo a quelle

di modelli discriminativi puri profondi, evidenziando le ottime prestazioni

XIX

raggiungibili con esse. Tali performance mostrano come le DBM siano il

miglior modello generativo nella classificazione del dataset GTSRB e come

modelli generativi possano avvicinarsi alle prestazioni raggiunte da modelli

discriminativi puri.

XX

Chapter 1

Introduction

One of the most important issues in computer science is to give a computer

some degree of intelligence in order to make it able to replace (or overcome)

humans in some tasks. Indeed, there is a large variety of problems that can

be easily carried out by humans, but it is still tough to teach a computer how

to deal with them. Objects recognition is one of these problems: humans

are very good at solving it, but we are still not able to build computers that

can fully replace humans in this task.

Despite the fact that it is not possible to reproduce human performance

at object classification, many machine learning models and algorithms have

been successful at making computers able to classify objects belonging to

small sets of them such as digits, letters, animals and so on. These techniques

use a set of images called training set that is used to “teach” the features

of an object (e.g.: colors, shape) to the model, in order to make it able to

recognize instances of that object never seen before. In machine learning,

there is a large variety of models and algorithms that have been developed

during the years and it has been proved that there is not a single model that

is always better than one another; thus, it is interesting to test and analyze

the performance of models on different tasks in order to compare them and

understand them better.

In this work we want to test the performance of deep generative mod-

els that are becoming increasingly interesting for objects recognition. We

started studying the deep generative model of Deep Belief Net (DBN) and

other related models. After some research, we focused on the model of Deep

Boltzmann Machines (DBMs) that we found to be one of the most effective

generative models for classification. We focused on the results of Hinton

and Salakhutdinov that, in their work on DBMs [32], propose a training

algorithm for DBMs able to make them very efficient in classification. In-

1

deed, in their experiments, they achieved high performance in digits and

simple objects classification, overcoming a large number of machine learn-

ing models. These tasks were relatively simple and there are no many other

experimental results showing the effectiveness of DBMs in more complex

objects classification. We tested the possibilities of DBMs on the German

Traffic Sign Recognition Benchmark (GTSRB) dataset [4], a collection of

images of 43 classes of road signs, that we considered sufficiently complex to

be an interesting test of DBMs efficiency in complex objects classification.

We implemented the DBM training procedure proposed by Hinton and

Salakhutdinov using a Python machine learning framework called Pylearn2

[23] in order to exploit its helpful features to build the model and to analyze

it once trained. To become familiar with Pylearn2 and to have enough con-

fidence on the correctness of our implementation, we first tried to reproduce

their result on the MNIST dataset. Then, once we have been able to reach

it, we started working on GTSRB. In this thesis, we show how we dealt

with this dataset and the choices we made to reach our published results on

it. Finally, we show how we have succeeded to improve on the classification

performance of the best published generative model we have been able to

find, confirming that DBM is one of the best generative models in classi-

fication tasks and that it can achieve high results also in complex objects

classification.

• In the next chapter we give an overview of discriminative and gener-

ative models, focusing on the deep generative models we used in this

work. Moreover, we explain the training procedure we used, showing

how it is able to efficiently train DBMs.

• In Chapter 3, we discuss the issues related to the training of models

for images classification and we present the GTSRB dataset and its

features.

• In Chapter 4, we explain Pylearn2 and the implementation of the DBM

training procedure we made using it. We also show some optimization

techniques we used to make images more suitable for training.

• In Chapter 5, we show the experimental results we have been able to

obtain.

• Finally, in the last chapter, we resume our work and discuss some

possible future developments of it.

2

Chapter 2

State of the art

Machine learning has two opposed classes of models. One is composed of

discriminative models that are models able to learn the dependence of an

unobserved variable on an observed variable in a certain context. In other

words, given the value of the observed variable, they are able to infer the

value of the unobserved one.

The other class includes generative models that, instead, are full proba-

bilistic models of all the variables involved.

Both discriminative and generative models are very often implemented

through graphical models, that are probabilistic models able to model com-

plex probability distributions represented with a graph composed of random

variables (nodes) and conditional dependencies among them (edges). Ran-

dom variables depend on or influence other ones in a certain context; for

instance, dealing with object recognition, random variables can be the color

of the object, its shape, its name and so on.

The most commonly used graphical models are Bayesian Networks and

Markov Random Fields (MRFs); the former can be represented with a di-

rected and acyclic graph, the latter have an undirected and cyclic graph.

Thus, Bayesian Networks are not able to model cyclic dependencies like

MRFs, but they can model induced dependencies whereas a MRF cannot.

For both of models observed it is possible to infer the state of random

variables given the real state of some of them. Unfortunately, for MRF ex-

act inference is not possible because a particular element of the inference

formula, called partition function (used to transform a normal value into

a probabilistic value), considers all the possible configurations of random

and observed variables making the complexity of the algorithm exponential.

However inference can be approximated with methods such as Montecarlo

3

Sampling, without a big loss in terms of performance making them com-

putable probabilistic models.

As stated in the introduction, our work consists of an object classifi-

cation task using generative models on a complex dataset to evaluate the

performance of them in discrimination and comparing them with the ones of

discriminative models. To explain the concept of discrimination, we briefly

introduce the discriminative model of neural networks, moving afterwards

to the generative models we used.

2.1 Neural networks and objects classification

Neural Networks (NN) [20] are a discriminative model that has been proved

to be very effective for classification and regression tasks. Our work deals

only with a classification task and therefore this is the only class of problems

that will be considered from now on in reviewing the state of the art. In this

kind of problems, the aim is to obtain a model able to recognize objects never

seen before assigning the right class to them. A class represents the identity

of the object: for instance, if the task is to classify 4 types of animals, classes

can be dog, cat, bird or fish. The neural network has to be trained in order

to be able to discriminate among each class and assign the correct one to

each example (the details of training will be explained soon).

Neural networks are directed graph in which each node (neuron) has an

activation function and a bias, and each edge (synapsis) has a weight. Neu-

rons in a so called feedforward neural network (Figure 2.1) can be grouped in

layers that have incoming connections only with the previous layer and out-

coming connections only with the following one. Moreover, no connections

among neurons belonging to the same layer are allowed. In other words, the

graph modeling a neural network is directed and the flow of information in

a standard NN goes from the beginning to the end of the network without

going back.

Figure 2.1 shows a feedforward neural network composed of three layers:

an input layer on the left, a hidden layer in the middle and an output layer

on the right. The circles are the neurons of the network and the arrows

represent the synapsis. As it can be seen, there are only connections between

adjacent layers.

Layers are a fundamental aspect of neural networks due to their ability

to capture features of data in order to obtain a more complex knowledge of

them. Indeed, starting from the first layer, called visible layer, it is possible

to activate neurons in the following layers (hidden layers) to make an ab-

straction of the input capturing more and more complex features through

4

Figure 2.1: Feedforward neural network

deeper layers [27]. The last layer, also called output layer, models the answer

of the network to a specific input data.

Each neuron of a neural network has an activation function that has to

be computed to obtain the output of a neuron and its formula is:

yj = f(
∑
i

Wijxi + bj) (2.1)

where j is the index of the neuron in the considered layer, i is the index of a

neuron in the previous layer, xi is the activation function value of neuron i,

Wij and bj are, respectively, the weights of each edge connecting a neuron i

to the neuron j and the bias of neuron j and, finally, f() is a function that

can be linear or not. In classification tasks the output layer answer is the

object class the network thinks current input data belongs to and can be

computed using the activation function of the neurons in the output layer,

modeling the answer, for instance, with a one-hot configuration where the

number of neurons in the output layer is equal to the number of classes and

only the one of them with the highest value of activation function is on.

To make the network able to give the correct answer given a certain in-

put, i.e., to turn on the right neuron in the top layer, the weights and biases

of the neural network need to be modified in order to make the network able

to efficiently recognize a large amount of the object on which it has been

trained. Efficient weights and biases can be found by means of gradient

descent techniques, such as backpropagation, starting from a random initial-

ization of them and changing them iteratively trying to reduce the number

of errors obtained with the current configuration. Gradient descent moves

the current configuration of parameters in the n-dimensional space (n is the

number of weights and biases) descending along the direction of the gradi-

ent of the error and, after a reasonable number of epochs, the algorithm is

supposed to find good weights and biases.

Commonly, activation functions are sigmoidal or hyperbolic tangent func-

tions and networks with activation functions of this form are called deter-

ministic neural networks. A modified version of them uses these activa-

5

tion functions as probabilities of binary neurons, whose output is 1 or 0,

to determine if the neuron is on or not. This type of networks are called

stochastic neural networks and due to their probabilistic behaviors they are

more likely, than other models, to avoid local minima of the error function

that the network is trying to minimize. Indeed, gradient descent procedure

in deterministic neural networks does not make large jump across the error

function and it is difficult for them to move from a local minima. A stochas-

tic neural network makes the current error fluctuate randomly allowing it

to escape from a local minima more easily. There are many other meth-

ods to increase performance of a network, but stochastic neurons have been

presented because they are required in the models that we used in this work.

To reduce the error rate of the network, it is also critical to choose the

right number of layers and neurons. The simplest model of neural network,

called perceptron, is composed of only one neuron and it can only perform

linear classification due to its very low complexity. It has been proved that

only networks with a larger number of neurons are capable of non-linear

classification or regression. In complex domains, there is the need to build

large neural networks able to deal with their complexity and dimensions; one

of these networks is the well-known Multi-Layer Perceptron (MLP) that is

a bigger version of the perceptron. The machine learning branch of deep

learning works with models with a large number of layers; for instance a

deep neural network [34] is a neural network with a relatively large number

of layers often containing many neurons. Deep learning models set the state

of the art on many datasets and have become one of the most exploited to

reach high results in a lot of object classification tasks.

2.2 Boltzmann Machines

In this work we focus on Boltzmann Machines (BM) (Figure 2.2) [28] and

their variants exploring, in particular, Deep Boltzmann Machines (DBM)

[32] which we will explain later in this chapter. BMs are one of the best

generative models in object classification and our aim is to understand its

potentialities in complex object classification and comparing it to the ones

of pure discriminative models.

2.2.1 General Boltzmann Machines

A Boltzmann Machine is an energy-based undirected graphical model be-

longing to the group of generative stochastic neural networks. A BM con-

tains a set of visible units v ∈ {0, 1}V that models the input of the network

6

Figure 2.2: General Boltzmann Machine

(e.g., pixels of an image) and a set of hidden units h ∈ {0, 1}U that act as

feature detectors.

Figure 2.2 shows a BM composed of a visible layer on the bottom and

a hidden layer on the top. The edges connect each neuron to all the others

making a complete graph.

Each state {v,h} has an energy function defined as:

E(v,h; θ) = −1

2
vTLv − 1

2
hTJh− vTWh (2.2)

where θ = {W,L, J} are the model parameters: W , L and J represent

visible-to-hidden, visible-to-visible and hidden-to-hidden symmetric inter-

action terms. This energy function is used to define the probability that the

model assigns to a joint configuration {v,h}:

Pmodel(v,h; θ) =
1

Z(θ)
e−E(v,h;θ) (2.3)

where the partition function Z(θ):

Z(θ) =
∑
v,h

e−E(v,h;θ) (2.4)

takes into account all the possible joint configurations of visible and hidden

units, thus transforming a scalar value into a probability value. The prob-

ability assigned to a vector of visible units v is summed over all possible

hidden vector h configurations:

Pmodel(v; θ) =
P ∗(v; θ)

Z(θ)
=

1

Z(θ)

∑
h

e−E(v,h;θ) (2.5)

7

where P ∗ denotes ”unnormalized” probability.

We want to assign a greater probability to those states that give the

correct prediction given a dataset example. In BMs this can be done with

the adjustment of weights and biases lowering the energy of the states that

would generate one of the samples coming from the training data. At the

same time, we also want to lower the probability of obtaining data that is

not sampled from the training data distribution. To this end, we allow the

model to stochastically generate confabulations (or fantasies) and then raise

accordingly the energy of the associated states. The change in a weight is

then given by:

∂ log(p(v))

∂wij
= EPdata

[vihj]− EPmodel
[vihj] (2.6)

where EP is the expectation under the distribution specified by the subscript.

In other words, both expectations indicates the frequency with which each

pair of visible and hidden units (feature detectors) are simultaneously on

when the network is driven under certain weights defining a specific proba-

bility distribution. The first element corresponds to the state obtained when

a training example is clamped to the visible layer. The second element is

trickier and will be explained later.

It is useful to define the conditional probability functions of both type

of units because they will be used for training:

p(hj = 1|v,h−j) = g(
∑
i

Wijvi +
∑
m6=j

Jjmhm + bj) (2.7)

p(vi = 1|h,v−i) = g(
∑
j

Wijhj +
∑
k 6=i

Likvk + ai) (2.8)

where g(x) is the logistic function 1
1+e−x , h−j (and v−i) are hidden and

visible vectors without unit of index j (or i) and bj and ai are biases.

While the first element of the update formula 2.6 is an unbiased sample

easily obtainable clamping a training example to the visible layer, the second

element cannot be computed immediately. The procedure to calculate it

involves starting from a random state of the visible units and performing

Gibbs sampling until the network reaches thermal equilibrium, a situation

where the probability distribution of the joint probability of the states has

converged. A single step of Gibbs sampling consists of updating all hidden

units in parallel using equation 2.7 and updating all the visible units with

equation 2.8 afterwards. Reaching thermal equilibrium could be a very time

consuming task and this could be a bottleneck in real cases.

8

In 1983 Hinton and Sejnowski [28] derived the parameter update to per-

form gradient ascent in the log-likelihood:

∆W = α(EPdata
[vhT]− EPmodel

[vhT])

∆L = α(EPdata
[vvT]− EPmodel

[vvT])

∆J = α(EPdata
[hhT]− EPmodel

[hhT])

(2.9)

where α is a learning rate and E denotes an expectation. In particular,

the data-dependent term EPdata
is an expectation with respect to the com-

pleted data distribution Pdata(h,v; θ). Applying the chain rule we obtain

Pdata(h,v; θ) = P (h|v; θ)Pdata(v) = P (h|v; θ) 1
N

∑
n
δ(v−vn). Pdata(v) is in-

deed the expectation that a certain visible vector is observed in the training

set and it corresponds to the empirical distribution of data 1
N

∑
n
δ(v−vn)

where δ is the Dirac delta function1. This is a formal way to count the

number of examples of the training set vn that are equal to the current one

v because if v = vn then δ(v) = 1; otherwise it is 0. The expectation is

then obtained dividing the sum by N . The second term is the expectation

with respect to the distribution defined by the model without any clamped

visible vector, thus it is also called data-independent term.

Exact maximum likelihood learning cannot be used to compute neither

of these terms: the data-dependent term would require an exponential time

in the number of hidden units and the time required to compute the model

expectation term would be exponential in the number of both visible and

hidden units. In [28] Hinton and Sejnowski proposed an algorithm to ap-

proximate these terms that consisted in running, during each iteration of

learning, a separate Markov chain for each training example from the dataset

and a Markov chain to approximate the model distribution. The problem

with this procedure is that each chain requires a long time to reach the

stationary distribution. In 2012 Hinton and Salakhutdinov [32] proposed

a different approach to make the computation of both terms tractable by

computing them with two different independent methods:

• Data-dependent expectations are approximated with a variational

approach that replaces the true posterior distribution over latent vari-

ables P (h|v; θ) given the current training vector v by an approximate

posterior Q(h|v;µ) and updates the parameters following the gradient

of a lower bound on the log-likelihood:

logP (v; θ) ≥
∑
h

Q(h|v;µ) logP (v,h; θ) +H(Q)

≥ logP (v; θ)−KL[Q(h|v;µ)||P (h|v; θ)]
(2.10)

1The Dirac delta function, also known as impulse function, is a function that is zero

everywhere except at zero and has an integral of one over the entire real line.

9

where H(Q) is the entropy functional. As it can be seen, varia-

tional learning tries to maximize the log-likelihood and at the same

time it also tries to minimize the Kullback-Leibler divergence be-

tween the approximating and the true posterior distributions. Bas-

ing on the assumption that the distribution function of the data is

usually unimodal, the true posterior is usually approximated with

a naive mean-field approach that uses a fully factorized distribution

(i.e., a distribution whose terms are all independent from one another)

Q(h|v;µ) =
∏
j
q(hj) with q(hj = 1) = µj . Using this distribution, the

lower bound becomes:

log p(v; θ) ≥ 1

2

∑
i,k

Likvivk +
1

2

∑
j,m
Jjmµjµm +

∑
i,j
Wijviµj

− logZ(θ)−
∑
j

[µj logµj + (1− µj) log(1− µj)].
(2.11)

Then the learning procedure maximizes this lower bound with respect

to the variational parameters µ for fixed θ, by performing the following

mean-field updates until convergence2:

µj ← g(
∑
i

Wijvi +
∑
m6=j

Jmjµm). (2.12)

• Model expectations are approximated by means of a Stochastic Ap-

proximation Procedure (SAP) consisting of a sequence of parameters

and states updates. The procedure begins with a set of initial param-

eters θ0 and an initial state x0, randomly initialized; then the update

phase samples a new state x̃t+1 from x̃t using a transition operator

that leaves p(•; θt) invariant (such as Gibbs sampling). This process

is called Markov chain. To make the estimation of the expectation

more efficient, M Markov chains are runned simultaneously instead of

only one and for each of them G Gibbs steps are performed. Once all

Markov chains have been completed, the expectations x̃t+G,m, where

m is the Markov chain to which the vector belongs to, are averaged to

find the final model’s expectation x̃t+G =
1

M

∑
m

x̃t+G,m.

2To speed up computations only a certain number of updates are done without affecting

performance too much.

10

Figure 2.3: Restricted Boltzmann Machine

Once both the expectations have been computed, weights are changed with

the following weight update formulas:

W t+1 = W t + α(
1

N

∑
n

vn(µn)T − 1

M

∑
m

ṽt+G,m(h̃t+G,m)T)

J t+1 = J t + α(
1

N

∑
n
µn(µn)T − 1

M

∑
m

h̃t+G,m(h̃t+G,m)T)

Lt+1 = Lt + α(
1

N

∑
n

vn(vn)T − 1

M

∑
m

ṽt+G,m(ṽt+G,m)T).

(2.13)

This is the general procedure to train a general Boltzmann Machine, but

it is very slow. Some constraints to the topology of the network can be

applied in order to make the training faster, but at the price of having a less

powerful model.

2.2.2 Restricted Boltzmann Machines

Restricted Boltzmann Machines [25] are a type of BMs with two layers in

which one layer is composed of visible units and the other one of hidden units.

Moreover there are no visible-to-visible or hidden-to-hidden connections.

Figure 2.3 shows a RBM composed of two layers with the visible one on

the bottom and the hidden one on the top. As it can be seen, the RBM does

not have connections among neurons belonging to the same layer making it

a complete bipartite graph.

The energy function of a joint configuration {v,h} in a RBM is the same

as the one of the general BM case, but with J and W both set to 0:

E(v,h; θ) = −vTWh. (2.14)

In [26] proposed a solution that made the previously explained training

technique computationally feasible using RBMs. The procedure tries to

minimize the Contrastive Divergence (CD) which is the Kullback-Leibler

(KL) divergence between the two distributions P 0 ‖ P 1
θ where the subscript θ

11

indicates that the distribution is obtained using the current parameter vector

θ and the superscript indicates the number of performed Gibbs sampling

steps: 0 stands for the initial state with the training vector clamped to the

visible units and 1 stands for a state after one Gibbs sampling step. The

algorithm starts by setting the state of the visible units clamping a training

example and then performs one step of Gibbs sampling using the conditional

probability formulas 2.7 and 2.8. This allows to obtain a reconstruction of

the input data which will be used for the weights update formula. One can

also use CD-k which simply performs k steps instead of one, but even though

this choice gives a reconstruction which is closer to the thermal equilibrium,

it has the drawback to add variance (or noise) to it. In this case the KL-

Divergence that is minimized is P 0 ‖ P kθ where k stands for a state after k

Gibbs sampling steps. The update formula for CD (or CD-k) is:

∆wij = ε(EPdata
vihj − EPreconvihj) (2.15)

with EPrecon replacing EPmodel
because the latter represents the distribution

after convergence P∞.

RBMs are an efficient way to find good feature detectors, but perfor-

mance from this perspective can be improved by stacking several RBMs on

top of each other with a procedure called greedy layer-wise pretraining. As

we have shown before, a RBM can be trained minimizing CD-k and this

procedure can be applied also for larger models that we will introduce later.

Starting from the bottom RBM, it is possible to train each layer of RBMs

till the top one. The bottom RBM is the one that takes the input data

from the training set by clamping a data vector into its visible layer. After

having trained the bottom one with CD-k, the following hidden layers can

be learned also with CD-k using the hidden activities of the previous RBM

as the visible data for the higher level one. In other words, once we have

obtained the trained weights of a RBM and we have activated its hidden

neurons sampling it from the posterior distribution given the visible vector,

we can use the sampled hidden state as the visible state of the RBM above

that will be trained the same way. With slight changes, this is what is

done to build a Deep Boltzmann Machine (DBM) that is one of the models

we used for this work. However in order to understand DBMs better, it is

advisable to analyze first a hybrid model called Deep Belief Net (DBN).

2.2.3 Deep Belief Networks

To understand the procedure that leads to a DBN it is better to discuss some

related issues first. As shown in the introduction of this chapter, inference

12

Figure 2.4: A semi-infinite directed belief net with tied weights

in a belief network (also known as Bayesian Network) is very difficult. As a

matter of fact, the well-known phenomenon of explaining away often makes

inference intractable and so the posterior distribution over hidden variables

cannot be computed. To have tractable inference, it is desirable to have

a factorial posterior distribution. In [31], it is shown a trick to eliminate

the explaining away making the posterior distribution factorial; the trick

involves the use of extra hidden layers, called complementary priors, with

exactly the opposite correlations to those in the likelihood term coming from

the data. This way, when a data vector is observed, the opposite correla-

tions multiplied with the prior distribution eliminate themselves making the

posterior factorial.

A model that implements such a trick is the one in Figure 2.4 where the

rectangles represent the whole set of neurons in each layer and the arrows

represent all the connections among layers. This is a semi-infinite model with

tied weights in which the priors are complementary at every hidden layer.

This network is clearly useless because it has no limit on the top and it can

be considered just as a theoretical model: it should be limited in some way

in order to make it practical. It can be shown that an infinite directed net

is equivalent to a RBM [31]. Indeed, in the semi-infinite belief net, data can

be generated starting with random data clamped in a infinitely deep layer

13

and then performing top-down passes. In a RBM data can be generated

starting with a random configuration of states in one of the two layers and

then performing Gibbs sampling until reaching equilibrium distribution. It

turned out that these procedures are equivalent and therefore an infinite

belief net can be replaced with a RBM. In other words, the undirected

connections of the RBM bring to the same model of an infinite belief net

with tied weight matrices. Thus, the final network to be trained has the

form of the one in Figure 2.5.

The learning algorithm of the hybrid model in Figure 2.5 initially trains

the first layer of weights W0 assuming that the weight matrices of each layer

in the whole network have the same values. As explained by Hinton, this is

done in order to guarantee the existence of complementary priors. Once W0

has been learned, it is freezed and W T
0 can be used to sample from the visible

layer creating data for the first layer of hidden units. After the initialization

of this layer, the second RBM can be trained the same way of the first and

this procedure can be applied recursively to all other layers. Eventually the

network will have all layers trained and tied directed weights at each layer.

The presented procedure is an unsupervised technique useful to exploit

the performance of multiple RBMs. Even though it is reasonably powerful,

its performance can be improved with a finetuning procedure that, starting

from the pretrained parameters, trains the whole network finding even bet-

ter ones. In the finetuning phase, the DBN is trained with a variation of

the Wake-Sleep algorithm [29], an unsupervised training algorithm invented

by Hinton in 1995 which can be used to train a neural network a so called

Helmholtz machine (Figure 2.6). As shown in the figure, a Helmholtz ma-

chine has the same structure of a DBN with the exception of the RBM on

the top that is not present; the dashed line indicate top-down connections

and the continuous lines indicate bottom-up connections. The wake phase

adjusts the generative weights (top-down) when the network is driven by the

discriminative weights (bottom-up) and the sleep phase does the opposite.

Hinton shows that if the recognition weights are fixed, the update for-

mula to adjust the generative weights is:

∆wkj = αsk(sj − pj) (2.16)

where α is the learning rate, sk and sj are the state of the layers k and j

when the network is driven with recognition weights and pj is the probability

that unit j would turn on if it was driven by the current state in the layer

above using the current generative weights.

Conversely, the update formula to adjust the recognition weights is:

∆wjk = αsj(sk − qk) (2.17)

14

Figure 2.5: Hybrid network with RBM on top

Figure 2.6: A three-layer Helmholtz machine

15

Figure 2.7: A Deep Belief Network and a Deep Boltzmann Machine

where α is the learning rate, sj and sk are the state of the layers j and k

when the network is driven with generative weights and qk is the probability

that unit k would turn on if it was driven by the current state in the layer

below using the current discriminative weights.

Normally, Wake-Sleep starts initializing the top layer stochastically us-

ing only its bias to influence the probability of neurons of being on, but

this cannot be done in a DBN because of the RBM on the top of it that

would not produce samples from the generative model. However, Hinton

(2006) shows that a contrastive version of wake-sleep can be applied to a

DBN in order to make generative finetuning possible. This method involves

the initial clamping of a training example-label pair from the training set

and performing bottom-up passes till the RBM’s state is set. Then alter-

nate Gibbs sampling allows the top RBM to produce a confabulation of the

input. The confabulation is used to perform the Wake-Sleep algorithm in

the previously explained way.

As previously specified, the RBM on the top of a DBN and the directed

connections below it, make this model a hybrid between an undirected and

a directed one. We will now explain a slightly different model that differs

from a DBN because it has undirected connections between each layer and

therefore it can be seen as a stack of RBMs (Figure 2.7: the associative

memory can be seen at the top of the DBN). This model is called Deep

Boltzmann Machine and, as stated before, it is the one we used the most

for the purpose of our work.

16

2.2.4 Deep Boltzmann Machines

A DBM [32] is a Boltzmann Machine composed of stacked RBMs and there-

fore it has no connections between non-adjacent layers nor intra-layer ones.

A DBM, being a BM, can be trained with the training procedure for general

BMs shown in section 2.2.1. Nevertheless, it is useful to initialize weights

with a pretraining procedure which is a slightly modified version of the one

for DBN which we have just presented with the ability to avoid the creation

of asymmetric weights making it a stack of RBMs. This procedure considers

the fact that after learning the second-layer RBM, the approximation to the

true posterior P (h(1)|v;W (1),W (2)) (where the superscript is the index of

the hidden layer) can be computed in two different ways: the first way infers

h(1) ignoring the second layer and uses P (h(1)|v;W (1)) and, on the other

hand, the second alternative uses only the second layer ignoring the bottom

one. This can be done performing two bottom-up passes and then using

P (h(1)|h(2);W (2)).

Both methods overemphasize the included layer and underemphasize the

other one making the inference of h(1) not sufficiently accurate. A trick to

have a better inference is to take a geometric average of these two distri-

butions using 1/2W (1) and 1/2W (2) (where the superscript is the index of

the layer the weights vector belongs to) to infer h(1) after the initial two

bottom up passes to infer h(2). This can be applied to a network with an

arbitrary number of layers. In a network with more than two hidden lay-

ers, this can be done by alternating resampling the odd-numbered layers

and the even-numbered layers and this procedure corresponds to alternate

Gibbs Sampling in a DBM with the visible units clamped. It seems that

a pretrained stack of RBMs can be composed to form a DBM halving all

the weights, but unfortunately, this procedure has a problem with the first

and last layer because for both of them there is only one input (the first

hidden layer or the last but one layer) and therefore it is not legitimate

to halve their weights to obtain the geometric average of incoming inputs.

The simple trick to solve this problem is to constrain the bottom-up or top-

down (respectively for visible or top layer’s) weights to be the double of the

opposite ones during pretraining of the first and last RBM to compensate

the lack of the second element in the geometric mean (Figure 2.8). Thus,

a pretrained stack of RBMs, following this procedure, can be composed to

form a DBM halving all the weights except for the top-down ones in the

first RBM and the bottom-up ones in the last RBM because this way it

is possible to maintain their symmetry in each layer. Moreover, there is a

method to correctly initialize the hidden states at the first step of inference

17

Figure 2.8: The weights during the pretraining procedure and after the stacking of

RBMs

when given a data vector, that consists in doubling the weights connecting

the visible layer and the first hidden layer to compensate the lack of input

making the inference correct.

Figure 2.8 shows the RBM pretraining on the left. It can be seen that the

weights are doubled according to the previously explained assumption. After

the pretraining, the DBM (on the right) can be build using the pretrained

weights.

It is worth noting that Hinton and Salakhutdinov show that performing

greedy layer-wise pretraining in a 2-layers DBM improves the variational

bound, but they were not able to demonstrate the same for a DBM with n

layers. Thus, there is no proof that using this technique to pretrain a DBM

would work if the number of layers is greater than two even though it seems

to work well in practice.

At the end of the pretraining phase and after the training procedure for

general BMs has been applied, finetuning may be used to improve generative

or discriminative performance. In [32], Hinton and Salakhutdinov explain

how to improve discriminative performance in a 2-layers DBM by means

of backpropagation; this is also one of the techniques we used in our work.

Supervised finetuning with backpropagation is applied on a MLP that has

the same configuration of the DBM except for the visible layer. Indeed,

18

Figure 2.9: DBM finetuning

considering the fact that the first hidden layer takes inputs from the visible

layer and the second hidden layer, we need to augment the input of the

multilayer neural network with the sampled state of the second hidden layer

of the DBM after the bottom-up passes as shown in Figure 2.9. This is done

for every data in the training set creating a dataset with the same number

of data as before augmented with the sampled state of the second hidden

layer.

Eventually, a softmax layer is added at the top of the multilayer neu-

ral network to make it able to perform classification. A softmax layer is

generally constrained to return the output of the network in a one-hot con-

figuration turning on only the neuron with the highest value of activation

function; in other words, it turns on only the most probable neuron that is

the most probable class that the network assigns to the input. Finally, the

MLP is finetuned with backpropagation.

Figure 2.9 shows on the left the trained DBM. From left to the right the

mean-field iteration are shown, with the trick of doubling the weights at the

first iteration, as explained before. After the required number of mean-field

iterations have been performed, the weights W2 connecting the second layer

to the first layer are used to connect the augmented input (the inferenced

second layer) to the first layer and a softmax layer y is added on the top.

2.2.5 Multi-Prediction Deep Boltzmann Machines

In [22], it is proposed a new model based on DBMs, called Multi-Prediction

Deep Boltzmann Machine (MP-DBM) that uses a different approach for

training called Multi-Prediction (MP) training. The involved procedure

trains the model to predict any subset of variables given the complement of

that subset of variables. In other words, given some values contained in an

19

example of the dataset, the model is trained to be good at predicting the

missing values of that example. Thus, dealing with images, the network is

trained with examples from which some pixels are removed and the network

learn how to predict them using the remaining ones.

Let O be a vector containing all variables that are observed during train-

ing. In unsupervised tasks, O corresponds to v whereas in supervised ones

O = [v, y]T . Let D be a training set (i.e., a collection of values of O). Let

S be a sequence of subsets of the possible indices of O. Let Qi be the

variational (e.g., mean-field) approximation to the joint of OS and h given

O−Si :

Qi(OSi , h) = argminQKL(Q(OSi , h)||P(OSi , h|O−Si)). (2.18)

There is not an explicit formula for Q and it has to be computed with an

iterative optimization process which runs mean-field updates to convergence.

For simplicity, Q is constrained to be factorial.

The MP-DBM is trained by using minibatch stochastic gradient descent

on the Multi-Prediction objective function:

J(D, θ) = −
∑
O∈D

∑
i

logQi(OSi). (2.19)

As it can be seen, for each example of the dataset, a sum of several terms is

considered. Each term indicates a subset of values to be removed from the

example and the network will learn, from the remaining ones, how to predict

them. During SGD training, minibatches of values of O and Si are sampled.

O is sampled drawing an example from the training set whereas sampling

Si means selecting each value of the example with a certain probability

(generally it is 0.5). The selected variable will be the ones to be excluded

from the training images and therefore they will be used as values to be

predicted, the remainder of them will be used to train the network.

Figure 2.10 shows three different cases of Multi-Prediction steps. Each

row has a neural network initialized differently from the other ones and

each column represent a mean-field step: the leftmost column is the initial

state, the central one shows the state during an intermediate step and the

rightmost one is the state after one step. The black circles are the state that

the network uses to learn how to predict the blue ones. The white circles

are the hidden states. The green arrows are the computational dependencies

used to perform the mean-field steps.

This model has been developed in order to solve some issues related to

DBMs. Firstly, it allows to avoid L + 2 different phases of training (where

20

Figure 2.10: Multi-Prediction training

21

L is the number of layers of the DBM) reducing it to one phase of training.

Moreover, while DBMs performance in classification tasks can be monitored

only during the finetuning phase when a MLP is created using its pretrained

weights, the classification error of a MP-DBM can be monitored from the

start of training. Finally, it does not need greedy layer-wise pretraining of

DBM that is known to find suboptimal solutions. The training procedure

for each layer can be optimal if it would consider also the influence of deeper

layers but, as we discussed before, it does not. A MP-DBM avoid this issue

training a single model in a single phase.

22

Chapter 3

Objects recognition

As stated before, in this work we want to test the performance of DBM

in image classification and, therefore, it is critical to understand how it is

possible to deal with images in machine learning. In this chapter we show

how images can be processed, before using them for the training algorithm,

in order to make them more suitable for learning and we will provide an

overview of the methods involved. After that, we focus on generative models

and their published results on image classification tasks, discussing them

and, finally, introducing the dataset we used to test the effectiveness of

DBMs on complex images classification.

3.1 Image and preprocessing

A dataset content can be modified preprocessing each example in many

possible ways to make it more suitable for training. Dealing with images,

there are some common operations that are sometimes very useful or even

mandatory. Considering the constant size of the input layer of a neural

network (i.e., the number of neurons equal to the number of pixels of the

image), if the dataset contains images of different sizes they must be resized

to fit the size of the visible layer of the network. Thus, all images need to

have the same size and cropping and/or resizing them can be one of the

preprocessing steps.

Also the number of channels has to be considered together with the range

of possible values of pixels. Grayscale images often have a range of [0,255]

for each pixel while in RGB images this range is used for each color channel.

This range needs to be small to be more suitable for training because large

ranges are known to slow down the convergence of the training algorithm

[20]. For instance, it is very common to rescale the input range into a [0, 1]

23

or [−1, 1] range. Another way to shrink the range is to modify it in such a

way that the distribution of each example has zero mean and unit variance

by means of data normalization, as done in [24] on CIFAR [1] dataset. This

allows, in some cases, not to learn some statistics in the data that are not

significant for the training of the network.

An image can be modified with techniques such as whitening and contrast

enhancement too. The former aims to decrease the degree of correlation of

a pixel with its adjacent ones. This property is very desirable because it

eliminates hidden structures of pixels inside the image. Indeed, if pixels are

highly correlated among each other, a network will learn the whole structure

composed by the correlated pixels and it will be unable to generalize its

internal representation of the target object. The latter technique enhances

the contrast of the images and this can help, for instance, in some situations

where the target object is not clearly visible such as in dark images whose

colors can be enhanced to make it more understandable.

For these reasons, when approaching a new datasets, it is critical to take

all the preprocessing steps into consideration because performance of the

training of a network can really improve if the right ones are used.

3.2 Neural networks and images

Our visual cortex is the result of years and years of evolution process that

made it very efficient at recognizing the reality surrounding us. Dealing

with computers and more particularly with robots, it is quite reasonable to

state that image recognition is a critical task. Robots can rely on various

sensors and are able to perceive the environment around them. However

none of these raw sensors would be useful without a system to elaborate

the informations they get and acquire knowledge from them. This is an

issue because retrieving informations is usually trivial, but the elaboration

of them can be very difficult.

Even though it is very hard to achieve human image recognition perfor-

mance, years of machine learning researches brought to the development of

methods that guarantee high accuracy in certain tasks such as hand-written

digits recognition (e.g., MNIST dataset [9]), faces recognition (e.g., [17]) and

even classification of general images (e.g., ImageNet [5]).

MNIST is a dataset of 60000 training images and 10000 test images

of 28x28 pixels of hand-written digits where each image contains a hand-

written white digit from 0 to 9 on a black background (Figure 3.1). It is

relatively simple because of the uniformity of its content: each image has

black and white colors, the digit is always centered and not rotated, there

24

Figure 3.1: Example of MNIST images

are no lights or shadows; the challenging feature is that they are different

from each other according to the calligraphy of the writer. According to

this fact, a model has to learn a generalized idea of the images it is learning

to correctly classify the digits written by a writer never seen before. Many

machine learning techniques have been able to reach a very low error rate on

the test set of MNIST1. As a matter of fact, MNIST has been very useful for

the early models of machine learning, but nowadays it is way too simple to

be a significant prove of the effectiveness of a model. Nevertheless, MNIST

is often used as the starting point to test the model, before moving to more

complex datasets.

In tasks where the images to be recognized may be pictures of animals,

landscapes, objects and so on, it is very likely they have some problem-

atic aspects. One of the main problems of these cases is the presence of a

background behind the object to be classified. For instance, if the dataset

is composed of pictures with animals in their environment, classification

becomes hard due to the need for distinguishing the object from the back-

ground. To deal with this problem image segmentation partitions an image

into sets of pixels that are more meaningful and easier to analyze. This pro-

cess applies a label to every pixel of the image according to some criteria;

after that, pixels belonging to the same class or sharing some properties can

be grouped in the same set. For instance, one criterion to segment an image

may be to build sets with pixels with the same color, intensity or texture.

Another issue is the possibility to have difficult images such as cases

where the object is rotated, not centered or represented with different illu-

1Results of the best models are published on the MNIST website [9].

25

mination. All of these are important problems that make the classification

of complex images more difficult, but they are also useful because a net-

work trained with them learns different representations of the same object

and becomes able to classify it in different circumstances. In other words,

they allow the network to be much more able to generalization that is very

important in order to build an efficient model.

3.3 Object recognition with generative models

As stated before, the purpose of this thesis is to evaluate the efficiency of

DBMs in discriminative tasks with a complex dataset; as a matter of fact,

they have been proved to perform well on simple datasets, such as MNIST,

but only few examples on more difficult datasets are available. In this work,

we started using MNIST to replicate the results published in [32], in order

to have a prove of the correctness of the implementation of our training

procedure. Then, we moved to test the effectiveness of DBMs on a more

complex dataset that we introduce in the next section. In [32], Hinton

and Salakhutdinov show the discriminative performance of DBMs in two

experiments using MNIST and NORB datasets.

In the first experiment they have been able to reach the best published

results (in 2012) of 0.95% on the full test set of the permutation invari-

ant version of MNIST. In another article [33], they show that the error

rate becomes 0.79% if dropout2 is used in the finetuning phase. These re-

sults show that generative model can be able not only to reach, but also to

overcome pure discriminative models. Indeed, the 0.79% test error outper-

formed regularized nonlinear Neighbourhood Components Analysis (NCA)

(Salakhutdinov & Hinton, 2007), linear NCA (Goldberger, Roweis, Hinton &

Salakhutdinov, 2004), a stack of greedily pretrained autoencoders (Bengio,

Lamblin, Popovici & Larochelle, 2007) and DBNs [31].

The second experiment has been performed on the NORB dataset with

the purpose of testing DBMs with a more difficult dataset than MNIST.

NORB is a collection of 50 different 3D toys with 10 objects in each of five

generic classes: cars, trucks, planes, animals and humans. Each object is

photographed from different viewpoints and under various lighting condi-

tions. The training set contains 24300 stereo image pairs of 25 objects, 5

per class, while the test set contains 24300 stereo pairs of the remaining dif-

2Dropout is a variant of standard backpropagation. It performs backpropagation steps

turning off with a certain probability each neuron (generally 0.8 for visible neurons and

0.5 for hidden ones). This avoids the learning of hidden structures of correlated features

that are not useful, and potentially harmful, for the training of the network.

26

Figure 3.2: Some easy GTSRB images

ferent 25 objects. Each image has 96x96 pixels with integer grayscale values

in the range [0,255]. With image preprocessing and, using a considerably

large DBM and a trick that we will use in our work and discuss in the next

chapter, they have been able to reach an error rate of 10.8% on the full test

set that outperformed the 11.6% obtained by SVMs (Bengio LeCun, 2007),

22.5% achieved by logistic regression and 18.4% achieved by the K-nearest

neighbors (LeCun et al., 2004).

In [22], the same experiments were performed in order to compare the

effectiveness of MP-DBMs and DBMs. The implemented MP-DBM has

been able to reach a test error rate on the MNIST test set of 0.91% which

is better than the 0.95% of DBM without dropout, but considerably worse

of the one with dropout. The test error obtained on NORB is 10.6%, which

is a slight improvement of the DBM’s one.

Both these results, show the promising potential of these two models and

this is the main reason why we chose to use them, focusing more on DBMs

that give better performance, to test the effectiveness of generative models

in classification of a complex dataset which we will present now.

3.3.1 German Traffic Sign Recognition Benchmark dataset

The German Traffic Sign Benchmarch (GTSRB) dataset [4] is taken from

an image classification challenge held at the International Joint Conference

on Neural Networks (IJCNN) in 2011. This challenge consisted in a multi-

class, single-image classification task to be performed on a set of road signs

photographed from a car in Germany. It comprises a training set of 39209

images from 43 classes of road signs and a test set of 12630 images. The

examples are RGB pictures, not necessarily squared and their size varies

from 15× 15 to 250× 250. As it can be seen in Figures 3.2 and 3.3, GTSRB

contains both easier and more difficult images; in the latters the road signs

can be out of focus, not centered, too bright, too dark and so on. Moreover

the majority of the images have a complex background.

27

Figure 3.3: Some difficult GTSRB images

Figure 3.4: Three different images in order of proximity

Images in the training set are organized in 43 folders, each containing

picture of road signs of the same class. Furthermore, images in each folder

are divided in groups of 30 examples of exactly the same road sign captured

in 30 different positions that are closer and closer to it. Indeed, the 30

photos had been taken when the car was moving in the direction of the road

sign and therefore it is possible to see the sign getting bigger and bigger

as the car is approaching it (Figure 3.4). Together with the dataset, the

coordinates of the bounding box (a rectangular section of the image inside

which the road sign is inscribed) are available for each example, so it is

possible to crop this rectangle from the initial image, removing part of the

background and centering the sign.

This dataset is more difficult than both MNIST and NORB for some rea-

sons. It has 43 classes of road signs that is much larger than the number of

classes of the other datasets. Images can be out of focus, not centered and,

like NORB, subject to different lighting conditions. One of the most difficult

features of GTSRB is the background of the environment and, sometimes,

even the obstacles in front of the road signs. Moreover, images are in RGB

and this increases the dimension of each example and, as a consequence, the

dimension of the input layer of the network. It could be possible to convert

the pictures in grayscale, but intuitively (and as demonstrated by experi-

ments that will be presented at the end) this causes a loss of information

because colors of road signs are very informative; indeed, their colors give a

hint about the identity of the sign. Colors of road signs can be: red, black,

28

yellow, white, blue and, for road signs with traffic light, green. Colors and

also the shapes of the signs, may be features that the network extract from

the image and can help in the discrimination of the identity of the sign.

These features of GTSRB have been taken into account for the prepro-

cessing phase and, later, we present and discuss each of the preprocessing

steps we chose.

29

30

Chapter 4

Project architecture and

implementation

In this chapter we explain the choices we made for implementing and per-

forming experiments on deep generative models focusing on the machine

learning framework we decided to use and on some technical aspects about

the algorithms to train our models and the image preprocessing techniques.

4.1 Libraries

To implement the DBM and MP-DBM we used Pylearn2 [23], a machine

learning framework written in Python [14] and Theano [18, 19], a Python

library used by Pylearn2.

Pylearn2 is based on Theano, a Python library that allows to define,

optimize and evaluate efficiently mathematical expressions involving multi-

dimensional arrays. It provides a tight integration with NumPy [10] and

allows the use of GPU by compiling Python code into nVIDIA [11] CUDA

[12] language that can be in turn executed by a nVIDIA GPU faster than on

CPU. It has been fundamental for our work because it combines aspects of

a computer algebra system with aspects of an optimizing compiler, allowing

the computation of repeated complex mathematical expressions to run very

fast.

Pylearn2 is a machine learning library written in Python and it is based

on Theano. It offers a large variety of models, algorithms and other useful

tools to make it easier to build, train and analyze machine learning models.

For the purpose of this work, we decided to choose Pylearn2 because of this

reason and also for the ability of Pylearn2 to exploit Theano functions to

enable the use of GPU.

31

Pylearn2 is composed of several packages in which all the necessary com-

ponents of an experiment are organized in Python classes or scripts. For in-

stance, each machine learning model is implemented as a Python class with

the respective variables (e.g., the number of neurons in a neural network)

and functions (e.g., the function to set a neural netowrk weights). The stan-

dard way to implement a training procedure in Pylearn2 is to load a train

variable, that is an object containing all the components of the experiment,

and then run the main loop function to perform the training of the model.

The components of the experiment are read from a yaml file and they can

be mandatory or optional. Mandatory ones are: the dataset, the model, the

type of training algorithm and the cost function.

The optional components are extensions that allow to customize the

behavior of the experiment such as:

• adding monitor channels to check validation or test error at each epoch,

• saving the best model found till the current epoch,

• adjusting learning rate or momentum during the training.

Besides to the components of the experiment, the yaml file also contains the

value of the involved learning parameters. The advantage of using a yaml

file is that all the details of each experiment are recorded in it making the

experiment reproducible. Moreover, when trying several experiments with

different parameters, the training script does not need to be changed except

for the path of the yaml file to be read.

4.2 Learning parameters

To reach high performance with the DBM and MP-DBM, we had to tune

the learning parameters of their training algorithms; for the DBM:

• RBMs training for the greedy layer-wise pretraining,

• DBM training,

• DBM finetuning,

and the MP-DBM training for the MP-DBM, that has only a single phase

of training.

Some of these parameters are general and they are used in any of these

algorithms whereas others are specific only for some of them. We explain all

parameters we used starting from the general ones and, then, the parameters

involved in any single training phase.

32

4.2.1 General parameters

• Number of epochs is the maximum number of epochs to train our

models: if this parameter is set, the training stops after the specified

number of epochs. This is not the only way to stop training, there are

other techniques using other stopping conditions: for instance, early

stopping stops the training after that the validation error1 begins to

increase significantly even though the error on the training set contin-

ues to decrease. This happens when the network starts to overfit2 the

training set and stopping the training with early stopping avoids this

issue.

• Number of layers specifies how many layers compose the model.

RBMs are composed of only one layer, DBMs are composed of a num-

ber of hidden layer equal to the number of stacked RBMs and the

MLPs we used for DBM finetuning are composed of the number of

hidden layers of the DBM plus the softmax layer.

• Number of neurons per layer specifies how many neurons belong

to each layer.

• Training algorithm : in Pylearn2, this parameter specifies whether

stochastic gradient descent3 or batch gradient descent4 is used.

• Batch size determines the number of examples to be contained in

each batch.

• Learning rate is the learning rate of the weights update equation.

• Momentum is the momentum of the weights update equation. This

parameter helps to avoid excessive oscillations in narrow valleys of the

error function.

1The percentage of error on the validation set.
2Overfitting happens when a model learns to classify the examples in the training set,

but is not able to correctly classify others never seen before.
3Each weights update is performed using a single batch. An epoch finishes after that all

batches have been used (i.e., after that a number of weights updates equal to the number

of batches has been done).
4Normally, batch gradient descent uses the whole training set for each weights update.

However, in Pylearn2, it can also be used like stochastic gradient descent, but with the

difference that the step size along the direction of the gradient is computed with partial line

search: a technique that computes the direction and step size of the update in a different

way from the weights update formula used in stochastic gradient descent. Partial line

search will not be explained here because we have not used it in our experiments on

GTSRB.

33

• Weights initialization is the way the weights of our models, with

the exception of the weights initialized with pretrained weights, are

initialized5. In this work, we initialize weights randomly picking a

value inside a specified range (e.g., [-0.001;0.001]).

• Biases initialization is the way the biases of the neurons of our

models, with the exception of the biases initialized with pretrained

biases, are initialized6.

• Weight decay specifies the penalty to the cost function. This penalty

is applied in order not to let the weights increase too much which is a

well-known cause of overfitting.

• Toronto sparsity is a particular way to force the sparsity7of the

model. Here we do not explain this parameter because we do not use

it in our experiments on GTSRB.

4.2.2 Restricted Boltzmann Machine and Deep Boltzmann

Machine parameters

• Number of Markov chains specifies how many different Markov

chains are simultaneously run. The results of the M Markov chains

are finally averaged and used for the weights update formula.

• Number of Gibbs steps specifies how many Gibbs steps are per-

formed for each Markov chain.

• Number of mean-field updates is the number of updates to esti-

mate the data-dependent distribution. In RBM this is set to 1 because

this is enough to reach convergence.

4.2.3 Deep Boltzmann Machine finetuning parameters

The training of the DBM is followed by its finetuning which, as explained

in Chapter 2, is done building a MLP using the trained weights and biases

of the DBM, adding a softmax layer at the top, and augmenting the dataset

5The weights of the DBM are initialized with the pretrained weights of the RBMs and

the MLP weights are initialized with the trained weights of the DBM.
6The biases of the DBM’s neurons are initialized with the pretrained biases of the

RBMs and the neurons biases of the MLP are initialized with the trained biases of the

DBM.
7A matrix is sparse when the majority of its elements is zero. Forcing sparsity in a

neural network, means training it forcing the majority of its neurons to be inactive. This

allows the network to learn relevant structures in the data similarly to what dropout does.

34

together with the visible layer of the model. The parameters involved in

this procedure are:

• Number of mean-field updates to initialize the second hidden

layer’s neurons for data augmentation.

• Number of line searches specifies how many direction are checked

in order to find the best direction to descent the gradient of the error

in partial line search.

• Dropout inclusion probabilities specify the probability with which

neurons are considered in the iterations of backpropagation. Back-

propagation without dropout sets all these probabilities to 1.

4.2.4 Multi-Prediction Deep Boltzmann Machine parame-

ters

The training of the MP-DBM involves:

• Number of mean-field updates to estimate the data-dependent

distribution, as with DBMs.

• Drop probability of the visible neurons of the model. This parameter

specifies the probability with which each visible neurons is dropped in

the Multi-Prediction training algorithm.

Now, we show the implementation in Pylearn2 of the DBM and MP-DBM

training procedures.

4.3 Code implementation

The whole procedure to train DBMs (pretraining, training and finetuning)

described by Hinton and Salakhutdinov was not implemented in Pylearn2,

while Contrastive Divergence to train RBMs, the algorithm to train DBMs,

backpropagation and the training procedure of MP-DBMs were implemented.

In addition to that, Pylearn2 requires a wrapper class for each dataset that

has the purpose of loading the dataset in a data structure that Pylearn2 is

able to read and use for training, but the wrapper for GTSRB was missing.

Therefore we had to implement:

• the wrapper class for GTSRB,

• the training for a Gaussian RBM (GRBM), a model that will be ex-

plained later,

35

• the training for the DBM that merges the single phases of training,

• the training for the MP-DBM,

• scripts for preliminary experiments.

We explain each of this component in the following sections.

4.3.1 German Traffic Sign Recognition Benchmark wrapper

Pylearn2 offers wrapper classes for a lot of datasets that are generally used in

machine learning, but not for GTSRB. To write it, we followed the technique

used in other wrappers of image datasets adapting it to our case. To train

a model, Pylearn2 requires a matrix X of N ×M dimensions where N is

the number of examples in the dataset and M is the number of values per

example. In supervised tasks, also the label matrix Y is required and it can

be specified using either a one-hot configuration or the label number of each

example. In the one-hot case, the matrix has a number of rows equal to

the number of examples in the dataset and a number of columns equal to

the number of classes. Each row has all zeros except for the index of the

class the example belongs to, that will be 1. In the case where the output

is the label number, the number of rows are the same as before, but each

row contains just an integer representing the class. The value of the pixels

that are loaded in the X matrix are first normalized in such a way that the

pixels distribution of each image has a mean of zero and a variance of one,

as explained in the data preprocessing section of the previous chapter.

Dealing with grayscale images, the X matrix contains the values of the

pixels of an image from top-left to bottom-right. For instance, taken the

fifth image of the dataset, the value of the pixel with index (i, j), will have

index (5, i ∗ j + j) inside X8. RGB images are modeled similarly, but their

three channels are splitted in such a way that each row will contain the pixel

values of the image in M ∗3 columns inside which all the reds, all the greens

and all the blues are stored in this order.

4.3.2 Gaussian Restricted Boltzmann Machine training

As discussed before, the input layer of a DBM is composed of stochastic

binary units; however, this is not mandatory. For simple datasets (e.g.,

datasets with grayscale images), it is recommended to use binarized visible

units because it reaches convergence faster, but this does not work for more

8If i starts with 0. This is the case for the first index of the arrays in the math Python

library Numpy that we used in this work.

36

complex datasets such as datasets with RGB images where binarization of

the RGB values of the pixels reduces the accuracy of the input representa-

tion.

It is possible to use the activation function of the visible units, instead

of the binarized one, but the hidden units are recommended to be always

binary [25]. In this work, we used the technique explained in [32] to train

DBM on NORB dataset that requires to first train a Gaussian RBM on the

images of the dataset, and then use the activations of its hidden neurons for

each image as input of the DBM (Figure 4.1: the units on the bottom of

the GRBM are the gaussian ones and the units on the top of the GRBM are

the binary ones). A Gaussian RBM, indeed, solves the lack of accuracy of

binarized logistic units replacing them with linear units with independent

Gaussian noise. Its energy function is:

E(v,h) =
∑
i

(vi − ai)2

2σ2i
−
∑
j

bjhj −
∑
i,j

vi
σi
hjwij (4.1)

where i is the index of a visible neuron, j is the index of a hidden neuron,

vi and hj are respectively the states of visible neuron i and hidden neuron

j, ai and bj are respectively visible and hidden neuron biases, wij is the

weight between visible neuron i and hidden neuron j and σi is the standard

deviation of the Gaussian noise of visible neuron i.

The training of the Gaussian RBM has the same parameters of the train-

ing of the RBMs with the addition of σi that can be initialized with an initial

value and be learned as well as the weights and biases or kept constant dur-

ing the training. The GRBM acts as a “preprocessing” step for the dataset

because the DBM uses the features (e.g., hidden neurons states) of each

input captured by the GRBM in its hidden nodes instead of the examples of

the dataset. This is necessary because using a Gaussian visible layer directly

on the DBM would make the training much slower because the training al-

gorithm for DBM works well with binary units and, conversely, it requires

a much greater number of weights updates with real number as inputs [30].

4.3.3 Deep Boltzmann Machine training

As discussed before, the training procedure for DBM involves the training

of four models. Pylearn2 offers the training algorithm for all of them, but

they are separated from each other. Thus, to implement the whole training

procedure for DBMs, we needed to find a way to use all of them sequentially.

37

Figure 4.1: The preprocessing GRBM at the bottom of the DBM

The procedure starts with the greedy layerwise pretraining of the RBMs.

The first RBM is trained using the “preprocessed” examples from the GRBM

as inputs. To do this, we used the Transformer Dataset class for the first

RBM, which takes the dataset to be transformed and the model that has

to transform it, as inputs. This class transforms the data examples and the

RBM uses them for its training. After that, the second RBM has to be

trained using the activation of the hidden states of the first RBM as inputs.

This procedure is done by Algorithm 4.1.

Subsequently, weights and biases of the RBMs are clamped in the re-

spective DBM layers that can be trained with the DBM training algorithm.

After that, the dataset augmentation for training the MLP has to be per-

formed. We implemented it using the mf function, belonging to the DBM

class, that performs mean-field inference on it for a certain number of steps

selectable by the user. Then the MLP is created using an augmented visi-

ble layer with a number of neurons equal to the sum of the original visible

neurons and the neurons of the second hidden layer of the DBM where, for

each example of the dataset, the former contains its values and the latter

contains the activation states of the second hidden layer’s neurons found

before with the mean-field steps with that example clamped into the visible

layer.

38

Algorithm 4.1 Greedy layerwise pretraining

1 . Given : a t r a i n i n g s e t o f B ba t che s .

2 . Randomly i n i t i a l i z e we i gh t s and b i a s e s o f GRBM.

// Con t r a s t i v e D i ve rgence f o r GRBM

3 . f o r each batch b , b=1 to B do

4 . f o r each t r a i n i n g example i , i=1 to b a t c h s i z e do

5 . Apply C o n t r a s t i v e D i ve rgence wi th G Gibbs s t e p s .

7 . end f o r

8 . end f o r

9 . Make a d a t a s e t w i th the t r a i n i n g examples p r e p r o c e s s e d

by GRBM. I t w i l l be used as d a t a s e t f o r RBM1.

10 . Randomly i n i t i a l i z e we i gh t s and b i a s e s o f RBM1.

// Con t r a s t i v e D i ve rgence f o r RBM1

11 . f o r i=1 to number of epochs for RBM1 do

12 . f o r each batch b , b=1 to B do

13 . Apply C o n t r a s t i v e D i ve rgence wi th G1 Gibbs s t e p s .

14 . end f o r

15 . end f o r

16 . Make a da t a s e t w i th the GRBM p r e p r o c e s s e d t r a i n i n g examples

p r e p r o c e s s i n g them with RBM1. I t w i l l be used as d a t a s e t

f o r RBM2.

17 . Randomly i n i t i a l i z e we i gh t s and b i a s e s o f RBM2.

// Con t r a s t i v e D i ve rgence f o r RBM2

18 . f o r i=1 to number of epochs for RBM2 do

19 . f o r each batch b , b=1 to B do

20 . Apply C o n t r a s t i v e D i ve rgence wi th G2 Gibbs s t e p s .

21 . end f o r

22 . end f o r

39

Figure 4.2: Input augmentation for DBM finetuning; the neurons marked in black are

on and the white ones are off

As with the pretrained weights of the RBMs, weights and biases are

initialized taking the trained ones of the DBM and clamping them to the

MLP, but the weights connecting the added neurons in the augmented sec-

tion of the visible layer to the first hidden layer’s ones, are initialized with

the respective weights connecting the first hidden layer to the second hid-

den layer. This procedure is shown in Figure 4.2 where many arrows are

omitted to make the picture more readable. The figure on the left shows

the activation states of the second hidden layer after some mean-field steps

with a training example clamped on the visible layer. The figure on the

right shows the augmented input of the MLP that is a concatenation of the

training example i and the respective activation of the second hidden layer’s

neurons. Eventually, the MLP is trained with backpropagation. Note that

the softmax layer that is added at the top of the DBM to build the MLP,

has biases and connected weights that are initialized randomly due to the

fact that they were not part of the pretrained DBM. However, this is not

relevant because they can be trained quickly without losing effectiveness.

The whole training algorithm is shown in Algorithm 4.2. Finally, Algorithm

4.3 briefly resumes the complete DBM training procedure focusing on the

way each model is used by the following model involved in the procedure.

4.3.4 Training of Multi-Prediction Deep Boltzmann Machine

MP-DBM needs just one model and one training procedure to be trained:

the procedure we implemented loads a unique yaml file and trains a MP-

DBM according to that. However, to reach our best performance on GTSRB

40

Algorithm 4.2 DBM training script

1 . Given : a t r a i n i n g s e t o f B ba t che s .

2 . Make a d a t a s e t w i th the t r a i n i n g examples p r e p r o c e s s e d

by GRBM.

3 . Clamp p r e t r a i n e d we i gh t s and b i a s e s i n t o DBM.

// T r a i n i n g o f DBM

4 . f o r i=1 to number of epochs for DBM do

5 . f o r each batch b , b=1 to B do

6 . update we i gh t s and b i a s e s o f the DBM.

7 . end f o r

8 . end f o r

// Data augmentat ion

9 . f o r each p r e p r o c e s s e d t r a i n i n g example i do

10 . Perform MF mean− f i e l d s t e p s to a c t i v a t e

DBM’ s h idden neurons .

11 . Save a c t i v a t i o n s t a t e o f the neurons i n the second l a y e r .

12 . end f o r

13 . Make an augmented da t a s e t c on c a t e na t i n g the t r a i n i n g

examples w i th the r e s p e c t i v e a c t i v a t i o n o f the second

h idden l a y e r ’ s neurons . I t w i l l be used as d a t a s e t

f o r MLP.

14 . Clamp p r e t r a i n e d we i gh t s and b i a s e s i n t o MLP with

the augmented v i s i b l e l a y e r .

15 . Randomly i n i t i a l i z e the we i gh t s and b i a s e s o f the

so f tmax l a y e r o f MLP.

// DBM f i n e t u n i n g

16 . f o r i=1 to number o f epochs fo r MLP do

17 . f o r each batch b , b=1 to B do

18 . update we i gh t s and b i a s e s o f MLP.

19 . end f o r

20 . end f o r

41

Algorithm 4.3 Complete DBM training procedure

// GRBM t r a i n i n g

1 . Randomly i n i t i a l i z e we i gh t s and b i a s e s o f GRBM.

2 . Tra in GRBM.

// RBM1 t r a i n i n g

3 . Make a da t a s e t w i th the t r a i n i n g examples p r e p r o c e s s e d

by GRBM. I t w i l l be used as d a t a s e t f o r RBM1.

4 . Randomly i n i t i a l i z e we i gh t s and b i a s e s o f RBM1.

5 . Tra in RBM1.

// RBM2 t r a i n i n g

6 . Make a da t a s e t w i th the GRBM p r e p r o c e s s e d t r a i n i n g examples

p r e p r o c e s s i n g them with RBM1. I t w i l l be used as d a t a s e t

f o r RBM2.

7 . Randomly i n i t i a l i z e we i gh t s and b i a s e s o f RBM2.

8 . Tra in RBM2.

// DBM t r a i n i n g

9 . Make a da t a s e t w i th the t r a i n i n g examples p r e p r o c e s s e d

by GRBM. I t w i l l be used as d a t a s e t f o r DBM.

10 . Clamp p r e t r a i n e d we i gh t s and b i a s e s i n t o DBM.

11 . Tra in DBM.

// Data augmentat ion

12 . Perform MF mean− f i e l d updates f o r each t r a i n i n g example

p r e p r o c e s s e d by GRBM to a c t i v a t e second h idden l a y e r ’ s

neurons and save t h e i r s t a t e s .

13 . Make an augmented da t a s e t c on c a t e na t i n g the t r a i n i n g

examples w i th the r e s p e c t i v e a c t i v a t i o n o f the second

h idden l a y e r ’ s neurons . I t w i l l be used as d a t a s e t

f o r MLP.

// DBM f i n e t u n i n g

14 . Clamp p r e t r a i n e d we i gh t s and b i a s e s i n t o MLP with

the augmented v i s i b l e l a y e r .

15 . Randomly i n i t i a l i z e the we i gh t s and b i a s e s o f the sof tmax l a y e r

o f MLP.

16 . Tra in MLP.

42

with MP-DBM, we needed to finetune it, as done with the DBM. This

is acceptable because finetuning has also been used in [22] to reach the

published results on NORB dataset.

Pylearn2 tutorials implement several training procedures in order to

show the suggested way to build up an experiment with Pylearn2. They

are very different from each other and cover almost all kind of training pro-

cedures for a large variety of models showing how it is possible to perform

them. However, testing the correctness of the implemented procedures on

Pylearn2 is difficult, especially when the procedure is complex as the ours.

Indeed, checking the code by inspection or debugging it, can be not enough

to test its correctness: a wrong training procedure can finish its execution

without errors and the trained model can give good performance despite

the fact it has been trained with a wrong implementation of the training

procedure. One way to check the correctness of an implementation is trying

to replicate the results obtained in the literature with the same procedure

and comparing them: if the results are the same, it is strongly guaranteed

that the procedure is correct. According to this method, we checked the

correctness of our DBM training procedure trying to reach the same perfor-

mance on MNIST published by Hinton and Salakhutdinov in [32]. We have

been able to reproduce the 0.95% test error published in the article using all

the instructions and parameters given in it and, for parameters that were

not published in the paper, also checking the complete code published on

Salakhutdinov’s website [2]. This give us enough confidence to state that

the implementation of our DBM training procedure is correct and we also

made a pull request that is now under revision.

4.4 German Traffic Sign Recognition Benchmark

preprocessing

The implementation of the DBM training procedure has been followed by

the analysis of GTSRB to understand the better way to approach it. We

started considering the work done in [21] that obtained the best discrimi-

native performance in the competition (0.54% test error), where they show

some preprocessing methods to enhance the contrast of images. We used

these methods to train a relatively small model to understand which of them

was the best in an acceptable training time and we planned to use it in our

final model which would have taken more time to be trained. We also con-

sidered to use deblurring methods, but after some experiments we discarded

43

this option because we saw that blurred images were correctly classified by

the large majority of trained model, thus there was no need to use them.

Now we will explain each preprocessing function we used showing how

they change the images in Figure 4.3 and, in the next chapter, we will

present the experimental results we obtained using them. For each prepro-

cessing method, images were firstly cropped according to the bounding box

coordinates, then resized at 32× 32 to fit the number of visible neurons we

chose for our GRBM and, after the transformation, normalized.

Figure 4.3: Standard GTSRB examples

4.4.1 Enhancing contrast

As shown in Figure 4.3, GTSRB contains a lot of dark images, thus contrast

enhancing is very useful to make them more suitable for training.

Contrast can be enhanced rescaling the intensities of pixels in the range

of 0 and 255. This method enlarge the small range of pixels intensities (e.g.,

0-30) of dark images and rescales it between 0 and 255 enhancing the dark

colors. This method can be applied on RGB images modifying the range of

each channel, but it is more appropriate with images in L*a*b* color space.

In L*a*b*, the intensity of a pixel is expressed by a single coordinate

instead of one for each channel such as in RGB; therefore it is possible to

enhance the contrast by rescaling the lightness coordinate of each pixel.

To do this we first transformed each RGB image in L*a*b*, applied the

method and then transformed the L*a*b* images in RGB obtaining the

results shown in Figure 4.4.

Contrast can also be enhanced with the histogram equalization method

that makes the histogram of an image flat. This histogram represents, for

each pixel intensity between 0 and 255, how many pixels with that intensity

44

Figure 4.4: Results of the application of pixels intensities rescaling to the images in

Figure 4.3

there are in the image. In dark pictures, the histogram is clearly unbalanced

on the left because of the presence of a lot of pixels with a low intensity. This

technique allows to balance the distribution of pixels intensities yielding to

clearer images. We applied this technique to the lightness coordinate of the

L*a*b* color space as before, obtaining the images in Figure 4.5.

Figure 4.5: Results of the application of histogram equalization to the images in Figure

4.3

Another technique, similar to the previous one, called adaptive histogram

equalization, divides the image in several sections and then computes the

histogram for each of them equalizing it as before. This helps to improve

local contrast (Figure 4.6) and this has been very helpful in our work be-

cause we were interested in enhancing the contrast of the road sign with

an histogram that does not take into account the intensity of pixels belong-

ing to the background. Finally, since we were not sure that converting the

45

Figure 4.6: Results of the application of adaptive histogram equalization to the images

in Figure 4.3

L*a*b* images to RGB after the transformation was the right thing to do,

we decided to make an experiment using the transformed images in L*a*b*

space directly. We preprocessed the L*a*b* images with adaptive histogram

equalization because this method was the one that performed the best in

the experiments presented in the following chapter and the resulting images

are shown in Figure 4.7.

Figure 4.7: Results of the application of adaptive histogram equalization to the images

in Figure 4.3 converted in L*a*b* space

We tested also images converted in other color spaces without performing

any transformations. Figure 4.8 shows the resulting images in both Hue-

Saturation Value (HSV) and chromaticity spaces.

46

Figure 4.8: Results of the conversion of images in Figure 4.3 in HSV (left) and chro-

maticity (right) spaces

4.4.2 Comments

The preprocessing method that performed better was adaptive histogram

equalization with RGB images. This may seems strange because some im-

ages preprocessed with this method look worse than the initial ones, but it

is not right to state what image is better for a neural network simply looking

at it. Indeed, images that may look better for a human, are not guaranteed

to be good also for a neural network, and viceversa.

Once we understood that adaptive histogram equalization was the best

method to preprocess the images, we applied it and used the resulting images

to do the final experiments with the purpose to reach the best classification

rate, whose results are shown in the next chapter.

47

48

Chapter 5

Experimental results

All the experiments have been runned on a server with Linux [8] Ubuntu [16]

14.04.1 LTS (kernel GNU/Linux 3.13.0-32-generic x86 64) with a nVIDIA

TeslaC1060 [13] GPU, an Intel(R) [6] Core(TM) i7 [7] CPU 920 @ 2.67GHz

CPU with 8 cores, a 6GB RAM and the following version of the libraries

we used: Numpy 1.8.2, Scipy [15] 0.13.3, Theano 0.6.0 and Pylearn2 last

commit 2b516212b5.

5.1 MNIST

The first experiments had the purpose to replicate the results of Hinton and

Salakhutdinov [32] on the MNIST dataset in order to test the correctness

of our implementation of the DBM training procedure. To be as accurate

as possible, we needed to collect all the learning parameters they used to

reach their results and we were able to find them in the article and on the

Matlab code available on Salakhutdinov’s website. The latter reports all the

parameters values and this was helpful for some of them whose value was

not reported by the former.

For a few parameters the values in the article and the ones in the code

are different and we decided to choose the one published in the former con-

sidering them more reliable; we did not try both, but it is likely that they

both work well. The whole MNIST training set of 60000 examples was used

for training and the whole test set of 10000 examples for testing. We now

explain the parameters used during each training phase and report their

values (the values marked with * are commented within the paragraph).

49

Parameter Value

#Epochs 100

#Visible neurons 784

#Hidden neurons 500

Batch size 100

Weights initialization [-0.001;0.001]*

Biases initialization 0

Learning rate 0.05

Momentum 0.5-0.9*

#Markov chains 100

#Gibbs steps 1

Parameter Value

#Epochs 200

#Visible neurons 500

#Hidden neurons 1000

Batch size 100

Weights initialization [-0.01;0.01]*

Biases initialization 0

Learning rate 0.05

Momentum 0.5-0.9*

#Markov chains 100

#Gibbs steps 5

Table 5.1: MNIST - First and second RBMs parameters for greedy layer-wise pretraining

5.1.1 Greedy layer-wise pretraining

The DBM trained by Hinton and Salakhutdinov is pretrained stacking 2

trained RBMs with the greedy layer-wise pretraining explained in Chapter

2. Table 5.1 summarizes the parameters used to train the two RBMs. The

range next to the weights initialization parameter is the range from which

the weights initialization values are picked and the notation used for the

momentum indicates that it starts from 0.5 and increases linearly reaching

the value 0.9 at the 6th epoch, thereafter it stays constant.

5.1.2 Deep Boltzmann Machine training

After the greedy layer-wise pretraining, the RBMs are stacked to compose

a DBM. The DBM is trained with the values in Table 5.2. The weights

50

Parameter Value

#Epochs 500

#Visible neurons 784

#Hidden neurons 500-1000

Batch size 100

Weights initialization -

Biases initialization 0

Learning rate 0.005*

Momentum 0.5-0.9*

#Mean-field inference steps 10

#Markov chains 100

#Gibbs steps 5

Weight decay 0.0002

Table 5.2: MNIST - DBM parameters for training

Figure 5.1: MNIST exampes reconstructions

and biases of the DBM are initialized using the RBMs trained ones. The

momentum adjusting has been done the same way as for the RBMs. The

learning rate starts from 0.005 and is decreased as 10/(2000+t) where t is the

number of updates so far. After training, the quality of the weights learned

by the DBM can be understood by checking how the model reconstructs

some examples of the dataset. The reconstructions are made by clamping an

example to the visible layer, estimating the hidden units with mean-field and

finally performing one mean-field top-down pass to estimate the activation

of the visible layer. Figure 5.1 shows 50 pairs of training examples and their

respective reconstructions arranged one next to the other. For instance,

the top left number is an example of 8 taken from the training set and the

number on its right is the reconstruction of it made by the DBM. As it can

be seen, the reconstructions are very accurate and therefore it can be stated

that the learned weights work well.

51

Parameter Value

#Epochs 100

#Visible neurons 1784

#Hidden neurons 500-1000-10

Batch size 5000

Weights initialization [-0.05;0.05]

Biases initialization 0

Table 5.3: MNIST - MLP parameters for finetuning

5.1.3 Deep Boltzmann Machine finetuning

The DBM has been finally used to build a MLP. The augmented dataset is

computed performing 1 mean-field update for each example. Then the MLP

is supervisedly trained with conjugate gradient descent, a method to solve

uncostrained optimization problems that will not be discussed here since

we have not used it for our work on GTSRB. The parameters are shown

in Table 5.3. Learning rate and momentum are omitted because conjugate

gradient descent does not use them. After finetuning, the model reaches

the 0.95% of test error at epoch 25 achieving the same result of Hinton and

Salakhutdinov.

It is interesting to see that at the begininning of finetuning, after epoch

0 where the softmax layer weights are initialized randomly and this causes

the initial test error to be very large, it suddenly becomes about 1.7% after

one epoch (Figure 5.2), showing how the unsupervised training of the DBM

is able to reach excellent discriminative results on MNIST. We wanted to

test also the dropout technique [33] trying to reach the 0.79% of test error

presented in the paper. The article does not report any details about the

DBM training and we used the same learning parameters of the DBM of the

experiments without dropout, reaching a 0.84% test error that we considered

acceptable. The parameters used to perform stochastic gradient descent

with backpropagation using dropout are shown in Table 5.4. The momentum

starts from 0.5 and it is increased linearly to 0.99 during the 500 epochs of

training.

5.2 German Traffic Sign Recognition Benchmark

After we had enough confidence about the correctness of our implementation

of the DBM training procedure, we started to test it on GTSRB. In all

the experiments, the images were cropped according to their bounding box

52

Figure 5.2: MNIST - Test error diagram

Parameter Value

#Epochs 500

#Visible neurons 1784

#Hidden neurons 500-1000-10

Batch size 100

Weights initialization [-0.01;0.01]

Biases initialization 0

Learning rate 1

Momentum 0.5-0.99*

Include probabilities 0.8-0.5-0.5

Table 5.4: MNIST - MLP parameters for finetuning with dropout

53

coordinates ensuring that the road sign is centered and the majority of

background is cropped off the image. Then, before training, the images

have been resized at the dimension of 32 × 32. With this dimension, the

visible layer of the networks had to be composed of 32 ∗ 32 ∗ 3 = 3072

neurons1. We initially considered to resize the images at the dimension of

48×48 that is the average dimension of the GTSRB images, which we recall

varies from 15×15 to 250×250, but this would have result in a visible layer

composed of 48 ∗ 48 ∗ 3 = 6912 neurons that would have been too large to

manage with our computational resources.

5.2.1 Preliminary experiments for parameters tuning

In the first experiments on GTSRB we tested the performance of the models

using the images of GTSRB without preprocessing because we were planning

to use the more efficient preprocessed images only after that a good tuning

of the parameters would have been found. Indeed, we wanted to evaluate

the efficiency of the preprocessing methods without having to care about the

parameters tuning, thus being able to compare them. These experiments

have been done using a training set of 32200 examples, a validation set of

7009 examples and a test set of 12630 examples. In the next paragraphs we

show the parameters we found to be the most effective and we discuss the

experiments we did to find them.

5.2.1.1 Gaussian Restricted Boltzmann Machine training

As stated before, the Gaussian RBM has the purpose to be a “preprocessing

step” for the GTSRB images to avoid the large amount of training time

that a Gaussian layer for the visible layer of the DBM would require. As

a matter of fact, the GRBM is the only model using the GTSRB images

because the following ones use the hidden states activations of the GRBM

for each example; thus, it is critical to learn very good parameters for the

GRBM in order to have a highly reliable activation of the hidden states for

each example (i.e., a very accurate abstraction of them).

It is well-known that monitoring the learning of a RBM is not an easy

task; there are no significant measures, such as validation or test error, to

deduce the progress of learning. In [25], Hinton explains that the reconstruc-

tion error of the network can be used, but being conscious that it is poor

measure of the process of learning, indeed it is not the function that Con-

trastive Divergence is trying to optimize; the reconstruction error is simply a

1The multiplication by 3 takes into account the three color channels.

54

Parameter Value

#Epochs 1000

#Visible neurons 3072

#Hidden neurons 4000

Batch size 100

Weights initialization [-0.01;0.01]

Biases initialization 0

Learning rate 0.0001

#Gibbs steps 1

Sigma initialization 0.4

Table 5.5: GTSRB - GRBM parameters

measure of the differences between the value of the pixels of an image and the

values of the pixels of the respective reconstruction. Moreover, the results

of experiments cannot be compared using the reconstruction error. Indeed,

being a measure of the differences between two neurons, if the number of

neurons to be evaluated increases, also the reconstruction error increases.

One can say that the reconstruction error can be used to compare networks

with the same number of neurons for their visible layer, however this is not

always true. If the networks are provided with input data normalized in

two different ways (e.g., one receives data in the range [0; 1] and the other

receives data in the range [−1; 1]), the reconstruction error will be bigger

for the network receiving the data with a wider range of values than the

other. For these reasons, the reconstruction error cannot state if a network

is better than another unless they receive the same data and they have the

same number of visible neurons.

Since we needed the Gaussian RBM to be very efficient and that there is

no other way to monitor its training, we decided to carefully monitor the re-

construction error of networks with the same number of visible neurons and

receiving the same input data. We did about ten experiments to tune the

parameters in order to have the lowest reconstruction error. In Table 5.5, we

show the best learning parameters we found for the GRBM. The experiments

showed that increasing the number of hidden neurons, decreases the recon-

struction error of the network. Unfortunately, we had to limit the dimension

of the network accordingly the capacity of our computional resource, but, as

it can be seen in Figure 5.3, the reconstructions of the image are satisfying.

The figure shows also that the dark images are not reconstructed as well as

55

Figure 5.3: Standard GTSRB reconstructions

the clear ones. This issue has been solved with the experiments, explained

in the following section, that involve image preprocessing methods.

5.2.1.2 Greedy layer-wise pretraining

The training of the RBMs has been done considering the same issues of the

GRBM with the further problem that they do not reconstruct the images

of the road sign. This made it harder to understand if the training of the

RBM was going well or not, and even to understand if the final model was

good. To do this, we relied only on the reconstruction error, tuning the

parameters according to it. We found that a lot of configurations of the

parameters gave almost the same results. The best parameters we found,

for both RBM, according to the reconstruction error are resumed in Table

5.6.

5.2.1.3 Deep Boltzmann Machine training

The trained weights of the DBM determine the initial classification error of

the DBM finetuning phase2. We tuned the DBM parameters in order to

have a considerably low initial classification error for the MLP in order to

start the training from an already good set of weights. The most efficient

parameters, considering computational time and classification performance,

we found for this phase are resumed in Table 5.7. The momentum starts

at 0.5 and linearly increases to 0.9 until the sixth epoch, after that it stays

constant.

2Actually, as explained before for MNIST, the initial test error is very high due to the

fact that the softmax layer of the MLP has randomly initialized weights. However, after

one epoch, the test error decreases significantly thanks to the DBM pretrained weights.

56

Parameter Value

#Epochs 600

#Visible neurons 4000

#Hidden neurons 3000

Batch size 100

Weights initialization [-0.001;0.001]

Biases initialization 0

Learning rate 0.05

#Gibbs steps 1

Parameter Value

#Epochs 600

#Visible neurons 3000

#Hidden neurons 3000

Batch size 100

Weights initialization [-0.01;0.01]

Biases initialization 0

Learning rate 0.05

#Gibbs steps 3

Table 5.6: GTSRB - First and second RBM parameters for greedy layer-wise pretraining

Parameter Value

#Epochs 500

#Visible neurons 4000

#Hidden neurons 3000-3000

Batch size 100

Weights initialization -

Biases initialization 0

Learning rate 0.0005

Momentum 0.5-0.9*

#Mean field inference steps 10

#Markov chains 100

#Gibbs steps 5

Weight decay 0.001

Table 5.7: GTSRB - DBM parameters for training

57

Parameter Value

#Epochs 500

#Visible neurons 7000

#Hidden neurons 3000-3000-43

Activation function Sigmoidal*

Batch size 100

Weights initialization [-0.01;0.01]

Biases initialization 0

Learning rate 0.5

Momentum 0.5-0.99*

Inclusion probabilities 0.8-0.5-0.5

#Mean field inference steps for data augmentation 1

Table 5.8: GTSRB - MLP parameters for finetuning with dropout

Error Value

Validation error 0.8%

Test error 9.51%

Table 5.9: Best model errors for standard GTSRB

5.2.1.4 Deep Boltzmann Machine finetuning

The preliminary tests of DBM finetuning have been done using dropout

because it is faster and almost always more effective than standard back-

propagation. The activation functions of the hidden neurons have been set

to be sigmoidal to have the same activation function of the DBM. The mo-

mentum starts at 0.5 and it is linearly increased to 0.99 until the 300th epoch.

After having tuned all the parameters, we run the last of the preliminary

experiments to test the performance we are able to reach on the not pre-

processed GTSRB; the results of the model with the lowest validation error

are reported in Table 5.9. Figure 5.4 shows the progress of the errors dur-

ing backpropagation; as expected, the validation error is much lower than

the test error. Indeed, in GTSRB the test set images are way worse than

the training set one from which the images for the validation set have been

picked.

5.2.2 Experiments with preprocessed images

Once we tuned the parameters for each phase of training, we used them to

analyze the effect of image preprocessing in terms of performance. Figures

58

Figure 5.4: GTSRB - Test errors diagram for preliminary experiments

5.5, 5.6, 5.7, 5.8, 5.9 and 5.10 show how the different type of preprocessed

images are reconstructed and the classification errors of the best models

found during DBM finetuning for each of these preprocessing methods are

resumed in Table 5.10. The reconstructions are very similar to the original

images, confirming that the GRBM learns good weights independently from

the preprocessing methods. Dealing with classification errors, the method

that performed better on the validation set was pixels intensities rescaling,

but the lowest test error has been reached using the resulting RGB images

after adaptive histogram equalization. Since the test error reached with

the latter is significantly lower than the test error reached with the former

and that the two validation errors were almost the same, we decided to

preprocess the dataset with adaptive histogram equalization for the final

experiments.

The very high classification errors obtained with the images in L*a*b*,

HSV and chromaticity spaces can be explained simply looking at the result-

ing images after preprocessing that are clearly worse than the ones in RGB

spaces. On the other hand, it is interesting to observe that pixels intensi-

ties rescaling, that seems to make the best version of the images, performed

worse than adaptive histogram equalization that, instead, seems to make

worse images. However, this is not surprising: in machine learning what

it is more understandable for a human is not necessarily the best also for

neural networks.

59

Figure 5.5: Pixels intensities rescaling reconstructions

Figure 5.6: Histogram equalization reconstructions

Figure 5.7: RGB - Adaptive histogram equalization

Figure 5.8: L*a*b* - Adaptive histogram equalization

60

Figure 5.9: HSV space reconstructions

Figure 5.10: Chromaticity space reconstructions

Model Validation error Test error

Pixels intensities rescaling 0.54% 7%

Histogram equalization 0.73% 8.2%

RGB-Adaptive histogram equalization 0.61% 6.08%

L*a*b*-Adaptive histogram equalization 4.67% 11.2%

HSV space 4.04% 31.8%

Chromaticity space 5.28% 33.8%

Table 5.10: Classification errors for each preprocessing method

61

Parameter Value

#Epochs 1500

#Visible neurons 6000

#Hidden neurons 1000-2000-43

Activation function Sigmoidal*

Batch size 100

Weights initialization [-0.05;0.05]

Biases initialization 0

Learning rate 0.5

Momentum 0.5-0.75*

Inclusion probabilities 0.5-0.5-0.5*

#Mean field inference steps for data augmentation 1

Table 5.11: MLP final parameters

5.2.3 Final experiments

The final experiments have been done in order to lower the test error as

much as possible. To achieve it, we used the parameters we found dur-

ing the tuning phase and preprocessed the images with adaptive histogram

equalization. We also used the whole training set to have as much training

examples as possible. Trying to tune the MLP’s parameters we found that

there were no improvements on the test error rate, but we recalled that

from the very preliminary experiments on GTSRB with simple MLPs, mod-

els with two layers composed of about 1000 neurons performed better than

models with a larger number of them. Surprisingly, we found that training

a DBM with less than 3000 neurons per hidden layer we were able to reach

lower test errors, even if the reconstruction errors of the generative models

were way larger than before, which is a prove of its unreliability.

Training a DBM of two layers of 1000 and 2000 neurons we were able to

overcome the previous results of 6.08%, with a test error of 5.17%. There-

after, we tried several experiments with different combinations of parame-

ters. The learning parameters of the MLP that performed the best are re-

sumed in Table 5.11. The momentum starts from 0.5 and linearly increases

to 0.75 until the 100th epoch. We found that dropout performed better than

standard backpropagation as it can be seen in Figure 5.11 that shows the

first 500 epochs of MLP finetuning with and without dropout. Surprisingly,

we saw that dropping visible neurons with probability 0.5 worked better

than the more common 0.8 probability, as used in [33]. Table 5.12 resumes

the final results we had using the previously showed learning parameters for

62

Figure 5.11: Dropout vs Standard backpropagation

Method Test error

Standard backpropagation 7.26%

Dropout (0.8 drop probability for visible neurons) 4.35%

Dropout (0.5 drop probability for visible neurons) 4.15%

Table 5.12: Final results

each of three methods. The test error obtained dropping the visible layer

neurons with probability 0.5 is the best DBM test error we were able to find

during this work and it overcomes the best results of generative models on

this dataset. Indeed, this compares with the 4.32% which is the previous

best test error of generative models on this dataset obtained with Latent

Dirichlet Allocation (LDA)3.

5.2.4 Multi-Prediction Deep Boltzmann Machine experiments

The experiments with MP-DBM have been done after the DBM ones in order

to compare them. The learning parameters of a MP-DBM are the same of a

DBM with an additional parameter indicating the drop probability of visible

neurons for the Multi-Prediction training. As stated before, the training of

the MP-DBM requires only one phase of training and the test error can be

3This test error has been obtained with the generative model of LDA on the Histograms

of Oriented Gradients (HOG) features available on the GTSRB website [4].

63

Parameter Value

#Epochs 100

#Visible neurons 3072

#Hidden neurons 1000-2000-43

Batch size 100

Weights initialization [-0.05;0.05]

Biases initialization 0

Learning rate 1

Momentum 0.5-0.75*

#Mean field inference steps 15

Drop probability 0.5

Table 5.13: MP-DBM parameters for training

monitored from the beginining of training4. This allowed us to tune the

MP-DBM’s parameter (Table 5.13, where the momentum starts from 0.5

and linearly increases to 0.75 until the 6th epoch) having a look directly to

the effect that they had on the test error.

The training of the MP-DBM gave us the very poor result of 44.7%

of test error. However, as shown in [22] in the NORB experiment, MP-

DBM finetuning is stated to be necessary to reach high performance on

complex datasets; therefore, we finetuned the MP-DBM augmenting the

data as before and using the same MLP parameters. At the end of MP-

DBM finetuning we obtained a test error of 3.81%, that is the best test

error on GTSRB that we were able to obtain in this work. It is worth to

point out that the test errors we obtained have been reached tuning the

parameters to maximize the performance on the test set, despite the fact

that this was not possible for the participants at the competition on GTSRB

that were allowed to train their models only using a validation set. Indeed,

the test set was provided only at the end of the competition to determine

the best model. However, our purpose is to demonstrate the effectiveness of

DBMs on GTSRB and the comparison with the models of the competition is

purely a way to understand how DBMs perform compared to other models.

Figure 5.12 shows the progress of the test errors of both DBM and MP-

DBM finetuning. This work confirmed that MP-DBMs can obtain slightly

4To have a single training phase, the MP-DBM is required to have Gaussian visible

neurons that the Multi-Prediction training is able to use avoiding the need of the prepro-

cessing GRBM.

64

Figure 5.12: DBM and MP-DBM test errors diagram

better performance than DBMs also on GTSRB dataset, even with a lower

computational time.

65

66

Chapter 6

Conclusion and future

developments

In this work we started from the research of Hinton and Salakhutdinov, that

showed the excellent discriminative performance of DBMs on MNIST, with

the purpose to evaluate their efficiency on a more complex dataset. We chose

the GTSRB dataset, a collection of 43 classes of road signs photographed

from real roads. The complexity of this dataset is motivated by the different

light conditions affecting the images, the background, possible obstacles in

front of the road signs or bad conditions of them.

To implement our experiments we used a Python machine learning frame-

work called Pylearn2 integrating it with the whole DBM training algorithm,

composed of greedy layer-wise pretraining, training and finetuning, that

was missing before. Initially, we tried to replicate the results of Hinton and

Salakhutdinov on MNIST to be sure of the correctness of our implementa-

tion; then, we began to analyze the GTSRB in order to understand how

to deal with it. After having tuned the DBM parameters using the stan-

dard GTSRB images, we applied several preprocessing techniques to improve

their quality in order to reach better discriminative performance. Finally,

using the preprocessed images obtained with the preprocessing method that

performed better, we made our final experiments with the purpose to reach

the lowest test error.

We have been able to reach a 4.15% test error that allowed us to over-

come the 4.32% published on the GTSRB website that, at the best of our

knowledge, is the best published test error for generative models on this

dataset. We also evaluated the performance of the Multi-Prediction Deep

Boltzmann Machine model, a variant of DBM that reached similar results

on MNIST and NORB datasets, to compare their results on GTSRB. Using

67

MP-DBMs we have been able to reach a 3.81% test error that is the best

test error on GTSRB published in this work confirming that MP-DBM can

achieve slightly better results than DBM.

Our work showed that DBMs and MP-DBMs can reach high discrimina-

tive performance even on more complex dataset than MNIST and NORB. It

also showed that they have been able to overcome all generative models re-

sults on GTSRB suggesting that they are one of the best generative models

for discriminative tasks.

6.1 Future developments - The German Traffic Sign

Detection Benchmark dataset

The German Traffic Sign Detection Benchmark (GTSDB) dataset [3] is a

collection of images of real roads, such as the pictures in Figure 6.1, intro-

duced on the International Joint Conference on Neural Networks (IJCNN)

in 2013. This dataset has to be used to train models able to detect road

signs in the environment and, if requested, to classify them. To do this, the

GTSDB images can be divided in a certain number of subimages that will

be used as the input of model that has been trained on GTSRB. This model

has the purpose to detect if the subimage contains a road sign and, if the

answer is yes, to classify it. This is a possible application of DBMs that we

had not explored in this work, but that can be done in the future.

Together with this task, it would be worth also to explore the possibilities

of DBMs in real-time road signs classification. This is not a trivial tasks

due to the amount of time that a single image requires to be classified with

DBMs. Indeed, our model requires about 5 seconds to classify an image.

This is explainable by the fact that, once the DBM has been finetuned, it

is not possible to only perform bottom-up passes to infer the class of the

road sign. In fact, before this phase, the image has to be preprocessed by

the GRBM that produces the input of the DBM and this input has to be

augmented by the DBM. In particular, the data augmentation is the most

time demanding task that has the drawback to, apparently, prevent the

possibility of using DBMs (and MP-DBMs) for real-time classification.

Thanks to the high discriminative performance reached with our models,

this work can be used as the starting point to study the possibility of using

DBMs for classification of GTSDB images and even to test, and improve,

their efficiency in real-time road signs classification.

68

Figure 6.1: Examples of GTSDB images

69

70

Bibliography

[1] Cifar dataset. http://www.cs.toronto.edu/~kriz/cifar.html.

[2] Dbm code. http://www.cs.toronto.edu/~rsalakhu/DBM.html.

[3] Gtsdb dataset. http://benchmark.ini.rub.de/?section=gtsdb.

[4] Gtsrb dataset. http://benchmark.ini.rub.de/?section=gtsrb.

[5] Imagenet dataset. http://www.image-net.org/.

[6] Intel. http://www.intel.com/content/www/us/en/homepage.html?

_ga=1.113006209.481113508.1427985190.

[7] Intel-i7. http://www.intel.com/content/www/us/en/processors/

core/core-i7-processor.html?_ga=1.84565916.481113508.

1427985190.

[8] Linux. http://www.linux.com.

[9] Mnist dataset. http://yann.lecun.com/exdb/mnist/.

[10] Numpy. http://www.numpy.org.

[11] Nvidia. http://www.nvidia.it/page/home.html.

[12] Nvidia cuda language. http://www.nvidia.com/object/cuda_home_

new.html.

[13] Nvidia-tesla. http://www.nvidia.com/object/

tesla-supercomputing-solutions.html.

[14] Python language. https://www.python.org/.

[15] Scipy. http://www.scipy.org/.

[16] Ubuntu os. http://www.ubuntu.com.

71

[17] Yale face database. http://vision.ucsd.edu/content/

yale-face-database.

[18] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Berg-

eron, N. Bouchard, and Y. Bengio. Theano: new features and speed im-

provements. Deep Learning and Unsupervised Feature Learning NIPS

2012 Workshop, 2012.

[19] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-

jardins, J. Turian, D. Warde-Farley, and Y. Bengio. Theano: a CPU

and GPU math expression compiler. In Proceedings of the Python for

Scientific Computing Conference (SciPy), June 2010. Oral Presenta-

tion.

[20] C.M. Bishop. Neural Networks for Pattern Recognition. Department of

Computer Science and Applied Mathematics, Aston University, Birm-

ingham, UK, 1995.

[21] D. Ciresan, Ueli Meier, Jonathan Masci, and J. Schmidhuber. Multi-

column deep neural network for traffic sign classification. Neural Net-

works, January 2012.

[22] I. Goodfellow, M. Mirza, A. Courville, and Y. Bengio. Multi-prediction

deep boltzmann machines, 2013.

[23] I. Goodfellow, D. Warde-Farley, P. Lamblin, V. Dumoulin, M. Mirza,

R. Pascanu, J. Bergstra, F. Bastien, and Y. Bengio. Pylearn2: a ma-

chine learning research library. arXiv preprint arXiv:1308.4214, 2013.

[24] I.J Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and

Y. Bengio. Maxout networks. In Proceedings of the 30 Inter-

national Conference on Machine Learning, Atlanta, Georgia, USA,

2013. JMLR:W&CP, volume 28, Departement d’Informatique et de

Recherche Operationelle, Universite de Montreal 2920, chemin de la

Tour, Montreal, Quebec, Canada, H3T 1J8, 2013.

[25] G. Hinton. A practical guide to training restricted boltzmann machines.

Department of Computer Science, University of Toronto, 2010.

[26] G.E. Hinton. Training products of experts by minimizing contrastive

divergence. Neural Computation, 14:1771–1800, 2002.

[27] G.E. Hinton. Learning multiple layers of representation. ScienceDirect,

2007.

72

[28] G.E Hinton, D. Ackley, and T. Sejnowski. A learning algorithm for

boltzmann machines. Cognitive Science, 9:147–169, 1985.

[29] G.E. Hinton, P. Dayan, B.J. Frey, and R.M. Neal. The ”wake-sleep”

algorithm for unsupervised neural networks. Science, 268(5214):1158–

1161, May 1995.

[30] G.E. Hinton and V. Nair. Implicit mixtures of restricted boltzmann

machines, 2009.

[31] G.E. Hinton, S. Osindero, and Y.W. Teh. A fast learning algorithm for

deep belief nets. Neural Computation, 18:1527–1554, 2006.

[32] G.E. Hinton and R. Salakhutdinov. Deep boltzmann machines. In

Proceedings of the 12 th International Conference on Artificial Intel-

ligence and Statistics (AISTATS) 2009, Clearwater Beach, Florida,

USA. JMLR: W&CP, volume 5, Department of Computer Science, Uni-

versity of Toronto, 2009.

[33] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Improving neural networks by preventing co-

adaptation of feature detectors, July 2012.

[34] J. Schmidhuber. Deep learning in neural networks: An overview. Neu-

ral Networks, 61:85–117, 2015. Published online 2014; based on TR

arXiv:1404.7828 [cs.NE].

73

