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Sommario

Il riconoscimento automatico di partiture, detto OMR (dall’inglese optical music
recognition), è una branca del riconoscimento ottico dei caratteri (OCR). OMR è un
processo che acquisisce automaticamente le informazione di uno spartito elaboran-
dole da una immagine digitalizzata di tale spartito. Possibili applicazioni possono
coinvolgere l’ambito dell’archiviazione, applicazioni per non vedenti o armonizzazioni
automatiche.

Negli anni, molti sono stati gli sforzi affrontati nel campo dell’OMR. I pionieri
furono Pruslin e Prerau che, negli anni ’70 presso il MIT di Boston, gettarono le
prime basi nel riconoscimento ottico di spartiti musicali. Fino alla fine degli anni ’90
l’approccio base fu quello di dividere il problema in due parti, una prima estrazione
del pentagramma, componente principale dello spartito, e poi un conseguente ri-
conoscimento dei vari simboli musicali (note, pause, etc). Recentemente l’approccio
sta cambiando direzione e si fanno tentativi di riconoscimento senza una iniziale
rimozione dei pentagrammi, utilizzando strumenti quali catene di markov nascoste
(HMM) e reti neurali.

Questa tesi getta le basi per un futuro lavoro sulla tassonomia di autori classici
di pianoforte. Per poter discriminare tra vari autori è neccessario ottenere delle
informazioni preziose che sono contenute nello spartito stesso. OMRJX, nome del
sistema creato in questo lavoro di tesi, nasce come strumento preliminare per tale
raccoglimento di informazioni1. Di fatto, il sistema prevede un riconoscimento totale
della maggior parte delle componenti che si possono rilevare su uno spartito classico
per pianoforte. Esso non pretende di risolvere il problema OMR relativo a spartiti
degradati ma cerca invece una soluzione ottimale per spartiti generati da un pro-
gramma di notazione musicale (e.g., Finale). Prima di affrontare l’implementazione
del sistema, si è studiato lo stato dell’arte in campo OMR per poter scegliere gli
strumenti più adeguati a certe determinate situazioni.

OMRJX prevede un ampio utilizzo della maggior parte degli strumenti utilizzati
per la visione e intelligenza artificiale. Per esempio, il riconoscimento del penta-
gramma e delle barre delle battute è stato effettuato utilizzando la trasformata di
hough sullo spartito binarizzato. Algoritmi di clustering sono stati, invece, utilizzati
per il riconoscimento di un possibile titolo dello spartito2 e per il riconoscimento
delle teste delle note piene. Inoltre, la tesi propone due nuovi e validi algoritmi
per l’identificazione del valore di tali note piene; il primo fa uso del processo di

1Nonostante l’esistenza di software commerciali che affrontano il problema OMR, OMRJX è
stato creato per poter ottenere delle informazioni che tali software non sono in grado di restituire.

2Informazione che nessun software commerciale restituisce e che potrebbe essere utile per il
riconoscimento dell’autore.
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scheletrizzazione morfologica e l’altro utilizza il metodo delle proiezioni. Infine sono
state ampiamente utilizzate tutte le operazioni morfologiche e le tecniche di template
matching per il riconoscimento dei restanti simboli.

Il sistema ha ottenuto ottimi risultati e dai test effettuati sono emerse comunque
delle falle. Quindi, per tali lacune sono state pensate delle possibili soluzioni che
verranno applicate in un lavoro futuro. OMRJX è stato quindi testato su una serie
di possibili spartiti per pianoforte e poi confrontato anche con le prestazioni di altri
software commerciali ottenendo dei risultati competitivi.

In conclusione, il sistema, dal nome OMRJX, creato per questa tesi è uno
software che fa uso di nuovi algoritmi per la risoluzione del problema OMR su
spartiti per pianoforte, spartiti che presentano innumerevoli difficoltà viste le possibili
complicazioni che la scrittura pianistica può offrire.



Abstract

Optical Music Recognition (OMR) is the OCR branch oriented to musical documents.
First works on OMR are dated back to the early ’70s and till nowadays, the scientific
community has exerted to obtain the best from this open issue. An OMR process
tries to recognize, from a scanned real page of music, all musical symbols that live
that page. Unfortunately, it is, often, a very arduous task to accomplish. This master
thesis will cover all past works concerning the OMR problems, emphasizing on
the tools and methodologies used for a final solution. Hence, a MATLAB® system
framework will be developed and explained into details. The software will make use
of most of the computer vision and artificial intelligence tools, adding a new solution
for the OMR issue on scorewriters’ not deteriorated scores. Such program is meant
not only to be a simple OMR application but also the starting point for a future
work about classical piano author discrimination.
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Chapter 1

Introduction

Music is enough for a lifetime, but a lifetime is not
enough for music.

Sergei Vasilievich Rachmaninoff

Optical Music Recognition (OMR) was born at the MIT laboratories during the
very end of the ‘60s. It is a branch of OCR (optical character recognition) and
is meant to recognize objects on a music sheet. In a score live notes and music.
Not only. As music developed throughout the centuries, also scores had to change
their content. The frequency of dynamics, accents, words, accidentals significantly
increased. Hence, a score can contain a large variety of objects to be recognized.
Furthermore, each instrument has its own music notation and score formatting. To
conclude, flawless OMR is a very hard target to reach and infact, nowadays there
exist several applications that face the OMR challenge but never achieving perfect
accuracy.

1.1 Goals and Motivations

As a pianist and a composer, I lived (still live) surrounded by music and music
sheets.

As a pianist, I always wanted to enhance my studying tools. While playing pieces
by composers such as Liszt, Rachmaninov, Scriabin, Ligeti, there’s no time to turn a
page. It would be really interesting if the composition could interact with the player
(and not necessarily viceversa). A sort of living score that can listen to the player
and react to player’s stimuli.

As a composer, I have the natural tendency to imagine what really doesn’t exist.
Flows of notes, structures, musical landscapes that interleave continuously. What
if these streams could be taught to a computer. What if a computer could learn
thousands of scores. With this thesis, my goal is to create the starting point for
a future development of instruments for pianists and composers. Especially, the
basis for classical piano author recognition has been jotted down, but they need
the support of an ad-hoc OMR system. OMRJX is a complex architectural system
that challenges optical music recognition and try to collect as much information as
possible from a piano music page.



2 Chapter 1. Introduction

1.2 Thesis Outline
The structure of the dissertation is the following:

• Chapter 2 provides the basis of piano music notation in order to easily
understand each part involved in the project.

• Chapter 3 is a complete overview of the state of the art about OMR issue. In
this chapter the methods and tools used in the past and useful for the building
of OMRJX are listed and deeply analyzed.

• Chapter 4 approaches the system framework logic and explains its main
structure.

• Chapter 5 describes in detail all processes that have been presented in chapter
4.

• Chapter 6 shows the system results after being tested among a series of scores
and against other commercial softwares.

• Chapter 7 and Chapter 8 expose conclusions and future works.



Chapter 2

Music Notation

This chapter will briefly introduce most of the musical symbols involved in piano
scores.

2.1 Lines
All music sheets are centered on staves. A staff consists of five parallel lines1 (same
length) and four intervening spaces (same height). These two components are the
musical translation of note pitches. Music objects can lie on the staff but can also
lie above or under the staff limits. Hence, the musical notation makes use of a ledger
to extend the staff to pitches. Such ledger lines are placed behind the note heads,
and extend a small distance to each side. In Fig. 2.1 are shown raw examples of
a staff and a ledger. As far as the temporal dimension of a staff is concerned, the
time measure is delimited with vertical bars which connect the upper and lower
staffs of a double staff (Grand Staff ). Sometimes these bars can be coupled with
other near bars to determine a changing in the score (e.g. tempo or key signature
changes). Fig. 2.2 shows a list of possible combination of bars. Finally, in scores
which need multiple staves, each staff couple is embraced with the accolade2 (brace).
An example from a piano score is shown in Fig. 2.3.

(a) The staff. (b) The ledger.

Figure 2.1: Staff elements.

1In some music genre, lines can be more than 5.
2Braces can change in style depending on the instrument.
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(a) The single bar. (b) The double bar. (c) The bold double bar.

Figure 2.2: Staff elements.

2.2 Clefs
Clefs determine the tessitura of the staff they refer to. Hence, clefs are the leftmost
objects of a staff and initialize the reading. Sometimes they can appear in the middle
of the staff indicating a change in register. The piano score can contain just two
types of clef – G-clef 3 and F-clef 4. The G-clef spiral center defines the line upon
which it rests as the pitch G above middle C. The F-clef line between the dots in
this clef denotes F below middle C. In Fig. 2.3 are shown two example of clefs.

2.3 Notes and Rests
Notes and rests are the most common symbols of a score. Notes are signs representing
the pitch and duration of a musical sound. The pitch changes with the vertical
position while duration with the shape of the note. A note is made of a head, a stem
and a beam and can be single or grouped together (see Fig. 2.4). A small dot near
a note head increases the note value by half of its real value5 as shown in Fig. 2.5.
Rests are silence that is they take place of notes when notes have to be mute. So,
there’s a bijection between notes and rests as shown in Fig. 2.6.

2.4 Accidentals and key signature
Accidentals are signs that change the pitch of the note they refer to. The sharp
raises the pitch of a note by one semitone. The flat decreases the pitch of a note by
one semitone. The natural cancels previous accidentals. Double sharp and double
flat are similar to sharp and flat except that they change the pitch of two chromatic
semitones. In Fig. 2.7 are listed all common accidentals for piano scores.

Key signature denotes the tonality in which the musical piece is set and is placed
most of the time at the very beginning of staves (Fig. 2.8). Sometimes they are
also placed in the middle of a staff and usually follow a double bar. Accidentals in
the key signatures are applied to all notes in the score (until another accidental is
encountered).

3Also treble clef.
4Also bass clef.
5There can be more than one dot next to a note.
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(a) The Accolades link staffs of a grand
staff.

(b) The Treble Clef. (c) The Bass Clef.

Figure 2.3: Piano accolade and clefs.

Figure 2.4: Notes can be grouped together with a beam.

Figure 2.5: Note values changes if there’s a dot next to it.
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(a) Whole note/rest.

(b) Half note/rest.

(c) Quarter note/rest.

(d) Eighth note/rest.

(e) Sixteenth note/rest.

(f) Thirt-second note/rest.

(g) Sixty-fourth note/rest.

Figure 2.6: Complete set of notes and rests.
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(a) The sharp. (b) The flat.

(c) The natural.

(d) The double sharp. (e) The double flat.

Figure 2.7: Complete set of piano accidentals.

(a) C flat major example. (b) C sharp major exam-
ple.

Figure 2.8: Two key signature examples.
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2.5 Time Signature
The time signature (TS) identifies how many beats are in measures and which note
value constitutes one beat. They can be represented with numbers (numerator and
denominator) or with the letter C (common time)6. Usually, TSs are placed at the
very beginning just in between the clef and the key signature (if it exists) but in
some cases a mid-score time signature is placed after a bar line to indicate a change
of meter. In Fig. 2.9 are shown some common time signature notations.

2.6 Note Relationships
The basic features of music are counterpoint and harmony. The first one specifies
horizontal relationships between melodic lines while the second one focuses on the
vertical relationships in chords7. Counterpoint music notations are slurs and ties as
they refer to the horizontal dynamic of notes. Slurs indicate the beginning and the
end of a musical phrase, while ties interconnect two identical pitched notes that will
be played as one note. Instead, harmony is based on chords that is a vertical series
of notes that are played simultaneously.

Figure 2.9: Two time signature examples.

6There also exist the cut common time represented with a vertically cut C.
7Counterpoint and harmony are so close concepts that in some cases are difficult to distinguish

from each other.



Chapter 3

State of The Art

OMR issue has been heavily addressed since the ’60 and it is currently a provoca-
tive challenge for lots of researchers and software developers. It is a huge task to
accomplish and most of the approaches decompose the problem into two main parts
and eventually further subparts1.

At a first glance staves stand as the main skeleton of the music. These groundsills
consist of parallel lines all equidistant one from each other and in piano scores are
coupled five by five with a brace. Actually, their dimensions (Fig. 3.1) and positions
contain lots of information about the geometry of the score; for example, notes height
is equal to the distance between two staff lines while the bass clef height is three
times that distance. Again, a staff includes perfectly all numeric time signatures as
far as height is concerned. On the other side, staves block all symbols within their
length (but not height). So, once staves have been detected, their coordinates can
be used to give orientations and proportions of the remaining objects on the image.

After detection follows their extraction which is a critical task. As a matter of
fact, if staves are completely extracted, there is the possibility to erase pieces of other
objects that are crossed by the line themselves. This could arouse significant problems
on symbols recognition, depending on the exploited method; indeed, if objects are
broken, they are no more the objects the system was supposed to recognize and this
leads to disambiguations and further complexity. What remains on the score, after
staves extraction, has then to be recognized and categorized. Some object position
may be limited between the staves, while other can be located everywhere. So,
position is one possible discriminating feature but it is still not enough. Dimension
is another important feature, for example, all notes should have the same size and

linestep

linewidth

Figure 3.1: linestep and linewidth are really important through the whole process

1For example, value and pitch note recognition.
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the same for accidentals, clefs and so on. Particular attention should be given to
artifacts due to staves extraction or possible deterioration of the score.

Section 3.1 will cover the main methods used in the past to fulfill a good staves
extraction while section 3.2 will go into details of the remaining object recognition
issue; section 3.3 will briefly summarize the state of the art of OMR problem solving
and section 3.4 will draw the landscape in OMR software developments.

3.1 Staff Line Recognition and Extraction

3.1.1 Projection Method

The projection method has been widely used in text and OMR recognition problem.
It is very simple to implement but it has some shortcomings when the score is
complex or too spoiled. Projection profiles are simply computed by summing up all
pixels on the preferred dimension. Fig. 3.2 shows how the projection on the Y-axis
discriminates staff lines in a reasonable manner, that is, each line corresponds to the
longest run of black pixels. This method can be used also for vertical recognition of
bar lines and stems in the same way as before, but on the X-dimension. The real
problem for this approach is the complexity due to skewness and curvature artifacts
that heavily affect the projection profiles. In some cases, one way to enhance staff
lines detection is to use a combination of filters that erase outliers and determine
proper thresholds to separate real lines from false lines. This method has been used
for staff detection by Fujinaga in [7], Lee Sau Dan in [6], Kato and Inokuchi in [9],
Randriamahefa in [15], Clarke in [2] and Carter-Bacon in [4].

3.1.2 Line Adjacency Graph

Line adjacency graph (LAG) is a well-known concept in graph theory. Given an
undirected graph 𝐺, its line adjacency graph 𝐿(𝐺) is another graph that represents
the adjacencies between edges2 of 𝐺. So, each vertex of 𝐿(𝐺) represents an edge of 𝐺
and two vertices of 𝐿(𝐺) are adjacent if and only if their corresponding edges share
a common endpoint in 𝐺. In Fig. 3.3 the LAG building process is shown. Carter
and Bacon approach in [4] relies on the line adjacency graph. In fact, they segment
the image and each segment belongs or note to a staff line; their method has the
advantage of not removing thin portions of symbols which tangentially intersect a
staff line while lots of other methods do not consider this issue and remove also
parts of symbols.

3.1.3 Hough Transform

The Hough transform is a well-known tool in computer vision and image processing.
It allows recognition of lines and curves3 through a voting system of objects in an
image. As far as the standard Hough transform is concerned, all points in an image
are projected in a parameter space in which 𝜌 and 𝜃 are the coordinates with respect
to the parametric representation of a line (see Fig. 3.4):

2An edge is the connecting arc between two consecutive nodes (vertices).
3The Hough transform has further applications also in the 3D space.
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Figure 3.2: An example of projection profile on the Y-axis

(a) An undirected graph G. In
blue its vertices, in green its
edges

(b) Construct edges in 𝐿(𝐺)

(c) The final adjacency graph
𝐿(𝐺)

Figure 3.3: LAG process
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𝜌

𝜃
O

Figure 3.4: in the hough transform 𝜃 is the angle and 𝜌 is the orthogonal distance
to a line

𝑦 = −
(︂cos 𝜃

sin 𝜃

)︂
+

(︂
𝜌

sin 𝜃

)︂
(3.1)

and rearranging it into:

𝜌(𝜃) = 𝑥 cos 𝜃 + 𝑦 sin 𝜃 (3.2)

with 𝜃 ∈ [0, 𝜋[ and 𝜌 ∈ R where 𝜌 > 0 and R is the set of all possible distances from
the origin to all lines. In this way each point (𝜌, 𝜃) in the Hough space corresponds
to a line in the image. Fig. 3.5 shows a comparison between an image and itself
after the Hough transformation. This tool has been used by Miyao in [12] for staves
extraction; indeed, Hough transform can deal with discontinuities and inclinations
but has some problem with curvatures.

3.1.4 Line Tracking

Line tracking is one of the most intuitive ways to accomplish staff line extraction
after being detected. The lines are tracked to establish whether some of the pixels
need to be removed according to some criteria. This method will, then, remove,
with some approximation, pixels belonging to the staff lines while maintaining those
pixels which are both part of a symbol and part of the line. Fig. 3.6 shows a simple
example: Line tracking was used in [13], [1], [15] and each work uses different criteria
upon pixel extraction.

3.1.5 Skeletonization

As in human anatomy, the skeleton in image processing is the substructure of a
binary image. A binary image is made of true and false pixels4 as in Fig. 3.7a:
Skeletonization of such images will reduce the foreground image regions to a skeletal
remnant that largely preserves the extent and connectivity of the original region
while throwing away most of the original foreground pixels. It can be achieved in two
main ways. First, the image is processed with some kind of morphological thinning

4True as foreground and false as background.
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]

Figure 3.5: The Hough transform on a common image

staff line

note object

Figure 3.6: An example of line tracking. The red segment corresponds to a set of
pixels which are the result of the intersection between the staff line and the note.
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(a) A binary representation of a
double sharp.

(b) Skeletonization of a double
sharp.

Figure 3.7: Processing on a double sharp.

that erodes away pixels from the boundary (while preserving the end points of line
segments) until no more thinning is possible, at which point what is left approximates
the skeleton. A canonical formulation of skeletonization on a binary image is shown
in Eq.3.3

𝑆𝑛(𝑋) = (𝑋 ⊖ 𝑛𝐵) ∖ (𝑋 ⊖ 𝑛𝐵) ∘𝐵 (3.3)

where ⊖ and ∘ are respectively erosion and opening, 𝑋 is a binary image with
𝑋 ⊂ Z2, 𝑆(𝑋) is the union of the skeleton subsets and

𝑛𝐵 = 𝐵 ⊕ . . .⊕𝐵⏟  ⏞  
𝑛 times

(3.4)

with ⊕ as dilation.
The second approach relies on the distance transform of the image whose result

is a gray level image that looks similar to the input image, except that the gray level
intensities of points inside foreground regions are changed to show the distance to
the closest boundary from each point.

An important point in the skeletonization process is that it is possible to re-
construct the original image from the skeletonized one. In Fig. 3.7b follows a
skeletonization of the binary image in Fig. 3.7a:

This morphological tool has been adopted in [5] where the authors explain a
new method that can reconstruct staff lines thanks to the orientation of segments as
output of the skeletonization.

3.2 Symbol Extraction and Taxonomy
Before starting to list all methodologies used in musical symbol recognition, there’s
to point out that not all approaches extract staff lines before symbols extraction. For
example, Pugin in [14] uses Hidden Markov Models (HMM) to accomplish the task5

while the famous Japanese robot Wabot-2 [10] finds symbols through a template

5The domain for this approach are early music prints.
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Figure 3.8: Bounded box on each object used in [3] and [4] (Rachmaninov prelude
Op.23 n.5).

matching process6. Consider, now, symbol recognition after staff detection and
removal. Indeed, template matching is one of the most immediate approaches and
has been used by most of the pioneers in this field. Thus, as far as template-based
approach is concerned, in [17] the matching is used to discover touching symbols in
piano music scores while in [16] a fuzzy model is exploited to give more flexibility to
the basic template matching, adding a certain degree of membership for the object
to a certain class. On the feature-based side, [13] compares the dimensions of all
connected regions to those of the staves and scout a precomputed LUT for satisfying
matching conditions, [2] compares, instead, just some particular areas of selected
regions in order to avoid lots of computation due to full template matching. [3] and
[4] surround with bounding box all the objects and classify them with respect to
their dimension and position on the score (see an example on Fig:3.8).

Other systems are based on much more sophisticated tools such as neural network
(NN) in [11] that are used to extract head notes and beams in piano scores or decision
tree in [8] where a 278 feature linear tree is exploited to discriminate among 5 classes
of symbols. Finally, in [9] a multi-layer system is adopted; the score is explored bar
by bar and each layer corresponds to a certain degree of abstraction (pixel, primitive,
symbol, meaning and context).

3.2.1 Hidden Markov Model (HMM)

A Markov model is a probabilistic model that can accurately capture the effects of
order dependent component failure and of changing failure rates resulting from stress
or other factors. In general, Markov modeling is used to evaluate system reliability
as a function of time by mapping out the states of the system - fully operational,
degraded, failed - and the probability of moving from one state to another. Markov
models are most useful for modeling complex behavior associated with fault-tolerant
systems, degraded modes of operation, repairable systems, sequence-dependent
behavior and time-varying failure rate.

The simplest Markov model is the Markov chain which satisfies the Markov

6It uses hardware for staff recognition and uses information gained in this phase to calibrate
dimension and geometry of the score.
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𝑋1 𝑋𝑡−1 𝑋𝑡 𝑋𝑇

𝑒𝑡−1 𝑒𝑡 𝑒𝑇𝑒1

Figure 3.9: A schematic representation of a HMM.

property:

P(𝑋𝑛 = 𝑥𝑛|𝑋𝑛−1 = 𝑥𝑛−1 . . . 𝑋0 = 𝑥0) = P(𝑋𝑛 = 𝑥𝑛|𝑋𝑛−1 = 𝑥𝑛−1) (3.5)

this property is referred to a stochastic process 𝑋𝑑 with discrete values on a probabil-
ity space (Ω,ℱ ,P). In a nutshell, it states that the conditional probability distribution
of future states of the process, given the present state and the past states, depend
only upon the present state.

Finally, a hidden Markov model7 is a Markov chain for which the state is only
partially observable. It is described by a quintuple (𝑆, 𝐸, 𝑃, 𝐴, 𝐵):

1. 𝑆 : {𝑠1, . . . , 𝑠𝑁} are the values for the hidden states

2. 𝐸 : {𝑒1, . . . , 𝑒𝑁} are the values for the observations

3. 𝑃 : probability distribution of the initial state

4. 𝐴: transition probability matrix

5. 𝐵: emission probability matrix

HMM are widely used in several fields, moving from weather casting to cryptanalysis
and it was used in OMR to detect old typographical music symbols before staff
removal (see [14]).

3.2.2 Feature-based template matching: contours with FFT

In order to spare computation on the matching process, it is, sometimes, useful to
reduce it by selecting just a particular feature to match. Contour is a valid feature
in OMR problems, but scores must not be affected to overloaded degradation. The
FFT is one of the best candidates for the purpose. Immediately, notice that one
aim is to obtain independence from translations and rotations. So, first operation is
contour extraction:

1. Binarize images: 1 for objects and 0 for background

2. Find each object on the image and label it

7It is a Bayesian network.
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Figure 3.10: In yellow is marked the contour of a binary image.

3. For each label, extract the object contour (adopt always the same direction
(clockwise or anti-clockwise))

Now, the n-th contour is characterized by two vectors 𝑐𝑥,𝑛 and 𝑐𝑦,𝑛, each of length
𝑁 , including its coordinates. It is important that all contours must have the same
number of elements 𝑁𝐹𝐹𝑇 because when 𝐹𝐹𝑇 will be applied, all contours will
have the same period8. Next, obtain a complex vector representing the contour as:

𝑐𝑛 = 𝑐𝑥,𝑛 + 𝑗𝑐𝑦,𝑛 (3.6)

Consider 𝐶𝑛 = 𝐹𝐹𝑇 (𝑐𝑛) and its polar representation as 𝐶(𝜔) = 𝜌(𝜔)𝑒𝑗𝜑(𝜔)9. The
same procedure is obviously applied to the matching object and will return

𝑀(𝜔) = 𝑘(𝜔)𝑒𝑗𝜃(𝜔) (3.7)

Normalization of the vectors is required, and henceforth 𝐶 and �̄� are the
normalization of 𝐶, 𝑀 where

𝜌(𝜔) = 𝜌(𝜔)√︀∑︀
𝜔 𝜌(𝜔)2 (3.8)

and
𝑘(𝜔) = 𝑘(𝜔)√︀∑︀

𝜔 𝑘(𝜔)2 (3.9)

Recalling the two important conditions:

1. Translation independence: 𝑘(𝜔)
𝜌(𝜔) = 𝐾1 , ∀𝜔 ∈ Ω

2. Rotation independence: 𝜃(𝜔)− 𝜑(𝜔) = 𝐾2𝜔 , ∀𝜔 ∈ Ω

Thanks to the normalization, 𝐾2 is the only parameter to be computed. In fact,

�̄�(𝜔)𝐶(𝜔)′ = 𝜌(𝜔)𝑘(𝜔)𝑒𝑗(𝜃(𝜔)−𝜑(𝜔)) (3.10)

which leads to
𝑃 (𝜔) = �̄�(𝜔)𝐶(𝜔)′ = 𝑘(𝜔)2𝑒𝑗𝐾2(𝜔) (3.11)

8This is possible with simple interpolation.
9Hereafter 𝑛 is neglected.
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Figure 3.11: An example of full template matching. In this case, the eye is the
template (filter mask).

As a matter of fact, 𝑃 (𝜔) can be considered as a discrete signal whose principal
component has to be computed. From Eq.3.11 can be easily derived:

⟨�̄�(𝜔), 𝐶(𝜔)𝑒𝑗𝐾2(𝜔)⟩𝐻 = 1 (3.12)

In general, 𝑉 =| ⟨�̄�(𝜔), 𝐶(𝜔)𝑒𝑗𝐾2(𝜔)⟩𝐻 |≤ 1, where equality exists just in very
lucky cases (i.e. same dimensions and rotation of 𝜋/2 multiples) and so, 𝑉 is the
final measure of similarity of objects with 𝑉 ∈ [0, 1]10.

3.2.3 Template matching and convolution

Template matching is a costly operation that scouts the entire image looking for
a target pattern, which in this case has no strong features (otherwise feature-
based template matching should be applied). The most common approach uses a
convolution mask (target) which is spread over the image containing the target. The
convolution output will be highest where the mask best fit the image. Often, this
method and the template are called respectively linear spatial filtering and filter
mask. Hence, the idea is that of moving the template 𝑇 (𝑥𝑡, 𝑦𝑡) on the searched image
𝑆(𝑥, 𝑦) and calculate the sum of products between the coefficients in 𝑆(𝑥, 𝑦) and
𝑇 (𝑥𝑡, 𝑦𝑡) over the whole area spanned by the template. Now, considering that a
pixel in the searched image has intensity 𝐼𝑠(𝑥𝑠, 𝑦𝑠) while a pixel in the template
has intensity 𝐼𝑡(𝑥𝑡, 𝑦𝑡), it is possible to evaluate their absolute difference at each
intensity position as:

𝐴𝐷(𝑥𝑠, 𝑦𝑠, 𝑥𝑡, 𝑦𝑡) =| 𝐼𝑠(𝑥𝑠, 𝑦𝑠)− 𝐼𝑡(𝑥𝑡, 𝑦𝑡) | (3.13)

so

𝑆𝐴𝐷(𝑥, 𝑦) =
𝑇𝑟𝑜𝑤𝑠∑︁
𝑖=0

𝑇𝑐𝑜𝑙𝑠∑︁
𝑗=0

Diff(𝑥 + 𝑖, 𝑦 + 𝑗, 𝑖, 𝑗) (3.14)

and finally the mathematical representation of the idea about looping through the
pixels in the search image as we translate the origin of the template at every pixel

10Maximum similarity = 1.
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and take the SAD measure is the following:

𝑆𝑟𝑜𝑤𝑠∑︁
𝑥=0

𝑆𝑐𝑜𝑙𝑠∑︁
𝑦=0

𝑆𝐴𝐷(𝑥, 𝑦) (3.15)

𝑆𝑟𝑜𝑤𝑠 and 𝑆𝑐𝑜𝑙𝑠 denote the rows and the columns of the search image and 𝑇𝑟𝑜𝑤𝑠

and 𝑇𝑐𝑜𝑙𝑠 denote the rows and the columns of the template image, respectively. The
lower the 𝑆𝐴𝐷, the higher the template score.

3.3 Brief summary

In sections 3.1 and 3.2, a list of past works has been described, emphasizing on the
tools they used for the main purposes. Staff line detection and extraction are really
important for the OMR problem solving in that once staff lines are flushed away
from the music sheet, what remains on the score is simpler to detect and classify. But
there’s always a tradeoff between the applied method and results. As far as object
recognition is concerned, the main tool is template matching- both feature-based
and template-based. Then, recent works built up frameworks based on higher levels
of abstraction, subdividing the problem into smaller (and on different levels) sub
problems as in [9]. There follow Tab. 3.1 and Tab. 3.2 that summarize authors and
proposed methods.

Staff detection and removal
Techniques Authors

Projection method Fujinaga [7], Dan [6], Kato, Inokuchi [9],
Randriamahefa [15], Clarke [2],
Carter-Bacon [4], Bainbridge [3]

LAG Carter-Bacon, Bainbridge [3]
Hough Transform Miyao [12]

Line Tracking Prerau [13], Bell [1], Randriamahefa [15]
Skeletonization Dalitz-Fujinaga [7]

Table 3.1: Main approaches for staff recognition and removal

Object recognition
Techniques Authors

HMM Pugin [14]
Template Matching (T-B) Matsushima [10], Rossant [16], Toyama [17]
Template Matching (F-B) Prerau [13], Bainbridge, Carter, Bacon [3]

Bounding Box Bainbridge, Carter, Bacon [3]
Neural Network Miyao [12]
Decision Tree Homenda [8]

Multi-layer, syntax analysis Kato [9]

Table 3.2: Main approaches for object recognition
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Figure 3.12: OMeR SW screenshot.

3.4 OMR Softwares

OMR issue has been heavily addressed since the ’60 and it is currently a provocative
challenge for lots of researchers and software developers. As a matter of fact, there
exist different kinds of OMR softwares and each one gives its contribution for a
good solution to the problem. First five softwares listed below are priced programs;
each one has a GUI, some user friendly other not, and each one gives a set of
possible actions to perform on the scanned music score. Beside the common OMR
transcripition of the page, some of these SWs allow special actions such as editing,
listening to the output result (MIDI format) or transposing the whole score to a
certain pitch. However, there still exist some limitations due to the OMR complexity,
especially when very old and corrupted music transcriptions are analyzed. It follows
a list of the most famous OMR SWs:

• OMeR by Myriad
From a score picture, OMeR will locate music symbols and generate a document
that will be loaded automatically by Melody Assistant or Harmony Assistant
which is the main program of Myriad. OMeR can manage documents made
of several pages. For further information visit http://www.myriad-online.
com/en/products/omer.htm. Fig. 3.12 is a screenshot of the program while
testing a Mozart score.

• SharpEye by Visiv
SharpEye Music Reader converts a scanned image of printed music into a
MIDI file, a NIFF file, or a MusicXML file. It allows direct scanning from
TWAIN compatible scanners. (Most scanners are TWAIN compatible). Used
at its simplest, the user drags an image file into a window, clicks on a button
and wait for the conversion to take place. The output is shown in conventional
music notation in another window. Click on another button to save the result

http://www.myriad-online.com/en/products/omer.htm
http://www.myriad-online.com/en/products/omer.htm
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as a MIDI file. SharpEye has a built in editor for correcting error of conversion.
Almost all the editing can be done with the mouse and delete key. The input
image window automatically scrolls to the right place in the image as you edit.
SharpEye also shows warnings for each bar which doesn’t make musical sense.
SharpEye does not cope with handwritten music. More information on the
manual at http://visiv.co.uk/manualv2.pdf.

• Vivaldi Scan by Vivaldi Studio
Vivaldi scan recognizes symbols like beams, stems, notes, time signature, clefs,
grace notes, texts, lyrics. It recognizes polyphonic voices and (MIDI) plays
them back. Then, it gives access to a wide library of music symbols to modify
and insert them more rapidly into the score. In addition, it gives the possibility
to export the scanned scores in several formats (Vivaldi, XML, MIDI).

• Photo Score by Neuraton
Photoscore is presented into two main products, a lite and an ultimate edition.
The ultimate edition is capable of opening PDF files, saving MIDI files, sending
scores directly to Sibelius and G711, saving MusicXML, NIFF and PhotoScore
files for opening in Finale and other notation programs and so on. A complete
list of its features is found on http://www.neuratron.com/photoscore.htm.

• Smart Score by Musitek
Smart Score by Musitek is divided into many sub products and the Pro edition
is absolutely the most complete one12. It is provided with notation editing, text
and lyric recognition (editing), digital audio libraries (VST and AU), MIDI
editing and recording. In addition, the SW can export into files for Finale,
MusicXML, MIDI, WAV and CD Burning. There’s an interesting demo on
youtube at http://www.youtube.com/watch?v=7pjLsQJHwdM.

• OpenOMR
OpenOMR is a 2006 open source project built on java language and whose
founder is Arnaud F. Desaedeleer;

• Gamera Gamera is an academic system started developing in 2001 by Michael
Droettboom, Karl Mac Millan and Ichiro Fujinaga at the Digital Knowledge
Center of the Johns Hopkins University (USA). This last system is a toolkit
written in Python (possible extensions in C++), open source coded and
portable on most OS.

11Together with Finale, it is one of the most famous and powerful software for writing, playing,
printing and publishing music notation.

12Pro edition is about 400$.

http://visiv.co.uk/manualv2.pdf
http://www.neuratron.com/photoscore.htm
http://www.youtube.com/watch?v=7pjLsQJHwdM




Chapter 4

Logic of OMRJX

OMRJX is a complex framework. It consists of blocks and each one is dedicated to
a specific element in the score. In most cases, the order of such blocks is fixed and
cannot be swapped; this order has been chosen with the experience, while moving
inside the OMR problem and understanding that, in some cases, some processing is
much more better than another one at a different step of the whole process. In a
first attempt, the adopted approach tried to detect objects without staves removal
through the Viola-Jones algorithm1. Unfortunately, this algorithm requires lots
of time for the training phase and it can happen to wait more than a month for
output results (which were all failures). Hence, the approach changed and the final
system considers the removal of staves before the global recognition of all the other
symbols2. After staves removal it would be possible also to change the skewness of
the image thanks to the Hough transform that in any cases detects the lines with
their inclination; if the image won’t be deskewed, all the processings involving the
projection method should fail. Then, it follows the recognition and removal of title,
bar lines, clefs, time signatures, full note heads, full note values, rests, half and whole
notes, accidentals, dots and key signature.

The full note heads and their values detection are the innovative parts of this
thesis. Indeed, to my knowledge, no one has addressed such problems in the way I
chose. The clustering model and the skeletonization approaches used in step Full
note heads extraction and Full note values (See Fig. 4.1) are really powerful and
give very good results.

In Fig.4.1 all OMRJX steps are sketched neglecting minor passages and in the
next chapter they will be explained in detail.

1OpenCV functions has been studied and then implemented.
2This is not really true. Brace recognition precedes the staves removal as braces can alter Hough

perception about lines. In addition, the title is computed and removed before because it doesn’t
affect the core of the page.
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Brace extraction

Title extraction

Staff line extraction

Bar line extraction

Clef extraction

Time signature extraction

Full note heads extraction

Full note values

Rest extraction

Half-whole note extraction

Accidental extraction

Dot extraction

Tonality detection

Figure 4.1: Main steps of OMRJX architecture.



Chapter 5

Deep in the OMRJX
FrameWork

In the following sections, all procedures adopted in the framework will be shown and
explained in detail. Each section will be provided with pseudocode and images to
best illustrate the methods and obstacles for each issue. Sections are listed following
the same order proposed in Chap.4 which is, by the way, a mandatory flush of
instruction.

5.1 Number Of Braces
The number of braces is the first important thing to detect because it allows previous
information about the content of the page. Actually, this number it’s equal to the
number of the biggest connected regions on the score. Pseudocode 5.1.1 describes
the proposed method.

Algorithm 5.1.1: numberofbraces(𝐼)

comment: Compute the number of braces in a piano score
𝐼 = binary input image
𝐶𝑁 ← 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑟𝑒𝑔𝑖𝑜𝑛𝑠(𝐼)
𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝐴𝑟𝑒𝑎← 𝐴𝑟𝑒𝑎(𝐶𝑁)
Cluster RegionaArea with k-means
𝑛𝑏𝑟𝑎𝑐𝑒← number of biggest areas
return (𝑛𝑏𝑟𝑎𝑐𝑒)

Fig. 5.1 shows that, in fact, the greatest connected regions are effectively corre-
sponding to the number of braces. These connected regions are, actually, the staves
populated by all notes and symbols. Next step is the extraction of such braces.

5.2 Brace Extraction
Brace extraction is advisable before the staff lines removal. In fact, some points of
the braces can be on the prosecution of a staff line as shown in Fig. 5.2. It is visible
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Figure 5.1: The number of braces corresponds to the number of the greatest
connected regions
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that the brace and the staff lines are not perfectly aligned, hence, this is a “problem”
for the Hough process in the staff removal step. If not removed, those points which
are not aligned will be considered as making part of the staff line, tilting the possible
output line guessed by Hough. The adopted algorithm is listed in 5.2.1.

Algorithm 5.2.1: braceextractor(𝐼, 𝑛𝑏𝑟𝑎𝑐𝑒)

comment: Extract braces
𝐼 = binary input image
𝑛𝑏𝑟𝑎𝑐𝑒 = total number of braces
𝐹𝐹𝑇𝑡𝑟𝑎𝑛𝑠𝑏𝑟𝑎𝑐𝑒 = FFT contour transform of a sample brace
𝐶𝑁 ← 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑟𝑒𝑔𝑖𝑜𝑛𝑠(𝐼)
comment: for loop on CN is implied
𝐹𝐹𝑇𝑐𝑜𝑛𝑡𝐶𝑁 = FFT contour transform of each CN
𝑀𝑎𝑡𝑐ℎ𝑒𝑠← 𝐹𝐹𝑇𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑚𝑎𝑡𝑐ℎ(𝐹𝐹𝑇𝑡𝑟𝑎𝑛𝑠𝑏𝑟𝑎𝑐𝑒, 𝐹𝐹𝑇𝑐𝑜𝑛𝑡𝐶𝑁)
𝐵𝑟𝑎𝑐𝑒 = first nbrace best matches
𝐵𝑟𝑎𝑐𝑒𝑆𝑡𝑟𝑢𝑐𝑡← 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝐵𝑟𝑎𝑐𝑒)
𝐼𝑛𝑜𝐵𝑟𝑎𝑐𝑒𝑠 = 𝐼(𝐵𝑟𝑎𝑐𝑒 = 𝑓𝑎𝑙𝑠𝑒)
return (𝐼𝑛𝑜𝐵𝑟𝑎𝑐𝑒𝑠, 𝐵𝑟𝑎𝑐𝑒𝑆𝑡𝑟𝑢𝑐𝑡)

In this way, all objects on the page are compared through the FFT contour
matching process.(see SubSec.3.2.2). The positions of each brace candidate are saved
in BraceStruct and after, the input image is pruned, that is all braces pixels are set
to logical 𝑓𝑎𝑙𝑠𝑒.

5.3 Title Extraction
Sometimes scores have a title at the top of the page or a footer at the bottom. In
addition, the name of the author, the date, the arranger or the website can appear
on some banners of the page1. Thus, all this information is associated with a number,
sometimes huge, of characters and symbols. Fig. 5.3 shows an example in which
there are a title, the name of the composer2 and the website on top of the image.

At this step, the system allows the recognition of a title, if exists, and prunes
the image erasing all characters belonging to this information banners. This removal
is really important in that, once all banner symbols are removed, next functions
will be much more light computing (i.e., less connected regions to evaluate); on the
other side, in some rare cases, a note (or rest) won’t be part of the largest connected
region and will be considered as making part of the banner. So, the highest pixel
of the highest and largest connected region (it is supposed to be a grand staff) it
is used to delimitate the upper banner with the rest of the score. In this banner
all connected regions are labeled and their centroids are computed. A K-nearest
neighbor algorithm has been used to cluster those connected regions (letters of the
title) that are close to each other and equidistant from the score margins. If a cluster

1Banners are always at the top or bottom of the page.
2There’s also the Korean translation.
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Figure 5.2: In green the upper and lower prosecution of the staff lines. In red the
projection of the edges of the brace on the first bar line.
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Figure 5.3: Additional information of the score can be printed besides the music
itself – Title, author and website.

is found then the system will round with a box the possible title and then remove
all objects from the banner. The algorithm is shown in 5.3.1.

Algorithm 5.3.1: titleextractor(𝐼𝑛𝑜𝐵𝑟𝑎𝑐𝑒𝑠)

comment: Recognize and extract the title⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐼𝑛𝑜𝐵𝑟𝑎𝑐𝑒𝑠 = binary input image without braces
𝐵𝑖𝑔𝐶𝑁 = largest connected regions of InoBraces
𝑀𝑎𝑥𝐵𝐶𝑁 = highest pixel of the highest BigCN
𝑀𝑖𝑛𝐵𝐶𝑁 = lowest pixel of the lowest BigCN
𝐻𝑖𝑔ℎ𝐵𝑎𝑛𝑛𝑒𝑟 = 𝐼𝑛𝑜𝐵𝑟𝑎𝑐𝑒𝑠(1 : 𝑀𝑎𝑥𝐵𝐶𝑁)
𝐿𝑜𝑤𝐵𝑎𝑛𝑛𝑒𝑟 = 𝐼𝑛𝑜𝐵𝑟𝑎𝑐𝑒𝑠(𝑀𝑖𝑛𝐵𝐶𝑁 : 𝑒𝑛𝑑)

comment: Set to false all lower banner pixels
𝐼𝑛𝑜𝑏𝑟𝑎𝑐𝑒𝑠(𝐿𝑜𝑤𝐵𝑎𝑛𝑛𝑒𝑟 = 𝑓𝑎𝑙𝑠𝑒)
𝑇𝑖𝑡𝑙𝑒𝐶𝑁 = 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑟𝑒𝑔𝑖𝑜𝑛𝑠(𝐻𝑖𝑔ℎ𝐵𝑎𝑛𝑛𝑒𝑟)
for each 𝑇𝑖𝑡𝑙𝑒𝐶𝑁

do
{︃

Compute Centroid
Compute Diagonal

K-NN clustering on TitleCN
if ∃ a central cluster ∈ HighBanner

then

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑖𝑠𝑡𝑖𝑡𝑙𝑒← 𝑡𝑟𝑢𝑒
𝑡𝑖𝑡𝑙𝑒𝑏𝑜𝑥← 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(central-cluster)
𝐼𝑛𝑜𝑇 𝑖𝑡𝑙𝑒 = 𝐼𝑛𝑜𝐵𝑟𝑎𝑐𝑒𝑠(𝐻𝑖𝑔ℎ𝑟𝐵𝑎𝑛𝑛𝑒𝑟 == 𝑓𝑎𝑙𝑠𝑒)
𝐼𝑡𝑖𝑡𝑙𝑒 = 𝐻𝑖𝑔ℎ𝐵𝑎𝑛𝑛𝑒𝑟

else

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑖𝑠𝑡𝑖𝑡𝑙𝑒← 𝑓𝑎𝑙𝑠𝑒
𝑡𝑖𝑡𝑙𝑒𝑏𝑜𝑥← 𝑣𝑜𝑖𝑑
𝐼𝑛𝑜𝑇 𝑖𝑡𝑙𝑒 = 𝐼𝑛𝑜𝐵𝑟𝑎𝑐𝑒𝑠(𝐻𝑖𝑔ℎ𝐵𝑎𝑛𝑛𝑒𝑟 == 𝑓𝑎𝑙𝑠𝑒)
𝐼𝑡𝑖𝑡𝑙𝑒 = 𝑣𝑜𝑖𝑑

return (𝐼𝑛𝑜𝑇 𝑖𝑡𝑙𝑒, 𝑖𝑠𝑡𝑖𝑡𝑙𝑒, 𝐼𝑡𝑖𝑡𝑙𝑒, 𝑡𝑖𝑡𝑙𝑒𝑏𝑜𝑥)
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(a) OMRJX result when there’s a title in the image

(b) In the absence of a central title, OMRJX will save a flag 𝑖𝑠𝑡𝑖𝑡𝑙𝑒 = 𝑓𝑎𝑙𝑠𝑒

Figure 5.4: Title extraction possible output.

The K-NN clustering is based on rules about dimension of the object and distance
between centroids; i.e., the distance between two centroids must be lower than the
sum of the diagonals of the two objects. Be 𝑐1, 𝑐2 rispectively the centroids of objects
𝑂1, 𝑂2, and 𝑑1, 𝑑2 their diagonals, one of the clustering condition is:√︁

(𝑐1 − 𝑐2)2 < 𝑑1 + 𝑑2 (5.1)

where 𝑐1, 𝑐2 are mapped in the image as (𝑥1, 𝑦1) and (𝑥2, 𝑦2). In Fig. 5.4 two possible
examples of title extraction are shown.

5.4 Staff Lines Extraction
Staff line extraction is a critical step. Indeed, if staff lines are removed badly, next
steps will be really difficult and messy. If so, parts of objects will be removed, deleting
lots of useful information (pixels) and adding noise to the image. If staff lines are,
instead, removed in a good way future work will be easier and will allow the use of
useful tools (i.e., feature based template matching). However, staff line removal is
nowadays still impossible to accomplish at best. For each adopted algorithm there
will be a tradeoff to respect. OMRJX makes use of the Hough transform in such a
way to surely find lines on the image. It, also, allows to detect the skewness of the
score collecting all 𝜃 angles of the selected lines. On the contrary, very rough and
spoiled images with curvatures3 won’t be recognized at all.

In order to improve the Hough approach, several additional operations have been
done on the Hough domain. Hough domain contains votes. A threshold on votes is
mandatory to select those regions in the Hough image that are associated to lines
in the image domain. In Fig. 5.5 and in Fig. 5.6 are shown the Hough transform
applied to a score and a detail of a maximum region. Each region of warm colours
corresponds to a hypothetical line in the image domain. Each of these regions has
votes which, unfortunately, are different for votes of other regions. So, thresholding
has been applied imposing a 𝑡ℎ = 0.9 on the maximum value of the Hough domain4.
Fig. 5.7 shows the Hough image after thresholding.

3Imagine to scan the score and part of the page folds when scanned.
4The threshold is normalized between zero and one.
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Figure 5.5: Hough transform of a piano score.

Figure 5.6: Zoom on a maximum vote region in the Hough transform. The redder,
the higher the vote

Figure 5.7: Hough maximum vote region after thresholding.
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Figure 5.8: Part of the clef is tangent to the staff line and, hence, line tracking
removes it.

In a sense, the thickness of the maximum regions after thresholding corresponds
to the real thickness of a line on the image domain. This feature has been exploited to
evaluate 𝑙𝑖𝑛𝑒𝑤𝑖𝑑𝑡ℎ, which is one of the most important parameters used throughout
the whole process, almost everywhere. 𝑙𝑖𝑛𝑒𝑤𝑖𝑑𝑡ℎ is the width of a staff line. In order to
compute its value, the projection method has been applied in the horizontal direction.
The projection has been chosen for a simple reason. If the original image is corrupted,
those maximum vote regions in the Hough domain won’t be connected regions; this
won’t allow a simple measure of the height of those regions. What is sure is that those
regions are very close to each other while belonging to the same line in the image.
The projection fits well with this issue and a further correction is done comparing the
number of connected regions of the projection of the maximum value regions with
(10 · 𝑛𝑏𝑟𝑎𝑐𝑒), where 𝑛𝑏𝑟𝑎𝑐𝑒 correspond to the number of double staff of the score5.
If those values are not equal, the connected regions of the projections with smaller
areas are discarded and considered as noise. Once 𝑙𝑖𝑛𝑒𝑤𝑖𝑑𝑡ℎ has been computed, the
function moves to the staff line removal step. Line tracking (see SubSec:3.1.4) has
been adopted for such purpose, imposing an erosion window of 1.2 times the current
line width. Line tracking gives good results except for those parts of objects that are
tangent to the staff line. Those tangent points will be removed creating a hole in the
symbol. Fig. 5.8 shows an instance of such problem that OMRJX won’t consider.
Hence, once a staff line has been deleted, points on the Hough transform referred
to it are deleted too, in order to step on the next maximum region (on Hough
image), hence, the next staff line to remove (on the binary image). All line positions
are saved in a struct called 𝑑𝑜𝑢𝑏𝑙𝑒𝑠𝑡𝑎𝑓𝑓 . The algorithm is summarized in 5.4.1.

5Just remember that a brace embraces two staffs.
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Algorithm 5.4.1: staffextractor(𝐼𝑛𝑜𝑇 𝑖𝑡𝑙𝑒, 𝑛𝑏𝑟𝑎𝑐𝑒)

comment: Estimate linewidth and remove staff lines
𝐼𝑛𝑜𝑇 𝑖𝑡𝑙𝑒 = binary input image from previous step
𝑛𝑏𝑟𝑎𝑐𝑒 = number of braces
𝐻 = Hough transform(𝐼𝑛𝑜𝑇 𝑖𝑡𝑙𝑒)
𝐻𝑡ℎ = 0.9 thresholding on 𝐻
𝐶𝑁𝐻𝑡ℎ = connected regions on Hth
𝑃 = horizontal projection of 𝐶𝑁𝐻𝑡ℎ
if Number of 𝐶𝑁𝐻𝑡ℎ > 10 · 𝑛𝑏𝑟𝑎𝑐𝑒

then
neglect small regions
𝑙𝑖𝑛𝑒𝑤𝑖𝑑𝑡ℎ = 𝑚𝑒𝑎𝑛(Area(P))
for each 𝐶𝑁𝐻𝑡ℎ⎧⎪⎨⎪⎩

delete associated pixels on the image
save coordinates of the staff line in 𝑑𝑜𝑢𝑏𝑙𝑒𝑠𝑡𝑎𝑓𝑓
delete CNHth on Hough domain

return (𝐼𝑛𝑜𝑆𝑡𝑎𝑓𝑓𝑠, 𝑑𝑜𝑢𝑏𝑙𝑒𝑠𝑡𝑎𝑓𝑓, 𝑙𝑖𝑛𝑒𝑤𝑖𝑑𝑡ℎ)

5.5 Linestep

As mentioned in Chap.3, linestep is the other relevant and required measure. This
parameter, which is shown in Fig. 3.1, is pivotal in that it is used to give proportions
to the musical objects. The value has been extracted from the 𝑑𝑜𝑢𝑏𝑙𝑒𝑠𝑡𝑎𝑓𝑓 struct,
shown in Fig. 5.9 which contains all positions of the lines . In Matlab notation:

𝑠𝑡𝑎𝑓𝑓𝑙𝑖𝑛𝑒 =

⎡⎢⎢⎢⎣
𝑥1𝑖 𝑦1𝑖 𝑥1𝑓

𝑦1𝑓

...
...

...
...

𝑥5𝑖 𝑦5𝑖 𝑥5𝑓
𝑦5𝑓

⎤⎥⎥⎥⎦
where (𝑥𝑖, 𝑦𝑖) and (𝑥𝑓 , 𝑦𝑓 ) are the initial and final point of a line. A psuedocode for
line step evaluation is 5.5.1.

Algorithm 5.5.1: stafflinestep(𝑑𝑜𝑢𝑏𝑙𝑒𝑠𝑡𝑎𝑓𝑓)

comment: Estimate linestep
for each 𝑑𝑜𝑢𝑏𝑙𝑒𝑠𝑡𝑎𝑓𝑓
for each 𝑠𝑖𝑛𝑔𝑙𝑒𝑠𝑡𝑎𝑓𝑓

do Compute the mean among all linesteps
return (𝑙𝑖𝑛𝑒𝑠𝑡𝑒𝑝)
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doublestaff ...

singlestaff

bars
d1

d2

dnbrace

s1

s2

staffline1
staffline2

Figure 5.9: doublestaff structure

Figure 5.10: Region of the score containing the bar lines.

5.6 Hypothetical Note Area

At this point, it is possible to compute the hypothetical area of a full note. The
head of a full note is elliptical but under good approximation can be considered
as circular. Thus, as the head is fully contained in a 𝑙𝑖𝑛𝑠𝑡𝑒𝑝, with an additional
touching 𝑙𝑖𝑛𝑒𝑤𝑖𝑑𝑡ℎ, the area is simply

𝐻𝑦𝑝𝑁𝑜𝑡𝑒𝐴𝑟𝑒𝑎 = 𝜋(𝑙𝑖𝑛𝑒𝑠𝑡𝑒𝑝 + 𝑙𝑖𝑛𝑒𝑤𝑖𝑑𝑡ℎ)2

4 (5.2)

which is the canonical formula for the circle area.

5.7 Bar Line Extraction

What are bar lines? At a first glance, they are vertical segments in a wide page full
of symbols. But if you zoom in, it is possible to see that these segments interconnect
two single staffs that belong to the same double staff. Then, it is possible to cut out
the regions in which they exist, i.e., the double staff region (see Fig. 5.10). The trick
is straightforward. As in Sec.5.4 where the staff lines were detected by the Hough
transform, now, bar lines can be considered as the longest lines with respect to their
region. So, the procedure is the same as before with some attention about rotation
of the sub image when applying Hough transform. The bar line removal function
saves the coordinates of bars in the same struct doublestaff as the staff lines (see
Fig. 5.9). In addition it is added a flag to see if the bar line is part of a double bar.
A good example is shown in Fig. 5.11 and the algorithm is sketched in 5.7.1.
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Figure 5.11: OMRJX result after bar line extraction. In red contiguous bars.

Figure 5.12: Excerpt from Oriental Sketch by S.Rachmaninov.

Algorithm 5.7.1: barlineextractor(𝐼𝑛𝑜𝑆𝑡𝑎𝑓𝑓𝑠, 𝑑𝑜𝑢𝑏𝑙𝑒𝑠𝑡𝑎𝑓𝑓, 𝑙𝑖𝑛𝑒𝑠𝑡𝑒𝑝)

comment: Save bar lines coordinates and remove them
for each 𝑑𝑜𝑢𝑏𝑙𝑒𝑠𝑡𝑎𝑓𝑓
crop the image
apply hough transform as for staves
save coordinates in doublestaff
remove the bars from the image
return (𝐼𝑛𝑜𝐵𝑎𝑟𝑠, 𝑑𝑜𝑢𝑏𝑙𝑒𝑠𝑡𝑎𝑓𝑓)

5.8 Clef Extraction
Clefs are a certainty of the piano score. Scanning from left to right, after the brace,
there are always clefs anchored to the staves. Contrary to what most people think,
the G-clef and the F-clef don’t have a preferred staff. Indeed, most of the time the
G-clef stays in the upper staff while the F-clef in the lower one. Fig. 5.12 shows an
excerpt of a romantic piece where there are only F-clefs. Unfortunately, getting a
closer look to Fig. 5.12, in the first bar of the second staff a G-clef appears in the
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Figure 5.13: There exist also alphabetical time signatures.

middle of a musical passage. Clefs like that one are used in music when the hand is
obliged to make a long jump on the keyboard or when particular melodic movements
are woven through the lines. The OMRJX function at this step will recognize only
the peripheral clefs for a faster initial computation. As clefs dimensions are strictly
linked to the dimension of the staves, the clef extractor will force the system to
find objects of that dimension in that particular place on the image. The tool used
for this purpose is the full template matching (see SubSec.3.2.3) which applies the
two resized clefs on a region blocked at the beginning of the staffs. Clefs are always
detected. In 5.8.1 is listed the algorithm adopted for clefs extraction.

Algorithm 5.8.1: clefextractor(𝐼𝑛𝑜𝐵𝑎𝑟𝑠, 𝑑𝑜𝑢𝑏𝑙𝑒𝑠𝑡𝑎𝑓𝑓)

comment: Remove clefs and save their position
resize F-clef and G-clef images
for each 𝑑𝑜𝑢𝑏𝑙𝑒𝑠𝑡𝑎𝑓𝑓
for each 𝑠𝑖𝑛𝑔𝑙𝑒𝑠𝑡𝑎𝑓𝑓⎧⎪⎪⎪⎨⎪⎪⎪⎩

Convolve G-clef and F-clef in the beginning frame
check on convolution results for maxima
Associate the maximum to its clef
save and remove

return (𝐼𝑛𝑜𝐶𝑙𝑒𝑓𝑠, 𝑔𝑠𝑡𝑟𝑢𝑐𝑡, 𝑓𝑠𝑡𝑟𝑢𝑐𝑡)

5.9 Time Signature Extraction
Time signature behavior is a bit tricky, however, it is somehow predictable. A sheet
music can have time signature (TS) or not. If exists, it can be also multiple. The
main features of time signatures are that they have a fixed vertical position in the
score and are replicated in both staffs of a same double staff (at the same horizontal
position). Infact, they are always contained in a staff and never exceed its maximum
height. A second observation about time signature is that it is not always a number.
There are also symbols that can replace numbers such as the C time signature shown
in Fig. 5.13. Thus, the problem has been split into two parts – numbers and C
extraction. The main reason for this split is that number’s vertical position in the
staff is different from the C one, as shown in Fig. 5.14. For both notations has been
adopted the same tool, again full template matching. As TS are confined to the
staffs, the template will be reduced to these regions, avoiding useless computations
outside their lattice. In addition, the system has been reinforced with rules such as
the mirroring position of the TS in the coupled staves and some heuristics about the
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(a) Position of a number time sig-
nature

(b) Position of a C time signature

Figure 5.14: Time signature positions are different.

frequency of TS. For number TS, the problem is divided, in turn, into numerator
and denominator TS. The staff lines are so convolved with the number-C template,
which is first resized as:

𝑇𝑆ℎ𝑒𝑖𝑔ℎ𝑡 = 2 · 𝑙𝑖𝑛𝑒𝑠𝑡𝑒𝑝 (5.3)

Once a convolution maximum is found, it is immediately scouted the mirrored part;
i.e., if the maximum refers to a numerator number TS, it is searched the numerator
region of the other staff to convalidate the convolution result. C TS procedure is
much more simpler as there are just two coupled objects to detect, compared to the
two by two objects for numbers. Basically, the principle is the same. The C template
is moved between the second and the third space of the staff along its horizontal
direction. For the sake of clarity, it follows an example for number TS detection.
Imagine the situation described in Fig. 5.15 in which there are near sequential
changes of TS (typical of Bartok or Stravinsky composition style). At first step the
system will pick up a number from the denominator possibilities. Remember that
some numbers never appear as denominator (e.g., a 3)6. The first denominator used
as the template is 4 and it is convolved in the lower staff within its lower part. The
convolution will give negative results as there are no 4 numbers as TS denominator.
Next, an 8 will be rejected too. Picking up a 16, the system will found five maxima.
The first move of the system is the horizontal position checking7. In fact, all TS,
always, appear nearly after a bar line. If the maximum is far from a bar line it
is, then, rejected. In this case all maxima are kept as possible denominator TS.
Next step is to apply convolution in the upper staff, in its lower part, at the same
horizontal coordinate. If convolution gives a maximum value then the denominator
16 is accepted as a real denominator TS. Moving on, a numerator TS has to be
combined with the 16 denominator. Now, for each denominator is associated a set
of possible numerators8. Those numerators are picked up and are convolved on the
real denominator position. if there’s a maximum, the numerator is selected as real

6This is not really true. Contemporary music is crowded with unusual TSs. For contemporary
music the approach will be completely different.

7Optimization choice in order not to add convolution computations on failing positions.
8For example, a 8 is often coupled with 3, 5, 6, 7, 9.
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Figure 5.15: Frequent time signature changes.

numerator. Thus, all TS are saved in a struct with their values and their positions.

The fact that Ts values are stored is very important. In a sense, this is a first step
toward giving semantics to low level pixels. In the future, this information will be
useful to double-check, for example, if computed note values are correct or not, and
in some way fix the misunderstanding. It follows two brief pseudocodes for number
5.9.1 and C 5.9.2 extraction.

Algorithm 5.9.1: TSNextraction(𝐼𝑛𝑜𝐶𝑙𝑒𝑓𝑠, 𝑑𝑜𝑢𝑏𝑙𝑒𝑠𝑡𝑎𝑓𝑓, 𝑙𝑖𝑛𝑒𝑠𝑡𝑒𝑝)

comment: TS number recognition and extraction
resize all possible number templates
for each 𝑑𝑜𝑢𝑏𝑙𝑒𝑠𝑡𝑎𝑓𝑓
for each 𝑠𝑖𝑛𝑔𝑙𝑒𝑠𝑡𝑎𝑓𝑓⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

subdivide the single staff in lower part and upper part
pick up a number from possible denominators
convolve the template in the lower region
if a maximum is found

then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

check position
if good position
check in the lower part of the coupled singlestaff
if a maximum is found with the same template
store it as real denominator
Pick up possible numerator of such denominator
convolve until the maximum is found

save numerator and denominator
remove the time signature from the image

return (𝐼𝑛𝑜𝑇𝑆𝑁, 𝐹 𝑖𝑛𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑆)



5.10. Full Note Heads Extraction 39

Figure 5.16: In piano scores, full heads are often in complex pattern.
Excerpt from Chopin Etude Op.10 n.2

Algorithm 5.9.2: TSCextraction(𝐼𝑛𝑜𝑇𝑆𝑁, 𝑑𝑜𝑢𝑏𝑙𝑒𝑠𝑡𝑎𝑓𝑓, 𝑙𝑖𝑛𝑒𝑠𝑡𝑒𝑝)

comment: TS C recognition and extraction
resize all possible C templates
for each 𝑑𝑜𝑢𝑏𝑙𝑒𝑠𝑡𝑎𝑓𝑓
for each 𝑠𝑖𝑛𝑔𝑙𝑒𝑠𝑡𝑎𝑓𝑓⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pick up a number from possible denominators
convolve the template in the central region
if a maximum is found

then

⎧⎪⎪⎪⎨⎪⎪⎪⎩
check position
if good position, check in the coupled singlestaff
if a maximum is found with the same template
store it

save position and name
remove the time signature from the image

return (𝐼𝑛𝑜𝑇𝑆𝐶, 𝐹 𝑖𝑛𝑎𝑙𝐶𝑇𝑆)

5.10 Full Note Heads Extraction
Notes with full head are crucial objects on the score. They are the most common one
and the most position free. In a common score for violin it won’t be much difficult
to find and extract them because of the monophonic nature of such instrument. In a
piano score, things are slightly different as pianos can handle multiple voices at a
time. So, it is possible to find head notes at the same vertical position of the same
staff at different far pitches or head notes grouped in chords, really close to each
other9. Moreover, in a same chord there can be a single head with a close tangent
united group (see Fig. 5.16). Unluckily, due to degradation, full heads are most of
the time corrupted and then of different size and shape.

Note head detection is really complex till heads are linked to their stem. Erosion
is the chosen tool for the solution to this problem. If the image is eroded with a
sufficiently big structuring element, all stems and remaining thin segments will be

9In contemporary music they are also grouped in clusters. This issue would be treated differently.
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Figure 5.17: An example of erosion and dilation in the image. No more stems.

Figure 5.18: NumNoteChord = 3.

erased from the binary image. However, a compensating dilation10 is requested to
reconstruct parts of objects which were useful and have been removed by the erosion.
At this point the process works basically on the dilated image after the erosion (see
Fig. 5.17).

Then the system has to recognize full note heads. As note heads are sometimes
touching to each other, the procedure adopted is iterated and self-trained. It is
iterated because the two main functions seek in the image if there exist single,
double-touching, three-touching and four-touching note heads11 (this number is
called NumNoteChord 5.18). It is self-trained in that each current step is somehow
enhanced by the previous ones. The architecture is so divided into two main functions
and both can be considered as filtering functions. Objects that are not full note
heads must be rejected while note heads must be kept and later studied. How?

The first function starts with eliminating connected regions that exceed note
head possible dimensions (remember that a head is contained in a linestep). If
NumNoteChord = 1 all possible objects (after dimension check) are scoured and
filtered through a contour matching process (a threshold is needed). If NumNoteChord
> 1, the note convolver saved at step one is used to convolve on each possible
connected region (NNoteCollection); when centroids of the maximum value of

10The structuring element for dilation is smaller than the erosion one. Too much dilation will
cause objects to be transformed into touching elements.

11In more complex scores, there can exist also five-touching and higher number of such compound
note heads. Since the beginning this issue has been estimated and it is possible to generalize the
process to whatever number of touching symbols.
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(a) Convolution with the
convolver.

(b) Maximum of convolu-
tion.

Figure 5.19: Convolver control for chords.

Figure 5.20: The brighter region is a false negative example.

convolution are aligned, it means that those touching heads are a possible chord.
In Fig. 5.19 are shown the convolution and its maximum values12. The convolution
mask (the convolver) is computed as the mean of all good objects in NNoteCollection.

The output of function one is a collection of objects that resembles note heads
but, actually, have a degree of uncertainty (e.g. Fig. 5.20). Function two implements
a high profile algorithm. First filtering is about orientation of the NNoteCollection
objects (if NumNoteChord > 1). Then, for each possible note head is computed a set
of three features concerning the area, a convolution value and a contour matching
condition. The possible heads are clustered and grouped if similar, through an ad-hoc
K-NN algorithm, as shown in Fig. 5.21. As clustering may still contain false positives,
a further filter is applied on note heads selection. Each possible note head is tested
on its filling nature. If it’s a region with a cavity, it is rejected, else it is the final
choice on note head candidates. A pseudocode is shown in 5.10.1.

12Sometimes, this check is misleading because the accuracy decrease with the number of touching
objects and valid chords are rejected.
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Figure 5.21: An output of the clustering process.

Algorithm 5.10.1: headextraction(𝐹𝑢𝑙𝑙𝑁𝑜𝑡𝑒𝑆𝑡𝑟𝑢𝑐𝑡, 𝑁𝑢𝑚𝑁𝑜𝑡𝑒𝐶ℎ𝑜𝑟𝑑)

comment: Full note heads extraction
Remove stems
initialize FullNoteStruct
Compute connected regions
comment: NumNoteChord = number of possible touching symbols
NumNoteChord = 1,2,3,4
for each 𝑁𝑢𝑚𝑁𝑜𝑡𝑒𝐶ℎ𝑜𝑟𝑑⎧⎪⎪⎪⎨⎪⎪⎪⎩

filter on size
if 𝑁𝑢𝑚𝑁𝑜𝑡𝑒𝐶ℎ𝑜𝑟𝑑 = 1

then contour matching
else check on convolution maxima alignment⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

if 𝑁𝑢𝑚𝑁𝑜𝑡𝑒𝐶ℎ𝑜𝑟𝑑 > 1
then check orientation

area, convolution, contour features
K-NN clustering
Filling condition

return (𝐹𝑢𝑙𝑙𝑁𝑜𝑡𝑒𝑆𝑡𝑟𝑢𝑐𝑡)

5.11 Full Note Values Extraction
Full note values extraction is a sophisticated part of OMRJX. Indeed this part
gives semantics to all heads extracted in Sec.5.10 and works on a higher level which is
closer to the music content. A preliminary step involves the creation of a summarizing
matrix, called LabelCell, that describes which full note heads are involved in the
score. Remember that from the previous section, the FullNoteStruct includes 𝑛 steps
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Figure 5.22: Labeled notes of step 1 in FullNoteStruct.

Label InoTSC Label step1
2 [46 47 48 49 50 51]
4 [52 53]
...

...

Table 5.1: A possible example of LabelCell referred to the situation shown on Fig.
5.23

and each one is identified by the number of touching heads13. So, in each step there’s
a logical image that collects and labels such heads (each head corresponds to a
connected region which has a certain label) (see Fig. 5.22).

In particular, LabelCell links each labeled note heads of each step (obviously
with a number of heads greater than zero) to the last processed image in which all
connected regions have been computed and labeled14. For better understanding in
Fig. 5.23 and in table 5.1, there’s a simple example of what LabelCell does.

At this point the fullnoteheadvalueextractor function comes into play. It allows
to scout the labeled connected regions in InoTSC and try to assign to each head
(of each step) involved in such connected region, its rhythmic value. As stated in
Chap.2, notes can be alone or grouped with a beam and a relevant feature is that
1
4 value notes are always not beamed notes. Moreover, notes can be included or lie
outside the staff and in the second case there will be the presence of ledgers that
will make the computation much more difficult.

The algorithm proposed will make use of two main tools for the values discrim-
ination: skeletonization and projection method. Skeletonization is basically used

13𝑛 = 1, 2, 3, 4 ⇒ one single head, two, three, four touching heads.
14Previous step image is InoTSC, the image after time signature extraction.
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Figure 5.23: Each labeled connected region in InoTSC (red) is linked to an amount
of labeled connected regions (green) in the FullNoteStruct image (in this example it
is step1).

when heads (at whatever step) belong to a single stem and are not beamed. Instead,
the projection method is used when heads are grouped and gathered with a beam.
The process is the following. For each labeled connected region in InoTSC , remove
heads of any steps of FullNoteStruct involved in such InoTSC connected region.
On Fig. 5.24 are shown all possible results after this passage. For each situation a
specific algorithm has been used. In situation A and B, the frame is cleaned of the
ledgers, if exist, through erosion with a structuring element like:

𝑆𝐸 =

⎡⎢⎢⎢⎢⎢⎢⎣
1
1
1
...
1

⎤⎥⎥⎥⎥⎥⎥⎦
where its length is equal to linewidth. After this, the frame is cropped and its width
is evaluated. If it is minor than linewidth it falls in situation 1 and the heads of that
connected region are assciated to a quarter value. Else it falls in situation B. In this
situation, morphological operations have been heavily used. I.e., two consectuive
erosions, median filtering and finally skeletonization. The conjunction between the
stem and the beam is what characterizes the note. This portion of note contains
enough pixels to undergo two consecutive erosions. The median filter is applied to
smooth what remains of the note and at last, skeletonization is applied. Branch
points after skeletonization correspond to the final value of the note15. In Fig. 5.25
is shown the process.

151 branch point ⇒ 1
8 ( ˇ “( ), 2 branch points ⇒ 1

16 ( ˇ “) ), and so on.
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(a) Situ-
ation A.

(b) Situa-
tion B.

(c) Situation C.

Figure 5.24: Possible situations after heads removal.

(a) Starting Frame. (b) Erosion. (c) Median filtered.

(d) Skeleton. (e) Branch points.

Figure 5.25: Value extraction after skeletonization.
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Figure 5.26: Just the beam. The small central and vertical hole on the beam is
due to the stem removal.

As far as situation C is concerned, the projection method is the key. First, ledgers
and stems are removed16 in order to let just the beam in the frame as shown in
Fig. 5.26. Then, the vertical projection of such frame is performed and finally, each
centroid head neighbourhood is evaluated on the projection; the maximum value of
that neighbourhood will correspond to the value of the head note. The following
pseudocode broadly summarizes the whole process after the creation of LabelCell.

Algorithm 5.11.1: valueextraction(𝐼𝑛𝑜𝑇𝑆𝐶, 𝐹𝑢𝑙𝑙𝑁𝑜𝑡𝑒𝑆𝑡𝑟𝑢𝑐𝑡, 𝐿𝐶𝑒𝑙𝑙)

comment: Full note heads value extraction
for each connected region in InoTSC

do Detect situation
if situation A

then
{︁

note heads correspond to a quaver
else if situation B

then

⎧⎪⎪⎪⎨⎪⎪⎪⎩
two consecutive erosions
median filter
skeletonization
count branch points

else

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

detect beam orientation (up, down)
remove stems and ledgers
projection on the beam
for each head scout the neighbourhood
assign a value to each head of the group

return (𝐹𝑢𝑙𝑙𝑁𝑜𝑡𝑒𝑆𝑡𝑟𝑢𝑐𝑡)

5.12 Full Note Remover
After values extraction, the image is cleaned and all full head notes must be removed.
This is a simple operation because in LabellCell are stored all labels related to this

16Before stem removal, a localization process is done to recognize whether the stems are upturned
or downturned
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Figure 5.27: An output image after full notes removal.

notes. At this step the remaining image (InoFullNotes) should have just a few objects
on it. A possible InoFullNotes is shown in Fig. 5.27.

5.13 Rest Extraction
From now on, the image should be pruned enough to allow only the use of full
template matching. So, all possible rests are stored and resized as in Tab. 5.2 to fit
the image proportions. Then, template matching is applied17 taking particular care
to whole-half rests. In fact, when convolution is executed with such template, after
imposing a threshold, each rest of this type may generates two close maxima (see
Fig. 5.28). So, a dilation is applied on the convolution image after thresholding to
obtain just one maximum for each whole-half rest. Then, rests are localized on the

17Since some rests are contained in other, the order adopted is sixty-fourth, thirty-second,
sixteenth, eighth, quarter and whole-half.
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Rests Scale Factor
whole-half (linestep/2)+(linewidth/2)

quarter 3·linestep
eighth 2·linestep-linewidth/2

sixteenth 3·linestep
thirty-second 4·linstep
sixty-fourth 5·linestep

Table 5.2: Scale factors for each rest.

(a) Convolution result.

(b) Convolution after thresholding. (c) After dilation the rest has just one max-
ima.

Figure 5.28: Process for detecting whole-half rests.

imaged and, after saving their position, removed.

Since now, whole-half rests have been saved in the same structure because, as a
matter of fact, they are identical. A further function is built to distinguish whole to
half rests according to their position or to the ledger on which they lie. If the rest is
in the staff, its centroid distances to the third and fourth staff lines are computed
and if closer to the fourth it is a whole rest else it is a half rest. Instead if the rest
lies outside the staff, its extrema are computed. If the upper edge is longer than the
lower, it means that it is a whole rest, else it is a half rest (see Fig. 5.29). Pseudocode
5.13.1 describes the rest extraction algorithm.
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Whole rest Half rest

Upper edge

Lower edge

Figure 5.29: The difference between whole-half rests outside a staff.

Algorithm 5.13.1: restextraction(𝐼𝑛𝑜𝐹𝑢𝑙𝑙𝑁𝑜𝑡𝑒𝑠, 𝑙𝑖𝑛𝑒𝑤𝑖𝑑𝑡ℎ, 𝑙𝑖𝑛𝑒𝑠𝑡𝑒𝑝)

comment: Rest extraction
for each rest template

do Resize it
convolve with InoFullNotes image
find maxima after thresholding
if whole-half rest

then
{︁

dilation on the thresholded convolution
save position of each rest
erase from the image
discriminate whole-half rests
return (𝑅𝑒𝑠𝑡𝑆𝑡𝑟𝑢𝑐𝑡, 𝐼𝑛𝑜𝑅𝑒𝑠𝑡𝑠)

5.14 Half Notes Extraction

Half notes are quite difficult to discover. Indeed, their void circular shape recalls
lots of objects of the scores such as small ties, slurs, fermata or the coda sign. In
addition, their contour is broken most of the time. For this reason it is quite hard
to tune a thresholding value for template matching. However, template matching
still works and an algorithm has been developed to remove not only the head, which
is the template, but also the stem related to it. This algorithm ensures not only
the stem removal but also the removal of distant and detached parts of the head.
First, maxima of convolution are found and then their centroids are computed.
Each maximum corresponds to a head note but, as stated before, heads can shows
discontinuities on the contour. So, a neighbourhood of such centroid is extracted
and an iterative morphological closing, with an increasing structural element, is
applied until only one connected region remains in such frame as shown in Fig. 5.30.
After the closing process there will appear lots of new pixels but those pixels are
not redundant and are useful to best erase detached part of the note. At the end,
the head notes and the stems are saved and completely removed. Pseudocode5.14.1
recalls the half note extraction process.
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(a) Frame near the centroid of a con-
volution maximum.

(b) After iterative closing the disconti-
nuities are reconnected.

Figure 5.30: Closing process on a half note.

Algorithm 5.14.1: halfnoteextraction(𝐼𝑛𝑜𝑅𝑒𝑠𝑡𝑠, 𝑙𝑖𝑛𝑒𝑠𝑡𝑒𝑝)

comment: Half note extraction
load half head note template
Resize it
convolve with InoRests image
find maxima after thresholding
for each centroid of previous maxima

do

⎧⎪⎪⎪⎨⎪⎪⎪⎩
extract a frame from InoRests sorrounding the centroid
compute connected regions of the frame
morphological closing until
number of connected region equal to 1

save position of each half note
erase from the image
return (𝐻𝑎𝑙𝑓𝑆𝑡𝑟𝑢𝑐𝑡, 𝐼𝑛𝑜𝐻𝑎𝑙𝑓𝑠)

5.15 Whole Notes Extraction

At a first glance whole notes are similar to half note heads. Instead, they’re much
more compact and contain more pixels. Hence, they’re much closer to full heads.
For this reason, whole notes are seldom broken and often intact. So, full template
matching is applied as previously and the convolution result is thresholded to an
empirical value that discriminate such notes. In pseudocode 5.15.1 it is described
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(a) Parts of a flat that are discon-
nected.

(b) After iterative closing the
discontinuities are reconnected.

Figure 5.31: Closing process on a flat.

the algorithm for whole note extraction.

Algorithm 5.15.1: wholenoteextraction(𝐼𝑛𝑜𝐻𝑎𝑙𝑓𝑠, 𝑙𝑖𝑛𝑒𝑠𝑡𝑒𝑝)

comment: Whole note extraction
load whole head note template
Resize it
convolve with InoHalfs image
find maxima after thresholding
for each centroid of previous maxima

do save position of each whole note
erase from the image
return (𝑊ℎ𝑜𝑙𝑒𝑆𝑡𝑟𝑢𝑐𝑡, 𝐼𝑛𝑜𝑊ℎ𝑜𝑙𝑒)

5.16 Accidentals Extraction

All accidentals are treated in the same way except flats. In fact flats, as half notes,
present discontinuities in the shape due to a non-perfect cleaning of the staves.
This accidental is recognized through convolution and then it undergoes subsequent
morphological closings to ensure the reconnection of disconnected regions of the
same object (identical process used in 5.14). Instead, other accidentals are processed
and recognized with the common algorithm of full template matching. In Fig. 5.31 is
shown a detail of the closing process upon a flat in the score. Finally, the algorithm
is presented in pseudocode5.16.1.
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Algorithm 5.16.1: accidentalextraction(𝐼𝑛𝑜𝑊ℎ𝑜𝑙𝑒, 𝑙𝑖𝑛𝑒𝑠𝑡𝑒𝑝)

comment: Accidentals extraction
for each 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

load accidental template
Resize it
convolve with InoWhole image
find maxima after thresholding
for each centroid of previous maxima

do
if 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙 == 𝑓𝑙𝑎𝑡

then

⎧⎪⎪⎪⎨⎪⎪⎪⎩
extract a frame sorrounding the centroid
compute connected regions of the frame
morphological closing until
number of connected region equal to 1

save position of each accidental
erase from the image

return (𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙𝑆𝑡𝑟𝑢𝑐𝑡, 𝐼𝑛𝑜𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙)

5.17 Dot Value Extraction
This function will find dots next to each head of each step in FullNoteStruct. Although
dots can also be next to half, whole notes and rests, the function will find just those
dots related to full head notes. However, the process adopted for full heads is
also fully compatible with void notes and rests. It consists of localizing each head,
extracting a portion next to it18 and convolving such frame with a dot template.
If after thresholding there exists at least a maximum, the full note head value is
dotted, hence its original value is augmented of half of it. In Fig. 5.32 is shown an
example of the process while the algorithm is presented in pseudocode 5.17.1.

18Find the right-upper and right-lower extrema and move to the right of linestep and move up of
1.5 · 𝑙𝑖𝑛𝑒𝑤𝑖𝑑𝑡ℎ
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(a) Zoom on the original image. (b) Zoom on FullNoteStruct Note im-
age.

(c) Convolution on the frame of
InoAccidental.

(d) One maximum equals to a
dot.

Figure 5.32: Process for detecting dots next to full note heads.
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Algorithm 5.17.1: dotextraction(𝐹𝑢𝑙𝑙𝑁𝑆𝑡𝑟𝑢𝑐𝑡, 𝐼𝑛𝑜𝐴𝑐𝑐, 𝑙𝑤𝑖𝑑𝑡ℎ, 𝑙𝑠𝑡𝑒𝑝)

comment: Dots extraction
load dot template
resize it
for each step in FullNoteStruct

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for each connected region

do

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Extract a frame next to the region in InoAccidental
convolve with the dot template
Thresholding on the convolution
if 𝑎𝑡𝑙𝑒𝑎𝑠𝑡𝑎𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑒𝑥𝑖𝑠𝑡𝑠

then That note has a dot
update FullNoteStruct values

return (𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙𝑆𝑡𝑟𝑢𝑐𝑡, 𝐼𝑛𝑜𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙)

5.18 Key Signature Detection
Key signature is a series of sharps and flats at the very beginning of the staff that
indicates the tonality of the piece. This algorithm allows the recognition of such
accidentals (if they exist) and will guess the possible main tonality of such music
page. So, each first measure of each staff is searched in its first half (in Fig. 5.33 is
shown such region) and the system looks for flats and sharps. If no accidentals are
found it means that the tonalities are C Major or A Minor19. If some accidental is
found, the distance between them is computed and evaluated with respect to linestep.
In fact, accidentals in the key signature are one linestep far from each other as shown
in Fig. 5.33. The resulting number of accidentals that satisfies the constraints are
then associated to a specific tonality. However, to improve the guess on tonality it
is necessary the extraction of note pitches and then the harmony evaluation but,
unfortunately, this functions haven’t yet been implemented20. Finally, after guessing
the tonality, the system will allow the user to listen to a brief recording in the
detected tonality. Pseudocode 5.18.1 recalls the adopted algorithm.

19A major and a minor tonality are associated for each key signature.
20Harmony detection is still an open issue.
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Figure 5.33: The region in which the key signature is searched.

Algorithm 5.18.1: guesstonality(𝑑𝑜𝑢𝑏𝑙𝑒𝑠𝑡𝑎𝑓𝑓, 𝐹 𝑙𝑎𝑡𝑆𝑡𝑟𝑢𝑐𝑡, 𝑆ℎ𝑎𝑟𝑝𝑆𝑡𝑟𝑢𝑐𝑡)

comment: Tonality extraction
extract the first measure of each staff
take the first half
look for accidentals
if no accidentals

then Tonality = C major or A minor
else if 1 accidental
then Tonality = F major-D minor or G major-E minor
else if accidentals distance < linestep

Tonality is detected
listen to an example





Chapter 6

Experimental Results

The evaluation of an OMR system is quite difficult as there are lots of variables
involved. The approach proposed to test OMRJX is that of subdividing the sym-
bol recognition by classes in order to have localized results that allow a precise
understanding and correction of errors. Hence, the test results will be divided as
follows:

1. Structure: all structural elements such as accolades, title, staves, bars, clefs
and time signatures .

2. Full note heads: recognition of all full heads (single or touching heads).

3. Void heads: recognition of half and whole notes.

4. Note values: detection of values for full head notes such as quarter, eighth,
and so on.

5. Rests: recognition of all types of rests.

6. Accidentals: detection of flats, sharps and naturals (double flats and double
sharps have not been tested).

7. Tonality check: final guess about the tonality of the piece.

The tests have been conducted on 10 music sheets as output of notation softwares1.
The quality is set at 300 DPI and there are no physical degradations. Scores contain
a variety of rhythms and symbols in such a way to test most of the symbols that
OMRJX can recognize. In addition, among all scores there are some with different
fonts. Tests were carried out without changing the system parameters in order to
have much more fair evaluation of OMRJX. Finally, there’s a challenge test in which
the system faces the commercial products OMeR and Smart Score (see Sec.3.4) on a
score at 150 DPI and another one at 300 DPI.

Each of the following sections will present difficulties and strength points encoun-
tered for each analyzed score and the test results are gathered in Tab. 6.1 reminding
the validation formulas:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑝

𝑡𝑝 + 𝑓𝑝
(6.1)

1All scores have been downloaded from the web and the source notation software is unknown.
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𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑝

𝑡𝑝 + 𝑓𝑛
(6.2)

where 𝑡𝑝, 𝑓𝑝 and 𝑓𝑛 stand for true positive, false positive and false negative.

6.1 Test 1
This sheet is not crowded with too many symbols and the most of them are eighth
notes. The structural recognition is perfect with a 100% accuracy. Full note values
are perfectly recognized too. Some difficulties have been encountered with half note
heads detecting just 15/26 of them and giving 3 false positives. There are no rests
but no false positives have been detected. All sharps have been recognized but 2 false
positives came out from flats detection. Finally, thanks to the good sharp recognition,
the tonality has been correctly detected.

Half heads are well recognized when found alone on a stem while are badly
detected when belonging to a chord as shown in Fig. 6.1. Instead, flat’s false positives
come from a small vertical segment which is probably an unclean part of a previously
erased object.

6.2 Test 2
This score contains much more objects with respect to test 1 music sheet. There are
lots of time signature changes in the first six measures and the number of sharps is
increased with a factor 4. There are still no rests but the number of full heads is
doubled. The structural part is successfully completed with a 100% accuracy. Then,
full notes are fully detected in each step but there are lots of false positives in the
half notes extraction (see Fig. 6.2). Full notes values are detected with maximum
accuracy and as far as accidentals are concerned, small segments are still mistaken
for flats. Although all sharps are detected, the tonality is misunderstood because of
the flat’s false positives.

6.3 Test 3
Test 3 page introduces one of the untreated problems (future work) of full note
heads detection. In fact, full heads of a chord very near in pitch are placed one next
to the other and not one above the other as shown in Fig. 6.3. Those note heads
won’t be removed thus further processing will be corrupted and for example, note
values will be misunderstood. Instead, single note heads are discovered with a 100%
accuracy. In addition, this score has octaves indications which confuse the whole
notes extraction (see Fig. 6.4). Then, rests are properly found but the last flat of
every key signature is missed (corrupting the tonality detection).

6.4 Test 4
In this music page the process is good overall except numerical time signature
detection. In fact, the template matching didn’t work well due to the use of a slightly
different font for number 2. Hence, 30% of time signatures was not detected and
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removed creating ambiguity with eighth rests (see Fig. 6.5) and whole notes. This
time flats are completely recognized and the tonality is well detected.

6.5 Test 5

As in test 4, test 5 fails in the time signature recognition and precisely most of
numbers 2 are undetected. This will corrupt rest detections as in the previous test
in which the base of the number 4 is mistaken for an eighth rest. Another important
mistake is shown in Fig. 6.6 where a natural under a beam invalidate the projection
method adopted in fullnotevalueextraction (see Sec.5.11). To conclude, the system
misses one sharp basically because such sharp has been deleted in a previous step.

6.6 Test 6

This score is full of half notes and this time all of them are well recognized; the good
recognition is obtained thanks to the heads of the same chord which are not so close.
Then, this score contains the only mistake on clefs among all tests. An F-clef has
been wrongly recognized letting on the score a G-clef. If a G-clef remains on the
image until the end of the process, its centroid spiral will be detected as a whole
note.

6.7 Test 7

Structural elements are well found but whole notes are heavily mistaken. In fact,
there are lots of false positives found in a dynamic notation (see Fig. 6.7). In addition,
the skeletonization process for the value recognition works well also for sixteenth
notes. There are no accidentals on the page.

6.8 Test 8

Also this page gives great results when detecting the structure of the page and
note heads. Half notes are perfectly recognized but whole notes still give some false
positives. Then three eighth rests are missed and this is obviously a problem of
convolution threshold setting.

6.9 Test 9

This page shows the system weakness on whole notes recognition. Indeed, the
template threshold value adopted is not enough high for the whole notes detection,
causing a 70% of error rate on this page. On the other side, half notes are well
recognized with a 100% accuracy. As far as accidentals are concerned, some naturals
are not well recognized as they are really close to each other as shown in Fig.
6.8(typographic issue).
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6.10 Test 10
This last score at 300 DPI tests the recognition of notes very far from the staff and
with several ledgers. The detection of such notes is perfect with maximum accuracy.
In addition, this page introduces a new symbol – Pedal signature. Such object, like
all words on a sheet, deceives the system when recognizing half and whole notes as
shown in Fig. 6.9. Although there exists a small amount of false positives, this score
gives a total detection of everything.

6.11 Test: OMRJX VS OMeR and Smart Score
This test compares the performances of OMRJX against those of the commercial
softwares OMeR (see Fig. 3.12) and Smart Score. Furthermore, it is a challenge
between OMRJX and itself because one of the test pages is the same of test 1 but
at half of the original resolution (150 DPI).

When OMeR starts and a new page is loaded, the system will output some
information about the integrity conditions of such page. BMP, PICT and TIFF are
the only picture formats that it can support. On the other side, OMRJX doesn’t
give any information about the page quality but most of the picture formats are
supported by the system. The structural part is the first clear difference between
the first two systems. OMRJX detects and removes the accolades, the title, the
staves, the bars, the clefs and both types of time signature. OMeR’s approach is
much more superficial and the bar lines are the only objects it detects and plots.
Though, some bar lines are wrongly recognized and confused with stems and braces.
This step of the processing is one of the OMRJX major strength points. In fact
the accuracy, also if the quality of the page has been halved, remains still at 100%.
Smart Score can detect as well all structural elements and in addition it outputs a
midi representation of the processed score (the user can immediately listen to it).

The difference between the three softwares is sensible. Indeed, Smart Score, in
both tests, detects all note values while OMRJX has more or less an 80% accuracy
and OMeR reaches a 70%. As far as rests are concerned, OMRJX is the leading
system. In conclusion, the number of false positives of each system2 can be compared
emphasizing that when the quality of the page is halved this number tends to increase.
As a final remark, notice that OMeR and Smart Score are commercial softwares and
are on the market respectively at 20$ and 399$. In Tab. 6.2 the results of the two
test pages for each of the three softwares are collected.

6.12 Conclusions
In this chapter, the results of OMRJX have been presented and analyzed. First, the
system has been tested with 10 scores, outputs of an unknown scorewriter, at 300
DPI and then compared to two commercial softwares. Results emphasize some good
and negative points. The system can rely on a real accurate detection of accolades,
staffs, bar lines and titles. Sometimes, the time signature recognition fails because of
the use of a different number font from the convolution template.

2Smart Score has a number of false positives near to zero.
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The method proposed in Sec.5.10 is really valid and can recognize, most of the
time, all full note heads. Such method is one of the few methods (see [17]) found in
literature that can deal with touching heads (in piano scores). The filtering conditions
of the method allow the system to maintain a very high accuracy also when the
music page has low resolution. Unfortunately, the possible situation in which two
near touching heads are arranged horizontally (Fig. 6.3) has not been considered
thus occasionally invalidating the processing.

The other core part of the framework is the full note values detection. The
skeletonization and the projection method turned out to be really accurate. The
mistakes are often due to a parameter which is not set properly in the projection
method. This parameter corresponds to the maximum range of observation on the
projection neighbourhood of each head. Instead, skeletonization is accurate and
never fails with high quality music pages.

Template matching works well when the system can force the convolution to
certain regions of the image. I.e. in clef detection, the system looks just at the
beginning of the first measure of each staff and in time signature recognition OMRJX
narrows down the search to the staves limits. On the contrary, when template
matching has too many degrees of freedom, the system is heavily slowed down and a
correct threshold is not always tunable. Indeed, an adaptive thresholding method
should be used in order to at least reduce the amount of false positives.

Furthermore, intermediate steps should be performed to remove those symbols
that are not yet covered by OMRJX (e.g Fig. 6.4 and Fig. 6.9). Such symbols are
most of the time the cause of a high number of false positives. Infact, the main
idea is that for each symbol class, there are some constraints to respect. These
constraints are the precedence conditions in the removal process that is, for example,
if a G-clef is not removed before the whole note, there will certainly occur many
misunderstandings.

In conclusion, the last lack of the framework is the pitch detection that has
not been implemented. However, it has been thought a first simple solution which
considers the distance of heads from the nearest staff lines. Once pitch detection will
be completed, OMRJX could improve its performances creating an output MIDI file
or XML representation of what it detected.
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Figure 6.1: An undetected half chord.

Figure 6.2: Two examples of half heads false positives.

Figure 6.3: In grey two notes very near in pitch that won’t be detected and removed.
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Figure 6.4: Whole notes are misunderstood with octave indications.

Figure 6.5: Eighth rest confuesd with the base of TS 4.

Figure 6.6: The natural pixels will be summed up to the beam’s one and the blue
head is then confused with a thirty-second note.
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Figure 6.7: Words on the image deceive OMRJX while recognizing whole notes.

Figure 6.8: Two naturals too near from each other.

Figure 6.9: Pedal signature confused for a half note.



Chapter 7

Future Work

Despite OMRJX reached good results in the detection of most of the musical symbols
on piano scores, there still remain a set of open issues that will be addressed in the
future.

Thresholding The choice of a good threshold is always really hard. In this master
thesis this issue has been addressed all the time and there are still some parts
(especially template matching) of the framework that are affected by this
problem. A threshold value may depend on the quality of the image or its
resolution hence, in order to improve the system performances a good adaptive
thresholding method must be implemented.

Chords In Fig.6.3 the only flaw in chord detection is shown. Full heads placed
horizontally are due to notes whose pitch is really close (distance of a semitone).
The non-recognition of such heads affects lots of further detections and gives
rise to a conspicuous number of false positives. Therefore, for such issue the
full note heads extraction algorithm should be reinforced adding a particular
condition on note heads too much close in pitch.

Ties and slurs Ties and slurs are curved objects that are confused most of the
time with half and whole notes. In addition, due to a typographic mistake,
ties may touch the note heads they refer to, becoming a sort of pixel bridge
between two heads. If ties and slurs would have been considered since the
beginning, the system performances would be significantly increased.

Text and Dynamics Metronome notations and dynamics are symbols that the
system can’t recognize yet.

Pitch OMRJX can compute the rhythmic values of notes but can’t still compute
the pitches. Therefore, a possible idea would be to compute the distance of
each centroid head to the nearest staff line.

Output In order to have a much more direct impression of the framework result, all
internal information of the system could be transformed in a common MUSIC
XML or MIDI notation.

Contemporary classical music Music evolves. Contemporary music is absolutely
different from romantic or modern music. A good starting point would be
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a proper analysis of contemporary scores and then the implementation of
algorithms that can recognize such new strange symbols.

Author recognition Author recognition was the initial aim of this thesis. Thus,
in order to discriminate classical authors it was mandatory to have a certain
kind of information that a common OMR software was not able to provide.
OMRJX reached at least the 80% of such goal information.
The proposed method is to automatically search the Petrucci library1 for scores
of certain authors and use them as input to OMRJX. The obtained information
would be gathered and used as features for an ad-hoc neural network.

1http://imslp.org/

http://imslp.org/


Chapter 8

Conclusion

The thesis has addressed the optical music recognition (OMR) issue which is the
process of converting scores in such a way to be understandable by a computer. Hence,
after clarifying the music notation and the main topology of the problem, a complete
OMR system has been developed and explained into details. The implementation is
written in MATLAB® and each function has been created from scratch.

The very first system step is that of analyzing the score looking for the main
basis of it. Hence, staves and bars are recognized (removed) through the Hough
transform. In order to have the geometry of the score, the staff line width and
the distance between two of them has been computed. Next step is to detect and
remove objects that are in a specific region of the score such as a title, clefs and time
signatures. For this step a K-NN algorithm has been used for the title detection
while localized template matching has been adopted for clefs and TS recognition.
Next, a sophisticated algorithm has been thought for full note heads detection.
This part is a sort of filtering box that rejects objects which are different from
note heads and maintain heads themselves. In addition, it can deal with touching
heads which is a non-trivial issue. Once the heads have been saved, a value must
be assigned to each of them. For such purpose an innovative algorithm has been
used, involving skeletonization and the projection method. It follows rest, accidentals
and dot extraction which have been implemented through a reinforced template
matching. In conclusion, the system can recognize the tonality of the score.

The results in Chap.6 showed that the structure recognition and the full note
heads (with their value) detection perform highly well. The system was also tested
against other commercial softwares giving interesting and good results. In fact,
OMRJX response to low resolution scores gives about 70% accuracy.
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Appendix: Matlab sourcecode
list

This appendix lists all functions developed in Matlab® R2010a to build OMRJX.
None of them relies on external functions.

1. arrangematrix.m
Switch the x-th row/coloumn to y-th row/coloumn in a matrix.

2. barlineextractor.m
Extract bar lines and save their coordinates.

3. binarizeimagefolder.m
Binarize all the images in a selected folder.

4. binarycontourmatch.m
Compare 2 binary image contours through FFT.

5. braceextractor.m
Extract braces and save their coordinates.

6. CHECKNOTEVALUE.m
Support function to evaluate the correctness of the value extractor algorithm.

7. checkothersinglests.m
Check what’s the same TS number in the lower or upper single staff.

8. checkothersinglestsC.m
Check what’s the same TS C in the lower or upper single staff.

9. checkpairedts.m
Check paired symbol convolution in the lower or upper halfstaves.

10. clefextractor.m
Extract initia clefs and save their coordinates.

11. collapsematrix.m
Support function for createlabelcell.m.

12. convcoord2imagecoord.m
Move from the convolution domain to the image domain.
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13. convcoord2imagecoordC.m
Move from the convolution domain to the image domain.

14. createlabelcell.m
Associate labels of LInoTSC and FullNoteStruct.

15. cropbinaryimage.m
Crop binary images.

16. croppng.m
Crop binary PNG images in a folder.

17. dotfullnoteextraction.m
Extract and save full note dots.

18. doublesharpcompleteremoval.m
Support function for doublesharpextractor.m.

19. doublesharpextractor.m
Extract double sharps and save their coordinates.

20. FFTfilter2D.m
Reimplementation of conv2 matlab function for faster computations.

21. flatcompleteremoval.m
Support function for flatextractor.m.

22. flatextractor.m
Extract flats and save their coordinates.

23. fullnoteheadextractor.m
Extract full note heads.

24. fullnoteheadfeature.m
Filter full note heads before their final extraction.

25. fullnoteinitialize.m
Initialize full note extrction.

26. fullnoteremover.m
Erase from the image all full notes.

27. fullnotevalueextractor.m
Extract the value for each full note.

28. guesstonlity.m
Guess score tonality.

29. GUI.m
The main OMRJX graphical user interface.

30. halfompleteremoval.m
Support function for halfextractor.m.
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31. halfextractor.m
Extract and save half notes.

32. imagecoord2convcoord.m
Move from the image domain to the convolution domain.

33. imagecoord2convcoordC.m
Move from the image domain to the convolution domain.

34. main.m
Main function.

35. morphologicalrecognizer.m
Compute the best match on contour matching.

36. naturalcompleteremoval.m
Support function for naturalextractor.m.

37. naturalextractor.m
Extract and save naturals.

38. noteconvolvercontrol.m
Filtering control for full note head extraction.

39. numberofbraces.m
Compute the number of braces on the score.

40. objectfft.m
Compute and save the F-transform of an image contour.

41. restextractor.m
Extract and save all types of rests.

42. sharpcompleteremoval.m
Support function for sharpextractor.m.

43. sharpextractor.m
Extract and save all sharps.

44. staffextractor.m
Extract and save the coordinates of staves.

45. stafflinestep.m
Compute the distance between two stafflines.

46. timesignatureCextractor.m
Extract C time signatures.

47. timesignaturenumberextractor.m
Extract number time signatures.

48. titleextractor.m
Extract the title of the score.
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49. wholeextractor.m
Extract and save whole notes.

50. wholeorhalfrest.m
Discriminate between whole and half rests.
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