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Abstract

In the last decades, the high-temperature superconductivity phenomenon has been

widely debated, and even now the physical mechanisms on which it is based are still

unknown. However, its correlation with the magnetic properties of the materials in

which it shows up has been experimentally probed multiple times; this suggests that

a better understanding of the superconductive compounds magnetic interactions is

necessary.

To this purpose, the Resonant Inelastic X-ray Scattering (RIXS) technique has

proven to be a fundamental method to measure the magnon dispersion relation in

superconductive cuprate compounds. In particular, the ERIXS (European RIXS)

soft X-ray spectrometer, set inside the ID32 beamline in the European Synchrotron

Radiation Facility (ESRF), o�ers at the present time the best energy resolution

possible (less than 55 meV at the Cu L3 edge). This instrument has started op-

erations in 2015 and the very �rst experiment has consisted in the measurement

of the magnon dispersion relation for three di�erent layered cuprates compounds:

NdBa2Cu3O6.1, Bi2Sr2CuO6+x and CaCuO2.

The data analysis is a critical step for understanding the measured samples

main features. This procedure however is not univocal, since the theoretical model

of high-Tc superconductivity has not been fully developed yet. In this work, the use

of the explicit t−J model has been taken into account, and it has been found to be

quite insu�cient in describing correctly the systems examined. A model based on

e�ective exchange interactions is therefore proposed, which has been implemented

in a �tting algorithm thanks to the SpinW Matlab toolbox (from Paul Scherrer

Institute). Finally, a physical meaning to the results of the �tting is suggested,
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correlated to the contribute provided by the apical oxygens of copper ions to the

magnetic behaviour of the inspected compounds.





Sommario

Le onde di spin, alle quali è possibile riferirsi anche con il nome delle loro relative

quasi-particelle, i magnoni, sono delle eccitazioni a bassa energia del reticolo di spin

in materiali cristallini con simmetria continua. Il loro comportamento è stretta-

mente correlato alle caratteristiche magnetiche del sistema in esame. Come ogni

eccitazione reticolare, le onde di spin sono caratterizzate dalla loro relazione di dis-

persione, la quale dipende dalle interazioni presenti tra gli spin del reticolo. Negli

ultimi anni si pensa che esse siano gli agenti principali alla base del comportamento

superconduttivo ad alta temperatura.

I superconduttori ad alta temperatura (HTS), scoperti da Georg Bednorz e K.

Alex Müller nel 1986, sono materiali che mostrano un comportamento supercondut-

tivo a temperature particolarmente elevate. Nel caso di questa tesi, tali composti

corrispondono a cuprati isolanti di Mott drogati con elettroni o lacune. Nello speci-

�co, i superconduttori tradizionali mostrano temperature critiche Tc < 30K, mentre

per i HTS tale grandezza assume valori �no a 138K (nel caso del HgBa2Ca2Cu3O8).

Questo comportamento non è giusti�cato dalla tradizionale teoria BCS. In parti-

colare, tale modello si basa sul concetto di coppie di Cooper, particelle bosoniche

superconduttive formate da una coppia di elettroni legata da una particella di altro

genere, nel caso BCS un fonone del reticolo. Teoricamente, tuttavia, tale tipologia

di coppie di Cooper presenta una temperatura limite intorno ai 30K. Tuttavia, è

ormai ampiamente di�usa l'idea che nel caso dei HTS le coppie di Cooper siano sem-

pre all'origine del comportamento superconduttivo, ma siano tenute insieme non da

un fonone, ma da un magnone. Questa ipotesi è supportata dal preponderante com-

portamento antiferromagnetico presente nei parental compound (cioè i corrispettivi
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materiali non drogati) dei HTS. Nel caso dei cuprati, tale comportamento appare nei

piani di CuO2 presenti nel sistema. Tra questi piani sono presenti ulteriori strati for-

mati da ioni di metalli pesanti, lo scopo dei quali è stabilizzare la struttura e fornire

le particelle droganti ai CuO2. Lo studio delle strutture magnetiche dei parental

compound è dunque considerato necessario.

Fin dalla loro scoperta, le proprietà magnetiche dei cuprati superconduttori sono

state analizzate principalmente con lo scattering anelastico di neutroni (INS). Tut-

tavia, tale tecnica presenta dei limiti non trascurabili: la grande profondità di pen-

etrazione dei neutroni cotringe ad utilizzare campioni relativamente grandi e la loro

energia limita lo studio ad una regione ristretta dell spazio reciproco. Nell'ultimo

decennio tali restrizioni sono state aggirate grazie allo scattering anelastico risonante

di raggi X (RIXS). Questa tecnica deve la sua notevole evoluzione alla recente in-

troduzione dei sincrotroni di terza generazione, che hanno permesso di aumentare

considerevolmente il �usso di fotoni e la risoluzione in energia degli strumenti.

Ad oggi, il RIXS con potere risolutivo più grande è ERIXS (European RIXS),

situato nella beamline ID32 di ESRF (European Synchrotron Radiation Facility);

tale macchina fornisce una risoluzione e�cace di circa 55 meV all'edge L3 del rame

(situato a circa a 930 eV). Lo scopo di questo lavoro è stato quello di implementare

una procedura atta all'interpolazione dei dati raccolti con questo strumento du-

rante il primo esperimento in cui è stato utilizzato, avvenuto in Luglio 2015, ed uno

successivo, in Novembre 2015. Le misure svolte durante tali periodi hanno avuto

lo scopo di caratterizzare tre parental compound di cuprati HTS: NdBa2Cu3O6.1,

Bi2Sr2CuO6+x e CaCuO2. Tali misure sono uniche, in quanto prima dell'attivazione

di ERIXS le misure RIXS so�rivano di forti limitazioni nel potere risolutivo e nella

geometria sperimentale degli strumenti preesistenti. Dagli spettri ottenuti con ER-

IXS a di�erenti angoli di scattering è stato possibile ricavare il valore della relazione

di dispersione delle onde di spin lungo direzioni ad alta simmetria dello spazio re-

ciproco.

Per eseguire l'interpolazione dei dati, è necessario sviluppare una teoria generale

iniziale. Quella più utilizzata è basata sul cosiddetto modello t−J , il quale permette
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di descrivere un isolante di Mott grazie a due parametri fondamentali: l'energia di

hopping t, guadagnata da un elettrone qual'ora si sposti da un atomo ad un suo

vicino, e la repulsione coulombiana U . In particolare, nel caso degli isolanti di Mott

U/t � 1. Tale teoria può essere sfruttata per rappresentare le interazioni tra gli

elettroni 3d9 degli ioni Cu2+ nei piani CuO2; il loro accoppiamento magnetico è

dovuto al cosiddetto superscambio, e�etto presente tra spin mediato dagli ioni di

ossigeno. Difatti, sviluppando l'Hamiltoniana del modello t−J , è possibile ottenere

una serie di prodotti tra operatori di spin, i quali possono essere riorganizzati in

termini di Heisenberg, caratteristici dell'interazione di scambio; tali termini sono

contraddistinti dal parametro di scambio J . Il termine di primo ordine di tale

sviluppo risulta essere positivo (J > 0), cioè l'accoppiamento tra primi vicini in tali

materiali è antiferromagnetico.

Il problema di questo modello è che uno sviluppo al primo ordine risulta in-

su�ciente a descrivere in modo soddisfacente i risultati delle misure eseguite. E'

possibile ovviare a tale inadeguatezza considerando termini di ordine più alto nello

sviluppo dell'Hamiltoniana, de�nendo in tal modo parametri di scambio e�caci tra

atomi via via più lontani. In questa tesi, è stato preso in considerazione un ordine

massimo di sei; tuttavia, a causa della grande quantità di parametri, l'interpolazione

presenta problemi di convergenza e, siccome l'approccio adottato è e�cace, non è

possibile de�nire una relazione analitica tra i parametri di scambio ottenuti in tale

processo e le due quantità fondamentali del modello t − J , t e U . Questo lavoro

ha aiutato a individuare una correlazione tra la struttura cristallina dei cuprati (in

particolare la presenza di ossigeni apicali e la loro distanza dagli atomi di rame), la

temperatura critica massima e l'estensione degli integrali di hopping.



Summary

The spin-waves, also referred to as magnons quasi-particles, are energetically low-

lying excitations of the spin lattice in crystalline materials with continuous symme-

try. Their behaviour is strictly correlated to magnetic characteristics of the system.

In particular, like any wave-like excitation, they are distinguished by their disper-

sion relation function, which depends on the magnetic coupling between the atomic

spins. In the last decades it has been speculated that spin-waves could be the

primary elements of the high-temperature superconductivity phenomenon.

High-temperature superconductors (HTS) are materials, discovered in 1986 by

Georg Bednorz and K. Alex Müller, that behave as superconductors at unusually

high temperatures. These compounds, in the case of cuprates dealt in this work, are

obtained by doping Mott insulator materials with both electrons and holes. Specif-

ically, traditional superconductors have phase transition temperatures Tc < 30K,

whereas HTS show critical temperatures as high as 138K (for HgBa2Ca2Cu3O8).

This high Tc cannot be justi�ed with the conventional superconductivity BCS the-

ory. In particular, the Cooper pairs, i.e. the superconductive particles that are

electron pairs bounded by a phonon in the BCS theory, cannot exist at such high

temperatures. The most supported hypothesis is that in HTS the two electrons in

Cooper pairs are maintained united by a magnon. This conjecture has been sug-

gested by the strong antiferromagnetic behaviour of the HTS parent (i.e. undoped)

compounds. In cuprate superconductors the antiferromagnetic properties are deter-

mined by weakly coupled copper-oxide (CuO2) layers present in the system. Their

neighbouring layers contain heavy metal ions act to stabilize the structure and dope

the copper-oxide layers. It is therefore considered essential to understand better the
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physic of the magnetic structure in parent compounds.

Since their discovery, the magnetic properties of superconducting cuprates have

been studied chie�y with inelastic neutron scattering (INS). However, this technique

has substantial limitations: it requires massive samples (because of the high pene-

tration of neutrons) and it is able to map only a portion of the reciprocal space. To

overcome these restrictions, the Resonant Inelastic X-ray Scattering (RIXS) tech-

nique has been used. This synchrotron-based spectroscopic technique has become

considerably powerful in the past 15 years thanks to the introduction of third gen-

eration synchrotron radiation facilities, which allowed a remarkable improvement of

photon �ux and energy resolution.

The world record of resolving power between RIXS instruments is actually been

hold by ERIXS (European RIXS), located at the ID32 beamline of ESRF (European

Synchrotron Radiation Facility), providing a combined resolution around 55 meV

at the Cu L3 edge (∼ 930 eV). The aim of this work was to implement a procedure

to �t the data gathered during the very �rst ERIXS experiment, occurred on July

2015, and during a following one, on November 2015. The measurements performed

in these two periods have been committed to characterize three cuprate parent

compounds: NdBa2Cu3O6.1, Bi2Sr2CuO6+x and CaCuO2. This is the �rst time that

it has been possible to perform this kind of tests on the three compounds. From

ERIXS spectra at di�erent scattering angles, it is possible to evaluate the sought

magnon dispersion in some points of the reciprocal space.

To �t the outcoming data, it is required to develop a general starting theory. The

most generally accepted is the t−J model, which permits to describe a Mott insulator

with two fundamental parameters: the electronic hopping energy t from one site of

the lattice to another, and the Coulomb repulsion between electrons U . In particular,

Mott insulator belong to the case in which U/t� 1. This theory can be exploited to

represent the CuO2 inplane interactions between the unpaired electron on the Cu2+

ions (3d9 electronic state), whose magnetic coupling is due to the superexchange

e�ect, mediated by the oxygen anions. In fact, if the t−J Hamiltonian is expanded

in series of spin operators products, it is possible to obtain a sum of Heisenberg
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terms, which are characterized by the magnetic exchange parameter J . The �rst

order exchange parameters appears to be J > 0, i.e. the system is antiferromagnetic.

The problem with this model is that the nearest-neighbours interaction are found

inadequate to fully describe the system. It is possible to obviate this problem by

considering higher orders in the Hamiltonian expansion, thus de�ning more e�ective

exchange parameters that magnetically couple lattice sites of increasing distance.

In this work, a maximum order of six has been exploited; however, because of the

high number of parameters, this �tting method can give convergence problems and,

since it is an e�ective approach, it is not possible to give a direct relation between

the exchange parameters and the two t− J fundamental quantities, t and U .
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Chapter 1

Cuprates

In this chapter we aim to introduce the peculiar characteristics of the studied ma-

terials, the cuprates, and to explain why, in this �eld, Resonant Inelastic X-ray

Scattering (RIXS) represents one of the most powerful tools to examine them.

1.1 Crystal structure

Since 1986, year in which Bednorz and Müller discovered the �rst clues of a su-

perconductive behaviour in cuprates that occurs at temperatures too high to be

consistent with the BCS theory [7], a continue endeavor has been made to achieve a

deeper comprehension of this phenomenon. Such a deep interest is justi�ed both by

the large number of possible applications and by the interesting ensemble of physical

behaviours provided by the subject. In fact, the potential technological utilizations

allowed by the critical temperature of these materials that exceeds the boiling one of

liquid N2 (at atmospheric pressure) are outstanding. Nevertheless, despite the pros-

perous literature and the continuous toil on the topic, the high Tc superconducting

mechanism is still not clear to this day.

The high-temperature superconductors we are interested in have chemical struc-

ture ABO3; in this notation, A and B are metallic cations and O represents the

oxygen. In these materials, atoms can be arranged in di�erent crystalline geome-

tries, that drastically change the role played by the various elements in determining

3
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(a) (b)

Figure 1.1: (a) represents a generic AOB3 crystalline structure. (b) is the scheme of a

YBa2Cu3O6+x lattice.

the general substance features. In bulk lattices, A is the larger cation and occupies

the corners of a cubic structure, while B is in the center (as seen in �gure 1.1a). Oxy-

gen atoms surround B forming an octahedron. This basic structure could be varied

in dependence of the relative volume of the ions, thus adopting an orthorhombic cell

[8].

However, the most peculiar and interesting role in the structure is played by the

Cu (that corresponds to the element B) and O atoms set on bidimensional planes (as

in �g. 1.1b), on which the copper is doubly ionized and therefore has a 3d9 electronic

con�guration, i.e. nine of the ten available d orbitals are �lled. The presence of

out-of-plane oxygen atoms produces a pyramidal crystal structure and a�ects the

copper molecular orbitals by generating a so-called ligand (or crystal) �eld [25], thus

removing their degeneracy and sundering two di�erent energetic branches, t2g and

eg (see �g. 1.2). In particular, the most energetic orbital among the 3ds is the eg's

dx2−y2 , because of the higher repulsion due to the overlap with the oxygen orbitals,

which results in the presence of a unpaired electron and a hole in it. To ease the

discussion, the physical picture is often described by reasoning in terms of the single

hole [14]; if that is the case, the energy scale must be inverted because dx2−y2 is the



CHAPTER 1. CUPRATES 5

Figure 1.2: The t2g and eg molecular orbitals in cuprates.

lowest energy orbital in which put the hole.

1.2 Signi�cant characteristics

The Cu electrical con�guration suggests a metallic behaviour of the material, but

it is not so: as a matter of fact, the cuprates are an example of Mott insulators. In

this kind of materials, the freedom of the electrons to move in the lattice, signi�ed

by the hopping parameter t, drops due to the large Coulomb repulsion between the

particles U ; that is why this kind of systems are named strongly electron correlated.

Another fundamental feature of the cuprates is their magnetic structure: every

Cu2+ atom has a spin S = 1/2, supplied by the unpaired valence electron. There-

fore, thanks to a superexchange interaction mediated by the oxygen atoms, at low

temperatures an antiferromagnetic long-range spin order arises in the CuO2 planes.

A simple model to describe this order will be discussed in the following chapter, but

it is notable to point out that this interaction can be acceptably modeled with the

Heisenberg Hamiltonian Ĥ = −J
∑

<mn> Ŝm · Ŝn (see (3.20)). In this model the

sign of J , that is the exchange constant, determines the nature of the spin inter-

action: if J > 0 it is antiferromagnetic, if J < 0 ferromagnetic; in cuprates J it is

approximatively 4t2/U , and so, as said, antiferromagnetic.

It is worth noting that an antiferromagnetic coupling is also present between the
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Figure 1.3: Schematic doping phase diagram of electron and hole-doped high-Tc supercon-

ductors; here, SC stands for superconducting and AF for antiferromagnetic phases. Taken

from [27].

atoms that belong to adjacent planes. This interaction is due to the direct exchange,

and it is usually rather weak if compared with the inplane one. Furthermore, the

Dzyaloshinsky-Moriya (DM) interaction, correlated to the anisotropy of the system,

couples ferromagnetically the out-of-plane spin component, but since this e�ect is

quite weak, it appears only if a magnetic �eld is applied to the material; it can be

revealed with the X-ray Magnetic Circular Dichroism (XMCD) technique.

We observed that the common state, usually named parent compound, for a

cuprate crystal is insulating. However, when the material gets doped enough, i.e.

charges are carried inside the planes by adding oxygen or switching some of the

atoms of the parent compound with other elements with a di�erent number of valence

electrons, it undergoes a phase transition and becomes superconductive. The doping

structure modi�cation is performed on the layers between the CuO2 planes, that are

usually named charge reservoir or blocking layers. It is therefore interesting to study

the phase diagram as function of the temperature T and of the doping [9], as shown

in �gure 1.3.

There we can see that, as already discussed, the poorly doped material is in

an antiferromagnetic phase, and that the superconducting phase is restricted to
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low temperatures and a limited doping range, while it does not appear in the parent

compound; the superconducting critical temperature Tc shows a maximum, at which

the doping is de�ned as optimal, while at high doping percentages the material

behaviour becomes metallic. It is also notable that the antiferromagnetic and the

superconducting phases do not overlap: therefore doping destroys long-range spin

correlations, but it has been observed that the inplane antiferromagnetic alignment

is preserved thanks to the short-range interactions.

Another interesting cuprate feature is the pseudogap phase, which also appears

in the phase diagram (�g. 1.3). This area owes its name to the partial energy gap

near to the Fermi energy that looms inside of it, perhaps a superconducting gap

forerunner. Inside this region, the material has some odd behaviours (both optical,

magnetic and thermodynamic [52]) and shows a critical temperature T ∗ > Tc, but

its boundaries have not been well de�ned yet [35] (this is the reason why in the

�gure it is delimited by a dashed line). Lots of experiments have been undertaken

to improve the understanding of the pseudogap, and they reached the result that T ∗

lowers with the doping, until it reaches the superconducting phase dome, in which it

proves quite di�cult to discern its evolution. Also, various pseudogap e�ects appear

to have a di�erent critical temperature trend, and this is why it is di�cult to fully

de�ne this phase.

Another peculiarity that some families of cuprates (e.g. the "214" family, like

La2−xSrxCuO4, LSCO in brief) show in the pseudogap phase is a uniaxial modulation

of spin and charge orders, commonly named stripe order [65]. To fully understand

the birth of the stripes, we have to deepen our knowledge about the doping physic:

as we already explained, doping holes quench the superexchange interaction, thus

dampening the antiferromagnetic long-range order. This happens because their spin

is opposite to the one of the Cu2+ hole, and thus a doping hole nulli�es the local spin

on a lattice point. But how do the doping holes distribute themselves on a CuO2

plane? According to theoretical models [44] [60], they tend to arrange in stripes

(see �g. 1.4a): the periodicity of the stripes rises with the doping, until it reaches

a maximum, and that point becomes energetically convenient to enhance the �lling
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(a) Schematic doping phase diagram of

electron and hole-doped high-Tc super-

conductors; here, SC stands for super-

conducting and AF for antiferromagnetic

phases. Taken from [27].

(b) This is the so-called �Yamada plot".

It shows the evolution of the incommen-

surability parameter δ with hole doping.

After a linear increase, δ becomes con-

stant at p ' 1/8. Taken from [69].

Figure 1.4: Doping phase diagram of a generic high-Tc superconductor (left) and Yamada

plot (right).

factor (i.e. the density of holes in each stripe). This results have been experimentally

observed with spin ordering sensitive INS experiments: it is in fact possible to

observe a spike generated by the stripes at incommensurate distance δ from the

parent compound di�raction peak. Then, the δ dependence on doping has been

proved to have a saturation point (seen in �g. 1.4b, at which the superconductivity

shows a reduced critical temperature Tc. It is thus reasonable to suppose that the

two phenomena somehow compete one with the other, thus explaining the Tc drop.

Finally, X-ray scattering revealed that, nearby the doping p ' 1/8 region in the

pseudogap, some cuprates (e.g. the members of the "123" family, like YBa2Cu3O6+x)

show charge density modulations in the CuO2 planes, that have been acknowledged

as charge density waves (CDW). In some compounds these waves compete with the

superconducting phase and therefore show a Tc drop (referred at as plateau) around

the mentioned doping ([42], �g. 1.5a); furthermore, at plateau dopings, the RIXS

spectra show a maximum intensity for the quasi-elastic peak (�g. 1.5b). The position

of the peak in the reciprocal space permits to e�ectively distinguish CDW from the

stripe order; the interaction has also been de�nitively con�rmed as a charge density
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(a) Dependence of the superconducting

phase critical temperature Tc of YBCO

on doping. The so-called plateau is

clearly visible moving away from the

dashed parabolic line, and it has a maxi-

mum suppression at p ' 1.8. From [42].

(b) Quasi-elastic peak at transferred mo-

mentum q‖ ' 0.31 r.l.u. shown in

RIXS spectra; it is evidence of the onset

of incommensurate charge density order.

From [28].

Figure 1.5: Two experimental consequences of the charge density waves in YBCO.

rather than a spin modulation [28] [13]. Since TCDW < T ∗, the CDW instability is

bounded inside the pseudogap [9].

All the mentioned e�ects (stripes, pseudogap and CDW) are thought to be some-

how related to the superconductive e�ects. In particular, the most shared theory is

the one that points the magnons (i.e. magnetic interaction particles) as strong can-

didates to cover the role of glue for the Cooper's pairs instead of the phonons (as in

the classical superconductivity theory). This supposition rises from the importance

of the magnetic interactions in the high-Tc superconductive compounds, as well as

from the characteristics we have enlisted in this chapter. Therefore, it is believed

that to fully understand an high-Tc superconductive material, �rst it is necessary to

have a deeper knowledge of its parent compound.

In the last decades the study of the magnetic properties of cuprates has been

carried on almost solely with the inelastic neutron scattering (INS) technique, that
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Figure 1.6: Accessible regions of 2D Brillouin zone for Cu L3 RIXS and inelastic neutron

scattering (INS) applies on cuprates. From [48].

has proven to be extremely useful and proli�c [31] [67]. However, INS has some lim-

itations: as shown in the �gure 1.6, its area of study is con�ned in the surroundings

of the Brillouin zone corners, and furthermore the neutron high energy requires the

employment of massive samples (hundreds of mm3 or more). Both of these de�cien-

cies can be satisfactorily overcome by the RIXS set up [40]: �g. 1.6 points out that

RIXS can overlay an extensive portion of the Brillouin Zone not covered by the INS

and it is e�ective on the analysis of small samples (down to a few µm3 in volume).

However, because of the limited RIXS energy resolution, the low energy scale (i.e.

below 50 meV at present) remains the domain of neutrons. This is why, in recent

years, the combination of both RIXS and INS techniques has become mandatory to

fully understand the cuprate physic. In particular, the materials discussed in this

work are hardly measurable with neutrons because of the �ne geometric structure

of their lattice.



Chapter 2

RIXS

In the previous chapter we have illustrated the bene�ts brought by RIXS technique

in cuprate study. However, this type of measurement would not be applicable if

it wouldn't be for the enormous steps forward made by synchrotron technology in

the last decades. In fact, RIXS aim is to probe magnetic and electronic excitations

in materials [3], but, for reasons we will explain in this chapter, that requires an

extremely intense and monochromatic source [37].

In this chapter we will thus give a general description of RIXS and we will expose

the peculiar features of ERIXS, the spectrometer, placed on the ID32 beamline at

ESRF, exploited to collect the data showed in this work.

2.1 RIXS working principle

RIXS is an acronym that stands for Resonant Inelastic X-ray Scattering and it epit-

omizes a synchrotron-based scattering measurement technique developed in the last

two decades to study the elementary excitations of the matter [29] [2] [15]. Scatter-

ing measurements involve the analysis of a sample through the observation of the

e�ects sprang from its interaction with some kind of probing object, which in our

case is a synchrotron X-ray beam. In particular, RIXS is a photon in-photon out

spectroscopy techniques: a light beam is sent on the sample, and the detected inter-

action result is yet again a photon beam. As already acknowledged, the incoming

11
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Figure 2.1: Scheme of the RIXS scattering process: the incoming photon (Ei = ~ωi)

gets absorbed by the system, thus promoting a core electron to an empty valence state above

the Fermi level and creating a core hole (left panel). After ∼ 1 fs, a valence electron �lls

the core hole and a photon (Eo = ~ωo) is emitted (right panel). Image taken from [48].

beam energy falls into the X-rays region, since it thus allows to inspect the core

atomic energy levels [2]. The beam energy used belongs to the soft X-ray region,

i.e. photons with an energy between 100 eV and 2 keV. Since the soft X-rays pene-

tration depth is in the scale of tens of nm, the incoming and outgoing photons can

pass through several atomic layers, thus probing the bulk of the inspected material.

However, it is also possible to examine the sample surface by working in grazing

incidence conditions, i.e. at high angles of incidence θ⊥ (in fact, as intuitively un-

derstandable, the probing depth of the beam decreases with sin θ⊥, see �g. 2.9). In

general, the detected outgoing photon is di�erent from the incoming one in either

energy E, momentum k or polarization ε [47].

The RIXS process is a second order process (see �g. 2.1). This means that the

exit radiation is product of two consecutive events: �rst, the incoming photon excites

an atomic core electron of the sample to a free valence state, above the Fermi level;

however, this state is highly unstable (it has ∼ 1fs lifetime), so another electron

quickly �lls the core hole, which causes the emission of the outcoming photon, that
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Figure 2.2: The various stages of a Cu L3 RIXS double scattering process and the generic

output spectrum. On the bottom of the �gure is depicted the same process from the Cu 3d9

hole (i.e. the red mark) point of view.

is collected with a suitable revelation device. Since it exploits a two step process,

this technique permits to observe a vast variety of e�ects, because it is not limited

by the dipole selection rules, but every observed e�ect has a very small cross-section;

therefore RIXS requires a high intensity incoming beam (i.e. synchrotron radiation).

Furthermore, another RIXS feature is that, being based on a photon in-photon out

process, it preserves the overall neutrality of the system, thus avoiding any change

in the total charge of the system. Otherwise, the measurement could modify the

system energy levels in a way that is di�cult to foresee, and the measurement results

would be more di�cult to understand.

The outcome of a RIXS experiment is a spectrum, i.e. the intensity of the

collected beam as a function of the photon energy loss (see �gure 2.2). This variable

can be easily de�ned as ∆E = Ei − Eo, where Ei is the incoming photon energy

and Eo is the outgoing one; it is clear that ∆E > 0. Every spectrum shows an high

intensity peak at ∆E = 0, that is called the elastic peak, since it is only determined

by the elastic scattering events, i.e. when the revealed photon has the same energy

of the probing one, that happens when, after the excitation, the electron returns
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to its original core level. Apart from the elastic peak, the spectrum involves an

inelastic scattering event, in which Eo < Ei and there is therefore an energy loss in

the process. Another fundamental measurable quantity is the photon momentum:

the tilting of the sample and the variable position of the collection device allow to

regulate the ki and ko momenta of the input and output photon respectively. It

is thus possible to calculate both the energy and the momentum of the examined

excitation as:

~ωi = ~ωo + Eex (2.1)

~ki = ~ko + ~qex (2.2)

where, while the properties of the incoming photons are assumed as known, the

output photons' ones are measured. Finally, there is a last fundamental measurable

property of the output beam, and that is the polarization εo, that is e�ectively

observable with the actual RIXS setup, even though it is a quite di�cult task [11].

Finally, we still haven't made clear why RIXS technique is addressed as resonant.

This adjective refers to the wide freedom in energy tuning provided by RIXS. In

fact, the absorption spectrum of a generic sample shows peaks in coincidence with

any incoming photon energy that is able to excite core electrons to the valence

band in an element of the sample. Since the correspondence between the position

of these peaks and the related energy excitation and component is well-known,

it is possible to tune the RIXS incoming beam energy to focus the measurement

on a particular chemical element and study the excitations from its perspective.

Moreover, because the absorption energy depends also on the environment in which

the atom is included, RIXS is able to partially identify di�erent con�gurations of

the same element in the same sample. This is the feature that permits RIXS to

analyze small samples, in spite of its high bulk sensitivity.

In the RIXS in the ID32 beamline at ESRF, usually referred to as ERIXS,

we made use of devices that allow the tune of the input photons energy in the

range between 400 eV and 1600 eV. These boundaries are such that we can explore

interesting energy edges, like the oxygen K edge, the M4,5 edges of rare earths
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Figure 2.3: Example of a typical RIXS spectrum of a CaCuO2 sample. The relevant

excitations observable with RIXS are highlighted. The red and black curves correspond to

the in-plane polarization and its orthogonal respectively.

and the L2,3 edges of transition metals, for example copper (see �g. 2.3). The

RIXS resonance permits a quite astounding �exibility in the measurements, because,

when the incoming beam is tuned to an absorption edge of a speci�c element, the

contribution to the spectrum due to the other chemical elements in the samples

becomes negligible.

Now, let's look at a standard CaCuO2 RIXS spectrum (shown in �g. 2.3) taken at

Cu L3 edge, which corresponds to an electron excitation from 2p2/3 level to valence

shell in the 3d orbital. In the �gure we can observe various peaks: if we reason

in terms of the single 3d9 hole, which is excited by the incoming beam to a core

level, we can say that the elastic peak is due to the return of the hole to its original

state, while the so-called dd excitations correspond to the relocation of the hole on

a di�erent d state; the dd excitations are a clear example of transitions not allowed

by electric dipole selection rules that can be inspected with RIXS. But the most

important spectral feature for this work is the magnons' peak: a magnon is the
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Figure 2.4: Scheme of an ordinary sinchrotron facility, from [63].

quasi-particle (Em ∼ 100 meV) equivalent to a spin-wave, i.e. a collective excitation

of the spin lattice propagating thanks to the high magnetic interaction between

the components of the sample. Other observable excitations are the phonons, i.e.

collective real lattice excitations, which have approximatively the same energy of

magnons, and the charge transfer excitations, that correspond to electron transfers

from copper ions to the surrounding atoms. Finally, note that the two black and

red plots in �g. 2.3 correspond to the two di�erent orthogonal polarizations (σ

perpendicular and π parallel to the scattering plane [58]), and we can see that some

peaks intensity changes between the two.

2.2 The ESRF synchrotron

As already made clear, RIXS technique requires high intensity X-ray sources to

work properly, and these can be provided by synchrotron facilities, like the European

Synchrotron Radiation Facility (ESRF), located in Grenoble, France. In fact, a third

generation synchrotron like the ESRF provides to his laboratories a radiation with
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Figure 2.5: Representation of the bending magnets' action.

a continuum spectral range between the infrared and the hard X-rays frequencies.

The radiation is generated by a beam of electrons, which have been accelerated up

to relativistic velocities, that �ows inside the synchrotron ring, whose model is shown

in �g. 2.4. In particular, the electrons are generated by the electron guns situated

inside the ring, and are �rstly accelerated by linacs (i.e. linear accelerators). From

there, they are injected inside the so-called booster ring, the smaller one in �gure,

where they once again gain speed; since the electron mass increases with its energy,

the magnetic �eld applied in this stage must be B ∝ Eelectron beam. Eventually, when

properly accelerated, the beam in redirected inside the outer ring, named storage

ring, where they emit radiation to supply the nearby laboratories, usually referred

to as beamlines.

The beam trajectory is maintained circular with bending magnets (see �g. 2.5),

therefore the radiation produced is tangential to the beam itself; actually, the gener-

ated photons have a small vertical divergence θ (θ ∼ 1/γ, where γ is called Lorentz

factor [32]). Between two bending magnets, in the storage rings, are placed some

quadrupoles and sestupoles, whose purpose is both to focus the beam and to avoid

aberrations (which results in a radiation with a slightly di�erent energy from the one

reckoned). Third generation synchrotrons exploit another typology of devices: the

insertion device; they are periodic structures of magnetic dipoles that produce sinu-

soidal magnetic �eld to make the beam trace a swinging path. These instruments,

they too placed between the bending magnets, force the beam to emit more radiation

and moreover they raise the beam brilliance, monochromaticity and directionality.
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Figure 2.6: Optical scheme of the ID32 beamline at the ESRF (from [34]).

Also, depending on the angular deviation imposed to the electron route, the out-

coming radiation shows di�erent characteristics, that can be chosen depending on

the desired application.

2.3 ERIXS

In this paragraph we want to give a brief look to the practical implementation of

a RIXS; in particular, we refer to the design of ERIXS(European RIXS facility),

the spectrometer located in the ID32 beamline at ESRF which was used to collect

the data used in this work. As we already beckoned, RIXS technique, exploiting

a second order process with little cross-section, requires an high intensity input

beam to work properly; because of this reason, it is often de�ned as photon hungry.

However, this permits RIXS to have an high resolving power, thus allowing to better

distinguish all the spectra elements. At the present time, one of the active RIXS that

provides better performances is ERIXS, located in the ID32 beamline of ESRF and

designed by Prof. G. Ghiringhelli, from the Politecnico di Milano, and his coworkers.

The same team previously conceived two other RIXS instruments: AXES, placed

in the old ID08 beamline of ESRF and now dismissed, and SAXES, located at the

ADDRESS beamline of the Swiss Light Source (SLS) and currently active.

ID32 is actually the only beamline in ESRF to work in soft X-rays, and, as we

previously mentioned, contains also an XMCD instrument. Figure 2.6 shows the

beamline scheme. In this picture, the beam source is constituted by three APPLE
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Figure 2.7: Sketch of the optical layout of a soft-RIXS grating spectrometer.

II undulators [59] that receive the synchrotron radiation and tune the beam energy;

these undulators are also able to provide 100% horizontal, vertical, right and left

circular polarized light at will. Then, the double mirror focuses the beam in the

entrance slit, from where, with a re�ecting mirror, can be redirected on the XMCD

or on the RIXS branch. Before the de�ecting mirror are disposed two gratings

(one for RIXS and one for XMCD) that ensure the beam monochromaticity. These

two monochromators are both variable line spacing (VLS) gratings and the one for

XMCD also has a sagittally refocusing mirror. After this, the beam comes out from

the optics hutch through the exit slit and is focused on the sample; the total distance

between source and sample is 110 m. The XMCD principles explanation is outside

of this work's purposes, therefore it will not be reviewed here.

ERIXS, like its precursors, works on the principle shown in �gure 2.7. The

sample itself acts as the spectrometer source, emitting the second order interaction

outcoming photons. The �nal measurement result, i.e. the sample spectrum, is

obtained by di�racting the outgoing beam with a concave grating tilted so that it

works at grazing incidence. The slight concavity permits to focus the beam on the

detector, that would be in our case a CCD (charge-coupled device). The grating is a

VLS device, similar to the monochromators before the re�ecting mirrors; its grating

lines are perpendicular to the direction of the photons. It is the only optical element

of the scheme.
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Therefore, the photons are vertically dispersed on the CCD surface, thus gen-

erating a 2D image. Since the photons' trajectory is more or less deviated in de-

pendence of their energy, the image appears to be composed by isoenergetic parallel

lines, which are then summed to obtain the resulting spectrum. To do this, the CCD

must be placed on the di�racting grating's focal plane. In ERIXS case, the detector

is a commercial thinned back-illuminated CCD, 25.4 × 25.4mm2 in size and with

13.5µm square pixels. Its e�ective spatial resolution is 25µm [23], but that can be

improved by using it at grazing incidence (�g. 2.8): if tilted of an angle γ (in ERIXS

γ = 30◦), the e�ective resolution becomes ∆ECCD = sin γ · 25µm.

However the overall instrument resolution results from:

∆ETOT =
√

∆E2
beamline + ∆E2

spectrometer (2.3)

where ∆Ebeamline it determined by the monochromator and is ∼ 22 meV at the Cu

L3 edge, while ∆Espectrometer =
√

∆E2
source + ∆E2

slope + ∆E2
CCD. Here ∆Esource is

determined by the size of the beam spot on the sample (FWHM = 4µm) and

∆Eslope is due to the already discussed slope error (230nrad rms). These numbers,

for a grating with 1400 lines/mm as the one in ID32, lead to a theoretical resolution

of ERIXS around 38 meV at the Cu L3 edge. Combined with 30 meV of the beamline

monochromator, (2.3) gives 51 meV. The actual FWHM, measured on the elastic

peak scattered from a polycrystalline graphite sample, is 55 meV.

Another developed way to enhance the measurement resolution is the exploita-

tion of the so-called single-photon counting (SPC) algorithm [4] [39] [5]. This method

was conceived to overcome the fact that a photon, when it comes from the sample to

the CCD, is so energetic that it generates an avalanche e�ect on the CCD electrons

that expands over multiple pixels. This represents a big limit to ERIXS resolution.

What the SPC algorithm does is to statistically reconstruct the position of the pho-

ton impact, and even to a sub-pixel level (i.e. inside a portion of the pixel). In fact,

the SPC algorithm brings the CCD e�ective resolution from 25 to 8 micron.

Finally, it will be useful to better understand the method of collection of ERIXS

data (and thus their meaning). Samples are usually contained inside a chamber in

ultra-high vacuum (UHV) and they are attached on hexagonal sample plates with
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Figure 2.8: Improvement in the e�ective spatial resolution for CCD inclined of an angle

γ.

silver paint, double-sided metallic adhesive tape or conductive glue; the holder is

then connected to a full 4-circle in vacuum goniometer, used to manipulate the

samples in the beam. The goniometer allows samples to be moved in the three

spatial directions and rotated directly from the control cabin. The rotation allows

to vary the beam angle of incidence on samples, thus altering at will the transferred

momentum q, as shown in �gure 2.9. Furthermore, if the crystal axes of the sample

are known, this permits to choose the momentum projected on the CuO2 planes q‖.

Since can be demonstrated that the excitations perpendicular to these planes have

a negligible role on the determination of a cuprate dispersion relation, this permits

to scan the bidimensional reciprocal lattice of the sample.

Since the CuO2 planes are parallel to the sample surface, it is possible to de�ne

the following angles: the incoming beam hits the sample surface with an angle

of incidence θi, while the outgoing beam is collected at the angle θo. During the

measurements, the scattering angle 2θ between k and k′ is usually maintained �

xed, while the incident angle is changed by rotating the sample holder. The

sample rotation de�nes the angle δ shown in the �gure, that corresponds to the angle

between the sample c-axis and the transferred momentum q. Once the samples are



CHAPTER 2. RIXS 22

Figure 2.9: Experimental scheme for RIXS measurements on cuprates and 2D Brillouin

zone for cuprates. Taken from [48].

mounted in the UHV chamber, the direction on which scan the Brillouin zone is

thus chosen by orienting the a and b axes with respect to the scattering plane.

2.4 Resolution performances

AXES (Advanced X-ray Emission Spectrometer) and SAXES (Super-AXES) were

two dedicated high resolution RIXS spectrometer whose evolution brought to design

of ERIXS. AXES, working since 1995 at the beamline ID08 of the ESRF and now

dismissed, had a combined resolution at the Cu L3 edge ∼ 235 meV. The currently

working SAXES [28], located at the ADDRESS beamline of the Swiss Light Source

(SLS), gave a resolution of around 130 meV at the Cu L3 edge [58]. The enhancement

of SAXES resolution by a factor 2 with respect to AXES is primarily due to the fact

that the instrument is roughly twice longer. As already calculated, ERIXS managed

to obtain another improvement in resolution, allowing to measure Cu L3 RIXS with

a combined resolution of 55 meV. In �g. 2.10 two spectra, one from SAXES and the

other from ERIXS, of the same compound are shown to highlight the e�ects of this

improvement.

2.5 Measurements

Before showing the measurement results, let us give a brief introduction to the dis-

tinguishing features of the three cuprate compounds analyzed in this work: NBCO,
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Figure 2.10: NBCO Cu L3 RIXS spectra. The red spectrum has been measured with

RIXS, while the blue one was measured with SAXES in equivalent conditions. Note the

sharp magnon peak and the phonon as a shoulder of the elastic peak. From [22].

Bi2201 and CCO.

NBCO stands for NdBa2Cu3O6.1; it has a structure analogous to YBCO, whose

unit cell is shown in 2.11a. In that �gure the Cu in-plane atoms with di�erent spins

are highlighted with red and orange colors, while the ones in light red are copper

atoms that do not take part in the magnetic coupling and are said to be organized

in chains (in the doped compounds, where extra oxygen atoms would lay in their

own plane). The neodymium atoms are exactly in the center of the cell, i.e. in

the empty space between the planes, whereas the barium atoms are aligned with

them, but between the plane and the underlying chains. On the plane the Cu atoms

are distant 3.84 Å, both in a and b directions, the whole cell is 11.7 Åhigh on the c

direction and between two adjacent planes there are 3.2 Å(thus the distance between

chain and plane is 4.25 Å).

Bi2Sr2CuO6+x crystalline structure is shown in �g. 2.11b; from this picture, we

can see that a BiSCO unit cell contains two CuO2 planes, one with the positions

of Cu and O inverted in respect with the other. The distance between the planes

is 12.2 Å, therefore the unit cell is c = 24.4 Åhigh, while the in-plane structure is

squared (a = b = 3.86 Å). Between these two there are four more planes with Bi3+ or
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(a) (b) (c)

Figure 2.11: YBa2Cu3O7, Bi2Sr2CuO6+x and CaCuO2 crystal unit cell. Cu1 are the

chain copper atoms, Cu2 are the plane ones. In the legend, �dn� means down, referring to

the spin.

Sr2+ and O structures, which however don't take part to the magnetic interactions,

as Nd in NBCO.

Now let us introduce the CaCuO2 structure, shown in �g. 2.11c. CCO is almost

the opposite of Bi2201: it is composed by the alternation of CuO2 planes and CaOx

ones. As usual, the in-plane con�guration is squared and the bond length is a =

b = 3.8 Å, while the distance between the copper planes is c = 3.2 Å.

Figure 2.12a shows the results of the ERIXS measurements used in this work.

These have been gathered during two beamlines at ESRF, on July and November

2015, that have been the �rst applications of ERIXS. The measurements were per-

formed on the path pointed out by the arrows in �g. 2.12b, that is [0.25 0.25] →

[0.5 0] → [0 0]. In the �gure, the magnetic �rst Brillouin zone is stressed by the

dashed red line. Since the magnetic cell is two times the lattice unit cell, the mag-

netic �rst Brillouin zone will be the half of the lattice one. In the same �gure the

Brillouin zone critical points are stressed. The data to �t have been obtained from

the circled points in �gure 2.11c; they correspond to the magnon peaks determined
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(a) Three-dimensional dispersions of magnetic excita-

tions in layered cuprates for Bi2201 (A), NBCO (B)

and CCO (C). Each spectrum is shifted vertically for

clarity. Circles denote the peak positions of spin exci-

tations determined by �tting.

(b) First Brillouin zone in

the reciprocal space. All

points are expressed in

r.l.u.

Figure 2.12: Measured spectra (left) and magnetic �rst Brillouin zone map (right).

by decomposing the various spectra in its fundamental interaction elements, i.e. the

elastic, dd and charge transfer excitation functions.



Chapter 3

Theory

In this chapter we aim to point out the cornerstones of the theoretical modeling of

the spin-wave dispersion relation measured in insulating cuprate materials. Start-

ing from the introduction of the second quantization method, we pass through the

Hubbard model, to eventually de�ne the t − J Hamiltonian, one of the methods

most currently exploited to model magnetic systems. Then we apply a low energy

theory and the spin wave theory to evaluate an e�ective dispersion relation for the

spin-waves in the material. Finally, we brie�y describe the linear spin wave theory,

based on which is set up the program that we used to �t the dispersion relation,

SpinW.

3.1 The Hubbard model

3.1.1 Second quantization

This thesis' work is based on the Hubbard model theory. To fully understand this

theory, �rst we must introduce the so-called second quantization theory (see [1]).

It is known that, because of their indistinguishability, bosons' and fermions' wave

functions must be expressed only with symmetric and antisymmetric terms; an

appropriately symmetrized N-particle wavefunction can be expressed in the form:

|λ1, λ2, . . . , λN〉 ≡
1

N !
∏∞

λ=0(nλ!)

∑
P

ζ
1−sgnP

2 |λP1〉 ⊗ |λP2〉 ⊗ · · · ⊗ |λPN〉 (3.1)

26
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where ζ = −1 for fermions while ζ = 1 for bosons. nλ represents the total number

of particles in state λ (for fermions, Pauli exclusion enforces the constraint nλ ≤ 1).

The sum runs over all N ! permutations of the set of quantum numbers {λ1, . . . , λN},

and sgnP denotes the sign of the permutation P (sgnP = 1[− 1] if the number of

transpositions of two elements which brings the permutation (P1,P2, . . . ,PN) back

to its original form (1, 2, . . . , N) is even [odd]). The prefactor 1
N !

∏∞
λ=0(nλ!)

normalizes

the many-body wavefunction. In the fermionic case, wave functions corresponding

to the states above are known as Slater determinants. We also notice that it is

useful to assume that the quantum numbers λi de�ning the state |λ1, λ2, . . . , λN〉 are

ordered according to some reasonable convention (e.g. for λi = xi a one-dimensional

coordinate representation, we might order according to the rule x1 ≤ x2 ≤ · · · ≤ xN).

It is also clear that the notation with generalized coordinates (3.1) is quite cum-

bersome: its practical computation is almost impossible (e.g. to compute the overlap

of two wavefunctions one needs to form not less than (N !)2 di�erent products) and,

since this representation is tailor-made for problems with �xed particle number N,

it is not suited for applications as statistical mechanics, where, in the general case

(grand canonical formulation), the number of particles N (∝ (1023), the Avogadro

constant) is allowed to �uctuate. To ease this notation we can exploit the occu-

pation number representation, whose basis states are speci�ed by |n1, n2, . . . , nN〉,

where the ith element signals how many particles occupy state number i ; moreover,

we can switch to a variable number of particles formulation by de�ning our domain

as the Fock state F .

With this foundations we can now de�ne the operators a†i : F → F through

a†i |n1, . . . , ni, . . . 〉 ≡ (ni + 1)1/2ζsi |n1, . . . , ni + 1, . . . 〉 (3.2)

where si =
∑i−1

j=1 nj . In the fermionic case, the occupation numbers ni have to be

understood mod 2 ((1 + 1) = 0 mod 2). Indeed, repeated application of (3.2) leads

to the important relation

|n1, n2, . . . 〉 =
∏
i

1

(ni!)1/2
(a†i )

ni |0〉 (3.3)
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i.e. the N-fold application of operators a† to the empty vacuum state |0〉 generates

an N-particle state, which is why the a† are commonly called creation operators.

Proceeding from this de�nition, it is possible to derive a†'s Hermitian adjoint,

(a†)† = a, that satis�es the relation

ai |n1, . . . , ni, . . . 〉 ≡ n
1/2
i ζsi |n1, . . . , ni − 1, . . . 〉 . (3.4)

From this it is easy to see ai role as the annihilation operators. It is also easy to

show that the creation and annihilation operators (often called ladder operators)

satisfy the algebraic closure relation

∀i, j : [ai, a
†
j]ζ = δij, [ai, aj]ζ = 0, [a†i , a

†
j]ζ = 0. (3.5)

Now, we de�ne the occupation number operator as

n̂λ = a†λaλ (3.6)

that simply counts the number of particles in state λ.

Finally, for our purposes it will be useful to derive the following properties:

Change of basis Using the de�nition of the identity operator and the relations

between the initial and the �nal basis one can immediately derive the trans-

formation law

a†
λ̃

=
∑
λ

〈λ|λ̃〉 a†λ aλ̃ =
∑
λ

〈λ̃|λ〉 aλ (3.7)

Representation of one-body operators Since we have seen that any state can

be obtained in the Fock space with the ladder operators, it must be possible

to represent any one-body operator in an a-representation; in particular, the

successive expression follows

Ô1 =
∑
µν

〈µ| Ô1 |ν〉 a†µaν (3.8)

Representation of two-body operators Similarly to the previous point, we can

obtain

Ô2 =
∑
µµ′νν′

〈µ, µ′| Ô2 |ν, ν ′〉 a†µa
†
µ′aνaν′ (3.9)

Note that we could continue with this approach for every n-body operator, however

the n > 2 interactions appear very infrequently, thus we can neglect them.
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3.1.2 Tight binding model

The next step is to apply this approach to solid-state theory: it is known that a pro-

totypical metal or insulator might be described by the many-particle Hamiltonian,

H = He +Hi +Hei where
He =

∑
i
p2
i

2m
+
∑

i<j Vee(ri − rj)

Hi =
∑

I
P2
I

2M
+
∑

I<J Vii(RI −RJ)

Hei =
∑

iI Vei(RI − ri)

(3.10)

In this equation He, Hi, and Hei describe the dynamics of electrons, ions and the

interaction between electrons and ions, respectively, and ri (RI) denote the coor-

dinates of the valence electrons (ion cores). To a �rst approximation, since the

lattice distortions due to both the motion of the ions and the ion�ion interaction

couple only indirectly, we may describe the electron system through the simpli�ed

Hamiltonian (obtained from (3.8) and (3.9)), Ĥ = Ĥ0 + V̂ee, where
Ĥ0 =

∫
a†σ(r)

[
p̂2
i

2m
+ V (r)

]
aσ(r)ddr

V̂ee = 1
2

∫∫
Vee(r− r′)a†σ(r)a†σ′(r

′)aσ′(r
′)aσ(r)ddr′ddr

(3.11)

p̂i = −i~∂ is the quantum momentum operator, while V (r) =
∑

I Vei(RI − ri)

denotes the lattice potential experienced by the electrons, and the coordinates of

the lattice ions RI are assumed �xed. For completeness, we have also endowed the

electrons with a spin index, σ =↑ / ↓. This Hamiltonian de�nes the problem of the

interacting electron gas embedded in a solid state system.

Now, we are interested in crystals, for which Bloch's theorem is applied: eigen-

states of a periodic Hamiltonian can be presented in the form of Bloch waves

ψkn(r) = eik·rukn(r), where the components of the crystal momentum k take values

inside the Brillouin zone, ki ∈ [−π/a, π/a], and we have assumed that the periodicity

of the lattice potential is isotropic (V (r+ aei) = V (r)). The index n labels the sep-

arate energy bands of the solid, and the functions ukn(r+aei) = ukn(r) are periodic

on the lattice. Now, depending on the nature of the bonding, there are two com-

plementary classes of materials where the general structure of the Bloch functions
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Figure 3.1: When the Fermi energy EF lies between two energetically separated bands,

the system presents insulating behavior. Conversely, when EF is located within a band,

one may expect metallic behavior. In this work we will focus on metallic systems where the

Fermi energy is located within a de�nite band n0.

can be simpli�ed signi�cantly: nearly free electron systems (notably the elemental

metals drawn from groups I�IV of the periodic table, whose electrons' dynamic is

largely oblivious to both the Coulomb potential created by the positively charged

ion background and their mutual interaction) and tight-binding systems. We are

interested in the latter, in which the atoms are independent from one another (i.e.

the interatomic distance is greater then the wavefunction width) and the weight of

the electron wavefunctions is �tightly bound� to the lattice centers, thus permitting

to consider the V̂ee term of the Hamiltonian as a perturbation of Ĥ0.

In this picture, it is convenient to expand the Hamiltonian in a local basis that re-

�ects the atomic orbital states of the isolated ion. Such a representation is presented

by the basis of Wannier states de�ned by

|ψRn〉 ≡
1√
N

B.Z.∑
k

e−ik·R |ψkn〉 |ψkn〉 ≡
1√
N

∑
k

eik·R |ψRn〉 (3.12)

where R denote the coordinates of the lattice centers, and
∑B.Z.

k represents a sum-

mation over all momenta k in the �rst Brillouin zone. The Wannier functions

converge on the atomic eigenstates if the distance between atoms is very high (or

their interaction is very low), but if the interatomic coupling is non-zero (in that
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condition, note, are not eigenfunctions of the Hamiltonian) the functions generate

the solid energy bands. This change of basis from Bloch to Wannier states (that,

since the Wannier states form an orthonormal basis of the single particle Hilbert

space, is unitary) introduces a transformation, which can be obtained from (3.7), in

the creation and annihilation operators

a†kσ =
1√
N

∑
i

eik·Ria†iσ, a†iσ =
1√
N

B.Z.∑
i

e−ik·Ria†kσ (3.13)

that results in the new form of the Hamiltonian

Ĥ0 =
∑
k

εka
†
kσakσ =

1

N

∑
ii′

∑
k

eik(Ri−Ri′ )εka
†
iσai′σ ≡

∑
ii′

a†iσtii′ai′σ (3.14)

where tii′ = N−1
∑

k e
ik(Ri−Ri′ )εk; note that in the previous equations we indexed

the lattice center coordinates R ≡ Ri with i = 1, . . . , N . This new representation of

Ĥ0 describes electrons hopping from one lattice center (i′) to another (i); tii′ 's value,

which represents the strength of the hopping between the two sites, is controlled by

the e�ective overlap of neighboring atoms. In the limit where the energy levels εk

are degenerate, tii′ is a Dirac's delta δii′ and no inter-atomic transport is possible;

the tight-binding representation becomes useful when ti 6=i′ is non-vanishing, but

the orbital overlap is so weak that only the nearest neighbour hopping e�ectively

contributes.

We will now have to take into account the interaction term generated by the

coulomb potential V̂ee; to ease this process, let us focus attention on a single sub-

band and drop reference to the band index. First of all, we apply the Wannier

transformation and obtain the expansion∑
ii′jj′

Uii′jj′a
†
iσa
†
i′σ′ajσaj′σ′ (3.15)

where

Uii′jj′ = 1/2

∫∫
ψ∗Ri

(r)ψRj
(r)V (r− r′)ψ∗R′i(r

′)ψR′j
(r′) (3.16)

It is worth noting that, since we are in the tight binding approximation, this in-

teraction acts only on the atom itself and on the �rst neighbours. The resulting
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tight-binding representation Hamiltonian is

Ĥ =
∑
ii′

a†iσtii′ai′σ +
∑
ii′jj′

Uii′jj′a
†
iσa
†
i′σ′ajσaj′σ′ (3.17)

where the sum of repeated spin indices is implied. Let us understand the meaning

of (3.16) by examining its most important contributions:

Direct terms Uii′jj′ ≡ Vii′ , involve integrals over square moduli of Wannier func-

tions and thus couple density �uctuations at neighboring sites (
∑

i 6=i′ Vii′n̂in̂i′),

i.e. they explicit the interaction between charges localized at neighboring sites;

in certain materials, they can induce charge density wave instabilities.

Exchange coupling terms For these terms i′ = j and j′ = i; they tend to gener-

ate magnetic coupling with exchange constant Jij ≡ Uijji (clearly, the nature

of the order depends on Jij's sign).

Hubbard interaction If the distance between the atoms is large, the �on-site�

Coulomb interaction is the strongest, i.e. putting two fermions on the same site

(therefore with opposite spins) costs a very large energy due to the Coulomb

repulsion U compared to the energy one gains by letting the fermions delocalize

with a bandwidth W ∼ t; it derives from the terms Uiiii.

Note that even a weak interaction can upset the tight-binding model (e.g. induce a

magnetic state or an insulating phase). If the last terms prevail, the Hamiltonian

takes the simpli�ed form

Ĥ = −t
∑
<ij>

a†iσajσ + U
∑
i

n̂i↑n̂i↓ (3.18)

where < ij > is a shorthand used to denote neighbouring lattice sites and where we

used the de�nition Uiiii ≡ U/2,
∑

iσσ′ Uiiiia
†
iσa
†
iσ′aiσaiσ′ =

∑
i Un̂i↑n̂i↓. This is the

Hubbard model Hamiltonian we sought.

3.1.3 Hubbard model

Let us go through the most important (theoretical and phenomenological) details of

this model. The phase behaviour of the Hubbard Hamiltonian (3.18) is characterized
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ultimately by three dimensionless parameters: the ratio of the Coulomb interaction

scale to the bandwidth U/t, the average number of electrons per site n (called

particle density or �lling fraction), and the (dimensionless) temperature, T/t. In the

limit n � 1 and T/t � 1 (low electron density and low temperature), we expect a

behaviour similar to the nearly free electrons (metallic) case, scilicet a little U/t� 1.

When n = 1 (half-�lled model), if we have weak interaction (U/t � 1), hopping is

probable and double occupancy of the same atomic coordinate costs little energy;

on the other hand, if U/t � 1, the system is strongly correlated and the electrons'

migration is dampened: this is the case of Mott insulators. But what is the physical

explanation of the nature of the Mott�Hubbard transition from the metallic to the

insulating phase? In the Mott's original formulation the system was conceived as

an insulator characterized by two �Hubbard bands� with a bandwidth ∼ t separated

by a charge gap U [49] [50]. States of the upper band engage site double occupancy

while those states that make up the lower band do not. The transition between the

metallic and the insulating phase was predicted to occur when the interaction was

su�ciently strong that a charge gap develops between the bands.

Experimentally, it is often found that the low-temperature phase of the Mott

insulator is accompanied by the anti-ferromagnetic ordering of the local moments;

this is originated by the superexchange mechanism and can be proved theoretically

with some calculation: considering for simplicity only two half-�lled neighbouring

sites, one can see that the overall system can be in six di�erent states (recalling

the Pauli principle, we have two polarized states, |↑, ↑〉 |↓, ↓〉, and four states with

null total spin, |s1〉 = |↑, ↓〉, |s2〉 = |↓, ↑〉, |d1〉 = |↑↓, ·〉 |d2〉 = |·, ↑↓〉, where |s〉

and |d〉 stand for single and double occupancy, respectively). In the strong coupling

limit U/t � 1, the ground state will be composed predominantly of states with no

double occupancy (|s〉); to determine the ground state structure in this case, we

will treat the hopping part of the Hamiltonian Ĥt as a perturbation of the Hubbard

interaction part ĤU . In this way, we can write the e�ective Hamiltonian as

P̂sĤ
′P̂s = J

(
Ŝ1 · Ŝ2 −

1

4

)
(3.19)

where P̂s =
∏

i(1−ni↑ni↓) is the Gutzwiller projector, i.e. the operator that projects
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Figure 3.2: Simple physical interpretation of the reason why electrons subject to a strong

local repulsive Coulomb interaction have a tendency to adopt an antiferromagnetic spin

con�guration between neighboring sites. On the top, hybridization of spin polarized states

is forbidden by Pauli exclusion. Bottom:superexchange mechanism by which two antipar-

allel spins can lower their energy by a virtual process in which the upper Hubbard band is

occupied. Anti-parallel spins can take advantage of the hybridization (however small) and

reduce their kinetic energy by hopping to a neighboring site. Taken from [1].

onto the singly occupied subspace, and J = 4t2/U (see �g. 3.2); this means that,

when the system is in a single occupied state |si〉, its energy is minimized by a state

where S1 = −S2 = 1/2, i.e. there is an anti-ferromagnetic superexchange interaction

that couples the spin (�rst formulated by Anderson in [6]).

This approach can be easily extended to the overall lattice system through the

Heisenberg Hamiltonian

Ĥ = −J
∑
<mn>

Ŝm · Ŝn (3.20)

where J ∼ t2/U . Thus, while the charge degrees of freedom are quenched by the

insulating magnetic phase, spin �uctuations can propagate in the lattice. When

doped away from the half-�lling the Ĥt term must be reconsidered; the removal of

electrons from the half-�lled system introduces vacancies into the �lower Hubbard

band� that may propagate through the lattice. For a low concentration of holes, the

strong coupling Hubbard system may be described by the e�ective t�J Hamiltonian

Ĥt−J = −t
∑
<mn>

P̂sa
†
mσanσP̂s + J

∑
<mn>

Ŝm · Ŝn (3.21)
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Here transport depends sensitively on the competition between the exchange energy

of the spins and the kinetic energy of the holes.

The rich behaviour of the Mott�Hubbard system is nowhere more exempli�ed

than in the ceramic cuprate system: their single band is exactly half-�lled (one

electron per Cu site) and, therefore, according to the standard band picture, these

materials should be metallic. However, strong electron interaction drives the cuprate

system into an insulating antiferromagnetic Mott�Hubbard phase. When doped

away from half-�lling, the Hubbard gap and the antiferromagnetic order collapse, but

the system develops the high-temperature unconventional superconducting phase

we are interested into, whose mechanism is believed to be rooted in the exchange of

antiferromagnetic spin �uctuations.

Finally, we have to note that, when we are in a system in which the number of

excitations is not �xed (i.e. in the Hamiltonian some operators appear as polynomi-

als containing unequal numbers of creation and annihilation operators, for example

aa or aa†a† and not only a†a and aa†), like when dealing with photons and phonons,

we have to use the Bogoliubov transformation: we rede�ne the annihilation and cre-

ation particle operators as quasi-particle operators whose number is conserved in

the system. To obtain them, we apply an unitary transformation to a and a†, while

remembering that even the new operators have to satisfy the commutation relations.

3.2 The Hubbard model in cuprates

As already introduced, the cuprate material class shows an unexpected high tem-

perature superconductivity, and the proximity between the superconducting and the

insulating antiferromagnetic phases inspired the idea that the electron pairing mech-

anism might be of magnetic origin, in contrast with conventional superconductivity

where it is the electron-phonon interaction which results in electron pairing. We

thus want to develop a theoretical model able to describe this magnetic behaviour

that would help us to understand its correlation with the superconductivity phe-

nomenon [18]. First of all, the atoms' position is assumed as �xed to the lattice
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points, thus neglecting phonon physics; moreover, it is supposed that only the va-

lence electrons participate in the low-energy physics, while the other electrons are

left in their atomic orbital state. To address theoretically the physics of the cuprate

materials, the Hubbard model was proposed to encompass the most relevant aspects

of the CuO2 square lattice plane physics. Exploiting the previous section, (3.18) is

a good starting point:

Ĥ = −t
∑
<ij>,σ

(a†iσajσ + h.c.) + U
∑
i

n̂i↑n̂i↓ (3.22)

where the dependence on the spin σ has been added (h.c. stands for hermitian

conjugate); it is useful to remind that, neglecting the temperature dependence and

considering the half-�lling case (n = 1), the only parameter of this model is the

ratio U/t, which value in cuprates is ∼ 10.

As already discussed, in the strong limit U/t� 1 it is possible to introduce the

Coulomb repulsion perturbatively. We already know that the zeroth order of the

Hamiltonian is obtained by substitution of Wannier and Bloch states in the hopping

part and it is (3.14) (with εk = −1/2
∑

τ tτe
iτ ·k, τ = Ri − Rj). By turning on

the interaction, the number of double occupancies (DOs) should become a good

quantum number (at low temperature), since it de�nes sectors of the Hilbert space

separated by the large Coulomb repulsion energy U ; therefore, the lowest energy

subspace is obtained when there is the minimum of DOs as permitted by the �lling.

In this subspace, the Coulomb interaction V = U
∑

i n̂i↑n̂i↓ is diagonal, while the

kinetic term K = −t
∑

<ij>,σ(a†iσajσ + h.c.) can be treated as a perturbation. If we

denote |α〉 and |β〉 two states belonging to the lowest energy sector of the Hubbard

model, the expansion can be written as:

〈α| Ĥ |β〉 = 0 + 〈α|K |β〉+
∑
γ

〈α|K |γ〉 〈γ|K |β〉
E0 − Eγ

+ . . . (3.23)

Since we are in the half-�lling case, the �rst order correction does not contribute

because K |β〉 has a DO, while |α〉 has none: they belong to two di�erent subspaces,

i.e. they are orthogonal. The second order term is equivalent to (3.19) :

Ĥ(2) = J
∑
<ij>

(
Ŝi · Ŝj −

1

4

)
(3.24)
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with as usual J = 4t2/U , i.e. the interaction is antiferromagnetic.

Advancing as in the previous section, it is possible to turn to doped case where

holes are added and then to perform the same kind of e�ective perturbation theory

development. In this case, the �rst order perturbation 〈α|K |β〉 will now contribute

by exchanging an electron and a hole, while the second order perturbation will

generate more complex hops, the so called three-sites term. Altogether, the e�ective

Hamiltonian of the Hubbard model in the strong coupling limit with �nite doping

is a t-J-like model [41]:

Ĥ(2) =−
∑
<ij>,σ

P̂s(tija
†
iσajσ + h.c.)P̂s + J

∑
<ij>

(Ŝi · Ŝj −
1

4
ninj)+ (3.25)

− J

4

∑
j,τ 6=τ ′,σ

P̂s(a
†
jσ′ajσ′a

†
j+τσaj+τ ′σ + a†j+τσ′ajσ′a

†
jσaj+τ ′σ)P̂s (3.26)

where P̂s is the Gutzwiller projector.

3.2.1 E�ective low energy theory

The results of the perturbation theory are theoretically consistent, but they are not

suited to applications; we thus have to try to develop an e�ective low energy that

could be used in an practical situation ([45], [21]). The general Hamiltonian (3.22)

can be rewritten as:

Ĥ = −
∑
rστ

tτ T̂rστ + UV̂ (3.27)

T̂rστ = a†r+τσarσ (3.28)

V̂ = a†r↑ar↑a
†
r↓ar↓ (3.29)

Practical choices for the hoppings can for instance include �rst, second and third

nearest neighbours on a square lattice, but we will deal with it in the next chapter.

As always, we are in the strong coupling limit (i.e. putting two fermions on the

same site costs a lot of energy due to the Coulomb repulsion), therefore the number

of DO is given by the operator V̂ , thus de�ning subspaces with very di�erent energy

(∆(E) = U); in our limit the number of DOs could be considered �xed, so V̂
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commutes with the Hamiltonian, and we have to �nd an approximate change of

basis Û that ful�lls the condition:

[ÛĤÛ †, V̂ ] = 0 (3.30)

The change of Hamiltonian e�ects a change in the basis states too; our initial basis

states |α〉 are the real space con�gurations of the spin |↑〉, |↓〉, the empty state |−〉

and the doubly occupied one |↑↓〉. To assure that the �nal basis is orthonormal,

we require that the operator is unitary, that is equivalent to impose that Û = eiŜ,

where Ŝ is an hermitian matrix. The new Hamiltonian becomes:

Ĥ ′ = eiŜĤe−iŜ = Ĥ + [iŜ, Ĥ] +
1

2
[iŜ, [iŜ, Ĥ]] + . . . (3.31)

where the second equality arises from a standard combinatorics result.

Since it is almost impossible to �nd the explicit analytical form of the Ŝ operator

that satis�es the equation (3.30), we use an approximation: we suppose that Ŝ is

proportional to a generic small parameter λ, we derive its series expansion and we

verify the requested condition for the �rst n terms. To do that, �rst we exploit the

number operators n̂rσ (3.6) and ĥrσ = 1 − n̂rσ (that is 0 when n̂rσ = 1, i.e. when

the state is occupied, and vice versa) to transform the kinetic operator T̂ so that the

terms that create, destroy a DO and the ones that simply move a spin are explicit:

T̂rστ = T̂ 1
rστ + T̂−1rστ + T̂ 0

rστ (3.32)

T̂ 1
rστ = n̂rτσ′a

†
r+τσarσĥrσ′ (3.33)

T̂−1rστ = ĥrτσ′a
†
r+τσarσn̂rσ′ (3.34)

T̂ 0
rστ = n̂rτσ′a

†
r+τσarσn̂rσ′ + ĥrτσ′a

†
r+τσarσĥrσ′ (3.35)

it is easy to see that T̂ 1
rστ creates a double occupancy,T̂−1rστ destroys one and T̂ 0

rστ

either move a double occupancy or a hole.

Once de�ned these operators, by using a �rst order correction Ŝ(1) = 1/U(T̂ 1 −

T̂−1), we can compute a second order Hamiltonian:

Ĥ(2) = V̂ + T̂ 0 +
1

U
([T̂ 1, T̂−1] + [T̂ 1, T̂ 0] + [T̂ 0, T̂−1]) + o(

t3

U2
) (3.36)
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Figure 3.3: Example of path treaded by a valence electron (or hole) on four di�erent

lattice sites. τ1, τ2, τ3 and τ4 are the hopping vectors. Taken from [18].

and, considering only the subspace with the minimum number of double occupancies

allowed by the �lling and the half-�lled case, we simplify this equation into:

Ĥ(2) = − 1

U
(T̂−1T̂ 1 + T̂ 0T̂ 1) (3.37)

This operation can be done also for the fourth order and the result is:

Ĥ(4) =− 1

U
T̂−1T̂ 1 +

1

U2
T̂−1T̂ 0T̂ 1+ (3.38)

+
1

U3
(T̂−1T̂ 1T̂−1T̂ 1 − T̂−1T̂ 0T̂ 0, T̂ 1 − T̂ 1T̂−1T̂ 1T̂ 1/2) (3.39)

We obtained a t4/U3 order approximation of the e�ective Hamiltonian; since none of

the T̂m terms' combinations of these Hamiltonians creates DO, they do not change

the system state. Therefore the Hilbert space associated with (3.38) has only the

σ ∈ {↑, ↓} spin-1
2
degrees of freedom per site, and thus the single sites Hamiltonians

(and the whole Hamiltonian) can be expressed through the SU(2) 2D special unitary

group base (i.e. the Pauli matrices).

This can be done by substituting the T̂m operators with the sum of their possible

e�ects on every lattice combination of sites. For example, let's understand how the

following hopping process acts (shown in 3.3):

T̂−1T̂ 0T̂ 0T̂ 1 =
∑
i1i2i3i4

∑
τ1τ2τ3τ4

∑
σ1σ2σ3σ4

T̂−1i4τ4σ4
T̂ 0
i3τ3σ3

T̂ 0
i2τ2σ2

T̂ 1
i1τ1σ1

(3.40)

where i denotes the lattice site, τ the hopping vector, σ the initial spin of the electron

on the site and the numbers 1, 2, 3, 4 the steps of the process. Despite the apparent
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complexity from the many indices, only a very few subset of those actually give a

�nite contribution. I.e., if we consider a cluster with wavefunction:

|α〉 =

∣∣∣∣∣∣1 2

3 4

〉
=

∣∣∣∣∣∣↑ ↓↓ ↑
〉

(3.41)

the process is:

T̂−1T̂ 0T̂ 0T̂ 1

∣∣∣∣∣∣↑ ↓↓ ↑
〉

= T̂−1T̂ 0T̂ 0

∣∣∣∣∣∣↑↓ ↓− ↑

〉
(3.42)

= T̂−1T̂ 0

∣∣∣∣∣∣↑↓ ↓↑ −

〉
(3.43)

= T̂−1

∣∣∣∣∣∣↓ ↑↓↑ −

〉
(3.44)

=

∣∣∣∣∣∣↓ ↑↑ ↓
〉

(3.45)

The last hop, which must annihilate both a double occupancy and a hole, require

that these two are not separated far enough that no hopping is available for T̂−1 to

be able to operate. Therefore, the translation vectors τi must form a closed path for

our combination (3.40) to give a contribution, and thus the complicated sum above

contains far less terms than apparent. The situation is identical also for the other

operators' combinations: they might only contribute on closed paths.

The overall e�ective Hamiltonian can be computed with an appropriate com-

puter calculation, which neglects the inconsequential terms; in this way we obtain:

Ĥ(4) =
∑
ab

(4t2ab
U
− 16t4ab

U3

)(
Sa · Sb −

1

4

)
+
∑
abc

4t2abt
2
bc

U3

(
Sa · Sc −

1

4

)
+ (3.46)

−
∑
abcd

4tabtbctcdtda
U3

{ ∑
i=b,c,d

Si · Sa − 20[(Sa · Sb)(Sc · Sd)+ (3.47)

+(Sa · Sd)(Sb · Sc)− (Sa · Sc)(Sb · Sd)]
}

+ E(4) (3.48)

where a, b, c and d are the sites' indices and E(4) is a constant; note that, as we have

derived in the previous example, the sums are only over closed paths, while the abc

sum is indeed composed by 4-order paths with d = b (a→ b→ c→ b→ a).
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Figure 3.4: Spin con�guration of an elementary spin-wave excitation from the spin

polarized ground state. Note that a simultaneous change of the orientation of all spins does

not change the ground state energy (high degeneration), i.e. the system possesses a global

rotation symmetry. From [1].

3.3 Spin-wave theory

At this point, it is necessary to introduce another important physical instrument to

describe the behaviour of magnetic materials: the spin-waves (�g. 3.4). A simple

starting point to this topic is a spin system described by an Heisenberg Hamilto-

nian (3.20). While at high temperature the study of this system is approachable

with a moment-expansion method, spin-wave theory is a good approximation at low

temperatures. In this picture, the ground state is the one with all the spins aligned

in a precise direction, while the �rst excited state is the one with only one spin in

the other direction. However, due to the transverse nature of the exchange inter-

action between the elements of the lattice, this spin �ip is delocalized all over the

system, and is therefore describable as a spin-wave. The plainest spin-wave theory

was conceived by Bloch, and we will now follow its derivation [70] [10] [61].

Let's consider the waves as non interacting, since at very low temperatures the

interaction's amplitude is very small. First of all, the spin operator's evolution in

time can be derived from the commutation relation (i.e. spin operator equation of

motion):
dŜj
dt

=
i

~
[Ĥ, Ŝj] = −1

~
(Ĥi × Ŝj) (3.49)
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where j is the lattice point number and Ĥ represents the Heisenberg Hamiltonian

including the Zeeman energy −gµBĤ · Ŝi. Then, we substitute the Heisenberg

Hamiltonian expression in (3.49), and, assuming that �eld and spin, in the ground

state, are directed along the same direction z, we derive two linear equations to

evaluate the spin variation in the two other directions, x and y (with Ŝz ' Ŝ, since

they are small variations). Next, we switch to an Ŝ± description:

Ŝ± = Ŝx ± iŜy (3.50)

Assuming a Bravais lattice, we apply the Fourier transform:

Ŝk± =
1√
N

∑
j

e−ik·Rj Ŝj± (3.51)

to obtain the equation for a spin-wave with wave vector k (Rj is the position of the

jth lattice point). From this is easy to obtain the energy of the system and the x and

y spin progresses, that show how these excitations correspond to a rotation of the

spin vector in the xy plane. It is also possible to derive the medium number of spins

�ipped as a temperature function, thus observing a T̃ 3/2 trend, that corresponds,

as it should, to the spontaneous magnetization of ferromagnets decrease with the

increasing temperature.

3.3.1 Spin wave theory in cuprates

Let's apply this approach to our cuprate picture: we still need to resolve (3.46), and

the sin-wave theory has provided us with an instrument to evaluate the Heisenberg-

like terms Ŝm · Ŝn [18]. It is thus possible to use the spin-wave theory to approxi-

mately diagonalize the Hamiltonian. We can act as in the Bloch theory, but some

changes are mandatory: in e�ect, we are here dealing with an antiferromagnetic

system, and not ferromagnetic, for which we developed the treatise. First of all, it

is essential to �nd the system ground state, that we will assume as the antiferro-

magnetic Néel order. As the magnetic lattice has doubled unit cell compared to the

nuclear cell (because it has to describe the spin distribution on the lattice, which

is antiferromagnetic, and therefore two nearest neighbours have opposite spin), we
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adopt the staggered spin notation:
Ŝxj = eik·Rj S̃xj

Ŝyj = S̃yj

Ŝzj = eik·Rj S̃zj

(3.52)

where the terms with ∼ are the original spins and k ∈ [−π/a, π/a] (a is the square

lattice parameter).

It is then necessary to take into account the interaction between spin-waves,

that we did neglected in the Bloch treatise. To do that, we have to apply the

Holstein-Primako� method []: it consists in introducing a creation and an annihi-

lation operator based on the number operator n̂ = S − Ŝzj = â†j âj, through which

represent our spin operators. This corresponds, like for photons and phonons, to

introduce a particle equivalent to the spin-waves: the magnons. We then introduce

the Ŝ± notation as in (3.50) and rewrite all the spin coordinates in terms of the

ladder operators (this is the Holstein-Primako� transformation), hence obtaining:
Ŝzj = S − â†j âj

Ŝ+
j =

√
2S − â†j âj âj

Ŝ−j = â†j

√
2S − â†j âj

(3.53)

The classical ground state being ferromagnetic in the staggered frame of reference,

we do not need to introduce two species of bosons to distinguish the lattices with

opposite spin direction.

It is now possible to proceed by developing the formulation of the general e�ective

Hamiltonian (3.46) in terms of the ladder operators. From our transformation we

can calculate the various products of spin operators, both quadratic (Ŝj · Ŝj+τ ) and

quartic (Ŝj · Ŝj+τ1)(Ŝj+τ2 · Ŝj+τ3), as power series expansions in 1/S [38]: de facto, we

are expanding in Taylor series the squared root in (3.53). Stopping the expansion

at the second order, the quadratic terms become:

Ŝj · Ŝj+τ = S2 [(Ŝj · Ŝj+τ )(0) +
1

S
(Ŝj · Ŝj+τ )(1)+ (3.54)

1

S2
(Ŝj · Ŝj+τ )(2) + o

( 1

S3

)
] (3.55)
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For quartic terms, if we exclude the quadratic contributions in the bosonic spin

operators, we can use the same solution:

(Ŝj · Ŝj+τ1)(Ŝj+τ2 · Ŝj+τ3) = S4

(
(Ŝj · Ŝj+τ1)(0)(Ŝj+τ2 · Ŝj+τ3)(0)+ (3.56)

1

S
(Ŝj · Ŝj+τ1)(1)(Ŝj+τ2 · Ŝj+τ3)(0)+ (3.57)

1

S
(Ŝj · Ŝj+τ1)(0)(Ŝj+τ2 · Ŝj+τ3)(1) + o

( 1

S2

))
(3.58)

In both equations the various terms are complicated combinations of the â† and

the â operators, derivable directly by the scalar product calculation with Holstein-

Primako� spin coordinates.

As in the Hubbard model, we can diagonalize this linear combination of ladder

operators terms by exploiting the Bogoliubov transformation; to do that, �rst we

have to Fourier transform our ladder coordinates, therefore obtaining a coordinate

set referred to the space vector k:

âj =
1√
N

∑
k

e−ik·Rj âk (3.59)

and similarly for â†j. Then, as already seen, we de�ne some quasi-particle opera-

tors whose number is conserved and we impose the ladder operator commutation

relations, thus obatining the result:

ωk =
√
A2

k −B2
k (3.60)

where Ak and Bk are complicated terms that depend on the lattice con�guration.

Finally, it is possible to correct this result with a magnon-magnon 1/S interaction

(intralayer, since the interlayer interaction is very weak) using a Hartree-Fock (i.e.

iterative and mean �eld) procedure; this gives (for the square lattice monolayer) a

constant renormalization factor Zc = 1.15, that has to be applied to the dispersion

relation (3.60) to derive the e�ective result. Physically, the renormalization is due

to the charge �uctuations of the Hubbard model, which we integrate perturbatively

in our e�ective theory.
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3.3.2 Linear spin-wave theory

In this last paragraph, we want to introduce the theory [64] on which is based

the simulation program exploited for the magnetic behaviour of a crystal lattice

simulation, SpinW, about which we will discuss extensively in the next chapter.

This is the linear spin-wave theory [62], and it follows the footsteps of the theory

already showed, but in a more general way. The SpinW program aims to solve

the general magnetic Hamiltonian of interacting localized magnetic moments on a

periodic lattice:

H =
∑
mi
nj

STmiJmi,njSnj +
∑
mi

STmiAmiSmi + µBH
T
∑
mi

giSmi (3.61)

where the 3 × 3 matrix formalism is utilized, i.e. all the elements are conceived as

algebraic three-dimensional elements (e.g. the spins are 3 × 1 column vectors and

the operators A and J are 3 × 3 matrices). The indices m and n are indexing the

crystallographic unit cell (running from 1 to L), while i and j label the magnetic

atoms inside the unit cell (running from 1 to N), H is the external magnetic �

eld column vector, µB is the Bohr magneton and Jmi,nj is the exchange matrix

coupling the two sites mi and nj. This Hamiltonian can describe the magnetic prop-

erties of many Mott insulators; its �rst, second and third terms describe respectively

an exchange interaction, a general anisotropy (e.g Dzyaloshinskii-Moriya e�ect) and

an external magnetic �eld.

To resolve this Hamiltonian (for incommensurate lattices, generally), as before,

we need to know its classical magnetic ground state; we thus assume that the solution

is a priori known (see [55]). Then we introduce a rotating frame [36], i.e. a preceding

coordinate transformation: every spin is rotated in respect with its neighbours by

an angle that depends on the magnetic ordering wave vector and on the position

of the cell in which the spin is situated. If we can obtain a ferromagnet with this

transformation (possibility that strongly depends on the symmetry of the system),

as we did with the antiferromagnetic case in the previous section, the SpinW method
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can be applied. To diagonalize the Hamiltonian, we apply two rotation operators:Snj = RnS
′
nj

S′nj = R′jS
′′
nj

(3.62)

Rn, if applied on the set S′nj (that has all equal unit cells and it is thus independent

on n), permits to generate the original spins, while R′j does the same operation

inside the unit cell and on the ferromagnetic set S′′nj to obtain S′nj. It is also useful

to note that SpinW exploits the symmetry of the system to simplify some aspects

of the problem, since the symmetry imposes some requirements on the parameters.

Now it is possible to apply the linear spin wave theory, which is used to describe

small �uctuations of the spin from is classical value, i.e. at low temperature and

with large S (high order corrections are necessary for S = 1/2 systems, that is

the half-�lling case). Once again, we apply the Holstein-Primako� method and we

maintain only the linear term in the bosons creation and annihilation operators:

S ′′+nj =
√

2Sj anj (3.63)

S ′′−nj =
√

2Sj a
†
nj (3.64)

S ′′znj = Sj − a†njanj (3.65)

Then, if we apply the rotation operators Rn and R′j, we can obtain (without the

magnetic �eld) a quite complex yet general Hamiltonian expression, that, we notice,

depends on the very same rotations, i.e. on the crystalline con�guration of the

system. From here, one can expand the Hamiltonian and neglect all the terms with

more than two operators: the zero order terms gives the ground state energy, the

�rst order's expectation value vanishes and the second order gives the spin-wave

dispersion relation. Then, like in the previous section, we can Fourier transform

in the Brillouin zone in the spatial wave vector k and deduce the problem in the

general formulation:

H =
∑

k∈B.Z.

x†(k)h(k)x(k) (3.66)

where x is the column vector of the bosonic operators:

x(k) = [a1(k), . . . , aN(k), a†1(k), . . . , a†N(k)]T (3.67)
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and the Hermitian matrix h(k) consists in the following submatrices:

h(k) =

A(k)− C B(k)

B†(k) Ā(k)− C

 (3.68)

A(k), B(k) and C depend on the rotations, Si,j and Jij; it can be shown that A(k)

is Hermitian and C is real. The same can be done, with analogous passages, to the

Zeeman Hamiltonian. We now have to diagonalize the h(k) operator; to do that, the

program exploits a numerical approach to the Bogoliubov transformation proposed

by Colpa [17], and from this it provides the sought dispersion relation.



Chapter 4

Fitting of magnon dispersion in

antiferromagnetic compounds with

di�erent models

The aim of this work was to �nd a proper �tting algorithm for the spin-wave disper-

sion obtained by our group with ERIXS during July and November 2015 beamtimes

at ESRF. To achieve this goal, we made use of the SpinW Matlab library developed

by Dr. Sándor Tóth of Paul Scherrer Institute (PSI) to plot and numerically sim-

ulate magnetic structures and excitations of given spin Hamiltonian using classical

Monte Carlo simulation and linear spin wave theory [64].

4.1 Dispersion features

In [68] Tranquada et al. have reported the complete calculation of dispersion relation

for the YBa2Cu3O7 (YBCO) compound. YBCO crystal structure, reported in 2.11a,

is composed by couples of adjacent planes, called bilayers. In this model, which is

quite simple, the magnetic interactions of the spin lattice (along with the Hamilto-

nian) are expressed in terms of the inplane �rst-neighbours exchange parameter J

and of its two out-of-plane analogous (J⊥1 between planes in the same bilayer and

J⊥2 between planes in two nearest bilayers). The method exploited to resolve the

48
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problem is the one already seen in the previous chapter (Holstein-Primako�, Fourier

transform and Bogoliubov transformation); in the system Hamiltonian there is an

additional anisotropy term resulting from spin-orbit coupling, which however exper-

imentally has proven to be very small.

Resolving the eigenvalue problem, the modes of the system appear to be:

[
ωqj

ω‖

]2
= (1 +

1

4
α⊥ ∓

1

2
αDγ‖)

2+ (4.1)

− (γ‖ ±
1

4
α⊥|γ⊥| −

1

2
αDγ‖)

2 (4.2)

where the eigenmode labels j = 1, 2, 3 and 4 correspond to the various sign

combinations (−+, + +, −− and +− respectively), ω‖ = 2J‖/~, α⊥i = J⊥i/J‖ and

α⊥ = α⊥1 + α⊥2. The other terms are more complicated:γ‖ = 1
2
[cos qxa+ cos qya]

γ⊥ = |γ⊥|eiφ⊥
(4.3)

with:

|γ⊥| =
√
J2
⊥1+J

2
⊥2+2J⊥1J⊥2 cos qzc

J⊥1+J⊥2

φ⊥ = arctan J⊥1 sin qzzc−J⊥2 sin qz(1−z)c
J⊥1 cos qzzc−J⊥2 cos qz(1−z)c

(4.4)

Here, a is the in-plane lattice constant, c is the out-of-plane one. It is useful

to note that |γ⊥| is equal to J⊥1−J⊥2

J⊥1+J⊥2
in qz = π, while it is equal to 1 in qz = 0;

therefore 0 < |γ⊥| ≤ 1. Finally, αD = D/J‖, and D is the anisotropy parameter: as

it is clear by considering (4.1), the anisotropy eliminates a degeneration order, thus

generating 4 di�erent modes. However, since it can be proved both theoretically

and experimentally that αD . 10−2, we will continue to neglect it.

Therefore, imposing αD = 0:

[
ωqj

ω‖

]2
= (1 +

1

4
α⊥)2 − (γ‖ ±

1

4
α⊥|γ⊥|)2 (4.5)

Near the center of the Brillouin zone qx = qy = 0, so that γ‖ = 1 and:
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ω2
qz =

ω2
‖

16
α⊥[α⊥(1− |γ⊥|2) + 8(1∓ |γ⊥|)] (4.6)

Since α⊥ � 1 we can neglect the �rst term, thus �nding:

ωqz =
ω‖√

2

√
α⊥
√

1∓ |γ⊥| (4.7)

Then, we already saw that in our case J⊥2 � J⊥1; therefore, de�ning J⊥2/J⊥1 =

ε� 1:

|γ⊥| =
√

1 + 2ε cos qzc+ ε2

1 + ε
'

' (1 + ε cos qzc)(1− ε) '

' 1− [1− cos qzc]ε =

= (1− ε) + ε cos qzc

(4.8)

From the previous equation it is possible to deduce that the elimination of the

anisotropy leaves a grade of degeneracy, i.e. there are two resulting modes, which

can be addressed as acoustic (the one that goes to zero if qz = 0) and optical.

We thus obtained a simple but complete model to describe threedimensional

cuprate structures with the two parameters J‖ and J⊥. In general, it can be applied

to all the compounds, and we used it to extract the dispersion relation for NBCO,

Bi2201 and CCO. The exchange parameters exploited in this simulation trail have

been obtained by the literature. These functions are shown in �g. 4.1.

The results, despite being rather rough, help to sketch an initial picture of the

informations brought by the dispersion relation. In BiSCO, for example, because of

the low J⊥, the modes are almost coincident, so that there is no energy gap in Γ.

On the other hand, in NBCO the gap is present, but since J⊥2 ' 0, the dispersion

on the L direction is almost constant, while in CCO the two modes meet and cross

with a sinusoidal trend (an analytical derivation of this can be found in appendix A.
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(a) NBCO. (b) BiSCO.

(c) CCO.

Figure 4.1: NBCO, BiSCO and CCO 3D spin-wave dispersion simulations.
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4.2 t-J problem

The construction derived in the previous section, based on the Heisenberg Hamilto-

nian (3.20), is too elementary to describe the complex spin-wave dispersion relation

observed in high-Tc cuprates, and it is thus necessary to extend it. Since it has been

ascertained that the interplane magnetic coupling is negligible with respect to the

intraplane interactions [68], it is reasonable to suppose that this is mainly due to

the superexchange interaction between high-order lattice neighbours. We could thus

consider the following Heisenberg Hamiltonian including higher-order couplings:

Ĥ = J
∑
<ij>

Si · Sj + J ′
∑
<ii′>

Si · Si′ + J ′′
∑
<ii′′>

Si · Si′′+ (4.9)

+ Jc
∑
<ijkl>

{(Si · Sj)(Sk · Sl) + (Si · Sl)(Sk · Sj)− (Si · Sk)(Sj · Sl)} (4.10)

where where J , J ′, and J ′′ are the �rst-, second-, and third-nearest-neighbour

magnetic exchanges, i.e. the interaction between an atom and its �rst linear, its

second linear and its �rst diagonal neighbours. Jc is the ring exchange interaction

coupling four spins (labeled clockwise) at the corners of a square plaquette, generated

by the hopping of the valence electron (or hole) on a squared path [43] [33] [57] [12];

it corresponds to the simplest term of the quartic expansion (3.56). Note that all

these interactions are generated only by the next-neighbour superexchange, i.e. the

hopping processes that cause them, as illustrated in �g. 4.2, are combinations of �rst-

neighbours hopping: for example, J ′ it is not due to the direct coupling between

two diagonal atoms, but to two subsequent simple hopping processes.

In this picture, as again already seen in chapter 3, the normalized dispersion

relation is ωk = 2Zc(k)
√
A2

k −B2
k (3.60); Zc(k) is the already discussed renormal-

ization factor, which permits to include the e�ect of quantum �uctuations. In the

present case, it is possible to express the terms inside the squared root as:
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Figure 4.2: Scheme of the superexchange e�ective interactions on a generic cuprate

CuO2 plane.


Ak = J − Jc/2− (J ′ − Jc/4)(1− νhνk)− J ′′[1− (ν2h + ν2k)/2]

Bk = (J − Jc/2)(νh + νk)/2

νx = cos 2πx

(4.11)

Since within the linear spin-wave theory all three higher-order spin couplings

J ′, J ′′ and Jc have similar e�ects on the dispersion relation and intensity depen-

dence, they cannot be determined independently from a dispersion relation without

additional constraints.

The simplest possible assumption is to require that J ′′ = 0 and Jc = 0. However,

this approach proves to be rather unsatisfactory. For example, Coldea et al. used it

to �t some INS data of La2CuO4 (LCO) compound [16], thus obtaining a positive

J (i.e. antiferromagnetic) and a negative J ′ (i.e. ferromagnetic). These results are

not compatible with theoretical prediction nor with other experimental results (e.g.

Sr2CuO2Cl2 (SCOC), material with similar exchange paths between Cu2+ ions to

LCO); in fact, they both provide a positive (i.e. ferromagnetic) J ′.

Clearly, it is necessary to extend this model by introducing J ′′ and Jc by taking

into account the quartic Hamiltonian expansion. As seen in the previous chapter,

the t-J Hamiltonian appears to be a good model with which describing the cuprate

CuO2 planes magnetic physics. It is thus possible to obtain the explicit relations
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between the terms in (4.9) and the Heisenberg Hamiltonian quartic expansion terms

in (3.56) as:


J = 4 t

2

U
− 24 t4

U3

Jc = 80 t4

U3

J ′ = J ′′ = 4 t4

U3

(4.12)

From now on, we will address this formulation as simple t-J model. As will be

later shown, this model permits to obtain quite satisfactory �tting results. How-

ever, it still has some �aws: since the equations (4.12) depend all on the t and U

parameters, all the exchange constants are correlated, so this is still a two-variables

model; furthermore, the usual U/t values provided by this model are quite di�erent

from the expected ones (e.g. in [16] U/t = 7, while the value expected from the

theory is ∼ 12). One possible solution is to add a second- and a third-neighbours

hopping parameters t′ and t′′ into the Hubbard Hamiltonian, while maintaining its

quartic expansion, as proposed by Delannoy et al. in [21]; we will discuss this more

deeply later in this chapter.

4.3 Simulation

Before any �tting trial, it is worth to take a closer look to a spin-wave dispersion

relation simulation on a designed path in the reciprocal lattice. In this section we

will observe how the SpinW program permits to �t this function for one of the com-

pounds measured: NdBa2Cu3O6.1 (NBCO). A concise description of the exploited

instruments made available by SpinW toolbox is reported in the appendix B.

4.3.1 NBCO

In the NBCO, the magnetic structure is antiferromagnetic in each plane. Also, there

is also an antiferromagnetic interaction in the c-axis direction, but only between two

planes on the same bilayer. Since the heavy elements Nd and Ba and the CuO on

the chains don't interact magnetically [66], we will not include them in the simulated
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Figure 4.3: Magnetic cell of the NaYBa2Cu3O7 obtained with the SpinW plot tool.

unit cell. The same happens with the in-plane oxygen atoms: it is true that they

permit the superexchange between nearest coppers, but they themselves don't have

any spin, thus they can be neglected. It is therefore possible to generate the magnetic

structure with the Cu in-plane atoms only.

We start the SpinW simulation script, as reported in appendix B, by generating

the NBCO crystal structure (the lattice constants are a = 3.84 Å, b = 3.84 Å and

c = 11.7 Å) and then by declaring the spin interactions (since we are considering the

undoped parent material, each Cu atom will have a spin S = 1/2). In the present

simulation, the number of magnetic interactions considered is two, the interplane J⊥

and the in-plane J‖; for these parameters, it is easy to �nd acceptable values from

the literature (in our simulation J⊥ = 8 meV and J‖ = 140 meV). The results can

be viewed by using the plot SpinW script, which produces the �gure 4.3.

The path in the Brillouin zone followed in the simulation is k = [0.5 0.5 0] →

[0 0 0] → [0.5 0 0] → [0.25 0.25 0]. Before plotting the simulated dispersion relation,

we also made use of the SpinW tool omegasum, which eliminates all of the bands

that have very low intensity or that are physically excludable. In fact, the number

of solutions found by the simulation algorithm is in theory twice the number of spin
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elements in the magnetic lattice supercell, which in the NBCO case that is 8, thus

the solutions should be 16. However, most of the modes calculated are physically

unacceptable, while others have a negligible intensity; the whole set of modes is

reported in �g. 4.4b. The �nal simulation result is shown in �g. 4.4a; note that the

SpinW toolbox allows, as seen in the picture, to add also the energy spread of the

dispersion.

This seems to re�ect quite right the experimental results (see [26]). However,

the �gure misses a second mode (an optical mode from RIXS viewpoint, since it

has a non-zero local minimum in k = [0 0 0], but it is in k = [0.5 0.5 0]) that has

been observed during the experiments. This is due to the fact that the omegasum

function actually disregards this mode because its simulated intensity is too weak.

It is afterwards interesting to understand what happens if the complete simple

t-J model is considered; based on Delannoy's article [21], (4.12) can be expanded

to obtain the e�ective exchange interactions:


Jeff1 = J − Jc

2

Jeff2 = J ′ − Jc
4

Jeff3 = J ′′

(4.13)

This is quite reasonable: the �rst- and second-nearest neighbour interactions

are actually involved in the circular hopping process Jc, and thus their e�ective

exchange constants depend on that. Note that, since from the relations (4.12) one

could obtain that Jc = 4J ′ = 4J ′′, it is possible to express all the (4.13) as a function

of J and J ′:


Jeff1 = J − 10J ′

Jeff2 = −4J ′

Jeff3 = J ′

(4.14)

It is thus clear that in this model Jeff2 < 0; furthermore, since the �rst order

magnetic interaction must be antiferromagnetic (i.e. Jeff1 > 0), J > 10J ′ is imposed.

In particular, to maintain the same interaction magnitude, we approximated Jeff1 to
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(a) NBCO spin-wave dispersion simulated with SpinW.

(b) The same dispersion function, but without the use of the omegasum tool com-

mand.

Figure 4.4: Simulations of the NBCO dispersion relation on the path de�ned in the text.
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Figure 4.5: NBCO simulation of the magnon dispersion relation on the same path as

�g. 4.4.

the previous J‖. Using this parameter, along with J⊥, for the �tting gives the results

J ′ = 2 meV and J⊥ = 8 meV (we imposed J = 160 meV, which is an acceptable

value).

In this simulation, it is also necessary to change the magnetic coupling maximum

distance to include the considered interactions; it is easy to see that this distance

must be bigger than two times the in-plane interatomic distance (that is 7.68 Å), but

smaller than the nearest interaction distance above it (8.32 Å), therefore we chose

8 Å. We took in consideration only the vertical exchange between plane J⊥, while

the other terms were forced to 0; this is because, as already hinted, in the interplane

space there are no oxygen atoms to support superexchange, thus the interaction is

a direct exchange, whose strength is weak on the interplane distance.

By applying SpinW as described before, the result is easily obtained, and it

is shown in �g. 4.5. In this �gure is visible the similarity to the simpler model;

however, in this case the system has also a dispersion between k = [0.5 0 0] and

k = [0.25 0.25 0]. In addition, all the peaks are slightly higher, due to the strongest

interaction. These di�erences are clearly due to the introduction of the second- and

third-order e�ective superexchanges; in particular, since in the proposed model both

Jeff2 and Jeff3 depend only on the J ′ parameter, the energy gap between k = [0.5 0 0]
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and k = [0.25 0.25 0] depends only on it.

Another interesting test could be to run a simulation along the reciprocal c axis,

i.e. the direction perpendicular to CuO2 planes; the results are shown in �g. 4.6,

and they indicate that there is no dispersion on this direction. That is because

in NBCO, even if the planes are coupled in pairs, the distance between planes in

di�erent cells is 8.5 Å, therefore the interplane magnetic interaction is much weaker

than in the adjacent planes and it is possible neglect it.

Finally, we tried to better understand what caused the absence of the optical

mode. This was revealed to be due to the fact that the observed acoustic mode has

a very high intensity peak in k = [0.5 0.5 0]; since the spectra simulated contained

this point, the optical mode gets neglected. Actually, the acoustic mode diverges

only for kz = 0 r.l.u. , as it has been imposed in the simulations. It thus appears

another interesting test to study the spin-wave intensity behaviour dependence on

the L direction (i.e. on the c axis).

4.3.2 Intensity study

First of all, it is possible to try the simulation with a kz coordinate di�erent from

0 r.l.u.; for example, in �g. 4.7 it is shown the result for kz = 1.5 r.l.u. (that is an

experimentally acceptable value) and same J , J ′ and J⊥ values as in the previous

simulations. Apart from the numerical errors, unfortunately present ubiquitously

in the SpinW package (probably due to a di�cult management of the di�erent

modes and the omegasum erasing), it is possible to recognize the acoustic mode

previously seen (i.e. the one that goes to 0 in k = [0 0 1.5]), as well as the new

optical mode, which has zero energy in k = [0.5 0.5 1.5]. Note that the spin-wave

intensity calculated by SpinW is di�erent from the one obtained with RIXS because

it is calculated for the INS technique; however, since the INS structure factor, from

which depends the cross-section of the measurement, is almost constant, and the

RIXS one is more complex, but nonetheless the corrections are rather small, the

intensity obtained has been assumed acceptable.
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(a) NBCO spin-wave dispersion simulation with path fragments on the c axis.

(b) The same dispersion relation, but with complete simple t-J model.

Figure 4.6: Simulations of the NBCO dispersion relation on c axis paths.
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Figure 4.7: NBCO simulation of the magnon dispersion relation on the same path as

�g. 4.4, but with kz = 1.5 r.l.u.

To clarify the intensity trend of the two modes on the path, SpinW provides an

intensity plot; applied on the same path, we obtained �g. 4.8b. In this �gure, it is

possible to see that in k = [0.5 0.5 1.5] one branch has a �nite amplitude, while the

other one diverges; from �g. 4.7 it is clear that the diverging mode is the one to

whom we refer as optical. However, in the kz = 0 r.l.u. intensity study, shown in

�g. 4.8a, in e�ect there is only a single mode. This means that intensity dependence

could be quite complicated in this toolbox.

To directly understand the L direction intensity behaviour of the modes, one can

simulate its dependence on the c coordinate at �xed kx, ky positions. Some example

of this attempts can be seen in �gg. 4.9: the �rst one examines the [0 0 0]→ [0 0 10]

interval, while the other the [0.5 0.5 0]→ [0.5 0.5 10] one.

This way, I know that the strongest mode in �g. 4.9a will be the optical one (the

acoustic has a zero) and vice versa for �g. 4.9a. Note how there is a di�erence of

almost two orders of magnitude between the scales of the two plots. However, in

the upper picture the modes have minima in kz = n · 1.85 r.l.u. In the second �gure

(�g. 4.9b) both modes have a peak at kz ' 1.6 r.l.u., but both of them decrease,

becoming stable after a few periods; their zeros are in kz = n · 3.7 r.l.u. Therefore,

it should be possible to insulate the missing optical mode by imposing kz = 1.85
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(a) NBCO simulation of the modes intensity with kz = 0 r.l.u.

(b) NBCO simulation of the modes intensity with kz = 1.5 r.l.u.

Figure 4.8: Simulations of the NBCO magnetic intensity on the path de�ned in the text.
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(a) NBCO intensity simulation from k = [0 0 0] to k = [0 0 10].

(b) NBCO intensity simulation from k = [0.5 0.5 0] to k = [0.5 0.5 10].

Figure 4.9: NBCO spin-waves intensity dependence on the L direction.
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Figure 4.10: NBCO optical mode dispersion function, obtained by imposing kz = 1.85

r.l.u.

r.l.u.; we thus obtain �g. 4.10.

4.4 Fitting

In this section, we will get to the heart of this work: the construction of the spin-wave

dispersion �tting program based the SpinW toolbox. A possible initial �tting could

be developed from the analytical solutions to the Heisenberg eigenvalues problem

that have been proposed in various articles of the literature. In particular, in this

work we used this approach on the model proposed by Coldea in [16], which neglects

the out-of-plane dispersion dependence (J⊥ = 0) and makes use of the simple t− J

model. However, the results are not satisfactory, since the �tting error has a quite

large value; it would be possible to improve this approach by using the results in

[21], but its analytical development stands outside the scope of this thesis.

It is in this picture that SpinW becomes useful: it can be exploited as Matlab

function on which found the �tting process. However, SpinW requires to limit

the number of magnetic interactions between the atoms, which corresponds to the

number of parameters of the �tting. In analogy with the explicit Coldea model,

the two e�ective parameters of the simple t − J model J and J ′ can be used. Yet

this brings a still large error and does not permit to reproduce particular areas of
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Figure 4.11: Lattice area of the magnetic interactions taken into account by all the

di�erent �tting processes described in this work.

the reciprocal space and certain complex trends of the dispersion. It is anyway

quite straightforward to expand this approach to higher-order e�ective exchanges.

In particular, in this work we take into consideration a third-order model, which

however turns out to give similar results to the simple t − J ones, and a six-order

one. Higher orders give serious problems of convergence (faced in the appendix D).

The di�erent models just exposed are summarized in �g. 4.11. In the current section,

all the solutions obtained with these di�erent approaches are gathered and exposed.

4.4.1 Simple t− J , 3J and 6J �tting

To perform the �tting, we exploited Matlab function lsqcurvefit. This algorithm

is a nonlinear least-squares iterative solver that �nds coe�cients x that solve the

following problem:

min
x
‖F (x, xdata)− ydata‖2 = min

x

∑
i

(F (x, xdatai)− ydatai)2 (4.15)

where xdata and ydata are matrices or vectors (xdata contains the input data

and ydata is observed output) and F (x, xdata) is a matrix-valued or vector-valued
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Figure 4.12: NBCO �tting from Γ to X; the circles represent the collected data, the line

is the �tting result.

function of the same size as ydata. In particular, F (x, xdata) must be de�ned by

the user and simply correspond to a numerical ansatz to the problem. Furthermore,

lsqcurvefit requires an xguess initial guess for the parameters to �nd. It is useful

to note that lsqcurvefit provides an useful optional exit output called resnorm,

that is the norm of the residual; resnorm represents a criterion on which is possible

to judge the e�ectiveness of the �tting. As a matter of fact, resnorm is de�ned

as
∑

i(F (x, xdatai)− ydatai)2, that depends on the dimension of the ydata vector;

it appears to be more useful to introduce a more generic parameter, therefore we

de�ned the variable error as
√
resnorm/N , where N is the number of the data

gathered.

First of all, we chose a simpler approach and we applied it only to NBCO;

we didn't made use of SpinW, but we tried to �t the data with the simple t − J

model adopted by Coldea in [16] and already discussed in section 4.2. To do that, we

programmed a Matlab function that would calculate ωk = 2Zc(k)
√
A2

k −B2
k (where,

we remind, Ak and Bk are functions of the r.l.u. coordinate in the bidimensional

Brillouin zone and are parametric on the in-plane exchange constants J , J ′, J ′′ and

Jc, see equation (4.11)). We then exploited (4.12) to reduce the dependence on only

two parameters, J and J ′, while we neglected the dependence on J⊥. In this scenario,

x is a vector containing J and J ′, xdata are the kx,y coordinates in the reciprocal
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lattice and ydata are the RIXS measurements results, whereas F (x, xdatai) is ωk.

Finally, it is possible to reverse (4.12) to obtain t and U as functions of J and J ′:

U = (J+6J ′)2

4J ′

t = (J+6J ′)3/2

4
√
J ′

(4.16)

We started by doing a �tting try-out only on the data in the kx axis (i.e. [Γ→ X]

direction) and the result is shown in �g. 4.12. We used J = 140 meV and J ′ = 8

meV as starting values and we obtained:

parameters result

(meV )

J 129.7

J ′ 2.9

error 2

that is quite acceptable.

Then, we tried to �t all the data collected at the ESRF in July 2015, that were

distributed on the kx axis, on the magnetic Brillouin zone boundary and on the

positive diagonal. Initially we thought it was possible to make a surface �tting in

all the kx,y; however, this has been proven to be not convenient, since the number of

data was to little to obtain a proper solution. So, we did a linear �tting in a single

variable, de�ning the function on the path followed by our data in the reciprocal

lattice; we used a piecewise de�ned function, appropriately changing the parameters

and the form of ωk. We named the e�ective variable s; it actually represents the

distance treaded on the path between a chosen starting point and the coordinate of

the datum. The path used for this �tting is [0.5 0] → [0 0] → [0.25 0.25] → [0.5 0];

the resulting parameters are shown in the next table.
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parameters result

(meV )

J 131

J ′ 3.6

t 248

U 1600

U/t 6.5

Jeff1 95

Jeff2 −14.5

Jeff3 3.6

error 4.9

Here the e�ective exchange parameters have been calculated with the relations

previously furnished.

This is completely reasonable: Jeff1 has the same sign of Jeff3 and they are both

antiferromagnetic, however Jeff3 � Jeff1 , so that the second order interaction tends

to be ferromagnetic; Jeff2 , on the other hand, is negative, i.e. ferromagnetic, as

in fact is the magnetic order of the diagonal interactions. The result is shown in

�g. 4.13.

A second trial without SpinW could be derived by exploiting the already men-

tioned high-order hopping model, derived in the article [21] by Delannoy et al.

However, Ak and Bk expressions derived in the article seem to be wrong (as noted

by Guarise et al. in [30]), and their extraction is not approachable; this is also shown

by the result of the �ttings.
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Figure 4.13: NBCO �tting with explicit ωk expression of all the data gathered with

ERIXS in July 2015. The path is reported in the text.

We obtained:

parameters result

(meV )

J 135

J 4.3

t′ 0.3

t′′ 32

error 3.1

whereas the theory requires that t′ and t′′ were < 1 and with opposite sign.

Therefore, we discarded this option to extend our model.

Finally, it is possible to merge the �tting program with SpinW, i.e. to use

a SpinW simulation script with free J and J ′ parameters as lsqcurvefit ansatz

function. This also allows to add J⊥ as a �tting parameter.
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Figure 4.14: NBCO �tting with t-J SpinW of all the data gathered with ERIXS. Simple

t-J model was exploited.

The result is shown in �g. 4.14 and the respective parameters are:

parameters result

(meV )

J 129.6

J ′ 5.3

J⊥ 9.3

t 230.5

U 1220

U/t 5.3

Jeff1 76.6

Jeff2 −21.2

Jeff3 5.3

error 1.6

This �tting is not too good: 4.14 shows a good coherence with the data near

the X point, but at Γ the energy gap is too high and the trend between the point

is appears as smoothed.

The same method can be applied to both BiSCO and CCO data. Let us �rst
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Figure 4.15: Bi2201 �tting with SpinW and t-J model of the complete dataset gathered

with ERIXS.

take a look to the results for Bi2201; but before that, it is worth noticing that it

has a �tting parameter less than the other two materials because its J⊥ = 0. The

�tting result is reported in �g. 4.15 and the �tting parameters are:

parameters result

(meV )

J 147.5

J ′ 4.6

t 270.2

U 1670

U/t 6.2

Jeff1 101.6

Jeff2 −18.3

Jeff3 4.6

error 2.9

It can be seen that also in BiSCO there are problems in Γ vicinity; the t − J

model shows also di�culties to reproduce the plateau around [0.25 0.25].

It is now possible to talk about CCO. We only have to add the note that, while
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NBCO and Bi2201 dispersions are independent from the c axis reciprocal lattice

coordinate kz, the 3D magnetic structure of CCO requires to specify it; in the present

case, kz = 0.44 r.l.u., i.e. the one used during the measurements. As clearly visible

in �gure 4.16 (that depicts the t− J �tting outcome for CCO), the problems in this

compound are the same as for the two previous compounds: the reconstruction near

Γ has a wrong trend and the plateau around [0.25 0.25] is rounded by the algorithm.

In this case the parameters are:

parameters result

(meV )

J 182.2

J ′ 10.3

J⊥ 11.5

t 297.1

U 1440

U/t 4.9

Jeff1 79.5

Jeff2 −41.1

Jeff3 10.3

error 3.3

By analyzing the data, it is possible to �nd that the dispersion along the [0.25 0.25]→

[0.5 0] line, to which we address as ∆EMBZB (MBZB stands for �magnetic Brillouin

zone boundary�), in CCO is almost double than in NBCO and BiSCO, and that this

value is strictly correlated to the Jc parameter. On the other hand, the maximum

Emax of magnon energy at X Brillouin point appears to be mainly set by the nearest

neighbours exchange J .

Besides the wrong �tting trend, the results underline another problem already

touched upon: the ratio U/t is too much smaller than that obtained from ARPES

measurements [20] and the large-U hypothesis at the basis of the Hubbard model

can't be ful�lled; this can be related to the presence of Jc, which is much higher
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Figure 4.16: CCO �tting with t-J SpinW algorithm.

than J ′ and J ′′ (we recall that, in the simple t − J model, J ′ = J ′′ = Jc/20), and

that maintains U very low.

A possible extension of the t − J model could be to disregard completely the

analytical correlations (4.13) and (4.14) between the e�ective exchange parameters

and the ones deduced theoretically (J , J ′, etc.). In this way, the �tting becomes

on four parameters, the three Jeffs and J⊥ (three for Bi2201, since it has no J⊥

dependence), and the convergence could be less univocal, but this adds a freedom

degree to the operation. Furthermore, this means that, since the relation between

Jeffs and t and U is in this case unknown, it is no more possible to calculate the

U/t ratio; however, this can provide a deeper understanding in the meaning of the

various e�ective coe�cients and, moreover, a better �tting result. We address to

this model as 3J model.
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(a) NBCO.

(b) BiSCO.

(c) CCO.

Figure 4.17: NBCO, BiSCO and CCO �ttings with SpinW, using the three Jeff s as

parameters, of all the data gathered.
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Therefore, we tried to apply this technique to NBCO, and the result is shown in

�gure 4.17a; the respective parameters are:

parameters result

(meV )

Jeff1 90.3

Jeff2 −14.6

Jeff3 8.7

J⊥ 7.8

error 1.6

On the other hand, in BiSCO:

parameters result

(meV )

Jeff1 111.4

Jeff2 −13.5

Jeff3 7.2

error 3.1

Finally, in CCO:

parameters result

(meV )

Jeff1 112.1

Jeff2 −26.6

Jeff3 18

J⊥ 7.3

error 3.1

It is clear that, even if the bonds between the Jeffs have been relaxed, the

error doesn't change very much, so there must be something else to in�uence the
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Figure 4.18: Simple representation of the fourth, �fth and sixth order e�ective superex-

changes.

magnon dispersion to obtain the measured trend. To understand the meaning of

these outcomes and to �nd some improvement to the present model, it seems to

be mandatory to gain a deeper knowledge of the action of every Jeffs. This study

has been performed and reported in the appendix C. Its results show that it is

possible to improve the �tting performances by adding some e�ective exchanges,

but the fourth- and the �fth-order parameters do not have enough in�uence on the

dispersion: it is necessary to adopt at least a 6J model (all the Jeffs are shown in

�g. 4.18).

In the light of this hypothesis, we tried to �t the data with six Jeffs. The

resulting plots are displayed in �g. 4.19 and all of them look quite good: the lines

follow the measured trends pretty well, and in BiSCO and CCO the model proves to

be able to reproduce also the plateau in [0.25 0.25]. Furthermore, as seen in the next

table, the low value of the errors demonstrate the improvement obtained: 0.78 for

NBCO, 1.32 for BiSCO and 0.86 for CCO.
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However, the exchange parameters are completely di�erent from both the ones

previously obtained and the values we supposed they would assume:

parameters compound

NBCO Bi2201 CCO

(meV ) (meV ) (meV )

Jeff1 206.7 231.1 192

Jeff2 56.4 58.8 25.8

Jeff3 46.3 47 47.7

Jeff4 11.8 9.6 11.7

Jeff5 1.1 0.6 −2.3

Jeff6 4.4 7.5 2.2

Jeff⊥ 1.7 / 1.8

error 0.78 1.32 0.86

These results are in complete opposition with the theory exposed until now, since

their values are very high and all the Jeff2 s are widely positive. Therefore, the values

obtained seem to be quite unphysical; however, there is no literature in this scope,

and moreover, as we seen, the usual approach to cuprate system, that is the t − J

model, doesn't furnish acceptable results. It is possible to obtain values more similar

to the ones expected if some restraints are put on the Jeffs values (for example Jeff2 )

with an insigni�cant increase of the error (less than 1%). However, these solutions

seem arti�cial, and most of the times they collapse on the boundaries chosen. This

is due to the fact that a 6 or 7 parameters �tting has big convergence problems:

there seem to be a gigantic number of convergence points, and the one towards

which the procedure tends depends on the set of starting parameters inserted. To

better understand this problem, we did run some convergence trials, whose results

have been summarized in appendix D. It is although necessary to �nd an opportune

condition to limit the number of numerical solutions to the problem.



CHAPTER 4. FITTING OF MAGNON DISPERSION 78

(a) NBCO.

(b) BiSCO.

(c) CCO.

Figure 4.19: NBCO, BiSCO and CCO �ttings with SpinW, using the six Jeff s as

parameters, of all the data gathered.
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It is worth noticing that the methods (t − J , 3J and 6J) have been tested also

on other cuprate compounds, whose data have been obtained from the literature. In

particular, the test materials were Bi2Sr2YCu2O8 (BSYCO), Sr2CuO2Cl2 (SCOC)

and La2CuO4 (LCO), whose experimental informations have been gathered in [19],

in [56] and in [16] respectively. The �rst one, BSYCO, has a bilayered structure, very

similar to the NBCO and YBCO ones, while the other two, SCOC and LCO, are

monolayered and they can be compared to Bi2201; all three these compounds have

been already studied deeply. Therefore, we exploited them to make sure that our

model was correct; in particular, we applied the t−J model method on BSYCO and

SCOC and we checked that the resulting J and J ′ corresponded with the literature

ones, thing that actually happened. However, since LCO features are well known,

we continued to apply to it the various methods conceived to have a further prove

of the dependence of the dispersion relation on the various Jeffs (both with the 3J

and the 6J models), and, because of its similarity with BiSCO, to assure that the

numbers obtained with its �ttings were coherent. The two compounds results are

actually similar; in particular, as all the other cuprates under study, LCO too shows

a whole positive set of Jeffs.
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4.5 Fitting results

Since putting boundaries to the �tting data has proven to be not satisfactory, an-

other acceptable condition to reduce the convergence freedom of the results must be

applied. As discussed, the t− J model outcoming parameters were consistent with

the theoretical suppositions despite the simple approach of the method. Therefore,

we decided to perform a �t with the 6J model, but imposing Jeff1 values as the ones

obtained with t−J . To maintain a reference with the literature results, the outcome

of the application of this process to LCO are also reported afterwards. The results

are gathered in the next table:

parameters compound

NBCO Bi2201 CCO LCO

(meV ) (meV ) (meV ) (meV )

Jeff1 76.64 101.65 79.48 119.95

Jeff2 −14.30 −12.42 −29.34 −3.06

Jeff3 11.04 11.41 20.27 8.41

Jeff4 7.51 2.42 15.11 5.81

Jeff5 0.59 −0.23 −3.94 0.68

Jeff6 0.82 8.54 −3.72 −0.26

Jeff⊥ 4.37 / 3.68 /

error 0.79 1.34 0.90 0.81

It is clear that these results seem satisfactory; also, we checked with a few trials

that the convergence would not be a problem, and it has been con�rmed. Further-

more, remembering that the errors in 6J tests were 0.78 for NBCO, 1.32 for BiSCO

and 0.86 for CCO, it is clear that the results of the exploited approach are essentially

equivalent to the rough 6J model. In particular, the �tting pictures are shown in

�gg. 4.20, 4.21, 4.22 and 4.23.
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(a)

(b)

Figure 4.20: NBCO �nal �tting. The �gure above shows the usual dispersion on the

s path, the one below shows the same result reported on its bidimensional path on the

reciprocal lattice.
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(a)

(b)

Figure 4.21: BiSCO �nal �tting. The �gure above shows the usual dispersion on the

s path, the one below shows the same result reported on its bidimensional path on the

reciprocal lattice.
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(a)

(b)

Figure 4.22: CCO �nal �tting. The �gure above shows the usual dispersion on the s path,

the one below shows the same result reported on its bidimensional path on the reciprocal

lattice.
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(a)

(b)

Figure 4.23: LCO �nal �tting. The �gure above shows the usual dispersion on the s path,

the one below shows the same result reported on its bidimensional path on the reciprocal

lattice.
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Let us try to interpret these numbers: as supposed, Jeff1 is positive and has the

greatest absolute value in all the compounds, Jeff2 is negative and Jeff3 is small and

positive; the higher-order parameters are di�cult to understand, although Jeff4 is

positive and Jeff5 has a very low modulus. Interestingly, in BiSCO Jeff1 and Jeff6

values are quite big; this can be linked to the strongly bidimensional structure of this

material, feature that tends to enhance the intralayer interaction, whose strongest

terms are the linear ones. On the other hand, in CCO Jeff3 is extremely high, and

this could be related to the fact that in this case Jeff6 is negative, thing that has to

be counterbalanced somehow; however, being Jeff1 �xed, the only linear term that

could act on this matter is Jeff3 . In LCO, the �tting remains mainly dominated by

Jeff1 and Jeff3 , with a particularly strong contribute from Jeff4 . All these results are

shown in �gg. 4.24a and 4.24b. Note that the higher BiSCO error it is mainly due

to the presence of an extremely high point near [0.25 0.25].

Finally, a deeper study showed that the sum Jeff1 +|Jeff2 |+2Jeff4 +Jeff6 is linearly

related to the magnon energy Emax at X, as is J in the Hubbard model (�g. 4.24c),

while |Jeff2 |+ Jeff3 is proportional to ∆EMBZB (�g. 4.24d), in analogy to Jc.
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(a) Histogram of the simple t − J model

results.

(b) Histogram of the 6J model results.

(c) Dependence of Emax on Jeff s. (d) Dependence of EMBZB on Jeff s.

Figure 4.24: LCO �nal �tting. The �gure above shows the usual dispersion on the s path,

the one below shows the same result reported on its bidimensional path on the reciprocal

lattice.



Conclusions

In this work we proposed various possible �tting methods to analyze spin-wave mag-

netic dispersion relation in parental compounds of superconducting layered cuprates,

and we eventually pointed out, in our opinion, the best among the others, feasible

with the instruments within grasp. However, only the 3dx2−y2 copper and the 2px,y

orbitals have been taken into account. On the contrary, it has been suggested (by

Pavarini et al. [54]) that other molecular orbitals could partake into the complex

magnetic interaction picture here exposed. In particular, a possible central role could

be played by the so-called apical oxygens, i.e. the out-of-plane oxygens bounded to

the in-plane copper ions. In each of three compounds under study the number of

apical oxygens per copper site it is di�erent: Bi2201 has two of them, disposed

symmetrically in respect with the CuO2 plane, which determine an elongated octa-

hedron structure (�g. 2.11b); on the other hand, NBCO, being organized in bilayers,

shows only a single apical O per in-plane Cu (�g. 2.11a), while in CCO they are

completely absent, feature that permits the material to generate the already dis-

cussed tree-dimensional lattice structure, composed by an incommensurate series of

CuO2 planes (�g. 2.11c).

According to this theory, the presence of the apicals polarizes the out-of-plane

states (i.e. the Cu 3dz2 orbital), thus quenching the magnetic ordering in the planes.

On the contrary, the absence of apical oxygen supports, aided by the long range 4s

copper orbital, the delocalization of the valence electrons on the lattice, therefore

expanding the interaction area of the hopping integrals.

In this scope, the results obtained in the last chapter permit to show how the

number of apical oxygen per Cu atom can strongly a�ect the behaviour of a com-
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pound. In fact, it can be noted that a couple of apical oxygens close to the layer

copper (as in LCO, where zCu−O = 2.4 Å) determines relatively small values of

the di�erence of energy ∆EMBZB between the two points X and [0.25 0.25], both

located on the magnetic Brillouin zone boundary; furthermore, it has already been

described how this di�erence is related to Jc and to |Jeff2 | + Jeff3 , which also ap-

pear to be weak. On the other hand, in BiSCO and NBCO, where there are two

apicals at larger distance (zCu−O = 2.58 Å) and one apical nearby (zCu−O = 2.38

Å) respectively, both ∆EMBZB, Jc and to |Jeff2 |+ Jeff3 are larger. Finally, in CCO,

where there are no apical oxygens, all of these parameters are signi�cantly big. It

is nonetheless clear that apicals can't furnish an universal instrument to decipher

all the cuprates peculiar characteristics: in fact some other parameters, like the

maximum energy of the dispersion Emax and the next-neighbour exchange J , do

not seem to be related to the number and distance of apical oxygens. However, the

link between Emax and the aspects of the superconductive phase, in particular the

critical temperature Tc, has not been demonstrated: actually, di�erent studies have

led to opposite conclusions [46] [51] [24].

In the light of this, we wanted to understand if there e�ectively is an in�uence of

the apicals con�guration to the superconducting behaviour in cuprates. Let us bring

together all the pieces: we found that there is a relation of inverse proportionality

between the number and distance of apical oxygens and both ∆EMBZB, Jc and to

|Jeff2 | + Jeff3 parameters; this is due to the fact that the apicals presence tends

to localize charge in the 3dz2 orbitals thus producing an e�ective screening by the

polarizable charge reservoir layer. On the other hand, in [54] Pavarini et al. pointed

out that the optimum doping superconductive critical temperature Tc,max scales

with the next-nearest-neighbor hopping, which grows with the distance of apical

oxygen from the CuO2 plane. It has been therefore determined that there is a

positive correlation between ∆EMBZB and the maximum of Tc, as plotted in Fig.

4 E (bottom panel). That way, we can conclude that Tc,max, ∆EMBZB, the long

range hopping coupling parameters and the number and distance of apical oxygens

are all related quantities, and that apicals depress Tc,max by localizing the wave-
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functions relevant to the hopping process; this �nds an experimental con�rmation

in the usually high Tc,max in tri-layer cuprates compounds.





Appendix A

CCO calculations

In this appendix the thoery in section 4.1 is directly applied to the CCO case.

In CCO, all the planes are separated by the same distance, and because of that

J⊥2 = J⊥1 = J⊥. Therefore α⊥ = 2α⊥1 = 2J⊥/J‖ and
ω‖
√
α√

2
=

2
√
J‖J⊥

~ ; for the same

reason, we can simplify |γ⊥| =
√

1 cos qzc
2

. Finally, substituting the relations above in

ωqz, we can calculate:

~ωqz = 2
√
J‖J⊥

√
1∓

√
1 + cos qzc

2
= 2
√
J‖J⊥

√
1∓ cos

qzc

2
(A.1)

where 	 and ⊕ are simple labels to discern the two resulting modes, based on the

∓ sign in (4.7). We exploited the trigonometric property
√

1 + cos 2a =
√

2 cos a.

We can therefore make explicit:

	 ~ω(qz) = 2
√

2
√
J‖J⊥ cos qzc

4

⊕ ~ω(qz) = 2
√

2
√
J‖J⊥ sin qzc

4

(A.2)

From these results it is possible to calculate the modes qz dependence in CCO;

for example:

	 ~ω(0, 0, 0) = 0 ~ω(0, 0, 1/2) = 2
√
J‖J⊥

⊕ ~ω(0, 0, 0) = 2
√

2
√
J‖J⊥ ~ω(0, 0, 1/2) = 2

√
J‖J⊥

(A.3)
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Figure A.1: CCO magnon dispersion along L (i.e. c axis), obtained with (A.2).

We can thus explicitly plot the magnon dispersion relation of CCO in Γ as a

function of qz and �nd the �gures A.1. Note that we used the cAF coordinate

instead of the lattice coordinate cN ; this is due to the fact that, as already mentioned,

the magnetic lattice has a unit cell with doubled generation vectors, and in CCO

in particular, where the out-of-plane coupling is antiferromagnetic too, also the c

coordinate must be extended.



Appendix B

SpinW

The aim of this appendix is to give a brief review to the tools made available by

the SpinW library. This program can be downloaded for free on the PSI o�cial site

[53], along with a rich documentation. Its heart corresponds to the de�nition of the

sw (spin-wave) class, which is a handle subclass that contains all the informations

on the system characteristics. In particular, a sw object is composed by the various

sub-elements required to de�ne a spin crystal lattice.

For example, let us retrace the process necessary to simulate a magnon dispersion

relation, i.e. the one used in this work. First of all, the simulation script must de�ne

a sw object, e.g. obj = sw. Then, it is possible to �ll the various �elds of obj, thus

de�ning the problem. obj.genlattice(...) de�nes the crystal structure of the

system, i.e. contains the lattice unit cell parameters (both x, y and z basis vectors'

length, expressed in Å, and the angles between them) and the symmetry of the

system. After that, the command obj.addatom permits to declare the atoms of

which the unit cell is composed (it requires the relative position of the atom in

the cell and its total spin). The magnetic interactions between the lattice elements

can be de�ned after the command obj.gencoupling, which takes the maximum

interaction distance as input. However, the single couplings must be added one by

one to the possible operators in the system with the obj.addcoupling tool. In case

of exchange interactions, the explicit form of the coupling corresponds to a scalar

value: the e�ective ith-order exchange parameters Jeffi , which must be de�ned one
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by one. However, some di�erent typologies of interactions can be described also by

other algebraic elements (e.g. an anisotropy is characterized by the 3 × 3 matrix

D). Finally, the command obj.genmagstr speci�es all the spin vectors directions,

according to its inputs: the mode with which the structure is generated (we used the

helical one), the number of times the magnetic lattice cell is larger than the unit

cell nExt, the central atom spin vector S, on which to build the structure, the vector

normal to the spin plane n and the magnetic ordering wavevector k, expressed in

r.l.u. (reciprocal lattice units).

Lastly, to obtain the dispersion relation, the path in the reciprocal lattice (and

again in r.l.u.) on which it must be calculated has to be de�ned. The generic form

of this input is Qpath = {[a b c] ... [d e f] n(steps)}, where [a b c] and

[d e f] are respectively the initial and the �nal vectors of the path, but between

them it is possible to de�ne many sidesteps, while n(steps) is the number of the

steps in which calculate the dispersion. At last, to obtain the dispersion plot one

must generate the �gure with the sw_plotspec tool. This script also permits to

plot the intensity of the measured signal; however, this library has been conceived

for INS experiments simulations, so the resulting intensity should be renormalized

with RIXS and INS cross-sections.



Appendix C

Jeff dependence

This appendix is dedicated to a better understanding of the role that the various

e�ective exchange parameters Jeffs play in the magnon dispersion relation �tting.

To do that, we simulated Bi2201 dispersion relation by maintaining constant all the

Jeff except one, on which was applied 6 small variations of 2 meV multiples around

the values obtained from a 3J model �tting. We chose Bi2201 because, since it is

monolayered, its magnon dispersion along the c axis is constant, i.e. J⊥ = 0 and

can be excluded from the �tting. The results are shown in C.1.

We can see that both Jeff1 and Jeff2 modify the spin-wave energy aroundX point,

but their contribution is opposite, i.e. increasing Jeff1 raises the energy, whereas an

increment of Jeff2 lowers it; however, note that, if Jeff2 < 0, the increment of the

modulus of both parameters enhances the value of the dispersion inX. Furthermore,

it is important to note that Jeff2 acts on ∆EMBZB (i.e. the di�erence between the

function value in [0.25 0.25] and [0 0.5]), that is on the antiferromagnetic Brillouin

zone boundary. On the other hand, Jeff3 doesn't modify the dispersion in X and

Γ, while it changes the paths in between these two points; it also corrects heavily

the magnon energy in [0.25 0.25]. Therefore, Jeff3 is an important tool for our goal,

because we want to modify the �tting trend without virtually moving the local

minima and maxima. Nonetheless, Jeff3 it's still not enough powerful to permit an

optimal �tting because it doesn't have su�cient control on the X → Γ horizontal

trait.
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(a)

(b)

(c)

Figure C.1: Study of the dependence of the magnons' dispersion relation on Jeff1 in C.1a,

Jeff2 in C.1b and Jeff3 in C.1c.
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Since the simple t− J model appears to be restrictive, the next model that has

to be cosidered is a quartic expansion on the Hamiltonian in t/U ; this generates

an enormous number of interaction terms with complicated expressions, which is

outside of the purpose of this thesis to show. However, it is possible to logically

derivate that, since the quartic expansion added some terms that represent higher-

order hopping events, the new Hamiltonian will necessarily add longer e�ective

exchange interactions to our picture. If, as did with the 3J model, we don't aim

to give an analytical relation between U/t and the e�ective parameters, we can try

to perform a �tting with more e�ective parameters. However, the �ttings with 4

Jeffs didn't seem to improve the results: although Jeff4 (viewable in 4.18) gives 8

contributions to the e�ective Hamiltonian, it is a low symmetry hopping and, as

we are about to see, it can't adequately a�ect the critic areas of the dispersion on

its own. It is therefore necessary to introduce a 5 Jeffs, but even this case is not

satisfactory, and above all the Jeff5 , also shown in 4.18, introduces a coupling long

2
√

2a ∼ 2.83a (where a is the square lattice side), whereas the next order exchange,

Jeff6 , has a 3a length, that is quite near. It could be useful to add higher order terms;

however, the �tting, even with six parameters, shows di�cult convergence problems,

as it is discussed in the next paragraph. Therefore, we eventually adopted a model

with six Jeffs, referred to as 6J model. This generates the e�ective couplings Jeff4 ,

Jeff5 and Jeff6 shown in 4.18.

So, we made a second dependence test: we �xed Jeff1 , Jeff2 and Jeff3 to their

original value and we tried to add a small dependence (±1.5 meV, ±3 meV and ±4.5

meV) on the next three orders e�ective interactions Jeff4 , Jeff5 and Jeff6 to see how

the model reacts to them. The results of our test are in C.2. From these images

we can see that Jeff4 works in a similar way as Jeff1 , but it enhances the function

derivative around Γ point, therefore it can be useful to achieve a better �tting. Jeff5 ,

on the other hand, maintains �xed every local maximum and minimum, so it works

similarly to Jeff3 and it could prove to be a very good parameter. Finally, Jeff6 is

very odd: its e�ect is quite uniform and little, but it can be seen that it acts less on

the [0 0.25] position, so this could be interesting too. If we would guess, we would
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expect that Jeff6 gave a positive contribution, like Jeff1 and Jeff3 , because the three

of them are all linear. On the other hand, we would suppose that Jeff5 would be

negative, like Jeff2 , since it is the second diagonal interaction. More arduous to

hypothesize is Jeff4 behaviour, but it can't be very strong, since it is not on an easy

axis. Actually, none of the latter introduced parameters could be too high, since the

main terms of the �tting remain Jeff1 , Jeff2 and Jeff3 .
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(a)

(b)

(c)

Figure C.2: Study of the dependence of the magnons' dispersion relation on Jeff4 in C.2a,

Jeff5 in C.2b and Jeff6 in C.2c.



Appendix D

Convergence check

In subsection 4.4.1 of chapter 4 it has been determined that with the 6J model it

is possible to obtain a good consistency with the measurements, but the outcom-

ing parameters do not seem reliable. This problem could be better understand if it

would be possible to map the error in the input Jeffs space, which would permit to

recognize the convergence outline. However, in our cases this space has six dimen-

sions in the best case, fact that gives problems in both the numerical calculations,

that demand a tremendous amount time and computational power, and the results

presentation. Therefore, we decided to simplify the calculation as much as it was

possible: we programmed an algorithm that would calculate both the outcoming �t-

ting exchanges and the corresponding error for all the possible combinations of two

sets of Jeffs, one with relatively high and one with relatively low values. The results

are depicted in �gg. D.1, D.2 and D.3, and they are quite interesting: we can see

that NBCO and Bi2201 results are quite similar, as both of them have, apart from

the few divergence cases (which are characterized by an abnormally high error),

substantially two strong converge situations, that attract the resulting parameters

whatever the combination could be.
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These two possible results are for BiSCO:

parameters low result high result

(meV ) (meV )

Jeff1 78 268

Jeff2 −32 65

Jeff3 5 54

Jeff4 3 10

Jeff5 −0.5 0.1

Jeff6 13 5

and for NBCO:

parameters low result high result

Jeff1 85 244

Jeff2 −19 67

Jeff3 12 55

Jeff4 9 14

Jeff5 0.6 1

Jeff6 0.7 5

Jeff⊥ 5 2

We see that the lower convergence point has physically acceptable numbers,

and it is thus possible to accept it as best solution candidate. However, CCO

shows an unique behaviour that does not uphold this choice: it has an only one

convergence point, and furthermore, since there are no diverging combinations and

all the imposed Jeff , however low, give the same result, it seems very strong.



APPENDIX D. CONVERGENCE CHECK 102

parameters high result

(meV )

Jeff1 225

Jeff2 31

Jeff3 56

Jeff4 14

Jeff5 −3

Jeff6 4

Jeff⊥ 3

From a quick look to the resulting values, it appears that CCO misses the �right�

mode. Therefore, even this analysis doesn't give us a �rm result.
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(a) NBCO Jeff s.

(b) NBCO errors.

Figure D.1: NBCO convergence trial. The upper �gure shows the outcoming parameters

for each combination of inputs, while the lower the respective error.
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(a) BiSCO Jeff s.

(b) BiSCO errors.

Figure D.2: BiSCO convergence trial. The upper �gure shows the outcoming parameters

for each combination of inputs, while the lower the respective error.
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(a) CCO Jeff s.

(b) CCO errors.

Figure D.3: CCO convergence trial. The upper �gure shows the outcoming parameters

for each combination of inputs, while the lower the respective error.
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