Realizzazione e validazione sperimentale di un modello a parametri distribuiti per la simulazione di collettori solari ibridi in regime stazionario e dinamico

Relatore: Prof. Luca MOLINAROLI

Tesi di Laurea di:
Matteo FARINA
Matr. 799636

Anno Accademico 2013 - 2014
Indice Generale

1. Capitolo primo: Background...4
 1.1 Il Sole e le tecnologie di sfruttamento della radiazione solare... 4
 1.2 Sistemi fotovoltaici .. 5
 1.2.1 Principi di funzionamento di un pannello fotovoltaico........6
 1.3 Sistemi solari termici .. 10

2. Capitolo secondo: Sistemi fotovoltaici-termici PVT..12
 2.1 Classificazione in funzione del fluido termo-vettore 14
 2.1.1 PVT raffreddati ad acqua ... 14
 2.1.2 PVT raffreddati ad aria ... 15
 2.1.3 PVT con raffreddamento bi-fluid .. 16
 2.1.4 PVT a fluido refrigerante .. 17
 2.2 PVT a concentrazione .. 17
 2.3 Applicazioni PVT .. 20
 2.3.1 Riscaldamento parziale di acqua calda sanitaria o acqua per riscaldamento ambienti 22
 2.3.2 Evaporatori di pompe di calore a espansione diretta assistite dal sole (PV-SAHP, PhotoVoltaic-Solar Assisted Heat Pump) ... 23
 2.3.3 Riscaldamento aria/acqua come sorgente termica per evaporatore di pompa di calore .. 24
 2.3.4 Sistemi di essiccamiento ... 25
 2.3.5 Applicazioni industriali che richiedono calore a bassa temperatura ... 26
 2.3.6 Macchine ad assorbimento per il condizionamento/riscaldamento di aria ambiente 27
 2.3.7 Trigenerazione ... 28
 2.3.8 PVT-Integrated Heat Pipe ... 29
 2.4 Stato dell’arte-Letteratura di settore ... 29
2.4.1 Modelli analitici ... 30
2.4.2 Modelli numerici ... 36
2.4.3 Lavori sperimentali .. 43
2.4.4 Simulazioni di sistema ... 48

3. **Capitolo terzo: Modelli termici** ... 51

3.1 **Struttura, funzionamento, proprietà termiche e ottiche di un sistema PVT-w sheet-and tube** .. 51

3.2 **Il metodo delle differenza finite** ... 55

3.2.1 Approssimazione di derivate con differenze finite tramite serie di Taylor ... 55

3.2.2 Impostazione di problemi stazionari di conduzione del calore usando il metodo delle differenze finite 59

3.2.3 Esempio e risoluzione di un problema stazionario di conduzione del calore secondo il metodo delle differenze finite ... 63

3.3 **Modello stazionario per l’analisi di un collettore PVT ad acqua sheet-and tube** ... 66

3.3.1 Bilancio Energetico ... 67

3.3.2 Bilancio energetico nella forma delle differenze finite 72

3.3.3 Forma matriciale per la risoluzione del campo di temperature del PVT ... 77

3.3.4 Calcolo della distribuzione di temperatura del fluido termo-vettore ... 79

3.3.5 Procedimento iterativo e schema dell’implementazione in Matlab® ... 81

3.3.6 Bilancio energetico globale e rendimenti 83

3.4 **Modello dinamico per l’analisi di un collettore PVT-w sheet-and tube** ... 86

3.4.1 Formulazione implicita del modello termico dinamico tramite il metodo delle differenze finite 86

3.4.2 Forma matriciale del problema dinamico e iterazioni tempo-dipendenti ... 89

3.4.3 Flussi termici e rendimenti dinamici 91

4. **Capitolo quarto: Validazione sperimentale e risultati** 93
4.1 Apparato sperimentale .. 94
4.2 Raccolta dati meteorologici .. 97
4.3 Risultati del modello stazionario ... 99
 4.3.1 Elaborazione preliminare dati sperimentali di input............ 99
 4.3.2 Analisi dei risultati delle simulazioni 102
 4.3.3 Valutazione accuratezza del modello 106
 4.3.4 Risultati e grafici aggiuntivi .. 111
4.4 Risultati del modello dinamico ... 113
 4.4.1 Elaborazione preliminare dati sperimentali di input........... 113
 4.4.2 Analisi coerenza modello stazionario e dinamico 115
 4.4.3 Analisi delle simulazioni dinamiche e valutazione accuratezza modello... 116
 4.4.4 Considerazioni parte elettrica, risultati e grafici aggiuntivi................................. 124

5. Capitolo quinto: Conclusioni ... 132

APPENDICE A1: Calcolo della temperatura del cielo T_{sky} 134

APPENDICE A2: Calcolo delle resistenze termiche e dei coefficienti di scambio termico convettivi... 135
 A2.1 Resistenze termiche conduttive e convettiva aria ambiente .. 135
 A2.2 Resistenza termica convettiva fluido termo-vettore........... 137
 A2.3 Formalizzazione delle resistenze termiche equivalenti...................... 140

APPENDICE A3: Tabelle elaborazioni dinamiche......................... 141

APPENDICE A4: Confronto produzione elettrica modello dinamico..... 146
Elenco delle Figure

Figura 1.1 reazione di fusione termo-nucleare 4
Figura 1.2 struttura e stratigrafia di un pannello PVT 6
Figura 1.3 schematizzazione e sfruttamento dell’effetto fotovoltaico ... 7
Figura 1.4 rendimenti elettrici di moduli PV in laboratorio 9
Figura 1.5 confronto rendimenti elettrici di moduli PV commerciali e in laboratorio 9
Figura 1.6 esempio di impianto solare termico per acqua calda sanitaria e riscaldamento ambiente 10
Figura 1.7 perdite ottiche e termiche per un pannello solare termico ... 11
Figura 2.1 aspetto esteriore di un PVT commerciale con evidenziata visibilità del tubo a serpentine 12
Figura 2.2 struttura delle quattro tipologie di PVT-w secondo Zondag e altri [5] .. 14
Figura 2.3 struttura delle quattro tipologie di PVT-a 16
Figura 2.4 possibile struttura di un PVT con raffreddamento bi-fluid ... 17
Figura 2.5 classificazione meccanismi di concentrazione per sistemi a riflessione ... 18
Figura 2.6 schema funzionale di un PVT a concentrazione 19
Figura 2.7 sistema per lo studio sperimentale di Chaabane, Charfi, Mhiri e Bournot [10] ... 20
Figura 2.8 sistema di riscaldamento acqua calda con PVT (a) e sistema COMBI per riscaldamento acqua calda sanitaria e ambiente con PVT (b) ... 22
Figura 2.9 schema impiantistico di un impianto PV-SAHP 24
Figura 2.10 Applicazione di un PVT per il riscaldamento del fluido sorgente per l’ evaporatore di una pompa di calore 25
Figura 2.11 applicazione di un PVT integrato ad un sistema di essiccamiento ... 26
Figura 2.12 PVT integrato a macchina ad assorbimento a mezzo effetto ... 27
Figura 2.13 – (a) legame rendimento termico-portata massica per i 4 collettori secondo Hegazy [7] – (b) legame rendimento elettrico-portata massica per i 4 collettori secondo Hegazy [7] - (c) legame
rendimento di I principio-portata massica per i 4 collettori secondo Hegazy [7] .. 33
Figura 2.14 modelli per lo studio analitico di Tonui e Tripanagnostopoulos [29].. 33
Figura 2.15 efficienze e potenza elettrica in uscita al variare della portata massica specifica secondo Tonui e Tripanagnostopoulos [29].. 35
Figura 2.16 dipendenza del rendimento elettrico dalla temperatura dei moduli PV secondo Tonui e Tripanagnostopoulos [29]..... 35
Figura 2.17 stratigrafia e flussi termici nel modello di Zondag e altri [2] .. 36
Figura 2.18 confronto efficienza termica di varie tipologie di PVT secondo Zondag e altri [2] .. 37
Figura 2.19 confronto efficienza elettrica di varie tipologie di PVT secondo Zondag e altri [2] .. 38
Figura 2.20 (a) rendimento termico di collettori PVT al variare di portata massica specifica e reciproco della resistenza conduttiva dello strato di adesivo (h) secondo Boubekri e altri [33] – (b) intensità di corrente elettrica e potenza elettrica prodotta al variare dell’angolo di inclinazione e differenza di potenziale del collettore secondo Boubekri e altri [33]– (c) intensità di corrente elettrica e potenza elettrica prodotta al variare della portata massica circolante nel serpentino e differenza di potenziale secondo Boubekri e altri [33]............................... 41
Figura 2.21 distribuzione di temperatura [°C] del fluido termo-vettore per un PVT a concentrazione con una portata volumetrica circolante di 3(a), 7(b) e 5(c) dm³/min secondo lo studio di Hussain e Lee [34] ... 42
Figura 2.22 rendimenti e potenza elettrica uscente per un PVT a concentrazione secondo Hussain e Lee [34]................................. 42
Figura 2.23 struttura e posizionamento dei PVT-a analizzati da Tripanagnostopoulos e altri [23]... 44
Figura 2.24 a-b: rendimento termico di PVT raffreddati ad aria e ad acqua, con e senza copertura in vetro (GL) e con e senza riflettori diffusi (REF) secondo Tripanagnostopoulos e altri [23]........ 45
Figura 2.25 a-b: configurazioni e profili di temperatura per PVT glass-to-tedlar e glass-to-glass proposti da Yoshi e altri [40]....... 47
Figura 3.1 rappresentazione schematica collettore PVT ad acqua sheet-and tube... 52
Figura 3.2 stratigrafia PVT-w sheet-and tube analizzato nel modello e definizione dello spessore equivalente 53
Figura 3.3 trasmissività del vetro di copertura al variare della lunghezza d’onda della radiazione luminosa e della percentuale di ossido di ferro contenuta ... 54
Figura 3.4 notazione utilizzata per una rappresentazione come serie di Taylor ... 56
Figura 3.5 notazione utilizzata per una rappresentazione con differenze finite di una serie di Taylor 57
Figura 3.6 definizione della griglia e nomenclatura dei nodi per una superficie in analisi ... 60
Figura 3.7 a-b: posizionamento di nodi soggetti a condizioni al contorno convettive con introduzione e nomenclatura dei nodi immaginari ad essi relativi .. 61
Figura 3.8 griglia di riferimento a maglie quadrate usata per l’analisi dell’esempio .. 64
Figura 3.9 schematizzazione dei flussi termici che interessano il PVT .. 67
Figura 3.10 griglia di nodi e loro nomenclatura per la soluzione in analisi 68
Figura 3.11 bilancio energetico per il singolo volumetto di controllo per nodi non adiacenti al tubo .. 69
Figura 3.12 bilancio energetico per il singolo volumetto di controllo per nodi adiacenti al tubo .. 71
Figura 3.13 posizionamenti dei nodi non nulli della griglia relativa al fluido 73
Figura 3.14 grafico ottenuto come output della funzione Matlab® spy(C) 77
Figura 3.15 grafico ottenuto come output della funzione Matlab® spy(C_RAD) .. 78
Figura 3.16 schema matriciale per l’analisi della temperatura del collettore ... 79
Figura 4.1 coppia di PVT-a sheet-and tube denominati “tegole fotovoltaiche” ... 93
Figura 4.2 – (a) sezione del collettore PVT nel piano x-z (quote in mm) – (b) sezione del collettore PVT nel piano x-y (quote in mm) .. 94
Figura 4.3: tegole PVT installate su un edificio 95
Figura 4.4: schema impiantistico complessivo. A e B sono le due tegole in analisi ... 96
Figura 4.5 – (a) centralina per la raccolta dei dati meteo – (b) radiometro globale, parte per la raccolta della radiazione diffusa ... 98

Figura 4.6 – (a) screenshot del programma di simulazione riportante i parametri impiantistici di input per il metodo numerico (parte1) – (b) screenshot del programma di simulazione riportante i parametri impiantistici di input per il metodo numerico (parte2) .. 101

Figura 4.7: scatter plot per analisi accuratezza modello per il giorno 4 agosto .. 107

Figura 4.8: scatter plot per analisi accuratezza modello per il giorno 5 agosto .. 108

Figura 4.9: scatter plot per analisi accuratezza modello per il giorno 2 settembre .. 108

Figura 4.10: screenshot output Matlab® per il periodo 8 del 5 agosto 2014 ... 111

Figura 4.11: distribuzione di temperatura (3D) del materiale equivalente simulata per il periodo numero 8 del 5 agosto 2014 ... 112

Figura 4.12: distribuzione di temperatura (2D) del materiale equivalente simulata per il periodo numero 8 del 5 agosto 2014 ... 113

Figura 4.13: screenshot dei dati in ingresso aggiuntivi per il programma dinamico rispetto a quello stazionario 115

Figura 4.14: confronto fra gli screenshot degli output del programma stazionario e dinamico(ultimo intervallo simulato) per condizioni stazionarie ... 116

Figura 4.15: temperatura di uscita del fluido termo-vettore per un transitorio di tipo 1 analizzato dalle 12:20 alle 12:55 del giorno 3 marzo 2015 .. 118

Figura 4.16: temperatura di uscita del fluido termo-vettore per un transitorio di tipo 2 analizzato dalle 12:53 alle 13:34 del giorno 5 marzo 2015 .. 119

Figura 4.17: temperatura di uscita del fluido termo-vettore per un transitorio di tipo 3 analizzato dalle 13.19 alle 14:02 del giorno 6 marzo 2015 .. 119

Figura 4.18: temperatura di uscita del fluido termo-vettore per un transitorio di tipo 4 analizzato dalle 14.02 alle 14:38 del giorno 6 marzo 2015 .. 120
Elenco delle Tabelle

Tabella 2.1: pregi di diverse tipologie di PVT (pag.21)

Tabella 2.2: possibili applicazioni di diverse tipologie di PVT (pag.21)

Tabella 2.3: rendimenti di PVT ad aria a singolo e doppio passaggio (pag. 31)

Tabella 2.4: efficienze a temperatura ambiente e medie annuali di diverse tipologie di PVT (pag. 38)

Tabella 3.1: dati termici e geometrici riferiti ai materiali del PVT analizzato (pag.53)

Tabella 4.1: caratteristiche degli strumenti di misura dei dati di funzionamento dell'impianto (pag.97)

Tabella 4.2: caratteristiche degli strumenti di misura dei dati meteo (pag.99)

Tabella 4.3: dati input e risultati delle prove stazionarie del 4 agosto 2014 (pag.104)

Tabella 4.4: dati input e risultati delle prove stazionarie del 5 agosto 2014 (pag.104)

Tabella 4.5: dati input e risultati delle prove stazionarie del 2 settembre 2014 (pag.105)

Tabella 4.6: dati input utilizzati per il confronto fra i due modelli (pag.116)

Tabella A3.1: dati elaborati per il transitorio di tipo 1 del 3 marzo 2015 (pag.141)

Tabella A3.2: dati elaborati per il transitorio di tipo 2 del 5 marzo 2015 (pag.142)

Tabella A3.3: dati elaborati per il transitorio di tipo 3 del 6 marzo 2015 (pag.143)
Tabella A3.4: dati elaborati per il transitorio di tipo 4 del 6 marzo 2015 (pag.144)

Tabella A4.1: dati per confronto potenza elettrica per il transitorio di tipo 1 del 3 marzo 2015 (pag. 146)
Sommario

Il lavoro di tesi descrive l’elaborazione di due modelli a parametri distribuiti, stazionario e dinamico, per la simulazione delle prestazioni termiche ed elettriche di collettori solari fotovoltaici-termici, brevemente presentati anche tramite gli studi precedenti e le possibili applicazioni. La base del metodo proposto è la formulazione secondo un approccio alle differenze finite dei bilanci energetici associati ai singoli volumi di controllo analizzati. I modelli sono stati validati da specifiche prove sperimentali, che ne confermano l’accuratezza. La tecnologia studiata rivela la sua forza nell’uso sapiente della radiazione solare, che conduce a rendimenti di primo principio elevati. Si conferma, quindi, in prospettiva, come valida soluzione per la produzione cogenerativa di energia da fonte rinnovabile.

Parole chiave: collettori fotovoltaici-termici, energia solare, differenze finite, modello stazionario e dinamico, bilancio energetico, validazione sperimentale.

Abstract

The thesis describes the development of two distributed-parameter models, stationary and dynamic, for the simulation of the thermal and electrical performance of solar photovoltaic-thermal collectors, which are also briefly presented through a review of previous studies and possible applications. The basis of the proposed method is the formulation, using a finite difference approach, of energy balances applied to each of the analyzed control volumes. The models were validated by specific experimental tests that confirm their accuracy. The technology analyzed reveals its strength in the smart use of solar radiation, which leads to high first law efficiencies. The system confirms itself as a viable solution for the production of hybrid energy from a renewable source.

Keywords: photovoltaic-thermal collectors, solar energy, finite differences, stationary and dynamic model, energy balance, experimental validation.
Introduzione

L’analisi dell’attuale scenario energetico mondiale porta a mettere in relazione la crescita della domanda di energia con un gran numero di problemi inevitabilmente ad essa correlati. L’utilizzo massivo delle risorse fossili non rinnovabili, ancora oggi protagoniste dello scenario produttivo in analisi, ha causato e continuerà a causare problemi di ordine non solo ambientale, ma anche tecnico-economico e geo-politico. I contratti per le forniture di fonti di energia primaria o elettrica muovono costantemente ingenti quantitativi di denaro e sono in grado di mutare sensibilmente gli equilibri politici internazionali. Lo sviluppo di tecnologie di produzione efficienti e la progressiva espansione del mercato delle rinnovabili si pongono, in direzioni diverse, come possibile soluzione, almeno parziale, di alcuni di questi problemi. Gli obiettivi posti sono molteplici: riduzione dell’inquinamento globale e locale, diversificazione degli approvvigionamenti, riduzione del surriscaldamento globale, indipendenza energetica dei paesi poveri di risorse fossili, sostenibilità economica-ecologica a lungo termine.

Lo sviluppo delle fonti rinnovabili si inserisce, come detto, con gran forza in questo scenario di riferimento. In particolare si analizzerà la risorsa Sole, che, madre di quasi tutte le fonti energetiche, rinnovabili e non, è anche, però, sfruttabile direttamente in modi differenti.

Il presente lavoro di tesi si focalizzerà sulla possibilità di ricavare dall’energia solare, disponibile gratuitamente e abbondantemente sul nostro pianeta, sia energia elettrica che termica. Saranno analizzate nel dettaglio le prestazioni di collettori solari fotovoltaici-termici, una tecnologia altamente innovativa che si sta iniziando a diffondere negli ultimissimi anni. L’idea che sta alla base del sistema concerne la possibilità di raffreddare un tradizionale collettore fotovoltaico con un fluido termo-vettore, in modo da incrementarne l’efficienza e ricavare, tramite lo stesso fluido, calore utile. La giovane vita di tale tecnologia riserva per il futuro enormi potenzialità di sviluppo e miglioramento delle prestazioni.

Il presente lavoro si pone come obiettivo la realizzazione di un modello numerico che possa descrivere in modo dettagliato le prestazioni del suddetto sistema, sia per quanto riguarda il funzionamento in condizioni stazionarie che dinamiche. L’intrinseca instazionarietà della radiazione solare utilizzabile, dovuta alle condizioni meteorologiche e di irraggiamento continuamente mutevoli, evidenzia l’importanza di un modello dinamico che sia in grado di simulare il comportamento dei
collettori con condizioni al contorno variabili nel tempo. A differenza di quanto solitamente avviene, tale lavoro comprende anche una validazione sperimentale, eseguita non solo analizzando uno storico di misurazioni effettuate, ma svolgendo anche delle prove dinamiche appositamente studiate proprio per validare il modello numerico proposto.
Il testo è articolato in diversi capitoli:

- **Capitolo 1**: si descrivono i meccanismi tradizionali di produzione di energia, termica ed elettrica, utilizzando la radiazione solare. I principali argomenti trattati sono, quindi, il sole e la fusione termonucleare, i collettori e l’effetto fotovoltaico, i collettori solari termici.
- **Capitolo 2**: è presentata la tecnologia dei collettori fotovoltaici- termici. In seguito alla classificazione della varie tipologie esistenti viene riportata una descrizione delle possibili applicazioni per le quali può essere utilizzato un collettore solare ibrido. Successivamente sono brevemente illustrati gli studi precedenti raccolti dalla letteratura di settore.
- **Capitolo 3**: sono descritti i modelli termici, stazionario e dinamico, sviluppati nel presente lavoro di tesi. In seguito ad un approfondimento sulla specifica tipologia di collettore analizzata e sulla sua modellazione, viene presentato nel dettaglio il metodo delle differenze finite e la sua applicazione per il caso trattato. Partendo dal bilancio energetico su volumi di controllo finiti, il metodo permette di calcolare la distribuzione di temperatura del pannello, dalla quale sono poi ricavabili tutte le grandezze prestazionali di interesse.
- **Capitolo 4**: sono presentati i risultati delle simulazioni eseguite utilizzando il metodo descritto nel capitolo precedente, comparati con i corrispondenti dati forniti dalle prove sperimentali. Dopo una dettagliata descrizione dell’apparato sperimentale a disposizione e dei parametri meteorologici e impiantistici analizzati, viene svolto il suddetto confronto e quindi verificata l’accuratezza del modello.
- **Capitolo 5**: sono esposte le conclusioni del lavoro di tesi.
1. Capitolo primo
Background

1.1 Il Sole e le tecnologie di sfruttamento della radiazione solare

Il Sole produce un’immensa quantità di energia tramite la reazione di fusione termo-nucleare che avviene all’interno del suo nucleo. Nella reazione di fusione, nuclei di elementi leggeri, quali l'idrogeno, a temperature e pressioni elevate fondono formando nuclei di elementi più pesanti come l'elio. La reazione più frequente all'interno di una stella è quella che avviene tra un nucleo di deuterio e un nucleo di trizio, reazione in cui si genera un nucleo di elio (particella alfa) e un neutrone (Fig.1.1). In questa reazione la massa complessiva dei prodotti è inferiore a quella delle particelle interagenti e si verifica liberazione di energia secondo il principio di equivalenza massa-energia \([w-1]\).

Figura 1.1 reazione di fusione termo-nucleare

In conseguenza di tale processo, il nucleo del Sole raggiunge temperature di circa 20 000 000 K. Il raffreddamento operato dallo spazio circostante porta, invece, la superficie, ad una temperatura nell’ordine dei 6000 K. Ai fini della presente analisi è possibile approssimare il Sole come un corpo nero di tale temperatura. La densità di potenza solare misurata al di fuori dell’atmosfera terrestre risulta essere di 1367 W/m². Moltiplicata per la superficie trasversale della terra, equivale a 175 \(\times 10^{15} \) W. La radiazione che perviene alla superficie terrestre risulta modificata sia nella distribuzione spettrale che nel valore dell’irradianza totale a causa di due fenomeni:
• dispersione (scattering molecolare e particellare), di cui sono responsabili aria, acqua e pulviscolo atmosferico

• assorbimento, operato principalmente da \(\text{O}_3 \), \(\text{H}_2\text{O} \) e \(\text{CO}_2 \)

A causa di ciò la potenza che investe la superficie terrestre risulta essere considerevolmente ridotta rispetto a quella misurata all’esterno dell’atmosfera.

Le tecnologie attualmente commercializzate allo scopo di sfruttare la radiazione pervenuta si dividono in due macro-categorie: sistemi termici che convertono l’energia solare in energia interna e sistemi fotovoltaici (PV) che invece la convertono in energia elettrica. Una terza sotto-categoria, con caratteristiche differenti e di difficile collocazione, è quella dei sistemi solari termodinamici. Essi provvedono, solitamente con l’ausilio di concentratori della radiazione, al riscaldamento di un fluido termo-vettore, utilizzato successivamente in un tradizionale ciclo Rankine per la produzione di energia elettrica. Non essendo direttamente connessi alla tecnologia in analisi, non ne verrà approfondito il funzionamento nel presente lavoro di tesi.

La tecnologia qui esaminata, invece, si propone di conciliare le macro-categorie citate, utilizzando la risorsa Sole, per produrre allo stesso tempo energia termica ed elettrica tramite sistemi che sono stati definiti fotovoltaici-termici.

1.2 Sistemi fotovoltaici

Il modulo fotovoltaico (Fig. 1.2) è costituito da celle in silicio o altri semiconduttori, incapsulate tra una superficie posteriore di supporto realizzata in materiale isolante con scarsa dilatazione termica, come vetro temperato o tedlar, e una anteriore trasparente, solitamente in vetro temperato ad alta resistenza meccanica. Al di sopra della lastra di supporto vengono appoggiati un sottile strato di acetato di vinile (spesso indicato con la sigla EVA), la matrice di celle in silicio pre-connesse elettricamente e un secondo strato di acetato. Alla temperatura di circa 100°C, alla quale i componenti si sigillano tra loro, l’EVA passa da traslucido a trasparente e si elimina l’aria residua interna, che potrebbe provocare corrosione a causa del vapor acqueo presente. In seguito le terminazioni elettriche che connettono le celle vengono chiuse in una morsettiera stagna, generalmente fissata alla superficie di sostegno posteriore, e il sandwich ottenuto viene fissato ad un telaio in alluminio.
Capitolo primo: Background

Prima di tale assemblaggio, per diminuire le perdite per riflessione, si sottopone la superficie della cella ad un trattamento chimico che le conferisce una struttura a piramidi, le quali intrappolano in maniera più efficiente la radiazione. Dopo questi trattamenti la cella assume il caratteristico colore blu scuro o nero ed è capace di convertire la radiazione solare incidente in energia elettrica.

1.2.1 Principi di funzionamento di un pannello fotovoltaico

Le osservazioni di Alexandre Edmond Becquerel e successivamente di Willoughby Smith, Heinrich Hertz e Albert Einstein, hanno portato, a partire dal XIX secolo [w-2], alla scoperta di come un materiale, sottoposto a radiazione elettromagnetica, possa liberare elettroni (effetto fotoelettrico). Il principio che sta alla base del funzionamento delle celle fotovoltaiche, appunto definito effetto fotovoltaico, è in sostanza un effetto fotoelettrico interno, nel quale gli elettroni liberati rimangono all’interno del materiale e si rendono disponibili alla conduzione elettrica.

La cella fotovoltaica è il dispositivo che permette tale processo, che porta alla trasformazione dell’energia solare in energia elettrica.

Ai fini del funzionamento, non tutto lo spettro elettromagnetico della radiazione solare è utilizzabile: soltanto i fotoni con energia sufficiente possono partecipare al processo di conversione; quelli con lunghezze d’onda troppo elevate, e quindi con minor energia rispetto al range...
utilizzabile, attraversano il materiale costituente le celle senza provocare il distacco degli elettroni.

La lunghezza d'onda limite dipende dal materiale semiconduttore di cui è fatta la cella: per il silicio, che è quello più utilizzato, tutta la radiazione solare con $\lambda > 1,1 \, \mu m$ risulta inutilizzata ai fini della conversione fotovoltaica e si trasforma invece in energia termica. Anche i fotoni con troppa energia ($\lambda < 1,1 \mu m$) vengono utilizzati solo parzialmente: in tal caso il fotone viene assorbito, ma la frazione di energia in eccesso rispetto al valore necessario per l'innesco del processo, viene convertita in energia interna aumentando la temperatura della cella. Quando un fotone risulta dotato di sufficiente energia esso viene assorbito nella cella. Ne consegue che un elettrone, carico negativamente, colma l'energy gap che lo porta a passare dalla banda di valenza a quella di conduzione e si separa dalla sua sede iniziale, conferendole carica positiva. Per generare effettivamente la corrente elettrica è però necessaria una differenza di potenziale che faccia muovere tali cariche; essa viene creata grazie all'introduzione di piccole quantità di impurità nel materiale delle celle; tali impurità, dette droganti, sono in grado di modificare profondamente le proprietà elettriche del semiconduttore. Introducendo fosforo, si ha la formazione di silicio di tipo n, mentre usando impurità come il boro si ha la formazione di silicio di tipo p. Nel primo caso si ha la formazione di un materiale con una densità di elettroni liberi (cariche negative) più alta di quella presente nel silicio normale; nel secondo invece viene percepita la mancanza di un elettrone (quindi una carica positiva).

![Figura 1.3 schematizzazione e sfruttamento dell'effetto fotovoltaico](image)

Nella zona di contatto tra i due tipi di silicio, detta giunzione p-n (Fig. 1.3), si ha la formazione di un forte campo elettrico, capace di muovere gli
elettroni separati dal fotone incidente in prossimità della giunzione. In questo modo le cariche vengono indirizzate e, collegando questo dispositivo ad un circuito esterno, si potrà avere una circolazione di corrente elettrica: tanto maggiore è la radiazione solare incidente, tanto maggiore è la potenza generata.

L'efficienza di una cella fotovoltaica risulta dal rapporto tra la potenza massima erogata e quella della radiazione incidente sulla sua superficie. Tale valore dipende, oltre che dal materiale e dal tipo di connessioni con cui è fatta la cella, anche dalla temperatura della stessa. Un aumento della temperatura provoca, infatti, la crescita delle perdite ohmiche (associate all'effetto Joule dovuto al passaggio delle cariche nei materiali) e di ricombinazione (neutralizzazione delle lacune senza circolazione della carica nel circuito).

Il rendimento elettrico della cella viene generalmente espresso dalla relazione proposta da Evans[1]:

$$\eta_{el} = \eta_r [1 - \beta (T_c - T_r) + \gamma \log G]$$

(1.1)

Dove: T_c rappresenta la temperatura della cella, η_r rappresenta il suo rendimento elettrico alla temperatura di riferimento $T_r=25^\circ C$ (con un irraggiamento G pari a 1000 W/m2), mentre β e γ, che rappresentano rispettivamente il coefficiente di temperatura e di radiazione solare, sono forniti dal costruttore e variano in funzione del tipo di celle. Il termine in γ viene generalmente considerato nullo, linearizzando così l'equazione 1.1:

$$\eta_{el} = \eta_r [1 - \beta (T_c - T_r)]$$

(1.2)

Tanto più alta è la temperatura della cella, quindi, tanto minore sarà il rendimento elettrico. Il pannello lavora peggio, quindi, proprio quando l'irraggiamento è abbondante. Inoltre le elevate temperature provocano un più veloce deterioramento dei materiali.

I valori di rendimento sono molto sensibili alle tipologie di materiali utilizzati.

1. Celle di prima generazione: silicio mono-cristallino, multi-cristallino, a nastro
2. Celle di seconda generazione: Silicio amorfo o micro-cristallino, film sottili calcogenuri, CdTe, GaAs
3. Celle di terza generazione: composti organici o ibridi, tandem di semiconduttori, dye-sensitized solar cells (celle Graetzel), nanotecnologie
I rendimenti netti di modulo sono, per prodotti assemblati e a livello commerciale, sensibilmente inferiori rispetto a quelli osservati in laboratorio (Fig. 1.4 e 1.5).
1.3 Sistemi solari termici

I sistemi solari termici hanno lo scopo di sfruttare la radiazione solare incidente per il riscaldamento di acqua calda sanitaria o di un fluido termo-vettore il quale avrà il compito di scaldare un edificio tramite radiatori o pannelli radianti.

Il funzionamento del collettore solare avviene nel seguente modo. Una piastra assorbente di materiale selettivo capta l’energia solare. Un fluido termo-vettore scorre in un serpentino o in canali per contatto con essa e raccoglie il calore assorbito dalla piastra. Una o più coperture trasparenti sono aggiunte per limitare le dispersioni termiche per convezione naturale e del materiale isolante riduce sul retro la trasmissione del calore per conduzione. Il telaio ha la funzione di sostenimento dell’intera struttura. La circolazione del fluido termo-vettore può avvenire in modo naturale, sfruttando i gradienti di densità causati dalle diverse temperature, o tramite una o più pompe che consumano energia elettrica. Uno schema impiantistico esemplificativo è riportato in figura 1.6.

Figura 1.6 esempio di impianto solare termico per acqua calda sanitaria e riscaldamento ambiente

Perdite per irraggiamento, convezione e conduzione (perdite termiche) ma anche per riflessione e non perfetta trasmissione del vetro e assorbimento della piastra (perdite ottiche), rendono la radiazione incidente non completamente sfruttabile come effetto utile (Fig. 1.7). L’efficienza del pannello è dettata dal rapporto fra il calore netto estraeibile dal fluido e
l’irradianza incidente. Per il riscaldamento di acqua calda sanitaria o ambiente si hanno tipicamente valori attorno al 50-60%.

Figura 1.7 perdite ottiche e termiche per un pannello solare termico
2. Capitolo secondo
Sistemi fotovoltaici-termici PVT

I pannelli fotovoltaici-termici (definiti altrimenti come termo-fotovoltaici o ibridi, e spesso indicati con l’acronimo PVT dall’inglese PhotoVoltaic Thermal collector) sono sistemi ibridi in grado di utilizzare la radiazione solare incidente per la produzione contemporanea di energia elettrica e calore. In particolare:

- i componenti fotovoltaici producono corrente elettrica come nella tecnologia di riferimento tradizionale ma, essendo raffreddati da un sistema di tubazioni o serpentino, eseguono la loro funzione in modo più efficiente
- il fluido termo-vettore che esegue tale raffreddamento si scalda e può essere utilizzato come fonte di calore a bassa temperatura per applicazioni differenti, evitando così una dissipazione senza effetto utile

Un pannello solare tradizionale assorbe un ampio spettro di radiazione che però viene convertita in maniera efficiente solo per determinate lunghezze d’onda. Il sistema PVT (Fig. 2.1) permette di sfruttare al meglio le lunghezze d’onda che sono più difficilmente convertite. Sostanzialmente tale tecnologia si configura quindi come l’integrazione delle due tecnologie precedentemente esaminate: pannello fotovoltaico e solare termico.

Figura 2.1 aspetto esteriore di un PVT commerciale con evidenziata visibilità del tubo a serpentino
Capitolo secondo: Sistemi fotovoltaici-termici PVT

Come riportato da Zondag e altri [2], il rendimento termico di un PVT è minore di quello di un collettore termico sotto le stesse condizioni, ma dal loro studio emerge anche che due PVT producono più energia per unità di superficie rispetto a un pannello fotovoltaico e un collettore termico posti uno accanto all’altro.
Questo è sicuramente un pregio laddove la disponibilità di superficie sia limitata.
Anche dal punto di vista estetico i PVT risultano preferibili rispetto all’installazione di moduli PV e collettori solari termici separati, grazie all’uniformità visiva che danno. Ciò può risultare decisivo nelle installazioni in cui l’aspetto estetico-architettonico è importante. La soluzione integrata ha potenzialmente un costo di installazione inferiore insieme ad un utilizzo più razionale dei materiali costruttivi.
La tecnologia consente di ottimizzare il funzionamento a seconda della località e delle esigenze particolari, privilegiando la produzione di energia elettrica oppure di energia termica. Nel primo caso, si mantiene la temperatura delle celle il più bassa possibile al fine di ottimizzarne il rendimento di conversione fotovoltaica, avendo per contro una temperatura del liquido refrigerante ancora più bassa e quindi limitando le potenzialità di riscaldamento. Nel secondo caso, viene privilegiata l’efficienza termica dell’impianto e si punta ad ottenere fluido refrigerante ad elevata temperatura in uscita dal collettore; per contro le celle fotovoltaiche operano in condizioni non ottimali e l’efficienza elettrica è penalizzata [w-3].
In prospettiva si pensa che, in futuro, tale tecnologia possa raggiungere un rendimento di primo principio attorno all’85% [w-4].

Sono possibili diverse classificazioni dei PVT. Si possono suddividere in funzione: [3]
- del fluido termo-vettore (aria, acqua, fluido refrigerante, bi-fluid)
- del tipo di materiale utilizzato per il modulo fotovoltaico (vedi par.1.2.1)
- della modalità con cui viene ricevuta la radiazione solare (collettori a concentrazione o piani)
- della presenza della copertura vetrata o meno (le coperture vetrate riducono le dispersioni termiche e quindi l’efficienza elettrica, oltre ad aumentare le perdite ottiche)
- della modalità di circolazione del fluido termo-vettore (naturale o forzata)
- dell’ubicazione (integrato nell’edificio, a tetto, a terra)
Nel seguito verranno descritte le categorie più comuni di PVT secondo la prima tipologia di classificazione.
2.1 Classificazione in funzione del fluido termo-vettore

2.1.1 PVT raffreddati ad acqua

A. sheet-and tube collector (Fig. 2.2A): trattasi della tipologia più comune dei PVT ad acqua. Un pannello fotovoltaico è attaccato alla parte superiore di un assorbitore saldato ad un tubo a serpentina o ad una fila di tubi in parallelo in cui scorre acqua;

B. channel collector (Fig 2.2B): al di sopra del pannello PV vi è un canale in cui scorre l’acqua oppure un fluido differente. È necessario che il fluido utilizzato abbia uno spettro di assorbimento diverso da quello del pannello PV per permettere a quest’ultimo di ricevere la radiazione. Viene realizzato anche nella variante con il flusso d’acqua sotto il pannello.

Figura 2.2 struttura delle quattro tipologie di PVT-w secondo Zondag e altri [5]
C. free-flow collector (Fig. 2.2C): simile al channel collector, viene eliminata una copertura e si hanno maggiori dispersioni rispetto al caso 2 anche a causa dell’evaporazione dell’acqua;

D. two-adsorber collector (Fig. 2.2D): l’acqua scorre al di sopra di un PV trasparente che funge da assorbitore primario e prosegue al di sotto della comune piastra assorbente nera (assorbitore secondario);

Il confronto tra i vari PVT è stato fatto sempre da Zondag e altri [5], utilizzando modelli numerici da loro stessi sviluppati. I risultati ottenuti sono riportati nella sezione 2.4.2. I PVT ad acqua risultano più costosi di quelli ad aria a causa della necessità di un ottimo contatto termico tra il tubo (laddove presente) e la superficie posteriore del modulo, e dell’utilizzo di materiali anti-corrosione.

2.1.2 PVT raffreddati ad aria

I PVT raffreddati ad aria (da qui definiti anche come PVT-a), oltre a necessitare di spese energetiche per la movimentazione del fluido maggiori rispetto a quelli ad acqua, sono meno efficienti a causa della minore conduttività termica, capacità termica e densità del fluido di raffreddamento. Sono quindi preferibili solo in installazioni in cui si cerca un più contenuto investimento iniziale. Vengono classificati in base al flusso dell’aria. Essa può scorrere al di sopra del pannello (Fig. 2.3a), al di sotto (Fig. 2.3b), al di sopra e al di sotto in due flussi separati (Fig. 2.3c) oppure in un unico flusso a doppio passaggio (Fig. 2.3d).
Capitolo secondo: Sistemi fotovoltaici-termici PVT

2.1.3 PVT con raffreddamento bi-fluid

La soluzione bi-fluid proposta dal Malaysian Fundamental Research Group, in collaborazione con il Solar Energy Research Lab, dell’università di Perlis in Malaysia [8], prevede che il raffreddamento del modulo PV avvenga attraverso un sistema a flussi incrociati (Fig. 2.4). Un serpantino in cui scorre acqua e un canale a passaggio singolo nel quale transita aria perpendicolarmente, sono integrati in una struttura senza copertura in vetro, nella quale si ricorre a superfici di scambio termico corrugate o alettate per incrementare i coefficienti di scambio. La superficie adiacente al flusso di aria include il serpantino e la copertura posteriore in tedlar. Il doppio flusso rende più efficace il raffreddamento dei componenti PV e genera due flussi di calore in uscita anziché uno. Gli studi eseguiti tramite metodi numerici rivelano efficienze maggiori rispetto ai sistemi single-fluid.
2.1.4 PVT a fluido refrigerante

I sistemi PVT a fluido refrigerante ricavano il loro vantaggio dalla possibilità di scelta del fluido con le proprietà migliori di conduttività e capacità termica, ma anche di densità e viscosità. Le configurazioni impiantistiche sono analoghe a quelle viste per i PVT ad acqua. La ricerca in merito al loro sviluppo si è diffusa solo negli ultimi anni.

2.2 PVT a concentrazione

Le tecnologie per la concentrazione della radiazione solare sono molteplici e con caratteristiche differenti. In primo luogo i raggi solari possono essere convogliati tramite riflessione o rifrazione. I meccanismi ottici che ne sono protagonisti sono rispettivamente specchi o lenti, che possono avere continuità geometrica o discontinuità. In questo secondo caso la concentrazione è meno efficiente, ma la struttura risulta essere più economica. La focalizzazione può infine essere puntuale o lineare, in base all'elemento da riscaldare. Di seguito vengono riportate alcune immagini (Fig. 2.5) per il caso dei sistemi a riflessione. Il caso della rifrazione ha logica analoga.
I sistemi presentati sono in grado di concentrare la radiazione diretta ma non quella diffusa. Le tecnologie a riflessione sono utilizzate soprattutto in impianti solari termodinamici e raramente nei termici. Le tecnologie a rifrazione sono, invece, maggiormente indicate, anche se poco diffuse, per i collettori fotovoltaici. I PVT usano in maggior misura la riflessione. L’efficienza della concentrazione è dettata da un coefficiente chiamato appunto fattore di concentrazione (FC), definito come il rapporto fra la potenza per unità di superficie delle radiazioni incidenti sull’assorbitore e originaria. L’applicazione nei sistemi PVT (esempio in Fig. 2.6) porta ad una notevolissima riduzione dei materiali pregiati con cui sono realizzati i moduli PV, accanto ad una riduzione conseguente dei costi d’impianto. La minore estensione delle superfici provoca una diminuzione delle perdite termiche. Si assiste inoltre ad un aumento del rendimento di produzione di energia elettrica. È importante però a tale scopo, il mantenimento di temperature non troppo elevate, in un trade-off fra efficienza termica ed elettrica.
Capitolo secondo: Sistemi fotovoltaici-termici PVT

Gli svantaggi di tale sistema risiedono in una maggiore complicazione impiantistica, dettata dalla necessità di attuatori del tracking solare (per \(FC > 2.5\)) e in un minore rendimento ottico causato dalle perdite per riflessione o trasmissione. Inoltre, nel caso di PVT abbinati ad uno specchio parabolico, la radiazione incidente sul pannello, assimilabile ad una distribuzione gaussiana, determina una distribuzione di temperatura sul PV molto disuniforme lungo le dimensioni dello stesso, con conseguente crollo delle prestazioni.

Coventry [9] ha sviluppato un PVT a concentrazione chiamato CHAPS (Combined Heat and Power Solar). Esso utilizza uno specchio parabolico dotato di un sistema di inseguimento del Sole a doppio asse, che riflette la radiazione su una schiera di celle fotovoltaiche ad alta efficienza (circa 20%) con un fattore di concentrazione FC pari a 37. Il calore in eccesso viene rimosso mediante un tubo posto sul retro dei PV contenente una soluzione di acqua e anti-gelo che verrà poi convogliata verso sistemi di accumulo. L’efficienza termica di questo sistema è pari al 58% (inferiore rispetto a quella di un collettor solare termico), mentre quella elettrica è dell’11%. Tali valori risentono delle disuniformità di illuminazione, degli ombreggiamenti causati dai supporti dei ricevitori e degli spazi tra gli specchi. È valutando il rendimento di primo principio del sistema che se ne comprendono i pregi dell’aspetto cogenerativo. I sistemi a concentrazione, soprattutto nel caso di elevati FC, sebbene più efficienti, non si prestano a soluzioni building-integrated a causa del loro ingombro e a causa delle riflessioni e effetti ottici dovuti agli specchi.

Figura 2.6 schema funzionale di un PVT a concentrazione
Lo studio sperimentale (Fig. 2.7) eseguito da Chaabane, Charfi, Mhiri e Bournot [10] ha dimostrato, anche in questo caso, la maggiore potenza elettrica specifica rispetto alla superficie e rendimento elettrico di un sistema analogo, rispetto ad un PV a concentrazione tradizionale.

![Figura 2.7 sistema per lo studio sperimentale di Chaabane, Charfi, Mhiri e Bournot [10]](image)

2.3 Applicazioni PVT

Le possibili applicazioni dei PVT sono molteplici, e si distinguono in base alle differenti modalità di utilizzo del flusso termico utile:
- riscaldamento parziale di aria/acqua da utilizzare in applicazioni commerciali o residenziali (acqua calda sanitaria o aria/acqua per l’impianto di riscaldamento)
- evaporatori di pompe di calore a espansione diretta assistite dal sole (PV-SAHP, PhotoVoltaic-Solar Assisted Heat Pump)
- riscaldamento aria/acqua calda al fine di alimentare con tali fluidi indirettamente l’evaporatore di una pompa di calore
- sistemi di essiccamiento
- applicazioni industriali che richiedono calore a bassa temperatura
- macchine ad assorbimento a ciclo chiuso per il condizionamento di aria [11]
- trigenerazione [3]
- integrazione con heat pipe [3]

Secondo quanto riportato da Zondag [12] le differenti tipologie di PVT presentano determinate peculiarità (Tab 2.1) e caratteristiche che le rendono comunemente adatte solo ad alcune applicazioni (Tab 2.2).
Capitolo secondo: Sistemi fotovoltaici-termici PVT

Allo stato attuale, sebbene vi sia un discreto numero di produttori nel mondo, la disponibilità commerciale dei pannelli fotovoltaici-termici è limitata, trattandosi ancora di una tecnologia non completamente sviluppata e ancora oggetto di ricerca. Si analizzeranno nei prossimi paragrafi, più nel dettaglio dal punto di vista tecnologico, le singole applicazioni citate. I rendimenti delle soluzioni proposte sono fortemente variabili e dipendono dalla buona progettazione e dimensionamento di ciascuno, ma necessariamente anche dalla qualità tecnologica dei componenti termo-mecanici (scambiatori, accumuli, pompe) utilizzati per la realizzazione dell’impianto in cui il PVT è inserito.

È necessario precisare che, a causa della non ancora sviluppata diffusione della tecnologia PVT, alcune delle applicazioni citate sono state
sviluppate solo a livello ipotetico e, di conseguenza, non sono state trovate documentazioni sulle prestazioni.

2.3.1 **Riscaldamento parziale di acqua calda sanitaria o acqua per riscaldamento ambienti**

La più tradizionale applicazione del flusso di calore uscente dal sistema PVT consiste nel riscaldamento parziale di acqua calda sanitaria o acqua per il riscaldamento di ambienti.

Nel pannello fluisce una portata di acqua o di un altro fluido termo-vettore, che, una volta riscaldatosi nel collettore, scalda a sua volta un accumulo in modo diretto o tramite serpentinio. Il riscaldamento operato dal PVT è solo parziale in quanto spesso la potenza fornita all'accumulo deve essere integrata con un ulteriore flusso di acqua calda proveniente da una caldaia tradizionale. L'accumulo provvede al riscaldamento di acqua calda (Fig. 2.8a). Questa può essere utilizzata solo per la preparazione ACS tramite uno scambiatore esterno, oppure anche per il sistema di riscaldamento ambiente (Fig. 2.8b), facendo poi passare il fluido all'interno di radiatori o pannelli radianti [w-5].

![Figura 2.8 sistema di riscaldamento acqua calda con PVT (a) e sistema COMBI per riscaldamento acqua calda sanitaria e ambiente con PVT (b)](image)

Matuska [13] ha condotto uno studio su un impianto per la produzione di acqua calda sanitaria ed energia elettrica tramite collettori PVT a superfici selettive. Questo è stato confrontato con lo stesso sistema alimentato con
pannelli termici e PV tradizionali occupanti al 50% la stessa area (100 m²). I risultati rivelano come il passaggio ad una configurazione ibrida porti ad un miglioramento del rendimento elettrico dell’8,4% e del rendimento termico del 48,7% (calcoli eseguiti sulla base dei dati di risparmio elettrico e di riscaldamento acqua). Kim e altri [14] hanno invece osservato che in una configurazione simile a quella presentata in figura 2.8b, ma senza preparazione di acqua calda sanitaria, ed integrata ad un edificio (BIPVT: Building Integrated PVT), sono ottenibili rendimenti medi elettrico e termico di circa, rispettivamente, 17% e 30%. Il rendimento elettrico è stato calcolato come prodotto tra intensità di corrente e differenza di potenziale del collettore operante a massima potenza, diviso per l'input energetico offerto dalla radiazione solare. Il rendimento termico come calore assorbito dal fluido termo-vettore che opererà nel riscaldamento ambiente, sempre diviso per la potenza della radiazione solare incidente.

2.3.2 Evaporatori di pompe di calore a espansione diretta assistite dal sole (PV-SAHP, PhotoVoltaic-Solar Assisted Heat Pump)

Una interessante applicazione innovativa è rappresentata dall'abbinamento del sistema PVT con una pompa di calore nella quale il pannello svolge la funzione di evaporatore al cui interno scorre direttamente il fluido refrigerante. Tale soluzione è nota come PV-SAHP (PhotoVoltaic Solar Assisted Heat Pump) [15]. Nelle pompe di calore PV-SAHP il refrigerante viene fatto passare in un tubo sotto al pannello ibrido PVT. Il fluido assorbe calore nell’evaporatore fotovoltaico e, in seguito ad una compressione, lo rilascia nel condensatore ad una temperatura maggiore, prima di ricominciare il ciclo dopo la laminazione. Lo schema di una pompa di calore elio-assistita viene presentato in figura 2.9.
La pompa di calore consente condizioni di lavoro dei pannelli a temperature minori e stazionarie, con un migliore rendimento globale. È inoltre noto come il coefficiente di prestazione di una pompa di calore (COP) aumenti all’aumentare della temperatura di evaporazione. La radiazione solare diretta consente di innalzare la temperatura all’evaporatore, incrementare il COP e proteggere l’evaporatore dal ghiaccio in inverno. Si basano proprio su questa idea le pompe di calore elio-assistite, nelle quali tuttavia l’evaporatore è costituito semplicemente da un pannello solare termico. La sostituzione del pannello termico con quello ibrido consente di produrre al tempo stesso calore ed energia elettrica. Il sistema PV-SAHP per raffrescamento analizzato da Chow e altri [16], è stato in grado di raggiungere un COP medio di 5,93 con una efficienza elettrica (potenza elettrica prodotta su irraggiamento disponibile) del 12,1%.

Tale applicazione è stata studiata anche da Ji e altri [17], i cui risultati saranno brevemente riportati nel paragrafo 2.4.2.

2.3.3 Riscaldamento aria/acqua come sorgente termica per evaporatore di pompa di calore

L’alimentazione del fluido sorgente per l’evaporatore di una pompa di calore è un’applicazione in tutto simile a quella vista nel paragrafo precedente. La differenza risiede nel fatto che la radiazione solare non
riscalda direttamente il fluido di lavoro della pompa di calore ma un fluido intermedio. Un accumulo termico può essere più o meno presente in un ulteriore livello di scambio intermedio fra pompa di calore e PVT [w-6]. La figura 2.10 mostra per maggiore chiarezza una possibile configurazione. Le caratteristiche e i vantaggi sono simili a quelli dell’applicazione precedente. L’analisi svolta da Tagliafico e Valsuani [18] sui recenti sviluppi della tecnologia nel nord Italia ha rivelato, in merito alle prestazioni attese di un sistema in realizzazione presso Genova con 120 m² di superficie dei collettori, un inidice di Primary Energy Savings di 9,34 tep/anno.

![Diagram](image.png)

Figura 2.10 Applicazione di un PVT per il riscaldamento del fluido sorgente per l’ evaporatore di una pompa di calore

2.3.4 Sistemi di essiccamento

Nella presente applicazione, il flusso di calore uscente dal PVT viene utilizzato in una complessa macchina studiata appositamente per l’essiccamento di materiali di diverso genere. L’idea è nata come risoluzione di problemi di estetica urbanistica, legata alle recenti regolamentazioni sulla stesura dei panni a finestre e balconi, in particolare modo nei paesi asiatici densamente popolati. L’impianto di essiccamento [11] (per indumenti) è costituito da un corpo principale di scambio termico dotato di ventilatore e deumidificatore, un sistema di controllo della temperatura e dell’umidità, più i sistemi di scarico, ausiliario e di sterilizzazione mediante raggi ultravioletti. La configurazione impiantistica è riportata in figura 2.11.
2.3.5 Applicazioni industriali che richiedono calore a bassa temperatura

I PVT possono essere installati sui tetti di industrie all'interno delle quali vengono realizzati processi di produzione o trasformazione che necessitano di calore a bassa temperatura \([w-7]\). Il fluido termo-vettore che transita nel collettore, dopo essersi riscaldato, trasferisce il suo calore nella maniera più consona relativamente ai processi in cui questo calore sarà utilizzato. Gli schemi di impianto saranno quindi largamente variabili in base alle caratteristiche della singola applicazione. Alcune possibilità di sfruttamento, eventualmente associate ad integrazioni con riscaldamento ulteriore con fonti tradizionali, sono le seguenti:

- industrie galvaniche
- concerie
- industrie alimentari
- industrie farmaceutiche
- processi di pastorizzazione
- processi di essiccazione industriale
- processi di sterilizzazione
- serre
- digestori per produzione di biogas
PVT correlati alle seguenti strutture permettono un parziale sostentamento termico dei processi industriali e la produzione di energia elettrica per l’alimentazione parziale o totale del complesso.

2.3.6 Macchine ad assorbimento per il condizionamento/riscaldamento di aria ambiente

Se il calore assorbito dal fluido termo-vettore alimenta il generatore di una macchina ad assorbimento a mezzo effetto, si può pensare di sfruttarlo in un ciclo termodinamico nel quale il calore Q_{evap}, sottratto dall’evaporatore ad una sorgente, provoca il raffreddamento della stessa.

![Diagrama di PVT integrato a macchina ad assorbimento a mezzo effetto](image)

Figura 2.12 PVT integrato a macchina ad assorbimento a mezzo effetto

Affinché la macchina possa essere utilizzata con funzione di climatizzazione di un ambiente, la sorgente di calore che trasferisce il flusso Q_{evap} deve essere, appunto, un fluido che scambia calore a sua volta con l’aria ambiente. La sorgente che fornisce il calore Q_{gen} invece, è, come anticipato, il fluido termo-vettore circolante nel PVT.

Lo schema descritto in figura 2.12 rappresenta l’integrazione con una macchina ad assorbimento a mezzo effetto, meno efficiente di una standard a singolo effetto ma in grado di sfruttare livelli termici inferiori,
quali quelli solitamente disponibili in macchine che sfruttano la risorsa solare.
Raramente il calore disponibile è in grado di provvedere tramite l’assorbimento alla potenza frigorifera richiesta. È possibile quindi un’integrazione di tale calore oppure un’integrazione separata della potenza frigorifera. Risulta spesso conveniente ricorrere ad un accumulo termico per provvedere alla non perfetta sincronizzazione fra domanda e offerta di calore e per limitare il funzionamento a carichi parziali, poco tollerato dalla macchina.
In alternativa la stessa macchina può essere utilizzata per il riscaldamento ambiente se il fluido che alimenta i pannelli radianti viene riscaldata all’interno della coppia assorbitore-condensatore (analogo schema impiantistico). Tale principio conduce alla realizzazione dei sistemi SHC (solar heating and cooling), in grado di operare alternativamente sia come raffrescamento che come riscaldamento.
Le prestazioni in termini di Primary Energy Savings di un sistema analogo, ma in grado di produrre contemporaneamente acqua calda sanitaria e raffrescamento ambiente oltre che energia elettrica, saranno presentate nel paragrafo successivo.

2.3.7 Trigenerazione
Calise e altri [19] hanno studiato la possibile integrazione di PVT di media e alta temperatura (che si differenziano in base alla portata circolante e ai meccanismi di isolamento) con tecnologie per riscaldamento e raffrescamento ambiente. Si è quindi ipotizzato un sistema trigenerativo che genera elettricità, condizionamento ambiente e acqua calda sanitaria. Il sistema studiato ha come componenti base i collettori, una macchina ad assorbimento a singolo effetto, un accumulo termico e un sistema di riscaldamento ausiliario. Si configura quindi come stretto parente dell’applicazione descritta nel paragrafo precedente ma con un’impostazione mirata a più effetti termici utili. Sono state fatte valutazioni sia energetiche che economiche. Lo studio ha dimostrato una sostanziale convenienza della tecnologia per una installazione in Italia, grazie anche al sistema incentivante che si aveva nel 2012, anno nel quale è stata effettuata l’analisi. È stato registrato un indice PES (Primary Energy Savings, che indica il risparmio percentuale di energia primaria) di poco superiore al 70%.
Lo studio tramite simulazione di sistema eseguito invece da Kumbasar [20] su una applicazione per un albergo nella località di Antalya, in Turchia, ha condotto al calcolo di un rendimento termico di 0,527, elettrico di solo 0,0782 e per la refrigerazione di 0,071. Ancora una volta tali rendimenti
sono stati definiti come effetto utile su irraggiamento disponibile. L’analisi ha rilevato una non convenienza economica in tale investimento.

2.3.8 PVT-Integrated Heat Pipe

Il lavoro svolto in Cina da Pei e altri [21, 22] consiste nell’integrazione di un collettore PVT con un sistema heat pipe. La sezione evaporativa dell’HP-PVT (Heat Pipe PVT) è posta a contatto con la parte posteriore della piastra assorbente in alluminio, mentre la sezione di condensazione è posta in una water box al di sotto della piastra. Le celle PV sono invece laminate al di sopra della stessa. I dettagliati modelli di simulazione sono stati validati da prove sperimentali e sono stati in grado di prevedere le performance degli HP-PVT in tre tipiche regioni climatiche cinesi. I risultati mostrano che i tre sistemi, senza riscaldamento ausiliario, sono in grado di provvedere al fabbisogno di acqua calda sanitaria ad una temperatura di oltre 45°C per 172 giorni l’anno nella città di Hong Kong, 178 giorni a Lhasa e 158 a Pechino, con le stesse condizioni operative. Le frazioni solari registrate (percentuale di calore ottenuta con il sole sul totale richiesto) sono state rispettivamente del 68,5%, 80,5% e 64,7%. L’impianto sperimentale HP-PVT messo a punto può essere utilizzato anche in regioni fredde (ma non tali da avere pericolo di congelamento del fluido monocomponente) senza incorrere in particolari problemi di corrosione.

2.4 Stato dell’arte-Letteratura di settore

Dopo aver esaminato in quali tipi di applicazioni è possibile inserire un collettore PVT per massimizzarne l’utilità, verranno presentati nel seguito i principali studi presenti nella letteratura di settore in relazione a tale tecnologia. La consistente presentazione non deve trarre in inganno: i collettori ibridi rappresentano ancora oggi un sistema altamente innovativo, la cui diffusione ed evoluzione è solo agli inizi.

Vengono di seguito riportati alcuni fra i principali lavori svolti. Se non specificato diversamente, si considera che tutti i modelli presentati nei paragrafi successivi siano in grado di descrivere il funzionamento del sistema in regime dinamico, di cui il regime stazionario rappresenta un caso particolare.

2.4.1 Modelli analitici

Il primo modello analitico esclusivamente dedicato allo studio PVT è stato sviluppato da Florschuetz [24], il quale ha modificato per un PVT il modello per un collettore solare piano sviluppato da Hottel e Willier [25], integrando le informazioni e le espressioni allora disponibili. La conclusione a cui Florschuetz giunge, è una sostanziale uguaglianza numerica dei fattori che descrivono le prestazioni di un pannello solare termico con quelli corrispondenti di un PVT.

Bergene e Lovvik [27] hanno proposto un ampliamento del modello Duffie-Beckman [28] analizzando i vari meccanismi di trasferimento dell’energia: conduzione, convezione e irraggiamento. Si ottengono dei valori di efficienza (elettrica più termica) compresi tra 60-80%.
Sopian e altri [6] hanno confrontato, utilizzando modelli stazionari, le prestazioni di un PVT ad aria a singolo e doppio passaggio, verificando la maggiore efficienza di quest’ultimo (Tab. 2.3), a fronte di un aumento di costo contenuto.

Tabella 2.3: rendimenti di PVT ad aria a singolo e doppio passaggio

<table>
<thead>
<tr>
<th></th>
<th>Singolo-pass</th>
<th>Doppio-pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal</td>
<td>24-28%</td>
<td>32-34%</td>
</tr>
<tr>
<td>PV</td>
<td>6-7%</td>
<td>8-9%</td>
</tr>
<tr>
<td>Combined</td>
<td>30-35%</td>
<td>40-45%</td>
</tr>
</tbody>
</table>

Parametro fondamentale è il PF (Packing Factor: rapporto tra la superficie occupata da celle PV e la superficie totale del collettore), nel modello considerato pari a 0,5. È stato constatato che, al diminuire del PF, l’efficienza termica e complessiva crescono mentre l’efficienza elettrica decresce in maniera lenta.

Hegazy [7] ha eseguito in modo esaustivo il confronto tra i quattro modelli di collettori ad aria riportati nella sezione 2.1.2, considerando, a differenza di Sopian e altri [6], anche la potenza necessaria al ventilatore. Le conclusioni cui si giunge sono le seguenti:

- dal punto di vista termico, fino ad una portata massica specifica di 0,02 kg/s/m² , il PVT con il flusso d’aria sotto il PV (Fig. 2.13a, denominato per semplicità di trattazione II), quello con il flusso sopra e sotto (III) e quello a doppio passaggio (IV) hanno comportamenti simili, mentre oltre 0,02 kg/s/m² è il primo di questi ad avere prestazioni maggiori seguito dal secondo e dal terzo. Il PVT con il flusso d’aria sopra (I) invece presenta sempre le prestazioni peggiori;
- dal punto di vista elettrico (Fig. 2.13b) il migliore è II seguito da III e poi IV anche se le differenze di rendimento tra i vari modelli sono minime (in media 0,2%);
- per quanto riguarda la potenza assorbita dal ventilatore, il modello che consuma meno è III seguito da IV e poi da II;
- considerando infine le prestazioni globali (efficienza termica più elettrica) presentate in figura 2.13c, fino a 0,02 kg/s/m² le diverse tipologie sono molto ravvicinate mentre oltre, a causa della minor potenza di pompaggio, il migliore è III seguito da IV e da II.
Capitolo secondo: Sistemi fotovoltaici-termici PVT

(a)

(b)
Figura 2.13 – (a) legame rendimento termico-portata massica per i 4 collettori secondo Hegazy [7] – (b) legame rendimento elettrico-portata massica per i 4 collettori secondo Hegazy [7] - (c) legame rendimento di I principio-portata massica per i 4 collettori secondo Hegazy [7]

Tonui e Tripanagnostopoulos [29] hanno sviluppato un modello per confrontare due modifiche su di un PVT-a. Entrambe sono facilmente realizzabili e il costo di produzione addizionale, rispetto al modello base, è minimo. Le modifiche sono state fatte ad un PVT flussato da una corrente d’aria al di sotto del PV (come quello di Fig. 2.3b) e consistono rispettivamente nell’inserire una lamina di alluminio tra PV e piastra termica, in modo da realizzare due canali, e nel mettere un’alettatura su quest’ultima (Fig. 2.14).

Figura 2.14 modelli per lo studio analitico di Tonui e Tripanagnostopoulos [29]
Oltre al confronto fra le prestazioni relative alle due modifiche citate, lo studio ha avuto l’importante compito di analizzare la variazione delle prestazioni al variare di alcuni parametri di funzionamento, come portata d’aria, lunghezza e profondità del collettore. A tale scopo sono state condotte simulazioni analitiche e sperimentali. All’aumentare della portata si osserva per tutti i modelli un innalzamento dei rendimenti termico ed elettrico (poiché si ha una migliore asportazione del calore) ma anche della potenza assorbita dal ventilatore (il consumo minore si ha per il modello di riferimento).

All’aumentare della lunghezza del collettore, invece, l’efficienza termica e la potenza assorbita dal ventilatore crescono, mentre il rendimento elettrico cala a causa della maggior temperatura raggiunta dalle celle fotovoltaiche. Le versioni modificate sono più efficienti di quella di riferimento solo per lunghezze di collettore inferiori a 3m circa, in quanto, al di sopra, il beneficio ottenuto, grazie al maggior rendimento termico, viene annullato dalla più alta potenza assorbita dal ventilatore. La versione alettata risulta essere quella più efficiente da tutti i punti di vista. Tale risultato può essere osservato in figura 2.15 relativamente alla variazione della portata e per una configurazione unglazed (REF=PV di riferimento, TMS=PV con lamina di alluminio, FIN=PV con alettatura).
Figura 2.15 efficienze e potenza elettrica in uscita al variare della portata massica specifica secondo Tonui e Tripanagnostopoulos [29]

Ai fini della miglior comprensione dell’importanza della temperatura del PV per il rendimento elettrico, si riporta in figura 2.16 il suddetto legame osservato dallo studio di Tonui e Tripanagnostopoulos [29], sempre per una configurazione unglazed.

Figura 2.16 dipendenza del rendimento elettrico dalla temperatura dei moduli PV secondo Tonui e Tripanagnostopoulos [29]
Anche Dubey e altri [30] hanno studiato diverse configurazioni di moduli fotovoltaici (vetro-vetro e vetro-tedlar), sviluppando espressioni analitiche per l’efficienza elettrica con e senza flusso d’aria, in funzione dei parametri di progetto del collettore e ambientali.
Dubey e Tiwari [31] hanno esaminato, invece, le prestazioni di un sistema a vetro singolo PVT-w, con una copertura parziale del modulo PV (Packing Factor= 0.25) a Nuova Delhi.
È stato sviluppato un particolare confronto, tramite modello analitico, sulla base del suddetto collettore PVT-w parzialmente coperto collegato in serie con un identico collettore solare termico (senza PV).
È stato osservato, in merito a valutazioni sulla produttività, che l’elettricità generata dal modulo fotovoltaico posizionato all’estremità dell’acqua bastasse da sola ad alimentare la pompa di circolazione DC.

2.4.2 Modelli numerici

Zondag e altri [2] hanno sviluppato una serie di modelli numerici dinamici e stazionari per analizzare le prestazioni di collettori PVT-w. Sono stati realizzati un modello tridimensionale dinamico e tre modelli stazionari (1D, 2D e 3D) di un PVT-w del tipo sheet-and tube. È stato constatato che tutti questi modelli di calcolo risultano concordi con i risultati sperimentali dell’Università della Tecnologia di Eindhoven entro il 5% [32]. È stato rilevato che il più semplice modello stazionario monodimensionale fornisce prestazioni circa analoghe al più accurato, e allo stesso tempo dispendioso in termini di tempo di simulazione, modello 3D dinamico. In ogni caso i modelli 2D e 3D, considerando le maggiori informazioni che danno, possono essere usati in fase di progettazione per ottimizzare il collettore. La schematizzazione dei flussi termici fornita dagli autori è riportata in figura 2.17.

![Figura 2.17 stratigrafia e flussi termici nel modello di Zondag e altri [2]](image-url)
Utilizzando questi modelli, Zondag e altri [2] hanno confrontato nove tipologie diverse di collettori PVT-w, ricavandone le curve di efficienza. È stato studiato anche il comportamento dei vari collettori simulando le condizioni meteo e i prelievi di acqua calda durante un anno tipo di una classica residenza olandese. I PVT ad acqua esaminanti sono quelli di Fig. 2.2a: le Fig. 2.18 e Fig. 2.19 mostrano i valori di efficienza termica ed elettrica, mentre i valori di efficienza a temperatura ridotta pari a zero (ovvero a temperatura ambiente) e quelli medi annuali sono riportati nella Tab. 2.4.

![Figura 2.18 confronto efficienza termica di varie tipologie di PVT secondo Zondag e altri [2]](image-url)
Capitolo secondo: Sistemi fotovoltaici-termici PVT

Figura 2.19 confronto efficienza elettrica di varie tipologie di PVT secondo Zondag e altri [2]

Tabella 2.4: efficienze a temperatura ambiente e medie annuali di diverse tipologie di PVT secondo Zondag e altri [2]

<table>
<thead>
<tr>
<th>Tipologia Pannello</th>
<th>Efficienza Termica $T_R = 0$ media annuale</th>
<th>Efficienza Elettrica $T_R = 0$ media annuale</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV</td>
<td>–</td>
<td>0.097</td>
</tr>
<tr>
<td>Sheet and tube senza copertura</td>
<td>0.52</td>
<td>0.097</td>
</tr>
<tr>
<td>Sheet and tube con 1 vetro di copertura</td>
<td>0.58</td>
<td>0.089</td>
</tr>
<tr>
<td>Sheet and tube con 2 vetri di copertura</td>
<td>0.58</td>
<td>0.081</td>
</tr>
<tr>
<td>Canale sopra PV</td>
<td>0.65</td>
<td>0.084</td>
</tr>
<tr>
<td>Canale sotto PV opaco</td>
<td>0.60</td>
<td>0.090</td>
</tr>
<tr>
<td>Canale sotto PV trasparente</td>
<td>0.63</td>
<td>0.090</td>
</tr>
<tr>
<td>Flusso libero</td>
<td>0.64</td>
<td>0.086</td>
</tr>
<tr>
<td>Doppio assorbitore senza intercapedine d’aria</td>
<td>0.66</td>
<td>0.085</td>
</tr>
<tr>
<td>Doppio assorbitore con intercapedine d’aria</td>
<td>0.65</td>
<td>0.084</td>
</tr>
<tr>
<td>Collettore solare termico</td>
<td>0.83</td>
<td>–</td>
</tr>
</tbody>
</table>

L’efficienza termica cresce con il miglioramento dei sistemi di isolamento, i quali consentono di mantenere una temperatura di funzionamento maggiore, peggiorando così tuttavia, le prestazioni elettriche. Al contrario l’efficienza elettrica, come verificato anche da altri autori, è massima per le soluzioni unglazed. L’assenza di vetri di copertura permette non solo un
Capitolo secondo: Sistemi fotovoltaici-termici PVT

maggiore raffreddamento delle cella ma anche minori perdite ottiche. Le soluzioni con migliori meccanismi di trasferimento del calore riescono in generale ad incrementare la loro efficienza complessiva.

Considerando i valori di rendimento termico medi annuali, i migliori sono il modello con il canale sopra e il two-adsorber; questi, però, come si può vedere in figura 2.19, non hanno rendimenti elettrici molto elevati. Gli autori quindi propongono come soluzione ottimale il collettore con canale sotto il PV trasparente, seguito dallo sheet-and tube con un vetro che ha soltanto il 2% in meno di efficienza termica media. Secondo Zondag e altri [2], quest'ultimo, dati i minori costi di produzione, appare essere il più promettente PVT ad acqua per la produzione di acqua calda sanitaria. In conclusione viene però affermato che, per applicazioni a bassa temperatura come le pompe di calore, i PVT senza copertura sono favoriti, dato che non hanno perdite ottiche e le perdite termiche sono minime data la temperatura di lavoro non elevata.

Una ulteriore elaborazione numerica è stata portata a termine da Boubekri e altri [33], i quali hanno analizzato le prestazioni dei collettori PVT utilizzando il metodo delle differenze finite. Partendo dal bilancio energetico discretizzato su una griglia di nodi e risolvendo il set di equazioni elaborate, sono state dimostrate non solo la buona efficienza della tecnologia in analisi, ma anche le variazioni di prestazioni relativamente al variare della portata massica circolante e dell’angolo di inclinazione del pannello. Vengono riportati i risultati in forma grafica nelle figure 2.20a-b-c.
Capitolo secondo: Sistemi fotovoltaici-termici PVT

(a)

(b)
Capitolo secondo: Sistemi fotovoltaici-termici PVT

Figura 2.20 (a) rendimento termico di collettori PVT al variare di portata massica specifica e reciproco della resistenza conduttiva dello strato di adesivo (h) secondo Boubeikri e altri [33] – (b) intensità di corrente elettrica e potenza elettrica prodotta al variare dell’angolo di inclinazione e differenza di potenziale del collettore secondo Boubeikri e altri [33] – (c) intensità di corrente elettrica e potenza elettrica prodotta al variare della portata massica circolante nel serpentino e differenza di potenziale secondo Boubeikri e altri [33]

Dai grafici ottenuti è possibile evincere l’importanza dei coefficienti di scambio ai fini di massimizzare il rendimento (con una sostanziale, invece, stabilizzazione di questo al crescere della portata massica specifica ma con un punto di massimo per il rendimento elettrico, seconda figura 2.20a). L’angolo di inclinazione più favorevole è quello nullo. È da notare tuttavia che non sono state considerate inclinazioni sotto i 45° rispetto all’orizzontale. Il terzo grafico (Fig. 2.20c), che mette in relazione la potenza generata e la differenza di potenziale della cella con la portata massica, evidenzia migliori prestazioni al crescere di quest’ultima.

Hussain e Lee [34], hanno elaborato un loro modello numerico relativamente a PVT a concentrazione. Si tratta di un modello 3D nel quale tutti i flussi termici sono considerati collettivamente. Sono state simulate differenti condizioni al contorno e operative (portata massica, irraggiamento solare, temperatura di ingresso del fluido). I componenti che praticano la concentrazione sono lenti di Fresnel regolate da un sistema di tracking a doppio asse. La simulazione numerica genera un profilo di temperatura utile per l’ottimizzazione del sistema. Il tutto è stato validato con prove sperimentali nella città di Kangwon in Corea del Sud.
Capitolo secondo: Sistemi fotovoltaici-termici PVT

Si riporta in figura 2.21 la distribuzione di temperatura ottenuta rispettivamente a 3, 7 e 5 dm3/min di portata volumetrica fluente. Si noti la disuniformità della stessa legata alla concentrazione della radiazione.

Figura 2.21 distribuzione di temperatura [°C] del fluido termo-vettore per un PVT a concentrazione con una portata volumetrica circolante di 3(a), 7(b) e 5(c) dm3/min secondo lo studio di Hussain e Lee [34]

In figura 2.22 si può osservare invece l’andamento della produzione termica ed elettrica al variare della portata.

Figura 2.22 rendimenti e potenza elettrica uscente per un PVT a concentrazione secondo Hussain e Lee [34]
Anche Chow [35] ha sviluppato un modello dinamico esplicito (al fine di tener conto delle variazioni di irradianza e di flusso circolante) basato sui volumi finiti, per valutare le prestazioni di un PVT vetrato. Tale modello ha dei tempi di calcolo contenuti ed è in grado di fornire valori di producibilità elettrica ed termica ed efficienze, sia orari che istantanei. L’autore ha inoltre individuato due principali difetti di costruzione nei collettori PVT: l’adesione imperfetta tra la cella PV e l’assorbitore e il contatto imperfetto tra l’assorbitore e i tubi possono portare il valore di efficienza complessiva dal 70% al 60% con il peggioramento della qualità di realizzazione.

Ji e altri [17] hanno sviluppato un modello dinamico basato sull’approccio a parametri distribuiti per simulare le prestazioni di un PVT usato come evaporatore di una pompa di calore (analogo alla tecnologica PV-SAHP esaminata nel paragrafo 2.3.2.). Il modello è stato validato da test sperimentali effettuati su di un modulo PV laminato sulla parte frontale di un assorbitore termico. La simulazione è stata in grado di fornire la distribuzione spaziale della temperatura del refrigerante, la sua entalpia e il titolo di vapore, noti la temperatura esterna e l’irradianza solare. I risultati ottenuti durante il periodo di test hanno mostrato un’efficienza elettrica e termica medie di oltre 12% e 50% rispettivamente. È stato, inoltre, simulato, con le stesse condizioni al contorno, il comportamento di un collettore solare termico: questo riesce ad avere un rendimento termico maggiore del PVT (in media 68,1%) ma per contro, come ovvio, non produce energia elettrica.

2.4.3 Lavori sperimentali

Tripanagnostopoulos e altri [23] hanno costruito e confrontato tra loro PVT raffreddati ad aria o ad acqua, con la presenza o meno della copertura e con lastre piane di alluminio usate come concentratori diffusi (vedi Fig. 2.23).
Sono state valutate le prestazioni anche in funzione del tipo di cella fotovoltaica. I risultati ottenuti hanno mostrato che:

1. la rimozione di calore tramite acqua è più efficiente di quella tramite aria (confronto Fig. 2.24a e 2.24b), specialmente in estate quando l’acqua proveniente dalla rete idrica è più fredda dell’aria esterna
2. La presenza del vetro di copertura aumenta l'efficienza termica del 30% rispetto alla configurazione non vetrata ma ne diminuisce quella elettrica del 16%, a causa delle perdite ottiche. Il vetro è quindi consigliato per i sistemi che vogliono massimizzare l'output termico.

3. L'utilizzo dei riflettori in alluminio aumenta sia il rendimento termico che elettrico (quest'ultimo, con un fattore di concentrazione pari a 1,35, è maggiore del 16% rispetto al PVT base)

4. L'utilizzo combinato di riflettori e copertura aumenta il rendimento termico del 45% per il PVT-w e del 100% per il PVT-a rispetto ai casi base; il rendimento elettrico per questa configurazione si mantiene su valori accettabili poiché l'effetto negativo del vetro è compensato dalla maggior radiazione incidente grazie ai riflettori

Figura 2.24 a-b: rendimento termico di PVT raffreddati ad aria e ad acqua, con e senza copertura in vetro (GL) e con e senza riflettori diffusi (REF) secondo Tripanagnostopoulos e altri [23]
5. non vale la pena di utilizzare i riflettori se l’angolo tra questi e i PVT è maggiore di 90°
6. il rendimento elettrico è circa lo stesso indipendentemente dal fluido refrigerante utilizzato

Tripanagnostopoulos [36] ha inoltre introdotto un collettore PVT/bi-fluido con l’inserimento di caratteristiche di miglioramento derivanti dai suoi studi precedenti. Sono stati testate tre differenti modalità di immissione dello scambiatore di calore ad acqua all'interno del canale dell’aria e i risultati hanno mostrato che lo scambiatore di calore ad acqua posizionato sulla superficie posteriore del PV fornisce migliori risultati per l’estrazione combinata di calore dall’acqua e dall’aria. Anche Assoa e altri [37] hanno sviluppato un collettore PVT/bi-fluido che combina la funzionalità di aria pre-riscaldata con la produzione di acqua calda sanitaria.

Saitoh e altri [38] hanno studiato sperimentalmente le prestazioni di un PVT sheet-and tube con un vetro di copertura e una soluzione di glicole propilenico come refrigerante. Con una temperatura e una portata in ingresso costante, il rendimento elettrico delle celle è stato misurato nel range di 10-13% mentre l’efficienza termica tra 40 e 50%. L’efficienza globale è leggermente inferiore rispetto a quella di un collettore solare termico, mentre il rendimento exergetico è più alto di quello del singolo PV o pannello solare termico.

Fujisawa e Tani [39] hanno usato per valutare le prestazioni del loro PVT-w l’approccio exergetico, in modo tale da poter confrontare sullo stesso piano energia termica ed elettrica. Hanno trovato che il PVT-w senza copertura produce il più alto valore di esergia elettrica, mentre le prestazioni termiche della configurazione con un vetro di copertura è circa paragonabile al tradizionale collettore termico.

Joshi e altri [40] hanno costruito un PVT-a in due diverse configurazioni: glass-to-tedlar e glass-to-glass. Nella prima la radiazione solare è assorbita dalle celle solari per poi passare per conduzione all’EVA e allo strato di tedlar, al di sotto del quale fluisce l’aria che ne asporta il calore. Nel secondo tipo invece la radiazione è assorbita dalle celle fotovoltaiche e dalla superficie nera isolata posta alla base del collettore; l’aria si riscalda asportando calore per convezione dalla superficie nera e dal vetro posto dietro le celle PV (Fig. 2.25a-b)
Figura 2.25 a-b: configurazioni e profili di temperatura per PVT glass-to-tedlar e glass-to-glass proposti da Yoshi e altri [40]

È stato fatto un modello analitico per simulare le prestazioni delle due configurazioni, validato poi da misure sperimentali sul primo tipo. Il secondo tipo permette di raggiungere delle efficienze termiche e globali più elevate mentre il rendimento elettrico è lo stesso. La temperatura dell’aria in uscita varia da un valore di 33°C alle 8 am a un massimo di 46°C all’1 pm. Per il PV glass-to-glass i valori sono leggermente più alti. Lo studio ha inoltre mostrato che l’efficienza globale diminuisce con la lunghezza del canale in entrambe le configurazioni, mentre aumenta con la velocità dell’aria nel condotto, fino a raggiungere un asintoto.

Ji e altri [41] hanno testato un prototipo di PV-SAHP nella città di Hefei (31°53’N) in Cina. Le prove sono state condotte con moduli fotovoltaici senza copertura, compressore a velocità costante e a quattro diverse temperature di condensazione: 20, 30, 40 e 50°C. I valori medi giornalieri del COP sono stati 7,1, 6,6, 4,4 e 3,5, rispettivamente per le temperature di condensazione sopra citate. Gli autori hanno sottolineato come tali valori siano maggiori di quelli di una tradizionale pompa di calore e come, inoltre, utilizzando tale tecnologia, sia possibile ottenere anche elevati rendimenti fotovoltaici.

Le opere di Othman e altri [42] hanno sottolineato l’importanza delle alette attraverso un’analisi sperimentale e matematica: il loro sistema Double-Pass ibrido PVT-a è costituito da celle fotovoltaiche in silicio incollate alla piastra assorbente con le alette attaccate al lato della superficie della piastra.
In India, Tiwari e altri [43] hanno valutato le performance complessive d'efficienza di un collettore PVT-a non smaltato, determinando la portata d'aria, la lunghezza del condotto e la profondità del condotto ottimali.

In seguito, Raman e Tiwari [44,45] hanno studiato l'efficienza termica ed exergetica annua dei collettori PVT-a per cinque diverse condizioni climatiche indiane, osservando che l'efficienza exergetica è inferiore del 40-45% rispetto al rendimento termico che si ha sotto forte irraggiamento solare. Inoltre, l'analisi del ciclo di vita ha dimostrato che l'E-PBT (Energy Pay Back Time: tempo per produrre tanta energia quanta utilizzata per la costruzione dei pannelli) è di circa 2 anni.

Anche Joshi e Tiwari [46] hanno effettuato un'analisi esergetica di un collettore non smaltato PVT-a per una regione indiana a clima freddo. L'efficienza istantanea di energia ed esergia elettrica trovate variano tra il 55–65% e il 12–15% rispettivamente; inoltre è stato anche valutato l'effetto del fattore di riempimento.

Erdil e altri [47] hanno effettuato misure sperimentali su un sistema aperto PVT-w per il preriscaldamento dell'acqua domestica, facendola scorrere per gravità in un canale sopra il collettore fotovoltaico. Considerando i costi di modifica necessari su un modulo fotovoltaico, il C-PBT (cost payback time) è stato stimato intorno ad 1,7 anni.

Chow e altri [48] hanno, infine, effettuato misure in ambiente esterno su due identici sistemi di collettori lastra-tubo PVT-w che fungono da termosifone. L'unica differenza è che uno è in vetro e l'altro è in ceramica non smaltata. La prima legge della termodinamica indica che il progetto con vetro è sempre giustificato se deve essere massimizzata la produzione totale di energia. L'analisi esergetica supporta invece l'utilizzo del design non smaltato se vogliamo massimizzare l'efficienza della cella fotovoltaica.

2.4.4 Simulazioni di sistema

Utilizzando il programma TRNSYS®, Kalogirou [49] ha modellato un sistema PVT-w con batterie, inverter, serbatoio di acqua calda, pompa di circolazione e termostato differenziale. Lo studio ha fornito per le condizione meteo tipo di Nicosia (Cipro), la portata di acqua ottimale per il sistema (25 dm³/h). È stato inoltre mostrato che il rendimento medio annuale del PV è passato da 2,8% a 7,7%, coprendo inoltre il 49% del
Capitolo secondo: Sistemi fotovoltaici-termici PVT

fabbisogno di ACS di un’abitazione tipica. Il rendimento medio annuale dell’intero sistema è 31,7%, mentre il payback time è stato stimato in 4,6 anni.

Più tardi, Kalogirou e Tripanagnostopoulos [50,51] hanno ulteriormente esaminato applicazioni di sistemi PVT-w per la produzione di acqua calda sanitaria, sia a circolazione libera (sfruttando i gradienti di densità) che forzata (con l’ausilio di pompe). La loro analisi ha coperto 12 casi con differenti tipi di silicio utilizzato nei moduli PV in tre città differenti: Nicosia (a 35°N) a Cipro, Atene (a 38°N) in Grecia e Madison (a 43°N) negli USA. Le utenze analizzate sono state sia piccoli sistemi residenziali passivi, sia grandi condomini e piccoli edifici per uffici. L’analisi, integrata con una valutazione economica, ha rivelato, come ci si poteva aspettare, una maggiore convenienza nell’installazione della tecnologia per Atene e Cipro rispetto a Madison dove la disponibilità di radiazione è minore. Risultati simili sono stati ottenuti considerando applicazioni industriali. Sono stati indagati anche gli effetti di diversi tipi di silicio come costituenti base delle celle.

Utilizzando TRNSYS®, Mei e altri [52] hanno portato a termine una simulazione dinamica di un BiPVT-a (Building integrated PVT-a). Risultati sperimentali ottenuti sulla facciata della biblioteca Mataro in Spagna hanno validato il modello. Gli esiti delle simulazioni riferiti a diversi edifici in differenti zone climatiche europee mostrano che il 12% del fabbisogno invernale può essere risparmiato utilizzando l’aria preriscaldata proveniente dalla facciata ventilata in un edificio a Barcellona (41,3°N) ma solo il 2% per edifici a Stoccarda, in Germania (48,8°N), e a Loughborough, in UK (52,8°N).

Anche Chao-Yang Huang e Chiou-Jye Huang [53] hanno studiato tramite TRNSYS® le prestazioni di pannelli PVT ed effettuato simulazioni relativamente alle condizioni climatiche in alcune aree in Taiwan. Oltre ad individuare alcune zone più adatte all’installazione della tecnologia, sono state osservate una efficienza elettrica nel range 11.7÷12.4% e termica nel range 26.78÷28.41%.

Nella stessa direzione, anche Jong e altri [54], simulando le condizioni di funzionamento di PVT montati su tre diversi edifici olandesi in differenti località, hanno dimostrato una maggiore efficienza, relativamente al riscaldamento ambiente e acqua calda sanitaria, utilizzando tale tecnologia rispetto all’utilizzo separato di collettori solari termici e pannelli PV tradizionali affiancati. Quest’ultima soluzione, a pari produzione
termica ed elettrica, necessita inoltre di circa il 38% di superficie di tetto in più.

Studi e risultati analoghi, uniti ad una ottimizzazione tramite simulazione di alcuni parametri progettuali, sono stati effettuati per la località giapponese di Tokyo da Nualboonrueng e altri [55]. Anche in questo caso gli autori evidenziano una sostanziale convenienza della tecnologia relativamente alla fascia climatica considerata.

Il presente studio consiste nella realizzazione di un modello numerico bidimensionale, stazionario e dinamico, basato su un approccio a parametri distribuiti. Come si può osservare dal paragrafo 2.4.2, sono stati svolti studi analoghi da diversi autori su differenti tipi di collettori e in differenti condizioni di funzionamento. Il valore aggiunto per il quale il presente lavoro prende le distanze dai modelli numerici descritti riguardanti la medesima tecnologia risiede nelle prove sperimentali, eseguite dallo stesso autore del modello matematico e studiate appositamente per la validazione del metodo presentato. Si evidenzia che generalmente le analisi matematiche e sperimentali sono svolte da autori differenti e che ciò possa comportare leggere divergenze nelle interpretazioni di alcuni aspetti del funzionamento. La validazione eseguita, inoltre, è stata condotta tramite prove svolte su particolari collettori PVT denominati “tegole”, i quali saranno meglio descritti nel capitolo 4. Anche in questo si ha una differenziazione rispetto ai lavori svolti da altri autori e riportati nello stato dell’arte del presente capitolo. Il modello dinamico elaborato, da ultimo, permette la simulazione del funzionamento al variare di un elevato numero di parametri: portata volumetrica circolante, temperatura di ingresso del fluido, irraggiamento, velocità del vento e temperatura ambiente.
3. Capitolo terzo
Modelli termici

Il lavoro di tesi si propone di analizzare le prestazioni di pannelli PVT-w sheet-and tube, tramite lo sviluppo di due modelli termici a parametri distribuiti, basati su bilanci energetici su volumi discreti e su un approccio alle differenze finite. Il primo modello proposto sarà di tipo stazionario, il secondo, dinamico. Il metodo sarà analizzato in modo dettagliato nei paragrafi seguenti e ha come obiettivo iniziale di fornire una distribuzione bidimensionale approssimata della temperatura del pannello. Ottenuto ciò, sarà possibile impostare un bilancio energetico globale in modo da analizzare nel dettaglio i singoli contributi in termini di flussi di calore e potenza elettrica generata, per poi passare al calcolo dei rendimenti. Per la parte dinamica tale calcolo sarà effettuato in periodi temporali successivi e porterà alla registrazione dell’evoluzione delle suddette grandezze. È da evidenziare ancora una volta l’importanza della distribuzione di temperatura del collettore PVT, rilevante non solo ai fini del calcolo dei flussi termici ma anche del rendimento dei componenti elettrogeni.

Quanto descritto in questo capitolo sarà implementato in linguaggio Matlab® al fine di ottenere numericamente, tramite calcolatore, le performance del sistema. Prima di iniziare la descrizione del metodo si ritiene utile introdurre in modo più dettagliato le caratteristiche e la modellazione della tecnologia PVT-w sheet-and tube.

3.1 Struttura, funzionamento, proprietà termiche e ottiche di un sistema PVT-w sheet-and tube

Un collettore PVT ad acqua sheet-and tube, di cui si riporta una rappresentazione semplificata in figura 3.1, risulta essere costituito da un pannello fotovoltaico laminato su un supporto in alluminio, che funge da assorbitore, sotto il quale sono applicate le tubazioni. Nella parte posteriore del pannello è previsto uno strato di materiale isolante. La radiazione solare colpisce le celle PV dopo avere attraversato il vetro di protezione, che ha la funzione di isolante termico trasparente. Il silicio delle celle è ricoperto da entrambi i lati con un sottile strato di etil vinil acetato (spesso indicato come EVA). L’EVA è una materia plastica copolimérica. È utilizzata come sigillante flessibile ed elastico e permette di prolungare la vita utile dei componenti elettrogeni. La radiazione colpisce le celle PV che iniziano a produrre potenza elettrica e si scalda.
Contemporaneamente sale anche la temperatura della piastra di alluminio. Nelle tubazioni scorre un fluido termovettore che asporta calore per convezione, raffreddando l’assorbitore e le adiacenti celle PV, aumentandone, così, l’efficienza. L’intera struttura è soggetta a perdite termiche che incrementano l’efficienza elettrica ma riducono necessariamente quella termica.

\[
k_{eq} \equiv \frac{\sum_i k_i s_i}{\sum_i s_i}
\]

ottenuta facendo una somma pesata fra i vari spessori. Si riporta in figura 3.2 una schematizzazione della stratigrafia e in tabella 3.1 alcuni dati

1 Le definizioni non sono numerate
utilizzati in merito nel modello. Come si osserva in figura 3.2, al di sotto del materiale equivalente è presente lo strato di isolante e la copertura in materiale plastico (forex).

![Diagramma stratigrafico](image)

Figura 3.2 stratigrafia PVT-w sheet-and-tube analizzato nel modello e definizione dello spessore equivalente

Tabella 3.1: dati termici e geometrici riferiti ai materiali del PVT analizzato

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Unità di misura</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spessore del vetro s_v</td>
<td>[m]</td>
<td>3300e-6</td>
</tr>
<tr>
<td>Conduttività termica vetro k_v</td>
<td>[W/mK]</td>
<td>0,8</td>
</tr>
<tr>
<td>Spessore EVA s_{EVA}</td>
<td>[m]</td>
<td>3800e-6</td>
</tr>
<tr>
<td>Conduttività termica EVA k_{EVA}</td>
<td>[W/mK]</td>
<td>0,35</td>
</tr>
<tr>
<td>Spessore silicio s_{PV}</td>
<td>[m]</td>
<td>3600e-6</td>
</tr>
<tr>
<td>Conduttività termica silicio k_{PV}</td>
<td>[W/mK]</td>
<td>145</td>
</tr>
<tr>
<td>Spessore TEDLAR s_{TED}</td>
<td>[m]</td>
<td>1900e-6</td>
</tr>
<tr>
<td>Conduttività termica TEDLAR k_{TED}</td>
<td>[W/mK]</td>
<td>0,2</td>
</tr>
<tr>
<td>Spessore adesivo s_{ad}</td>
<td>[m]</td>
<td>1,27e-6</td>
</tr>
<tr>
<td>Conduttività termica adesivo k_{ad}</td>
<td>[W/mK]</td>
<td>0,85</td>
</tr>
<tr>
<td>Spessore alluminio s_{al}</td>
<td>[m]</td>
<td>4000e-6</td>
</tr>
<tr>
<td>Conduttività termica k_{al}</td>
<td>[W/mK]</td>
<td>237</td>
</tr>
<tr>
<td>Spessore isolante s_{ins}</td>
<td>[m]</td>
<td>0,0194</td>
</tr>
<tr>
<td>Conduttività termica k_{ins}</td>
<td>[W/mK]</td>
<td>0,0148</td>
</tr>
<tr>
<td>Spessore Copertura retro s_{for}</td>
<td>[m]</td>
<td>0,001</td>
</tr>
<tr>
<td>Conduttività termica Copertura retro k_{for}</td>
<td>[W/mK]</td>
<td>0,059</td>
</tr>
<tr>
<td>Emissività vetro e_v</td>
<td>[-]</td>
<td>0,4</td>
</tr>
<tr>
<td>Trasmissività vetro t_v \times Assorbanza celle α_{PV}</td>
<td>[-]</td>
<td>0,8651</td>
</tr>
</tbody>
</table>

(Trascrizione formulare semplicemente con la doppia cifra)
Si può quindi calcolare uno spessore equivalente s_{eq} di 0,008651 m e una conduttività termica equivalente k_{eq} di 116,4921 W/m/K. È da notare che tale conduttività termica è ottenuta considerando i diversi strati in parallelo tra loro. Tale conduttività verrà infatti inserita nei bilanci solo nel termine di conduzione all’interno del materiale equivalente.

Proprietà ottiche come la trasmissività, l’assorbanza e l’emissività che compaiono nei bilanci energetici dei paragrafi a seguire, sono state invece modellate come segue:

- **assorbanza:** si fa riferimento all’assorbanza del silicio, essendo la cella il dispositivo opaco che per primo intercetta il raggio.
- **riflettanza:** essendo il silicio opaco, si ottiene come complemento a uno dell’assorbanza
- **emissività:** si considera l’emissività del vetro, essendo il vetro lo strato più esterno.
- **trasmissività:** il silicio è un materiale opaco con trasmissività nulla; si assume la trasmissività dell’EVA approssimativamente pari al 100%; si considera dunque solo la trasmissività del vetro poiché è lo strato più esterno.

È importante osservare che un buon vetro di copertura risulta essere di buona trasparenza per le lunghezze d’onda del raggio incidente ma non per le frequenze dell’infrarosso (Fig. 3.3). Tale caratteristica gli consente di far passare in ingresso le radiazioni utili alla generazione elettrica ma di impedire la dispersione di calore tramite raggio riflesso che subisce una modificazione della lunghezza d’onda.

![Figura 3.3 trasmissività del vetro di copertura al variare della lunghezza d’onda della radiazione luminosa e della percentuale di ossido di ferro contenuta](image-url)
Analogamente anche le superfici assorbenti devono avere una buona assorbanza nelle frequenze del visibile ma bassa emissività nell’infrarosso. Tale proprietà prende il nome di selettività.

3.2 Il metodo delle differenza finite

Nel presente paragrafo sarà introdotto il metodo delle differenze finite, cardine della modellazione eseguita. Ne verrà fatta una descrizione dettagliata e rigorosa, utilizzando anche alcuni esempi per facilitare la comprensione. Nel paragrafo successivo sarà esaminata, invece, la sua applicazione a livello pratico nel caso di studio.

I metodi numerici [56] sono utili in materia di conduzione del calore per modellare problemi che coinvolgono non-linearità, geometrie complesse, complicate condizioni al contorno o sistemi di equazioni differenziali alle derivate parziali accoppiate. Un comune schema numerico utilizzato per la risoluzione di equazioni differenziali alle derivate parziali è il metodo delle differenze finite, che ha avuto la sua origine nel campo dell’analisi strutturale e della meccanica dei solidi ma che si presta in maniera ottimale anche a problemi di tipo termo-fisico. Verrà di seguito analizzato tale metodo e descritta la sua applicazione per quanto concerne l’analisi termica dei collettori PVT.

È da evidenziare che il metodo delle differenze finite restituisce valori quantitativi che, pur essendo importanti indicatori ai fini dell’analisi, costituiscono una rappresentazione approssimata della realtà. Il modello proposto sarà tanto migliore quanto minore sarà il livello di approssimazione elaborato.

3.2.1 Approssimazione di derivate con differenze finite tramite serie di Taylor

Calcoli numerici come addizioni, sottrazioni, moltiplicazioni e divisioni, sono prontamente eseguiti da un qualsiasi calcolatore con grande rapidità. D’altra parte, il primo passo nella soluzione di problemi di conduzione del calore da parte di un calcolatore che opera nel discreto è la trasformazione di equazioni differenziali alle derivate parziali in una forma elaborabile numericamente. La derivata di una funzione in un punto può essere rappresentata con l’approssimazione tramite differenze finite usando lo sviluppo in serie di Taylor nell’intorno di quel punto.

Sia \(f(x) \) una funzione sviluppabile in serie di Taylor. Lo sviluppo in serie di Taylor delle funzioni \(f(x-h) \) e \(f(x+h) \) nell’intorno di \(x \) è descritto dalle formule 3.1 e 3.2, nelle quali l’apice indica la derivazione rispetto ad \(x \).
Le derivate prime e seconde $f'(x)$ e $f''(x)$ possono essere rappresentate in diversi modi nella forma delle differenze finite, sempre tramite lo sviluppo in serie di Taylor (notazione presentata in Fig. 3.4). Risolvendo le equazioni 3.1 e 3.2 è possibile ottenere le seguenti formulazioni della derivata prima.

\[
f'(x) = \frac{f(x + h) - f(x)}{h} - \frac{h}{2} f''(x) - \frac{h^2}{6} f'''(x) ... \\
f''(x) = \frac{f(x) - f(x - h)}{h} + \frac{h}{2} f''(x) - \frac{h^2}{6} f'''(x) ...
\]

![Figura 3.4 notazione utilizzata per una rappresentazione come serie di Taylor](image)

Dalle equazioni 3.3 e 3.5 è possibile ricavare le seguenti definizioni per la derivata prima nell’intorno di x.

\[
f'(x) = \frac{f(x + h) - f(x - h)}{2h} - \frac{h^2}{6} f'''(x) ... \\
f'(x) = \frac{f(x + h) - f(x)}{h} + O(h) \quad differenza\ in\ avanti
\]
Capitolo terzo: Modelli termici

\[f'(x) = \frac{f(x) - f(x - h)}{h} + O(h) \quad \text{differenza all'indietro} \quad (3.7) \]

\[f'(x) = \frac{f(x + h) - f(x - h)}{2h} + O(h^2) \quad \text{differenza centrale} \quad (3.8) \]

La notazione \(O(h) \) è usata per mostrare che l’errore associato è nell’ordine di \(h \). In modo similare si può spiegare la notazione \(O(h^2) \).

Viene ora introdotta una forma alternativa (formule 3.9 e 3.10 e Fig.3.5).

\[x = ih \quad \text{e} \quad x + h = (i + 1)h \]
\[x - h = (i - 1)h \quad \text{etc} \quad (3.9) \]

\[f(x) = f_i \]
\[f(x + h) = f_{i+1} \]
\[f(x - h) = f_{i-1} \quad \text{etc} \quad (3.10) \]

Figura 3.5 notazione utilizzata per una rappresentazione con differenze finite di una serie di Taylor

Le formulazioni secondo differenze finite della derivata prima nell’intorno di \(x \), ottenute dalle formule 3.6 e 3.8 e scritte secondo la notazione appena introdotta, sono le seguenti:

\[f'_i = \frac{f_{i+1} - f_i}{h} + O(h) \quad \text{differenza in avanti} \quad (3.11) \]

\[f'_i = \frac{f_i - f_{i-1}}{h} + O(h) \quad \text{differenza all’indietro} \quad (3.12) \]

\[f'_i = \frac{f_{i+1} - f_{i-1}}{2h} + O(h^2) \quad \text{differenza centrale} \quad (3.13) \]
Capitolo terzo: Modelli termici

Dove

\[f_i' \equiv \frac{df}{dx} \bigg|_{x_i} \]

Si noti che le differenze in avanti e all’indietro hanno errore nell’ordine di \((h)\) mentre l’espressione secondo la differenza centrale ha errore nell’ordine di \((h^2)\).

È possibile ricavare l’espressione per la derivata seconda tramite lo sviluppo in serie di Taylor delle funzioni \(f(x+2h)\) e \(f(x-2h)\) nell’intorno di \(x\).

\[
\begin{align*}
f(x + 2h) &= f(x) + 2hf'(x) + 2h^2f''(x) + \frac{4}{3}h^3f'''(x) + \ldots \\
f(x - 2h) &= f(x) - 2hf'(x) + 2h^2f''(x) - \frac{4}{3}h^3f'''(x) + \ldots
\end{align*}
\]

Eliminando \(f'(x)\) dalle equazioni 3.14 e 3.1 e successivamente dalle equazioni 3.15 e 3.2 si ricavano

\[
\begin{align*}
f''(x) &= \frac{f(x) + f(x + 2h) - 2f(x + h)}{h^2} - hf'''(x) \\
f''(x) &= \frac{f(x - 2h) + f(x) - 2f(x - h)}{h^2} + hf'''(x)
\end{align*}
\]

Eliminando sempre \(f'(x)\) dalle equazioni 3.1 e 3.2 si ottiene

\[
f'''(x) = \frac{f(x - h) + f(x + h) - 2f(x)}{h^2} - \frac{1}{12}h^2f''''(x)
\]

Queste ultime tre formulazioni possono essere scritte anche secondo la notazione introdotta nelle formule 3.9 e 3.10 ottenendo

\[
\begin{align*}
f_i'' &= \frac{f_i - 2f_{i+1} + f_{i+2}}{h^2} + O(h) \quad \text{differenza in avanti} \\
f_i'' &= \frac{f_{i-2} - 2f_{i-1} + f_i}{h^2} + O(h) \quad \text{differenza all’indietro} \\
f_i'' &= \frac{f_{i-1} - 2f_i + f_{i+1}}{h^2} + O(h^2) \quad \text{differenza centrale}
\end{align*}
\]
Dove

\[f_i'' \equiv \frac{d^2 f(x)}{dx^2} \bigg|_{i} \]

Anche in questo caso è possibile notare la diversa accuratezza delle tre formulazioni.
È possibile ricavare descrizioni più precise per la derivata prima e seconda di una funzione nell’intorno di un punto, sempre secondo l’approccio delle differenze finite. Ai fini dell’analisi proposta non si è ritenuto necessario approfondire ulteriormente l’argomento con l’obiettivo di incrementare l’accuratezza delle definizioni.

3.2.2 Impostazione di problemi stazionari di conduzione del calore usando il metodo delle differenze finite

Per comprendere meglio il metodo se ne esemplifica un caso di applicazione nell’ambito della conduzione del calore.
Si consideri l’equazione della conduzione di calore stazionaria, bidimensionale, con generazione di potenza, data nella forma

\[
\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{1}{k} g(x, y) = 0
\]

(3.22)

e correlata ad un insieme di condizioni al contorno. Considereremo solo la rappresentazione tramite differenze finite delle equazioni differenziali nella regione in analisi. È possibile sovrapporre a tale regione una griglia rettangolare di passi \(\Delta x \) e \(\Delta y \), come rappresentato in figura 3.6.
Capitolo terzo: Modelli termici

Figura 3.6 definizione della griglia e nomenclatura dei nodi per una superficie in analisi

Le coordinate \((x,y)\) di un punto \(P\) sono scrivibili come

\[
x = i \Delta x \quad \text{e} \quad y = j \Delta y
\]

(3.23)
dove \(i\) e \(j\) sono interi. La temperatura \(T(x,y)\) e il termine di generazione \(g(x,y)\) nel punto \(P\) sono

\[
T(x,y)|_P = T(i \Delta x, j \Delta y) = T_{i,j}
\]

(3.24)

\[
g(x,y)|_P = g(i \Delta x, j \Delta y) = g_{i,j}
\]

(3.25)

Le espressioni tramite differenze finite della derivata seconda di \(T\) rispetto ad \(x\) e \(y\) nel punto \(P\) sono indicabili usando la formula con differenza centrale introdotta nell’equazione 3.21.

\[
\frac{\partial^2 T}{\partial x^2}|_P = \frac{\partial^2 T}{\partial x^2}|_{i,j} = \frac{T_{i-1,j} - 2T_{i,j} + T_{i+1,j}}{(\Delta x)^2}
\]

(3.26)

\[
\frac{\partial^2 T}{\partial y^2}|_P = \frac{\partial^2 T}{\partial y^2}|_{i,j} = \frac{T_{i,j-1} - 2T_{i,j} + T_{i,j+1}}{(\Delta y)^2}
\]

(3.27)

Sostituendo nell’equazione 3.22 la 3.25, 3.26 e 3.27, si ottiene l’equazione della conduzione di calore stazionaria, bidimensionale, con generazione di calore nella forma delle differenze finite.
Capitolo terzo: Modelli termici

\[
\frac{T_{i-1,j} - 2T_{i,j} + T_{i+1,j}}{(\Delta x)^2} + \frac{T_{i,j-1} - 2T_{i,j} + T_{i,j+1}}{(\Delta y)^2} + \frac{1}{k} g_{i,j} = 0 \tag{3.28}
\]

Se consideriamo una griglia quadrata con \(\Delta x = \Delta y = l\), l’ultima equazione si semplifica e diventa

\[
(T_{i-1,j} + T_{i+1,j} + T_{i,j-1} + T_{i,j+1} - 4T_{i,j}) + \frac{l^2}{k} g_{i,j} = 0 \tag{3.29}
\]

Si noti che in questa formulazione il termine tra parentesi risulta essere la somma delle temperature dei quattro nodi che circondano il punto P (nodo \(i,j\)), alla quale si sottrae quattro volte la temperatura dello stesso punto P.

È possibile esaminare anche la formulazione dell’equazione 3.22 per un nodo \(i,j\) soggetto a convezione o ad isolamento, condizioni osservabili nelle condizioni al contorno che lo caratterizzeranno.

La figura 3.7a mostra un nodo \(i, j\) posizionato al limitare di una regione in analisi e soggetto a convezione. La condizione al contorno associabile è la seguente:

\[
k \frac{\partial T}{\partial x} + h(T - T_{\infty}) \quad in \ x = il \tag{3.30}
\]
Possiamo ora immaginare che la regione di conduzione esaminata si possa estendere in modo fittizio di un passo \(l \), in modo che ci possa essere un nodo immaginario \([-(i-1), j]\) alla temperatura \(T_{[-(i-1), j]} \), come illustrato in figura 3.7a. Come conseguenza, sarà possibile scrivere la forma secondo differenze finite dell’equazione 3.22 per il nodo \(i, j \) come

\[
(T_{i-1,j} + T_{-(i-1),j} + T_{i,j-1} + T_{i,j+1} - 4T_{i,j}) + \frac{l^2}{k} g_{i,j} = 0 \quad (3.31)
\]

La forma, scritta come differenza centrale, della condizione al contorno 3.30 è invece

\[
k \frac{T_{-(i-1),j} - T_{i-1,j}}{2l} + h T_{i,j} = hT_\infty \quad (3.32)
\]

Eliminando \(T_{[-(i-1),j]} \) dalle due equazioni precedenti si ottiene

\[
\left[2T_{i-1,j} + T_{i,j-1} + T_{i,j+1} - (4 + \frac{2hl}{k})T_{i,j} \right] + \left(\frac{2hl}{k} T_{\infty} + \frac{l^2}{k} g_{i,j} \right) = 0 \quad (3.33)
\]

Quest’ultima è proprio l’equazione della conduzione di calore stazionaria, bidimensionale, con generazione di calore, per un nodo soggetto a convezione. Se il nodo analizzato fosse invece termicamente isolato basterebbe porre \(h=0 \) dalla 3.33 per ottenere

\[
(2T_{i-1,j} + T_{i,j-1} + T_{i,j+1} - 4T_{i,j}) + \frac{l^2}{k} g_{i,j} = 0 \quad (3.34)
\]

Consideriamo ora un nodo localizzato nell’intersezione di due condizioni al contorno di tipo convettivo, come rappresentato in figura 3.7b. La convezione è descrittibile come

\[
k \frac{\partial T}{\partial x} + h_1 T = h_1 T_\infty \quad \text{in } x = il \quad (3.35)
\]

\[-k \frac{\partial T}{\partial y} + h_2 T = h_2 T_\infty \quad \text{in } y = jl \quad (3.36)
\]

Immaginando l’ampliamento della superficie analogamente a quanto fatto precedentemente e ipotizzando la presenza di, in questo caso, due nodi immaginari, \([-(i-1), j]\) e \([i, -(j+1)]\), l’equazione 3.22 per il nodo in analisi può essere scritta come segue:
Capitolo terzo: Modelli termici

\[(T_{i-1,j} + T_{-(i-1),j} + T_{i,j+1} + T_{i,-(j+1)} - 4T_{i,j}) + \frac{l^2}{k} g_{i,j} = 0 \]
\(\text{(3.37)} \)

Le condizioni al contorno convettive, scritte con la differenza centrale, sono:

\[\frac{k}{2l} \left(T_{-(i-1),j} - T_{i-1,j} \right) + h_1 T_{i,j} = h_1 T_{i,0} \]
\(\text{(3.38)} \)

\[-\frac{k}{2l} \left(T_{i,j+1} - T_{i,-(j+1)} \right) + h_2 T_{i,j} = h_2 T_{i+2} \]
\(\text{(3.39)} \)

Isolando \(T_{(i-1),j} \) e \(T_{(i),-(j+1)} \) nelle equazioni 3.38 e 3.39 e sostituendo nella 3.37 si ottiene

\[\left[2T_{i-1,j} + 2T_{i,j+1} - \left(\frac{4 + \frac{2h_1}{k} + \frac{2h_2}{k}}{k} \right) T_{i,j} \right] + \left(\frac{2h_1}{k} T_{i,0} + \frac{2h_2}{k} T_{i+2} + \frac{l^2}{k} g_{i,j} \right) = 0 \]
\(\text{(3.40)} \)

che è proprio l’equazione della conduzione di calore stazionaria, bidimensionale, con generazione di potenza, per un nodo soggetto a doppia condizione al contorno convettiva. Se il nodo è da entrambe le parti, invece, isolato, è possibile ancora porre \(h_1 = h_2 = 0 \) ottenendo

\[(2T_{i-1,j} + 2T_{i,j+1} - 4T_{i,j}) + \frac{l^2}{k} g_{i,j} = 0 \]
\(\text{(3.41)} \)

Quindi è possibile scrivere l’equazione della conduzione di calore nella forma 3.29 (se per un nodo interno) oppure nelle forme 3.33 e 3.40 (per nodo interessato da convezione su uno o due lati) o 3.34 e 3.41 (per nodo isolato termicamente su uno o due lati). Scrivendo una di queste equazioni per ognuno degli \(N \) nodi della griglia si ottiene un sistema di \(N \) equazioni in \(N \) incognite, che sono le temperature di tutti i nodi.

3.2.3 Esempio e risoluzione di un problema stazionario di conduzione del calore secondo il metodo delle differenze finite

L’impostazione del problema termico presentata nel paragrafo precedente può essere utilizzata a livello pratico, per esempio, per l’analisi di una superficie.
Si consideri una regione quadrata $0 \leq x \leq a$, $0 \leq y \leq a$, come illustrato in figura 3.8. I passi della griglia sono $\Delta x=\Delta y=l$.

Il bordo ad $x=0$ è isolato, mentre i bordi a $x=a$ e $y=0$ dissipano calore tramite convezione verso l’ambiente a temperatura T_∞, con un coefficiente di scambio termico convettivo h. Il bordo $y=a$ è mantenuto con una distribuzione di temperatura data dai parametri f_1, f_2, f_3 e f_4. Viene sovrapposta a tale superficie una griglia quadrata come quella in figura 3.6. Si scrivano ora le 12 equazioni secondo le forme presentate nel paragrafo precedente per ognuno dei nodi a temperatura incognita della griglia. È facile ottenere un sistema del tipo:
Ai fini della risoluzione del problema presentato si rende utile rappresentare il sistema in forma matriciale.

\[
\begin{bmatrix}
-4 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -4 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -4 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & -(4+2H) & 2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & -4 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & -4 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & -(4+2H) & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & -4 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 & 1 & 0 & -(4+2H) & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 1 & -4 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
T_1 \\
T_2 \\
T_3 \\
T_4 \\
T_5 \\
T_6 \\
T_7 \\
T_8 \\
T_9 \\
T_{10} \\
T_{11} \\
T_{12}
\end{bmatrix}
= \begin{bmatrix}
-G \\
-G
\end{bmatrix}
\begin{bmatrix}
-T_1 \\
-T_2 \\
-T_3 \\
-T_4 \\
-T_5 \\
-T_6 \\
-T_7 \\
-T_8 \\
-T_9 \\
-T_{10} \\
-T_{11} \\
-T_{12}
\end{bmatrix}
\]

dove

\[
G = \frac{(\frac{\Delta t^2}{k})}{k} \quad \text{e} \quad H = \frac{(2\Delta t)}{k}
\]
Nell’esempio è possibile evincere il campo di temperature incognite tramite l’analisi di 12 equazioni corrispondenti a 12 nodi. È importante evidenziare, tuttavia, che una più precisa determinazione del campo di temperature richiede una griglia a maglie molto più fini e, di conseguenza, un numero molto maggiore di equazioni ed incognite. La scrittura in forma matriciale presentata permette di evidenziare la presenza di elementi non nulli solo nell’intorno della diagonale della matrice dei coefficienti. Ciò rende possibile una facile risoluzione tramite calcolatore avendo la possibilità di utilizzare metodi numerici di diverso tipo. Approfondito il metodo numerico, ci si dedicherà ora alla sua applicazione.

3.3 Modello stazionario per l’analisi di un collettore PVT ad acqua sheet-and tube

In modo analogo a quanto illustrato nel paragrafo 3.2, è possibile modellizzare un collettore PVT-w associandone una superficie, a cui è possibile sovrapporre una griglia al fine di svolgere un’analisi nodale del sistema. L’approccio seguito sarà sostanzialmente bidimensionale. Si noti che ciò costituisce una decisa semplificazione del modello che tuttavia, come dimostrato da Zondag e altri [2], non conduce a risultati significativamente meno accurati rispetto ad una modellazione 3D. D’altra parte la natura tridimensionale del sistema appare molto chiara esaminando i singoli flussi che interessano il sistema nel suo insieme (vedi figura 3.9, nella quale il tubo deve considerarsi immerso in uno strato di materiale isolante termico):

- flusso termico radiativo Sole → laminato PV
- flusso termico radiativo laminato PV → ambiente
- flusso termico convettivo laminato PV → aria ambiente
- potenza elettrica uscente generata dai moduli PV
- flusso termico conduttivo interno al laminato PV
- flusso termico conduttivo laminato PV → piastra termica
- flusso termico conduttivo interno alla piastra termica
- flusso termico conduttivo piastra termica → isolante
- flusso termico convettivo piastra termica → fluido termovettore (mediante tubi associabili ad alette)
- flusso termico convettivo fluido termovettore → isolante
- flusso termico convettivo isolante → aria ambiente
3.3.1 Bilancio Energetico

Come visto nel paragrafo 3.2.2, la formulazione del problema tramite differenze finite ha come primo passo fondamentale il bilancio energetico riferito al singolo nodo della griglia che ipotizziamo di sovrapporre idealmente alla superficie in analisi. Il materiale analizzato è nella forma equivalente introdotta nel paragrafo 3.1. In questo modello si considera ogni nodo come baricentro del volume di controllo finito sul quale viene effettuato il bilancio. Si rappresenta in figura 3.10 la schematizzazione proposta. Sono rappresentati in colore nero i volumi di controllo e in azzurro la griglia di nodi. Il numero di nodi rappresentato è a titolo esemplificativo e non coerente con l’effettivo numero di nodi considerati nel modello. Per semplificare la trattazione, la griglia considerata è di tipo quadrato, ovvero risulta essere $\Delta x = \Delta y = l$.
Capitolo terzo: Modelli termici

Per ognuno dei volumi di controllo rappresentati in figura 3.10 è possibile effettuare un bilancio energetico. Si rende necessario tuttavia differenziare i nodi che si trovano in porzioni di superficie adiacenti al tubo e non. Per i secondi il bilancio è schematizzabile tramite la seguente rappresentazione di figura 3.11.
Capitolo terzo: Modelli termici

In termini matematici il bilancio del singolo elemento finito è scrivibile come

\[
\alpha_{pv} G = -k_{eq} s_{eq} \alpha^2 T + h_w (T - T_a) + \varepsilon_v \sigma (T^4 - T_{sky}^4) + \frac{T - T_a}{R_{ser} + R_{back}} + \\
+ \frac{T - T_f}{R_{par} + R_{ser} + R_{fluid}} + \frac{G}{G_{ref}} W_{el}^{ref} [1 - \beta (T - T_r)]
\]

(3.42)

Dove il primo membro rappresenta i contributi in ingresso e il secondo quelli in uscita. Questi sono considerati uguali in quanto nel modello stazionario non è previsto alcun termine di accumulo, non essendoci variazioni temporali. Inoltre, ulteriormente a quanto già introdotto (unità di misura fra parentesi quadre):

- \(\alpha_{pv} \) è l’assorbanza del laminato PV [ad]
- \(G \) è la potenza specifica della radiazione solare [W/m²]
- \(T, T_a, T_{sky}, T_f \) rappresentano le temperature rispettivamente del collettore, ambiente, del cielo e del fluido termo-vettore [K]
- \(s_{eq} \) e \(k_{eq} \) sono lo spessore equivalente e la conduttività termica equivalente, precedentemente introdotti [m, W/m/K]
- \(h_w \) è il coefficiente di scambio termico convettivo riferito al raffreddamento operato dal vento [W/m²/K]
Capitolo terzo: Modelli termici

- ε, l’emissività termica del vetro di copertura [ad]
- σ è la costante di Stefan-Boltzmann [W/m2/K4]
- R_{ser}, R_{par}, R_{fluid}, R_{back} sono le resistenze termiche conduttive e convettive riferite al passaggio del calore nei materiali, nel fluido e verso l’ambiente [m2K/W]
- $W_{el\text{ref}}$ è la potenza elettrica di riferimento prodotta dal collettore PV [W/m2]
- G_{ref} è la potenza specifica della radiazione solare di riferimento [W/m2]
- β è un coefficiente sperimentale che predice la variazione di rendimento elettrico associata alla temperatura (vedi par.1.2.1) [K$^{-1}$]
- T_r è la temperatura di riferimento alla quale si ha rendimento elettrico nominale del collettore [K]

Il bilancio è scritto in termini specifici rispetto alla superficie. I sette termini, espressi in formula 3.42 quindi in W/m2, e rappresentati in figura 3.11, sono rispettivamente:
- la radiazione solare assorbita dal laminato
- il termine di conduzione del calore trasferito internamente ai volumetti di controllo adiacenti
- il flusso convettivo legato al raffreddamento del pannello da parte del vento
- il flusso radiativo legato all’emissione da parte del vetro di copertura
- il flusso conduttivo-convettivo che dissipa calore in ambiente attraverso la superficie posteriore
- il flusso termico trasferito al fluido termo-vettore
- la potenza elettrica prodotta

Per dettagli sul calcolo ed utilizzo delle resistenze termiche e coefficienti di scambio convettivi e conduttivi inseriti nei bilanci, si veda l’appendice A2.

Per una migliore precisione, è necessario tenere conto che nel modello i nodi più lontani al tubo non presentano scambio termico con quest’ultimo; sono quindi differenziati da tutti gli altri e, per essi, nella equazione di bilancio 3.42 scompare il flusso indicato con il sesto termine dell’equazione.

Le perdite ottiche (concettualmente analoghe a quelle di un collettore solare termico) sono state rappresentate con più precisione in figura 1.7. A livello di calcolo, quanto rappresentato è riassunto nel termine α_{pv} che indica la percentuale di radiazione effettivamente assorbita dai moduli (nettata della trasmissanza del vetro).
Il bilancio riferito ai nodi adiacenti al tubo è schematizzabile come segue (Fig. 3.12):

![Figura 3.12 bilancio energetico per il singolo volumetto di controllo per nodi adiacenti al tubo](image)

In termini matematici il bilancio del singolo elemento finito è scrivibile come

\[
\alpha_{pv}G = -k_{eq} s_{eq} \nabla^2 T + h_w (T - T_\alpha) + \varepsilon_v \sigma (T^4 - T_{sky}^4) + \\
\frac{T - T_f}{R_{ser} + R_{fluid}} + \frac{G}{G_{rif}} W_{el}^{rif} [1 - \beta(T - T_r)]
\]

(3.43)

Dove per la formulazione vale quanto detto per il caso precedente. A differenza di quest'ultimo non è presente il quinto termine, che rappresenta il contributo di dissipazione dal retro (tutto il calore ceduto verso il basso si considera assorbito dal fluido) ed è differente lo schema di resistenze termiche equivalenti.

Si noti che in entrambi i casi, salvo per il termine di riduzione della radiazione solare rispetto a quella di riferimento espresso dal rapporto G/G_{rif}, l'esplicitazione della produzione elettrica è del tutto analoga a quella proposta da Evans [1] in formula 1.2.
3.3.2 Bilancio energetico nella forma delle differenze finite

Conformemente a quanto illustrato ed esemplificato nel paragrafo 3.2, è possibile sviluppare le equazioni di bilancio energetico proposte secondo il metodo delle differenze finite. È da notare che la conduzione interna, espressa dal secondo termine dell’equazione 3.42 e 3.43 nella forma con laplaciano, è in analogia con i primi due termini dell’equazione 3.22, nella quale il laplaciano è invece esplicitato. A differenza dell’esempio presentato nel paragrafo 3.2, non verrà in questo modello considerata la convezione ai bordi del pannello. Il motivo risiede nel fatto che tale contributo, a causa degli esigui spessori, è quantitativamente irrilevante se rapportato, per esempio, alla convezione che si ha sulla superficie superiore (terzo termine del bilancio 3.42 e 3.43). Per questo motivo i bordi sono da ritenere approssimativamente isolati.

Alla luce di quanto detto, scrivendo il laplaciano come derivate parziali di secondo ordine e sviluppando le derivate numeriche come fatto nel paragrafo 2.3.1, è possibile ottenere per i nodi non adiacenti al tubo:

\[
-k_{eq}S_{eq} \frac{T_{i,j-1} - 2T_{i,j} + T_{i,j+1}}{(\Delta x)^2} + \frac{T_{i-1,j} - 2T_{i,j} + T_{i+1,j}}{(\Delta y)^2} + \alpha_p v G - h_w (T_{i,j} - T_a) - \epsilon v \sigma (T_{i,j}^4 - T_{sky}^4) +
\]

\[
- \frac{T_{i,j} - T_a}{R_{ser} + R_{back}} - \frac{T_{i,j} - T_f}{R_{par} + R_{ser} + R_{fluid}} +
\]

\[
- \frac{G}{G_{ref}} W_{el} \ r_{if} \ [1 + - \beta (T - T_r)] = 0 \quad (3.44)
\]

E per i nodi adiacenti al tubo:

\[
-k_{eq}S_{eq} \frac{T_{i,j-1} - 2T_{i,j} + T_{i,j+1}}{(\Delta x)^2} + \frac{T_{i-1,j} - 2T_{i,j} + T_{i+1,j}}{(\Delta y)^2} + \alpha_p v G +
\]

\[
-h_w (T_{i,j} - T_a) - \epsilon v \sigma (T_{i,j}^4 - T_{sky}^4) - \frac{T_{i,j} - T_f}{R_{ser} + R_{fluid}} +
\]

\[
- \frac{G}{G_{ref}} W_{el} \ r_{if} \ [1 + - \beta (T - T_r)] = 0 \quad (3.45)
\]

Dove, in più rispetto a quanto visto, \(\Delta x\) e \(\Delta y\) sono espressi in m.

È molto importante evidenziare le differenze nella nomenclatura dei nodi per gli esempi trattati e per la modellazione sul PVT. Nel paragrafo 3.2.1 è stata presentata una trattazione monodimensionale, nella quale un dato nodo era parametrizzato dalla sua numerazione i. Nel paragrafo 3.2.2 la
trattazione bidimensionale portava a localizzare un nodo in base alla sua j-esima riga e i-esima colonna. Nella sezione 3.2.3 i nodi sono stati indicati con numeri progressivi, nonostante la trattazione bidimensionale. Nel modello di calcolo numerico per il collettore PVT sarà talvolta usata, in base alla comodità, una notazione a 2 coordinate (indicando però con i la riga e con j la colonna, come in figura 3.11) oppure una notazione a numeri progressivi crescenti seguendo le colonne (altra notazione usata di default dal programma Matlab®, a cui si farà ricorso). Indipendentemente dalla notazione utilizzata è importante capire come l’equazione alle differenze finite riferita ad un particolare nodo, influisca direttamente solo sulle temperature dei nodi adiacenti, come si può osservare nell’esempio proposto nella sezione 3.2.3 e in figura 3.10 (nodi in rosso). La griglia di nodi è stata costruita in modo tale che alcuni nodi siano in corrispondenza dell’asse del tubo e che il tubo sia associabile ad un percorso tracciabile in ogni sua parte seguendo i giusti nodi della stessa griglia (vedi figura 3.13). La nomenclatura per le temperature del fluido si ricava associando, quindi, a questo, una griglia identica a quella introdotta per il pannello e sovrapponibile ad essa in senso verticale. Essa contiene il valore nullo nei nodi in cui non vi è passaggio del fluido. I nodi con valori non nulli sono rappresentati in figura 3.13.

Come si può osservare, il tubo a serpentino che passa sotto la piastra termica presenta nel modello sviluppato coppie di spigoli a 90° anziché curve a U. Si è ritenuto che ciò portasse una netta semplificazione della griglia senza introdurre errori significativi. È proprio a causa di questa
approssimazione nella forma del tubo che è possibile che tutti i nodi riferiti al fluido possano essere, come detto, proiezione di parte dei nodi della griglia sovrastante.

Entrambe le griglie di nodi sono costruite per avere una completa sovrapponibilità reciproca e in modo tale da ricalcare il passaggio dell’asse del tubo senza modificazioni del passo. Un nodo omologo delle due griglie si potrà parimenti indicare con gli stessi pedici i,j.

Si noti che il penultimo termine dell’equazione 3.44 contiene la temperatura nel fluido in un nodo p, codice generico per indicare il nodo associato al fluido più vicino al nodo di superficie in analisi. Nel bilancio 3.45 invece, la temperatura del fluido è quella del nodo omologo del pannello, sovrapposto in senso verticale. È per questo motivo che viene anch’essa indicata con pedici i,j.

Non conoscendo inizialmente il campo di temperature del fluido, in prima approssimazione sarà ipotizzato un valore costante e di ordine di grandezza verosimile. Tali temperature sono, infatti, un input necessario per la risoluzione del campo di temperature del PVT, non solo direttamente per risolvere le equazioni di bilancio, ma anche per calcolare il coefficiente di scambio termico convettivo e la resistenza associata alla convezione operata dal fluido. Avendo ipotizzato tali valori il procedimento dovrà essere iterativo.

Sviluppando l’ultimo termine delle equazioni 3.45 e 3.44 e raccogliendo i termini di temperatura dei diversi nodi si ottiene dalla 3.44 (nodi non adiacenti al tubo):

$$
\frac{T_{i,j-1}}{\Delta x^2} + \frac{T_{i,j+1}}{\Delta x^2} + \frac{T_{i-1,j}}{\Delta y^2} + \frac{T_{i+1,j}}{\Delta y^2} - T_{i,j} \left[\frac{2}{\Delta x^2} + \frac{2}{\Delta y^2} + \frac{1}{k_{eq}^2} \left(h_w + \frac{1}{R_{ser} + R_{back}} + \frac{1}{R_{par} + R_{ser} + R_{fluid}} \right) - \frac{G}{G_{ref}} \omega_{ref} \right] - \frac{\ve_{eq} \sigma}{k_{eq}^2} T_{i,j}^4 = - \frac{1}{k_{eq}^2} \left[\alpha_p v G + \frac{1}{k_{eq}^2} \beta T_A \right] + \frac{G}{G_{ref}} \omega_{ref} \beta T^* + h_w T_A + \frac{\ve_{eq} \sigma T_{sky}^4}{R_{ser} + R_{back}} + \frac{\tau_f}{R_{par} + R_{ser} + R_{fluid}} \right], \tag{3.46}
$$
È necessario scrivere la 3.46 o 3.47 per tutti i nodi in analisi, ottenendo un sistema di \(i \times j \) equazioni in \(i \times j \) incognite. Si noti, tuttavia, che queste ultime sono valide solo per nodi che non sono agli estremi della superficie considerata.

Per scrivere le corrispondenti equazioni per i nodi estremanti si procede analogamente a quanto visto nel paragrafo 3.2.2 per ottenere l’equazione 3.34 con il metodo del nodo immaginario. Ipotizzando, per esempio, di voler scrivere quindi tale equazione per un nodo collocato sul margine sinistro della superficie, ovvero per \(j=1 \), il primo termine della 3.34 indicherebbe la temperatura di un nodo inesistente sulla colonna \(j=0 \). Lo sviluppo proposto in paragrafo 3.2.2 porta quindi alla comparsa di un coefficiente 2 riferito al nodo opposto a quello non esistente, unitamente alla scomparsa del termine riferito nodo inesistente.

L’equazione per il nodo dell’esempio diventa quindi per i nodi non adiacenti al tubo:

\[
2 \frac{T_{i,j}}{(\Delta x)^2} + \frac{T_{i-1,j}}{(\Delta y)^2} + \frac{T_{i+1,j}}{(\Delta y)^2} - T_{i,j} \left[\frac{2}{(\Delta x)^2} + \frac{2}{(\Delta y)^2} + \frac{1}{k_{eq}\gamma_{eq}} \left(\frac{h_w}{R_{ser} + R_{fluid}} + \frac{1}{R_{par} + R_{ser} + R_{fluid}} \right) \right] - \frac{G}{G_{rif}} W_{el} r^i \beta \left[\frac{\epsilon_{v} \sigma}{k_{eq}\gamma_{eq}} T_{i,j}^4 \right] = - \frac{1}{k_{eq}\gamma_{eq}} \left[\alpha_{pv} G + \frac{G}{G_{rif}} W_{el} r^i \beta T_{r} + h_w T_a + \epsilon_{v} \sigma T_{sky}^4 + \frac{T^f_{i,j}}{R_{ser} + R_{fluid}} \right]
\]

(3.48)

e analogamente per i nodi sugli altri tre margini.
Per il caso di nodi adiacenti al tubo (i nodi marginali riferiti al tubo sono solo quello di ingresso e di uscita) l’equazione diventa per il nodo di ingresso tubo in modo analogo:

\[
\frac{T_{i,j-1}}{\Delta x^2} + \frac{T_{i,j+1}}{\Delta x^2} + 2 \frac{T_{i-1,j}}{\Delta y^2} \frac{T_{i,j}}{\Delta y^2} - T_{i,j} \left[\frac{2}{\Delta x^2} + \frac{2}{\Delta y^2} + \frac{1}{k_{eq}^{seq}} \left(h_w + \frac{1}{R_{ser} + R_{tub}} \right) + \frac{G}{G_{rif}} W_{el} \right] \beta - \frac{G}{G_{rif}} W_{el} \beta T_r + h_w T_a + e_v \sigma T_{sky}^4 + \frac{T_{i,j}}{R_{ser} + R_{fluid}} \right]
\]

Si noti che l’uscita del tubo si può trovare sullo stesso lato dell’ingresso o sul lato opposto (come nell’esempio di Fig. 3.17) in base a quante curve esegue lo stesso. Nel primo caso la formulazione dell’equazione di bilancio per l’uscita è uguale a quella per l’ingresso (3.49). Nel secondo caso invece il termine di temperatura per il nodo i-1,j scompare e il coefficiente 2 si sposta sul termine di temperatura per il nodo i+1,j.

Nel procedere della stesura del programma, la complicazione crescente ha portato alla scelta di fissare definitivamente il numero di tubi uguale a 2 (quindi una sola curva, conformemente al collettore PVT a disposizione).

Un discorso equivalente si può fare per i quattro vertici della superficie (non adiacenti in nessun caso al tubo), dove tuttavia i nodi inesistenti, volendo scrivere la 3.46, sono due. Come si può vedere nella formula 3.41, l’approccio con nodi immaginari porta alla comparsa del coefficiente 2 nei due soli nodi adiacenti rimasti. Per il vertice in alto a sinistra si ottiene quindi

\[
2 \frac{T_{i+1,j}}{\Delta x^2} + 2 \frac{T_{i,j+1}}{\Delta y^2} - T_{i,j} \left[\frac{2}{\Delta x^2} + \frac{2}{\Delta y^2} + \frac{1}{k_{eq}^{seq}} \left(h_w + \frac{1}{R_{ser} + R_{tub}} \right) + \frac{G}{G_{rif}} W_{el} \right] \beta - \frac{G}{G_{rif}} W_{el} \beta T_r + h_w T_a + e_v \sigma T_{sky}^4 + \frac{T_{i,j}}{R_{ser} + R_{fluid}} \right]
\]

e analogamente per i nodi sui rimanenti tre vertici. Si possono scrivere, a questo punto, tutte le equazioni del sistema.

Implementando il modello numerico con il software Matlab®, si è ritenuto utile creare due matrici, \(X\) e \(Y\), contenenti in modo appropriato dei codici identificativi per i vari nodi. La matrice \(X\) indica il posizionamento dei vari nodi, ovvero se sono adiacenti o meno al tubo e/o estremanti. La matrice
Y indica invece dei codici associabili a diversi meccanismi di scambio termico con il fluido, il quale può essere più o meno lontano dal nodo in analisi a cui quindi deve essere associata una resistenza termica opportuna per il trasferimento dal calore. A nodi che presentano la stessa coppia di codici numerici X-Y sono state quindi assegnate analoghe condizioni al contorno.

3.3.3 Forma matriciale per la risoluzione del campo di temperature del PVT

Nel paragrafo precedente sono state ricavate tutte le equazioni che descrivono il sistema in analisi. Le \(i^*j \) incognite delle \(i^*j \) equazioni sono i termini di temperatura \(T \), presenti anche nella forma di quarto grado nel termine radiativo. La forma matriciale, implementata in linguaggio Matlab®, è la più comoda per la risoluzione di sistemi con numerose equazioni ed incognite. Per facilitare la formulazione del problema in tale forma, si rende utile creare una matrice dei coefficienti C relativa ai termini di primo grado e una contenente i coefficienti del termine di quarto grado, denominata C\textsubscript{RAD}. Proprio per le dimensioni elevate delle matrici costruite, non si ritiene opportuno trascriverle interamente. La figura 3.14 rappresenta l'output della funzione \textit{spy} eseguita in Matlab® sulla matrice C, contenente i coefficienti delle temperature non elevate alla quarta, secondo la forma presentata nel paragrafo 3.2.3. Vengono evidenziate le posizioni dei termini della matrice diversi da zero.

![Figura 3.14 grafico ottenuto come output della funzione Matlab® spy(C)](image-url)
La matrice risulta essere a banda.
I termini alla quarta sono presenti, nelle equazioni del sistema, solo riferiti alla temperatura dello stesso nodo per il quale si sta scrivendo l’equazione di bilancio. Di conseguenza il coefficiente diverso da zero nella matrice \(C_{RAD} \) sarà sempre collocato sulla diagonale. Questo si può spiegare con il fatto che la riga n della matrice rappresenta l’equazione di bilancio dell’n-esimo nodo, il cui coefficiente della propria stessa temperatura risiede nella n-esima colonna. Si può vedere quindi come il comando \texttt{spy} restituisca questa volta proprio una matrice diagonale (Fig. 3.15).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figura3.15}
\caption{Figura 3.15 grafico ottenuto come output della funzione Matlab® \texttt{spy(C_RAD)}}
\end{figure}

Conformemente all’esempio di paragrafo 3.2.3, i termini noti delle equazioni relative ad ogni nodo (secondo membro delle equazioni 3.46, 3.47, 3.48, 3.49 e 3.50) sono inseriti nella matrice \(BC \). Tale matrice presenta termini diversi in base alle casistiche presentate nel paragrafo precedente. Nell’implementazione in Matlab® si è ricorso ad una matrice ausiliaria \(BC_{FLUID} \) per diversificare tali termini. Tale matrice, sommata poi a \(BC \) e conservando il nome \(BC \), provvede in modo appropriato alla modificazione dei termini con diverse condizioni al contorno. Quest’ultima risulta essere una matrice colonna, così come le matrici \(T \) e \(T^4 \) che contengono le temperature incognite. Il problema espresso in forma matriciale si può schematizzare come nella figura 3.16.
Come già anticipato, una volta impostate tutte le matrici e considerata la particolarità delle stesse, si ricorrerà alla risoluzione tramite metodo di Newton. Si ottiene in questo modo il campo di temperature del PVT.

3.3.4 Calcolo della distribuzione di temperatura del fluido termo-vettore

Una volta nota la distribuzione di temperatura T del materiale equivalente, è possibile calcolare la temperatura che acquisirà il fluido scaldandosi a contatto con esso. Il calore trasmesso dalla piastra al fluido è calcolabile come:

$$Q_{fluid_{i,j}} = T_{i,j} - T^f_{i,j} + \sum_i \frac{T_i - T^f_{i,j}}{R_{ser} + R_{fluid}} + \frac{T_i - T^f_{i,j}}{R_{par} \cdot R_{ser} + \frac{1}{S_{eq} dy}}$$ \hspace{1cm} (3.51)

A denominatore sono comparsi dei rapporti per le sezioni di passaggio del flusso in quanto questa volta il bilancio è espresso in W. In caso di nodi appartenenti al lato corto del tubo la sezione di passaggio a denominatore del termine R_{par} diventa $S_{eq} \cdot dy$ in quanto la trasmissione del calore avviene seguendo la direzione y. Nel primo termine le temperature del materiale equivalente sono da considerarsi su nodi omologhi in senso verticale; rappresenta quindi il flusso termico dal materiale equivalente sovrastante. Il secondo termine rappresenta invece la sommatoria dei contributi di flusso termico derivanti dagli I nodi in prossimità (in senso trasversale) del fluido ma non direttamente sovrastanti. I assume valore massimo uguale a 4, ossia il fluido riceve calore, secondo il modello, da massimo 4 volumi di controllo che sono in prossimità ma non verticalmente sovrapposti. Il valore I varia in base alla posizione del nodo in analisi, ovvero se ci
troviamo per esempio in una parte di tubo rettilineo o di curva. La matrice Y è stata introdotta nel modello principalmente allo scopo della facile individuazione degli l nodi coinvolti in questo meccanismo di scambio termico.

È necessario notare che è stato posto un apice $k-1$ alle temperature del fluido. Ciò significa che il calcolo utilizza, per calcolare tale termine di flusso termico, la temperatura del nodo in analisi riferita all'iterazione precedente. La temperatura dell'iterazione in corso è ancora incognita ed è proprio l'obiettivo di questo calcolo e del successivo. I termini $Q_{\text{fluid}_{i,j}}$ sono calcolati in modo progressivo al procedere dello scorrimento del fluido e seguendo i nodi del suo corso.

Al nodo di ingresso del tubo viene associato un valore di calore in ingresso nullo e una temperatura uguale a quella nota di ingresso fluido. Per tutti i nodi a seguire si calcola quindi il calore in ingresso $Q_{\text{fluid}_{i,j}}$, in modo approssimato, rispetto al valore di temperatura del fluido calcolato nell'iterazione precedente.

In definitiva $Q_{\text{fluid}_{i,j}}$, rappresenta, in W, la parte di calore entrante nel fluido fra il nodo i,j e il precedente nel senso dello scorrimento del fluido. Alla luce di quanto detto, la temperatura del fluido riferita al nodo successivo rispetto all'ultimo calcolato è scrivibile come:

$$T_{f_{i,j}} = T_{f_{b}} + \frac{Q_{f_{\text{fluid}_{i,j}}}}{m_{\text{fluid}} C_{p_{\text{fluid}}}}$$ \hspace{1cm} (3.52)

Dove il pedice b indica il nodo precedente al nodo i,j nel senso dello scorrimento del fluido. Inoltre:

- m_{fluid} è la portata massica del fluido termo-vettore [kg/s]
- $C_{p_{\text{fluid}}}$ è il calore specifico a pressione costante del fluido termovettore, calcolato alla pressione del fluido (ritenuta costante trascurando le perdite di carico) e alla temperatura $T_{f_{b}}$ [J/kg/K]

A questo punto è nota anche la distribuzione di temperatura del fluido all'interno del tubo.
3.3.5 Procedimento iterativo e schema dell'implementazione in Matlab®

Nei paragrafi precedenti è stato esplicitato il procedimento che permette di ricavare la distribuzione di temperatura del pannello e del fluido che opera il raffrescamento. Le distribuzioni ottenute derivano, però, da dati iniziali ipotizzati per temperature non note. Per giungere a risultati corretti è quindi necessario procedere tramite iterazioni dell’intero procedimento descritto nel presente paragrafo 3.3. Le soluzioni saranno ritenute corrette quando i dati ottenuti in due iterazioni successive avranno uno scostamento inferiore a 10^{-6} (in questo caso, gradi Kelvin).

In particolare, una volta ottenuta la temperatura del fluido come descritto nel paragrafo 3.3.4, si confronta la stessa con quella ipotizzata all’inizio o dell’iterazione precedente. Se la loro differenza è maggiore di 10^{-6} si ripete l’intero procedimento utilizzando come dati di ingresso le distribuzioni di temperatura calcolate e giungendo a nuove. Quando lo scostamento nella distribuzione di temperatura del fluido in due iterazioni successive è inferiore all’errore tollerabile imposto, le iterazioni terminano e la distribuzione calcolata, unita a quella della temperatura del materiale equivalente, è da considerarsi corretta.

Come detto, quanto descritto può essere elaborato in codice Matlab®, conservando la struttura presentata e iterandola utilizzando il ciclo while. Uno schema riassuntivo del programma Matlab® creato è rappresentato in figura 3.17.

A livello computazionale, per la soluzione con il metodo di Newton del problema alle differenze finite si rende necessario alla prima iterazione ipotizzare anche una distribuzione di temperatura del materiale equivalente. Questa verrà poi data come input alla funzione che implementa tale metodo. La distribuzione calcolata verrà poi utilizzata come input nella stessa funzione nell’iterazione successiva e così di seguito.

La temperatura del fluido è ipotizzata come dato noto (altrimenti nel sistema si avrebbero più incognite rispetto alle equazioni disponibili), che sarà considerato incognito solo nel passaggio successivo alla risoluzione del problema alle differenze finite. In quest’ultimo, invece, la temperatura del materiale equivalente è invece l’unica vera e propria incognita (come distribuzione), che viene ipotizzata solo a livello pratico perché così prevede la risoluzione con il metodo di Newton.
Capitolo terzo: Modelli termici

Controlli preliminari sul numero di nodi

Costruzione della griglia

Identificazione posizione nodi asse tubo e costruzione matrici X e Y tipologia nodi

Costruzione matrici dimensioni volumi di controllo

Calcolo delle resistenze termiche conduttive e convettive coinvolte

Costruzione matrice coefficienti C
Costruzione matrice coefficienti C_RAD
Costruzione matrice termini noti BC
(con ausilio di matrice BC_FLUID)

Metodo di Newton

Solo per 1° iter
Inizializzazione distribuzione T_f ipotizzata

Solo per 1° iter
Inizializzazione distribuzione T ipotizzata

Calcolo di Q_{fluid}

T

T_F

Itero utilizzando T e T_f trovati

Figura 3.17: sintesi schematica del modello stazionario implementato
3.3.6 Bilancio energetico globale e rendimenti

L'obiettivo dell'analisi in corso è quello di calcolare le prestazioni termiche ed elettriche del collettore. Per arrivare a ciò è necessario procedere come descritto nel seguito.

Una volta ottenuto il campo di temperature per il materiale equivalente e per il fluido termo-vettore, si possono utilizzare i risultati per il calcolo dei rendimenti e per la verifica tramite bilancio energetico riferito all'intero sistema. A partire dalla distribuzione di temperatura T è possibile calcolare il rendimento elettrico dei componenti elettrogeni tramite la formula 1.2 già presentata (eventualmente corretta per una radiazione inferiore a quella di riferimento). Da questo calcolo si ricava necessariamente una distribuzione del rendimento elettrico riferito ad ogni nodo, essendo la temperatura non costante in tutta la superficie.

È da evidenziare che quest'ultimo è un passaggio chiave nella soluzione proposta, in quanto è proprio il miglioramento del rendimento elettrico causato dal raffrescamento operato dal fluido a costituire uno dei principali pregi della tecnologia PVT.

Per verificare la correttezza del procedimento eseguito è possibile scrivere un bilancio energetico globale, schematicizzabile come si può osservare in figura 3.18.

![Figura 3.18: schematizzazione del bilancio energetico globale](image-url)
I vari contributi sono calcolabili come segue:

\[
Q_{\text{sole}} = \sum_n A_{\text{cell}}^n G \tag{3.53}
\]

\[
Q_{\text{perdite ottiche}} = \sum_n (1 - \alpha_{pv}) A_{\text{cell}}^n G \tag{3.54}
\]

\[
Q_{\text{perdite cond.conv. retro}} = \sum_i \frac{1}{R_{\text{back}} + R_{\text{ser}}} A_{\text{cell}}^i (T_i - T_a) + \sum_i \frac{1}{R_{\text{back2}} + R_{\text{fluid}}} A_{\text{cell}}^i (T_{fi} - T_a) \tag{3.55}
\]

\[
Q_{\text{perdite conv. fronte}} = \sum_n h_w A_{\text{cell}}^n (T_n - T_a) \tag{3.56}
\]

\[
Q_{\text{perdite radiative}} = \sum_n \varepsilon \sigma A_{\text{cell}}^n (T_n^4 - T_{sky}^4) \tag{3.57}
\]

\[
Q_{\text{utile fluido}} = \sum_n Q_{\text{fluid}}^n \tag{3.58}
\]

\[
P_{\text{ellettrica}} = \sum_n \frac{G}{G_{\text{rif}}} W_{el}^r A_{\text{cell}}^n [1 - \beta (T_n - T_r)] \tag{3.59}
\]

In questo caso, essendo il bilancio globale, i termini sono ottenuti come sommatoria per tutti i volumi di controllo finiti considerati. La sommatoria contiene la moltiplicazione per l’area superficiale del singolo elemento. Tali bilanci sono quindi espressi, come unità di misura, in W.

Differenemente da quanto già introdotto:

- \(n \) è il numero totale dei nodi considerati ed è quindi uguale a \(ij \) [ad]
- \(A_{\text{cell}} \) è l’area superficiale del volume di controllo del singolo nodo [m²]
- \(l \) è un diverso pedice indicato qui per conteggiare tutti i nodi che non hanno tubo adiacente [ad]
- \(i \) è un ulteriore diverso pedice indicato per conteggiare tutti i nodi che hanno tubo adiacente [ad]
- \(Q_{\text{fluid}} \) è il calore entrante nel fluido fra il nodo \(n \) e quello precedente nel senso dello scorrimiento del fluido, già calcolato precedentemente nel paragrafo 3.3.4 secondo la formula 3.51 [W]
- \(R_{\text{back2}} \) è analoga ad \(R_{\text{back}} \), ma, nella sua formulazione, lo spessore dell’isolante è ridotto della dimensione del diametro del tubo [m²K/W].

Come si può osservare anche dalla figura 3.18, solo il primo di questi contributi è in ingresso, mentre gli altri sono tutti in uscita. Sommando questi ultimi è poi possibile confrontare potenza in ingresso e in uscita (uguali, come anticipato, per il caso stazionario) secondo l’identità...
Capitolo terzo: Modelli termici

\[Q_{sole} = Q_{\text{perdite ottiche}} + \\
+ Q_{\text{perdite cond/conv retro}} + Q_{\text{perdite conv fronte}} + Q_{\text{perdite radiative}} + \\
+ Q_{\text{utile fluido}} + P_{\text{elettrica}} \quad (3.60) \]

e calcolare con che errore si chiude il bilancio energetico.

I rendimenti del PVT sono infine calcolabili come:

\[\eta_{\text{elettrico}} = \frac{W_{\text{el}}}{Q_{\text{sole}}} \quad (3.61) \]

\[\eta_{\text{termico}} = \frac{Q_{\text{utile fluido}}}{Q_{\text{sole}}} \quad (3.62) \]

\[\eta_{1^{\text{e principio}}} = \frac{(W_{\text{el}} + Q_{\text{utile fluido}})}{Q_{\text{sole}}} \quad (3.63) \]
3.4 Modello dinamico per l’analisi di un collettore PVT-w sheet-and tube

L’analisi condotta finora ha avuto come assunzione di base la completa stazionarietà del sistema. Tutte le grandezze introdotte sono state quindi ritenute costanti. A causa dell’intrinseca variabilità delle condizioni meteo, un modello stazionario per l’analisi di un collettore solare porta con sé delle approssimazioni decisamente grossolane. Si rende necessario quindi importare nel modello precedentemente proposto delle grandezze tempo-variabili e considerare l’accumulo di energia interna legato alla transizione delle condizioni operative. Il metodo utilizzato per affrontare questi nuovi aspetti dell’analisi è ancora quello delle differenze finite. La differenza principale risiede nella comparsa di derivate temporali associate alla variazione di temperatura. Si evidenzieranno nei paragrafi seguenti le sole differenze rispetto agli aspetti del metodo già introdotti, senza approfondire ulteriormente o esemplificare il metodo delle differenze finite in relazione ad una analisi instazionaria. Quanto non specificato è da ritenersi analogo a quanto introdotto per il modello stazionario.

3.4.1 Formulazione implicita del modello termico dinamico tramite il metodo delle differenze finite

L’analisi dinamica parte, analogamente alla stazionaria, con la formulazione del bilancio energetico. Questo è in tutto simile a quanto descritto nel paragrafo 3.3.1 e rappresentato in figura 3.11 per i nodi non adiacenti al tubo e figura 3.12 per i nodi adiacenti al tubo. Il bilancio deve ora, tuttavia, tenere conto dell’accumulo di energia interna che si ha nel materiale equivalente, influenzato dalle condizioni al contorno variabili. Compare quindi un unico nuovo termine che trasforma, per il singolo volumetto di controllo, le equazioni di bilancio 3.42 e 3.43 nelle seguenti. Per nodi non adiacenti al tubo:

\[
\frac{\sum (\rho \nu \epsilon) \frac{\partial T}{\partial t}}{\text{d}x\text{d}y} = \alpha_{pv} G + k_{eq} s_{eq} \nu^2 T - h_w (T - T_a) - \varepsilon \sigma (T^4 - T_{sky}^4) + \\
- \frac{T - T_a}{R_{ser} + R_{back}} - \frac{T - T_f}{R_{par} + R_{ser} + R_{fluid}} - \frac{G}{c_{ritf}} W_{el} \tau_{el} \left[1 - \beta (T - T_f)\right] \quad (3.64)
\]
Per nodi adiacenti al tubo:

\[
\sum_{i} (\rho_i V_i c_i) \frac{\partial T}{\partial t} \Delta x \Delta y = \alpha_{pv} G + k_{eq} \frac{P^2}{\pi x^2} - h_w (T - T_a) - \varepsilon \sigma (T^4 - T_{sky}^4) + \\
- \frac{G_{ser} + G_{fluid}}{R_{ser} + R_{fluid}} \frac{G}{g_{ref}} \frac{W}{t^{ref}} [1 - \beta (T - T_r)] \tag{3.65}
\]

Nelle quali il nuovo termine, posto a primo membro, rappresenta l’accumulo di energia interna nel materiale equivalente e, differentemente da quanto già introdotto (unità di misura fra parentesi quadre):

- \(\rho_i\) è la densità dell’i-esimo materiale del materiale equivalente [kg/cm\(^3\)]
- \(V_i\) è il volume dell’i-esimo materiale del materiale equivalente associato al volume di controllo in analisi [cm\(^3\)]
- \(c_i\) è il calore specifico dell’i-esimo materiale del materiale equivalente [J/kg/K]
- \(\Delta x \Delta y\) è la superficie del volumetto di controllo in analisi [m\(^2\)]
- \(t\) è il tempo, variabile di derivazione della temperatura del materiale equivalente [s]

Il primo membro, esclusa la divisione per l’area superficiale del volume di controllo, che viene eseguita per avere coerenza di trattazione e unità di misura W/m\(^2\) analogamente al secondo membro, rappresenta l’esplicitazione del termine di accumulo dell’energia interna scrivibile come \(\frac{\partial U}{\partial t}\).

La scrittura sotto forma di differenze finite della derivata parziale rispetto al tempo porta con sé la scelta dell’approccio concettuale che verrà utilizzato per calcolare le temperature dei vari nodi del materiale equivalente. Si è scelto nel presente lavoro di ricorrere al metodo implicito, che verrà definito meglio a seguire. Il metodo implicito è concettualmente correlato all’adozione della differenza all’indietro per la formulazione della derivata prima rispetto al tempo. Il primo membro delle precedenti equazioni risulta quindi essere:

\[
\frac{\sum_i (\rho_i V_i c_i) T_{i,j}^t - T_{i,j}^{t-1}}{\Delta x \Delta y} \frac{\Delta t}{\Delta t}
\]

A fini di una migliore comprensione del metodo si scrive di seguito la formulazione del bilancio energetico 3.65 e 3.64 ricorrendo alla formula della differenza all’indietro appena riportata e manipolando i termini in modo analogo a quanto fatto nel paragrafo 3.3.2. Tutti i termini a secondo membro delle equazioni precedenti che sono variabili con il tempo sono
da ritenersi riferiti, secondo la logica del metodo implicito e avendo sviluppato la differenza all’indietro per la derivazione temporale, all’istante t-esimo.

Si ha per i nodi non adiacenti al tubo:

\[
\frac{T_{i,j-1}^t}{(\Delta x)^2} + \frac{T_{i,j+1}^t}{(\Delta x)^2} + \frac{T_{i-1,j}^t}{(\Delta y)^2} + \frac{T_{i+1,j}^t}{(\Delta y)^2} - T_{i,j}^t \left[\frac{2}{(\Delta x)^2} + \frac{2}{(\Delta y)^2} + \frac{1}{k_{eq \text{eq}}} \right] h_w^t + \\
\frac{1}{R_{\text{ser}+R_{\text{back}}}^t} + \frac{1}{R_{\text{par}+R_{\text{ser}}+R_{\text{fluid}}}^t} - \frac{c_t^t}{\bar{c}_{\text{rif}}} W_{\text{el}}^{\text{rif}} \beta + \frac{\Sigma (\rho_i v_i c_i)}{\Delta x \Delta y \Delta t} \right] - \frac{\epsilon_v \sigma}{k_{eq \text{eq}}} T_{i,j}^t t^4 + \\
- \frac{1}{k_{eq \text{eq}}} \alpha_{pp} G \frac{t^t}{t^t} - \frac{c_t^t}{\bar{c}_{\text{rif}}} W_{\text{el}}^{\text{rif}} - \frac{c_t^t}{\bar{c}_{\text{rif}}} W_{\text{el}}^{\text{rif}} \beta T_r + h_w^t T_a^t + \epsilon_v \sigma T_{\text{sky}}^t t^4 + \\
+ \frac{t_a^t}{R_{\text{ser}+R_{\text{back}}}^t} + \frac{\tau_f^t}{R_{\text{par}+R_{\text{ser}}+R_{\text{fluid}}}^t} + T_{i,j}^t t^t - \frac{1}{\Delta x \Delta y \Delta t} \right] \quad (3.66)
\]

E per quelli adiacenti al tubo:

\[
\frac{T_{i,j-1}^t}{(\Delta x)^2} + \frac{T_{i,j+1}^t}{(\Delta x)^2} + \frac{T_{i-1,j}^t}{(\Delta y)^2} + \frac{T_{i+1,j}^t}{(\Delta y)^2} - T_{i,j}^t \left[\frac{2}{(\Delta x)^2} + \frac{2}{(\Delta y)^2} + \frac{1}{k_{eq \text{eq}}} \right] h_w^t + \\
\frac{1}{R_{\text{ser}+R_{\text{fluid}}}^t} - \frac{c_t^t}{\bar{c}_{\text{rif}}} W_{\text{el}}^{\text{rif}} \beta + \frac{\Sigma (\rho_i v_i c_i)}{\Delta x \Delta y \Delta t} \right] - \frac{\epsilon_v \sigma}{k_{eq \text{eq}}} T_{i,j}^t t^4 = - \frac{1}{k_{eq \text{eq}}} \alpha_{pp} G \frac{t^t}{t^t} + \\
- \frac{c_t^t}{\bar{c}_{\text{rif}}} W_{\text{el}}^{\text{rif}} - \frac{c_t^t}{\bar{c}_{\text{rif}}} W_{\text{el}}^{\text{rif}} \beta T_r + h_w^t T_a^t + \epsilon_v \sigma T_{\text{sky}}^t t^4 + \\
+ \frac{\tau_f^t}{R_{\text{ser}+R_{\text{fluid}}}^t} + T_{i,j}^t t^t - \frac{1}{\Delta x \Delta y \Delta t} \right] \quad (3.67)
\]

Dove valgono tutte le norme di sintassi considerate nel caso stazionario e dove, in aggiunta a quanto già introdotto, \(\Delta t\) rappresenta il passo temporale di discretizzazione.

A differenza di alcune condizioni legate a differenti meccanismi di scambio termico, l’accumulo di energia interna nel materiale è un fenomeno che interessa l’intera superficie e quindi tutti i nodi riferiti ai vari volumetti di controllo. Il termine aggiuntivo rispetto alla parte stazionaria è presente, di conseguenza, nella stesura di tutte le singole equazioni di bilancio riferite ad ogni nodo.

Le considerazioni fatte nel caso stazionario in merito ai nodi estremanti del pannello sono del tutto analoghe. Sono scrivibili, a questo punto, tutte le \(i^j\) equazioni associate ai singoli volumi di controllo.
Capitolo terzo: Modelli termici

Dalle equazioni 3.67 e 3.66 si può intendere meglio il concetto di metodo di risoluzione implicito. Il metodo viene definito tale in quanto le equazioni presentano innumerevoli incognite, calcolabili solo tramite la risoluzione simultanea di un set di equazioni coerenti. Tutte le temperature dei nodi al passo temporale t-esimo sono infatti l’obiettivo del calcolo eseguito. L’unica temperatura nota è quella riferita al $(t-1)$-esimo passo temporale e allo stesso nodo per il quale si sta eseguendo il bilancio, ovvero la temperatura che quel nodo aveva nell’intervallo precedente (ultimo termine delle due precedenti equazioni). Se si fosse scelto di scrivere la derivata temporale come differenza in avanti si sarebbe giunti ad una formulazione con metodo esplicito. Tutte le temperature nell’istante t sarebbero state considerate note essendo nota la distribuzione di temperatura iniziale. Sarebbe comparsa nei conti la temperatura del nodo in analisi al passo temporale $t+1$, unica incognita. Il calcolo delle temperature al passo $t+1$ di tutti i nodi della superficie (una incognita per ogni equazione scritta riferita al singolo nodo) è immediato. Nel nostro caso invece le incognite in ogni equazione sono molteplici. La conoscenza della distribuzione iniziale di temperatura è riferita al passo temporale $t-1$ e porta ad avere un solo termine di temperatura noto in ogni equazione scritta. Ne risulta, per ogni passo temporale, un sistema di $i*j$ equazioni in $i*j$ incognite.

3.4.2 Forma matriciale del problema dinamico e iterazioni tempo-dipendenti

Una volta terminata la stesura delle equazioni di bilancio nella forma delle differenze finite definite nel paragrafo precedente, si procede con la trasposizione del sistema in forma matriciale. Le matrici hanno la stessa forma e nomi di quelle presentate per il caso stazionario nel paragrafo 3.3.3. La risoluzione del campo di temperature passa, ancora una volta, attraverso l’implementazione del metodo di Newton. Non verrà ulteriormente esplicitata la struttura matriciale del problema, identica a quanto già presentato. Si evidenziano solo le differenze concettuali con la stessa.

Le iterazioni che nel modello stazionario portavano a convergenza le equazioni nascoste nei calcoli matriciali, rappresentavano una realtà congelata nel tempo per un periodo indefinitamente lungo. In quel caso veniva posta l’energia in ingresso uguale a quella di uscita. L’idea di accumulo di energia è intrinsecamente collegata a quella di sviluppo temporale. Un accumulo di energia permette che l’energia in ingresso non coincida con quella in uscita. Non è quindi necessaria una convergenza
dei conti basata su tale uguaglianza. La differenza fra i due termini risulta essere l’accumulo di energia interna che si rende disponibile nel periodo seguente. Il ciclo iterativo che portava quindi a convergenza i conti nel caso stazionario diventa, nel dinamico, un ciclo sequenziale di risoluzione di intervalli successivi. Il ciclo registra quindi un avanzamento lineare nel tempo anziché risolvere continuamente le stesse equazioni per lo stesso indefinito periodo “congelato” di tempo stazionario.

Una volta compreso tale aspetto, si evince con facilità che le matrici che nel caso stazionario si sovrascrivevano ad ogni iterazione essendo riferite ad uno stesso istante (con eccezione di quelle sulle quali si effettuava il controllo della convergenza calcolando lo scostamento fra due iterazioni successive), ora aumentano di una dimensione per considerare anche la variabile tempo.

Nell’implementazione al calcolatore questo conduce al fatto che i vettori tempo-dipendenti passano, se zero-dimensionali, a monodimensionali, se monodimensionali, a bidimensionali e se bidimensionali a tridimensionali. La dimensione aggiuntiva contiene i valori dinamici negli intervalli successivi al primo e non più unico. Le quattro matrici utilizzate dal metodo di Newton (ad eccezione di C_RAD che è costante nel tempo) diventano visualizzabili quindi, per esempio, non più come quadrati di numeri, ma come cubi di numeri, nei quali la profondità registra il variare della matrice negli istanti di tempo successivi.

Il programma in linguaggio Matlab® implementato risulta essere un aggiustamento di quello stazionario, con l’aggiunta dei nuovi termini di energia interna e una modifica della sintassi, necessaria per descrivere la nuova logica tempo-dipendente. Anche la restante parte di calcolo della potenza termica trasmessa al fluido e della sua temperatura, rimane sostanzialmente invariata.

Lo schema del programma sviluppato in Matlab® rimane quello visto in figura 3.17, con la differenza concettuale nel significato delle iterazioni e con la necessità di introdurre una distribuzione di temperatura ancora precedente rispetto a quella iniziale (quasi come fosse un passo temporale zero) legata all’utilizzo, anche per il primo passo temporale, della differenza all’indietro nella scrittura della derivata rispetto al tempo. L’output principale del programma sono le K distribuzioni di temperatura del materiale equivalente in tutti i K istanti di tempo analizzati.
3.4.3 Flussi termici e rendimenti dinamici

Come per il modello stazionario, obiettivo dei conti è ancora una volta la rilevazione delle prestazioni, qui soggetta, però, ad evoluzione temporale. Una volta calcolate le distribuzioni di temperatura negli istanti di tempo analizzati e le relative influenze sulle resistenze termiche coinvolte, è possibile seguire un approccio analogo a quello presentato nel paragrafo 3.3.6 per calcolare i flussi termici e i rendimenti. La schematizzazione del bilancio energetico è quella rappresentata in figura 3.18. Si rende necessario, tuttavia, evidenziare che il bilancio globale contiene un ulteriore termine, l'accumulo di energia interna, non rappresentabile attraverso una freccia in quanto contributo né entrante né uscente dal sistema. Viene quindi considerato in seno al materiale e risulta essere, come detto, la differenza fra i contributi energetici entranti ed uscenti dal sistema.

Le formule dalla 3.53 alla 3.59 possono essere usate, indicando il periodo temporale in considerazione, per calcolare i flussi relativi al suddetto istante di tempo. Analogamente per le formule 3.61, 3.62 e 3.63 per i rendimenti. È possibile ancora una volta (con la formula 1.2 eventualmente corretta per una radiazione inferiore a quella di riferimento) analizzare il rendimento elettrico in corrispondenza dei singoli nodi, dipendente dalla temperatura, la quale varia con la posizione e con il tempo. Si otterranno, quindi, vettori contenenti l'andamento dei flussi energetici e dei rendimenti nel periodo complessivo composto dagli intervalli analizzati.

È ancora possibile verificare la chiusura del bilancio energetico qualora si valuti che le condizioni imposte conducano ad una situazione di stazionarietà nell'ultimo periodo simulato (termine di accumulo nullo). Per l'ultimo periodo di tempo analizzato (chiamato in seguito t_{finale}), è ancora possibile verificare per quale errore non si chiude il bilancio:

$$Q_{IN}^{t_{\text{finale}}} = Q_{OUT}^{t_{\text{finale}}}$$ (3.68)

dove per flussi $Q_{IN}^{t_{\text{finale}}}$ e $Q_{OUT}^{t_{\text{finale}}}$ si intendono, per il periodo di tempo t_{finale}, quelli esplicitati rispettivamente a primo e secondo membro nell'equazione 3.60. Qualora le condizioni imposte non portino ad una perfetta stazionarietà, lo scostamento fra i due contributi di formula 3.68 è attribuibile anche ad un termine di accumulo di energia interna non perfettamente nullo.

Sono note ora le prestazioni dinamiche del sistema.

Quanto descritto permette di simulare nel dettaglio il funzionamento dinamico e stazionario di un collettore PVT al fine di valutarne le
prestazioni termiche ed elettriche. Affinché i modelli possano essere considerati validi nel fornire indicazioni conformi alla realtà, è necessario supportare l’analisi con delle prove sperimentali per valutare l’accuratezza dei risultati ottenibili.
Capitolo quarto: Validazione sperimentale e risultati

L’analisi eseguita nel capitolo precedente è supportata con i dati sperimentali ottenuti dall’impianto sperimentale di prova, associato ad un PVT-w sheet-and tube collocato nel Laboratorio di Processi Solari del Dipartimento di Energia del Politecnico di Milano. L’obiettivo delle misurazione è la valutazione dell’accuratezza dei modelli matematici descritti. Il circuito di prova permette di analizzare il funzionamento del collettore misurandone i parametri utili per ricavare la potenza termica ed elettrica prodotte. In prossimità del pannello, una stazione meteorologica raccoglie dati sulle condizioni atmosferiche che influenzano il funzionamento del pannello. Dall’elaborazione dei dati ottenuti è possibile verificare se gli output reali sono coincidenti con quelli predetti dal modello, al fine di validarlo. Si riporta in figura 4.1 il sistema sperimentale a cui si fa riferimento.

Figura 4.1 coppia di PVT-a sheet-and tube denominati “tegole fotovoltaiche”
4.1 Apparato sperimentale

Il collettore in analisi è il PVT-w sheet-and tube EY_HYBRID costruito dalla ENERGYINTEGRATION e denominato “tegola PVT”. Il motivo di tale denominazione risiede nel fatto che i materiali elettrogeni e i componenti per la produzione termica sono collocati in una struttura che ben si presta alla realizzazione della parte più superficiale dei tetti, in sostituzione delle normali superfici. Le celle PV contenute sono in silicio monocristallino. Considerando l’asse cartesiano z in direzione verticale, l’asse y in direzione longitudinale e l’asse x trasversale, se ne rappresenta uno schema geometrico in figura 4.2a (sezione nel piano x-z) e 4.2b (sezione nel piano x-y).

Figura 4.2 – (a) sezione del collettore PVT nel piano x-z (quote in mm) – (b) sezione del collettore PVT nel piano x-y (quote in mm)
Capitolo quarto: Validazione sperimentale e risultati

Come si può vedere nelle figure 4.2a e 4.1, il pannello è costituito da una regione di captazione solare, dove ha sede la produzione termica ed elettrica, e da una regione passiva. L’utilità di tale regione risiede nella funzione di supporto fisico che essa esegue a sostegno della tegola adiacente. Ciò consente una sorta di incastro fra le tegole che vengono a sovrapporsi in direzione z ma senza ombreggiarsi reciprocamente in nessun modo. Il modello numerico proposto nel capitolo precedente modellizza il singolo collettore nella sola parte attiva a livello di captazione solare. Una possibile composizione per l’edilizia civile è riportata in figura 4.3.

![Tegole PVT installate su un edificio](image)

Figura 4.3: tegole PVT installate su un edificio

Il collegamento dei tubi, con ingressi e uscite in direzione z, permette l'installazione di più tegole sia in serie che in parallelo. Il sistema in analisi presenta due tegole collegate idraumaticamente in parallelo ed elettricamente in serie. Lo schema impiantistico complessivo nel quale le due tegole sono inserite è rappresentato in figura 4.4.
Capitolo quarto: Validazione sperimentale e risultati

Figura 4.4: schema impiantistico complessivo. A e B sono le due tegole in analisi

Alcuni importanti elementi ausiliari del circuito sono: una pompa per la circolazione del fluido, uno scambiatore di calore ad aria per la dissipazione del calore scambiato dai pannelli, sensori di temperatura, pressione e portata massica. Le pompe e il ventilatore sono a giri variabili e permettono la regolazione delle condizioni di funzionamento. Queste saranno mantenute costanti durante l’esecuzione delle prove. Tutti i dati sono raccolti nel laboratorio, all’interno di una camera di controllo. La potenza elettrica prodotta è misurata da microinverter. La presenza del ventilatore si spiega per il fatto che, a differenza delle normali applicazioni dei PVT, in questo caso la potenza termica utile non viene utilizzata in alcun modo, ma appunto dissipata in ambiente tramite raffreddamento del fluido. Pertanto, nell’applicazione di laboratorio, l’effetto utile nell’aggiunta delle tubazioni rispetto al normale fotovoltaico è solo quello di incrementare il rendimento elettrico abbassando la temperatura dei componenti elettrogeni.

Le due tegole sono orientate verso sud con una deviazione di 6,5° verso est. L’inclinazione rispetto al tetto orizzontale è, invece, di 25°. I pannelli sono situati a Milano (longitudine 9°26’ Est, latitudine 45°30’ Nord).
Sono di seguito presentati gli strumenti utilizzati per la misura dei dati di funzionamento dell’impianto:

Tabella 4.1: caratteristiche degli strumenti di misura dei dati di funzionamento dell’impianto

<table>
<thead>
<tr>
<th>Grandezza misurata</th>
<th>Tipologia strumento</th>
<th>Intervallo di misura</th>
<th>Incertezza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature ingresso e uscita fluido [°C]</td>
<td>Termoresistenze Emerson Series 65 (agosto)</td>
<td>-50 ÷ 450 °C</td>
<td>±0,25°C (@ 20°C)</td>
</tr>
<tr>
<td></td>
<td>Termoresistenze Conax 43 V2 (marzo)</td>
<td>-250 ÷ 600°C</td>
<td>±0,1 °C (@ 0°C)</td>
</tr>
<tr>
<td>Portata volumetrica circolante [dm³/min]</td>
<td>Misuratore di portata Huba Control 210 DN8</td>
<td>0,9 ÷ 15 dm³/min</td>
<td><1% fs (se portata acqua <50% fs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><2% valore mis (se portata acqua >50%fs)</td>
</tr>
</tbody>
</table>

4.2 Raccolta dati meteorologici

La strumentazione meteo di cui è dotato il laboratorio (Fig. 4.5a e b) misura le seguenti grandezze (unità di misura fra parentesi quadre):
- Umidità relativa aria [%]
- Temperatura ambiente [°C]
- Velocità del vento [m/s]
- Direzione vento [°]
- Quantità di pioggia [mm]
- Intensità radiazione solare diretta [W/m²]
- Intensità radiazione solare globale [W/m²]
- Intensità radiazione solare diffusa [W/m²]

In quanto la tecnologia descritta utilizza la radiazione solare come risorsa di base ed essendo le sue prestazioni influenzate in larga misura dalle condizioni meteo, è necessario, ai fini di un’analisi attendibile, eseguire delle misure accurate di tali grandezze.
Capitolo quarto: Validazione sperimentale e risultati

Figura 4.5 – (a) centralina per la raccolta dei dati meteo – (b) radiometro globale, parte per la raccolta della radiazione diffusa

Si riportano in tabella 4.2 le caratteristiche dei sistemi di misura introdotti.
Tabella 4.2: caratteristiche degli strumenti di misura dei dati meteo

<table>
<thead>
<tr>
<th>Grandezza misurata</th>
<th>Tipologia strumento</th>
<th>Intervallo di misura</th>
<th>Incertezza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umidità relativa aria [%]</td>
<td>Termoigrometro</td>
<td>0÷100%</td>
<td>±1% (5÷95%)</td>
</tr>
<tr>
<td>Temperatura ambiente [°C]</td>
<td>Termoigrometro</td>
<td>-30÷70°C</td>
<td>±0,2 °C (@ 0°C)</td>
</tr>
<tr>
<td>Velocità del vento [m/s]</td>
<td>Anemometro a coppe</td>
<td>0÷60 m/s</td>
<td>±1,5% (0÷3 m/s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±1% (>3 m/s)</td>
</tr>
<tr>
<td>Direzione del vento [°]</td>
<td>Bandierina segnavento</td>
<td>0÷360°</td>
<td>±1%</td>
</tr>
<tr>
<td>Quantità di pioggia [mm]</td>
<td>Pluviometro</td>
<td>0÷10 mm/min</td>
<td>±1% (1÷10 mm/min)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±0,2 mm (0÷1 mm/min)</td>
</tr>
<tr>
<td>Intensità radiazione diretta [W/m²]</td>
<td>Eliofanometro</td>
<td>0÷1500 W/m²</td>
<td>±15% (totale giornaliero)</td>
</tr>
<tr>
<td>Intensità radiazione globale [W/m²]</td>
<td>Radiometro globale (piranometro)</td>
<td>0÷1500 W/m²</td>
<td>±5% (totale giornaliero)</td>
</tr>
<tr>
<td>Intensità radiazione diffusa [W/m²]</td>
<td>Radiometro globale (piranometro)</td>
<td>0÷1500 W/m²</td>
<td>±5% (totale giornaliero)</td>
</tr>
</tbody>
</table>

4.3 Risultati del modello stazionario

4.3.1 Elaborazione preliminare dati sperimentali di input

Ai fini della validazione del modello descritto nel capitolo 3, si rende necessario fornire alcuni dati in ingresso come condizioni al contorno per il metodo numerico, per confrontare gli output delle elaborazioni svolte con il software Matlab® e i dati sperimentali ottenuti nelle medesime condizioni. Il modello sarà ritenuto corretto qualora gli scostamenti tra i valori calcolati e misurati siano all'interno di una banda di incertezza accettabile, di cui in seguito si espliciterà la definizione.
I dati in ingresso da fornire al programma sviluppato al calcolatore sono (unità di misura fra parentesi quadre):

1. Temperatura ambiente [°C]
2. Velocità del vento [m/s]
3. Intensità della radiazione solare globale [W/m²]
4. Portata volumetrica del fluido termo-vettore [dm³/h]
5. Temperatura di ingresso del fluido termo-vettore [°C]

Le prime 3 grandezze sono ottenute sperimentalmente dalla centrale meteo descritta, le ultime 2 sono misurate con misuratori di portata e termo-resistenze installati nell’impianto.

Per la validazione del modello stazionario è stato effettuato un confronto avendo a disposizione i dati meteo e impiantistici di 3 giornate soleggiate estive: 4 agosto 2014, 5 agosto 2014 e 2 settembre 2014.

Si è cercato di analizzare il comportamento nelle fasce centrali della giornata, in quanto la curva di irraggiamento ha maggiore stazionarietà, trovandosi nel suo picco.

Come ulteriore criterio di stabilità, per fare in modo che i dati siano più stazionari possibile, sono stati eliminati dall’analisi gli intervalli di tempo in cui la produzione elettrica misurata fosse poco costante a causa del passaggio di nuvole (rilevate anche da grandi deviazioni standard per l’intensità di radiazione globale).

I singoli intervalli di tempo analizzati hanno una durata pari a 10 minuti, in accordo con le acquisizioni della centralina meteo. Pertanto, è stato necessario mediare sui 10 minuti anche i dati relativi all’impianto, registrati invece ogni minuto. Tali medie introducono errori significativi che saranno presi in considerazione nella definizione delle bande di incertezza accettabile.

Si riporta in figura 4.6a e 4.6b, l’elenco dei parametri impiantistici introdotti in Matlab® per la risoluzione del metodo numerico. Nei commenti, dopo il segno percentuale, vengono riportate le unità di misura e la definizione del parametro introdotto. I valori sono conformi all’impianto sperimentale a disposizione.
Capitolo quarto: Validazione sperimentale e risultati

\[d_{\text{EXT TUB}} = 1; \ \frac{\text{cm}}{} \text{ diametro esterno tubi} \]
\[t_{\text{TUB}} = 0.05; \ \frac{\text{cm}}{} \text{ spessore tubi} \]
\[d_{\text{INT TUB}} = d_{\text{EXT TUB}} - 2t_{\text{TUB}}; \ \frac{\text{cm}}{} \text{ diametro interno tubi} \]
\[l_{\text{TUB}} = 176; \ \frac{\text{cm}}{} \text{ dimensione longitudinale pannello} \]
\[l_{\text{ARP}} = 145; \ \frac{\text{cm}}{} \text{ dimensione auxiliaria} \]
\[n_{\text{TUB}} = 2; \ \text{numero tubi} \]
\[K_{\text{TUB}} = 399; \ \frac{\text{W}}{\text{m} \cdot \text{K}} \text{ conduttività termica tubi} \]
\[w_{\text{PLA}} = 24; \ \frac{\text{cm}}{} \text{ dimensione trasversale pannello} \]
\[d_{\text{H PLA}} = 4w_{\text{PLA}} \cdot l_{\text{TUB}} / (2w_{\text{PLA}} + l_{\text{TUB}}); \ \frac{\text{cm}}{} \text{ radice quadrata media} \]
\[p_{\text{TUB}} = w_{\text{PLA}} / n_{\text{TUB}}; \ \frac{\text{cm}}{} \text{ passo del tubo} \]
\[t_{\text{INS}} = 1.3; \ \frac{\text{cm}}{} \text{ spessore isolante} \]
\[K_{\text{INS}} = 0.0168; \ \frac{\text{W}}{\text{m} \cdot \text{K}} \text{ conduttività termica isolante} \]
\[R_{\text{SER}} = 0.00727; \ \frac{\text{m}^2 \cdot \text{K}}{\text{W}} \text{ resistenza conduttiva strati in serie strati in parallelo} \]
\[k_{eq} = 116.4521; \ \frac{\text{W}}{\text{m} \cdot \text{K}} \text{ conduttività termica materiale equivalente} \]
\[\eta_{\text{vetro}} = 0.4; \ \text{emissività del vetro di copertura} \]
\[\alpha_{\text{PV}} = 0.9551; \ \text{trasmissione vetro assorbimento celle PV} \]
\[a_{\text{TOT}} = 0.95611; \ \frac{\text{cm}}{} \text{ spessore totale materiale equivalente} \]

\[(a)\]
\[\% \text{ Proprietà aria } 20^\circ \text{C} \]
\[k_{\text{AIR}} = 0.02569; \ \frac{\text{W}}{\text{m} \cdot \text{K}} \text{ conduttività termica aria ambiente} \]
\[\sin \theta = 0.9063; \ \text{seno inclinazione pan} \]
\[q = 9.31; \ \frac{\text{W}}{\text{m}^2} \text{ accelerazione gravitazionale} \]
\[\beta = 0.003421; \ \frac{\text{W}}{\text{K} \cdot \text{m}^2} \text{ coefficiente di comprimibilità isobara} \]
\[\Delta T_{\text{MED}} = 12; \ \text{K} \text{ differenza di temperatura media pannello-aria} \]
\[\nu_{\text{CIN}} = 0.00001555; \ \frac{\text{m}^2}{\text{s}} \text{ viscosità cinematica aria ambiente} \]
\[\nu_{\text{DIFF}} = 0.00002147; \ \frac{\text{W}}{\text{m} \cdot \text{K}} \text{ diffusività termica aria ambiente} \]

\[(b)\]
\[W_{\text{el,RIF}} = 75; (w_{\text{PLA}} \cdot l_{\text{TUB}} / 10000); \ \text{W} \text{ potenza elettrica prodotta in condizioni di riferimento} \]
\[Q_{\text{REF}} = 1000; \ \text{W} \text{ intensità della radiazione solare di riferimento} \]
\[\beta = 0.01115; \ \% \text{C} \text{ coefficiente di riduzione della potenza elettrica al crescere della temperatura} \]
\[T_{\text{PV,RIF}} = 293.15; \ \% \text{K} \text{ temperatura di riferimento} \]
\[k_1 = 0.8; \ \frac{\text{W}}{\text{m} \cdot \text{K}} \text{ vetro} \]
\[k_2 = 0.85; \ \frac{\text{W}}{\text{m} \cdot \text{K}} \text{ eva} \]
\[k_3 = 145; \ \frac{\text{W}}{\text{m} \cdot \text{K}} \text{ silicio} \]
\[k_4 = 0.35; \ \frac{\text{W}}{\text{m} \cdot \text{K}} \text{ ega} \]
\[k_5 = 0.2; \ \frac{\text{W}}{\text{m} \cdot \text{K}} \text{ teclar} \]
\[k_6 = 0.2; \ \frac{\text{W}}{\text{m} \cdot \text{K}} \text{ adesivo} \]
\[k_7 = 237; \ \frac{\text{W}}{\text{m} \cdot \text{K}} \text{ alluminio} \]
\[k_{\text{forex}} = 0.059; \ \frac{\text{W}}{\text{m} \cdot \text{K}} \text{ conduttività termica copertura posteriore} \]
\[t_{\text{forex}} = 0.1; \ \text{cm} \text{ spessore copertura posteriore} \]

Figura 4.6 – (a) screenshot del programma di simulazione riportante i parametri impiantistici di input per il metodo numerico (parte1) – (b) screenshot del programma di simulazione riportante i parametri impiantistici di input per il metodo numerico (parte2)
4.3.2 Analisi dei risultati delle simulazioni

La validazione sperimentale del modello stazionario si basa sul confronto dei parametri termici ed elettrici calcolati con quelli misurati sperimentalmente. I due parametri sui quali si è eseguito il confronto sono:

- Temperatura di uscita del fluido termo-vettore [°C]
- Potenza elettrica generata [W]

I quali rappresentano gli indicatori più diretti delle prestazioni termiche ed elettriche e dai quali si può successivamente svolgere l’analisi dei rendimenti termico ed elettrico.

Per il calcolo della potenza elettrica prodotta è stata usata nei bilanci, come detto, la formula 3.60 in analogia con la trattazione di Evans (formula 1.1).

Tale trattazione consente di far dipendere la produzione elettrica dalla temperatura del pannello ma non è conforme alla formula dettata dal costruttore che esegue lo stesso calcolo in modo del tutto analogo sostituendo, però, la temperatura del pannello con una equivalente definita come:

\[T_c = T_a + \frac{(NOCT - T_{nOct})}{G_{nOct}} \cdot G \]

Dove \(T_a \) è la temperatura ambiente, \(NOCT \) (Nominal Operative Cell Temperature) e \(T_{nOct} \) sono due temperature di riferimento date dal costrittore e pari rispettivamente a 48°C e 20°C, \(G_{nOct} \) è una radiazione di riferimento di 800 W/m² e \(G \) la radiazione reale incidente.

Tale definizione permette di calcolare la potenza elettrica senza conoscere la distribuzione di temperatura del pannello.

La potenza elettrica calcolata con la 3.59 nei due diversi modi (usando la temperatura del pannello o la \(T_c \)) risulta essere conforme solo se vengono usati due coefficienti \(\beta \) differenti. Il costruttore detta un valore di 0,0043 °C⁻¹. Il valore di \(\beta \) usato invece nel modello deve essere ricavato tramite un procedimento iterativo, uguagliando la potenza calcolata a quella ricavabile con la formula del costruttore. Il metodo deve essere iterativo in quanto non sono noti a priori né \(\beta \) né la temperatura media del collettore usata per calcolare in modo approssimato (secondo la 3.59 ma considerando una sola area di temperatura media) la potenza elettrica da porre uguale a quella del costruttore. Le iterazioni e una media dei valori ottenuti in diversi intervalli di tempo con condizioni ambiente differenti.
portano ad un valore finale di 0.01115 °C⁻¹ (indicato come B nella figura 4.6b).
Dal confronto fra i risultati di potenza elettrica calcolati e forniti dalla formula del costruttore si evince tuttavia uno scostamento massimo di poco più di 1 W fra i due.
Questo indica una non perfetta coincidenza fra le due formulazioni e suggerisce la possibilità di una più complessa trattazione con un β variabile con le condizioni ambiente. Il modello ricalca quindi il calcolo della potenza elettrica del costruttore ma con un piccolo margine di errore.

Si riportano i dati di input e i risultati per le 3 giornate considerate. Le temperature e le potenze indicate con il numero 1 sono quelle ricavate con il modello numerico mentre il numero 2 indica i risultati sperimentali. La colonna definita TpanMEAN rappresenta la temperatura media del pannello calcolata in Matlab®. Le colonne colorate sono quelle a cui si deve prestare una maggiore attenzione in quanto indicano gli scostamenti fra i due output e, quindi, la precisione del modello proposto.
Le unità di misura dei dati input sono quelle presentate nel paragrafo 4.3.1. Gli output in termini di temperatura di uscita del fluido, temperatura media del collettore e potenza elettrica generata sono indicati in °C e in W.
Capitolo quarto: Validazione sperimentale e risultati

Tabelle 4.3 e 4.4: dati input e risultati delle prove stazionarie rispettivamente dei giorni 4 e 5 agosto 2014

<table>
<thead>
<tr>
<th>N</th>
<th>ora</th>
<th>vel.vento</th>
<th>Tamb</th>
<th>G tot</th>
<th>Portata vol</th>
<th>Tin</th>
<th>Tout1</th>
<th>Tout2</th>
<th>delta Tout</th>
<th>Pel1</th>
<th>Pel2</th>
<th>deltaPel</th>
<th>TpanMEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13:11-13:20</td>
<td>3,19</td>
<td>25,34</td>
<td>976,69</td>
<td>89,51</td>
<td>35,79</td>
<td>36,94</td>
<td>37,21</td>
<td>-0,27</td>
<td>61,88</td>
<td>60,797</td>
<td>1,083</td>
<td>39,12</td>
</tr>
<tr>
<td>2</td>
<td>13:21-13:30</td>
<td>3,23</td>
<td>25,28</td>
<td>979,59</td>
<td>89,45</td>
<td>35,33</td>
<td>36,51</td>
<td>36,69</td>
<td>-0,18</td>
<td>62,36</td>
<td>60,582</td>
<td>1,778</td>
<td>38,75</td>
</tr>
<tr>
<td>3</td>
<td>13:31-13:40</td>
<td>3,41</td>
<td>25,26</td>
<td>970,95</td>
<td>89,4</td>
<td>35,38</td>
<td>36,51</td>
<td>36,78</td>
<td>-0,27</td>
<td>61,91</td>
<td>59,784</td>
<td>2,126</td>
<td>38,63</td>
</tr>
<tr>
<td>4</td>
<td>14:01-14:10</td>
<td>3,21</td>
<td>25,72</td>
<td>953,52</td>
<td>89,51</td>
<td>35,81</td>
<td>36,94</td>
<td>37,08</td>
<td>-0,14</td>
<td>60,45</td>
<td>59,098</td>
<td>1,352</td>
<td>39,07</td>
</tr>
<tr>
<td>5</td>
<td>14:11-14:20</td>
<td>2,54</td>
<td>26,06</td>
<td>935,4</td>
<td>89,41</td>
<td>35,46</td>
<td>36,74</td>
<td>36,77</td>
<td>-0,03</td>
<td>59,24</td>
<td>57,119</td>
<td>2,121</td>
<td>39,14</td>
</tr>
<tr>
<td>6</td>
<td>14:21-14:30</td>
<td>2,52</td>
<td>26,43</td>
<td>923,47</td>
<td>89,31</td>
<td>35,74</td>
<td>37,01</td>
<td>37,08</td>
<td>-0,07</td>
<td>58,3</td>
<td>56,161</td>
<td>2,139</td>
<td>39,38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>ora</th>
<th>vel.vento</th>
<th>Tamb</th>
<th>G tot</th>
<th>Poratata vol</th>
<th>Tin</th>
<th>Tout1</th>
<th>Tout2</th>
<th>delta Tout</th>
<th>Pel1</th>
<th>Pel2</th>
<th>deltaPel</th>
<th>TpanMEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13:21-13:30</td>
<td>0,93</td>
<td>26,89</td>
<td>974,51</td>
<td>84,48</td>
<td>34,67</td>
<td>36,64</td>
<td>36,27</td>
<td>0,37</td>
<td>60,94</td>
<td>59,471</td>
<td>1,469</td>
<td>40,11</td>
</tr>
<tr>
<td>2</td>
<td>13:31-13:40</td>
<td>1,09</td>
<td>26,36</td>
<td>969,39</td>
<td>84,74</td>
<td>34,55</td>
<td>36,43</td>
<td>36,2</td>
<td>0,23</td>
<td>60,92</td>
<td>59,616</td>
<td>1,304</td>
<td>39,74</td>
</tr>
<tr>
<td>3</td>
<td>13:41-13:50</td>
<td>1,11</td>
<td>27,63</td>
<td>931,51</td>
<td>84,18</td>
<td>35,38</td>
<td>37,2</td>
<td>36,89</td>
<td>0,31</td>
<td>58,05</td>
<td>58,239</td>
<td>-0,189</td>
<td>40,38</td>
</tr>
<tr>
<td>4</td>
<td>14:01-14:10</td>
<td>1,59</td>
<td>27,42</td>
<td>941,84</td>
<td>84,36</td>
<td>35,65</td>
<td>37,34</td>
<td>37,13</td>
<td>0,21</td>
<td>58,75</td>
<td>58,052</td>
<td>0,698</td>
<td>40,31</td>
</tr>
<tr>
<td>5</td>
<td>14:11-14:20</td>
<td>1,3</td>
<td>27,54</td>
<td>944,7</td>
<td>84,36</td>
<td>35,63</td>
<td>37,4</td>
<td>37,11</td>
<td>0,29</td>
<td>58,77</td>
<td>58,602</td>
<td>0,168</td>
<td>40,5</td>
</tr>
<tr>
<td>6</td>
<td>14:21-14:30</td>
<td>1,76</td>
<td>27,55</td>
<td>916,21</td>
<td>84,67</td>
<td>35,16</td>
<td>36,78</td>
<td>36,59</td>
<td>0,19</td>
<td>57,66</td>
<td>57,021</td>
<td>0,639</td>
<td>39,63</td>
</tr>
<tr>
<td>7</td>
<td>14:31-14:40</td>
<td>2,45</td>
<td>27,67</td>
<td>892,79</td>
<td>84,7</td>
<td>35,2</td>
<td>36,62</td>
<td>36,63</td>
<td>-0,01</td>
<td>56,57</td>
<td>55,215</td>
<td>1,355</td>
<td>39,11</td>
</tr>
</tbody>
</table>
Capitolo quarto: Validazione sperimentale e risultati

Tabella 4.5: dati input e risultati delle prove stazionarie del 2 settembre 2014

<table>
<thead>
<tr>
<th>N</th>
<th>ora vel.vento</th>
<th>Tamb</th>
<th>G tot</th>
<th>Portata vol</th>
<th>Tin</th>
<th>Tout1</th>
<th>Tout2</th>
<th>delta Tout</th>
<th>Pel1</th>
<th>Pel2</th>
<th>deltaPel</th>
<th>TpMean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>°C</td>
<td>W/m²</td>
<td>dm³/h</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>°C</td>
</tr>
<tr>
<td>1</td>
<td>11:51-12:00</td>
<td>2,43</td>
<td>23,69</td>
<td>931,91</td>
<td>71,37</td>
<td>33,23</td>
<td>34,8</td>
<td>34,9</td>
<td>-0,1</td>
<td>60,63</td>
<td>55,78</td>
<td>4,85</td>
</tr>
<tr>
<td>2</td>
<td>12:01-12:10</td>
<td>2,18</td>
<td>23,6</td>
<td>947,42</td>
<td>71,65</td>
<td>32,58</td>
<td>34,3</td>
<td>34,26</td>
<td>0,04</td>
<td>61,84</td>
<td>56,719</td>
<td>5,121</td>
</tr>
<tr>
<td>3</td>
<td>12:11-12:20</td>
<td>2,36</td>
<td>23,36</td>
<td>956,61</td>
<td>72,76</td>
<td>31,9</td>
<td>33,61</td>
<td>33,58</td>
<td>0,03</td>
<td>62,97</td>
<td>57,709</td>
<td>5,261</td>
</tr>
<tr>
<td>4</td>
<td>12:21-12:30</td>
<td>2,39</td>
<td>23,25</td>
<td>964,16</td>
<td>72,61</td>
<td>31,78</td>
<td>33,51</td>
<td>33,48</td>
<td>0,03</td>
<td>63,53</td>
<td>58,431</td>
<td>5,099</td>
</tr>
<tr>
<td>5</td>
<td>12:31-12:40</td>
<td>1,99</td>
<td>23,34</td>
<td>969,08</td>
<td>72,65</td>
<td>32,03</td>
<td>33,87</td>
<td>33,73</td>
<td>0,14</td>
<td>63,44</td>
<td>58,777</td>
<td>4,663</td>
</tr>
<tr>
<td>6</td>
<td>12:41-12:50</td>
<td>1,7</td>
<td>24,14</td>
<td>974,24</td>
<td>71,94</td>
<td>31,95</td>
<td>33,98</td>
<td>33,76</td>
<td>0,22</td>
<td>63,49</td>
<td>59,08</td>
<td>4,41</td>
</tr>
<tr>
<td>7</td>
<td>13:51-13:00</td>
<td>1,06</td>
<td>24,4</td>
<td>977,75</td>
<td>72,17</td>
<td>31,98</td>
<td>34,22</td>
<td>33,82</td>
<td>0,4</td>
<td>63,26</td>
<td>59,179</td>
<td>4,081</td>
</tr>
<tr>
<td>8</td>
<td>13:01-13:10</td>
<td>1,43</td>
<td>24,78</td>
<td>983,45</td>
<td>72,29</td>
<td>32,4</td>
<td>34,53</td>
<td>34,23</td>
<td>0,3</td>
<td>63,51</td>
<td>59,045</td>
<td>4,465</td>
</tr>
</tbody>
</table>
È stata osservata una grande influenza della velocità del vento sui dati output. La forte variabilità delle raffiche all’interno dei periodi considerati è segno di forte instazionarietà, a cui si è cercato di porre rimedio in modo approssimato considerando la velocità media. Una ulteriore causa a giustificazione degli scostamenti risiede nella diversa velocità dei transitori. Il raffreddamento o riscaldamento dei materiali non segue necessariamente in modo istantaneo quello delle condizioni ambienti. Questo provoca un ritardo nella risposta che il pannello ha nella realtà e che invece non è riscontrabile nel modello stazionario dove i transitori non sono considerati. Si può ipotizzare che sia proprio tale elemento a portare, nonostante la correzione del coefficiente di scambio termico convettivo aria ambiente per tenere conto della convezione naturale, a scostamenti maggiori negli intervalli con bassa velocità del vento.
Il modello simula le prestazioni, infatti, come se quella situazione fosse costante e stazionaria, quando in realtà spesso ci sono raffiche, prima o durante il periodo in analisi, che raffrescano il pannello.

I dati riportati appartengono a due configurazioni impiantistiche leggermente differenti, in quanto dal periodo 7 del 4 agosto e per tutto il 5 agosto, la parte passiva del PVT in analisi è stata ricoperta da un materiale isolante, in modo da simulare meglio il reale comportamento in seguito all’installazione su un tetto con la sovrapposizione delle tegole vicine. Questo, come si osserva per esempio nella giornata del 4 agosto nella differenza fra i periodi 1-6 e 7-9, porta ad avere degli scostamenti leggermente minori nei periodi 7-9 in quanto il sistema sperimentale si scalda meno nella sua parte passiva, contributo che non è considerato nel modello numerico.
I buchi presenti nelle tabelle riportate riguardano i periodi considerati non stazionari secondo i criteri già descritti.

4.3.3 Valutazione accuratezza del modello

Il modello proposto può essere ritenuto sufficientemente accurato se gli scostamenti tra grandezze misurate e calcolate rientrano in una banda di incertezza accettabile definita come segue:

\[
l_{\text{acc}} = \sqrt{l_{\text{strum}}^2 + l_{\text{asc}}^2}
\]

(4.2)

Dove i due termini sotto radice indicano rispettivamente l’incertezza strumentale e la semi-ampiezza massima (in tutti i periodi analizzati nella
singola giornata) delle oscillazioni dei valori sperimentali misurati e di cui è stata fatta la media per effettuare i confronti con le grandezze calcolate.

Per quanto riguarda la temperatura di uscita del fluido termo-vettore, si calcola rispettivamente per le 3 giornate una incertezza accettabile di 0.444°C, 0.4509°C e 0.4887°C. I dati di scostamento di tale temperatura nelle tabelle 4.1, 4.2 e 4.3 sono stati evidenziati in verde proprio per il fatto che rientrano tutti in tali intervalli di incertezza tollerabile. Si può concludere che il modello descrive bene i meccanismi di scambio e le prestazioni termiche.

Si riportano i grafici ottenuti per il confronto dei dati. L’ascissa indica le misure sperimentali, l’ordinata i risultati al calcolatore. La bisettrice rappresenta l’assoluta precisione del modello con risultati, quindi, perfettamente coincidenti con i valori sperimentali. Sono anche indicate le bande di incertezza calcolate.

![Figura 4.7: scatter plot per analisi accuratezza modello per il giorno 4 agosto](image-url)
Figura 4.8: scatter plot per analisi accuratezza modello per il giorno 5 agosto

Figura 4.9: scatter plot per analisi accuratezza modello per il giorno 2 settembre

Gli scostamenti fra i valori di potenza elettrica sono invece, in particolare per la giornata del 2 settembre, sensibilmente più significativi. Come anticipato, il modello utilizza per calcolare la potenza elettrica una formula che segue l’indicazione del costruttore con una differenza massima rilevata di circa 1,23 W (in positivo o in negativo). Osservando i dati di scostamento della potenza elettrica (dati evidenziati in giallo tenue), si notano valori maggiori rispetto a questo dato. L’altra parte della differenza fra i due valori deriva da un comportamento diverso del PVT.
Capitolo quarto: Validazione sperimentale e risultati

rispetto a quanto indicato dal costruttore. Quest’ultimo tende sempre a sovrastimare la potenza elettrica fino a quasi 5 W. La somma di questo scostamento fra predizione del costruttore ed esperimenti, con quello causato dall’intrinseca imprecisione della formula usata (in positivo o in negativo), porta ad avere gli scostamenti con sfondo in giallo tenue riportati nelle tabelle del paragrafo precedente.

Avendo semplicemente usato una correzione della formula del costruttore per effettuare questo calcolo, il modello numerico potrebbe alla meglio restituire gli stessi valori dati dalla formula originale fornita. Lo scostamento con il dato sperimentale è per la maggior parte attribuibile alla imprecisa indicazione del costruttore.

Per questo motivo quanto detto è difficilmente considerabile come una vera e propria validazione sperimentale per quanto concerne la parte elettrica. Secondo il bilancio energetico tuttavia, quando la produzione elettrica calcolata è superiore a quella sperimentale, questo dovrebbe condurre, sempre nel confronto, ad un minore output termico. Calcolando la media dello scostamento misurato nella potenza elettrica rispetto al dato sperimentale, suddividendo proporzionalmente tale contributo come deficit nei restanti termini in uscita nel bilancio energetico, si è stimato che il decremento di temperatura di uscita del fluido legabile a tale effetto è sotto i 2 centesimi di grado e quindi trascurabile.

Si noti il periodo numero 4 del 2 settembre come principale caso da sottoporre all’attenzione ai fini del lavoro di tesi. Osservando complessivamente, si può notare che è il giorno registrato con maggiore potenza elettrica calcolata. Tale risultato non è però attribuibile unicamente all’abbondante radiazione solare, in quanto si può notare come i periodi successivi siano caratterizzati da un maggiore irraggiamento. È da sottolineare come invece la temperatura del pannello calcolata sia la minore in assoluto. In questo aspetto risiede proprio il vantaggio della tecnologia PVT, in grado di portare a più elevate potenze e rendimenti elettrici grazie al raffrescamento dei componenti elettrogeni, considerati, nel modello proposto, in seno al materiale equivalente.

Si tenga conto che il modello proposto costituisce una rappresentazione approssimata della realtà. Oltre a quanto già detto, un ulteriore elemento di approssimazione è legato al fatto che si considera nel modello una superficie uniforme sulla quale incide la radiazione luminosa che colpisce le celle PV. Nella realtà le celle sono separate fra di loro da alcuni spazi. In questi la radiazione solare incide direttamente sulla piastra termica senza generazione di potenza, scaldando, inoltre, il pannello più di quanto predetto dal modello. Le temperature saranno quindi maggiori e la potenza elettrica minore. Allo stesso effetto giunge, come anticipato,
anche l’assenza dell’isolante sulla parte di pannello passiva (nei periodi in qui ciò accade) e il contributo di riscaldamento operato da tutta la struttura, anch’essa colpita da radiazione e in contatto con le parti attive. Tali contributi, non essendo considerati dal modello numerico, provocano una sottostima delle temperature.

Un ulteriore elemento di indeterminazione è rappresentato dalla variabile attività di raffrescamento operata dal ventilatore al fluido termovettore in uscita. Questa dipende dalla temperatura ambiente, dalla velocità imposta allo stesso (generalmente mantenuta costante) ma anche dalla sua interazione con il vento. Qualora ci fossero periodi in cui si avesse una minore temperatura ambiente o una accelerazione del ventilatore, questo porterebbe ad una minore temperatura di ingresso del fluido e ad un miglioramento, in particolare, delle prestazioni elettriche. Nell’analisi si è tenuto conto di ciò anche in relazione al fatto che, nelle 3 giornate in analisi, la velocità costante imposta al ventilatore è stata differente. Nell’analisi si è tenuto conto di ciò introducendo la temperatura in ingresso del fluido (influenzata dal lavoro svolto dal ventilatore) come dato noto. Un discorso analogo si può fare sulla regolazione delle pompe di circolazione del fluido, tenute a velocità costante all’interno della giornata, ma non fra una giornata e l’altra. In questo caso gli effetti di una maggiore portata massica elaborata si rilevano in una temperatura di uscita del fluido minore, ma non necessariamente ad un rendimento termico minore. Si possono osservare nei dati delle tabelle 4.1, 4.2 e 4.3 le significative variazioni della portata volumetrica. In particolare si ha un lavoro massimo della pompa (sui tre giorni) il 4 agosto (e del ventilatore il 5 agosto). Le variazioni nella temperatura di ingresso del fluido o nella differenza di temperatura fra uscita e ingresso del fluido sono più difficilmente analizzabili in quanto causate da diversi fattori.

Infine è da evidenziare che le grandezze di input inserite nel software Matlab® per simulare le prestazioni, sono anch’esse soggette ad errori di misurazione di cui sarebbe possibile analizzare la banda di incertezza e le conseguenti ripercussioni sulle grandezze di output. Gli errori di misura, conformemente a quanto dice la legge di propagazione degli errori, portano ad incertezze che crescono all’aumentare dei calcoli eseguiti. Seguendo tale approccio si andrebbero ad ottenere estese bande di incertezza, parallelamente a quanto già fatto seguendo la formula 4.2, non solo per le temperature del fluido termo-vettore e per le potenze elettriche in uscita, ma ancora di più per i rendimenti. Non considerando tale aspetto e facendo una media dei dati elaborati da Matlab® nei periodi in analisi, è stato ricavato (formule 3.61-62-63 +
Capitolo quarto: Validazione sperimentale e risultati

definizioni già introdotte) un rendimento termico medio complessivo (flusso termico calcolato con l’ inversa della 3.52 dall’ ingresso all’ uscita del fluido) di 0,3791 ed elettrico medio di 0,1508, per un rendimento medio complessivo di primo principio di 0,5299.

4.3.4 Risultati e grafici aggiuntivi

Per una maggiore chiarezza sul lavoro implementato al calcolatore, si riporta di seguito (Fig. 4.10) la scrittura dei dati output complessivi fornita dalla simulazione Matlab®, nella forma proposta dal calcolatore. Sebbene, infatti, i due precedenti paragrafi si siano concentrati su alcuni di questi, il programma sviluppato esegue ulteriori calcoli, conformemente a quanto descritto dal capitolo 3. Si prende come periodo esemplificativo il numero 8 del 5 agosto.

Oltre a quanto già commentato precedentemente, si può notare il risultato positivo nella verifica sulla correttezza del numero dei nodi (a livello pratico per il calcolo) e la velocità del programma che raggiunge convergenza in sole 7 iterazioni e 3,9 secondi complessivi di elaborazione.

La distribuzione di temperatura del materiale equivalente è l’ultimo importante output che restituisce il programma. Si noti che tale

Figura 4.10: screenshot output Matlab® per il periodo 8 del 5 agosto 2014
distribuzione di temperatura costituisce il principale risultato dell’elaborazione. È poi a partire da essa che vengono successivamente calcolate le altre grandezze analizzate. Se ne riporta una rappresentazione in 3 dimensioni (Fig. 4.11) e una in 2 (Fig.4.12), sempre per il periodo numero 8 del 5 agosto 2014. Entrambe riportano la variazione della temperatura con l’alterazione del colore della superficie e in asse z. Gli assi x e y riportano invece la successione spaziale dei nodi della griglia. In questa e in tutte le distribuzioni di temperatura analoghe che saranno graficate, è da tenere conto che la rappresentazione è eseguita con una scala scelta per una facile interpretazione. Nella realtà tale distribuzione di temperatura risulta essere spalmata su una superficie rettangolare molto allungata (vedi Fig.4.1).

Figura 4.11: distribuzione di temperatura (3D) del materiale equivalente simulata per il periodo numero 8 del 5 agosto 2014
Le immagini evidenziano chiaramente la traccia del passaggio del tubo con il fluido di raffreddamento. Quest’ultimo si riscalda progressivamente e, come si osserva, perde, dall’ingresso all’uscita, la sua capacità di raffrescare il pannello. Le parti a temperatura maggiore sono quelle più lontane dal tubo. Anche i risultati grafici sono quindi conformi alle aspettative.

4.4 Risultati del modello dinamico

4.4.1 Elaborazione preliminare dati sperimentali di input

La validazione del modello dinamico si sviluppa in maniera analoga a quella eseguita per lo stazionario. Il modello dinamico richiede le sue stesse grandezze in input presentate. Le condizioni al contorno variabili obbligano, tuttavia, ad allocare tali dati meteorologici e impiantistici presentati nel paragrafo 4.3.1, in vettori monodimensionali che ne registrano la variazione nel periodo considerato.

Si presenta invece una differenza a livello concettuale per quanto riguarda l’inizializzazione delle temperature del fluido e del pannello. Se nel modello stazionario queste venivano introdotte con un valore ipotetico e verosimile ma non significativo per il raggiungimento della convergenza, come pure di scarsa influenza sui risultati, ora invece le stesse grandezze
descrivono la situazione termica del pannello nell’istante iniziale dell’intervallo temporale analizzato. Nella prima analisi avevano, quindi, la sola funzione di ipotesi iniziale per avviare computazionalmente il calcolo. Ora rappresentano invece le temperature che realmente si hanno nell’istante iniziale. Andranno quindi definite in modo preciso e conformemente alla situazione reale di inizio del periodo in analisi.

Per la validazione del modello dinamico sono stati analizzati periodi a condizioni variabili, eseguendo misurazioni apposite, nelle giornate comprese fra il 3 e il 10 marzo 2015. È stato simulato il comportamento di due, e non più una, tegole PVT, facendo variare in modo controllato le condizioni di irraggiamento e di funzionamento dell’impianto. In particolare sono state esaminate le seguenti tipologie di transitorio:

- **Tipologia 1:** passaggio dalle condizioni di stagnazione (irraggiamento nella fase di picco e pompe di circolazione disattivate) alle condizioni nominali
- **Tipologia 2:** copertura e isolamento istantaneo del pannello (portata circolante costante)
- **Tipologia 3:** scopertura istantanea dopo raffreddamento e isolamento pannello (portata circolante costante)
- **Tipologia 4:** funzionamento libero a condizioni ambiente variabili (portata circolante costante)

Si è reso necessario, proprio ai fini di un’analisi dinamica dettagliata, importare le misurazioni eseguite con periodi più brevi di quanto fatto per il caso stazionario. Sia i dati meteo che i dati impiantistici sono stati raccolti ogni 10 secondi e in seguito mediati sul minuto in modo da eseguire simulazioni numeriche con un numero accettabile di intervalli. Sono stati da escludere numerosi transitori per le condizioni meteo non idonee o per la difficoltà di eseguire confronti precisi, a causa della disomogenea azione del ventilatore per quanto riguarda la sua interazione con il vento.

Oltre ai dati strutturali inizializzati in Matlab® nel modello stazionario, rappresentanti le condizioni fisiche del sistema sperimentale a disposizione e presentati in figura 4.6a e 4.6b, il calcolo dinamico necessita di ulteriori dati (vedi Fig 4.13). Vanno inoltre inizializzati il numero e la durata dei periodi temporali da simulare.
Capitolo quarto: Validazione sperimentale e risultati

4.4.2 Analisi coerenza modello stazionario e dinamico

Come prima verifica fondamentale, è possibile simulare con il programma dinamico il comportamento del PVT in condizioni stazionarie, per poi impostare le stesse condizioni nel programma stazionario e verificare che ci sia coerenza nei risultati ottenuti. L’inizializzazione delle temperature del fluido e del materiale equivalente da importare per il calcolo dinamico sono in questo caso prese in modo casuale per simulare un generico raffreddamento del pannello nel corso dei 40 intervalli di un minuto simulati. Le condizioni meteo e impianto (portata circolante e temperatura del fluido in ingresso) imposte, sono anch’esse poco rilevanti e prese, quindi, a campione, per entrambi i modelli, da uno dei periodi indagati poi successivamente nei transitori reali. Sono riportate in tabella 4.6.
Tabella 4.6: dati input utilizzati per il confronto fra i due modelli

<table>
<thead>
<tr>
<th>Temperatura Ingresso Fluido</th>
<th>Portata Volumetrica Circolante</th>
<th>Irraggiamento</th>
<th>Temperatura Ambiente</th>
<th>Velocità del vento</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>dm³/h</td>
<td>W/m²</td>
<td>°C</td>
<td>m/s</td>
</tr>
<tr>
<td>14,9408305</td>
<td>91,65383</td>
<td>857,0404024</td>
<td>12,46</td>
<td>1,66333</td>
</tr>
</tbody>
</table>

Ipotizzando che nel periodo simulato il transitorio dinamico vada a regime, è necessario, per verificare la coerenza dei modelli, che la simulazione stazionaria e dinamica convergano ad un medesimo risultato indipendentemente dalle condizioni termiche iniziali imposte. Si presentano in Fig. 4.14 gli screenshot degli output forniti da Matlab®. A sinistra sono riportati i risultati della simulazione stazionaria, a destra quelli relativi all’ultimo intervallo simulato dal programma dinamico.

Figura 4.14: confronto fra gli screenshot degli output del programma stazionario e dinamico(ultimo intervallo simulato) per condizioni stazionarie

Come si può osservare, la coerenza dei due programmi può ritenersi verificata con eccellente approssimazione.

4.4.3 Analisi delle simulazioni dinamiche e valutazione accuratezza modello

In seguito a quanto spiegato nel paragrafo 4.3.3 in merito alla validazione della parte elettrica e a causa della non omogenea disponibilità dei dati di produzione elettrica nel periodo delle prove dinamiche, ci si concentrerà di seguito principalmente sulla validazione del modello dal punto di vista
termico. Il confronto eseguito avrà quindi come oggetto la temperatura di uscita del fluido termo-vettore, conformemente a quanto fatto in precedenza. L’analisi elettrica non necessita, come anticipato, di una vera e propria validazione in quanto il modello restituisce un valore di potenza generata in coerenza con la formula fornita dal costruttore dei pannelli.

È importante notare che le prove dinamiche sono state eseguite su tegole PVT inserite in un impianto complessivo diversamente configurato. A differenza di quanto visto precedentemente in figura 4.4, ora le tegole presentano una connessione idraulica in serie. Le tegole sono state montate conformemente a quanto sarebbe fatto in applicazione civile su un tetto, ossia coprendo la regione elettricamente passiva della prima con la seconda, in modo da isolarla termicamente. La regione passiva della seconda, che in una configurazione completa sarebbe coperta da una terza tegola, è qui invece coperta con un isolamento in polistirolo, per meglio simulare il reale funzionamento. Tale configurazione non permette la misura di una temperatura intermedia del fluido, nella sezione fra l’uscita del primo e l’ingresso nel secondo. La temperatura di ingresso al secondo collettore (il quale è il principale oggetto dell’analisi, in quanto esaminabile per quanto riguarda la sua temperatura di uscita sperimentale) sarà quindi necessariamente il risultato della simulazione eseguita sul primo. Non avendo la disponibilità di tale dato sperimentale, tale procedimento comporta necessariamente un consistente aumento dell’incertezza, il quale dovrà essere considerato in sede di valutazione degli scostamenti finali.

La potenza elettrica è stata calcolata conformemente a quanto descritto per il modello stazionario e si è conservato il coefficiente β calcolato precedentemente mediante regressione dei dati sperimentali. Una elaborazione dei dati di marzo (quindi anche considerando una miscela di acqua e glicole in luogo di acqua pura) analoga a quella eseguita per il caso stazionario permetterebbe, comunque, di perfezionare tale coefficiente in modo da ricalcare in modo più preciso la previsione del costruttore, in merito alle differenti caratteristiche meteo della diversa stagione.

La modellazione dinamica permette ora di considerare in modo approssimato tutte le inerzie legate ai transitori dei materiali. La variabilità continua della velocità del vento, sebbene ora mediata con un periodo più breve di un solo minuto, non permette ancora una analisi nel dettaglio del comportamento dei materiali come reazione ad ogni singola raffica. Ciò costituisce ancora, necessariamente, una consistente approssimazione del comportamento reale.

![Grafico della temperatura di uscita del fluido termo-vettore](attachment:image.png)

Figura 4.15: temperatura di uscita del fluido termo-vettore per un transitorio di tipo 1 analizzato dalle 12:20 alle 12:55 del giorno 3 marzo 2015
Capitolo quarto: Validazione sperimentale e risultati

Figura 4.16: temperatura di uscita del fluido termo-vettore per un transitorio di tipo 2 analizzato dalle 12:53 alle 13:34 del giorno 5 marzo 2015

Figura 4.17: temperatura di uscita del fluido termo-vettore per un transitorio di tipo 3 analizzato dalle 13.19 alle 14:02 del giorno 6 marzo 2015
In tutte le situazioni analizzate, il modello riesce a ricalcare fedelmente l’andamento qualitativo del transitorio e con sufficiente precisione anche i valori quantitativi. Gli scostamenti fra i valori sperimentali e simulati sono diffusamente sotto il grado. Non si confronti in modo superficiale l’entità di tale scostamento rispetto a quello ritenuto accettabile per il caso stazionario (poco meno di mezzo grado). Il modello dinamico riceve in ingresso n volte il numero dei parametri inseriti come input nel modello stazionario, dove n indica il numero degli intervalli temporali simulati. Inoltre è ora da inizializzare in modo realistico anche la distribuzione di temperatura iniziale del fluido. Tutti questi dati sono soggetti ad un errore di misura (nonostante siano state utilizzate in marzo delle termoresistenze più precise di quelle usate per le misurazioni stazionarie). A causa della legge di propagazione dell’errore, quest’ultimo si amplifica enormemente nei passaggi per il calcolo della temperatura in uscita. Il calcolo intermedio della temperatura di uscita dal primo pannello e di ingresso nel secondo, costituisce un ulteriore passaggio che amplifica ancor di più l’errore. Il calcolo dello scostamento accettabile diventa, quindi, assai complesso e non verrà approfondito. Alla luce di quanto detto, emerge che anche un grado circa di scostamento fra i due andamenti può considerarsi ancora accettabile ai fini della validazione.
I periodi simulati per l’analisi dei vari transitori hanno durata differente in base alla velocità di evoluzione degli stessi.

La temperatura del fluido è stata inizializzata con distribuzione lineare interpolando i dati di temperatura di ingresso e uscita misurati ad inizio transitorio e dividendo in parti uguali il salto termico a cui è soggetto il fluido nei due pannelli.

Per inizializzare la temperatura del pannello si è fatto inizialmente ricorso ad una misurazione eseguita con una termocoppia ad anello posta sulla superficie irradiata. Le analisi hanno rivelato che, tuttavia, tale temperatura non era conforme a una temperatura media iniziale del materiale equivalente, che il modello deve ricevere in ingresso.

Si è pensato così di utilizzare le simulazioni del modello stazionario per ottenere le distribuzioni di temperatura dei pannelli alle condizioni di stazionarietà, nell’intervallo precedente a quello di inizio simulazione dinamica.

Tali accorgimenti permettono di avere delle inizializzazioni di temperature con un elevato grado di precisione e ciò è importante per l’andamento dei primi intervalli della simulazione. Per il transitorio di tipo 1 non è stato possibile inizializzare la temperatura del materiale equivalente con la distribuzione fornita dal modello stazionario.

Il transitorio di tipo 1 registra, infatti, l’evoluzione temporale partendo dalla condizione di stagnazione, non simulabile con il programma stazionario il quale non supporta, a livello di calcolo, l’introduzione di una portata circolante nulla.

In assenza di altri dati, si è scelto in modo ragionevole di inizializzare il valore di temperatura del materiale equivalente utilizzando un valore uniforme (come ci si aspetta in situazione di stagnazione) ragionevolmente ipotizzato osservando la temperatura del fluido nel primo intervallo simulato e quella misurata con la termocoppia posta sulla superficie del pannello, e verificando che l’andamento della temperatura di uscita del fluido fosse conforme alle aspettative e senza grosse irregolarità o oscillazioni.

Alcune irregolarità si osservano, invece, talvolta, nei primi intervalli degli altri transitori simulati. Queste si motivano come segue. Il primo dato di temperatura di uscita è dovuto ad una distribuzione iniziale del fluido presa in modo approssimato, come spiegato, dai dati sperimentali. Il secondo punto rappresenta una temperatura di uscita calcolata a partire, a sua volta, da un’altra temperatura di uscita del primo pannello anch’essa calcolata. Quando le simulazioni non sono in perfetta sintonia con gli esperimenti questo provoca una disuniformità fra il primo e il secondo punto del grafico come quella che si osserva nei transitori di tipo 2 e 3. Nella prima iterazione, tuttavia, la distribuzione di temperatura del fluido
viene richiesta dal modello in ingresso e il modo più corretto per approssimarne l’andamento si è ritenuto che fosse quello descritto.

È osservabile come l’andamento simulato appaia sempre leggermente in anticipo rispetto a quello sperimentale. Questo ritardo si ipotizza costituisca una delle principali cause di scostamento fra i due andamenti. Si può motivare come segue.

Per la misura della temperatura del fluido sono usate delle termoresistenze che, per una restituzione di un corretto valore misurato, devono andare in equilibrio termico con l’oggetto fisico della misura. La calibrazione eseguita sulle termoresistenze ha rivelato che, per un transitorio a gradino di 10°C esercitato su un fornelotto contenente olio, il tempo necessario per il raggiungimento di tale equilibrio si aggira attorno agli 8-9 minuti. Tale valore non è da tenere in considerazione per il caso in analisi in quanto la termoresistenza è sempre a contatto con il fluido, con il quale si presuppone che ci sia equilibrio termico costante, eccetto per forti e brusche sollecitazioni. I transitori di tipologia 1,2 e 3 vedono comunque accendersi o spegnersi in modo repentino (a gradino) un flusso termico proveniente dalla piastra assorbente. Si può, quindi, ipotizzare che, a fronte della rapida transizione, le termoresistenze subiscano un leggero ritardo nella misurazione, sebbene non paragonabile a quello misurato con diversi materiali, fluido e impianto, in sede di calibrazione.

Per esaminare l’entità di tale ritardo si osservi il transitorio di copertura del pannello presentato in figura 4.16. Lo scostamento nella parte iniziale del transitorio è abbastanza consistente. Alla luce di quanto detto si ritiene necessario interpretare in modo appropriato il dato sperimentale. L’andamento qualitativo che si ipotizza per un transitorio a gradino è tipicamente quello asintotico. La simulazione numerica riporta in modo esemplare questo tipo di andamento. Il transitorio sperimentale è caratterizzato da una maggiore linearità, motivabile in prima analisi con tale ritardo nella misurazione.

Con tale giustificazione si è quindi ritenuto buono il risultato simulato e approssimativamente conforme alla rilevazione sperimentale.

Un discorso analogo si può fare in merito al transitorio di tipo 3 rappresentato in figura 4.17, dove tuttavia le fluttuazioni delle condizioni al contorno provocano una consistente irregolarità in entrambi gli andamenti.
È tuttavia assai difficile interpretare se tali oscillazioni, presenti anche in parte per il transitorio di tipo 4, siano anche legate al meccanismo di calcolo che considera la temperatura del fluido partendo da quella del materiale equivalente e viceversa in ogni singola iterazione.

Un altro elemento che si osserva in modo diffuso è la maggiore temperatura sperimentale rispetto a quella simulata. Tale risultato può essere causato in primo luogo dal ritardo già ampiamente descritto. Un secondo motivo fondamentale è la presenza di un carico termico legato alla presenza di tutta la struttura passiva della tegola che, scaldandosi al sole nonostante la parziale copertura con polistirolo, incrementa l’input termico a differenza di quanto simulato dal modello numerico, che non considera alcuna struttura passiva del pannello. A questo si aggiunge l’effetto della spaziatura fra le celle PV che provoca un ulteriore effetto non simulato di irraggiamento più diretto sulla piastra assorbente. Tali fattori contribuiscono ad una certa sottostima delle temperature da parte del modello numerico.

È necessario tenere in considerazione che i transitori 3 e 4, sono stati analizzati in condizioni sperimentali non perfettamente idonee, in quanto la centralina per la raccolta dei dati meteo esercitava, dopo le 13, un localizzato ombreggiamento sulla superficie attiva del pannello. Tale ombreggiamento, percentualmente non determinante in termini di area superficiale coperta, va comunque tenuto in considerazione ipotizzando una normale incidenza della radiazione diffusa ma una certa riduzione, difficilmente calcolabile, della radiazione diretta. L’ombreggiamento localizzato porta ad una disattivazione di tutte le celle PV collegate in serie, con un conseguente crollo della produzione elettrica. Lo spostamento dell’area ombreggiata è da correlare ad un’analisi del sistema di interconnessione delle celle, al fine di definire la percentuale di queste che viene disattivata e che smette di produrre. Il discorso si complica ulteriormente in quanto, come detto, il sistema in analisi è ora costituito da due collettori in serie (elettricamente ed idraulicamente). L’analisi del primo è propedeutica a quella del secondo, non essendo noto la temperatura del fluido all’ingresso di quest’ultimo. Sono da considerare, di conseguenza, anche le celle ombreggiate del primo pannello della serie. Osservando i dati elettrici è possibile notare che gli effetti di tutto ciò sono fortemente mutevoli (senza regolarità) e difficilmente interpretabili senza un’analisi più approfondita degli aspetti citati. Nel presente lavoro, tale fenomeno e le sue conseguenze sugli output termici non verranno ulteriormente esaminati.
Capitolo quarto: Validazione sperimentale e risultati

Si tenga conto, inoltre, che sono state sempre trascurate le perdite termiche attraverso l’ombreggiatore di polistirolo e cartone posto sui collettori negli intervalli di copertura. Si ricordi che i modelli proposti rappresentano necessariamente una approssimazione del comportamento reale. Le approssimazioni introdotte sono state largamente esplicitate nel capitolo 3 e nell’analisi dei risultati stazionari presentata nel paragrafo 4.3.3. Si rimanda allo stesso paragrafo per quanto concerne gli effetti causati dalla variabile azione del ventilatore e della pompa di circolazione sulla temperatura in uscita.

I transitori di tipo 1 (Fig. 4.15) e di tipo 4 (Fig. 4.18) sono quelli in cui l’andamento viene ricalcato in modo più conforme. Per il primo si osserva uno scostamento contenuto in rapporto al consistente salto termico registrato. Per l’ultimo si osservi invece la differente scala delle ordinate riportante le temperature. Gli scostamenti sono generalmente fra i 2 e i 4 decimi di grado.

L’ottimo risultato del transitorio di tipo 4 è sicuramente motivato dall’analisi di una sollecitazione di più lieve entità provocata solo da condizioni meteorologiche variabili e non da gradini imposti. Ciò permette che i ritardi diventino trascurabili e che l’andamento sia gemello di quello misurato.

Non essendoci in natura fenomeni atmosferici che possano provocare una sollecitazione del pannello con transitorio a gradino così come simulato per tali prove, lo studio della tipologia di transitorio numero 4 è sicuramente il più significativo in rapporto ad un’analisi dinamica realistica delle prestazioni.

4.4.4 Considerazioni parte elettrica, risultati e grafici aggiuntivi

Nel paragrafo precedente non è stata discussa in maniera dettagliata la validazione della parte elettrica del modello. I motivi di ciò sono stati già esplicitati. Si rimanda, nonostante ciò, all’appendice A4, per l’analisi di alcuni dati in merito agli andamenti di produzione misurati e simulati.

Il termine di potenza elettrica indagabile, calcolato con la formula 3.59, dipende solo dalle condizioni di irraggiamento solare e dalla temperatura del materiale equivalente. Noto l’irraggiamento grazie alle misurazioni della centralina meteo, si ritiene utile monitorare la coerenza dei risultati elettrici ottenuti osservando come il rendimento elettrico cresca nei transitori soggetti a decrescita della temperatura e viceversa. I grafici riportati sono rispettivamente dei transitori di tipo 1 (Fig. 4.19a-b) e di tipo 3 (Fig. 4.20a-b). Nei grafici che seguono, in ordinata si riporta sempre la
Capitolo quarto: Validazione sperimentale e risultati

grandezza indicata nel titolo del grafico e in ascissa l'evoluzione degli intervalli temporali analizzati.

Figura 4.19 - (a) decrescita della temperatura media del materiale equivalente nel transitorio di tipo 1 del 3 marzo 2015 – (b) crescita del rendimento elettrico al decrescere della temperatura media del materiale equivalente nel transitorio di tipo 1 del 3 marzo 2015
Capitolo quarto: Validazione sperimentale e risultati

Si evidenzia come anche nelle figure 4.20a e b, nelle quali la temperatura media inizia ad avere delle oscillazioni verso fine transitorio (probabilmente causate dalle condizioni al contorno variabili e dal calo della radiazione diretta del primo pomeriggio), ci sia un perfetto riscontro fra temperatura del collettore e rendimento elettrico. Si sottolinea, ancora una volta, che proprio in questo particolare aspetto risiede la forza della tecnologia PVT.

Tale riscontro perfetto non si registra, invece, per quanto riguarda la potenza elettrica prodotta (Fig 4.21) che (a differenza del rendimento elettrico che nella sua formulazione vede elidere a numeratore e denominatore il termine di irraggiamento) dipende direttamente dall'intensità della radiazione incidente.

È proprio la decrescita della radiazione diretta, unita all'aumento della temperatura media del pannello, a motivare la decrescita rapida della produzione elettrica nel transitorio di tipo 3 in analisi.

![Diagram](image.png)

Figura 4.21: decrescita della potenza elettrica prodotta nel transitorio di tipo 3 del 6 marzo 2015

Per completezza di trattazione si riportano nel seguito ulteriori grafici significativi e output numerici elaborati dal software Matlab®.

Il primo di questi (Fig. 4.22) riporta gli andamenti dei tre rendimenti calcolati con le formule 3.61, 3.62 e 3.63, per il transitorio di tipo 4.
Capitolo quarto: Validazione sperimentale e risultati

Figura 4.22: andamento dei rendimenti nel transitorio di tipo 4 del 6 marzo 2015

Si osservi come, a fronte di nessuna particolare sollecitazione imposta al pannello, i rendimenti si conservino stabili nel tempo e solo probabilmente turbati dalle fluttuazioni delle condizioni al contorno. Tali fluttuazioni sono presenti, con ampiezza minore non osservabile a questa scala, anche nel rendimento elettrico.

Come ulteriore output grafico dell’elaborazione si riporta l’andamento della distribuzione di temperatura del materiale equivalente nell’esempio riguardante il transitorio di tipo 2 del 5 marzo 2015 (Fig. 4.23). Si tenga a mente che proprio tale distribuzione di temperatura, ottenuta con il metodo delle differenze finite, permette il calcolo diretto o indiretto di tutte le grandezze prese in esame.
Figura 4.23: andamento della distribuzione di temperatura del materiale equivalente nel transitorio di tipo 2 del 5 marzo 2015

Assi x e y riportati seguendo la successione del numero dei nodi
In asse z è indicata la temperatura, da tenere in considerazione riferita alla diversa scala indicata. Gli assi x e y riportano il posizionamento degli nx*ny nodi spaziali della griglia presentata nel capitolo 3. La prima distribuzione riporta l’inizializzazione della temperatura del pannello così come restituita dal modello stazionario. Nella seconda, terza e quarta distribuzione si può osservare il raffreddamento operato localmente dal fluido termo-vettore. Osservando l’asse ordinato contenente le temperature, si nota come, con il procedere del transitorio di copertura, le temperature scendano globalmente e il fluido perda la sua potenzialità di raffreddamento. Le ultime due distribuzioni sono poco significative: la temperatura è ormai quasi globalmente costante e perde di significato l’effetto di scambio termico fra il fluido e il materiale equivalente. In maniera analoga si sarebbero potuti rappresentare, senza grosse peculiarità, le distribuzioni della medesima temperatura negli altri tre transitori, così come gli andamenti di tutti gli output calcolati dal software Matlab®, presentati a livello grafico nel lavoro di tesi solo attraverso alcuni campioni significativi.

Si riporta infine la schermata dell’output Matlab® (Fig. 4.24) riferita al transitorio di tipo 4 del 6 marzo 2015, tenendo conto che i dati visualizzati sono solo quelli dell’ultimo intervallo simulato. Per il transitorio di tipo 4 le condizioni abbastanza stazionarie permettono di ritenere tali valori approssimativamente significativi per tutto l’intervallo simulato.

Risultati PVT

<table>
<thead>
<tr>
<th>Caratteristica</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collettore: ultima iterazione temporale</td>
<td></td>
</tr>
<tr>
<td>Temperatura uscita fluido [°C]</td>
<td>18.74</td>
</tr>
<tr>
<td>Potenza termica ceduta al fluido [W]</td>
<td>138.68</td>
</tr>
<tr>
<td>Potenza elettrica generata [W]</td>
<td>56.81</td>
</tr>
<tr>
<td>Temperatura media collettore [°C]</td>
<td>21.65</td>
</tr>
<tr>
<td>Innalzamento Temperatura fluido [°C]</td>
<td>1.42</td>
</tr>
<tr>
<td>Rendimento complessivo collettore [-]</td>
<td>0.64</td>
</tr>
<tr>
<td>Rendimento termico collettore [-]</td>
<td>0.46</td>
</tr>
<tr>
<td>Rendimento elettrico collettore [-]</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Potenza in ingresso [W] 306.82
Potenza in uscita [W] 310.54
Terminato per accumulo a fine transit -1.21
Elapsed time is 25.236817 seconds.

Figura 4.24: screenshot Matlab® degli output numerici dell’ultimo intervallo del transitorio 4 del 6 marzo 2015

I valori di rendimento evidenziati possono essere ritenuti, con buona approssimazione, rappresentativi delle prestazioni simulate dei PVT per
Capitolo quarto: Validazione sperimentale e risultati

quanto riguarda il periodo dell’anno e le condizioni ambiente considerati. I rendimenti vengono mediamente abbastanza alti in quanto il collettore è modellizzato solo nelle sue parti attive. L’area superficiale è nettata di tutti gli ingombri e l’input energetico è, di conseguenza, anch’esso netto rispetto alla radiazione incidente sulle parti passive. In particolare, per l’analisi del rendimento elettrico si deve tenere conto, inoltre, che la temperatura media del collettore simulata è, in inverno, spesso inferiore ai 25°C di riferimento. Non deve essere sottoposto a particolare attenzione il fatto che il rendimento termico risulta essere di 5 punti percentuali superiore a quello calcolato nel periodo 8 del 5 agosto con il modello stazionario (Fig. 4.10). Tale dato, apparentemente poco spiegabile, lo è, invece, analizzando il lavoro del ventilatore, il quale in agosto non riesce a raffreddare in modo consistente il fluido, non permettendone un salto termico elevatissimo all’interno del collettore, cosa che si avrebbe, invece, in una applicazione a ciclo aperto, utilizzando acqua di falda. Inoltre essendo le prestazioni termiche fortemente variabili con le condizioni ambiente, analizzando per esempio il periodo numero 1 dello stesso 5 agosto, il rendimento termico sale a 0,47, mentre invece per il periodo approssimativamente stazionario, al termine del transitorio di tipo 1 del 3 marzo, il rendimento termico misurato è di 0,35. Di fatto si è osservata una influenza decisamente più consistente sul rendimento termico da parte della velocità del vento piuttosto che della temperatura ambiente (maggiormente legata alla stagione). Va considerato, inoltre, che le due simulazioni sono confrontabili solo tenendo conto della presenza di una certa percentuale di glicole all’interno del fluido termo-vettore in inverno. Più significativo è, invece, l’incremento di 3 punti percentuali sul rendimento elettrico. Tale scostamento favorevole è, ancora una volta, attribuibile alla molto minore temperatura media del materiale equivalente, dovuta principalmente alla stagione più fredda.
5. Capitolo quinto
Conclusioni

Nel presente lavoro di tesi sono stati presentati due modelli matematici a parametri distribuiti, uno stazionario e uno dinamico, finalizzati alla simulazione delle prestazioni termiche ed elettriche di collettori solari ibridi.

Il metodo utilizzato si basa sulla discretizzazione delle equazioni di bilancio energetico tramite un approccio alle differenze finite, al fine di ricavare una distribuzione di temperatura e la sua evoluzione nel tempo. A partire da questa, è possibile eseguire un’analisi dettagliata dei flussi energetici che interessano il collettore e calcolare le potenze scambiate e i rendimenti. Il lavoro eseguito è stato supportato da una validazione sperimentale condotta attraverso prove appositamente messe in pratica. Tale validazione, eseguita contestualmente alla elaborazione del modello matematico, costituisce un importante valore aggiunto ai fini della valutazione dell’algoritmo di simulazione proposto.

In prima analisi entrambi i modelli evidenziano coerenza rispetto ai risultati attesi e, nel confronto reciproco fra di essi, i medesimi risultati. Per il modello stazionario, il calcolo degli scostamenti rispetto ai dati sperimentali di temperatura di uscita del fluido, principale indice delle prestazioni termiche del collettore, conferma la correttezza del modello. Le predizioni sono conformi al dato reale e l’errore ad esse associato è contenuto in una fascia di incertezza accettabile dovuta alla misurazione ed elaborazione dei dati in ingresso. Il calcolo della produzione elettrica, eseguito utilizzando una formula di carattere generale, perfezionata in modo da considerare le specifiche date dal costruttore, restituisce valori conformi alle predizioni dello stesso costruttore ma sovrastimati rispetto al risultato sperimentale. Uno studio più approfondito sul funzionamento dei componenti elettrogeni, che, inoltre, non consideri i coefficienti forniti dall’azienda produttrice dei collettori, potrà migliorare il modello proposto rendendolo più preciso rispetto alla predizione della produzione elettrica. In un periodo esemplificativo delle condizioni di funzionamento del 5 agosto 2014 (periodo numero 6) il modello stazionario ha restituito un valore di rendimento termico di 0,44, elettrico di 0,15 e complessivo di primo principio di 0,58.

In seguito a quanto osservato tramite i calcoli stazionari in merito alla produzione elettrica, la validazione dinamica è stata focalizzata principalmente sull’analisi termica. Anch’essa si è basata sui confronti eseguiti in marzo 2015 sui dati di temperatura di uscita del fluido circolante nel collettore. Durante i transitori sperimentati, l’evoluzione della suddetta
Capitolo quinto: Conclusioni

temperatura, predetta dalle simulazioni, è conforme agli andamenti reali misurati. Gli scostamenti sono accettabili nonostante le condizioni simulate siano inverosimilmente estreme rispetto a quelle realmente verificabili nella realtà. La migliore predizione è quella fornita dall’analisi di un transitorio generico di funzionamento libero a condizioni meteo variabili, assimilabile più di tutti al funzionamento realistico del collettore. Lo scostamento rilevato, sempre sulle temperature di uscita del fluido, è molto contenuto e paragonabile a quello osservato in media nelle prove stazionarie, nelle quali, per di più, la banda di incertezza accettabile si ritiene minore.

Prendendo come campione la condizione approssimativamente di regime al termine del transitorio di tipo 3 analizzato (scopertura pannello), il modello ha restituito, nell’ultimo intervallo simulato, un rendimento termico di 0,43, elettrico di 0,18 e globale di primo principio di 0,61.

È possibile osservare come le diverse condizioni di temperatura ambiente e irraggiamento fra i mesi di agosto e marzo, che provocano una differenza nella temperatura media del collettore di quasi 20°C, conducano a un netto miglioramento nelle predizioni di rendimento elettrico per il mese invernale più freddo. Proprio in questo effetto risiede la forza della tecnologia PVT, che ricerca minori temperature dei componenti elettrogeni tramite un raffreddamento eseguito anche per ottenere calore come ulteriore effetto utile.

Una valutazione sui tempi di ritorno economico, associabile ad un possibile investimento nell’installazione di collettori fotovoltaici-termici, potrebbe integrare lo studio eseguito al fine di ottenere una prospettiva più ampia sulle qualità della tecnologia analizzata.

Le previsioni e gli studi dedicati generano, comunque, grande ottimismo ed elevate aspettative per un sistema che, garantendo un rendimento globale elevato, utilizza, come valore aggiunto, una fonte rinnovabile, sicura, pulita e gratuita.
Appendice A1

Calcolo della temperatura del cielo T_{sky}

Per il calcolo del flusso termico radiativo derivante dall’emissione da parte del vetro di copertura (materiale più superficiale) rispetto all’ambiente, si rende necessario calcolare la temperatura del cielo, considerato come oggetto ricevente. Si fa utilizzo di tale dato nei bilanci termici esaminati. A tal fine si ricorre alla correlazione proposta da Martin e Berdahl [57]:

$$T_{sky} = 0,0552 T_a^{1.5}$$

(A1.1)

Dove l’unità di misura per le temperature è K
Appendice A2

Calcolo delle resistenze termiche e dei coefficienti di scambio termico convettivi

Nei bilanci energetici elaborati nel paragrafo 3.3 compaiono numerosi contributi di resistenze termiche convettive, conduttive e radiative. Verranno nella presente appendice esplicitate le formulazioni algebriche per il loro calcolo, senza ulteriormente specificare il significato dei vari termini, già introdotti nel suddetto paragrafo. Non ci si soffermerà sul calcolo delle resistenze radiative che sono già esplicite nei bilanci introdotti.

A2.1 Resistenze termiche conduttive e convettiva aria ambiente

Le resistenze termiche conduttive devono essere differenziate in base al meccanismo di scambio termico coinvolto. Il materiale equivalente è composto da numerosi strati che possono essere attraversati dal flusso termico in serie o in parallelo in base ai nodi considerati. Quando l’attraversamento è in serie la resistenza equivalente vale:

\[R_{ser} = \sum_i R_i \] \hspace{1cm} (A2.1)

Dove le singole resistenze \(R_i \) sono date dal rapporto fra lo spessore del materiale in m e la sua conduttività termica espressa in W/m/K e il pedice \(i \) sta ad indicare i singoli materiali attraversati. La resistenza equivalente per l’attraversamento degli strati in parallelo è invece data da:

\[R_{par} = \left(\sum_i \frac{1}{R_i} \right)^{-1} \] \hspace{1cm} (A2.2)

Dove invece le resistenze \(R_i \) sono calcolate con le stesse unità di misura di prima ma dal rapporto fra la lunghezza percorsa dal flusso in orizzontale (differenziata per ogni nodo) e la conduttività termica. La resistenza associata alla dissipazione sul retro consiste in una serie della resistenza conduttiva dell’isolante, data dal rapporto fra lo spessore del materiale e la sua conduttività termica, della resistenza della copertura
sul retro, calcolata in modo analogo, e della resistenza convettiva dell’aria sul retro del pannello, assimilabile a quella che si ha sul fronte del pannello \(h_w \). Da ciò si ottiene:

\[
R_{back} = \frac{s_{iso}}{k_{iso}} + \frac{s_{for}}{k_{for}} + \frac{1}{h_w}
\]

(A2.3)

Dove \(s_{iso}, s_{for} \) e \(k_{iso}, k_{for} \), sono lo spessore e la conduttività termica relativi allo strato di isolante posteriore e alla copertura sul retro in forex.

Il coefficiente di scambio termico convettivo \(h_w \) relativo al raffreddamento da parte dell’aria ambiente è anche esplicitato nei bilanci nel termine di raffreddamento convettivo sul fronte del pannello, ma presente anche nel termine definito in formula A2.3. È calcolabile, per convezione forzata, mediante la correlazione[28]:

\[
h_w = 8,6 \frac{v_{air}^{0,6}}{dH_{pla}^{0,4}}
\]

(A2.4)

Dove \(v_{air} \) è la velocità del vento che investe il collettore e \(dH_{pla} \) è una lunghezza caratteristica definita come:

\[
dH_{pla} = \frac{4 \cdot w \cdot l}{2 (w+l)}
\]

(A2.5)

Dove \(w \) e \(l \) sono le due dimensioni superficiali del pannello.

Si è rivelato utile correggere il valore di tale coefficiente nel caso in cui la velocità del vento rilevata fosse sotto il valore di 1,5 m/s per tenere conto dell’influenza della convezione naturale. Per far ciò è stato calcolato un valore del numero di Nusselt tramite media quadratica del valore ottenuto, usando il coefficiente della A2.4 per convezione forzata e del valore ottenuto con una opportuna correlazione per la convezione naturale. Il numero di Nusselt per convezione naturale è stato ricavato con la correlazione di Raithby e Hollands [58]:

\[
Nu_{nat} = 0,14 \cdot Ra^{1/3} \frac{1+0,0107Pr}{1+0,01Pr}
\]

(A2.6)

nella quale per il calcolo dei numeri adimensionali di Rayleigh e di Prandtl sono state usate le proprietà termofisiche dell’aria a 20°C, una differenza di temperatura media fra pannello e aria ambiente di 12°C, e come grandezza caratteristica \(L \) il valore di \(dH_{pla} \) calcolato con la A2.5.
Dal numero di Nusselt medio quadratico è infine stato calcolato il valore corretto di \(h_w \).

A2.2 Resistenza termica convettiva fluido termo-vettore

La resistenza termica convettiva relativa al raffreddamento dell’alluminio da parte del fluido termovettore non è ancora stata esplicitata. Viene calcolata tramite una correlazione un po’ più complessa [59] rispetto a quelle relative alla convezione operata dal vento. Alla temperatura media del fluido vengono calcolate le sue proprietà termofisiche (\(\mu \), \(C_p \) e \(k \)) necessarie per calcolare i numeri di Prandtl e di Reynolds. Da cui le casistiche:

1. se \(Re < 2300 \)

 \[
 f = \frac{64}{Re} \tag{A2.7}
 \]

 \[
 Gz = Re \ Pr \ \frac{D_{int}}{l_{serp}} \tag{A2.8}
 \]

 1a. se \(Gz \geq 1/0,03 \)

 \[
 Nu = 1,953 \ Gz^{1/3} - 1 \tag{A2.9}
 \]

 1b. se \(Gz < 1/0,03 \)

 \[
 Nu = 4,364 + 0,722Gz \tag{A2.10}
 \]

2. se \(Re \geq 2300 \)

 \[
 f = (1,82 \ \text{Log}(Re) - 1,64)^{-2} \tag{A2.11}
 \]

 \[
 Nu = \frac{L}{8} (Re - 1000) \ Pr \left(1 + 12,7 \ \sqrt[8]{Pr} \left(Pr^2 - 1 \right) \right)^{-1} \tag{A2.12}
 \]

Dove: \(f \) è il coefficiente d’attrito; \(Re \), \(Pr \), \(Nu \) e \(Gz \) sono i numeri rispettivamente di Reynolds, Prandtl, Nusselt e Graetz; \(D_{int} \) è il diametro interno del tubo; \(l_{serp} \) è la lunghezza del pannello in direzione y meno due volte la distanza tra la curva e il bordo.

Una volta calcolato il numero di Nusselt è possibile calcolare il coefficiente di scambio termico convettivo come:
Appendice A2

\[h_f = \frac{Nu \, k_f}{D_{int}} \]
\((A2.13) \)

E la resistenza termica relativa si calcola come:

\[R_f = (\pi \, d y_{cell} \frac{D_{est}+D_{int}}{2} \, h_f)^{-1} \]
\((A2.14) \)

Dove \(k_f \) è il coefficiente conduttivo del fluido, \(D_{est} \) è il diametro esterno del tubo e \(d y_{cell} \) è il passo della griglia nella direzione di sviluppo del tubo (se il tubo è orientato trasversalmente, come ad esempio nelle parti corte delle curve, si sostituisce con \(d x_{cell} \)). In questo passo di calcolo si ricavano quindi delle differenziazioni nella resistenza termica, a seconda delle dimensioni dei volumetti di controllo a cui sono riferiti i singoli nodi ai quali si applica il procedimento.

Per calcolare la resistenza convettiva in esame si considera il tubo come una doppia aletta semi-cilindrica di cui vogliamo andare a calcolare il parametro caratteristico \(m \) e l’efficienza (riferite all’aletta singola).

\[m_{fin} = \sqrt{\frac{h_f}{s_{tub} \, k_{tub}}} \]
\((A2.15) \)

\[\eta_{fin} = \frac{\tanh(m_{fin} \, \frac{D_{est}+D_{int}}{4})}{m_{fin} \, \frac{D_{est}+D_{int}}{4}} \]
\((A2.16) \)

Dove \(s_{tub} \) e \(k_{tub} \) sono spessore e conduttività termica del tubo.

A questo punto è possibile calcolare la nostra variabile obiettivo:

\[R_{fluid} = \frac{R_f}{\eta_{fin}} \, d x_{cell} \, d y_{cell} \]
\((A2.17) \)

Dove la moltiplicazione per l’area \(d x_{cell} \, d y_{cell} \) comporta che l’unità di misura relativa sia m²K/W, analogamente alle altre resistenze presentate. Si noti che nelle formule A2.14 e A2.17 si hanno una divisione e una moltiplicazione per l’area di passaggio del flusso termico, che tuttavia non è sempre la stessa.

Dapprima il flusso attraversa la doppia aletta semi-cilindrica di area \(\pi \, d y_{cell} \, D \) (in arancione in figura A2.1 e dove \(D \) è il diametro medio). Una volta passata la saldatura del tubo alla piastra, il flusso attraversa una sezione maggiore di estensione, \(d x_{cell} \, d y_{cell} \), che corrisponde alla superficie dei volumetti di controllo delineati dalla griglia (in verde). Si esegue quindi una divisione e poi una moltiplicazione reciprocamente per
queste due aree in modo da trasporre il flusso termico in base alle sezioni realmente interessate. In questo modo si riesce ad avere correttezza di trattazione e coerenza con le unità di misura di tutte le resistenze termiche.

Figura A2.1: passaggio del flusso termico fluido-piastra termica in diverse aree
A2.3 Formalizzazione delle resistenze termiche equivalenti

Si rappresenta in figura A2.2 il sistema di resistenze termiche utilizzato.

![Diagramma](image_url)

Figura A2.2: resistenze termiche equivalenti considerate nel modello termico

I nodi del tipo A, non adiacenti al tubo, scambiano calore verso l'ambiente tramite una serie di resistenze raggruppate in R_{ser} e poi R_{back}. Essendo quindi anch'essi gruppi in serie, vengono sommati, per esempio, nel quinto termine del bilancio 3.42.

Gli stessi nodi scambiano calore con il fluido. Tale flusso termico deve procedere sia in orizzontale che in verticale. Lo schema approssimato scelto per modellizzare questo processo prevede che il calore proceda in senso orizzontale da A a B attraversando le resistenze in parallelo raggruppate in R_{par}, per poi attraversare gli strati in serie in verticale attraverso la resistenza R_{ser}, giungere in C e passare infine per R_{fluid}. Anche in questo caso le 3 resistenze considerate (R_{par}, R_{ser} ed R_{fluid}) sono attraversate consecutivamente e quindi sommate.

I nodi del tipo B scambiano calore solo con il fluido sottostante. Il flusso attraversa R_{ser} e poi R_{fluid}, che, essendo appunto gruppi di resistenze in serie, vengono anch'essi sommati.

Infine vi è una dissipazione del calore del fluido sul retro, tramite la somma della resistenza del fluido, dell’isolante (con spessore nettato del diametro del tubo), del forex e della convezione dell’aria ambiente.
Appendice A3

Tabelle elaborazioni dinamiche

Si riportano nel seguito le tabelle dalle quali sono stati ricavati i grafici del paragrafo 4.4.3.

Tabella A3.1: dati elaborati per il transitorio di tipo 1 del 3 marzo 2015

<table>
<thead>
<tr>
<th>periodo</th>
<th>Temperatura ingresso fluido °C</th>
<th>Portata volumetrica circolante dm³/h</th>
<th>Irraggiamento W/m²</th>
<th>Temperatura ambiente °C</th>
<th>Velocità vento m/s</th>
<th>Temperatura uscita fluido misurata °C</th>
<th>Temperatura uscita fluido calcolata °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15,64</td>
<td>77,394</td>
<td>900,7676</td>
<td>12,51</td>
<td>3,76</td>
<td>31,46</td>
<td>31,4565</td>
</tr>
<tr>
<td>2</td>
<td>17,335</td>
<td>87,706</td>
<td>905,35406</td>
<td>12,68</td>
<td>3,87</td>
<td>26,82</td>
<td>26,3103</td>
</tr>
<tr>
<td>3</td>
<td>17,438</td>
<td>89,1</td>
<td>876,03718</td>
<td>12,62</td>
<td>2,3</td>
<td>25,25</td>
<td>24,6815</td>
</tr>
<tr>
<td>4</td>
<td>15,738</td>
<td>90,579</td>
<td>897,51656</td>
<td>12,61</td>
<td>3,72</td>
<td>24,04</td>
<td>22,1959</td>
</tr>
<tr>
<td>5</td>
<td>15,052</td>
<td>89,716</td>
<td>881,86694</td>
<td>12,55</td>
<td>4,93</td>
<td>21,33</td>
<td>21,5464</td>
</tr>
<tr>
<td>6</td>
<td>15,132</td>
<td>88,706</td>
<td>877,34408</td>
<td>12,29</td>
<td>2,66</td>
<td>21,7</td>
<td>20,7318</td>
</tr>
<tr>
<td>7</td>
<td>15,547</td>
<td>87,936</td>
<td>895,56503</td>
<td>12,45</td>
<td>4,01</td>
<td>21,4</td>
<td>20,5596</td>
</tr>
<tr>
<td>8</td>
<td>15,779</td>
<td>88,766</td>
<td>906,47022</td>
<td>12,38</td>
<td>2,71</td>
<td>21,33</td>
<td>19,9589</td>
</tr>
<tr>
<td>9</td>
<td>15,832</td>
<td>88,065</td>
<td>860,30236</td>
<td>12,59</td>
<td>1,41</td>
<td>21,21</td>
<td>19,7899</td>
</tr>
<tr>
<td>10</td>
<td>15,783</td>
<td>87,404</td>
<td>859,23002</td>
<td>12,87</td>
<td>1,89</td>
<td>21,04</td>
<td>19,6095</td>
</tr>
<tr>
<td>11</td>
<td>15,747</td>
<td>86,071</td>
<td>860,71434</td>
<td>13,15</td>
<td>1,99</td>
<td>20,84</td>
<td>19,4932</td>
</tr>
<tr>
<td>12</td>
<td>15,822</td>
<td>86,014</td>
<td>869,24535</td>
<td>13,42</td>
<td>2,56</td>
<td>20,68</td>
<td>19,4519</td>
</tr>
<tr>
<td>13</td>
<td>15,908</td>
<td>85,058</td>
<td>878,40743</td>
<td>13,44</td>
<td>4,19</td>
<td>20,6</td>
<td>19,2521</td>
</tr>
<tr>
<td>14</td>
<td>15,939</td>
<td>87,095</td>
<td>875,78381</td>
<td>13,29</td>
<td>3,74</td>
<td>20,53</td>
<td>19,186</td>
</tr>
<tr>
<td>15</td>
<td>15,882</td>
<td>87,75</td>
<td>860,64625</td>
<td>12,84</td>
<td>4,7</td>
<td>20,42</td>
<td>18,9768</td>
</tr>
<tr>
<td>16</td>
<td>15,735</td>
<td>86,866</td>
<td>868,14126</td>
<td>12,43</td>
<td>3,68</td>
<td>20,27</td>
<td>18,7313</td>
</tr>
<tr>
<td>17</td>
<td>15,627</td>
<td>87,715</td>
<td>863,29701</td>
<td>12,5</td>
<td>2,54</td>
<td>20,08</td>
<td>18,6033</td>
</tr>
<tr>
<td>18</td>
<td>15,533</td>
<td>88,717</td>
<td>864,84274</td>
<td>12,68</td>
<td>3,49</td>
<td>19,91</td>
<td>18,5333</td>
</tr>
<tr>
<td>19</td>
<td>15,489</td>
<td>88,06</td>
<td>851,10256</td>
<td>12,53</td>
<td>4,6</td>
<td>19,75</td>
<td>18,4736</td>
</tr>
<tr>
<td>20</td>
<td>15,472</td>
<td>85,068</td>
<td>888,03274</td>
<td>12,72</td>
<td>4,83</td>
<td>19,64</td>
<td>18,4116</td>
</tr>
<tr>
<td>21</td>
<td>15,411</td>
<td>88,464</td>
<td>874,73834</td>
<td>12,64</td>
<td>3,87</td>
<td>19,55</td>
<td>18,1774</td>
</tr>
<tr>
<td>22</td>
<td>15,314</td>
<td>88,224</td>
<td>888,11363</td>
<td>12,25</td>
<td>2,8</td>
<td>19,43</td>
<td>18,1611</td>
</tr>
<tr>
<td>23</td>
<td>15,225</td>
<td>85,836</td>
<td>890,20431</td>
<td>12,76</td>
<td>2,72</td>
<td>19,31</td>
<td>18,2296</td>
</tr>
<tr>
<td>24</td>
<td>15,231</td>
<td>88,167</td>
<td>879,42616</td>
<td>12,99</td>
<td>3,03</td>
<td>19,21</td>
<td>18,207</td>
</tr>
<tr>
<td>25</td>
<td>15,305</td>
<td>89,409</td>
<td>916,74925</td>
<td>12,98</td>
<td>3,61</td>
<td>19,17</td>
<td>18,2567</td>
</tr>
<tr>
<td>26</td>
<td>15,437</td>
<td>87,071</td>
<td>856,98064</td>
<td>12,57</td>
<td>2,58</td>
<td>19,19</td>
<td>18,4519</td>
</tr>
<tr>
<td>27</td>
<td>15,494</td>
<td>85,93</td>
<td>868,34449</td>
<td>12,91</td>
<td>3,5</td>
<td>19,25</td>
<td>18,4357</td>
</tr>
<tr>
<td>28</td>
<td>15,468</td>
<td>87,436</td>
<td>855,95614</td>
<td>13,12</td>
<td>3,06</td>
<td>19,26</td>
<td>18,3272</td>
</tr>
<tr>
<td>29</td>
<td>15,455</td>
<td>87,415</td>
<td>888,0595</td>
<td>12,78</td>
<td>2,92</td>
<td>19,22</td>
<td>18,3762</td>
</tr>
<tr>
<td>30</td>
<td>15,385</td>
<td>87,928</td>
<td>910,3256</td>
<td>13,1</td>
<td>5,34</td>
<td>19,18</td>
<td>18,3172</td>
</tr>
<tr>
<td>31</td>
<td>15,332</td>
<td>85,922</td>
<td>865,97311</td>
<td>12,77</td>
<td>4,17</td>
<td>19,1</td>
<td>18,2951</td>
</tr>
<tr>
<td>32</td>
<td>15,375</td>
<td>87,132</td>
<td>889,30892</td>
<td>12,78</td>
<td>4,97</td>
<td>19,05</td>
<td>18,2402</td>
</tr>
</tbody>
</table>
Tabella A3.2: dati elaborati per il transitorio di tipo 2 del 5 marzo 2015

<table>
<thead>
<tr>
<th>periodo</th>
<th>Temperatura ingresso fluido °C</th>
<th>Portata volumetrica circolante dm³/h</th>
<th>Irraggiamento W/m²</th>
<th>Temperatura ambiente °C</th>
<th>Velocità vento m/s</th>
<th>Temperatura uscita fluido misurata °C</th>
<th>Temperatura uscita fluido calcolata °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>15,385 87,907 885,98388</td>
<td>12,66 3,76 19,05</td>
<td>18,1603</td>
<td>34</td>
<td>15,41 86,25 891,06416</td>
<td>12,56 3,7 19,03</td>
<td>18,2768</td>
</tr>
<tr>
<td>35</td>
<td>15,427 87,488 888,34097</td>
<td>12,71 4,61 19,03</td>
<td>18,2173</td>
<td>36</td>
<td>15,459 84,593 861,89405</td>
<td>12,73 3,17 19,02</td>
<td>18,3187</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>periodo</th>
<th>Temperatura ingresso fluido °C</th>
<th>Portata volumetrica circolante dm³/h</th>
<th>Irraggiamento W/m²</th>
<th>Temperatura ambiente °C</th>
<th>Velocità vento m/s</th>
<th>Temperatura uscita fluido misurata °C</th>
<th>Temperatura uscita fluido calcolata °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14,947 87,253 928,421</td>
<td>12 5,9 17,75</td>
<td>17,748</td>
<td>2</td>
<td>14,8601 90,055 938,066</td>
<td>11,973 7,41 17,71</td>
<td>16,568</td>
</tr>
<tr>
<td>3</td>
<td>14,8344 90,847 939,732</td>
<td>11,824 4,91 17,65</td>
<td>16,422</td>
<td>4</td>
<td>14,8422 90,015 929,027</td>
<td>12,036 6,7 17,64</td>
<td>16,128</td>
</tr>
<tr>
<td>5</td>
<td>14,8184 88,72 926,013</td>
<td>12,001 8,99 17,64</td>
<td>15,879</td>
<td>6</td>
<td>14,8399 89,961 928,902</td>
<td>11,879 5,98 17,59</td>
<td>15,706</td>
</tr>
<tr>
<td>7</td>
<td>14,8185 88,9 925,627</td>
<td>11,927 5,29 17,51</td>
<td>15,521</td>
<td>8</td>
<td>14,7633 89,272 926,953</td>
<td>12,046 7,32 17,37</td>
<td>15,347</td>
</tr>
<tr>
<td>9</td>
<td>14,8184 88,477 925,418</td>
<td>11,911 8,42 17,16</td>
<td>15,325</td>
<td>10</td>
<td>14,875 88,422 930,268</td>
<td>11,807 5,16 16,96</td>
<td>15,242</td>
</tr>
<tr>
<td>11</td>
<td>14,7992 87,749 926,111</td>
<td>11,853 7,78 16,79</td>
<td>15,079</td>
<td>12</td>
<td>14,7848 89,463 927,947</td>
<td>11,841 4,63 16,68</td>
<td>15,058</td>
</tr>
<tr>
<td>13</td>
<td>14,7966 86,564 929,422</td>
<td>12,01 7,82 16,49</td>
<td>15,015</td>
<td>14</td>
<td>14,7534 88,62 925,559</td>
<td>11,83 7 16,32</td>
<td>14,916</td>
</tr>
<tr>
<td>15</td>
<td>14,6915 87,76 923,65</td>
<td>11,876 5,96 16,18</td>
<td>14,853</td>
<td>16</td>
<td>14,623 88,325 917,255</td>
<td>12,011 6,91 16,06</td>
<td>14,776</td>
</tr>
<tr>
<td>17</td>
<td>14,6062 89,701 919,562</td>
<td>12 5,46 15,92</td>
<td>14,757</td>
<td>18</td>
<td>14,5983 89,017 917,743</td>
<td>12,091 7,2 15,79</td>
<td>14,718</td>
</tr>
<tr>
<td>19</td>
<td>14,5538 87,149 972,385</td>
<td>12,011 5,14 15,64</td>
<td>14,656</td>
<td>20</td>
<td>14,5559 89,052 916,782</td>
<td>12 6,89 15,55</td>
<td>14,658</td>
</tr>
<tr>
<td>21</td>
<td>14,5862 90,212 917,745</td>
<td>11,991 3,81 15,45</td>
<td>14,658</td>
<td>22</td>
<td>14,5707 89,34 920,3</td>
<td>12,253 4,21 15,37</td>
<td>14,612</td>
</tr>
<tr>
<td>23</td>
<td>14,5871 89,352 916,042</td>
<td>12,316 6,2 15,28</td>
<td>14,634</td>
<td>24</td>
<td>14,7193 90,171 911,251</td>
<td>12,323 5,83 15,23</td>
<td>14,74</td>
</tr>
<tr>
<td>25</td>
<td>14,7509 88,908 911,562</td>
<td>12,343 7,51 15,21</td>
<td>14,693</td>
<td>26</td>
<td>14,7178 89,595 909,531</td>
<td>11,974 6,54 15,16</td>
<td>14,677</td>
</tr>
<tr>
<td>27</td>
<td>14,6305 88,649 907,025</td>
<td>12,194 4,24 15,11</td>
<td>14,612</td>
<td>28</td>
<td>14,5118 88,257 904,721</td>
<td>12,316 5,9 15,13</td>
<td>14,539</td>
</tr>
<tr>
<td>29</td>
<td>14,5348 87,786 902,866</td>
<td>12,241 7,39 15,15</td>
<td>14,608</td>
<td>30</td>
<td>14,6337 89,196 900,371</td>
<td>12,186 6,44 15,13</td>
<td>14,656</td>
</tr>
<tr>
<td>31</td>
<td>14,6614 87,991 903,827</td>
<td>12,12 4,04 15,09</td>
<td>14,631</td>
<td>32</td>
<td>14,5383 88,899 889,821</td>
<td>12,38 6,09 15,02</td>
<td>14,514</td>
</tr>
<tr>
<td>33</td>
<td>14,5078 87,541 900,609</td>
<td>12,23 6,41 14,92</td>
<td>14,559</td>
<td>34</td>
<td>14,5639 87,98 896,104</td>
<td>12,25 6,56 14,87</td>
<td>14,594</td>
</tr>
<tr>
<td>35</td>
<td>14,6552 89,908 894,995</td>
<td>12,15 6,58 14,9</td>
<td>14,646</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>periodo</td>
<td>Temperatura ingresso fluido</td>
<td>Portata volumetrica circolante</td>
<td>Irraggiamento</td>
<td>Temperatura ambiente</td>
<td>Velocità vento</td>
<td>Temperatura uscita fluido misurata</td>
<td>Temperatura uscita fluido calcolata</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>-----------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td>°C</td>
<td>dm³/h</td>
<td>W/m²</td>
<td>°C</td>
<td>m/s</td>
<td>°C</td>
<td>°C</td>
</tr>
<tr>
<td>36</td>
<td>14,608</td>
<td>87,333</td>
<td>902,368</td>
<td>12,1</td>
<td>6,86</td>
<td>14,93</td>
<td>14,608</td>
</tr>
<tr>
<td>37</td>
<td>14,551</td>
<td>86,585</td>
<td>899,357</td>
<td>12,18</td>
<td>6,63</td>
<td>14,91</td>
<td>14,551</td>
</tr>
<tr>
<td>38</td>
<td>14,511</td>
<td>91,413</td>
<td>898,347</td>
<td>12,24</td>
<td>5,89</td>
<td>14,84</td>
<td>14,511</td>
</tr>
<tr>
<td>39</td>
<td>14,517</td>
<td>88,067</td>
<td>902,24</td>
<td>12,16</td>
<td>7,85</td>
<td>14,77</td>
<td>14,517</td>
</tr>
<tr>
<td>40</td>
<td>14,532</td>
<td>89,263</td>
<td>894,269</td>
<td>12,11</td>
<td>5,15</td>
<td>14,74</td>
<td>14,532</td>
</tr>
<tr>
<td>41</td>
<td>14,511</td>
<td>90,28</td>
<td>889,676</td>
<td>12,06</td>
<td>7,13</td>
<td>14,73</td>
<td>14,511</td>
</tr>
<tr>
<td>42</td>
<td>14,521</td>
<td>87,446</td>
<td>890,132</td>
<td>11,95</td>
<td>6,94</td>
<td>14,71</td>
<td>14,521</td>
</tr>
</tbody>
</table>

Tabella A3.3: dati elaborati per il transitorio di tipo 3 del 6 marzo 2015
Tabella A3.4: dati elaborati per il transitorio di tipo 4 del 6 marzo 2015

<table>
<thead>
<tr>
<th>periodo</th>
<th>Temperatura ingresso fluido</th>
<th>Portata volumetrica circolante</th>
<th>Irraggiamento</th>
<th>Temperatura ambiente</th>
<th>Velocità vento</th>
<th>Temperatura uscita fluido misurata</th>
<th>Temperatura uscita fluido calcolata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°C</td>
<td>dm³/h</td>
<td>W/m²</td>
<td>°C</td>
<td>m/s</td>
<td>°C</td>
<td>°C</td>
</tr>
<tr>
<td>1</td>
<td>16,119</td>
<td>90,783</td>
<td>806,739</td>
<td>12,31</td>
<td>0,8267</td>
<td>19,5504</td>
<td>19,55</td>
</tr>
<tr>
<td>2</td>
<td>16,001</td>
<td>93,001</td>
<td>802,549</td>
<td>12,61</td>
<td>0,7917</td>
<td>19,5261</td>
<td>19,039</td>
</tr>
<tr>
<td>3</td>
<td>15,797</td>
<td>91,176</td>
<td>807,171</td>
<td>12,49</td>
<td>1,54</td>
<td>19,4218</td>
<td>19,041</td>
</tr>
<tr>
<td>4</td>
<td>15,665</td>
<td>92,429</td>
<td>802,1639</td>
<td>12,53</td>
<td>0,7533</td>
<td>19,2979</td>
<td>18,82</td>
</tr>
<tr>
<td>5</td>
<td>15,598</td>
<td>90,68</td>
<td>800,0264</td>
<td>13,16</td>
<td>0,8983</td>
<td>19,2129</td>
<td>18,894</td>
</tr>
<tr>
<td>6</td>
<td>15,576</td>
<td>91,688</td>
<td>800,2586</td>
<td>13,48</td>
<td>1,0107</td>
<td>19,1338</td>
<td>18,796</td>
</tr>
<tr>
<td>7</td>
<td>15,712</td>
<td>91,588</td>
<td>795,867</td>
<td>13,82</td>
<td>0,6917</td>
<td>19,1202</td>
<td>18,929</td>
</tr>
<tr>
<td>8</td>
<td>15,93</td>
<td>90,686</td>
<td>798,9146</td>
<td>13,74</td>
<td>1,22</td>
<td>19,2106</td>
<td>19,116</td>
</tr>
<tr>
<td>9</td>
<td>16,023</td>
<td>90,638</td>
<td>791,345</td>
<td>13,91</td>
<td>1,7617</td>
<td>19,3168</td>
<td>19,063</td>
</tr>
<tr>
<td>10</td>
<td>16,051</td>
<td>91,37</td>
<td>793,2453</td>
<td>13,35</td>
<td>1,8567</td>
<td>19,3454</td>
<td>19,016</td>
</tr>
<tr>
<td>11</td>
<td>16,165</td>
<td>90,953</td>
<td>791,1774</td>
<td>13,48</td>
<td>0,7733</td>
<td>19,3807</td>
<td>19,099</td>
</tr>
<tr>
<td>12</td>
<td>16,216</td>
<td>91,343</td>
<td>784,2307</td>
<td>14,12</td>
<td>1,52</td>
<td>19,4435</td>
<td>19,144</td>
</tr>
<tr>
<td>13</td>
<td>16,198</td>
<td>91,413</td>
<td>783,8681</td>
<td>13,77</td>
<td>0,7467</td>
<td>19,4706</td>
<td>19,098</td>
</tr>
<tr>
<td>14</td>
<td>16,14</td>
<td>89,811</td>
<td>775,058</td>
<td>13,96</td>
<td>0,7</td>
<td>19,4539</td>
<td>19,177</td>
</tr>
<tr>
<td>15</td>
<td>16,1</td>
<td>91,587</td>
<td>767,0464</td>
<td>14,24</td>
<td>1,245</td>
<td>19,406</td>
<td>19,113</td>
</tr>
<tr>
<td>16</td>
<td>16,081</td>
<td>88,826</td>
<td>765,2635</td>
<td>14,28</td>
<td>1,3233</td>
<td>19,3577</td>
<td>19,191</td>
</tr>
<tr>
<td>17</td>
<td>16,172</td>
<td>91,937</td>
<td>762,235</td>
<td>13,85</td>
<td>1,2367</td>
<td>19,3442</td>
<td>19,123</td>
</tr>
<tr>
<td>18</td>
<td>16,157</td>
<td>93,107</td>
<td>751,7704</td>
<td>12,84</td>
<td>0,44</td>
<td>19,3964</td>
<td>19,037</td>
</tr>
<tr>
<td>19</td>
<td>16,034</td>
<td>92,671</td>
<td>751,3531</td>
<td>13,02</td>
<td>1,4167</td>
<td>19,3736</td>
<td>18,996</td>
</tr>
<tr>
<td>20</td>
<td>15,881</td>
<td>93,65</td>
<td>741,5318</td>
<td>13,41</td>
<td>1,6717</td>
<td>19,2887</td>
<td>18,764</td>
</tr>
<tr>
<td>21</td>
<td>16,697</td>
<td>91,649</td>
<td>742,1513</td>
<td>13,02</td>
<td>2,585</td>
<td>19,1482</td>
<td>18,654</td>
</tr>
<tr>
<td>22</td>
<td>16,719</td>
<td>90,688</td>
<td>738,501</td>
<td>12,71</td>
<td>1,805</td>
<td>19,0923</td>
<td>18,605</td>
</tr>
<tr>
<td>23</td>
<td>15,813</td>
<td>90,851</td>
<td>734,6586</td>
<td>12,56</td>
<td>0,67</td>
<td>19,0316</td>
<td>18,593</td>
</tr>
<tr>
<td>24</td>
<td>15,822</td>
<td>91,765</td>
<td>736,3264</td>
<td>13,12</td>
<td>1,3083</td>
<td>19,0382</td>
<td>18,58</td>
</tr>
<tr>
<td>25</td>
<td>15,766</td>
<td>91,092</td>
<td>730,3805</td>
<td>12,7</td>
<td>0,7933</td>
<td>19,0067</td>
<td>18,524</td>
</tr>
<tr>
<td>26</td>
<td>15,813</td>
<td>91,369</td>
<td>723,9695</td>
<td>12,75</td>
<td>1,0383</td>
<td>18,951</td>
<td>18,58</td>
</tr>
<tr>
<td>27</td>
<td>15,935</td>
<td>91,849</td>
<td>724,1584</td>
<td>12,58</td>
<td>0,87</td>
<td>18,9915</td>
<td>18,645</td>
</tr>
<tr>
<td>28</td>
<td>15,881</td>
<td>91,803</td>
<td>730,5342</td>
<td>13,52</td>
<td>1,0417</td>
<td>19,0531</td>
<td>18,545</td>
</tr>
<tr>
<td>29</td>
<td>15,837</td>
<td>90,828</td>
<td>728,6009</td>
<td>13,55</td>
<td>0,4667</td>
<td>19,0226</td>
<td>18,605</td>
</tr>
<tr>
<td>30</td>
<td>15,837</td>
<td>91,96</td>
<td>728,1495</td>
<td>14,25</td>
<td>0,7183</td>
<td>18,995</td>
<td>18,638</td>
</tr>
<tr>
<td>31</td>
<td>15,786</td>
<td>92,282</td>
<td>724,6937</td>
<td>14,19</td>
<td>0,61</td>
<td>18,999</td>
<td>18,608</td>
</tr>
<tr>
<td>32</td>
<td>15,815</td>
<td>91,696</td>
<td>731,64</td>
<td>13,93</td>
<td>0,5567</td>
<td>18,9808</td>
<td>18,716</td>
</tr>
<tr>
<td>33</td>
<td>15,827</td>
<td>93,114</td>
<td>728,144</td>
<td>14,34</td>
<td>1,0517</td>
<td>19,007</td>
<td>18,676</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>15,776</td>
<td>91,829</td>
<td>735,7273</td>
<td>14.56</td>
<td>1,4583</td>
<td>19,0096</td>
<td>18,661</td>
</tr>
<tr>
<td>35</td>
<td>15,765</td>
<td>93,214</td>
<td>730,715</td>
<td>14.58</td>
<td>1,2267</td>
<td>18,9855</td>
<td>18,599</td>
</tr>
<tr>
<td>36</td>
<td>15,815</td>
<td>92,132</td>
<td>732,377</td>
<td>15.05</td>
<td>1,165</td>
<td>18,9994</td>
<td>18,692</td>
</tr>
<tr>
<td>37</td>
<td>15,825</td>
<td>89,978</td>
<td>726,3677</td>
<td>14.86</td>
<td>1,7867</td>
<td>19,0235</td>
<td>18,738</td>
</tr>
</tbody>
</table>
Appendice A4

Confronto produzione elettrica modello dinamico

Gli unici dati significativi in merito al confronto fra potenza elettrica misurata e simulata dal modello dinamico, riguardano il transitorio di tipo 1 del 3 marzo 2015. Il motivo di ciò risiede in alcuni problemi tecnici dei dispositivi di misura per il giorno 5 marzo e in problemi di ombraggiamento dei pannelli da parte della centralina meteo per il giorno 6 marzo. Quest’ultimo incoveniente, sebbene non conduca a problemi rilevanti dal punto di vista termico, provoca la disattivazione di intere file di celle PV e un conseguente crollo delle prestazioni elettriche rilevate.

Si riportano in tabella A4.1 e in figura A4.1 i dati significativi per il confronto, relativi al transitorio di tipo 1 del 3 marzo. Tali dati sono da leggere in relazione alle condizioni di funzionamento presentate in tabella A3.1. In figura A4.1 ancora una volta l’andamento simulato è in blu scuro e quello misurato in azzurro chiaro.

Tabella A4.1: dati per confronto potenza elettrica per il transitorio di tipo 1 del 3 marzo 2015

<table>
<thead>
<tr>
<th>ora</th>
<th>periodo</th>
<th>P_{el} sperimentale</th>
<th>P_{el} simulata</th>
<th>T_{meanPLA} simulata</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>ore:min</td>
<td>min</td>
<td>W</td>
<td>W</td>
<td>°C</td>
<td>W/m²</td>
</tr>
<tr>
<td>12:20</td>
<td>1</td>
<td>55,1484375</td>
<td>59,3468</td>
<td>35,9002</td>
<td>900,7679</td>
</tr>
<tr>
<td>12:21</td>
<td>2</td>
<td>54,765625</td>
<td>61,7583</td>
<td>33,1142</td>
<td>905,3541</td>
</tr>
<tr>
<td>12:22</td>
<td>3</td>
<td>55,1015625</td>
<td>61,2707</td>
<td>31,05</td>
<td>876,0374</td>
</tr>
<tr>
<td>12:23</td>
<td>4</td>
<td>56,3046875</td>
<td>64,476</td>
<td>28,7809</td>
<td>897,5166</td>
</tr>
<tr>
<td>12:24</td>
<td>5</td>
<td>56,3046875</td>
<td>64,7908</td>
<td>26,8295</td>
<td>881,8669</td>
</tr>
<tr>
<td>12:25</td>
<td>6</td>
<td>57,484375</td>
<td>65,331</td>
<td>25,6403</td>
<td>877,3441</td>
</tr>
<tr>
<td>12:26</td>
<td>7</td>
<td>58,8515625</td>
<td>67,4408</td>
<td>24,6348</td>
<td>895,565</td>
</tr>
<tr>
<td>12:27</td>
<td>8</td>
<td>58,8515625</td>
<td>68,7286</td>
<td>24,0194</td>
<td>906,4702</td>
</tr>
<tr>
<td>12:28</td>
<td>9</td>
<td>58,8515625</td>
<td>65,4792</td>
<td>23,6704</td>
<td>860,3024</td>
</tr>
<tr>
<td>12:29</td>
<td>10</td>
<td>56,0859375</td>
<td>65,6419</td>
<td>23,3305</td>
<td>859,23</td>
</tr>
<tr>
<td>12:30</td>
<td>11</td>
<td>56,0859375</td>
<td>65,9427</td>
<td>23,07</td>
<td>860,7143</td>
</tr>
<tr>
<td>12:31</td>
<td>12</td>
<td>57,43735</td>
<td>66,7643</td>
<td>22,8380</td>
<td>869,2454</td>
</tr>
<tr>
<td>12:32</td>
<td>13</td>
<td>57,25</td>
<td>67,7219</td>
<td>22,4933</td>
<td>878,4074</td>
</tr>
<tr>
<td>12:33</td>
<td>14</td>
<td>56,8359375</td>
<td>67,684</td>
<td>22,2688</td>
<td>875,7838</td>
</tr>
<tr>
<td>12:34</td>
<td>15</td>
<td>56,8359375</td>
<td>66,7613</td>
<td>21,9254</td>
<td>860,6462</td>
</tr>
<tr>
<td>12:35</td>
<td>16</td>
<td>57,5234375</td>
<td>67,4975</td>
<td>21,7121</td>
<td>868,1413</td>
</tr>
<tr>
<td>12:36</td>
<td>17</td>
<td>57,265625</td>
<td>67,1652</td>
<td>21,6508</td>
<td>863,297</td>
</tr>
<tr>
<td>12:37</td>
<td>18</td>
<td>57,265625</td>
<td>67,3922</td>
<td>21,5032</td>
<td>864,827</td>
</tr>
<tr>
<td>12:38</td>
<td>19</td>
<td>57,265625</td>
<td>66,4986</td>
<td>21,2544</td>
<td>851,1026</td>
</tr>
<tr>
<td>12:39</td>
<td>20</td>
<td>58,765625</td>
<td>69,4751</td>
<td>21,1318</td>
<td>888,0327</td>
</tr>
<tr>
<td>12:40</td>
<td>21</td>
<td>58,765625</td>
<td>68,4933</td>
<td>21,052</td>
<td>874,7383</td>
</tr>
<tr>
<td>12:41</td>
<td>22</td>
<td>60,3984375</td>
<td>69,5159</td>
<td>21,0853</td>
<td>888,1136</td>
</tr>
<tr>
<td>12:42</td>
<td>23</td>
<td>58,6875</td>
<td>69,6216</td>
<td>21,1632</td>
<td>890,2043</td>
</tr>
<tr>
<td>12:43</td>
<td>24</td>
<td>58,171875</td>
<td>68,7661</td>
<td>21,1802</td>
<td>879,4262</td>
</tr>
<tr>
<td>12:44</td>
<td>25</td>
<td>58,171875</td>
<td>71,66</td>
<td>21,2123</td>
<td>916,7493</td>
</tr>
<tr>
<td>12:45</td>
<td>26</td>
<td>58,015625</td>
<td>66,9605</td>
<td>21,2507</td>
<td>856,9806</td>
</tr>
<tr>
<td>12:46</td>
<td>27</td>
<td>58,6796875</td>
<td>67,9012</td>
<td>21,2308</td>
<td>868,8345</td>
</tr>
<tr>
<td>12:47</td>
<td>28</td>
<td>58,6796875</td>
<td>66,8966</td>
<td>21,2282</td>
<td>855,9561</td>
</tr>
<tr>
<td>12:48</td>
<td>29</td>
<td>58,6796875</td>
<td>69,3684</td>
<td>21,2783</td>
<td>888,0595</td>
</tr>
<tr>
<td>12:49</td>
<td>30</td>
<td>58,8828125</td>
<td>71,2008</td>
<td>21,1558</td>
<td>910,3256</td>
</tr>
<tr>
<td>12:50</td>
<td>31</td>
<td>58,8828125</td>
<td>67,8034</td>
<td>21,0569</td>
<td>865,9731</td>
</tr>
<tr>
<td>12:51</td>
<td>32</td>
<td>58,9453125</td>
<td>69,7058</td>
<td>20,9558</td>
<td>889,3089</td>
</tr>
<tr>
<td>12:52</td>
<td>33</td>
<td>56,1953125</td>
<td>69,4452</td>
<td>20,9557</td>
<td>885,9839</td>
</tr>
<tr>
<td>12:53</td>
<td>34</td>
<td>48,6640625</td>
<td>69,8228</td>
<td>20,9834</td>
<td>891,0642</td>
</tr>
<tr>
<td>12:54</td>
<td>35</td>
<td>48,6640625</td>
<td>69,6533</td>
<td>20,9243</td>
<td>888,341</td>
</tr>
<tr>
<td>12:55</td>
<td>36</td>
<td>0,1015625</td>
<td>67,5361</td>
<td>20,9847</td>
<td>861,894</td>
</tr>
</tbody>
</table>

Figura A4.1: confronto andamento della produzione elettrica per il transitorio di tipo 1 del 3 marzo 2015
In tabella A4.1 sono stati riportati i dati di irraggiamento e temperatura media del pannello calcolata, in modo da poter esaminare gli effetti che tali dati hanno sul calcolo della potenza prodotta.

L’andamento simulato (Fig. A4.1) sovrasta in modo consistente la produzione elettrica. I motivi sono stati esplicitati nel capitolo 4. L’andamento qualitativo è invece ricalcato, in prima analisi, in modo abbastanza buono. Il crollo che si ha nelle misure è attribuibile all’arrivo dell’ombreggiamento operato dalla centralina.
Elenco dei simboli

T temperature
G radiazione solare
k conduttività termica
s spessore
g termine di generazione
h coefficiente di scambio termico convettivo
R resistenza termica
W potenza
Q flusso termico
\(\dot{m} \) portata massica
\(C_p \) calore specifico a pressione costante (indicato anche solo con c)
A area
V volume
T tempo
NOCT Normal Operative Cell Temperature
PVT collettore fotovoltaico-termico
PV fotovoltaico
I incertezza
Nu numero di Nusselt
Re numero di Reynolds
Gz numero di Graetz
Ra numero di Rayleigh
Pr numero di Prandtl
D diametro
m parametro caratteristico aletta
f coefficiente d’attrito

Lettere greche
\(\lambda \) lunghezza d’onda della radiazione solare
\(\eta \) rendimento
\(\beta \) coefficiente sperimentale correzione rendimento in base alla temperatura
\(\gamma \) coefficiente sperimentale correzione rendimento in base alla radiazione solare
\(\alpha \) assorbanza (per PV nettata rispetto alla trasmissanza del vetro)
\(\varepsilon \) emissività
\(\sigma \) costante di Stefan-Boltzmann
\(\rho \) densità
Pedici

c cella
r riferimento
el elettrico
eq equivalente
v vetro
EVA etil vinil acetato
PV celle fotovoltaiche
TED tedlar
ad adesivo
al alluminio
ins isolante (indicato anche come iso)
for forex
∞ infinitamente lontano, indisturbato
w vento
f fluido termo-vettore
a ambiente
sky cielo, ambiente radiativo
ser attraversamento in serie del flusso termico
par attraversamento in parallelo del flusso termico
back retro pannello
fluid fluido termo-vettore(2)
rif riferimento(2)
cell superficie superiore volumetto di controllo
IN in ingresso
OUT in uscita
noct riferito alla Normal Operative Cell Temperature
acc accettabile
strum legata alla misurazione seprimentale
osc legata all’oscillazione delle misure mediate
air aria
pla pannello
nat convezione naturale
int interno
est esterno
serp serpentino
fin aletta
tub tubo
Bibliografía

[15] Luca A. Tagliafico, Cecilia Rossi Pannelli solari fotovoltaici refrigerati con sistemi a pompa di calore. DIPTEM/TEC - University of Genoa, 2010 (articolo)

[18] Luca A. Tagliafico, F. Valsuani. Last developments of solar assisted heat pumps in Italy. University of Genoa. DIME / TEC. Division of Thermal engineering and Environmental Conditioning.

[53] Chao-Yang Huang e Chiou-Jye Huang. A study of photovoltaic thermal (PV/T) hybrid system with computer modeling. Industrial Technology Research Institute and National Chiao Tung University, Taiwan. 2013

the Netherlands ECN, Unit Renewable Energy in the Built Environment. 2004

Riferimenti bibliografici aggiuntivi:

- Marcello Aprile, diapositive del corso di Ingegneria dei processi solari termici
- Paolo Silva, diapositive del corso di Produzione di potenza da fonti rinnovabili
Siti Web consultati

[w-1]http://www.fusione.enea.it/

[w-3]http://www.energyhunters.it

Ringraziamenti

Desidero ringraziare il professor Molinaroli per l’aiuto e il sostegno datomi durante lo svolgimento del lavoro di tesi, per la sua costante disponibilità e per l’impegno e la precisione con cui mi ha seguito in tutto il percorso degli ultimi mesi.

Ringrazio il professor Manzolini e Gioele Di Marcobertardino che mi hanno supportato nella preparazione e nello svolgimento delle prove sperimentali dedicandomi tempo ed energie.

Ringrazio Marta Rizzini, che più di tutti mi ha aiutato nell’elaborazione dei dati sperimentali e nell’esecuzione di tutti i lavori pratici svolti nel laboratorio di Processi Solari, per la tanta pazienza nel rispondere a tutti i miei numerosi dubbi e per tutto il sostegno e il tempo dedicatomi.

Ringrazio la mia famiglia, costante punto di riferimento, rifugio dalle ansie e sostegno incrollabile in tutti i momenti di piccola e grande difficoltà in tutto il percorso universitario e non solo.

Ringrazio tutti gli amici che hanno accompagnato tale percorso da dentro o da fuori. È stata la condivisione a rendere tutto questo possibile.