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Abstract

Detecting changes in visual data has been of utmost importance in many

disciplines, including computer vision, robotics, remote sensing, civil infras-

tructure, surveillance and medical diagnosis. In many computer vision sys-

tems, the detection of changes, in most of the cases, serve as a preparation

step for other phases of the system, and is usually carried out by back-

ground subtraction algorithms, which assume the scene was acquired by a

static camera. The problem of detecting changes in a scene captured by a

moving sensor or camera is still an open problem both in computer vision

and remote sensing. The aim of this thesis is to present a system capable

of detecting and removing dynamic objects both in 3D scene acquired by a

moving lidar device and in 2D images from a moving camera. We used the

Demspter-Shafer Theory to represent the space occupancy and to aggregate

the evidences of such occupancies from multi-temporal scene measurements.

To avoid useless computation, we used a method to remove ground points

from change detection test. To speed up the execution, we used octree data

structure to partition the point cloud in voxels, and perform all the neces-

sary change detection computation on a voxel level. The detected changes

from the 3D scene are then propagated into the images where a subsequent

step of validating these changes is performed. The validation is done on

both color images and depth images rendered from the 3D point cloud. We

are able to obtain, with a very high speed and a good precision, static 3D

scenes without any dynamic objects and a set of binary masks representing

changes from images. Moreover, the static scenes are merged into a global

scene. The global scene can be decimated ready to be reconstructed. The

presented system is highly modular and very scalable for future extensions

such as 3D reconstruction.
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Sommario

Individuare i cambiamenti in una scena ripresa da una camera o percepita

da laser è di grandissima importanza in tante discipline, come visione ar-

tificiale, telerilevamento, video sorveglianza e diagnosi medica. Nell’ambito

della visione artificiale questi cambiamenti vengono solitamente riconosciuti

con tecniche di sottrazione dello sfondo; queste tecniche però assumono che

la camera sia fissa. Il problema del rilevamento dei cambiamenti nelle scene

acquisite da sensori mobili è ancora un problema aperto nel campo della

vision artificiale e telerilevamento. Lo scopo di questa tesi ed́i presentare

un sistema capace di rilevare congiuntamante gli oggetti in movimento nelle

scene 3D acquisite dai dispositivi lidar in movimento e nelle immagini scat-

tate da camere in movimento. In questo lavoro abbiamo usato la teoria di

Dempster-Shafer per modellare l’occupazione dello spazio e per aggregare i

dati temporali per riconoscere i punti appartenenti ad oggetti in movimento

nella scena. Abbiamo inoltre partizionato la scena in una struttura dati

octree per aumetare la velocitad́i calcolo. I cambiamenti rilevati nella scena

3D vengono poi propagati nelle immagini dove viene eseguito un test di val-

idazione di questi cambiamenti. Il test di validazione si basa su immagini

a colore sincronizzate con il lidar, e le depth map estratte dalle misure di

quest’ultimo. Con questo sistema, siamo riusciti ad ottenere scene statiche

3D senza oggetti in movimento e delle maschere binarie rappresentanti le

regioni relative agli oggetti in movimento, con un’elevata velocità di ese-

cuzione ed una buona precisione. La nuvola di punti 3D senza oggetti può

essere cos̀ı utilizzata per ricostruire la scena 3D in un passo successivo.
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Chapter 1

Introduction

The problem of reconstructing an environment from real world is widely

studied. Many computer science branches, such as computer vision and

robotics, at some point need a map of the environment, be it in symbolic,

numerical or spatial form of information. The map is used as a model of the

environment to solve other challenges, such as 2D/3D reconstruction and

navigation of an agent in the environment. However, when mapping occurs,

many problems arise, such as questionable quality of the measurements and

the presence of temporary objects. Since these objects are present only at

the time of the mapping, they should not be in the final map, otherwise the

model is erroneous and may invalidate the results of the processes relying on

that model. Therefore we propose a method to detect and eliminate those

objects with a good precision and in a reasonable amount of time.

1.1 Detection of changes in high-dimensional data

Detecting dynamic objects in complex scenes can be applied to many pro-

cesses, such as mapping, navigation, collision avoidance and 3D urban recon-

struction. For localization and mapping a static environment is preferred,

as the presence of dynamic object will deteriorate localization and mapping

efficiency, thus a detection of these dynamic objects is very beneficial in this

case. The obstacle avoidance also can benefit from the change detection

step, as the detected dynamic objects can be tracked and avoided. More-

over, the dynamic objects detection and removal is also very important for

urban 3d reconstruction methods. The 3D urban reconstruction methods

build 3D models of the environment using high-dimensional data acquired

by a multitude of sensors. These are used for many applications such as

autonomous navigation. Urban area scenes are usually filled with many



pedestrians, cyclists, cars and other public transportation. Without any of

these moving objects, the 3D reconstruction methods become more precise

with more pleasant results.

The problem of detecting changes is addressed in many disciplines with

different techniques. In the computer vision field, where images are pro-

cessed, analyzed and understood in order to obtain numerical information

for various purposes, the changes most often are detected with background

subtraction techniques. These techniques very often are based on the static

camera assumption or, in some cases, on a slowly moving camera assump-

tion. However these methods fail when the images are taken from a fast

moving camera, as the distinction between static and dynamic objects fades

out. In fact, the problem of detecting dynamic objects by a moving sen-

sor is still an open one. In robotics many change detection techniques are

based on indexing the data acquired from range sensors into various effi-

cient data structures and perform a background subtraction-like technique

with various instances of this data. The range sensors are also called active

sensors, since their working principle is to send signal probes, be it light or

ultra sound, and later, once they hit hard surfaces and reflect, to capture

them. These sensors, unlike cameras which measure the world state in 2D

in a given instant, can measure and represent the world in 3D. This gives

the opportunity to analyze the model from different perspectives and under-

stand the sensor motion in the world. This information can help in solving

the problem of detecting moving objects in a cluttered environment by a

moving sensor

To cope with this problem, we propose a detection method which uses

a combination of 3D information of the world, as point cloud data, and

2D information, as images. This method uses the Dempster-Shafer Theory

to represent the space occupancy and to aggregate the evidences of such

occupancies from multi-temporal scene measurements acquired by a lidar

device. The aggregation helps to classify the points between dynamic and

static. The dynamic points validate using a set of color images, synchronized

with the lidar, and depth maps extracted from laser scanning measurements.

This validation step removes the incorrectly classified static points as dy-

namic and outputs a set of change mask which can be used for further uses.

We propose some enhancements to the method described above, namely

an octree data indexing optimization and ground plane removal. The former

allows the detection algorithm to work on a subset of points at a voxel level,

translating in a substantial speed up. The ground plane removal helps to

speed up the execution by avoiding useless computation, but it also heps

lowering the mislassification rate of dynamic points. We also perform a final
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decimation step on the global point cloud to prepare it for future uses, such

as 3D reconstruction.

The experimental results show that our algorithm outperform the state-

of-the art algorithm both in accuracy and computational speed and that the

proposed validation step further improves the change detection performed

on lidar data.

1.2 Thesis outline

This thesis is structured as follows. In Chapter 2 an overview of existing

change detection methods in literature is presented. Chapter 3 describes

shortly all the material used to design and perform the algorithm presented

in this thesis. In Chapter 4, the system architecture is described along with

its core part of 3D change detection method. The Chapter 5 describes the

detected changes validation method. The experimental results of the pro-

posed method are shown and discussed in Chapter 6. Finally the conclusions

and future work are presented in the Chapter 7.
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Chapter 2

State of the art

The problem of change detection have been actively studied since 1970s

with results that have been applied in many fields. In the next sections a

brief analysis of change detection methods in photogrammetry, robotics and

computer vision is given.

2.1 Image-Based Change Detection

Image-based change detection has been of widespread interest due to a vast

number of applications in various disciplines (video surveillance, remote

sensing, civil infrastructures, driver assistance systems, medical diagnosis

and treatment, etc). Change detection is a crucial step in many computer

vision applications, especially for video surveillance [61, 15], since people,

vehicles, animals, etc. have to be detected before operating more complex

processes for intrusion detection, tracking, people counting, etc.

The image-based change detection goal is to identify the set of pixels

that are “significantly different” between the last image of the sequence and

the previous images, the result being a foreground/background (foreground

being the image points of non-stationary objects) segmentation also known

as change mask (or foreground mask). Factors contributing to change mask

are: appearance and disappearence of objects, motion of objects relative to

the camera, shape changes of objects and changes in brightness and color

of stationary objects. There are however unwanted factors contributing to

change mask including sensor noise, illumination variation, shadows and

non-uniform attenuation.

Change detection is usually performed in computer vision field by Back-

ground Subtraction (BGS) methods, which have been actively researched for



Figure 2.1: An example of BGS. From top left in clockwise direction: background

image, background with foreground, foreground detection and finally the change mask.

at least three decades. An extensive study and evaluation of existing BGS

algorithms has been performed in [41] and later in [58], and a general sur-

vey on various change detection techniques and problems, although heavily

focused in remote sensing context, is given in [56] and [44], while an evalua-

tion on the best performing algorithms considering the post-processing step

is shown in [40].

A typical BGS algorithm generally performs three main steps: back-

ground initialization, foreground detection and background maintenance. In

the background initialization step a background model is built, the fore-

ground detection step performs a comparison (usually frame subtraction)

and separates the foreground (change mask) while the background mainte-

nance step adjusts the background model during the detection process by a

learning rate (e.g. objects which stopped moving are slowly integrated into

the background). Other steps may include image pre-processing, foreground

mask post-processing and motion compensation (usually for moving cameras

methods).

2.1.1 Pre-processing and Post-processing

Sometimes a pre-processing step is required to improve the final outcome of

BGS. This step may consist in geometric adjustments techniques, where typ-

ically an image registration is perfomed, and various radiometric/intensity

14



adjustments such as intensity normalization, homomorphic filtering and illu-

mination modeling. In computer vision field pre-processing usually involves

noise filtering, image manipulation (such as sharpening and smoothing) and

edge detection.

In many change detection methods, the output foreground mask may

have holes and rough edges, to fix these imperfections, usually the mask is

improved by a post-processing step. Parks and Fels [40] have surveyed and

evaluated various well-performing algorithms with an added post-processing

step. They listed various post-processing techniques including noise removal,

blob processing (morphological closing and area thresholding), saliency test,

optical flow test and object-level feedback. The authors have shown a qual-

itative improvement for all considered BGS methods just by applying the

post-processing step.

2.1.2 Basic Methods

The most basic and early BGS method, called Simple Differencing [48], is

modeling the background B with a static image without any moving objects

and then testing the absolute difference between frames against a given

threshold τ :

F (x) =

{

1 if |I(x)−B(x)| > τ

0 otherwise
(2.1)

where F is the foreground mask. These methods however require a static

background (no moving objects) and fail with illumination changes(even

with very small changes) and camera noise. To overcome the small illumi-

nation changes issue, a slightly better method was introduced, where the

background maintenance step is added. In [32] the background is modeled

and maintained by the arithmetic mean of the pixels between successive

images:

B =
1

l

l
∑

t=1

Zt (2.2)

where Zt is the image at time t and l is the number of considered frames.

The maintenance is performed by a recursive function:

Bt = (1− α)Bt−1 + αZt (2.3)

where α ∈ [0, 1] ⊂ R is the learning rate and Bt is the background model

at time t ∈ {1, l} ⊂ Z. This method however has an issue as stated by [55],

some foreground pixels are integrated into the background model during

update process due to a crisp threshold. It happens most often in scenes with
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moving trees, water rippling and other dynamic background phenomena. In

[55] a solution to this problem was proposed, which consists in updating

only the regions with no moving objects.

For foreground detection, aside from absolute difference, many tech-

niques have been proposed, such as texture and color features fusion [75],

or texture features, RGB color features and Sobel edge detection fusion [2].

These methods may seem diverse, but they all have the same core idea of

frame differencing.

2.1.3 Statistical Methods

Since basic methods suffer from camera noise and dynamic background (such

as waving leaves and branches of the trees, water rippling, water surface,

etc.), a new type of BGS techniques emerged: statistical methods. The

core idea of statistical methods is to use a parametric probabilistic back-

ground model and statistical variables to classify pixels as foreground or

background. Bouwmans[9] does an excellent job of discussing the various

statistical methods. The statistical models proved to be more robust and

better performing than basic ones.

One of the first statistical methods is the Single Gaussian Model (SGM)

introduced by Wren et al[69]. In this work the background is modeled in-

dependently at each pixel location by ideally fitting a Gaussian probability

density function (pdf) on the last n pixel’s values. In order to avoid fitting

the pdf from scratch at each new frame time t+1, the mean and the variance

are updated by a running average. If |µt − zt| < T (z is the pixel value and

T a user-defined threshold), the pixel is classified as background otherwise

the pixel is classified as foreground.

However the issue of dynamic background still persists with SGM meth-

ods and a better solution and in fact the most used statistical model is the

Gaussian Mixture Model (GMM), introduced by Stauffer and Grimson[59]

and further improved by Hayman and Eklundh[25]. In this model the dis-

tributions of each pixel color is represented by a sum of weighted Gaussian

distributions defined in a given colorspace. These distributions are then

updated using an online expectation-minimization algorithm. The multi-

ple distributions per pixel allow dealing with multimodal backgrounds and

gradual illumination changes. The likelihood that a pixel is a background

pixel is given by:

P (zt|mt) =
N
∑

n=1

wn
1

(2π)d/2|ΣnΣnΣn|1/2
exp{−1

2
(zt −µnµnµn)

TΣ−1
nΣ
−1
nΣ
−1
n (zt −µnµnµn)} (2.4)
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where d is the dimension of color space of the pixel measure zt, mt is the

pixel model and each Gaussian n is described by its mean µµµn and coviariance

matrix ΣΣΣn = σσσ2
i,n∗I (i is color channel, each color channel is indipendent, ∗ is

the element-wise multiplication and I is the identity matrix). The Gaussians

are weighted by factors wn where
∑N

n=1wn = 1, and | · | is the matrix deter-

minant. At each new frame the Gaussians are classified in foreground and

background (usually using a threshold), then each pixel is tested to match

a certain Gaussian (foreground or background) with subsequent creation of

foreground mask. After the mask creation step, the parameters are updated

in the following way: if the previous match succeded then the matched Gaus-

sian is updated, otherwise the least probable Gaussian is replaced by a new

one with default parameters.

While GMM has shown good performance it still suffers from sudden

illumination variations, noise and shadows presence. Many studies have

been done to overcome these problems. Kaewtrakulpong and Bowden [30]

improved the update equations to better adapt the system to illumination

changes. Chen et al. [13] propose a hierarchical and block-based BGS

algorithm combining GMM and a contrast histogram.

Other more advanced and complex statistical methods are: Kernel Den-

sity Estimation (KDE) [20], Subspace Learning using Principal Component

Analysis (SL-PCA) [39], Support Vector Models (SVM) [33] and others. The

first one estimates background probabilities at each pixel from many recent

samples over time using KDE (which is rather time consuming). The second

applies SL-PCA on N images to construct a background model, which is rep-

resented by the mean image and the projection matrix comprising the first

p significant eigenvectors of PCA. This leads to a foreground mask created

from the difference between the input image and its reconstruction. The lat-

ter method models the background with probabilistic SVM (obtained from

binary SVM[66] through a sigmoid model) which outputs a given probability

(instead of binary classification) in foreground detection step, which is then

confronted to a threshold for change mask creation.

2.1.4 Other Methods

In literature, there are many other models for change detection. In Predic-

tive Spatial Models the intensity values of each pixel block are fitted to a

polynomial function of pixel coordinate (x, y):

Îk(x, y) =

p
∑

i=0

p−i
∑

j=0

βk
ijx

iyi (2.5)

17



where Îk(x, y) is the pixel block centered on (x, y) and βk is a polynomial

coefficient. If the corresponding blocks in two images are best fit by the

same polynomial coefficients β0
ij , then the central pixel is from background,

otherwise it is from foreground (different coefficients β1
ij , β

2
ij). A detailed

discussion of this method can be found in [28] and its further improvement

in [57]. In Predictive Temporal Models pixel intensities are modeled over

time as an autoregressive (AR) process. A good example of this model is

the Wallflower algorithm by Toyama et al.[62], where a Weiner filter is used

to predict pixel’s current value from a linear combination of its k previous

values.

Some of the most recent models introduced the fuzzy concepts in change

detection. A good result was obtained in [19] by using Choquet Integral

[14] to measure the similarity of color and texture features (and even edge

features in [2]) of input image and background model. Sigari et al.[55] pro-

posed to extract the foreground and update the background model using

a fuzzy function. They used a fuzzy running average to update the back-

ground model. Also for background subtraction, instead of using a crisp

limiter (threshold), they used a linear saturation function with a further

“binarization” by a low pass filter. This gives the advantage of having a

noise reduction in foreground mask. An extensive overview of fuzzy based

methods is given in [10].

Other recent techniques in BGS are based on neural networks, bayesian

networks and neuro-fuzzy methods. Neural network is used to learn and

classify each pixel in foreground or background [9]. Authors in [16] used

a multilayered feed-forward neural network to learn the background model

and a Bayesian classifier to identify foreground pixels.

One of the most recent works in BGS field, done by Bianco et al.[7],

introduced a rather new concept to the field. The authors used Genetic

Programming (GP) to combine inputs of detection algorithms with unary,

binary and n-ary functions performing both foreground mask’s combination

and post-processing. Since there is no universal change detection algorithm

which works well for all scenarios, Bianco et al. opted for GP to get the best

out of various BGS algorithms. They claim their method performs better

than more complex algorithms and it ranks first in ChangeDetection.net[29]

average ranking.

2.1.5 Change Detection with Non-Stationary Camera

The methods introduced have a rather important flaw, they all have the

assumption that the camera is stationary, which nowadays is too restrictive
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for industrial and commercial applications. A common and recurring theme

in BGS with camera motion is to adapt already existing BGS methods for

stationary cameras. This is usually done by incorporating an image regis-

tration step and a panoramic stitching of background models, also known as

mosaicing [4]. A certain downfall to these methods is the increased computa-

tion time (due to a bigger background model) and stitching errors (especially

on edges).

In order to avoid these pitfalls, Kim et al.[31] had the idea of using the

same background image dimensions and overlap it on the last image in video

sequence. Their method works by first pre-processing both the background

and last frame, then the background is warped over the last frame using

registration techniques. The foreground is extracted through a background

subtraction based on pixel-wise spatio-temporal distribution of Gaussian,

as this overcomes misclassified pixels due to small registration errors. To

cope with illumination changes, the authors modeled the background with

a SGM and added the aging factor into the updating formulae. Finally, as

post-processing, they track moving objects through a discrete proportional-

integral-derivative (PID) method, and then a probabilistic morphological

refinement of the foreground mask is applied.

Sheikh et al.[54] proposed a rather different approach to deal with BGS

with camera movements. Under the assumption that all 2D trajectories

projected from stationary objects (3D scene background) must lie in the

same subspace, they used a constrained model for the background called

background trajectory space. A RANSAC estimator is run to estimate this

space where outliers become foreground pixels and inliers are background

pixels. A subsequent optimal pixel-wise foreground/background labeling is

obtained by efficiently maximizing a posterior function. The shortcomings

of this approach however are the use of affine camera instead a projective

one, long initial delay and fast camera movements.

Authors in [72] noted that one of the arising issues when applying GMM

to images taken by non-stationary cameras is due to a fixed learning rate.

They proposed to model the background with a dual SGM using aging.

Since their main focus was more on speed and less on quality, in their work

the images are divided into grids, and pixels of the same cell are modeled

with the same Gaussian. The novel idea was to keep and update a backup

Gaussian model and swap the cells in the actual Gaussian model whether

the backup cell have a bigger age than the actual one. This proved to avoid

contaminating the background with the foreground and thus less misclas-

sified pixels. The authors also proposed a motion compensation method

which includes homography estimation and a further refinement specifically
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designed for grid structure. They claim to have their algorithm running in

real-time on a mobile phone and with comparable results as the state of the

art algorithms.

Romanoni et al.[47] proposed a new approach to deal with jittery cam-

era change detection. In their work they suggested using a combination of

temporal and spatio-temporal models to create the foreground mask. The

authors opted for histogram representation for their models, as it best fits

the discrete pixel intensity distribution, and the Bhattacharyya distance

for histograms comparison. Moreover they proposed a simple, yet effective

technique for dealing with sudden brightness changes usnig only the median

operator.

2.1.6 Evaluation

Since evaluation of change detection algorithms is not an easy task, many

image-based change detection benchmarks have emerged recently to help

establish fair algorithms evaluation, most notable are ChangeDetection.net

[29], SABS (Stuttgart Artificial Background Subtraction Dataset)[11], Mul-

tivision [22] and BMC (Background Models Challenge)[64]. These datasets

contain challlenging videos (both synthetic and real), ground truth change

masks, various algorithms ranking, and are fully available on the Web.

The ChangeDetection.net dataset provide a realistic, camera-captured

(no CGI), diverse set of videos. These videos include the following chal-

lenges: dynamic background, camera jitter, intermittent object motion,

shadows and thermal signatures.

The SABS dataset consists of video sequences for nine different chal-

lenges of background subtraction for video surveillance. The dataset con-

tains ground-truth annotation provided as color-coded foreground masks

and additional shadow annotation that represents for each pixel the abso-

lute luminance distance between the frame with and without foreground

objects

The Multivision dataset consists of two different sets of sequences: the

first set has been recorded by using stereo cameras combined with three

different disparity estimation algorithms; the second one has been recorded

by using the Kinect sensor from Microsoft.

The BMC dataset provides two sets of real and synthetic videos. The

dataset also provides a software designed to calculate the quality criteria for

an efficient evaluation of a background subtraction algorithm.
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2.2 Point Cloud Change Detection

Change detection based on remote sensing has been actively researched since

the early 1980s. The main techniques were developed by photogrammetry

community. However with the introduction of laser scanning technology,

also known as LiDAR (Light Detection And Ranging), a lot of new research

focused on change detection emerged, espetially in Geographical Informa-

tion Systems (GIS) context. Laser scanners have the great advantage over

photogrammetry of capturing a direct description of 3D geometry indepen-

dent of lighting conditions and in a rapid way. Applications are found for

monitoring and characterizing urban growth [12], for monitoring ecological

conditions (including canopy cover [45] and landslide monitoring [27]), for

assessing damages after natural disasters [67, 38], to assist in monitoring

construction projects [24], or for infrastructure maintenance. Various laser

scanners applications can be categorized, in terms of platforms, in airborne

laser scanning (ALS), terrestrial laser scanning (TLS) and mobile laser scan-

ning(MLS).

2.2.1 Airborne laser scanning

Airborne laser scanning (ALS) [5, 68] (introduced in 1988 by University

of Stuttgart) offers a large coverage over a short time period and a high

accuracy in three dimensions, and it can be performed from helicopters

and fixed-wing aircrafts. Since ALS point clouds can be interpreted as a

heightmap (2.5D) image, most change detection techniques for ALS data

are pretty straightforward and usually consist in converting the ALS point

clouds into Digital Surface Models (DSM) and from there photogramme-

try change detection techniques are used (sometimes even a simple frame

differencing is enough), as can be seen in [60].

2.2.2 Terrestrial laser scanning

Terrestrial laser scanning (TLS) is more precise and has a higher point

density than ALS but instead has a smaller coverage. TLS change detection

is usually applied in detection of landslides [27], construction sites [24], snow

coverage [1] and other deformations measurements [37].

Girardeau et al. [24], in order to detect changes in construction site,

stored TLS point clouds in an octree data structure (discussed later in more

detail) and proposed three strategies to find differences in octree cells: av-

erage distance, best fitting plane orientation and Hausdorff distance. The

idea is to use the same octree structure for both point clouds (previous and
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Figure 2.2: An example of data acquired by ALS means

current “frame”) and then make comparisons of points in the same cell from

both point clouds. Average distance strategy compares the average distance

(same for all points in cell) of each point in one point cloud from its nearest

neighbor from the other point cloud to a threshold. Best fitting plane orien-

tation fits a plane in each cell from points of one point cloud and performs

an outlier test with points from the other point cloud. Finally the best,

but slowest result, was obtain with the Hausdorff distance (the maximum

distance from a point in one set to the closest point in another set) strat-

egy, which is computed for each point and if the distance is bigger than a

threshold, the point is marked as changed.

Zeibak and Filin [74] had the idea to create depth maps from precisely

registered TLS point clouds. They proposed to transform a point cloud in

the frame of the other point cloud using transformation parameters (known

from registration step), and then to convert the point clouds into depth

maps. This way, after a pre-processing step, a simple frame differencing

on depthmaps yields quite a good result of foreground mask (change points)

which is then further refined in a post-processing step, where spurious change

points are filtered. Their result looks promising, however it should be noted

that they have used already registered (with very high accuracy) point clouds

and their algorithm cannot resolve some conflicts with partial occlusions.

The authors also give some insight on possible problems in change detection

with TLS, including occlusions, sensor noise, non-reflective materials (e.g.

windows) and non-uniform point density.
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Figure 2.3: An example of MLS change detection, red points correspond to moving

objects

2.2.3 Mobile laser scanning

Mobile laser scanning (MLS) has the advantages of both previously dis-

cussed laser scanner types and provides ease of mobilization and low costs

when compared to airborne laser scanning and terrestrial laser scanning.

It is lighter and less bulky thus easier to install on a ground vehicle. The

spatial coverage is achieved by the movement of the vehicle and motion-

tracking navigation devices such as Global Positioning System (GPS) and

Inertial Measurement Unit (IMU). MLS has been used in many applications

including detection and modeling of streets and their facilities [42], tracking

of moving objects [3] and, in conjunction with ALS, a more detailed features

extraction in a complex urban environment [76].

Change detection with MLS is a relatively young topic, especially in

computer vision. Azim and Aycard [3] noted that change detection is more

problematic when using 3D LiDARs mainly because of the big amount of

data to store and process (e.g. Velodyne HDL-64E outputs 1.3 million points

per second which translates to roughly 17MB per second). They proposed

using an octree occupancy grid for the point cloud and further usage of

this grid to find inconsistencies between scans. Every voxel (octree cell)

in the occupancy grid is classified as either free or occupied based on a

raytracing technique. The detection is then very similar to BGS, although

in 3D, where every voxel from one scan is compared to the corresponding

voxel from the other scan. If a voxel from one scan is free and occupied in

the other, then the voxel is called dynamic. The authors had the interesting
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Figure 2.4: The results of the method proposed by Azim et al. Red points represent

change

idea of keeping a history of dynamic voxels from the last scans, as these

voxels do not deterministically identify moving objects. This history allows

for a more robust inference of mobility points, i.e. if a voxel is occupied

in previous scans and free in at least two next scans, then it is marked

as having moving points. The authors also proposed a segmentation of

identified moving points into moving objects for their subsequent tracking.

Xiao et al. [71] proposed using raw MLS data comparison (point to point

comparison) for change detection in a complex street environment using a

“sweep”-like laser scanner. The scan rays were approximately modeled using

scanner parameters and the the Dempster-Shafer Theory (DST, explained

later in more detail) was used for intra-scan ray fusion and an inter-scan

consistency assessment to detect mobility points. This method however will

be discussed with more detail in the next section.

2.3 Multi-sensor change detection

A certain category of problems where image-based change detection strug-

gles badly is videos with low framerate taken from fast moving and freely

moving cameras (6D movement). We could not find a single image-based

method which treats this type of problems. In fact methods for dynamic

background and moving camera exist (as seen previously), and they are

usually fine for high framerate videos and/or slowly moving cameras (small

baseline) but cannot handle scenarios such as change detection in an urban
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environment in a video taken from a moving vehicle. There is need for more

complex data, such as RGB with depth information for example, to solve

such problems. LiDARs provide a precise interpretation of the world geom-

etry, thus letting us think that they also allow for a better change detection,

which is in part true, but LiDARs lack the point density and color informa-

tion of the cameras. Methods combining these two types of data acquisition

technology started emerging lately thanks to reduced cost of the devices

and very detailed online datasets such as KITTI [23]. However there is still

limited research focusing on street-level change detection with hybrid data

acquisition.

Worth mentioning are change detection methods [21, 70, 63] for aug-

mented imagery which started appearing after the introduction of Kinect

camera from Microsoft. This camera outputs color videos augmented with

depth information, that is RGB-D (Red Green Blue and Depth) images.

The depth information comes from an infrared camera. This camera how-

ever does not work outdoors and thus all the methods are applicable only

indoors. These methods also represent the vast majority of multi-sensor

change detection methods.

Qin and Gruen [43] proposed an approach to detect and update changes

in urban areas using MLS and terrestrial stereo images, although at different

time epochs. Their method consists in roughly four steps. The first step

is recording the point clouds with MLS, and their subsequent cleaning and

classification by semi-automatic means. The second step consists in semi-

automatic registration of the terrestrial images taken at a later epoch, then

the point cloud is reprojected onto the images using an ad-hoc z-buffering

weighted window. The third step rectifies the images and reprojects them

onto each other to check the geometrical consistency between point cloud

and images. In the last step a graph cut optimization is run, consisdering the

augmented information (color, depth and class information) of each object,

to over-segment the data both in point clouds and images. This method

however is based on highly accurate, and semi-automatic, registration of

both point clouds and images and moreover it does not consider temporal

dynamic objects such as passing cars, cyclists or pedestrians.

2.3.1 Related work

Vallet et al. [65] published recently a method for detecting changes in point

clouds and images. This work is an extension of what Xiao et al. [71]

proposed, although detecting changes only in point clouds. Since these two

works are very similar to our work, we will summarize them with more
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Figure 2.5: The plane sweeper used by Xiao et al. [71] in their work. The scanning ray

rotates on a vertical plane perpendicular to the trajectory

‘

detail.

Xiao et al. noted the importance of occupancy models in change detec-

tion methods. They proposed to model the occupancy space using Dempster-

Shafer Theory (DST) and also a point cloud occupancy consistency check

method. The space occupancy can be represented by the universal set

X = {empty, occupied}, this way the space reached by a laser scanner ray

can be either empty or occupied, or simultaneously both (unknown state)

if the space has not been reached yet by the scan.

To use the DST, the following should hold:

m : 2X → [0, 1],m(∅) = 0,
∑

A∈2X

m(A) = 1 (2.6)

where 2X = {∅, {empty}, {occupied}, {empty, occupied}} is the power

set of X and m is the mass of occupancy. The occupancy model is highly de-

pendent on the data acquisition, which was performed by a RIEGL LMSQ120i

lidar, which is a plane sweep scanner (see Figure 2.5. By denotingm({empty}),
m({occupied}) and m({unknown}) with e, o and u respectively, the overall

occupancy of point Q at location P is given by:

m(P,Q) =











e

o

u











=











fθ · ft · er
fθ · ft · or
1− e− o











(2.7)
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Figure 2.6: Occupancy in ray direction

where fθ and ft are the occupancy in the rotation and trajectory direc-

tions respectively and are given by:

fθ = e
− 1

2
( θ

λθ
)2

(2.8)

ft = e
− 1

2
( t

λt
)2

(2.9)

where λθ and λt are parameters based on angular resolution and range

accuracy of the sensor. The variables t and θ are defined by:

θ = arccos

−−→
OtQ ·

−−−→
OtP

′

||−−→OtQ|| · ||
−−−→
OtP

′||
(2.10)

t =
−−→
OtP · normtraj (2.11)

where Ot is the sensor position, P ′ is the projection of P on plane per-

pendicular to the trajectory and normtraj is the trajectory direction. The

masses of occupancy er, or and ur depend on r = ||−−−→OtP
′′|| − ||−−→OtQ|| (where

P ′′ is the projection of P on
−−→
OtQ) and are best described by Figure 2.6.

As noted before, the parameters and formulae are heavily based on the

model of the sensor and its working principle. The occupancy functions of

m(P,Q) are then convolved with uncertainties modeled by normal distribu-

tions, which yields the following occupancy m′(P,Q):

m′(P,Q) =











e′

o′

u′











=











f ′
θ · f ′

t · e′r
f ′
θ · f ′

t · o′r
1− e′ − o′











(2.12)

obtained from the following:

g(m) = N (0, σ2
m); g(r) = N (0, σ2

r ) (2.13)
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Figure 2.7: The resultant ray. The red, green and blue represent empty, occupied and

unknown respectively

F = g(m)⊗ g(r); (2.14)

e′r = er ⊗ F ; o′r = or ⊗ F (2.15)

f ′
θ = fθ ⊗N (r, σ2

θ) (2.16)

f ′
t = ft ⊗ F (2.17)

where σm, σr and sigmaθ are measurement, registration and angle uncer-

tainty parameters, respectively. The ⊗ represent the convolution operation.

A visual example of the resultant modeled occupancy space for a scan ray

can be seen in Figure 2.7.

To aggregate the occupancy from all scan rays in a scan, the DST is

used, in the following way:











e1

o1

u1











⊕











e2

o2

u2











=
1

1−K











e1 · e2 + e1 · u2 + u1 · e2
o1 · o2 + o1 · u2 + u1 · o2
u1 · u2











(2.18)

that is commutative and associative, K = o1 · e2 + e1 · o2 is the conflict

and indicates incoherence in the aggregation of the above values, ⊕ is the

fusion operator23. The overall occupancy at location P with I number of

neighbouring rays Qi is then given by:

m(P ) =
⊕

i∈I

m(P,Qi). (2.19)

Xiao et al. then introduced a method to obtain changes in two datasets

by comparing their occupancies. The idea is the following: given two

datasets and their respective occupancy values (E1, O1, U1) and (E2, O2,
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Figure 2.8: The result of point cloud change detection. Red points are mobility points

U2), the change is defined where the datasets are not consistent, which is

given by the following formulae:

Conf = E1 ·O2 +O1 · E2

Cons = E1 · E2 +O1 ·O2 + U1 · U2

Unc = U1 · (E2 +O2) + U2 · (E1 +O1)

(2.20)

Conf means conflicting, Cons is consistent and Unc uncertain. The

change regions are those where Conf > Cons and Conf > Unc. This

method still outputs many false positives, which are stationary points marked

as mobility ones, and in order to get as few as possible of those, Xiao et al.

gave more weight to the consistent evidence of points.

Vallet et al. [65] took over and extended the Xiao’s work to another

LiDAR type and brought the mobility points to images. They used data

captured from Velodyne HDL-64E, which captures a full 360◦ scan at 10Hz.

They however proposed for consistency check to use a number of previous

and next scans as one dataset, and consider the current scan as the other

dataset, then testing the consistency between these two datasets. The result

of point cloud change detection can be seen in Figure 2.8.

The contribution of their work stands in projecting the mobility points

into the images and using graph cut optimization to delineate the moving

objects in images. Unlike Velodyne’s fixed capture rate, the images were

taken every 5m. The points, considering the time awareness, are projected

into the closest (temporally) image. First a weights image is created by

points projection in the following way:

• (1, 0, 0) - pixels where mobility points are projected (red)
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• (0, 1, 0) - pixels where stationary points are projected (green)

• (0, 0, 1) - pixels where there are no points projected (blue)

Then this image is used to create the labeling of corresponding pixels:

L : I → {0, 1} where I is the set of pixels of the image. A pixel is la-

beled 1 as mobile pixel if its corresponding weight pixel is (1, 0, 0) and it

is labeled 0 if its corresponding weight pixel is (0, 1, 0). If however the

corresponding weight pixel is (0, 0, 1) then the pixel label can be either 0

or 1 indifferently. After the initial labeling, the the graph-cut segmentation

consists in minimizing the following energy function:

E(L) =
∑

p∈I

sL(p) +m(1− L(p)) +
∑

(p,q)∈N4

λ|L(p)− L(q)|
d(I(p), I(q)) + ǫ

(2.21)

where N4 is the set of adjacent pairs of pixels in image I in 4-connectivity, λ

and ǫ are smoothness and similarity parameters, s andm are weights of edges

between node/source and node/sink respectively, and d is the normalized

euclidean distance of image colors:

d(I(p), I(q)) =

√

(rq − rp)2 + (gq − gp)2 + (bq − bp)2

255
(2.22)

where r,g and b are the red, green and blue components. The minimization

problem is a graph cut problem where each pixel is a node and two types of

edges:

1. Edges between source/sink and a node, with weights s between the

node and the source, and m between the node and the sink.

2. Edges between nodes corresponding to adjacent pixels p and q with

weights (d(I(p), I(q)) + ǫ)−1.

The result of graph-cut segmentation can be seen in Figure 2.9. The

authors however do not provide any useful result metric, and their method

present many false positives in the point cloud change detection step as

discussed in the next chapters.
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Figure 2.9: The result of applying graph-cut segmentation
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Chapter 3

Background materials

3.1 Data acquisition

In this section a brief description and overview of the working principles

of the sensors used is given. The data used in this work is taken from the

Kitti dataset [23], more specifically the range measurements, from Velodyne

device, and the color images from one of the four cameras is used. The Kitti

sensors setup on vehicle can be seen in Figure 3.1.

3.1.1 LiDAR

LiDAR stands for Light Detection And Ranging (but also lidar + radar)

and it originates from the early 1960s, shortly after the invention of lasers.

The basic concept of most lidars is to first emit a light pulse, typically using

a laser diode. The light travels until it hits a target, when a portion of the

light energy is reflected back towards the emitter. A detector mounted near

the emitter detects this return signal, and the time difference between the

emitted and detected pulse determines the distance of the target.

When this pulsing distance measurement system is somehow actuated,

a multitude of points (called a “point cloud”) can be collected. If no targets

are present, then the light would never return. When this collection of points

is rendered, the point cloud begins to resemble a picture. The denser the

point cloud the richer the picture becomes.

In the dataset used in this work, the range data was acquired by a

Velodyne HDL-64E lidar (see Figure 3.3). The HDL-64E features 64 emitter-

detector pairs (thus 64 lasers), each aligned to provide an equally spaced

26.5◦ elevation field of view, spanning from +2◦ to −24.5◦ with a vertical

resolution of about 0.4◦. The entire optical assembly rotates at 5-15Hz



Figure 3.1: KITTI dataset: Sensors setup on vehicle.

Figure 3.2: Single emitter/detector pair rotating mirror lidar design.

Figure 3.3: The Velodyne High Definition Lidar (HDL) 64E.
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Figure 3.4: Depth image rendered from HDL-64E data. Note the visible gap between

the two laser banks.

Figure 3.5: Problem in acquiring range distances on dark materials. Note the corre-

sponding missing depths on black cars.

(10Hz by default) to provide a 360◦ azimuth field of view with a horizontal

resolution of about 0.08◦. The unit has a range of 120 m and typically has a

distance error of less than 2.5 cm. Each laser is a Class 1 (eye safe) 905 nm

Infra-Red (IR) laser diode that emits a short charged pulse for a duration

of 5 ns and a power peak of 60 W that reflects off an object with less power

or is absorbed by very dark materials. The reflected laser is first filtered by

a UV sunlight filter to reduce noise and then it is digitized and processed

by a 3GHz ADC and 3GHz DSP. Over 1.3 million data points each second

are transmitted over the Ethernet interface.

The emitter-detector pairs are divided into two 32-laser banks with a

visible gap between the two, as can be seen in Figure 3.4. The HDL-64E like

most other laser range sensing devices struggles with low reflective materials

(mostly very dark ones) and high reflectance transparent objects such as car

windows as can be seen in Figure 3.5.

3.1.2 Camera

A camera is a mapping between the 3D world (object space) and a 2D image.

The mapping is usually done by central projection, that is a ray from the
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point in 3D space is drawn through a fixed point in space, called center of

projection, to intersect a specific plane in space called image plane.

This model is in accord with a simple model of a camera, in which a

ray of light from a point in the world passes through the lens of a camera

and impinges on a film or digital device, producing an image of the point.

Ignoring such effects as focus and lens thickness, a reasonable approximation

is that all the rays pass through a single point, the centre of the lens.

The mapping is expressed by the following formulation:
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(3.1)

where P3x4 is the camera matrix and will be discussed later. Note the

homogeneous coordinates are used, this is because of the nature of projective

geometry (which works with homogeneous coordinates) and, since all the

incident rays on the same image pixel can have arbitrary T , in most cases

it is better to set T = 1. It is straightforward to transform homogeneous

coordinates to Cartesian ones.

In projective camera models the center of projection is called camera

center (or focal point), the line from the camera center perpendicular to the

image plane is called the principal axis (or principal ray) of the camera,

and the point where the principal axis meets the image plane is called the

principal point. To better explain the camera matrix, the pinhole camera

model is described below, which is the most basic projective camera model.

For a better understanding of the pinhole camera geometry see the Figure

3.6. Assuming the camera center to be the origin of Euclidean coordinate

system, and the image plane Z = f (also called focal plane), a point in space

X = (X,Y, Z)T is mapped to an image point x = (x, y) in the following way:
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(3.2)

and the image point (x, y) in non-homogeneous coordinates is given by:
(

x

y

)

=

(

fX/Z + px
fY/Z + py

)

(3.3)

where (px, py) are the coordinates of the principal points. The projection ma-

trix used in (3.2) is called camera calibration (or intrinsics) matrix (usually
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denoted by K). The The concise form of the formula (3.2) is: x = K[I|0]Xcam

if the camera is located at the origin of Euclidean coordinate system (this

is why Xcam is used). This system is called camera coordinate system (see

Figure 3.7).

When the camera center is at the origin of the world coordinate system,

the following formula applies:

x = KR[I| −C]X (3.4)

where R, C are the camera rotation and camera center position in the world

coordinate system. Now the matrix R[I| − C] is called camera extrinsics

matrix. The camera matrix P is then the both intrisics and extrinsics camera

matrices combined: P = KR[I| −C]. There is another way of representing

the camera matrix: P = K[R|t] where t = −RC.

The pinhole camera model can be extended to take into account various

other factors such as distortions and abberation. Considering the R, t intro-

duced above, the following formulation are designed to deal with distortions:







x0
y0
z






= R







X

Y

Z






+ t (3.5)

x1 = x0/z (3.6)

y1 = y0/z (3.7)

r2 = x21 + y21 (3.8)

x2 = x1
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
+ p1x1y1 + p2(r2 + 2x21) (3.9)

y2 = y1
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
+ p2x1y1 + p1(r2 + 2y21) (3.10)

x = fx2 + px (3.11)

y = fy2 + py (3.12)

where k1, k2, k3, k4, k5 and k6 are radial distortion coefficients, p1 and p2 are

tangential coefficients.

In the dataset used in this work, four cameras were used (2 grayscale

and 2 color) to capture the scene in front of the vehicle. The two by two

pairing was designed to allow easier stereo vision methods testing with real

world data. The camera used in this work is the color left one (Cam 2 in

Figure 3.1). It captures 1.4MP (1384 × 1032) resolution videos at variable

framerate (15FPS by default) on a 1/2′′ (4.65µm pixel size) CCD sensor

(Sony ICX267).
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Figure 3.6: Pinhole camera geometry. C is the camera center and p the principal point.

The camera center is here placed at the coordinate origin. Note the image plane is

placed in front of the camera center.

The camera has been synchronized with the Velodyne lidar and the

GPS/IMU (Inertial Measurements Unit) at 10Hz. The frames have been

rectified (removed distortions) and have a final resolution of 1242× 375.

3.2 Dempster-Shafer Theory

Dempster-Shafer Theory (DST) is a mathematical theory of evidence (or

theory of belief functions) introduced by Shafer [53] based on the seminal

work of Dempster [18]. In a finite discrete space, Dempster-Shafer theory can

be interpreted as a generalization of probability theory where probabilities

are assigned to sets as opposed to mutually exclusive singletons.

Often used as a method of sensor fusion, DST is based on two ideas:

obtaining degrees of belief (also referred to as masses) for one question from

subjective probabilities for a related question (like sensors measuring the

same event), and Dempster’s rule for combining such degrees of belief when

they are based on independent items of evidence. DST’s framework allows

for belief about such evidences to be represented as intervals, bounded by

two values, belief (or support) and plausibility: belief ≤ plausibility. Belief

and plausibility can be directly computed from belief masses. DST assigns

its masses to all of the non-empty subsets of the evidences that compose a

system, thus the sum of all masses has to be 1.

The formulation of DST starts with the universal set X of evidences and

its power set 2X . A belief mass m is assigned to each element of the power

set:

m : 2X → [0, 1] (3.13)
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Figure 3.7: Image (x, y) and camera (xcam, ycam) coordinate systems.

and the following should hold:

m(∅) = 0,
∑

A⊆X

m(A) = 1. (3.14)

Belief bel(A) and plausibility pl(A) are lower and upper bounds of prob-

abilty interval for an event, respectively, and are defined as follows:

bel(A) =
∑

B|B⊆A

m(B) (3.15)

pl(A) =
∑

B|B∩A=∅

m(B) (3.16)

and the relation between belief, plausibility and masses is:

pl(A) = 1− bel(Ā), Ā = X −A (3.17)

m(A) =
∑

B|B⊆A

(−1)|A−B|bel(B). (3.18)

To combine the masses from indipendent sets, the Dempser’s rule of combi-

nation is applied. This rule is a fusion operator, which is commutative and

associative. The combination (called also joint mass) is calculated from the

two sets of masses m1 and m2 in the following manner:

m1,2(A) = (m1 ⊗m2)(A) =
1

1−K

∑

B∩C=A 6=∅

m1(B)m2(C) (3.19)
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where B ∈ 2X , C ∈ 2X and K is the conflict between two mass sets:

K =
∑

B∩C=∅

m1(B)m2(C) (3.20)

As a final note, Zadeh [73] noted that the normalization factor 1 − K

can ignore conflict and attribute any mass associated with conflict to the

null set. For this reason this combination rule can produce counterintuitive

results. Many other combination rules were proposed [51], all with their

advantages and disadvantages.

3.3 Spatial indexing

In applications where spatial N-dimensional data is used, a fast search and

store data structure is crucial. We will briefly describe the octree and

kd-tree data structures as these two are the most popular and most used

spatial data structures for 3D geometry.

The octree is a tree data structure in which each node has 8 children

(see Figure 3.8). It was proposed by [36] for fast spatial representation and

queries of 3D geometry (points and/or shapes). The octree root represents

the center of the bounding box that encapsulates the 3D scene (point cloud).

Every node can be of two types: inner node or leaf node. Leaf nodes contain

points while inner nodes contain 8 children nodes which can be either leafs

or inner nodes. If a leaf node contains a number of points superior to a

predefined threshold, it is expanded and transformed into an inner node

and all its points are redistributed to its children.

A node, called cell in the octree, is usually a cube. The cell, while still a

leaf, contains points and, upon expansion, is equally split into 8 smaller cells,

as shown in Figure 3.8, and its points are assigned to its children according

to the space they occupy. There have been various node representations to

minimize the memory consumption, and one of the most well-known ways

is to encode the cell number among its siblings with a 3bit word (indices

0-7) and the children types of an inner node with an 8bit mask (1 for inner

node and 0 for leaf). An inner node is cosider to contain all the points

encapsulated by its children, recursively.

To perform a spatial search of a point’s neighborhood, a tree depth-first

search is enough. The maximum octree depth Dmax, given the minimum

distance dmin between two points and the bounding box side length s, is

limited by:

Dmax ≤ log
s

dmin
+ log

√
3 (3.21)
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Figure 3.8: Octree representation. Each node can split into 8 children nodes when

minimum points thresholding is reached, and all its points are pushed to its children

nodes.

Another well-know data structure for spatial search is kd-tree, which

is a binary tree designed for k-dimensional spatial partitioning and nearest

neighbor search (for 2D example see Figure 3.9).

The principle of constructing the kd-tree is rather straightforward and

can be summarized by the algorithm 1:

Algorithm 1 KD-tree basic algorithm

1: procedure kdtree(pointList, depth)

2: axis := depth mod k

3: m := median from pointList by axis

4: node := new tree-node

5: node.location← m

6: node.leftChild← kdtree(points in pointList before m, depth+ 1)

7: node.rightChild← kdtree(points in pointList after m, depth+ 1)

8: return node.

The above algorithm will lead to a balanced tree, which in general per-

forms better than unbalanced ones (it depends on the application some-

times). A simple insertion or deletion renderes the kd-tree unbalanced.

There is another way of constructing a balanced kd-tree: instead of per-

forming the median extraction at every level, presort the points by all their

axis using a sorting algorithm. The kdtree creation has a worst case com-

plexity of O(n log2 n) if the median extraction is performed by a O(n logn)

algorithm, and O(kn logn) complexity if presorting is used. There are other
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Figure 3.9: KD-tree representation of a 2D space partitioning. Note the separation

along the medians of point axes.

ways to build the tree without resorting to expensive sorting or median

extraction. These methods rely on extracting the mediam from a smaller

subset of randomly chosen points, which in the end yields a quasi-balanced

tree.

The search operation is performed by traversing the tree in a depth-

first fashion until a leaf is reached, which is marked as closest point, and

then backtracking and testing other points from close hyperplanes to test if

they are closer than the closest point. The search operation has a O(logn)

average time complexity for single neighbor search. This makes the kd-tree

very practical for spatial search operation in k-dimentional space.

3.4 Point cloud registration

The outcome of the change detection in a point cloud partially depends

on the quality of point cloud registration, also known as alignment. This

step is however crucial not only to change detection, but to virtually all

applications involving 3D geometry (point clouds, meshes, etc.), scanned or

computed. The goal of the registration step is to estimate the best point

correspondence between two point clouds. The most popular approach is

the Iterative Closest Point (ICP) method introduced by [6], on which many

other methods were built [34], [50], [52].
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3.4.1 Iterative Closest Point

The core idea of ICP is to find and minimize the rotation and translation

distance that maximizes the overlap between two point clouds in alternating

steps. In other simple terms, given two point clouds P = {p1, ...,pr, ...,pn}
and Q = {q1, ...,qr, ...,qm}, the rotation R and translation t are found by

minimizing the following error function:

E(R, t) =
1

r

r
∑

i=1

||pi −Rqi − t||2 (3.22)

where pi and qi are corresponding points, and r their cardinality. If the

correct correspondences are known, then both rotation and translation can

be calculated in closed form [26]. Considering the center of mass of both

point clouds:

p̄ =
1

r

r
∑

i=1

pi q̄ =
1

r

r
∑

i=1

qi (3.23)

the rotation R is computed from:

W =
r
∑

i=1

(pi − p̄)(qi − q̄)T = USV T (3.24)

and by using singular value decomposition (SVD) and the following:

Theorem: If rank(W ) = 3, the optimal solution of E(R, t) is unique

and given by:

R = UV T t = p̄−Rq̄. (3.25)

However, the correspondences are almost never known, thus it is impos-

sible to determine the optimal transformation in one step. To overcome this

issue the ICP was designed, and its algorithm is as follows:

• Given an initial transformation guess, iterate until convergence:

– Find corresponding points

– Solve for R, t:

(R, t) = argmin
(R,t)

r
∑

i=1

||pi −Rqi − t||2. (3.26)

The convergence criteria can be many, the most popular are: iterate

until a certain transformation epsilon is reached, or until a certain number

of iterations is reached. The selection of sampling points can be done ex-

haustively, by random sampling, by spatially uniform sub-sampling or by

feature-based sampling (this one requires pre-processing). The point corre-

spondence search can be done in the following ways:

43



Figure 3.10: The two most known error metrics of ICP

• by searching the closest point in the other point cloud within a distance

threshold, which usually yields good results but is slow.

• searching for the nearest neighbors in the other point cloud using a

search data structure such as KD-tree or Octree, but it usually takes

time to build those data structures.

• by using projection-based matching, which is orders of magnitude

faster than closest point search but requires specific error metric such

as point-to-plane error metric (discussed later).

There are also various error metrics to consider for ICP. The original

error metric is point-to-point metric, and it is the one shown before, where

the distance between corrisponding points is considered. An error metric

worth noting is point-to-plane error metric.

This metric extension was introduced as a more robust variant of ICP.

It considers the distance of the point to the closest plane of corresponding

points in the other point cloud (see Figure 3.10). In other terms it lets flat

regions to slide along each other. Its formulation is as follows:

E(R, t) =
1

n

n
∑

i=1

||ηi · (pi −Rqi − t)||2 (3.27)

where ηi is the surface normal at pi. However to solve the minimization, a

non-linear minimization technique is required.

Another ICP variant is Generalized Iterative Closest Point (GICP) and it

was introduced by Segal et al. [50] as an extension to ICP. Its idea is to assign

individual covariance to each data point, computed from its neighborhood.

This covariance is enforced to have a disk shape and to lie on the surface

from where the point was sampled. The error metric then considers the

Mahalanobis distance of these covariances (planar patches) instead of points.
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This method is proven to be more robust than the point-to-plane variant

of ICP, but it is computationally more expensive even though less iteration

steps are required for convergence.

One of the most recent works was presented by Serafin and Grisetti

[52] as yet another ICP variant named Normal Iterative Closest Point. The

authors noted that an increase in the dimensionality of the points makes the

whole system more observable and thus less correspondences are required

for the optimization process. For this reason they proposed to augment

the point data in the ICP formulation with normals for quasi-planar regions

and/or tangents for regions of hig curvature. The authors claim their method

outperformes the GICP method in robustness and speed.

We tried the algorithm given by Serafin (a big thank you to him) and

while it was faster than GICP, it couldn’t match the GICP robustness. The

problem lies in the design of the algorithm, as for speed it operates on depth

maps, but depth maps rendered from Velodyne point clouds are sparse and

thus unsuitable for the algorithm.

3.4.2 Normal Distribution Transform

Normal Distribution Transform was proposed by Biber and Straßer [8] for 2D

environment and later by Magnusson [35] for 3D environment. The approach

is very similar to ICP, but instead of comparing directly the points, NDT

method compares the point with its local statistics. The main drawback

of ICP is the assumption that the points on surfaces in two point clouds

are exactly the same. For this reason in the NDT method, the surface is

approximated with a set of Gaussians capturing the local statistics of the

surface in the neighborhood of a point. The correspondence is done using

Mahalonobis distance. Its formulation is as follows:

(R, t) = argmin
(R,t)

r
∑

i=1

(µi −Rqi − t)TΣ−1
i (µi −Rqi − t). (3.28)

where µi and Σi are the mean and covariance matrix of the local statistics

of point pi respectively.
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Chapter 4

Fast Change Detection

In this chapter we propose an algorithm to detect changes in point clouds ac-

quired by a lidar device. This algorithm tries to minimize typical 3D change

detection issues found in [65] and [3], such as over detecting stationary ob-

jects or missing slow moving objects, and detect changes in a rapid way by

exploiting fast spatial indexing data structures. We imposed three goals for

this algorithm: speed, accuracy and robustness. In the following chapters

we will show our system pipeline and describe the algorithm in detail.

4.1 System Pipeline

We have developed a system which takes images acquired by cameras and

point cloud data acquired by a lidar device as input and outputs a resampled

point cloud and a set of change masks. An overview of the system pipeline

can be seen in Figure 4.1. We call every block a module, which is a unit

responsible for one specific task and can be exchanged with any other module

which performs the same task.

The system can be seen as two separate subsystems, one for point cloud

and the other for change masks. The first subsystem is self-sustained, that is,

it is indipendent from the other, while the latter is heavily dependent on the

first one. To better explain these dependencies, a brief explanation follows.

We will first start from the first subsystem. The input point cloud is aligned

to the last input point cloud by a point cloud registration algorithm. The

aligned point cloud is then pre-processed and pushed forward to the point

cloud change detector and depth map extractor. The change detector is very

complex, and will be described later in greater detail. Once the changes are

detected and removed, the now static point cloud is pushed to the image-

based change detector and to the mapping module, where a point cloud



Figure 4.1: System pipeline.

is added to the global point cloud. The last module, once finished can be

instructed to perform a point cloud downsampling.

The second subsystem relies on both images and point clouds. It first

generates dense depth maps (depth images), although very approximate,

from the point clouds. The depth maps, the color images from camera

and the point clouds from first subsystem are then used in the image-based

change detection module. This module generates change masks (foreground

masks) by using these three types of information, although the depth maps

information can be dropped in favor of performance.

A brief description of each module is given below:

Point Cloud Alignment This module has the task of aligning the input

cloud with the previously aligned point cloud, using a registration algorithm,

such as GICP, and GPS/IMU as additional information.

Point Cloud Pre-processing This module “shrinks” the point cloud,

that is, only points with a distance from the cloud origin below a threshold

are kept. This is done to speed up computation and has a minimal impact

on the quality, since distant points are less dense and less precise, and thus

provide less information than close points and can also bring misleading

information (points under the street).

Point Cloud Change Detection This module is responsible for detect-

ing changes in the world measured by the lidar. This is the core of our

system, and since it is complex, it will be discussed in following section.
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Figure 4.2: Velodyne points. Note the points on the ground are in circles.

Point Cloud Mapping Here the input point cloud without mobility

points is added to the global point cloud using a fusion algorithm. This

module can be triggered to perform a decimation of the global point cloud

using a downsampling technique which considers the points’ curvatures.

Depth Map Extraction This module creates dense depth maps from

point clouds. These depth maps are very approximate and their usefulness

will be explained in the next chapter.

Image Based Detected Changes Validation Here the change masks

are created using a set of color images, depth maps and mobility points

from point clouds. This module is also the core of our system and will be

explained in greater detail in the next chapter.

4.1.1 Point cloud alignment

Since the point cloud alignment is the crucial part of the system, the selection

of the registration algorithm is very important. We have tested a variety of

algorithms including ICP, ICP with point-to-plane error metric, GICP, NDT

and NICP. In the Figure 4.2 a velodyne point cloud is presented, where one

can see the ground points are in circles. This point arrangement complicates

a lot the search for corresponding pairs, since two point clouds have their

ground points in circles with different centers.

This representation is not suited for ICP, where the correct correspon-

dences are needed. In fact we have tested the ICP and it failed considerably.

We have also tested the ICP without considering the ground points, but it

also failed, althought with a smaller error. It failed mostly on aligning the
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point cloud on vertical axis, since the ground points represent the most part

of the set of horizonzontal planes.

The NICP was also tested. It was fast but still imprecise. This is due to

the nature of the algorithm, it works with depth maps for a faster execution,

but the velodyne point clouds can generate a rather sparse depth map. The

dense depth maps from the depth map extration is not precise, and cannot

be considered for this algorithm.

The NDT proved to be very slow and somewhere imprecise. Because of

its slow execution it was not a good candidate for our system.

The ICP with point-to-plane metric had the performance similar to that

of NICP but it was more precise. In fact this algorithm can be used in

the system whenever speed is the priority. We will later show that the

registration step is the bottleneck of the system. Due to its design, where

the distance between points and planes is considered, this algorithm fails

when there are many non planar surfaces such as bushes, trees, corners, etc.

The GICP proved to be the most robust of all, although slower then ICP

with point-to-plane metric but faster than NDT. It outperformed all other

considered algorithms in precision, and for this reason it was selected as the

registration algorithm for the system. It is to be noted however, that this

algorithm can fail periodically whenever there is a significant rotation with

many non-planar points.

4.1.2 Point cloud pre-processing and mapping

The pre-processing step is straightforward and consists in removing points

which have a distance from point cloud center greater than a given threshold,

along each axis. This method is called cropbox and, as it name suggests,

it “crops” a box out of the point cloud, thus the output point cloud has a

rectangular form.

The mapping step adds a point cloud to the global point cloud created

as an aggregation of previous point clouds. A simple addition of points is

not a good idea, since the majority of points from one point cloud is close

to the points from the other point cloud. By just adding points of all point

clouds leads to a very dense global point cloud, with many duplicate points.

To avoid this issue the input point cloud is confronted with the last few

aggregated point clouds and the input points are added only if there are

no close points from those aggregated point clouds. This fills the gaps in

point clouds and renders the global cloud free of duplicates. This idea is

summarized in the algorithm 2.

BBox(...) procedure creates a bounding box given the center and side
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Algorithm 2 Point cloud mapping

1: procedure MapCloud(inputCloud, globalCloud, distThreshold)

2: lastPoints := globalCloud.lastPoints

3: for all pointi in inputCloud do

4: closestPoint := findClosest(pointi, lastPoints)

5: if distance(pointi, closestPoint) > distThreshold then

6: globalCloud.points← globalCloud.points
⋃

pointi

7: end if

8: end for

9: cloudDistance := distance(inputCloud.origin, globalCloud.origin)

10: sideL := inputCloud.boundingBox.sideLength

11: boundingBox := BBox(inputCloud.origin, sideL+ cloudDistance)

12: boxPoints := cropBox(globalCloud.points, boundingBox)

13: globalCloud.lastPoints← kdtree(boxPoints)

14: return node.

length, cropBox(...) returns the points contained in the specified bounding

box from the specified cloud, and kdtree(...) creates a kd-tree from the

specified points.

4.2 Point cloud change detection

The change detector proposed in this section is the core part of the sys-

tem and it is the main contribution of this work. It borrows some ideas

from the work done by Xiao et al. [71] and Vallet et al. [65], such as the

Dempster-Shafer Theory for occupancy space representation and Dempster

combination rule for intra-scan evidence fusion from the first, and the idea of

using previous and future scans for change detection from the latter. Aside

from those similarities, the algorithm diverges quite a lot from the cited

ones. Xiao was kind enough to send us their algorithm, for which we are

very thankful to him. The algorithm is however designed for sweeping plane

lidar, and Vallet et al. [65] extended it to Velodyne data by adding the pre-

vious/future scans in the algorithm, and they did not specify any additional

modifications. For this reason we extended the Xiao algorithm to Velodyne

data by ourselves considering the previous/future scans, just as Vallet et al.

did.

The algorithm proposed by Vallet et al. [65] considers many points on

the ground as false positives (stationary points marked as mobile), as seen in

Figure 4.3. This occurs because of velodyne points distribution as concentric
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Figure 4.3: Ground points marked as non-stationary points.

Figure 4.4: Change detection algorithm scheme.

circles with non-uniform growing radii. Since the algorithm works on point

neighborhoods, the ever increasing radius leads to fewer neighbors per point,

thus less evidence per point. For this reason our algorithm removes the

ground points before doing any change detection checks. The cited algorithm

uses a weighting mechanism to keep as few false positives as possible, but it

struggles with far away points (for all scans) situated on planar surfaces such

as walls perpendicular to the trajectory of the vehicle. We use a different, yet

simpler and faster weighting which solves, in most part, the issue described

before. Finally the speed of the cited algorithm is quite low, this is due to

the very many checks and computation done per each point. We propose to

avoid such costly computation by indexing the point cloud with an octree

data structure and performing checks on a small set of points per leaf node.

An overview of the algorithm is given in Figure 4.4.
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Figure 4.5: Various types of slopes. The slope type A and type B is indistinguishable by

the Velodyne. The ground on slopes of type C and D cannot be extracted by a plane

segmentation

4.2.1 Ground points removal

Ground points are always stationary, so they should not be checked for

change detection. A naive way to eliminate the ground points is to remove

all points which are at a certain negative height from the sensor. This

will consider all points below that height as ground points, which is not

always the case (e.g. cars on a negative slope). Another idea is to use plane

segmentation to extract the ground points as a horizontal plane. This will

work when all ground points lie on a plane, which is not the case where

slopes are present, as seen in Figure 4.5. Therefore we propose a novel idea

to eliminate the unnecessary ground points.

The idea is loosely based on Markov Random Fields and belief prop-

agation. First we divide the point cloud in a 2D grid based on XY plane

(Velodyne data coordinate system is: X: forward, Y : left and Z: up). Then

starting from the tile at the origin of the point cloud, the ground height is

propagated to all other cells in the following way:

• if a cell is marked as ground cell and its height is below the maximum

received height from other cells, then use its height and propagate it

to other cells.

• if a cell is not ground cell or is empty, then propagate the maximum

ground height received from other cells.

The propagation is done from the cells of inner rings to the cells of outer

rings, where a ring consists of cells having the same distance from the center.

A propagation representation can be seen in Figure 4.6.

If we consider the slope s, every point height Pz,ij of a cell Cij , and

the propagated ground height HG, the maximum height Hij and minimum

height hij of a the cell given by:

HG = argmax
Hk

(Hk|k ∈ {(i− 1, j), (i, j − 1), (i− 1, j − 1)}) (4.1)

Hij = argmax (Pz,ij |Pij ∈ Cij) (4.2)

hij = argmin (Pz,ij |Pij ∈ Cij) (4.3)
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Figure 4.6: The propagation of the ground height through cells.

(a) (b)

Figure 4.7: The result of proposed ground points extraction. In (a) all points are

showed, while in (b) only the ground ones.

then the cell is classified as ground if the following holds:

Hij − hij < s; Hij < HG + s (4.4)

The maximum height Hij and minimum height hij of a cell serve as

lower bound and upper bound for a cell, which is similar to a horizontal

plane segmentation, while the ground height HG and slope s allow for a

varying height of the cells in a connected way, thus selecting the ground

cells even when a slope is present. A result of this method can be seen in

Figure 4.7.

As of performance, the algorithm performs three passes over the all

points in the point cloud. First pass is to get the bounding box of the
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cloud, the second is to divide the points into the 2D grid and the third pass

is to compute the maximum and minimum heights of each cell. Then the

last pass over all cells is to perform the ground check.

4.2.2 Intra-scan and inter-scan fusion

After ground points removal, we describe how we evaluate the occupancy

of the location of a point P belonging to scan Sk due to another scan Si.

For this, we represent the occupancy space using Demspter-Shafer Theory

(DST), similar to what Xiao et al. did. If we consider the space occupancy

represented by a universal setX = {empty, occupied} then the space reached

by a laser scanner ray can be either empty, occupied or unknown (which

is the space not yet reached by the ray). In order to apply the DST, the

following should hold:

m : 2X → [0, 1],m(∅) = 0,
∑

A∈2X

m(A) = 1 (4.5)

where 2X = {∅, {empty}, {occupied}, {empty, occupied}} is the power

set of X and m is the mass of occupancy. We denote e = m({empty}),
o = m({occupied}) and u = m({unknown}). Let then OQ be a laser beam

from the scan Si, and r = length(P ′Q), where P ′ is the projection of P on

OQ. The masses er and or parametrized over r are defined as follows:

er =

{

1 if Q is behind P

0 otherwise
(4.6)

or =







e−
r
2

2 if P is behind Q

0 otherwise
(4.7)

(4.8)

and the occupancy mass of point P at Q is given by:

m(P,Q) =











e

o

u











=











fθ · er
or

1−e− o











(4.9)

fθ = e
− θ

2

2σ2

θ (4.10)

where θ is the angle between rays OP and OQ and σθ is the angular

resolution of the sensor. If we apply DST combination rule with er and or
values, many false positives will emerge. To avoid such misclassification,
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we weight the occupancy values more towards occupied state by adding the

penalty fθ to the empty values.

This model can already work, however it does not consider the uncer-

tainties in data. We incorporate the uncertainties, modeled as Gaussians,

into the model in the following way:

g(m) = N (0, σ2
m); g(r) = N (0, σ2

r ) (4.11)

F = g(m)⊗ g(r); (4.12)

e′r = er ⊗ F ; o′r = or ⊗ F (4.13)

where σm and σr are measurement and registration uncertainty param-

eters, respectively. The occupancy then becomes:

m′(P,Q) =











e′

o′

u′











=











fθ · e′r
o′r

1−e′ − o′











(4.14)

This occupancy is given only for one ray of a scan. To aggregate the

occupancy from two rays, the Depster combination rule is applied:











e1

o1

u1











⊕











e2

o2

u2











=
1

1−K











e1 · e2 + e1 · u2 + u1 · e2
o1 · o2 + o1 · u2 + u1 · o2
u1 · u2











(4.15)

that is commutative and associative, K = o1 · e2 + e1 · o2 is the conflict

and indicates incoherence in the aggregation of the above values, ⊕ is the

fusion operator. The overall occupancy at location P with I number of

neighbouring rays Qi is then given by:

m(P ) =
⊕

i∈I

m(P,Qi). (4.16)

This formulation gives the occupancy state in a scan Sk of the point P

belonging to scan Si. Since we often need to search for the neighborhood

of points, we used a kd-tree data structure to improve performance. The

neighborhood search space has a cone like shape, which is easy to compute
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Figure 4.8: The previous and future frames considered for point classification. The

green points correspond to the previous scans and the yellow ones to the future scans.

on spherical coordinate system. We transform the points of each scan into

spherical coordinate system (θ, φ, ρ) by using the following formula:

ρ =
√

x2 + y2 + z2 (4.17)

θ = arctg(
y

x
) (4.18)

φ = arctg(

√

x2 + y2

z
) (4.19)

where (x, y, z) are the Cartesian coordinates of a point P . The newly com-

puted coordinates θ and φ are used as indexing parameters for the kd-tree

data structure. This allows a fast neighborhood search for points and thus

significantly reduces the computational time. Moreover, to further improve

the speed, we limit the neighborhood search to a few samples only, which

are the closest to the search point.

In order to classify a point P in a scan Sk as being stationary or mo-

bile, we combine its occupancy values from previous and future scans S =

{Sk−K , ..., Sk−1, Sk+1, ..., Sk+K} (K is the previous/future scans buffer half

length, a visual example of S is presented in Figure 4.8) by using a novel

discretized version of the original DST approach described earlier. Note that

the system has a latency of K frames due to the scan buffer. We first define

the most distant point B in the sample scan Si ∈ S, then we approximate

the occupancy values of P with respect to Si in the following way. We first
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define a constant

l = rsup − δr
||−−→OP ||
||−−→OB||

(4.20)

where rsup and rinf are user defined upper bound and lower bound and

δr = rsup − rinf . The meaning of constant l is to define a belief stronger

in the neighborhood of the laser sensor. Then from the occupancy (e, o, u)

computed as in the previous section we define the new occupancy of P with

respect to Si:

enew =

{

l if e > o ∧ e > u

0 otherwise
(4.21)

onew =

{

l if o > e ∧ o > u

0 otherwise
(4.22)

unew = 1− enew − onew (4.23)

This way the occupancy value of each point is approximated based on

its distance from the sample scan origin. With these approximated values

we perform again the Dempster combination rule among all sample scans in

S. The outcome of this combination defines the classification of the point,

if its prevalent occupacy state is empty then the point is considered to be

dynamic, otherwise it is a stationary point.

Moreover we impose the default occupancy state of a point to unknown

if this point is outside the bounding box of the other scan. If however, the

point is inside bounding box but it has no neighboring rays, it is more likely

to be a non-stationary point, and for this reason it is given a predefined

state, weigthed more towards empty. The ground points are removed only

from the reference scan, but are kepts instead in the sample scans. This

is done first to avoid testing the ground points (as they are assumed to

be always stationary), and second it allows to have neighboring rays which

hit the ground in sample scans, and thus identify potential non-stationary

points. Once the non-stationary points are identified, they are removed

from the reference scan and are kept in a data structure for future uses.

The cleaned reference point cloud is then used as a sample scan for future

reference scans. This allows to have a slight speed improvement and to

better identify changes in future scans.
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4.2.3 Octree speedup

Testing every point from reference scan with every neighboring ray in the

sample scans is very expensive. We propose to avoid such expensive com-

putations by indexing the point cloud with an octree data structure and

perform the testing only on a small set of points in leaf nodes. Many non-

stationary points in real world cannot be sparse, as they are part of a moving

object, which means these points have neighboring non-stationary points.

For this reason, if a small set of neighboring points are classified as non-

stationary, their neighbors should also be considered as non-stationary.

The proposed method to speed up the change detection is the following:

• Index the point cloud with an octree with a given resolution

• Iterate for each leaf:

– Extract the points from the leaf

– Select a subset of points from these points either by using a heuris-

tic or randomly (we opted for the latter)

– Perform change detection test on this subset and if there are at

least half of the points classified as non-stationary, then classify

all the points in the leaf as non-stationary. Otherwise the leaf

has stationary points.

If the number of points in a leaf however is small, these points are sparse

and all these points are tested. This method not only improves performance

but also reduces the amount of misclassified mobile points in stationary

objects. A visual result of our approach can be seen in Figure 4.9.

4.2.4 Global Point Cloud decimation

As an optional step, we have designed a novel method to downsample the

global point cloud. The global point cloud, even with the mapping algorithm

previously described, still presents many points. To reduce the number

of points without losing much quality, we compute the surface curvature

of every point, and divide the points by their curvature in a predefined

number number of sets (3 in our case). Then we apply a downsampling

technique, namely Voxel Grid, on each set with varying voxel size. The

Voxel Grid basically divides the point cloud in voxels with a given size and,

to decimate, selects the centroid of every voxel. The result of this method

can be seen in Figure 4.10. This results in a lot less points without losing

much information, which suits very well 3D urban reconstruction methods.

In the following chapter we will discuss the second subsystem.
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Figure 4.9: The result of our approach. From top to bottom: the point cloud with all

points, the stationary points (white) and detected mobile points (red), and the point

cloud without mobile points
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Figure 4.10: The result of the point cloud decimation based on point curvature.
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Chapter 5

Detected changes validation

In the previous chapter we have described the process of detecting points

of dynamic objects in a 3D scene acquired by a lidar device. The detection

however, is not perfect, as it still manages to output many stationary points

marked as mobile, that is, false positives. This is due not only to the im-

precision and limitations of the lidar measurements, such as struggling to

capture dark materials, but also due to small or very textured objects such

as bushes and due to imprecision of the point cloud registration step. To

improve the precision of detection, we propose a subsequent validation step

of these changes by projecting them into the synchronized camera images

and perform a patch similarity test. This process not only gives us less

false positives, but also serve as input for a change mask extraction. In this

chapter, we will give a detailed explanation of the depth map extraction,

changes detection validation and change masks creation steps.

5.1 Depth map extraction

A depth map is an image whose intesity values represent depths measured

by range sensors or computed by other means such as stereo vision depth

estimation. The Velodyne device outputs range measurements of the envi-

ronment at 360◦, with a throughtput of about 1.3 million points. Even if

this seems a lot, it is still not enough to extract a dense depth map from

it. In fact the straightforward projection of Velodyne depth values into the

camera generates a very sparse depth map as can be seen in Figure 5.1.

Our system however require dense depth maps for proper validation.

The depth maps are used as a second validation test to cope with color

flat surfaces since, as explained later, those create issues for the color patch

similarity measurement, which is the first test. Considering the design and



Figure 5.1: Example of sparse depth map

Figure 5.2: Example of dense depth map

imprecisions of the lidar device, it is hard to generate a good dense depth

from its measurements. Projected points in the image are sparse and are

non-uniformally distributed across the whole image.

Considering that our system uses the depth maps only to test flat sur-

faces, in most of the cases, these don’t have abrupt changes in their depths.

Therefore the system do not require precise dense depth maps, it is enough

only for it to be dense. We do not intend with precise depth maps those

which are precise in depth values, but those which are precise on edges,

where the depths change abruptly, like edges on a car.

For this reason we used a simple method for extracting detph maps.

First the lidar points are projected into the camera, by using the camera

matrix, thus creating a grayscale image. Then a simple morphological filter

of disk shaped dilation is applied to this image, which should close all the

gaps between close points. Finally a gaussian filter is applied to the image

to smooth the changes between close blocks resulted from the previous step.

However there could still be gaps due to missing projected points from lidar

point cloud (low reflective matter), and a hole filling method is required in

this cases. The resulting image (see Figure 5.2) is a very approximate depth

map of the lidar points, but it is computed fast and is good enough for our

second validation step, as points on edges will be tested by the first step.

64



5.2 Validating change detection on images

To check whether a mobile point is a false positive, we have implemented

a system which does this check in two stages: the first is on color images

and the second is on depth maps. The reason behind these steps is simple.

A false positive point, that is, a stationary point misclassified as mobile,

projected in two images captured with a short delay between them, will

have its neighborhood pixels with the same intensity values. This is true if

we ignore factors such as camera noise, illumination changes and if the point

is on highly reflective surfaces such as mirrors and car paint. Nevertheless we

have implemented the method which compares the neighborhood pixels of

the projected point in one image to the neighborhood of the same projected

point in another image.

The first stage of the method is to do the comparison on projected point’s

neighborhood pixels in color images. The 3D point i is projected into a color

image Ik using the camera matrix P . This projection corresponds to a pixel

pik, for simplicity called reference pixel. The squared image patch patchik
around this pixel is selected with a side length bik, measured in number of

pixels, given by the following formula:

bik =
h

dik
fxy (5.1)

where h is a parameter for height in real world, dik is the distance from

the camera at k of the projected point i corresponding to the reference pixel

and fxy is the focal length given by the camera intrinsic matrix K. For

simplicity we considered the pixels to be square. If the pixel size s and the

focal distance f are known, then fxy = f/s.

Once the patch is extracted, the 3D point is projected into another

camera image Il (where l = k − δt), taken closely to the first camera image

both in time δt and space. This projection results in s sample pixel pil on

image Il. The patch patchil is then extracted with the same h but a different

dil which results in a bil smaller than bik if l < k if we consider the camera

movement direction is forward (camera Z-axis).

Since the comparison should be done on patches of the same size, one

of the patches should be resized to reach the dimensions of the other one.

The resizing is done with already existing methods, which also do the pixel

intensity interpolation. We choose to set k as the last camera image, which

by definition makes the l < k in time. This way it is more convenient to

perform the resizing of the patchik to the dimensions of patchil, by a factor

δr = bil/bik, both from quality and performance points of view. It renders
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the following computation faster by having to compare smaller patches, and

interpolating pixel intesities while minimizing patches yields a better result

than while maximizing. We tried also warping one patch into another, this

idea was then dropped, since the results were very similar to resizing, but

the computation effort was higher.

Once both patches are prepared and resized, a similarity comparison

is checked. For this comparison, we tried using both the Sum of Squared

Differences (SSD) metric as well as Normalized Cross Correlation (NCC)

metric to get the patch similarity coefficient. Both metrics were computed

on each color channel of the patches indipendently. The SSD is computed

in the following way:

Ek(patchi, patchj) =
1

b2i

bi
∑

x=1

bi
∑

y=1

(patchi(x, y, k)− patchj(x, y, k))
2 (5.2)

where k is the color channel and patchi(x, y, k) → [0, 1] is the color

intensity in channel k at pixel (x, y) of the patch i. Note that Ek is already

normalized. The patches are considered similar if ∀k,Ek < τ , where τ is the

threshold parameter. The NCC instead, is computed as follows:

Ck(u, v) =

∑

pi(x, y, k)(pj(x− u, y − v, k)− p̄j(k))
√
∑

(pi(x, y, k)− p̄i(k))2
∑

(pj(x− u, y − v, k)− p̄j(k))2
(5.3)

Ek(pi, pj) = 1−max
u,v

Ck(u, v) (5.4)

where pi and pj are patchi and patchj respectively, p̄i(k) and p̄j(k) are

the mean of patchi and patchj in color channel k. To see if patches are

similar the same idea applies as with SSD: if ∀k,Ek < τ then the two

patches are similar. Note the anomaly with NCC, if one of the patches has

one of its channels flat than the formula above fails, as it is a division by

zero problem. This plays well for our sistem, since we have a second test

which is specifically designed for flat color surfaces.

Using the SSD has however a limitation. Some patches may change

intensity because of illumination changes. This occurs for example when the

camera transitions from shadow area to a lit one. This causes the intensities

to change in the whole image. SSD fail with these illumination changes, as

it compares directly the pixel intensities. This is the reason why we opted

for NCC measure, as it is not affected by such illumination changes, even

thought it is computationally more expensive than SSD.

Before computing any similarities between patches, these are checked for

the uniformmity of their intensities. If their intesity standard deviation is

above a certain threshold, then the patches are computed for similarities as
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explained above, otherwise they are pushed to the second test. The second

test performs the same patch projection methodology, like the one discussed

above, only instead of color images, the points are projected into the depth

images.

Note however, that before performing and patch comparisons on depth

images, the images should have comparable intensities. That is, a depth

map from a camera position will have different intensities for a static object

than a depth map from another camera position. This is because the sensor

is in motion and at every scan the scene depth is perceived in a different way.

For this reason before performing patch similarities check, the intensities of

the depth maps should coincide for the same static object. To perform the

normalization we used the following formula:

D′
l = Dl +

||tk − tl||
dl,max

(5.5)

where D′
l and Dl is the new and old intensity values of depth map l, tk

and tl are translation vectors of cameras k and l respectively, and dl,max

is the maximum points’ depth distance from the camera l. We used only

the translation vectors since the baseline between considered camera frames

was small enough to avoid using also the rotation of the cameras. The

patches are then extracted, although with a smaller side length to speed

up computation, and resized in the same way as before. Finally we check

the patches similarity with the SSD metric. This metric is suitable in this

case because depth maps are not affected by illumination changes, as in

transitions from shadow to lit areas, the depth maps remain the same.

The tests check each mobility point if its corresponding patches are sim-

ilar. If a point positively passes the tests, then it is considered a moving

point and thus a true positive. This happens when patch similarity error

is greater then a given threshold. The same threshold is used in both tests

for simplicity, although the second test, due to smaller error values, have an

additional coefficient to lower the said threshold even more.

The second test is used for points on low-textured surfaces, as those

have patches of almost identical neighborhood intensities and thus are hard

to spot on a big moving object. Consider a uniformly painted moving van in

front of the car where the sensor and camera reside. This scenario will almost

certainly fail in the first test, as the patches will be uniform in both sampled

images, but it will succeed in the second step, since the depth intensities of

the patches will be significantly different. The second test serve somehow

as a backup plan if the first test fails.

67



Figure 5.3: A result of the sparse change mask after the validation check

5.3 Change mask extraction

The points that successfully pass the validation tests are stored in a binary

image. Once all the points are tested, the binary image is none other then

the chage mask, although still sparse. The sparse change mask can be seen

in Figure 5.3. The validation tests are not perfect, and there could still be

some false positives. These points most frequently come from vegetation,

such as bushes and leafs. However, there can also be false positives due to

sensor and camera noise.

Considering these issues, we propose to first perform a neighbor check

on the sparse change mask. This check filters out sparse pixels which do not

have any close neighbors. A moving object, once detected, will seldom be

represented by sparse points. This is why this step is performed. We used

a simple box filter and thresholding the result to the pre-defined number

of neighboring pixels. This the remaining sparse pixels, which are almost

certainly false positives which were not detected by the tests.

Note however that dynamic objects close to the camera and lidar will

generate pixels with smaller density than objects far away. To overcome this

problem, we could discretize the depth and use a set of binary sparse masks

for each discrete depth value. Then perform the filtering for each of these

masks indipendently. We have tried this method but, while it gives slightly

better results, it is computationally more expensive and the quality/speed

trade-off is not good.

To create the dense change mask, we used morphological operators of

disk shaped dilation and erosion several times with decreasing disk size. And

as a final step, a gaussian low pass filter is performed to obtain a smoother

mask. The result of this method can be seen in Figure 5.4.
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Figure 5.4: The sparse change mask after the post-processing step results in a dense

change mask
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Chapter 6

Experimental results

To prove the efficiency of our system, we have designed a set of experimental

setups.

6.1 System Setup

6.1.1 Dataset

For our testing purposes, we have used the KITTI dataset [23]. This dataset

was created using a rig of sensors and cameras mounted on a vehicle, as see

Figure 3.1.

• 2 × PointGray Flea2 grayscale cameras (FL2-14S3M-C)

• 2 × PointGray Flea2 color cameras (FL2-14S3C-C), 1.4 Megapixels,

1/2′′ Sony ICX267 CCD, global shutter

• 4 × Edmund Optics lenses, 4mm, opening angle 90 , vertical opening

angle of region of interest (ROI) 35◦

• 1 × Velodyne HDL-64E rotating 3D laser scanner, 10 Hz, 64 beams,

0.09 degree angular resolution, 2 cm distance accuracy, collecting 1.3

million points/second, field of view: 360◦ horizontal, 26.8◦ vertical,

range: 120 m

The cameras, the lidar and the GPS/IMU are all synchronized, and

generate a set of data each 1/10s. The cameras are

6.1.2 Hardware and software used

The experiments were executed on a notebook PC having the following

configuration:



Figure 6.1: An example of a color image and its corresponding ground truth change

mask.

• Processor: Intel Core i7-3537u, 2GHz, 3.1GHz max Frequency, 2 Cores,

4 Threads

• RAM: 8GB DDR3-1600L

• Storage type: Solid State Drive (SSD)

The system was created and the experiment was performed on a Ubuntu

14.04 operating system. For this system Point Cloud Library (PCL) [49]

was used, as it contains many useful algorithms to manipulate point cloud

data.

6.1.3 Ground truth considerations

To perform the performance analysis, a reference is needed to assest the

quality and performance of the results. For this reason we manually anno-

tated the dataset to create the ground truth change masks. The masks were

created by selecting by hand moving objects in the images captured by the

color camera on the left in the KITTI sensor rig (see cam 2 in Figure 3.1).

An example of the ground truth image mask can be seen in Figure 6.1.

These change masks have been created considering the following factors:

1. The far moving objects are seen in images, but they are unreacheable

by the lidar.

72



Figure 6.2: The visible gap between the two laser banks.

2. Vegetation will most probably be detected as dynamic objects, due to

their leafs complex geometry.

3. The selection of moving objects cannot be perfect, as there are many

small details that cannot be selected individually. An example is the

bicycle wheels, which can be selected entirely or just their tyres.

To avoid future problems caused by the first factor, we selected the

objects only once they have entered the scene at a given distance from the

camera. To understand when an object has entered into the scene, we have

used the same methodology as for the patch extraction. The amount of

pixels h in an image corresponding to a given height H in real world at a

given distance d is computed by the formula:

h =
H

d
fxy (6.1)

where fxy is the focal length in pixels, it is given by the camera intrinsic

matrix. By knowing the object’s height in real world, and by measuring

this height in pixels, we are able to infer its distance from the camera in

real world. The distance is given by the point cloud bounding box length

minus the distance of the camera from the lidar on the sensor rig. In our

case we have found that a height of 1.70m in real world corresponds to circa

48 pixels. For example when a moving person in an image has a height of

48 pixels or more, it is annotated as ground truth.

As for the problems caused by the presence of vegetation, we have simply

decided to leave the vegetation as static objects, which is the real case.

Related to moving object selection, we have decided to slightly over-select

the objects having parts difficult to classify or select, such as bicycle wheels.

There is another problem which is worth mentioning. The Velodyne lidar

is composed of a rotating head, which houses two blocks of 32 lasers. These

blocks generate points from range measurements, however the transition

between the points of the two blocks is not seamless. There is a visible

gap between the two, as it can be seen in a depth map image, rendered
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from the Velodyne points, in Figure 6.2. This factor creates issues as the

experiments will never give a perfect score when comparing the proposed

algorithm results to the ground truth.

6.1.4 Experiments setup

We designed a semi-automatic system to test the performance and robust-

ness of the proposed algorithm. There three types of algorithms we have

decided upon: only 3D change detection testing, only 2D changes validation

testing and the two methods combined testing.

The testing of the 3D change detection is performed in the following

way:

1. To create a comparable ground truth for the change detection results,

all points from a point cloud are projected into the an image using the

matrix of the same camera on which the ground truth was annotated.

2. This sparse image of the projected points is compared to the ground

truth mask with a logical AND operator. This gives us the ground

truth values, which are the amount of points projected onto the ground

truth moving object.

3. The same procedure is done with the results of the change detection.

This gives the amount of points which the change detection got right.

4. We then proceed to compare the ground truth values with our algo-

rithm values.

In order to have a fair comparison between algorithms, we have done the

same test with the results from the algorithm of Vallet et al. The results of

the comparison between algorithm are showed and discussed in the following

section.

We have designed an experimental setup to test the effectiveness of the

validation tests both for the worst case scenario, that is, considering all

points of the point cloud as dynamic, and normal scenarios with only dy-

namic points given by the change detection algorithm. The testing is per-

formed as follows:

1. The considered points are projected onto the images using the camera

matrix.

2. The validation tests and post-processing are performed on those points

and images.
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3. The resulting binary mask is directly compared with the ground truth

masks.

To illustrate the experimental results we use the Receiver Operating

Characteristic (ROC) curve and the Precision-Recall (PR) curve. These

curve shows the performance of a binary classification system, which our

case, since we want to classify points as being either dynamic or stationary.

Both these curves are based on the confusion matrix (see table below).

actual positive actual negative

predicted positive True Positive (TP) False positive (FP)

predicted negative False Negative (FN) True Negative (TN)

For our system, the positive outcome of a test means a point is non-

stationary. The actual positive and negative values are given by the ground

truth. For each experiment there is a short description how to interpret the

TP, FP, FN and TN.

To define ROC and PR curves we first have to define some ratios. Recall

(or Sensitivity) is the hit rate of dynamic points being classified as such. It

is defined in the following way:

R =
TP

TP + FN
(6.2)

Specificity (S) is the hit rate of correctly identified stationary points. It

is defined as follows:

S =
TN

TN + FP
(6.3)

Precision (P) is the ratio of identified true positives over all predicted

true positives. It is given by:

P =
TP

TP + FP
(6.4)

The ROC curve shows the relationship between Recall and Specificity,

while PR curve shows the relationship between Precision and Recall. These

curves are deeply related to each other, as noted by [17], when comparing

two algorithms with these curves, an algorithm will prevail over the second

algorithm in ROC curve if and only if it fails in the PR curve to the second.

6.2 Experimental Results

In the following we show and discuss the experimental results. Since we

have annotated the dynamic objects only in the Dataset 0095 from KITTI,
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we have performed the algorithms also on this dataset. We have used 220

frames from that Dataset, starting from frame 35 and ending with 255, as

these are the starting and ending frames where dynamic objects appear.

We have the following parameters fixed for all experiments:

• 3D detection part:

– Minimum number of sample scans = 20 (10 before and 10 after

the reference scan)

– Bounding box side length = 30m

– Octree resolution = 0.3m (this is the minimum leaf node size)

– Lower and upper bound for occupancy mass discretization: rinf =

0.6 and rsup = 0.8

– Ground points grid resolution = 0.4m

– Ground points maximum slope = 22%

• 2D validation part:

– Real world color patch height = 0.15m

– Real world depth patch height = 0.05m

– Sparse to dense depth map dilation disk shape radius = 5px

– Camera to camera frame distance for patch similarity check = 2

frames

6.2.1 3D change detection results

Before showing and explaining the results, a good definition of what is the

confusion mask for this experiment should be given. We consider ground

truth positive values (GTP), the pixels from projected points which pass the

AND operation with the ground truth mask. An example of such resulting

pixels can be seen in Figure 6.3. For ground truth negative values (GTN),

we perform the AND operation with the negated ground truth mask.

Once the ground truth values are obtained, we do the same process with

the non-stationary points from the 3D change detection step (see Figure .

Here we define the values of confusion matrix as follows:

• True Positives TP = number of white pixels after the AND operation

with the ground truth mask

• False Positives FP = number of white pixels after the AND operation

with negated ground truth mask
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(a) Projected points on ground truth mask

(b) Result of the AND operation between projected points and ground truth mask

Figure 6.3: Ground truth values extraction.

77



Figure 6.4: An example of projected dynamic points over the ground truth change

mask.
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Figure 6.5: Precision and Recall of our algorithm.

• False Negatives FN = GTP - TP

• True Negatives TN = GTN - FP

Once we have these values, we can show both the ROC and PR curves.

The change detection results were obtained by varying the σr and σθ, as these

parameters define the elipsoid form of the occupancy space in our algorithm.

The values were set to: σr ∈ {0.1, 0.15, 0.2} and σθ ∈ {0.2◦, 0.3◦, 0.4◦, 0.5◦}.
The Figure 6.5 the Precision and Recall curve is shown.

The values in the graph are averaged over a series of 220 frame (lidar

point clouds and images). Each point correspond to a given parameters pair.

The table below summarizes the points on the curve.
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σr(m) σθ(
◦) Precision Recall

0.1 0.2 0.2057 0.8153

0.1 0.3 0.3017 0.8069

0.1 0.4 0.3833 0.8017

0.1 0.5 0.4400 0.7977

0.15 0.2 0.2809 0.8076

0.15 0.3 0.3787 0.7988

0.15 0.4 0.4653 0.7933

0.15 0.5 0.5178 0.7900

0.2 0.2 0.3257 0.7999

0.2 0.3 0.4320 0.7927

0.2 0.4 0.5209 0.7852

0.2 0.5 0.5733 0.7764

Table 6.1: Our algorithm PR values

Before commenting the results, we note that for this dataset, the point

cloud registration algorithm fails for the last few frames, therefore affecting

the results with many more false positives.

Note how the precision increases while recall decreases when σr is increas-

ing. This is because slowly moving objects will have a significantly lower

points distance between one frame and another, and the σr computes the

occupancy along the laser ray. This leads to assigning occupied mass values

to more points along the ray, as σr increases, which translates to fewer true

negatives and fewer false positives. Note the same trending with σθ. This is

somehow counter-intuitive, because with increasing σθ should increase the

empty mass values of the points. This is in part true, but our algorithm

however uses the σθ also as neighborhood search parameter. This translates

into larger number of neighbors being considered, and thus more possibility

to find occupied points, since their occupied mass does not depend on σθ.

We have performed the same experiment with the Vallet et al. algo-

rithm, although the σθ was not used here because it depends on σr in their

algorithm. To compensate the missing values, we tried to vary the λθ pa-

rameter instead. This parameter represents the angular resolution in their

algorithm. The resulting Precision-Recall curve can be seen in Figure 6.6.

Their values are summarized in the following table:
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1 - Precision
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Figure 6.6: Precision and Recall of Vallet et al. [65] algorithm.

σr(m) λθ(
◦) Precision Recall

0.1 0.2 0.1689 0.8040

0.1 0.3 0.1809 0.8077

0.1 0.4 0.1662 0.8134

0.1 0.5 0.1470 0.8191

0.15 0.2 0.2128 0.7904

0.15 0.3 0.2509 0.7948

0.15 0.4 0.2400 0.7985

0.15 0.5 0.2119 0.8036

0.2 0.2 0.2203 0.7869

0.2 0.3 0.2820 0.7875

0.2 0.4 0.2874 0.7889

0.2 0.5 0.2576 0.7944

Table 6.2: Vallet et al. PR values

As it can be seen, their algorithm has more Recall than ours, but just

by a small margin. However, their algorithm has less Precision than ours.

We have also generated the ROC curve for the same values introduced

before, and it can be seen in Figure 6.7. Note the very high specificity, this

is because the rate of True Negative values is much more higher than the
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Figure 6.7: Receiver Operating Characteristic (ROC) of our algorithm.

False Positive values rate.

As a matter of timing, our algorithm is almost one order of magnitude

faster then the Vallet et al. algorithm. These timings are from the same

experiments with the same values presented before. Note that we have

removed the ground points also in their algorithm and used the same point

cloud registration algorithm. Moreover, both algorithms were parallelized

with OpenMP directives. The resulting timings can be seen in the following

table 6.3:
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Alg σθ/λθ(
◦) average total average total

pre-processing pre-processing

Proposed
0.2 0.490 100.036 0.599 133.058

0.3 0.536 109.504 0.616 136.852

0.4 0.605 123.562 0.666 147.778

0.5 0.672 137.150 0.721 160.176

Vallet
0.2 2.945 615.520 3.017 653.858

0.3 4.518 970.535 4.757 1003.17

0.4 6.505 1414.42 6.933 1444.28

0.5 9.262 2024.43 9.924 2056.28

Table 6.3: Execution time results

The first set of rows are the timing results of our algorithm, and the

second one theirs. All timing results are in seconds. The execution time in-

creases when σθ/λθ rises because the search radius of our algorithm was set

to 2× σθ and 2× λθ for theirs. The pre-processing times are the change de-

tection execution time with ground points removal time and spatial indexing

of the point clouds, such as creation of the kd-trees. Such big difference in

execution times is mainly due to octree optimization in our algorithm, and

some small time gains are also due to preliminary assignment of occupancy

masses to unreacheable points.

6.2.2 Worst case for validation testing

We tried lauching the validation tests with all points of the point cloud

marked as non-stationary points. This was done in order to see how many

points would pass the tests. This experiment and the following one are a

bit different from the one before. After projecting the 3D points into the

images and performing the validation tests and the post-processing step, the

values TP, TN, FP and FN are computed in the following way:

• True Positives TP = number of white pixels after the AND operation

with the ground truth mask (gt mask)

• False Positives FP = number of white pixels - TP

• False Negatives FN = number of white pixels in gt mask - TP

• True Negatives TN = number of black pixels in gt mask - FP

From these values the curves ROC and PR are easily computed. The

validation step is especially sensitive to point cloud alignment and synchro-

nization errors as can be seen in the exemple in Figure 6.8. In the figure
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(a) (b)

Figure 6.8: An example of extracted patches in a bumpy part of the road. They

correspond to the same 3D point. The patch (a) is from the image taken 0.1 seconds

later than the image of patch (b).
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Figure 6.9: PR curve of the worst case scenario for validation method.

these patches are at a distance of 2 frames from each other, note the sig-

nificant shift of patch colors. This is because the vehicle was on a bumpy

part of the road when the images were captured. This effect nullifies the

effectiveness of the validation test for some points in the scene.

In Figure 6.9 the Precision Recall curve is given for the worst case. Notice

the anomaly where precision is low. This is due to the validation tests failing

in some frames, especially the last few frames where the registration failed.

This experiment proved to be also very computationally intensive, as

there were on average about 40000 points projected into the images, as

opposed to around 2000 on average, and extracting such amount of patches

and performing the NCC on them proved to be very slow (circa 30 seconds

per frame on unoptimized matlab code).
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Figure 6.10: PR (a) and ROC (b) curves of the dynamic points validation.

6.2.3 Results of validation of dynamic points

The final experiment we did was to prove the effectiveness of combining the

change detection with the validation tests. For this experiment we performed

the 3D change detection algorithm with the subsequent points validation

tests. Overall the experiment is similar to the last one, although now the

dynamic points are projected and validated. The PR and ROC curves can

be seen in the Figure 6.10.

For this experiment we have used a threshold τ for color patch similarity

set to 0.1, and for depth patch similarity set to 0.2 · τ .
We have also experimented with a fixed set of σr and σθ, and a vary-

ing threshold τ . The results of this experiment can be seen in the Fig-

ure 6.11. The falling spikes correspond to low σr and low σθ and the

precision rises with rising τ at the expense of the falling recall. The val-

ues of τ were set to {0.05, 0.15, 0.2}, while the (σr, sigmaθ) were set to

{(0.1, 0.2), (0.2, 0.3), (0.25, 0.4)}.
The ROC curve demonstrates our algorithm is a good classifier, as it has

a high Recall (true positive rate) and a high Specificity, which is also called

true negative rate. In the Figure 6.12, all the above graphics are shown

on the same axis. There we can see a clear advantage of our algorithm

by combining the 3D detection of dynamic points with their subsequent

validation. As a final result, we show in Figure 6.13 a change mask applied

to a red channel of a grayscale image.
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Figure 6.11: PR and ROC curves of the dynamic points validation when varying the

similarity threshold.
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Figure 6.12: Precision and Recall curves of all the experiments on the same graphic.

Figure 6.13: A change mask applied to the red channel in a grayscale image.
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Chapter 7

Conclusions and future work

In this thesis, we presented a novel changes detection system in 3D lidar

based point clouds with the subsequent image based validation of the de-

tected changes. Our detection algorithm performs in under a second per

frame, and it is almost one order of magnitude faster than the considered

algorithm by Vallet et al. [65], thanks to the octree optimization speed up

and other small enhancements. The experimental results have shown our

algorithm to a be a good classifier, and it can output good change masks

in difficult scenarios, like the data acquired by a moving sensor rig with a

significant distance between two frames (1m on average) and low frame rate

for camera images (10 frames per second). Our system is able to take point

cloud scans and their corresponding color images and output static point

clouds (withoud dynamic objects) and change masks from images. We have

also designed a novel way of selecting ground points when various types of

slopes are present in the scene. Moreover our system can be instructed to

optimize the output point clouds in terms of point density, and thus in space

occupancy, for an eventual further usage.

Our system was designed to accomodate a novel urban reconstruction

algorithm, proposed by Romanoni et al. [46]. with variable density point

clouds cleaned from any moving objects as input. As a future work, we in-

tend to explore new heuristics in selecting points subsets for the octree opti-

mization step. Also a more advanced registration algorithm is needed, since

our change detection algorithm robustness relies entirely on the precision of

such algorithm. An optical flow from images with point cloud registration

method combination could be investigated for a better overall registration.

We also intend to incorporate this algorithm as a pre-processing phase for

an urban reconstruction algorithm. The change masks could be used for

texturing the reconstructed model.
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