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Abstract

This work is concerned with the numerical investigation of the linear-stability proper-
ties of the steady, asymmetric flow past two cylinders in side-by-side arrangement. The
problem is governed by two parameters: the Reynolds number and the adimensional gap
spacing between the centres of the cylinders. Past works have shown that the eigenval-
ues, corresponding to the neutral curves which delimit the asimptotically stable region
in the parameter space, are sensitive to the length of the computational domain. For
this reason, the present study is focused on the research of the minimal domain size, for
which the above-mentioned eigenvalues can be considered converged. The present results
show that convergence is achieved for a domain length of 550 diameters, even though
for certain eigenvalues, a longer length, up to 950 diameters, is required. The analysis
is enriched by the calculation of the structural sensitivity to identify the core region of
the instability. Then, the neutral curves which delimit the asymptotically stable area
are tracked using different domain lengths. In particular, domain lengths of 550 and 950
diameters are employed. The study is completed performing a set of DNSs in strategical
points of the parameter space (g,Re) in order to validate the results obtained by the
linear stability analysis. The flow is modelled using the Navier–Stokes equations and it
is assumed incompressible and steady. The equations are linearised to perform the linear
stability analysis in the parameter space. The numerical investigation is performed using
a software package written in CPL language and the equations are discretized using the
immersed bounday method.

Keywords: Cylinders in side-by-side arrangement, Asymmetric base flow, Linear sta-
bility, Structural sensitivity, Neutral curves, Navier–Stokes equations.



Sommario

Questo lavoro concerne l’analisi di stabilità lineare del flusso base asimmetrico attorno
ad una coppia di cilindri affiancati immersi in una corrente fluida uniforme. Il problema
è governato da due parametri: il numero di Reynolds e la distanza tra i centri dei due
cilindri. È stato mostrato in passato come gli autovalori relativi alle curve neutre che
delimitano la zona asintoticamente stabile dello spazio dei parametri siano sensibili alla
lunghezza del dominio di calcolo. Di conseguenza l’indagine è concentrata sulla ricerca
della lunghezza ottimale del dominio, rispetto alla quale i suddetti autovalori convergo-
no. In particolare, i risultati mostrano come, per alcuni autovalori, la convergenza si
raggiunge per lunghezze del dominio di calcolo comprese tra 550 e 950 diametri. L’a-
nalisi è arricchita dal calcolo della sensitività strutturale in modo da localizzare la zona
maggiormente sensibile a una retroazione localizzata della velocità. Successivamente so-
no stati tracciati i rami delle curve neutre che delimitano l’area stabile nello spazio dei
parametri utilizzando due domini di lunghezza differente, a seconda della curva neutra
considerata. In particolare sono state impiegate le lunghezze Lx = 550 e Lx = 950.
Lo studio è completato da una serie di DNS in punti strategici in modo da validare
quanto ottenuto dall’analisi di stabilità lineare. Il fluido è modellato dalle equazioni di
Navier–Stokes sotto le ipotesi di stazionarietà e incomprimibilità. Per effettuare l’analisi
di stabilità lineare, le equazioni vengono linearizzate nel punto di interesse all’interno
dello spazio dei parametri (g,Re). L’indagine numerica viene effettuata con l’utilizzo di
un pacchetto di programmi scritti in linguaggio CPL e le equazioni vengono discretizzate
utilizzando il metodo dei corpi immersi.

Parole chiave: Cilindri affiancati, Flusso base asimmetrico, Stabilità lineare, Sensitività
strutturale, Curve neutre, Equazioni di Navier–Stokes.
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Introduction

(a) The Golden Gate Bridge on the San Fran-
cisco Bay.

(b) The Petronas Towers in Kuala Lumpur.

(c) Chimneys in a nuclear powerplant.

Figure 0.1: Example of buildings whose structure is made by two bluff bodies in side-by
side arrangement

The simulation of the viscous flow over a bluff body has been a challenging problem
for several years. Such flows are of great interest because they show fundamental fluid
dynamic phenomena, including separated shear layers and turbulence. Many structures
such as tall buildings, bridges, off-shore pipelines and risers may be considered as bluff
bodies and the complex flow over them is of great interest. In addition, some streamlined
structures may behave as a bluff body at some operating conditions, such as an airplane
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Introduction

wing at high angles of attack. Among the different bluff-body shapes, the circular section
has received considerable attention by researchers. This is due to several reasons:

• it is widely used in many practical applications, such as pipelines and heat ex-
changer tubes, twin struts to support biplane wings in aeronautical engineering, or
in tall buildings and in the towers of suspension bridges in wind engineering;

• the circular cylinder is a simple geometry for analysis and simulations;

• the flow over a circular cylinder encompasses all the important aspects of bluff body
flow, making this shape the prototype of bluff body par excellence.

When more than one cylinder is placed in a fluid stream, several changes in the character-
istics of fluid loads occur due to the interference effect: for instance, the wake interaction
between the two bodies can affect considerably the forces acting on them, with respect to
a single-body flow. In particular, the flow past two cylinders in side-by-side arrangement
has been one of the most studied problems in fluid mechanics since 1977 with the work of
Zdravkovich who analized not only this configuration but also the in-tandem and stag-
gered arrangements; in fact, even though the geometry is quite simple, the phenomena
that characterise this problem are complicated, making quite difficult understanding the
whole scenario from a physical and an engineering point of view.
The present investigation is limited to the case of a viscous, laminar, incompressible flow
past two side-by-side cylinders. The problem can be described by two nondimensional
parameters, the Reynolds number and the gap spacing, as reported in Table 0.1.:

Re = UD
ν

U = velocity vector
D = cylinder diameter
ν = kinematic viscosity

g = L
D

L = distance between the two cylinders
D = cylinder diameter

Table 0.1: Governing parameters for two cylinders in side-by-side arrangement.

Different patterns have been observed in both experimental and numerical works. For
instance, in a wind and water tunnel test campaign Xu et al. (2003) investigated the
effect of the Reynolds number, in the range 150− 14.300, and of the nondimensional gap
size on the flow structure behind two side-by-side cylinders. Three main patterns have
been observed: for g < 1.25, the two cylinders act like a single bluff body, generating
a single vortex street; for 1.25 < g < 1.6 two flow structures have been observed: for
low Re, a single vortex street is created, fluctuating with a nondimensional frequency
f ≈ 0.09. Increasing the Reynolds number, two wakes are formed, a narrow one and
a wide one. The two vortex streets are associated with a dominant frequency of about
0.3 and 0.09, respectively. Finally, for 1.6 < g < 2.0, the single vortex street is no more
observed and the flow consists of one narrow and one wide street. It is further observed
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that the critical Re, at which the transition from single to double street occurs, increases
as g decreases.
An interesting numerical study has been carried out by Kang in 2003. Six different flow
patterns (antiphase-synchronized, in-phase synchronized, flip-flopping, deflected, single-
bluff-body, and steady wake) have been discovered in the ranges of 40 ≤ Re ≤ 160 and
g < 5. In his work, Kang also showed how the vortex-shedding frequency strongly de-
pends on the gap spacing and how this affects the values of the lift and drag coefficient.
In particular, when decreasing g in the flip-flopping regime, first the frequency drastically
goes down and then slightly increases when the single bluff-body pattern is established.
A detailed map of the dependence of the wake pattern on Re and g has also been ob-
tained showing that each pattern occupies a finite area in the parameter space.
Further studies have been performed to analyse the linear stability of the flow. Akina-
gawa & Mizushima (2005) investigated the linear stability of the flow past two cylinders
in side-by-side arrangement theoretically, numerically and experimentally, in order to
explore the origin of the in-phase and antiphase oscillatory flows. The authors found
that these two patterns are related to the presence of two modes which become unstable
and calculated the corresponding critical Reynolds number Rec and nondimensional fre-
quency (i.e. the Strouhal number) for different gap values.
In 2008, Mizushima & Ino presented a more detailed work, exploiting numerical and
analytical techniques to better investigate the development of the different flow patterns,
varying the Reynolds number and the gap between the two cylinders. Despite the mech-
anism that produced every single pattern was not clear, the stability analysis revealed
that the insurgence of the different flow patterns is related to the presence of two un-
stable modes. The first one is symmetric and becomes unstable for Re = 40.72 while
the second one is asymmetric and becomes unstable for Re = 52.36, both for g = 4.
The critical values of the Reynolds number change when the gap is reduced to g = 1,
becoming Re = 42.24 for the symmetric one and Re = 45.34 for the asymmetric one.
In the last few years, many investigations have been carried out to understand where
the core of the instability is located in the domain, employing the structural-sensitivity-
analysis technique proposed by Giannetti & Luchini in 2007. In particular, the instability
core, or "wavemaker", is located where the product of the direct and adjoint modes is
maximum. The origin of the flip-flop behaviour has been investigated by Carini, Gi-
annetti & Auteri (2014) in the range of non-dimensional gap spacing 0.6 < g < 1.4
and Reynolds number 50 < Re ≤ 90. In this work, the authors explain how, starting
from the in-phase synchronized vortex shedding, the flip-flop pattern occurs when a pair
of complex-conjugate Floquet exponents becomes unstable, crossing the imaginary axis.
Starting from the critical threshold of g = 0.7, Re = 61.74, the stability analysis has
been extended to cover an entire range of gap spacing; this leads to the possibility of
drawing the neutral curves (i.e the curves in the parameter space on which a specific
eigenvalue has null real part); furthermore, the sensitivity map of the flip-flop pattern
has been calculated showing that the instability core is located in the wake behind the
two cylinders.
In another contribution, Carini, Giannetti & Auteri (2014) examined the global stabil-
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Introduction

ity of the symmetric base flow in the parameter range of 0.1 ≤ g ≤ 3 and Re < 100.
Four different unstable modes are found, each one promoting a different kind of unsta-
ble pattern as the gap spacing g is varied: single bluff body, asymmetric, in-phase and
antiphase synchronized vortex shedding. For each instability pattern the neutral curves
are calculated in the parameter space (Re, g) in order to identify the regions of stability
and instability of the corresponding base flow. Moreover, the structural-sensitivity map
related to each mode is depicted, in order to identify the region where the instability core
is located. Finally, the stuctural sensitivity analysis of the in-phase and antiphase mode
has been employed to design a passive control of these unstable modes for g = 2.5 and
Re = 60.
Taking into account the above results, this work is focused on the numerical study of the
steady asymmetric base flow region represented in blue in Figure 0.2.

Figure 0.2: Neutral curves in the g −Re plane, for a domain length equal to Lx = 125
cylinder diameters.

The investigation of this region is interesting because the asymmetric base flow has not
been studied yet and therefore the region in which this pattern is asymptotically stable
is not well defined. A previous, inconclusive study [10] has shown that an unstable
eigenvalue, which has an imaginary part of µ = 0.39i, represented in Figure 0.2, by the
red neutral curve is very sensitive to the domain length. This means that extending
the computational domain in the x direction may change significantly the real and the
imaginary part of the unstable eigenvalue. Starting from this issue, the objectives of this
analysis are two: the first is to find the most suitable domain length for the stability
analysis of two cylinders in side by side arrangement, i.e. the lenght for which the most
unstable eigenvalue becomes insensitive to the domain length. The second is to re-define
the area, coloured in blue in Figure 0.2, where the steady, asymmetric base flow is stable
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by, tracking the neutral curves for the extended domain length.
The thesis is organised as follows: in Chapter 1 the mathematical formulation of the
problem is presented and the main mathematical tools used for this analysis are described.
Chapter 2 contains a validation of all of the pieces of software used during the analysis,
through the simulation of the flow past a singular cylinder. In Chapter 3 the main results
of the present work are reported. Conclusions are presented in Chapter 4.
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CHAPTER 1

Problem formulation

In this chapter, an overview of the main concepts and tools used in this work is pre-
sented. In particular, the theory of nonlinear dynamical systems and their linearisation
are described. The aim is to give the reader both an essential but complete summary of
the concepts necessary to understand the entire work and the opportunity to approach
these theories from a wider point of view.
Nonlinearities are ubiquitous in physical phenomena: for instance gas dynamics, combus-
tion and fluid mechanics are all governed by nonlinear equations. In addition, since the
nonlinear systems are difficult to analyse, it is useful to develop a set of reliable methods
to investigate them, in order to better understand the physics underlying the different
phenomena that we examine.

1.1 Nonlinear dynamical systems

A dynamical system is a set of Ordinary Differential Equations (ODEs) or Partial Dif-
ferential Equations (PDEs) which describes the evolution in time of a set of quantities,
i.e. 

∂x(r, t)
∂t

= F(x(r, t),λ),

x(r, 0) = x0(r),
(1.1)

where x(r, t) denotes the state vector and belongs to the phase (or state) space H (H ⊂
Rd, d ∈ N in the case of finite dimension spaces), x0(r) denotes the initial condition, r is
the position vector and t represents the time variable (t ∈ T where T is the time set);
F is a family of evolution operators that maps H into itself and satisfies the following
semigroup properties:

1



Chapter 1. Problem formulation

∫ 0

0
F(τ) dτ = I, (1.2)∫ t+s

t
F(τ) dτ = F(t) ◦ F(s). (1.3)

The vector λ represents a vector of parameters which affect the behaviour of the nonlinear
system. For instance, in the case of two cylinders in side-by-side arrangement, λ has the
following components: λ =

[
g Re

]T where g denotes the non-dimensional gap spacing
between the two cylinders and Re represents the Reynolds number. This means that,
varying the gap spacing and the Reynolds number, different patterns may be observed
in the case of two side-by-side cylinders.
A nonlinear dynamical system may have an arbitrary number of solutions, which depend
on the different initial conditions and on the values assumed by λ. For this reason,
starting from different x0 and λ, different solutions of the state x(t) may be reached in
the long term. In particular, interesting solutions of (1.1) are the so-called steady states,
i.e. those solutions which satisfy the following relation:{

F(xs(r),λ) = 0,

x(r, 0) = x0(r),
(1.4)

where the subscript s stands for steady.
These particular states are very interesting from a physical point of view, because they
represent equilibrium solutions: in fact, since the time-derivative is null, the state vector
xs(r) does not change in time when the steady state is assumed as initial condition (for
this reason the solutions of (1.4) are often called fixed points). From an engineering
perspective, the study of the steady states of a dynamical system is fundamental, since
we are interested in the long-time, i.e. for t → ∞, behaviour of the solution; in fact,
many processes in nature reach the regime condition after a transient phase.

1.1.1 The Navier–Stokes equations

This work is concerned with the stability of the incompressible flow around two bluff
bodies, the dynamical system is therefore described by the Navier–Stokes equations.
These equations describe the motion of a Newtonian fluid

∂u∗

∂t
+ (u∗ · ∇)u∗ − ν∇2u∗ +∇p∗ = f,

∇ · u∗ = 0,
(1.5)

where u∗ = u∗(r, t) denotes the velocity vector, p∗ = p∗(r, t) represents the reduced
pressure, f = f(r) is a vector of external forces acting on the fluid and ν denotes the
kinematic viscosity.
In the analyses that follow, we will consider a fluid-dynamic system without external

2



1.1. Nonlinear dynamical systems

forces, for this reason the term f will be dropped in the sequel, leading to a homogeneous
system.
It is possible to adimensionalise (1.5) introducing a reference velocity U∗ and a reference
length L∗ and defining the nondimensional quantities as

u =
u∗

U∗
, p =

p∗

P ∗
; (1.6)

where P ∗ ≡ ρ∗U∗2. Then, the adimensional Navier–Stokes equations read:
∂u
∂t

+ (u · ∇)u− 1

Re
∇2u +∇p = 0,

∇ · u = 0,
(1.7)

where the Reynolds number is defined as Re = U∗L∗

ν . Therefore, as we may see, one of the
parameters that govern the physics of the problem comes from the adimensionalisation.
The second one, the nondimensional gap spacing, is not visible in these equations, since
it is a geometric parameter, not a fluid-dynamic one.
The system must be completed by boundary and initial conditions:

∂u
∂t

+ (u · ∇)u− 1

Re
∇2u +∇p = 0,

∇ · u = 0,

u(r, t)|ΓD
= 0,(

1

2
ν
[
∇u + (∇u)T

]
· n− pn

)∣∣∣∣
ΓN

= 0,

u(r, 0) = u0,

(1.8)

where ΓD and ΓN are the Dirichlet boundary and the Neumann boundary, respectively,
such that ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅, with ∂Ω the entire boundary.
The steady states of (1.8) are the pairs q =

[
u p

]T that satisfy the following system:

(u · ∇)u− 1

Re
∇2u +∇p = 0,

∇ · u = 0,

u(r, t)|ΓD
= 0,(

1

2
ν
[
∇u + (∇u)T

]
· n̂− pn̂

)∣∣∣∣
ΓN

= 0.

(1.9)

As we may note, the unsteady term i.e. the derivative with respect to time of u has
been dropped. The two fields U = U(r) and P = P (r), which represent the solution
of (1.9), are also called base flow. The calculation of the base flow is the first step
in a linear stability analysis. It is worthwhile to remark that different base flows may
exist depending on the parameters (Re, g). In particular, for the problem studied in this
work, beside the asymmetric base flow, a symmetric base flow also exists whose stability
properties have been studied in detail in [10].

3



Chapter 1. Problem formulation

1.1.2 Newton’s Method

The first step in a linear stability analysis is to find the fixed points of the nonlinear
system. While there are several methods able to compute the solution of nonlinear
systems of equations, Newton’s method is one of the most employed due to its high
efficiency and accuracy. Moreover, it allows to compute unstable fixed points, that would
be out of reach for time-stepping procedures.
The Newton’s method can be applied to a nonlinear system to calculate the solutions
of (1.4). Expanding F(x) in a Taylor series in the neighbourhood of an approximate
solution xn+1 at the (n + 1) − th step, and by truncating the series to first order, we
obtain:

F(xn+1, λ) ≈ F(xn, λ) + J(xn, λ)(xn+1 − xn). (1.10)

Because of (1.4), (1.10) becomes:

F(xn, λ) + J(xn, λ)(xn+1 − xn) = 0; (1.11)

from this equation the approximate solution xn+1 can be computed. The procedure is
repeated until convergence.
In the case of the Navier–Stokes equations, the variable x and the paramater λ can be
expressed as

x =
(
u p

)T
, λ = Re, (1.12)

while the term F(x, λ) can be written as

F(x, λ) = Q(x,x) + L(x, λ) (1.13)

where the term Q(x,x) is a bilinear quadratic form and L(x,x) is a linear form

Q(x,y) =

(
(u · ∇)v

0

)
, L(x, λ) =

(
− 1
Re∇

2u +∇p
∇ · u

)
, (1.14)

while the Jacobian Matrix can be expressed as:

J(v, Re) =

[
(v · ∇) · · ·+ (· · · · ∇)v− 1

Re∇
2 . . . ∇ . . .

∇ · . . . 0

]
. (1.15)

1.2 Linear stability

In order to investigate the stability properties of a fixed point (base flow), the sim-
plest and most valuable tool is linear stability analysis. This means to study dynamical
properties of the linearised problem in the neighbourhood of a steady state and gives us
information about the behaviour of system subject to infinitesimally small perturbations.
In particular, in this work, the linear-stability approach is used to determine whether the
base flow calculated in the previous section, in this work in particular the asymmetric
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1.2. Linear stability

base flow, is stable or unstable for a fixed value of g and Re. Let us briefly recall now
the steps of this approach:

1. a fixed point, or base flow when the dynamical system is modelled by the Navier–
Stokes equations, of the nonlinear system is calculated, i.e. one of the solutions xsi
of (1.4) is found;

2. the system is linearised around the fixed point. The discrete, linearised system will
read:

M
dx
dt

= Ax (1.16)

where x is the state vector, M is the mass matrix and A is the Jacobian ma-
trix calculated in the fixed point xsi of the system (1.1) whose stability is being
investigated, thus:

A =
∂F
∂x

∣∣∣∣
xsi

=
∂Fj
∂xk

∣∣∣∣
xsi

; (1.17)

3. The eigenvalues ofA are computed and the linear stability of the system is deduced
exploiting two theorems:

Theorem 1. (see e.g. [24]) Let xsi be a fixed point of (1.1). If all of the eigenvalues
of the matrix A have strictly negative real part then xsi is an asympotically stable
equilibrium point for the system (1.1).

Theorem 2. (see e.g. [24]) Let xsi be a fixed point of (1.1). If the matrix A
has at least one eigenvalue with strictly positive real part then xsi is an unstable
equilibrium point for both the nonlinear system (1.1) and linearised system (1.16).

Such an approach gives us information about the behaviour of the system in a vanishing
neighbourhood of the fixed point. For a deeper understanding of the flow behaviour
subject to finite-energy perturbations, a nonlinear analysis is required.

1.2.1 Linearised Navier–Stokes equations (LNSE)

The procedure to obtain the linearised equations for an incompressible, uniform-density
flow starting from the Navier–Stokes equations is recalled in this section for reader’s
convenience. For the sake of brevity, only the main steps will be considered.
To linearise (1.5), let us express the velocity vector u and the pressure p as the sum of a
steady solution, the base flow, and a small perturbation term, namely: u = U + u′ and
p = P + p′ and then introduce these expressions in (1.7). We obtain


∂(U + u′)

∂t
+ ((U + u′) · ∇)(U + u′)− 1

Re
∇2(U + u)′ +∇(P + p′) = 0,

∇ · (U + u′) = 0.

(1.18)
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Chapter 1. Problem formulation

Recalling the linearity of the derivative operator and neglecting the second-order term,
the linearised Navier–Stokes equations are obtained:

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U− 1

Re
∇2u′ +∇p′ = 0,

∇ · u′ = 0,

u′(r, t)
∣∣
ΓD

= 0,(
1

2
ν
[
∇u′ + (∇u′)T

]
· n̂− pn̂

)∣∣∣∣
ΓN

= 0,

u′(r, 0) = u0,

(1.19)

where the Jacobian operator A has the form:

A =

[
(U · ∇) · · ·+ (· · · · ∇)U− 1

Re∇
2 . . . ∇ . . .

∇ · . . . 0

]
. (1.20)

1.2.2 Direct and adjoint problem

To compute the eigenvalues and the eigenvectors associated with (1.19) the solution has
to be expressed in the form:

u′(r, t) = û(r)eλt, p′(r, t) = p̂(r)eλt, (1.21)

where λ is the generic eigenvalue and q̂ =
[
û p̂

]T is the corresponding eigenvector.
Substituting it into (1.19), the sytem can be written as

λu′ + (U · ∇)u′ + (u′ · ∇)U− 1

Re
∇2u′ +∇p′ = 0,

∇ · u′ = 0,

u′(r, t)
∣∣
ΓD

= 0,(
1

2
ν
[
∇u′ + (∇u′)T

]
· n̂− pn̂

)∣∣∣∣
ΓN

= 0,

u′(r, 0) = u0,

(1.22)

or, in the discrete form:

λMq̂ = Aq̂. (1.23)

Beside the direct problem,it is useful to introduce the adjoint problem [26]: it can be
obtained by multiplying both sides of the momentum equation by a vector function
v = v(r, t), and the incompressibily constraint by a scalar function m = m(r, t). After
integrating by parts, the adjoint problem can be stated as:
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1.2. Linear stability



− ∂v
∂t
− (U · ∇)v + (∇U)v− 1

Re
∇2v +∇m = 0,

∇ · v = 0,

v(r, t)|ΓD
= 0,(

1

2
ν
[
∇v + (∇v)T

]
· n̂−mn̂

)∣∣∣∣
ΓN

= 0,

v(r, 0) = v0.

(1.24)

Also in this case, the eigenvalues and eigenvectors can be computed writing the variables
v(r, t) and m((r, t) as:

v(r, t) = v̂(r)e−λt m(r, t) = m̂(r)e−λt; (1.25)

therefore the adjoint eigenvalue problem reads:

λv̂− (U · ∇)v̂ + (∇U)v̂− 1

Re
∇2v̂ +∇m̂ = 0,

∇ · v̂ = 0,

v̂(r, t)|ΓD
= 0,(

1

2
ν
[
∇v̂ + (∇v̂)T

]
· n̂−mn̂

)∣∣∣∣
ΓN

= 0,

(1.26)

or, in discrete form:

λ∗Mq̂+ = A+q̂+, (1.27)

where the vector q̂+ represents the adjoint eigenvector, i.e. q̂+ =
[
v̂ m̂

]
and λ∗ is

the complex conjugate of λ. It is important to underline that the direct and adjoint
eigenvalues are the same, while the adjoint eigenvectors are different from the direct
ones. In particular, the adjoint eigenvectors are also called left eigenvectors since they
are the eigenfunctions of A+ = AH for a discrete system.

1.2.3 Arnoldi’s algorithm

In this section the Arnoldi’s algorithm for the computation of the eigenvalues is described.
Before illustrating this method it is useful to recall some basic notions about the Krylov
subspaces. A Krylov subspace is a vector subspace, which can be written in the form:

Kk(A,v) =
[
v0 Av0 A2v0 . . . Ak−1v0,

]
v ∈ Cn×n, (1.28)

where A represents a generic matrix. A fundamental property is that Kk is the subspace
of all vectors in Rn which can be written as x = p(A)v, where p is a polynomial of degree
not exceeding k − 1.
Krylov subspaces are exploited by Arnoldi’s Algorithm, that is an iterative projection
method, which project a general non-Hermitian matrix onto a Krylov subspace, thus it
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Chapter 1. Problem formulation

provides the computation of an orthogonal basis for Kk. It is presented in this work
because it is useful to approximate the eigenvalues of large sparce matrices. In fact,
large-scale eigenvalue problems are ubiquitous in engineering and they typically derive
from applications in which one is only interested in a small subset of the spectrum, for
instance the smallest-or the largest-magnitude eigenvalues. Given a matrix A ∈ Rn×n
its eigenvalues can be computed by projecting A in a low-dimensional subspace and then
solving a small eigenvalue problem. The small portion of the spectrum computed is an
accurate approximation to the corresponding eigenvalues of the original matrix. The
methods which are based on this idea are called projection methods.
Arnoldi’s Algorithm can be summarized as follows:

1. Choose an arbitrary vector v1, such that ||v1||2 = 1

2. For j = 1, 2, ..., k Do:

3. Compute hij = (Avj , vi) for i = 1, 2, ..., j

4. Compute wj = Avj −
∑j

i=1 hijvi

5. hj+1,j = ||wj ||2
6. If hj+1,j = 0 then Stop

7. vj+1 = wj/hj+1,j

8. EndDo

Two sets of quantities are computed by this procedure: the first one are the nonzero
entries hij of the Hessenberg matrix H. The second one is the set of vectors v1, v2, . . . ,
vk which represent the columns of the matrix Vk.
The lines 4, 5 and 7 of the algorithm can be summarized in the formula:

Avj =

j+1∑
i=1

hijvi j = 1, 2, ..., k. (1.29)

The equation can be written in its matrix form; recalling the property that V−1
k = VH

k

since it is an orthogonal matrix, the matrix form of (1.29) reads:

VH
k AVk = H (1.30)

(1.30) represents a reduced eigenvalue problem where H contains a small portion of the
spectrum of the matrix A.
In the present work, the "implicitly restarted Arnoldi algorithm" implemented in the
ARPACK library with a shift-invert strategy has been used.

1.2.4 Continuation of the solution

The study of the stability properties in a wide region of the parameter space requires
a big computational effort: in fact the computation of the different quantities useful to
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1.3. Structural sensitivity

perform the linear stability analysis is onerous and slow. To overcome this problem, a
continuation algorithm is required to automate the analysis in each point of the (Re, g)
parameter space. In particular, in the present work, the continuation algorithm has been
employed to track the different Hopf bifurcations, to reconstruct the neutral curves which
delimit the stability area of the asymmetric base flow. Starting from a point close enough
to the neutral curve, the algorithm is able to track it, computing only the eigenvalue of
interest, thus avoiding the computation of a spectrum portion at each point.
The different continuation algorithms which have been used are included in the open-
source Library Of Continuation Algorithms (LOCA) freely avaiable online. A list of the
algorithms provided with the library is reported below:

1. ZERO_ORDER_CONTINUATION

2. FIRST_ORDER_CONTINUATION

3. ARC_LENGTH_CONTINUATION

4. TURNING_POINT_CONTINUATION

5. PITCHFORK_CONTINUATION

6. HOPF_CONTINUATION

In particular, a zero-order continuation of the fixed point has been used to locate the
neutral curve in the (Re, g) parameter space; once the neutral curve has been located, a
Hopf-bifurcation continuation has been exploited to track the neutral curves delimiting
the asymptotically stable region of the asymmetric base flow.
For further information and details about how these algorithms work, the reader is re-
ferred to the LOCA manual [23].

1.3 Structural sensitivity

The structural-sensitivity analysis is a relatively new technique, first proposed in 2007
by Giannetti and Luchini [6], and represents a powerful method to locate the core of
an absolute instability, also called "wavemaker". Starting from the direct and adjoint
eigenvectors, this can be done by computing the structural sensitivity parameter, defined
as

s(r) =
||v̂i(r)|| ||ûi(r)||∫

Ω v̂i · ûi
(1.31)

where ui(r) and vi(r) represent the i-th direct and adjoint eigenvector respectively asso-
ciated with the least stable eigenvalue. The maxima of this function represent the regions
where a localized velocity feedback is able to produce the largest drift of the least stable
eigenvalue because it is located in the region where the instability mechanism acts.
Heuristically speaking, what motivates the simultaneous usage of both the direct and
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Chapter 1. Problem formulation

adjoint modes is that for highly non-normal systems, the spatial distribution of direct
and adjoint eigensolutions is different: for this reason the wavemaker cannot be identifed
from the study of the direct and adjoint eigenfunctions separately.
To write s(r) in its final form, as reported in (1.31), the knowlegde of the base flow
S = (U, P ) is required. A perturbation to the base flow is introduced, modifying the
least stable eigenvalue and the correspondent eigenvector. Then, a perturbed eigenvalue
problem can be written; after a few mathematical manipulations and exploiting the ad-
joint problem, the structural sensitivity parameter can be written in its final form. For
more details on the necessary algebraic manipulations, see [6].

1.4 Immersed boundary method

In this work, the nonlinear and linearised Navier–Stokes equations have been discretised
by a second order finite difference scheme. An "immersed boundary” technique has been
employed to deal with the solid bodies in the flow-field. In this approach the bodies in
the flow field are simulated by adding a force term in the equations which allows the
boundary conditions on the immersed boundary to be imposed. As a consequence the
discretization grid occupies the whole domain as depicted in Figure 1.1.

S1S2

S3 S4

S5

B

F1 F2 F3

F4 F5

F6

solid fluid

Figure 1.1: Example of computational domain discretized with a uniform grid using
the immersed boundary technique. The boundary conditions imposed by the presence of
the cylinder are simulated introducing a forcing term into the governing equations. The
points F1 to F6 and S1 to S5 are employed to impose the boundary conditions in the
point B.

As anticipated, to take the presence of the body into account a forcing term must be
added to the equations. This force must reproduce the same effects produced by the
body on the pressure and velocity distributions. Since we are introducing a right hand
side in the equations, the homogeneous problem described by (1.9) becomes a forced
problem with a vector force field fb =

[
fq fm

]T where the first component is applied
to the momentum equation, the second to the incompressibility constraint. There are
mainly two ways to introduce the forcing term into the equations: a continuous approach
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1.4. Immersed boundary method

and a discrete approach. In the former, fb is incorporated in the continuous equations,
while in the latter the forcing term is applied to the discretised equations. A strong point
of the continuous forcing approach is that it is formulated independently of the spatial
discretization. On the other hand, the discrete forcing approach depends very much on
the discretization method. However, this allows direct control over the numerical accu-
racy and stability properties of the solver.
The boundary conditions on the body surface (point B in Figure 1.1) can be imposed
by an interpolation of the variables using the points in the neighbourhood of the sur-
face. Interpolations of different orders can be used (linear, bilinear, quadratic, ect.) and
many interpolation techniques have been used in the past (see [15], [16], [17], [18]). In
the present work the technique described in [6] is employed, with a quadratic interpola-
tion scheme: the interpolation was performed using the point closest to the body surface
(which can be either an internal or an external point) and the following point on the exte-
rior of the cylinder. The interpolation is performed either in the streamwise or transverse
direction, according to which one is closest to the local normal. An example of the nodes
involved in the interpolation scheme is shown in Figure 1.2.

Figure 1.2: Sketch of the points near the cylinder surface involved in the interpolation.
The squares and the circles represent the points in which the horizontal and vertical
velocity components (named u and v) have been interpolated, respectively.

There are many benefits in the usage of an immersed boundary approach: the primary
advantage of this method is associated with the fact that grid generation is greatly
simplified. Generating body-conforming structured or unstructured grids is usually very
difficult. Indeed, we want to build a grid that provides adequate resolution near the
body with the minimum number of total grid points. These conflicting requirements can
lead to a deterioration in grid quality, which can negatively impact the accuracy and the
convergence properties of the solver. In addition, even for simple geometries, generating a
good body-conforming grid can be an iterative process requiring significant efforts. As the
geometry becomes more complicated, the task of generating an acceptable grid becomes
increasingly difficult. The usage of the immersed-boundary method is also convenient
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Chapter 1. Problem formulation

for flows with moving boundaries. The design of such complicated grids may require the
generation of a new grid at each time step as well as a procedure to interpolate the solution
at the previous time step to this new grid. Both of these steps can negatively impact
the, accuracy, robustness, and computational cost of the solution procedure, especially
in cases involving large motions. Thus, due to its inherent simplicity, the immersed
boundary method represents an extremely attractive alternative for such flows.
One of the disadvantages of the method is related to the imposition of the boundary
conditions, which is not straightforward. Moreover, the alignment between the grid
lines and the body surface in body-conformal grids requires a good control of the grid
resolution in the vicinity of the body and this has implications for the increase in grid
size with increasing Reynolds number.

12



CHAPTER 2

Validation cases

A preliminary step, before performing the linear stability analysis around two cylinders
in side-by-side arrangement, was the validation of all the codes used during this work.
For this reason, the present chapter is devoted to a deep and complete check of all of
the software tools needed for the simulations. The tests have been performed using a
software package implemented in the CPL language by Prof. Flavio Giannetti.

Name Description

BASE_FLOW_MB_vort Computes a steady solution of the in-
compressible Navier-Stokes equations, using
Newton iterations starting from a randomly
perturbed flow field or from a previously
computed solution.

BFGLOBALMODES_AR-
PACK_MB_vort

Computes direct and/or adjoint global
modes associated with a given base flow
using the implicitly restarted Arnoldi algo-
rithm implemented in the ARPACK library
with a shift-invert strategy.

CONTINUATION_vort Allows one to perform base flow continuation
and global-mode neutral curve tracking with
respect to pre-defined parameters using the
LOCA library of continuation algorithms.

Table 2.1: Solvers used for computing the base flow, the eigenvalues/eigenvectors and to
continue the solution. The denomination "vort" indicates the type of boundary condition
used by the software.
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Name Description

BFRF Translates the binary flow data of the com-
puted base flow in a format suitable for New-
ton restart.

PBF Adds a pre-defined perturbation to the given
base flow with given amplitude. The pertur-
bation can be a random field or a Gaussian-
shaped spot at a precise spatial location.

GMPBF Adds the real part of an already computed
direct global mode multiplied by a given am-
plitude to the related base flow.

BFIG Produces an initial guess for the Newton
solver starting from a base flow computed on
a domain with a reduced streamwise extent.
The missing data on the larger domain are
replaced by a uniform flow whose modulus
is equal to 1.

Table 2.2: Pre-processing software used to modify a computed baseflow and to calculate
the solution on an extended domain.

Name Description

BFPOST_MB_vort Post-processing of a computed flow field
stored in the "BaseFlow.bin" file located in
the working directory.

BFSP Computes the stagnation point in a small
square region of a given flow field using New-
ton iterations.

BFGMPOST_AR-
PACK_MB_vort

Post-processing of the computed di-
rect/adjoint global modes. For the sen-
sitivity post-processing both modes are
required.

Table 2.3: Post-processing software containing all the data used to produce output.

The programs can be divided into three categories: solvers, pre-processing tools and
post-processing tools. The solvers represent the core of the package, performing the nu-
merically solution of the steady and time-dependent incompressible Navier–Stokes equa-
tions and the computation of the required portion of the spectrum, specifying the shift
on the imaginary axis and the number of eigenvalues to be computed. The direct and
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2.1. Flow around a circular cylinder

adjoint eigenvectors can be computed as well. The output of the simulations is given
in the form of binary files. The pre-processing codes are employed before starting the
simulation since they provide all the preliminary data necessary to run the simulations
(i.e. the files containing the initial conditions). Finally, the post processing tools provide
raw data to be elaborated with Matlab R© to produce all of the images. In Tables 1.1-1.3
the different codes are briefly described, divided by category.

2.1 Flow around a circular cylinder

The case studied for the validation of the codes is the flow around a single circular cylin-
der; the choice was made on the grounds that it is a well known flow, and since it has been
extensively investigated both numerically and experimantally, many results are available
in the literature, thus they can be assumed as a reference. The results reported in the
literature have been used to validate the 2D base flow solver, the eigenfuction computa-
tion, the neutral-curve-tracking algorithm and the structural-sensitivity calculation. The
geometry of the flow field is depicted in Figure 2.1. The reported dimensions are those
referred to the M1 grid.
The reference system is placed in the centre of the cylinder. The boundary conditions
employed in the code consist of a set of homogeneous Dirichlet conditions for what con-
cerns the normal velocity components on the Γup, Γdown, Γin boundaries, coupled with
a constraint on the vorticity in order to simulate the flow far from the body; a condition
on the reduced pressure and on the velocity derivative with respect to the x direction is
set on the outlet boundary:

Γup :

{
v = 0

ω = 0
Γdown :

{
v = 0

ω = 0
Γin :

{
u = U

ω = 0
Γout : −p+

1

Re

∂u

∂x
= 0 (2.1)

where u and v represent the velocity vector component in x and y direction respectively,
ω is the flow vorticity and p is the reduced pressure.
Different meshes have been employed, to validate the results reproducing the same con-
ditions presented in the reference articles, for the comparison to be fair, since some
quantities are sensitive to a change of the domain size, as described in [7]. The charac-
teristics of the exploited grids are reported in Table 2.4.
In order to better reconstruct the flow near the body and to resolve the details of the
flow in the near wake, Roberts stretching transformations have been used to cluster the
mesh points smoothly near the body. In particular, the coordinates (xi, yi) of a node in
the computational mesh are obtained by evaluating the following expressions:

xi = xc

{
1 +

sinh[τx( i
nx
−Bx]

sinh(τxBx)

}
, yi = yc

{
1 +

sinh[τy(
i
ny
−By]

sinh(τyBy)

}
, (2.2)

where i and j are the grid indices and Bx and By are cofficients given by
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x

y

Lx1 = 25D Lx2 = 70D

L
y

=
40
DD = 1

ΓoutΓin

Γtop

Γbottom

Figure 2.1: Sketch of the computational domain using mesh M1.

Bx =
1

2τx
ln

[
1 + exp(τx − 1)(xc/Lx)

1 + exp(−τx − 1)(xc/Lx

]
, Bx =

1

2τy
ln

[
1 + exp(τy − 1)(yc/Ly)

1 + exp(−τy − 1)(yc/Ly

]
.

(2.3)

In these formulae, Lx and Ly represent the number of points used in the directions,
while nx and ny denote the number of points used in the x and y directions, respectively.
τx and τy are two stretching parameters, which control the clustering of points and can
range from zero (no stretching) to large values, in order to produce the largest refinement
near the body.

Mesh x−∞ x+∞ y−∞ y+∞ sm ne nd.o.f

M1 −25 50 −20 20 0.013 [600]× [350] 630000
M2 −25 140 −20 20 0.008 [900]× [420] 1134000
M3 −60 200 −30 30 0.020 [870]× [450] 1174500
M4 −45 125 −45 45 0.011 [700]× [550] 1155000

Table 2.4: Comparison between the different meshes used for the validation of the code:
x−∞ and x+∞ are the locations of the inlet and outlet, respectively, while y−∞ and y+∞
are the positions of the upper and lower boundary; sm accounts for the mesh stretching
near the body and the lower is this value, the more dense is the mesh; finally, ne and
nd.o.f represent the number of points and the number of degrees of freedom ( i.e. the size
of the system matrix), respectively, in the whole domain.
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Figure 2.2: Example of mesh (M1) used for the validation case. The number of points
in x and y direction are nx = 600 and nx = 350 respectively.

2.1.1 Base flow

To validate the solver of the base flow, different quantities have been evaluated; in par-
ticular, considering a range of Reynolds numbers for which the base flow presents a
recirculation bubble downstream the cylinder, as shown in Figure 2.3, the drag coeffi-
cient CD and the length of the wake bubble Lw, adimensionalized with respect to the
cylinder diameter D have been measured. The data have been compared with several
numerical experiments carried out by many other authors, see Tables 2.5 and 2.6.
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Figure 2.3: Streamlines of the flow around a circular cylinder at Re = 40. The presence
of the recirculation bubble behind the cylinder is evident.

Good agreement has been found with the values obtained in the majority of the cited
works. However, for what concerns some data, there are significant differences: for
instance, looking at the recirculation bubble length (Table 2.5), Coutanceau & Bouard
(1977) obtained a set of results which do not match perfectly with those computed using

17



Chapter 2. Validation cases

Re = 20 Re = 40

Dennis & Chang (1970) 0.94 2.35
Coutanceau & Bouard (1977) 0.73 1.89
Fornberg (1980) 0.91 2.24
Ye et al (1999) 0.92 2.27
Giannetti & Luchini 0.92 2.24
Lima E Silva et al (2003) 1.05 2.55
Current (M1) 0.90 2.24
Current (M2) 0.89 2.22

Table 2.5: Comparison of the bubble length computed by several authors for two different
Reynolds numbers. M1 and M2 indicate the type of mesh used for the validation.

Re = 10 Re = 20 Re = 40 Re = 50

Dennis & Chang (1970) . . . 2.05 1.52 . . .
Fornberg (1980) . . . 2.00 1.50 . . .
Ye et al (1999) . . . 2.03 1.52 . . .
Giannetti & Luchini (2007) . . . 2.05 1.54 . . .
Lima E Silva et al (2003) 2.80 2.05 1.55 1.50
Current (M1) 2.79 2.02 1.51 1.38
Current (M2) 2.79 2.02 1.51 1.38

Table 2.6: Comparison between the CD for different Reynolds numbers. The symbols
M1 and M2 indicate the type of mesh used for the validation.

18



2.1. Flow around a circular cylinder

meshes M1 and M2, with a deviation from our results of 35%; the difference with data
reported by Lima E Silva et al (2003) is order of 31% with respect to the results acquired
with the two meshes considered. For what concerns the CD coefficient, a slight deviation
can be observed for Re = 50. Lima E Silva et al (2003) obtained a CD = 1.495 which is
11.5% higher than the present one. This is probably due to the fact that, in their work,
Lima E Silva et al used a uniform grid instead of a stretched one, as in the case of M1
and M2, and this could lead to slightly different values if the grid is too coarse in the
proximity of the body.
As a whole, the data extracted from the validation runs seem to match very well the
results obtained by other authors, showing that the code is reliable and robust: in fact,
the two meshes M1 and M2 were chosen to test the sensitivity of CD and Lw

D with respect
to mesh refinement and domain size. In this sense, the tests carried out using different
domains and meshes highlight that the calculations can be considered converged up to
three significant digits.

2.1.2 Eigenvalues and eigenvectors

To validate the computation of the eigenvalues, the results reported by Sipp & Lebedev
(2007) were taken as reference: in their work, they computed a wide portion of the spec-
trum of the base flow for a circular cylinder at Re = 46.6; this value is critical because a
Hopf bifurcation occurs, i.e. a couple of complex-conjugate eigenvalues cross the imag-
inary axis leading to an instability in the flow. In particular, Figure 2.4 shows that a
marginally stable eigenvalue at ω = 0.74 is crossing the imaginary axis.
The validation was performed by comparing only the marginally stable eigenvalue, be-
cause the three branches depicted in the figure are ill-conditioned, thus they depend on
the mesh resolution and on the method used to discretize the problem. This fact does not
invalidate our results since the system dynamics for long times is led by the least stable
eigenvalue, which can be accurately computed. The comparison with the reference results
is reported in Figure 2.4, where the computed eigenvalue is marked with a red diamond
near the imaginary axis, and in Figures 2.5 and 2.6. As can be seen, the comparison is
very good, with an error of 0.89% for the imaginary part. The computation was made
with the mesh M3 which has the same dimensions of the one used in the paper by Sipp
& Lebedev (2007). For sake of completeness, the corresponding direct and adjoint modes
have been reported and, as one may note, they match very well with the ones reported
in [12]. The different values in the colorbars are due to a different scaling used for the
eigenvectors.
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Figure 2.4: Comparison between the two spectrum portions of the baseflow of a circular
cylinder at Re = 46.6. The dashed lines indicate the position of the reference least
stable eigenvalue, denoted by a black triangle in the complex plane, while the red rhombus
represents the eigenvalue computed with mesh M3. The corresponding complex-conjugate
eigenvalue it is not reported here.

Figure 2.5: Direct and adjoint modes computed by Sipp & Lebedev (2007) [12] at Re =
46.6 corresponding to the marginally stable eigenvalue depicted above.
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(a) Direct mode .
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(b) Adjoint mode.

Figure 2.6: Direct and adjoint modes computed using the mesh M3 at Re = 46.6
corresponding to the marginally stable eigenvalue depicted above.
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2.1.3 Structural sensitivity

To test the computation of the structural sensitivity, a comparison with the work per-
formed by Giannetti & Luchini (2007) was attempted. In this case the structural sensi-
tivity for Re = 50 was computed using the mesh M1. The result shows that the reference
and computed sensitivity parameters match almost perfectly: in fact the same isolines
are employed in Figure 2.7 and 2.8 and looking at the colorbar, even the peak behind the
cylinder is very close to the one obtained by Giannetti & Luchini. The little differences
between the two results may be attributed to the different boundary contions used in the
simulation and a different kind of discretization near and behind the cylinder.

Figure 2.7: Structural sensitivity parameter for the flow past a circular cylinder for
Re = 50, Giannetti & Luchini (2007). Only the relevant area of the domain is shown.
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Figure 2.8: Structural sensitivity parameter for the flow past a circular cylinder for
Re = 50 computed using the mesh M1. Only the relevant area of the domain is shown.
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2.1.4 Neutral curves

To validate the neutral-curve-tracking algorithm, the results reported in [8] were taken
as a reference. Figure 2.9 shows the neutral curves for the bi-dimensional flow past a
rotating cylinder varying the two governing parameters, i.e. the Reynolds number and
the adimensional angular velocity, defined as

Re =
UD

ν
and α =

ΩD

2U
, (2.4)

where U represents the free-stream velocity, D is the cylinder diameter, ν denotes the
kinematic viscosity and Ω represents the angular velocity of the cylinder.
Two critical modes are present, and the neutral curve associated with Mode I was con-
sidered for the validation. When the cylinder is still (α = 0) the the critical Reynolds
number is Re = 46.6 and the frequency of the marginally stable mode is Im(σ) ≈ 0.74,
which confirms the results reported in the previous paragraph. When the body starts
rotating, the frequency of the least stable mode increases and the critical value of α
reaches an almost costant value α ≈ 1.9.
The computation was performed using the mesh M4. The blue circles reported in Figure
2.9 represent the computed neutral curve. As one may note, the neutral curve computed
in this work matches almost perfectly the reference one, confirming the accuracy of the
employed code.

Figure 2.9: Neutral curve of the Mode I for a rotating cylinder in the parameter plane
the Reynolds number Re–adimensional angular velocity α. The circles correspond to the
present results computed with mesh M4.
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CHAPTER 3

Results

This chapter is concerned with the results of the global stability analysis for two cylinders
in side-by-side arrangement. This kind of analysis has been performed by several authors
([5], [7], [9]) but in all of the previous studies the considered base flow was symmetric.
The only work in which the asymmetric base flow was analysed, is the Ph. D. thesis by
M. Carini [10]. In his work, the author performed an extensive analysis, drawing all the
neutral curves which delimit the stability and instability areas for both the symmetric
and asymmetric base flows, in the parameter space. His results, which are reported in
Figure 0.2 of the Introduction, are the starting point of this analysis. In fact, some of the
eigenvalues related to the neutral curves, which delimit the region in the parameter space
where the asymmetric base flow is stable, show a dependency on the domain length. In
particular, the one associated with the red continuous neutral curve, which marks the
upper boundary of the blue region. For this reason, the objectives of the present work
are two:

• to establish the minimum length of the computational domain for which the neutral
curves, that delimit the asymptotic stability area of the asymmetric base flow,
can be considered converged. Convergence has been checked with respect to the
least stable eigenvalue computed in the neighbourhood of the neutral curve. The
calculation has been considered converged, and the domain sufficiently long, if the
least stable eigenvalues computed on the grid and on longer grids agreed up to four
significant digits.

• to delimit the stability region of the asymmetric base flow by a sufficiently long
grid.

The chapter begins with a description of the problem geometry and boundary conditions
used for the simulations. In Section 3.2 the asymmetric base flow is described. In Section
3.3 the sensitiviy of the eigenvalues to the domain length is investigated, completed by
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Chapter 3. Results

an analysis of the structural sensitivity of the far-wake mode 5. In section 3.4 the neutral
curves are traced using a suitable domain length and the new stability area is illustrated
in Section 3.5. Finally, Section 3.6 is devoted to a comparison between the linear stability
results and DNS simulations.

3.1 Initial geometry of the problem

y1

y2

x1 x2 x3

x

y

Lx1 = 50D Lx2 = 75D

L
y
=

1
0
0
D

D = 1

g
=

1
.7

ΓoutΓin

Γtop

Γbottom

Re = UD
ν g = L

D

Figure 3.1: Sketch of the initial computational domain; the parameters which govern
the flow pattern are reported in the box.

The initial domain used for the simulations has a length Lx = 125D (where D is the
cylinder diameter) and the two cylinders are placed at a distance 50D from the inlet
boundary. For convenience, all the reported lenght are nondimensionalised by the diam-
eter. The reference system is placed with the x axis coincident with the symmetry axis
and the y axis passing through the cylinder centres. The mesh has been splitted in four
parts in the horizontal direction and in three parts in the vertical direction. Every part
has a different number of points in order to refine the mesh near the two bodies and to
better resolve the flow pattern behind the cylinders. The red lines in Figure 3.1 represent
the boundary of the different regions in which the domain has been divided to build the
mesh. All the data relative to the geometry and the grid are reported in Table 3.1 and
3.2.
It is easy to note that the grid is thickened near the bodies, in both directions: in fact
the grid is denser in the interval [x1, x2] and [y1, y2].
The boundary conditions are the same used in the validation case:
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3.2. Asymmetric base flow

Domain size Lx Ly x−∞ x+∞ y−∞ y+∞

125 100 −50 75 −50 50

Region size [0, x1] [x1, x2] [x2, x3] [0, y1] [y1, y2]

[0, 49] [49, 51] [51, 61] [0, 47.5] [47.5, 52.5]

Table 3.1: Geometric parameters adopted: Lx and Ly are the dimensions of the domain
while x−∞, x+∞, y−∞ and y+∞ are the coordinates of the inner, outer, upper and lower
boundaries according to the reference system represented in Figure 3.1. In the inner data
row, the coordinates of the different intervals are reported. The last part of the domain
in the x and y directions, i.e. [x3, end] an [y2, end], has been omitted.

ne ndof nx1 nx2 nx3 nx4 ny1 ny2 ny3

[430]× [450] 139500 100 100 100 130 100 250 100

Table 3.2: Resolution adopted for the shortest domain: ne indicates the number of grid
points, ndof represents the number of degrees of freedom in the computational domain
and nxi and nyj are the number of points in the x and y directions, respectively, used in
every region.

Γup :

{
v = 0

ω = 0
Γdown :

{
v = 0

ω = 0
Γin :

{
u = U

ω = 0
Γout : −p+

2

Re

∂u

∂x
= 0. (3.1)

As one may note, the vorticity far from the body is set to zero to reduce the confinement
effects. Consequently, the flow on Γin,Γup and Γdown can be considered as a potential
flow.

3.2 Asymmetric base flow

The asymmetric base flow was initially computed at Re = 68 and g = 1.7 in the compu-
tational domain described above. The computation of the asymmetric solution started
using the symmetric base flow and perturbing it with the real part of the eigenvector as-
sociated to µ = 0, being µ the imaginary part of the eigenvalue. The perturbed solution
was then used as initial guess for the Newton iteration, which converged to the asym-
metric steady solution. The streamlines of the asymmetric baseflow and the modulus of
the velocity are reported in Figure 3.2 and 3.3. The considered baseflow is characterised
by two recirculation bubbles of different sizes. Actually, there are two, equivalent, base
flows, each one obtained from the other by a reflection around the symmetry axis. The
two base flows have the same stability properties. They can both be obtained from the
Newton iteration, depending on the initial guess. In the present calculation the smaller
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Chapter 3. Results

recirculation bubble is located behind the upper cylinder while the larger one is located
behind the lower cylinder. The presence of these recirculation bubbles is confirmed by
Figure 3.3: in fact, two low-speed regions, coloured in blue can be observed behind the
cylinders. In these areas the absolute value of the velocity is nearly zero testifying the
presence of two separation regions behind the cylinders. The speed through the gap be-
tween the two bodies is 20% higher than the free stream velocity because of the presence
of the bodies.
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Figure 3.2: Streamlines of the asymmetric base flow around two cylinders in side-by-
side, arrangement, Re = 68 and g = 1.7.
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Figure 3.3: Modulus of the velocity of the asymmetric base flow around two cylinders
in side-by-side arrangement, Re = 68 and g = 1.7.

3.3 Eigenvalue computation

The computation of the eigenvalues was performed using different domain lengths in
the point g = 1.7 and Re = 68 to investigate the behaviour of the mode related to
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3.3. Eigenvalue computation

the neutral curve associated with the far-wake mode 5 with respect to an increase of
the domain length, to obtain a reliable, i.e. converged, neutral curve. In particular, the
presence of a cusp near this point raises doubts about the accuracy of the curve. Starting
from a length Lx = 125, the domain has been stretched by steps of 25 diameters up to
Lx = 400. Then, steps of 50 diameters were used to further increase the domain length
up to the maximum extension Lx = 950.

Figure 3.4: Neutral curves in g−Re plane, for a domain length Lx = 125 as computed
by M. Carini in [10].

Figure 3.5 reports the result of the eigenvalue computation for different extensions: for
clarity, only few domains have been reported. In fact, as one may note, several eigenvalues
have been computed and plotting the results for all the domains considered would have
made the graph completely unintelligible.
The following shifts si were considered in the eigenvalue computation, in order to scan
the spectrum near the imaginary axis and to compute any potential marginally stable
eigenvalue:

s1 = 0.0 + 0.1i, s2 = 0.0 + 0.35i, s3 = 0.0 + 0.6i, s4 = 0.0 + 0.85i. (3.2)

For the shortest domain, there is an unstable eigenvalue located at µ ≈ 0.395 (the
eigenvalue corresponding to the far wake mode 5 in Figure 3.4). The analysis with
extended lengths reveals that the unstable eigenvalue is isolated from a branch which
has been reconstructed only for the longest domain.
Even though the initially unstable eigenvalue remains isolated from the branch, its iden-
tification is not trivial; in fact, when the domain length is increased, both its real and
imaginary part change. For instance, considering the length Lx = 125, this eigenvalue is
λ ≈ 1 · 10−3 + 0.394i while using the longest domain it becomes λ ≈ −4.4 · 10−3 + 0.402i.
Figures 3.7(a), 3.7(b), 3.8(a) and 3.8(b) report the real and imaginary part of the eigen-
value, as a function of the domain length. It can be noted that the imaginary part can
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Figure 3.5: Portion of the spectrum at Re = 68 and g = 1.7 for different domain sizes.
The entire branch has been reconstructed for the longest domain (Lx = 950).

be considered converged up to four digits only for domains with Lx ≥ 550. Interestingly,
the real part of the eigenvalue depends quite strangely on the domain length, because
it tends to oscillate around the value of σ = −4.4·10−3, making its evaluation non-trivial.
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Figure 3.6: Position in the complex plane of the initially unstable eigenvalue (blue dot)
for different domain lengths.

This results are useful to evaluate which is the most appropriate domain length that has
to be used to reconstruct the whole stability area. Unfortunately, different branches of
the neutral curve require different domain sizes. For instance, let us consider the far
wake mode 5, which delimits the upper boundary of the stability area: since the real and
imaginary parts of the corresponding eigenvalue are converged to the fourth decimal digit
for Lx = 550, this length has been identified as the most appropriate one to compute
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3.3. Eigenvalue computation

the neutral curve. A different result has been obtained considering the neutral curve
associated with the Far wake mode 1. In fact, in this case, the length Lx = 550 is not
adequate, since the eigenvalue associated with the corresponding mode has not reached
convergence yet. For this reason, the longest domain has to be used in this case. Figures
3.7(c), 3.7(d), 3.8(c) and 3.8(d) confirm this result, showing the trend of the real and
imaginary part of the eigenvalue related to the far wake mode 1, as a function of the do-
main size, for the parameters g =1.59 and Re = 70. Further results and a more detailed
analysis concerning all the neutral curves delimiting the stability area are presented in
the next section.
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(a) σ = σ(Lx), Re = 68, g = 0.7.
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68, g = 0.7.
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(c) σ = σ(Lx), Re = 70, g = 0.59.
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Figure 3.7: Trend of the real part of two different marginally stable eigenvalues with
respect to the domain length: in subfigures (a) and (b) the eigenvalue related to the
far wake mode 5 is reported. Subfigures (c) and (d) show the trend of the eigenvalue
corresponding to the far wake mode 1.

In order to complete the analysis, the structural sensitivity of the unstable mode for
Lx = 550 has been reported in Figure 3.10: as can be noticed, the core of the instability
is located behind the lower cylinder confirming the results reported by Carini, Giannetti
& Auteri in [10], making this area very sensitive to flow perturbations.

Figures 3.11, 3.12 and 3.13 report the direct and adjoint mode and the structural sensi-
tivity associated with the, initially unstable eigenvalue, for different domain extensions
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Figure 3.8: Trend of the imaginary part of two different marginally stable eigenvalues
with respect to the domain length: in subfigures (a) and (b) the eigenvalue related to the
far wake mode 5 is reported. Subfigures (c) and (d) show the trend of the eigenvalue
corresponding to the far wake mode 1.
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Figure 3.9: Direct mode corresponding to the unstable eigenvalue at Re = 68 and
g = 1.7 for Lx = 550. Only a part of the domain has been reported, because of its large
extension.
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Figure 3.10: Stuctural sensitivity of the unstable eigenvalue at Re = 68 and g = 1.7 for
Lx = 550. Only the relevant portion of the domain is shown.

(Lx = 125, Lx = 550, Lx = 950) respectively. These lengths have been chosen for the
comparison because they have been employed to reconstruct the neutral curves which
delimit the stability area, therefore they are the most representative ones in the present
study.
For the first two lengths, the mode is not completely contained in the domain, since the
oscillations reach the outlet boundary. Only for the longest domain, the mode is able to
fully develop, reaching its maximum in the region between Lx = 300 and Lx = 400, and
then slowly decays. Comparing Figures 3.11(b) and 3.11(c) with Figure 3.9 little changes
can be observed in the mode shape, changes which are due to the frequency drift.
The structural sensitivity for the two lengthened domains, sketched in Figure 3.12, ex-
hibits a behaviour which is quite different to the one shown for the initial domain: in
fact, the core of the instability is not captured on the shortest domain, confirming that
the domain size must be sufficient to contain the region where the structural sensitivity is
high to provide reliable results about the stability of the flow [7]. For this reason, the do-
main extensions from Lx = 550 to Lx = 950 show a good convergence of the least stable
eigenvalue. In addition, the structural sensitivity parameter in Figure 3.12(a) appears to
be less intense with respect to that reported in Figures 3.12(b) and 3.12(c), especially in
the immediate neighbourhood of the two cylinders.
The adjoint mode related to the shortest domain, as depicted in Figure 3.13(a), shows
a wavy pattern, with four peaks attached to the cylinders (they are not visible because
of the large scale used). The intensitiy of these peaks increases as the domain length is
increased.
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(a) Adjoint mode, Lx = 125.
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(b) Adjoint mode, Lx = 550.
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(c) Adjoint mode, Lx = 950.

Figure 3.13: Adjoint mode corresponding to the far wake mode 5 at Re = 68 and g = 1.7
for different domain lengths: Lx = 125 (a), Lx = 550 (b), Lx = 950 (c).
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3.4 Neutral-curve tracking

In this section the neutral curves which delimit the stability area of the asymmetric base
flow, calculated using the lengthened domains, are presented. The neutral curves plotted
in colour are related to the asymmetric base flow, while that plotted in black belong to
the symmetric base flow. Both flows have been considered, in fact the lower boundary of
the stability area is related to a pitchfork bifurcation on the symmetric base flow. The
impact of an increased domain length on these curves has been ascertained as well as it
will be shown in the next paragraphs. Every section is dedicated to the description of a
single neutral curve, integrated with a comparison with the corresponding one calculated
by Carini and depicted in grey. Furthermore, for each neutral curve, the corresponding
direct and adjoint modes and the structural sensitivity are reported in two points along
the curve. In the final section the parameter space with all neutral curves is depicted, to
illustrate how the asymptotic stability area is changed.

3.4.1 Far wake mode 5
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Figure 3.14: Comparison between the neutral curves associated with the Far wake mode
5 computed using two different domain lengths: Lx = 550 (red curve) and Lx = 125 (grey
curve).

The neutral curve far wake mode 5 delimits the upper boundary of the stability region
for the asymmetric base flow. It is associated with a marginally stable eigenvalue whose
imaginary part is in the range 0.344 < µ < 0.552 and it is an almost linear function of the
adimensional gap spacing, as reported in Figure 3.17. This curve has been obtained using
a domain length of Lx = 550, since for this size of the domain the relative eigenvalue can
be considered converged.
The comparison between this curve and that calculated with a domain length of Lx = 125,
shows that its shape is markedly changed for g < 0.9: in fact, the peak in the point
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g ≈ 0.75, Re ≈ 69.1 is present no more, making the upper boundary of the stability area
smooth. In addition, the left part of the curve has the same slope of the old one, but it is
placed on a higher set of Reynolds numbers, extending toward higher Reynolds numbers
the upper boundary of the stability area.
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(a) Direct mode, g = 0.92, Re = 69.2.
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(b) Adjoint mode, g = 0.92, Re = 69.2.
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(c) Structural sensitivity, g = 0.92, Re = 69.2.

Figure 3.15: Direct mode(a), adjoint mode (b) and structural sensitivity (c) related to
the far wake mode 5 in the point g = 0.92, Re = 69.2.

3.4.2 In-phase asymmetric mode

The neutral curve associated with the in-phase asymmetric mode covers the right bound-
ary of the above-mentioned area. The marginally stable eigenvalue which is connected
to this neutral curve has an imaginary part which goes from µ ≈ 0.627 to µ ≈ 0.689,
when the gap is increased from g ≈ 0.51 to g ≈ 1.2. The phase of this eigenvalue shows
an oscillating trend until g ≈ 0.83, then it increases. This curve does not change its
position and shape when a longer domain, Lx = 550 in this case, is employed, as de-
picted in Figure 3.18. Is worth pointing out the fact that, starting from the point at
minimum Reynolds number, Re ≈ 57, only the right part of the curve exists. In fact, the
left branch, is overlapped to the black neutral curve, associated with the in-phase mode
present in the symmetric base flow; this is because the continuation algorithm jumps on
a different branch when they cross, as described in [10].

3.4.3 Asymmetric mode

This curve, as one may note, has been plotted in black. As already said in the first part
of this section, this means that the curve belongs to the symmetric baseflow. It delimits
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(a) Direct mode, g = 0.65, Re = 70.
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(b) Adjoint mode, g = 0.65, Re = 70.
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(c) Structural sensitivity, g = 0.65, Re = 70.

Figure 3.16: Direct mode(a), adjoint mode (b) and structural sensitivity (c) related to
the far wake mode 5 in the point g = 0.65, Re = 70.
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Figure 3.17: Far wake mode 5: µ = µ(g).
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Figure 3.18: Comparison between the neutral curves associated with the In-phase asym-
metric mode computed using two different domain lengths: Lx = 550 (red curve) and
Lx = 125 (grey curve).
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(a) Direct mode, g = 0.77, Re = 59.
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(b) Adjoint mode, g = 0.77, Re = 59.
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(c) Structural sensitivity, g = 0.77, Re = 59.

Figure 3.19: Direct mode(a), adjoint mode (b) and structural sensitivity (c) related to
the In-phase asymmetric mode in the point g = 0.77, Re = 59.
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(a) Direct mode, g = 0.8, Re = 60.75.
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(b) Adjoint mode, g = 0.8, Re = 60.75.
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(c) Structural sensitivity, g = 0.8, Re = 60.75.

Figure 3.20: Direct mode(a), adjoint mode (b) and structural sensitivity (c) related to
the In-phase asymmetric mode in the point g = 0.8, Re = 60.75.
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Figure 3.21: In-phase asymmetric mode: µ = µ(g)
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Figure 3.22: Comparison between the neutral curves associated with the Asymmetric
mode computed using two different domain lengths: Lx = 950 (black curve) and Lx = 125
(grey curve).

the lower part of the stability area and it has been verified only for 0.5 < g < 0.6 using
the longest domain (Lx = 950), in order to locate the exact points of intersection with
the far wake mode 1 and Single Bluff Body mode neutral curves. This curve is different
from the others because it is related to a marginally stable real eigenvalue, since it is
associated with a pitchfork bifurcation. The curve does not change its shape when a
longer domain is used, confirming the accuracy of the results obtained with the shortest
domain. In this case, since the eigenvalue which has been tracked is real, its phase, as a
function of one of the two parameters, has not been reported.

3.4.4 Single Bluff Body mode

As the previous one, the curve associated with the Single Bluff Body mode has been
found by a linear stability analysis on the symmetric base flow. For Re > 35, the black
curve differs from that computed with the smaller domain, characterised by an almost
linear trend with negative slope. For Re < 35 the new curve overlaps with that computed
with Lx = 125. Once again, the curve has been tracked using the longest domain and the
corresponding eigenvalue has an imaginary part which varies from µ = 0.293 to µ = 0.307
showing a nearly linear trend.

3.4.5 Far wake mode 1

The blue neutral curve associated with the far wake mode 1 delimits the left part of the
stability area. The marginally stable eigenvalue which can be found tracking this curve
has a variable frequency close to µ = 0.3 (0.2971 < µ < 0.3556). The curve has been
tracked using the longest domain due to the fact that the marginally stable eigenvalue
associated with this curve is not converged for Lx = 550, as sketched in Figures 3.7 and
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(a) Direct mode, g = 0.56, Re = 55.3.
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(b) Adjoint mode, g = 0.56, Re = 55.3.
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(c) Structural sensitivity, g = 0.56, Re = 55.3.

Figure 3.23: Direct mode(a), adjoint mode (b) and structural sensitivity (c) related to
the Asymmetric mode in the point g = 0.56, Re = 55.3.
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(a) Direct mode, g = 0.67, Re = 55.5.
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(b) Adjoint mode, g = 0.67, Re = 55.5.
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(c) Structural sensitivity, g = 0.67, Re = 55.5.

Figure 3.24: Direct mode(a), adjoint mode (b) and structural sensitivity (c) related to
the Asymmetric mode in the point g = 0.67, Re = 55.5.
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Figure 3.25: Comparison between the neutral curves associated with the Single-Bluff
Body mode computed using two different domain lengths: Lx = 950 (black curve) and
Lx = 125 (grey curve).
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Figure 3.26: Single Bluff Body mode: µ = µ(Re).
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(a) Direct mode, g = 0.56, Re = 44.
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(b) Adjoint mode, g = 0.56, Re = 44.
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(c) Structural sensitivity, g = 0.56, Re = 44.

Figure 3.27: Direct mode(a), adjoint mode (b) and structural sensitivity (c) related to
the Single Bluff Body mode in the point g = 0.56, Re = 44.
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(a) Direct mode, g = 0.55, Re = 52.
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(b) Adjoint mode, g = 0.55, Re = 52.
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(c) Structural sensitivity, g = 0.55, Re = 52.

Figure 3.28: Direct mode(a), adjoint mode (b) and structural sensitivity (c) related to
the Single Bluff Body mode in the point g = 0.55, Re = 52.
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Figure 3.29: Comparison between the neutral curves associated with the far wake mode
1 computed using two different domain lengths: Lx = 950 (blue curve) and Lx = 125
(grey curve).

3.8. These plots also show how a domain length Lx ≥ 900 is required to correctly track
this marginally stable eigenvalue in the parameter space.
With respect to the curve computed on the shorter domain, the new neutral curve is
placed at higher Reynolds numbers. The slope, dRe

dg , is higher and for 57 < Re < 70 it
displays an almost linear trend; for Re > 70, the curve behaviour changes: for Re ≈ 75
the curve has a knee and for higher Reynolds number d2Re

dg2
< 0. This neutral curve is

the most difficult to track from a computational point of view, since the continuation
algorithm converged only for small steps. A continuation step of Re = 0.05 has been
employed to reproduce the portion 70 < Re < 80.
The curve has been continued until its end for low Re and g, where it intersects the
neutral curve of the Single-bluff-body mode.
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(a) Direct mode, g = 0.558, Re = 60.5.
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(b) Adjoint mode, g = 0.558, Re = 60.5.
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Figure 3.30: Direct mode(a), adjoint mode (b) and structural sensitivity (c) related to
the far wake mode 1 in the point g = 0.558, Re = 60.5.
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(a) Direct mode, g = 0.595, Re = 71.5.
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(b) Adjoint mode, g = 0.595, Re = 71.5.
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Figure 3.31: Direct mode(a), adjoint mode (b) and structural sensitivity (c) related to
the far wake mode 1 in the point g = 0.595, Re = 71.5.
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Figure 3.32: Far wake mode 1: µ = µ(Re).

3.4.6 Single-shedding mode
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Figure 3.33: Comparison between the neutral curves associated with the Single-shedding
mode computed using two different domain lengths: Lx = 550 (red curve) and Lx = 125
(grey curve).

The neutral curve associated with the Single-shedding mode does not contribute to define
the boundary of the stability area, for this reason it covers a secondary role in this work.
However, its trend has been accurately tracked to locate any possible point of intersection
with the far wake mode 5, once the domain has been lengthened. It is easy to note how
this curve has not changed its position in the parameter space once the domain length
has been increased and therefore it still intersects the neutral curve associated with the
In-phase asymmetric mode in the same point found using the shorter domain.
The imaginary part of the eigenvalue related to this curve and spans a range of values
from µ = 0.972 to µ = 1.084. The curve has been drawn using a length of Lx = 550.
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(a) Direct mode, g = 0.97, Re = 87.
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(b) Adjoint mode, g = 0.97, Re = 87.
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(c) Structural sensitivity, g = 0.97, Re = 87.

Figure 3.34: Direct mode(a), adjoint mode (b) and structural sensitivity (c) related to
the Single-shedding mode in the point g = 0.97, Re = 87.
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(a) Direct mode, g = 1, Re = 83.
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(b) Adjoint mode, g = 1, Re = 83.
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Figure 3.35: Direct mode(a), adjoint mode (b) and structural sensitivity (c) related to
the Single-shedding mode in the point g = 1, Re = 83.
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Figure 3.36: Single Shedding mode: µ = µ(g).

3.5 Stability area definition

Once all the neutral curves have been tracked, the stability area has been reconstructed.
Figure 3.37 reports an overall view of the neutral curves depicted in the parameter space.
The curves which are related to the symmetric base flow are those calculated by Carini,
with the exception of that associated with the Single Bluff Body mode which has been
re-defined with the lengthened domain. The asymptotic stability area has been marked
in yellow. It is enclosed by the five neutral curves described above, with the exception
of that associated with the Single-shedding mode. The points of intersection between
the different curves are codimension-two bifurcation points, i.e. in these points two in-
dependent eigenvalues simultaneously cross the imaginary axis, leading to an unstable
flow. The local minimum of the In-phase asymmetric mode represents the intersection
of three neutral curves, also this is a codimension-two bifurcation point since one of the
bifurcations concerns the asymmetric baseflow.

In Figure 3.39 the stability area, obtained with a domain length of Lx = 125 and depicted
in green, is compared with that computed in the present work. The new stability area is
more extended. Taking the codimension-two bifurcation point as a reference, it is easy
to observe how the large-gap portion of the stable region in the parameter space does not
change shape using the lengthened domain. In fact, for large gap, the neutral curves over-
lap almost perfectly. However, the left part of the stability region changes significantly:
first of all the cusp in the point g ≈ 0.75, Re = 69.1 is no longer present; furthermore,
the shape of the far wake mode 5 changes extending the stability region towards higher
Reynolds numbers; in addition, the increasing of the slope related to the neutral curve
associated with the Far wake mode 1 has expanded the left boundary towards lower gaps,
while the different path followed by the Single Bluff Body mode has modified the left
lower corner of the area. Moreover, looking at the neutral curve associated with the Far
wake mode 1, the portion of the neutral curve between 70 < Re < 80 corresponds to
the intersection with the continuous neutral curve associated with the Far wake mode
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Figure 3.37: Neutral curves in the parameter space calculated using different domain
sizes. The curves associated with the far wake mode 5, In-phase asymmetric mode and
Single-shedding mode have been tracked using a domain length Lx = 550. The curves
associated with the Single Bluff Body mode and the far wake mode 1 have been calculated
employing a domain size Lx = 950. The remaining neutral curves are those calculated
by Carini using a domain extension equal to Lx = 125. The yellow zone represents the
new stability area of the asymmetric base flow.

Figure 3.38: Neutral curves in the parameter space calculated by M. Carini [10] using a
domain length of Lx = 125. The green zone represents the stability area of the asymmetric
base flow.
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Figure 3.39: Comparison of the stability regions for the asymmetric base flow in the
parameter space traced in the present work with that calculated by M. Carini [10] (green).
The difference is coloured in yellow. The grey neutral curves represent the neutral curves
traced in [10].

1. The explanantion of such a great difficulty in tracking this segment, may be found
looking at the trend of µ with respect to the Reynolds number: in fact the imaginary
parts of the two eigenvaues are very similar to each other. This may be a problem for
the continuation algorithm, that does not recognize the correct neutral curve that must
be tracked. In addition, the nonlinear behaviour of the neutral curve associated with
the Far wake mode 1 in the neighbourhood of that point, could make the neutral curve
tracking more complicated.

3.6 DNS results

The last section of the chapter is concerned with the results obtained by a set of thirteen
DNSs which have been performed to assess the information obtained by the linear stabil-
ity analysis. These simulations have been performed in different points of the parameter
space, placed across the neutral curves which delimit the stability area of the asymmetric
base flow. Figure 3.40 reports the position of the points, with the corresponding values
of Reynolds number and adimensional gap spacing.

The points are organised in pairs: each pair is placed across a specific neutral curve,
in order to check the stability properties of the flow inside and outside of the stability
area. The only point which does not have an equivalent one in the unstable zone, is the
point Re = 62.5, g = 0.7 that has been placed in the central part of the stable zone.
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Figure 3.40: Points in the parameter space in which the different DNSs have been
performed.

Moreover, parameters used for the simulations have not been chosen too close to the
critical values, to avoid excessively long calculations: in fact near the neutral curves, the
growth rate of the unstable mode, quantified by the real part of the eigenvalue of interest,
vanishes as the neutral curve is approached. This means that if the simulation starts
from a slightly perturbed condition, the instability manifests itself after a very long time
requiring significant computational resources. The employed code, can be used with two
different time integration schemes: a Crank-Nicolson/Runge-Kutta scheme and a Crank-
Nicolson/Adam-Bashforth-2 scheme; the latter has been chosen because it assured a
faster execution time notwithstanding the reduced time-step size. Moreover, the first
one would have been too onerous from a computational point of view, since it requires
a larger quantity of RAM. The time step of the simulations has been set to ∆t = 0.005
while the final time has been fixed to T = 500. However, for some simulations, the final
time has been extended up to T = 1000 in order to allow the instability to produce
appreciable effects. The perturbed base flow has been used as initial condition. The
simulations have been performed using two different domain lenghts, using the same size
employed to reconstruct the neutral curves. In particular, DNSs illustrated in Figures
3.49-3.52 have been performed using a domain length of Lx = 950 since they are placed
near the neutral curve associated with the Far-wake mode 1. The other simulations have
been carried out using a domain length Lx = 550. The DNSs confirm the results obtained
by the linear stability analysis.
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67.
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(b) Lower cylinder: Cf = Cf (t), g = 0.7,
Re = 67.
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(c) Flow at t = 500.

Figure 3.41: Aerodynamic coefficients of the upper (a) and lower (b) cylinders as a
function of time at g = 0.7, Re = 67. The subfigure (c) shows the flow at the final time
instant. The base flow is stable.
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(a) Upper cylinder: Cf = Cf (t), g = 0.7, Re =
70.
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(b) Lower cylinder: Cf = Cf (t), g = 0.7,
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(c) Flow at t = 1000.

Figure 3.42: Aerodynamic coefficients of the upper (a) and lower (b) cylinders as a
function of time at g = 0.7, Re = 70. The subfigure (c) shows the flow at the final time
instant. The base flow is unstable.
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(a) Upper cylinder: Cf = Cf (t), g = 0.85,
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Figure 3.43: Aerodynamic coefficients of the upper (a) and lower (b) cylinders as a
function of time at g = 0.85, Re = 67. The subfigure (c) shows the flow at the final time
instant. The base flow is stable.
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Figure 3.44: Aerodynamic coefficients of the upper (a) and lower (b) cylinders as a
function of time at g = 0.85, Re = 70. The subfigure (c) shows the flow at the final time
instant. The base flow is unstable.
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(a) Upper cylinder: Cf = Cf (t), g = 0.85,
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(b) Lower cylinder: Cf = Cf (t), g = 0.85,
Re = 65.
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Figure 3.45: Aerodynamic coefficients of the upper (a) and lower (b) cylinders as a
function of time at g = 0.85, Re = 65. The subfigure (c) shows the flow at the final time
instant. The base flow is stable.
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(a) Upper cylinder: Cf = Cf (t), g = 0.87,
Re = 63.
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Figure 3.46: Aerodynamic coefficients of the upper (a) and lower (b) cylinders as a
function of time at g = 0.87, Re = 63. The subfigure (c) shows the flow at the final time
instant. The base flow is unstable.
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(a) Upper cylinder: Cf = Cf (t), g = 0.78,
Re = 61.
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(b) Lower cylinder: Cf = Cf (t), g = 0.78,
Re = 61.
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Figure 3.47: Aerodynamic coefficients of the upper (a) and lower (b) cylinders as a
function of time at g = 0.78, Re = 61. The subfigure (c) shows the flow at the final time
instant. The base flow is stable.
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(a) Upper cylinder: Cf = Cf (t), g = 0.8, Re =
59.
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Re = 59.
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Figure 3.48: Aerodynamic coefficients of the upper (a) and lower (b) cylinders as a
function of time at g = 0.8, Re = 59. The subfigure (c) shows the flow at the final time
instant. The base flow is unstable.
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(a) Upper cylinder: Cf = Cf (t), g = 0.6, Re =
70.
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(b) Lower cylinder: Cf = Cf (t), g = 0.6,
Re = 70.
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Figure 3.49: Aerodynamic coefficients of the upper (a) and lower (b) cylinders as a
function of time at g = 0.6, Re = 70. The subfigure (c) shows the flow at the final time
instant. The base flow is stable.
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(a) Upper cylinder: Cf = Cf (t), g = 0.58,
Re = 72.

780 800 820 840 860 880 900 920 940

0.434

0.435

0.436

0.437

0.438

0.439

0.44

0.441

0.442

t

Cf

 

 

Cf
x
 on the lower cylinder

(b) Lower cylinder: Cf = Cf (t), g = 0.58,
Re = 72.

0 5 10 15 20 25

−6

−4

−2

0

2

4

6

x

y

 

 

0

0.2

0.4

0.6

0.8

1

1.2

(c) Flow at t = 1000.

Figure 3.50: Aerodynamic coefficients of the upper (a) and lower (b) cylinders as a
function of time at g = 0.58, Re = 72. The subfigure (c) shows the flow at the final time
instant. The base flow is unstable.
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(a) Upper cylinder: Cf = Cf (t), g = 0.59,
Re = 67.
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(b) Lower cylinder: Cf = Cf (t), g = 0.59,
Re = 67.
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Figure 3.51: Aerodynamic coefficients of the upper (a) and lower (b) cylinders as a
function of time at g = 0.59, Re = 67. The subfigure (c) shows the flow at the final time
instant. The base flow is stable.
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(a) Upper cylinder: Cf = Cf (t), g = 0.57,
Re = 68.
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(b) Lower cylinder: Cf = Cf (t), g = 0.57,
Re = 68.
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Figure 3.52: Aerodynamic coefficients of the upper (a) and lower (b) cylinders as a
function of time at g = 0.57, Re = 68. The subfigure (c) shows the flow at the final time
instant. The base flow is unstable.
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(a) Upper cylinder: Cf = Cf (t), g = 0.7, Re =
62.5.
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(b) Lower cylinder: Cf = Cf (t), g = 0.7,
Re = 62.5.
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Figure 3.53: Aerodynamic coefficients of the upper (a) and lower (b) cylinders as a
function of time at g = 0.7, Re = 62.5. The subfigure (c) shows the flow at the final time
instant. The base flow is stable.
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CHAPTER 4

Conclusions and future works

In the present work, the linear stability analysis of the steady asymmetric base flow
around two circular cylinders in side-by-side arrangement has been investigated.
The dynamics of the flow has been numerically studied as a function of the two parameters
that govern the physics of the problem, i.e. the Reynolds numberRe and the adimensional
gap spacing g.
The steady, incompressible Navier–Stokes equations have been used to model the viscous
flow around the two cylinders and have been linearized to perform the linear stability
analysis. An immersed boundary method has been used to discretize the problem, thus
avoiding any change to the mesh when the gap spacing between the cylinders is varied.
The study has been performed using a software package written in the CPL language by
Flavio Giannetti. The code has been carefully validated, by comparison with reference
results about the flow past a cylinder, both still and rotating.
The first part of the analysis has been devoted to identify the minimum domain length
for which the eigenvalues are converged. Meanwhile, the calculation of the structural
sensitivity of the marginally stable mode has been computed in order to locate the most
unstable area within the flow. In the second step of the work, the considered domain
has been used to re-define the neutral curves which delimit the stability area of the
asymmetric base flow, comparing present results with the ones reported by M. Carini in
[10].
The investigation started from the point Re = 68, g = 0.7 in the parameter space to
better understand the behaviour of the marginally stable eigenvalue associated with the
far wake mode 5, which delimits the upper boundary of the stability area. The results
have shown that a domain length Lx = 550 diameters assures a good convergence of the
above-mentioned eigenvalue, up to four significant digits. In contrast, this length is not
adequate to reproduce the neutral curves which define the left boundary of the stability
area, in particular the curves associated with the Far-wake mode 1 and Single-bluff-body
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mode. In this case, a dimension Lx = 950 diameters is required. For what concerns the
structural sensitivity, its maximum, i.e. the "wavemaker", is located behind the lower
cylinder, near the bigger recirculation bubble.
The results found in the second part of the analysis underline that the left part of the
stability area is the most sensitive to the domain length: in fact, the neutral curves
associated with the far wake mode 1 and Single Bluff Body mode change significantly
when the domain is lengthened, extending the stability region toward higher Reynolds
numbers and lower gap spacing. In particular, large changes have been observed in
the neutral curve associated with the far wake 1 mode. This curve has been the most
difficult one to track and a continuation step of 0.05 in Reynolds number has been used to
reproduce the portion in the interval 70 < Re < 80. The right-hend part of the stability
area does not change using extended domains.
For the first time, the sensitivity of the least stable eigenvalues, with respect to the
length of the numerical domain has been investigated. In fact, the least stable eigenvalues
and the associated neutral curves, which delimit the asymptotical stability area in the
parameter space (g,Re), are quite sensitive to the domain size for low gap spacing. The
present investigation allow one to conclude that the stability area calculated by M. Carini
[10] was not accurate, since a too short domain was used.
A set of DNSs has been carried out to validate the results of the stability analysis:
the points in the parameter space for which the simulations have been run are placed
across the neutral curves of interest to check the stability and instability properties
of the flow. The results obtained by the DNSs fully agree with those of the linear
stability study: in fact, after a transient phase, the aerodynamic coefficients for flows
with parameters belonging to the stability area, show a stable behaviour. On the other
hand, the simulations performed outside the stability area, underline an unstable trend
of the aerodynamic forces, which diverge from the equilibrium solution.
Further studies should be completed to fully understand the different mechanisms which
govern the stability of this flow. Possible developments could include:

• a nonlinear analysis of the codimension-two bifurcation points which represent the
corners of the stability area to fully unveil the phase portait of the flow;

• a full redefinition of all the neutral curves in the purple area depicted in Figure 0.2,
using the extended domains.
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APPENDIX A

Estratto in italiano

Introduzione La simulazione di flussi viscosi attorno a corpi tozzi è uno dei problemi
di maggior interesse in ambito scientifico: l’attenzione nasce dal fatto che in questi tipi
di flussi sono presenti molti fenomeni basilari di natura fluidodinamica, come la separa-
zione dello strato limite la formazione di scie instazionarie, la transizione alla turbolenza.
Inoltre, a livello pratico, lo studio dell’aerodinamica di strutture quali piloni di ponti,
grattacieli o scambiatori di calore è molto comune nel campo dell’ingegneria civile ed
energetica e può essere effettuato mediante tecniche numeriche.
In particolare, una configurazione che negli ultimi anni è stata analizzata con interesse è
quella di due cilindri affiancati sotto l’azione di una corrente uniforme, come dimostrano
i molti esempi presenti in letteratura. Uno degli aspetti che caratterizza maggiormente
questa corrente, a bassi numeri di Reynolds, è la presenza di due correnti stazionarie,
una simmetrica e l’altra asimmetrica, con caratteristiche di stabilità e bacini di attrazione
differenti. Per quanto riguarda il flusso base asimmetrico, non tutta la fenomenologia è
stata spiegata e questo lavoro si propone di fare maggior chiarezza su aspetti ancora poco
indagati. In particolare, il presente studio è volto ad analizzare la stabilità del flusso base
asimmetrico, al variare dei due parametri che governano la corrente, ovvero il numero
di Reynolds e la distanza tra i centri dei cilindri. Infatti, alcuni autovalori che delimita-
no la zona di asintotica stabilità del flusso base asimmetrico all’interno dello spazio dei
parametri, sembrano essere sensibili alla lunghezza del dominio, rendendo necessaria la
ridefinizione della suddetta area, calcolata da Carini in [10]. Di conseguenza, gli obiettivi
di questa tesi sono due:

• identificare la lunghezza minima del dominio di calcolo per la quale gli autovalo-
ri relativi alle curve neutre che delimitano il perimetro della zona stabile sono a
convergenza;

• utilizzare quel dominio per ridefinire la zona di asintotica stabilità calcolata in [10];
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Formulazione matematica La corrente attorno ai due cilindri affiancati è stata mo-
dellata utilizzando le equazioni di Navier–Stokes sotto l’ipotesi di flusso incomprimibile
e stazionario. Dal momento che il problema di partenza è non lineare, le equazioni sono
state linearizzate attorno alle diverse posizioni di equilibrio nello spazio dei parametri,
in modo da poter svolgere l’analisi di stabilità lineare nei punti di interesse. Il calcolo
degli autovalori del problema linearizzato è stato effettuato utilizzando l’algoritmo di
Arnoldi implementato nella libreria ARPACK. La necessità di tracciare le curve neutre
nello spazio (Re, g) ha richiesto l’utilizzo di un algoritmo di continuazione che consentisse
il corretto inseguimento delle biforcazioni di Hopf relative a quegli autovalori marginal-
mente stabili che definiscono la zona stabile; l’algoritmo in questione è opportunamente
interfacciato con la libreria open-source LOCA. Infine, a completamento dell’analisi, è
stato effettuato un calcolo della sensitività strutturale con l’obiettivo di individuare la
regione in cui fosse localizzata l’instabilità e quindi dove il flusso fosse maggiormente
sensibile a una perturbazione in retroazione localizzata.
La modellazione numerica del flusso attorno ai due cilindri è stata effettuata attraverso il
metodo dei corpi immersi; questo metodo prevede che la geometria attorno alla quale si
vuole studiare il flusso non sia fisicamente presente all’interno del dominio di calcolo, ma
venga modellata attraverso l’uso di opportune forzanti inserite nelle equazioni di governo.

Validazione Tutti i programmi utilizzati, implementati in linguaggio CPL dal Prof.
Flavio Giannetti dell’Università di Salerno, sono stati opportunamente validati prenden-
do come caso di riferimento la corrente attorno a un cilindro isolato e mettendo a con-
fronto i risultati ottenuti, con quelli disponibili in letteratura. In particolare, per quanto
riguarda il flusso base, sono stati misurati il coefficiente di resistenza e la lunghezza della
bolla di ricircolo presente dietro al cilindro, per diversi numeri di Reynolds. Il calcolo
degli autovalori è stato validato stimando la posizione nel piano complesso dell’autovalore
marginalmente stabile che si incontra a Re ≈ 46.6 e comparandola con i risultati ottenuti
in [12]. La sensitività strutturale è stata invece calcolata a Re = 50, visti i risultati ben
consolidati riportati in [6]. Per quanto riguarda il tracciamento delle curve neutre si è
trattato il caso cilindro isolato posto in rotazione e investito da una corrente uniforme,
riproducendo con successo i risultati ottenuti da Pralits, Brandt e Giannetti in [8]. In
generale tutti i software utilizzati si sono dimostrati affidabili riproducendo con fedeltà i
dati di riferimento.

Flusso attorno a due cilindri affiancati L’analisi di stabilità del flusso base asim-
metrico attorno a due cilindri affiancati è stata svolta in tre passi: prima di tutto si è
cercato di capire per quale lunghezza del dominio di calcolo gli autovalori che delimitano
la zona asintoticamente stabile fossero a convergenza. In particolare ci si è posizionati
nel punto g = 0.7 e Re = 68 per studiare il cambiamento della curva rossa continua
associata ad un autovalore con parte immaginaria µ ≈ 0.40. Le prove sono state svolte
per domini con lunghezze comprese tra Lx = 125 e Lx = 950 con un passo variabile di
25− 50 diametri, utilizzando quattro diversi shift nell’iterazione di Arnoldi per indagare
porzioni di spettro diverse ed essere quindi sicuri dell’assenza di altri autovalori critici
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isolati. Per completezza, nel caso del dominio più lungo, il ramo di autovalori più vicini
all’asse immaginario è stato ricostruito interamente. Come si può notare in Figura A.1,
gli autovalori a frequenza µ ≈ 0.40 arrivano a convergenza già a partire da Lx = 550,
mentre l’autovalore che con il dominio più corto si presentava come instabile, rientra nel-
la zona stabile del piano immaginario, spostando quindi la posizione della relativa curva
neutra.
Tuttavia, non stato possibile tracciare le curve neutre che delimitano la zona stabile nel-
lo spazio dei parametri, utilizzando solamente l’estensione Lx = 550: infatti, per alcune
curve, il relativo autovalore non converge se si utilizza un dominio di tale lunghezza. I
risultati mostrano come, per avere dati affidabili, sia richiesta un’estensione pari almeno
a Lx = 900.
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Figura A.1: Andamento della parte reale di due differenti autovalori marginalmente
stabili rispetto alla lunghezza del dominio: nelle sottofigure (a) e (b) è riportato l’autova-
lore relativo alla curva far wake mode 5. Le sottofigure (c) e (d) mostrano l’andamento
dell’autovalore corrispondente alla curva far wake mode 1.

Una volta verificata la convergenza degli autovalori, è stata ridefinita la zona di asinto-
tica stabilità, ricavando le nuove curve neutre con l’utilizzo dei domini allungati: come
anticipato, sono stati utilizzati domini di estensione diversa. In particolare, per le curve
far wake mode 1, Single Bluff Body mode e Asymmetric mode è stato impiegato il do-
minio piu lungo (Lx = 950) mentre per le altre curve è bastato utilizzare il dominio con
lunghezza Lx = 550 visti gli ottimi risultati a convergenza, in modo da risparmiare sui
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tempi di calcolo.
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Figura A.2: Andamento della parte immaginaria di due differenti autovalori marginal-
mente stabili rispetto alla lunghezza del dominio: nelle sottofigure (a) e (b) è riporta-
to l’autovalore relativo alla curva far wake mode 5. Le sottofigure (c) e (d) mostrano
l’andamento dell’autovalore corrispondente alla curva far wake mode 1.

Globalmente, come si può vedere in Figura A.2, l’area in cui il flusso è asintoticamente
stabile si è modificata soprattutto nella sua parte sinistra, mentre nella zona di destra i
risultati con domini corti erano evidentemente già molto buoni. In particolare, rispetto
al grafico di partenza, la cuspide nella parte superiore dell’area stabile è sparita e la
curva rossa continua si è spostata leggermente più in alto per g < 0.9; anche la curva far
wake mode 1 ha modificato il proprio percorso, aumentando la pendenza e mostrando
un cambio di curvatura in corrispondenza del punto di biforcazione di codimensione due,
dove avviene l’incrocio con la curva rossa. Il tracciamento del tratto di curva far wake
mode 1 compreso tra i punti Re = 70 e Re = 80 ha richiesto particolare attenzione, a
causa del comportamento fortemente non lineare della curva e in relazione al fatto che nel
punto di incontro tra le due curve, i rispettivi autovalori hanno una parte immaginaria
molto simile tra loro, intorno a µ = 0.3. Questa coincidenza manda in crisi l’algoritmo
di continuazione, il quale non riesce più a stabilire quale sia il corretto autovalore da
inseguire e quindi quale sia la giusta curva neutra da tracciare. Infine, anche la curva
Single Bluff Body mode ha modificato il proprio andamento, inclinandosi leggermente
verso sinistra e andando a chiudere l’angolo della zona stabile, nell’intorno del punto
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Re = 56, g = 0.546.

Figura A.3: Sovrapposizione delle due aree stabili del flusso base asimmetrico nello
spazio dei parametri. L’area verde è quella calcolata da Carini, mentre la zona gialla
è stata ricostruita nell’ambito di questo lavoro utilizzando i domini di calcolo allungati.
Le linee grigie rappresentano le vecchie curve neutre che, con l’estendersi del dominio,
sono scomparse o hanno cambiato la loro posizione nello spazio dei parametri. Sono state
riportate per dare una visione d’insieme su come si siano modificati i contorni dell’area
stabile.

La terza ed ultima parte del lavoro è da considerarsi una verifica del lavoro svolto,
attraverso tredici simulazioni dirette, con le quali si è voluto validare i risultati prece-
dentemente ottenuti. Per questo tipo di analisi sono stati scelti i punti nello spazio dei
parametri posti a cavallo delle curve neutre che delimitano l’area stabile. L’algoritmo
utilizzato si basa su uno schema temporale di tipo Crank Nicolson-Adam Bashforth 2
per velocizzare il calcolo delle quantità di interesse ad ogni istante temporale. Questo ha
però richiesto però passi temporali molto piccoli, ∆t = 0.005. Il tempo finale raggiunto è
pari a T = 500. Nonostante ciò, per alcune simulazioni, l’istante finale è stato allungato
a T = 1000 per permettere all’instabilità presente nel flusso di emergere. La condizione
iniziale di ogni DNS è rappresentata dal flusso base nel punto in questione opportuna-
mente perturbato dalla parte reale relativa all’autovalore meno stabile della curva neutra
più vicina. Siccome la curva neutra far wake mode 1 è stata ricavata utilizzando una
lunghezza pari a Lx = 950, le DNS nei punti a cavallo della suddetta curva sono state
effettuate mantenendo inalterata l’estensione del dominio. Per tutti gli altri punti è stata
invece utilizzata una lunghezza Lx = 550.
A fronte della notevole quantità di grafici relativi ai risultati delle simulazioni, si è deciso
di non riportare per la seconda volta i risultati in questo Appendice, rimandando il let-
tore al relativo paragrafo sulle DNS presente nel Capitolo 3. Com’è possibile notare, a
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Appendix A. Estratto in italiano

fronte di una perturbazione sufficientemente piccola del flusso base, dopo un transitorio
abbastanza lungo, nei punti instabili il flusso comincia ad oscillare allontanandosi dalla
condizione iniziale di equilibrio, mentre nelle zone stabili la perturbazione iniziale si at-
tenua e il flusso ritorna nella posizione iniziale.

Figura A.4: Punti nello spazio dei parametri nei quali sono state effettuate le tredici
DNS.
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