
Architecture Recovery using Partitioning Clustering Technique

BY

ALESSANDRO CHETTA
Matricola 816927

POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

Anno Accademico 2014/2015

Defense Committee:

Ugo Buy, Chair and Advisor University of Illinois at Chicago

Giovanni Agosta, Advisor Politecnico di Milano



ACKNOWLEDGMENTS

Thank you to my advisor Prof. Ugo Buy. He demonstrated true friendship to me. He was
always ready to understand my difficulties and to help me with wise suggestions. Thanks
to him I was able to accomplish this research.

Thank you to Prof. Pier Luca Lanzi that gave me the data mining knowledge that I
applied in this work. Moreover, at the beginning of my adventure at UIC, Prof. Pier
Luca Lanzi suggested me to follow the course CS 474 with Prof. Ugo Buy.

Thank you to Lynn Ann Thomas that guided me in my path at UIC.

I dedicate this work to my family. My father Aldo Claudio, my mother Maria Grazia, my
brother Marco, his fiancé Maria Rosaria, and their coming baby perhaps Alessandro or
Azzurra Maria.

They supported me in everything I did in my life. Some days before the submission of
this thesis Marco announced me that Maria Rosaria was waiting for a baby. This is the
most important event of my life up to now. Her or his birth will bring a lot of joy to my
family.

Thank you to my friends Doldo, Cervelli, and Marco Chirizzi that supported me with
love from 4,500 miles away. Thank you to my roommates Alessandro and Enzo for all the
great time we spent together in our little apartment.

Thank you to all the Italian crew from Politecnico di Milano: Alessandro Oddone, Lorenzo
Di Tucci, Andrea Piscitello, Giorgio Conte, Massimo De Marchi, Dario Casula, Matteo
Palvarini, Gianluca Venturini, Luca Buratti, Ettore Trainiti, Davide Pigiamino, Francesco
Paduano, Paolo Bruzzo.

AC

ii



TABLE OF CONTENTS

CHAPTER PAGE

1 AMPIO ESTRATTO . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 PREVIOUS WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 LOGICAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Definition of component . . . . . . . . . . . . . . . . . . . . 10

4.2 Definition of dependencies graph . . . . . . . . . . . . . . 10

4.2.1 Definition of class-to-class dependency . . . . . . . . . . . 10

4.2.2 Definition of hierarchical relation . . . . . . . . . . . . . . 10

4.2.3 Definition of reachability . . . . . . . . . . . . . . . . . . . 11

4.2.3.1 Reachability cost . . . . . . . . . . . . . . . . . . . . . . . . 11

4.3 First phase: parsing, static analysis . . . . . . . . . . . . . 11

4.3.1 Flex Syntax Scanner . . . . . . . . . . . . . . . . . . . . . . 11

4.3.2 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3.2.1 Class definition detection . . . . . . . . . . . . . . . . . . . 12

4.3.2.2 Class instantiation detection . . . . . . . . . . . . . . . . . 12

4.4 Graph renderer . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.5 Second phase: clustering algorithm . . . . . . . . . . . . . 14

4.5.1 K-means clustering algorithm . . . . . . . . . . . . . . . . 14

4.5.2 K-means customization and assumptions . . . . . . . . . . 14

4.5.3 Center heuristics . . . . . . . . . . . . . . . . . . . . . . . . 16

4.5.4 Center detection: outgoing arcs based . . . . . . . . . . . 16

4.5.4.1 Instance fan-out . . . . . . . . . . . . . . . . . . . . . . . . 16

4.5.4.2 Class fan-out . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.5.5 Center detection: reachability based . . . . . . . . . . . . 17

4.5.5.1 Reachability with overlap . . . . . . . . . . . . . . . . . . . 17

4.5.5.2 Reachability no overlap . . . . . . . . . . . . . . . . . . . . 17

iii



TABLE OF CONTENTS (continued)

CHAPTER PAGE

4.5.6 Proximity metric . . . . . . . . . . . . . . . . . . . . . . . . 17

4.5.6.1 First version: weight based . . . . . . . . . . . . . . . . . . 17

4.5.6.2 Second version: weight and step based . . . . . . . . . . . 17

4.6 Architecture recovery of a toy example . . . . . . . . . . . 18

4.6.1 Software example implementation and analysis . . . . . . 18

4.6.2 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.6.3 Clustering algorithm . . . . . . . . . . . . . . . . . . . . . . 19

4.6.3.1 Center detection . . . . . . . . . . . . . . . . . . . . . . . . 19

4.6.3.2 Proximity calculation . . . . . . . . . . . . . . . . . . . . . 19

4.6.3.3 Clustering result . . . . . . . . . . . . . . . . . . . . . . . . 19

4.7 Clustering coverage issue . . . . . . . . . . . . . . . . . . . 20

4.7.1 Post-processing: Enhancing the clustering coverage . . . 20

4.7.2 Post-processing application . . . . . . . . . . . . . . . . . . 22

5 IMPLEMENTATION DETAILS . . . . . . . . . . . . . . . . . . . 28

5.1 K-recovery modules . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2.1 StaticClass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2.2 Recovered classes list . . . . . . . . . . . . . . . . . . . . . 30

5.2.3 Tokenized file . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.3.1 Token attributes . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.4 Dependencies graph . . . . . . . . . . . . . . . . . . . . . . 31

6 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1 Cluster-to-Cluster Comparison . . . . . . . . . . . . . . . . 33

6.2 Freeablo: MVC recovery . . . . . . . . . . . . . . . . . . . 33

6.2.1 Manual architecture recovery . . . . . . . . . . . . . . . . . 33

6.2.2 K-recovery architecture recovery . . . . . . . . . . . . . . . 34

6.3 Mxnet: architecture recovery . . . . . . . . . . . . . . . . . 36

6.3.1 Manual architecture recovery . . . . . . . . . . . . . . . . . 36

6.3.2 K-recovery architecture recovery . . . . . . . . . . . . . . . 36

6.4 Wkhtmltopdf: architecture recovery . . . . . . . . . . . . 38

iv



TABLE OF CONTENTS (continued)

CHAPTER PAGE

6.4.1 Manual architecture recovery . . . . . . . . . . . . . . . . . 38

6.4.2 K-recovery architecture recovery . . . . . . . . . . . . . . . 38

6.5 Cluster evaluation metrics . . . . . . . . . . . . . . . . . . 38

6.5.1 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.5.2 Fitness value . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.5.3 Basic cohesion value . . . . . . . . . . . . . . . . . . . . . . 45

6.5.4 Advanced cohesion value . . . . . . . . . . . . . . . . . . . 45

6.5.5 coupling values . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Appendix D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

CITED LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . 55

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

v



LIST OF TABLES

TABLE PAGE

I K-MEANS CLUSTERING ALGORITHM . . . . . . . . . . . 15

II CLASS LIST FOR CENTER DETECTION . . . . . . . . . . 20

III CLASS LIST FOR CENTER DETECTION . . . . . . . . . . 21

IV MXNET MANUALLY RECOVERED COMPONENTS . . . 39

V MXNET K-RECOVERY RECOVERED COMPONENTS. . 40

VI WKHTMLTOPDF MANUALLY RECOVERED COMPO-
NENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

VII WKHTMLTOPDF K-RECOVERY RECOVERED COMPO-
NENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vi



LIST OF FIGURES

FIGURE PAGE

1 This figure shows the dependencies graph. . . . . . . . . . . . . . 13

2 This figure shows a more complex snippet. . . . . . . . . . . . . 14

3 This figure shows the rendering of a dependencies graph. . . . 15

4 Coverage toy example: Post-processing off. . . . . . . . . . . . . 23

5 Coverage toy example: After the application of heuristic 3. . . 24

6 Coverage toy example: After the application of heuristic 1. . . 25

7 Coverage toy example: After the application of heuristic 2 and 4. 26

8 This figure shows the clustering of a toy example. . . . . . . . . 27

9 This diagram shows the K-recovery information flow. . . . . . . 29

10 This figure shows the Freeablo recovered architecture. . . . . . . 37

11 This figure shows the mxnet recovered architecture. . . . . . . . 41

12 This figure shows the Wkhtmltopdf recovered architecture. . . 42

vii



LIST OF ABBREVIATIONS

GUI Graphical User Interface.

HTML HyperText Markup Language.

JSON JavaScript Object Notation.

MCV Model View Control.

OOP Object Oriented Programming.

PDF Portable Document Format.

SLOC Source lines of code.

UML Unified Modeling Language.

viii



CHAPTER 1

AMPIO ESTRATTO

Lo sviluppo software si e’ evoluto molto velocemente negli ultimi decenni per soddisfare le
richieste del mercato. Il mercato ha imposto dei vincoli difficilmente soddisfacibili come
alta affidabilita’ e prestazioni, ma imponendo un budget limitato. I gruppi di svilup-
patori affrontano problemi piu’ impegnativi e sono costretti ad implementare progetti
di dimensioni e complessita’ maggiore per venire in contro ai vincoli posti dal mercato.
Questo implica che anche le dimensioni dei gruppi di sviluppatori stanno incrementando.
Un gruppo di sviluppatori contiene dei sottogruppi come il gruppo di implementazione
e progettazione, il gruppo che effettua i test, il grupo che si occupa del debugging, etc.
E’ evidente che la condivisione dell’informazione tra i membri di un gruppo e’ di cruciale
importanza. L’architettura di un software e’ un modo per descrivere l’organizzazione di
un sistema software. L’architettura di un software costituisce un valido mezzo per la
condivisione delle informazioni oltre alla documentazione costituita dal linguaggio natu-
rale. Inoltre, l’architettura software non dipende da una particolare lingua perche’ usa
delle rappresentazioni grafiche standardizzate. Nonostante questo, molti progetti non
hanno una rappresentaizione dettagliata e aggiornata della loro architettura, a volte e’
del tutto assente. In questo caso, l’architecture recovery viene applicata per recuperare
l’architettura software di un progetto. L’architecture recovery e’ una tecnica che pro-
duce una architettura software applicando l’ingegneria inversa sul codice sorgente di un
progetto.

Lo stato dell’arte nel campo dell’architecture recovery non fornisce ancora una soluzione
affidabile. Questo deficit ha motivato questa ricerca. Il contributo della tesi e’ una
innovativa tecnica capace di recuperare l’architettura di un progetto software partendo
dal suo codice sorgente. Ho chiamato questo tool K-recovery, dal noto algoritmo di
clustering K-means.

Ho testato empiricamente l’accuratezza del mio metodo. La difficolta’ nel testare i risultati
e’ dovuta al fatto che tutti i progetti analizzati non fornivano la loro architettura nella
documentazione.

Per sopperire alla mancanza della originale architettura, ho generato a mano l’architettura
dei vari progetti analizzati, poi ho comparato questa architettura con quella generata
automaticamente dal mio tool.

K-recovery ha recuperato con successo i componenti del Model View Control di un video
gioco software. Inoltre, il tool ha recuperato l’architettura di due altri progetti con una
accuratezza del 70% in media. I software analizzati contengono piu’ di 10,000 righe di
codice ed il piu’ grande di essi contiene 80 classi.

In fine, ho implementato alcuni indici di coesione per valutare i cluster prodotti dal tool.

1



SUMMARY

Software development evolved quickly in the last decades to satisfy market needs. The
software market poses some constraints such as strict deadlines, high software reliabil-
ity and performance, and limited budget. Hence, developer teams face more challenging
problems and implement larger projects to realize a competitive software that satisfies the
constraints. It implies team sizes are becoming larger. A large developer team contains
some subteams such as a design and implementation team, a debugging team and testing
team. Thus, information sharing among the team members is crucial in satisfying market
demand. Knowledge of the software architecture is a way to describe a software system at
a high level of abstraction. The software architecture is an effective information sharing
means beside natural language documentation. In addition software architecture are de-
crypting, not language dependent and often use graphical representations. Nonetheless,
the software architecture is not always available or up to date. In this case, architecture
recovery seeks to recover a software architecture based on reverse engineering techniques.
The architecture recovery process extracts a software architecture taking as input the
software row source code. The state of the art in software architecture recovery does not
provide a reliable solution yet. This motivated additional research on the application of
clustering algorithms. My research contribution is a novel technique able to recover the
architecture of a large software project from its source code. I named this tool K-recovery
after the clustering algorithm K-means. I have also assessed empirically the effectiveness
of my method. A challenge in these empirical evaluations is the lack of a ground truth,
that is, knowledge of the actual software architecture that my method is recovering. To
evaluate the recovered architectures, I recovered manually the analyzed projects architec-
tures, then I compared them. K-recovery recovered succesfully the MVC components of
a software video game. Moreover, it recovered the architectures of two software projects
with 75% average accuracy. The software projects analyzed have more than 10K SLOC
and the largest contains more than 80 classes. Furthermore, I implemented some cluster
cohesion and coupling metrics that provide an evaluation about the clusters quality.

2



CHAPTER 2

INTRODUCTION

Software stakeholders imposed new constraints to the programmers in order to meet the
software market needs. The software development process changed significantly in the
last decades to satisfy its stakeholder constraints. For instance, mobile and web applica-
tions request increased significantly. These applications must guarantee high reliability,
low cost, and amazing user experience to be competitive. Thus, programmers had to
deal with a difficult trade-off among these characteristics. Consequently, development
teams became larger and they adopted new technologies such as software control ver-
sion, formal bug report and formal testing methodologies. Furthermore, the computer
science community agreed on the application of a new programming paradigm for the
development of large software. OOP paradigm replaced the procedural paradigm for the
development of large software. The new paradigm is based on the concept of object. An
object contains both procedures and data representation of a given abstract entity. As
stated by D. L. Parnas [1] OOP introduces several advantages: “The benefits expected
of modular programming are: (1) managerial - development time should be shortened
because separate groups would work on each module with little need for communication:
(2) product flexibility - it should be possible to make drastic changes to one module with-
out a need to change others; (3) comprehensibility - it should be possible to study the
system one module at a time. The whole system can therefore be better designed because
it is better understood.” Furthermore, D. L. Parnas introduces the concept of software
understanding. In fact, the larger a developer team is, the more difficult it is to share
information among its members or subteams. The development team can share informa-
tion about a large software by producing its documentation. The software architecture
is an effective way to describe an large software besides the traditional natural language
documentation. The software architecture [2] is a conceptual model that represents the
components of a software system and the relations among them at an arbitrary granu-
larity level. The software architecture describes the system at a high level of abstraction
and brings several benefits to the development process. D. E. Perry [3] states “Some of
the benefits we expect to gain from the emergence of software architecture as a major
discipline are: 1) architecture as the framework for satisfying requirements; 2) architec-
ture as the technical basis for design and as the managerial basis for cost estimation and
process management; 3) architecture as an effective basis for reuse; and 4) architecture as
the basis for dependency and consistency analysis.” Nonetheless, the architecture is often
misunderstood. Especially in legacy systems, the software architecture does not reflect
the actual implementation or it is not available at all. In these cases architecture recovery
aims to retrieve the software architecture. Architecture recovery is the process of recov-
ering a candidate software architecture of a system based on the application of reverse

3



SUMMARY (continued)

engineering techniques on the raw source code. Researchers evaluates a recovered archi-
tecture by comparing it with the actual architecture. To it so the software architecture
must be available. For this reason the evaluation of an architecture recovering technique
is challenging. J Garcia et al [4] recognize this issue: “Many automated techniques of
varying accuracy have been developed to help recover the architecture of a software sys-
tem from its implementation. However, rigorously assessing these techniques has been
hampered by the lack of architectural ‘ground truths’.” Architecture recovery is the re-
search field of this work. In this thesis I report in detail the development of K-recovery,
a tool that recovers the architecture of a general software project written in a particular
OOP language. The main goal of this work is to design techniques and tools for advancing
the state of the art in the field of architecture recovery. The motivations of this work are
at the low reliability of the architecture recovery techniques currently available, and the
increasing cost, in term of money and time, of the software maintenance according to
the inaccuracy of its documentation. Also I implemented some metrics to evaluate the
recovered architectures to sidestep the lack of ground truths.

K-recovery performs architecture recovery in two independent phases a source code feature
extraction phase, and clustering phase. In the first phase the tool parses the raw source
code of the system under analysis. Then, the tool extracts classes, the interactions between
them, and their hierarchical organization. A standardized lexical analyzer performs the
source code parsing in support of this stage. K-recovery performs a static analysis of the
system. This means that the code compilation is not needed and its issues are avoided.
Furthermore, due to the static analysis approach external libraries and dependencies
are not taken into consideration during system analysis. Finally, K-recovery represents
internally the information gathered in a graph-like data structure. I call this data structure
dependencies graph. This first phase is programming language dependent. In fact, the
parser recognizes the patterns of a given programming language.

The clustering phase is programming language independent. It performs the clustering
based only upon the dependencies graph created in the previous phase. It implies that
the two phases are decoupled and replaceable. For instance, the parser can be replaced in
order to parse another programming language. At this stage K-recovery analyzes C++
projects.

In the second phase, the tool applies a customized version of the K-means clustering
algorithm that identifies the components within the system. K-recovery allows an expert
user to set some algorithm parameters in order to adjust the clustering result.

The software architecture of the analyzed systems is not always available. I recovered the
software architecture manually to evaluate the tool results. The tool is able to recognize
the MVC components of a software video game called freeablo [5]. Moreover, it recovered
with high accuracy the architecture of two complex software systems. these systems are
Wkhtmltopdf [6] and mxnet [7]. The analyzed systems contain respectively 44, 46, and
84 classes and their size is more than 10K SLOC. I compared their recovered architecture
with the one I recovered manually applying a metric that Garcia et al. [4] used for

4



SUMMARY (continued)

the same purpose. K-recovery scored an average of 75% accuracy on the architectures
recovered. Garcia et al. [4] found that the best architecture recovery tool among the ones
evaluated scored an average accuracy of 56%. About the comparison of these results,
it must be considered that Garcia et al. recovered architecture of very large software
projects, and they compared the results with the available actual architecture recovery.
Garcia et al. analyzed projects with an average size of 10M SLOC.

In the following sections I will describe in detail the algorithms and data structure applied.
Moreover, I will provide a formal definition of software component and dependencies graph
for the purposes of this work.

The rest of the thesis is organized as follows. In chapter 2 I report some previous work in
the field of architecture recovery. In chapter 3 I explain the logic behind K-recovery also
with the analysis of a toy example. In chapter 4 I show the most important implementation
details of K-recovery. In chapter 5 I show the results explaining in detail the analysis
process. Finally in chapter 6 I discuss a conclusion and some future works.

5



CHAPTER 3

PREVIOUS WORK

In this section I discuss some previous work related to the field of architecture recovery.
G Rasool et al. [8] describe a list of architecture recovery approaches. It can help to
classify and compare the techniques mentioned later in this section. Here are explained
some of these approaches.

– Data Flow based approaches.

∗ These approaches recover the architecture of a software system based on the
data flows among its entities such as classes. Based on these data flows these
approaches outline the main components of a software system and their cou-
pling.

– Knowledge based approaches.

∗ These approaches focus on the representation of imperfect knowledge to be
improved by reverse engineering process. An example of these approaches
is K-means clustering algorithm. In fact, K-means first chooses randomly the
cluster centers, and then it improves their positions through reverse engineering
process. By contrast hierarchical clustering is based on perfect knowledge. It
groups the closest observations since the first step of its algorithm in a final
way.

– Design pattern based approaches.

∗ These approaches recover the architecture of a software based on common im-
plementation practices and patterns such as “(1) implementation-level entities
that reside in the same source file, (2) entities in the same directory, (3) en-
tities from the associated body and header files (e.g., .h and .c files in C),
(4) entities that are leaves in a systems graph, (5) entities that are accessed
by the majority of subsystems, (6) entities that depend on a large number of
other resources, and (7) entities that belong to a subgraph obtained through
dominance analysis.” Garcia, Joshua [9]. These patterns are defined by do-
main experts. One application of these pattern could be the following. The
classes that are defined in the same file belong to the same component. Thus,
the identification of these patterns within the analyzed code contributes to
recovery the architecture of a given software system.

– Formal method based approaches.

6



SUMMARY (continued)

∗ G. C. Gannod and Chang [10] use formal method techniques to re-implement
a legacy procedural program to an OOP program. This work represent an
example of formal method based approach for architecture recovery. They
transforms sequences of code into formal specifications. For instance

for i := 0 to n

if a[i] <= a[i+1]

then

m := a[i+1]

[10].
It is transformed into: (∀i : 0 ≤ i ≤ n : m ≥ a[i]) [10]. This last form is used
write the software in another language, perhaps OOP, keeping its semantic.
This is an effective methodology to retrieve the software architecture at a high
level of abstraction. Then from its new representation it can be reimplemented
adopting a different programming paradigm, perhaps OOP.

– Domain based approaches.

∗ These approaches apply a reverse engineering process upon some known fea-
tures of the analyzed software to perform its architecture recovery. Domain
based approaches for architecture recovery take into consideration the domain
of the analyzed software besides its structure.

– Clustering based approaches.

∗ These approaches apply the unsupervised learning technique known as clus-
tering. it groups the software entities in sets to recover the architecture of
a system. This approach will be largely explained in the following chapter.
These are existing approaches. Most of architecture recovery tools are cluster-
ing based.

– Metrics Based approaches.

∗ These approaches apply operations research algorithms to solve the architec-
ture recovery problem. Metrics Based approaches maximize or minimize some
metrics to partition the software entities. Bunch applies a metrics based ap-
proach [11] “The objective function used in Bunch is called Modularization
Quality (MQ) and is defined as MQ =

∑k
i=1CFi. k is a partitions number of

clusters. CFi is the ‘cluster factor’ of cluster i, representing its coupling and
cohesion, and is defined as

CFi =

{
0

2µi
2µi+

∑k
i=1,j 6=i(εi,j+εj,i)

µi = 0
otherwise

7



SUMMARY (continued)

µi is the number of edges within the cluster, which measures cohesion is the
number of edges from cluster i to cluster j, which measures coupling.” [4].

First of all, the number of different approaches to the problem tells us how large is the
scope of the research in this field. I show later in this section that the current research
status does not provide a reliable solution to the architecture recovery problem. The rest
of the thesis discusses my contribution in the architecture recovery field.

G Rasool et al. [8] state that “The best features of domain based, program comprehension
based, design pattern based and clustering based recovery approaches are used to recover
the architecture of software systems under study.” Nevertheless, I combined the clustering
based approaches, domain based approaches, knowledge based approaches, and design
pattern based approaches to perform architecture recovery.

J. Garcia et al. [4] selected and compared six architecture recovery techniques. I list the
selected techniques grouped by approach type.

– Design pattern based + clustering based approach

∗ Algorithm for Comprehension-Driven Clustering (ACDC), V Tzerpos et al.
[12].

– Metrics Based approach

∗ Bunch, S Mancoridis et al. [11].

– Clustering based approach

∗ Weighted Combined Algorithm (WCA), O Maqbool et al. [13].

∗ Zone-Based Recovery (ZBR), A. Corazza et al. [14], [15].

∗ scaLable InforMation BOttleneck (LIMBO), P Andritsos et al. [16].

∗ Architecture Recovery using Concerns (ARC), J. Garcia et al. [17].

J. Garcia et al. recovered the architecture of some open source software applying each of
these architecture recovery techniques. The systems analyzed were: Arch Studio, Bash,
Hadoop, Linux, Mozilla, and OODT. Finally, they compared the recovered architecture
with the actual architecture using some cluster comparing metrics to measure the accu-
racy of their results. J. Garcia et al. [4] found that “relying upon even the top-performing
techniques alone is insufficient to reliably perform an architectures recovery in general.
This unpredictability of existing techniques, in concert with their overall unreliability, sug-
gest that effective architecture recovery is likely to require extensive manual intervention
- the very thing automated techniques have aimed to eliminate.”

The architecture recovery techniques taken into consideration by J. Garcia et al. [4] are
design pattern based, metrics based and clustering based. In average the clustering based

8



SUMMARY (continued)

techniques performed better. The analyzed clustering based techniques implement a hier-
archical clustering algorithm. “Hierarchical clustering algorithms produce a sequence of
nested partitions. [...] At each stage, the algorithm either merges two clusters (agglomer-
ative methods) or splits a cluster in two (divisive methods). The result of the clustering
can be displayed in a tree-like structure, called a dendrogram” [18]. Therefore, Hierar-
chical clustering appears to be the most appropriate clustering technique for architecture
recovery. Its advantages includes that the number of clusters is not defined in advance
because the dendrogram can provide several granularity levels of clustering. A coupling
metric drives the hierarchical clustering algorithm. However, J. Garcia et al. [4] obtained
only up to 56% accuracy for architectures recovered with a hierarchical clustering. Conse-
quently I explored a different clustering algorithm, focusing on the partitioning clustering.
“The partitional or non-hierarchical document clustering approaches attempt a flat par-
titioning of a collection of documents into a predefined number of disjoint clusters.” [19].
In particular I implemented a customized version of the K-means algorithm. “K-means
clustering is a simple and elegant approach for partitioning a data set into K distinct,
non-overlapping clusters. To perform K-means clustering, we must first specify the de-
sired number of clusters K; then the K-means algorithm will assign each observation to
exactly one of the K clusters.” [20]. The following sections illustrates how I customized
the algorithm exploiting the software engineering domain knowledge. With this approach
K.recovery scored 75% accuracy in average on the analysis of two complex projects.

9



CHAPTER 4

LOGICAL DESCRIPTION

K-recovery recovers the architecture of a C++ project. The architecture recovery process
is divided in two phases. The first performs the static parsing of the project source code
to extract its dependencies graph. The second phase runs a customized version of K-
means algorithm to detect the main components within the analyzed project. In the next
two sections I provide a definition of software component and dependencies graph. These
definitions are due since the clustering algorithm aim is to group the classes in components
and it bases its computation upon a dependencies graph. Then I explain in detail the two
phases from a logical point of view.

4.1 Definition of component

The component is a module of a software project. A software project contains different
modules, the modules contain classes in the case of OOP projects. A component performs
a specific task within the software project. The classes that are linked together to ac-
complish the same task can be grouped in the same component. For instance, the classes
that manage the database interactions are pat of the DataBaseManagment component.
In this work cluster is synonymous of component.

4.2 Definition of dependencies graph

The dependencies graph is a directed weighted graph that can be either connected or not
based on the architecture recovered. A graph is defined by the set of its nodes N and
the set of its edges or arcs E. In this case, N is the set of recovered classes, E contains
the class-to-class dependencies and hierarchical relations. Hence, there are two kind of
arcs within the dependencies graph. These arcs types are explained in the following two
subsections.

4.2.1 Definition of class-to-class dependency

The class-to-class dependency represents the instantiation of a class and it is reflected as
a weighted arc within the dependencies graph.

For instance, if class A instantiates class B once, then class B depends from A. In this
case the direction of the arc goes from A to B. Furthermore, the weight of this arc depends
on the number of instantiations. In this case the weight is one.

4.2.2 Definition of hierarchical relation

The hierarchical relation is represented as an arc of weight one within the dependencies
graph. Hierarchical dependencies reflect the project hierarchical structure. A hierarchical

10



SUMMARY (continued)

relation represents the extension of a superclass by a base class. A base class is a class that
inherits one or more entities from another class called superclass. In the dependencies
graph a base class can inherit from more than one superclass.

The arc direction goes from the base class to its superclasses. Figure 3 gives an example
of class hierarchy.

4.2.3 Definition of reachability

A class A reaches a class B within the dependencies graph if and only if there is at least
one directed path that goes from class A to class B. The path is a set of sequential class-
to-class directed dependency edges. Hierarchical relation edges are not taken into account
for the purpose of reachability. The cost of a path is the sum of the weights of its arcs.
A class A could reach a class B with more than one path.

4.2.3.1 Reachability cost

The reachability cost from a class A to a class B is the sum of the cost of all the possible
paths from class A to class B.

4.3 First phase: parsing, static analysis

The static analysis phase analyzes the source code without compiling it. The parser uses
the Flex [21] framework for lexical analysis of C++ source code to scan the source code.

As first step, the parser performs a recursive file system search for files with the following
extension:

– cpp

– h

– cc

– hh

4.3.1 Flex Syntax Scanner

Flex is an open source standardized implementation of a syntax scanner, it scans the
raw source code and produces a set of tokens related to the instructions found in the
code. Flex produces a simplification of a context-free language. Flex works with Bison to
form the Flex and Bison pattern. Bison analyzes the tokens to interpret the source code
semantic. Bison applies a grammar to check whether the syntax is correct and to compile
the source into object calls. “Flex and Bison are aging unix utilities that help you write
very fast parsers for almost arbitrary file formats. Formally, they implement Look-Ahead-
Left-Right (as opposed to ‘recursive descent’) parsing of non-ambiguous context-free (as
opposed to ‘natural language’) grammars.” [21]. For the purposes of this research Bison
is not needed.

11



SUMMARY (continued)

Flex performs a translation from source code instructions to tokens. This process is called
tokenization. The purpose of the tokenization is to simplify the raw source code in order
to better perform the semantic parsing. For instance, the token ID B represents a generic
identifier present in the code, STRING represents a generic string found in the code.

A set of regular expressions defines the code-token association. A token is generated
whenever a regular expression matches the syntax encountered by Flex within the source
code. At the end of this step all the source files are translated to their tokenized version.
Appendix A and B reports the list of the regular expression for the code-token association
and the list of the tokens used.

4.3.2 Parsing

The parser performs a recursive file system search for tokenized files after the Flex execu-
tion. The parser scans the tokens to detect: class definition and class instantiations. The
parser builds the dependencies graph.

The parser is able to recognize class scopes. A class scope is the section of code that
belongs to a class. There are two main assumptions applied on this phase. The parser an-
alyzes only the instructions that are in a class scope. This means that class instantiations
out of a class scope are ignored. The motivation of this assumption is that K-recovery
bases the architecture recovery process on the analysis of relations among classes. Fur-
thermore, it ignores external classes. This means that it ignores all the classes whose
definition is not found within the project.

4.3.2.1 Class definition detection

The parser is able to detect the definition of a C++ class based on some C++ keywords.
The most discriminant keyword for the definition of a class in C++ is class. The parser
performs a set of steps to check whether the syntax under analysis meets one of the
possible class definition patterns. The parser creates an internal representation of the
recovered class if a class definition pattern is recognized. The internal representation
collects the information recovered at this step such as class name, and its hierarchical
relations.

An example of possible class definition pattern is the following: TOK CLASS TOK ID
TOK LBRACE. These tokens match the following snippet of code: “class ClassTest {”.
Token TOK CLASS is associated to the keyword class, TOK ID represents a generic
identifier and TOK LBRACE represents the symbol “{”.

4.3.2.2 Class instantiation detection

Class instantiation detection is analogous to the class definition detection. It is syntax
based. A set of patten based rules recognizes the syntax under analysis. The parser recov-
ers the name of the class instantiated and the class scope in which it is instantiated. Then
it creates an internal representation of the instantiated class. Then the parser creates a
class-to-class dependency relation between the two classes within the dependencies graph.

12



SUMMARY (continued)

Figure 1 gives an example of class-to-class dependencies. The parser considers this class
external if its definition is not found within the analyzed project.

An example of possible class instantiation pattern is the following: TOK ID TOK ID
TOK SEMI. These tokens match the following snippet of code: “ClassA a;”. The token
TOK ID represents a generic identifier, TOK SEMI represents the symbol “;”.

The previous sequence of tokens match also other C++ patterns that are not a class
instantiation. False positives are avoided thanks to the external tag. A false positive class
will be considered external since its definition will not be included within the analyzed
project source files.

4.4 Graph renderer

A web application renders the dependencies graph. The application implements a Force-
Directed Graph [22]. The graph renderer aims to check the architecture recovery result.
Figure 1, Figure 2, and Figure 3 show examples of rendering. Classes are represented
by shapes containing their names. A class-to-class dependency arc is represented by a
gray line that goes from the top of the instantiated class and ends on the bottom of the
class that instantiated it. The arc weight is not represented. Superclasses are highlighted
in green. Hierarchical relations are represented by a green line and the base classes are
bordered in green.

Graph renderer also visualizes the clusters. Each cluster has a different color. The cluster
center class has a thicker white border. Figure 8 is an example of cluster rendering.

Figure 1: This figure shows the dependencies graph.

13



SUMMARY (continued)

Figure 2: This figure shows a more complex snippet.

4.5 Second phase: clustering algorithm

In this phase K-recovery assigns each class to a component. In order to do it K-recovery
applies a customized version of K-means clustering algorithm on the dependencies graph.

This section gives a definition of the K-means clustering algorithm. Furthermore, the K-
means clustering algorithm customization is explained in detail including the assumptions
and metrics adopted. Finally I discuss the coverage issue and a method to solve it. This
K-covering limitation causes that some of the analyzed classes can not be assigned to any
cluster due to some particular topology conditions.

4.5.1 K-means clustering algorithm

The K-means clustering algorithm seeks to partition n observation into k clusters. The
number of clusters is decided in advance. As first step K-means selects randomly k
centers among the observations. Each center represent a cluster. Then K-means assigns
each observation to the cluster with the nearest mean at each iteration. Then it adjusts
the centers position to the center of its observations at each iteration. K-means uses a
proximity metric to evaluate the distances between two observations. K-means evaluates
a convergence function at each iteration. Table I shows the K-means algorithm steps.

4.5.2 K-means customization and assumptions

K-means is usually applied to mono dimensional observations that can lay on a Carte-
sian coordinate system. In fact, K-means evaluates distances between observations. The

14



SUMMARY (continued)

Figure 3: This figure shows the rendering of a dependencies graph.

TABLE I: K-MEANS CLUSTERING ALGORITHM

k-means clustering algorithm (number of clusters):
pick number of clusters observations as centers
do until convergence
assign every observation to its nearest cluster center
move each cluster center to the center of its assigned items
evaluate convergence
endfor

return clusters data structure

domain of this research is far from the concept of Cartesian coordinate system. The obser-
vations are the recovered classes, and the number of centers is the number of components.
Nonetheless, the dependencies graph can provide information such us distance between
nodes. The idea is to exploit the dependencies graph topology and weights in order to
measure the proximity between nodes.

The initial centers selection is crucial for the clustering result. A wrong initial center
selection can bring some issues such as bad clustering or the algorithm could not converge.
K-means chooses the centers randomly because the observations are mono dimensional
data, it makes difficult the application of a heuristic for an optimal initial centers selection.

15



SUMMARY (continued)

Data recovered from the analyzed project are multi dimensional. It implies that a pre-
processing phase could analyze the observation features and select the optimal initial
centers. Furthermore, there is no need to adjust the cluster centers during the clustering
since they are considered optimal. This is the strongest assumption of this work. In fact,
the customized K-means algorithm applies a heuristic that selects k centers at the first
step.

After the center selection, the algorithm evaluates the proximity of each class to each
center. It assigns each class to the closest cluster center. The algorithm converge when
the proximity of all the classes has been evaluated. Proximity is evaluated based on the
reachability cost defined earlier in this chapter.

The algorithm does not take into account the hierarchical relation edges during the clus-
tering. These edges will be considered in the post-processing phase which is explained
later in this chapter. In the rest of the thesis cluster center and center are synonymous.

4.5.3 Center heuristics

Center heuristic is based on the assumption that the most essential classes in an OOP
software project are the ones that uses the greatest number of other classes. This sec-
tion presents two heuristics: the outgoing arcs based heuristic and the reachability based
heuristic. The latter center heuristic takes into consideration the number of classes reach-
able by a given class to maximize the coverage.

These heuristics are exclusive, only one of them is applied at each algorithm execution.
The expert user decides which center heuristic to use based on the analyzed project
characteristics.

4.5.4 Center detection: outgoing arcs based

The outgoing arcs based heuristic selects as centers the classes that instantiate the greatest
number of other classes. First the heuristic sorts all the classes based on the number of
classes instantiated, then it selects the first k classes as centers.

The outgoing arcs based heuristic has two versions.

4.5.4.1 Instance fan-out

This version of the outgoing arcs based heuristic takes into consideration the number of
class instantiations contained in a class. For example: if class A instantiates class B twice
and class C once, Instance fan-out(A) = 3

4.5.4.2 Class fan-out

This version of the outgoing arcs based heuristic takes into consideration the number of
different classes instantiated by a class. For example: if class A instantiates class B twice
and class C once, Class fan-out(A) = 2

16



SUMMARY (continued)

4.5.5 Center detection: reachability based

This heuristic is based on the reachability definition stated at the beginning of this chapter.
This heuristic chooses as centers the classes from which it is possible to reach the greatest
number of other classes. The set of classes reached by two classes could be overlapped.
For this reason the reachability based heuristic has two versions. The first does not take
into account the overlap, the second avoid the overlap.

4.5.5.1 Reachability with overlap

This version first sorts all the classes based on the number of other classes reached. Then
it selects the first k class of the sorted list as centers.

4.5.5.2 Reachability no overlap

This version sorts all the classes based on the number of other classes reached. Then it
selects the first class in the sorted list as center, then selects the next k-1 classes in the
sorted list that reach different classes from the ones reached by the classes already chosen
as centers. Finally the sets of classes reached by each center class are disjoined.

4.5.6 Proximity metric

The customized K-means applies a proximity metric based on the reachability cost to
measure distances between classes. The reachability cost indicates how strong two classes
are bonded.

The first version of this metric was only based on the reachability cost. Some first exper-
iments showed that a center class with high weighted outgoing arcs could easily include
all the classes in its cluster. It produced very unbalanced clusters in term of number of
classes included. The second and final version introduces a decreasing factor based on the
number of arcs that separates the two classes under proximity evaluation. This version
reflects the idea that if a center class is linked to a target class through many other classes,
then the target class may belong to another cluster. The second version partitions more
equally the classes within the clusters.

However, the expert user can choose which of these two version to apply. These two
metrics are exclusive, only one of them can be applied at each algorithm execution.

4.5.6.1 First version: weight based

This version calculates the proximity as the sum of the weights of all the possible weighted
and directed paths between two classes. Cycles are not taken into account.

4.5.6.2 Second version: weight and step based

This version of the proximity metric introduces a decreasing factor to the previous version.
It is so defined:

17



SUMMARY (continued)

weight step based proximity(A,B) = weight based proximity(A,B)× 1

eλ
(4.1)

Where λ is the number of edges of the shortest path between the two classes. The shortest
path is calculated as the directed path that links two classes with the smallest number of
arcs among all the possible paths.

4.6 Architecture recovery of a toy example

This section shows in detail the execution of K-recovery. It shows how K-recovery recovers
the architecture of a toy software example. The idea behind this software example is to
simulate an architecture in which three group of classes cooperate sequentially. I assumed
that a class A calculates some value using a set of classes (U, W, Z, Y ). This is the first
component. Then A calculates another value using a class B which uses another set of
classes to perform the task (G, H, J ). This represent the second component. Furthermore,
B also uses class C in support of its task. Class C operates with a group of classes to
produce the requested result (K, I, T, W ). This represent the third component. Moreover,
I assumed that the classes whitin each compoenet cooperate among them. I expect
K.recovery to recover three clusters of classes: (A, U, W, Z, Y ), (B, G, H, J ), and (C, K,
I, T, W ).

4.6.1 Software example implementation and analysis

The example has 14 classes organized in three logical components. The source code is
given as input to K-recovery. Appendix C contains the toy example source code. Flex
converts the source files into their tokenized version. Appendix D contains a partial
tokenization class A.

4.6.2 Parsing

The parser scans all the tokenized files produced by Flex and generates the dependencies
graph. Here is the parser output for class A.

A size: 9

files:

../source/componentBasedExample/A.cpp.xml at 1

is superclass

instances:

B type: basic - at line 5 in ../source/componentBasedExample/A.cpp.xml

U type: cpy_constr - at line 6 in ../source/componentBasedExample/A.cpp.xml

W type: pointer - at line 7 in ../source/componentBasedExample/A.cpp.xml

Z type: basic - at line 8 in ../source/componentBasedExample/A.cpp.xml

Y type: constr - at line 9 in ../source/componentBasedExample/A.cpp.xml

18



SUMMARY (continued)

Where size is the class size in terms of SLOC, files is the list of tokenized source files
and line numbers in which the class has been detected. Then the parser tagged class A
as superclass because class W and U extend class A. Finally there is the list of all the
classes instantiated by A. For each instantiation the parser is able to recognize the instan-
tiation type, the line and the file in which the instantiation is located within the analyzed
project. These relations and dependencies stored in the parser internal representation of
the analyzed project classes constitute the dependencies graph.

A multiple instantiation of the same class would be listed within the instances list. The
class-to-class dependency arc weights are calculated based on the occurrence of the in-
stantiated class in this list. For this example the weights of each class-to-class dependency
arc is one.

4.6.3 Clustering algorithm

I executed the clustering algorithm with the following configuration:

– Center detection heuristic: outgoing arcs based, Instance fan-out

∗ For this example instance fan-out and class fan-out produce the same clustering
results because all the arcs are weighted one within the dependencies graph.

– Proximity metric: weight and step based

– Number of clusters: 3

4.6.3.1 Center detection

The algorithm applies the center heuristic selected by the user. Thus, the algorithm sorts
the classes based on the number of classes they instantiate. Then, it selects the first k
classes, in this case the first three are: classes A, B, and C. Table II represents the sorted
classes list for this example.

4.6.3.2 Proximity calculation

After the centers selection, the algorithm calculates the proximity from each cluster center
to each class. The algorithm assigns each class to the cluster of the closest cluster center.

Weight and step based proximity depends from reachability cost between two classes and
the number of steps of the shortest path that links the two classes (Equation 4.1). A
proximity equal to zero indicates that there is no connection between the two classes
under evaluation.

Table III represents the proximity values for this example.

4.6.3.3 Clustering result

Figure 8 shows the clustering result for this example. As expected, K-recovery recovered
the three components presented at the beginning of this section.

19



SUMMARY (continued)

TABLE II: CLASS LIST FOR CENTER DETECTION

Class Instantiated classes

A B, U, W, Z, Y
B C, G, H, J
C K, I, T, V
U W, Z, Y
K I, T, V
I K, T, V
T I, K, V
V I, T, K
Z W, U, Y
W Z, Y
Y W, U
G H, J
H G, J
J G, H

4.7 Clustering coverage issue

The cluster algorithm could not assign some classes to any cluster in some cases. It
happened because these classes could not be reached by any center. In most of the cases,
the not assigned classes were abstract classes. An abstract class in OOP is a class that
defines a class structure but is never instantiated. Abstract classes are extended by base
classes to inherit their structure such as methods and attributes.

In the first experiments the clustering coverage was 70% in the best cases, it means that
70% of classes were assigned to a cluster, the rest were not assigned. A detailed definition
of coverage is reported later.

4.7.1 Post-processing: Enhancing the clustering coverage

A post-processing function integrates the clustering algorithm that performs a set of
heuristics to increase the clustering coverage. The post-processing function performs a
set of steps that are part of an heuristic. The rest of the section shows, with an example,
that when the clustering algorithm performs the post-processing, the coverage raises up
to 90% or 100%. The clustering coverage enhancement is due to the application of the
following steps:

1. A superclass that is not included in any cluster is assigned to the cluster to
which belongs the class that extends the superclass.

20



SUMMARY (continued)

TABLE III: CLASS LIST FOR CENTER DETECTION

Center Class Reachability cost steps proximity

A U 26 1 9.56
B U 0 0 0.0
C U 0 0 0.0

A W 38 1 13.98
B W 0 0 0.0
C W 0 0 0.0

A Z 26 1 9.56
B Z 0 0 0.0
C Z 0 0 0.0

A Y 38 1 13.98
B Y 0 0 0.0
C Y 0 0 0.0

A G 16 2 2.17
B G 11 1 4.05
C G 0 0 0.0

A H 16 2 2.17
B H 11 1 4.05
C H 0 0 0.0

A J 16 2 2.17
B J 11 1 4.05
C J 0 0 0.0

A K 81 3 4.03
B K 65 2 8.8
C K 49 1 18.03

A I 81 3 4.03
B I 65 2 8.8
C I 49 1 18.03

A T 81 3 4.03
B T 65 2 8.8
C T 49 1 18.03

A V 81 3 4.03
B V 65 2 8.8
C V 49 1 18.03

21



SUMMARY (continued)

2. A base class that is not assigned to any cluster is assigned to the cluster to
which its superclass belongs.

3. The classes that are not of the previous types and are not included in any
cluster are assigned to their nearest cluster.

4. The rest of the not covered classes are assigned to the cluster to which belong
the other classes in the same directory.

4.7.2 Post-processing application

In the rest of the thesis the cluster center name will also be the cluster name. This
subsection shows the application of the coverage heuristics.

Figure 4 shows the clusters when the post-processing is off. D and F are the cluster centers,
since they do not instantiate any class the clustering algorithm can not reach other classes
to be included in the clusters. The initial coverage is 18%. The post-processing assign
the rest of the classes to a cluster by performing the following steps:

1. First the post-processing calculates the distance from the not assigned classes
to the clusters. In particular, the nearest cluster to the class A and B is the
cluster F. The cluster D is nearest cluster to the class E and C. This step takes
into consideration only the dependencies edges (gray ones) and it ignores the
hierarchical edges (green ones). Figure 5 shows the result of this step. After
this step the coverage goes from 18% up to 55%. Application of heuristic 3.

2. This step assigns the superclasses to the cluster which most of their extended
classes belong to. In the Figure 5 SuperClass2 is extended by four classes, but
only three are part of a cluster. In particular classes E and C are part of the
cluster D, class B is part of the cluster F. Hence, the right class for SuperClass2
is the cluster D. Application of heuristic 1. Then this step includes SuperClass1
to the cluster F and finally SuperClass3 to the cluster D. Figure 6 shows the
result of this step. After this step the coverage goes from 55% up to 81%.

3. This step applies the heuristic 2. Hence, the step assigns the class G to the
cluster D. After this step the coverage goes from 81% up to 91%.

4. Finally, this step assign the disconnected class H to the cluster D. In this case
only one directory contains all the source code, so all the classes belong to
the same directory. The class H is assigned to the cluster D because in the
directory most of the classes belong to the cluster D. Application of heuristic
4. This step raises the coverage up to 100%. The Figure 7 shows the final
result.

22



SUMMARY (continued)

Figure 4: Coverage toy example: Post-processing off.

23



SUMMARY (continued)

Figure 5: Coverage toy example: After the application of heuristic 3.

24



SUMMARY (continued)

Figure 6: Coverage toy example: After the application of heuristic 1.

25



SUMMARY (continued)

Figure 7: Coverage toy example: After the application of heuristic 2 and 4.

26



SUMMARY (continued)

Figure 8: This figure shows the clustering of a toy example.

27



CHAPTER 5

IMPLEMENTATION DETAILS

This chapter presents the K-recovery modules and data structures. In particular in the
first section I explain the benefit of the modularization and the adopted technologies.
Then I present the data structures used to keep an internal representation of the analyzed
classes and their relations.

5.1 K-recovery modules

The main scripts parser.py and graph.py are written in Python. Furthermore, Flex is
compiled in C and the graph renderer is developed in JavaScript. K.recovery uses JSON
and XML for data representation.

The previous chapter explains that K-recovery preforms architecture recovery in two
phases. These two phases involve two different software modules. K-recovery has two
independent modules that operate sequentially. The first module is programming lan-
guage dependent and performs the static analysis. It parses the C++ project raw source
code. The second module runs a clustering algorithm to detect the project components.
The first module produces the dependencies graph file as output as a JSON file with a
predefined structure. The second module takes the dependencies graph file as input. This
organization allows the replacement of the first module as long as its output meets the
JSON predefined structure. This is convenient since the first module is programming
language dependent. Moreover, the syntax Flex analysis is important because it speeds
up the parsing process and it simplify the source code. In fact, Flex act like a filter, it
translate into tokens only the keywords and features that are relevant for parsing process.
Appendix A and B reports the list of regular expressions and tokens used.

Furthermore, a JavaScript application, called the renderer, performs a graphical visual-
ization of the result.

Figure 9 illustrates the main modules and sub-modules explained previously in this sec-
tion. Moreover, the diagram represents the input and output interactions.

5.2 Data structures

This section presents the K-recovery data structures.

5.2.1 StaticClass

K-recovery represents internally the classes recovered from the analyzed project. The
Python class StaticClass represents the C++ class within K-recovery. The parser creates a
StaticClass object for each class recovered. Here are listed the most significant StaticClass
fields:

28



SUMMARY (continued)

Figure 9: This diagram shows the K-recovery information flow.

29



SUMMARY (continued)

– name

∗ name of the class. This field is used as primary key for research purposes.

– file

∗ list of paths to the files that contain all the implementations of the class.

– external

∗ true if the class is used within the project but is part of an external library,
false otherwise.

– superclasses

∗ list of the super classes if any, it contains other StaticClass object.

– instances

∗ list of all the instantiated instances, it contains other StaticClass object.

– is superclass

∗ true if the class is a superclass in the C++ project, false otherwise.

5.2.2 Recovered classes list

The recovered classes list contains the classes recovered. The parser populates it dynami-
cally during the parsing phase. Once a class is recovered the parser stores its information
in a new StaticClass object and appends it to the recovered classes list.

5.2.3 Tokenized file

K-recovery analyzes the tokenized version of the project source files sequentially. The
Python class Tokenized file manages the operations on the tokenized file. It provides a
cursor that returns the current token within the tokenized file. The cursor points to the
first token within the tokenized file initially. The parser moves the cursor next during the
parsing.

5.2.3.1 Token attributes

The parser scans the tokens to parse the code, for each token it can access to these
information:

– Line number

∗ It represents the number of line within the source file where the token has been
generated.

30



SUMMARY (continued)

– Text

∗ Portion of source code represented by the token.

– Token name

∗ It is the token name such as TOK ID, TOK SEMI etc.

5.2.4 Dependencies graph

StaticClass are the graph nodes and StaticClass pointers to other StaticClass objects
are the graph edges. Each StaticClass is linked to other StaticClass objects by its lists
superclasses or instances. These lists are attributes of StaticClass as explained previously
in this section.

31



CHAPTER 6

RESULTS

This chapter presents the architecture recovered with K-recovery and their evaluations.
Here follows the three analyzed systems description. The systems are open source projects
available on GitHub [23]. GitHub provides free public repository hosting. This chapter
discusses the MVC recovery of Freeablo [5], which is a video game. Moreover, I man-
ually recovered the architecture of Wkhtmltopdf [6], which is a software that converts
HTML pages into PDF or images. Then I compared it with the Wkhtmltopdf architec-
ture recovered by K-recovery. I applied Cluster-to-Cluster Comparison to evaluate the
architecture recovered. The recovered architecture for Wkhtmltopdf scored a Cluster-to-
Cluster Comparison of 57%. Different K-recovery settings configurations produced a set
of possible architectures for Wkhtmltopdf. The result reported is related to the architec-
ture that performed better in the comparison. Furthermore, the last system analyzed is
a deep learning framework called mxnet [7]. I recovered its architecture manually and I
compared it with the one recovered by K-recovery scoring 93% accuracy.

Garcia et al. [4] in their research reported that the architecture recovery tools recovered
six architectures with an accuracy of 33% in average. Moreover the architecture recovery
tool that performed better scored 55% accuracy as average accuracy among the six archi-
tectures recovered. Garcia et al. [4] recovered architecture of large software projects. In
average their analyzed software have 10M SLOC. Freeablo, Wkhtmltopdf, and mxnet av-
erage dimension is 10K SLOC. K-recovery failed on the analysis of large software projects.
It may be due to its scripting implementation that is slower and more memory consuming
than a complied implementation. Nonetheless its results are significant because Cluster-
to-Cluster Comparison value does not depend of the analyzed software size.

I based the manual architecture recovery on meaningful class names, comments, C++
namespaces, and folders. Furthermore, I took into consideration the source file organiza-
tion within the file system. After this analysis I decided a possible number of components
and ran K-recovery. In Freeablo I found an MVC organization, thus I recovered three
logical components. In Wkhtmltopdf and mxnet I found some functional components
that I will discuss in the next sections. Furthermore, in the rest of the chapter, the K-
recovery components have a ‘K-’ prefix to be differentiated from the manually recovered
components.

32



SUMMARY (continued)

6.1 Cluster-to-Cluster Comparison

Cluster-to-Cluster Comparison (c2cmeas) is an accuracy metric adopted by Garcia et al.
[4] to evaluate the architecture recovered accuracy. C2cmeas is so defined:

c2cmeas(A,B) =
|A ∩B|
|A|

× 100% (6.1)

Where A is the set of classes grouped in a K-recovery cluster. B is the set of classes
grouped in a cluster of the ground truth architecture.

6.2 Freeablo: MVC recovery

This software is an action role-playing video game implemented in C++. It organizes its
classes in an MVC paradigm.

Scalable and flexible software projects that involve a GUI organize their classes in three
logical components. These components are Model View Control. This organization allows
the developers to work independently on each component. The model component holds
the data structures. While the control component manages the interactions between the
other two components. Furthermore the view component is often not strongly coupled
to the other two components. This means that the view component could be easily
replaced by a different view component to manage the GUI on multiple type of devices.
By contrast, control and model components are often more coupled.

The next two sessions show comparison between the manual architecture recovered and
the K-recovery architecture recovered. The manual architecture recovered from Freeablo
is partial because of the lack of discriminant features in the project. However the classes
recovered are enough to outline the MVC components.

6.2.1 Manual architecture recovery

In this software I found an MVC organization of its classes. I grouped the most significant
classes as follow:

– View component

∗ MainWindow

∗ GraphicsPage

∗ Settings

∗ Page

∗ PlayPage

– Model component

∗ World

33



SUMMARY (continued)

∗ Actor

∗ Position

∗ Monster

∗ Player

– Control component

∗ Renderer

∗ ThreadManager

∗ Level

∗ LevelObjects

∗ TileSet

6.2.2 K-recovery architecture recovery

K-recovery recovered the following components:

– K-View component (center: MainWindow)

∗ MainWindow

∗ MainWindow

∗ GraphicsPage

∗ Settings

∗ PlayPage

∗ ProcessInvoker

∗ Page

– K-Model component (center: World)

∗ World

∗ Position

∗ Actor

∗ Monster

∗ World

∗ Player

∗ DiabloExe

∗ FAFile

∗ Npc

∗ FAIOFileInterface

∗ RocketSDL2Renderer

34



SUMMARY (continued)

∗ RocketSDL2SystemInterface

– K-Control component (center: Renderer)

∗ Renderer

∗ RenderState

∗ TileSet

∗ FASpriteGroup

∗ Level

∗ Tileset

∗ SpriteCache

∗ SpriteGroup

∗ SpriteManager

∗ CelFile

∗ Pal

∗ Dun

∗ MinPillar

∗ Min

∗ Sol

∗ LevelObjects

∗ ThreadManager

∗ SpriteCacheBase

∗ Room

∗ CelFrame

K-recovery recovered the MVC successfully. It grouped the most significant classes man-
ually detected in the right logical component. Figure 10 shows the architecture recovered

K-recovery recognizes a high coupling between the control and model components and a
low coupling between view components and the other components. It reflects the idea
that the view component is less bonded to the other components, while model and control
strongly cooperate together.

K-recovery measures the coupling within the range [0-1]. This value represents how much
two clusters are bonded to each other. 0 means that the two clusters are not linked at all,
while 1 means that the two clusters are strongly bonded. Here are the coupling values for
the MVC components recovered:

– Control - Model: 0.9

– Control - View: 0

35



SUMMARY (continued)

– Model - View: 0

In this case the view component seems completely disconnected to the other two. It is
due to the fact that the parser does not recognize any link among these components. It
is plausible because the view component is often instantiated by the main C++ function
which is not in the scope of any class.

6.3 Mxnet: architecture recovery

Mxnet is a deep learning framework. This is the largest project analyzed. It contains
84 classes and its size is 17K SLOC. I manually recovered 5 logical components. The
documentation available for this project helped me to have a good understanding of the
function of the main classes. Where the documentation was less detailed I relied to the
source file organization and the class names.

6.3.1 Manual architecture recovery

I identified the following components: IO, Engine, Storage, Graph, Utilities.

IO is the component that manages the input output operations. The project organizes
these classes in a folder called io. I assumed that the classes within this folder constitute
the IO component. The documentation did not report any information about these classes.
Furthermore, the classes within the folder engine are part of the Engine logical component
and the documentation supported this assumption in this case. The engine component
manages the parallel execution of threads. For this reason I assigned to this component
also the classes whose name contained the word thread. Furthermore, the documentation
reports a component that handles the storage across multiple devices and the main class is
called Storage. I assumed that all the classes in storage folder may belong to the Storage
component. This assumption is reinforced by the fact that all these classes names contain
the word storage. Moreover the documentation reports a component that is used to
represent a dynamically generated symbolic computation graph, its main class is called
Symbol. I grouped all the classes within the folder symbol in the Graph component. Even
in this case all the classes names contain the word graph. Finally I considered the rest of
the classes utility classes and assigned them to the Utility component. The motivation
of this assumption is that the rest of the classes represent less significant data structures
and operations on them. In fact, the folders containing these classes are kvstore (key-
value store), ndarray, operator, and common. Table IV shows the manually recovered
components and their classes.

6.3.2 K-recovery architecture recovery

K-recovery recovered successfully most of the manually recovered components. The
cluster-to-cluster accuracy is 93%.

However K-recovery wrongly considered GraphExecutor class as the center class of K-
Utility component. GraphExecutor is part of Graph component instead. Figure 11 shows
the recovered architecture.

36



SUMMARY (continued)

Figure 10: This figure shows the Freeablo recovered architecture.

37



SUMMARY (continued)

Table V represent the K-recovery recovered architecture. In each K-component the symbol
‘×’ indicates that the class is not present in the related manually recovered component.
Furthermore c2cmeas is calculated for each component.

6.4 Wkhtmltopdf: architecture recovery

Wkhtmltopdf is a command line tool that converts an HTML page into a PDF file or into
an image. It contains 46 classes and its size is 12K SLOC. The documentation for this
project does not give any information about the project composition in term of logical
components. Nonetheless I was able to recover five logical components. I based the
architecture recovery on the class names and the folder where they were located.

6.4.1 Manual architecture recovery

Wkhtmltopdf download an HTML page then it converts it into PDF or image. Thus I
expected a Network component, a PDF Converter component, and an Image Converter
component. Furthermore the tool should interact with the command line for input output
purposes. Hence I expected a IO component. The source files organization confirmed my
ainitial ssumptions. In fact, the project contains a pdf and an image folder. Furthermore
under lib folder I found classes related to the Internet connection and under lib folder
I found classes related to the command line input output operations. Moreover I found
classes that perform the Outline of the web page for the PDF conversion. Finally I found
five components: Image Converter, IO, Network, Outline, PDF Converter. Table VI
represents the portion of classes that I was able to recover.

6.4.2 K-recovery architecture recovery

K-recovery recovered successfully most of the components. However K-recovery did not
recognize the Outline component. Furthermore the clustering is unbalanced, K-PDF
Converter is way larger than K-Image Converter. Nonetheless K-PDF Converter includes
all the manually recovered classes involved in the PDF conversion. In this case K-recovery
scored 57% accuracy. Table VII shows the K-component and their cluster-to-cluster
accuracy value. Figure 12 shows the architecture recovered.

6.5 Cluster evaluation metrics

K-recovery calculates some metrics at the end of the architecture recovery process. These
metrics evaluates the quality of the clusters obtained. They take into account different
aspects such as percentage of classes clusterized, source file organization, cluster cohesion,
and cluster coupling. In the following sections I give a definition of these evaluation
metrics. The system calculates the value of fitness, basic cohesion, and advanced cohesion
for each cluster. By contrast, coupling values is a matrix, thus it refers to all the clusters.
Furthermore, a good clustering result should have a high cohesion and a low overall
coupling. It means that the classes within the clusters are strongly bonded together while
the clusters are slightly bonded.

These metrics do not affect in any way the architecture recovery process. They are only
provided to the K-recovery user to better understand the clustering result.

38



SUMMARY (continued)

TABLE IV: MXNET MANUALLY RECOVERED COMPONENTS

Engine IO Graph

CallbackOnComplete IIterator GraphExecutor
Engine ImageAugmenter GraphStorageAllocator
final ImageLabelMap Node
MXAPIThreadLocalStore ImageNormalizeIter StaticGraph
StreamManager ImageRecordIOParser Symbol
ThreadedEngine ImageRecordIter
ThreadedEnginePerDevice ImageRecParserParam
ThreadedEnginePooled InstVector
ThreadedVar
ThreadPool
Var

Utilities Storage

ActivationOp Executor CPUDeviceStorage
ActivationProp FlattenProp GPUDeviceStorage
BackwardOpWrapper FnProperty KVStore
BatchLoader FullyConnectedOp KVStoreDevice
BatchNormOp FullyConnectedProp KVStoreLocal
BatchNormProp LeakyReLUOp PinnedMemoryStorage
ConcatOp LeakyReLUProp Storage
ConcatProp LocalResponseNormOp StorageImpl
Context LocalResponseNormProp StorageManager
ConvolutionOp NDArray
ConvolutionProp NDArrayFunction
CuDNNActivationOp Operator
CuDNNConvolutionOp OperatorProperty
CuDNNLocalResponseNormOp Opr
CuDNNPoolingOp PoolingOp
DropoutOp PoolingProp
DropoutProp ReshapeOp
ElementWiseBinaryOp ReshapeProp
ElementWiseBinaryOpProp ResourceManager
ElementWiseSumOp ResourceManagerImpl
ElementWiseSumProp ResourceManagerImpl
SliceChannelOp SliceChannelProp
SoftmaxOp SoftmaxProp

39



SUMMARY (continued)

TABLE V: MXNET K-RECOVERY RECOVERED COMPONENTS.

K-Engine K-IO K-Graph

CallbackOnComplete × BatchLoader Node
Engine IIterator Symbol
final ImageAugmenter

× FnProperty ImageLabelMap
× Opr ImageNormalizeIter

StreamManager ImageRecordIOParser
ThreadedEngine ImageRecordIter
ThreadedEnginePerDevice ImageRecParserParam
ThreadedEnginePooled InstVector
ThreadedVar MNISTIter
ThreadPool MNISTParam
Var PrefetcherIter

TensorVector

c2cmeas = 10/12× 100 = 83% c2cmeas = 92% c2cmeas = 100%

K-Utilities K-Storage

ActivationOp × GraphStorageAllocator CPUDeviceStorage
ActivationProp LeakyReLUOp GPUDeviceStorage
BackwardOpWrapper LeakyReLUProp PinnedMemoryStorage
BatchNormOp LocalResponseNormOp Storage
BatchNormProp LocalResponseNormProp StorageImpl
ConcatOp MXAPIThreadLocalStore StorageManager
ConcatProp NDArray
Context × KVStore
ConvolutionOp × KVStoreDevice
ConvolutionProp × KVStoreLocal
CuDNNActivationOp Operator
CuDNNConvolutionOp OperatorProperty
CuDNNLocalResponseNormOp PoolingOp
CuDNNPoolingOp PoolingProp
DropoutOp ReshapeOp
DropoutProp ReshapeProp
ElementWiseBinaryOp ResourceManager
ElementWiseBinaryOpProp ResourceManagerImpl
ElementWiseSumOp SliceChannelOp
ElementWiseSumProp SliceChannelProp
Executor SoftmaxOp
FlattenProp SoftmaxProp
FullyConnectedOp × StaticGraph
FullyConnectedProp NDArrayFunction

× GraphExecutor

c2cmeas = 89% c2cmeas = 100%

40



SUMMARY (continued)

Figure 11: This figure shows the mxnet recovered architecture.

41



SUMMARY (continued)

Figure 12: This figure shows the Wkhtmltopdf recovered architecture.

42



SUMMARY (continued)

TABLE VI: WKHTMLTOPDF MANUALLY RECOVERED COMPONENTS

Image Converter IO Network

ImageConverter ArgHandler MultiPageLoaderPrivate
ImageConverterPrivate CommandLineParserBase MyCookieJar
ImageGlobal HtmlOutputter MyNetworkAccessManager
MyImageConverter ImageCommandLineParser MyQWebPage

ManOutputter Web
Outputter LoaderObject
PdfCommandLineParser
TextOutputter

Outline PDF Converter

Outline MyPdfConverter
OutlineItem PdfConverter
OutlinePrivate PdfConverterPrivate

PdfGlobal
PdfObject
TableOfContent

6.5.1 Coverage

It indicates the percentage of classes assigned to a cluster. At the end of the clustering
process the algorithm checks whether some classes are not assigned to any cluster yet.
The target is to obtain coverage equal to one. The coverage is so defined:

coverage =
number of classes assigned

total number of classes
(6.2)

6.5.2 Fitness value

This metric is based on the assumption that the classes of each component should be in
the same folder. This is an assumption that is not always true. Many developers do not
organize the classes of a component in the same folder. However in Freeablo classes of the
same component were mostly organized in the same folder. This metric provides a value
within the range [0-1], where 1 means that all the classes in a cluster are located in the
same folder. By contrast, when this value is closer to 0 it means that the classes of the
cluster are located in different folders.

43



SUMMARY (continued)

TABLE VII: WKHTMLTOPDF K-RECOVERY RECOVERED COMPONENTS.

K-Image Converter K-IO K-Network

ImageConverter ArgHandler MultiPageLoaderPrivate
ImageConverterPrivate CommandLineParserBase MyCookieJar
ImageGlobal ConverterPrivate MyNetworkAccessManager

× LoaderObject HtmlOutputter MyQWebPage
MyImageConverter ImageCommandLineParser

ManOutputter
Outputter
PdfCommandLineParser
TextOutputter

× Web

c2cmeas = 80% c2cmeas = 80% c2cmeas = 100%

K-Outline K-PDF Converter

ResourceObject CropSettings TempFile
HeaderFooter PdfConverterPrivate
LoadGlobal PdfGlobal
LoadPage PdfObject
Margin ProgressFeedback
MultiPageLoader Proxy
MyLooksStyle Reflect
MyPdfConverter ReflectClass
Outline ReflectImp

× OutlineItem ReflectSimple
× OutlinePrivate Size
× PageObject TableOfContent

PdfConverter

c2cmeas = 0% c2cmeas = 24%

44



SUMMARY (continued)

6.5.3 Basic cohesion value

This metric measures how much the classes of a cluster are bonded together. To calculate
the basic cohesion the algorithm counts all the outgoing arcs of each class of the cluster
and divide it by the number of classes in the cluster.

basic cohesion(cluster) =

∑
class∈cluster class.number outgoing arcs

|cluster|
(6.3)

6.5.4 Advanced cohesion value

This metric is a variant of the basic cohesion value. It takes into account only the outgoing
arcs directed to an internal class. An internal class is a class that is part of the cluster
under analysis. This cohesion value is more significant than the basic one. In average this
value is lower than the basic one.

advanced cohesion(cluster) =

∑
class∈cluster class.number outgoing internal arcs

|cluster|
(6.4)

6.5.5 coupling values

This metric produces a triangular matrix. The matrix represent the coupling values of
every couple of clusters within the clustering result. The coupling between two classes
is evaluated as the ratio between the arcs between the two clusters and all the cluster
outgoing arcs. For example, cluster A is connected to cluster B with one arc, cluster A is
also connected to C with another arc. Then the coupling is calculates as follows:

coupling(A,B) =
arcs between A and B

arcsA + arcsB
=

1

2 + 0
= 0.5 (6.5)

45



CHAPTER 7

CONCLUSION

Architecture recovery field is a large research domain that needs to be explored. This
work proposes K-recovery, a tool for architecture recovery that implements a partitioning
clustering algorithm while most of the architecture recovery tools apply a hierarchical
clustering technique. It means that K-recovery could produce completely novel results
compared with the ones produced by the existing tools. In this thesis I compared K-
recovery performance with the existing tools performance. The result of this comparison
must be well analyzed. K-recovery scored in average 75% accuracy. Furthermore K-
recovery was able to recover an MVC from a software video game. Garcia et al. [4]
achieved 56% accuracy in the best case with the best tool under analysis. I applyed
the same metric Garcia et al. used to evaluate the architecture recovery. This metric is
called cluster-to-cluster comparison and it does not depend on the analyzed project size.
However the first point to clarify is that Garcia et al. compared the recovered architecture
with the actual architecture as ground truth. I recovered the architecture manually to
compare it with the one recovered by K-recovery. Furthermore Garcia et al. analyzed
project of 10M SLOC, while the biggest project I analyzed had almost 20K SLOC. Garcia
et al. analyzed projects with a higher level of complexity such as Mozilla. K-recovery
failed in the analysis of Mozilla. It showed that K-recovery is not so scalable. This failure
may be due to the implementation choice. In fact, is preferable a compiled software than
an interpreted one to perform such a heavy computation. As future work it could be
considered to re-implement K-recovery in C++. Moreover it could be implemented a
method to decide automatically the number of component. It may be possible by running
K-means several times with different settings configurations and increasing number of
components. Then the process could stop when the cluster cohesion is maximum and the
coupling is minimum.

After the comparison between K-recovery results and Garcia et al. results, I would say
that K-recovery could be a starting point to enhance the state of the art of architecture
recovery.

46



APPENDICES

47



48

Appendix A

REGULAR EXPRESSIONS

KEYWORD “auto” | “break” | “case” | “continue” | “default” | “do” | “for” | “goto” |
“register” | “switch” | “byte” | “while” | “throw” | “alignas” | “alignof” | “asm” |
“catch” | “concept” | “constexpr” | “decltype” | “enum” | “explicit” | “export” |
“extern” | “false” | “true” | “inline” | “mutable” | “namespace” | “noexcept” |
“nullptr” | “reinterpretcast” | “requires” | “static” | “static assert” | “static cast” |
“struct” | “template” | “this” | “threadlocal” | “try” | “typedef” | “typeid” | “typename” |
“usign” | “virtual” | “volatile”

OTHER OPS“∼ ” | “?” | “ + +” | “−−” | “!” | “|“ | “ ∧ ” | “ << ” | “ >> ” | “ >>> ” | “+ =
” | “− = ” | “∗ = ” | “/ = ” | “∧ = ” | “% = ” | “ <<= ” | “ >>= ” | “& = ” | “ |= ” | “ >>>=
” | “and” | “and eq” | “bitand” | “bitor” | “compl” | “const cast” | “delete” | “dynamic cast” |
“not” | “not eq” | “or” | “or eq” | “sizeof” | “union” | “xor” | “xor eq” | “\”
ACCESS “public” | “private” | “protected”
DIGIT [0-9]
NON ZERO DIGIT [1-9]
LITERAL [a-zA-Z]
ID A “ ”| ”$”|LITERAL
ID B ID A| DIGIT
NUMBER NON ZERO DIGITDIGIT*| ”0”
NON NUMBER “0”DIGIT+
SPACES [ \t\n\r\f\v]
MULTILINE COMMENT “/∗”([∧] | [∗] + [∧ ∗ /]) ∗ [∗] + [/]
STRING “””[∧”\r\n] ∗ ””” | ”′”[∧”\r\n] ∗ ”′”



49

Appendix B

TOKENS

“new” return TOK NEW OPERAND;
“operator” return TOK OPERATOR;
“class” return TOK CLASS;
“const” return TOK CONST;
“else” return TOK ELSE;
“if” return TOK IF;
“int” return TOK FUNDAMENTAL TYPE;
“void” return TOK FUNDAMENTAL TYPE;
“bool” return TOK FUNDAMENTAL TYPE;
“char” return TOK FUNDAMENTAL TYPE;
“short” return TOK FUNDAMENTAL TYPE;
“long” return TOK FUNDAMENTAL TYPE;
“float” return TOK FUNDAMENTAL TYPE;
“double” return TOK FUNDAMENTAL TYPE;
“wchar t” return TOK FUNDAMENTAL TYPE;

“char16 t” return TOK FUNDAMENTAL TYPE;
“char32 t” return TOK FUNDAMENTAL TYPE;
“String” return TOK FUNDAMENTAL TYPE;
“string” return TOK FUNDAMENTAL TYPE;
“signed” return TOK SIGN UNSIGN;
“unsigned” return TOK SIGN UNSIGN;
“return” return TOK RETURN;
STRING return TOK STRING;
ACCESS return TOK ACCESS;
OTHER OPS return TOK OTHER OPS;
KEYWORD return TOK KEYWORD;
NON NUMBER return TOK DONT CARE;
ID AID B* return TOK ID;
NUMBER return TOK NUM;
“(” return TOK LPAREN;



50

Appendix B (continued)

“)” return TOK RPAREN;
“[” return TOK LSQ;
“]” return TOK RSQ;
“{” return TOK LBRACE;
“}” return TOK RBRACE;
“=” return TOK ASSIGN;
“>” return TOK GT;
“<” return TOK LT;

“==” return TOK EQ;
“>=” return TOK GE;
“<=” return TOK LE;
“!=” return TOK NE;
“+” return TOK PLUS;
“-” return TOK MINUS;
“*” return TOK MULT;

“/” return TOK DIV;
“:” return TOK COLON;
“::” return TOK COLON COLON;
“;” return TOK SEMI;
“,” return TOK COMMA;
“&” return TOK AMP;
“#” return TOK HASH;

MULTILINE COMMENT ;
COMMENT ;

SPACES ;
. return TOK DONT CARE;



51

Appendix C

COVERAGE TOY EXAMPLE SOURCE CODE

class A {

public:

A() {

std::cout<<"I’m A"<<std::endl;

B b;

U a = b;

W *d;

Z z;

Y a(b);

}

};

class U: A{

public:

W w;

Z z;

Y y;

};

class W: A{

public:

Z z;

Y y;

};

class Z: U{

public:

W w;

U z;

Y y;

};

class Y: U{

public:

W w;

U z;

}

class B {

public:

B(){



52

Appendix C (continued)

std::cout<<"I’m B"<<std::endl;

C c;

G g;

H h;

J j;

}

};

class G{

public:

H h;

J j;

};

class H{

public:

G h;

J j;

};

class J{

public:

H h;

G j;

};

class C {

public:

C(){ std::cout<<"I’m C"<<std::endl; }

K k;

I i;

T t;

V v;

};

class K {

public:

I i;

T t;

V v;

};

class I {

public:

K i;

T t;

V v;

};



53

Appendix C (continued)

class T {

public:

I i;

K t;

V v;

};

class V {

public:

I i;

T t;

K v;

};



54

Appendix D

COVERAGE TOY EXAMPLE: PARTIAL TOKENIZATION OF CLASS A

<?xml version="1.0"?>

<file name="../source/componentBasedExample/A.cpp">

<line number="1" token="TOK_CLASS" text=""/>

<line number="1" token="TOK_ID" text="A"/>

<line number="1" token="TOK_LBRACE" text=""/>

<line number="2" token="TOK_ACCESS" text=""/>

<line number="2" token="TOK_COLON" text=""/>

<line number="3" token="TOK_ID" text="A"/>

<line number="3" token="TOK_LPAREN" text=""/>

<line number="3" token="TOK_RPAREN" text=""/>

<line number="3" token="TOK_LBRACE" text=""/>

<line number="4" token="TOK_ID" text="std"/>

<line number="4" token="TOK_COLON_COLON" text=""/>

<line number="4" token="TOK_ID" text="cout"/>

<line number="4" token="TOK_OTHER_OPS" text=""/>

<line number="4" token="TOK_STRING" text=""/>

<line number="4" token="TOK_OTHER_OPS" text=""/>

<line number="4" token="TOK_ID" text="std"/>

<line number="4" token="TOK_COLON_COLON" text=""/>

<line number="4" token="TOK_ID" text="endl"/>

<line number="4" token="TOK_SEMI" text=""/>

<line number="5" token="TOK_ID" text="B"/>

<line number="5" token="TOK_ID" text="b"/>

<line number="5" token="TOK_SEMI" text=""/>

...



CITED LITERATURE

1. Parnas, D. L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, 1972.

2. Commission, I. E. et al.: Systems and software engineering: architecture description.
ISO, 2011.

3. Perry, D. E. and Wolf, A. L.: Foundations for the study of software architecture.
ACM SIGSOFT Software Engineering Notes, 17(4):40–52, 1992.

4. Garcia, J., Ivkovic, I., and Medvidovic, N.: A comparative analysis of software archi-
tecture recovery techniques. In Automated Software Engineering (ASE), 2013
IEEE/ACM 28th International Conference on, pages 486–496. IEEE, 2013.

5. freeablo. https://github.com/wheybags/freeablo. Accessed on August 5, 2015.

6. wkhtmltopdf. https://github.com/wkhtmltopdf/wkhtmltopdf. Accessed on Au-
gust 5, 2015.

7. mxnet. https://github.com/dmlc/mxnet. Accessed on August 5, 2015.

8. Rasool, G. and Asif, N.: Software architecture recovery. International Journal of
Computer, Information, and Systems Science, and Engineering, 1(3), 2007.

9. Garcia, J.: A Unified Framework for Studying Architectural Decay of Software
Systems. University of Southern California, 2014.

10. Gannod, G. C. and Cheng, B. H.: A two-phase approach to reverse engineer-
ing using formal methods. In Formal Methods in Programming and Their
Applications, pages 335–348. Springer, 1993.

11. Mancoridis, S., Mitchell, B. S., Chen, Y., and Gansner, E. R.: Bunch: A clus-
tering tool for the recovery and maintenance of software system structures.
In Software Maintenance, 1999.(ICSM’99) Proceedings. IEEE International
Conference on, pages 50–59. IEEE, 1999.

55



56

CITED LITERATURE (continued)

12. Tzerpos, V. and Holt, R. C.: Acdc: An algorithm for comprehension-driven clustering.
In wcre, page 258. IEEE, 2000.

13. Maqbool, O. and Babri, H. A.: The weighted combined algorithm: A linkage al-
gorithm for software clustering. In Software Maintenance and Reengineering,
2004. CSMR 2004. Proceedings. Eighth European Conference on, pages 15–

24. IEEE, 2004.

14. Corazza, A., Di Martino, S., and Scanniello, G.: A probabilistic based ap-
proach towards software system clustering. In Software Maintenance
and Reengineering (CSMR), 2010 14th European Conference on, pages 88–
96. IEEE, 2010.

15. Corazza, A., Di Martino, S., Maggio, V., and Scanniello, G.: Investigating the use of
lexical information for software system clustering. In Software Maintenance
and Reengineering (CSMR), 2011 15th European Conference on, pages 35–

44. IEEE, 2011.

16. Andritsos, P. and Tzerpos, V.: Information-theoretic software clustering. Software
Engineering, IEEE Transactions on, 31(2):150–165, 2005.

17. Garcia, J., Popescu, D., Mattmann, C., Medvidovic, N., and Cai, Y.: Enhancing
architectural recovery using concerns. In Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering,
pages 552–555. IEEE Computer Society, 2011.

18. Rokach, L. and Maimon, O.: Clustering methods. In Data mining and knowledge
discovery handbook, pages 321–352. Springer, 2005.

19. Sathiyakumari, K., Manimekalai, G., Preamsudha, V., and Scholar, M. P.: A sur-
vey on various approaches in document clustering. International Journal of
Computer Technology and Application (IJCTA), 2(5):1534–1539, 2011.

20. James, G., Witten, D., Hastie, T., and Tibshirani, R.: An introduction to statistical
learning. Springer, 2013.

21. Flex. http://aquamentus.com/flex_bison.html. Accessed on November 16, 2015.

22. Force-Directed Graph. http://bl.ocks.org/mbostock/4062045. Accessed on
November 16, 2015.



57

CITED LITERATURE (continued)

23. GitHub. https://github.com/. Accessed on November 16, 2015.



VITA

NAME Alessandro Chetta

EDUCATION

Master of Science in Computer Science, University of Illinois at
Chicago, 2016, USA

Master of Science in Computer Science, Politecnico di Milano, 2016,
Italy

Bachelor’s Degree in Computer Science, Politecnico di Milano, 2013,
Italy

58


