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Abstract

Sponsored Search Auctions are the workhorse auction mechanism for web-
advertising, producing a revenue of about $19 billions in the U.S. alone in
2014. When a user submits a query on a search engine, the search engine
returns a list of results including sponsored links. The latter represent spon-
sored ads: when a user clicks them, he is automatically directed to the adver-
tiser’s web page. Generally, search engines decide which ads to display and
how to allocate them by using a pay-per-click auction mechanism. The pur-
pose of this thesis is to study mechanisms for Sponsored Search Auctions in
terms of theoretical properties and effectiveness through experimental analy-
sis. After a study of the limits of VCG mechanism, we present and analyze a
mechanism, RVCG, that goes beyond the limits of VCG and leads to ex-post
Incentive Compatibility in multi-slot environments.
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Sommario

I meccanismi d’asta per la visualizzazione di link sponsorizzati costituiscono
la componenente principale della pubblicità attraverso Internet. Nel 2014
hanno generato negli Stati Uniti un profitto di 19 miliardi di dollari.
Quando un utente utilizza un motore di ricerca, oltre ai risultati effettivi
della ricerca viene visualizzata una lista di link sponsorizzati. Tali link rap-
presentano le pubblicità sponsorizzate. Quando un utente vi clicca sopra, la
pagina dell’inserzionista associato viene visualizzata. Generalmente i motori
di ricerca decidono quali pubblicità visualizzare e in quale ordine utilizzando
le cosiddette ”Sponsored Search Auctions”. Tali meccanismi d’asta impon-
gono un pagamento agli inserzionisti solo nel caso in cui le loro pubblicità
vengano cliccate. Lo scopo di questo lavoro è studiare questi meccanismi,
sia in termini di proprietà teoriche che efficacia pratica. A tale proposito
sono state effetuate delle analisi sperimentali. Dopo aver studiato i limiti
del meccanismo VCG, presentiamo un meccanismo chiamato RVCG. Tale
meccanismo permette di superare i limiti di VCG ed è applicabile al caso
generale in cui più spazi pubblicitari sono disponibili all’asta.
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Chapter 1

Introduction

1.1 Research area

In recent years, there has been a surge of interaction between computer scien-
tists and economists. Computational microeconomics, including algorithmic
game theory and algorithmic mechanism design, is receiving a lot of atten-
tion in computer science and artificial intelligence communities.
The expansion of the Internet has led to numerous examples of interaction of
economic agents (e.g. web auctions). Game theory and economics have been
rich in providing models and solution concepts as well as in prescribing strate-
gies for rational agents. However, the outcomes proposed by the economic
theory often involve problems with unknown efficient solutions. Resolving
such complexity requires a combination of methodologies from computer sci-
ence and economics.
Computational microeconomics provides the most elegant formal and algo-
rithmic tools to deal with strategic interaction situations with multiple ra-
tional agents. Its main purpose is to improve economical transactions and
automating them by using computational models.

Sponsored search auctions constitute one of the most successful applica-
tions of microeconomic mechanisms. It is now common to sell online ads
using an auction. Auctions are used for search ads by Google, Microsoft
and Bing/Yahoo!, for display ads by DoubleClick, for social network ads by
Facebook.
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In every year since 2005, the annual growth rates of Internet advertising
have exceeded those of other advertising media. According to the latest IAB
internet advertising revenue report [1], Internet advertising revenues in the
United States totaled 49.5 billion dollars for the full year of 2014, in which
search-related revenues contribute for 19.0 billion dollars alone.
In microeconomic literature, SSAs have been formalized as a mechanism de-
sign problem, where the objective is to design an auction mechanism that
incentivizes advertisers to bid their truthful valuations (needed for economic
stability) and that assures both the advertisers and the auctioneer to have
a nonnegative utility. A crucial issue is estimating which advertisers tend to
get clicked on more often. Naturally, whenever the mechanism display an
ad which is not clicked, the mechanism receives no profit. Moreover, it is
essential to study accurate models of the user behaviour and their effective
exploitation in the economic mechanisms.

1.2 Original contributions

Our work is focused on the study of mechanisms for Sponsored Search Auc-
tions in terms of theoretical properties and effectiveness through experimen-
tal analysis. First we show that, by using the VCG mechanism, it is possible
to achieve both truthfulness in expectation and ex-post truthfulness in the
single-slot setting.
Then we consider multi-slot settings affected by only position-dependent ex-
ternalities. We show that, generally, by using VCG it is not possible to
obtain neither truthfulness in expectation nor ex-post truthfulness. Under
the restriction of click precedence property it is possible to obtain truthful-
ness in expectation when VCG is adopted, ex-post truthfulness is still not
achievable.
For this reason we exploit the generic transformation presented in [2] in order
to obtain a new mechanism (RVCG) for the multi-slot setting that, under
the restriction of click precedence property, is ex-post truthful.
Finally, we simulate a real auction and we perform an experimental analysis
in order to verify its practical usability.

1.3 Thesis structure

The thesis is structured in the following way.
Chapter 2 is devoted to the presentation of the state of the art. We intro-
duce some concepts of mechanism design and the theory of Sponsored Search
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Auctions, reporting the most important available results on which our work
is based.
Chapter 3 is the heart of this thesis. It is devoted to the study of mechanisms
for Sponsored Search Auctions under the assumption that all the parameters
are known. We provide some theoretical results and we present an experi-
mental analysis of an Incentive Compatible mechanism (RVCG) obtained by
exploiting the generic transformation presented in chapter 2 in a multi-slot
environment.
Finally, in Chapter 4, we summarize our work and we discuss about future
possible developments.
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Chapter 2

State of the art

In this chapter we introduce the basis and the most relevant works in litera-
ture we had to deal with during our research.
In Section 2.1 we introduce the main concepts of mechanism design, consid-
ering the mechanism properties we are interested in and presenting some of
the main implementation results in the field. In Section 2.2 a description of
Sponsored Search Auctions is presented, accompanied by the classification
of the possible externalities and the presentation of known solution models.
In the last section (Section 2.3.1) we report some of the main results about
MAB mechanisms that we will exploit in our work.

2.1 Mechanism Design

Mechanism design has recently emerged as an important tool to model, an-
alyze and solve decentralized design engineering problems involving multiple
agents who interact strategically in a rational and intelligent way [3] [4]. A
rational agent is an agent who makes decisions in order to maximize his own
profit, that is measured through an utility scale. An intelligent agent is an
agent that uses his knowledge about the underlying game in order to make
inferences about it. In particular, strategic agents are taken into account,
which means agents who take in consideration their expectation about the
behavior of other agents and decide how to act basing on it.

The theory of mechanism design deals with settings in which a policy maker
(or social planner) faces the problem of aggregating the announced prefer-
ences of multiple agents into a collective (or social) decision when the actual
preferences are not publicly known.
Mechanism design theory uses the framework of non-cooperative games with
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incomplete information and attempts to study how the private preference
information can be elicited.
The main goal is to design mechanisms which satisfy some desirable proper-
ties, assuming that the individual agents can interact between them and will
act in a strategic way.
Mechanism design can be viewed as the art of designing the rules of a game
to achieve a specific desired outcome.

2.1.1 The Mechanism Design Problem

We now introduce the formal description of the mechanism design problem:

• There are n agents, indexed by i = 1, 2, ...n, who must make a collective
choice from some set X, called the outcome set.

• Prior to the choice, each agent i privately observes his preferences over
X. This is modeled by supposing that agent i observes a parameter
θi (that is observable only by agent i) that determines his preferences.
The parameter θi is said agent i’s type. The set of possible types of
agent i is denoted by Θi.

• The agents’ types, denoted by θ = (θ1, ..., θn) are drawn according to
a probability distribution function Φ ∈ ∆Θ, where Θ = Θ1 × ...×Θn,
and ∆Θ is the set of all the probability distribution functions over the
set Θ. Let φ the corresponding probability density function.

• Each agent i is rational and intelligent. This is modeled by assuming
that agents try to maximize a utility function ui : X × Θi → R. The
utility function u(·) of agent i depends on the outcome x and his type
θi.

• The type sets Θ1, ...,Θn, the probability density φ(·), and the utility
function ui are common knowledge among the agents (it means that,
even though the type θi is not common knowledge, for any type θi,
every other agent can evaluate the utility function of agent i).

Given the above situation, we can now present the two main problems the
social planner has to deal with.

Preference Aggregation Problem

The first problem is the following: ”For a given type profile θ = (θ1, ..., θn)
of the agents, which outcome x ∈ X should be chosen?”
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In order to solve it, the social planner has to choose a Social Choice Function.

Definition 1 A Social Choice Function (SCF) is a function f : Θ → X,
used by the social planner to assign a collective choice f(θ1, ..., θn) to each
possible profile of agents’ types θ = (θ1, ..., θn) ∈ Θ.

Information Elicitation Problem

The problem of mechanism design does not end just by choosing a SCF.
The second problem is the following: ”How to extract the true type θi of each
agent i, which is private information of agent i?”.
A trivial solution is to request the agents to reveal their types θi and use
these information to compute the social outcome x = f(θ).
However, since the agents try to maximize their utility, it could be that agent
i reveals an untruthful type, say θ̂i, so as to drive the social outcome towards
his most favorable choice.
A way in which the social planner can tackle this problem is the use of an
appropriate mechanism.

Definition 2 A Mechanism M = ((Si)i∈N , g(·)) is a collection of action sets
(S1, ..., Sn) and an outcome function g : S1 × ...× Sn → X.

The set Si describes the set of available actions for agent i. Based on his
type θi, each agent i will choose some actions, say si ε Si.
Once all the agents have chosen their actions, the social planner uses this
actions profile to select a social outcome x = g(s1, ..., sn).

Definition 3 Given a SCF f : Θ→ X, a mechanism D = ((Θi)iεN , f(·)) is
said direct revelation mechanism corresponding to f(·).

Given a SCF f(·) , a direct revelation mechanism is a special case of a
mechanism M = ((Si)i∈N , g(·)), with Si = Θi ∀i ∈ N . Any other mechanism
is said indirect mechanism.

Bayesian Game Induced by a Mechanism

A social planner can use an indirect mechanism M or a direct mechanism
D to elicit information about agents’ preferences in an indirect or a direct
manner, respectively.

Recall that we assumed that agents are rational and intelligent. After know-
ing about the mechanism M = ((Si)i∈N , g(·)) chosen by the social planner,
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each agent i selects an action si : Θi → Si in order to maximize his utility.
This phenomenon leads to a game among the agents, that is said Bayesian
game induced by the mechanism M and is denoted by Γb. It can be defined
as follows:

Γb = (N, (Si)i∈N , (Θi)i∈N , φ(·), (ui)i∈N)

The social planner now worries if the outcome of the game induced by the
mechanism matches with the outcome of the SCF (if all the agents reveal
their true types). This notion is captured in the definition that follows.

Definition 4 The mechanism M = ((Si)i∈N , g(·)) implements the SCF f(·)
if there is a pure strategy equilibrium s∗(·) = (s∗1(·), ..., s∗n(·)) of the Bayesian
game Γb induced by M such that g(s∗1(θ1), ..., s∗n(θn)) = f(θ1, ..., θn) ∀(θ1, ..., θn) ∈
Θ.

Depending on the underlying equilibrium concept, it is possible to implement
a SCF in Dominant Strategy Equilibrium, Ex-Post Nash Equilibrium and
Bayesian Nash Equilibrium.
We now define the notion of Dominant Strategy Equilibrium because it will
be used extensively in the rest of this work.

Definition 5 A pure strategy profile sd(·) = (sd1(·), ..., sdn(·)) of the game Γb

induced by the mechanism M , is said to be a Dominant Strategy Equilibrium
if and only if it satisfies the following condition.

ui(g(sdi (θi), s−i(θ−i)), θi) ≥ ui(g(s
′
i(θi), s−i(θ−i)), θi)

∀i ∈ N, ∀θi ∈ Θi, ∀θ−i ∈ Θ−i,∀s
′
i(·) ∈ Si,∀s−i(·) ∈ S−i

where Si is the set of pure strategies of the agent i in the induced Bayesian
game Γb, ans S−i is the set of pure strategy profiles of all the agents except
agent i.

2.1.2 Incentive Compatibility (IC)

Definition 6 The SCF f(·) is said to be incentive compatible (or truthfully
implementable) if the direct revelation mechanism D = ((Θi)iεN , f(·)) has a
pure strategy equilibrium s∗(·) = (s∗1(·), ..., s∗n(·)) in which s∗i (θi) = θi,∀θi ∈
Θi,∀i ∈ N .
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That is, truth telling by each agent constitutes an equilibrium of the game
induced by D.
Therefore if the SCF f(·) is incentive compatible then the direct revelation
mechanism D can implement it.

Based on the underlying equilibrium concept, three types of incentive com-
patibility are given below. Note that we will use the notation ui(θi, θ−i, θ̂i, θ̂−i)
for the utility.

Definition 7 A SCF f(·) is said to be Dominant Strategy Incentive Com-
patible (DSIC) (or Dominant Strategy Truthful or Truthfully Implementable
in Dominant Strategy) if the direct revelation mechanism D = ((Θi)iεN , f(·))
has a dominant strategy equilibrium sd(·) = (sd1(·), ..., sdn(·)) in which sdi (θi) =
θi, ∀θi ∈ Θi,∀i ∈ N .

Such a condition is true iff:

ui(θi, θ−i, θi, θ̂−i) ≥ ui(θi, θ−i, θ̂i, θ̂−i) ∀θi, ∀θ−i, ∀θ̂i, ∀θ̂−i.

If the SCF f(·) is DSIC, whatever the reported types of other agents are, to
report the true type θi is always in the best interest of agent i.

Definition 8 A SCF f(·) is said to be Ex-post Nash Truthful (or Truth-
fully Implementable in Nash Equilibrium) if the direct revelation mechanism
D = ((Θi)iεN , f(·)) has a Nash equilibrium sn(·) = (sn1 (.), ..., snn(·)) in which
sdi (θi) = θi,∀θi ∈ Θi,∀i ∈ N .

Such a condition is true iff:

ui(θi, θ−i, θi, θ−i) ≥ ui(θi, θ−i, θ̂i, θ̂−i) ∀θi, ∀θ−i, ∀θ̂i, θ̂−i = θ−i.

Note that this condition is weaker than the one required for DSIC since, for
each agent i, reporting his true type θi is guaranteed to be best strategy only
when all the other agents behave truthfully.
The set of constraints required by ex-post Nash Truthfulness is generally
strictly contained in the set of constraints required by Dominant Strategy
Truthfulness. DSIC implies ex-post Nash Truthfulness but not vice versa.
Therefore, when the evaluation of an agent over an allocation depends on the
true types of other agents, it is not possible to obtain DSIC although ex-post
Nash Truthfulness is guaranteed.
On the other hand, the utilities of the agents do not depend on the true types
of other agents if the evaluations do not; in this case the constraints required
for ex-post Nash Truthfulness are exactly the same required for DSIC.
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Definition 9 A mechanism is said to be Bayesian Incentive Compatible
(BIC) (or Bayes Nash Truthful or Truthfully Implementable in Bayesian
Nash equilibrium) if the direct revelation mechanism D = ((Θi)iεN , f(·)) has a
Bayesian Nash equilibrium sb(·) = (sb1(·), ..., sbn(·)) in which sbi(θi) = θi,∀θi ∈
Θi,∀i ∈ N .

Such a condition is true iff:

Eθ−i [ui(θi, θ−i, θi, θ−i)] ≥ Eθ−i [ui(θi, θ−i, θ̂i, θ̂−i)] ∀θi, ∀θ̂i

This kind of truthfulness is weaker than ex-post Nash Truthfulness since it
states that the best response of any agent i is reporting the truth only in
expectation over the types of the other agents. It could be the case that, for
some particular types of other agents, agent i would prefer to lie.
Ex-post Nash truthfulness implies Bayes Nash truthfulness but not vice versa.

The revelation principle, that is one of the fundamental results in the the-
ory of mechanism design, states that if a SCF f(·) is implementable by an
indirect mechanism M = ((Si)i∈N , g(·)), then it is truthfully implementable
by the direct mechanism D = ((Θi)iεN , f(·)).
This result enables to restrict the inquiry about truthful implementation of
a SCF to the class of direct revelation mechanism only.

2.1.3 Other desirable properties

Allocative Efficiency

The Allocative Efficiency (AE) property guarantees that, for any profile of
agent’s type, the social choice function provides a collective choice which is
not Pareto dominated.Therefore, it is not possible to make any one individual
better off without making at least one individual worse off.
Formally:

Definition 10 A SCF f : Θ → X is said to be Allocative Efficient if, for
no profile of agents’ type θ = (θ1, ..., θn), does exist an x ∈ X such that
ui(x, θi) ≥ ui(f(θ), θi) ∀i and ui(x, θi) > ui(f(θ), θi) for some i.

Individual Rationality

The Individual Rationality (IR) property ensures that each agent never re-
ceives negative utility by participating in the mechanism and reporting his
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true type.
There are three stages at which an agent may decide to participate the mech-
anism:

• Ex-post stage: it arises after all the agents have announced their types
and an outcome x has been chosen;

• Interim stage: it arises after all the agents have learned their type but
before they have chosen their actions in the mechanism;

• Ex-ante stage: it arises before the agents have learned their type.

Definition 11 In order to ensure agent i’s participation at the ex-post stage,
so as to obtain ex-post Individual Rationality, the following constraint must
be satisfied: if agent i is truthful then ui ≥ 0 ∀θi,∀θ−i.

Definition 12 In order to ensure agent i’s participation at the ex-interim
stage, so as to obtain ex-interim individual rationality, the following con-
straint must be satisfied: if agent i is truthful then Eθ−i [ui] ≥ 0 ∀θi.

Agent i has a probability associated for each agent and for each type.
The ex-interim individual rationality implies that if agent i is truthful then,
in expectation over the types of the other agents, he gets a positive utility.
It could be the case that for some particular types of other agents, utility of
agent i is negative.
It is evident that ex-post individual rationality implies ex-interim individual
rationality but the opposite is not true.

Definition 13 In order to ensure agent i’s participation at the ex-ante stage,
so as to obtain ex-ante Individual Rationality, the following constraint must
be satisfied: if agent i is truthful then Eθi [ui] ≥ 0.

2.1.4 Implementability results

Ideally a social planner would prefer to implement a SCF f(·) which is AE,
DSIC and non-dictatorial.

Definition 14 A SCF f : Θ → X is said to be non-dictatorial if does not
exist an agent d such that, for every profile of agents’ type θ = (θ1, ..., θn),
holds f(θ1, ..., θn) ∈ {x ∈ X|ud(x, θd) ≥ ud(y, θd∀y ∈ X}.
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The Gibbard-Satterthwaite impossibility theorem [5] [6] states that for a
very general class of problems there is no SCF that satisfies the above prop-
erties simultaneously. In particular, a SCF f(·) is truthfully implementable
in dominant strategy if and only if it is dictatorial.
Given this impossibility result, the social planner should attempt to find a
satisfying SCF in an environment in which at least one of the hypothesis of
the Gibbard-Satterthwaite theorem does not hold.
Quasi-linear environment is one of these environments in which all the SCFs
are non-dictatorial.

Quasi-linear Environments

In quasi-linear environments the SCF gives as outcome the vector

x = (y, p1, ..., pn),

where y is the allocation and pi are the payments.

The utility of agent i for a specific outcome x takes the form:

ui(x, θi) = vi(y, θi)− pi,

where the term vi(y, θi) is the evaluation of agent i over the allocation y.
The allocation y depends on the reported types θ̂i of the agents.
If y is fixed then vi(y, θi) depends only on the true type of agent i while agent
i’s payment pi depends on the reported types θ̂−i of all the other agents.

The amount
∑n

i=0 pi represents the revenue of the mechanism.

Generally, the utilities of the agents and the revenue of the mechanism can
be negative, positive or equal to zero.

Budget Balanced

Definition 15 A SCF is ex-post Weak (Strict) Budget Balanced (BB) if the
following condition is satisfied:

n∑
i=0

pi(θ) ≥ 0 (= 0) ∀θ.

A SCF is ex-ante Weak (Strict) Budget Balanced if:

Eθ[
n∑
i=0

pi(θ)] ≥ 0 (= 0).
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Intuitively, a mechanism is Weakly Budget Balanced when the auctioneer is
guaranteed to have no loss. Note that ex-post BB implies ex-ante BB but
not vice versa.

Allocative Efficiency

In this contest, the concept of Allocative Efficiency can be further character-
ized.

Definition 16 A SCF f : Θ→ X is said to be Allocative Efficient (AE) if,
for each θ ∈ Θ, the output x(θ) ∈ X satisfies the following condition:

x(θ) = arg max
x∈X
{

n∑
i=1

vi(x, θ̂i)}

More intuitively, a mechanism is AE when the outcome x, chosen by the
allocation function f , is the one that maximizes the Social Welfare (SW).

Groves mechanisms

Definition 17 A mechanism that implements the SCF f(θ̂) = (y, p1, ..., pn)
which satisfies the allocative efficiency condition

y = arg max
x∈X
{

n∑
i=1

vi(x, θ̂i)}

and that uses the payment scheme

pi(θ̂) = hi(θ̂−i)−
n∑

j=1,j 6=i

vj(y, θ̂j)

is called Groves mechanism.

It is possible to prove that Groves mechanisms are DSIC (θ̂i = θi ∀θ, ∀θ̂).
Green-Laffont-Holmstrom theorem [7][8] states that Groves mechanisms are
the only DSIC mechanisms that can be obtained when the allocation rule
f(θ̂) is AE.

Vickrey-Clarke-Groves mechanism

Definition 18 A Vickrey-Clarke-Groves (VCG) mechanism is a particular
case of Groves mechanism in which

hi(θ−i) = max
x
{

n∑
j=1,j 6=i

vj(x−i(θ−i), θj)}.
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Linear Environments

Linear environments are a subclass of quasi-linear environments in which the
following constraints hold:

• each agent i’s type lies in the interval Θi = [θi, θi] ⊂ R with θi < θi;

• agents’ types are statistically independent, that is, the density φ(·) has
the form φ1(·)× ...× φn(·);

• φi(θi) > 0 ∀θi ∈ [θi, θi] ∀i = 1, ..., n;

• each agent i’s utily function takes the form ui(x, θi) = θivi(y)− pi.

Myerson’s Characterization Theorem

In linear environment, in the single-parameter case (i.e. agents’ types are
scalars), the following theorem holds.

Theorem 1 A mechanism that uses an allocation function f and a payment
function p is truthful if and only if ρi(f(θ̂i, θ̂−i)) is non-decreasing (w.r.t. θ̂i)
and the payment pi for each agent i satisfies

pi(θ̂i) = hi(θ̂−i) + θ̂iρi(f(θ̂i, θ̂−i))−
∫ θ̂i

0

ρi(z)dz

where ρi(f(θ̂i, θ̂−i)) is the reward of agent i when the allocation is f(θ̂i, θ̂−i)
and hi(θ̂−i) is a constant [9], [10].

2.2 Sponsored Search Auctions

When a user submits a query on a search engine, the search engine returns
a list of results. In this list, in addition to the algorithmic results (the real
outcome of the research), some sponsored results appear (from here on ads).
The ads are displayed in a way similar to the algorithmic results: they are
usually located above or on the side of them and organized in a list. If the
user clicks one of these ads (they are represented by links), he is automatically
directed to the advertiser web page.
The advertiser pays a given price each time the link is clicked.
Search engines generally make use of an auction mechanism to decide how
to allocate the different ads in the available positions (from here on slots) of
the resulting list in the web pages.
This kind of mechanisms is called Sponsored Search Auction (SSA).
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2.2.1 Preliminaries

There are some parameters that are shared by almost all the different models:

• N = {1, 2, . . . , n} is the set of indices of the ads ai ( i ∈ N). We
assume that each advertiser has a single ad, so each advertiser i can be
identified by ad ai.

• K = {1, 2, . . . , k} is the set of indices of the slots sj ( j ∈ K). The
indices are assigned to the slots in increasing order from the top to the
bottom of the list. E.g. the first slot of the list has index 1, the last
one has index k.
We assume that the number of advertisers is higher or equal to the
number of available slots: |N | ≥ |K|.

• vi ∈ Vi ⊆ R+ is the value obtained by advertiser i when ad ai is clicked
by an user. We denote as v= {v1, v2, . . . , vn} the value profile. Each
advertiser exactly knows his own value but does not know the values
of other advertisers.

• bi ∈ Vi is the reported value (the bid) of advertiser i. It represents
how much the advertiser is willing to pay for each click on his ad. We
denote as b = {b1, b2, ..., bn} the reported value profile.

• qi ∈ [0, 1] is the quality of ad ai and it represents the probability that
a user clicks ad ai when visualized. The values of the qualities are not
known a priori and need to be estimated.

• CTRi ∈ [0, 1] is the Click Through Rate and represents the probability
that ad ai is clicked by a user when displayed. It is obtained by the
combination of quality qi and the probability that the user visualizes
it.

• ui ∈ R is the utility of advertiser i;

• ρi,j(t) ∈ {0, 1} is the click realization and indicates whether ad ai gets
a click if displayed at round t in slot sj or not.

It is now possible to describe how a SSA works.
At the beginning each advertiser specifies a bid bi and the auctioneer (in
this case the search engine) has to select the best way to allocate the ads
in the slots devoted to sponsored links. The auctioneer’s goal is to solve
the optimization problem (e.g. maximize the social welfare or the revenue)
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designing mechanisms which are truthful in dominant strategies: every agent
maximizes his utility ui by bidding truthfully (vi = bi), for any bid of the
other and for any click that would have been received.
In each round each advertiser i derives value vi from clicks and pays the
auctioneer a sum defined by a specific payment scheme.
Generally SSA adopts a pay-per-click payment scheme that considers positive
payments to an advertiser only if his ad has been clicked.

2.2.2 User model and externalities

In literature there are several works that focus on modeling the user behavior.
We will focus on the most common one, which assumes that the user scans
the links from the top to the bottom. Slot number 1 is the top slot, and
receives the maximum attention, while higher-numbered slots are situated in
lower position in the page and naturally receive less attention.
By intuition, an high-quality ad can divert from another one, while a low
quality ad can cause the user to abandon the page. For this reason it’s
reasonable to consider the externality effect among ads. The value of an ad
impression on a page is affected not just by the slot that the ad is placed in,
but also by the set of the other ads displayed on the page.
In [11][12] externalities are classified in three different categories:

1. Position-dependent externalities : in this case the probability that a
user visualizes an ad is given only by the position of the slot in which
the ad is displayed, not by the influence of the other ads. We define
the parameter λj ∈ [0, 1] for each slot j and we call it prominence. It
is commonly assumed that λj is monotonically non-increasing in k.

2. Ad-dependent externalities : the probability that a user visualizes an ad
depends solely on the ads that are placed in the slots, but not the slots
themselves. We define the parameter cj(i) ∈ [0, 1] as the probability
that a user observing ad i in the slot j−1 will observe the ad in the next
slot (c1 is set to 1 by definition). We call it continuation probability.
This models both high-quality ads, which satisfy the need of the user,
and low-quality ads, which might frustate the user (i.e. if an ad a with
very small continuation probability precedes another slot a′, then a′ is
unlikely to be ever seen by the user).

3. Position/ad-dependent externalities : this is a combination of the pre-
vios two externalities. In this case the probability that a user observes
an ad is influenced by both the position of the slot the ad is displayed
in, and the ads that precede it in the list.
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2.2.3 Model and allocation

The auctioneer needs to choose k ads to display between the n available ones.
The goal is to maximize either the social welfare or the revenue of the auc-
tioneer. In both cases it is necessary to solve an optimization problem in
order to find the optimal allocation rule. If the objective is to maximize the
social welfare we should select l ≤ k ads a1, a2, ..., al and allocate them in
slots s1, s2, ..., sl in order to maximize the value given by

∑l
i=1 biCTRi.

Therefore it is necessary to predict the CTRi for each ad ai(i.e. the proba-
bility that an ad is clicked) and take this prediction into account during the
allocation phase (i.e. when allocating the slots to ads).
Depending on the externalities taken into account, the computations of the
CTR and the allocation are based on different parameters and therefore they
give rise to three different models:

1. The simplest model is the one in which only position-dependent ex-
ternalities are considered [13]. We call it Separable Model because it
completely ignores externalities between ads and it is based on separa-
ble click through rates. This model is the basis for most works in the
area. It assumes that the CTRi of an ad ai is the product of its quality
qi and the prominence λj of the slot sj in which the ad ai is displayed.

CTRi = qiλj

The main advantage of this model is its simplicity: an optimal al-
location of the ad space can be obtained sorting the advertisers by
decreasing biqi.
The maximization problem can be solved in polynomial time.

2. We refer to the second model as the Cascade Model. In this case only
ad-dependent externalities are taken into account. We assume that all
the users are identical and scan the ads in the same order, from top to
bottom.
Under this model, the CTRi of ad ai is obtained with the product of
the quality qi of the ad, and the probability of reaching the slot sj in
which ad ai is displayed.
Assuming ads a1, ..., ak are placed in slots s1, ...,sk, the click through
rate of ad ai is:

CTRi = qi

i−1∏
j=1

cj
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The maximization problem can be solved in polynomial time by using
dynamic programming [12].

3. The third model combines the two models previously described and
it is the most realistic one since it considers both ad-dependent and
position-dependent externalities.
Assuming ads a1, ..., ak are placed in slots s1, . . . ,sk and λ1 ≥ λ2 ≥
... ≥ λk, the click through rate of ad ai displayed in slot sj is given by:

CTRi = λjqi

i−1∏
l=1

cl

Note that the CTR of an ad depends not only on the preceding ads
but also on the order in which they are allocated in the previous slots.
So far there are no algorithms that can solve the maximization problem
in polynomial time [12][14][15] .

2.3 MAB mechanisms for SSA

SSA provides an environment where a mechanism design problem is inher-
ently coupled with a learning problem. The solution of the optimization
problem requires knowledge of the parameters qi, cj(i), λk for each ad ai and
each slot sj, according to the model of externalities that is used.
In this section we are interested in the process in which the CTRs are learned.
Thus we will consider the problem of designing truthful Sponsored Search
Auctions in which the process of learning the CTR is part of the game. Sup-
posing that the advertisers bid truthfully, our problem can be reduced to the
Multi Armed Bandit (MAB) one.

2.3.1 The Multi Armed Bandit problem

The Multi Armed Bandit (MAB) problem is a classical paradigm in machine
learning in which an online algorithm chooses from a set of strategies in a
sequence of trials so as to maximize the total payoff of the chosen strategies.

The name ”multi-armed bandits” comes from the scenario in which a gambler
faces several slot machines (sometimes known as ”one-armed bandits”) that
look identical at first but produce different expected winnings. The gambler
has to decide which machines to play at each time step, how many times to
play each machine and in which order to play them. The objective of the
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gambler is to maximize the sum of rewards earned, receiving feedback only
for the chosen decision.

The crucial aspect in MAB problems is the tradeoff between acquiring more
information (exploration) and using the current information to choose a good
machine (exploitation).
A policy, or allocation strategy, is an algorithm that chooses the next machine
to play based on the sequence of past plays and obtained rewards.

The performance of a MAB algorithm is usually evaluated through the regret,
originally introduced by Lai and Robbins in [16]. It represents the loss in
reward: the difference between the optimal reward, obtained by choosing al-
ways the best machine, and the total reward that could be achieved through
the strategy adopted.
Lai and Robbins showed that the regret for MAB problems has to grow at
least logarithmically in the number of plays and they devised policies which
asymptotically achieve it. In [17], Auer, Cesa-Bianchi and Fischer showed
that the optimal logarithmic regret is also achievable uniformly over time,
rather than only asymptotically, with simple and efficient policies like UCB1.
In UCB1 each machine is played once during the initialization phase. Then,

at each round, the machine j that maximizes xj +
√

2 lnn
nj

is played, where

xj is the average reward obtained from machine j, nj is the number of times
machine j has been played so far, and n is the overall number of plays done so
far. There is not a distinct separation between exploration and exploitation,
since the two steps are carried on at the same time.
This algorithm can be applied to our problem supposing that each advertiser
bids truthfully. However, the advertisers are strategic and the UCB1 algo-
rithm cannot be applied directly to design a regret minimizing mechanism.

2.3.2 Social Welfare maximization and truthful MAB
mechanisms in single-slot environment

Two main contributions are presented by Babaioff, Sharma and Slivkins in
[18]: a structural characterization of dominant strategy deterministic truthful
mechanisms, and a bound on the regret that such mechanisms must suffer
due to truthfulness.
They found that truthful mechanisms must strictly separate exploration from
exploitation and that they incur much higher regret than the optimal MAB
algorithms.
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The setting

In [18] it is considered a multi-round auction setting.
There is a set N of n agents, numbered from 1 to n, and a single slot.
Each agent i has a single ad ai to which is associated a private value vi for
every click he gets and a reported value bi, possibly different from vi, that is
the bid initially submitted by the advertiser(bi is public information).

For given click realization ρ and bid profile b, the total number of clicks
received by agent i in the time horizon T is denoted Ci(b; ρ). Call C =
(C1, ..., Cn) the click allocation for the allocation rule A.

A quality qi is associated to each ad. The qualities are not known at the
beginning and need to be estimated during the exploration phase.

The mechanism

The goal is to design a dominant strategy truthful mechanism that maxi-
mizes the social welfare.
The mechanism is an online algorithm which first solicits bids from the agents
and then runs for T rounds, where T is the given time horizon.
At each round the mechanism selects an agent, displays his ad and receives
feedback (if there was a click or not). Initially no information is known about
the probability of each agent to be clicked.

The mechanism differentiates two distinct phases:

• Exploration
Each ad is displayed T0 times, where

T0 = n−
2
3T

2
3 (log T )

1
3 .

Since the ads are n, the exploration phase will last for τ = nT0 rounds.
During this stage the allocation is not dependent from the bid profile
b and no payments are charged to the agents.
Let ci be the number of clicks on ad ai in the exploration phase. The
qualities can be estimated as q̂i = Ci

T0
.

• Exploitation
It lasts for T − τ rounds.
Basing on the reported values b and the qualities q̂ estimated in the
previous phase, an agent i∗ such that

i∗ ∈ arg max
j∈N

q̂jbj = arg max
j∈N

cjbj
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is chosen and selected to be displayed for all the rounds.

The pay-per-click payment scheme is used and the amount charged
at each step to each agent is:

pi =


max
j∈N/{i}

(cjbj)

ci
, if click

0, if no click

Note that the agent displayed will be the only one who always pays.

Upper bound regret

In the computation of the regret it is taken into account the difference in So-
cial Welfare between the algorithm and the benchmark which always selects
the best ad.
If the advertisers bid their true private values our problem would be equiva-
lent to the classical MAB problem, whose achievable regret is O(T 1/2). De-
terministic truthful mechanisms incur much higher regret than the optimal
MAB algorithms since they need to separate exploration from exploitation.

The worst-case regret is

R(T, vmax) = O(vmaxn
1/3T 2/3(log T )1/3).

Below the proof.

Proof. The mechanism is truthful and therefore b = v.
Since the exploration lasts for τ = nT0 rounds and no probability of click is
taken in consideration during this phase, the exploration regret can not be
greater than the one obtained by always selecting the ad with higher value
(vmax):

Rexploration ≤ nT0vmax.

By Chernoff bounds, for each agent i we have P (|q̂i − qi| > ε) < δ, for
ε =

√
8 log T/T0 and δ = T−4.

For the exploitation phase, with probability 1 − δ (when for each agent i
all the estimates q̂i lie in the intervals specified above), let j = arg max

i∈N
qivi

and i∗ = arg max
i∈N

q̂ivi = arg max
i∈N

civi.

Then we have:

(qi∗ + ε)vi∗ ≥ q̂i∗vi∗ ≥ q̂jvj ≥ (qj − ε)vj
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which implies
qi∗vi∗ + εvi∗ ≥ qjvj − εvj

qjvj − qi∗v1∗ ≤ ε(vi∗ + vj) ≤ 2εvmax.

With probability δ the expected regret is at most vmax.
Therefore, the regret in the exploitation phase is at most:

Rexploitation ≤ δ(T−τ)vmax+(1−δ)(T−τ)2εvmax ≤ δTvmax+(1−δ)T2εvmax.

As a consequence, the total regret is as claimed:

R(T, vmax) = O(vmaxn
1/3T 2/3(log T )1/3).

Truthfulness characterization

As stated in Theorem 1, a mechanism (A,P ) for the MAB mechanism prob-
lem is truthful with unrestricted payment computation if and only if, for
any given click realization ρ, the corresponding click allocation C is non-
decreasing:

Ci(b
+
i , b−i; ρ) ≥ Ci(bi, b−i; ρ) for b+

i ≥ bi

and the payment rule is given by

Pi(bi, b−i; ρ) = biCi(bi, b−i; ρ)−
∫ bi

0

Ci(x, b−i; ρ)dx.

However, in Myerson payment scheme, it is supposed the full knowledge of
ρi(t) for each ad ai at each round t. In our case we can observe ρi(t) only
if ad ai is displayed at round t and we can not know the values of the click
realization otherwise.

Definition 19 An allocation rule A is pointwise monotone if increasing the
bid cannot cause a loss of impression: for each click realization ρ, bid profile
b, round t and agent i, if Ai(bi, b−1; ρ; t) = 1 then Ai(bi+ , b−1; ρ; t) = 1 for
any bi+ ≥ bi.

Lemma 1 Consider the MAB mechanism design problem. Let (A,P ) be a
normalized truthful mechanism such that A is a non-degenerate deterministic
allocation rule. Then A is pointwise monotone.
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Definition 20 A round t is called influential for a given click realization if,
for some bid profile, changing the click realization at round t can affect the
allocation in some future round t′.

Definition 21 An allocation rule A is called exploration-separated if for any
given click realization ρ and round t that is influential for ρ it holds that
A(b, ρ, t) = A(b′, ρ, t) for any two bid vectors b, b′.

Proposition 1 Consider the MAB mechanism design problem with two agents.
Let A be a non-degenerate scale-free deterministic allocation rule. If (A,P ) is
a normalized truthful mechanism for some P , then it is exploration separated.

In other words: truthful implies exploration-separated. In order to obtain a
truthful mechanism it is necessary to strictly separate the phases of explo-
ration and exploitation.

2.3.3 Revenue maximization and truthful MAB mech-
anisms in single-slot environment

In [19], Devanur and Kakade considered the problem of designing a truthful
pay-per-click auction in which the click-through-rates (CTRs) of the ads are
unknown to the auctioneer and only a single slot is available.
Such an auction faces the classic explore/exploit dilemma typical of MAB
mechanisms. They show that the achievable regret in the expected revenue,
under truthful restrictions, is Θ(T 2/3) (where T is the number of rounds),
while for bandit algorithm without truthful restrictions it is Θ(T 1/2). The
extra T 1/6 factor is called the price of truthfulness. With analogous consider-
ations to those of [18] they show also that truthful mechanisms must separate
exploration from exploitation.

The model

The model proposed in [19] considers a repeated auction, where the single
slot is auctioned in each of T rounds.
There are n advertisers. At each round t, each advertiser bids a value bi(t),
which is the reported value of i per click at round t. Then the auctioneer
decides which ad will be displayed.
Let x(t) be the allocation vector, and say xi(t) = 1 iff ad i is displayed (since
only one advertiser is allocated, xj(t) = 0 for all j 6= i). The auction then
observes the event ρi(t), which is equal to 1 if the ad is clicked and 0 other-
wise. The auction observes ρi(t) if and only if xi(t) = 1.
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At the end of each round, the auction charges advertiser i the amount pi(t)
only if i is clicked. The revenue of the auction is A = Σi,tpi(t).
It is assumed that advertiser i’s true value for a click at round t is vi(t).
Hence, the utility of i is Σt(vi(t)ρi(t)xi(t)− pi(t)).
Using this notation, such an auction is truthful for a given sequence ρseqε{0, 1}n×t,
if bidding vi(t) = bi(t) is a dominant strategy for all bidders. As the auc-
tion depends on the advertisers previous bids, an advertiser could try to
manipulate their current bid in order to improve their future utility. If an
auction is truthful for all ρseqε{0, 1}n×t then it is said to be always truthful
and such manipulation is not possible. Subject to the constraint of being
always truthful, the goal of the auction is to maximize its revenue. Let
T − Regret = ΣT

t=1smaxi{CTRibi(t)} − EC [A] be the expected truthful re-
gret of the auction. The first term is the expected revenue of the Vickrey
auction that knows the true CTRi’s (smaxi{ui} is the second largest element
of a set of numbers {ui}). The second term is the expected revenue of the
auction. Below it is presented an upper bound for T −Regret.

Upper bound analysis

The algorithm works as follows: for the first τ steps, the auction explores.
This means that each ad is displayed for bτ/nc rounds. All payments are

0 during the exploration phase. Let ĈTRi be the empirical estimate of the
CTRi obtained during the exploration phase. With probability greater than
1-δ, the following upper bound holds for all i:

CTRi ≤ ĈTRi +
√

2bn
τ
c log n

δ
:= ĈTR

+

i

For t > τ (which is the exploitation phase), the auction allocate the slot to the

bidder i∗ at time t which maximizes ĈTR
+

i bi(t), i.e. i∗ = argmaxiĈTR
+

i bi(t).
The payment of i∗ at time t is:

pi(t) = smaxiĈTR
+

i bi(t)

ĈTR
+

i∗

The auction is truthful. It can be shown as follows: consider a set of positive
weights ωi. It is possible to costruct a truthful auction in the following
manner: let the winner at time t be i∗ = argmaxiωibi(t) and charge i∗ the

amount smaxiωibi(t)
ωi∗

this time. This auction is truthful for any click sequence

and for any T . The weights used by the auctions are ωi = CTR+
i which

are not functions of the bids. Hence the auction is truthful since during the
exploration phase the auction is truthful (for any set of weights).
For all t during the exploitation phase (all t > τ) E[ρi∗(t)] = CTRi∗ . Hence,
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the expected revenue of the auction at time t is smaxiĈTR
+

i bi(t)

ĈTR
+

i∗
CTRi∗ .

By construction holds that:

smaxiĈTR
+

i bi(t)

ĈTR
+

i∗
≤ bi∗(t) ≤ bmax

and with probability greater than 1− δ:
smaxiCTRibi(t)

smaxiĈTR
+

i bi(t)
≤ 1

since CTRi ≤ ĈTR
+

i (with probability greater than 1−δ). Using these facts,
the istantaneous regret is bounded as follows:

smaxiCTRibi(t)− smaxiĈTR
+

i bi(t)

ĈTR
+

i∗
CTRi∗

= smaxiĈTR
+

i bi(t)

ĈTR
+

i∗
( smaxiCTRibi(t)
smaxiĈTR

+

i bi(t)
ĈTR

+

i∗ − CTRi∗)

≤ bmax(
smaxiCTRibi(t)

smaxiĈTR
+

i bi(t)
ĈTR

+

i∗ − CTRi∗)

≤ bmax(ĈTR
+

i∗ − CTRi∗)
≤ bmax

√
2n
τ

log n
δ

Hence, since there are T − τ exploitation rounds and τ exploration rounds
(with no revenue), the expected regret is:

T −Regret ≤ bmax((T − τ)
√

2n
τ

log n
δ

+ τ + δT )

where the δT term comes from the failure probability. Choosing δ = 1/T
and τ = n1/3T 2/3

√
log(nT ) it is obtained that T −Regret = O(T 2/3).

2.3.4 Truthful mechanisms with implicit payment com-
putation in single-slot environment

Before the results of Babaioff, Kleinberg and Slivkins presented in [2], it
was believed that computing payments needed to induce truthful bidding
was somehow harder than simply computing the allocation. They showed
the opposite: to create a randomized truthful mechanism is as easy as a
single call to a monotone allocation rule. Their main result is a general
procedure (referred as the generic transformation) that takes a monotone
in-expectation allocation rule A for a single-parameter domain (auctions in
which the private information of each agent is a single parameter: his value
per item) and transform it into a randomized mechanism that is truthful in
expectation and individually rational for every realization. The mechanism
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obtained implements the same outcome as the original allocation rule with
probability arbitrary close to 1, and requires evaluating that allocation rule
only once.
Moreover its regret is O(T 1/2). This upper bound matches the information-
theoretic lower bound in the same setting. This stands in contrast to the
lower bound of [18] and [19], where it was shown that deterministic ex-post
truthful MAB mechanisms have a regret of Ω(T 2/3).
In [2] is also designed a new MAB allocation rule (UCB1) that is ex-post
monotone and has a regret O(T 1/2) in order to obtain a randomized ex-post
truthful MAB mechanism with the same regret.

The model

Let n be the number of agents and N be the set of agents. Each agent i ∈ N
has some private type vi ∈ Vi. It is assumed that Vi is an open subset of R.
Let V = V1 × ...× Vn denote the domain of types and let v ∈ V denote the
vector of true types. There is a set of outcomes X. For each agent i ∈ N
there is a function ai : X → R+ specifying the allocation of agent i. The
value of an outcome x ∈ X for an agent i ∈ N is vi · ai(x). The utility
that agents i ∈ N derives from outcome x ∈ X when he is charged pi is
quasi-linear: ui = vi · ai(x) − pi. A direct revelation mechanism M consists
of the pair (A,P ), there A : V → X is the allocation rule and P : V → Rn is
the payment rule, i.e. the vector of payment functions Pi : V → R for each
agent i. The vector of bids is denoted by b ∈ V . The mechanism picks an
outcome A(b) and charges agent i payment of Pi(b). The allocation for agent
i is Ai(b) = ai(A(b)). Agent’s i utility is

ui(xi, b) = vi · Ai(b)− Pi(b)

For a randomized allocation rule Ai(b) and Pi(b) denote the expected allo-
cation and payment charged to agent i. The expectation is taken over the
randomness of the mechanism. Sometimes is is considered explicitly the de-
terministic allocation and payment that is generated by a specific random
seed of the mechanism w or by a specific random seed of the nature r. In
these cases Ai(b, w, r) and Pi(b, w, r) are used.
The notion of truthfulness considered in the model is DSIC. It is useful to
estabilish terminology to indicate when truthfulness holds not only in expec-
tation but also for specific realizations.
The term universally truthful is used when the mechanism is truthful not
only in expectation over the mechanism’s randomness, but for every realiza-
tion of that randomness. Similarly, the term ex-post truthful is used when the

33



mechanism is truthful not only in expectation over the nature’s randomness,
but for every realization of that randomness. These terms can be refered
also to other properties. In order to emphasize that a property holds only
in expectation over the nature’s randomness the term stochastically is used.
If all types are positive, in addition to individual rationality it is desiderable
that all agents are charged a non-negative amount; this is said no-positive-
transfers property. Finally, the welfare of a truthful mechanism is defined to
be the total utility Σivi · Ai(t).

The generic transformation

The main one result of [2], that is the existence of the generic transformation
with the desired properties, can be stated as follows.

Theorem 2 Consider an arbitrary single-parameter domain with n agents.
Let A be a monotone allocation rule for this domain. Then for each µ ∈ [0, 1]
there exist a truthful mechanism M = (Ã, P̃ ) with the following properties:

• M executes a single call to A(b̃), with a pre-processing step to compute
the modified bid vector b̃ using a self-resampling procedure (a pro-
cedure that samples a smaller bid value w.r.t. b), and a post-processing
step to compute the payments. Both pre- and post-processing step do
not execute a call to A.

• For any bid vector b and for any random seed of nature allocations Ã(b)
and A(b) are identical with probability at least 1− nµ.

• M is truthful, universally ex-post individually rational.

• If V = Rn
+ (all types are positive), then M is ex-post no-positive-

transfers, and never pays any agent i more than bi · Ai(b̃) · ( 1
µ
− 1).

For [Myerson 1981] a mechanism (A,P ) is truthful if and only if A is mono-
tone and morover for the payment Pi(b) for each agents must satisfy

Pi(b) = P 0
i (b−i) + biAi(b−i, bi)−

∫ bi
−∞Ai(b−i, u)du

where P 0
i (b−i) does not depend on bi.

The payment imposed by the generic transformation is equal, in expecta-
tion, to the payment defined by Myerson. In such a way truthfulness is
obtained. An agent is charged for his reported type and she receives a ran-
dom rebate that is an estimation of the integral that appears in the Myerson
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payment. This estimation is obtained by using a method for estimating
integrals by evaluationing the integrand at a randomly sampled points. As
said before, the computation of a payment doesn’t require to execute a call
to the allocation rule.

2.3.5 An ex-post truthful mechanism in multi-slot en-
vironment

Narahari and Mandal in [20] introduced two different contributions. First,
they proved that when the user clicks are governed by ad-dependent exter-
nalities and position-dependent externalities, it is impossible to design an
ex-post monotone allocation rule with sublinear regret. This impossibility
result motivates their second contribution: they designed an ex-post truthful
mechanism for multi-slot SSAs with sublinear regret for the case in which the
CTRs are affected by only position-dependent externality and follow click
precedence property.

The setting

It is a multi-slot SSA. There is a set N of n agents, numbered from 1 to n,
and a set K of k slots, numbered from 1 to k.
Each agent i has a private value vi and submits a bid bi. A quality qi is
associated to each ad ai.
The cascade model is adopted to predict the user behavior and both position
and ad-dependent externalities are taken into account.

Impossibility of Sublinear Regret for Ex-Post Monotone Alloca-
tions

It can be proved that, when the user clicks are governed by ad-dependent
or position-dependent externalities on the ads, it is impossible to design an
allocation rule with sublinear regret. The regret of any ex-post monotone
allocation rule is Ω(T ).
This also means that it is impossible to design an ex-post truthful mechanism
in the presence of ad-dependent externalities.

Ex-Post Truthful Mechanism for Multi-Slot SSA

Motivated by the above impossibility result, it is considered the case in which
only position-dependent externalities are taken into account and the clicks
follow a special property called click precedence.
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Definition 22 The click precedence property is verified if:

ρi,j(t) = 1 =⇒ ρi,j′(t) = 1∀j′ ≤ j.

In other words: if ad ai is clicked at time t when displayed at slot sj than ad
ai will also be clicked at time t if displayed at slots higher that sj.

If the clicks follow this property, then an allocation rule is ex-post mono-
tone if and only if:

∃j′ ≤ j : Ai(bi, b−i, t) = j =⇒ Ai(b
+
i , b−i, t) = j′ ∀t, ∀b+

i > bi, ∀i.

The proposed allocation rule maintains k lower confidence bounds {Lji}kj=1

and k upper confidence bounds {U j
i }kj=1 for each agent i. For all rounds,

Lji ≤ biqi ≤ U j
i with high probability.

It maintains also k different activation sets Sjact for j = 1, . . . , k. Sjact is
the set of agents that can be assigned to slot j. Let Lj∗ = max {Lji}ni=1. Then
Sjact contains agent i if U j

i ≥ Lj∗.

The algorithm runs for T rounds. In every round the allocation rule de-
cides which agents to allocate in the k slots in two steps:

1. Designation procedure: the allocation rule designates k different agents
to allocate in the k available slots.

2. Allocation: the allocation rule verifies the presence of the designated
agents in the corresponding activation sets: if j-th designated agent
is present in Sjact, then that agent is allocated to slot j. Otherwise,
another agent is allocated to slot j: the agents are sorted in Skact in
non-decreasing order of their k-th lower confidence bounds. Then all
the designated agents are deleted from the sorted list and the top m
agents (m is the number of free slot) are allocated to the m empty slots
starting from top.

The resulting allocation rule is ex-post monotone if the click events follow
click precedence property and the ads are affected only by position-dependent
externalities.
Since the proposed allocation rule is ex-post monotone, using the procedure
described in [2] , an ex-post truthful mechanism can be derived for the multi-
slot SSA problem.
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Regret Analysis

It is possible to prove that the total regret lower bound of the algorithm is:

Rtot = τbmax + (T − τ)rt + δTbmax

37



Chapter 3

SSA - Known parameters

This chapter is devoted to the study of truthful mechanisms in environments
in which all the parameters are known to the auctioneer. The objective is to
find a mechanism that is ex-post truthful without considering the problem
of learning and estimating the unknown parameters.

In next sections we present the results obtained by studying the works re-
ported in the previous chapter. In Section 3.1 it is showed how, by using the
VCG mechanism, it is possible to achieve truthfulness in expectation (Sec-
tion 3.1.1) and ex-post truthfulness (Section 3.1.2) in the single-slot setting.
In Section 3.2 we extend the single-slot solution to the multi-slot setting and
we consider the two different cases in which click precedence property does
not hold and holds.
Due to the impossibility of obtaining ex-post truthfulness by using the VCG
mechanism, in Section 3.3 we extend the method reported in Section 2.3.4
to the multi-slot setting. In Section 3.3.1 an apposite algorithm (RVCG) is
introduced. Then, the setting and the results of an experimental analysis
are reported in Section 3.3.2 and Section 3.3.3. It follows a comparison with
theoretical results in Section 3.3.4.

3.1 VCG mechanisms and single-slot SSA

We consider a single-slot setting in which all the qualities qi of the agents i ∈
N are known to the auctioneer. In the single-slot case the VCG mechanism
turns out to be truthful in expectation (3.1.1) and ex-post truthful (3.1.2).
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3.1.1 Truthfulness in expectation

Statement: considering a single-slot SSA in which all the parameters are
known, the mechanism obtained by the use of VCG is truthful in expectation.

Proof: given the allocation rule A : arg max{SW (b)}, where SW (b) =∑n
i=1 biCTRi and b is the vector of the values reported by the agents, it is

easy to verify that it is AE and ex-post monotone. Therefore the resulting
mechanism will be truthful.
Using the Groves payment scheme, to each advertiser i it is charged an
amount equal to:

pi = SW (b−i)− SW−i(b)

where SW (b−i) represents the social welfare computed not considering the
presence of agent i and SW−i(b) is the social welfare computed considering
agent i but removing its contribute from the total sum.

We want to demonstrate that, for each agent, reporting the truth is always
the best strategy.
We will do it presenting three different possible situations and considering
only 2 agents for simplicity. Suppose that q1v1 ≥ q2v2:

• Scenario 1: agent 1 bid truthfully (b1 = v1 and q1v1 ≥ q2v2).
This means that a1 is allocated and the payment of agent 1 will be:

p1 = q2b2.

The expected utility of agent 1 is:

u1 = q1v1 − p1 = q1v1 − q2b2.

• Scenario 2: agent 1 does not bid truthfully (b1 6= v1 and q1b1 < q2b2).
This means that ad a1 is not allocated. The payment of agent 1 will
be null and the utility will be u′1 = 0 ≤ u1.

• Scenario 3: agent 1 does not bid truthfully (b1 6= v1 and q1b1 ≥ q2b2).
This means that ad a1 is still allocated and the payment of agent 1 will
be:

p′′1 = q2b2.

The expected utility of agent 1 is:

u′′1 = q1v1 − p′′1 = q1v1 − q2b2 = u1.

In all the cases agent 1 can not receive an utility higher then the one obtained
by bidding truthfully. Reporting the true value is the best strategy. The
resulting mechanism is truthful in expectation.
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3.1.2 Ex-post truthfulness

In order to obtain ex-post truthfulness, we suppose that the click realization
ρi(t) for each round t is known by all the agents i ∈ N but not by the auc-
tioneer.

Statement: considering a single-slot SSA in which all the parameters are
known, the mechanism obtained by using the VCG is ex-post truthful.

Proof: using a VCG and pay-per-click mechanism in which the allocated
agent i∗ is given by i∗ = arg maxi∈N qivi it is easy to observe that the alloca-
tion rule is ex-post monotone and therefore the resulting mechanism will be
ex-post truthful. Moreover, since the payment is given by

pi =


max
j∈N/{i}

(qjvj)

qi
, if click

0, if no click

it is possible to verify that the mechanism is also Individual Rational since
ui ≥ 0 for each agent i ∈ N .
For simplicity we suppose to have only 2 agents (N = {a1, a2}) and that
q1v1 ≥ q2v2. Because of the previous hypothesis, the mechanism will select
agent 1 (i∗ = 1) and allocates ad a1.
We compute the payment p1 of agent 1 (note that p2 = 0 since the ad a2 is
not displayed):

p1 =

{
q2v2
q1
, if ρ1(t) = 1

0, if ρ1(t) = 0

and the respective utility

u1 =

{
v1 − q2v2

q1
≥ 0, if ρ1(t) = 1

0, if ρ1(t) = 0

The utility u1 of agent 1 will always be positive or at least equal to 0, while
u2 = 0. Bidding a value b1 higher or lower than the real value v1 cannot
generate an utility greater than the one obtained by a truthful bid.
Moreover agent 2 is not induced to lie bidding a value b2 ≥ v2 in order to be
allocated: in this case his utility u2 would be negative since v2 ≤ q1v1

q2
.

3.2 VCG mechanisms and multi-slot SSA

We now consider a multi-slot setting affected by only position-dependent ex-
ternalities.
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First we show that generally it is not possible to obtain ex-post monotone al-
location rules (3.2.1) but it is in the particular case in which click precedence
property holds (3.2.2). For this second case we demonstrate the truthful-
ness in expectation of the mechanism induced (3.2.3) and the impossibility
of ex-post truthfulness (3.2.4).

3.2.1 Impossibility of ex-post monotonicity, truthful-
ness in expectation, ex-post truthfulness in ab-
sence of click precedence property

Statement: considering a multi-slot SSA, affected by only position-dependent
externality in which all the parameters are known, the allocation rule A :
arg max{E[SW ]} (where E[SW ] is the expected value with respect to clicks)
is not ex-post monotone. The VCG mechanism obtained is not truthful in
expectation nor ex-post truthful.

Proof: in order to have an ex-post monotone allocation rule, for each round
t, agent i ∈ N and bi ≤ b′i, calling θ the allocation vector, if

θ = arg max{E[SW (bi, b−i)]}

θ′ = arg max{E[SW (b′i, b−i)]}

it must hold that:
ρi(θ, t) = 1 =⇒ ρi(θ

′, t) = 1.

In the current case there are no limitations on the values the click realization
can assume and it could be that ρi(θ, t) = 1 and ρi(θ

′, t) = 0.
Since the allocation rule is not ex-post monotone the resulting mechanism
can not be truthful (Definition 1).
Intuitively, suppose that the mechanism does not know the click realization
ρ but ρi is known by agent i. Agent i can manipulate the allocation vector
by modifying his bid and be allocated in a different slot (higher or lower)
basing on the knowledge he has about the future clicks.

The mechanism is not truthful in expectation.
To demonstrate it, consider a setting with 3 agents (N = {a1, a2, a3}) and 2
slots (K = {s1, s2}). We assume that q1v1 ≥ q2v2 ≥ q3v3 and Λ1 ≥ Λ2 ≥ Λ3.
Supposing that agent 1 knows that, if displayed at slot s1 his ad will not be
clicked while if displayed at slot s2 it will be:
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Λ1 a1

Λ2 a2

• Case 1: agent 1 bids his true value (b1 = v1).

Agent 1 is allocated in the first slot and will not be clicked. In this case
the payment p1 and the utility u1 of agent 1 will be null.

• Case 2: agent 1 does not bid his true value (b1 6= v1).

q2v2 ≥ q1b1 ≥ q3v3

Λ1 a2

Λ2 a1

Agent 1 is displayed at slot s2 and will be clicked. In this case the
payment p′1 and the utility u′1 of agent 1 will be:

E[p′1] = Λ1q2v2 + Λ2q3v3 − Λ1q2v2 = Λ2q3v3

p′1 =
Λ2q3v3

Λ2q1

u′1 = Λ2q1v1 − Λ2q3v3 = Λ2(q1v1 − q3v3) ≥ 0

It is easy to observe that u′1 > u1. Therefore the utility of agent 1 is
greater when he bids not truthfully.

3.2.2 Click precedence and ex-post monotonicity

Statement: considering a multi-slot SSA, affected by only position-dependent
externalities in which all the parameters are known, the allocation rule
A : arg max{E[SW ]} is ex-post monotone if the mechanism satisfies the
click precedence property.

Proof: in order to have an ex-post monotone allocation rule, for each round
t, agent i ∈ N and bi ≤ b′i, calling θ the allocation vector, if

θ = arg max{E[SW (bi, b−i)]}

θ′ = arg max{E[SW (b′i, b−i)]}
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it must hold that:
ρi(θ, t) = 1 =⇒ ρi(θ

′, t) = 1.

If agent i reports a bid b′i ≥ bi, his ad ai will be displayed in a slot s′i ≤ si.
Since the click precedence property is satisfied, ρi(θ) = 1 =⇒ ρi(θ

′) = 1 ad
the utility of agent i can not decrease.

From Theorem 1, a necessary condition to obtain ex-post truthfulness is
the ex-post monotonicity of the allocation rule and the use of Mayerson pay-
ments.
Note that, when the click precedence property holds, the above condition is
satisfied (the allocation rule A is ex-post monotone and the payments used
in VCG mechanism are a particular case of Mayerson payments). Neverthe-
less the ex-post truthfulness of the mechanism induced is not guaranteed. In
the next two sections we will show that this mechanism results truthful in
expectation but not ex-post truthful.

3.2.3 Click precedence and truthfulness in expectation

Statement: considering a multi-slot SSA, affected by only position-dependent
externalities in which all the parameters are known, the VCG mechanism is
truthful in expectation under the hypothesis of click precedence property.

Proof: Without loss of generality, we consider only 3 agents (N = {a1, a2, a3})
and 2 slots ( K = {s1, s2}) and we suppose that q1v1 ≥ q2v2 ≥ q3v3 and
Λ1 ≥ Λ2.
In order to show that the mechanism is truthful in expectation, we consider
two different cases:

• Case 1: agent 1 bids his true value (b1 = v1).
Since q1b1 = q1v1 ≥ q2v2 ≥ q3v3, the mechanism allocates ad a1 in slot
s1 and ad a2 in slot s2.

Λ1 a1

Λ2 a2

The payment p1 which is charged to agent 1 is:

p1 = Λ1q2v2 + Λ2q3v3 − Λ2q2v2

and the expected utility u1 is:

u1 = Λ1q1v1 − Λ1q2v2 − Λ2q3v3 + Λ2q2v2.
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Note that the same utility is obtained if agent 1 bids a value b1 6= v1

such that q1v1 ≥ q1b1 ≥ q2v2 ≥ q3v3.

• Case 2: agent 1 bids a value b1 6= v1 such that q2v2 ≥ q1b1 ≥ q3v3.
The mechanism allocates ad a2 in slot s1 and ad a1 in slot s2.

Λ1 a2

Λ2 a1

In this case the payment p′1 which is charged to agent 1 is:

p′1 = Λ1q2v2 + Λ2q3v3 − Λ1q2v2 = Λ2q3v3

and the expected utility u′1 is:

u′1 = Λ2q1v1 − Λ2q3v3.

It is now possible to demonstrate that the utility when agent 1 bids the
true value, u1, is not lower than the utility u′1 obtained when agent 1 bids
untruthfully.

u1 ≥ u′1

Λ1q1v1 − Λ1q2v2 − Λ2q3v3 + Λ2q2v2 ≥ Λ2q1v1 − Λ2q3v3

Λ1(q1v1 − q2v2) ≥ Λ2(q1v1 − q2v2)

Λ1 ≥ Λ2 ← true for hypothesis.

3.2.4 Click precedence and ex-post truthfulness

Statement: considering a multi-slot SSA, affected by only position-dependent
externality in which all the parameters are known, the VCG mechanism is
not ex-post truthful in the hypothesis of pay-per-click payments and click
precedence property.

Proof: consider 3 agents (N = {a1, a2, a3}) and 2 slots ( K = {s1, s2})
and suppose that q1v1 ≥ q2v2 ≥ q3v3 and Λ1 ≥ Λ2. The click realization ρ is
known by all the agents, not by the auctioneer. Supposing that agent 1 knows
that he will be clicked both in slot s1 and s2 at time t (ρ1(1, t) = ρ1(2, t) = 1):

• Case 1: agent 1 bids his true value (b1 = v1). Using the pay-per-click
payment scheme:

p′c1 =

{
(Λ1−Λ2)q2v2+Λ2q3v3

Λ1q1
, if click

0, if no click
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Λ1 a1

Λ2 a2

and, since ρ1(1, t) = 1:

u1 = v1 − pc1 = v1 −
Λ2q3v3

Λ2q1

.

Note that the same utility is obtained if agent 1 bids a value b1 6= v1

such that q1v1 ≥ q1b1 ≥ q2v2 ≥ q3v3.

• Case 2: agent 1 bids a value b1 6= v1 such that q2v2 ≥ q1b1 ≥ q3v3.
The mechanism allocates ad a2 in slot s1 and ad a1 in slot s2. In this

Λ1 a2

Λ2 a1

case the pay-per-click payment p′c1 is given by

p′c1 =

{
Λ2q3v3
Λ2q1

, if click

0, if no click

and, since ρ1(1, t) = 1:

u′1 = v1 − p′c1 = v1 −
Λ2q3v3

Λ2q1

.

It is now possible to prove that the mechanism is not ex-post truthful by
showing that u1 ≤ u′1:

v1 −
(Λ1 − Λ2)q2v2 + Λ2q3v3)

Λ1q1

≤ v1 −
Λ2q3v3

Λ2q1

Λ1(q2v2 − q3v3)− Λ2(q2v2 − q3v3) ≥ 0

Λ1(q2v2 − q3v3) ≥ Λ2(q2v2 − q3v3)

Λ1 ≥ Λ2 → true for hypotesis.

Note that if ad ai is not clicked, no amount is charged to agent i.
Therefore ui ≥ 0 at each round and the resulting mechanism is ex-post
Individual Rational.
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3.3 Randomized mechanisms and multi-slot

SSA

In the previous section we have demonstrated that, by using the VCG mech-
anism, it is not possible to obtain ex-post truthfulness in a multi-slot envi-
ronment.
In this section we introduce a new mechanism in order to obtain ex-post
truthfulness in the multi-slot setting when click precedence property holds.
We called this mechanism Randomized VCG (RVCG).

3.3.1 RVCG mechanism

As suggested in [20], we tried to extend the method discussed in Section 2.3.4
to the multi-slot environment, giving as input of the generic transformation
the AE allocation rule A : arg max{E[SW ]}.

We built a Matlab algorithm and tried to simulate a real auction in or-
der to verify the truthfulness and the practical usability of the randomized
mechanism in the multi-slot environment under the restriction of click prece-
dence. The algorithm that we produced is reported in Algorithm 1.

Our procedure can be divided in five different phases:

1. Values generation: generate the vectors of the bids, the qualities and
the prominences supported by an external generator.

2. Self-resampling procedure: execute each agent’s self-resampling proce-
dure to obtain two vectors of modified bids: x and y (Algorithm 2).
We implemented the same procedure presented in Section 2.3.4.

3. Allocation: allocate according to the AE allocation ruleA : arg max{E[SW ]}
but using the modified bid vector x.

4. Click realization simulation: the click realization is simulated by an
apposite generator taking in consideration the ads CTRs.

5. Payments computation: the rebate Ri is generated for each agent i
using the modified bid vector y. To each agent i is charged the amount
ρ (biAi(x)−Ri).

Once these steps are accomplished, it turns out to be easy to compute all
the desired parameters as the utility or the revenue of the auctioneer.
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Data: µ,K,N
/* Values generation */

[b, q, λ] = adSlotGenerator(N);
/* Self-resampling procedure */

[x, y] = selfResampling(b, µ);
/* Allocation */

A = allocationRuleV CG(q, x);
/* Click realization simulation */

ρ = clickRealizationGenerator(q, λ, A);
/* Payments computation */

for i=1:N do
if y(i) < b(i) then

R(i) = b(i)/µ;
else

R(i) = 0;
end
P (i) = ρ(i) ∗ (b(i)−R(i));

end
Algorithm 1: Generic transformation with self-resampling procedure.

Data: b,µ
Result: [x,y]
for i=1:length(b) do

if randomUniform(0, 1) < 1− µ then
x(i) = b(i);
y(i) = b(i);

else
b(i)′ = randomUniform(0, b(i));
x(i) = recursive(b(i)′);
y(i) = b(i)′;

end

end
Algorithm 2: Self-resampling procedure.

3.3.2 Experimental setting

We tested the algorithm on different settings in order to study the results in
more situations.

Each experimental setting is defined by:
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Data: b
Result: bNew
if randomUniform(0, 1) < 1− µ then

bNew = b;
else

b′ = randomUniform(0, b);
bNew = recursive(b′);

end
Algorithm 3: Recursive.

• n: the number of agents, n ∈ N = {10, 100};

• k: the number of slots, k ∈ K = {1, 2, 4, 6, 8, 10};

• µ: the resampling probability, µ ∈ {10−1, 10−2, 10−3, 10−4};

• M = 10: the number of experiments done for each experimental setting.

We keep fixed the following parameters for each single experiment:

• T = 100000: the time horizon (i.e. the number of rounds of an experi-
ment);

• (vi, qi): the values and the qualities of the ads;

• λk: the prominences of the slots.

Note that vi, qi and λk are generated from real data from Yahoo! Webscope
A3 dataset [14].

3.3.3 Experimental results

In this section we present the results of our experimental analysis, focusing
on the desirable properties that a mechanism should own.

Allocative Efficiency

The randomized mechanism is Allocative Efficient with probability 1 − µ
since the Social Welfare is maximized only when the self resampling proce-
dure causes no changes in the allocation.

In Figure 3.1 it is possible to observe how, varying the resampling prob-
ability µ, the curve of the mean Social Welfare (with respect to the time
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passed from the beginning of the auction) changes. The higher is µ and
the higher is the difference with the optimal value obtained by the VCG.
In particular, after a sufficient amount of time, the curve of the mean So-
cial Welfare converges to the optimal value obtained by the VCG multiplied
by µ. For this reason we say that RVCG loses a factor of efficiency equal to µ.

Figure 3.1: Mean Social Welfare for different values of µ.

The graphics in Figure 3.1 have been obtained by using an auction sim-
ulation with n = 10 agents and k = 4 slots.

Truthfulness

A combination of the allocation rule A with the generic transformation gives
rise to an ex-post truthful mechanism with respect to clicks.

We experimentally verify it by showing that, for each agent, it is not possible
to receive an utility higher than the one obtained by bidding truthfully.

For simplicity, we will report the results of a single run of the algorithm
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in which only 2 agents participate (n = 2) and only 2 slots are available
(k = 2). The qualities of the ads are q = {1, 1} and the real values of the
advertisers are v = {1, 000, 4}. The prominence vector is Λ = {1, 0.25}. Fix-
ing the time horizon to T = 100, 000 and changing the reported values b and
the click realization ρ, we distinguished 3 possible scenarios.

1. Scenario 0 : both agents bid truthfully, v = b. We suppose that the ads
are clicked independently from the slots in which they are displayed:
ρi,j(t) = 1 ∀i ∈ N, ∀j ∈ K.

2. Scenario 1 : agent 1 reports a value lower than the real one but greater
than the value reported by the other agent, b = (20, 4). In this case the
pure VCG mechanism will allocate ad a1 in slot s1. We still suppose
that ρi,j = 1 ∀i ∈ N, ∀j ∈ K.

3. Scenario 2 : agent 1 reports a value lower than the real one and lower
than the value reported by the other agent, b = (1, 4). Note that the
pure VCG mechanism will allocate ad a1 in second position. We still
suppose that ρi,j(t) = 1 ∀i ∈ N, ∀j ∈ K.

In Figures 3.2, 3.3, 3.4 and 3.5 we report the functions of the agents’ mean
utility with respect to the time passed from the beginning of the auction (in
ex-post) for the different scenarios listed above and for different values of the
resampling probability µ.
It is possible to note that, in all the cases, agents can never achieve an utility
higher than the one obtained by bidding truthfully. The above algorithm is
truthful with respect to click realization.
It is also interesting to notice that, after 100, 000 rounds, the utility obtained
by agent 1 when when he is truthful tends to the one obtained by using VCG.

Afterward we compared the agents’ utility reached by our mechanism with
the values obtained by the pure VCG mechanism in case of truthfulness.
In Figure 3.6 it is interesting to notice how, varying the resampling proba-
bility µ, the value of agents’ utility changes.
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Figure 3.2: Utility of agent 1, µ = 10−1.

Figure 3.3: Utility of agent 1, µ = 10−2.
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Figure 3.4: Utility of agent 1, µ = 10−3.

Figure 3.5: Utility of agent 1, µ = 10−4.
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Figure 3.6: Comparison of utilities with different values of µ.

Individual Rationality

It is possible to demonstrate that the mechanism is ex-post IR and agents
always receive a non-negative utility by applying the Definition11 to agents’
utilities in a direct way.

In order to prove it we take into consideration the two possible cases:

1. ad ai is not displayed: in this case, since the mechanism adopts a pay-
per-click payment scheme, payment pi is null and consequently also the
relative utility ui of agent i will be null;

2. ad ai is displayed: the utility ui of agent i is given by ρvi − ρbi + ρRi

when computed in ex-post. It is immediate to notice that ui ≥ 0 every
time agent i bid truthfully (vi = bi).

Budget Balance

In order to study this property we are interested in how the revenue of the
auctioneer changes during the time.
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Recalling that M is the total number of experiment for each experimen-
tal setting and T is the number of rounds considered for each experiment
m, Rm,t represents the reward of the mechanism during the experiment m at
round t.
For each round t we computed the mean revenue Rm,t =

∑t
t′=1Rm,t′

t
with re-

spect to the first t rounds of the experiment m and then we built the table
reported in Table 3.1 for each different experimental setting.

Table 3.1: Experiment supporting table.

R1,1
R1,1+R1,2

2
...

∑T
t′=1R1,t′

T

R2,1
R2,1+R2,2

2
...

∑T
t′=1R2,t′

T

... ... ... ...

RM,1
RM,1+RM,2

2
...

∑T
t′=1RM,t′

T

Considering Table 3.1 we defined two measures, necessary to evaluate the
experiment:

• E(t) =
∑M
m′=1Rm′,t

M
, that is the average of the values of column t;

• σ(t) =

√∑M
m′=1(Rm′,t−E(t))2

M
, that is the standard deviation of the values

of column t.

For each experimental setting we plotted the following graphics:

• 1
T

∑T
t′=1 E(t′), for simplicity we will call such a function mean revenue;

• 1
T

∑T
t′=1 E(t′)+σ(t), for simplicity we will call such a function standard

deviation revenue.

In Figure 3.7 it is possible to note how the results change depending on
which value of µ is used. Since the revenue is strictly depending on the
value of the rebate applied to the payment and, given that the smaller is the
resampling probability µ and the bigger is the rebate, the difference between
the pointwise revenue and the average revenue is higher when smaller values
of µ are used. However, Figure 3.7 shows that the mean revenue achieved by
RVCG mechanism is similar and not lower than the one obtained by using
VCG only for µ = 10−4.
Since the difference between the pointwise revenue and the average revenue
can not decrease, the only possible evaluations have to concern the average
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revenue. It is not possible to obtain stability in the revenue despite the
succession of rounds due to the structure of the mechanism itself. Finally, it
is necessary to note that, in the optimal case in which µ = 10−4, the time
needed to achieve a reasonable mean revenue is really high and greater than
100,000 rounds.

Figure 3.7: Revenue comparison: RVCG and VCG.

3.3.4 Theoretical bounds and experimental results

Inspired by the error bound over the estimator of the single payments de-
scribed in [14], we built an error upper bound over the estimator of the
revenue.

Revenue error upper bound

Statement: With probability at least 1− δ, it holds∣∣∣∣(1

t

t∑
t′=0

n∑
i=0

pi,t′)

)
−
( n∑
i=0

E[pi]

)∣∣∣∣ ≤ n
vmax
µ

√
1

2t
log

2

δ
= ε(t)

where pi,t′ is the amount charge to agent i at time t′ and vmax is the maximum
value reported by the agents. The function ε does not depend only on t but,
for simplicity of notation, we make explicit only this dependence.
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Proof: applying the Hoeffding’s bound [21]

Pr{|X − µ| ≥ ε} ≤ δ

in which δ = 2e
−2ε2T2∑T
i=1

(bi−ai)2 at round t, we have:

Pr

{∣∣∣∣(1

t

t∑
t′=0

n∑
i=0

pi,t′

)
−
( n∑
i=0

E[pi]

)∣∣∣∣ ≥ ε

}
≤ δ

with

δ = 2e

− 2ε2t2∑t
i=1

(∑n
i=1

vi−
∑n
i=1

(vi−
vi
µ )

)2
= 2e

− 2ε2t2∑t
i=1

n2

(
vmax
µ

)2
= 2e

− 2ε2t2

tn2

(
vmax
µ

)2
= 2e

− 2ε2t

n2

(
vmax
µ

)2
.

Thus 2e

− 2ε2t

n2

(
vmax
µ

)2
= δ, log e

− 2ε2t

n2

(
vmax
µ

)2
= log δ

2
, − 2ε2t

n2
(
vmax
µ

)2 = log δ
2
, ε2 =

n2
(
vmax
µ

)2 1
2t

log 2
δ
, and ε = nvmax

µ

√
1
2t

log 2
δ
.

Comparison with theoretical bounds

We finally compare the results obtained through our simulation with the
theoretical bounds achieved above. Figures 3.8, 3.9, 3.10 and 3.11 show the
revenue upper bound ε(t) for three different values of δ and compare them
with the mean revenue for each value of µ. Recalling that δ is the probability
that the bound does not hold, it is possible to note that the lower is δ, the
less strict the bound is.

Let Ωt = [ Rm,t | m = 1, ...,M ], that is the list of values of column t in
Table 3.1. In Figures 3.12, 3.13, 3.14 and 3.15 we use boxplots in order to
represent the distribution of Ωt for 10 significant values of t taking into ac-
count the total number of rounds T. It is possible to note that the lower the
resampling probability µ is, the faster the range of values in which the mean
revenues of the M experiments fall becomes small, i.e. the mean revenue of
the auction after a sufficient amount of time does not depend heavily on the
specific experiment. This range does not strictly become smaller since, if at
round t the resampling procedure is activated for some experiment m, the
mean revenue will undergo a perturbation. Of course, this perturbation will
be less significant as the times goes by. Such a phenomenon is clearly visible
when µ = 10−4.
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Figure 3.8: Revenue RVCG and theoretical bounds, µ = 10−1.

Figure 3.9: Revenue RVCG and theoretical bounds, µ = 10−2.
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Figure 3.10: Revenue RVCG and theoretical bounds, µ = 10−3.

Figure 3.11: Revenue RVCG and theoretical bounds, µ = 10−4.
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Figure 3.12: Mean revenue distribution - RVCG, µ = 10−1.

Figure 3.13: Mean revenue distribution - RVCG, µ = 10−2.
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Figure 3.14: Mean revenue distribution - RVCG, µ = 10−3.

Figure 3.15: Mean revenue distribution - RVCG, µ = 10−4.
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Performance

In order to evaluate the performance of our algorithm, we tried to compute
the minimum number of rounds T necessary to achieve a reasonable precision.

We tested the algorithm with three different realistic values of the error
threshold ε (ε(t) ≤ ε) and of the failure probability δ of the bound. We
recorded the minimum number of rounds T needed to satisfy the conditions
imposed in the possible scenario of 3 agents and 2 slots. We did it for three
different values of the resampling probability µ. The results are reported in
Tables 3.2, 3.3 and 3.4.

Table 3.2: Minimum T to obtain ε(t) ≤ ε, µ = 10−1.

δ = 10−1 δ = 10−2 δ = 10−3 δ = 10−4

ε = 10−1 0.0000 0.0001 0.0001 0.0001
ε = 10−2 0.0041 0.0064 0.0087 0.0110
ε = 10−3 0.4094 0.6397 0.8700 1.1002

·109

Table 3.3: Minimum T to obtain ε(t) ≤ ε, µ = 10−2.

δ = 10−1 δ = 10−2 δ = 10−3 δ = 10−4

ε = 10−1 0.0000 0.0001 0.0001 0.0001
ε = 10−2 0.0041 0.0064 0.0087 0.0110
ε = 10−3 0.4094 0.6397 0.8700 1.1002

·1011

Table 3.4: Minimum T to obtain ε(t) ≤ ε, µ = 10−3.

δ = 10−1 δ = 10−2 δ = 10−3 δ = 10−4

ε = 10−1 0.0000 0.0001 0.0001 0.0001
ε = 10−2 0.0041 0.0064 0.0087 0.0110
ε = 10−3 0.4094 0.6397 0.8700 1.1002

·1013
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Chapter 4

Conclusions and future works

In this thesis we focused on the problem of auctions for sponsored links (Spon-
sored Search Auctions, SSA). It is a problem related to online advertising, in
which advertisements are displayed alongside to the results of search engines.
These advertisements are chosen taking into account the keywords submitted
by the users. These systems generate a revenue of dozens of billions of euros
every year. Improving their functioning could significantly increase the profit
of the companies.

From a scientific point of view, the problem of building an advertising system
for SSA is formalized as a game theory problem, in which the objective is to
design an economic mechanism that induces all the participants to truthfully
reveal their own evaluations over the benefits received when their ads are
clicked. The peculiarity of this scenario is that payments respect the pay-
per-click scheme, which means that advertisers pay the mechanism only when
their ads are clicked by the users. In such a context, the click probability
is an information that is usually considered to be known by the mechanism.
Pay-per-click payments and the click probability estimation make the prob-
lem of designing an economic mechanism non trivial. In particular, while
this problem is well understood in single slot environments, in a more real
scenario, i.e. the multi-slot environment, the problem is still open.

In this thesis, mechanisms have been studied in terms of theoretical proper-
ties and evaluated through experimental analysis.

From the theoretical point of view, it has been discovered that the concept
of ex-post truthfulness, commonly used for the single-slot environment, can
not be extended to the multi-slot one. In fact, any simple extension leads a
non-randomized mechanism to be non ex-post truthful with respect to clicks,
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but only in expectation.
It is possible to design a randomized ex-post truthful mechanism with re-
spect to clicks, but still in expectation with respect to the randomization
of the mechanism. However, this solution leads to a very high variance of
the payments so much so it makes the mechanism not appealing for a search
engine. In particular we experimentally observed that the time needed to
obtain a negligible regret for the auctioneer is extremely high (more than
100, 000 rounds).

Our research shows that, from the theoretical point of view, ex-post truthful-
ness with respect to clicks is a solution concept too hard to fulfill. Moreover,
we retain that it is extremely strict also from the practical point of view,
since it requires that an advertiser can not obtain a better payoff, by bidding
untruthfully, also when he knows if his ad is clicked or not.
In fact, an advertiser cannot know if his ad will receive a click, unless it is the
advertiser himself that generates it. However, in this last case the advertiser
does not obtain any profit, since there is no real customer who is interested
in the subject of the advertisement.

As future works, we retain fundamental to try to formally demonstrate that
it is not possible to achieve ex-post truthfulness in multi-slot environment
unless a randomized mechanism is adopted.
Such a demonstration, together with the impossibility of using randomized
mechanisms in real applications, would show that truthfulness in expectation
with respect to click represents the most appropriate solution concept.
Other future works are related to the estimation of the parameters that con-
stitute the click probability, since for these problems the literature shows
that it is not possible to avoid the use of randomized economic mechanism.
Furthermore the mechanism, with low probability, generates potentially high
negative payments, i.e. it gives money to the advertisers. This gives rise to
risk seeking behaviours by fake advertisers that are not interested in having
their ads to be displayed but instead they just want to exploit the auction in
order to earn money. This behavior should be analyzed in detail in future.
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