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Abstract

The objective of this Thesis is to develop reduced-order models (ROMs) for the efficient and
accurate solution of uncertainty quantification (UQ) and inverse problems arising in cardiac
electrophysiology. Cardiac models could be affected by a significant amount of uncertainties
related to both physical and geometrical parameters, such as inter-subject and intra-subject
variability. Developing UQ and inverse techniques is crucial for a personalization of these
models: a notable example is the estimation of myocardial ischemia shape and location in a
realistic left ventricle, which represents an important application proposed in this work.
Inverse and UQ problems involve many queries to input-output maps requiring the solution of
a nonlinear parametrized coupled system of ordinary and partial differential equations (PDEs),
such as the monodomain equation equipped with ionic models. Prohibitive computational
costs occur when full-order models (FOMs), relying e.g. on the finite element method, are
adopted for the numerical approximation of the PDEs. In order to reduce the computational
complexity, we exploit the reduced basis (RB) method to approximate the parametrized
PDE solution, using the proper orthogonal decomposition technique for the basis functions
construction and hyper-reduction techniques for the efficient evaluation of nonlinear terms.
However, applying state of the art RB method is not straightforward for this application, since
the electric potential evolution is characterized by a sharp traveling front highly sensible to
changes in the model parameters. In order to recover a rapid and reliable approximation,
we develop localized-ROMs based on suitable clustering techniques for the sake of local RB
spaces selection. Moreover, since classical error estimators are out of reach in this context,
we introduce ad hoc statistical error surrogates for error quantification. This latter ingredient
is essential for the solution of inverse problems in order to minimize the propagation of the
approximation error, which could lead to biased estimates when a FOM is replaced with a
ROM.
After providing a detailed analysis and a comparison of these techniques on some suitable
numerical tests, we apply the proposed method for sensitivity analysis and uncertainty quan-
tification. In particular, we study how the model parameters affect the electrocardiogram or
action-potential shape, providing interesting insights about the role and the importance of
cardiac model parameters.
Furthermore, we consider filtering techniques for the solution of parameter estimation prob-
lems. We develop a reduced-basis state-parameter ensemble Kalman filter and we analyze its
consistency and effectivity. This methodology is finally applied to the estimation of myocardial
ischemia shape and location on a patient-specific left ventricle.

Key words: Reduced-order models, reduced basis method, error surrogates, uncertainty
quantification, parameter estimation, cardiac electrophysiology.
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Sommario

L’obiettivo di questa Tesi è quello di sviluppare modelli ridotti (ROM) per risolvere in modo
efficiente e accurato problemi di quantificazione dell’incertezza e problemi inversi nel campo
dell’elettrofisiologia cardiaca. I modelli cardiaci possono presentare un significativo grado di
incertezza dovuto sia ai parametri fisici che a quelli geometrici, come ad esempio la variabilità
tra soggetti e nel soggetto stesso. Lo sviluppo di tecniche per la soluzione di problemi inversi e
di quantificazione dell’incertezza è fondamentale per la personalizzazione di questi modelli:
un esempio rilevante, che rappresenta un’importante applicazione proposta in questo lavoro,
è quello della stima della forma e della posizione di un’ischemia miocardica in un ventricolo
sinistro realistico. I problemi inversi e di quantificazione dell’incertezza comportano molte
valutazioni della mappa tra gli input e gli output, che richiedono la soluzione di un sistema pa-
rametrico non lineare accoppiato di equazioni differenziali parziali (EDP) e ordinarie, come ad
esempio l’equazione monodominio accoppiata con modelli ionici. Risolvere numericamente
le EDP con modelli full-order (FOM), come ad esempio un metodo a elementi finiti, comporta
costi computazionali proibitivi. Per ridurre la complessità computazionale, sfruttiamo il
metodo a basi ridotte (RB) per approssimare la soluzione parametrica dell’EDP, utilizzando
tecniche di iper-riduzione per valutare in modo efficiente i termini non lineari. Tuttavia, usare
il metodo a basi ridotte non è immediato per questa applicazione, poiché l’evoluzione del
potenziale elettrico è caratterizzata da un fronte viaggiante piuttosto ripido che è fortemente
sensibile a variazioni nei parametri del modello. Per ottenere un’approssimazione rapida
e affidabile, sviluppiamo ROM localizzati basati su tecniche di clustering per la scelta degli
spazi RB locali. Inoltre, poiché gli stimatori dell’errore classici non sono applicabili in questo
contesto, introduciamo dei modelli surrogati per la quantificazione dell’errore. Quest’ultima
aggiunta è fondamentale per la soluzione di problemi inversi, in quanto permette di mini-
mizzare la propagazione dell’errore di approssimazione, che può condurre a stime con bias
quando un FOM è sostituito da un ROM. Dopo aver analizzato in dettaglio e aver confrontato
queste tecniche su alcuni casi test numerici, applichiamo il metodo proposto all’analisi di
sensitività e alla propagazione di incertezza. In particolare, studiamo come i parametri del
modello influiscano sull’elettrocardiogramma o sulla forma del potenziale di azione, in modo
da agevolare la comprensione del ruolo e dell’importanza dei parametri nei modelli cardiaci.
Inoltre, consideriamo tecniche di data-assimilation per la soluzione di problemi di stima
dei parametri. Sviluppiamo un filtro di Kalman ridotto e ne analizziamo la consistenza e
l’efficacia. Infine, questa metodologia viene applicata alla stima della forma e della posizione
di un’ischemia miocardica nel ventricolo sinistro in un caso patient-specific.

Parole chiave: modelli ridotti, surrogati dell’errore, metodo a basi ridotte, quantificazione
dell’incertezza, stima dei parametri, elettrofisiologia.
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Introduction

Cardiovascular diseases are actually among the most widespread and costly health problems
worldwide, representing the major cause of death with more than 17.3 million deaths per
year, a number that is expected to grow to more than 23.6 million by 2030 [MBG+16]. A major
challenge for medical research is to develop efficient and accurate tools in support of diagnosis
and optimal therapy design. Large-scale clinical data are nowadays used to improve clinical
decisions and also to define new therapies [CBB+01, KGB+07]. Moreover, technological aids
to diagnosis are becoming widely available: imaging techniques, such as magnetic resonance
imaging and computed tomography [BS16, HPK+06], provide detailed information about the
function and dysfunction of the heart.

Mathematical models and numerical methods can aid medical research: on the one hand, they
improve data acquisition, by reducing the noise that affects the measurements; on the other
hand, they are able to reproduce accurately in silico cardiovascular (patho)physiology in order
to improve the diagnosis of cardiovascular diseases. With this aim, several models have been
developed to describe single (and coupled) functionalities, such as cardiac electrophysiology,
tissue mechanics and hemodynamics [Qua15, Tra11, NNN+11, SNC+04, NMK+11, NHS08,
TDQ15]. Physical indices and outputs of clinical interest can be directly approximated through
the numerical solution of the cardiac mathematical models for a given set of parametrized
inputs (geometry, physical coefficients, initial and boundary conditions).

For cardiac electrophysiology, input-output evaluations require the solution of a nonlinear
parametrized coupled system of ordinary and partial differential equations (PDEs), such as
the bidomain or monodomain equations, equipped with suitable ionic models. The so-called
full-order models (FOMs), obtained by e.g. a finite element, finite volume or spectral methods
approximation of the cardiac parametrized PDEs, are computationally expensive.
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In order to reduce their computational complexity, reduced-order models (ROMs) represent
emerging techniques for the efficient approximation of the parametrized PDE solution. How-
ever, applying state of the art ROMs is not straightforward for cardiac problems. For instance
in the case of cardiac electrophysiology, the electrical activity is characterized by a sharp
traveling front highly sensible to changes in the model parameters, while in the case of cardiac
mechanics, the torsion and shortening of the muscle are influenced by model inputs, such
as fiber directions and bulk modulus. Depending on the problem at hand, new reduction
strategies must be developed in order to recover an efficient approximation of the PDE model.

Integrating large-scale clinical data within mathematical models is a challenging opportunity
towards tailoring new subject-specific therapies and assisting cardiac interventions. This
is a severe task due to the complexity of the electrophysiology models and the prohibitive
computational costs induced by the high number of input/output evaluations.

Moreover, cardiac models contain many uncertainties, due to the several model assumptions
and the difficulties in measuring the quantities of interest for the problem. There are many
potential sources of error/uncertainty to deal with [KO01], among which we mention:

• measurement errors in experimental data due e.g. to limited accuracy of the measuring
apparatus or limitations and simplifications of the experimental procedure;

• inter and intra-subject variability, which affects the parametrized inputs of the math-
ematical models (namely geometrical and physical coefficients, initial and boundary
conditions uncertainties). The exact values of the inputs could be (partially) unknown
due to e.g. difficulties in their measurements;

• model uncertainties arising when a physical process is described by a mathematical
model, which inevitably simplifies reality. This also includes the discretization error
introduced by the selected numerical approximation strategy when e.g. a PDE problem
is involved.

These different sources of uncertainty are usually classified in two classes: epistemic and
aleatory. The former stems from a lack of knowledge, caused e.g. by a lack of accuracy in the
measurement or in the adopted model. In principle, epistemic uncertainties can be reduced
by adding information, such as more detailed models or further data. On the other hand,
aleatory uncertainties are generated by the intrinsic randomness of the phenomenon, so that
there is no possibility to reduce them [DKD09].

Therefore, translating mathematical models into clinical procedures is not limited to the
estimation of the inputs whose corresponding outputs best fit available clinical data. Data-
model integration involves instead many open and challenging problems [SdVM+11, SMC+06,
CWH+16, LNN+11]. Some of those include:

1. model calibration, which consists in correcting the bias of the simulation output with
respect to physical data [KO01];

2. uncertainty characterization and propagation, which gives a quantitative characteriza-
tion and reduction of uncertainties in computational applications [Sul15, Smi13, IH88];
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3. inverse problem of estimating the inputs of a system from a set of noisy observations
[Tar05, Han10, ABT13]; a relevant example is the calibration of the model parameters
given noisy data coming from a specific subject (personalization of the model);

4. data assimilation, which incorporates sequential observations of the state of the system
into the numerical model for the estimation of the current state and/or one or several
parameters e.g. using Kalman filtering techniques [Eve09, LSZ15].

The complexity of the cardiac models and of the available data introduces several difficulties
when performing these procedures. In this perspective, this Thesis contributes to address
the challenges previously described by developing suitable reduction strategies for cardiac
electrophysiology problem and by integrating them in uncertainty quantification (UQ) and
inversion procedure. The numerical examples provided in this work however deal with
simplified mathematical models and representations of electrical potential measurements.

Objectives and contributions of this work

The goal of this Thesis is to develop efficient and accurate reduced-order models to perform
model calibration and uncertainty quantification and to solve inverse and data assimilation
problems in the context of cardiac electrophysiology. To this aim, we identify the following
main objectives:

1. To design an efficient reduced-order model for cardiac electrophysiology.

A projection-based reduced-order model provide a low-dimensional approximation
of a parametrized FOM, obtained by reducing the number of equations and of the
corresponding unknowns involved in it. To this goal, ROMs are characterized by low-
dimensional operators, obtained by projecting the FOM onto a low-dimensional sub-
space, previously computed during a computationally intensive offline phase.

When the unsteady nonlinear reaction-diffusion PDEs characterizing the cardiac electro-
physiology are considered, the dimensional reduction is not a trivial task to accomplish:
the manifold spanned by all the possible solutions is not of small dimension, except for
simplified problems. Since we aim at constructing low-dimensional (and consequently
efficient) ROMs, we propose in this work to rely on suitable techniques to develop
localized-ROMs for the class of problems at hand. In particular, we look at different
strategies to construct solution snapshots classifications, based on different indicators
of the state of the system (time, parameters and state solution). Unsupervised classifi-
cation techniques, such as k-means clustering, will be crucial for the development of
localized-ROMs.

With respect to the few existing contributions in this field (see e.g. [BSG12, CLM+16,
YV16]), we present a complete analysis and comparison of some reduction strategies
based on the offline/online stratagem. As benchmark numerical test we consider a
two-dimensional monodomain model describing the behavior of the cardiac potential
in presence of an ischemic region over a simplified slab of the myocardial tissue. The
reduction strategy identified as optimal for the case at hand is then adopted in all the
other numerical test cases to speed up their numerical solution.
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2. To perform ROM calibration through reduced-order model error surrogates.

When a FOM is replaced by a ROM, the operation of evaluating an output is affected
by model bias depending on the error between the full-order and the reduced-order
output (in short, the reduction error). In principle, this error is a deterministic quantity
that can be evaluated through the direct solution of the FOM. However to maintain
the computational efficiency, this evaluation is out of reach. The problem of ROM
calibration, that is the problem of finding an effective and cheaply computable model
of the reduction error, is here solved by means of a statistical ROM error surrogate
(ROMES). The ROMES approach [DC15, MPL16] has been exploited only for elliptic
problems, where computable error bounds are available at moderate costs. Since this
is not the case for cardiac electrophysiology, we adapt the ROMES idea in this context
using surrogate models.

3. To perform efficiently uncertainty quantification.

A complete characterization of the role and importance of the input parameters (sensi-
tivity analysis) is crucial in order to adopt a parameterized model as an approximation
of the physical phenomenon of interest: the goal is to determine those model parame-
ters that are the most significant for an experimenter. Since these parameters are also
affected by uncertainties, a complete study consists in providing a full characterization
of parameters uncertainties (uncertatinty characterization) and how they propagate
when the outputs of interest are computed (forward propagation).

A popular approach to perform these studies is the Monte Carlo random sampling. The
efficiency of this technique is usually guaranteed by statistical surrogates adopted for
the efficient evaluation of the input-output query [QHS+05]. However, these models
are not physics-based; they might be inaccurate and they suffer from the curse of
dimensionality. Our goal is thus to show how UQ analysis benefits from the adoption of
ROMs and ROMESs. The insight gained by performing sensitivity analysis and UQ are
also crucial in view of the construction of data-driven ROMs.

Fast UQ could have a great impact on the data-model integration, providing an efficient
tool to perform parameter selection. When the complexity and the number of parame-
ters grow, this analysis is mandatory to ensure an effective model personalization. With
respect to the empirical sensitivity analysis reported in [MDS+13a] we adopt in this
work variance-based sensitivity analysis by directly calculating the Sobol indices to rank
the model parameters.

4. Personalization of electrophysiology models.

Once a parametrized model is designed and reduced, it could become a fundamental
tool for efficiently solving Bayesian inverse problems through (sequential) sampling
algorithms. These latter procedures enable to estimate the distribution of the model
parameters (and also of the state solution) from noisy (non)-invasive clinical measure-
ments. In particular we focus on Markov chain Monte Carlo (MCMC) sampling for
parameter estimation and the ensemble Kalman filter (EnKF) for sequential state/pa-
rameter estimation. In both cases we investigate the effect of the ROM on the estimate
accuracy, showing how to integrate the developed ROMES in these inversion procedures.
Two notable examples are considered to demonstrate the reliability of the proposed
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procedures for complex three-dimensional models. First, we show how the parameter
estimation benefits from the uncertainty quantification analysis when both geometrical
and physical uncertainty are taken into account. Second, we consider the estimation of
the shape and location of an myocardial ischemia in a realistic left ventricle.

These objectives have offered the opportunity to merge different techniques coming from
numerical analysis, scientific computing and (Bayesian) statistics, providing new interesting
approaches for the solution of inverse and data-assimilation problems. We underline that the
approach developed in this work is not restricted to the electrophysiology models; indeed, it
can be adopted for a larger class of unsteady nonlinear PDEs.

Organization of this work

This Thesis comprises three parts:

Part I - Reduced-order models in cardiac electrophysiology

In Chapter 1 we provide a brief introduction on heart physiology and on the cardiac patholo-
gies such as myocardial infarction. We review the clinical available measures and the most
relevant mathematical models for cardiac electrophysiology depending on the scale and the
level of accuracy.
In Chapter 2 we firstly introduce the numerical approximation of the electrophysiology models,
obtained by considering the finite element method as full-order model. FOMs of this kind are
usually very expensive from the computational point of view, due to time and space constraints
required by the numerical method to accurately reproduce the electrical activity of the heart.
In order to reduce the computational complexity, we exploit the reduced basis (RB) method
to approximate the parametrized PDE solution, using the proper orthogonal decomposition
technique for the basis functions construction and suitable hyper-reduction techniques for
the efficient evaluation of nonlinear terms.
This standard reduction techniques does not provide efficient approximation of the phe-
nomenon, due to the high-dimensionality of the manifold spanned by all the possible so-
lutions of the problem. For these reasons, we propose and compare different localization
strategies in order to design an efficient reduced-order model for cardiac electrophysiology.
The discriminating factors for evaluating the performance of the localized-ROM will be ef-
ficiency, accuracy and low memory consumption. Some numerical tests will be presented
for a two-dimensional benchmark given by the monodomain equation featuring an ischemic
region parametrized with respect to its size and position.
In Chapter 3 we introduce surrogate models and we employ them to perform ROM calibration
through reduced-order model error surrogates (ROMES). We first propose ROMESs based
on Gaussian process regression and kriging interpolation for the estimation of scalar-valued
output reduction errors. Then, we extend the ROMES methodology to the case of functional-
valued outputs, adopting the curve kriging approach.

Part II - Uncertainty quantification and parameter estimation

In Chapter 4 we address the issue of efficiently solving uncertainty quantification problems.
We introduce a variance-based approach, based on sampling techniques, to deal with global
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sensitivity analysis (GSA) and the uncertainty propagation. These problems fit into a many-
query context, since repetitive evaluations of the input-output mapping are required for each
new parameters value. In this context, we show how a ROM equipped with a ROMES provides
better results in term of accuracy of the computed quantities and indices with respect to
surrogate models (SMs) of the input-output mapping. We develop a reduced-order variance-
based GSA to study how model parameters influence the shape of a simplified ECG signal and
of the action-potential. Finally, we propose to address the results of these analyses for better
exploring the parameter space during the construction of (data-driven) SMs and ROMs.
In Chapter 5 we introduce the Bayesian framework for the solution of statistical inverse
problems in case of scalar-valued outputs. The goal is to show how substituting the FOM
with a ROM impacts on the efficiency of the MCMC procedure, adopted for the resolution of
the Bayesian inverse problems. A mathematical analysis of both consistency and accuracy
will be presented, in particular by showing how incorporating a ROMES for scalar-valued
output errors into the Bayesian estimator could improve the parameters identification. Finally,
we assess the performance of the proposed framework on a numerical example of inverse
problems governed by a simplified heart-torso electrophysiology model.
In Chapter 6 we introduce the basic concepts related to data-assimilation procedures and we
focus on the ensemble Kalman Filter (EnKF) for the parameter estimation (together with a state
estimation to update the initial conditions of the model). The EnKF sequentially combines
available noisy data with a finite number (ensemble) of model evaluation, in order to update
the knowledge on the system parameters. A reduced-order formulation is presented, also
equipped with the ROMES for functional-valued data presented in Chapter 3. The consistency
and the accuracy of this corrected reduced-order EnKF is verified theoretically.

Part III - Integrating data within models

This last part focuses on the personalization of electrophysiology models. Our goal is to
demonstrate how the combination of the techniques developed in the previous two Parts
lead to accurate and efficient model personalization. In Chapter 7 we investigate the impact
of sensitivity analysis and uncertainty propagation on the dependence between the action-
potential shape and both physical and geometrical parameters of a three-dimensional left-
ventricle. This allows to simplify the parametric dependence in order to apply the reduced
MCMC technique developed in Chapter 5.
Finally, in Chapter 8 we present some numerical tests related to the data-assimilation proce-
dure for the inference of the cardiac conductivity field of a realistic left-ventricle. The aim is to
identify the presence of ischemic regions, modeled as portions of the tissue presenting a lack
of conductivity.

The numerical simulations carried out in this Thesis have been performed using Matlab,
where we have implemented from scratch the considered electrophysiology model and all the
(i) (localized) reduced-order models, (ii) ROM error surrogates, (iii) sensitivity analysis and
uncertainty propagation techniques and (iv) statistical inversion procedures.
For the implementation of the standard reduced-order strategy we have started from the RB
package redbKIT [Neg16] developed at CMCS-EPFL. Moreover, we have taken advantage of
Matlab built-in functions to perform k-means clustering and gaussian process regression.
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Reduced-order models in cardiac
electrophysiology
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1 | Mathematical models for cardiac
electrophysiology

In this chapter we provide a brief introduction on the mathematical models describing cardiac
electrophysiology and the forward problems that will be considered in this Thesis. In Section
1.1 we review the basic principles of the heart function and its electrical activity, as well as the
main pathology related to the propagation of the electrical signal. In particular, we focus on
myocardial infarction, one of the most widespread diseases worldwide, and on the available
measurements, which can be used for diagnostic purposes. In Section 1.2 we review the
most relevant mathematical models for cardiac electrophysiology depending on the scale at
hand: at the microscopic level, systems of ordinary differential equations (ODEs) describe the
cellular action potential generated by ionic currents through the cellular membrane, while
at the macroscopic level partial differential equations (PDEs) characterize the propagation
of the action potential on the cardiac tissue. Finally, in Section 1.3 the process of integrating
data within model is discussed showing the main challenges arising in this field and our
contributions to address some of them.

1.1 Overview

Cardiac electrophysiology studies the electrical activity of the heart with the aim of under-
standing, diagnosing and treating possible malfunctioning. The rhythmic contraction of the
heart is governed by an electrical impulse. A periodic electrical signal travels through the heart
according to a regular pattern, inducing heart contraction. Therefore, any irregularity in the
electrical signal causes a non physiological heart contraction. For a comprehensive review see
e.g. [Kat10, Lil12].
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The heart is a muscle that pumps blood through the circulatory system and it is formed by
four chambers: right and left ventricles, right and left atria. The right atrium collects blood
low in oxygen from the whole body through the veins, the right ventricle then delivers it to the
lungs from where the left atrium receives it back oxygenated, ready to be pumped from the left
ventricle through the arteries. A healthy cardiac electric cycle starts from the sinoatrial node,
located in the right atrium, made of a group of pacemaking cells. From the sinoatrial node, the
electrical signal travels along the atria to the atrioventricular node, causing the contraction of
the two atria. Then the signal is propagated through the ventricles by means of the Purkinje
fibers, in order to sequentially pace the ventricles. At this point a process of repolarization
starts: the muscle fibers are relaxed in order to restore the initial condition, after which the
muscle is ready to contract again.

There are several heart diseases that affect the electrical activity, such as coronary artery block,
which can lead to stroke or heart attack, structural disease (cardiomyopathy), congenital
abnormalities of the heart muscle or the valves, and arrhythmia. In particular, the latter is an
irregular heartbeat caused by anomalies such as pauses in the normal activity of the sinoatrial
node or block of the electrical impulse due to the presence of scars. When the heart has an
abnormal sinus rhythm, it cannot pump blood effectively to the whole body, causing possible
damages to other organs.

1.1.1 Myocardial infarction

Myocardial infarction (MI), commonly referred to as heart attack, is one of the most widespread
heart diseases worldwide. The infarction is a portion of the heart muscle damaged by a lack of
blood flow due to an obstruction of a coronary artery [TAW07].

Figure 1.1 – Artery block (left) and arteries scheme (right). Copyright: Blausen Medical
Communications, Inc. (left) Patrick J. Lynch, medical illustratorderivative work (right)
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Most of the MIs are located in the left ventricle (LV), because the three arteries (cf. Figure 1.1)
most often occluded are:

1. the left anterior descending artery which supplies blood to the anterior, lateral, and
apical wall of the LV and is the most commonly occluded;

2. the right coronary artery which supplies blood to the bottom portion of the LV and the
back of the septum;

3. the left circumflex artery which supplies blood to the side and the back of the LV.

In addition to their location, MIs are also classified by their size: small (if the MI affects less
than the 10% of the LV myocardium), moderate (from 10 to 30%) and large (more than the
30%).

LVRV

Right coronary
 artery (RCA)

Left anterior 
descending artery (LAD)

Left circumflex
 artery (LCX)

RCA

LAD

LCX

anterior

posterior

Left ventricle

Figure 1.2 – Location of the arteries mainly affected by occlusion (left) and corresponding left
ventricle regions perfused

When an artery is occluded, the myocardial cells in the region perfused by the artery do not
receive enough oxygen and thus become ischemic: the mechanism of muscle contraction is
then locally compromised. After a few minutes this damage is irreversible, as the region turns
into a necrotic stage. Severe complications can follow an infarct, such as arrhythmias caused
by an anomalous conduction of the electrical signal. As a consequence, the healthy part of the
muscle can change shape (i.e. induce some remodeling effects) in order to compensate the loss
of the capability to contract in the ischemic region, and this situation could end in heart failure.
Due to all these complications, it is very important to act as soon as possible. However, the fact
that at least 25% of MIs are silent [VLC11], i.e. the classical symptoms are not always sensed by
the patient, makes it difficult to diagnose MIs in due time. Hence, it is particularly important
to develop accurate tools for early diagnosis of myocardial infarctions. Accurate mathematical
models can provide useful insights, by reproducing subject-specific cardiac electrophysiology:
given some (noisy) observations of the phenomenon, model personalization is achievable
through the solution of data-assimilation and inverse problems. In this way, we are able to
reproduce in silico the pathophysiology of a specific patient, to test different scenarios and
also to compute quantitative outputs meant to support clinicians in their decisions.
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1.1.2 Available measures

Heart continuously produces a sequence of small electric waves during each heart beat, but
it is not trivial to measure them in a noninvasive way. The routine noninvasive test is the
electrocardiogram (ECG), which is realized by placing electrodes on the patient skin. The
conventional 12-leads ECG is obtained by using the following ten electrodes:

• R A and L A, placed one on each arm;

• RL and LL, placed one on each leg (lateral calf muscle);

• V1, . . . ,V6, placed on the torso, as sketched in Figure 1.3 on the left.

Figure 1.3 – Placement of the electrodes V1, . . . ,V6 on the torso and limb leads directions (left);
classical scheme of an ECG signal (right)

Each electrode registers the electric potential difference, which is then properly combined in
order to derive the 12 leads. The leads are divided in bipolar if they compare the registered
activity of two electrodes (this is the case of limb leads combination of R A, L A and RR), and
unipolar if they compare the potential recorded at one electrode with a reference potential,
obtained by averaging the bipolar leads (this is the case of the precordial leads relative to
V1, . . . ,V6 ). These signals detect variations in the electric potential during the cardiac electric
cycle. A typical ECG, sketched in Figure 1.3, is characterized by the superposition of three
waves:

• the P-wave, generated by atrial depolarization;

• the QRS-complex, generated by ventricular depolarization;

• the T-wave, generated by ventricular polarization.

Normal electrical conduction gives this three waves pattern, while deviation from it can be
motivated by inter-patient variability or the presence of a pathology. A correct analysis of ECG
signals, joined with a complete anamnesis, can lead to the diagnosis of arrhythmia, previous
MI (heart attack), defects or abnormalities in the heart shape and size, as well as pathologies
related to the electrical conduction from one portion to another (for further details see e.g.
[Yan16]). However, there might be false negatives, i.e. normal ECGs in presence of a heart
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disease, and false positives, i.e. abnormal ECGs which reflect instead physiological condition
on a given patient. Moreover, the ECG measures are polluted by many sources of noise: in-
strumentation noise, electromagnetic fields interference, defective electrode contact, motion
artifacts and muscle activities.

More detailed data can be obtained through invasive techniques, such as intracardiac catheter
recording along the endocardium, the inner wall of the heart. The catheter is equipped
with small electrodes that are used to locally monitor the cardiac electric potential behavior
[EHD+14]. During this procedure the clinician paces locally the endocardium in order to
check for anomalous responds. In particular, from the electrodes measurements it is possible
to generate endocardial maps of the activation times, defined as the time at which the electric
potential in a point reaches its peak value.

1.2 Mathematical models

Mathematical models of cardiac electrophysiology describe the action-potential mechanism
of depolarization and polarization, which consists in a rapid variations of the cell membrane
electric potential with respect to a resting potential (see Figure 1.4). These models are nat-
urally divided into two families: cellular models, which characterize the electric potential
of a single cell, and physiological models, which give a quantitative description of action
potential propagation at the tissue level. In this section we briefly review the principal elec-
trophysiology model; for a complete review of the different electrophysiological models see
e.g. [CFPS14, CBC+11, PCB05], while for a review of mathematical models for the whole heart
physiology see e.g. [QLR+16, Tra11].

Resting
Potential

Depolarization

Plateau

Repolarization

t

Figure 1.4 – Action potential scheme: after the application of the stimulus, the action-potential
depolarizes very quickly; a plateau phase follows, in which the cell remains depolarized and
finally the repolarization of the cell begins, returning to the initial state

The cellular models are based on systems of ordinary differential equations (ODEs) which
describe the variation of ionic species and ionic currents. These latter variables are responsible
of the cellular action-potential dynamics represented in Figure 1.4. The cellular model is
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Chapter 1. Mathematical models for cardiac electrophysiology

defined through the following problem: find the cell membrane potential u = u(t ) such that

Cm
du

d t
+ Ii on(u,w,c) = Iapp (t ), t ∈ (0,T ]

∂w

∂t
= gw (u,w,c), t ∈ (0,T ]

∂c

∂t
= gc (u,w,c), t ∈ (0,T ],

where w = (w1, . . . , wmw )T , with wi ∈ (0,1), i = 1, . . . ,mw , is the gating variables vector, regu-
lating the ionic currents, while c = (c1, . . . ,cmc )T the vector of ionic species concentrations in
the cell. Moreover, Cm [µF /cm2] is the cell membrane capacitance, Ii on [µA/cm2] the ionic
exchanges current and Iapp [µA/cm2] the applied exterior stimulus. The system of ODEs is
completed by a vector of initial conditions, one for each variable.
Many detailed membrane models involving an increasing number of currents and variables
can be found in literature, starting from the adaptation proposed by Noble [Nob62] of the
Hodgkin-Huxley model [HH52]. Since these cellular models could be formed by a high number
of equations, one for each specific Ionic species, simpler models (defined as phenomeno-
logical) are used to efficiently reproduce the action-potential of Figure 1.4 without the direct
description of all the ionic currents.

The first phenomenological model was proposed by FitzHugh [Fit61] and Nagumo [NAY62],
and is obtained by considering:

Cm
du

d t
+ Ii on = Iapp (t ), t ∈ (0,T ]

∂w

∂t
= g (u, w), t ∈ (0,T ],

(1.1)

where Ii on = ku(u − a)(u −1)+w is a cubic nonlinearity, which models the depolarization
mechanism, while g (u, w) = γu −βw the polarization mechanism. Here the electric potential
u is adimensionalized and w is an additional variable used to reproduce the phenomenon
of interest (it is no more a gating variable). Finally, k, γ and β are positive parameters, which
affect the action potential form. More precise models have been proposed to improve the
FitzHugh-Nagumo model, such as the Aliev-Panfilov (AP) model [AP96] and the Mitchell and
Schaeffer model [MS03], which both enable the tuning of the depolarization and repolarization
shape through the definition of Ii on and g . In this work we rely on the AP model, which has
six parameters to be tuned in order to carefully reproduce the most representative features of
the electric potential, such as action potential duration and conduction velocity restitution
curves. In particular, we consider the following expressions:Ii on(u, w) = K u(u −a)(u −1)+wu

g (u, w) =
(
ε0 +

c1w

c2 +u

)
(−w −K u(u −a −1)).

(1.2)

The solution of (1.1) equipped with (1.2) is reported in Figure 1.5.
Given that u is an adimensional potential, the correct dimensionality of the electric potential
can be recovered by setting

V =−80+100u [mV ].
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Figure 1.5 – Action potential u(t) and recovery variable w(t) using the AP model with the
parameters specified in [AP96]

All these cellular models have been largely validated in experiments [OVV+11, BBOVA+13],
more recently also using probabilistic approaches developed in the uncertainty quantification
framework [JCB+16].

At the tissue level, the physiological models are derived using homogenization procedures,
leading e.g. to the bidomain equations [Hen92], which characterize the behavior of the intra-
and extra-cellular potentials ui = ui (x,t ) and ue = ue (x,t ), respectively. The problem of finding
the resulting transmembrane potential u(x,t ) = ui (x,t )−ue (x,t ) becomes:

Am

(
Cm

∂u

∂t
+ Ii on(u, w)

)
−div(Di∇u)−div(De∇ue ) = Am Iapp (x,t ) x ∈ΩH , t ∈ (0,T ]

−div((Di +De )∇ue )−div(Di∇u) = 0 x ∈ΩH , t ∈ (0,T ]
∂w

∂t
= g (u, w) x ∈ΩH , t ∈ (0,T ],

(1.3)

where Am is the ratio of membrane area per unit volume, Di and De [S/cm] are the intra- and
the extra-cellular conductivity tensors and ΩH the myocardial tissue domain. To obtain a
well-posed problem, equations (1.3) are completed by initial conditions:{

u(x,0) = u0 x ∈ΩH

ue (x,0) = ue,0 x ∈ΩH ,

for given functions u0 and ue,0, and suitable boundary conditions such homogeneous Neu-
mann boundary conditions modeling an electrically isolated tissue (hence, neglecting the
ability of the rest of the body to conduct the electrical signal):{

∇u(x,t ) ·n = 0 x ∈∂ΩH , t ∈ (0,T ]

∇ue (x,t ) ·n = 0 x ∈∂ΩH , t ∈ (0,T ].

A simplified model is given by the monodomain system [NRL+07], written only in terms of
the potential u. By assuming that the intra- and the extra-cellular conductivity tensors are
such that Di = λDe , it is possible to simplify the bidomain equations (1.3). The resulting
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Chapter 1. Mathematical models for cardiac electrophysiology

monodomain system reads:

Am

(
Cm

∂u

∂t
+ Ii on(u, w)

)
−div(D0∇u) = Am Iapp (t ) x ∈ΩH , t ∈ (0,T ]

∂w

∂t
= g (u, w) x ∈ΩH , t ∈ (0,T ]

∇u(x,t ) ·n = 0 x ∈∂ΩH , t ∈ (0,T ]

u(x,0) = u0 x ∈ΩH

w(x,0) = w0 x ∈ΩH ,

(1.4)

where D0 is the effective conductivity tensor, defined as

D0 =
λ

1+λDi .

By assuming the isotropic relation Di =λDe , the action potential u(x,t ) obtained by solving
the monodomain system (1.4) is close to the one given by the bidomain model (1.3), as shown
in [PDR+06]. Since the monodomain model consists of a single PDE, its numerical approxi-
mation is less computationally demanding compared to the one of the bidomain equations.
For these reasons, in the following we propose some test cases based on the monodomain
equation. However, we underline that the proposed reduction techniques can in principle be
extended also to the bidomain case.

Mathematical models in electrophysiology are also very challenging problems from the Mathe-
matical analysis point of view: a well-posedness analysis of the Mitchell-Schaeffer ODE model
can be found in [KM13], while for the bidomain model on varying different ionic models can
be found in [CFS02, BCP09, BFG+08]. Finally, a convergence analysis of the homogenization
procedure can be found in [PSCF05].

1.2.1 Modeling the torso

In order to reproduce an ECG signal through a mathematical model, we need to take into
account the presence of the rest of the body, which acts as a passive and isolated conductor. If
we focus on the V1, . . . ,V6 leads (Figure 1.3), we can restrict to the torso, defined here asΩT .
From the electrical standpoint, the electric potential in the torso uT = uT (x,t ) can be modeled
by the following Laplace equation:{

−div(DT ∇uT ) = 0 x ∈ΩT , t ∈ (0,T ]

DT ∇uT (x,t ) ·nT = 0 x ∈∂ΩT , t ∈ (0,T ],
(1.5)

being nT the external (with respect to the body) normal vector, DT the conductivity tensor
of the torso and ∂ΩT the outer boundary ofΩT . As a consequence, the boundary conditions
of the extracellular potential ue in equations (1.3) are modified to consider the electric trans-
mission between the heart domain ΩH and the torso domain ΩT at the internal boundary:{

ue (x,t ) = uT (x,t ) x ∈∂ΩH , t ∈ (0,T ]

De∇ue (x,t ) ·nH = Dt∇uT (x,t ) · (−nH ) x ∈∂ΩH , t ∈ (0,T ],
(1.6)
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where nH is the external (with respect to the heart) normal vector. Therefore, a complete
model for the coupled heart-torso system can be obtained as follows:

Am

(
Cm

∂u

∂t
+ Ii on(u, w)

)
−div(Di∇u)−div(De∇ue ) = Am Iapp (x,t ) x ∈ΩH , t ∈ (0,T ]

−div((Di +De )∇ue )−div(Di∇u) = 0 x ∈ΩH , t ∈ (0,T ]
∂w

∂t
= g (u, w) x ∈ΩH , t ∈ (0,T ]

div(∇DT uT ) = 0 x ∈ΩT , t ∈ (0,T ]

∇uT (x,t ) ·nT = 0 x ∈∂ΩT , t ∈ (0,T ],

ue (x,t ) = uT (x,t ) x ∈∂ΩH , t ∈ (0,T ]

De∇ue (x,t ) ·nH =−Dt∇uT (x,t ) ·nH x ∈∂ΩH , t ∈ (0,T ]
(1.7)

with e.g. current specification (1.2) and suitable initial conditions:
u(x,0) = u0 x ∈ΩH

ue (x,0) = ue,0 x ∈ΩH

uT (x,0) = uT,0 x ∈ΩT .

A numerical approximation of the ECG signals can be finally computed by measuring on ∂ΩT

the potential difference between the locations illustrated in Figure 1.3.
The complete derivation of (1.7) has been proposed in [LGT03], where the bidomain model is
adopted in a two dimensional case and some numerical tests can be found in [SLT05]. A state
of the art numerical approximation of ECG can be found in [SCG16, FZ10, BCF+10], where
three dimensional simulations of the electrical activity of the heart coupled with the full body
are presented.

1.2.2 Modeling the presence of an ischemia

The effect of heart disease on the electrical activity of the heart can be accounted for suit-
able modifications of the mathematical models introduced previously. In this work we are
interested not only in a model personalization of the mathematical model in physiological
conditions, but also in addressing the pathological case of myocardial ischemia.
According to biological observations, the cells in an infarcted region are no longer excitable.
By looking at the cardiac tissue as a circuit of cardiac cells interconnected [MVCDB98], the
ischemic tissue can be firstly modeled as a group of cells whose surrounding resistances are
greater than the other ones. Moreover, in such a region cells behave as a passive conductor,
which means that a stimulation does not cause a complete action potential cycle; rather, the
potentials decay with time and distance from the source. In order to take into account this be-
havior, the cellular models previously introduced should be properly modified by considering
a vanishing ionic current in the ODEs system. A more detailed analysis at the cellular level
have been proposed in [SR97, CSB01].

In a consistent way, the local difference of the resistances can be modeled at the macroscopic
scale by considering a non-homogeneous conductivity tensor and a non-homogeneous ionic
current (for further details see e.g. [NLT07]), In particular, we consider the non-homogeneous
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Chapter 1. Mathematical models for cardiac electrophysiology

conductivity tensor
D(x) = Dhea g (x)+Di l l (1− g (x)), x ∈ΩH ,

being Dhea the healthy conductivity tensor greater that Di l l , the conductivity tensor of the
ischemic region, identified by the function g (x). On the other hand, the ionic term is given by

Ii on = g (x)(K u(u −a)(u −1)+wu).

A different approach is considered in [ÁAARÁ+12], where instead of considering a non-
homogeneous ionic current, two parameters of the Mitchell-Schaeffer model are considered
to be non-homogeneous in space in order to reproduce the passive conductor behavior.

1.3 Towards translating models into clinical practice

Integrating available measurements of the heart electrical activity within mathematical mod-
els is crucial in order to develop useful tools to support clinical practice. What is referred
to as computational medicine is nowadays an extremely active research field, covering a
broad spectrum of applications ranging from molecular medicine to heart diseases (see e.g.
[WTG+12, NK09, FQV10] and reference therein).
Focusing on heart function (and disfunction), data-model integration might improve the
diagnosis of cardiovascular disease. Some relevant examples of data-cardiovascular model
integration can be found in [SdVM+11, MF15, TSR+16]. In cardiac electrophysiology, medical
device for rhythm control or catheter ablation have been recently investigated in e.g. [TSD+,
TMD+13, RCS+11, AAV+15].

1.3.1 Data-model integration pipeline

The final goal of the integrating data within cardiac model is the development of a pipeline,
whose schematic representation is presented in Figure 1.6, for the construction of in silico
subject-specific models aiming at simulating different intervention/therapy scenarios. We
identify four main steps:

1. the acquisition of available clinical data, necessary for the segmentation of the do-
main geometry, the construction of the corresponding computational mesh and the
imposition of suitable initial and boundary conditions [EPS+08, KvBW+04, VAP+10];

2. the choice of a suitable mathematical model, depending on the target of the simulation
(required level of complexity);

3. personalization of the model inputs best fitting the available clinical data. This task
can be expressed through either a PDE-constrained optimization problem, leading to a
deterministic estimate of the unknown inputs, or a statistical inverse problem, whose
solution is a probabilistic distribution describing the range of most likely inputs. The
former is usually the most adopted so far due to the complexity of electrophysiology
models, but the additional information (e.g. variance, confidence or credible intervals
and quantiles) provided by the latter are fundamental in view of data-model integration;

4. prediction of the electrical potential behavior when different intervention/therapy
scenarios are considered.
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Figure 1.6 – Cardiac data-model integration pipeline. First, the geometry and the ini-
tial/boundary conditions are obtained from clinical data. Then, the model and its parametriza-
tion is chosen by using sensitivity analysis and forward UQ tools. Model personalization is
performed using optimization or statistical inversion algorithms. Finally, the subject-specific
model enables to test different scenarios. Copyright MRI image: Biomedizinische NMR
Forschungs GmbH, via Wikimedia Commons.

The construction of this pipeline involves several challenges to deal with:

• the limit imposed by the clinical data accuracy, such as the spatial resolution of the
clinical heart imaging or the restricted amount of information given by noninvasive
measurements, such as ECGs. Thanks to technological innovation, imaging techniques
[HAZD+12, IK05] are currently used to directly diagnose MIs (detecting e.g. wall motion
abnormalities or using paramagnetic contrast agents to verify the perfusion in the
myocardium). However, these procedure are performed only on patients with known
or suspected MIs. For this reason, it is also pivotal to improve the diagnosis capability
using routine exams, such as ECGs, through subject-specific simulations;

• the high number of uncertainties related to the geometry, physical coefficients, bound-
ary and initial conditions, which make the model definition a critical step of the pipeline.
For example, understanding the effect of geometry variability on the outcome of the
simulation could be crucial when focusing on mechanical properties of the myocardium,
but could be unnecessary during the study of some electrical properties. In the same
way, not all the physical coefficients characterizing the ionic model affect specific be-
haviors of the cardiac potential, such as (de)polarization front velocity. Considering
all these sources of uncertainty could entail unbearable computational costs of the
forward numerical simulation and consequently jeopardize model personalization. It
is thus essential to bound those input variables which directly influence the output
of interest and discard the others. In this setting, sensitivity analysis and uncertainty
quantification/propagation are essential to address this issue.

• the time required by the pipeline has to be comparable with the one of the current
clinical exams (few hours or days). The consequent need of fast simulations required
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Chapter 1. Mathematical models for cardiac electrophysiology

the development of ad hoc reduced-order models and the integration of these latter in
uncertainty quantification and parameter estimation procedures;

• the discrepancy between real data and the output of the mathematical model could
affect the estimation procedure and propagate during the prediction phase. This issue
of model calibration is usually addressed through the personalization step, without
considering the simplifications introduced by the mathematical representation;

In the recent years, several groups have focused their attention on these challenges. Appli-
cations of electromechanical model personalization from clinical images and ECGs can be
found in [MDS+13b, SCC+11, CWH+16, PSA+14, NBG+13, CML+12]. In this context, sensitiv-
ity analysis has been performed in [MDS+13a] to automatically select the identifiable input
parameters, and reduced-order unscented Kalman filters [MC11] have been considered for
reducing the complexity of parameter estimation. However, all these methods require a critical
number of full-order simulations, leading to extremely time consuming pipelines.
In cardiac electrophysiology, an example of integrated pipeline for the prediction of depolar-
ization isochrones resulting from different pacing conditions has been presented in [CSL+11].
In this work, models with different levels of accuracy are adopted for an efficient parameter
estimation starting from optical mapping and MR images. The role of uncertainty in the
electrophysiology model personalization has been taken into account for the first time in
[KRC+11], relying however on the Eikonal model, a simple model related exclusively to the
electric potential depolarization phase. The challenge of non-invasive personalization (body
surface potential mapping and ECG) for cardiac electrophysiology models have been consid-
ered in [GRJF+16], with the goal of predicting the activation time in different pacing conditions
for patient suffering from premature ventricular contraction, and in [GRFW+16] in the case
of bundle branch blocks. Finally, another example of integrated pipeline for the estimation
of electrophysiology parameters by combining electrical and mechanical measurements has
been considered in [CGM15]. Here, the inverse problems of electrocardiography has been
addressed using a sequential data-assimilation procedure based on a POD projection of the
state solution for the sake of efficiency.

In this perspective, this Thesis contributes to the process of translating electrophysiology mod-
els in clinical care by developing some reduction strategies to deal with the challenges arising
in the second and the third step of the pipeline. In this direction, we deal with problems based
on a simplified mathematical representation of both type of the measurements previously
described.
With this aim, we cast all mathematical models under the general framework of parametrized
PDEs, whose solutions depend on a parameter vector µ ∈ P ⊂ Rd , characterizing both the
physical and/or geometrical configurations of the underlying system. Consequently, we are
interested in the following input-output mapping

µ→ u(t ;µ) → y(t ;µ)

being u(t ;µ) the electric potential, e.g. solution of the parametrized PDE (1.4), and y(µ) a
vector of outputs of interest, approximating the available clinical measurements.
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2 | Reduced-order model for electro-
physiology

The design of efficient reduced-order models for problems arising in electrophysiology is still
an open problem, due to the intrinsic complexity of the underlying process: the electrical
potential evolution on the myocardial tissue is characterized by a sharp traveling front, highly
sensible to changes in the model parameters.
In this chapter, we firstly recall in Section 2.1 the basic numerical techniques for the approxi-
mation of electrophysiology equations. Then, in Section 2.2.1 we review the reduced basis
(RB) method coupled with suitable hyper-reduction techniques for the efficient solution of
nonlinear time-dependent parametrized PDEs. Since a straightforward application of the
RB method to the problems arising in electrophysiology does not provide accurate results
at moderate computational costs, we investigate different strategies for the construction of
localized-ROM in Section 2.3. Finally, in Section 2.4 we propose a detailed comparison of the
numerical results by looking at the basic features that should be respected in the design and
development of a ROM: efficiency, accuracy and low memory consumption.

2.1 Full-order model

The solution of the nonlinear reaction–diffusion equations (1.3) or (1.4) for electrophysiology
is characterized by a traveling wave (depolarization) covering the portion of the cardiac tis-
sue representing the domain where the problem is set. This mechanism, controlled by the
ionic current, is then followed by a repolarization phase where the potential returns to its
initial value (see Figure 1.4 in Section 1.2). The numerical discretization of this activation-
deactivation cycle is already challenging when we rely on classical full-order models, such
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as Finite Element method [CFPT05, PLdS+07, GK09, MH89]. A review of computational
techniques for the approximation of the electrical activity of the heart is presented e.g. in
[SLC+07, VAT02, VDSP+08, CFP04]. One of the main difficulties is indeed correctly capturing
the front propagation velocity: the need of a sufficiently small spatial discretization mesh size
h and time-step length ∆t , usually compromise the computational efficiency of the solver.
Several issues of time and space convergence of full-order models for electrophysiology have
been addressed in [NKB+11, PHS16] and in [VGG+15] for high-order finite element approxi-
mation.

The aim of this section is to introduce some of the typical full-order time-space discretization
schemes applied to the solution of problem (1.4), which is the prototype adopted in the test
cases of this Thesis.
We consider the generic vector of parameter µ ∈ P ⊂ Rd characterizing either the geomet-
rical or physical properties. For t > 0, the weak formulation of problem (1.4) reads: given
Iapp (t ;µ) ∈ L2(Ω), find u(t ;µ) ∈ X = H 1(Ω) and w(t ;µ) ∈ L2(Ω) such that

∫
Ω

Am

(
Cm

∂u

∂t
+ Ii on(u, w ;µ)

)
ψdω+

∫
Ω

D0(µ)·∇u∇ψdω=
∫
Ω

Am Iapp (t ;µ)ψdω ∀ψ ∈ H 1(Ω)∫
Ω

∂w

∂t
υdω=

∫
Ω

g (u, w ;µ)υdω ∀υ ∈ L2(Ω)

u(0;µ) = u0

w(0;µ) = w0,

whereΩ=Ω(µ) is a parametrized computational domain of Rp , p = 2,3.

We apply the Galerkin-finite element (FE) method relying on a finite-dimensional space
Xh ⊂ X (Ω) of (usually very large) dimension dim(Xh) = Nh , being h a parameter related to the
mesh size of the computational grid. By denoting with {ϕi }Nh

j=1 the basis functions of the finite
element space Xh , we introduce the following parametrized FE matrices

(M(µ))i j =
∫
Ω(µ)

ϕiϕ j dω, (A(µ))i j =
∫
Ω(µ)

D0(µ)·∇ϕi∇ϕ j dω,

and the following parametrized linear FE vector

(Iapp ) j =
∫
Ω(µ)

Am Iapp (t ;µ)ϕ j dω.

The solutions uh(x, t ;µ) and wh(x, t ;µ) are thus given by the linear combination of the basis
functions:

uh(x, t ;µ) =
Nh∑
i=1

ui
h(t ;µ)ϕi (x), wh(x, t ;µ) =

Nh∑
i=1

w i
h(t ;µ)ϕi (x),

where the vectors uh = [u1
h , . . . ,uNh

h ]T and wh = [w1
h , . . . , w Nh

h ]T are obtained by solving the
system: given µ ∈P , find uh(t ;µ) and wh(t ;µ) such that

M(µ)
∂uh

∂t
+A(µ)uh + Ii on(uh ,wh ;µ) = Iapp (t ;µ) t ∈ (0,T ]

M(µ)
∂wh

∂t
= g (uh ,wh) t ∈ (0,T ]

uh(0;µ) = u0(µ)

wh(0;µ) = w0(µ).

(2.1)
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Here, the parametrized nonlinear FE vectors Ii on(uh,wh;µ) and g(uh,wh;µ), depending both
on the finite element solutions uh and wh , are defined as

(Ii on(uh,wh;µ)) j =
∫
Ω(µ)

Am Ii on(uh,wh;µ)ϕ j dω, (g(uh,wh;µ)) j =
∫
Ω(µ)

g (uh,wh;µ)ϕ j dω.

Given a partition (t (`), t (`+1)), `= 0, . . . , Nt −1 of the time interval (0,T ) into Nt subintervals of
length ∆t , different time-advancing schemes can be adopted. In the case of an explicit, a semi-
implicit or an operator splitting time-advancing scheme, at each time-step the non-linear
vector Ii on is evaluated using the solution coming from the previous steps. This means that at
each iteration we need to solve only a linear system, e.g. in the case of the semi-implicit Euler
(one-step) method we have: given µ ∈P , find u(`+1)

h , `= 0, . . . , Nt −1, and wh = wh(t ;µ), such
that

(
M(µ)

∆t
+A(µ)

)
u(`+1)

h = M(µ)

∆t
u(`)

h + I(`+1)
app (µ)− Ii on(u(`)

h ,w(`)
h ;µ) `= 0, . . . , Nt −1

u(0)
h = u0(µ)
∂wh

∂t
= g (uh ,wh ;µ) t ∈ (0,T ]

w(0)
h (0;µ) = w0(µ).

(2.2)

At each time-step t (`+1), `= 0, . . . , Nt −1, a parametrized linear system coupled with an ODE
for the gating variable w is then solved. The ODE can be solved using the same time advancing
scheme applied point-wise (by considering the values of the potential on the mesh nodes) or
by a Galerkin-projection of the ODE onto the finite dimensional space Xh , as done in (2.1).
Here, the two problems are automatically uncoupled, since the nonlinear term depends only
on the solutions u(`)

h and w(`)
h at the previous time-step t (`). In conclusion, we solve: given

µ ∈P , find u(`+1)
h and w(`+1)

h such that

(
M(µ)

∆t
+A(µ)

)
u(`+1)

h = M(µ)

∆t
u(`)

h + I(`+1)
app (µ)− Ii on(u(`+1)

h ;µ) `= 0, . . . , Nt −1

u(0)
h = u0(µ)

w(`+1)
h = w(`)

h +∆t g(u(`)
h ,w(`)

h ;µ) `= 0, . . . , Nt −1

w(0)
h = w0(µ).

(2.3)

The major computational costs are generated by the nonlinear term Ii on assembly and by
the solution of the linear system. Since ∆t is required to be sufficiently small to ensure the
convergence of the method [EB08], the computational cost can considerably grow.

When the implicit Euler method is adopted for time advancing, the numerical problem be-
comes: given µ ∈P , find u(`+1)

h and w(`+1)
h such that

(
M(µ)

∆t
+A(µ)

)
u(`+1)

h + Ii on(u(`+1)
h ,w(`+1)

h ;µ) = M(µ)

∆t
u(`)

h + I(`+1)
app (µ) `= 0, . . . , Nt −1

M(µ)

∆t
w(`+1)

h = M(µ)

∆t
w(`)

h +g(u(`)
h ,w(`)

h ;µ) `= 0, . . . , Nt −1

u(0)
h = u0(µ)

w(0)
h = w0(µ),

(2.4)
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which is a parametrized nonlinear system coupled with an ODE for the gating variable wh . To
solve the coupled nonlinear problem (2.4), we can rely on the Newton method as follows: at
each time step `= 0, . . . , Nt −1, while ‖δı

u‖ < tol , we solve

J

([
u(`+1)

h,ı

w(`+1)
h,ı

])[
δı

u

δı
w

]
= r

([
u(`+1)

h,ı

w(`+1)
h,ı

])
,

[
u(`+1)

h,ı+1

w(`+1)
h,ı+1

]
=

[
u(`+1)

h,ı

w(`+1)
h,ı

]
+

[
δı

u

δı
w

]
ı = 1, . . . , (2.5)

being u(`+1)
h,0 = u(`)

h , w(`+1)
h,0 = w(`)

h and tol > 0 a fixed small tolerance. The Jacobian matrix J and
the residual vector r of the problem (2.1) are respectively given by

J
([

u
w

])
=

M(µ)

∆t
+A(µ)+ Ju

Ii on
(u,w;µ) Jw

Ii on
(u,w;µ)

Ju
g (u,w;µ)

M(µ)

∆t
+ Jw

g (u,w;µ)

 ∈R2Nh×2Nh , (2.6)

r
([

u
w

])
=

I(`+1)
app (µ)− M(µ)

∆t (u−u(`)
h )−A(µ)u− Ii on(u,w;µ)

−M(µ)

∆t
(w−w(`)

h )+g(u,w;µ)

 ∈R2Nh , (2.7)

being Jv
I ∈RNh×Nh the Jacobian matrix of the nonlinear term I with respect to the variable v .

The implicit scheme gives flexibility on the choice of ∆t ; however the nonlinearity imposes
additional subiterations, during which the nonlinear terms Ii on and g with their Jacobians
need to be assembled. Since the matrix assembly is in general the most costly operation, it is
usually preferred to adopt semi-implicit or operator-splitting schemes. However, the ROM
technique is easily extendible also to manage the full-implicit case.

2.2 Reduced-order model

The solution of many-query problems, such as parameter estimation, data assimilation and
uncertainty quantification, involves the repetitive evaluation of parametrized PDEs on varying
the input parameters. In the context of cardiac electrophysiology, full-order models lead to
unbearable computational costs, preventing the integration of these procedures in the clinical
routines.

A reduced-order model (ROM) provide an approximation of a parametrized full-order model
(FOM) characterized by low-dimensional operators, obtained by reducing the number of
equations and of the corresponding unknowns. The construction of such a ROM is based
on the assumption that the manifold spanned by all possible solutions of the parametrized
problem has a considerably smaller dimension with respect to the space spanned by the basis
functions of a classical full-order model (see Figure 2.1). Therefore, the ROM solution

un(x, t ;µ) =
n∑

i=1
un

i (t ;µ)φi (x)

is obtained as a linear combination of problem-specific reduced-space basis functions {φi (x)},
computed during a first computationally demanding offline phase. During this phase the
basis functions are calculated from snapshots of the full-order solution computed for some
parameter values. Then, the ROM low-dimensional operators are obtained by projecting the
FOM operators onto the reduced-space. Finally, in an online phase, the ROM can be exploited
to efficiently approximate the problem solution for each new value of the parameters.
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2.2. Reduced-order model

Finite Elements method Reduced Basis method

Nh � n

uh

'i

�i

un

un(x; µ) =

nX

i=1

un
i �i(x)uh(x; µ) =

NhX

i=1

uh
i 'i(x)

Figure 2.1 – Full-order and reduced-order approximation of the 1D solution u(x;µ).

Projection-based ROM have been successfully applied to linear steady system [HRS16, RHP08]
and linear time-dependent systems [GP05], whose parameter-dependent operators are affine
functions of the parameters (a complete survey of the methods exploited so far can be re-
spectively found in [ASG01] and [BGW15a] and references therein). Some issues of compu-
tational efficiency arise when non-affine or nonlinear operators are considered: in this case
the ROM can be equipped with additional techniques, known as hyper-reduction methods
[AZF12, GMN+07, NMA15], to overcome these shortcomings. So far the combination of these
techniques has led to a collection of methods successfully applied in a broad range of applica-
tions, such as structural dynamics and elasticity [WP02, ACC+09, Ver03, BMQ16], aerodynam-
ics [CFC+13, BTWG08, BTDW04], cardiovascular fluid-dynamics [MQR12, CDQ14, BFI+16]
and many other fields.

The application of projection-based ROMs to cardiac electrophysiology poses several chal-
lenges, due to the specific traveling-wave behavior of the solution: the manifold of all possible
solutions cannot be expressed by combining a small number of basis functions.
The benchmark accuracy measure for reduced-order models is given by the Kolmogorov
n-width of the solution manifold S (i.e. the space spanned by all possible solutions of the
parametrized PDE), which is defined as follows:

Definition 1. Given S ⊂ X and a generic finite dimension subspace Xn ⊂ X such that di m(Xn) =
n, the Kolmogorov n-width of S in X is given by

dn(S, X ) = inf
Xn⊂X

{
sup
u∈S

inf
un∈Xn

‖u −un‖X : Xn a n-dimensional subspace of X

}
.

In the case of affine parameter-dependent operator, one can prove that the n-widths are
sub-exponentially convergent [OR15] (for further details on the n-width see e.g. [LMQ+13a,
MMT16]). Unfortunately, advection dominated problems suffer from a very slow decay of the
n-widths, especially when the diffusion term is parametrized.

For this reason the standard ROM approach described before can only be applied efficiently
when the conductivity tensor is constant in space (in [BSG12, CLM+16] there are some numer-
ical results that confirm this behavior). A first attempt to introduce a different point of view
on the problem is the Lax-Pairs approach, recently introduced in [GL14, GLS15]. The main
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Chapter 2. Reduced-order model for electrophysiology

feature of this approach is the fact that the basis functions are moved in time accordingly to
the movement of the front: in this way no offline phase is required, entailing, consequently,
additional online costs. In view of solving inverse and uncertainty quantification problems,
this could penalize the overall computational performances. For this reason we will adopt a
localized ROM approach based on the offline/online stratagem; since it is the first time that
this approach is used in this context, we will analyze and compare all possible strategies to
construct localized subspaces. In particular, we evaluate the ROMs by looking at the basic
features that should be respected in the design and development of a ROM:

• efficiency: the solution evaluation should be performed rapidly with respect to the full-
order one. As a measure of this quantity, we look at the speedup in the computational
time;

• accuracy: the approximation error between the ROM and FOM should be uniformly
small on the parameter space. In this case, we empirically compare the error on an
additional set of parameter values randomly chosen in the parameter space;

• low memory consumption: the memory usage required to store ROM arrays should
not exceed predefined thresholds in order to be portable on every device. With this aim,
we compare the dimensionality and the pattern of sparsity of the ROM operators.

2.2.1 Reduced basis method

In the following section we briefly recall the basic features of the reduced basis method, by
applying it to the cardiac electrophysiology problem.
In order to introduce all the basic ingredients of the RB method, we start from a simplified ver-
sion of problem (2.1), obtained by neglecting the recovery variable w (and the corresponding
ODE). For t > 0 and µ ∈P , we consider the following semi-discretized full-order system:M(µ)

∂uh

∂t
+A(µ)uh +N(uh ;µ) = Iapp (t ;µ) t ∈ (0,T ]

uh(0;µ) = u0(µ).
(2.8)

The RB method is a projection-based ROM which computes an approximation un(t ;µ) of
uh(t ;µ) by means of a Galerkin projection on a reduced subspace Xn ⊂ Xh of very small di-
mension n ¿ Nh (see e.g. [QMN16] for a detailed overview). In the following, we review the
main ingredients of the RB approximation.

First ingredient: basis construction

Here we show how to construct the reduced-space by means of the proper orthogonal de-
composition (POD) technique [Cha00, KV01]. We consider a training set Ptr ai n ⊂P of Ntr ai n

parameter vectors sampled in the space P of admissible parameters. For each parameter
vector µ ∈ Ptr ai n we solve the full-order system (2.8) by adopting a suitable time-advancing
scheme. At the end of this procedure we end up with the so-called snapshots matrix

Su = [uh(t (0);µ1),uh(t (1);µ1), . . . ,uh(t (0);µ2),uh(t (1);µ2), . . . , ] ∈RNh×Ns , (2.9)
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2.2. Reduced-order model

being Ns = Ntr ai n Nt , with Nt the number of time-steps of the chosen time-advancing scheme.
We then consider the SVD decomposition of the snapshots matrix

Su = ZΣHT ,

where Σ is the diagonal matrix containing the singular values {σi }Ns

i=1 of Su , while Z and HT

are two orthogonal matrices containing the singular vectors.

The POD technique selects as basis functions of the reduced-space the first n singular vectors
(corresponding to the largest n singular values) of the snapshots matrix. The restriction of Z to
the first n columns corresponds to the matrix V ∈RNh×n , whose columns are the reduced basis
functions. It is possible to guarantee that the projection is controlled by a suitable tolerance
εtol , by satisfying the following relationship:∑n

i σi∑Ns

i σi

≥ 1−ε2
tol .

An alternative method for the construction of the basis functions is the so-called greedy algo-
rithm [PRV+02, BMP+12], which is an iterative procedure based on the evaluation of efficient
error estimates of the error between the FOM and the ROM. Since in time-dependent and
nonlinear case we do not have easy computable and effective error bounds, we adopt the POD
approach in our test cases.

Second ingredient: Galerkin projection

The reduced-basis solution un = [u1
n , . . . ,un

n ]T of dimension n ×1 is determined by requiring
that an orthogonality criterion is satisfied.

We first consider the residual of the full-order problem (2.8)

rh(vh) = Iapp (t ;µ)−M(µ)
∂vh

∂t
−A(µ)vh −N(vh ;µ) ∀vh ∈ Xh .

By projecting rh(Vun) onto the space generated by the columns of V ∈ RNh×n we obtain the
identity:

VT rh(Vun) = 0.

This latter gives the RB nonlinear parametrized dynamical system: for t > 0 and µ ∈P find
un(t ;µ) ∈Rn as the solution of the following ODE system:

Mn(µ)
∂un

∂t
+An(µ)un +VT N(Vun ;µ) = Iapp,n(t ;µ), t ∈ (0,T ]

un(0;µ) = VT u0,
(2.10)

where the reduced arrays are given by

Mn(µ) = VT M(µ)V, An(µ) = VT A(µ)V, Iapp,n = VT Iapp .
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Chapter 2. Reduced-order model for electrophysiology

Third ingredient: hyper-reduction techniques

The efficient evaluation of the reduced arrays appearing in (2.10) as time and parameters vary
is still a challenging task in order to achieve an efficient online evaluation of a ROM when
dealing with nonlinear and/or complex nonaffine terms. Indeed, under the assumption of
affine parametric dependence, those arrays can be expressed as the finite sum of products
betweenµ-dependent functions andµ-independent arrays [QMN16]. In the case of nonaffine
parameter dependence, an affine approximation can be recovered through the empirical
interpolation method (EIM), see e.g. [MNP+09, BMN+04]. For instance, given a nonaffine
matrix A(µ), the EIM approximation reads

A(µ) ≈
mE∑
j=1

βA
j (µ)A j

where for any µ ∈P , the coefficients {βA
j (µ)}mE

j=1 are evaluated by solving a linear system of
dimension mE ×mE, arising by the imposition of mE interpolation constraints over a set of
mE magic points selected according to a suitable greedy procedure (see [MNP+09] for further
details). Given this approximation, the reduced matrix can then be obtained by projecting
each µ-independent matrix A j , that is,

An(µ) =
mE∑
j=1

βA
j (µ)A j

n , A j
n = VT A j V.

In this way, computations can be split into an expensive µ-independent offline stage and a
very inexpensiveµ-dependent online stage, to be performed several times during many-query
procedures, such as parameter estimation, data-assimilation and uncertainty quantification.

Unfortunately, when dealing with the nonlinear operator N(·;µ) ∈RNh , evaluating VT N(V·;µ)
would also depend on the FOM size Nh , and would be still a very expensive task. To overcome
this problem, the (discrete) empirical interpolation method (DEIM) can be exploited at each
time-step to handle the µ-dependent nonlinear terms efficiently, as proposed in [CS10].
In particular, the DEIM approximation of a nonlinear operator is computed through the
following steps:

• compute the snapshots matrix of the nonlinear term N:

SN = [N(uh(t (0);µ1);µ1),N(uh(t (1);µ1);µ1), . . . ,N(uh(t (0);µ2);µ2), . . .] ∈RNh×Ns ;

• compute the matrix of basis functions U = [φ1, . . . ,φmD ] by applying the POD technique
on SN ;

• select mD degrees of freedom {i1, . . . , imD } according to the same procedure adopted
for the calculation of the EIM magic points (described in [MNP+09]); in particular, we
construct the index matrix

P = [ei1 , . . . ,eimD
] (ei ) j = δi j .

Given a new µ and the relative reduced solution un at a given time-step, the DEIM approxima-
tion reads as

VT N(Vun ;µ) ≈ VT U(PT U)−1︸ ︷︷ ︸
n×mD

N(PT Vun ;µ)︸ ︷︷ ︸
mD×1

.
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2.2. Reduced-order model

We emphasize that P selects only a subset of indexes from the full-order solution vector: this
means that we do not need to assemble the nonlinear operator on the entire mesh, but only
on the elements related to the degrees of freedom selected by the DEIM algorithm. In the
following we will refer to this group of elements as reduced mesh.
In the case of an implicit time-advancing scheme, also the Jacobian JN of the nonlinear term
has to be assembled efficiently at each Newton step. For the case at hand, we can directly
differentiate the previous formula, yielding

JN (un ;µ) ≈ VT U(PT U)−1︸ ︷︷ ︸
n×mD

JN (PT Vun ;µ)︸ ︷︷ ︸
mD×mD

PT V︸︷︷︸
mD×n

.

Also in this case the Jacobian is assembled only on the elements of the reduced mesh. Alter-
native solutions can be obtained by considering an extension of DEIM for sparse Jacobians,
known as matrix DEIM; see also the related discussion in [NMA15, ŞS16].

Extension to coupled electrophysiology models

The RB methodology introduced in this Section yields the following reduced dynamical system
(obtained by projecting the problem (2.2)): given µ ∈P find u(`+1)

n and w(`+1)
h such that

(
Mn(µ)

∆t
+An(µ)

)
u(`+1)

n =−VT Ii on(Vu(`)
n ,w(`)

h ;µ)+ Mn(µ)

∆t
u(`)

n + I(`+1)
app,n(µ), `= 0, . . . , Nt −1

PT w(`+1)
h = PT w(`)

h +∆tg(PT u(`)
h ,PT w(`)

h ;µ) `= 0, . . . , Nt −1

u(0)
n = VT u0(µ)

w0
h = w0(µ),

(2.11)
where the nonlinear ionic term is approximated using the DEIM approach:

VT Ii on(Vun ,wh ;µ) ≈ VT U(PT U)−1︸ ︷︷ ︸
n×mD

Ii on(PT Vun ,PT wh ;µ)︸ ︷︷ ︸
mD×1

.

This means that the point-wise approximation of the ODE could be advanced in time only in
those dofs forming the reduced mesh, gaining an additional speedup in the resolution of the
problem.
Alternatively, the ODE could be reduced by applying the RB method, as done for the potential
u. Starting from the snapshots matrix formed by full-order solutions w(t (`);µ), for `= 0, . . . , Nt

and µ ∈ Ptr ai n , the basis functions of the reduced-space X w
n ⊂ Xh are computed by means

of the POD. In the same way, the DEIM method gives an efficient approximation of g(uh ,wh ;µ).

The implicit Euler method leads instead to the following nonlinear dynamical system: given
µ ∈P find u(`+1)

n and w(`+1)
h such that

(
Mn(µ)

∆t
+An(µ)

)
u(`+1)

n +VT Ii on(Vu(`+1)
n ,w(`+1)

h ;µ) = Mn(µ)

∆t
u(`)

n + I(`+1)
app (µ) `= 0, . . . , Nt −1

M(µ)

∆t
w(`+1)

h = M(µ)

∆t
w(`)

h +g(u(`)
h ,w(`)

h ;µ) `= 0, . . . , Nt −1

u(0)
n = VT u0(µ)

w(0)
h = w0(µ).

(2.12)
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Chapter 2. Reduced-order model for electrophysiology

Due to the presence of the nonlinear term Ii on(·, ·;µ), we use the Newton method as follows:
while ‖δı

un
‖ < εtol , we solve

Jn

([
u(`+1)

n,ı

w(`+1)
h,ı

])[
δı

u,n

δı
w

]
= rn

([
u(`+1)

n,ı

w(`+1)
h,ı

])
,

[
u(`+1)

n,ı+1

w(`+1)
h,ı+1

]
=

[
u(`+1)

n,ı

w(`+1)
h,ı

]
+

[
δı

u,n

δı
w

]
ı = 1, . . . , (2.13)

with u(`+1)
n,0 = u(`)

n and w(`+1)
h,0 = w(`)

h . The linear part of the reduced Jacobian matrix Jn and of
the reduced residual vector rn appearing in (2.11) are obtained by the Galerkin projection of
respectively the matrix (2.6) and (2.7) on the matrix V, as shown previously.

By combining all these tools we are able to obtain a robust offline/online decomposition
yielding the computational speedup needed in a many-query context. During the offline
phase an affine decomposition of the nonaffine and nonlinear terms is developed, the con-
struction of the basis functions is performed and the reduced matrices are assembled. These
computational expensive tasks are performed only once, then an inexpensive online phase,
consisting in the ROM evaluation, can be performed for each new µ ∈P . At each time-step
the ROM query required only to assemble the nonlinear terms on the reduced mesh and to
solve the linear system (2.11) (or the nonlinear system (2.12)). We sum up this POD-DEIM
approach in Algorithm 1.

2.3 Localized Reduced basis method

In complex applications such as the ones arising from cardiac electrophysiology, the dimen-
sions n and mD of the ROM, and thus the computational cost of each online query, do not yield
a considerable speedup. This is due the fact that n and mD are not considerably small, because
of the great variability of the electrical potential evolution when different model parameters
are considered. For this reason, also memory issues affect the offline procedure, preventing a
positive trade-off between offline and online phases. A possible way to overcome these issues
is to rely on multiple local reduced-subspaces when performing the RB approximation of the
PDE solution and the DEIM approximation of the nonlinear term. These subspaces are built
during a computationally intense offline procedure formed by the following steps:

1. the snapshots matrix Su (defined in (2.9)) is partitioned into Nc submatrices (clusters) Sk
u ,

k = 1, . . . ,k: each column of Su is assigned to a cluster accordingly to a given criterium.
In the same way, the snapshots matrix SI of the nonlinear term is partitioned into Nc

submatrices Sk
I , k = 1, . . . ,k;

2. the construction of the localized basis functions to express the problem solution (and
respectively the nonlinear term) is performed through the POD technique applied to
each one of the Nc submatrices Sk

u (Sk
I ), k = 1, . . . , Nc ; the resulting basis functions are

stored in the corresponding matrices Vk (Uk ), k = 1, . . . , Nc ;

3. the reduced matrices and vectors forming the reduced system are computed by means
of the Galerkin projection onto Vk for each cluster k = 1, . . . , Nc .

The online query is then performed using the local RB matrices and vectors and local DEIM
approximation associated to the reduced-subspace selected by the given criterium used in
step 1. This reduction approach was firstly proposed in [AZF12] and in [PBW+14], only for the
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2.3. Localized Reduced basis method

Algorithm 1 Standard POD-DEIM procedure

1: procedure [ ROM ARRAYS] = OFFLINE(FOM ARRAYS,Ptr ai n ,εtol )
2: Full-order matrices:
3: {βM

j (µ),M j } ← affine decomposition of M(µ)

4: {βA
j (µ),A j } ← affine decomposition of A(µ)

5: {βapp
j (µ)Iapp, j } ← affine decomposition of Iapp

6: for µ ∈ Ptr ai n do
7: for `= 1, . . . , Nt do
8: Su = [Su ,u(`)

h (µ)];

9: SI = [SI ,Ii on(u(`)
h ,w(`)

h ;µ)];
10: end for
11: end for
12: V ← POD(Su ,εtol );
13: U ← POD(SI ,εtol );
14: P ← DE I Mi ndi ces(U);
15: Reduced-order matrices:
16: {Mn, j , An, j , (Iapp,n) j } ← projection of the full order matrices onto V
17: end procedure
18:

19: procedure [ un ] = ONLINE QUERY(ROM ARRAYS,µ, un,0, PT w0)
20: reduced-order matrices:
21: Mn(µ) =∑

j β
M
j (µ)Mn, j ;

22: An(µ) =∑
j β

A
j (µ)An, j ;

23: Iapp,n =∑
j β

app
j (µ)(Iapp,n) j ;

24: for `= 1, . . . , Nt do
25: assemble over the reduced mesh Ii on(PT Vu(`)

n ,PT w(`)
h ;µ);

26: DEIM approximation ← VT U(PT U)−1Ii on(PT Vu(`)
n ,PT w(`)

h ;µ);

27: u(`+1)
n ← solve linear system (2.11);

28: end for
29: end procedure

DEIM approximation of the nonlinear terms. In the following we will apply this methodology in
the context of electrophysiology, covering all the possible different strategies for the selection
of subspaces subdivision.

Time-based subdivision

Since the system dynamics consists of a traveling front characterizing the depolarization
mechanism of the electrical potential, a natural subdivision in clusters of Su could be obtained
by considering different temporal windows. With this aim, we introduce a coarse partition of
the time interval (0,T ) into Nc windows (τ(k),τ(k+1)) of length ∆τ= K∆t , with k = 0, . . . , Nc −1
and K > 1 (a sketch is reported in Fig. 2.2).

In this case the time-step t (`) becomes the cluster indicator, that is, each solution u(`)
h (µ) is

assigned to a specific cluster k if t (`) ∈ (τ(k−1),τ(k)] (see Figure 2.3).
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t (0)
T

t (1) t (2) t (3) t (K ) t (2K ) t (3K )

τ(0) τ(1) τ(2) τ(3)

Figure 2.2 – A partition of the time interval in windows of length ∆τ= K∆t , K = 4.
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Figure 2.3 – Example of snapshots time-based classification.

Then, the matrices Vk ∈ RNh×nk , k = 1, . . . , Nc , which collect the localized basis functions
computed by the POD technique, enable to approximate the full-order solution as

u(`)
h (µ) ≈ Vk u(`)

nk
(µ) with k s.t . t (`) ∈ (τ(k−1),τ(k)].

Similarly, the matrices Uk ∈RNh×mD,k , k = 1, . . . , Nc containing the localized basis functions of
the DEIM approximation, allow to express the non-linear term as

Ii on(u(`)
n ,w(`)

h ;µ) ≈ VT
k Uk (PT

k Uk )−1︸ ︷︷ ︸
nk×mk

Ii on(PT
k Vk u(`)

n ,PT
k w(`)

h ;µ)︸ ︷︷ ︸
mk×1

with k s.t . t (`) ∈ (τ(k−1),τ(k)].

This approach, summarized in Algorithm 2, is effective if the velocity of the propagation of the
signal is constant with respect to the parameters. If not (e.g. when the conductivity field is
parametrized), similar solutions could be assigned to different clusters, affecting the overall
efficiency of the proposed localized-ROM.

Parameter-based subdivision

An alternative approach is obtained by considering the vector of parameters as clusters indi-
cator, that is, by assigning each solution u(`)

h (µ) of Su to a specific cluster k if µ ∈Pk , where
P =∪kPk is a suitable subdivision of the parameter space (see Figure 2.4). Except for this new
criterium used for subdividing the snapshots matrix Su , the offline procedure is very similar
to the one proposed in Algorithm 2: for each cluster the basis functions of the solution and of
the nonlinear term are computed through the POD technique and consequently stored (see
Algorithm 3).
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2.3. Localized Reduced basis method

Algorithm 2 Offline procedure: time-based approach

1: procedure [ ROM ARRAYS] = OFFLINE(FOM ARRAYS,Ptr ai n ,εtol ,Nc )
2: Loop over each cluster:
3: for k = 1, . . . , Nc do
4: for µ ∈ Ptr ai n do
5: for t (`) ∈ (τ(k−1),τ(k)] do
6: Sk

u = [Sk
u ,u(`)

h (µ)];

7: Sk
I = [Sk

I ,Ii on(u(`)
h ,w(`)

h ;µ)];
8: end for
9: end for

10: Vk ← POD(Sk
u ,εtol );

11: Uk ← POD(Sk
I ,εtol );

12: Pk ← DE I Mi ndi ces(Uk );
13: Reduced-order matrices:
14: {M j

nk
, A j

nk
, I j

app,nk
} ← projection of the full order matrices onto Vk

15: end for
16: end procedure

The problem is then shifted to finding the optimal subdivision {Pk }Nc

k=1 to obtain low dimen-
sional localized-ROMs. A sequential partitioning has been firstly proposed in [HDO11], where
the parameter domain is subdivided using grid-adaptive refinement until each partition satis-
fies a given accuracy and size of the local reduced space. This procedure could easily lead to a
high number of clusters, thus yielding high offline computational costs. Moreover, this parti-
tioning also neglects the possibility that different parameter could generate similar solutions
for different time-steps. In cardiac electrophysiology an approach for the subdivision of the
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Figure 2.4 – Example of snapshots parameter-based classification.
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parameter domain has been first proposed in [YV16]: it is based on the empirical observation
of the approximation error between the full-order model and a POD-DEIM ROM.
Given a set of training points Ptr ai n , for each µk ∈ Ptr ai n a localized POD-DEIM ROM is built
from the snapshots matrix:

Sk
u = [uh(t (0),µk ),uh(t (1),µk ), . . . ,uh(t (Nt ),µk )].

This construction of the localized ROMs might generate a high number of small subregions
and similar drawbacks of the sequential partitioning proposed in [HDO11]. To avoid the high-
memory consumption drawback, an informed exploration of the parameter space should be
performed. The parameters that mainly affect the solution of the problem should be accurately
sampled, by means e.g. of a sparse grid [BG04]. Numerical tools for the data-driven explo-
ration of the parameters space will be presented in Chapter 4. Moreover, suitable modification
of the greedy algorithm should be investigated: efficient ROM error surrogates, developed in
Chapter 3, can be used in replacement of the non available error bounds during the iterative
basis construction.

Algorithm 3 Offline procedure: parameter-based approach

1: procedure [ ROM ARRAYS] = OFFLINE(FOM ARRAYS,Ptr ai n ,εtol ,Nc )
2: Loop over each cluster:
3: for k = 1, . . . , Nc do
4: for µ ∈Pk do
5: for `= 1, . . . , Nt do
6: Sk

u = [Sk
u ,u(`)

h (µ)];

7: Sk
I = [Sk

I ,Ii on(u(`)
h ,w(`)

h ;µ)];
8: end for
9: end for

10: Vk ← POD(Sk
u ,εtol );

11: Uk ← POD(Sk
I ,εtol );

12: Pk ← DE I Mi ndi ces(Uk );
13: Reduced-order matrices:
14: {M j

nk
, A j

nk
, I j

app,nk
} ← projection of the full order matrices onto Vk

15: end for
16: end procedure

State-based subdivision

Finally, a general approach based on the current state solution as cluster indicator is pro-
posed. Clustering techniques are unsupervised machine learning techniques [XW05, FHT01],
exploited to subdivide similar snapshots {u(`)

h (µk )}Nc

k=1, ` = 1, . . . , Nt and µ j ∈ Ptr ai n into Nc

clusters (see Figure 2.5).

The clusters are constructed in such a way that the snapshots within each group are similar to
each other, while snapshots in different groups are different from each other with respect to a
chosen metric. The two most popular approaches are the k-means clustering [Llo82, HW79],
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Figure 2.5 – Example of snapshots state-based classification.

which subdivides the snapshots into a selected number Nc of non-overlapping groups, and
the hierarchical clustering [Joh67, WJ63], which explores all the possible subdivisions in a
given dataset (through the so-called dendogram). For the sake of computational efficiency,
in this work we will rely on the former option. In the numerical results we have tested the
k-means algorithm by selecting several different choices of the number Nc of clusters, looking
for the best balance between accuracy and efficiency.

K-means clustering aims to partition the snapshots matrix Su into Nc submatrices {S1
u , . . . ,SNc

u }
in order to minimize the distance between each vector in the cluster and the cluster sample
mean. In other words, its objective is to find:

{S1
u , . . . ,Sk

u} = argmin
Su

Nc∑
k=1

∑
uh∈Sk

u

‖uh −ck
h‖, ck

h = 1

|Sk
u |

∑
uh∈Sk

u

uh .

Here, {ck
h}Nc

k=1 are the so-called centroids selected by the k-means algorithm with respect to
the selected norm ‖ · ‖. Once the offline procedure (Algorithm 4) is completed, a local ROM is
then selected with respect to the current solution of the system uh by minimizing the distance
between uh and the centroids:

k̄ = argmin
k

‖uh −ck
h‖. (2.14)

The main advantage of this approach is the automatic detection of the similarities between the
snapshots performed by the k-means algorithm, which thus fixes the risk of misclassification
present in the time- and parameter-based localization strategies.
The additional cost of solving the minimization problem (2.14) decreases when the reduced
arrays are considered: indeed the objective in (2.14) can be rewritten as:

‖Vun −ck
h‖ = ((Vun −ck

h)T X−1(Vun −ck
h))

1
2 , (2.15)

where X ∈RNh×Nh is a symmetric positive definite matrix defining the chosen metric. We then
rewrite the right-hand side of (2.15) as

((Vun −ck
h)T X−1(Vun −ck

h))
1
2 = (uT

n (VT X−1VT )un −2uT
n (VT X−1ck

h)+‖ck
h‖2)

1
2 ,
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Algorithm 4 Offline procedure: state-based approach

1: procedure [ ROM ARRAYS] = OFFLINE(FOM ARRAYS,Ptr ai n ,εtol ,Nc )
2: Clustering construction:
3: for µ ∈ Ptr ai n do
4: for `= 1, . . . , Nt do
5: Su = [Su ,u(`)

h (µ)];
6: end for
7: end for
8: {ck

h} ← kmeans(Su)
9: Loop over each cluster:

10: for µ ∈ Ptr ai n do
11: for `= 1, . . . , Nt do
12: k̄ = argmink ‖uh −ck

h‖
13: Sk̄

u = [Sk̄
u ,u(`)

h (µ)];

14: Sk̄
I = [Sk̄

I ,Ii on(u(`)
h ,w(`)

h ;µ)];
15: end for
16: end for
17: for k = 1, . . . , Nc do
18: Vk ← POD(Sk

u ,εtol );
19: Uk ← POD(Sk

I ,εtol );
20: Pk ← DE I Mi ndi ces(Uk );
21: Reduced-order matrices:
22: {M j

nk
, A j

nk
, I j

app,nk
} ← projection of the full order matrices onto Vk

23: end for
24: end procedure

in order to separate the constant term from the other ones depending only on the RB solution.
As a consequence, during the offline phase the norms ‖ck

h‖2 can be precomputed for each

k = 1, . . . , Nc and the reduced matrices VT X−1VT and VT X−1ck
h can be preassembled. Then,

the online evaluation of the k norms (2.15) can be performed efficiently only relying on low-
dimensional arrays.

2.4 Test case: Monodomain equation

In order to highlight the main features of the proposed methods we analyze the different local-
ized RB strategies on a two-dimensional monodomain model (1.4) describing the behavior of
the cardiac potential in presence of an ischemic region over a simplified slab of the myocardial
tissueΩ= (0,1)2. We assume an isotropic conductivity tensor D0 =σv (x;µ)I, being σv (x;µ) a
non-homogeneous parametrized conductivity field:

σv (x;µ) =σh g (x;µ)+σi (1−g (x;µ)) g (x;µ) = 1−exp

(
− (x1 −µ1)2 + (x2 −µ2)2

2µ2
3

)
, x ∈Ω,

where µ1 ∈ [0.25,0.75] and µ2 ∈ [0.25,0.75] indicate the position of the center of the ischemia,
and µ3 ∈ [0.05,0.4] its size. Here, we neglect the role of the recovery variable w : as a conse-
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2.4. Test case: Monodomain equation

quence, the model is only able to describe depolarization patterns, which are represented in
Figure 2.6 for different choices of the parameters vector µ= (µ1,µ2,µ3)T .

Therefore, the model consists of the following parabolic nonlinear PDE: givenµ ∈P ⊂R3, find
u = u(x,t ;µ) s.t.:

∂u

∂t
−∇· (σv (x;µ)∇u)+ Ii on(u;µ) = Iapp (x,t ) x ∈Ω, t ∈(0,T ]

σv (x;µ)∇u ·n = 0 x ∈∂Ω, t ∈(0,T ]

u(x,0;µ) = u0 x ∈Ω,

(2.16)

where Ii on(u;µ) = g (x;µ)u(u −a)(u −1) is the ionic current and

Iapp (x,t ) =Cexp

(
−x2

1 +x2
2

0.02

)
1[0,∆t ](t )

the initial applied stimulus. Here 1 denotes the indicator function, defined as

1(a,b)(t ) =
{

0 if t 6∈ (a,b)

1 if t ∈ (a,b).

Figure 2.6 – Depolarization time [ms] for six different values of the parameter vector µ. The
velocity of the depolarization front considerably slow down, when the signal reaches the
ischemic region.

This test case will be adopted for the comparison of different numerical strategies for the
construction of reduced-order models in cardiac electrophysiology. Despite of all the simplify-
ing assumptions that we have made, the solution of problem (2.16) shows a great variability
due to the different front propagation patterns caused by the ischemic region location and
dimensions (see Figure 2.6). As a consequence, this problem represents a very challenging
test case for developing efficient reduction techniques.
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Chapter 2. Reduced-order model for electrophysiology

In this case, the matrix A(µ) is non-affine, because of the presence of the term g (x;µ). Given
that g(µ) is the vector obtained by evaluating g (x;µ) on the mesh nodes, the affine approxima-
tion of g (µ) is given by the discrete empirical interpolation method (DEIM):

gDE I M (µ) =
60∑

j=1
β j (µ)ζ j .

Here, ζ j , j = 1, . . . ,60, are the basis functions of the non-affine term g , computed using the
POD techniques. The number of basis functions mD = 60 satisfies the following criterium (see
Figure 2.7):

mD = argmin
k

( ∑k
i σi∑Ns

i σi

≥ 0.99.

)
,

Then, an affine approximation of the matrix A(µ) follows:

A(µ) =
60∑

j=1
β j (µ)A j

where the A j , j = 1, . . . ,60, are full-order matrices assembled considering as diffusive term
(σh −σi )ζ j +σi . In this way, a suitable offline-online decomposition is achievable by adopting
the RB method for the approximation of the solution u, equipped with an hyper-reduction
technique in order to manage the nonlinear term.

g(µ) gDEIM (µ)

Figure 2.7 – The behavior of the ratio between the truncated and the total cumulative sums of
the singular values shows how much variability of g is captured by the POD approximation.
For µ= [0.39,0.26,0.22] we compare the exact vector g(µ) with its DEIM approximation.

2.4.1 POD-DEIM approach

In this subsection we show how the standard approach is not feasible for the solution of this
test case, since the manifold of the solutions is considerably complex. In fact, the lack of
conductivity substantially modify the form of the traveling front, which differs from a param-
eter to another (see the activation times reported in Figure 2.6). This difficulty affects both
the dimensionality of the training set Ptr ai n (database of pre-computed simulations) and
the resulting number of POD-DEIM basis functions (POD tolerance set to εtol = 10−2). With
this aim, we construct different ROMs by varying the dimension Ntr ai n = {5,10,25,50,75,100}
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2.4. Test case: Monodomain equation

of the parameters training set Ptr ai n (the corresponding snapshots matrix Su is formed by
Ns = 300Ntr ai n full-order vectors, being 300 the number of time-steps adopted by the semi-
implicit time-advancing scheme). The numerical results, summarized in Figure 2.8, left, show
that the training set needs to be sufficiently rich (at least Ntr ai n = 75) in order to correctly
approximate the state solution for parameters different from the ones forming the training set.

To test our procedure in the online phase by selecting additional Noob = 25 parameters to
perform the so-called out-of-bag prediction: for each parameter in the set Poob we compute
the maximum, the mean and the integral over (0,T ) of the error with respect to the full-order
solution (see right Figure 2.8). The error continues to decrease when considering higher train-
ing sets (and correspondingly higher snapshots matrices): in particular, by taking Ntr ai n = 100,
the same accuracy required on the training set is reached also on the out-of-bag set Poob .
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Figure 2.8 – Number of basis functions forming the POD-DEIM ROMs on varying the number
of training points (left) and online error in approximating the state solution on Poob (right).
The number of basis function continues to increase when additional snapshots are considered:
this means that there is a great variability in the solution.

The need of this high-dimensional database of pre-computed solution poses non negligible
issues: the construction of the database and of POD-DEIM basis functions are extremely
demanding both in terms of time and memory (even in this simple case we cannot rely on
a common laptop to perform the offline phase). Moreover, the CPU time required for the
online solution increases, as a larger dimensional POD-DEIM ROM is considered. In the case
where the POD-DEIM ROM is built on the snapshots matrix of dimension Nh ×300Ntr ai n ,
with Ntr ai n = 100, we obtain n = 100 basis functions for the solution u and mD = 323 basis
functions for the nonlinear term Ii on . The resulting POD-DEIM ROM gains a speedup of 5.4x
with respect to the full-order approximation: this is mainly due to the high dimensionality
of the reduced mesh used to assemble the nonlinear term during the DEIM-procedure (see
Figure 2.9). In fact, the parametrized ischemic region could be centered in all the different
points of the domain, as shown in Figure 2.6. We need a high number of basis functions
to explain the variability of the nonlinear term, which indeed depends nonlinearly on the
solution uh and also on g(µ).
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Ntr ai n 5 10 25 50 75 100

time LS 0.0370 0.0430 0.0640 0.0900 0.0940 0.0980
time DEIM 1.6880 2.6750 3.4350 4.0020 4.1020 4.1770
total time 1.7250 2.7180 3.4990 4.0920 4.1960 4.2750
speedup 13.3x 8.5x 6.6x 5.6x 5.5x 5.4x

Table 2.1 – Computational time [s] using the standard POD-DEIM approach versus the
dimension of the training sample. The total time is divided between the solution of the low-
dimensional linear system (time LS) and the computation of the nonlinear term approximation
through the DEIM algorithm (time DEIM).

Reduced mesh

Figure 2.9 – Reduced mesh in the case Ntr ai n = 100. A large number of DEIM points are
required to well capture the complexity of the nonlinear term. As a consequence, there is not
a considerable speed up in assembling the nonlinear vector.

2.4.2 Localized POD-DEIM approach

Constructing localized ROMs is a possible way to improve the rather modest speedup (5.4x)
obtained by the standard POD-DEIM approach. The challenge is then to find an optimal crite-
rion to subdivide the snapshots matrix used for the construction of the local basis functions.
A detailed comparison of the different strategies described in Section 2.3 is presented in the
following subsections.

Time-based subdivision

In this first case, the subdivision of the snapshots matrix Su of dimensions Ns = 300Ntr ai n , with
Ntr ai n = 100 is given by considering as cluster indicator the time variable t (`). In particular we
consider Nc = {6,10,15} subdivisions of the time interval (0,T ), and for each localized-ROM
we compare the online approximation error between the full and the reduced-order model
computed on the out-of-bag set Poob (see Figure 2.10, right) and the number of basis functions
required for each cluster (see Figure 2.10,left), as done for the standard POD-DEIM approach.
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Figure 2.10 – Maximum and minimum number of basis functions forming the time-based
localized POD-DEIM ROMs on varying the number of clusters (left). Online error in approxi-
mating the state solution on Poob (right). The clusters corresponding to the initial windows
can be approximated with a low-number of basis function. This is not true for the other time
windows, where the variability of the solution considerably increases.

The cluster which generates the local ROM with the smallest dimensions is the one corre-
sponding to the first window: here the solutions do not show a great variability since the initial
impulse Iapp is not parametrized. As a matter of fact, we end up with n1 = 8 basis functions
for the state solution and m1 = 18 terms for the DEIM approximation of the nonlinear term,
when Nc = 6 windows are considered. By increasing Nc , less basis functions are required in
the initial windows (n1 = 3 and mD,1 = 6 for Nc = 15). Unfortunately the subsequent time
windows contain solutions showing much higher variability, since the fronts are modified
by the various locations of the ischemia. As a consequence, the DEIM approximation of the
nonlinear term is not assembled on a small reduced mesh: for instance, in the case Nc = 6 we
have mD,3 = 156, mD,4 = 227 and mD,5 = 207. There is also a small error propagation, result-
ing from the approximation error arising from the change of local ROMs during the online
simulation. To minimize this error propagation, it is possible to use overlapping windows by
enriching consequently the dimensionality of the local ROMs. Despite of these drawbacks, we
obtain a considerable speedup of 17x, for Nc = 15, which is mainly due to the considerable
computational savings obtained in the initial windows (see Table 2.2 for the complete list of
the results).

Nclust 1 6 10 15

time DEIM 4.1770 1.7600 1.3820 1.2375
total time 4.2750 1.8800 1.4537 1.3548
speedup 5.4x 12.2x 15.8x 17x

Table 2.2 – Computational time [s] using the time-based localized POD-DEIM approach. The
computational bottleneck is mainly represented by the DEIM approximation: high execution
times arise from the assembly of the nonlinear term approximation on the reduced mesh.
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Parameter-based subdivision

In this case we consider instead the subdivision of the snapshots matrix given by considering
the vector of parameters µ as cluster indicator. We take two different subdivisions of the
snapshots matrix Su of dimensions Ns = 300Ntr ai n , with Ntr ai n = 100, based on Nc = 8 or
Nc = 14 clusters (see e.g. Figure 2.11). Moreover, we also test the approach proposed in [YV16],
building a ROM for each parameter in Pcal (we refer to this case as Nc = 100).
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Figure 2.11 – Clusters in the parameters space for Nc = 8.

When we consider Nc = 8 or Nc = 14 we obtain similar results to those given by the previous
approach: there is still a cluster with a large number of basis functions and the out-of-bag error
increases when a large number of clusters is considered. This latter drawback is motivated by
the fact that solutions corresponding to parameters which are on the boundary of a cluster Pk

might be poorly approximated by the localized ROM. Also in this case, clusters overlapping
could represent a possible way to fix the problem, sacrificing the computational efficiency.
Moreover, in this case we are not able to build a substantially low-dimensional localized ROM:
e.g. we end up respectively with 64 (136) basis functions for the DEIM approximation when
Nc = 14 (8) clusters are considered (see Figure 2.12).
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Figure 2.12 – Maximum and minimum number of basis functions forming the parameter-
based localized POD-DEIM ROMs on varying the number of clusters (left). Online error in
approximating the state solution on Poob (right). In this case, there is not a cluster with a very
low-number of basis functions.
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Because of the presence of traveling front solutions, each local ROM built for Nc = 100 has
roughly the same dimensions: nk = {15, . . . ,19} and mD,k = {37, . . . ,48}. Since small variations
in the parameter values induce different traveling fronts, the approximation of the online
solution on the out-of-bag set Poob is affected by a mean error of 3.5% on average. The sensi-
tivity of the solution with respect to the parameters should be better investigated in order to
properly design this approach.

In order to have a resulting speedup of 31.1x, we need to construct 100 localized-ROMs. As
a consequence, the computational resource that is mainly involved is the memory, since
all the RB matrices of dimensions nk ×nk and nk ×mD are not sparse. On the other hand,
as highlighted in Table2.3, the cases Nc = 8 or Nc = 14 seems not to be as promising as the
previous approach.

Nclust 1 8 14 100

time DEIM 4.1770 2.1647 1.716 0.691
total time 4.2750 2.2647 1.8582 0.738
speedup 10.15x 12.4x 15.8x 31.1x

Table 2.3 – Computational time [s] using the parameter-based localized POD-DEIM approach.

State-based subdivision

Finally, we test the k-means algorithm for the clustering of the snapshots matrix Su . We
have tested different numbers of clusters Nc = {4,6,8,10,12,14} in order to obtain a detailed
comparison of the resulting localized-ROMs.
We highlight that the dimensions of localized-ROMs change quite remarkably on different
clusters (see Figure 2.13,left). Moreover, the online error evaluated on the out-of-bag set of
parameters is smaller with respect to the other presented approaches (see Figure 2.13,right).
In fact, the k-mean subdivision is based directly on the similarities of the state solutions: this
means that the online changes from a local ROM to another do not introduce a considerable
approximation error.

As expected, the algorithm performs better in terms of execution times with respect to the time-
based approach (compare the computational times in Table 2.4 with the ones in Table 2.2),
even if at each iteration we have the additional cost of identifying the current cluster, by solving
the minimization problem (2.14).

Nclust 1 4 6 8 10 12 14

time DEIM 4.1770 1.7441 1.5747 1.4566 1.3365 1.2087 1.1392
total time 4.2750 1.9508 1.7170 1.6083 1.4886 1.3950 1.3375
speedup 5.4x 11.8x 13.4x 14.3x 15.45x 16.5x 17.2x

Table 2.4 – Computational time [s] using the state-based localized POD-DEIM approach.

43



Chapter 2. Reduced-order model for electrophysiology

0 5 10 15
0

100

200

300

Nclust

Number of basis functions

maxk (nk )

mink (nk )

maxk (mD,k )

mink (mD,k )

0 5 10 1510−3

10−2

10−1

100

Nclust

Out of bag error

E[err]∫
err

max(err)

Figure 2.13 – Maximum and minimum number of basis functions forming the state-based
localized POD-DEIM ROMs on varying the number of clusters (left). Online error in approx-
imating the state solution on Poob (right). In this case the error propagation is minimized,
because the subdivision given by the k-means is based directly on the snapshots similarities.

By looking at the centroids selected by the algorithm (see Figure 2.14), we notice that a primal
subdivision is done with respect to time (case Nc = 4,6,8). Nevertheless, this approach is more
flexible with respect to the time-based one, because the front propagation velocity is taken
into account by the k-means (the cluster is assigned with respect to the current state). Also the
reduced mesh (see Figure 2.15) takes advantage of this subdivision, showing a good pattern
of sparsity for some clusters. Moreover, by considering more clusters, we have that also the
parameters variation plays an important role: for the case Nc = 12 we have two centroids that
describe two situations where the ischemic region is not on the main diagonal.

2.5 Conclusions

In this Chapter we have tested different strategies to build localized-ROMs for the mon-
odomain model, featuring the presence of an ischemic region parametrized with respect to its
position and dimension. We have highlighted how the standard POD-DEIM approach is not
feasible for the model order reduction of this problem: the large number of training snapshots
in Su , and of resulting basis functions, clearly affects the performance of the POD-DEIM ROM.
As outlined by Table 2.5, this is the worst option in terms of efficiency with respect to the other
proposed localized-ROMs.

Among the proposed localized-ROMs, the parameter-based one with Nc = 100 is the best
option in terms of efficiency, but it suffers from error propagation and memory consumption
(it is indeed the worst option in terms of accuracy and memory consumption).
The state-based localized-ROM is the best option: the k-means algorithm provide a way to
select automatically clusters of snapshots, whose local ROM has a small number of basis
functions; moreover, the propagation of the error is minimized by the fact that there is a
smooth transition from one cluster to another, finally, it features the second best speedup
among the considered schemes.
We have shown that localized-ROM methodology is a promising approach for the efficient
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Ncl ust = 4 Nc = 6 Nc = 8 Nc = 10 Nc = 12

Figure 2.9 – Centroids for the monodomain problem. 31

Nc = 4

Figure 2.14 – Centroids obtained with the k-means algorithm for the monodomain problem
versus the number of clusters Nc . The subdivisions take into account the dependence of the
solution with respect to time and parameters: the two highlighted centroids describe two
situations where the ischemic region is not on the main diagonal.
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Nc = 4 Nc = 6 Nc = 8 Nc = 10 Nc = 12

Figure 2.15 – Reduced meshes for the different clusters
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2.5. Conclusions

Nclust speedup mean error memory consumption

standard POD-DEIM 5.4x 1 ·10−2 9.8 [MB]
time-based LROM (Nc = 15) 17x 1.94 ·10−2 41.9 [MB]

parameter-based LROM (Nc = 14) 15.8x 2.17 ·10−2 49.2 [MB]
parameter-based LROM (Nc = 100) 31.1x 3.41 ·10−2 123.7 [MB]

state-based LROM (Nc = 14) 17.2x 0.87 ·10−2 31.7 [MB]

Table 2.5 – ROMs ranking. We highlight the performances using colors from red (worst) to
green (best).

solution of complex electrophysiology problems. Different classification procedures could
be used for the subdivision of the snapshots matrix and the consequent construction of the
localized-ROMs.
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3 | Surrogate models and error estima-
tion

The goal of this Chapter is to develop kriging-based error surrogate models for the approxima-
tion of the reduction error between a full- and a reduced-order output.
In particular, in Section 3.1 we introduce the error estimation problem and in Section 3.2
we show how to construct a kriging-based surrogate model for the efficient approximation
of a parametrized real-valued quantity. In Section 3.3 we construct the kriging-based ROM
error surrogate (ROMES), exploited for the efficient approximation of the reduction error
between a full- and a reduced-order output. We perform some numerical tests dealing with
the monodomain equation considered in Chapter 2, by giving also a comparison between the
proposed ROMES and the so-called Gaussian Process regression presented in [BGW15b]. Then,
in Section 3.4 we extend the ROMES methodology to the case of time-dependent outputs,
following the approach we have proposed in [PMQ16]. Also in this case we provide some
numerical tests based on the two-dimensional monodomain problem with a parametrized
ischemic region.

3.1 Error indicators

The problems arising in cardiac electrophysiology contain features, such as nonlinearities
and front propagation, which make the construction of efficient ROMs a challenging task, as
shown in Chapter 2. These difficulties arise also in the construction of suitable error bounds,
which are used to guarantee the reliability of the results obtained with a ROM and to construct
efficient greedy strategies for the basis functions computation [QMN16, GP05, RHP08]. The
properties typically required to the error bounds for both the solution or the output are:
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1. to be effictive, meaning that the error bound is capable of approximating from above the
real error in a tight way;

2. to be cheaply computable, which means that the online evaluation of the error bound
has negligible computational costs with respect to the reduced solution approximation.

When unsteady nonlinear parametrized PDEs are involved, it is difficult to ensure these two
properties of the error bounds, due to the many source of errors arising during the solution of
the PDE problem, such as the propagation of the nonlinear term and solution approximation
errors.

The goal of this Chapter it to derive data-fit surrogates models (SM) for the efficient estimation
of the reduction error between a FOM and a ROM output. A data-fit surrogate model is an
interpolation or regression method used for the numerical approximation of an input/output
map. In the literature, the most exploited surrogate models are Gaussian process regression
[RW06, KO01], kriging interpolation [Cre15], polynomial response surfaces [KC96] and artifi-
cial neural networks [Hay04]. The surrogate models can be used instead of a FOM or a ROM
to directly evaluate an input/output map in a very cheap way. However, data-fit SMs are not
physics-based models, since they treat the forward problem as a black box. For this reason they
could suffer from the curse of dimensionality and they could be less accurate in approximating
the output with respect to projection-based ROMs. We instead propose to adopt data-fit SMs
for the approximation of the mapping from the input parameters to the reduction output error.
These ROM error surrogates (ROMESs) can be used either for error estimation instead of the
standard error bounds or for model calibration (the ROMES estimation of the reduction error
provides a correction of the bias introduced by the reduced-order output).

Since we are interested in solving parameter estimation and uncertainty quantification (UQ)
problems using ROMs, it is crucial to quantify the reduction error to avoid biased overall
results. These many query problems require multiple evaluations of the underlying forward
model in order to compute some outputs of interest. Clearly, the efficiency of these procedures
is considerably improved by substituting the FOM with a ROM. However the approximation
error arising from the replacement of the FOM with a ROM usually affects the evaluated
outputs and as a matter of fact the final solution of the parameter estimation or UQ problem.
The ROMES model calibration proposed in this Chapter is thus crucial to recover the accuracy
in the overall results without compromising the computational efficiency reached by the ROM.

3.2 Surrogate models for real-valued output

We consider the full-order input/output relationship:

µ→ uh(t ;µ) → yh(µ),

which maps the input vector of parametersµ ∈P ⊂Rd into a real valued output yh(µ) through
the solution uh(t ;µ) of a parametrized PDE.
In this Section we show how to construct surrogate models of the input/output relationship

µ→ ys(µ)+εs(µ),
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where ys(µ) is the surrogate output prediction and εs(µ) its output error. The main features
of the SMs are the computationally efficiency and the direct characterization of εs(µ), in
particular of the prediction error variance σ2

s . Unfortunately, SMs suffer from the curse of
dimensionality and they might present a lack of accuracy since they completely ignore the
underlying physics. These SMs will be adopted in this work for the construction of ROM
error surrogates and also for the efficient solution of parameter estimation and uncertainty
quantification problems.
We start from a basic introduction of the statistical tools which will be used in this Chapter for
the SM formulation.

3.2.1 Problem formulation

Let (Θ,F ,P) be a probability space, the function Y :Θ→R is a real-valued random field of the
generic output yh(µ). Given Y , we can associate a continuous probability density function
(pdf) f (Y ), which is a function describing the likelihood for Y to take a given value y . Instead
of working directly with f (Y ) it is usually convenient to rely on some indicators, such as the
expected value of Y :

E[Y ] =
∫
Θ

y f (y)d y,

and the variance of Y
Var(Y ) = E[(Y −E[Y ])2].

Finally, given two random variables Y and Z , we can define their covariance as:

Cov(Y , Z ) = E[(Y −E[Y ])(Z −E[Z ])].

In order to construct a surrogate model for the unknown random field {Y (µ),µ ∈ P } we
consider a set of full-order realizations

{yh(µ1), yh(µ2), . . . , yh(µNtr ai n−1), yh(µNtr ai n
)},

given at Ntr ai n parameters in Ptr ai n = {µ1, . . . ,µNtr ai n
}.

The aim of surrogate modeling is to construct a statistical model ys(µ) of the output as accurate
as possible, by properly combining the available full-order realizations. In this setting, the
choice of Ptr ai n is an important issue for the construction of an accurate SM: a review of the
possible strategies can be found in [RW06, SWN13, QHS+05].
In the following we recall the definitions and the algorithms for the construction of kriging-
based surrogate models. For a complete introduction on this methodology see e.g. [Cre15].

3.2.2 Kriging interpolation

The kriging method is a technique of statistical inference for spatially-dependent data. The
goal is to infer the random field {Y (µ), µ ∈P }, starting from a given set of partial observation
of the full-order output {yh(µ),µ ∈ Ptr ai n} with Ptr ai n = {µ1, . . . ,µNtr ai n

}. With respect to the
standard geophysical applications, in our case the spatial data are represented by the parame-
ters.

We assume that Y (µ) is a second-order stationary and isotropic random process, that is:

51



Chapter 3. Surrogate models and error estimation

1. the mean is constant with respect to µ ∈P ,

E[Y (µ)] = mY ,

2. the variance and the covariance depend only on δ= ‖µα−µβ‖,

Cov(Y (µα),Y (µβ)) = c(µα,µβ) = c(δ), µα,µβ ∈P ,

Var(Y (µα)−Y (µβ)) = E[(Y (µα)−Y (µβ))2] = 2γ(δ), µα,µβ ∈P ,

where c and γ are the covariogram and the variogram, respectively. These two functions
are related via the following relationship:

γ(δ) = c(0)− c(δ) ∀δ ∈Rd .

Given a sample of known outputs of the random process {yh(µq )}Ncal
q=1 , the kriging method

requires first to identify the covariance structure of Y (µ) or, in other words, to find a model
for the variogram γ. Then, the prediction ys(µ0) is given by the best linear unbiased predictor
(BLUP) of {Y (µ0)}, for each new µ0 ∈P , which is a linear combination of known data:

ys(µ0) =
Ntr ai n∑

q=1
λq (µ0)yh(µq ).

The weights λq (µ0) are obtained by imposing that the mean square error of ys(µ0) is mini-
mized, i.e.,

[λ1(µ0), . . . ,λNtr ai n (µ0)]T = arg min
λ1,...,λNtr ai n

E
[
(Y (µ0)− ys(µ0))2] , (3.1)

under the constraint that ys(µ0) is unbiased, that is

E[(ys(µ0)] = E[Y (µ0)] = 0. (3.2)

The weights can then be determined as solution of a linear system of the form:
γ(0) . . . γ(‖µ1 −µNtr ai n

‖) 1
...

. . .
...

...
γ(‖µNtr ai n

−µ1‖) . . . γ(‖µNtr ai n
−µNtr ai n

‖) 1
1 . . . 1 0




λ1
...

λNtr ai n

υ

=


γ(‖µi −µ0‖)

...
γt (‖µNtr ai n

−µ0‖)
1

 . (3.3)

This system is derived by imposing that the gradient of the Lagrangian function corresponding
to (3.1)-(3.2) is null; the detailed derivation of the linear system is shown in Section 3.4.1 for
the more general case of functional data. This method also provides in a closed form the
prediction variance, which is crucial to construct an estimate of the prediction error εs(µ0).
Therefore, the kriging variance is defined as

σ2
s (µ0) =

Ntr ai n∑
q=1

λq (µ0)γ(‖µ0 −µq‖)−υ. (3.4)

To compute the components appearing in the arrays of the system (3.3), a (theoretical) semi-
variogram model γ(δ) must be provided. Usually, the choice is restricted to a family of
parametrized models exploited in the literature, such as [CD09]:
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3.3. Reduced-order model error surrogate for real-valued output

• the exponential model

γ(δ; [θ1,θ2]) =
{
θ1

(
1−exp

(
− δ
θ2

))
δ> 0

0 δ= 0;
(3.5)

• the spherical model

γ(δ; [θ1,θ2]) =
θ1

(
1.5 δ

θ2
−0.5

(
δ
θ2

)3
)

δ≤ θ2

θ1 δ> θ2;
(3.6)

• the gaussian model

γ(δ; [θ1,θ2]) =
θ1

(
1−exp

(
−

(
δ
θ2

)2
))

δ> 0

0 δ= 0.
(3.7)

The choice of the semi-variogram model should reflect the expected smoothness of the
random field being estimated. In particular, the previous three parametric models have
different behaviors around the origin, modeling different correlation patterns with respect to
the distance. Once a (theoretical) semi-variogram model is chosen, the two parameters [θ1,θ2]
are fitted using a least square approach from available data. The fitting is usually performed
on the empirical semi-variogram estimate, under the form:

γ̂(δ) = 1

2|N (δ)|
∑

i , j∈N (δ)
(y(µi )− y(µ j ))2 (3.8)

being N (δ) = {(µi ,µ j ) : ‖µi −µ j‖ = δ}. In practice, the empirical semi-variogram is estimated
at M discrete values of δ: {δ1, . . . ,δM }. Through the values {γ̂(δ1), . . . , γ̂(δM )}, a parametric
semi-variogram model (spherical, exponential or gaussian) is fitted using a least squares
approach.

An example of kriging-based SM for the approximation of the input/output map µ→ y(µ)
will be presented in Chapter 4. The surrogate model, built starting from a finite number of
observations of the full-order output, will be adopted to perform a sensitivity analysis and
uncertainty propagation in an efficient way. However, we will show how the additional source
of error εs(µ) might pollute the results.

3.3 Reduced-order model error surrogate for real-valued output

Using a ROM to evaluate the output of the forward PDE system greatly reduces the cost
entailed by the evaluation of the input/output relationship:

µ→ un(t ;µ) → yn(µ),

which maps the input parameters vector µ ∈P ⊂Rd into a real-valued output yn(µ) through
the solution of the parametrized PDE projected onto the reduced space.
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ROMs are usually preferred to surrogate models, since they are built by requiring the physical
principles fulfilled by the full-order approximation to be still satisfied, into a much lower-
dimensional approximation space. This reduction strategy ensures more accuracy in approx-
imating the output, even if in some cases the computational costs can considerably grow,
as shown in the previous chapter. On the other hand efficient low-dimensional ROM might
introduce an additional source of error:

yh(µ) = yn(µ)+ yh(µ)− yn(µ)︸ ︷︷ ︸
reduction error

∀µ ∈P .

Hence, if the reduction error yh(µ)− yn(µ) is not negligible, the output provided by the ROM is
biased. For this reason, developing an efficient estimate of the reduction error yh(µ)− yn(µ) is
crucial for the construction of an accurate and reliable input/output map based on ROMs. In
the following, we review the possible strategies for error analysis and we propose a ROM error
surrogate. The goal of this section is to construct a statistical output error estimate mROM(µ)
such that:

yh(µ) = yn(µ)+εROM(µ) ∀µ ∈P ,

where εROM(µ) is a random variable with mean mROM(µ) and variance σ2
ROM, representing the

estimation error.

For projection-based ROM, the classical error analysis consists in the evaluation of rigorous,
residual-based a posteriori error bounds ∆y (µ) such that

|yh(µ)− yn(µ)| ≤∆y (µ) ∀µ ∈P .

Starting from the elliptic case [RHP08], error bounds have been derived also for time-dependent
problems [GP05], and some steady nonlinear problems [VPR+03, VP05, Man14]. However, in
the nonlinear time-dependent case we have that:

• the efficient evaluation of the residual of the problem is complicated by the high number
of arrays generated by the discrete empirical interpolation method (DEIM) for the
nonaffine and nonlinear terms;

• the error bounds are functions of the residual and other quantities, such as the stability
factors [MN15], which should be properly estimated for the problem at hand;

• the extension of the error bounds for parabolic PDEs [GP05] to nonlinear problems
requires the assumption of monotonicity of the nonlinear term [GMN+07];

• the output error bound requires the solution of an additional PDE problem (the so-called
dual problem) backward in time [GMN+07] (dual-weighted residual);

• the sign of the error is not approximated;

• the error bounds are often non effective, which means that:

η(µ) = ∆y (µ)

|yh(µ)− yn(µ)| À 1.
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3.3. Reduced-order model error surrogate for real-valued output

For these many reasons, adopting rigorous error bounds for the output correction is not feasi-
ble when nonlinear parametrized PDEs, such as the ones arising in cardiac electrophysiology,
are considered.

We instead look for a statistical model of the reduction error which is unbiased and has low
variance. With this goal, we propose a kriging-based reduced-order model error surrogate
(ROMES), which provides an approximation of the input/reduction-error mapping:

µ→ yh(µ)− yn(µ).

Given a sample of known output reduction errors {yh(µq )− yn(µq )}Ncal
q=1 , the ROMES is con-

structed in the following steps:

1. a semi-variogram modelγ(δ; [θ1,θ2]) is fitted using the empirical empirical semi-variogram
(3.8) estimated at M discrete values {δ1, . . . ,δM };

2. given µ0 ∈ P , the prediction mROM(µ0) is given by the linear combination of known
output errors:

mROM(µ0) =
Ncal∑
q=1

λq (µ0)(yh(µq )− yn(µq )),

and the ROMES variance by:

σ2
ROM(µ0) =

Ncal∑
q=1

λq (µ0)γ(‖µ0 −µq‖)−υ,

where λq and υ are the solutions of the linear system (3.3) with the semi-variogram
model γ fitted at the previous step.

The resulting ROMES can be used to ensure the reliability of the considered ROM or as error
indicator during a greedy procedure. Moreover, the ROMES enables ROM output calibration:
it improves the accuracy of the output evaluation given by a ROM, without loosing efficiency
in the output approximation. In fact, the computational costs of solving the linear system (3.3)
are negligible with respect to the time required by the ROM solution.

This approach could suffer from the curse of dimensionality, and could fail in approximating
small oscillating ROM errors. However, the ROM error is clearly dependent on the selected
parameter vector: it is almost zero if the parameter vector belongs to the training set and
grows as the distance between the selected parameter vector and the training ones increases.
This local structure suggests that the second-order stationary and isotropic assumptions are
verified and that a kriging model is able to capture the most important features of the output
error, as we will show in the numerical results.

Remark 1. The alternative reduction error models proposed in [MPL16, DC15] are out of reach
in the electrophysiology context since it is not possible to provide cheaply computable error
bounds ∆y . The extension of these statistical models to different cheaply physics-based error
indicators represents a possible future investigation.
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Alternative approach: GP regression

An alternative approach for the ROMES construction, adopted e.g. in [BGW15b], consists in
modeling the relationship between the full-order output yh(µ) (response variable) and the
reduced-order output yn(µ) (regressor), omitting the dependence from the input variable
µ. When the outputs of a low fidelity model (in our case a ROM) and of the corresponding
FOM present a well-defined dependence, it is possible to map the low fidelity outputs into
the full-order ones. If the relation between the outputs is linear a simple linear regression can
be fitted, otherwise a regression can be constructed using the kriging method described in
Section 3.2.2 with response variable yh(µ) and input yn(µ). In the literature this approach is
also defined as Gaussian process (GP) regression [RW06].

In particular, given a sample of known full-order outputs {yh(µq )}Ncal
q=1 together with the corre-

sponding reduced-order outputs {yn(µq )}Ncal
q=1 the regression is constructed as follows: given

µ0 ∈P , the prediction mreg(yn(µq )) is obtained as a linear combination of known reduced
output:

mreg(yn(µq )) =
Ncal∑
q=1

λq (yn(µq ))yh(µq ),

and the regression variance becomes:

σ2
reg(yn(µq )) =

Ncal∑
q=1

λq (yn(µq ))γ(‖yn(µ0)− yn(µq )‖)−υ.

As done previously, the weights λq and υ are the solutions of a linear system like (3.3).
Unfortunately, the assumption that a low fidelity model and a FOM have a well-defined
dependence is not verified in general: it usually holds only when low-fidelity models are con-
structed by coarsening the mesh, or employing lower-order finite elements discretization. For
projection-based ROMs the error between the ROM and the FOM could present complicated
patterns (e.g. oscillating reduction errors).

3.3.1 Numerical results

In this section we perform some numerical tests of the developed ROMES methodology for the
approximation of the reduction error. With this aim, we consider as output of the monodomain
model (see the test case 2 in Section 2.4) the activation time:

y(µ) = argmin
t

(
u(x,t ;µ)

∣∣
x=x̄ > 0.9

)
[ms],

where x̄ = (1,0.5) is a point lying on the boundary ∂Ω (see Figure3.1).
The model consists in the following parabolic nonlinear PDE: given µ ∈ P ⊂ R3, find u =
u(x,t ;µ) s.t.: 

∂u

∂t
−∇· (σv (x;µ)∇u)+ Ii on(u;µ) = Iapp (x,t ) x ∈Ω, t ∈(0,T ]

σv (x;µ)∇u ·n = 0 x ∈∂Ω, t ∈(0,T ]

u(x,0;µ) = u0 x ∈Ω,

(3.9)

56



3.3. Reduced-order model error surrogate for real-valued output
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Figure 3.1 – The activation time is calculated as the time when a solid line (u(t ;µ)|x=x̄) crosses
the dotted black line. The solid lines are obtained starting from different parameters values
µ= [µ1,µ2,µ3], representing the location and the size of the ischemic region.

where Ii on(u;µ) = g (x;µ)u(u −a)(u −1) is the ionic current and

Iapp (x,t ) =Cexp

(
−x2

1 +x2
2

0.02

)
1[0,∆t ](t )

the initial applied stimulus. The conductivity σv (x;µ) is a non-homogeneous parametrized
field:

σv (x;µ) =σh g (x;µ)+σi (1−g (x;µ)) g (x;µ) = 1−exp

(
− (x1 −µ1)2 + (x2 −µ2)2

2µ2
3

)
, x ∈Ω,

where µ1 ∈ [0.25,0.75] and µ2 ∈ [0.25,0.75] indicate the position of the center of the ischemic
region, and µ3 ∈ [0.05,0.4] its size.

In order to test the ROMES method in this context, we consider three ROMs from Section 2.4.1:

• ROM #1 is obtained starting from Ntr ai n = 10 training points and it consists of n = 63
basis functions for the solution and mD = 212 basis functions for the nonlinear term;

• ROM #2 is obtained starting from Ntr ai n = 25 training points and it consists of n = 83
basis functions for the solution and mD = 273 basis functions for the nonlinear term;

• ROM #3 is obtained starting from Ntr ai n = 50 training points and it consists of n = 94
basis functions for the solution and mD = 311 basis functions for the nonlinear term.

For each ROM, we first construct a kriging-based ROMES on a set of Ncal output reduction
errors {yh(µq )− yn(µq )}, q = 1, . . . , Ncal , and then we evaluate its ability in minimizing the
error on a new set of Noob parameter vectors.

Kriging-based ROMES

The construction of an effective kriging-based ROMES is based on the assumptions that the
error is a second-order stationary and isotropic random field. In order to verify these assump-
tions we represent in Figure 3.2 Ncal = 100 parameter vectors with the associated reduction
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error {yh(µq )− yn(µq )}, q = 1, . . . , Ncal , generated by ROM #1. The values yh(µq )− yn(µq ) are
characterized by the different colors of the markers. We observe that high values of the error
are associated to parameter vectors describing ischemic regions located in the bottom part of
the domain and with large size.

The reduction error arises indeed from the different propagation velocities of the FOM and
the ROM, which are particularly affected by the ischemic region. Since we are measuring
the activation time in x̄ = (1,0.5), it is reasonable that the high values of the error are con-
centrated in the bottom part of the domain. Moreover, when the ischemia is small there are
small modification of the front leading to small reduction error. For these reasons, the as-
sumptions of second-order stationary and isotropic random field could be considered verified.

Figure 3.2 – Distribution of Ncal = 100 parameter vectors in the parameter space. We associate
to each dotµq the corresponding value of the reduction error {yh(µq )−yn(µq )}, q = 1, . . . , Ncal ,
represented through different colors of the markers. The discrepancies between the full and
the reduced-order activation times {yh(µq )− yn(µq )}, q = 1, . . . , Ncal , arise form the different
propagation velocities of the FOM and the ROM.

These assumptions are also confirmed by the trend of the empirical semi-variogram estimate
(3.8), represented by the blue dots in Figure 3.3 for different ROMs. In all the cases, the empiri-
cal semi-variogram grows as the distance δ= ‖µi −µ j‖ between the calibration parameters
vectors increases. This means that parameters vectors that are close to each other show similar
values of the error, while parameters vectors that are far from each other present considerably
different values.

An exponential theoretical semi-variogram model (3.5) is fitted on the empirical semi-variogram
data (red solid line). Given the fitted exponential semi-variogram model γ(δ; [θ1,θ2]) and a
set of Ncal output reduction errors, the matrix forming the ordinary kriging system (3.3) is
assembled. For each new value of the parameter vector µ0 the ROMES prediction mROM(µ0)
is computed as a weighted linear combination of known errors.
In order to test the constructed ROMES, we compute the full- and the reduced-order outputs
for a set Poob of Noob = 25 parameters vectors and we compare the output reduction error
yh(µ)− yn(µ) with its corrected version yh(µ)− yn(µ)−mROM(µ). The numerical results,
presented in Figure 3.4, show how the correction is effective in all cases: the kriging model
gives an additive correction to the ROM output, which well captures the output bias.
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Figure 3.3 – Empirical variogram (blue dots) and fitted exponential semi-variogram γ(δ;θ)
(solid line)

Moreover, the corrected output yn(µ)+mROM(µ) given by ROM #1 is even more close to
the full-order output yh(µ) than the reduced-output yn(µ) given by ROM #3 (which is the
considered ROM with the largest dimensions). This means that the inexpensive ROMES
enables to rely on a low-dimensional ROM, such as ROM #1, without considerably affecting
the output evaluation.
In order to quantify the performance of the proposed kriging-based ROMES, we compute for
each µ ∈ Poob the effectivity index:

η(µ) = |mROM(µ)|
|yh(µ)− yn(µ)| ∀µ ∈ Poob .

If η(µ) is much larger or smaller than one, then the ROM surrogate model is not able to
reproduce correctly the reduction error. On the other hand, values of η(µ) close to one
indicate that the error surrogate well approximates the reduction error. For each µ ∈ Poob

we have computed η(µ) on varying the considered ROM and the size of the calibration set
used for the ROMES construction. The boxplots representing the distributions of η(µ) in the
different cases are collected in Figure 3.5.
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Figure 3.4 – Out-of-bag prediction (Noob = 25) yn(µ) (blue dots) and yn(µ)+mROM(µ) (red
crosses) versus yh(µ) for each µ ∈ Poob . The comparison is also done with respect to different
ROMs (from left to right). In all cases, the ROMES correction effectively correct the error
between the FOM and the ROM.
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Figure 3.5 – Boxplots of the efficiency index η(µ), µ ∈ Poob , distributions obtained on varying
the calibration set for the ROMES construction and the ROMs dimensions

In all cases the median (red line) is almost one, confirming that the ROMES provides a good
approximation of the error. As expected, the variability of η described by the height of each
boxplot decreases when larger calibration sets are considered.

Finally, if we also consider the kriging error (described by the variance σ2
ROM(µ) defined in

(3.4)), the performance of the proposed kriging-based ROMES can be quantified by computing
the confidence band

[mROM(µ)−2σROM(µ),mROM(µ)+2σROM(µ)] ∀µ ∈ Poob .

The match between the corrected output and the FOM output, represented by the black
line in Figure 3.6, is always contained inside the ROMES confidence bands. Moreover the
variability of the corrected output is much smaller with respect to uncorrected case presented
in Figure 3.4.
For the case at hand we can conclude that the proposed kriging-based ROMES respects all the
desired features of a reduction error model: it is unbiased, it has low variance and it is cheaply
computable.
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Figure 3.6 – Confidence bands of the ROMES corrected output yn(µ)+ mROM, µ ∈ Poob ,
obtained on varying the ROMs dimensions
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3.3. Reduced-order model error surrogate for real-valued output

GP regression

We first check the assumption that the full-order output yh (response variable) presents a
well-defined dependence (e.g. linear or quadratic) from the reduced-order output yn (regres-
sor). With this goal, we represent in Figure 3.7 the couples (yn(µ), yh(µ)) for each µ in the
calibration set Pcal .

When ROM #1 is considered, there is not a simple dependence (e.g. linear) between yn(µ) and
yh(µ). The error yh(µ)− yn(µ) generated by ROM #1, which is the model with the smallest
number of basis functions, affects considerably the reduced input-output map. As a conse-
quence, a regression model is not able to describe successfully the relationship between yh

and yn . Meanwhile, in the case of a ROM #2, we observe that even a linear regression is able to
well describe the relationship between the outputs, and that the variability of the reduction
error is much smaller with respect to ROM #1.
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Figure 3.7 – Scatter plot of 100 values of yn(µ) against yh(µ) in the case of ROM #1 (left) and
ROM #2 (right). The solid red line represents the Gaussian process regression and the dotted
lines the relative confidence intervals. The differences between the blue dots and the black
line represent the reduction error.

Given a new µ0 ∈P , the Gaussian process regression mr eg (yn(µ)) (solid red line in Figure 3.7)
is then used to map each new reduced output yn(µ0) to its corrected value mr eg (yn(µ0)) in
order to minimize the reduction error (i.e. the difference between a blue dot and the black
line). The comparison between the full-order, the reduced-order and the corrected outputs is
presented in Figure 3.8: we highlight that the GP regression is not able to correct the output
when ROM #1 is used.

When a more detailed and computationally costly ROM is considered, such as ROM #2, the
reduced output yn is statistically close to the full-order ones. In this case, the combined use of
the ROM and the GP regression results in an improved accuracy of the output approximation
(as confirmed by the boxplots of the error distribution presented in Figure 3.9).

In conclusion kriging-based ROM error surrogates perform better than the GP regression,
especially when low dimensional ROM are considered.
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Figure 3.8 – Scatter plots of yn(µ) and mreg(yn(µ)) versus the full-order output yh(µ). The
correction of the output given by the GP regression is effective only for ROM #2.
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Figure 3.9 – Box-plots of the distributions of the reduction error |yh(µ)− yn(µ)| and the error
of the corrected output |yh(µ)−mr eg (yn(µ))| when ROM #1 and ROM #2 are considered.

3.4 Surrogate models for time-dependent outputs

In this section we extend the kriging-based ROMES to the case of time-dependent outputs, e.g.
obtained from measurements related to cardiac electrophysiology such as the ECG signal and
the intracardiac catheter recording along the endocardium. These outputs will be considered
in Chapter 6 and 7 as inputs of the data-assimilation procedures for state and parameter
estimation.

A time dependent output can be described as a vector, whose elements are given by

y (`)
h = Hu(`)

h `= 1, . . . , Nt ,

where Nt is the number of time-steps of the chosen time-advancing scheme for the resolution
of a parametrized PDE of interest and H an array corresponding to the full-order discretization
of an observation operator.
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3.4. Surrogate models for time-dependent outputs

A reduced-order model provides an efficient way to evaluate the output:

y (`)
n = Hnu(`)

n `= 1, . . . , Nt ,

where u(`)
n is the solution of reduced-order system approximating the parametrized PDE of

interest and Hn the reduced observation operator obtained by projecting H onto the reduced
space. As in the real-valued output case, a low-dimensional ROM might introduce a non
negligible reduction error, which can be modeled as:

y (`)
h (µ) = y (`)

n (µ)+ y (`)
h (µ)− y (`)

n (µ)︸ ︷︷ ︸
reduction error

`= 1, . . . , Nt , ∀µ ∈P .

In this time-dependent case it is not possible to simply rely on the strategies developed for the
real-valued output. In fact, at each time step we have not only the error arising from the ROM
approximation but also the propagation of the errors coming from the previous time-steps.
For example, a regression model could be used to describe the ROM error at each time-step,
but it is not possible to take into account in this model the error propagation. For this reason,
we develop a kriging-based approach for the approximation of the vector of reduction errors:

µ→ {y (`)
h (µ)− y (`)

n (µ)}Nt

`=1.

In this way the kriging prediction will directly describe both the components of the output
error, taking into account the propagation of the error committed at each time-step. For the
derivation of the kriging error surrogate, we model the error vector as a functional random
field {χt (µ), µ ∈P }, that is, a set of (functional) random variables indexed by µ ∈P , taking
values in L2(a,b), with (a,b) ⊆ (0,T ).

In this section, we recall the definitions of functional kriging method and the corresponding
algorithm, which will be then adopted to construct a ROMES for time-dependent outputs. For
an introduction see e.g. [GDM11, MSDR13].

3.4.1 Kriging for functional output

We assume that χt (µ) is a second-order stationary and isotropic random process, that is:

1. the mean and the variance are constant with respect to µ ∈P ,

E[χt (µ)] = mχ(t ), V ar [χt (µ)] =σ2
χ(t ), t ∈ (a,b);

2. the covariance depends only on the lag δ= ‖µα−µβ‖,

Cov(χt1 (µα),χt2 (µβ)) = ct1,t2 (µα,µβ) = ct1,t2 (δ), µα,µβ ∈P , t1, t2 ∈ (a,b);

moreover, if t1 = t2 = t , we denote by ct (δ) = ct1,t2 (δ).

Given a sample of known functions of the random process {χt (µq )}Ncal
q=1 , the best linear unbi-

ased predictor (BLUP) of {χt (µ0)}, for each new µ0 ∈P , is given by the linear combination

χ̂t (µ) =
Ncal∑
q=1

λq (µ)χt (µq ) ∀µ ∈P
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Chapter 3. Surrogate models and error estimation

whose weights are obtained by imposing that the mean square error of χ̂t (µ0) is minimized,
i.e.,

[λ1(µ0), . . . ,λNcal (µ0)]T = arg min
λ1,...,λNcal

∫ b

a
V ar

[
χ̂t (µ0)−χt (µ0)

]
d t (3.10)

under the constraint that χ̂t (µ0) is unbiased, that is

E[χ̂t (µ0)−χt (µ0)] = 0. (3.11)

Finding the BLUP thus yields a constrained quadratic programming problem to be solved (for
each µ0):

V ar (χ̂t (µ0)−χt (µ0)) =
Ncal∑

q,p=1
λq (µ0)λp (µ0)ct (µq ,µp )+ ct (µ0,µ0)−2

Ncal∑
q=1

λq (µ0)ct (µi ,µ0)

(3.12)

E[χ̂t (µ0)−χt (µ0)] =
Ncal∑
q=1

λq (µ0)E[χ̂t (µq )]−E[χ̂t (µ0)] = E[χ̂t (µ0)]

(
Ncal∑
q=1

λq (µ0)−1

)
thanks to assumption 1. Denoting by

L (λ1, . . . ,λNcal ,υ) =
∫ b

a
V ar (χ̂t (µ0)−χt (µ0))d t +υ

∫ b

a
E[χ̂t (µ0)d t −χt (µ0)]

the Lagrangian functional associated to problem (3.10)–(3.11) and by requiring that the gradi-
ent of the Lagrangian function L is null, we get the following linear system to be solved, for
each µ0:

∫ b
a ct (µ1,µ1)d t . . .

∫ b
a ct (µ1,µNcal

)d t 1
...

. . .
...

...∫ b
a ct (µNcal

,µ1)d t . . .
∫ b

a ct (µNcal
,µNcal

)d t 1
1 . . . 1 0



λ1
...

λNcal

υ

=


∫ b

a ct (µi ,µ0)d t
...∫ b

a ct (µNcal
,µ0)d t

1

 .

Thanks to assumption 2, ct (µq ,µp ) =Cov(χt (µq ),χt (µp )) = ct (‖µq −µp‖) so that, by denoting

γt (δ) = ct (0)− ct (δ),

the previous linear system can be equivalently rewritten as:
∫ b

a γt (0)d t . . .
∫ b

a γt (‖µ1 −µNcal
‖)d t 1

...
. . .

...
...∫ b

a γt (‖µNcal
−µ1‖)d t . . .

∫ b
a γt (‖µNcal

−µNcal
‖)d t 1

1 . . . 1 0



λ1
...

λNcal

υ

=


∫ b
a γt (‖µi −µ0‖)d t

...∫ b
a γt (‖µNcal

−µ0‖)d t
1

.

(3.13)
Finally, we define the prediction trace-variance σ̂2

χ(µ0) of the functional ordinary kriging as

σ̂2
χ(µ0) =

∫ b

a
V ar (χ̂t (µ0)−χt (µ0))d t .

Using (3.12), we get

σ̂2
χ(µ0) =

∫ b

a

(
Ncal∑

q,p=1
λq (µ0)λp (µ0)ct (µq ,µp )+ ct (µ0,µ0)−2

Ncal∑
q=1

λq (µ0)ct (µi ,µ0)

)
d t . (3.14)
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3.4. Surrogate models for time-dependent outputs

Since {λp (µ0)}Ncal
p=1 and υ are the solution of the linear system (3.13), it holds

∫ b

a

(
Ncal∑
p=1

λp (µ0)ct (µp ,µq )

)
d t =

∫ b

a
ct (µq ,µ0)d t −υ ∀q = 1, . . . , Ncal ,

so that, by substituting this latter relation in (3.12), we finally get

σ̂2
χ(µ0) =

∫ b

a

(
Ncal∑
q=1

λq (µ0)(ct (µq ,µ0)+ ct (µ0,µ0))−2
Ncal∑
q=1

λq (µ0)ct (µq ,µ0)

)
d t −

Ncal∑
q=1

λq (µ0)︸ ︷︷ ︸
=1

υ

=
∫ b

a

(Ncal∑
q=1

λq (µ0) (ct (µ0,µ0)− ct (µq ,µ0))︸ ︷︷ ︸
=γt (‖µq−µ0‖)

)
d t −υ=

Ncal∑
q=1

λq (µ0)γ(‖µq −µ0‖)−υ.

(3.15)

The key feature of this procedure is its computational efficiency: the weights are computed by
solving a linear system of dimensions (Ncal +1)× (Ncal +1), which are the same dimensions
of the kriging-based ROMES for the real-valued output.

3.4.2 ROMES: time-dependent case

The goal of this section is to develop a functional kriging ROMES to approximate the time-
dependent error {y (`)

h (µ0)− y (`)
n (µ0)}, with ` = 1, . . . , Nt , for each new value µ0 ∈ Pcal . The

functional kriging error surrogate is constructed from a given set of observations of the output
{y (`)

h (µ)− y (`)
n (µ),µ ∈ Pcal } with ` = 1, . . . , Nt , Pcal = {µ1, . . . ,µNcal

}, being Ptr ai n ⊂ Pcal . We
underline that these evaluations have to be performed only once, after the ROM has been built
(during the so-called offline phase). In particular, we can choose Pcal such that Ptr ai n ⊂ Pcal so
that we can take advantage of the snapshots already computed for the ROM basis construction.
By doing so, we also ensure not to overestimate the reduction error in those training points.
Under the assumption that χt (µ) is a second-order stationary and isotropic random process,
the ROMES prediction of the error for each new µ0 ∈P is given by:

m(`)
ROM(µ0) =

Ncal∑
q=1

λq (µ0)(y (`)
h (µq )− y (`)

n (µq )) `= 1, . . . , Nt ,

where the weights {λq (µ0)}Ncal
q=1 are obtained by solving the linear system (3.13). As done in the

previous case, we can also compute in a closed form the ROMES variance

σ2
ROM(µ0) =

Ncal∑
q=1

λq (µ0)
∫ b

a
γt (‖µ0 −µq‖)−υ.

3.4.3 Numerical results

In this section we perform some numerical tests of the proposed functional kriging ROMES for
the approximation of the time-dependent output error. With this aim, we consider as output
of the monodomain model (3.9) the vector:

y (`)(µ) = u(x,, t (`);µ)
∣∣∣

x=x̄
, `= 1, . . . , Nt ,
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Chapter 3. Surrogate models and error estimation

where x̄ = (1,0.5) is a point on ∂Ω. Since the real-valued output considered in Section 3.3.1
is a landmark of this vector, the assumptions that the error is a second-order stationary and
isotropic field could be considered verified also in this case. In fact, the different locations
and dimensions of the ischemia affect the error propagation: it is reasonable to assume that
parameters which are close to each other present a similar error vector.

We then construct the functional kriging-based ROMES starting from Ncal samples of the
reduction error {yh(µ)(`) − yn(µ)(`)}Nt

`=1 with µ ∈ {µ1, . . . ,µNcal
}.

As test case, we consider ROM #1 and Ncal = 100 parameter values for the ROMES construction.
We first compute the empirical semivariogram estimate (blue dots in Figure 3.10):

γ̂(δ) = 1

2|N (δ)|
∑

i , j∈N (δ)

∫ T

0
(y(µi )− y(µ j ))2d t .

An exponential theoretical semi-variogram model (3.5) is fitted on the empirical semi-variogram
data (red line). Five random outputs are shown in Figure 3.10 to highlight the effect of the
reduction error and of the ROMES correction. The five corrected outputs are closer to the
full-order one with respect to the reduced-order ones (however, small oscillating errors are
not captured by the model).
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Figure 3.10 – Five random realization of the time-dependent output {y (`)}Nt

`=1 of the mon-

odomain model u(x, t (`);µ)|x=x̄ approximated using the FOM and ROM #1 with and without
ROMES correction (the fitted exponential semi-variogram is reported on the left).
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3.5. Conclusions

In order to evaluate the performances of the functional kriging ROMES we compute the
maximum error

max
`=1,...,Nt

|y (`)
h (µ)− y (`)

n (µ)−m(`)
ROM(µ)| µ ∈ Poob ,

and an approximation of the integral error given by

Nt∑
`=1
∆t |y (`)

h (µ)− y (`)
n (µ)−m(`)

ROM(µ)| µ ∈ Poob ,

where Poob is a random set of parameter values Poob of dimension Noob = 40. In particular
we consider the case when no correction is provided (m(`)

ROM(µ) = 0) and the case when a
functional kriging error surrogate is adopted (three different ROMESs have been considered
on varying the dimension Ncal of the calibration set Pcal ). The distributions of these errors on
varying the ROMs and the ROMESs are represented using the box-plots reported in Figure 3.11.

By combining a ROM with a ROMES, built with the functional kriging method, we recover the
same accuracy obtained with an uncorrected ROM with larger dimensions, as we can observe
by comparing the results for the errors on the uncorrected output with the corrected ones in
Figure 3.11.

3.5 Conclusions

In this Chapter we have presented ROM error surrogates based on kriging interpolation for
both real- and functional-valued outputs. In the real-valued case the numerical tests show
that the effectivity of the ROMES is almost 1 for every ROMs, which means that the ROMES
is able to well approximate the output error. Moreover, in the functional-valued case we are
able to improve the error on the output from the 10% to the 50% in the consider test case.
Regarding the computational times, the kriging-based ROMES affects only the offline phase
where additional full-order solutions are computed for each element in the calibration set.
However, the online evaluation of the surrogate model is negligible with respect to the ROM
one: only the solution of a system of dimension (Ncal +1)× (Ncal +1) is required with respect
to the Nt linear system of dimension n ×n required by the ROM.
In the next Chapters, we take advantage of this improved accuracy given by a ROMES coupled
with the efficiency of a small dimensional ROM to develop efficient uncertainty quantification
and inversion procedures.
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Figure 3.11 – Maximum error and integral error on varying the considered ROMs and the
number of parameters vector used for the ROMESs construction. The functional kriging
ROMES reduces the error in all cases, in particular the best improvements are related to ROM
#1.
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4 | Forward uncertainty quantification

In this Chapter we show how to take advantage of reduced-order models (ROMs) coupled
with cheaply computable ROM error surrogates in order to deal with forward uncertainty
quantification problems arising in cardiac electrophysiology.

The chapter opens with an introduction on the uncertainty quantification (UQ) framework
and its goal (Section 4.1). Then, we recall the basic concepts of sensitivity analysis (a key tool
to perform uncertainty characterization) in Section 4.2 and of uncertainty propagation in
Section 4.3. Reduced-order models for uncertainty quantification are proposed in Section
4.4 with a theoretical analysis of the bias in the UQ introduced by the propagation of the
approximation error. The proposed reduced framework is tested on a problem dealing with
electrophysiology, presented in Section 4.5, consisting in the analysis of a simplified ECG
signal generated from an idealized two-dimensional heart-torso model.

4.1 Uncertainty quantification

The knowledge of the parameters values of cardiac electrophysiology models is considerably
limited, due to difficulties in performing in vivo and in vitro experiments for their estimation
[FNC+11]. Moreover, the cardiac model parameters, characterizing both physical and/or geo-
metrical configurations of the system, show a considerable intra- and extra-subject variability.
This latter is also reflected on the outputs of the model, making difficult their analysis: for
example, we have pointed out that ECG signals present deviations from the standard three
waves patterns due to both intra-patient variability and the presence of possible pathologies.
In order to minimize misclassification (false negative and false positive), it is crucial to better
understand how model parameters and their uncertainties affect the considered outputs.
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Chapter 4. Forward uncertainty quantification

With this goal, we apply in this Chapter standard uncertainty quantification techniques
[Smi13] to cardiac electrophysiology models. Since these techniques are usually based on
sampling procedures, they suffer of dramatic computational costs when full-order models
are adopted for the approximation of the parametrized PDEs (possibly coupled with ODEs)
arising in cardiac electrophysiology. For this reason, UQ techniques have been exploited so
far only for parametrized ODE models at the cell level in [JCB+16, PSG+15, NFN+09]. For a
recent overview on the state of the art UQ applications in cardiac electrophysiology see e.g.
[MPG+16]. In this Chapter, we adopt the reduction framework developed in Chapter 2 and
3 in order to apply for the first time standard uncertainty quantification techniques to the
parametrized PDEs coupled with ODEs characterizing cardiac electrophysiology.

In particular, we will focus on:

• sensitivity analysis which studies the parameters role and importance with respect to a
considered output, through some indices that can be used to rank the model parameters.
The combination of these information with available data enables to design optimally
the parametrization of a PDE model;

• uncertainty propagation, which focuses on how uncertainty in model parameters prop-
agates to the outputs of interest, providing probability distributions (pdf) or simple
statistics.

A sketch of the entire framework can be found in Figure 4.1: uncertainty characterization
and propagation are integrated with the input-output evaluation inside a cycle, since the UQ
outcomes could give feedbacks about possible modifications of the model parametrization.

Figure 4.1 – Uncertainty quantification framework

From the mathematical standpoint, we consider the probability space (Θ,F ,P) and the ran-
dom function Y :Θ→ R, whose realization is the full-order output yh(µ). Given µ ∈P , the
input/output mapping

µ→ uh(t ;µ) → yh(µ),

requires e.g. the numerical approximation of a nonlinear unsteady PDE coupled with an
ODE, such as the monodomain equation coupled to the Aliev-Panfilov model. For the sake of
notation, we consider all the parameters normalized in [0,1].
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4.1. Uncertainty quantification

In variance-based sensitivity analysis, the sensitivities of the output with respect to the pa-
rameters are measured by looking at the amount of variance caused by the parameter µi ,
i = 1, . . . ,d . This requires the calculation of conditional expectation of the random variable Y :

E[Y |µi ] =
∫
Θ

yh(µ)π(µ|µi )dµ i = 1, . . . ,d ,

where π(µ|µi ) is the conditional pdf of µ given µi . In fact, µ is modeled as a multivariate
random variable with pdf π(µ). The conditional pdf is defined as

π(µ|µi ) = π(µ)

πi (µi )
,

whereπi (µi ) is the marginal pdf ofµi . We need also to compute the variance of this conditional
expectation with respect to the parameter µi

Var(E[Y |µi ]) =
∫
R

(
E[Y |µi ]

)2
πi (µi )dµi −

(∫
E[Y |µi ]πi (µi )dµi

)2

.

In uncertainty propagation the problem consists instead in finding the probability distribution
π(y) : Y → R of the random variable Y given a probability distribution π(µ) : P → R of the
uncertain vector of parameter. Sometimes instead of estimating the full pdf π(y), the goal is to
estimate the expected value:

E[Y ] =
∫
Θ

yh(µ)π(µ)dµ,

and/or its variance

Var(Y ) =
∫
Θ

(yh(µ)−E[Y ])2π(µ)dµ=
∫
Θ

(yh(µ))2π(µ)dµ−E[Y ]2.

Since the full-order intput/output mapping

µ→ uh(t ;µ) → yh(µ)

is highly nonlinear, it is not possible to evaluate the expectation values and the variances in a
close form. We rely on Monte Carlo (MC) method which provides an approximation of the
mean and of the variance of the quantities of interest by generating a random sample {µq },
q = 1, . . . , Nmc of identically distributed draws from π(µ). For example, the expected value
E[Y ] is approximated by

E[Y ] ∼ 1

Nmc

Nmc∑
q=1

yh(µq ),

and the variance by

Var(Y ) ∼ 1

Nmc

Nmc∑
q=1

(
yh(µq )− 1

Nmc

Nmc∑
q=1

yh(µq )

)2

.

Both sensitivity analysis and propagation are computationally-demanding, since a large
number of simulations are needed to generate outputs for each parameter vector in {µq },
q = 1, . . . , Nmc (many query problem). To improve the performances we can follow different
strategies such as, (i) to speedup the input-output evaluation with SMs or ROMs, (ii) to improve
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Chapter 4. Forward uncertainty quantification

sampling procedures [Buc88, Gil08, NT15] or (iii) to adopt different stochastic procedures
[Sud08, Naj09]. In this Chapter we focus on the first strategy for its ease of implementation and
flexibility. Moreover, the proposed reduced framework can be easily adapted also to the other
different UQ methods. For example, stochastic Galerkin and stochastic collocation methods
[NTW08, BNT+11, BNT07, CLMM09] require the evaluation of the input/output mapping on a
suitable set of points (e.g. collocation sparse grid) for the calculation of the previous integrals.
This procedure could benefit from the adoption of ROM and ROMES for an efficient and yet
accurate input/output evaluation. An example of application based on the stochastic finite
elements method for the study of the sensitivity of the torso conductivity field can be found in
[GKM08, SGS+11].

4.2 Sensitivity analysis

Sensitivity analysis quantifies the effects of parameters variation on the outputs of interest,
providing a criterium to rank the most influential input parameters. A large number of ap-
proaches to perform sensitivity analysis can be found in the literature; they can be divided
in two main families: local and global methods. Local methods are based on the evaluation
of the partial derivatives of the outputs with respect to input parameters. The term local is
related to the fact that these derivatives are evaluated in a given parameters vector, providing
information related to a neighborhood of that point. Evaluating the partial derivatives of
complex models outputs is not straightforward: in the case of time-dependent nonlinear PDEs
the computation of the derivatives requires the solution of the so-called backward adjoint
equation, which is also computationally demanding. For this motivation, local methods
usually explore only a small subset of the parameter space, especially when the parameter
vector is high-dimensional.

On the other hand, the global approaches are based on sampling techniques on the en-
tire parameter space. Basic tools for sensitivity analysis are the scatter-plots of the outputs
against the input parameters and the regression analysis [CH09]. In this work we consider a
variance-based global sensitivity analysis (GSA) which describes the amount of output vari-
ance generated from the variation of a single parameter (and also from interactions among
the parameters). We refer respectively to [SCS+00] ( [SRA+08]) for a complete review of the
(global) sensitivity analysis framework.

In the field of cardiac electrophysiology, variance-based GSA has been recently applied for
the study of 1D models of the cellular cardiac potential [JCB+16], using Gaussian processes to
perform efficiently the input-output evaluation. In this Chapter, we propose a reduced-order
variance-based GSA for a simplified ECG signal generated by a two-dimensional heart-torso
model, while in Chapter 7 we apply this method to study the action-potential shape given by
a three-dimensional model of the left ventricle. We also show how the GSA indices could be
relevant in the design of the parametrization of the model. We take advantage of kriging-based
surrogate models and projection-based ROMs to perform efficiently this task, showing how
ROMs could ensure a considerable accuracy in the results.
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4.2.1 Variance-based global sensitivity analysis

Variance-based GSA provides a decomposition of the variance associated to an output y(µ)
on varying the input µ ∈P ⊂Rd . The variance of the random variable Y can be decomposed
in the sum of the first-order effect and the residual:

Var(Y ) = Var(E[Y |µi ])+E[Var(Y |µi )] i = 1, . . . ,d .

The second term is the residual variance, which describes on average (with respect to the
parameter µi ) the information left when µi is fixed, while the first term is the explained
variance, which describes the reduction of the variance due to the knowledge of µi . On the
basis of these observations, the first-order sensitivity index of µi on Y can be defined as:

Si =
Var(E[Y |µi ])

Var(Y )
i = 1, . . . ,d . (4.1)

In other words, Si enables to determine which parameter µi , i = 1, . . . ,d , leads on average to
the greatest reduction in the variance of the output Y . The sum of all Si should be less (or
equal) to one if the model is nonadditive (respectively additive). If the model is nonadditive,
the variance can be decomposed through the so-called ANOVA decomposition into main
effects and interaction effects, which are used to construct the interaction indices

Si , j =
Var(E[Y |[µi ,µ j ]T ])−Var(E[Y |µi ]−Var(E[Y |µ j ])

Var(Y )
, i = 1, . . . ,d .

However, the computation of all possible interaction indices Si , j becomes impractical for
high-dimensional parameter vectors. Instead of studying all the possible interactions, it
is preferable to construct a single index, known as total effect index, given by the sum of
first-order effects with all higher-order effects due to interactions:

STi = Si +
∑
j 6=i

Si , j + . . . , i = 1, . . . ,d .

To derive a direct formula for this index without computing Si , j , we consider the variance
decomposition of the random variable Y in the sum of the first-order effect and the residual,
both conditioned with respect to all the factors except µi (indicated with ∼ i ):

Var(Y ) = Var(E[Y |µ∼i ])+E[Var(Y |µ∼i )] i = 1, . . . ,d .

As a consequence, the residual quantity

Var(Y )−Var(E[Y |µ∼i ]), i = 1, . . . ,d , (4.2)

is the remaining variance of Y that would be left if we could determine the true values of µ j for
all j different from i . The total effect index is then obtained by dividing the residual quantity
(4.2) by the total variance Var(Y ):

STi = 1− Var(E[Y |µ∼i ])

Var(Y )
i = 1, . . . ,d . (4.3)

The total effect index (4.3) is much more informative than the first-order index (4.1), except
when there are no interaction effects, in which case they are equal. High-values correspond to
influential parameters for the output of interest; in particular, we have that:
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1. the condition STi = 0 is equivalent to the fact that µi is a noninfluential parameter.

2. if STi is almost zero, µi can be fixed to any value in its range without changing the value
of the output variance.

Once we have computed the indices, STi , i = 1, . . . ,d , it is possible to rank the most influential
parameters, hence to achieve a model simplification by discarding the non-influential ones
[ST02].

The analysis can be enriched using the main effects plots, which show how the conditional
expectation E(Y |µi ) changes when µi is fixed to some values in its range, while the other
parameters are sampled randomly from a Gaussian distribution of mean 0.5 and variance 0.04.
The trends of these curves are directly linked to the values of the first-order index Si , which
indeed describes their associated variability.

The standard numerical procedure for computing the first-order and total effect indices is
based on Monte-Carlo sampling. Given µi and a random sample {µq }, q = 1, . . . , Nmc of identi-
cally distributed draws from π(µ|µi ), each conditional expected value can be approximated
by:

E[Y |µi ] ∼ 1

Nmc

Nmc∑
q=1

yh(µq |µi ).

By repeating this procedure for each µi , randomly sampled from πi (µi ), we obtain a Monte
Carlo approximation of the explained variance Var(E[Y |µi ]). This procedure is clearly not
feasible from the computational point of view. For this reason, two methods have been devel-
oped to accelerate the evaluation of the sensitivity indices (4.1)-(4.3): the Fourier Amplitude
Sensitivity Test (FAST) and the Sobol’ method [HS96]. In the following we will focus on the
second one, based on Sobol’ sequences of quasi-random numbers. The procedure consists in
the following steps:

1. generate two matrices A,B ∈ RNs×d of parameter realizations from a Sobol’ quasi-
random sequence (obtained e.g. with the Matlab function sobolset):

A =


µ1

1 µ1
2 · · · µ1

d−1 µ1
d

...
...

µ
Ns
1 µ

Ns
2 · · · µ

Ns

d−1 µ
Ns

d

 B =


µ1

d+1 µ1
d+2 · · · µ1

2d−1 µ1
2d

...
...

µ
Ns

d+1 µ
Ns

d+2 · · · µ
Ns

2d−1 µ
Ns

2d

 ;

2. construct d matrices of parameter realizations Ci ∈RNs×d , i = 1, . . . ,d , using all columns
of B except the i − th column taken from A:

Ci =


µ1

d+1 · · · µ1
i · · · µ1

2d
...

...

µ
Ns

d+1 · · · µ
Ns

i · · · µ
Ns

2d

 ;

3. compute the model output for all the vectors of parameters given by the rows of A, B
and Ci . The results are respectively d +2 vectors of model outputs y A , yB and yCi of
dimension Ns ×1;
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4. the first-order index is computed using the following formula:

Si =
Var(E[Y |µi ])

Var(Y )
=

yT
A yCi − y2

A

yT
A y A − y2

A

, i = 1, . . . ,d , (4.4)

where y A denotes the sample mean of the vector y A . On the other hand, the total effect
index is given by:

STi = 1− Var(E[Y |µ∼i ])

Var(Y )
= 1−

yT
B yCi − y2

A

yT
A y A − y2

A

, i = 1, . . . ,d . (4.5)

A complete explanation of (4.4) and (4.5) can be found in [SRA+08]. The principal drawback
of this procedure is the computational cost: we need to evaluate the model (d +1)Ns times in
order to compute all the indices. Moreover, the accuracy of the computation clearly depends
on the number Ns of sample points: Ns should be large enough to minimize the statistical
error generated by the sampling.

4.3 Uncertainty propagation

The goal of uncertainty propagation is to quantify the impact of uncertainties related to the
input parameters µ on an output of interest yh(µ), by computing its distribution or some
statistics, such as mean and variance.
Since the knowledge on the parameter values of cardiac electrophysiology models is limited, it
is crucial to understand how input uncertainties are propagated to the outputs through the
solution of a nonlinear time-dependent system of PDEs (possibly coupled with ODEs). For
example, we could be interested in understanding how uncertainties in physical coefficients
modify the shape of an ECG signal or how geometry uncertainties modify the solution of the
electrophysiology models.

Monte-Carlo (MC) sampling [RC13] is the standard approach for this kind of problems: a
large number Nmc of independent samples {µq }Nmc

q=1 are drawn from a given distribution

π(µ) : Rd → R+ and then used to compute {yh(µq )}N
q=1, or directly statistics of the outputs,

such as expected values:

E[Y ] ∼ 1

Nmc

Nmc∑
q=1

yh(µq ),

and the output variance

Var(Y ) ∼ 1

Nmc

Nmc∑
q=1

(
yh(µq )− 1

Nmc

Nmc∑
q=1

yh(µq )

)2

.

This approach has been successfully adopted in a variety of applications, but suffers of slow
performance in terms of convergence rate, in particular when the parametric dimension grows.

The convergence rate can be improved by considering suitable modifications of the method
such as variance reduction techniques [Has70], control variates [RM85] or multi level Monte
Carlo [Gil08, NT15]. For completeness, we also mention alternative non-sampling approaches,
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which have been proposed to improve the performance of uncertainty propagation: the goal of
these methods is to directly compute statistics using projection or interpolation techniques on
suitable grids. Among these methods, we mention polynomial chaos expansion [XK02, Naj09],
stochastic collocation [BNT07] and stochastic Galerkin [GS03, BNT+11]. However the appli-
cation of non-sampling methods in cardiac electrophysiology is not straightforward due to
the complexity of the electrophysiology models and the large number of uncertain parameters.

In this Chapter, we instead substitute the full-order model (FOM) with a surrogate model (SM)
or a reduced-order model (ROM) in order to speed up standard MC samplings. Our aim is to
study this reduced UQ framework, by analyzing the advantages and drawbacks of SMs and
ROMs, by exploiting MC sampling on the heart-torso coupling and a subject-specific model
on left ventricle.

4.4 Reduced-order models for UQ

The Sobol’ or the Monte Carlo sampling approaches are typical many query problems. To
speed up the evaluation of the output given a vector of parameters, it is possible to rely on
surrogate models, which provides the input/output mapping

µ→ ys(µ)+εs ,

where ys(µ) is the output prediction given by a surrogate model, such as the one developed in
Section 3.2. On the other hand, a ROM provides the input/output mapping

µ→ un(t ;µ) → yn(µ),

through the solution of the parametrized PDE (possibly coupled with the ODE) projected onto
the reduced space (as described in Chapter 2).

In the reduced framework, the calculation of Si and STi , i = 1, . . . ,d , through the Sobol’ method
requires the computation of the reduce output for all the vectors of parameters given by the
rows of A, B and Ci . The resulting vectors yn,A , yn,B and yn,Ci are then used in (4.4) and (4.5)
instead of y A , yB and yCi for the efficient evaluation of Si and STi , i = 1, . . . ,d .
On the other hand, the calculation of the quantities of interest related to the uncertainty
propagation becomes: given a set of random samples {µq }, q = 1, . . . , Nmc , compute the
reduced expected value

E[Yn] ∼ 1

Nmc

Nmc∑
q=1

yn(µq ),

where Yn is the random variable describing the reduced output. Then, compute the reduced
output variance as:

Var(Yn) ∼ 1

Nmc

Nmc∑
q=1

(
yn(µq )− 1

Nmc

Nmc∑
q=1

yn(µq )

)2

.

In an equivalent way, the reduced output could be substituted by a surrogate output, such
as kriging interpolation or random forest regression [SSH+09]; for the kriging SM also an
analytical approach has been proposed in [OO04].
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Clearly, the main problem arising when uncertainty quantification is performed using a SM is
the reliability and the accuracy of the results, due to the curse of dimensionality. In this work,
we compare the results of uncertainty quantification between SMs with projection-based
ROMs in terms of efficiency and accuracy.

4.4.1 Reduction error propagation

A relevant issue, arising when a SM or a ROM is exploited to solve a UQ problem, is related
to the propagation of approximation errors (i.e. the error between the FOM and the SM or
ROM) in the resulting distribution of the outputs. As a matter of fact, neglecting this additional
source of error could lead to biased sensitivity indices or skewed distributions of the outputs.
This problem has been consider recently in [PWG16], where a multi-fidelity approach has
been proposed for the solution of inverse problems and UQ. This method combines different
reduced-order and full-order models to ensure the accuracy of sensitivity analysis and uncer-
tainty propagation results. However, the full-order queries arising in cardiac electrophysiology
could be computationally demanding, compromising the overall UQ performance. In this
Thesis, instead, we prefer the classical offline-online approach, in order to avoid full-order
queries each time a sensitivity indices is computed. Moreover, we equip our ROM with sur-
rogate models (ROMESs) developed in Chapter 3 to have a statistical representation of the
approximation errors and, as overall goal, to improve the accuracy of our analysis.

In this Section we analyze the effect of the output reduction error yh(µ)− yn(µ) on the UQ
quantities of interest. In particular, we analyze the output expected value and variance
obtained when dealing with forward propagation. We can decompose the error on the resulting
expected value as the sum of:

E[Y ]− 1

Nmc

Nmc∑
m=1

yn(µm) = E[Y −Yn]︸ ︷︷ ︸
approx. error

+E[Yn]− 1

Nmc

Nmc∑
m=1

yn(µm)︸ ︷︷ ︸
statistical error

,

where E[Y −Yn] is the average approximation error (bias in the output) depending on the
accuracy of the ROM, while the second term is the statistical error depending exclusively on
Nmc . If we want to minimize the error on the expected values, without changing the ROM, a
suitable statistical ROMES mROM(µ) must be adopted to minimize the output reduction error:

yh(µ) = yn(µ)+mROM(µ)+εROM(µ) ∀µ ∈P ,

where εROM(µ) is a random variable with zero mean and variance σ2
ROM(µ), representing the

estimation error. In particular, if we assume that the error in mean is well captured by the
ROMES, i.e. there exists a tolerance εtol > 0 such that:

|E[Y −Yn −mROM]| ≤ εtol , (4.6)

the overall error of the sampling procedure becomes:∣∣∣∣∣E[Y ]− 1

Nmc

Nmc∑
m=1

(yn(µm)+mROM(µm))

∣∣∣∣∣≤ εtol +
∣∣∣∣∣E[Yn]− 1

Nmc

Nmc∑
m=1

yn(µm)

∣∣∣∣∣ .
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This results can be easily extended to the conditional means, ensuring that∣∣∣∣∣E[Y |µi ]− 1

Nmc

Nmc∑
m=1

(yn(µm |µi )+mROM(µm |µi ))

∣∣∣∣∣≤ εtol +
∣∣∣∣∣E[Yn |µi ]− 1

Nmc

Nmc∑
m=1

yn(µm |µi )

∣∣∣∣∣ .

On the other hand, if we consider the variance, we have that:

Var(Y )− 1

Nmc

Nmc∑
m=1

(
yn(µm)− 1

Nmc

Nmc∑
m=1

yn(µm)

)2

= Var(Y )−Var(Yn)︸ ︷︷ ︸
approx. error

+Var(Yn)− 1

Nmc

Nmc∑
m=1

(
yn(µm)− 1

Nmc

Nmc∑
m=1

yn(µm)

)2

︸ ︷︷ ︸
statistical error

.

The approximation error can be further decomposed as:

Var(Y )−Var(Yn) = Var(Y −Yn)+2Cov(Y −Yn ,Yn).

If the ROMES shows small prediction variance σ2
ROM, there exists a tolerance εtol ,2 > 0 such

that:

|Var(Y −Yn −mROM −εROM)| < εtol ,2. (4.7)

Since the covariance is linear with respect to both arguments, the term Cov(Y −Yn ,Yn) can be
bounded by:

|Cov(Y −Yn ,Yn)| = |E[(Y −Yn)Yn]−E[Y −Yn]E[Yn]| ≤ |max(Yn)−E[Yn]||E[Y −Yn]|,

which means that provided 4.6 is fulfilled:

|Cov(Y −Yn −mROM,Yn +mROM)| ≤ |max(Yn +mROM)−E[Yn +mROM]|εtol .

Finally, we conclude that the error in approximating the variance can be bounded by

∣∣∣∣∣Var(Y )− 1

Nmc

Nmc∑
m=1

(
(yn(µm)−mROM(µm))−

Nmc∑
m=1

(yn(µm)−mROM(µm))

)2

−Var(εROM)

∣∣∣∣∣
≤ εtol ,2 + (max(Yn)−E[Yn])εtol +Var(Yn)− 1

Nmc

Nmc∑
m=1

(
yn(µm)− 1

Nmc

Nmc∑
m=1

yn(µm)

)2

.

This analysis can be extended also to both the first-order and the total effect indices, where
conditional expectations and variance are considered. We can conclude that when a ROM does
not provide an accurate approximation of the output, we need to rely on ROMES correction
in order to recover reliable results in the UQ framework. Assumptions (4.6) and (4.7) are
crucial for both the sensitivity analysis and the uncertainty propagation: if one of these two
assumptions does not hold, we introduce an additional source of error that affects the results
(see Figure 4.1).
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4.5 Numerical results: 2D section of the torso

We now apply the proposed reduction framework for UQ to the simplified two-dimensional
coupled heart-torso problem, aiming at better understanding how physical parameters and
their uncertainties influence the shape of a simplified ECG signal. The resulting insights on
the inputs-outputs relationship are useful for a wide range of purposes, including model
simplification and uncertainty reduction.

A parametrized two-dimensional model for the description of the electrical activity of the
heart and the torso is then considered under some simplificative assumptions: (i ) the heart is
insulated from the outside and (i i ) the isotropic relation Di =λDe holds. In this way, the bido-
main model can be replaced by the monodomain model and the torso can be fully uncoupled
from the heart. This choice is motivated by the considerable computational savings in the
numerical approximation of the uncoupled formulation with respect to the fully coupled one.

The domainΩ=ΩH ∪ΩT , represented in Figure 4.2, is given by the union of an idealized heart
section (domainΩH ) with a smooth domain representing the section of the surrounding torso
(domainΩT ). We denote with ∂ΩT the outer boundary and with ∂ΩH the boundary between
ΩH and ΩT . Given the assumptions (i ) and (i i ), we first solve the following parametrized
problem: given µH , find u = u(x,t ;µH ) and w = w(x,t ;µH ) such that

Am

(
Cm

∂u

∂t
+ Ii on(u, w ;µH )

)
−div(σv∇u) = Am Iapp (t ) x ∈ΩH , t ∈ (0,T ]

∂w
∂t = g (u, w ;µH ) x ∈ΩH , t ∈ (0,T ]

∇u(x,t ;µH ) ·nH = 0 x ∈∂ΩH , t ∈ (0,T ]

u(x,0;µH ) = w(x,0;µH ) = 0 x ∈∂ΩH ,

(4.8)

with current specification (1.2) and µH = [σv ,K ,ε0]T . To complete the system definition, as
done in [AP96], we choose Am =Cm = 1 and a = 0.15 to model an adimensionalized action
potential u. Finally in the definition of g (u, w) in (1.2) we choose c1 = 0.12 and c2 = 0.3. The
extra-cellular potential is then obtained by solving: find ue = ue (x,t ; [σe ,µH ]T ) such that{

−div((σi +σe )∇ue )−div(σi∇u) = 0 x ∈ΩH , t ∈ (0,T ]

(σi +σe )∇ue (x,t ; [σe ,µH ]T ) ·nH =σi∇u(x,t ;µH ) ·nH x ∈∂ΩH , t ∈ (0,T ],
(4.9)

where σi = (1+λ)σv and σe are the parametrized conductivities. Finally, the torso potential is
obtained by solving: find uT = uT (x,t ; [σt ,σe ,µH ]T ) such that

div(∇σT uT ) = 0 x ∈ΩT , t ∈ (0,T ]

σT ∇uT (x,t ; [σt ,σe ,µH ]T ) ·nT = 0 x ∈∂ΩT , t ∈ (0,T ]

uT (x,t ; [σt ,σe ,µH ]T ) = ue (x,t ; [σe ,µH ]T ) x ∈∂ΩH , t ∈ (0,T ].

(4.10)

As shown in [PDV09] and in [BCF+10], the uncoupled model (4.8)-(4.9)-(4.10) still allows to
recover the most important physiological features of an ECG, such as the QRS-complex and
the T wave amplitude. On the other hand, for precise quantitative results on the ECG the
coupled problem (1.7) must be adopted.
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Regarding the ECG signals, since we are considering the two dimensional problem, we are not
able to fully reproduce all the 12 leads, however we can provide a simplified approximation of
seven leads. In particular, by defining the central reference as Vw = 0.5(uT (xL A , t ; [σt ,σe ,µH ]T )+
uT (xR A , t ; [σt ,σe ,µH ]T ), we construct the seven signals as reported in Figure 4.2.

Figure 4.2 – ECG signals for the 2D heart-torso coupling

We consider five uncertain physical parameters: the first three describe the conductivity in the
cardiac tissueσv , the extra-cellular conductivityσe and the conductivity of the torsoσT , while
the last two (K and ε0) affect the depolarization-polarization cycle. We assume that these
parameters are uncertain, and that they have a uniform distribution in the ranges of values
reported in Table 4.1. For the values of the parameters we have considered [AP96, FSSQ+15,
LGT03].

Parameter Mean Range

σv 3 [1,5]
σe 3 [1,5]
σt 0.3 [0.05,0.55]
K 8 [6,10]
ε0 0.021 [0.001,0.041]

Table 4.1 – Heart-torso parameters and their range.

Once a value of the parameter vector is selected, simplified ECG leads can be computed by
solving the forward problem using the finite element method on a mesh formed by 6662 ver-
tices and 12880 elements. Each forward evaluation entails on average more than 52 seconds1.

On varying the vector of parameter µ= [σv ,σi ,σe ,K ,ε0], we get the different curves in Figure
4.3, which show a remarkable variability in both their phase and amplitude.

1All the computations of this chapter have been performed on a laptop with 2.4 GHz Intel core i7 processor and
8Gb RAM 1600MHz DDR3.
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Figure 4.3 – 100 randomly simulated simplified ECGs using a full-order approximation of the
uncoupled heart-torso model

By fixing the vector of parameter to µ= [4.29,3.77,0.21,9.8,0.0024], we obtain the numerical
approximation of the electric potentials u(t ), ue (t ) and uT (t ) at different time-steps illustrated
in Figure 4.4.
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Figure 4.4 – Numerical approximation of heart-torso model at different time steps. From the
left to the right: the simplified ECG I (t), the solution u(t) of (4.8) and the solutions ue (t) of
(4.9) and uT (t ) of (4.10), respectively.
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The curves show similar patterns corresponding to simplified QRS complex and T wave. The
considered model does not take into account the atria, which generate the so-called p-wave of
the ECG signal. We have considered this two-dimensional simplified model in order to test the
reduction-framework, however the proposed approach can be applied also to more detailed
models.

In order to study in details the QRS complex and the T wave, we consider four landmarks
y = [QRSpeak ,Tpeak , tQR , tRT ], reported in Table 4.2. This four scalar outputs provide an almost
complete description of the phenomenon and allow us to study in details how the parameters
affect the shape of a simplified ECG signal.

Landmarks u.m. physical meaning

QRSpeak mV QRS maximum amplitude
Tpeak mV T-wave maximum amplitude

tQR ms time between stimulation pulse and upstroke
tRT ms action potential time from upstroke to resting potential

Table 4.2 – Scalar outputs of interest

4.5.1 Sensitivity analysis

We first perform the varianced-based GSA using both a surrogate model and a projection-
based ROM for the efficient evaluation of the map between the vector of parameters µ and the
vector of outputs y(µ). In particular for both approaches we represent the main effects plots
and we compute the sensitivity indices defined in (4.1) and (4.3).

Sensitivity analysis with surrogate model

We build separate kriging SMs for each component of the output vector y starting from the
outputs generated from Ntr ai n = 25 parameter vectors randomly selected. The accuracy is
then assessed using a further set of Noob = 25 model runs (to which we refer as out-of-bag
points), where for each set of inputs the SM outputs are compared with the full-order ones.
We recall that the kriging prediction gives also an estimate of the approximation error vari-
ance, which can be used to construct confidence intervals. The comparison of the calibration
outputs (see Figure 4.5) clearly shows that the confidence in the prediction is rather low for
each one of the scalar outputs, especially for tQR and tRT , where also a considerable bias is
present for large times. As a consequence, we can expect accurate results from the sensitivity
analysis and forward propagation only for the outputs QRSpeak and Tpeak .

We fix the training set to Ntr ai n = 25 in order to compare the SM with the ROM equipped with
the ROMES starting from the same amount of information used for the model construction, in
order to highlight the additional accuracy provided by a physic-based model with respect to a
data-fit model.
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Figure 4.5 – Cross-validation of the kriging prediction with Ntr ai n = Noob = 25. Due to the
small number of training parameters the confidence intervals associated to the predictions
are very conservative.

The computational costs related to the evaluation of the output using the kriging SM are
negligible: for each new vector of parameters µ ∈P the computation of ys(µ) required the
solution of four linear systems of dimensions 25×25. This operation is performed on average
in 0.0086 seconds, with a consequent speedup of 6104x with respect to the FOM.

The main effects plots (see Figure 4.6) show that each output is strongly related to few pa-
rameters: the maximum variation of QRSpeak and Tpeak seem to be mostly influenced by
σe , whereas tRT is strongly related to ε0, which is the only parameter affecting the recovery
equation, and tQR by K . The conductivity σv also influences tQR , which is expected since σv

is related to the velocity of the potential activation front. These plots quantify the effect of
each parameter on the output, thus providing a quantitative insight into the physiology and
the model behavior.

By looking at the confidence intervals of the main effects plots (Figure 4.7), a lot of variability
not explained by the SM: indeed, only the curve relative to σe for the QRSpeak and K for
tQR show a clear trend. On the other hand, all the other curves present considerably large
confidence intervals overlapped to the other ones. In conclusion, the main effects plots are
not informative on the other parameters in this case.

The first-order sensitivity indices, reported in Table 4.3, and the total effect indices, reported
in Table 4.4, confirm that QRSpeak and Tpeak are sensible with respect to variations of the
conductivities (especially σe ), whereas tRT is influenced by ε0 and tQR equally by σv and K .

86



4.5. Numerical results: 2D section of the torso

−0.4 −0.2 0 0.2 0.4

4

6

8

Input parameter

Q
R

S
p

ea
k

σv
σe
σt

K

ε0

−0.4 −0.2 0 0.2 0.4
2

3

4

5

Input parameter

T
p

ea
k

σv
σe
σt

K

ε0

−0.4 −0.2 0 0.2 0.4
30

35

40

45

50

Input parameter

t Q
R

σv
σe
σt

K

ε0

−0.4 −0.2 0 0.2 0.4
100

200

300

400

Input parameter

t R
T

σv
σe
σt

K

ε0

Figure 4.6 – Main effects plots obtained using the kriging-based surrogate model. The curve
E[QRSpeak |σe ] and E[Tpeak |σe ] are the ones with the highest variations. On the other hand, K
and ε0 most influence the time-related outputs, as expected from the physics of the problem.
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Figure 4.7 – Main effects plots with confidence intervals. The intervals are very conservative
in all cases: only the changes of QRSpeak when σe is fixed are considerable with respect to the
width of the confidence band.
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Since the output bias shown in Figure 4.5 is non negligible the values of the first-order indices
(4.1) and the total-effet indices (4.3) lack of accuracy. In the following we will see how a
projection-based ROM will provide more accurate responses when evaluating the outputs
compared to this SM.

Output σv σe σt K ε0

QRSpeak 0.0248 0.6783 0.1330 0.0978 0.0183
Tpeak 0.0512 0.7213 0.1242 0.1955 0.0732

tQR 0.4327 0.0044 0.0032 0.4623 0.0018
tRT 0.0314 0.0080 0.0286 0.0384 0.8940

Table 4.3 – First-order indices using the kriging-based surrogate model. The values reflect the
trend shown in the main effects plots of Figure 4.7.

Output σv σe σt K ε0

QRSpeak 0.1531 0.8637 0.3127 0.0018 0.1584
Tpeak 0.1698 0.8567 0.2452 0.0084 0.1927

tQR 0.4808 0.0263 0.0502 0.5110 0.0378
tRT 0.0021 0.0032 0.0099 0.0898 0.9590

Table 4.4 – Total effect indices using the kriging-based surrogate model. We can conclude that
the physical coefficient K is non-influential for the peak outputs, while all the conductivities do
not influence the output tRT . However a complete ECG signal requires all the five parameters
to be characterized in a more detailed way.

Sensitivity analysis with projection-based ROM

We build a reduced basis approximation for the problem (4.8)-(4.9)-(4.10) starting from
Ntr ai n = 10 parameters randomly selected in the parameter space. The basis functions
are computed through the proper orthogonal decomposition (POD) on snapshots matri-
ces formed by 600 ·Ntr ai n full-order vectors. The POD approach selects respectively n = 13
basis functions for the solution u(t ;µ), n = 10 basis functions for the solution ue (t ;µ) and also
for the solution uT (t ;µ), whereas mD = 26 basis functions are required for the construction of
the DEIM approximation of the non-linear term Ii on . This low number of basis function is
justified by the fact that the only the velocity (and not the direction) of the front propagation
is affected by changes in the parameters under consideration.

For each new vector of parameters the evaluation of y = [QRSpeak ,Tpeak , tQR , tRT ] requires on
average 0.64 seconds, with a consequent speedup of 82x with respect to the full-order model.
The ROM accuracy can be inferred by considering a further set of Noob = 25 model runs, as
done previously for the SM (see Figure 4.8). Finally, we have equipped our ROM with a kriging-
based ROMES built on the training set formed by the Ntr ai n = 10 parameter vectors used for
the basis computation and 15 random parameter vector, in order to minimize the output re-
duction error. As previously pointed out the ROM and ROMES are constructed from the same
number of snapshots used for the SM construction in order to compare the two methodologies.
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4.5. Numerical results: 2D section of the torso

Figure 4.8 – Cross-validation of the ROM prediction with Ntr ai n = 10 and Ncal = 25. Even with
a poor sampling of the parameter space the ROM is able to reproduce the landmarks much
more accurately than the kriging model.

The main effects plots (see Figure 4.9) are generally in accordance with the results obtained
with the SM. The main differences are relative to the results regarding tQR and tRT , due to the
bias of the SM prediction for large values of the outputs (see Figure 4.5). The outputs linked to
the QRS complex are clearly influenced by the conductivities σv and σe , whereas ε0 affects
only tRT .

The reliability of the results obtained with the ROM is clear also by looking at the confidence
intervals of the main effects plots (Figure 4.10), which are considerably narrower with respect
to the SM case. In fact, the trend of the 5 curves relative to the QRSpeak is rather clear.

The evaluation of the first-order and the total effect indices (Table 4.5 and 4.6) provides a
parameter ranking or selection: for example, if we are interested only in approximating the
QRS complex, we can discard ε0 (i.e. by fixing its value) and σt , whereas, if we are interested
only in approximating the T wave, we can discard σt and K .

In the following subsection, we will show how to take advantage of this analysis to improve
the construction of surrogate or reduced-order models.
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Figure 4.9 – Main effects plots obtained using the RB model. With respect to the results in
Figure 4.6, we highlight that the main differences are concentrated when high values of the
outputs are investigated.
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Figure 4.10 – Confidence intervals of the main effects plots for QRSpeak computed using the
ROM for the input-output evaluation. The width of the confidence intervals is considerably
smaller with respect to the variation of the curve: in this way, we are able to distinguish
influential (σe , σv , σt and K ) and non influential parameters (ε0).
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4.5. Numerical results: 2D section of the torso

Output σv σe σt K ε0

QRSpeak 0.0413 0.6844 0.1618 0.0445 0.0056
Tpeak 0.0724 0.6738 0.0878 0.0868 0.0033

tQR 0.5296 0.0184 0.0193 0.4601 0.0329
tRT 0.0117 0.0125 0.0125 0.0362 0.9331

Table 4.5 – Reduced-order first-order indices

Output σv σe σt K ε0

QRSpeak 0.0834 0.7308 0.1792 0.0623 0.0094
Tpeak 0.1169 0.7275 0.0908 0.1236 0.0183

tQR 0.5813 0.0440 0.0480 0.4688 0.0123
tRT 0.0001 0.0008 0.0008 0.0646 0.9633

Table 4.6 – Reduced-order total effect indices. There are clearly non-influential parameters for
some outputs of interest, such as the conductivities for tRT and ε0 for all the other outputs.
However, a complete characterization of the ECG signal requires all the five parameters.

GSA post-processing

The previous results can be used for the sake of SM and ROM construction: the total effect
indices could help in determining how to correctly explore the input parameters space to
better capture the desired features.

Regarding the surrogate model based on kriging, it is possible to incorporate in the prediction
the influence on the output of direction dependency by relaxing the assumption of isotropic
random field, that is: the variance

Var(Y (µα)−Y (µβ)) = γ(δ), µα,µβ ∈P ,

depends only on the lag δ= ‖µα−µβ‖. The sensitivity analysis has instead highlighted that
there are parameters more influential than others. In order to take into account the different
influence of the parameters, we can modify with an affine transformation the lag δ, e.g. by
properly weighting the different component of the parameter vector:

δω = ‖µ1 −µ2‖w =
(

d∑
j=1

ω j |(µ1) j − (µ2) j |2
)2

.

The anisotropic version of the ordinary kriging is then reformulated by assuming that

Var(Y (µα)−Y (µβ)) = γ(δω), µα,µβ ∈P .

The construction of the kriging SM does not change with respect to the one proposed in
Section 3.2.2. The only modification is thus given by the different metric used for the evalu-
ation of the semi-variogram. In particular, we propose to use as weights {ω j }d

j=1 the values
of the total effect indices ST,i , i = 1, . . . ,d computed previously. Influential parameters will
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correspond to large wights, while non-influential parameters to small weights. The numer-
ical results of Figure 4.11 show that the anisotropic version of the kriging based on the lag
δω is more accurate and shows smaller prediction intervals with respect to the isotropic model.

Figure 4.11 – Cross-validation of the modified anisotropic kriging prediction with Ntr ai n = 25.
The bias of the model is clearly reduced (i.e. the points are aligned with the bisector line), as
well as the width of the confidence intervals.

Regarding the ROM, the information about the parameters influence can be used to better
explore the parameter space during the offline phase. We recall that the basis construction
can be performed by the POD technique on a snapshots matrix, whose columns are full-order
solutions computed for each time-step and for each µ ∈ Ptr ai n . Instead of trying to explore
randomly the whole space, we can focus on the subspace of parameters yielding a total effect
index not close to zero. Here, we take advantage of a sparse grid of 12 elements designed in the
two dimensional subspace spanned by the two most influential parameters, and we compare
the accuracy in the output obtained with respect to other ROMs trained on different samples
Ptr ai n ⊂P .
In particular, we have computed the maximum and the mean of the output errors given on
an additional set of parameters (the so-called out-of-bag set). The boxplots in Figure 4.12
represent these two output reduction errors. We have marked with a green circle the error
committed by the GSA-driven ROM: in all the cases the error is placed in the lower part of the
boxplot, which means that it is smaller than the majority of the errors obtained using ROMs
built on different Ptr ai n . This means that the proposed procedure enables to minimize the
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error on the output of interest in the case at hand and to reduce the computational cost of
the offline phase, since we are exploring a two-dimensional parameters space instead of the
five-dimensional P . Also the design of localized ROMs could take advantage of the results
given by the GSA analysis, since the exploration of the parameter space becomes easier.

max err mean err

10−2.5

10−2

QRSpeak error

max err mean err

10−3

10−2

Tpeak error

Figure 4.12 – Boxplots of the maximum and mean output error obtained with ROMs built on
different training samples Ptr ai n . The green circles correspond to the GSA-driven ROM errors,
which are lower than the ones given by the other tested ROMs.

4.5.2 Uncertainty propagation

We now turn to uncertainty propagation on the outputs of interest consisting in four landmarks
y = [QRSpeak ,Tpeak , tQR , tRT ]. We use Monte Carlo sampling based on 5000 evaluations of
the SM and the reduced basis ROM equipped with the ROMES. For all the outputs we have
firstly considered a uniform distribution with mean 0.5 and a variance 0.04 in normalized
units (purple line), then we have progressively augmented the variance for the parameter with
the largest total effect index, which is σe for QRSpeak and Tpeak , K for tQR and ε0 for tRT .
We observe that reducing the variance on the input parameters consequently leads to a
reduction of the variance on the outputs: this trend can be well highlighted in the case of
the reduced-order outputs. Moreover, the propagation of the SM prediction error leads to
output distributions with bigger variances with respect to the ROM case. The surrogate model
provides a highly efficient way to perform uncertainty propagation, but it generates substantial
prediction errors. With respect to the analysis provided in Section 4.4.1, we can conclude
that the ROM equipped with ROMES provides more accurate results, without introducing
additional source of errors.

4.6 Conclusions

Uncertainty quantification improves our understanding on the role and importance of pa-
rameters of the PDE models at hand and estimates the effect of the parameters uncertainties
propagation to model outputs. Numerical results show that sensitivity analysis and uncertainty
propagation are crucial to develop a minimal and reliable parametrized model for electrophys-
iology. In particular, in our test case we have shown that all the parameters included in the
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idealized 2D heart-torso model are relevant: some of them are crucial for the approximation
of the QRS complex, while others determine the profile of the T wave. This means that if we
are interested only in well reproducing just one of this features some parameters could be
discarded in order to simplify the model.
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Figure 4.13 – Forward UQ for the four different outputs on varying the variance of most
influential parameter (σe for QRSpeak and Tpeak , K for tQR and ε0 for tRT ) using SM (left) and
ROM (right). The approximation error clearly affects the results obtained with the SM: the
resulting variances are much larger than the ones obtained with the ROM.
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5 | Bayesian inverse problems

In this Chapter we propose a combined ROM-ROMES strategy for the efficient solution of
Bayesian inverse problems in cardiac electrophysiology when real-valued outputs are con-
sidered. In particular, we first review in Section 5.1 the basic techniques for the solution
of parameter estimation problems in the Bayesian framework. In Section 5.2 we provide a
general formulation of the class of problems we are interested in, and in Sect. 5.3 we show how
to incorporate the proposed ROM-ROMES strategy into the Bayesian estimator. In Sect. 5.4 we
prove some theoretical results related to the consistency of the procedure and the effectivity
of the corrections made by the ROMESs. We finally assess the performance of the proposed
framework on a numerical example of Bayesian inverse problems governed by parametrized
nonlinear unsteady PDEs characterizing 2D heart-torso electrophysiology1.

5.1 Inverse problems

In the previous Chapters of the Thesis we have presented some numerical techniques for
the approximation of the electric potential and of some outputs of interest given a param-
eters vector µ ∈ P , characterizing the inputs of the model (i.e. the geometry, the physical
coefficients, the boundary and the initial conditions). In particular, we have focused on the
following input-output mapping:

µ→ uh(t ;µ) → yh(µ), (5.1)

uh(t ;µ) being the full-order numerical approximation of the electric potential, e.g. the solu-
tion of the parametrized monodomain equation (1.4). The real-valued output vector yh(µ)

1The methodology developed in this Chapter is partially based on the published work [MPL16] with A. Manzoni
and T. Lassila.
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approximates the available clinical measurements, such as ECG landmarks or activation times
measured on the endocardium.
In Chapter 2 we have introduced the full-order schemes usually adopted for the numerical
approximation of this problem and we have proposed a suitable localized RB framework for
an efficient computation of the electric potential. Moreover, in Chapter 3 we have considered
suitable statistical ROM error surrogates for the sake of output calibration. Finally in 4, we
have performed uncertainty quantification in order to better understand how uncertainties in
the model parameters affect the outputs of the numerical simulations. All these problems have
required the (partial) knowledge of the input parameters, in order to reproduce the process of
interest.

However, the knowledge of input parameters is considerably limited when dealing with car-
diac electrophysiology problems, due to the intrinsic difficulty in performing in vivo and
in vitro experiments for their estimation [FNC+11] and because of the multiple sources of
error which pollute the measurements of the electric potential. Moreover, the parameters
exhibit a spatial heterogeneity in the different regions of the heart [LGA93]. As pointed out
in [CBC+11] in the literature there are not clearly defined values for the physical parameters
characterizing the electrophysiology models, in particular for the conductivity values, whose
importance has been highlighted by the sensitivity analysis performed in Chapter 4. We have
shown how homogeneous conductivities greatly affect the shape of an approximated ECG
signal and also of the action-potential. A comparison among some values for the conductivi-
ties of the bidomain equations reported in the literature can be found e.g. in [SHM05]. The
common approach exploited so far is to empirically determine the values of the conductiv-
ities by ensuring that the adopted model is able to reproduce some indicators, such as the
conductivity velocity (i.e. speed at which an electrochemical impulse propagates in the tissue).

The estimation of the other physical parameters, such as the ones characterizing the Aliev-
Panfilov model (e.g. K and ε0 in (1.2)) or the Mitchell-Schaffer model, is even more complex.
In this case, only a tuning with respect to standard action-potential duration (defined as
the time during which the potential is larger than its resting values) is usually performed
[MS03, AP96, OVV+11]. Furthermore, in this setting, the information coming from sensitivity
analysis are necessary to determine how much the parameters selection could affect the
results. Non-influential parameters could be fixed to one value in their physiological range, if
the sensitivity indices have shown that they do not affect the output of interest.
As pointed out in Chapter 1, there are several possible measurements of the electrical activity
of the heart (invasive and noninvasive). Developing efficient and accurate mathematical
techniques for the estimation of the model parameters starting from these available noisy
measures is crucial for a personalization of the mathematical models. Indeed, the solution
of these parameter estimation problems shall also bring, hopefully, to the construction of
subject-specific in silico models, which could be used to provide additional information on
the subject and test the efficiency of some clinical intervention (e.g. ablation [Jac16]).

5.1.1 Problem formulation

Since all the available data are affected by noise, the first step towards the formulation of
the Bayesian inverse problems is the construction of a noise model. A popular model is the
additive Gaussian noise model, which mimics the effect of many sources of error that occur
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in nature. In this framework, the mathematical formulation of a real-valued measurement
vector y ∈RNy is given by

y = yh(µ)+εnoise εnoise ∼N (0,Γ), (5.2)

where yh(µ) is the full-order output vector given by (5.1) and εnoise is a normally distributed
random variable added to the output evaluation. We can associate a Gaussian probability
density function πε : Y → R+

0 to εnoise. Other additive noise models can be constructed by
assuming a different distribution of the random variable εnoise (see e.g. [KS06]).

Some a priori information on the model parameters could be available, such as the literature
values of the coefficients µpr i or and their variability quantified, for instance, through their
variance Cpr i or . This additional information about the true underlying structure of the pa-
rameters will be crucial to provide more meaningful estimates and for the regularization of
the inverse problem.

Given a noisy realization y∗ of the additive noise model (5.2), we are interested in estimating
the parameter vectors µ∗ ∈P whose output vector best fits the data in a convenient metric.
For the solution of this problem we can adopt two different approaches:

1. solving a PDE-constrained optimization problem, which provides an approximation µ̂
of the unknown parameterµ∗ by minimizing a suitable least squares functional, such as

µ̂l s = argmin
µ∈P

J (µ) = argmin
µ∈P

(
1

2
‖y∗−yh(µ)‖2

Γ+
1

2
‖µ−µpr i or ‖2

Cpr i or

)
,

through an iterative strategy, acting on the parameters vector µ so that the numerical
output yh(µ), computed through the numerical approximation of the parametrized
PDE, could match the prescribed target y∗. Here, the chosen norms are obtained using
as weighting matrices the noise model and the a priori covariances. In particular, the
gap between the yh(µ) and y∗ is weighted by the variability of the noise

‖y∗−yh(µ)‖2
Γ = (y∗−yh(µ))TΓ−1(y∗−yh(µ)),

while the gap between µ and the a priori mean by

‖µ−µpr i or ‖2
Cpr i or

= (µ−µpr i or )T C−1
pr i or (µ−µpr i or ),

in order to obtain more informative problem-specific norms;

2. solving a statistical inverse problem, which provides a probability distribution πpost :
P ×Y → R+

0 , i.e. the probability density function (pdf) of the parameter µ given the
measured value of y∗. By assuming that the a priori information is normally distributed
with mean µpr i or and covariance matrix Cpr i or , the solution of the statistical inverse
problem is given by:

πpost (µ |y∗) ∝ exp

(
−1

2
‖y∗−yh(µ)‖2

Γ−
1

2
‖µ−µpr i or ‖2

Cpr i or

)
, (5.3)

thanks to Bayes’ theorem and the chosen Gaussian noise model. Since the input-output
map µ 7→ yh(µ) is nonlinear, the probability distribution of πpost (µ |y∗) cannot be writ-
ten in closed form. Instead, it is necessary to sample the posterior pdf by drawing a
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sequence of random samples from the (multi-dimensional) distribution given by (5.3).
The standard procedures for sampling the posterior distribution belong to the Markov
chain Monte Carlo [Gil05, ADFD+03] techniques, which enable a problem specific ex-
ploration of the parameter space.

The first approach only provides a deterministic parameters vector µ̂l s , for which the corre-
sponding output yh(µ̂l s) matches the measurements y∗ in a least square sense. The second
approach, instead, describes a wide range of most likely parameters vectors, whose outcome
yh(µ) is as near as possible to y∗. Given the assumptions of Gaussian noise model and Gaus-
sian a priori distribution of the parameter, the solution of the PDE-constrained optimization
problem using the weighted norms corresponds to the maximum a posteriori (MAP) estimate
of the posterior distribution, that is

µ̂M AP = argmax
µ∈P

πpost (µ |y∗) = µ̂l s .

Solving the statistical inverse problems provides indeed much more information with respect
to solving the optimization problem: given the posterior pdf πpost (µ |y∗) we can quantify
the variance of the parameters with respect to y∗. In other words, together with point-wise
estimators of the most-likely parameters, we provide a measure of the uncertainties on the
parameters related to the observed data. The posterior distribution can be analyzed with
the classical statistical inference tools, such as confidence (or credible) intervals or quantiles.
Moreover, hypothesis testing on the parameters could be performed in order to support
decision making.

5.1.2 Applications to cardiac electrophysiology

There are several works dealing with PDE-constrained optimization problems and statistical
inverse problems in cardiac electrophysiology. The first problem of interest has been the
identification of physical parameters related to the cardiac cells models (system of ODEs): this
problem has been addressed as an optimization problem governed by ODEs, solved using,
for instance, gradient-based minimization algorithm in [DL04] or using genetic algorithms
in [SVN+05, KMSC16]. The presence of the inter-subject variability in this personalization
of the ODE model has been taken into account in [BBOVA+13], by using the basic tools
of sensitivity analysis (scatter and correlation plots), and in [GKX+07, FN09] by adopting
Markovian models. Recently, uncertainty quantification has been considered in order to
provide more detailed a priori information on the parameters for statistical inverse problems
in this context [PSG+15, JCB+16]. Even if the cost of solving a parametrized ODE for the cell
is negligible with respect to the cost of solving a parametrized coupled PDE-ODE, surrogate
models have been exploited in [JCB+16] for an efficient evaluation of the input-output map
during Markov chain Monte Carlo samplings.
Once the parameters of the ODE model have been estimated, a simulation at the tissue level
requires the estimation of the parameters related to the PDE model. As shown in [CSL+11],
the calibration of a ventricular model can take advantage of both deterministic and statis-
tical parameter estimation procedures, performed in sequence at different length-scales. A
first optimization-based calibration for a complete electrophysiology model for both atria
and ventricles using a population of pre-processed healthy ECG signals has been recently
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proposed in [TSC+16]. A great attention has been also paid to the development of models
for identification of pathologies such as atrial fibrillation [NK11, KSR+13] and myocardial
ischemia [KRC+11, WKM+13, CAAZ+15, ÁAARÁ+12]. An optimization procedure for tuning
3-D ventricles parameters has been introduced in [PKK+14], using ECG and endocardial
mapping coming from both healthy patients and patients with Left-Ventricular (LV) conduc-
tion disturbances. This methodology has been extended to a complete heart model in [SCG16].

All these procedures featuring macro-scale models have been addressed in the literature
using PDE-constrained optimization procedures, which are slightly less computationally
demanding than the ones related to statistical inverse problems. An exception is represented
by [KRC+11], where a statistical inverse problem of estimating the conductivity field starting
from depolarization times has been solved using a simplified Eikonal model for the description
of the depolarization mechanism.
Optimization and statistical inverse problems can be characterized as many-query problems:
efficient reduced-order models, such as the ones proposed in Chapter 2, have a paramount
importance in improving their performance. So far, the RB method has been applied in the
context of PDE-constrained optimization for the identification of four physical parameters
characterizing the bidomain equation in [BSG12]. The development and the application
of ROMs in this context is extremely challenging due to the complexity of the underlying
phenomena as we have seen in Chapter 2. Moreover, ROM for electrophysiology could repre-
sent a breakthrough towards the solution of statistical inverse problems in the context of the
macro-scale cardiac electrophysiology, which is out of reach at present.
By extending the RB framework presented in [MPL16] to the case of non-linear unsteady PDEs,
we show in this Chapter how to take advantage of ROMES to gain a strong computational
speedup in the Bayesian computational framework. Moreover, we show how the combination
of ROM and ROMES leads to posterior distributions which are unbiased and more reliable
than those provided by the ROM alone.

5.2 Bayesian inverse problems governed by PDEs

In this section we introduce the abstract formulation the Bayesian inverse problems governed
by PDEs from the mathematical standpoint. In particular, we focus on the estimation of
unknown or uncertain parameters related to a PDE model starting from indirect real-valued
observations of suitable quantities of interest, such depolarization times or action potential
duration. In Chapter 6 we will focus instead on the case of time-dependent outputs.

5.2.1 Bayesian framework

We cast the parameter estimation problem into the Bayesian framework (see e.g. [KS06, Stu10,
Tar05]). We model both the observations y∗ and the parameters µ as random variables, by
introducing suitable probability density functions (pdfs). The solution of the inverse problem
is given by the posterior probability density πpost : P ×Y →R+

0 , i.e. the probability density of
the parameter µ given the measured value of y∗, which can be obtained as

πpost (µ |y∗) = π(y∗ |µ)πpr i or (µ)

η(y∗)
(5.4)
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thanks to the Bayes theorem. Here πpr i or : P →R+
0 is the prior probability density, expressing

all available information on µ independently of the measurements on y∗ that will be consid-
ered as data; π : Y ×P →R+

0 is the likelihood function of y∗ conditionally to µ; finally η(y∗) is
a normalization constant, given by

η(y∗) =
∫
P
π(y∗ |µ)πpr i or (µ).

We also denote the likelihood function appearing in (5.4) by highlighting the dependence on
the full-order approximation, as

π(y∗|µ) =πh(y∗|µ) =πε(y∗−yh(µ)) (5.5)

so that the expression (5.4) of the full-order posterior pdf can be rewritten as follows:

πh
post (µ |y∗) = πh(y∗|µ)πpr i or (µ)

ηh(y∗)
, being ηh(y∗) =

∫
P
πh(y∗|µ)πpr i or (µ). (5.6)

Indeed, the Bayes formula is nothing but the general formulation of problem (5.3). As a matter
of fact, the likelihood function, under the assumption that the additive noise model is normally
distributed with zero mean and covariance Γ, is such that

πε(y∗−yh(µ)) ∝ exp

(
−1

2
‖y∗−yh(µ)‖2

Γ

)
.

If we also assume that the a priori information is normally distributed with mean µpr i or and
covariance matrix Cpr i or , the prior pdf becomes

πpr i or (µ)η(y∗) ∝ exp

(
−1

2
‖µ−µpr i or ‖2

Cpr i or

)
.

Since in the PDE models presented in Chapter 1 the mapping µ 7→ y(µ) is nonlinear, the
expression of the likelihood function yields a posterior distribution which cannot be written in
closed form, requiring instead an exhaustive exploration of the parameter space. We then need
to rely on MCMC techniques to sample the posterior pdf, such as the well-known Metropolis-
Hastings or Gibbs sampling techniques [Gil05, ADFD+03, Has70, GG84]. These methods are
exploited to draw a sequence of random samples from a (multi-dimensional) pdf which cannot
be expressed in closed form. This is meant in order not only to approximate the posterior pdf,
but also to compute integrals related to this distribution, such as the posterior expected value
and covariance.
However, some key numerical challenges arise when dealing with inverse problems governed
by PDEs. These are mainly due to:

(i) parametric dimension: the unknown/uncertain quantity to be inferred might be as large
as the state of the system in the case of distributed field, while we can rely on few (noisy)
observations. This also makes the inverse problem intrinsically ill-posed;

(ii) many query: sampling techniques involve a huge amount of PDE approximations for
the input/output evaluation;

(iii) slow MCMC convergence: sampling accurately the posterior might be unfeasible due to
slow convergence rate with respect to the sample size.
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5.2. Bayesian inverse problems governed by PDEs

In this Chapter we address issue (i) by relying on the sensitivity analysis performed in Chapter
4 and issue (ii) by relying on the reduced-basis method introduced in Chapter 2 for the efficient
evaluation of parametrized PDE models. Regarding issue (iii) several techniques have emerged
in the last decade to speed up MCMC sampling algorithms [MWB+12, NT15, Gil08]. We point
out that the methodologies developed for (i) and (ii) can be extended in a straightforward way
also to these modifications of the MCMC.

5.2.2 Identifiability

Determining the identifiable parameters is a key preliminary procedure to improve the esti-
mation capability of the inversion procedure. A parameter vector µ is said identifiable if there
is no µ̃ ∈P , µ̃ 6=µ, such that yh(µ) = yh(µ̃), i.e. the input/output map is bijective (see e.g. the
analysis provided in [HCA+15]).
In order to investigate the identifiability of the model parameters related to the heart-torso
coupling or the subject-specific left ventricle, we can rely on the global sensitivity analysis
performed in Chapter 4. We recall that sensitivity analysis quantifies the effects of parameters
variation on the outputs of interest, providing a criterium to rank the most influential input
parameters. In global sensitivity analysis this criterium is given by the values of the total-index
STi i = 1, . . . ,d , defined in 4.3. In particular we have that the condition STi ≈ 0 is equivalent
to the fact that µi is a non-influential parameter. We expect that this global property implies
non-identifiability, which is a property related to the single parameter vector (and that the
opposite implication does not hold).
In alternative, local sensitivity analysis enables the study of local identifiability of the parame-
ters using the so called Fisher Information Matrix, which is indeed the local Hessian matrix of
the outputs with respect to parameters variations under the assumption of Gaussian additive
noise model [Rot71].

Once the MCMC sampling procedure of the posterior is performed, it is possible to derive some
a posteriori indicators of the global identifiability. As proposed in [TSR+16], an identifiability
index can be found by comparing the posterior marginal variance σ2(µi |y∗) and the prior
marginal variance σ2(µi ) as follows

Ii = 1−
√
σ2(µi |y∗)

σ2(µi )
i = 1, . . . ,d .

Parameter components µi , i = 1, . . . ,d , presenting a smaller σ2(µi |y∗) with respect to σ2(µi )
can be considered to be well-identifiable (Ii is consequently close to 1). On the other hand,
parameter components yielding σ2(µi | y∗) ≈ σ2(µi ), that is Ii ≈ 0 are non-identifiable. A
more detailed indicator has been derived in [PL15] starting from the Shannon entropy theory
[Sha01]. In particular, the gain in information aboutµwhen the data y∗ is observed is given by

G =
∫
P

(
πpr i or (µ) log

(
1

πpr i or (µ)

)
−πpost (µ |y∗) log

(
1

πpost (µ |y∗)

))
dµ.

In this case large values of G correspond to a large gains in information with respect to the
prior distribution and, as a consequence, characterize identifiable parameter components.
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Finally, since non-identifiable parameters can be considered as nuisance parameters ζ, we
proceed to marginalize them and concentrate only on the identifiable parameters γ. This
leads to computing the conditional marginal distribution

πh
post (γ |y∗) = 1

ηh(y∗)

∫
Pζ

πh(y∗|µ) πpr i or (γ,ζ) dζ. (5.7)

for which µ= [γ,ζ]T . MCMC methods are needed to evaluate (possibly) high-dimensional in-
tegrals (5.7). These methods involve repeated evaluations of the likelihood functionπh(y∗|γ,ζ)
– and thus repeated evaluations of the forward problem – so that relying on the FOM would be
too expensive.

5.3 Reduced-order strategy for Bayesian inverse problems

Projection-based reduced-order models (ROMs), introduced and developed in Chapter 2, can
be exploited to speed up the solution of Bayesian inverse problems dealing with parametrized
PDEs describing the electrical activity of the heart.
Reduced basis (RB) methods built through greedy algorithms [FMW+10, LMQ+13b, MPL16] or
proper orthogonal decomposition (POD) [GFW+10, LSK13, MN09, RAP14] have been already
successfully exploited for the solution of statistical inverse problems governed by elliptic
and some nonlinear PDEs. Very recently, a possible way to compute snapshots adaptively
from the posterior distribution, yielding a data-driven ROM, has been shown in [CMW15].
Proper generalized decomposition has also been combined with stochastic spectral methods
to deal with dynamical systems in the presence of stochastic parametric uncertainties [Nou09].

Besides projection-based ROMs, an efficient input/output evaluation could be obtained using
surrogate models (SMs), such as the kriging interpolation developed in Chapter 3, or low-
fidelity models, built according to simplified physics, coarser discretizations, or multiscale
formulations. These latter models can also be equipped with correction functions using global
polynomials in term of the stochastic parameters. For instance, non-intrusive polynomial
chaos using orthogonal polynomials [GS03] and stochastic collocation using interpolation
polynomials [BNT07, XK02] have been developed in conjunction with physics-based low fi-
delity models [NE12]. See, e.g., [FMW+10] for a detailed discussion on the use of low-fidelity
or surrogate models to speed up inverse problems.

Recently, a multi-fidelity approach, based on the proper combination of output evaluations
coming from SMs, ROMs and FOMs, has been proposed for the solution of inverse problems
(for a complete survey see [PWG16]). However, this approach has been shown to be effective
for the solution of simplified problems, such as elliptic PDEs [PWG15]. Due to the high
computational costs related to the full-order solution of cardiac electrophysiology models, we
prefer the standard offline-online approach in order to ensure a fast solution of the inverse
problems and ROMES to guarantee the accuracy in the results.

5.3.1 Reduced-order Bayesian inverse problems

We thus replace the FOM with a computationally less expensive ROM providing an inexpensive
output approximation yn(µ) to yh(µ) (see Chapter 2). Replacing the full-order likelihood
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5.3. Reduced-order strategy for Bayesian inverse problems

function πh with its ROM approximation

πn(y∗|µ) =πε(y∗−yn(µ)) (5.8)

clearly affects the posterior distribution, which changes as follows:

πn
post (µ |y∗) = πn(y∗|µ)πpr i or (µ)

ηn(y∗)
, being ηn(y∗) =

∫
P
πn(y∗|µ)πpr i or (µ). (5.9)

Consequently, the marginal pdf of the identifiable parameters becomes

πn
post (γ |y∗) = 1

ηn(y∗)

∫
Pζ

πn(y∗|µ) πpr i or (γ,ζ) dζ. (5.10)

Nevertheless, the output error yh(µ)−yn(µ) pollutes the evaluation of the likelihood pdf, which
means that πn(y∗|µ) could be skewed with respect to πh(y∗|µ). It is crucial to correct the
reduced likelihood function with suitable error surrogates in order to avoid biased estimates
of the parameters.

5.3.2 Error surrogates

Being able to cheaply evaluate the output of a PDE system is essential to speed up the solution
of inverse UQ problems within a Bayesian framework. Our goal, once a RB approximation
has been built in the offline stage, is to exploit its fast and cheaply computable online queries
to speed up the evaluation of the posterior pdf, of related (point or interval) estimates, and
of MCMC integrals like (5.7) or (5.10). Not only, by taking into account reduction errors with
suitable error surrogates, we can obtain reliable solutions at the end of the inversion process,
too. Although ROMs have been exploited to speed up the solution of inverse problems in
several works, very few papers have focused on the analysis of reduction error propagation
during inversion procedures (see e.g. [LM14a, BPL14]).

With this goal, we highlight the effect of the approximation error generated by the ROM into
the additive noise model (5.2):

y(µ) = yn(µ)+yh(µ)−yn(µ)︸ ︷︷ ︸
approx. error

+εnoise ∀µ ∈P . (5.11)

In particular, we wish to incorporate a surrogate model into (5.11) in order to avoid the
evaluation of the deterministic quantity yh(µ)− yn(µ), which would depend on the FOM
solution. To this end, we adopt suitable deterministic and statistical reduced-order model
error surrogates (ROMESs) εROM(µ), such that

y(µ) = yn(µ)+εROM(µ)+εnoise ∀µ ∈P . (5.12)

The easiest approach to construct a surrogate εROM(µ) consists in directly approximating the
map µ→ yh(µ)−yn(µ) through a gaussian process regression or a kriging interpolation, as
done in Chapter 3.
We end up with error indicators which can be either deterministic – that is, εROM(µ) =
mROM(µ), being mROM(µ) a suitable function of µ – or expressed through a random variable
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εROM(µ), whose distributionπεROM is characterized by E[εROM(µ)] = mROM(µ) and Cov[εROM(µ)] =
ΓROM(µ). Correspondingly, we end up with a corrected reduced-order likelihood

π̃n(y∗|µ) =
{
πε(y∗−yn(µ)−mROM(µ)) deterministic ROMES
πδ̃(y∗−yn(µ)−mROM(µ)) statistical ROMES

(5.13)

being δ̃(µ) = εROM(µ)+εnoise and Cov[δ̃(µ)] =Γ+ΓROM(µ), by assuming that ROM errors and
measurement noise are independent. Correspondingly, we obtain the following corrected
reduced-order posterior pdf

π̃n
post (µ |y∗) = π̃n(y∗|µ)πpr i or (µ)

η̃n(y∗)
, being η̃n(y∗) =

∫
P
π̃n(y∗|µ)πpr i or (µ), (5.14)

yielding to a similar correction in the marginal pdf of the identifiable parameters (5.10).

5.3.3 Proposed inversion procedure

Let us now summarize the whole numerical procedure we use to solve a Bayesian inverse
problem in the case of real-valued outputs. A first offline stage (Algorithm 5) consists in the
computation of the POD-DEIM basis functions and construction of the reduced arrays. Then
the calibration procedure consists in evaluating the difference between the ROM output yn(µ)
and the full-order output yh(µ) for each parameter in the calibration set Pcal . Finally, the
ROMES construction is performed accordingly to the procedure described in Sect. 3.3.
During the online stage (Algorithm 6), the posterior distribution is sampled through a Metropolis–
Hastings algorithm, which generates a sequence of sample values, whose distribution con-
verges to the desired corrected distribution π̃n

post . Each MCMC iteration entails an online
query, which is performed in an efficient way by the ROM and the ROMES. The quality of the
sampling sequence is finally improved by performing a subsequent burn-in and thinning, in or-
der to reduce the autocorrelation between the sampled points; see e.g. [Gil05, Jac00, ADFD+03]
for further details.

5.4 Effectivity of ROM error surrogates

Let us now analyze the effectivity of the corrections made on the reduced-order likelihood
function thanks to the proposed ROMES. In particular, we aim at stating some conditions to
be fulfilled by the ROMES corrections in order to guarantee that the corresponding posterior
pdf π̃n is closer to the full-order pdf πh than the reduced-order pdf πn without corrections.
To this end, let us recall the notion of Kullback-Leibler (KL) divergence, which is a non-
symmetric measure of the difference between two probability distributions πA and πB :

DK L(πA||πB ) =
∫
πA(z) log

(
πA(z)

πB (z)

)
d z. (5.15)

Clearly, DK L(πA||πB ) ≥ 0 whereas DK L(πA||πB ) = 0 if πA =πB almost surely. This notion has
already been used to compare approximations of posterior distributions obtained through
generalized polynomial chaos representations, see e.g. [MX09, BPL14] for further details.
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Algorithm 5 Standard POD-DEIM procedure

1: procedure [ ROM ARRAYS] = OFFLINE(FOM ARRAYS,Ptr ai n ,εtol )
2: Full-order matrices:
3: {βM

j (µ),M j } ← affine decomposition of M(µ)

4: {βA
j (µ),A j } ← affine decomposition of A(µ)

5: {βapp
j (µ)Iapp, j } ← affine decomposition of Iapp

6: for µ ∈ Ptr ai n do
7: for `= 1, . . . , Nt do
8: yu = [yu ,u(`)

h (µ)];

9: yI = [yI ,Ii on(u(`)
h ,w(`)

h ;µ)];
10: end for
11: end for
12: V ← POD(yu ,εtol );
13: U ← POD(yI ,εtol );
14: P ← DE I Mi ndi ces(U);
15: Reduced-order matrices:
16: {Mn, j , An, j , (Iapp,n) j } ← projection of the full order matrices onto V
17: end procedure
18:

19: procedure [ROMES ARRAYS] = ROMES CALIBRATION(FOM ARRAYS, ROM ARRAYS,Pcal )
20: for j = 1 : Ncal do
21: yh(µ j ) ← FOM query(µ j )
22: yn(µ j ) ← ROM query(µ j )
23: err( j ) ← yh(µ j )−yn(µ j )
24: end for
25: compute ROMES
26: end procedure

Remark 2. We assume the following consistency property for the considered ROM: for any RB
dimension n = 1, . . . , Nh and DEIM dimension mD = 1, . . . , Nh , there exists ε(`)(n,mD ) > 0 such
that

‖u(`)
h (µ)−Vu(`)

n (µ)‖ ≤ ε(`)(n,mD ), ∀`= 0, . . . , Nt ∀µ ∈P

and ε(`)(n,mD ) → 0 for n,mD → Nh . Moreover, if the output is linear with respect to the solution
uh we have that there exist εy (n,mD ) > 0

‖yh(µ)−yn(µ)‖ ≤ εy (n,mD ), εy (n,mD ) → 0 for n,mD → Nh .

5.4.1 Consistency result

Before comparing our ROMESs and showing their effect on the reduced-order posterior pdfs,
we prove that the reduced-order posterior function πn

post approximates the full-order one

πh
post in a consistent way, as long as the ROM dimension increases:
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Algorithm 6 Online procedure

1: procedure METROPOLIS SAMPLING

2: µ(1) ← initial value
3: sampling loop:
4: for cont = 2 : K do
5: µ̄← random walk
6: [yn(µ̄)] ← ROM query(µ)
7: mROM(µ̄) ← evaluate ROMES prediction(µ)
8: if ROMES is deterministic then
9: π̃n ←πε(y∗−yn(µ̄)−mROM(µ̄))

10: end if
11: if ROMES is statistical then
12: ΣROM(µ̄) ← evaluate ROMES covariance matrix
13: π̃n ←πδ̃(y∗−yn(µ̄)−mROM(µ̄))
14: end if
15: π̃n

post (µ̄|y∗) ← Bayes’ formula

16: γ← π̃n
post (µ̄|y∗)/π̃n

post (µ(k)|y∗)
17: y ← random sampling from U (0,1)
18: if y < γ then
19: µ(k+1) ← µ̄; k ← k +1
20: end if
21: burn-in:
22: eliminate first M simulations���

µ(1:M)

23: thinning:
24: keep every d-th draw of the chain µ(1:d :end)

25: end for
26: end procedure

Proposition 2. Let us consider a Gaussian noise model and the RB approximation yn(µ) of the
output yh(µ) defined by a consistent ROM. Then, for any µ ∈P , we have:

lim
n→Nh

DK L(πh
post ||πn

post ) → 0.

Proof. When an additive Gaussian noise model is considered, the following relationship holds
for any µ ∈P :

DK L(πh ||πn) =
∫
Rs
πh(y|µ) log

(
πh(y|µ)

πn(y|µ)

)
dy =

s∑
j=1

1

2σ2
j

(y j
h(µ)− y j

n(µ))2, (5.16)

thanks to the definition (5.15) of Kullback-Leibler divergence. For the consistency of the
selected ROM we have that:

lim
n→Nh

DK L(πh ||πn) → 0.
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Moreover, by applying the KL-divergence to the Bayes formula, we have:

DK L(πh
post ||πn

post ) =
∫
P

πh(y∗|µ)πpr i or (µ)

ηh(y∗)
log

(
πh(y∗|µ)

πn(y∗|µ)

ηn(y∗)

ηh(y∗)

)
dµ

= log

(
ηn(y∗)

ηh(y∗)

)
+

∫
P

πh(y∗|µ)πpr i or (µ)

ηh(y∗)
log

(
πh(y∗|µ)

πn(y∗|µ)

)
dµ.

(5.17)

By using the definition of πh and πn , and the Lipschitz-continuity of exp(−y) for y ≥ 0 (that is,
|e−y −e−t| ≤Λ|y− t| for any y,t > 0, withΛ= 1), we obtain

∣∣πh(y∗|µ)−πn(y∗|µ)
∣∣ =

s∏
j=1

1√
2πσ2

j

∣∣∣∣∣∣exp

− (y∗
j − y j

n(µ))2

2σ2
j

−exp

− (y∗
j − y j

h(µ))2

2σ2
j

∣∣∣∣∣∣
≤

s∏
j=1

1√
2πσ2

j

∣∣∣∣∣∣−
(y∗

j − y j
n(µ))2

2σ2
j

+
(y∗

j − y j
h(µ))2

2σ2
j

∣∣∣∣∣∣
≤

s∏
j=1

1√
2πσ2

j 2σ2
j

∣∣∣y j
n(µ)− y j

h(µ)
∣∣∣ ∣∣∣2s∗j − y j

h(µ)− y j
n(µ)

∣∣∣
so that, for any µ ∈P ,

∣∣πh(y∗|µ)−πn(y∗|µ)
∣∣→ 0 when n → Nh because for the consistency of

the ROM we have |y j
h(µ)− y j

n(µ)|→ 0 for any j = 1, . . . , s. In the same way, |ηn(y∗)−ηh(y∗)| =∣∣∫
P (πh(y∗|µ)−πn(y∗|µ))πpr i or (µ)dµ

∣∣ → 0 for any given y∗ ∈ Rs . Thus, both terms in the
second line of (5.17) vanish for n → Nh .

5.4.2 A result of effectivity

Since we are mainly interested in the case where the ROM dimension n is fixed (and possibly
small) we want to show that performing a correction according to a ROMES improves the
quality of the reduced posterior (in terms of the KL divergence). We first prove a result dealing
with the ROM-ROMES approximation of the likelihood function:

Proposition 3. Under the assumptions of Proposition 2, if for any j = 1, . . . , s there exists C j < 1
such that

|y j
h(µ)− y j

n(µ)−m j
ROM(µ)| ≤C j |y j

h(µ)− y j
n(µ)| ∀µ ∈P (5.18)

then
DK L(πh ||π̃n) ≤ ( max

j=1,...,s
C 2

j )DK L(πh ||πn) (5.19)

provided that the correction is made according to a deterministic ROMES.

Proof. In analogy with relation (5.16), a correction operated by means of a deterministic
ROMES affects just E[s∗|µ], so that

DK L(πh ||π̃n) =
s∑

j=1

1

2σ2
j

(y j
h(µ)− y j

n(µ)−m j
ROM(µ))2. (5.20)

Thus, under condition (5.18), (5.19) directly follows.
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By means of (5.18), we require that the correction provided by a ROMES is effective, that is, it
yields a reduction in the KL divergence between the reduced-order and the full-order posterior
pdfs, when in the former case a correction through a deterministic ROMES is considered.
Instead, when relying on a statistical ROMES εROM, the correction could be modeled as
a random variable, with mean mROM and covariance matrix (ΣROM)i j = (σROM

j )2δi j . As a
consequence we would obtain

DK L(πh ||π̃n) = 1

2

s∑
j=1

(
(y j

h(µ)− y j
n(µ)− ε̃ j (µ))2

σ2
j + (σROM

j )2

+ σ2

σ2
j + (σROM

j )2
−1− log

(
σ2

j

σ2
j + (σROM

j )2

))
(5.21)

instead of (5.20). Thus, in order to ensure that a relation like (5.19) still holds, we need to
further require that (σROM

j )2 is sufficiently small compared to σ2
j , j = 1, . . . , s. We remark that it

is always possible to construct a ROMES such that this assumption is fulfilled, by considering
a sufficient large calibration set Scal during the offline phase.

Let us now turn to evaluate how the corrections introduced by a ROMES impact on the
posterior pdfs. First of all, let us remark that, by taking the expectation of the KL divergence
between πh(y∗|µ) and πn(y∗|µ), and changing the order of integration, we obtain

E[DK L(πh ||πn)] =
∫
P

DK L(πh ||πn)πpr i or (µ)dµ. (5.22)

Moreover, thanks to the positivity of the KL divergence and relation (5.19), we get

E[DK L(πh ||π̃n)] ≤
(

max
j=1,...,s

C 2
j

)
E[DK L(πh ||πn)]. (5.23)

The average distance between the corrected reduced likelihood function and the full-order
one is bounded by the average distance between the uncorrected reduced likelihood function
and the full-order one with a constant depending on the effectivity of the ROMES.

5.4.3 Posterior comparison for fixed n

We now want to compare the KL divergences between the full-order and the corrected/uncor-
rected posterior pdfs for a (possibly small) fixed ROM dimensions n and mD . We can show the
following

Proposition 4. Under the assumptions of Proposition 3 and provided that ηn(y) ∼ ηh(y) for
n,mD → Nh , for any y ∈Rs , we have that

E[DK L(πh
post ||π̃n

post )] ≤ E[DK L(πh
post ||πn

post )] (5.24)

if the correction is made according to a deterministic ROMES.
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Proof. Let us express the right-hand side of (5.24) as

E[DK L(πh
post ||πn

post )] =
∫
Rs

(
log

(
ηn(y)

ηh(y)

)
+

∫
P

πh(y|µ)πpr i or (µ)

ηh(y)
log

(
πh(y|µ)

πn(y|µ)

)
dµ

)
ηh(y)dy.

(5.25)
In the same way, the left-hand side of (5.24) becomes

E[DK L(πh
post ||π̃n

post )] =
∫
Rs

(
log

(
η̃n(y)

ηh(y)

)
+

∫
P

πh(y|µ)πpr i or (µ)

ηh(y)
log

(
πh(y|µ)

π̃n(y|µ)

)
dµ

)
ηh(y)dy.

(5.26)
We proceed by analyzing separately the two terms of the right-hand side of (5.25). The second
term coincides with (5.22), i.e.∫

Rs

(∫
P

πh(y|µ)πpr i or (µ)

ηh(y)
log

(
πh(y|µ)

πn(y|µ)

)
dµ

)
ηh(y)dy =

=
∫
P

(∫
Rs
πh(y|µ) log

(
πh(y|µ)

πn(y|µ)

)
dy

)
πpr i or (µ)dµ= E[DK L(πh ||πn)].

In the same way, the second term of the right-hand side of (5.26) is such that∫
Rs

(∫
P

πh(y|µ)πpr i or (µ)

ηh(y)
log

(
πh(y|µ)

π̃n(y|µ)

)
dµ

)
ηh(y)d s = E[DK L(πh ||π̃n)].

On the other hand, by developing the first term of (5.25) with a Taylor expansion, we obtain∫
Rs

log

(
ηn(y)

ηh(y)

)
ηh(y)d s =

∫
Rs

((
ηn(y)

ηh(y)
−1

)
− 1

2

(
ηn(y)

ηh(y)
−1

)2

+O

(
ηn(y)

ηh(y)
−1

)3)
ηh(y)dy

=
∫
Rs

(ηn(y)−ηh(y))dy−
∫
Rs

1

2

(
ηn(y)2

ηh(y)
−2ηn(y)+ηh(y)

)
dy+

∫
Rs

O

(
ηn(y)

ηh(y)
−1

)3

ηh(y)dy.

The first term of the last sum can be rewritten as∫
Rs

(ηn(y)−ηh(y))d s =
∫
P

(∫
Rs
πn(y|µ)dy

)
πpr i or (µ)dµ−

∫
P

(∫
Rs
πh(y|µ)dy

)
πpr i or (µ)dµ,

(5.27)
and it is vanishing, since∫

P

(∫
Rs
πh(y|µ)dy

)
πpr i or (µ)dµ=

∫
P

(∫
Rs
πn(y|µ)dy

)
πpr i or (µ)dµ=

∫
P
πpr i or (µ)dµ= 1.

In this way∫
Rs

log

(
ηn(y)

ηh(y)

)
ηh(y)dy =−1

2

∫
Rs

(
ηn(y)2

ηh(y)
−1

)
dy+

∫
Rs

O

(
ηn(y)

ηh(y)
−1

)3

ηh(y)dy,

considering the integral of the ROMESainder term of the Taylor expansion to be sufficient
small when ηn ∼ ηh . Similarly, the first term of the right-hand side of (5.26) is negligible, so
that

E[DK L(πh
post ||π̃n

post )] =−1

2

∫
Rs

(
η̃n(y)2

ηh(y)
−1

)
dy+E[DK L(πh ||π̃n)]+

∫
Rs

O

(
η̃n(y)

ηh(y)
−1

)3

ηh(y)dy

E[DK L(πh
post ||πn

post )] =−1

2

∫
Rs

(
ηn(y)2

ηh(y)
−1

)
dy+E[DK L(πh ||πn)]+

∫
Rs

O

(
ηn(y)

ηh(y)
−1

)3

ηh(y)dy.
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In conclusion, by using (5.23), inequality (5.24) follows under the following condition:

1

2

∫
Rs

(
ηn(y)2

ηh(y)
− η̃n(y)2

ηh(y)

)
dy+

∫
Rs

O

(
η̃n(y)

ηh(y)
−1

)3

ηh(y)dy

≤
(
1− max

j=1,...,s
C 2

j

)
E[DK L(πh ||πn)]+

∫
Rs

O

(
ηn(y)

ηh(y)
−1

)3

ηh(y)dy,

which can be seen as a robustness condition on the correction entailed by the ROMES.

Remark 3. According to (5.6), (5.9), ηn ∼ ηh as soon as the likelihood functions πh and πn are
very close to each other, that is, DK L(πh ||πn) < ε for any given, small ε> 0.

5.5 Numerical results

We now apply the proposed reduced method for the solution of a Bayesian inverse problem
based on the simplified 2-D coupled heart-torso problem presented in Section 4.5 and a noisy
observation of a simplified ECG signal. Our goal is to show how the combination of ROM and
ROMES surrogates leads to an efficient and accurate estimation of the posterior probability
distribution of the parameters.

5.5.1 2D heart-torso model

We consider the fully uncoupled heart-torso model based on the monodomain equation and
the Aliev-Panfilov ionic model: given µH = [σv ,K ,ε0]T , find u = u(x,t ;µH ) and w = w(x,t ;µH )
such that

Am

(
Cm

∂u

∂t
+ Ii on(u, w ;µH )

)
−div(σv∇u) = Am Iapp (t ) x ∈ΩH , t ∈ (0,T ]

∂w
∂t = g (u, w ;µH ) x ∈ΩH , t ∈ (0,T ]

∇u(x,t ;µH ) ·nH = 0 x ∈∂ΩH , t ∈ (0,T ]

u(x,0;µH ) = w(x,0;µH ) = 0 x ∈∂ΩH ,

(5.28)

with current specification (1.2). The extra-cellular potential is then obtained by solving: find
ue = ue (x,t ; [σe ,µH ]T ) such that{

−div((σi +σe )∇ue )−div(σi∇u) = 0 x ∈ΩH , t ∈ (0,T ]

(σi +σe )∇ue (x,t ; [σe ,µH ]T ) ·nH =σi∇u(x,t ;µH ) ·nH x ∈∂ΩH , t ∈ (0,T ].
(5.29)

Finally, the torso potential is obtained by solving: find uT = uT (x,t ; [σt ,σe ,µH ]T ) such that
div(σT ∇uT ) = 0 x ∈ΩT , t ∈ (0,T ]

σT ∇uT (x,t ; [σt ,σe ,µH ]T ) ·nT = 0 x ∈∂ΩT , t ∈ (0,T ]

uT (x,t ; [σt ,σe ,µH ]T ) = ue (x,t ; [σe ,µH ]T ) x ∈∂ΩH , t ∈ (0,T ].

(5.30)

In this case, we consider as output of interest the landmark yh(µ) = tQR (µ), i.e. the time
between the stimulation pulse and the upstroke of the simplified ECG I (t ;µ):

tQR (µ) = arg max
t∈(0,T )

I (t ;µ) = arg max
t∈(0,T )

(uT (xL A , t ; [σt ,σe ,µH ]T )−uT (xR A , t ; [σt ,σe ,µH ]T ).

110



5.5. Numerical results

We assume that the measurement of the output yh(µ) = tQR (µ) is affected by noise, which is
modeled with the additive noise model:

y = tQR (µ)+εnoise εnoise ∼N (0,0.5).

The goal of the Bayesian inverse problem is to identify the parameters γ = [σv ,K ]T by ob-
serving the output y in presence of three nuisance parameters ζ= [σt ,σe ,ε0]T . This choice is
motivated by the results obtained from the global sensitivity analysis reported in Section 4.5.
The total effect indices STi , i = 1, . . . ,5, reported in Table 5.1, clearly classify ζ as non-influential
parameters for the output tQR . We expect indeed that ζ is also a vector of non-identifiable
parameters for the case at hand. We suppose that the target value y∗ corresponds to a noisy
observation of the full order output yh(µ∗) evaluated for γ∗ = [1.63,6.92] and a random value
of ζ∗.

As we have seen in 4.5, the FOM for the approximation of (5.28)-(5.29)-(5.30) can be built
using the FE method (with linear P1 finite elements) on a mesh formed by 6662 vertices and
12880 elements. We consider a reduced basis POD-DEIM model starting from Ntr ai n = 10
parameters randomly selected in the parameter space (the snapshots matrix is consequently of
dimensions 6662×10Nt , with Nt = 600). For each new vector of parameters the evaluation of
yn(µ) requires on average in 0.64 seconds, with a speedup of 82x with respect to the FOM. The
reduced output evaluation yn(µ) can be corrected using a kriging-based ROMES, built starting
from the output errors computed for Ncal = Ntr ai n +15 parameter vectors. The corrected
output evaluation becomes:

y(µ) =
{

yn(µ)+mROM(µ)+εnoi se deterministic ROMES
yn(µ)+εROM(µ)+εnoi se statistical ROMES

Finally we also compare the ROM with a surrogate model (SM) constructed on a set of Ntr ai n =
25 outputs (for further details see Section 3.2). In this case the output measurement becomes

y(µ) =
{

yn(µ)+ ys(µ)+εnoi se deterministic SM
yn(µ)+ ys(µ)+εs(µ)+εnoi se statistical SM

The MCMC algorithm is then exploited for the estimation of the unknown parameters values
γ, by starting from a normal prior distribution on the identifiable parameters of mean [3,8]T

and covariance matrix Cpr i or = (0.65)I. The mean values are the ones proposed in [AP96],
while the covariance matrix is in accordance with the ranges used in the previous Chapter.
Instead, we assume a uniform prior distribution on the non-identifiable parameters ζ.

We observe that the marginal posterior distribution of σv obtained with the ROM is close
to the one obtained with the FOM, while the marginal posterior of K is not (see Figure 5.1).
This could be caused by the propagation of the approximation error during the inversion
procedure. This bias is even bigger when we consider a low-fidelity SM instead of the ROM.
The marginal posterior distributions of σv and K obtained with the ROM equipped with the
ROMES are close to the ones obtained with the FOM (see Figure5.2), if compared with the ones
given by the uncorrected ROM (see Figure 5.1). The error estimation provided by the ROMES
enables to minimize the propagation of the reduction error during the inversion procedure.
On the other hand, considering the prediction variance of the error in the SM prediction,
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defined as statistical SM, does not improve the results: the marginal posterior pdf σv is even
more far from the FOM posterior pdf with respect to the deterministic SM in Figure 5.1.

1 2 3 4 5
0

1

2

πpost (σv |y∗)

FOM

ROM

SM

6 7 8 9 10
0

0.2

0.4

0.6

0.8

πpost (K |y∗)

FOM

ROM

SM

Figure 5.1 – Marginal posterior distributions of the identifiable parameters γ= [σv ,K ]T given
the noisy observation y∗. The comparison between the FOM marginal posteriors and the
ones obtained with the SM and the ROM clearly shows the effect of approximation errors
propagation on the results of the inversion procedure.
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πpost (σv |y∗)

FOM

ROMES(stat)

SM(stat)

6 7 8 9 10
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0.2

0.4
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πpost (K |y∗)

FOM

ROMES(stat)

SM(stat)

Figure 5.2 – Marginal posterior distributions of the identifiable parameters γ= [σv ,K ]T given
the noisy observation y∗. The marginal posteriors obtained by combining the ROM with the
ROMES are closer to the ones given by the FOM than the uncorrected ROM posterior pdfs.
Instead, considering the statistical SM does not improve the results.

A visual representation of the information gain between the prior and the posterior distri-
butions is presented in Figure 5.3, where two random samples from both distributions are
reported when FOM, ROM and ROM corrected with ROMES are considered. Moreover, the
identifiability indices of Section 5.2.2, whose evaluations on the case at hand are reported in
Table 5.1, confirm the a priori ranking of the parameters given by the global sensitivity analysis.
However, σv is clearly more identifiable than K , as we can also deduced by looking at the
variances of the two marginal posterior distributions (σ2(σv |y∗) is smaller than σ2(K |y∗)). As
expected, the non-influential parameters ζ are also non-identifiable.
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Figure 5.3 – Marginal posterior distributions of the identifiable parameters γ given the noisy
observation y∗ in the case the FOM (left), the ROM (center) and the ROM corrected with the
ROMES (right) are used.

Finally, as a validation of the theoretical results presented in Sect. 5.4, we report in Table 5.2
the maximum a-posteriori (MAP) estimate and the KL- divergences for the different models
adopted. In this case, we are able to verify the relation between the ROMES corrections and
the KL divergence stated in Proposition 4.

Output σv σe σt K ε0

Total effect index STi 0.5813 0.0440 0.0480 0.4688 0.0123
Variance reduction Ii 0.6902 0.0608 0.0634 0.1534 0.1112

Entropy index Gi 1.1622 0.0549 0.0544 0.1165 0.0159

Table 5.1 – Total effect indices STi , variance reduction indices Ii and entropy index Gi for
i = 1, . . . = 5.

Output σ̂v K̂ KL div σv KL div K

FOM 1.60 7.45
ROM 1.70 7.45 0.0858 0.1315
SM 1.75 0.3922 0.4593 0.3922

ROM+ROMES(stat) 1.62 7.34 0.0846 0.0412
SM(stat) 2.49 7.37 1.8459 0.0231

Table 5.2 – MAP parameter estimates of the identifiable parameters σv and K with the KL
divergences between the posterior FOM distribution and the other distributions obtained
using the ROM and the SM.

113



Chapter 5. Bayesian inverse problems

5.6 Conclusions

The combined use of ROMs and ROMESs allows to speed up the solution of Bayesian inverse
problems dealing with nonlinear time-dependent PDEs describing the electrical activity of
the heart, without affecting the accuracy of the posterior distribution.
The ROM enables to perform the inversion procedure in less than a day with respect to the
several days required by a full-order model. Moreover, the inexpensive ROMES evaluation
is instrumental to minimize the bias in the resulting posterior distributions. The numerical
results finally confirm the theoretical ones proved in this Chapter.
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6 | Ensemble Kalman Filter

In this Chapter we develop an ensemble Kalman filter (EnKF) technique that combines
reduced-order models (ROM) and ROM error surrogates (ROMES) to solve state/parameter
estimation problems governed by nonlinear dynamical systems arising from the discretization
of nonlinear time-dependent PDEs.
In particular, we first review in Section 6.1 the state of the art techniques for the solution
of Bayesian inverse problems, namely state/parameter estimation problems, when time-
dependent outputs are considered. In Section 6.2 we provide a general formulation of the
Bayesian filtering, whereas in Section6.3 we introduce the ensemble Kalman filter algorithm.
In Section 6.4 we develop the reduced basis EnKF, providing some theoretical results on
the quality of the state/parameter estimation given by the RB-EnKF with respect to the full-
order EnKF algorithm. In Section 6.5 we show how to integrate the time-dependent ROMES
developed in Chapter 3 into the RB-EnKF in order to improve the accuracy in the estimation.
Finally, the RB-EnKF equipped with ROMES is tested in Section 6.6 for the identification of
three unknown parameters of the FitzHugh-Nagumo ODE system1.

6.1 Bayesian inverse problems with time-dependent outputs

The estimation of the model parameters, when noisy time-dependent output are considered,
can be performed by relying on sequential procedures, such as filtering and data-assimilation
techniques, much more reliable than the Markov chain Monte Carlo techniques.
Sequential procedures are currently widely exploited to merge noisy measures or images with
the state solution and/or parameters of a PDE model in order to improve the model accuracy

1The methodology developed in this Chapter and the numerical results are based upon the work [PMQ16]
submitted for publishing.
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in reproducing the phenomenon of interest. Although the main applications of sequential
state/parameter estimation techniques first arise in weather forecasting [Eve97, DUS+11,
Kal03] and hydrology [RME02, HSF+98], several instances of parameter estimation problems
have been recently considered in the modeling of cardiovascular applications [DBW+12,
LMN16, BMG12].
Typically, the term data-assimilation techniques refers to the estimation of the state of the
system, such as the solution of a PDE model, from available data when the model inputs, such
as physical coefficients and initial and boundary conditions, are unknown. In this case, the
numerical model is exploited to propagate previous information to the current time; then, the
data-assimilation procedure corrects the state of the system merging the numerical results
with available observations of the phenomenon of interest.
Parameter estimation on the other hand aims at reconstructing the unknown model parame-
ters that lead to a match between numerical outputs and observed sequential data. In this
Chapter, we focus on this latter class of problem, by developing a sequential procedure based
on the ROM-ROMES framework.

6.1.1 Variational and sequential estimation

We first introduce the state of the art procedures for the solution of state and/or parameter
estimation problems from the observation of noisy measurements time-series.
As in the case of real-valued outputs, an additive Gaussian noise model ε(k)

noise can be adopted
to mimic the effect of the source of errors at each time-step:

y(k) = y(k)
h (µ)+ε(k)

noise ε(k)
noise ∼N (0,Γ(k)). (6.1)

where εnoise is a Gaussian random process with zero mean and covariance Γ(k), k = 1, . . . , Nτ.

We divided the interval (0,T ) in Nτ windows (τ(k),τ(k+1)) of length ∆τ = K∆t , with k =
0, . . . , Nτ−1 and K > 1 (a sketch is reported in Fig. 6.1), on which the data are acquired.

t (0)
T

t (1) t (2) t (3) t (K ) t (2K ) t (3K )

τ(0) τ(1) τ(2) τ(3)

Figure 6.1 – Example of partition of the time interval in windows of length ∆τ= K∆t , K = 4.

Given a sequence of noisy realizations {y(k)}Nτ

k=1 of (6.1) for the unknown vector µ∗, we can
adopt the following approaches for its estimation:

1. variational methods, which look at the problem as a PDE-constrained optimization
problem, minimizing a least-squared criterion that measures the discrepancy between
the observed data y(k) and the output y(k)

h (µ) of the numerical model. The problem
can be formulated as follows: find the estimate µ̂ of the unknown parameter µ∗ by
minimizing a suitable cost functional, such as

µ̂= argmin
µ∈P

Nτ∑
k=1

J (k)(µ) = argmin
µ∈P

(
1

2

Nτ∑
k=1

‖y(k) −y(k)
h (µ)‖2

Γ(k) +
α

2
‖µ−µpr i or ‖2

Cpr i or

)
,
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through an iterative strategy. In order to reach a good estimate of the parameters,
we need to perform several iterations requiring the numerical approximation of the
underlying parametrized PDE model. Here, α is the penalization coefficient of the
additional regularization term based on the confidence in the PDE model given by the
available a priori information (see Section 5.1). For further details see [LDT86, DMP+12].

2. sequential methods, which update the state and/or parameters at each instant τ(k),
k = 1, . . . , Nt , by properly weighting the discrepancy between the measured data y(k) and
the numerical output y(k)

h (µ). When the output is linear with respect to the state and the
parameters, the Kalman filter (KF) [Kal60] leads to the same results of the variational
methods previously introduced with α= 1. Suitable modifications of the method have
been considered in order to deal with nonlinear models, among which we mention the
extended KF, the unscented KF and the ensemble KF (for a complete review on filtering
methods see, e.g., [HRW12, Sim06]). In this Thesis, we will refer to this group of method
as approximated KFs.

Adopting the approach presented in [LSZ15], we can formulate the filtering problem
in the Bayesian framework as follows: given an additive Gaussian noise model and
a Gaussian a priori distribution of the parameters, the probability distribution π(k)

post ,
k = 1, . . . , Nt , can be approximated as follows

π(k)
post (µ |y(1:k)) ∝ exp

(
−1

2
‖y(k) −y(k)

h (µ)‖2
Γ(k) −

1

2
‖µ− µ̄(k−1)‖2

C(k−1)

)
, (6.2)

where µ̄(k) and C(k−1) are, respectively, the mean and the covariance associated to π(k−1)
post .

For the sake of completeness, we also cite the Luenberger feedbacks [Lue71], which are
filters based on the dissipative properties of the PDE system and the direct observation
of both input and outputs quantities.

These methodologies are recently widely exploited for the personalization of electromechani-
cal models starting from clinical MRI data [CWH+16, SMC+06, MCLT09]: in particular we men-
tion the variational approaches [SMCC+06, DBW+12], the unscented KF [MDS+13b, NBG+13]
and the Luenberger feedbacks [MCLT08, SCC+11]. However, applying these procedures to
cardiac models is a very challenging task due to considerable computational costs related to
the PDEs approximation.
ROMs can be exploited to reduce: (i) the model complexity, enabling a computationally
efficient evaluation of the input/output map (see e.g. [DH16, HK09, HK07, NCD+15]) or (ii)
the dimensionality of the uncertainty space, enabling a computationally efficient sequential
estimation of the quantities of interest (see e.g. [SCH+16, MC11, Sim06, LM14b]). Both
strategies lead to reduced-order formulation of the filtering methods. Usually there is no clear
distinction in their definition, even if they are considerably different. As a matter of fact, the
former could be not consistent, i.e. it is affected by the reduction error, while the latter might
lack of stability [MC11].
When a FOM is replaced by a ROM, the propagation of the reduced-order approximation errors
during the inversion procedure could lead to biased estimates of the unknown state/parameter
[MPL16, CGM+13]. Moreover, the ROM dimension can grow quite dramatically to ensure
the achievement of a prescribed accuracy. Consequently, this entails a dramatic loss of
computational efficiency. With respect to already existing approaches, we integrate the ROM-
ROMES framework into the ensemble Kalman filter to address directly the model complexity.
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This choice is motivated by the fact that the EnKF is shown to better handle large dimensional
state/parameters vectors and nonlinear errors evolution, characterizing electrophysiology
models, with respect to the variational methods and the other approximated KFs [Eve09].

6.2 Problem formulation

In this section we introduce some basic notions on the problem formulation and on the
Bayesian filtering instrumental to set up the whole framework.

6.2.1 Forward problem

We focus on the dynamical system arising from the discretization of the system of PDEs that
models cardiac electrophysiology, such as the monodomain equation (1.4) coupled with a
ionic model. We consider the state vector u(`)

h (µ) ∈ RNh , ` = 1, . . . , Nt , as the solution of the
unsteady nonlinear dynamical system

(
M(µ)

∆t
+A(µ)

)
u(`+1)

h = M(µ)

∆t
u(`)

h + I(`+1)
app (µ)− Ii on(u(`)

h ,w(`)
h ;µ) `= 0, . . . , Nt −1

u(0)
h = u0(µ)

w(`+1)
h = w(`)

h + g (u(`)
h ,w(`)

h ;µ) t ∈ (0,T )

w(0)
h = w0(µ),

(6.3)

given the value of the time-invariant parameter vector µ ∈P .

We considers as numerical output of the model over each window (τ(k),τ(k+1)) the values

y(k+1)
h (µ) =

∫ τ(k+1)

τ(k)
Huh(t ;µ)d t '∆tH

K (k+1)∑
`=K k

ω`uh(t (`);µ), k = 0, . . . , Nτ−1, (6.4)

where ω`, `= K k, . . . ,K (k +1) are weights depending on the chosen quadrature formula over
(τ(k),τ(k+1)) and H is a matrix arising from the discretization of the observation operator. In this
way, we end up with a vector of scalar values on each window consistent with the formulation
of the noisy measurements process (6.1).

Remark 4. For the case at hand data are generated from the numerical scheme, hence they are
available at each time step. The output (6.4) contains K > 1 observations of the solution, one
for each time-step of the assimilation window (τ(k),τ(k+1)). A possible alternative would be to
consider as outputs only the measured values at each t = τ(k+1), i.e.

y(k+1)
h (µ) = Huh(τ(k+1);µ) k = 0, . . . , Nτ−1, (6.5)

however providing less information than (6.4).

6.2.2 Bayesian data assimilation

We formulate the problem of estimating µ ∈P ⊂Rd and uh ∈ Xh from noisy data {y(k)}Nτ

k=1 ∈
RNτ×s as a Bayesian data assimilation problem. Following the approach proposed in [AA99,
Ham06], the solution of this problem at iteration k = 1, . . . , Nτ, is given by a multivariate
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probability density function (pdf) πpost : P ×Xh →R+
0 of the parameters µ and the state uh

given the noisy data Y (k) = {y(i )}k
i=1. Thanks to the Bayes theorem, we can express πpost as

πpost

(
[µ,u(k)

h ]T
∣∣∣ Y (k)

)
= 1

η(y)
π

(
Y (k)

∣∣∣ [µ,u(k)
h ]T

)
πprior

(
[µ,u(k)

h ]T
)

, (6.6)

where πprior : P × Xh → R+
0 is the prior pdf of the parameters/state vector, π : Rk×s → R+

0
the likelihood function and η(s) a suitable normalization constant, which does not affect the
inversion step [Tar05, LSZ15]. We consider an additive noise model: given µ=µ∗, set

y(k) = y(k)
h (µ∗)+εnoise ∀k = 1, . . . , Nτ (6.7)

where we assume that the noise is independent from a time step to another and is modeled by
a gaussian random variable ε(k)

noise ∼N (0,Γ(k)), with covariance matrix Γ(k) ∈ Rs×s . Under
these assumptions, the likelihood function can be expressed as:

π
(
Y (k)

∣∣∣ [µ,u(k)
h ]T

)
=π

(
y(k)

∣∣∣ [µ,u(k)
h ]T

)
π

(
Y (k−1)

∣∣∣ [µ,u(k)
h ]T

)
,

and, consequently, (6.6) becomes

πpost

(
[µ,u(k)

h ]T
∣∣∣ Y (k)

)
= 1

η(y)
π

(
y(k)

∣∣∣ [µ,u(k)
h ]T

)
π

(
Y (k−1)

∣∣∣ [µ,u(k)
h ]T

)
πprior

(
[µ,u(k)

h ]T
)

= 1

η(y)
π

(
y(k)

∣∣∣ [µ,u(k)
h ]T

)
πpost

(
[µ,u(k)

h ]T
∣∣∣ Y (k−1)

)
.

(6.8)

Equation (6.8) expresses the sequential updating of the posterior pdf of [µ,uh]T given the
measurement vectors Y (k). Under the assumption that εnoise is normally distributed, we have
that

π
(

y(k)
∣∣∣ [µ,u(k)

h ]T
)
= 1

(2π)(s/2)|Γ(k)| 1
2

exp

{
−1

2
‖y(k) −y(k)

h (µ)‖2
Γ(k)

}
, (6.9)

where the weighted norm ‖ · ‖Γ is such that ‖v‖2
Γ = vTΓ−1v, v ∈ Rs . For the sake of notation

we will use the shorthand π(k) and π(k)
post to denote π(y(k)|[µ,u(k)

h ]T ) and πpost ([µ,u(k)
h ]T |S (k)),

respectively.

We observe that in principle the posterior updates {π(k)
post }Nτ

k=1 can be approximated by adopt-
ing a sampling technique, such as the Markov chain Monte Carlo (MCMC). However, the
computationally expensive solution of the nonlinear dynamical system, required to evaluate
yh(µ), would make MCMC-based approximation extremely inefficient.
In order to efficiently update {π(k)

post }Nτ

k=1, we would prefer to update only the posterior mean of
the state/parameter vector and its covariance using suitable updating formula. Since the map
µ→ yh(µ) is highly nonlinear, it is not possible to adopt the standard KF, but we need to rely on
approximated Gaussian filters, such as the unscented KF or the ensemble KF (ensemble-based
assimilation techniques are indeed well suited in situations where linearity and gaussianity
assumptions are not matched).
In this work, we consider the ensemble Kalman filter, which takes advantage of a randomly
generated sample to successively approximate the distribution of {π(k)

post }Nτ

k=1 through the
sample mean and covariance of the state/parameter vector. In the following section we
recall the basic features of this technique; a more detailed overview can be found e.g. in
[Eve97, ILS13].
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Chapter 6. Ensemble Kalman Filter

6.3 Ensemble Kalman filter

The ensemble Kalman filter (EnKF) is a recursive filter, based on the idea of updating an
ensemble of particles using the prediction/analysis procedure introduced in the previous
section [Eve03, HM01, RER+15]. In our case, by ensemble of particle we mean a sample of Ne

parameter vectors

P (k)
h = {µ(k)

h,q }Ne
q=1, k = 1, . . . , Nτ,

where µ(k)
h,q denotes the value of a parameter vector µh,q at the k − th iteration, and the

associated ensemble of Ne state solutions

U (k)
h = {u(k)

h (µ), µ ∈P (k)
h }, k = 1, . . . , Nτ.

Moreover, let us introduce, for any k = 1, . . . , Nτ, the sample mean vectors

u(k)
h = 1

Ne

∑
µ∈P (k−1)

h

u(k)
h (µ), y(k)

h = 1

Ne

∑
µ∈P (k−1)

h

y(k)
h (µ), µ(k)

h = 1

Ne

∑
µ∈P (k)

h

µ, (6.10)

the sample covariance of the output

C(k)
yh yh

= 1

Ne −1

∑
µ∈P (k−1)

h

(y(k)
h (µ)−y(k)

h )(y(k)
h (µ)−y(k)

h )T ∈Rs×s (6.11)

and the sample cross-covariances

C(k)
µh yh

= 1

Ne −1

∑
µ∈P (k−1)

h

(µ−µ(k−1))(y(k)
h (µ)−y(k)

h )T ∈Rd×s , (6.12)

C(k)
uh yh

= 1

Ne −1

∑
µ∈P (k−1)

h

(u(k)
h (µ)−u(k)

h )(y(k)
h (µ)−y(k)

h )T ∈RNh×s . (6.13)

Hence, starting from the initial ensemble {P (0)
h ,U (0)

h } sampled from the prior distribution, and

the given data y(k), k = 1, . . . , Nτ, the prediction-analysis procedure of the EnKF is given by the
following two stages recursion:

1. prediction stage: at each time-step k

• compute the solution u(k+1)
h (µ) of the forward problem over [τ(k),τ(k+1)) by solving

(6.3) with initial datum u(k)
h (µ) ∈U (k), and evaluate the noisy measurement (6.1)

given the output y(k+1)
h (µ) for each µ ∈P (k)

h ;

• compute the sample means u(k+1)
h , y(k+1)

h and µ(k);

• compute the sample covariance C(k+1)
yh yh

∈Rs×s and the cross-covariances C(k+1)
µh yh

∈
Rd×s and C(k+1)

uh yh
∈RNh×s .

2. analysis stage: update the state/parameters ensemble by taking advantage of the new
information computed during the prediction stage, through the following KF updating
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6.4. Reduced basis Ensemble Kalman filter

formula:[
µ(k+1)

h,q

u(k+1)
h (µ(k+1)

h,q )

]
=

[
µ(k)

h,q

u(k+1)
h (µ(k)

h,q )

]
+

[
C(k+1)
µh yh

C(k+1)
uh yh

]
(Γ(k) +C(k+1)

yh yh
)−1

︸ ︷︷ ︸
Kalman gain

(y(k+1)
q −y(k+1)

h (µ(k)
h,q )),

(6.14)
for each q = 1, . . . , Ne, where Ne realizations of the noise ε(k+1)

q , q = 1, . . . , Ne , are added

to the data to generate y(k+1)
q = y(k+1)

h (µ∗)+ε(k+1)
q .

Then, at each iteration we estimate the unknown parameter vector by computing the sample
mean µ̂h =µh ; we also compute the sample covariance matrix

C(k+1)
µhµh

= 1

Ne −1

∑
µ∈P (k+1)

h

(µ−µ(k+1))(µ−µ(k+1))T ∈Rd×d , (6.15)

in order to quantify the variability of the resulting parameter ensemble P (k+1)
h . For a formal

derivation of the EnKF algorithm see [PMQ16], while for further properties and results, see e.g.
[BLL+13, KLS14, ESS14]. A detailed description of the EnKF is reported in Algorithm 7, while a
schematic representation of the EnKF loop is presented in Figure 6.2.

Parameters

Boundary conditions

Initial condition
Forward

FOM
outputs

EnKF 

 formula       Observations

state estimation

parameter estimation

Figure 6.2 – EnKF loop for state-parameter estimation. The state update is used as new initial
condition of the forward problem over each time window.

6.4 Reduced basis Ensemble Kalman filter

The sequential update through the EnKF requires, at each step, the solution of the forward
problem on the window [τ(k),τ(k+1)) for each particle in the ensemble. The large size of this
latter and the nonlinear nature of the forward problem may involve moderately large com-
putational costs. For these reasons, we rather rely on the RB method for the fast evaluation
of the prediction stage, implementing a hyper-reduction procedure based on the (discrete)
empirical interpolation method for managing nonlinear terms more efficiently.
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Algorithm 7 Full-order Ensemble Kalman filter procedure

1: procedure ENKF
2: Initialization
3: {P (0)

h ,U (0)
h } ← sampling Ne particles from πprior

4: for q = 1 : Ne , k = 1 : Nτ do
5: y(k)

q ← y(k)
h (µ∗)+ε(k)

q

6: end for
7: for k = 0 : Nτ−1 do
8: Prediction stage:
9: for q = 1 : Ne do

10: u(k+1)
h (µ(k)

h,q ) ← solve forward problem (6.3) with initial datum u(k)
h (µ(k)

h,q )

11: end for
12: compute means u(k+1)

h ,y(k+1)
h , and µ(k)

h by (6.10)

13: compute covariance C(k+1)
yh yh

by (6.11)

14: compute cross-covariances C(k+1)
uh yh

and C(k+1)
µh yh

by (6.12)
15: Update stage:
16: for q = 1 : Ne do
17: update each state/parameters particle in {P (k)

h } using (6.14)
18: end for
19: end for
20: end procedure

Given a suitable ROM for approximating the solution of the forward problem, a reduced
EnKF can be obtained by replacing the full-order output evaluation with the reduced-order
one. Since we have adopted the RB method, we will refer to the resulting procedure as to the
reduced basis ensemble Kalman filter (RB-EnKF). We define the ensemble of Ne parameters as

P (k)
n = {µ(k)

n,q }Ne
q=1, k = 0, . . . , Nτ,

and the associated ensemble of reduced state solution

U (k)
n = {un(µ), µ ∈P (k)

n }, k = 0, . . . , Nτ.

Here, we denote the particles with the subscript n in order to remark the dimension of the
state vector and the fact that each particle follows the reduced-order dynamics, which is only
an approximation of the full-order one.

We also compute the means (6.10), the covariance (6.11) and the cross-covariances (6.12)–
(6.13) by relying on the reduced-order quantities. Hence, starting from the initial ensemble
{P (0)

n ,U (0)
n }, sampled from the prior distribution of the state and parameters vector, the RB-

EnKF can be built with a two-stage recursion, similarly to what we did in Section 6.3:

1. prediction stage: at each step k

• compute the reduced solution u(k+1)
n of the forward ROM (obtained by projecting

(6.3) on the reduced space) on the window [τ(k),τ(k+1)) with initial datum u(k)
n (µ) ∈

U (k)
n , and the relative output y(k+1)

n for each µ ∈P (k)
n ;
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6.4. Reduced basis Ensemble Kalman filter

• compute the sample means u(k+1)
n , y(k+1)

n and µ(k)
n ;

• compute the sample covariance C(k+1)
yn yn

∈Rs×s and the cross-covariance matrices

C(k)
µn yn

∈ Rd×s and C(k+1)
un yn

∈ Rn×s , using formulas (6.11)–(6.13) by replacing yh , uh

and P (k−1)
h with yn , un and P (k−1)

n , respectively;

2. analysis stage: update the state/parameters ensemble through the following reduced KF
updating formula:[

µ(k+1)
n,q

u(k+1)
n (µ(k+1)

n,q )

]
=

[
µ(k)

n,q

u(k+1)
n (µ(k)

n,q )

]
+

[
C(k+1)
µn yn

C(k+1)
un yn

]
(Γ(k) +C(k+1)

yn yn
)−1

︸ ︷︷ ︸
reduced Kalman gain

(y(k+1)
q −y(k+1)

n (µ(k)
n,q )),

(6.16)
for each q = 1, . . . , Ne .

In this way, we are neglecting the error between the ROM and the FOM, which nevertheless
might introduce a bias in the whole estimation procedure, as shown in the following section.

6.4.1 Effectivity of the RB-EnKF

We now want to prove that the solution of the state/parameter estimation given by the RB-
EnKF algorithm converges, as long as the ROM dimension n increases, to the one which would
have been obtained by relying on the full-order EnKF. With this aim, we compare the resulting
state/parameters ensemble {P (Nτ),U (Nτ)} generated by the full-order EnKF with the reduced
one {P (Nτ)

n ,U (Nτ)
n }, for any dimension n, generated by the RB-EnKF. With this goal, let us

denote by

e(k) =
[

e(k)
µ

e(k)
u

]
=

[
µ̂(k)

h
û(k)

h

]
−

[
µ̂(k)

n

Vû(k)
n

]
, k = 1, . . . , Nτ−1,

the error between the means [µ̂(k)
n ,Vû(k)

n ]T and [µ̂(k)
h , û(k)

h ]T computed over the respective
ensembles. Then, let us denote by

γ(k)
h = ‖(Γ(k) +C(k)

yh yh
)−1‖ γ(k)

n = ‖(Γ(k) +C(k)
yn yn

)−1‖.

being ‖·‖ the Euclidean norm (from now on, in this chapter we will use the following notation).
Then, at each step k = 1, . . . , Nt we can bound the error e(k) as stated in the following:

Proposition 5. For any 0 < n < Nh , k = 1, . . . , Nτ, the following relationships hold:

‖e(k)
µ ‖ ≤ ‖e(k−1)

µ ‖+c(k)
µ,1‖y(k)

h −y(k)
n ‖+c(k)

µ,2‖C(k)
µh yh

−C(k)
µn yn

‖+c(k)
µ,3‖C(k)

yh yh
−C(k)

yn yn
‖, (6.17)

‖e(k)
u ‖ ≤ ‖e(k−1)

u ‖+c(k)
u,1‖y(k)

h −y(k+1)
n ‖+c(k)

u,2‖C(k)
uh yh

−VC(k)
un yn

‖+c(k)
u,3‖C(k)

yh yh
−C(k)

yn yn
)‖, (6.18)

where
c(k)
µ,1 = γ(k)

h ‖C(k)
µh yh

‖, c(k)
u,1 = γ(k)

h ‖C(k)
uh yh

‖,

c(k)
µ,2 = c(k)

u,2 = γ(k)
h ‖y(k) −y(k)

n ‖,

c(k)
µ,3 = γ(k)

n γ(k)
h ‖C(k)

µn yn
‖Rd×s‖y(k) −y(k)

n ‖, c(k)
u,3 = γ(k)

n γ(k)
h ‖VC(k)

un yn
‖‖y(k) −y(k)

n ‖.
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Proof. By averaging (6.14) over the sample P (k−1), we obtain the following update equation
for the estimate [µ̂h , ûh]T

[
µ̂(k)

h
û(k)

h

]
=

[
µ̂(k−1)

h
û(k−1)

h

]
+

[
C(k)
µh yh

C(k)
uh yh

]
(Γ(k) +C(k)

yh yh
)−1(y(k) −y(k)

h ); (6.19)

by doing the same on (6.16) we have instead[
µ̂(k)

n

û(k)
n

]
=

[
µ̂(k−1)

n

û(k−1)
n

]
+

[
C(k)
µn yn

C(k)
un yn

]
(Γ(k) +C(k)

yn yn
)−1(y(k) −y(k)

n ). (6.20)

By subtracting (6.20) from (6.19), we can express e(k) = e(k−1) +e(k)
I +e(k)

I I , being

e(k)
I =

[
C(k)
µh yh

C(k)
uh yh

]
(Γ(k) +C(k)

yh yh
)−1(y(k)

n −y(k)
h ),

e(k)
I I =

([
C(k)
µh yh

C(k)
uh yh

]
(Γ(k) +C(k)

yh yh
)−1 −

[
C(k)
µn yn

VC(k)
un yn

]
(Γ(k) +C(k)

yn yn
)−1

)
(y(k) −y(k)

n ). (6.21)

Then, the following error estimates hold

‖e(k)
I ,µ‖ ≤ c(k)

µ,1‖y(k)
n −y(k)

h ‖, c(k)
µ,1 = γ(k)

h ‖C(k)
µh yh

‖, (6.22)

‖e(k)
I ,u‖ ≤ c(k)

u,1‖y(k)
n −y(k)

h ‖, c(k)
u,1 = γ(k)

h ‖C(k)
uh yh

‖, (6.23)

respectively. On the other hand, by adding and subtracting in (6.21) the quantity[
C(k)
µn yn

VC(k)
un yn

]
(Γ(k) +C(k)

yh yh
)−1(y(k) −y(k)

n )

and rewriting the expression (6.21) as e(k)
I I = e(k)

i +e(k)
i i , with

e(k)
i =

([
C(k)
µh yh

C(k)
uh yh

]
−

[
C(k)
µn yn

VC(k)
un yn

])
(Γ(k) +C(k)

yh yh
)−1(y(k) −y(k)

n ),

e(k)
i i =

[
C(k)
µn yn

VC(k)
un yn

](
(Γ(k) +C(k)

yn yn
)−1 − (Γ(k) +C(k)

yh yh
)−1

)
(y(k) −y(k)

n ),

we find

‖e(k)
i ,µ‖ ≤ c(k)

µ,2‖C(k)
µh yh

−C(k)
µn yn

‖ c(k)
µ,2 = γ(k)

h ‖(y(k) −y(k)
n )‖,

‖e(k)
i ,u‖ ≤ c(k)

u,2‖C(k)
uh yh

−VC(k)
un yn

‖ c(k)
u,2 = γ(k)

h ‖(y(k) −y(k)
n )‖.

(6.24)

By applying the Sherman-Morrison-Woodbury Formula (see, e.g., Sect. 2.4 in [GVL12]) we
have that

(Γ(k) +C(k)
yn yn

)−1 − (Γ(k) +C(k)
yh yh

)−1 = (Γ(k) +C(k)
yn yn

)−1(C(k)
yh yh

−C(k)
yn yn

)(Γ(k) +C(k)
yh yh

)−1,
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and, consequently,

‖(Γ(k) +C(k)
yn yn

)−1 − (Γ(k) +C(k)
yh yh

)−1‖ ≤ γ(k+1)
n γ(k)

h ‖C(k)
yh yh

−C(k)
yn yn

‖,

whence the following bounds hold for e(k)
i i

‖e(k)
i i ,µ‖ ≤ c(k)

µ,3‖C(k)
yh yh

−C(k)
yn yn

‖, ‖e(k)
i i ,u‖ ≤ c(k)

u,3‖C(k)
yh yh

−C(k)
yn yn

‖. (6.25)

Finally, by combining (6.22), (6.23), (6.24) and (6.25), we obtain (6.17)–(6.18).

In order to obtain accurate state/parameters estimates when employing the proposed RB-
EnKF, we thus require the ROM to be able to generate similar means y(k)

n (µ) ≈ y(k)
h (µ) and

similar covariance matrices C(k)
yn yn

≈ C(k)
yh yh

and C(k)
µn yn

≈ C(k)
µh yh

, for each k = 1, . . . , Nτ, to the ones
which would have been provided by the FOM.
As a matter of fact, from the previous proposition we can also state an asymptotic consistency
property, ensuring that the state/parameters estimated through the RB-EnKF procedure
converge to the ones that would be estimated estimated by the full-order EnKF, as soon as the
approximation error induced by the reduction and the hyper-reduction procedures becomes
negligible when n,mD → Nh .

Corollary 1. Assume that for each ROM dimension n = 1, . . . , Nh and DEIM dimension mD =
1, . . . , Nh , there exists ε(`)(n,mD ) > 0 such that

‖u(`)
h (µ)−Vu(`)

n (µ)‖ ≤ ε(`)(n,mD ), ∀`= 0, . . . , Nt ∀µ ∈P

and ε(`)(n,mD ) → 0 for n,mD → Nh . Then it follows that

‖µ̂n − µ̂h‖→ 0 ‖Vûn − ûh‖→ 0 for n,mD → Nh .

Proof. Since the outputs yh(µ) (yn(µ)) is linear with respect to the solution uh(x, t ;µ) (un(x, t ;µ))
of the dynamical system, it follows that, for any µ ∈P ,

‖y(k)
h (µ)−y(k)

n (µ)‖ ≤∆t‖H‖
∑

K (k−1)≤`≤K (k)
ε(`)(n,mD ) ∀k = 1, . . . , Nτ. (6.26)

Then, since the means and the covariance matrices of the quantities of interest are evaluated
on different subsets P (k)

h and P (k)
n for each k = 1, . . . , Nτ, let us denote by

(y(k)
n )Ph =

1

Ne

∑
µ∈P (k−1)

h

y(k)
n (µ),

(C(k)
yn yn

)Ph =
1

Ne −1

∑
µ∈P (k−1)

h

(y(k)
n (µ)− (y(k)

n )Ph )(y(k)
n (µ)− (y(k)

n )Ph )T

the mean and the covariance of the reduced output over the full-order ensemble Ph , respec-
tively. Then, we can control the difference between the output means as

‖y(k)
h −y(k)

n ‖ ≤ ‖y(k)
h − (y(k)

n )Ph‖+‖(y(k)
n )Ph −y(k)

n ‖, (6.27)
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so that, by averaging (6.26) over Ph , we bound the first term of (6.27) as

‖y(k)
h − (y(k)

n )Ph‖ ≤∆t‖H‖
∑

K (k−1)≤`≤K (k)
ε(`)(n,mD ) ∀k = 1, . . . , Nτ.

Similarly, the difference between the covariance matrices can be bounded as

‖C(k)
yh yh

−C(k)
yn yn

‖ ≤ ‖C(k)
yh yh

− (C(k)
yn yn

)Ph‖+‖(C(k)
yn yn

)Ph −C(k)
yn yn

)‖;

the first term can be bounded as

‖C(k)
yh yh

− (C(k)
yn yn

)Ph‖ ≤ c(k)
ss

∑
K (k−1)≤`≤K (k)

ε(`)(n,mD ) ∀k = 1, . . . , Nτ,

where
c(k)

ss = 4∆t max
µ∈P (k−1)

(‖y(k)
h (µ)−y(k)

h ‖+‖y(k)
n (µ)−y(k)

n ‖).

Indeed, for any couple of random vectors x = [x1,x2],y = [y1,y2],

‖Cx1y1 −Cx2y2‖ ≤ (‖y1 −y1‖+‖x2 −x2‖)(‖x1 −x2‖+‖x1 −x2‖+‖y1 −y2‖+‖y1 −y2‖),

where Cxy denotes the cross-covariance matrix between x and y; see e.g. [ESS14].

Provided that P (0)
h =P (0)

n and assuming that ε(`)(n,mD ) → 0 for n,mD → Nh , we have that

‖y(k)
h − (y(k)

n )Ph‖→ 0, ‖C(k)
yh yh

− (C(k)
yn yn

)Ph‖→ 0, k = 1, . . . , Nτ

and, consequently,

‖(y(k)
n )Ph −y(k)

n ‖→ 0, ‖(C(k)
yn yn

)Ph −C(k)
yn yn

)‖→ 0, k = 1, . . . , Nτ.

In the same way, we can conclude that ‖C(k+1)
uh yh

−C(k+1)
un yn

)‖ and ‖C(k+1)
µh yh

−C(k+1)
µn yn

)‖ are also con-

trolled by ε(`)(n,mD ), `= K k, . . . ,K (k+1); hence, the right-hand sides of both (6.17) and (6.18)
tend to zero for n,mD → Nh .

6.5 Corrected RB-EnKF

Using a ROM to evaluate the output of the forward PDE system greatly reduces the cost
entailed by the solution of the entire Bayesian inverse problem. Indeed, by simply rewriting
the additive error noise model (6.1), we get

y(k) = y(k)
n (µ)+

(
y(k)

h (µ)−y(k)
n (µ∗)

)
+ε(k)

noise, ∀k = 1, . . . , Nτ; (6.28)

hence, if the reduction error y(k)
h (µ)−y(k)

n (µ) is not negligible with respect to εnoise, the RB-
EnKF might yield biased estimates.
The reduction error can be seen as an additional epistemic uncertainty affecting the input/out-
put evaluation. In the EnKF literature, this kind of problems arises when real observations
are compared with simulated outputs [MHP02, HMD09]. Two standard techniques for taking
into account this additional error source are inflation and localization. The former consists in
augmenting the variance of the additive noise model, whereas the latter properly modifies
the prior ensemble to reduce filtering errors and avoid filter divergence (for further details
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6.5. Corrected RB-EnKF

on both techniques see e.g. [And07, HZ16]). The approach proposed in this Chapter can
be seen as a direct way to correct the input/output evaluation coupled with the inflation of
the covariance matrix to ensure the accuracy of the results. We indeed directly quantify this
additional uncertainty using the kriging-based ROM error surrogates developed in Section 3.4.
Therefore, we introduce a ROMES for the time-dependent reduction error ε(k)

ROM(µ), over each
window k = 1, . . . , Nτ, such that (6.28) can be replaced by

y(k) = y(k)
n (µ∗)+ε(k)

ROM(µ∗)+εnoise ∀k = 1, . . . , Nτ. (6.29)

In this way the evaluation of the deterministic quantity y(k)
h (µ)−y(k)

n (µ), which would depend
on the FOM solution, can be avoided.
We briefly show how to construct the ROMES in this case, following the approach developed
in Section 3.4. We assume each component {χt , j (µ)}, j = 1, . . . , s, of the output reduction error

χt (µ) = (H(uh(x, t ;µ)−un(x, t ;µ)) ∈Rs , t ∈ (0,T )

to be a second-order stationary and isotropic functional random field.
Given the calibration set Pcal = {µ1, . . . ,µNcal

} (with Ptr ai n ⊂ Pcal ), we compute during the
offline phase the error χt (µ) for each µ ∈ Ptr ai n . Then, for any new µ0 ∈ P , the kriging
interpolation of the error is given by:

χ̂t , j (µ0) =
Ncal∑
q=1

λ
( j )
q (µ0)χt , j (µq ), µ0 ∈P , j = 1, . . . , s,

where the set of weights {λ( j )
q (µ0)}Ncal

q=1 is the solution of the linear system (3.13) as derived in
Section 3.4.

Since we are interested in embedding the ROMES into the KF updating formula for the sequen-
tial update of the ensemble on each window [τ(k),τ(k+1)), we need to integrate χ̂t , j (µ0) over
[τ(k−1),τ(k)) to obtain a correction for each component of the output error yh(µ0)−yn(µ0). In
particular, we end up with the ROMES prediction:

m(k)
ROM(µ0) : m(k)

ROM, j (µ0) =
∫ τ(k)

τ(k−1)
χ̂

( j )
t (µ0)d t . (6.30)

The corresponding trace-variances

σ̂2
ROM, j (µ0) =

Ncal∑
q=1

λ
( j )
q (µ0)

∫ τ(k)

τ(k−1)
γt (‖µi −µ0‖)−η

allow to define the (diagonal) covariance matrix

Γ(k)
ROM(µ0) : (Γ(k)

ROM(µ0)) j j = σ̂2
ROM, j (µ0). (6.31)

This latter takes automatically into account the error committed by the ROMES in approxi-
mating the reduction error. The proposed ROMES thus yields an output correction ε(k)

ROM and

an additional contribution Γ(k)
ROM to the Kalman gain – which have indeed to be evaluated for
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Chapter 6. Ensemble Kalman Filter

each k = 1, . . . , Nτ and upon each ensemble particle – thus leading to the following corrected
KF updating formula to update the ensemble P (k)

c :[
µ(k+1)

c,q

u(k+1)
c (µ(k+1)

c,q )

]
=

[
µ(k)

c,q

u(k+1)
c (µ(k)

c,q )

]
+

[
C(k+1)
µc yc

C(k+1)
uc yc

]
(Γ(k)+Γ(k+1)

ROM (µ(k)
c,q )+C(k+1)

yc yc
)−1(y(k+1)

q −y(k+1)
c (µ(k)

c,q )) (6.32)

where y(k)
c (µ) represents the corrected output, i.e.

y(k)
c (µ) = y(k)

n (µ)+m(k)
ROM(µ), µ ∈P .

The sample covariance C(k)
yc yc

and cross-covariances C(k)
µc yc

, C(k)
uc yc

are computed as in equations

(6.11), (6.12) and (6.13) by substituting yh , uh and P (k−1)
h with yc , uc and P (k−1)

c , respectively.
The use of the ROMES during the RB-EnKF thus only requires, at each iteration of the filtering
procedure, to solve s linear systems (see equation (3.13)) of small dimension (Ncal +1)×(Ncal +
1), to get the weights {λ( j )

q }Ncal
q=1 for each output component j = 1, . . . , s. Each linear system

requires to fit the so-called semi-variogram function γt on the calibration set, as described in
Section 3.4. A detailed description of the corrected RB-EnKF algorithm is finally reported in
Algorithm 8, while the schematic representation of the corrected RB-EnKF loop is presented in
Figure 6.3.

Parameters

Boundary conditions

Initial condition
Forward

ROM
outputs

reduced
EnKF 

 formula
       

Observations

state estimation

parameter estimation

ROMES correction

Figure 6.3 – Corrected RB-EnKF loop for state/parameter estimation. The reduced state
update is used as new initial condition of the forward problem over each time window.

6.5.1 Effectivity of ROMESs

We point out that the reduction error directly affects the likelihood function (6.9) from which
the KF updating formula is derived (see e.g. [PMQ16]). Under the assumption that the noise
process is Gaussian, the reduced likelihood could be defined as

π(k)
n =πn

(
s(k+1)

∣∣∣ [µ,Vu(k+1)
n ]T

)
= (2π)(− s

2 )|Γ|− 1
2 exp

{
−1

2
‖s(k+1) −s(k+1)

n ‖Γ
}

,

and the corrected likelihood as

π(k)
c = (2π)(− s

2 )|Γ+ Γ̂(k)
ROM|− 1

2 exp

{
−1

2
‖s(k+1) −s(k+1)

c ‖
Γ+Γ̂(k+1)

ROM

}
.
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Algorithm 8 Corrected reduced basis ensemble Kalman filter procedure

1: procedure RB-ENKF(+ROMES)
2: Initialization
3: {P (0)

c ,U (0)
c } ← sampling Ne vectors from πprior

4: for q = 1 : Ne , k = 1 : Nτ do
5: y(k)

q ← y(k)
h (µ∗)+ε(k)

q

6: end for
7: for k = 0 : Nτ−1 do
8: for j=1 : s do
9: sample the empirical semi-variogram {(δm , γ̂(δm))}M

m=1,
10: fit the parametric semi-variogram model on the sample {(δm , γ̂(δm))}M

m=1
11: end for
12: Prediction stage:
13: for q = 1 : Ne do
14: u(k+1)

c (µc,q ) ← solve ROM related to pb. (6.3) with initial datum u(k)
c (µc,q )

15: for j=1 : s do
16: ε(k+1)

ROM (µc,q ) ← solve ROMES linear system

17: (Γ(k+1)
ROM ) j j (µc,q ) ← evaluate (3.15)

18: end for
19: y(k+1)

c (µc,q ) = y(k+1)
n (µc,q )+ε(k+1)

ROM (µc,q )
20: end for
21: compute means y(k+1)

c , u(k+1)
c , µ(k+1)

c
22: compute covariance C(k+1)

yc yc

23: compute cross-covariances C(k+1)
µc yc

,C(k+1)
uc yc

24: Update stage:
25: for q = 1 : Ne do
26: update each state/parameters particle using (6.32)
27: end for
28: end for
29: end procedure

We can rely on the analysis provided in Section 5.4 on the Kullback-Leibler (KL) divergence
(5.15) between the likelihood functions π(k), π(k)

n and π(k)
c at each prediction-analyis step

k = 1, . . . , Nτ.
In this case, we would obtain

DK L(π(k)||π(k)
n ) = 1

2

s∑
j=1

 (y(k+1)
h (µ)−y(k+1)

n (µ))2
j

Γ(k)
j j


and

DK L(π(k)||π(k)
c ) = 1

2

s∑
j=1

 (y(k+1)
h (µ)−y(k+1)

n (µ)−ε(k+1)
ROM (µ))2

j

Γ(k)
j j + (Γ(k)(k+1)

ROM ) j j (µ)

+ Γ(k)
j j

Γ(k)
j j + (Γ(k+1)

ROM ) j j (µ)
−1− log

(
Γ(k)

j j

Γ(k)
j j + (Γ(k+1)

ROM ) j j (µ)

))
.
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Thus, in order to ensure that the KL divergence DK L(π(k)||π(k)
c ) is smaller than DK L(π(k)||π(k)

n ),
we require that:

1. the ROMES correction is effective, that is

E[‖y(k)
h (µ)−y(k)

c (µ)‖] ≤ E[‖y(k)
h (µ)−y(k)

n (µ)‖] ∀k = 1, . . . , Nτ, (6.33)

2. (Γ(k+1)
ROM ) j j is sufficiently small compared to Γ(k)

j j , j = 1, . . . , s.

Note that by construction y(k)
h (µ)−y(k)

c (µ) = 0 and ΓROM(µ) = 0 for each µ ∈ Pcal . Since the
noise is prescribed with a fixed covariance, the ROM and the ROMES construction can be
suitably performed in order to ensure both the previous assumptions.

Remark 5. Since the EnKF is based on a finite ensemble of particles, the distributions π, πn and
π̃n are only approximated in the EnKF updating formula (6.14). (6.16) and (6.32), respectively.
It is sufficient to consider a large ensemble in order to avoid the propagation of additional
sources of error.

Note that the updating formula (6.32) could be derived using the corrected likelihood distri-
bution π(k)

c instead of π(k). As a consequence, the ensemble updated through (6.32) provides
a good approximation of (6.14) if the REM is effective. Moreover, under the two previous
assumptions the corrected particle ensemble P (k)

c (and respectively U (k)
c ) is considerably

closer to P (k)
h (U (k)

h ) than P (k)
n (U (k)

n ). If we assume, at each step k = 1, . . . , Nτ, to use as prior

the full-order ensemble P (k)
h (U (k)

h ), it is possible to prove that

E[DK L(π(k)
post ||π(k)

post ,c )] < E[DK L(π(k)
post ||π(k)

post ,n)],

where π(k)
post , π(k)

post ,n and π(k)
post ,c denote respectively the full-order, the reduced-order and the

corrected posterior distributions obtained by substituting the respective likelihood functions
π(k), π(k)

n and π(k)
c in (6.8); for further details see Section 5.4.

As a matter of fact, εROM and ΓROM depend on either the number of basis functions and
the calibration set dimension. For this reason, in the numerical results we compare the
errors ‖µ̂h − µ̂n‖ and ‖µ̂h − µ̂c‖ between the sample means and the ones between the relative
covariance matrices ‖(Cµh ,µh

)1/2−(Cµn ,µn
)1/2‖ and ‖(Cµh ,µh

)1/2−(Cµc ,µc
)1/2‖ over the ensemble

obtained with the full-order Kalman filter (Ph), the RB-EnKF (Pn) and the corrected RB-EnKF
(Pc ) on varying the number of basis functions and the calibration set dimension.

6.6 Numerical results

We present some numerical results 2 exploiting the proposed RB-EnKF procedure for the
identification of unknown parameters using as forward model the FitzHugh-Nagumo (FN)
equations, which model the activation/deactivation dynamics of an excitable cardiac cell.
In particular, we study a parametrized version of the test case proposed in [CS10]: given the

2All the computations of this chapter have been performed on a laptop with 2.4 GHz Intel core i7 processor and
8Gb RAM 1600MHz DDR3.
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parameter vector µ = [µ1,µ2,µ3]T , ∀t ∈ (0,T ), find the couple [u(x, t ;µ), w(x, t ;µ)], x ∈Ω =
(0,1), such that:

σv (x;µ)ut (x, t ;µ) =σ2
v (x;µ)uxx (x, t ;µ)+ Ii on(u(x, t ;µ), w(x, t ;µ))+µ2 x ∈Ω, t ∈ (0,T )

wt (x, t ;µ) =µ1u(x, t ;µ)−γu(x, t ;µ)+µ2 x ∈Ω, t ∈ (0,T )

ux (x, t ;µ) =−50000t 3e−15t x = 0, t ∈ (0,T )

ux (x, t ;µ) = 0 x = 1, t ∈ (0,T )

u(x,0;µ) = w(x,0;µ) = 0 x ∈Ω;
(6.34)

here the cubic nonlinear term is defined as Ii on(u, w) = u(u −0.1)(1−u)−w , the coefficient
γ= 2 and we prescribe a non-homogeneous conductivity field:

σv (x;µ) = 0.015(1−µ3)exp

(
− (x −0.6)2

0.04

)
.

The parameter µ3 describes the lack of conductivity centered in x = 0.6; µ1 influences in-
stead the time between the depolarization and the polarization phase, while µ2 is an applied
constant current, which enables the mechanism of self excitation of the cell.
The semi-discretized FE approximation of problem (6.34) is based on a partition of the com-
putational domain Ω into 1024 elements and linear finite elements. By considering a time
discretization based on Nt = 800 time-steps and the implicit Euler method, we obtain the
dynamical system under the form (6.3). Then, we consider as output the vector

y(k+1)
h =

[∫ τ(k+1)

τ(k) uh(x, t ;µ)|x=0d t∫ τ(k+1)

τ(k) uh(x, t ;µ)|x=1d t

]
∈R2 ∀k = 0, . . . , Nτ−1.

The goal of the Bayesian inverse problem is to estimate the unknown parameters vector µ∗

from a sequence of noisy output measurements y(k) = y(k)
h (µ∗)+ε(k)

noi se , k = 1, . . . , Nτ, with

ε(k)
noise ∼N (0,σ2I ). We take a Gaussian prior, so that µ(0) ∈N (µprior,Σprior), with

µprior =
 0.7

0.07
0.76

 , Σprior =
0.0004 0 0

0 0.00009 0
0 0 0.004

 .

The discretized solution [uh ,wh]T of the forward problem for the choice

µ∗ = [0.6331,0.0985,0.7197]T

is represented in Fig. 6.4.
We consider hereonµ∗ as the true parameter vector value, which generates the measurements
y(k)

q through Ne random realizations of the additive noise model (6.1).
We first solve the inverse problem with the full-order EnKF starting from output measurements
(6.1) with different noise standard deviations, in particular by considering σ= 5σ0 and σ=σ0,
with σ0 = 0.033. By looking at the behavior of the estimate µ̂h in Fig. 6.5 for each component
of the parameter vector, we observe that a faster convergence of the estimate to the true
parameter value during the inversion procedure is achieved in the case of a smaller standard
deviation (σ0 with respect to 5σ0) on the noise.
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Figure 6.4 – FE approximation of the forward problem for µ=µ∗.
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Figure 6.5 – Comparison between µ∗ and {µ̂(k)
h }Nτ

k=1 for σ= 5σ0 (first row) σ=σ0 (second row),
using Ne = 500 particles. The lower the noise level, the faster the convergence to µ∗ during
the state/parameter estimation procedure (see e.g. the figures on the third column, related to
the component µ3).

Next, we compare the solution of the state/parameter estimation problem obtained by varying
the window length ∆τ, the noise standard deviation and the ensemble size Ne (see Fig. 6.6)
taking mD = 15 DEIM elements and n = [7,11,15] basis function on the RB approximation. As
expected, the estimates improve if both the noise εnoise and ∆τ decrease. While the former
is a datum of the problem, the latter can be properly tuned (and reduced) to improve the
estimation of the quantities of interest by slightly increasing the whole computational costs.
In Figure 6.7 we also study the state estimation with respect to the number of ROM basis
functions: the reduction error clearly affects the estimation of this quantity.
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Figure 6.6 – Relative error on estimated parameter components |µ∗− µ̂(k)
h |/|µ∗| with respect

to the updating time-discretization length ∆τ (left), the noise standard deviation (center) and
the ensemble size (right).
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Figure 6.7 – State estimation versus RB dimension n, at two different iterations (k = 5, left;
k = 15, right) of the RB-EnKF.

Then, we turn to the comparison between the RB-EnKF algorithm and its corrected version,
in order to assess the effect of the proposed ROMES in reducing the bias in the parameter
estimation as a function of the noise variance σ.
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In the case σ= 5σ0 (first row of Figure 6.9), the results of the RB-EnKF for n = 15 are compara-
ble with the ones of the full-order EnKF, meaning that the reduction error (see e.g. Figure 6.8)
is negligible with respect to the noise. This is not true when the RB dimension is set to n = 7,11.
In these two cases, there is a bias in the first two components of the parameter vector estimate.
On the other hand, for a lower noise variance, such as in the case σ=σ0 (second row of Figure
6.9), we observe that the reduction error affects the parameter estimate for all RB dimensions
n = 7,11,15.

Figure 6.8 – Error |uh(t ;µ∗)−un(t ;µ∗)| between the FOM and the ROM for different choices
of the RB dimension n = 7,11,15.
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Figure 6.9 – Relative error on estimated parameter components |µ∗− µ̂(k)
n |/|µ∗| versus the RB

dimension n for the RB-EnKF when different noise variances σ= 5σ0 (first row) and σ=σ0

(second row) are considered.

For both values of the noise variance, the ROMES is therefore essential to improve the accuracy
of the RB-EnKF estimates: as a matter of fact, the proposed ROMES based on curve kriging
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improves (by minimizing the propagation of the reduction error) the parameter estimation
in our RB-EnKF up to two orders of magnitude in some cases, as we can grasp by comparing
Fig. 6.9 with Fig. 6.10.
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Figure 6.10 – Relative error on estimated parameter components |µ∗− µ̂(k)
n |/|µ∗| versus the

RB dimension n for the corrected RB-EnKF when different noise variances σ= 5σ0 (first row)
and σ=σ0 (second row) are considered.

More detailed results can be found in Table 6.1: for a noise level σ=σ0, the ROM affects the
accuracy of the identification for every choice of n, while for higher noise levels the estimation
error can be much smaller at least for larger RB dimensions (see e.g. the results obtained for
n = 15). This is motivated by the fact that the reduction error for n = 15 is considerably small,
as we can observe in Fig. 6.8.

σ n = 7 n = 11 n = 15

5σ0 0.0442 (1.49 ·10−4) 0.0365 (2.01 ·10−4) 0.0054 (3.11 ·10−5)
RB-EnKF 2.5σ0 0.1594 (6.11 ·10−5) 0.0488 (2.37 ·10−4) 0.0070 (3.47 ·10−5)

σ0 0.1779 (4.09 ·10−5) 0.0708 (2.59 ·10−5) 0.0613(2.04 ·10−5)

5σ0 0.0148 (3.37 ·10−4) 0.0265 (1.01 ·10−3) 0.0073 (2.25 ·10−4)
RB-EnKF(+ROMES) 2.5σ0 0.0175 (1.24 ·10−4) 0.0226 (9.63 ·10−4) 0.0117 (2.84 ·10−4)

σ0 0.0058 (1.95 ·10−4) 0.0108 (5.85 ·10−4) 0.0059 (2.82 ·10−4)

Table 6.1 – Comparison of the error ‖µ̂h − µ̂n‖ ( ‖(C(Nτ)
µh ,µh

)1/2 − (C(Nτ)
µn ,µn

)1/2‖ ) and ‖µ̂h − µ̂c‖
( ‖(C(Nτ)

µh ,µh
)1/2 − (C(Nτ)

µc ,µc
)1/2‖ ) versus the dimension n of the RB space and noise variance σ.

Our ROMES considerably improves the accuracy of the estimated parameter: ‖µ̂h − µ̂n‖
decreases by an order of magnitude for n = 7 whereas the error on the covariance matrices
‖(C(Nτ)

µh ,µh
)1/2 − (C(Nτ)

µn ,µn
)1/2‖ is still negligible with respect to the error ‖µ̂h − µ̂n‖.
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We recall that ROMES construction is performed only once after the ROM has been built
during the offline phase. Given the reduction error χt (µ) for each µ ∈ Scal , we check the
assumption that the random field is second-order stationary and isotropic.

As shown in Figure 6.11 for the case Ntr ai n = 80 and n = 11, the correlation between errors
shows a dependence on the parameter location: parameters with small lag present a smaller
variability with respect to parameters with a larger lag. Then, we estimated the empirical
semi-variogram {γ̂(δ1), . . . , γ̂(δ8)} using (3.8) at 8 discrete lags {δ1, . . . ,δ8} for each component
of the output and on each window (τ(k),τ(k+1)). Through these estimated values the spherical
semi-variogram model (3.6) is fitted and then used to compute the corresponding matrix of the
linear system (3.3). An example of empirical semi-variograms and relative semi-variograms
model is presented in Figure 6.11.
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Figure 6.11 – Sample means and covariances of the errors on both output components
evaluated over samples N (δ1) (left), N (δ2) (right), δ1 ¿ δ2. Estimated semi-variogram
{γ̂(δ1), . . . , γ̂(δ8)} (red squares) and fitted spherical model γ for the two output components on
the time interval (a,b) = (0,T ).

The quality of the ROMES yields significant improvements not only on the estimated mean
µ̂c , but also on the covariance matrix of the parameter ensemble C(Nτ)

µµ . If we compare the
errors ‖µ̂h − µ̂n‖ and ‖µ̂h − µ̂c‖ between the estimates obtained with the full-order EnKF (µ̂h),
the RB-EnKF (µ̂n) and the corrected RB-EnKF (µ̂c ), we find that ‖µ̂h − µ̂c‖ is smaller than
‖µ̂h − µ̂n‖ in all the considered cases, differing in some cases by more than two orders of
magnitude. Even more, also the error ‖(C(Nτ)

µh ,µh
)1/2 − (C(Nτ)

µc ,µc
)1/2‖ between the square roots of

the covariance matrices is considerably smaller than the error on the mean ‖µ̂(Nτ)
h − µ̂(Nτ)

c ‖, as
we can observe in Table 6.2. In other words, the correction introduced by the ROMES is able
to correct the bias yielded by the propagation of the reduction error, without substantially
modifying the distribution of the ensemble particles. This means that the ensemble P

(Nτ)
c

resulting from the application of the corrected RB-EnKF is closer to P
(Nτ)
h , the one given by

the full-order EnKF, than P
(Nτ)
n , the ensemble given by the RB-EnKF, as we have proven in Sect.

6.5.1.
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Ncal = 0 Ncal = 24 Ncal = 80 Ncal = 240

n = 7 0.6669 0.1490 0.0250 0.0361
Ntr ai n = 24 n = 11 0.0465 0.0337 0.0152 0.0140

n = 15 0.0385 0.0118 0.0161 0.0082
n = 7 0.1594 − 0.0218 0.0175

Ntr ai n = 80 n = 11 0.0488 − 0.0398 0.0226
n = 15 0.0070 − 0.0075 0.0117

Table 6.2 – Comparison of the error ‖µ∗− µ̂c‖/‖µ̂‖ on varying the dimension Ntr ai n = |Str ai n |,
Ncal = |Scal | of the training set and of the calibration set. The error decreases as soon as the
calibration and the training sample have a large dimension. The case with Ncal < Ntr ai n is
meaningless, since we would ignore part of the already computed data within the training set.

As we can observe in Table 6.3, building a RB approximation of small dimension n over a
training set with dimension Ncal = 24 (resp. Ncal = 80) requires an offline CPU time of 16 mi n
(resp 53 mi n), which is small compared to the CPU time of 387 mi n needed by the full-order
EnKF procedure. In this test case, the calibration of the ROMES over sets of comparable
dimension (Ncal = 24 and Ncal = 80) can be performed in few seconds. On the other hand,
considering a calibration sample of large dimension Ncal = 240 yields better results in terms
of estimation accuracy, however entailing a remarkable increase of the calibration costs.
The solution of the state/parameter estimation problem using the corrected RB-EnKF entails
only 11 mi n: by comparing the whole procedures, in the worst case scenario we are saving
219 mi n, i.e. more than the 55% of the total computational cost. We also pointed out that the
computational saving is even larger if more than one state/parameter estimation problem has
to be solved, for instance on varying the noisy data y: in this case the basis computation and
the calibration need not to be run again, the only additional costs being those involved by the
filtering procedure.

6.7 Conclusions

The RB-EnKF approach equipped with ROMES developed in this paper enables to speed up
the solution of Bayesian inverse problems when time-dependent outputs are considered.
The RB methodology provides a quick evaluation of the input/output mapping, leading to a
considerable speedup of the whole EnKF procedure. On the other hand the ROMES guarantees
with negligible computational costs the accuracy of the output evaluation. In this way, we
obtain a corrected EnKF updating formula, whose accuracy has been investigated in the
theoretical results provided in Section 6.5. A considerable computational earning is achieved
by the RB-EnKF procedure: the computational speedup in performing the filter goes from 55×
to 64× with respect to the full-order EnKF.
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RB FE
n = 7 n = 11 n = 15 Nh = 1024

dof reduction 99.3% 98.9% 98.5% 0%
Forward solution 0.6 s 0.7 s 0.8 s 40 s
|Str ai n | = 24
ROM construction 16 min 16 min 16 min
ROMES cal. Ncal = 24 15.1 s 17.4 s 18.73 s
ROMES cal. Ncal = 80 37 min 37.1 min 37.3 min
ROMES cal. Ncal = 240 139.2 min 139.3 min 139.4 min
|Str ai n | = 80
ROM construction 53 min 53 min 53 min
ROMES cal. Ncal = 24 15.1 s 17.4 s 18.73 s
ROMES cal. Ncal = 80 49.8 s 53.8 s 59.7 s
ROMES cal. Ncal = 240 103.3 min 103.4 min 103.5 min
Inverse problem
EnKF time 6 min 6.3 min 6.9 min 387 min
EnKF ROMES Ncal = 24 7.7 min 8.2 min 8.6 min
EnKF ROMES Ncal = 80 8.9 min 9 min 9.4 min
EnKF ROMES Ncal = 240 10.9 min 11.1 min 11.4 min

Table 6.3 – Computational performances of the proposed framework (offline construction
and online inversion stages) and comparison with the FOM case.
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Integrating data within models
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7 | Three-dimensional subject-specific
left ventricle

In this Chapter we apply the sensitivity analysis and uncertainty propagation developed
in Chapter 4 to study the dependence of the action-potential shape from the physical and
geometrical parameters on a three-dimensional left ventricle. Using the results of this analysis
we simplify the parametric dependence in order to apply the Markov chain Monte Carlo
(MCMC) developed in Chapter 5. After introducing the forward problem and its full-order
numerical approximation in Section 7.1, we construct in Section 7.2 a state-based localized
reduced-order model (ROM) and a GP-based ROM error surrogate. These latter are mandatory
to perform the analysis presented in this Chapter due to the unfeasible computational costs
arising from the full-order numerical model.
In Section 7.3 we first perform a sensitivity analysis revealing the role of the parameters with
respect to the action-potential shape. Then, we further investigate the influence of geometrical
parameters through an uncertainty propagation analysis. Finally, model personalization of
the identifiable parameters is performed in Section 7.4. Our goal is to show the potential of
the whole strategy in view of future more realistic applications.

7.1 Forward problem

We consider a parametrized system to describe the behavior of the cardiac potential on a three
dimensional left ventricle in physiological conditions. We assume an isotropic conductivity
tensor D0 = σv I, being σv a parameter of the model. We describe the electrical activity of
the left ventricle using the Monodomain model (1.4) with the Aliev-Panfilov model for the
ionic term Ii on and the recovery term g (1.2). The model consists of the following parabolic
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nonlinear PDE coupled with a nonlinear ODE: given µ= [K , a,c1,c2,ε0,σv , t1, t2]T , find u =
u(x,t ;µ) such that:

Am

(
Cm

∂u

∂t
+K u(u −a)(u −1)+wu

)
−div(D0∇u) = Am Iapp (x, t ) x ∈Ω, t ∈ (0,T )

∂w
∂t =

(
ε0 + c1w

c2+u

)
(−w −K u(u −a −1)) x ∈Ω, t ∈ (0,T )

∇u(x,t ;µ) ·n = 0 x ∈∂Ω, t ∈ (0,T )

u(x,0;µ) = 0 x ∈∂Ω,

(7.1)

where Am and Cm are both fixed to 1. The applied current is given by two different stimuli
located in pa

1 and pa
2 , respectively:

Iapp (t ) =C1 exp

(
(x−pa

1 )2

0.6

)
1[t1,t1+∆t ](t )+C2 exp

(
(x−pa

2 )2

0.6

)
1[t2,t2+∆t ](t ),

where t1 and t2 are different pacing times and 1 the indicator function, defined as

1(a,b)(t ) =
{

0 if t 6∈ (a,b)

1 if t ∈ (a,b).

In order to take into account possible intra-subject variability of the left ventricle geometry,
we introduce a suitable shape parametrization of the computational domain based on radial
basis functions (RBFs) (see e.g. [Buh00]). In particular, we define a set of admissible shapes
obtained as diffeomorphic imagesΩ(µg ) of the reference domainΩ through a parametrized
map T (·;µg ) depending on eight parameters µg = [µg

1 , . . . ,µg
8 ]; these latter represent the

displacement of eight control points in the normal direction to the left ventricle surface (next ).
Here we denote the deformed position pk of each control point as

pk = p0
k +µ

g
k next k = 1, . . . ,8,

where p0
1, . . . ,p0

8 ⊂R3 denote the positions of the control points in the unperturbed reference
configurationΩ. The parametric map T (·;µg ) :Ω→Ω(µg ) is thus given by

T (x;µg ) = x+WT s(x),

where s(x) = [φ(‖x−p0
1‖), . . . ,φ(‖x−p0

8‖)], φ is the Gaussian RBF function and W ∈ R3×8 the
weights matrix satisfying the interpolation constrains (for further details see e.g. [MQR12]).
In particular, by choosing µg

k = {−1,1}, k = 1, . . . ,8, we obtain the configurations reported in
Figure 7.1. In this way, we are able to describe a wide range of different geometrical configura-
tions, thus enabling to explore a variety of subject-specific geometries.

In conclusion, we end up with eight physical parameters characterizing the PDEs and the ODE
of the monodomain model (7.1) and eight additional geometrical parameters, characterizing
the left ventricle shape. A complete list of all the considered physical parameters and their
range is presented in Table 7.1. The mean values have been chosen accordingly to [AP96].
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Figure 7.1 – Position of the control points in the unperturbed reference configuration Ω
(top) and geometrical deformations of the reference domainΩ obtained by varying the eight
geometrical parameters µg (bottom)

Parameter Mean Range

K 8 [7,9]
ε0 0.021 [0.001,0.041]
c1 0.1 [0.05,0.15]
c2 0.3 [0.25,0.35]
σv 0.35 [0.1,0.6]
a 0.15 [0.1,0.2]
t1 10 [5,15]
t2 25 [0.1,0.2]

Table 7.1 – Physical parameters of the left ventricle model and their range
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A representation of different depolarization (activation) and polarization (deactivation) times
is provided in Figure 7.2 for four different random values of the physical and geometrical
parameters.

depolarization polarization

Figure 7.2 – Depolarization and polarization times [ms] for four different values of the pa-
rameter vector µ. The physical parameters greatly affect the propagation velocity of the front,
while the geometrical ones are responsible of the change in the front profile.

Due to the high-dimensionality of the parameter space, a sensitivity analysis of the outputs
with respect to the parameters is mandatory to simplify our model. Moreover, we focus
on the inverse problem of identifying the physical parameters (for model personalization)
starting from noisy measurements of the potential and considering the geometrical parame-
ters as nuisance parameters, as happens e.g. when image registration is performed (see e.g.
[SRSO+05, SMC+06, AHC+15, AHC+17]).

With this aim, we consider as output the action-potential:

yh(t ;µ) = uh(t ;µ)
∣∣

x=xc
,

computed at a selected point xc of the left ventricle (a random sample of this output evalua-
tions is reported in Figure 7.3). In this way, we can use the proposed reduced UQ framework
to study how parameters modify the computed electric potential.
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Figure 7.3 – Action-potential yh(t ;µ) computed for random values of the parameters

As done in the previous numerical test, we describe these functions through three landmarks,
reported in Table 7.2.
The forward problem is first approximated using linear finite elements on a mesh formed
by Nh = 15592 vertices and 63802 elements. We consider the semi-implicit Euler scheme for
time-advancing on a subdivision of Nt = 800 time-steps of length ∆t = 1ms. This forward
query entails on average 14 minutes and 30 seconds.

Landmarks u.m. physical meaning

tMRRU ms time of upstroke rise max rate
tS ms time of the stimulation pulse

tAP ms action potential time from upstroke to resting potential

Table 7.2 – Considered scalar outputs for the description of the action-potential

7.2 Reduced-order model

In order to improve the computational performance of the input-output evaluation we rely
on ROMs. However, constructing a ROM in this setting is a very challenging problem, due to
the large number of parameters and to the problem complexity. For these reasons, we also do
not consider a kriging-based SM, but we only rely on a state-based localized ROM equipped
with a ROMES based on GP regression. Our localized-reduced basis approximation is built
starting from Ntr ai n = 25 parameters randomly selected in the parameter space. In this case,
the dimensions of the solution and nonlinear term snapshot matrices are Nh ×25Nt .

We choose Nc = 6 clusters of the solution snapshots matrix and we compute the relative
centroids using the k-means clustering technique. Then, for each cluster we compute the basis
functions for the solution and the nonlinear term of the monodomain equation by means of
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the POD technique with tolerance 2.5 ·10−2. The resulting number of basis functions for each
cluster is reported in Table 7.3. In this setting, the reduced solution is computed in 21 seconds
on average, providing a speed up of 41x in the input-output evaluation with respect to the
full-order FE approximation.

#1 #2 #3 #4 #5 #6

solution 5 16 32 9 15 21
nonlinear term 66 80 77 47 47 78

Table 7.3 – Number of basis functions of the solution and the nonlinear term for each cluster

We also equip the constructed localized-ROM with a GP-based ROMES built over a calibration
set of Ncal = 40 parameter vectors. By looking at the scatter-plots of the components of the
reduced output vector versus the full-order ones (Figure 7.4), we can highlight that there is a
simple dependence between the full- and the reduced-order outputs. For each component a
GP regression is fitted, providing a way to efficiently approximate the output error. In this way,
we avoid the curse of dimensionality, which could affect a kriging-based ROMES due to the
large number of parameters.
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Figure 7.4 – GP-based ROMES for the approximation error on the outputs in Table 7.2. The
stochastic dependence between the reduced and full-order model enables the construction of
this ROMES whose complexity is independent from the parameters space.

The accuracy in the output given by the ROM equipped with the ROMES is tested on a third
subset of the parameters space of dimension Noob = 25 (see Figure 7.5). The bias in the
ROM output is successfully corrected by the ROMES without introducing a large additional
uncertainty in the prediction.

7.3 Uncertainty quantification

In view of a personalization of this model, that is the need of identifying the parameters related
to a specific subject, we exploit the UQ framework previously introduced in order to better
understand the main features of this model.
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7.3. Uncertainty quantification

Figure 7.5 – Cross-validation of the ROM output equipped with GP-ROMES with Ntr ai n = 25,
Ncal = 40 and Noob = 25.

Sensitivity analysis

The main effects plots (see Figure 7.6) show that there are influential parameters among the
physical ones: in particular the conductivity σv and the physical coefficient a clearly affect
the maximum time tMRRU of upstroke rise and the time tS of the stimulation pulse, while the
recovery coefficients ε0 and c1 and the physical coefficient a the time tAP from upstroke to
resting potential. These dependences are not surprising since the first two outputs are related
to the depolarization phase, while the third one to the polarization phase.
On the other hand, we observe that variations of main effect curves are negligible when we
consider a geometrical parameter µg

i . This is motivated by the fact that local changes (around
the selected control point p0

i ) in the domain do not considerably affect the wave propagation
(and consequently tS and tMRRU ).

The reliability of the results obtained with the ROM model, is clear also by looking at the
confidence intervals of the main effects plots (Figure 7.7), all showing a small width.
The main effect indices Si and ST,i (Table 7.4 and 7.5) confirm the results from main effects
plots and highlight that K , c2, t1 and t2 are non-influential for the considered outputs and
could be fixed to any value in their range to simplify the model.

Output K ε0 c1 c2 σv a t1 t2

tMRRU 0.0456 0.0248 0.0225 0.0072 0.6380 0.2069 0.0069 0.0049
tS 0.0507 0.0140 0.0104 0.0089 0.7136 0.1756 0.0069 0.0068

tAP 0.0109 0.3554 0.2064 0.0169 0.0097 0.3000 0.0168 0.0185

Table 7.4 – Reduced-order first-order indices

Output K ε0 c1 c2 σv a t1 t2

tMRRU 0.0534 0.0315 0.0390 0.0040 0.7250 0.2301 0.0023 0.0067
tS 0.0435 0.0136 0.0037 0.0014 0.7519 0.1938 0.0011 0.0011

tAP 0.0150 0.4830 0.2680 0.0043 0.0152 0.3544 0.0017 0.0016

Table 7.5 – Reduced-order total effect indices
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Figure 7.6 – Main effects plots obtained with the ROM equipped with the GP-ROMES. In this
case, the role of the geometrical parameters is negligible with respect to the physical ones.
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Figure 7.7 – Outputs variation with confidence intervals

Uncertainty propagation

Finally, we perform uncertainty propagation for the three-dimensional problem (7.1): in
particular, we are interested in better understanding the role of the geometrical parameters
with respect to the outputs.

From the sensitivity analysis, we have deduced that it is possible to neglect geometrical
parameters without considerably compromising the accuracy in reproducing the output of
interest. In order to verify this conclusion, we propagate the uncertainties in the geometrical
parameters on the outputs starting from samplings with different variances. In particular,
we test the case in which the geometrical parameters are sampled uniformly from the whole
range [−1,1], and on the ranges [−0.5,0.5] and [−0.04,0.04] (see Figure 7.8).

We notice that for tMRRU and tAP the additional variance introduced when large ranges of
the geometrical parameter are considered is negligible. This conclusion does not hold for tS ,
for which we observe a standard deviation on the output ranging from 1.03 to 5.42. This fact
can be explained by considering that the time at which the stimulus reach xc also depends
on the shape of the domain. We can conclude that in order to study some pathologies that
affect the action-potential shape it is sufficient to rely on a model where the geometrical
configuration is fixed. If we are interested in modeling accurately the velocity of the front, the
geometrical parameters should be taken into account. Of course, more detailed models, such
as the bidomain system of equations, could provide even better insights.
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Figure 7.8 – Output probability densities obtained by a forward propagation of the uncer-
tainties in the input parameters. The variance of each physical parameter is equal to 0.04
in normalized units, while we vary the range of the geometrical parameters from [−1,1] to
[−0.04,0.04]. Only for the output tS we observe a considerable increase in the output variance,
when the parameter variance changes.

7.4 Parameter estimation

We now solve a Bayesian inverse problem for the monodomain equation with Aliev-Panfilov
ionic model for the three-dimensional personalized left ventricle presented in Section 7.1.
The sensitivity analysis performed in Section 7.3 has shown that between the sixteen uncertain
parameters (eight physical and eight geometrical) only γ= [a,c1,ε0,σv ]T are influential for
the output vector

yh(µ) = [tMRRU (µ), tS(µ), tAP (µ)]T ,

whose components are the landmarks of the function uh(t ;µ)
∣∣

x=xc
. In particular, we consider

1. the time of upstroke rise max rate tMRRU ,

2. time of the stimulation pulse tS ,

3. action potential time from upstroke to resting potential tAP .

In this case, the Bayesian inverse problem consists in identifying the posterior distributions
of γ= [a,c1,ε0,σv ]T in presence of the 12 nuisance parameters ζ (formed by the others four
physical parameters and the eight geometrical ones), from a noisy observation of the outputs
vector:

y∗ = yh([γ∗,ζ∗])+εnoise

with γ∗ = [0.017,0.090,0.147,0.151] and ζ∗ randomly selected. Moreover, we assume that
εnoise is distributed as a multivariate Gaussian random variabile with zero mean and covari-
ance:

Γ=
1.56 0 0

0 1 0
0 0 6.25

 .

We compare the results of the Bayesian inverse problem using a full-order model based on the
finite element method and a state-based localized-ROM using a GP-based ROMES correction
(for further details on the construction of these models see Section 7.2). The resulting posterior
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pdfs using the different models are presented in Figure 7.9. In this case, we highlight that the
ROMES correction is mandatory to improve the results of the Bayesian inversion: the marginal
uncorrected ROM posterior pdfs for a and σv are completely different from the FOM ones.

The identifiability indices, reported in Table 7.6, confirm also in this case the connection
between influential parameters, determined by the sensitivity analysis performed in Sec-
tion 7.3, and identifiability. Starting from a uniform prior distribution on the parameters, we
obtain marginal posterior distributions with small variances: as a matter of fact, the variance
reduction indices Ii are greater than 0.6 in all cases and the values of the entropy index G are
considerably large.
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Figure 7.9 – Marginal posterior distributions of the identifiable parameters γ= [a,c1,ε0,σv ]T

given the noisy observation y∗. The marginal posteriors obtained by combining the ROM
with the (both deterministic and statical) ROMES are closer to the ones given by the FOM
with respect to the uncorrected ROM posterior pdfs. Instead, considering the statistical SM
prediction does not improve the results.

Finally, in order to verify the theoretical results presented in Sect. 5.4, we show in Table 7.7
the evaluations of the KL-divergences between the marginal FOM posteriors and the ROM
ones when different correction strategies (deterministic and statistical GP-based ROMES) are
considered. In this case, we highlight the effect of the deterministic ROMES correction in the
marginal posterior distributions of a and σv , where the KL divergence goes from 2.37 (5.01) to
0.12 (0.52).
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Output a c1 ε0 σv

Variance reduction Ii 0.82 0.74 0.89 0.61
Entropy index Gi 1.56 1.17 2.09 0.78

Table 7.6 – Variance reduction indices Ii and entropy index Gi for i = 1, . . . = 5

Output a c1 ε0 σv

ROM 2.37 0.42 0.29 5.01
ROM+ROMES(det) 0.12 0.49 0.30 0.52
ROM+ROMES(stat) 0.24 0.47 0.39 1.05

Table 7.7 – KL divergences between the posterior FOM distribution and the ROM one featuring
ROMES correction.

7.5 Conclusions

The personalization of electrophysiology models is a rather involved procedure which re-
quires the identification of the model geometry starting from imaging and the estimation of
physical coefficients characterizing the mathematical model. The uncertainty arising during
this procedure severely affects the estimation process, preventing its application in more
realistic scenarios. Not only, such a process is extremely time consuming, because of the very
large number of forward model queries. Moreover, this number could dramatically increase
with respect to the number of parameters and the way they influence the output of interest.
Selecting the most relevant parameters to be identified has thus a great impact on the whole
personalization procedure. Our ROM/ROMES strategy makes sensitivity analysis and uncer-
tainty propagation affordable even in such a complex case. In particular, we have reduced the
number of parameters from sixteen to four when analyzing the impact of possible pathologies
on the action-potential curve.

The parametrization of the geometry, which is an essential step towards a more realistic
model, needs to be further improved in order to enhance the accuracy of the results. A higher
number of RBFs could be considered also to address variations of the wall thickness. From
the modeling perspective, the bidomain model could be considered in spite of its higher
computational costs.
Although the validity of the test case is limited by the simplifying assumptions, the reliability
of the whole strategy, demonstrated though the numerical results, is promising for a future
application in a more realistic scenario.
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8 | Myocardial ischemia detection

In this Chapter we apply the corrected reduced-basis ensemble Kalman filter (EnKF) developed
in Chapter 6 to estimate the location and the shape of myocardial ischemic regions on a
patient-specific left ventricle. An efficient solution of this rather involved test is obtained
by combining the numerical methodologies developed in this Thesis, such as the localized
reduced-order model (ROM) of Chapter 2, the ROM error surrogate of Chapter 3 and the EnKF
of Chapter 6.

After introducing the full-order numerical approximation of the forward problem, we construct
in Section 8.2 a state-based localized reduced-order model (ROM) taking advantage of the
analysis carried out in Chapter 2. In Section 8.3 we formulate the state/parameter estimation
problem related with ischemia detection, by focusing on the definition of different prior
distributions modeling the most common locations of artery blocks. Three ROMs of different
dimensions are considered in order to show the trade-off between the accuracy in solving
the state/parameter estimation problem and the computational resources required by the
whole procedure. In Section 8.4 and 8.5 we finally present the numerical results achieved
with the RB-EnKF and its ROMES corrected version, showing the reliability of this procedure
in detecting myocardial ischemia. This test case represents a preliminary step towards an
efficient data-model integration in a clinical scenario.

8.1 Forward problem

In this last test case we consider the monodomain model (1.4) with Aliev-Panfilov current
specification (1.2) on a realistic left ventricle aiming at estimating the presence of ischemic
regions. As done in [KRC+11], an ischemic region is described as a lack of the conductivity
field. In particular, we adopt a description of the non-homogeneous parametrized diffusion
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Chapter 8. Myocardial ischemia detection

coefficient σv = σv (x;µ) relying on a set of radial basis functions to take into account local
variation of the conductivity field:

σv (x,µ) = 1

νm(x)

d∑
i=1

µi exp

(
−‖x−xi‖2

σ2

)
νm(x) =

d∑
i=1

exp

(
−‖x−xi‖2

σ2

)
,

where µi ∈ [0.01,1], 1 ≤ i ≤ d = 20 are the unknown parameters, νm a normalization term and
x1,x2, . . . ,xd are the centers of the radial basis functions, represented in Figure 8.1 covering all
the domain. In this way, a healthy configuration is obtained when all the parameters are close
to 1, while for µi close to 0.01 we have a lack of conductivity located around the corresponding
center xi .

Figure 8.1 – Diffusion coefficientσv (x;µ) forµ= ei , i = 1, . . . ,20, being ei = δi in the Kronecker
notation

The model is completed by considering the non-homogeneous parametrized ionic current:

Ii on =σv (x;µ)(K u(u −a)(u −1)+uw).

An alternative representations ofσv can be obtained e.g. by introducing a truncated Karhunen-
Loève expansion [GS03] of the Gaussian random field ν∼N (0,C ), where C is a covariance
matrix describing the spatial smoothness of the random field σv . Despite we have already
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8.1. Forward problem

adopted this approach in [PMQ16], for the test case at hand the RBF approach has been
chosen because of its capability of yielding a more realistic representation of the conductivity
field. This is motivated by the fact that the RBF centers can be arbitrarily located in the regions
of the left ventricle mainly affected by an artery occlusion. Two examples of resulting fields
and relative depolarization maps are presented in Figure 8.2.

right half left half

Figure 8.2 – Diffusion coefficient σv (x;µ) for two different values of µ, and the associated
depolarization map, i.e. the times at which u(x;µ) reaches its maximum value for each point x
of the computational mesh

Hence, we are able to characterize both healthy and unhealthy conditions in a specific way: in
fact, the RBF model is able to describe local damages due to an occlusion of one of the main
arteries (LAD,RCA,LCX). For this reason, solving the data-assimilation problem of estimating
the vector of parameters µ starting from noisy measurements of the electric potential is very
interesting from a clinical perspective. On the other hand, the complexity of this problem
poses several challenges from the numerical standpoint. The tools developed in the following
chapters, such as the localized-ROM and the ROMES for functional-valued output, are thus
essential in order to achieve accurate and efficient solutions of the data-assimilation problem.

The full-order approximation of the electrophysiology problem (1.4) with Aliev-Panfilov cur-
rent specification (1.2) is obtained using the finite element method. We adopt linear finite
elements on a computational mesh with Nh = 6356 mesh vertices and Nel = 28080 mesh
elements (see Figure 8.3). We underline that more refined meshes together with more detailed
models, such as the bidomain system of equations, should be considered in order to provide
realistic simulations. However, the methodology developed in this Thesis could be extended
also to manage these modifications of the problem.

From the given parametrization, we obtain also an affine decomposition of the diffusion
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x

yy

z

x

z

Figure 8.3 – Computational mesh of the patient-specific left ventricle.

matrix A(µ):

A(µ) =
20∑

j=1
µ j A j ,

where A j are µ-independent FE matrices preassembled using the radial basis functions as
conductivity coefficients.

By taking a partition of the time interval (0,T ) into Nt = 900 time-steps (∆t = 0.5 [ms]) and the
semi-implicit Euler method, the forward problem takes the form of the following dynamical
system: given µ ∈P ⊂R20 find u(`+1)

h such that



(
M+

20∑
j=1

µ j A j

)
u(`+1)

h = Mu(`)
h +∆t (I(`+1)

app (µ)− Ii on(u(`)
h ),w(`)

h ;µ) `= 0, . . . , Nt −1

u(0)
h = u0(µ)

w(`+1)
h = w(`)

h +∆t g(u(`)
h ,w(`)

h ;µ) `= 0, . . . , Nt −1

w(0)
h = w0(µ).

(8.1)

We consider a vector yh = [y1
h , . . . , y9

h]T of nine functional outputs, whose components are
defined as:

y j
h(t ;µ) =

∫
Ω

1

(0.1π)3/2

(
∇exp

(
−
‖x−xc

j‖2

2(0.05)2

))
· (σv (x)∇u(x, t ;µ)

)
dΩ j = 1, . . . ,9, (8.2)

being {xc
j }9

j=1 nine points on the endocardium. Our aim is to approximate local measurements
of the extracellular potential given by small electrodes placed in 9 points on the endocardium
(formula (8.2) has been constructed adapting the integral expression presented in [GR02]). By
considering a higher number of points it is possible to approximate the so-called simultaneous
endocardial mapping in the human left ventricle obtained with a non-contact multi-electrode
catheter (for further details see [SPD98, ÁAARÁ+12, YFR+05]). In Figure 8.4 we report the

locations of the nine chosen points and the relative output components y j
h(t ;µ) computed for

twenty random values in the parameters space.
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Figure 8.4 – Functional outputs modeling the local measurements of the extracellular potential.
The outputs are characterized by a first considerable variation due to the depolarization of
the LV (comparable to the QRS complex of a ECG) and a second smaller variation due to the
polarization (comparable to to the T wave of a ECG).

Solving the algebraic system (8.1) by the full-order model (FOM) takes almost 9 minutes on
average 1 (each evaluation of the nonlinear term requires on average 0.5 seconds, while the
solution of the linear system about 0.1 seconds). Even in this simplified setting, the solution
of (8.1) is already computationally intensive: as a matter of fact, performing sequentially 160
input/output evaluations using the FOM takes almost one day. Moreover, much more refined
meshes are required when the goal is to capture in a detailed way the front velocity, with a
consequent increase of the computational costs.

8.2 Reduced-order model

In this Section we consider the task of constructing a ROM for the forward problem (8.1) on
a subjet-specific left ventricle. We first show that standard RB techniques are not straight-
forward for the problem at hand; in this respect, the state-based localized-ROM proposed in
Chapter 2 is required in order to improve the computational performances of the input/output
evaluation.

To give an insight of the complexity of the parametric dependence in this case, we have
computed the singular values of the snapshots matrices of solutions uh and of nonlinear terms

1All the online computations of this chapter have been performed on a laptop with 3.2 GHz Intel core i5
processor and 16Gb RAM.
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Chapter 8. Myocardial ischemia detection

Ii on in three cases:

1. the parameters vector is fixed to µ= 1 = [1, . . . ,1]T , i.e. the solution snapshots matrix is
only made by Nt full order vectors {u(`)

h (1)}Nt

`=1;

2. only the first component of the parameters vector can vary (we have considered 10
random realizations to built the corresponding snapshots matrix of dimensions Nh ×
(10Nt ));

3. only the first two components of the parameters vector can change (we have consid-
ered 20 random realizations to built the corresponding snapshots matrix of dimensions
Nh × (20Nt )).

The decay of the singular values, represented in Figure 8.5, clearly shows that the complex-
ity of the solution manifold dramatically increases when variations in the parameters are
considered.

200 400 600 800 1,00010−6

10−3

100

103

Singular values of the solution

0 param

1 param

2 param

200 400 600 800 1,00010−8

10−5

10−2

101

Singular values of the nonlinear term

0 param

1 param

2 param

Figure 8.5 – Singular values decay for the case with fixed parameters vector (blue line), and
the case where one (red line) and two (yellow line) components of µ vary. In order to reach a
precision of 10−2, 97 basis functions are required in the first case, 268 basis functions in the
second and 385 in the third.

As a consequence, classical state of the art RB techniques are not feasible for this application.
We thus consider the state-based localized-ROM proposed in Chapter 2 relying on the k-means
clustering technique for the selection of the local RB subspaces.

The K-means clustering aims at partitioning the snapshots matrix Su into Nc submatrices
S1

u , . . . ,SNc
u in order to minimize the distance between each vector in the cluster and the cluster

sample mean. In this application we consider Nc = 20 clusters built with respect to the Eu-
clidean metric, with the goal of constructing possibly low-dimensional reduced-order arrays.
By looking at the centroids selected by the k-means algorithm (see Figure 8.6), we highlight
that the cluster subdivision is principally operated with respect to the time variable. Twelve
centroids are related to the depolarization phase, showing a sharp traveling front, while only
seven centroids are associated to the polarization phase.
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8.2. Reduced-order model

Figure 8.6 – Centroids selected by the k-means algorithm. The majority of them are related to
the depolarization phase (first twelve subplots from the top left).

The snapshots matrix Su of extremely high dimensions Nh ×900Ntr ai n , with Ntr ai n = 300,
is divided in the corresponding 20 submatrices Sk

u , k = 1, . . . ,20 identified by the k-means
algorithm. The same operation is repeated also for the nonlinear vector Ii on , relying on the
state solution as clustering indicator. From each Sk

u , we compute a set of RB basis functions
using the proper orthogonal decomposition technique (tol = 1.2 10−2). After repeating the
same procedure for the nonlinear term, we end up with a localized-ROM (denoted in the
following as ROM #1), for which the number of basis functions of the solution (nonlinear
term) in each cluster varies from a minimum of n2 = 32 (mD,2 = 25) to a maximum of n8 = 205
(mD,8 = 253). The numerical approximation of the problem (8.1) given by ROM #1 requires 51
seconds, with a speed up of 10.5x if compared to the FOM of Section 8.1.

In order to speedup even more the input/output evaluation, we consider also two additional
ROMs:

• ROM #2, built by retaining in each cluster the 60% of ROM #1 basis functions. This
reduced model enables to solve the problem in 33 seconds, reaching a speed up of 16.3x;

• ROM #3, built by retaining in each cluster the 40% of ROM #1 basis functions. This
reduced model enables to solve the problem in 29 seconds, reaching a speed up of 18.6x.

It is not surprising that a better computational performance is associated to a loss of compu-
tational accuracy (see Figure 8.7). The error propagation affects mainly ROM #3 for which
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Chapter 8. Myocardial ischemia detection

different front velocities cause anticipations or delays of the depolarization phase. On the
other hand, ROM #2 is affected by a much smaller error than ROM #3. Moreover, the reduction
error affects mainly the parts of the left ventricle close to the ischemic regions, which are
responsible of the great variability of the solutions. Retaining less basis functions than the
ones selected by ROM #1, clearly reduces the ability in reproducing the whole variability of the
phenomenon.

ROM #1

ROM #2

ROM #3

log10

✓
max

`
|u(`)

h � u(`)
n |

◆

Figure 8.7 – Maximum error in time computed for three different values of the parameters
vector and using the three different ROMs presented in this Section. For ROM #1, there is
almost no error propagation: the phenomenon is well captured in all the three parameters
configurations. For ROM #2 and ROM #3 non negligible errors are observed in correspondence
of the ischemic regions.

The comparison of the outputs reported in Figure 8.8 clearly underlines that:

1. the reduced outputs given by ROM #1 almost coincides with the ones obtained using
the FOM;

2. ROM #2 and ROM #3 are affected by a non-negligible approximation error, leading to an
early depolarization in the ischemic region.

8.3 State-parameter estimation problem

The goal of the inverse problem is to estimate the vector of parameters µ∗ together with the
state u∗ from noisy sequential data:

y(k) = y(k)
h (µ∗)+ε(k)

noise, k = 1, . . . , Nτ,

being ε(k)
noise ∼N (0,Γ) a Gaussian process modeling the noise on each window (τ(k−1),τ(k)).
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Figure 8.8 – Comparison between ROM and FOM outputs for ROM #1, #2 and #3 from top to
the bottom.

In order to generate an initial ensemble of particles {P (0)
h ,U (0)

h } a prior distribution must be
provided. In our case, since the initial condition is µ-independent, we are only interested in
providing a prior distribution for the parameters vector. In this work we choose four different
Gaussian priors, modeling different a priori information about the state of the patient (see
Chapter 1 for further details):

1. healthy condition: the left ventricle shows good conductivity properties, which are
modeled by choosing as prior mean E[(µpr i or ) j ] = 0.8, j = 1, . . . ,20, and as covariance
matrix (Cpr i or ) j j = 0.03 for all j = 1, . . . ,20;

2. artery block: the tissue is assumed to have a lack of conductivity in the region perfused
by the LAD artery and good conductivity properties elsewhere, which are modeled
by choosing as prior mean E[(µpr i or ) j ] = 0.5, j = 1, . . . ,20, and as covariance matrix
(Cpr i or ) j j = 0.05 for each j such that xc

j belongs to the LAD/RCA/LCX region.

This choice of the prior distributions is quite conservative, since we are considering a wide
range of possible configurations, in order to not overweight the a-priori information with
respect to the ones coming from the measurements. It is possible to design more detailed
prior in order to test specific configuration.
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Chapter 8. Myocardial ischemia detection

From each prior, we sample Ne vectors µ(0)
q , q = 1, . . . , Ne forming the starting ensemble P (0)

h .
The resulting four prior ensembles are represented in Figure 8.9, where the conductivity field
σv has been computed for the sample mean µ(0)

h and two values of the α-quantile qα (with

α ∈ [0,1]). We define the α-quantile as the vector formed by the values q j
α such that the

ensemble (µ(0)
q ) j , q = 1, . . . , Ne is divided in two part proportional to α and characterized by

µ
j
q ≤ q j

α and µ j
q > q j

α, j = 1, . . . ,d .

RCA LADLCXHEA

Figure 8.9 – Conductivity field σv (x;µ) computed from the sample mean estimate µ=µ(0)
h

(center row) and the empirical 0.05 and 0.95-quantiles µ= q0.05 and µ= q0.05 (top and bottom
rows) of the four prior ensembles P (0)

h .

We test our reduced-framework for the estimation of a local ischemic region obtained by
taking µ=µ∗ such that µ∗

6 = 0.0760, µ∗
14 = 0.5096 and random values µ∗

i > 0.7, i 6= 6,14. This
reference vector is used to artificially generate the nine noisy measurements of the output
Hu`h(µ∗) reported in Figure 8.10.
At each iteration of the EnKF, we measure:

y(k+1)
h (µ) =

∫ τ(k+1)

τ(k)
Huh(t ;µ)d t ,

where H is the numerical approximation of (8.2). Each window (τ(k),τ(k+1)) contains 25 time-
steps of the time-advancing scheme (a full simulation of the problem is performed on 36
windows). On each window the Kalman update formula[

µ(k+1)
q

u(k+1)
h (µ(k+1)

q )

]
=

[
µ(k)

q

u(k+1)
h (µ(k)

q )

]
+

[
C(k+1)
µyh

C(k+1)
uh yh

]
(Γ+C(k+1)

yh yh
)−1(y(k+1)

q −y(k+1)
h (µ(k)

q )),
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8.4. RB-EnKF

Figure 8.10 – Noisy measurements Hu(`)
h (µ∗) perturbed with Gaussian random noise (zero

mean and standard deviation equal to (Γ)1/2
j j = 0.05).

compares Ne realizations of the noise ε(k+1)
q , q = 1, . . . , Ne , with the data coming from the

prediction stage, where the full-order forward problem is solved for each element µ(k)
q in

the ensemble P (k)
h with the corresponding initial conditions u(k)

h (µ(k)
q ) contained in U (k)

h .

The EnKF sequentially corrects the particle ensembles P (k)
h and U (k)

h in order to match the
current state estimation with sequentially acquired noisy measurements, as we can observe in
Figure 8.11.

8.4 RB-EnKF

We then apply the RB-EnKF in order to estimate the unknown parametersµ∗ characterizing the
conductivity properties of the left ventricle when ROMs with different fidelities are exploited.

Starting from the prior distribution corresponding to a LAD block, we run the RB-EnKF with
Ne = 200 particles. When ROM #1 is adopted in the EnKF, the updating procedure of the
parameters ensemble leads to a correct identification of the parameters vector, as shown
in Figure 8.12. We observe that the ensemble confidence bands (dotted blue lines) become
smaller and smaller during the solution of the EnKF, meaning that the knowledge about the
parameters increases thanks to the information coming from the assimilated measurements.
In particular, the parameters related to the healthy regions (µi > 0.7) are well captured after 7
iterations, while more iterations are required for a correct estimation of µ6.
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Chapter 8. Myocardial ischemia detection

Figure 8.11 – Outputs Hu(`)
n computed for each element in the ensemble P (k)

h with the

corresponding initial datum taken in U (k)
h on the first twelve windows. We can observe that

the means of the outputs (black dotted line) match with the noisy measurements on each
window.

At the end of the EnKF procedure, the parameters ensemble P
(Nτ)
n is a good sample of the pos-

terior pdf of the parameters given the noisy data. Some indicators of the unknown parameter
vector are finally computed on P

(Nτ)
n , such as the posterior mean or the maximum a posteriori

estimate. The conductivity fields σv (x;µ̂) obtained with the mean estimates µ̂ = µ(Nτ)
n are

presented in Figure 8.13 on varying the different ROMs exploited for the PDE model approx-
imation. We notice that the propagation of the error, when ROM #2 and #3 are used, leads
to biased estimates of the conductivity field. Together with the mean, we also compute the
empirical standard deviation of σv (x;µ), for all µ ∈P

(Nτ)
n in each point of the computational

domain (see bottom part of Figure 8.13). The starting maximum standard deviation of 0.2143
computed on the prior ensemble P (0)

n is reduced to 0.08 when ROM #2 and #3 are adopted
(the uncertainties are mainly concentrated around the non captured ischemic region).

Moreover, on each resulting ensemble P
(Nτ)
n we compute the probability that µ6 < η, being

η a selected threshold (here we take η = 0.4). We obtain P(µ6 < η) = 0.9960 using ROM #1,
P(µ6 < η) = 0.5280 with ROM #2 and finally P(µ6 < η) = 0.0240 with ROM #3. On the basis of
these results, we correctly estimate the presence of an ischemic region only when ROM #1 is
used in the RB-EnKF. On the other hand, there is a complete misclassification when ROM #3 is
used, since we deduce from the numerical results that the tissue is healthy, when instead it is
not.
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1.4. RB-EnKF
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Figure 1.10 – Mean (blue circles) of the parameters ensemble P (k)
n for k = 1, . . . ,12, together

with the 95% confidence bands (dotted blue line). Here, the red dotted lines corresponds
to the elements of µ§, the parameter vector used to artificially generate the noisy data. The
height of confidence bands is reducing in time, due to the progressive assimilation of the data.

17
Figure 8.12 – Mean (blue circles) of the parameters ensemble P (k)

n for k = 1, . . . , Nτ, together
with the 95% confidence bands (dotted blue line). Here, the red dotted lines corresponds to
the components of µ∗, the parameter vector used to generate the noisy data. The width of the
confidence bands is reduced in time, due to the progressive assimilation of the data.
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�v(x; µ̂)
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Posterior field standard deviation
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Figure 8.13 – Conductivity fields σv (x;µ̂), µ̂ = µ(Nτ)
n , given by the RB-EnKF using different

ROMs (top) and their standard deviations (bottom). The field is only well captured using ROM
#1, which is the most accurate model. In this case the field corresponding to the mean vector
estimate is close to the reference one and the standard deviation is lower than 0.06 in each
point of the computational domain (and even smaller in all the right half of the left ventricle).
When less accurate ROMs are adopted, the mean fields obtained are far from the reference
one; additional uncertainties in the estimation (yielding larger standard deviations) arise.
Taking into account the approximation error is thus crucial to recover an unbiased estimate.
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In Figure 8.14 we represent the field σv (x;q0.05) and σv (x;q0.95), being q0.05 and q0.95 the em-
pirical 0.05 and 0.95-quantiles of P

(Nτ)
n for the different ROMs. In this way, we can visualize

all the range of possible configurations of σv . We observe that also the field associated to the
quantiles are far from the true solution when ROM #3 is used.

ROM #1

ROM #2

ROM #3

�v(x; µ̂)�v(x;q0.05) �v(x;q0.95)

Figure 8.14 – The 0.05 and 0.95-quantiles of the conductivity fields given by the RB-EnKF
using ROM #1, #2 and #3 (from the top to the bottom). The fields related to ROM #1 are very
close to the reference field. The propagation of approximation error in the case of ROM #3
compromises the estimation procedure leading to biased estimates.

The effect of the error propagation is also clear from the reconstructed state solutions: in the
reference solution the traveling front slows down when reaching the ischemic region (see
Figure 8.15); this behavior is well captured only when ROM #1 is used, while it is not when
ROM #2 and ROM #3 are used (the solution is much more similar to the ones related to healthy
patients).

The computational costs of the RB-EnKF using these different ROMs varies considerably:
the estimation procedure entails 2 hours and 55 minutes with ROM #1 and 1 hour and 39
minutes with ROM #3. However, the computational earnings obtained with a less accurate
ROM correspond to non correct parameter estimates. For this reason, we consider a kriging-
based ROMES to minimize the propagation of the reduction error, trying to preserve the
computational speedup obtained with ROM #2 and #3.
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ROM #1

ROM #2

ROM #3

Reference

t = ⌧ (7) t = ⌧ (9) t = ⌧ (27) t = ⌧ (29)

Figure 8.15 – Mean estimates of the state ensemble u(k)
n for k = 7,9,27,29. As observed for the

mean estimates of the conductivity field, also the state solutions are similar to the reference
ones when an accurate ROM is used.

8.5 Corrected RB-EnKF

In order to construct a corrected version of the RB-EnKF, we build a kriging-based ROMES for
functional data on a set of Ncal = 400 parameters samples. The computational costs related to
the solution of the kriging system of dimension 400×400 are still negligible with respect to the
costs of solving the ROM on each window. For this reason, adding the ROMES to our RB-EnKF
does not affect the overall computational performances.
The corrected RB-EnKF yields more accurate reconstructions of the field with respect to the
uncorrected procedure. The errors in approximating the true field:

|σv (x;µ∗)−σv (x;µ(Nτ)
n )|

is reduced when a ROMES is integrated in the RB-EnKF (see Figure 8.16).

Moreover, the probability that an ischemic region is present in the left ventricle becomes
P(µ6 < η) = 0.8920 with ROM #2 and P(µ6 < η) = 0.8050 with ROM #3. Thanks to the corrected
RB-EnKF we avoid the misclassification: in both cases we would correctly identify that the
tissue as being affected by the pathology.
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ROM
+ROMES

ROM

ROM #3ROM #2ROM #1

Figure 8.16 – Errors in approximating the true fieldσv (x;µ∗) given by the RB-EnKF using ROM
#1 (left), ROM #1 (center) and ROM #3 (right). The field estimation error is reduced in both
cases and the results are comparable with the error given by the RB-EnKF equipped with ROM
#1.

Finally, we consider also the state solution reconstructed by the corrected RB-EnKF (see Fig-
ure 8.17). The results in terms of state estimation are remarkable: even if the ROMs are not
particularly accurate, the corrected Kalman updating formula minimizes the estimation error
leading to results comparable with the one obtained using ROM #1.

The low computational costs of the corrected RB-EnKF, as well as the improved accuracy in
the estimation, clearly motivate the introduction of a ROMES in the solution of these complex
parameter estimation problems.

8.6 Prior comparison

We consider the field given by the vector of parameters µ∗ with µ∗
13 = 0.3839, µ∗

4 = 0.4953,
µ∗

7 = 0.5348, µ∗
5,6,14 ∼ 0.63 and random values µ∗

i > 0.77, i 6= 4,7,13. By this choice, we localize
the region with the major lack of conductivity in the lower part of the left ventricle.

We compare the results of the RB-EnKF based on ROM #1 on varying the different prior pa-
rameters ensembles introduced previously in Figure 8.9. Our goal is to study the influence
of the prior distribution on the posterior obtained with the RB-EnKF. As a matter of fact, the
prior distribution is a key element of the inversion procedure, providing a fast convergence of
the filter when the prior pdf is close to the posterior.
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Reference

t = ⌧ (7) t = ⌧ (9) t = ⌧ (27) t = ⌧ (29)

ROM #2
+ROMES

ROM #3
+ROMES

Figure 8.17 – Mean estimate of the state ensemble u(k)
n for k = 7,9,27,29. As observed for the

mean estimate of the conductivity field, also the state solution is similar in all cases to the
reference one when the ROM/ROMES strategy is used.

In this case, since the major lack of conductivity is localized on the apex, the prior given by
assuming a LAD block is the closest to the true conductivity field. As a consequence, we have
a fast convergence of the EnKF and the error |σv (x;µ∗)−σv (x;µ(Nτ)

n )| is very small. Moreover,
also the fields related to the 0.05 and 0.95 quantiles are very close to the reference one (see
Figure 8.18).

Assuming instead a LCX block as prior distribution leads to less accurate results, since this
starting information is far from the reference one: in fact, the estimated region with conduc-
tivity less than 0.5 is larger (over-estimated) with respect to the reference one. However, even
in this worst case, the estimation error |σv (x;µ∗)−σv (x;µ(Nτ)

n )| is small.

In conclusion, for all the four prior distributions the developed RB-EnKF provides estimates of
the conductivity field close to the true field with low computational costs.

8.7 Conclusions

The numerical approach developed in this Thesis enables the efficient solution of a rather
involved parameter estimation problem for the detection of myocardial ischemia. The state-
based localized ROM developed in Chapter 2 yields efficient input/output query, whose
accuracy is guaranteed by the ROMES developed in Chapter 3. The integration between this
reduction framework and the EnKF has been successfully tested on the problem at hand.
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RCA LADLCXHEARef

�v(x; µ̂)

�v(x;q0.05)

�v(x;q0.95)

Figure 8.18 – Conductivity field σv (x;µ) for µ(Nτ)
n and the 0.05 and 0.95 quantiles obtained

starting from different prior ensembles.

These results give preliminary evidence on the potential of the developed methodology to
address realistic scenarios. Real local catheter recordings on the endocardium could be
affected by several sources of error, such as the limited accuracy of the measurement or the
non-perfect positioning of the electrode. The corrected RB-EnKF provides fast estimation of
the electrical potential and of the unknown parameters characterizing the model even in a
situation where the noise considerably contaminates the data.
At the moment, the simplifying assumptions made on the model and on the computational
mesh limit the potential use in a clinical scenario. Future works will consider more realistic
meshes and models, using also non-invasive measurements such as ECGs as data.
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In this Thesis, we have faced some problems dealing with the integration of data within
complex models arising in cardiac electrophysiology. Some methodologies based on reduced-
order models (ROMs) have been developed to perform model calibration and uncertainty
quantification and to solve inverse and data assimilation problems in this context. In particular,
we have achieved the following results:

1. Reduced-order models have been extended to cardiac electrophysiology problems
using localization strategies. In Chapter 2 we have developed different strategies to
construct localized ROMs, which have been tested for the solution of the monodomain
equation featuring the presence of an ischemic region on a two-dimensional domain.
Moreover, by comparing the ROMs according to their efficiency, accuracy and low
memory consumption, we have identified the state-based localized-ROM, relying on
the k-means algorithm, as the best option for the case at hand.

Starting from these promising results, we have applied the state-based localized-ROM
methodology for the solution of the monodomain equation coupled with Aliev-Panfilov
ionic model on a three-dimensional subject-specific left ventricle (see Chapters 7 and
8). We have shown that our approach enables to speed up the approximation of the
solution even when the conductivity field is parametrized using up to twenty terms.

2. ROM error surrogates have been exploited to estimate the approximation error on
the outputs. In Chapter 3, we have developed kriging-based ROM error surrogates
(ROMES) for both real- and functional-valued outputs. Since it is not straightforward to
derive efficient and effective error bounds for nonlinear time-dependent PDEs, we have
developed unbiased statistical models based on kriging interpolation and Gaussian
process regression, which present negligible computational costs with respect to the
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ROM approximation. This latter feature is particularly relevant when time-dependent
outputs are considered: in this case the approximation of the error on the entire time
interval simply requires the solution of a linear system.

In particular, we have shown that reduced-order or surrogate models alone are not
sufficient to provide an efficient and accurate approximation of the FOM. The best
solution is instead given by a suitable combination of the two approaches, to which we
have referred to as ROM/ROMES strategy.

Then, the ROMESs have been integrated within uncertainty quantification (UQ) and
inversion procedures in order to minimize the propagation of the error between a
FOM and a ROM. The ROMES effectivity for these problems has been confirmed in a
broad range of numerical tests in Chapters from 4 to 8, giving a strong evidence of the
theoretical results provided in this work.

3. Uncertainty quantification has been integrated in the developed reduction frame-
work. The ROM-ROMES strategy has been exploited to speed up sensitivity analysis
and uncertainty propagation based on sampling techniques. The insights on the role
and the importance of the cardiac model parameters given by these procedures have
allowed not only to improve the selection of the forward problem parametrization, but
also to construct more efficiently a ROM with an informed exploration of the parameters
space.

Moreover, we have shown the relationship between non-influential parameters, detected
by the sensitivity analysis, and their non-identifiability. For this reason, UQ is crucial
also in the construction of an inverse problem: the provided information indicate which
parameters have to be identified (and which ones have to be marginalized) and enable
the construction of suitable priors distribution that regularize the inverse problem.

The presented numerical test cases related to a simplified ECG signal and the action
potential shape are encouraging towards the application of this whole framework for
the personalization of cardiac models. The use of detailed full-order models has so far
affected considerably the use of such UQ and estimation procedures in more complex
and realistic scenarios, mainly due to the unfeasible computational time involved. The
ROM/ROMES strategy is shown to be a potential solution to this issue, bringing these
approaches to more realistic applications.

4. Personalization of electrophysiology models and ischemic detection Finally, these
tools have been used for the efficient solution of Bayesian inverse problems, namely
state/parameter estimation problems, starting from noisy observations of real-valued
or time-dependent outputs. Both the Bayes and the Kalman update formulas have been
properly modified with ROM and ROMES to provide efficient and accurate estimations of
the quantities of interest. Some theoretical results on the consistency and the effectivity
of the developed inversion procedures have been proven in an abstract setting and have
also found a validation in the numerical tests of Chapters 5 and 6.

The final numerical example, presented in Chapter 8, has shown the reliability of the
corrected RB-EnFK for the solution of a complex parameter estimation problem, such
as the detection of ischemic regions on the myocardium.
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The reduction strategy introduced in this Thesis can be further developed to deal with more
realistic applications aiming at a model personalization for patient-specific clinical treatments.
Moreover, it can provide several perspectives about the development of new methodologies or
the improvement of existing ones, such as:

1. testing different classification procedures and statistical learning techniques to enhance
data-driven localized-ROMs;

2. constructing new reduction techniques for problems characterized by traveling fronts,
problems whose solution features a strong variability (at the limit, different physical
behaviors) in the parameter space, and coupled problems;

3. applying the ROM-ROMES strategy to different UQ methodologies, such as polynomial
chaos expansion [Sud08] or stochastic Galerkin and stochastic collocation methods
[BNT+11];

4. extending the reduction-framework to filtering procedures for the estimation of time-
dependent parameters.
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