
Politecnico di Milano

Scuola di Ignegneria Industriale e dell’Informazione
Corso di Laurea Magistrale in Ingegneria Aeronautica

design and implementation of
flight test data processing

software

Supervisor:
Prof. Alberto Rolando

Tesi di laurea di:
Matteo Grassi,
matr. 800974

AA 2014-2015

Matteo Grassi: Design and Implementation of Flight Test Data Processing
Software, Tesi Laurea Magistrale, c© aa 2014-2015.

“If you think it’s simple, then you have misunderstood the problem.”
Bjarne Stroustrup (C++ creator)

S O M M A R I O

La presente tesi tratta lo sviluppo di un nuovo software di elabora-
zione dati per prove di volo.
Il personale del corso Prove di Volo si serviva inizialmente di una
versione superata del software. Questa versione presentava numero-
si problemi; inoltre, poiché gli ingegneri di Prove di Volo necessitano
regolarmente di nuove funzioni e non essendo tale software sufficiente
a soddisfare le loro richieste, esso risultò essere mancante di numerosi
strumenti.
Partendo dalla vecchia versione e da uno studio del suo contesto di
uso, l’idea di un nuovo software prese forma nella mente dello svilup-
patore durante la fase di pianificazione. Nella fase di progettazione
l’idea iniziò ad essere più chiara. Sono state progettati nuovi schemi
e strutture del software in modo da avere un piano di lavoro durante
la fase di sviluppo. La fase di sviluppo riguarda la reale scrittura del
codice. Durante questa fase il programmatore ha dovuto risolvere tutti
i problemi che sorgevano mano a mano e soddisfare le nuove richieste
espresse dai committenti. Durante tutta questa fase sono stati eseguiti
test in modo da offrire all’utilizzatore finale un software privo di errori.
Lo stadio finale ha riguardato la creazione dell’eseguibile da distribui-
re al pubblico.
Il software così sviluppato, oltre che soddisfare tutte le esigenze, pre-
senta un’estrema flessibilità, un’interfaccia grafica particolarmente user-
friendly ed è già predisposto per accogliere nuovi miglioramenti svi-
luppati da eventuali futuri programmatori.

v

A B S T R A C T

The subject of this thesis is the development of a new flight test data
processing software.
Initially Flight Test course staff and students used an outdated version.
It presented many problems; moreover, being the Flight Test Engineers
always needing new features and, being it not able to satisfy their re-
quirements, it started to lack many tools.
Starting from the old version and from a study of the context of use,
the idea of a new software took shape into the developer’s mind dur-
ing the planning phase. In the design phase this idea started to become
clearer. New software schemes and structures have been designed in
order to have a plan to follow during the development phase. The de-
velopment phase is the actual writing of the code. During this phase
the developer had to solve all the problems encountered and to meet
all the new requirements coming from the stakeholders. A testing has
also been carried out throughout this phase to provide a bug safe soft-
ware to the end user. The final stage has been the actual deployment
of the software in order to build the executable to be distributed to the
public.
The software developed, apart from satisfying all the requirements,
presents a great flexibility, a extremely user-friendly GUI and it is pre-
disposed for new improvements by future developers.

vi

A C K N O W L E D G M E N T S

I would like to express my gratitude to my supervisor Alberto Ro-
lando for the useful comments, remarks and engagement throughout
the learning process of this thesis. There is no doubt for me that wi-
thout his precious guidelines, dealing with common difficulties for a
beginner would be not possible and this dissertation would have not
seen light.
Furthermore I wish to express my sincere thanks to Professor Giovan-
ni Lozza, Principal of the School, to Professor Giovanni Azzone, Dean
of Politecnico di Milano, and to the whole university for providing me,
during those years, all the facilities necessary for my studies.
I would like to thank my loved ones, who have supported me throu-
ghout the entire process, by keeping me harmonious and guiding me.

Milano, april 2015 M.G.

vii

C O N T E N T S

1 introduction 1

2 planning 3

2.1 Initial Analysis . 3

2.1.1 Context of use 3

2.1.2 Previous Release 3

2.1.3 End-user analysis 4

2.1.4 Data analysis . 4

2.1.5 Time Reference 6

2.2 Requirements . 6

2.2.1 Essential Requirements 6

2.2.2 Optional Requirements 7

3 design 9

3.1 Critical Choices . 9

3.1.1 Programming Language 9

3.1.2 Development Environment 11

3.1.3 Database Environment 11

3.2 C++ Class Plan . 12

3.2.1 MnmTimeStamp 12

3.2.2 MnmMeasure . 14

3.2.3 MnmMeasureVector 14

3.2.4 MnmFlight . 14

3.2.5 MnmCalibration 15

3.2.6 MnmTOP . 16

3.3 Database plan . 16

3.4 Graphical User Interface 17

4 development and testing 21

4.1 Improved features, main problems and late requirements 21

4.1.1 Inappropriate use management 21

4.1.2 Data export improvements and MAT-file 21

4.1.3 New import data file format: FTB 23

4.1.4 Local Frame Coordinate Calculation Tool 26

4.1.5 Air Data Calculation Tool 28

4.1.6 Database Insert Problem 30

4.1.7 Look-up table . 31

4.1.8 Improved GUI 32

4.1.9 Plot x-axis control 33

4.1.10 Ground Station Data Import 33

4.2 Software Deployment . 35

ix

x contents

5 conclusion 37

6 future developments 39

6.1 Signal Filtering . 39

6.2 Signal Spectrum . 39

6.3 Outliers Detection . 39

6.4 Plot Image . 39

6.5 Real Time Data Streaming 40

6.6 New Export Formats . 40

6.7 Performance Evaluation Tools 40

6.8 Server Database . 40

a c++ classes 43

a.1 Data classes . 43

a.1.1 MnmTimeStamp 43

a.1.2 MnmMeasure . 44

a.1.3 MnmMeasureVector 45

a.1.4 MnmFlight . 47

a.1.5 MnmTOP . 48

a.1.6 MnmCalibration 49

a.2 Graphical User Interface classes 50

a.2.1 Main Window . 50

a.2.2 Export Window 50

a.2.3 Time Control Widgets 51

a.2.4 Plot Tab and plot space 52

a.2.5 TOP management widget 52

a.2.6 Calibration Widget 53

a.2.7 Save and load calibration windows 53

a.2.8 Local frame coordinates and air data windows 54

a.2.9 Channels setting window 55

a.2.10 Other utility windows 56

b sqlite database 57

b.1 FLIGHT table . 57

b.2 PILOT table . 57

b.3 FTE table . 57

b.4 AIRCRAFT table . 57

b.5 VECTOR table . 58

b.6 TOP table . 59

b.7 CALIBRATION_SET table 59

b.8 CALIBRATION table . 59

b.9 CHANNEL table . 60

Bibliography 60

L I S T O F F I G U R E S

Figure 1 Previous M3 version: mainwindow 4

Figure 2 Previous M3 version: plot window 5

Figure 3 FTI file structure 5

Figure 4 Procedural programming scheme 9

Figure 5 Structured programming scheme 10

Figure 6 Object oriented programming scheme 10

Figure 7 C++ class plan, dependencies 12

Figure 8 C++ class plan, data and methods 18

Figure 9 SQL table plan . 19

Figure 10 Mock-up of the main window 19

Figure 11 Mock-up of the main window (menu) 20

Figure 12 Mock-up of the main window (plot tab) 20

Figure 13 Export window 22

Figure 14 MAT-file level 5 structure 23

Figure 15 MAT-file level 5 element structure 24

Figure 16 MAT-file level 5 example 24

Figure 17 FTB file format . 25

Figure 18 Channels setting window 27

Figure 19 Geodetic coordinates, longitude radius of cur-
vature . 28

Figure 20 Local frame reference window 28

Figure 21 Air Data Calculation 30

Figure 22 Look-up table insert window 31

Figure 23 Magnified stacked widget 32

Figure 24 Time control management 33

Figure 25 FTG file format 34

Figure 26 Mnemosine Mission Manager logo 37

Figure 27 Local database and server visual explanation . . 41

Figure 28 C++ class plan, UML model, dependency map . 43

Figure 29 Mnemosine Mission Manager, main window . . 50

Figure 30 Mnemosine Mission Manager, export dialog . . 51

Figure 31 Mnemosine Mission Manager, main time con-
trol widget and tab time control widget 51

Figure 32 Mnemosine Mission Manager, plot tab and plot
space . 52

Figure 33 Mnemosine Mission Manager, TOP management
widget and add-TOP window 52

Figure 34 Mnemosine Mission Manager, Calibration man-
agement widget and add-calibration window . . 53

xi

Figure 35 Mnemosine Mission Manager, Save-calibration-
group window and Load-calibration-group win-
dow . 54

Figure 36 Mnemosine Mission Manager, local frame ref-
erence window and air data calculation input
window . 54

Figure 37 Mnemosine Mission Manager, channel setting
window . 55

Figure 38 Mnemosine Mission Manager, set pilot window,
set FTE window, set aircraft window and select
flight to load window 56

Figure 39 SQLite database structure 58

L I S T O F TA B L E S

Table 1 GPS time data structure 13

Table 2 Institute of Electrical and Electronics Engineers
(IEEE) 1558 time data structure 13

Table 3 Calibration curve data structure 15

Table 4 FTB file format, data element structure 25

Table 5 FTB file format, payload union 26

Table 6 FTB file format, payload, analog1 structure . . . 26

Table 7 FTG file format, data element structure 34

Table 8 FTG file format, data element, weather station
payload structure 35

Table 9 MnmTimeStamp class, data 43

Table 10 MnmTimeStamp class, methods 44

Table 11 MnmMeasure class, data 44

Table 12 MnmMeasure class, methods 45

Table 13 MnmMeasureVector class, data 45

Table 14 MnmMeasureVector class, methods 46

Table 15 MnmFlight class, data 47

Table 16 MnmFlight class, methods 48

Table 17 MnmTOP class, data 48

Table 18 MnmCalibration class, data 49

xii

A C R O N Y M S

CAS Calibrated Air Speed

DLL Dynamic-link Library

EAS Equivalent Air Speed

ECEF Earth-centered Earth-fixed

ENU East North Up

FAT File Allocation Table

FFT Fast Fourier Transform

FTE Flight Test Engineer

FTI Flight Test Instrumentation

GNU GNU’s Not Unix

GNU GPL GNU General Public License

GNU LGPL GNU Lesser General Public License

GPS Global Positioning System

GUI Graphical User Interface

IEEE Institute of Electrical and Electronics Engineers

ISA International Standard Atmosphere

MinGW32 Minimalist GNU for Windows

MSL Mean Sea Level

MSVC Microsoft Visual C++

OOP Object Oriented Programming

OS Operating System

QML Qt Modelling Language

Qwt Qt Widgets for Technical Applications

RDMS Relational Database Management System

SQL Structured Query Language

TAS True Air Speed

xiii

xiv LIST OF TABLES

UAV Unmanned Aerial Vehicle

UML Unified Modeling Language

UTC Universal Coordinated Time

WAL Write Ahead Log

1 I N T R O D U C T I O N

This thesis presents the development of a new software for data
management requested by Polimi XFlight, a university flight testing
group, for its own Flight Test Instrumentation (FTI) system. Together
with the hardware and software of the acquisition instrumentation,
this software will be used in many occasions, like lessons, experimental
activities and research.
The process will be presented only through the most significant parts,
comparing the job done to the previous version and showing its main
virtues; this approach highlights the new release itself shadowing the
developer commitment necessary to reach it.
The software development can be divided into different phases:

planning This is the initial part, that comprehends the gathering of
information about the software to be developed and from them
obtaining some requirements to be satisfied.

design During this phase some critical choices will be developed and
they will affect the whole project and its execution. Moreover
a structure of the software and its parts will be developed in
order to organize the subsequent phase and at the end to have
an organized, neat source code; this will guarantee an efficient
software and will allow future developers to easily expand the
code.

development and testing The development phase comprehends
the actual building of the software by writing the source code;
the concept, developed in the design phase, starts to take shape.
Any change made to it in that moment is going to involve a great
amount of work. For this reason, problems and new require-
ments have been high-lightened. Also the debugging is carried
out in order to avoid the appearance of error to the end user.

deployment The building of the real executable to be distributed to
end-users.

In the end a global, complete view of the application is given through
its main features, for more information about the real structure of the
software see the appendices.
Also a short forecast of the possible improvements soon to be imple-
mented is given in the final part of the thesis.

1

2 P L A N N I N G

This is the initial part, that comprehends the gathering of informa-
tion about the software to be developed. A knowledge of the actual
software condition and usage, of its main lacks and failure, provides
the obtaining of some of the requirements. This task has been eased by
my attendance at the Flight Testing course, so I already knew a part of
the requirements.

2.1 initial analysis

2.1.1 Context of use

Mnemosine Mission Manager was created as a support to the FTI
hardware system used to acquire flight data on ultralight aircraft. This
system is used, as already said above, in the context of Flight Testing
course at Politecnico di Milano in order to provide, in a usable format,
flight data to course students; they, at a later stage, have to analyze
them. Anyway those data may be useful for other purposes also to pro-
fessors and stakeholders, in fact this system has been used to acquire
data from new kind of ultralight aircraft and is going to be installed
onto Unmanned Aerial Vehicle (UAV). Finally, there are expectations
concerning a prospective use of the system by other universities.

2.1.2 Previous Release

The previous release of the software consists mainly of a table inter-
face (fig. 1) to view data vectors and to plot them on a child window. It
does not allow any kind of numerical operation on vector and there are
no checks on the integrity of the imported data. The export is available
only on comma separated value files (*.csv), one for each vector.

The plot window (fig. 2) contains only one plot with one curve at
a time but many plot windows can be opened simultaneously; the
user can move the plot but the movement is unlinked between the
various windows and no zoom feature is available. There are two time
markers located by default on initial and final time but they can be
moved through the main window. Furthermore the x-axis displays
nanoseconds and this is not very readable and useful.

In conclusion, even if the previous release had been able to import,
export and show data, it was too basic to allow any kind of usage,

3

4 planning

Figure 1: Mainwindow of the previous software release

except for the conversion of the data to csv-file, which is nevertheless
not versatile.

2.1.3 End-user analysis

Actually, the end-users of the software are students and professors
from Politecnico di Milano, but the two categories make a different
use of the software. Students require a fast, easy way to acquire flight
data, viewing it quickly in the ground station and later exporting it in
a file format compatible to the tools provided by the university; this
means mainly MATLAB R©. Even though professors share the same first
two necessities, they do not require an export feature, but are more
interested in saving the data into a long term ordered safe storage sys-
tem to allow fast reliable data availability also in the future; moreover,
professors need a way to calibrate data and to check the acquisition
performance immediately after the flight.

2.1.4 Data analysis

The discussions that have been conducted till now relate to unde-
fined data, but they are actually the core of all the activities related
to flight testing. Therefore having a knowledge of the data type, di-
mensions and quantity acquired from the FTI is mandatory. Data are
stored into a binary file (*.fti,*.trc) one structure at a time, even if the
structure is different for each file format, the main characteristics are
the same. Each structure contains (see figure 3):

2.1 initial analysis 5

Figure 2: Plot window of the previous software release

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

 SN

D
ata

Elem
en

t

(1
6

 b
ytes)

Timestamp (uint 32)

EID (32 bit)

Payload

Data element till the end of file

Seconds

EID (32 bit)

Payload (52 bytes)

Data element till the end of file

(it can be split over 2 files)

Milliseconds

Milliseconds

Payload ID

Payload ID

Payload (52 bytes)

EID (32 bit)

D
ata Elem

en
t (5

9
 b

yte
s)

Sin
gle FTB

 file (1
2

8
 K

B
)

Milliseconds

Payload ID Milliseconds

Figure 3: FTI file structure

timestamp A time datum in a local time reference system. Time is
counted as a number of ticks from the starting of the FTI (a tick
is a portion of time different for each acquisition system and file
format).

eid 32 bit containing various information of which the most important
are: an identification number that allows the classification of the
datum into the correct vector (e.g. pitot boom static pressure)
and the node ID that is used to divide the same kind of data
into different vector depending on the acquisition system it came
from (e.g voltage of a node).

datatype The actual datatype used to correctly read the bytes of the
payload (e.g. unsigned integer 32 bit, double).

payload The actual datum.

When data are properly loaded from the binary file, they result into
a group of vectors, each one containing a series of two dimensional
points (time and datum). At the actual state, with flights lasting less
than an hour and with some flight test instruments still missing, data
files have a size between 20-40 MB, containing 50-60 vectors; vector
size depends obviously on the data acquisition frequency, anyway it
varies from around 1000 points to (in the worst case) 200,000 points.

6 planning

2.1.5 Time Reference

A knowledge of the time formats to be used in the software is nec-
essary to properly develop the software. The time formats are:

utc Universal Coordinated Time can be stored as number of seconds
(or smaller parts of it) from Jan 1 1970, like unix time, with the
only difference given by leap seconds, a one second adjustment
made occasionally to keep UTC aligned with mean solar time.
It is usually shown as normal date and time(month-day-year
hh:mm:ss).

local Local time is similar to UTC time format, the only difference is
a variation of few hours accordingly to the time zone where the
format is used.

gps Global Positioning System time format [3] is composed by three
different values: the week number (number of weeks from the
start of the GPS, Jan 6 1980), the time of week (milliseconds from
the start of the current week) and nanosecond reminder (number
of nanoseconds, can be either positive or negative). The week
number initially was 10 bit but, having reached the week 1024, its
size has been increased to deal with it. GPS time does not have
any connection with leap seconds and so there is no correction
keeping it aligned with solar time.

ieee The time precision protocol IEEE 1588 [5] contains rules to store
time data in an accurate manner. The format prescribes an un-
signed 32 bit integer for the number of seconds and a signed 32

bit integer for the number of nanoseconds. Epoch is not declared
from rules so it can be chosen accordingly to peculiar needs.

2.2 requirements

Thanks to the previous analysis, I’ve been able to obtain require-
ments for the new version of the software which have been divided
into mandatory or essential and optional.

2.2.1 Essential Requirements

import M3 must be able to import every kind of file created by the
actual acquisition systems (*.fti,*.trc).

export Comma separated value export tool is mandatory to allow
student activities to be performed correctly.

storage Software must provide a safe, reliable way to save the data
for long term usage.

2.2 requirements 7

plot A plot feature is needed to have a fast way to view time-histories.

calibration There must be a way to calibrate the acquired data in-
side the application.

sanity check A sanity check is required by the Flight Test staff to
be able to control the acquisition results immediately after the
flight.

2.2.2 Optional Requirements

export Would be useful to students to be able to export into MAT-file
format in order to make the usage of data in MATLAB R© easier.

plot Having the plot not in the external window would make the
software more appealing and less disorganized.

plot Allowing more curves on the same plot would permit easier and
faster comparisons.

plot Synchronized time-axis (x-axis) movement between all plot could
provide a way to make the user more easily aware of the situation
of the flight at an exact segment of time.

plot Time axis showing current time would be more user friendly.

zoom A zoom feature would make the software more valuable and it
would allow a wider usage.

zoom A synchronized zoom between curves would be an added value
to the software.

marker A way to mark TOPs and moments of interest on all plot
would be required but not mandatory, because its absence does
not degrade software functionality.

platform Being able to use the software on different platforms (e.g
Windows, Ubuntu, Android) would guarantee a greater flexibil-
ity to all users and quicker access to data also from mobile de-
vices (e.g. smartphone, tablet) which are very common nowa-
days.

free If possible, the tools used during the development must be free
of charge to avoid the purchase of them for each developer.

free The application will be probably sold. The usage of the soft-
ware and the libraries distributed with free licenses that allow
commercial third party use is recommended.

3 D E S I G N

The design phase of the software comprehends all the initial deci-
sions and planning made before the actual building of the application
by writing the source code. The design phase took quite some time
in order to allow me to acquire the needed knowledge regarding soft-
ware design and programming language, but also to allow an initial,
well developed scheme of the actual features in order to simplify the
subsequent building phase and make it more neat. This will improve
the source code, making it easier for future developers to expand and
improve this software.

3.1 critical choices

3.1.1 Programming Language

The decision regarding the programming language was taken quickly
because of various reasons. First we needed to analyze the program-
ming paradigms which are divided into 3 macro categories: procedu-
ral programming, structured programming and object oriented pro-
gramming.

procedural programming This programming paradigm was widely
used in very old software. Procedures are executed in series and
sometimes are groped into subroutines and functions. It is there-
fore possible to avoid some of them by using GOTO command.
This kind of language is built with a top-down approach, it is
easy and fast to construct simple applications, but with large ap-
plications and a complex code with many connections between
the functions it is not the best choice.
Examples of procedural language are: Basic, Fortran.

Figure 4: Procedural Programming, example scheme

9

10 design

Figure 5: Structured Programming, example scheme

Figure 6: Object Oriented Programming, example scheme

structured programming The structured style is an improvement
of the procedural paradigm, because it allows a more flexible
usage of functions thanks to block structures and a greater use
of logical operators.
Examples of structured language: C, Pascal.

object oriented programming The Object Oriented Programming
(OOP) techniques are actually the most widely adopted and they
are a powerful programming tool in the current software and
hardware environment. They are based on the usage of object or
class that contains both data and methods which are functions
that allow access to data. This programming style is not top-
down but bottom-up because, in order to build a software in this
way, a developer must build classes first. OOP based applications
are very flexible and reusable. They can be also very complex.
Furthermore OOP provides a safer way to use data, while being
usually accessible only through methods.
Examples of OOP language are: C++,java.

In the end the final choice regarding the paradigm itself ended up
onto the OOP style due to the obvious advantages given by it, a simple,
flexible software structure open to possible future developments and
a safe data processing. The programming language has been easily
guided, once chosen the paradigm, C++ [2] is one of the most com-
mon programming languages, this powerful language has been used
to create operative system and a lot of software. Moreover the previ-
ous software was developed in a C++ environment allowing the usage
of parts of its code.

3.1 critical choices 11

3.1.2 Development Environment

The selection of the development environment has been Qt [6], a
cross-platform C++, QML and javascript integrated development envi-
ronment. This framework provides a large library of fully developed
C++ classes. Those objects take care of almost every basic need of
C++ developers, allowing them to focus only on the case specific part
of the application. There are classes for input/output device manage-
ment, file management, data storage and usage, database operation,
almost every basic Graphical User Interface (GUI) element and many
others. Also Qt Creator has also a GNU Lesser General Public Li-
cense (GNU LGPL); this means we develop software in a totally free
manner.
Qt Creator can use many different compilers. It is provided with
a basic compiler for 32 bit x86 processor in Windows environment,
Minimalist GNU for Windows (MinGW32). It is free and open source
but in order to improve our software for Windows usage (it is still
the most common Operating System (OS) used in our university), we
decided to use Microsoft Visual C++ (MSVC) which has also a free
redistributable version. MSVC usage will make our software already
well optimized for Microsoft OS without having to do it manually.
Anyway, in case it is needed to have a software version working on
other OS, Qt allows the developer to add other compilers and build
the project with each of them; so choosing Qt as development environ-
ment can satisfy the requirement asking for a multi-platform applica-
tion.
Even though Qt has many useful features, it lacks a fully developed
pack of GUI components to plot graphs. Luckily there has been already
built such a library, compatible with Qt environment, Qt Widgets for
Technical Applications (Qwt) library [7]. Qwt has a GNU LGPL allow-
ing free usage.

3.1.3 Database Environment

The need of a data storage system has been already underlined in
the previous chapter. This system obviously must provide fast access
both in upload and download to the needed part of data stored. This
could not be achieved with just a big file or small files because such a
system would lack of flexibility. A database is a reliable and flexible so-
lution to such a problem. The database allows the storage of data into
an organized manner permitting fast retrieval of every data recorded
into it; moreover, if a relational database is used, the software will be
able to achieve greater flexibility in association with it.
Initially the choice of the Relational Database Management System
(RDMS) was going toward MySQL which is licensed as GNU General
Public License (GNU GPL); it is fast, reliable and would have allowed

12 design

Figure 7: C++ class plan, UML model, dependency map

the creation of a dedicated database on the Politecnico di Milano server
to guarantee access to data to everyone in the university who needed
them. Obviously to connect the software to such a server an internet
connection must be available. This is not always granted, especially
in Flight Testing because the test aircraft could eventually fly in rural
area without a stable internet connection or with a slow one; to avoid
this problem we fell back on a portable solution. SQLite [8] is a self-
contained, serverless, zero-configuration, transactional SQL database
engine, once a SQLite database is created, it does not even require
the software but just the database file itself. Anyway, SQLite has its
own weaknesses; in fact it does not protect database integrity as val-
ues are weakly typed allowing the storage of a different datatype in
a column. Even if MySQL is used in many famous applications and
large websites like Facebook and Twitter, also SQLite is used in com-
mon software like web browsers and smartphone OSs, as a guarantee
of its usefulness and safety.

3.2 c++ class plan

The decision of the usage of an object oriented language like C++
determined the necessity to identify the needed classes and their own
structures. The first ones that needed to be identified, designed and
created are obviously classes related to data management, they are the
subject of this section. For information regarding the GUI see sec. 3.4.
In this section the initial plan for the C++ data classes is presented, for
details on the actual C++ classes see appendix A. To have a rough idea
of class plan, you must look at fig. 7 and 8; a short description is given
below of the main characteristics of each class.

3.2.1 MnmTimeStamp

This class is the container of the time datum. It must be able to work
with all the different time formats described in the section 2.1.5.

3.2 c++ class plan 13

utc Universal Coordinated Time can be stored using the existent QDa-
teTime class. It provides a very good group of functions that can
fulfil any kind of date and time requested. Unfortunately QDate-
Time does not take into account leap second. So, every time
Universal Coordinated Time (UTC) time format is requested, a
correction is applied to raw data, using an *.ini file containing all
the leap seconds adjustments.

Y2015 = 16

M2015 = 0

These two lines are taken from the file, they show how leap sec-
ond information is stored: a value of the actual leap seconds
from 1980 stored as Y followed by the actual year, and an iden-
tifier to locate when the leap second has been exactly placed (it
can be put at midnight of the 30 June or 31 December, in the file
it is actually indicated on the next moth, so, respectively, July or
January of the next year).

gps In order to deal with Global Positioning System (GPS) time for-
mat [3] a new structure had to be built. QDateTime was not able
to manage GPS time format.

Datatype Identifier Description
uint

16 bit
m_WeekNum

Week number: current number of weeks
since GPS epoch (Jan 6 1980)

uint
32 bit

m_ToW
Time of week: number of milliseconds
from the start of the week

int
16 bit

m_nSecRem
Nanoseconds reminder: number of ns
(signed)

Table 1: GPS time data structure

The datatype of each value has been chosen accordingly to its
boundaries and the week number it is not limited by the 1024 old
limit. As said before the GPS time does not have a dependency
from leap second, so no correction is needed.

ieee A proper structure has been built to manage IEEE 1558 [5] time
format. For details see table 2.

Datatype Identifier Description
uint

32 bit
m_seconds

Number of seconds from the epoch (it
can be chosen accordingly to needs)

uint
32 bit

m_nSec Nanoseconds from the current second

Table 2: IEEE 1558 time data structure

14 design

ns Nanosecond number from a variable epoch is often used to elabo-
rate data.

Even if all those formats are required, only one of them can be ef-
fectively stored in the class in order to avoid an unnecessary memory
usage. At the early start IEEE 1588 data format was chosen, but after
few weeks, still during the planning, it has been changed to GPS time
format to avoid too many numerical operations on data, as GPS time
is almost the actual output given by the FTI (FTI return a timestamp
that can be related directly to GPS time also recorded by the system).
Regarding the functions of this class, they must be able to work from
and to any kind of these formats, for export and visual output needs.

3.2.2 MnmMeasure

This object corresponds to the two dimensional point of a time his-
tory. It contains a time value (MnmTimeStamp) and one instrumenta-
tion output at that time. The measured value is stored like a QVariant,
this is a Qt class that allows to manage many kind of different datatype
without using the real format for every value. It must be able to set
these values and give them back in case of need.

3.2.3 MnmMeasureVector

Each time-history corresponds, regarding data, to one MnmMea-
sureVector object. In fact it contains a QList composed of pointer to
MnmMeasure objects, or a vector of points. Both QList and QVector
could have been used but QVector stores data in the memory in a more
rigid way (it stores data in adjacent bytes, QList stores just a pointers
gaining also a lot of heap memory) slowing down access to data in-
side it. In this class, apart from the list of measure, also basic info are
stored: label, measure unit, description and the number of nanosecond
for one FTI tick.

3.2.4 MnmFlight

This class is the container for all the time-histories of a flight; point-
ers to all the vectors are stored into a Qhash with a key. The key is a
quint32 value obtained from node ID and paramater ID of the vector.

quint8 NodeID = 2 ;
quint16 ParameterID = 3 2 1 ;
quint32 Hash_key = (NodeID << 16) + ParameterID ;

The epoch is also stored there to avoid too much memory usage by
placing it into other classes. About the methods, this object needs
functions to be able to guarantee access to vectors and also a function
to provide fast appending of new points to the hash table.

3.2 c++ class plan 15

3.2.5 MnmCalibration

One of the requirements was the ability to elaborate data. This class
is at the base of this need. It is a bridge between raw data vectors and
calibrated data vectors; vectors with parameter ID lower than 32768

are made of raw data, the other contains calibrated data. Apart from
the obvious data (i.e. parent node ID, parent parameter ID, label, de-
scription, measure unit), this class contains also two boundaries, they
are the way to fulfil also sanity check requirements; having no way to
put reasonable boundaries on raw data (data can be acquired as volt-
ages and voltage settings can vary every time), the problem has been
solved by placing boundaries on calibrated data. When vectors go
through the calibration, the software analyses if there are values out-
side of the prescribed boundaries of each vector and shows the result,
providing a way to the user to know almost instantly if something has
gone wrong during acquisition phase. About the curve, a new struc-
ture contains its information.
As it is possible to see in table 3, the structure contains 4 coefficients

Datatype Identifier Description

enum t_curveClass
Curve class identifier: it define how to use
the coefficients in the correct way

double a0 First coefficient
double a1 Second coefficient
double a2 Third coefficient
double a3 Last coefficient

Table 3: Calibration curve data structure

which are used in the proper way, depending on curve class enumera-
tor value:

none y = x

linear y = a0 + a1 x

poly y = a0 + a1 x+ a2 x
2 + a3 x

3

pow y = a0 x
a1

exp y = a0 exp (xa1)

log y = a0 ln (x) + a1

Other than usual functions, as mentioned above, it must be able to
perform a sanity check with boundaries and to compute the calibrated
vector.

16 design

3.2.6 MnmTOP

The TOP Object it’s simply made of a MnmTimeStamp object of a
moment of interest, a label and info to identify that time instant and
a TOP class identifier to know where the TOP has been acquired (i.e.
in flight, on ground, post processing, unidentified). Functions must
provide the usual access to the inside data.

3.3 database plan

The database structure can be easily understood by looking at fig.
9; the Unified Modeling Language (UML) diagram is self explaining.
So, only main features and parts that require special attention will be
described below.

The most important table of the database is the flight table. It cor-
relates all the other tables; the flight table ID is the only one given by
the software as an unsigned 64 bit integer and not composed of an
automatically incremental integer. This is to avoid the insertion of the
same flight in two different record of the table. The flight ID, from left
to right contains:

• Flight Test Engineer (FTE) ID (up to 10000)

• pilot ID (up to 100)

• year of flight execution

• month of flight execution

• day of flight execution

• hour of start of the flight

• minute of start of the flight

This table contains 4 values from 4 different tables but only two of
them are foreign key, pilot and FTE IDs. Foreign keys are a way that
database itself use to protect its own integrity, but in order to do so,
any INSERT or REPLACE query missing a foreign key is rejected; pilot
and FTE assignment to a flight is mandatory in order to have a correct
flight ID. On the other hand aircraft and calibration group may not be
set when the flight is saved. So to avoid query failure they were not
added as foreign key but just as normal integers. Another characteris-
tic planned solution is the use of a different table for each kind of data
type of the measured values (data type will be stored in a VECTOR
table row, in order to know which table points are stored into). In each
row of POINT tables there is also a column called serial number, this
is a value assigned during data inserting procedure in order to guar-
antee the correct order of the points also when they are loaded into

3.4 graphical user interface 17

the software. One other feature requires attention: the calibration are
not stored as vectors but as calibrations, only vectors with parameter
ID below 32768 are actually saved into the database; remaining vectors
are computed from calibration data when flight is loaded.

3.4 graphical user interface

In order to have a rough idea of the graphical user interface of the
software, an initial mock-up has been done. The mock-up, even if it
gives only an approximate view of the application (the GUI design
can be easily changed even in the final phase of construction), will be
helpful while building all the widgets composing the GUI in order to
keep in mind the connections between them and their possible arrange-
ment. The GUI presented here have many differences from the final
one (Appendix B).

The main window (fig. 10) plan tries to fix some lacks of the pre-
vious release, especially the need of new windows for each plot, by
placing them into tabs inside the main window; the first tab, instead,
will contain the vectors table.

The GUI also have a menubar with drop down menus (fig. 11), an
innovation from the previous release in order to avoid unnecessary
space use with buttons (e.g. import, load).

Finally the plot tab (fig. 12) is improved by the possibility of placing
more than one plot in it and with a small menu on the right for plot
settings.

18 design

Figure 8: C++ class plan, UML model, data and methods (name are not the
real ones to be self explaining as much as possible)

3.4 graphical user interface 19

Figure 9: SQL tables plan, UML model (name are not the real ones to be self
explaining as much as possible)

Figure 10: Mock-up of the main window

20 design

Figure 11: Mock-up of the main window, drop down menu

Figure 12: Mock-up of the main window, plot tab

4 D E V E LO P M E N T A N D T E S T I N G

The software development is a time consuming activity; all the fea-
tures planned must be realized and, obviously, nothing goes exactly as
planned. Problems arise during the building up and sometimes they
require a redesign of some parts of the software. Moreover, the stake-
holder may come up with new requirements for the software.
Regarding the testing/debugging, no particulars problems have been
encountered, although this activity has been executed simultaneously
with the development and a great amount of time has been taken by
the resolution of many small bugs found in the software; half of the
bugs were caused by imperfect use of C++ and Qt libraries due to inex-
perience and they were easy to solve. The other half, instead, requested
an in-depth research to find a solution.

4.1 improved features, main problems and
late requirements

4.1.1 Inappropriate use management

The software can perform a lot of actions if used correctly; unluckily
a wrong use may conduct to errors and software shut-down. Part of
the time has been used to make inappropriate use impossible to the
end-user, mostly by enabling and disabling actions and buttons when
some conditions arise.
One of the most important protections disables pilot and FTE setting
after their first selection; this ensures the correct recognition of the
flight by the database and it defends the integrity of the latter.
Other corrections were applied: to time management to avoid the un-
natural settings of the x-axis range, to file import tool to avoid loss
of the current data management session and to check the import to
be performed properly, to save-on-database tool to avoid integrity loss
and unwanted overwriting of data, etc.

4.1.2 Data export improvements and MAT-file

The data export feature has been greatly improved from the previous
release. All the lacks identified have been corrected as much as pos-
sible. The new export widget allows to export all or just some of the
vectors from the flight by selecting them: the two tables allow a fast

21

22 development and testing

Figure 13: Export window

visual recognition of the vectors being exported (they can be moved
from the left to the right table to export them or they can be removed
in the opposite manner). Moreover, it is now possible to select only a
short timepiece to export, between two existent TOPs; finally the time
reference system can be selected between many possibilities:

• UTC reference system (nanoseconds from Jan 1 1970)

• GPS reference system (nanoseconds from Jan 6 1980)

• Mission Time reference system (nanoseconds from mission epoch)

• From Current TOP reference system (nanoseconds from selected
TOP)

To further improve export feature and to simplify student’s life,
as suggested in the requirements, the MAT-file format [10] has been
added to export formats; this was not an easy task, even if the MAT-
file format adopted was level 5, the simplest one, because MATLAB R©

requires an exact structure.
First of all it is needed to know that MATLAB R© reads the files 64 bit
at a time. That is why the structure is presented in 8 bytes columns
in fig. 14. This characteristic will have also some consequences on the
following details. The 116 bytes of descriptive text at the top of the file
contains few information on the file and on the flight data contained
(example: MATLAB 5.0 MAT-file, Platform: Mnemosine, Created on:
mer mar 11 02:00:10 2015, Flight on: ven mag 23 13:11:48 2014); all the
following bytes are filled with null characters. Finally there are the
version number, equal to 1 (from MathWorks documentation), and the
endian indicator (IM indicating little endian encoding).
After the header, each data element is placed one after the other until
the end of file is reached; also the data element have a rigid prefixed
structure shown in fig. 15. The sub-element following the data element
tag are in our case:

• the array flags (16 bytes: 8 tag, 8 data) to indicate the variable
type (i.e. complex, global, logical) and the data class (e.g. double
array, uint_16 array).

• dimensions element (16 bytes: 8 tag, 4 rows number, 4 column
number) to indicate data element dimensions.

4.1 improved features, main problems and late requirements 23
 Level 5 MAT-File Format

1-5

1

Bytes

2 3 4 5 6 7 8

Data (variable size) or subelements

Repeat tagged data elements until end-of-file

subsys data offset

subsys data offset

data type number of bytes

version endian indicator

D
a

ta
e

le
m

e
n

t

Data (variable size) or subelements

Descriptive text (116 bytes)

data type number of bytes D
a

ta
e

le
m

e
n

t
M

A
T-fi

le
 h

e
a

d
e

r (128 b
yte

s)

Figure 1-1. MATLAB Level 5 MAT-File Format

Figure 14: MAT-file level 5 structure

• name element containing the data element name that will appear
in MATLAB R© workspace (mnm(node ID)_(parameter ID)_(vector
label)).

• the real data element, 8 bytes of element tag (containing the num-
ber of bytes of real data) and the data.

Attention must be paid to every sub-element length, because in case it
does not occupy a multiple of 8 bytes, padding bytes must be put to
restore it.

4.1.3 New import data file format: FTB

Approaching the end of the project, a new requirement has arisen
from the FTI building division; a new FTI output file format will be
adopted in this year flight test campaign.
Mnemosine Mission Manager must be able to import this file to be
useful during the soon to come campaign; the file structure is a lot
different from the older format. In fact a flight is not saved into a sin-
gle file but into many 128 KB files, split between many folders each
containing 128 files. This new method of saving improve data safety,
because an accidental, sudden removal of a FAT formatted volume [9]

24 development and testing 1
M

A
T-File Form

at

1-14

D
a

ta
 e

le
m

e
n

t

miMATRIX

1

Bytes

2 3 4 5

96
 b

yt
e

s

6 7 8

96

S
u

b
e

le
m

e
n

t
S

u
b

e
le

m
e

n
t

Ta
g

S
u

b
-

e
le

m
e

n
t

tag

data

tag

tag

data

data

Fig
ure 1

-5
. M

A
TLA

B A
rra

y D
a
ta

 Elem
ent w

ith Sub
elem

ents

Each m
i
M
A
T
R
I
X data elem

ent representing the different types of M
ATLAB

 arrays each
has a specific set of subelem

ents. Som
e of these subelem

ents are com
m

on to all M
ATLAB

arrays. O
thers subelem

ents are unique to a particular type of array. The follow
ing

sections detail the subelem
ents for each M

A
TLAB array type.

N
um

eric A
rra

y a
nd

 C
ha

ra
cter A

rra
y D

a
ta

 Elem
ent Form

a
ts

A M
AT-file data elem

ent representing a M
ATLAB num

eric array or character array
is com

posed of four subelem
ents and one optional subelem

ent. Table 1-2 lists the

Figure 15: MAT-file level 5, data element structure

 Level 5 MATLAB Array Data Element Formats

1-21

 1 2 3

 4 5 6

arr(:,:,2) =

 7 8 9

 10 11 12

In the figure, note:

• The Array Name subelement uses the compressed data element format.
• The numeric data in the array, stored in double-precision format in MATLAB, is

stored as 8-bit, unsigned values in the pr subelement. The Class field in the Array
Flags subelement identifies the original MATLAB data type.

miMATRIX

1

Bytes

2 3 4 5

Array
flags

72
 b

yt
e

s
Ta

g

6 7 8

72

padding

padding

2

miUINT32

mxDOUBLE

_CLASS

8

miINT32 12

2 3

undefined 0 undefined

miUINT8 12

Dimensions
array

pr

Array namemiINT83 A R R

1 4 2 5

8 11 9 12

3 6 7 10

padding

Figure 1-8. Example Numeric Array MAT-file Data Element (Compressed)

Sparse Array Data Element Format

A MAT-file data element representing a MATLAB sparse array is composed of six
subelements and one optional subelement. Table 1-4 lists the subelements in the order in
which they appear in the data element. The table lists the values of the Data Type and
Number of Bytes fields of the tag for each subelement.

Figure 16: MAT-file level 5, example

that is having a file written on itself, would end up in the total loss
of the data. With the new arrangement only a short stream of data
is lost corresponding to the last 128 KB file being written. Moreover
the choice of dividing the files into many folders has been done in
order to improve file creation speed; every time a new file creation is
requested on a FAT volume, a check on the name is performed in order
to verify its uniqueness in the current folder. This makes file creation
time proportionally increase with folder file number; having a limited
file number in each folder guarantees a fixed file creation time. The
FTI also creates a txt log file into the main directory that contains all
the folder; in order to avoid various problems, the import feature of
the software does not require to open all the .FTB file but, instead, it
requires the selection of the .txt log file; from the log file content, the
software extracts the actual number of file created and the missed file.
With the information obtained from the .txt, it automatically opens all
the .ftb files and imports them. Each .FTB file contains a sequence of
messages; message integrity is not guaranteed in a single file because
the data stream could be divided into two files. The import feature is

4.1 improved features, main problems and late requirements 25

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

 SN

D

ata

Elem
en

t

(1
6

 b
ytes)

Timestamp (uint 32)

EID (32 bit)

Payload

Data element till the end of file

Seconds

EID (32 bit)

Payload (52 bytes)

Data element till the end of file

(it can be split over 2 files)

Milliseconds

Milliseconds

Payload ID

Payload ID

Payload (52 bytes)

EID (32 bit)

D
ata Elem

en
t (5

9
 b

yte
s)

Sin
gle FTB

 file (1
2

8
 K

B
)

Milliseconds

Payload ID Milliseconds

Figure 17: FTB file format

able to ensure a correct data flow by rebuilding also the messages split
onto two files.
The message is different from the previous versions; instead of con-
taining a single value it may contain more measures at the same times-
tamp. To import them, the application unpacks it into many instances.

As shown in the data element structure in table 4, the new message

Datatype Identifier Description

uint
32 bit

timestamp
It contains time information: it can be
unpacked into two uint_16 one for
milliseconds and one for seconds

uint
8 bit

SN
Sequence number: it is used during import
phase to find missing data elements
(it is incremental, 0-255)

uint
16 bit

payload_ID
Payload structure identifier: it used to
recognize the payload structure to be
applied while importing the data element

payload
_union_t

payload
This contains the data measured by the
FTI (to understand it’s structure see
tables 5)

Table 4: FTB file format, data element structure

type (59 Bytes) contains a payload ID that indicates the structure of the
payload (it is also used as node ID when importing data), a sequence
number (to find missing timestamp because it’s always incremental,
0-255) and the timestamp, that, without any process, is a useless value
because 16 bit indicate number of seconds and 16 bit the number of
milliseconds (so bytes must be read separately).
As said above the payload structure to be used (table 5) is chosen ac-
cording to the payload ID; the union has the dimension of the biggest
structure (52 Bytes) and all the payload structures are packed forcing
the software to read one byte each time because there is no padding

26 development and testing

Datatype Identifier Description

caffe_data_irs_t as_irs
Inertial measurement unit data
(e.g. pitch rate, heading)

caffe_data_ads_t as_ads
Air data
(e.g. static pressure, AoA)

caffe_data_gpsSol_t as_gpsSol
GPS information
(e.g. ECEF data, GPS time)

xsens_pkt_t as_xsens
AHRS data
(e.g. magnetic field, yaw rate)

caffe_data_analog1_t as_analog1 Analog channels data

char array
52 bytes

as_Bytes
This datatype is used to
reconstruct the data element in
the import phase

Table 5: FTB file format, payload union

left from FTI system. Every payload structure has a similar construc-
tion: first a status value is placed before data; this value must be then
read one bit at a time, as every bit indicates the status of one of the
measures in the structure (0 no measure, 1 measure is existent).

The analog1 payload structure shown in table 6, apart from being a

Datatype Identifier Description

uint 16 bit status
Its bits indicates the presence (1) or the
absence (0) of each measure contained

int 16 bit ch_0 First channel measured value
int 16 bit ch_1 Second channel measured value

...
int 16 bit ch_7 Last channel measured value

Table 6: FTB file format, payload, analog1 structure

clear example of a payload structure, is also a singular one; this object
in fact does not have fixed parameters assigned to its channels but they
can be assigned during the import process. Obviously in order to help
users, the setting of the channels is not to be performed every time,
but when it is done one time, it is saved in a dedicated table into the
database, ready to be loaded for the next use (if setting is the same),
for details see Appendix B.

4.1.4 Local Frame Coordinate Calculation Tool

A feature to calculate the local frame coordinates was present in
the previous release but it set automatically the local reference at the
start of the recording; reaching the end of the construction the need
for a similar tool appeared but in an improved version. The new lo-
cal frame coordinate tool allows the selection of the reference either

4.1 improved features, main problems and late requirements 27

Figure 18: Import tool, channels setting window

from the position of the aircraft at a selected time instant (from TOP
list) or from the selection of ground station position (using GPS Earth-
centered Earth-fixed (ECEF) ground coordinates).
The local frame coordinate vectors have fixed node and parameter IDs
so they are stored in the database like every other vector; if a new
reference is calculated it overwrites the existing one. The calculation
[3] of geodetic coordinates (longitude λ, latitude φ, altitude h) from
ECEF ones (x, y, z) is an iterative process because, except in the case of
altitude equal to zero, there is no closed form; luckily few steps, less
than four usually, provide a very accurate solution.

λ = atan2 (x, y) (1)

First the longitude (eqn. 1) is computed using 4-quadrants arc-tangent.

p =
√
x2 + y2 (2)

φ = atan2 (p, z) (3)

This value (eqn. 3) for the latitude is just an initial estimation to be
used as starting value for the iterating process (eqn. 4-5).

hi =
p

cos (φi)
− RN (φi) (4)

φi+1 = atan

(
z

p

(
1− e2

RN (φi)

RN (φi) + hi

)−1
)

(5)

where (see fig. 19)

RN (φ) = longitude radius of curvature
e = ellipsoid eccentricity

28 development and testing

Figure 19: Geodetic coordinates, longitude radius of curvature

Figure 20: Local frame reference window

The equation for the altitude diverges at poles, so another one must
be used (eqn. 6).

h =
L

sin (φ)
− RN (φ) (6)

L = z+ e2RN (φ) sin (φ) (7)

After the calculation of the geodetic coordinates (i.e. latitude, lon-
gitude, altitude) and after the choice of a local reference point, it is
possible to calculate [4] the local East North Up (ENU) coordinates
(x0, y0, z0).EN
U

 =

 − sin (λ0) cos (λ0) 0

− sin (φ0) cos (λ0) − sin (φ0) sin (λ0) cos (φ0)

cos (φ0) cos (λ0) cos (φ0) sin (λ0) sin (φ0)


x− x0y− y0

z− z0


(8)

4.1.5 Air Data Calculation Tool

A simple air data calculation tool was already implemented in the
previous version but it was an automatic procedure done during file

4.1 improved features, main problems and late requirements 29

import. After reaching a good point in the building phase, it has been
requested to develop a new improved tool. The new tool is not auto-
matically executed during import phase because data usually require a
calibration to be used in the correct manner; for this reason the widget
leaves to the user free choice to select the vectors to be used. Moreover,
during the previous years it has been detected that sometime some of
the needed information were missing or gathered manually by flight
test engineers; the new tool is able to handle this kind of situation by al-
lowing the user to insert manually constant values for QNE, QNH and
static air temperature (static and dynamic pressure obviously cannot
be inserted manually, otherwise everything would become a constant
value).
The air data tool calculates those new vectors: Equivalent Air Speed
(EAS),Calibrated Air Speed (CAS),True Air Speed (TAS), Mach num-
ber, rate of climb, QNE altitude, QNH altitude, QFE altitude. All the
equations [1] are referred to altitudes lower than 11000 meters and
subsonic speeds to reduce processing time by avoiding some if clauses;
this is allowed because the tested aircraft reach speed lower than sound
speed and stay below the tropopause.

Equation 9 is used to calculate QNE, QNH and QFE altitude depend-
ing on the value assigned to Pref (respectively standard MSL pressure,
barometric pressure adjusted to sea level and pressure at the airfield).

h =
T0
a

(
1−

(
Ps

Pref

)−a R
g0

)
(9)

To calculate the rate of climb (eqn. 10) the knowledge of the pressure
rate is needed. It is calculated with the forward difference method
(Ṗ = Pi+1−Pi

ti+1−ti
) which is quick and simple. Obviously, the last point will

be lost.

RoCi = −
R T0
g0 Psi

Psi+1 − Psi
ti+1 − ti

(10)

The mach number is evaluated before the speeds because it is di-
rectly used in the evaluation of the CAS and TAS.
It must be pointed out that these equations are not used as shown.
In the software, to improve processing speed, all the numerical opera-
tions that can be done without the variables (static and dynamic pres-
sures and static air temperature) have been already computed during
the code writing phase and only the final numerical value is actually
present.

M =

√√√√ 2

γ− 1

((
qd
Ps

+ 1

)γ−1
γ

− 1

)
(11)

CAS =

√√√√ 2 γ

γ− 1

P0
ρ0

((
qd
P0

+ 1

)γ−1
γ

− 1

)
(12)

30 development and testing

Figure 21: Air data calculation, input window

EAS =

√
2
qd
ρ0

(13)

TAS =

√√√√2 γ R

γ− 1
T

((
1+

qd
Ps

)γ−1
γ

− 1

)
(14)

where

T0 = ISA static air temperature at acsmsl (288.15 K)
PS = static air pressure
a = lapse rate(−6.5K/km)

g0 = gravitational acceleration at MSL
R = specific gas constant(287.06J/kg K)
Pref = reference pressure
h = altitude
ti = time at instant i
γ = heat capacity ratio
ρ0 = air density at MSL according to ISA(1.225kg/m3)
qd = dynamic pressure
T = static air temperature
M = Mach number

4.1.6 Database Insert Problem

While implementing the save-to-database feature, a big problem came
out. Initially the function was implemented like a single query for each
point of each vector but soon this resulted in an awfully large amount
of time to complete the user request; one and half hours were the ap-
proximate predicted time needed to perform the action. This was too
much to allow a good use of the software. The first thoughts were
about the SQLite real data writing approach: every time it receives a
query it must write the rollback journal, perform it and then proceed
to the next one. Obviously, this put a big limit on database perfor-
mance given by hard disk data writing speed.
In order to solve this, the first try has been to change database journal
mode into Write Ahead Log (WAL), this mode simply append to the
journal the changes and the database remain intact (instead in normal

4.1 improved features, main problems and late requirements 31

Figure 22: Look-up table insert window

mode it write the unchanged data in the rollback journal); this method
can result in database errors in case of power loss or reboot, but it also
can improve greatly writing speed. Indeed the time to save a flight
was reduced to less than an hour with this method, but that is still too
much for a useful software.
To further reduce dependency to hard disk write speed, a new try has
been made by dividing the queries into transactions (one for each vec-
tor) so that a group of query will be performed like a single action
from the database. This improved greatly the saving time up to few
minutes. Even if the time was now reasonable, the hope of reducing it
further and increase user comfort has led to a last attempt; points table
have been removed and instead of them a file for each vector is placed
into vector folder (in the same directory of the database), the file (file
name: (FLIGHT_ID)_(VECTOR_ID).dat) contains various QLists, one
for the measured value and one for every time attribute (i.e. week
number, time of week, nanoseconds reminder). Writing directly the
file allows the software to reach flight saving time of few seconds, so
this is the practical solution adopted in the last version of the software.

4.1.7 Look-up table

Once the calibration features were fully developed, the Flight Test
staff asked for a new option: the possibility of using look-up tables,
instead of inserting the calibration curve. This new requirement pre-
sented two problems: the look-up table acquisition method and the
table saving method; the actual way to use the data in fact does not
represent a problem, as two QLists into the calibration class can eas-
ily manage this change. The calculation of values falling between two
points of the look-up table is calculated using a linear approach. Being
MATLAB R© and Microsoft Excel the most common software in the de-
partment, the design of the look-up table acquisition method must pro-
vide a fast way to acquire points from them; the solution is to place a
new choice in the add-calibration window. This new option, as shown
into fig. 22 consists of two text-box that allow user to copy and past

32 development and testing

Figure 23: Magnified stacked widget (placed on the left of the main
window)

columns from a lot of software (including MATLAB R© and Excel), one
for x-coordinate and one for y-coordinate. The number of rows indi-
cated below each text-box is to provide a quick visual aid to the user
and to prevent the user from trying to use different number of rows (a
check is also performed when calibration start).
About the look-up table saving, being the vector save feature already
developed, the same kind of approach has been used, even if usu-
ally look-up tables would not contain as many points as the vectors,
to prevent long processing time due to unnecessary detailed look-up
tables insertion; each table is stored as a file (file name: (CALIBRA-
TION_SET_ID)_(CALIBRATION_ID).dat) inside the folder calibration
and contains a QList of x-axis a points and one of y-axis points.

4.1.8 Improved GUI

The graphic user interface is very user-friendly. All the improvement
high-lightened in the design phase has been reached.
There are also some differences from the mock-up built in the design
phase (sec. 3.4). The new stacked widgets on the left (see fig. 23) pro-
vide the user a way to have always main feature under his control and
in a quick, intuitive way. In this part there are the main information
about the flight (e.g. date and time, pilot, FTE, aircraft). They can
always be helpful to the user providing to him feedback of the choices
he has taken during the post-processing; both the calibration widget
and their management can be done quickly without going through the
main menu. The time control widget inserted in the stacked widget
gives to the user a control over all the plots. For more info see sec.
4.1.9. Finally also the TOP management widget is here, giving access
to the user to a TOP list through which choosing which one to shows
on the plots.

4.1 improved features, main problems and late requirements 33

Figure 24: Time control management

4.1.9 Plot x-axis control

The control of the x-axis (time axis) has been greatly improved since
the previous version. The new tool allows a very flexible usage of
the software for data displaying; both synchronization and time range
have various options. Regarding the synchronization, x-axes in the
default mode are all connected and the time control widget (left red
rectangle on fig. 24) is in charge of defining the visible range; when the
appropriate option is selected in the time control widget (Tab manual),
the synchronization is globally lost and only in each tab plots are con-
nected, while controlled by the tab settings (right red rectangle on fig.
24). Moreover, also the zoom feature is synchronized, so zooming in
on a part of one plot will result in a magnifying action on all plots (or
tab plots if this option is selected); the zooming out can be performed
with the right click or with the dedicated button on the tab settings.
The time range has many options (the same for main and tab control):
default is all time history to be shown, but the user can also set range
manually through two QDateTimeEdit boxes or by choosing the TOPs
delimiting the desired time interval.
Attention must be payed when using the x-axis tools because only this
axis is synchronized; y-axis is totally independent on each plot and
only the zoom feature can vary its range. This is due to the speed
improvement considerations; indeed, calculating for each x-axis varia-
tion the corresponding y-axis one, it would have required a lot of time,
especially if there are many plots opened.

4.1.10 Ground Station Data Import

During the construction phase, the idea of a ground station de-
veloped into having a recording independent from the one done on
the aircraft. This new recording contains data measured directly on
ground (i.e. weather information, tracker data) and Mnemosine Mis-

34 development and testing

 1 2 3 4 5 6 7 8

m_ToW

Data element till the end of file

Payload (50 bytes)

m_nSec m_WeekN D
ata Elem

en
t (6

0
 b

yte
s)

SN

Payload ID

Figure 25: FTG file format

sion Manager must be able to import them. Ground data time span is
not the same of the flight; in fact it can be longer, even all day, so that
the software must cut the segment contained into flight time interval.

Datatype Identifier Description

GPS_timestamp_t timestamp
It contains the time information:
it stored directly in GPS format
(see table 1)

uint
16 bit

SN

Sequence number: it is used
during import phase to find
missing data elements
(it is incremental, 0-65535)

uint
16 bit

payload_ID

Payload structure identifier:
it helps recognize the payload
structure to be applied while
importing the data element
(i.e. weather station, tracker
command, tracker measure)

GND_payload
_union_t

payload
This contains the data acquired
by weather station or by the tracker

Table 7: FTG file format, data element structure

As it is possible to see from figure 25 and table 7, the time format
used by the ground station, it is not the same used in the data files
(see sec. 2.1). The GPS format is directly used; this is due to the
great amount of memory and processing power available from an ac-
tual personal computer. The use of the GPS time also allows a fast
time alignment of the ground information with the flight data, which
would have been difficult to overcome if a timestamp system would
have been used.
The rest of the message is similar to .FTB message (see par. 4.1.3),
there is a sequence number to find missing point and a payload ID to

4.2 software deployment 35

identify payload structure. The payload structure can contain 3 differ-
ent information type (i.e. weather station, tracker system command,
tracker system measured) but all of them have a status datum to iden-
tify existent measures inside the payload itself.
Table 8 shows an example of a payload.

Datatype Identifier Description
uint

16 bit
status

Its bits indicates the presence (1) or the
absence (0) of each measure contained

int 16 bit air_temp Air temperature
uint 16 bit air_rh Air relative humidity
uint 16 bit true_speed True wind speed
uint 16 bit true_dir True wind direction
uint 8 bit icao_speed Wind speed (ICAO Annex 6)
uint 8 bit icao_gust Wind gust (ICAO Annex 6)
uint 8 bit icao_dir1 Wind direction 1 (ICAO Annex 6)
uint 8 bit icao_dir1 Wind direction 2 (ICAO Annex 6)
uint 32 bit qfe Pressure at airfield
uint 32 bit qnh Pressure referred to MSL
int 32 bit ecef_x Ground station ECEF x coordinates
int 32 bit ecef_y Ground station ECEF y coordinates
int 32 bit ecef_z Ground station ECEF z coordinates
int 32 bit lat Ground station latitude
int 32 bit lat Ground station longitude
int 32 bit lat Ground station altitude
Table 8: FTG file format, data element, weather station payload structure

4.2 software deployment

The deployment of the software has been the last part to be per-
formed, as it comprehended the building of the executable to be in-
stalled on the students’ computers. Software deployment has been
made using MSVC 32 bit version, the 64 bit release has been avoided
because of problems during the compiling phase with Qwt libraries.
Unluckily using 32 bit release to complete deployment generated new
problems on computers with 64 bit architecture, making pc unable to
recognize missing DLLs; even Dependency Walker (it displays mod-
ules imported and exported by portable executable) was not able to
resolve dependency correctly. To avoid such problems the use of a
x86 architecture computer is recommended during the libraries com-
pletion. Deployment phases:

• Build the release using Qt Creator (change building settings from
Debug to Release)

36 development and testing

• Copy into the folder containing the release all the icons, .ini files
and the splashscreen.

• Open Qt from prompt (corresponding version, e.g. MSVC 32 bit).

• Go to bin directory of the selected version.

• Run windeployqt tool (windeployqt [filepath]), this will deploy
most of the necessary DLLs into release folder.

• Load the release executable with Dependency Walker and iden-
tify the missing libraries (alternatively try to run the executable,
but Windows will show only one missing Dynamic-link Library
(DLL) at a time).

• Copy and paste missing libraries into executable folder.

In order to run the executable, the end-user could need to install the
Microsoft Visual C++ Redistributable Package; this can be freely down-
loaded from microsoft.com.

http://www.microsoft.com/it-it/download/details.aspx?id=40784

5 C O N C L U S I O N

The initial version of the software presented many problems, lacks
and weaknesses. It was barely able to satisfy the needs of the users.
Once new requirements appeared, it was clear that the old version
was not able to satisfy them even with few improvements. So a totally
new software needed to be developed.
During the planning phase the requirements were clearly pointed out,
and, even if, sometimes with a great amount of work, all of them have
been satisfied. Moreover, the software is also able to satisfy all the ad-
ditional needs that came out during the Development phase, despite
the difficulties encountered.
Furthermore, because the users are always in need for new and im-
proved feature, the software considers that possibility and it has been
built already predisposed for the new expected features (see chapter 6).

In conclusion, a great improvement since the previous version has
been made; both students and staff will benefit from the new graphic
user interface, the flexibility and the usability of the new release. This
software will start to be used by them and not just for a quick check or
just to import/export, but to really view and manipulate data.
This is just the first step for this software to become a powerful tool into
the students and researchers computer; from now on it will become
more and more diffused every time a new improved version will be
released.

Figure 26: Mnemosine Mission Manager logo

37

6 F U T U R E D E V E LO P M E N T S

The new Mnemosine Mission Manager, even if it satisfy all the re-
quirements, leaves space to new improvements. A lot of new features
could be useful to both kind of end-user.

6.1 signal filtering

A digital signal filtering tool could be useful in case time-histories
are particularly degraded by noise, especially if aggregated to calibra-
tion widget which is already prepared for it. To avoid data changes,
the filter must be zero phase. This can be easily achieved by perform-
ing two filtering forward and backward; it also provides an actual filter
with double the order of the used filter.

6.2 signal spectrum

To help signal filtering it would be needed a tool displaying the
frequency spectrum of a signal, calculated through Fast Fourier Trans-
form (FFT).

6.3 outliers detection

Apart from the sanity check performed through the calibration tool,
an outliers detection function could be useful. An adequate algorithm
must be developed to find outliers in a quick, reliable way, without
using bounds. It is a complex, time consuming task because there are
many outliers detection algorithms that can be used depending on the
context to be used; moreover, a great reliability require a lot of compu-
tational time. A good balance between reliability and computational
time must be found.

6.4 plot image

An option to save an image of one or many plots could be interest-
ing.

39

40 future developments

6.5 real time data streaming

There are thoughts about a possible real time data stream from the
aircraft to the ground station; if this will be developed, a tool to show
data in real-time would be needed. The widget could show data on
digital instruments, giving the user a cockpit deck like view. More
flexibility can be provided by allowing the user to choose which in-
struments to have on display and where.

6.6 new export formats

Other export file-formats could be implemented to augment soft-
ware flexibility (e.g. Microsoft Excel .xlsx)

6.7 performance evaluation tools

Automatic performance evaluation tool could be implemented to
support the Flight Test staff’s job. Some performance could be:

take-off Take off performance widget could automatically create a
window showing all the parameters significant for such a phase;
moreover, an automatic evaluation of take-off distance and time
could be implemented.

landing Landing phase is similar to take off, so same feature would
be needed.

stall Stall widget, apart from showing relevant data, could automat-
ically (or semi-automatically) calculate stall entry rate.

phugoid A tool to calculate the phugoid period could be interesting
maybe with some help from the user by selecting each peak.

Those examples are only here to give an idea of the tool. There are
many kind of flight tests and for many of them a widget could be
built. In the already mentioned features the window with significant
data is a common one but another option could be shared by all of
them, the automatic export of the relevant vectors data within the test
time segment into a single performance data file.

6.8 server database

Having a MySQL server collecting all flight data would be an added
value to the department, having a big amount of information properly
classified and ready to be used in no time. Software could use smaller

6.8 server database 41

Figure 27: Explanation of local database to server communication

SQLite database as a temporary storage until a stable connection is
provided to update the server with the new data (see figure 27).
This solution, technically, can be reached by allowing the software to
run in the background and periodically check the connection. Once
a stable connection is detected, the server database is updated. In or-
der to know which rows must be updated, a boolean variable could
be added to each row so, every time a row is modified in the local
database, its boolean variable change state signalling to the software
that, when server update is being performed, this row must be re-
placed.
The main problem of such a solution is represented by the possibility
of having many users connected at the same time to the main database;
so, a way to avoid conflicts in the server database and data loss due to
overwriting of a row from two different users is needed. SQL database
default users conflict solution are not enough because they don’t avoid
the possibility of two different users of replacing both the same row
one after the other.

A C + + C L A S S E S

a.1 data classes

In this section are presented the C++ data classes implemented for
the software. In the tables only data and the most important public
methods are shown; all the method to access data (both to set or get
them), if they don’t present any particularity, they are omitted. Also
all the private methods are avoided because they are not useful to the
reader to understand the class structure.

Figure 28: C++ class plan, UML model, dependency map

a.1.1 MnmTimeStamp

Datatype Label Description
quint16 m_WeekNum GPS week number
quint32 m_ToW GPS time of week
qint16 m_nSecRem GPS milliseconds reminder

Table 9: MnmTimeStamp class, data

The timestamp class contains the time datum, in GPS format. The
public methods can be divided into three categories:

• one containing all the functions to set the data inside from dif-
ferent inputs (the most important are setTimeStamp used during
file import and setTimeStampFromGPS used during data loading
from database).

• one regarding the time information return, in different time for-
mats (getTimeStampAsNanoS is one of the most important because
it is used every time complex mathematical operations must be

43

44 c++ classes

Output Label Arguments

void setTimeStampFromIeee1588

t_Ieee1588 timestamp
MnmTimestamp* p_Epoch

void setTimeStamp
qint64 nanoSeconds
MnmTimestamp* p_Epoch

void setTimeStampFromGPS
quint16 WeekNum
quint32 ToW
qint16 nSecRem

void setTimeStampFromUTC QDateTime timestamp
const
qint64

getTimeStampAsNanoS

const
qint64

getTimeStampAsNanoS MnmTimestamp* p_Epoch

const
Ieee1588_t

getTimeStampAsIeee MnmTimestamp* p_Epoch

const
QDateTime

getTimeStampAsUTC

const
GPStime_t

getTimeStampAsGPS MnmTimestamp* p_Epoch

const
qint64

getTimeAs
MnmTimestamp Epoch
timeClass_t timeType

Table 10: MnmTimeStamp class, methods

performed with the time datum; also getTimeStampAsGPS is rele-
vant due to its use during the saving to database. Finally also get-
TimeStampAsUTC has an important role in the plotting feature).

• last one containing the definition of all the logical and basic math-
ematical operators.

a.1.2 MnmMeasure

Datatype Label Description
MnmTimestamp m_time Time information

QVariant m_value Actual measure
Table 11: MnmMeasure class, data

The measure class contains the time datum and the measured value
(as QVariant). The public functions, apart from logical operators and
methods to get private data, provide also a way to set data inside.
Particular attention must be paid to setEpoch which is a function used
modify the time value in order to align it with the epoch during file
loading.

a.1 data classes 45

Output Label Arguments

void addWithNsTicks
quint64 nsTicks
QVariant value
MnmTimestamp* p_Epoch

void setMeasure
MnmTimestamp time
QVariant measure

void setEpoch qint64 nanoSec
const

MnmTimestamp
time

const
QVariant

value

Table 12: MnmMeasure class, methods

a.1.3 MnmMeasureVector

Datatype Label Description
quint16 m_parameter Parameter ID
quint16 m_node Node ID

quint32 m_nanoSecPerTick
Time length of one
FTI tick
(in nanoseconds)

QList<MnmMeasure*> m_measureList

Vector of pointers to
each measure
composing the
time-history

QString m_label Vector name
QString m_unit Measure unit
QString m_description Vector info

t_datatype m_datatype
Measure value
datatype

bool m_onServer
Saved-to-database
indicator

Table 13: MnmMeasureVector class, data

46 c++ classes

Output Label Arguments

void addMeasureFromTicks

quint64 ticks
QVariant value
MnmTimestamp*

p_Epoch
t_measureType type

void appendMeasure
MnmTimestamp time
QVariant measure

MnmMeasure* at int i
QList

<MnmMeasure*>
getList

const
QVector<double>

getMeasureVect

const
QList<quint8>

getMeasureUCHAR

const
QList<quint8>

getMeasureUCHAR
MnmTimestamp initialT
MnmTimestamp finalT

const
QList<type>

getMeasureTYPE

const
QList<type>

getMeasureTYPE
MnmTimestamp initialT
MnmTimestamp finalT

const
QList<double>

getTimeVect

const
QList<qint64>

getTimeAs

t_timeClass timeClass
MnmTimestamp initialT
MnmTimestamp finalT
MnmTimestamp Epoch

const
QList<quint16>

getTimeAsGPSweek

const
QList<quint32>

getTimeAsGPStow

const
QList<qint16>

getTimeAsGPSnsec

Table 14: MnmMeasureVector class, methods

The Measure Vector class contains all the time-history of a single da-
tum. Moreover, it contains also all the information about it (i.e. label,
description, node, parameter, measure unit, datatype). There are also
two special info inside it: the nanoseconds per tick (it is used during
data appending to correctly use the tick number) and the m_onServer
boolean (it indicates if the vector has been already saved on database
and if it is changed from the last saving).
Regarding the methods, there are various functions to add measures to
the list, depending on the data origin format. Then there are the usual
functions to set information and to get them; particular attention must
be paid on how to get the list, as there are a lot of different functions

a.1 data classes 47

depending on what it is needed. It is possible to get the single measure
or the whole QList (attention must be paid when using those functions
because they allow direct access to data members) or a QVector of the
measured values (used to plot the data). There are also various func-
tions to get a list of values in different datatypes (overloaded, without
argument all the list, with arguments the selected time segment). In
order to get the time information, there are also various functions: one
returning a QVector (for the plot tool), one depending on the time seg-
ment and time format requested and 3 other function to return each
datum contained into the GPS time format (used during the saving
into the database).

a.1.4 MnmFlight

Datatype Label Description

QHash<quint32,
MnmMeasureVector*>

m_hash
Collection of all the
MnmMeasureVector of a
flight

MnmTimestamp m_epoch Flight starting time
MnmTimestamp m_epochEnd Flight end time

fileType m_fileType
File format
(*.fti,*.trc,*.ftb,*.ftg)

int m_pilotID Pilot primary key (SQL)
int m_FTEID FTE primary key (SQL)

int m_aircraftID
Aircraft primary key
(SQL)

int m_calibration
Calibration group
primary key (SQL)

quint64 m_flightID Flight primary key (SQL)

bool m_onServer
Saved-to-database
indicator

Table 15: MnmFlight class, data

The Flight class contains all the time-histories into a QHash. Their
key is the composed by the node ID left shifted by 16 (nodeID «16)
and the parameter ID. It contains also the Epoch (first time instant of
recorded) and the Epoch end (last time instant recorded) because they
are useful in many functions inside and outside this class. The other
information stored are related to database and become useful when a
database saving is requested in order to have all the information neces-
sary to insert or replace a row into flight table. Also here a m_onServer
boolean exist because it provides a quicker way, in some cases, to check
flight status instead of inspecting each vector.
Looking at the methods, special attention must be paid to some of
them; the functions at and getTable allow direct access to the data mem-

48 c++ classes

Output Label Arguments
MnmMeasureVector* at quint32 key

QHash<quint32,
MnmMeasureVector*>*

getTable

void toServer

void addTelegram
t_telegram* telegram
t_loggedItem* logItem

void addNewTelegram
t_newtelegram* telegram
QList<quint16>* channel

void addGNDTelegram t_udptelegram* telegram

void addVector

quint32 key
MnmMeasureVector*

newVect
QTableWidget* table
bool check

void fillTable QTableWidget* table
Table 16: MnmFlight class, methods

bers, so that the user can end up modifying the information stored
(this is a desired behavior because sometimes it speeds up the pro-
cess). The function toServer is used when the flight is saved into the
database to set all the vectors boolean variables to true. All the ad-
dTelegram functions provide methods to add a new single measure to
a vector stored into QHash, depending on import file structure and
measure parameter.
fillTable is a function that fills the table (GUI) of the main window with
a row for each vector containing its data; addVector, after adding the
vector to the QHash, does it automatically. Moreover, if the boolean
variable check is set to true, it verifies if the vector parameter was al-
ready existent and overwrites the existing vector.

a.1.5 MnmTOP

Datatype Label Description
MnmTimestamp m_time TOP time

t_TOPclass m_class
TOP class (in flight, on ground
post-processing, undefined)

QString m_label TOP label
QString m_text TOP brief description
QString m_ID TOP ID (assigned by TOP widget)

QCheckBox p_checkBox
CheckBox for the TOP widget
(public member)

Table 17: MnmTOP class, data

a.1 data classes 49

The TOP class is very simple, it is mainly a container for the TOP
information waiting to be used either in the plot or in the saving and
exporting features. The only characteristic that is worth an explanation
is the pointer to a QCheckBox inside the public members; this check-
box is used in the TOP widget to allow the user to choose which TOPs
will be shown on the plots.

a.1.6 MnmCalibration

Datatype Label Description
quint16 m_parent_node Calibration parent node ID
quint16 m_parent_param Calibration parent parameter ID
quint16 m_child_param Calibration child parameter ID
QString m_label Calibration label
QString m_unit Calibration child measure unit
QString m_unit Calibration information
double m_maxValue Sanity check upper boundary
double m_minValue Sanity check lower boundary

QList<double> m_xvec Look-up table input points
QList<double> m_xvec Look-up table output points

t_calCurve m_curve
Calibration curve
(coefficients and identifier)

MnmFlight* p_flight Pointer to main flight element
Table 18: MnmCalibration class, data

The calibration class, as for TOP class, is mainly just a data con-
tainer which is used by the calibration widget or by save and export
tools. The methods present no particular aspects and just provide a
way to insert and get data from the private members. The data stored
are clearly described in section 3.2.5, with the only difference, as said
in the Development and Testing chapter, of the presence of two QList
used to store the look up table if necessary.
A noteworthy characteristic is the presence of a pointer to the main
MnmFlight element, this is needed in order to execute a lot of func-
tions that request the access to the flight to add, remove or access
MnmVector elements from the hash list.

50 c++ classes

a.2 graphical user interface classes

This section presents briefly the GUI classes; for each one an im-
age is presented and its main useful functions, because pasting all the
header would result in too many methods, signals and slots which are
not always very self explaining and they are sometimes only used to
perform a very specific feature or resulting in a GUI output.

a.2.1 Main Window

Figure 29: Mnemosine Mission Manager, main window

The main window is a container for all the other widgets. It con-
nects them and provides a way to the user to access to them. Moreover
the main window contains a mnmFlight element which is the core of
the whole software. The main window also have a significant role into
avoiding incorrect use of the software by managing the status (enabled
or disabled) of every widget inside it.
Furthermore this object includes some very important methods; the
functions to import files and to load and save the flight from/to database
are inside this class and the connection to the database itself is created
inside it.

a.2.2 Export Window

The export window obviously contains the function to export data
in one of the possible file formats (*.mat; *.csv). Moreover it creates
everytime a *txt file in the same folder with the details of the exported
data (file date and time creation, flight date and time, vectors exported,
time segment choosen and time format selected).

a.2 graphical user interface classes 51

Figure 30: Mnemosine Mission Manager, export dialog

(a) (b)

Figure 31: Mnemosine Mission Manager, main time control widget (a) and
tab time control widget (b)

a.2.3 Time Control Widgets

The main time control widget is placed on the left side of the main
window inside a stacked layout. The main time control widget has an
essential role in the graphs management as it controls the x-axis range
of all of them. It provides a signal to all the tab with the time range
to be shown. Moreover, it can enable or disable the tab time control
widget, allowing each tab to independently select a x-axis interval. On
the lower part a label shows the actual time range selected in order to
provide to the user an additional feedback.
Particular attention must be paid when TOP selection is used because
it does not automatically refresh the TOP list in the combo boxes, there-
fore explained the presence of the Refresh TOPs button.
The tab time control widget is placed on the right side of the plot tab;
when enabled it allows direct control on the plot tab graphs x-axis. The
tab time control widget receives the main time control widget signals
and filter them depending on its own status (enabled or disabled); if it
is enabled the signal is re-transmitted to each plot space. The widget
also contains a button to zoom out (alternatively it can be used the
right mouse click).

52 c++ classes

a.2.4 Plot Tab and plot space

Figure 32: Mnemosine Mission Manager, plot tab and plot space (in the red
rectangle)

The plot tab is a container for the graphs. Every time a graph is
added all of them resize to properly fit the available space. The plot
tab has also an important role in managing the actions in the main
table contextual menu, as it is the plot tab that contains the tab sub-
menus and the add-plot-to-tab actions.
The plot space is a widget containing the Qwt plot element and a but-
ton to close itself; the plot space contains also the add-curve-to-plot
action of the main table contextual menu. The plot space manages all
the signals either from the time control widgets or from the mouse, as
the zooming action, and runs the correct function.

a.2.5 TOP management widget

(a) (b)

Figure 33: Mnemosine Mission Manager, TOP management widget (a) and
add-TOP window (b)

a.2 graphical user interface classes 53

The TOP management widget contains all the TOPs of the current
flight. It can get the TOP from the database or directly find them from
the TOP counter vector. More TOPs can be added from the software
and they will be directly classified as post-processing. The remove
button is only enabled when a post-processing file is selected, the other
kind of TOPs cannot be deleted in order to preserve original data.
Every request for the TOPs either to save them, use them to select a
time segment or show them on plot must go through this widget.

a.2.6 Calibration Widget

(a) (b)

Figure 34: Mnemosine Mission Manager, Calibration management widget
(a) and add-calibration window (b)

The calibration widget contains and manages all the calibrations.
The add button opens the add calibration window which is a flexi-
ble, quick way to manipulate data; a parameter ID is automatically
assigned to every calibration performed starting from 32768 (so every
vector shown in the main table having a parameter ID equal or greater
than this value contains a calibrated vector). The calibration widget
is also in charge of performing a sanity check to all vectors that go
through it by checking, for every datum, if it is inside the range se-
lected by the user.
The calibration widget also performs the loading from the database of
a calibration group and every time a calibration is loaded it checks if
the parent vector exists.

a.2.7 Save and load calibration windows

To access to these windows the user must go into menu bar, sub-
menu calibration. They allow the user to respectively save, as new
or by overwriting another one, the current calibration group load and
load calibration group from the database and send it to the calibration
management widget to process it.

54 c++ classes

(a) (b)

Figure 35: Mnemosine Mission Manager, Save-calibration-group window (a)
and Load-calibration-group window (b)

a.2.8 Local frame coordinates and air data windows

(a) (b)

Figure 36: Mnemosine Mission Manager, local frame reference window (a)
and air data calculation input window (b)

The local frame reference window allows the user to select the origin
for the ENU coordinates; the air data window instead allows the user
to enter or select the data to use for the calculation of QNE, QNH, QFE,
rate of climb, CAS, EAS, TAS and mach number. They both have been
widely discussed in the Development and Testing chapter, for more
info see sections 4.1.4 and 4.1.5.

a.2 graphical user interface classes 55

a.2.9 Channels setting window

Figure 37: Mnemosine Mission Manager, channel setting window

The channel setting window appears to the user only in case a .FTB
file is being imported (actually a .txt is the main file). The channel
window allows the user to assign parameters to the channels of the
analog structure of the FTB file format data element. The .FTB fle
format and the current windows has been already discussed in the
Development and Testing chapter, for more information see section
4.1.3.

56 c++ classes

a.2.10 Other utility windows

(a) (b)

(c) (d)

Figure 38: Mnemosine Mission Manager, set pilot window (a), set FTE
window (b), set aircraft window (c) and select flight to load

window (d)

The set-pilot, set-FTE, set-aircraft and load-flight windows are just a
way to access to database to FTE, pilot, aircraft and flight tables and
to allow the user to select an existing row or add a new row into them
(not the load flight one). Their layout is simple and intuitive, avoiding
useless buttons that could confuse the user.

B S Q L I T E DATA B A S E

b.1 flight table

1 CREATE TABLE FLIGHT (
2 ID UNSIGNED BIGINT PRIMARY KEY NOT NULL UNIQUE ,
3 FTE_ID INTEGER REFERENCES FTE (ID) MATCH SIMPLE ,
4 PILOT_ID INTEGER REFERENCES PILOT (ID) MATCH SIMPLE ,
5 AIRCRAFT_ID INTEGER , CALIBRATION_SET_ID INTEGER ,
6 QFE DOUBLE , QNH DOUBLE , SAT DOUBLE ,
7 START_WeekN UNSIGNED SMALLINT , START_ToW UNSIGNED INT ,
8 START_nSec SMALLINT , END_WeekN UNSIGNED SMALLINT ,
9 END_ToW UNSIGNED INT , END_nSec SMALLINT)

uint_64 ID = (PILOT_ID)1e14+(FTE_ID)1e12+(flight year)1e8 +(flight
month)1e6+(flight day)1e4+(flight start hour)100+(flight start minute)

ID is automatically generated once the user set FTE and pilot, other-
wise flight cannot be saved. It is the primary key and must be unique
and not null.

b.2 pilot table

1 CREATE TABLE PILOT (
2 ID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL UNIQUE ,
3 name TEXT , weight DOUBLE)

b.3 fte table

1 CREATE TABLE FTE (
2 ID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL UNIQUE ,
3 name TEXT , weight DOUBLE)

b.4 aircraft table

57

58 sqlite database

Figure 39: SQLite database structure

1 CREATE TABLE AIRCRAFT (
2 ID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL UNIQUE ,
3 tailnumber TEXT , model TEXT ,
4 info TEXT , weight DOUBLE)

b.5 vector table

1 CREATE TABLE VECTOR (
2 ID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL UNIQUE ,
3 FLIGHT_ID UNSIGNED BIGINT REFERENCES FLIGHT (ID)
4 ON DELETE CASCADE ON UPDATE CASCADE ,

b.6 top table 59

5 label TEXT , info TEXT ,
6 unit TEXT , node UNSIGNED SMALLINT ,
7 param UNSIGNED SMALLINT ,
8 pointnum UNSIGNED INT , datatype INT)

FLIGHT_ID has ON_CASCDE condition in order to allow automatic
update of ID if FLIGHT.ID is updated and if a flight is deleted also
all related vectors are deleted avoiding memory unnecessary memory
employment with useless rows.

b.6 top table

1 CREATE TABLE TOP (
2 ID INTEGER PRIMARY KEY AUTOINCREMENT ,
3 FLIGHT_ID INTEGER REFERENCES FLIGHT (ID)
4 ON DELETE CASCADE ON UPDATE CASCADE ,
5 label TEXT , info TEXT ,
6 type INT , WeekN UNSIGNED SMALLINT ,
7 ToW UNSIGNED INT , nSec SMALLINT)

ON_CASCADE option is present also in this table to be able to quickly
update and remove unnecessary TOPs (in case of changes in FLIGHT
table).

b.7 calibration_set table

1 CREATE TABLE CALIBRATION_SET (
2 ID INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL ,
3 label TEXT , info TEXT)

b.8 calibration table

1 CREATE TABLE CALIBRATION (
2 ID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL UNIQUE ,
3 CALIBRATION_SET_ID INTEGER REFERENCES CALIBRATION_SET (ID)
4 ON DELETE CASCADE ON UPDATE CASCADE ,
5 node UNSIGNED SMALLINT , param UNSIGNED SMALLINT ,
6 label TEXT , unit TEXT , info TEXT ,
7 lowerb DOUBLE , upperb DOUBLE , type INT ,
8 a0 DOUBLE , a1 DOUBLE , a2 DOUBLE , a3 DOUBLE)

60 sqlite database

CALIBRATION table rows are connected with a foreign key to CALI-
BRATION_SET table. The ON_CASCADE option allows to update or
remove the unnecessary rows here when a calibration set is modified.

b.9 channel table

1 CREATE TABLE CHANNEL (
2 ID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL UNIQUE ,
3 label TEXT , info TEXT ,
4 p0 UNSIGNED SMALLINT , p1 UNSIGNED SMALLINT ,
5 p2 UNSIGNED SMALLINT , p3 UNSIGNED SMALLINT ,
6 p4 UNSIGNED SMALLINT , p5 UNSIGNED SMALLINT ,
7 p6 UNSIGNED SMALLINT , p7 UNSIGNED SMALLINT ,
8 p8 UNSIGNED SMALLINT , p9 UNSIGNED SMALLINT ,
9 p10 UNSIGNED SMALLINT , p11 UNSIGNED SMALLINT ,

10 p12 UNSIGNED SMALLINT , p13 UNSIGNED SMALLINT ,
11 p14 UNSIGNED SMALLINT , p15 UNSIGNED SMALLINT)

This table is totally independent from the other tables, because it is
questioned only during file import and only if the new .FTB files are
to be loaded, in order to set the free channels.

B I B L I O G R A P H Y

[1] Collinson, Richard P.G., Introduction to Avionics Systems, Maid-
stone, Kent (United Kingdom) 3rd edition, 2011.

[2] Stanley B. Lippman, Josée Lajoie, C++ Corso di programmazione,
3rd edition, 2000.

[3] J.Farrell, M.Barth, The Global Positioning System & Inertial Naviga-
tion, 2nd edition, 1999.

[4] James R. Clynch, Geodetic Coordinate Conversion, Surveying and
Geospatial Engineering, University of New South Wales, Febru-
ary 2006.

[5] Precision clock synchronization protocol for networked measurement and
control systems, IEEE Standard 1588, 2004.

[6] Qt Documentation, http://doc.qt.io/, visited November 2014.

[7] Qwt Classes Documentation, http://qwt.sourceforge.net/

annotated.html, visited December 2014.

[8] SQLite Documentation, https://sqlite.org/docs.html, visited
January 2015.

[9] Microsoft File System Documentation, https://technet.microsoft.
com/en-us/library/cc938437.aspx, visited March 2015.

[10] MATLAB R© MAT-File Format, The MathWorks Inc., Natick, Mas-
sachusetts (USA), October 2014.

61

http://doc.qt.io/
http://qwt.sourceforge.net/annotated.html
http://qwt.sourceforge.net/annotated.html
https://sqlite.org/docs.html
https://technet.microsoft.com/en-us/library/cc938437.aspx
https://technet.microsoft.com/en-us/library/cc938437.aspx

	Frontespizio
	Dedica
	Sommario
	Abstract
	Ringraziamenti
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Planning
	2.1 Initial Analysis
	2.1.1 Context of use
	2.1.2 Previous Release
	2.1.3 End-user analysis
	2.1.4 Data analysis
	2.1.5 Time Reference

	2.2 Requirements
	2.2.1 Essential Requirements
	2.2.2 Optional Requirements

	3 Design
	3.1 Critical Choices
	3.1.1 Programming Language
	3.1.2 Development Environment
	3.1.3 Database Environment

	3.2 C++ Class Plan
	3.2.1 MnmTimeStamp
	3.2.2 MnmMeasure
	3.2.3 MnmMeasureVector
	3.2.4 MnmFlight
	3.2.5 MnmCalibration
	3.2.6 MnmTOP

	3.3 Database plan
	3.4 Graphical User Interface

	4 Development and Testing
	4.1 Improved features, main problems and late requirements
	4.1.1 Inappropriate use management
	4.1.2 Data export improvements and MAT-file
	4.1.3 New import data file format: FTB
	4.1.4 Local Frame Coordinate Calculation Tool
	4.1.5 Air Data Calculation Tool
	4.1.6 Database Insert Problem
	4.1.7 Look-up table
	4.1.8 Improved GUI
	4.1.9 Plot x-axis control
	4.1.10 Ground Station Data Import

	4.2 Software Deployment

	5 Conclusion
	6 Future Developments
	6.1 Signal Filtering
	6.2 Signal Spectrum
	6.3 Outliers Detection
	6.4 Plot Image
	6.5 Real Time Data Streaming
	6.6 New Export Formats
	6.7 Performance Evaluation Tools
	6.8 Server Database

	A C++ Classes
	A.1 Data classes
	A.1.1 MnmTimeStamp
	A.1.2 MnmMeasure
	A.1.3 MnmMeasureVector
	A.1.4 MnmFlight
	A.1.5 MnmTOP
	A.1.6 MnmCalibration

	A.2 Graphical User Interface classes
	A.2.1 Main Window
	A.2.2 Export Window
	A.2.3 Time Control Widgets
	A.2.4 Plot Tab and plot space
	A.2.5 TOP management widget
	A.2.6 Calibration Widget
	A.2.7 Save and load calibration windows
	A.2.8 Local frame coordinates and air data windows
	A.2.9 Channels setting window
	A.2.10 Other utility windows

	B SQLite database
	B.1 FLIGHT table
	B.2 PILOT table
	B.3 FTE table
	B.4 AIRCRAFT table
	B.5 VECTOR table
	B.6 TOP table
	B.7 CALIBRATION_SET table
	B.8 CALIBRATION table
	B.9 CHANNEL table

	Bibliography

