
Scuola di Ingegneria Industriale e dell’Informazione
Corso di Laurea Magistrale in Ingegneria Matematica

Policy Gradient Algorithms for the
Asset Allocation Problem

Relatore: Prof. Carlo SGARRA
Correlatore: Prof. Marcello RESTELLI

Tesi di Laurea di:
Pierpaolo NECCHI

Matr. 837664

Anno Accademico 2015-2016

Abstract

The impact of Automated Trading Systems (ATS) on financial markets is grow-
ing every year and the trades generated by an algorithm now account for the
majority of orders that arrive at stock exchanges. Historically, these systems
were based on advanced statistical methods and signal processing able to extract
trading signals from financial data. However, the recent successes of Machine
Learning have attracted the interest of the financial community and have raised
the question if the techniques that have proven so successful in classifying images
or beating Go world champions could perform equally well in detecting patterns
in the financial markets. In this thesis, we explore how to find a trading strategy
via Reinforcement Learning, a general class of algorithms that allows an agent to
find an optimal strategy for a sequential decision problem by directly interacting
with the environment. In particular, we focus on Policy Gradient Methods, a
class of state-of-the-art techniques which constructs an estimate of the optimal
policy for the control problem by iteratively improving a parametric policy.
In the first part of this thesis, we conduct a thorough review of these methods
in the traditional risk-neutral framework for reinforcement learning, in which
the goal of the agent is to maximize its total returns. In the second part, we
propose an original extension of these methods to the risk-sensitive framework,
in which the agent wishes instead to optimize the trade-off between the re-
wards and the risk required to achieve them. We also present an innovative
parameter-based reformulation of these algorithms in which the optimal policy
is approximated by stochastically perturbing the parameter of a deterministic
controller. This extends the well-known Policy Gradient with Parameter-based
Exploration (PGPE) method to the risk-sensitive framework. To the best of
our knowledge, this is the first time such an algorithm is discussed. In the last
part of this thesis, after a review of the financial applications of reinforcement
learning that can be found in the literature, we present a numerical application
of these algorithms to the traditional asset allocation problem with transaction
costs.

Keywords: Automated Trading Systems, Asset Allocation, Machine Learning,
Reinforcement Learning, Policy Gradient Methods.

Sommario

L’impatto sui mercati finanziari degli Automated Trading Systems, ovvero si-
stemi capaci di eseguire ordini in maniera automatica senza il bisogno di su-
pervisione umana, è in costante crescita e ormai la grande maggioranza delle
operazioni nelle borse mondiali è generata da algoritmi. Tradizionalmente, que-
sti sistemi erano basati su sofisticati metodi statistici o di analisi dei segnali
capaci di estrarre dei segnali dai dati finanziari. Tuttavia, i recenti successi del
Machine Learning hanno attratto l’interesse dell’industria finanziaria e in molti
si sono chiesti se le tecniche che si sono rivelate cos̀ı efficaci nella classificazione
di immagini e nel battere il campione del mondo di Go possano essere ugualmen-
te applicate all’identificazione di segnali nei mercati finanziari. In questa tesi
si esplora come determinare una strategia di trading attraverso Reinforcement
Learning, una famiglia di algoritmi che permette ad un agente di trovare una
strategia ottima per un problema di controllo ottimo stocastico a tempo discreto
attraverso l’interazione diretta con l’ambiente. In particolare, ci si concentra sui
metodi Policy Gradient, delle tecniche avanzate che generano un’approssima-
zione della stragia ottima attraverso il miglioramento iterativo di una strategia
parametrica.
Nella prima parte di questa tesi, si conduce uno studio bibliografico di questi
metodi per la versione neutrale al rischio del problema di controllo, in cui l’agen-
te è solamente interessato a massimizzare i propri guadagni. Nella seconda parte
della tesi, si propone un’estensione originale di questi metodi alla formulazione
del problema di controllo in cui l’agente è averso al rischio e desidera controllare
il rischio necessario per realizzare un guadagno. Inoltre, si presenta un’innova-
tiva riformulazione “parameter-based” di questi algoritmi, in cui la ricerca della
strategia ottima procede attraverso la perturbazione stocastica dei parametri di
un controllore deterministico. Questa idea estende i ben noti metodi “Policy
Gradient with Parameter-based Exploration” (PGPE) nel caso di aversione al
rischio. Al meglio delle nostre conoscenze, questo è il primo studio in cui questa
estensione viene proposta. Nell’ultima parte di questa tesi, dopo aver discusso le
applicazioni finanziarie del Reinforcement Learning che si trovano in letteratura,
si presenta un’applicazione numerica di questi algoritmi al classico problema di
asset allocation con costi di transazione.

Parole chiave: Automated Trading Systems, Asset Allocation, Machine Lear-
ning, Reinforcement Learning, Policy Gradient Methods.

Ringraziamenti

Arrivato in fondo a questo percorso, vorrei ringraziare tutte le persone che ne
hanno fatto parte e che mi hanno permesso di raggiungere questo obiettivo.
Innanzitutto vorrei ringraziare il Professor Carlo Sgarra per aver sempre stimo-
lato la mia curiosità con la sua profonda conoscenza della finanza quantitativa
e del controllo ottimo stocastico.
Un sentito ringraziamento va al Professor Marcello Restelli per aver acceso an-
cora di più il mio interesse verso il machine learning e il reinforcement learning.
Senza la sua guida mi sarei probabilmente perso in questo mondo che sto co-
minciando a scoprire.
Vorrei poi ringraziare il Dottor Matteo Pirotta per tutti i consigli e per aver
pazientemente riletto la bozza di questa tesi.
Un grazie di cuore ai miei genitori per non avermi mai fatto mancare il loro
sostegno e per avermi permesso di vivere tutte quelle esperienze che mi hanno
reso la persona che sono oggi.
Grazie anche a mio fratello perchè in fondo non siamo poi cos̀ı diversi.
Grazie ai miei amici di sempre Umberto, Carlo e Enrico perchè la distanza non
cambierà nulla.
Vorrei poi ringraziare tutti gli amici che ho incontrato al Politecnico, ma in
particolare Riccardo, Tommaso, Nicola, Anna, Marta e Alberto per avermi sop-
portato cos̀ı a lungo.
Un grandissimo “merci” va poi a tutto il 2E, perchè in due anni a Centrale siamo
diventati una famiglia.
Infine, vorrei ringraziare tutte le persone che non ho citato esplicitamente, ma
che hanno avuto un ruolo nel farmi diventare ciò che sono oggi.

Grazie.

Contents

List of Figures vii

List of Tables ix

List of Algorithms xi

Acronyms xiii

1 Introduction 1
1.1 The Computerization of Finance 1
1.2 The New Dawn of Artificial Intelligence 2
1.3 Structure . 3

2 Discrete-Time Stochastic Optimal Control 5
2.1 Markov Decision Processes . 5
2.2 Policies . 6
2.3 Risk-Neutral Framework . 7

2.3.1 Discounted Reward Formulation 8
2.3.2 Average Reward Formulation 10

2.4 Risk-Sensitive Framework . 12
2.4.1 Discounted Reward Formulation 12
2.4.2 Average Reward Formulation 15

2.5 Dynamic Programming Algorithms 16
2.5.1 Value Iteration . 17
2.5.2 Policy Iteration . 17

3 Reinforcement Learning 19
3.1 The Reinforcement Learning Problem 19
3.2 Model-Free RL Methods . 20

3.2.1 Model Approximation 21
3.2.2 Value Approximation . 22
3.2.3 Policy Approximation 22

4 Risk-Neutral Policy Gradient 23
4.1 Basics of Policy Gradient Methods 23
4.2 Risk-Neutral Objective Functions 24

iv Contents

4.3 Finite Differences . 25
4.4 Likelihood Ratio Methods . 25

4.4.1 Monte Carlo Policy Gradient 26
4.4.2 GPOMDP . 28
4.4.3 Stochastic Policies . 29
4.4.4 Policy Gradient with Parameter Exploration 30

4.5 Risk-Neutral Policy Gradient Theorem 33
4.5.1 Theorem Statement and Proof 34
4.5.2 GPOMDP . 36
4.5.3 Actor-Critic Policy Gradient 36
4.5.4 Compatible Function Approximation 39
4.5.5 Natural Policy Gradient 39

5 Risk-Sensitive Policy Gradient 43
5.1 Risk-Sensitive Framework . 43
5.2 Monte Carlo Policy Gradient . 45
5.3 Policy Gradient Theorem . 46

5.3.1 Average Reward Formulation 47
5.3.2 Risk-Sensitive Actor-Critic Algorithm 48
5.3.3 Discounted Reward Formulation 49

6 Parameter-Based Policy Gradient 53
6.1 Risk-Neutral Framework . 53

6.1.1 Parameter-Based Natural Policy Gradient 55
6.2 Risk-Sensitive Framework . 60

6.2.1 Parameter-Based Natural Policy Gradient 60

7 Financial Applications of Reinforcement Learning 63
7.1 Efficient Market Hypothesis . 63

7.1.1 Formal Definitions of the EMH 64
7.1.2 Critics to the EMH . 65

7.2 Bibliographical Survey . 66
7.2.1 Asset Allocation with Transaction Costs 67
7.2.2 Optimal Order Execution in Limit Order Book 68
7.2.3 Smart Order Routing Across Dark Pools 69

7.3 Asset Allocation with Transaction Costs 70
7.3.1 Wealth Dynamics . 70
7.3.2 Rewards and Objective Functions 72
7.3.3 States . 73
7.3.4 Actions . 74

8 Numerical Results for the Asset Allocation Problem 77
8.1 Synthetic Risky Asset . 77

8.1.1 Specifications of the Learning Algorithms 78
8.1.2 Experimental Setup . 78
8.1.3 Risk-Neutral Framework 79

Contents v

8.1.4 Risk-Sensitive Framework 82
8.2 Historical Risky Asset . 87

8.2.1 Risk-Neutral Framwork 87
8.2.2 Risk-Sensitive Framework 89
8.2.3 The Challenge of Historical Data 89

9 Conclusions 91
9.1 What Has Been Achieved . 91
9.2 Final Remarks . 92
9.3 Further Developments . 93

Appendices 95

A Implementation 95
A.1 Python Prototype . 95
A.2 C++ Implementation . 96

A.2.1 Environment, Task, Agent and Experiment 97
A.2.2 ARACAgent . 99

A.3 Execution Pipeline . 102
A.3.1 Compilation . 102
A.3.2 generate_synthetic_series.py 102
A.3.3 experiment_launcher.py 102
A.3.4 main_thesis . 102
A.3.5 postprocessing.py . 103

Bibliography 105

List of Figures

2.1 Agent-environment interaction in sequential decision problems. . 6
2.2 Policy iteration algorithm. 17

3.1 Solution process for the control problem. 21

4.1 “Vanilla” policy gradient vs. natural policy gradient. 40

7.1 Episodic formulation for the asset allocation problem. 74

8.1 Risk-neutral learning process for one synthetic risky asset. . . . 79
8.2 Backtest performance with one synthetic risky asset. 80
8.3 Proportional transaction costs and risk-neutral strategies. 82
8.4 Short-selling fees and risk-neutral strategies. 82
8.5 Risk-sensitive learning process for one synthetic risky asset. . . . 83
8.6 Backtest performance with one synthetic risky asset. 84
8.7 Proportional transaction costs and risk-sensitive strategies. . . . 86
8.8 Short-selling fees and risk-sensitive strategies. 86
8.9 Risk-neutral learning process for the historical risky asset. . . . 88
8.10 Backtest performance with one historical risky asset. 88
8.11 Risk-sensitive learning process for the historical risky asset. . . . 90
8.12 Backtest performance with one historical risky asset. 90

A.1 PyBrain standard architecture for a RL problem. 96
A.2 Class architecture for the asset allocation problem. 98
A.3 Class architecture for an ARAC agent. 101
A.4 Execution pipeline of an asset allocation experiment. 104

List of Tables

8.1 Backtest statistics for risk-neutral learning with one synthetic
risky asset. 81

8.2 Backtest statistics for risk-sensitive learning with one synthetic
risky asset. 84

8.3 Risk-neutral vs. risk-sensitive for a synthetic asset. 85
8.4 Backtest statistics for risk-neutral learning with one historical

risky asset. 88
8.5 Backtest statistics for risk-sensitive learning with one historical

risky asset. 90

List of Algorithms

4.1 General setup for a policy gradient algorithm 24
4.2 Episodic REINFORCE policy gradient estimate 28
4.3 Episodic PGPE algorithm . 31
4.4 Generic structure for an online actor-critic algorithm 37
4.5 Average-Reward Actor Critic 38
5.1 Risk-sensitive REINFORCE policy gradient estimate 46
5.2 Risk-Sensitive Average Reward Actor-Critic algorithm 50
6.1 Actor-Critic PGPE . 56
6.2 NPGPE . 58
6.3 Natural Actor-Critic PGPE . 59
6.4 Risk-Sensitive NPGPE . 61

Acronyms

AI Artificial Intelligence.
ARAC Average Reward Actor-Critic.
ATS Automated Trading Systems.

BPTT Backpropagation Through Time.

DL Deep Learning.

EMH Efficient Market Hypothesis.

GPOMDP Gradient of the average reward in Partially Observable MDP.

HFT High-Frequency Trading.

IHPGPE Infinite Horizon PGPE.

MDP Markov Decision Process.
ML Machine Learning.

NPGPE Natural PGPE.

PGPE Policy Gradient with Parameter-Based Exploration.

RL Reinforcement Learning.
RRL Recurrent Reinforcement Learning.
RSARAC Risk-Sensitive Average Reward Actor-Critic.
RSNPGPE Risk-Sensitive Natural PGPE.
RSPGPE Risk-Sensitive PGPE.
RTRL Real-Time Recurrent Learning.

SOR Smart Order Routing.

TD Temporal Difference.

Chapter 1

Introduction

The impact of Automated Trading Systems (ATS) on financial markets is grow-
ing every year and the trades generated by an algorithm now account for the
majority of orders that arrive at stock exchanges. Investments banks and hedge
funds are investing large amount of resources to develop new systems to maxi-
mize their profits and stay ahead in the technological race that is taking place in
the financial markets. The goal of developing an automated system able to take
financial decisions without the need for human supervision is not new. From
the Technical Computer System developed by Commodities Corporation in the
1970, to the algorithm that caused Knight Capital Group to lose $440 millions
over few hours in 2012, many have been the attempts to trade on the markets us-
ing an algorithm. Typically, these approaches were based on advanced statistical
methods and signal processing. However, the recent successes of Artificial Intel-
ligence (AI), and in particular Deep Learning (DL), have attracted the interest
of the financial community. Many quantitative researchers asked themselves if
the techniques that have proved so successful in classifying images or beating Go
world champions could perform equally well on financial markets. In this thesis,
we explore how to find a trading strategy via Reinforcement Learning (RL), a
branch of Machine Learning (ML) that allows to find an optimal strategy for
a sequential decision problem by directly interacting with the environment. In
this introductory chapter, we briefly describe the current state of the financial
markets, which are increasingly dominated by algorithms, and provide a quick
overview of the recent advances of AI and the huge impact that these new tech-
niques are having on our day-to-day life. This chapter thus prepare the stage in
which we will move during the entire exposition.

1.1 The Computerization of Finance

The trading pit of a stock exchange is often imagined by outsiders as a frenzy
place, with telephones constantly ringing and traders shouting orders across the
room at a frenetic rhythm. This was probably the reality around thirty years
ago, when open outcry was still the main communication system in the pits.
Since then the exchanges have become more and more quiet as the majority of

2 1.2. The New Dawn of Artificial Intelligence

the orders moved to electronic trading platforms, which allow investors to di-
rectly execute their orders without passing through the old-fashioned pit traders.
In the last decade, the markets have witnessed the widespread adoption of Au-
tomated Trading Systems (ATS), that can make investment decisions in a fully
automatized way at speeds with orders of magnitude greater than any human
equivalent. Of particular interest nowadays is High-Frequency Trading (HFT),
a type of algorithmic trading characterized by high speeds, high turnover rates,
and high order-to-trade ratios that leverages high-frequency financial data and
electronic trading tools. While there is no single definition of HFT, among its
key attributes are highly sophisticated algorithms, specialized order types, co-
location, very short-term investment horizons, and high cancellation rates of
orders. It has been estimated that in 2014 HFT accounted for more than 75%
of the stock shares traded on US exchanges.
The deep transformation of financial markets has brought algorithmic trading
and HFT into the spotlight and raised many questions on the actual utility of
these technologies. On one side, computerized trading firms have been blamed of
causing bouts of extreme volatility and of systematically exploiting the small in-
vestors thanks to superior technology, as was claimed for example in [60]. This
is typically the position of regulators and politicians, many of whom put the
policing of HFT at the top of their priorities. On the other hand, the academic
literature strongly supports HFT having a net positive effect on the markets
[24]. The usual argument is that these firms make the markets more stable and
efficient, even when volatility surges, by quickly bringing prices back into line.
By acting as market makers, HFT provides liquidity to the markets and thus
reduces bid-ask spreads and transaction costs.
To develop the algorithms able to extract trading signals from large amount of
noisy data and automatically generate financial decisions, investment banks and
quantitative hedge funds are employing mathematicians, physicists and com-
puter scientists. These algorithms are typically based on advanced statistics,
signal processing, machine learning and other fields of mathematics. However,
few of these firms publish their profit-generating “secret ingredient” and not
much can be found in the literature. In this thesis we will discuss the appli-
cation of some state-of-the-art AI techniques to determine an automatic and
potentially profitable trading strategy.

1.2 The New Dawn of Artificial Intelligence

After many false dawns, AI has made extraordinary progress in the past few
years, thanks in particular to a versatile technique called Deep Learning (DL),
a form of Machine Learning (ML) that enables computers to learn from experi-
ence and understand the world in terms of a hierarchy of concepts. Because the
computer gathers knowledge from experience, there is no need for a human com-
puter operator to formally specify all the knowledge that the computer needs.
The hierarchy of concepts allows the computer to learn complicated concepts by
building them out of simpler ones. A graph of these hierarchies would be many

Chapter 1. Introduction 3

layers deep [12]. Given enough data, deep neural networks can be trained to
successfully complete many different tasks that could previously be done only
by humans [1]. For instance, these methods power Google’s search engine, Face-
book’s automatic photo tagging, Apple’s voice assistant, Amazon’s shopping
recommendations and Tesla’s self-driving cars. These techniques have recently
been in the spotlight when AlphaGo, an algorithm developed by DeepMind,
defeated the 18-time world champion of Go Lee Sedol in a 5-game series [94].
This ancient board game is so complex that computers had not been expected
to master it for at least another decade at least. It is not surprising that this
rapid sequence of successes have produce a large hype around ML and DL in
particular. Citing John Giannandrea, head of machine-intelligence research at
Google, “what got people excited about this field is that one learning technique,
deep learning, can be applied to so many different domains”. The financial in-
dustry is not excluded.
Hedge funds, stung by eight years of underperformance, are latching onto ma-
chine learning as a high-tech answer to their woes. But Wall Street’s heady
search for the perfect money machine has collided with a sober reality. The
technology, which learns on its own to find investment ideas by hunting through
troves of data, requires a heavy commitment of time and money, and a high
tolerance for failure, since most algorithms turn out to be duds [55]. Financial
markets are a particularly difficult challenge for ML algorithms and there are
infinite ways an algorithm can fail spotting the trading “signals” to wager on.
While identifying patterns is not particularly hard, finding signals that work
reliably in the real world is. Man AHL, a quant unit of Man Group Plc, needed
three years of work to gain enough confidence in a machine learning strategy to
devote client money to it. This can be hard for the researcher, who will have to
stomach and overcome many failures before obtaining positive results. In this
thesis, we decided to embark on the difficult journey of developing an automated
trading strategy based on Reinforcement Learning (RL), a general class of al-
gorithms in the field of ML that allows an agent to learn how to behave in a
stochastic and possibly unknown environment only by trial-and-error.

1.3 Structure

This section outlines the structure of this document, explaining the original con-
tributions that were made in this thesis.
In Chapter 2 we introduce the basic concepts of discrete-time stochastic optimal
control, which is the standard theoretical framework used to model sequential
decision problems. In particular, we describe the central feedback mechanism
between a learning agent and a stochastic environment. Finally, we present
the less traditional risk-sensitive framework for discrete-time stochastic optimal
control.
In Chapter 3 we present the main ideas of reinforcement learning, a general class
of algorithms in the field of machine learning that allows an agent to learn how
to behave in a stochastic and possibly unknown environment only by trial-and-

4 1.3. Structure

error. We thoroughly discuss the RL problem and its characteristic features.
Finally, we give a high-level overview of the different typologies of reinforcement
learning algorithms.
In Chapter 4 we give an in-depth presentation of policy gradient algorithms for
the risk-neutral control problem. After introducing the key ideas of these meth-
ods, we provide a thorough review of the state-of-the-art algorithms that can
be found in the literature. In particular, we introduce the main result that will
play a crucial role in the rest of this thesis, the policy gradient theorem.
In Chapter 5 we discuss policy gradient methods for the risk-sensitive control
problem, which is still an active field of research. In particular, we provide an
extension of the policy gradient theorem to the risk-sensitive framework, both
in the average reward and in the discounted reward formulations. To the best of
our knowledge, this is the first time that a risk-sensitive policy gradient theorem
is derived for a general discounted Markov decision process.
In Chapter 6 we propose an original parameter-based version of the policy gradi-
ent theorem, both for the risk-neutral and the risk-sensitive formulation. These
theorems allow to derive efficient online learning algorithms similar in spirit
to the well-known Policy Gradient with Parameter-Based Exploration (PGPE)
algorithm, which was originally conceived only for episodic environments. More-
over, these new algorithms can be easily enhanced using a critic or the natural
policy gradient idea. This chapter undoubtedly represents the most innovative
contribution of this thesis.
In Chapter 7, after a brief discussion about why finance represents an extremely
challenging field of research, we provide a bibliographical survey of successful
applications of RL techniques to financial problems. In particular, we focus on
the asset allocation problem with transaction cost, which is used as a test case
for the numerical application of the learning algorithms proposed in the previous
chapters.
In Chapter 8 we present the numerical results for the asset allocation problem.
We show that the learning algorithms proposed in the previous chapters perform
extremely well on synthetic data. On the other hand, the algorithms encounter
more difficulties on historical data and we try to provide an explanation for this
behavior.
Chapter 9 summarizes the contributions of this thesis to the reinforcement learn-
ing literature and presents some interesting ideas for further developments and
future work.
Given the complexity of financial markets and the ambitious goal of this thesis,
success can not be a-priori guaranteed. In this case, the journey matters more
than the arrival, as this thesis will allow us to explore these fascinating and
current techniques that are revolutionizing the world.

Chapter 2

Discrete-Time Stochastic
Optimal Control

In sequential decision problems, an agent interacts with an environment by se-
lecting a series of actions in order to complete a specific task. During this
interaction, the agent receives a numerical reward from the environment and its
goal is to find the best strategy in order to maximize a certain measure of its per-
formance. The environment evolves stochastically and may be influenced by the
interaction with the agent, so that each action taken by the agent may influence
the circumstances under which future decisions will be made. Therefore, the
agent must balance his desire to obtain a large reward today by acting greedily
and the opportunities that will be available in the future. While this setting
appears quite simple, it is general enough to encompasses a wide range of appli-
cations in different fields. A classical example is portfolio management, where
an investor must allocate his capital so as to maximize his long-term profits.
Another standard example is chess, where two players successively move pieces
around the chessboard to checkmate the opponent’s king.
The purpose of the following sections is to introduce the notation that will be
used in the rest of this work and to recall the fundamental concepts and results
of the discrete-time stochastic optimal control theory, which is the standard
framework to study sequential decisions problems in mathematical terms. Since
our discussion will be far from being comprehensive, we refer the reader to the
extensive literature on the subject, such as [17], [83], [16].

2.1 Markov Decision Processes

A sequential decision problem under uncertainty can be schematized as in Figure
2.1: at a given time t, the agent (also known as decision maker or controller)
observes the state st of the system (also know as environment) and subsequently
performs an action at. Following this action, the agent receives an immediate
reward rt+1 (or incurs an immediate cost) and the system evolves to a new state
according to a probability distribution which depends on the action selected by
the agent. At the subsequent time t + 1, the agent selects a new action given

6 2.2. Policies

Agent

Environment

Action atState st Reward rt+1

Figure 2.1: Agent-environment interaction in sequential decision problems.

the new state of the system and the process repeats. This interaction can be
modeled rigorously using a Markov decision process.

Definition 2.1.1 (Markov Decision Process). A Markov decision process (MDP)
is a stochastic dynamical system specified by the tuple < S,A,P ,R, γ >, where

i) (S,S) is a measurable space, called the state space.
ii) (A,A) is a meausrable space, called the action space.

iii) P : S× A× S → R is a Markov transition kernel, i.e.
a) for every s ∈ S and a ∈ A, B 7→ P(s, a, B) is a probability distribution

over (S,S).
b) for every B ∈ S, (s, a) 7→ P(s, a, B) is a measurable function on

S× A.
iv) R : S× A→ R is a reward function.
v) γ ∈ (0, 1) is a discount factor.

Typically, the state space (and similarly the action space) will be either
finite, namely S = {s1, . . . , sd}, or continuous, namely S ⊆ RDs . The kernel P
describes the random evolution of the system: suppose that at time t the system
is in state s and that the agent takes action a, then, regardless of the previous
history of the system, the probability to find the system in a state belonging to
B ∈ S at time t+ 1 is given by

P(s, a, B) = P (St+1 ∈ B|St = s, At = a) (2.1)

Following this random transition, the agent receives a stochastic reward Rt+1.
The reward function R(s, a) gives the expected reward obtained when action a
is taken in state s

R(s, a) = E [Rt+1|St = s, At = a] (2.2)

This setting can be easily generalized to the following cases
1. The initial state of the system is a random variable.
2. The actions that an agent can select depend on the state of the system.

2.2 Policies

At any time step, the agent selects its actions according to a certain policy.

Chapter 2. Discrete-Time Stochastic Optimal Control 7

Definition 2.2.1 (Policy). A policy is a function π : S×A → R such that
i) for every s ∈ S, C 7→ π(s, C) is a probability distribution over (A,A).

ii) for every C ∈ A, s 7→ π(s, C) is a measurable function.

Intuitively, a policy represents a stochastic mapping from the current state of
the system to actions. Deterministic policies are a particular case of this general
definition. We assumed that the agent’s policy is stationary and only depends
on the current state of the system. We might in fact consider more general
policies that depends on the whole history of the system. However, as we will
see, we can always find an optimal policy that depends only on the current state,
so that our definition is not restrictive. A policy π and an initial state s0 ∈ S
determine a random state-action-reward sequence {(St, At, Rt+1)}t≥0 with values
on S× A× R following the mechanism described above.

Definition 2.2.2 (History). Given an initial state s0 ∈ S and a policy π, a
history (or equivalently trajectory or roll-out) of the system is a random sequence
Hπ = {(St, At)}t≥0 with values in S × A, defined on some probability space
(Ω,F ,P), such that for t = 0, 1, . . .

S0 = s0

At ∼ π(St, ·)
St+1 ∼ P(St, At, ·)

we will denote by (H,H) the measurable space of all possible histories.

Moreover, we observe that
i) the state sequence {St}t≥0 is a Markov process < S,Pπ >.

ii) the state-reward sequence {(St, Rt+1)}t≥0 is a Markov reward process <
S,Pπ,Rπ, γ >.

where we denoted

Pπ(s, s′) =

∫
A
π(s, a)P(s, a, s′)da

Rπ(s) =

∫
A
π(s, a)R(s, a)da

In stochastic optimal control, the goal of the agent is to find a policy that max-
imizes a measure of the agent’s long-term performance. In the next sections we
discuss some objective functions that are commonly used in the infinite horizon
framework.

2.3 Risk-Neutral Framework

In the risk-neutral setting, the agent is only interested in maximizing its reward,
without considering the risk it needs to take on to achieve it. In an infinite
horizon task, the agent’s performance is typically measured either as the total
discounted reward or as the average reward obtained at each time step. These
two approaches are radically different both from a theoretical and an algorithmic
point of view. For this reason, they will be always treated separately.

8 2.3. Risk-Neutral Framework

2.3.1 Discounted Reward Formulation

In the discounted reward formulation, the agent’s performance is measured as
the expected return obtained following a specific policy.

Definition 2.3.1 (Return). The return is the total discounted reward obtained
by the agent starting from t

Gt =
∞∑
t=0

γtRt+k+1

where 0 < γ < 1 is the discount factor.

In some domains, such as economics, discounting can be used to represent
interest earned on rewards, so that an action that generates an immediate reward
will be preferred over one that generates the same reward some steps into the
future. Discounting thus models the trade-off between immediate and delayed
reward: if γ = 0 the agent selects its actions in a myopic way, while if γ → 1 it
acts in a far-sighted manner. There are other possible reasons for discounting
future rewards. The first is because it is mathematically convenient, as it avoids
infinite returns and it solves many convergence issues. Another interpretation
is that it models the uncertainty about the future, which may not be fully
represented. Indeed, the discount factor could be seen as the probability that
the world does not stop at a given time step.

Definition 2.3.2 (State-Value Function). The state-value function Vπ : S→ R
is the expected return that can be obtained starting from a state and following
policy π

Vπ(s) = Eπ [Gt|St = s] (2.3)

where the subscript in Eπ indicates that all the actions are selected according
to policy π. The state-value function measures how good it is for the agent to
be in a given state and follow a certain policy. Similarly, we can introduce an
action-value function that measures how good it is for the agent to be in a state,
take a certain action and then follow the policy.

Definition 2.3.3 (Action-Value Function). The action-value function Qπ : S×
A → R is the expected return that can be obtained starting from a state, taking
an action and then following policy π

Qπ(s, a) = Eπ [Gt|St = s, At = a] (2.4)

We have the following relationship between Vπ and Qπ

Vπ(s) =

∫
A
π(s, a)Qπ(s, a)da (2.5)

Almost all reinforcement learning algorithms are designed to estimate these value
functions and are typically based on the Bellman equations.

Chapter 2. Discrete-Time Stochastic Optimal Control 9

Proposition 2.3.1 (Bellman Expectation Equations).

Vπ(s) = Rπ(s) + γTπVπ(s) (2.6)

Qπ(s, a) = R(s, a) + γTaVπ(s) (2.7)

where we denoted by Ta (resp. Tπ) the transition operator for action a (resp. for
policy π)

TaF (s) = E [F (St+1)|St = s, At = a] =

∫
S
P(s, a, s′)F (s′)ds′

TπF (s) = Eπ [F (St+1)|St = s] =

∫
A
π(s, a)

∫
S
P(s, a, s′)F (s′)ds′da

If we introduce the Bellman expection operator Bπ, defined as

BπVπ(s) = Rπ(s) + γTπVπ(s)

Then Eq. (2.6) can be written as a fixed-point equation

Vπ(s) = BπVπ(s)

which, under some simple assumptions on the reward functions, admits a unique
solution by the contraction mapping theorem. A similar argument holds for Eq.
(2.7). The goal of the agent is to select a policy π∗ that maximizes his expected
return in all possible states. Such a policy is called optimal.

Definition 2.3.4 (Optimal State-Value Function). The optimal state-value func-
tion V∗ : S→ R is the largest expected return that can be obtained starting from
a state

V∗(s) = sup
π
Vπ(s) (2.8)

Definition 2.3.5 (Optimal Action-Value Function). The optimal action-value
function Q∗ : S × A → R is the largest expected return that can be obtained
starting from a state and taking an action

Q∗(s, a) = sup
π
Qπ(s, a) (2.9)

The optimal value functions satisfy the following Bellman equations.

Proposition 2.3.2 (Bellman Optimality Equations).

V∗(s) = sup
a
Q∗(s, a) = sup

a
{R(s, a) + γTaV∗(s)} (2.10)

Q∗(s, a) = R(s, a) + γTaV∗(s)

= R(s, a) + γ

∫
S
P(s, a, s′) sup

a′
Q∗(s

′, a′)ds′
(2.11)

10 2.3. Risk-Neutral Framework

Again, these two equations are fixed-point equations and the existence and
uniqueness of a solution is guaranteed, under some technical assumptions, by
the contraction mapping theorem. Starting from the optimal value functions,
we can easily derived an optimal policy. Let us define a partial ordering in the
policy space

π � π′ ⇔ Vπ(s) ≥ Vπ′(s) ∀s ∈ S (2.12)

Then the optimal policy π∗ � π, ∀π. We have the following results

Theorem 2.3.1 (Optimal Policy). For any Markov decision process,

i) It exists an optimal policy π∗ such that π∗ � π, ∀π.
ii) Vπ∗(s) = V∗(s).

iii) Qπ∗(s, a) = Q∗(s, a).

An optimal policy can be found by acting greedily with respect to Q∗, which
corresponds to selecting the action that maximizes the action-value function in
a given state

a∗ = arg sup
a∈A

Q∗(s, a) (2.13)

This policy is deterministic and only depends on the current state of the system.

2.3.2 Average Reward Formulation

Most of the research in RL has studied a problem formulation where agents
maximize the cumulative sum of rewards. However, this approach cannot han-
dle infinite horizon tasks, where there are no absorbing goal states, without
discounting future rewards. Clearly, discounting is only necessary in cyclical
tasks, where the cumulative reward sum can be unbounded. More natural long-
term measure of optimality exists for such cyclical tasks, based on maximizing
the average reward per action. For a more in-depth presentation, the reader may
again refer to the extensive literature on the subject, such as [7], [65] and the
references therein. In the average reward setting, also known as long-run reward
or ergodic reward, the goal of the agent is to find a policy that maximizes the
expected reward per step.

Definition 2.3.6 (Average Reward). The average reward ρπ associated to a
policy π is defined as

ρπ = lim
T→∞

1

T
Eπ

[
T−1∑
t=0

Rt+1

]
= ES∼dπ

A∼π
[R(S,A)]

=

∫
S
dπ(s)

∫
A
π(s, a)R(s, a)dads

(2.14)

where dπ is the stationary distribution of the Markov process induced by π.

Chapter 2. Discrete-Time Stochastic Optimal Control 11

The agent aims to find an average optimal policy

π∗ = arg sup
π

ρπ (2.15)

In this setting, we introduce the average adjusted value and action-value func-
tions.

Definition 2.3.7 (Average Adjusted State-Value Function). The average ad-
justed state-value function Vπ : S → R is the expected residual return that can
be obtained starting from a state and following policy π

Vπ(s) = Eπ

[
∞∑
t=0

(Rt+1 − ρπ)

∣∣∣∣S0 = s

]
(2.16)

The term Vπ(s) is usually referred to as the bias value, or the relative value,
since it represents the relative difference in total reward gained starting from a
state s as opposed to a generic state. ρπ serves as a baseline that allows to avoid
divergence in the value function definition.

Definition 2.3.8 (Average Adjusted Action-Value Function). The average ad-
justed action-value function Qπ : S×A→ R is the expected residual return that
can be obtained starting from a state, taking an action and then following policy
π

Qπ(s, a) = Eπ

[
∞∑
t=0

(Rt+1 − ρπ)

∣∣∣∣S0 = s, A0 = a

]
(2.17)

We have the following relation between the state-value function and the
action-value function

Vπ(s) =

∫
A
π(s, a)Qπ(s, a)da (2.18)

The value functions satisfy the following Bellman equation

Proposition 2.3.3 (Bellman Expectation Equations).

Vπ(s) = Rπ(s)− ρπ + TπVπ(s) (2.19)

Qπ(s, a) = R(s, a)− ρπ + TaVπ(s) (2.20)

Again, by introducing opportune Bellman operators, these equations can
be rewritten as fixed-point equations. In the discrete case, where the transition
operator correspond to matrices, these Bellman equations become linear systems
that can be solved to obtain the value functions.

12 2.4. Risk-Sensitive Framework

2.4 Risk-Sensitive Framework

In many application, in addition to maximizing the average reward, the agent
may want to control risk by minimizing some measure of variability in rewards.
In the risk-sensitive framework, the goal of the agent is to find the policy that
optimally solves the trade-off between reward and risk. Although risk-sensitive
sequential decision-making has a long history in operations research and finance,
it has only recently grabbed the attention of the machine learning community.
Hence, the literature offers many reference which approach the risk-sensitive
control problem from the traditional stochastic optimal control perspective. On
the other hand, there are only few references that attack the problem in the re-
inforcement learning setting. Again, we can consider the discounted formulation
or the average formulation.

2.4.1 Discounted Reward Formulation

A standard way to measure the risk associated with a policy π is the variance
of the total discounted reward obtained starting from a given state s

Λπ(s) = Varπ (Gt|St = s) (2.21)

This approach is the one considered in [96]. The variance can be decomposed as

Λπ(s) = Uπ(s)− Vπ(s)2 (2.22)

where we denoted by Uπ the square state-value function.

Definition 2.4.1 (Square State-Value Function). The square state-value func-
tion Uπ(s) is the second moment of the return that can be obtained under policy
π starting from a state s

Uπ(s) = Eπ
[
G2
t |St = s

]
(2.23)

As for the risk-neutral formulation, it comes in handy to introduce a square
action-value function.

Definition 2.4.2 (Square Action-Value Function). The square action-value func-
tion Wπ(s) is the second moment of the return that can be obtained starting from
a state s, taking action a and then following policy π

Wπ(s, a) = Eπ
[
G2
t |St = s, At = a

]
(2.24)

Clearly, the two square value functions are related by the following equation

Uπ(s) =

∫
A
π(s, a)Wπ(s, a)da (2.25)

We would like to obtain a Bellman expectation equation for Uπ(s) and Wπ(s, a),
in order to piggyback on the discussion about the standard value functions. To
do so, let us introduce the square reward function.

Chapter 2. Discrete-Time Stochastic Optimal Control 13

Definition 2.4.3 (Square Reward Function). The square reward functionM(s, a)
is the second moment of the reward that can be obtained in state s when taking
action a

M(s, a) = E
[
R2
t+1|St = s, At = a

]
(2.26)

Let us also define the state-reward function Mπ(s)

Mπ(s) = Eπ
[
R2
t+1|St = s

]
=

∫
A
π(s, a)M(s, a)da (2.27)

Moreover, we will need the reward-return state-covariance function.

Definition 2.4.4 (Reward-Return State-Covariance Function). The reward-
return state-covariance function Cπ(s) is the covariance between the first day
reward and the successive returns starting from state s and then following policy
π

Cπ(s) = Covπ (Rt+1, Gt+1|St = s) (2.28)

Again, it comes in handy to also introduce the reward-return action-covariance
function.

Definition 2.4.5 (Reward-Return Action-Covariance Function). The reward-
return action-covariance function Cπ(s, a) is the covariance between the first
reward and the successive return starting from state s, taking action a and then
following policy π

Cπ(s, a) = Covπ (Rt+1, Gt+1|St = s, At = a) (2.29)

Then, it is easy to show that the square state-value function satisfies the
following Bellman equation

Proposition 2.4.1 (Bellman Expectation Equation).

Uπ(s) = Kπ(s) + γ2TπUπ(s) (2.30)

Wπ(s, a) = Kπ(s, a) + γ2TaUπ(s) (2.31)

where we denoted

Kπ(s) =Mπ(s) + 2γRπ(s)TπVπ(s) + 2γCπ(s) (2.32)

Kπ(s, a) =M(s, a) + 2γR(s, a)TaVπ(s) + 2γCπ(s, a) (2.33)

Proof. Let us prove the Bellman expectation equation for the square action-value
function. The proof for the square state-value function is analogous.

Wπ(s, a) = Eπ
[
G2
t |St = s, At = a

]
= Eπ

[
(Rt+1 + γGt+1)2|St = s, At = a

]
=M(s, a) + 2γEπ [Rt+1Gt+1|St = s, At = a] + γ2TaUπ(s)

By the definition of covariance

Cπ(s, a) = Eπ [Rt+1Gt+1|St = s, At = a]−R(s, a)TaVπ(s)

Plugging in the first equation leads to the result.

14 2.4. Risk-Sensitive Framework

These equations are analogous to the Bellman expectation equations for the
state-value function, with a synthetic reward function Kπ(s) and a discount
factor γ2. It is possible to combine the Bellman expectation equation for Vπ(s)
and for Uπ(s) to obtain a Bellman equation for the return variance Λπ(s).

Proposition 2.4.2 (Bellman Expectation Equation).

Λπ(s) = Vπ(s) + 2γCπ(s) + γ2 Varπ (Vπ(St+1)|St = s) + γ2TπΛπ(s) (2.34)

where Vπ(s) denotes the conditional variance of the reward

Vπ(s) = Varπ (Rt+1|St = s) =Mπ(s)−Rπ(s)2 (2.35)

Proof. The result can be proved starting from Eq. (2.22) and exploiting the
Bellman equations for Uπ and Vπ. Here we follow an alternative way based on
the law of total variance.

Λπ(s) = Varπ (Gt|St = s)

= Varπ (Rt+1 + γGt+1|St = s)

= Vπ(s) + 2γ Covπ (Rt+1, Gt+1|St = s) + γ2 Varπ (Gt+1|St = s)

Applying the law of total variance we obtain

Varπ (Gt+1|St = s) = Eπ [Varπ (Gt+1|St+1) |St = s] + Varπ (Eπ [Gt+1|St+1] |St = s)

= TπΛπ(s) + Varπ (Vπ(St+1)|St = s)

Plugging it into the first equality yields the result

Λπ(s) = Varπ (Rt+1|St = s) + Varπ (Vπ(St+1)|St = s) + γ2TπΛπ(s)

Even if appealing from a theoretical point of view, these equations cannot
be easily exploited to derive practical algorithms in a non-episodic environment.
Indeed, the covariance term between the first day reward and the future return
appearing in the synthetic reward would be hard to estimate when the lifes-
pan of the experiment can be infinite. This does not necessarily represent a
problem in an episodic environment, where the experiments have a finite (possi-
bly random) lifespan. Even more problematic is the variance of the state-value
function, which typically is unknown. For this reason, we will not develop any
reinforcement learning algorithm in this framework and we will instead focus on
the average reward formulation.
In [103] and [82], the authors circumvent these difficulties by implicitly assuming
that the reward Rt+1 is conditionally independent from the future rewards given
the current state. Under this assumption, the covariance terms are null and the
previous Bellman equation become

Corollary 2.4.1 (Bellman Equations Under Independence Assumption).

Uπ(s) =Mπ(s) + 2γRπ(s)TπVπ(s) + γ2TπUπ(s) (2.36)

Wπ(s, a) =M(s, a) + 2γR(s, a)TaVπ(s) + γ2TaUπ(s) (2.37)

Λπ(s) = Vπ(s) + γ2 Varπ (Vπ(St+1)|St = s) + γ2TπΛπ(s) (2.38)

Chapter 2. Discrete-Time Stochastic Optimal Control 15

2.4.2 Average Reward Formulation

In [82], the authors consider the long-run variance as a measure of the risk
associated to a policy π

Definition 2.4.6 (Long-Run Variance). The long-run variance Λπ under policy
π is defined as

Λπ = lim
T→∞

1

T
Eπ

[
T−1∑
t=0

(Rt+1 − ρπ)2

]
(2.39)

The long-run variance can be decomposed as follows

Λπ = ηπ − ρ2
π (2.40)

where ηπ is the average square reward per step

Definition 2.4.7 (Average Square Reward).

ηπ = lim
T→∞

1

T
Eπ

[
T−1∑
t=0

R2
t+1

]
= ES∼dπ

A∼π
[M(S,A)]

=

∫
S
dπ(s)

∫
A
π(s, a)M(s, a)dads

(2.41)

where we denoted by M(s, a) the square reward function

M(s, a) = E
[
R2
t+1|St = s, At = a

]
(2.42)

As before, we introduce the residual state-value and action-value functions
associated with the square reward under policy π

Definition 2.4.8 (Average Adjusted Square State-Value Function). The av-
erage adjusted square state-value function Uπ : S → R is the expected square
residual return that can be obtained starting from a state and following policy π

Uπ(s) = Eπ

[
∞∑
t=0

(
R2
t+1 − ηπ

) ∣∣∣∣S0 = s

]
(2.43)

Definition 2.4.9 (Average Adjusted Square Action-Value Function). The aver-
age adjusted square action-value function Qπ : S×A→ R is the expected residual
square return that can be obtained starting from a state, taking an action and
then following policy π

Wπ(s, a) = Eπ

[
∞∑
t=0

(
R2
t+1 − ηπ

) ∣∣∣∣S0 = s, A0 = a

]
(2.44)

16 2.5. Dynamic Programming Algorithms

The following relation between square state-value function and the square
action-value holds

Uπ(s) =

∫
A
π(s, a)Wπ(s, a)da (2.45)

The average adjusted square value functions satisfy the following Bellman equa-
tions

Proposition 2.4.3 (Bellman Expectation Equations).

Uπ(s) =Mπ(s)− ηπ + TπUπ(s) (2.46)

Wπ(s, a) =M(s, a)− ηπ + TaUπ(s)

=M(s, a)− ηπ +

∫
S
P(s, a, s′)

∫
A
π(s′, a′)Wπ(s′, a′)da′ds′

(2.47)

Now, how can we formally define the agent’s objective to take into account
the trade-off between rewards and risks? Borrowing from the financial litera-
ture, a first alternative is to consider the following mean-variance optimization
problem {

maxπ ρπ

subject to Λπ ≤ α
(2.48)

for a given α > 0. Using the Lagrangian relaxation procedure, we can recast
(2.48) to the following unconstrained problem

max
λ

min
π
L(π, λ) = −ρπ + λ(Λθ − α) (2.49)

Alternatively, the agent may want to optimize the Sharpe ratio, a commonly
used risk-sensitive performance measure defined as

Shπ =
ρπ√
Λπ

(2.50)

2.5 Dynamic Programming Algorithms

In discrete-time, the Bellman optimality equations can be seen as an expression
of the dynamic programming principle and completely characterize the optimal
value functions. In the case of discrete state and action spaces, the value func-
tions can be represented as vectors and the Bellman operators become matrices
so that the optimality equations can be directly solved in polynomial time [63].
An alternative approach is to approximate the optimal value functions by using
the Bellman optimality equations as the basis of a fixed-point iterative scheme.
This leads to the well known value iteration and policy iteration algorithms
[100]. The drawback of these methods is that typically they are only appli-
cable to discrete MDP whose dynamics is perfectly known. Still, these simple
algorithms provide some useful insight that can be exploited to develop more
advanced reinforcement learning algorithm.

Chapter 2. Discrete-Time Stochastic Optimal Control 17

Figure 2.2: Policy iteration algorithm [98].

2.5.1 Value Iteration

Value iteration is an iterative method to compute the optimal state-value func-
tion V∗(s). Starting from an arbitrary function V0(s), the algorithm iteratively
updates the approximation by applying the Bellman optimality operator in a
fixed-point scheme

Vk+1(s) = B∗Vk(s) = sup
a
{R(s, a) + γTaVk(s)}

This algorithm is guaranteed to converge to the optimal value function V∗ by
the contraction mapping theorem. Let us notice that the transition operator Ta
requires knowledge of the MDP dynamics, which is not available in the typical
reinforcement learning framework. Moreover, the update involves an optimiza-
tion with respect to all possible actions which can be carried out efficiently
only in the case of finite action spaces. A drawback of this algorithm is that it
does not provide an explicit representation of the optimal policy, which in many
control problems is what we are looking for.

2.5.2 Policy Iteration

Policy iteration is an iterative method to approximate both the optimal state-
value function V∗ and the optimal policy π∗. This algorithm alternates an evalua-
tion step, in which the current policy is evaluated using the state-value function,
and an improvement step, in which the policy is improved by acting greedily
with respect to the action-value function computed in the evaluation step. In
the standard version of policy iteration, the state-value function for the cur-
rent policy is evaluated starting from an arbitrary function V0(s) and iteratively
applying the Bellman expectation operator in a fixed-point iteration scheme

Vk+1(s) = BπkVk(s)

18 2.5. Dynamic Programming Algorithms

This algorithm is guaranteed to converge to Vπ∗ . The new policy is then com-
puted as

πk+1 = greedy(Vπk)

and we go back to the evaluation step for this new policy. Let us notice that
it is not necessary to perfectly evaluate to policy πn before performing the im-
provement step and the evaluation procedure can be stopped before convergence.
This algorithm suffers from the same problem as above. However it provides the
basic structure for most of the value-based reinforcement learning methods. In
particular, in generalized policy iteration the evaluation step is performed in an
arbitrary way which does not necessarily employ the Bellman operator. This
scheme is illustrated in Figure 2.2,

Chapter 3

Reinforcement Learning

The standard way to solve Markov decision processes is through dynamic pro-
gramming, which simply consists in solving the Bellman fixed-point equations
discussed in the previous chapter. Following this approach, the problem of find-
ing the optimal policy is transformed into the problem of finding the optimal
value function. However, apart from the simplest cases where the MDP has a
limited number of states and actions, dynamic programming becomes computa-
tionally infeasible. Moreover, this approach requires complete knowledge of the
Markov transition kernel and of the reward function, which in many real-world
applications might be unknown or too complex to use. Reinforcement Learn-
ing (RL) is a subfield of Machine Learning which aims to turn the infeasible
dynamic programming methods into practical algorithms that can be applied
to large-scale problems. RL algorithms are based on two key ideas: the first is
to use samples to compactly represent the unknown dynamics of the controlled
system. The second idea is to use powerful function approximation methods
to compactly estimate value functions and policies in high-dimensional state
and action spaces. In the following sections, we present the RL problem in more
depth and discuss how it relates to the standard discrete-time stochastic optimal
control theory and to the other subfields of machine learning, such as supervised
learning. In particular, we will see how RL extends ideas from optimal control
theory and stochastic approximation to address the broader goal of artificial in-
telligence. This quick overview of RL is propaedeutic to the following chapters,
where we will present in more detail a particular class of algorithms, called pol-
icy gradient methods, which are well suited for continuous action spaces. For a
more thorough presentation, the reader may consult [98], [100] or [109].

3.1 The Reinforcement Learning Problem

Reinforcement Learning (RL) is a general class of algorithms in the field of
machine learning that allows an agent to learn how to behave in a stochas-
tic and possibly unknown environment, where the only feedback consists of a
scalar reward signal. In order to maximize the long-run reward, the agent must
learn which actions are the most profitable by trial-and-error. Therefore, RL

20 3.2. Model-Free RL Methods

algorithms can be seen as computational methods to solve Markov decision pro-
cesses by directly interacting with the environment, for which a model may or
may not be available. Trial-and-error search and a delayed reward signal can be
seen as the most characteristic features of reinforcement learning.
Compared to supervised learning, one of the main branches of machine learning,
the feedback the learner receives is much less. In supervised learning, the agent
is provided with examples of the correct or expected behavior by a knowledge-
able external supervisor and the agent’s goal is to learn how to replicate these
examples as well as possible and possibly generalize this knowledge to new ex-
amples. In reinforcement learning, the agent only receives a numerical reward
that only gives a partial feedback of the goodness of actions taken. Therefore,
this feedback system is evaluative rather than instructive and it is much more
difficult for the agent to learn how to behave in uncharted territory without any
external guidance.
This particular framework generates some challenges that are not present in
other kinds of learning. The first one is the trade-off between exploration and
exploitation. In order to maximize his reward, an agent would greedily select
actions that have already been tried in the past and found to be effective in
producing rewards. However, to find these actions, the agent must also test
actions that have not been chosen before in order to evaluate their potential.
Clearly, this might result in worse performance in the short-term because the
actions might be suboptimal. However, without trying them, the agent might
not be able to find possible improvements. Thus, an agent must exploit what
is known to obtain rewards but also needs to explore to select better actions in
the future. A second challenge is the credit assignment problem. Since rewards
might be delayed in time, it will be difficult for the agent to understand which
actions are mostly responsible for the outcome.

3.2 Model-Free RL Methods

In Section 2.5, we discussed the policy iteration method for computing an opti-
mal policy for an Markov Decision Process (MDP) in a finite state and action
spaces. This algorithm belongs to the class of model-based methods, since it
requires perfect knowledge of the Markov transition kernel and reward function,
which consists of a model of the MDP. RL is primarily concerned with how to
obtain an optimal policy when such a model is not available. In this section,
we discuss some classes of model-free methods which do not rely on the MDP
model. The lack of a model generates the need to sample the MDP to gather
statistical knowledge about this unknown model. In the control setting, the
goal is to approximate the optimal policy, which depends on the optimal value,
which in turn depends on the model of the MDP, as shown in Figure 3.1. Indeed,
we have already seen that a policy which is greedy with respect to the optimal
action-value funtion Q∗, namely for which holds∫

A
π∗(s, a)Q∗(s, a)da = sup

a
Q∗(s, a) (3.1)

Chapter 3. Reinforcement Learning 21

Model
P , R

Value functions
V∗, Q∗

Policy
π∗

Figure 3.1: Solution process for the control problem.

is optimal. Therefore, we can derive the following three methodologies that
differ in which part of the solution process is approximated

i) Model-approximation algorithms approximate the MDP model and com-
pute an estimate of the optimal policy by dynamic programming.

ii) Value-approximation algorithms use samples to directly approximate V∗
or Q∗, from which an estimate of π∗ can be derived by acting greedily.

iii) Policy-approximation algorithms directly try to estimate the optimal pol-
icy.

It should be noticed that these approaches are not mutually exclusive and can
be combined to derive hybrid algorithms. In the following sections we discuss
these three classes of algorithm in more detail, following closely [109].

3.2.1 Model Approximation

Model-approximation algorithms approximate the MDP model and compute an
optimal policy by dynamic programming, using the techniques discussed in the
previous chapter. Since S, A and γ are assumed to be known, these methods are
based on learning an approximation of the Markov transition kernel P and the
reward function R. Thanks to the Markov property, these quantities only de-
pend on the current state and action, so that their approximation corresponds
to a density estimation problem and a regression problem respectively, which
are fairly standard supervised learning problems. Learning the model may not
be trivial, but it is in general easier than learning the value of a policy or op-
timizing the policy directly. The major drawback of model-based algorithms
in continuous-state MDPs is that, even if the model is available, it is in gen-
eral infeasible to compute the value functions by dynamic programming and
to extract an optimal policy for all states by acting greedily. Alternatively, a
transition model estimate may be used to generate sample trajectories from the
MDP, which can then be used to estimate the value function or directly improve

22 3.2. Model-Free RL Methods

the policy. However, the value function and the policy estimated using these
samples can only be as accurate as the learned model, so that in many cases it
may be easier to directly approximate the value function or the policy using the
methods described below.

3.2.2 Value Approximation

Value-approximation algorithms use samples from the MDP to approximate V∗
or Q∗ directly and then derive an estimate of the optimal policy by acting greed-
ily with respect to Q∗. Typically, when the state and action spaces are large, the
value functions are estimated using a parametric function approximator, whose
parameters are iteratively updated given the observed samples. Many reinforce-
ment learning algorithms fall into this category and they can be distinguishes
based on whether they are on-policy or off-policy and whether they update the
value function estimates online or offline. On-policy algorithms approximate the
state-value function Vπ or the action-value function Qπ from samples of the MDP
obtained by following the same policy π to be evaluated. Although the optimal
policy π∗ is initially unknown, such algorithms can eventually approximate the
optimal value functions V∗ or Q∗ from which an approximation of the optimal
policy can be derived. On the other hand, off-policy algorithms can learn the
value of a policy different from the one use for obtaining the MDP samples.
Online algorithms adapt their value approximation after each observed sam-
ple while Offline algorithms operate on batches of samples. Online algorithms
typically require less computation per sample but their convergence is slower.

3.2.3 Policy Approximation

Policy-approximation algorithms only store a policy and update this policy to
maximize a given performance measure and eventually converge to the optimal
policy. Since these algorithms only use an estimate of the optimal policy and do
not rely on a value function approximation, they are also referred to as direct
policy-search or actor-only algorithms. Algorithms that store both a policy and a
value function are commonly known as actor-critic algorithms [99], [54]. Policy
gradient algorithms, the most studied policy-approximation methods, will be
discussed in much more detail in the next chapter.

Chapter 4

Risk-Neutral Policy Gradient

Policy gradient methods directly store and iteratively improve a parametric ap-
proximation of the optimal policy. This policy is commonly referred to as an
actor and methods that directly approximate the policy without exploiting an
approximation of the optimal value function are called actor-only. Algorithms
that combine an approximation of the optimal policy with an approximation of
the value function are commonly called actor-critic.
As discussed in Chapter 2, an optimal policy can be obtained by simply acting
greedily with respect to the optimal action-value function. However, in large or
continuous action spaces, this leads to a complex optimization problem that is
computationally expensive to solve. Therefore, it can be beneficial to store an
explicit estimation of the optimal policy from which we can select actions. Pol-
icy gradient methods have other advantages compared to standard value-based
approaches. In many applications, a good policy has a more compact representa-
tion than the value function so that it may be easier to approximate. Moreover,
the policy parameterization can be chosen so as to be relevant for the task and
to directly incorporate prior knowledge. Another advantage is that these meth-
ods can learn stochastic policies and not only deterministic ones, which might
be useful in multi-player frameworks or in partially observable environments.
Finally, these methods are guaranteed to converge at least to a local optimum,
which may be good enough in practice. On the other hand, policy gradient
methods are typically characterized by a large variance which may hinder the
converge speed.
In the following sections, we present the basics of policy gradient methods closely
following the thorough overview provided in [81]. Then, we discuss some state-
of-the-art policy gradient algorithms. In particular, we focus on the risk-neutral
framework postponing the analysis of the risk-sensitive framework to the next
chapter.

4.1 Basics of Policy Gradient Methods

In policy gradient methods, the optimal policy is approximated using a parametrized
policy π : S × A × Θ → R such that, given a parameter vector θ ∈ Θ ⊆ RDθ ,

24 4.2. Risk-Neutral Objective Functions

Algorithm 4.1 General setup for a policy gradient algorithm

Input: Initial parameters θ0, learning rate {αk}
Output: Approximation of the optimal policy π∗
1: repeat
2: Approximate policy gradient ĝ ≈ ∇θJ (θk)
3: Update parameters using gradient ascent θk+1 = θk + αkĝ
4: k ← k + 1
5: until converged

π(s, B; θ) = πθ(s, B) gives the probability of selecting an action in B ∈ A when
the system is in state s ∈ S. The general goal of policy optimization in rein-
forcement learning is to optimize the policy parameters θ ∈ Θ so as to maximize
a certain objective function J : Θ→ R

θ∗ = arg max
θ∈Θ

J(θ)

In the following, we will focus on gradient-based and model-free methods that
exploit the sequential structure of the the reinforcement learning problem. The
idea of policy gradient algorithms is to update the policy parameters using the
gradient ascent direction of the objective function

θk+1 = θk + αk∇θJ (θk) (4.1)

where {αk}k≥0 is a time-dependent learning rate. Typically, the gradient of the
objective function is not known and its approximation is the key component of
every policy gradient algorithm, a general setup of which is outlined in Algorithm
4.1. It is a well-know result from stochastic optimization [56] that, if the gradient
estimate is unbiased and the learning rates satisfy the Robbins-Monro conditions

∞∑
k=0

αk =∞
∞∑
k=0

α2
k <∞ (4.2)

the learning process is guaranteed to converge at least to a local optimum of
the objective function. Before describing various methods to approximate the
gradient, let us give an overview of some standard objective functions and the
situation in which they are commonly used.

4.2 Risk-Neutral Objective Functions

In the risk-neutral setting, the agent is only interested in maximizing its reward,
without considering the risk it needs to take on to achieve it. In an episodic
environment where the system always starts from an initial state s0, the typical
objective function is the start value.

Definition 4.2.1 (Start Value). The start value is the expected return that can
be obtained starting from the start state s0 ∈ S and following policy πθ

Jstart(θ) = Vπθ(s0) = Eπθ [G0|S0 = s0] (4.3)

Chapter 4. Risk-Neutral Policy Gradient 25

In a continuing environment, where no terminal state exists and the task
might go on forever, it is common to use either the average value or the average
reward per time step.

Definition 4.2.2 (Average Value). The average value is the expected value that
can be obtained following policy πθ

JavV(θ) = ES∼dθ [Vπθ(S)] =

∫
S
dθ(s)Vπθ(s)ds (4.4)

where dθ is the stationary distribution of the Markov chain induced by πθ.

Definition 4.2.3 (Average Reward per Time Step). The average reward per
time step is the expected reward that can be obtained over a single time step by
following policy πθ

JavR(θ) = ρ(θ) = ES∼dθ
A∼πθ

[R(S,A)] =

∫
S
dθ(s)

∫
A
πθ(s, a)R(s, a)dads (4.5)

where dθ is the stationary distribution of the Markov chain induced by πθ.

4.3 Finite Differences

The most straightforward way to estimate the objective function gradient con-
sists in replacing the partial derivatives with the corresponding finite differences.
In other words, the k-th gradient component is approximated by

∂J(θ)

∂θk
≈ J(θ + εek)− J(θ)

ε
(4.6)

where ε is a small constant and ek ∈ RDθ is the k-th element of the canonical
basis. Hence, to compute the gradient it is sufficient to estimate the objec-
tive function for Dθ + 1 different parameters combinations. Since the objective
function is unknown, it must be estimated from sample trajectories simulated
following the policies associated to the parameterizations appearing in the fi-
nite differences. For this reason, this method is computationally demanding and
the gradient estimate obtained in this way is extremely noisy, which may slow
down or even prevent the convergence of the algorithm. Still, this approach
is sometimes effective and works for arbitrary, even non-differentiable, policies.
Moreover, finite differences are often used to check gradient estimates during
debugging.

4.4 Likelihood Ratio Methods

In this section, we describe several methods based on the likelihood ratio tech-
nique of stochastic optimization. Let Z be a random variable with a parametric
probability density pθ and assume that pθ is known, explicitly computable and

26 4.4. Likelihood Ratio Methods

differentiable with respect to the parameters. The likelihood ratio technique is
used to compute the following gradient

∇θEZ∼pθ [f(Z)] = ∇θ

∫
pθ(z)f(z)dz

This type of problem appears in many domains, such as when computing the
greeks of a derivative product in computational finance [78]. Under some regu-
larity assumptions on the function f and on the probability distribution pθ, this
gradient can be rewritten in a more amenable way

∇θEZ∼pθ [f(Z)] =

∫
∇θpθ(z)f(z)dz

=

∫
pθ(z)

∇θpθ(z)

pθ(z)
f(z)dz

=

∫
pθ(z)∇θ log pθ(z)f(z)dz

= EZ∼pθ [∇θ log pθ(Z)f(Z)]

Thus, the likelihood ratio technique simply consists in the following equality

Proposition 4.4.1 (Likelihood Ratio Technique).

∇θEZ∼pθ [f(Z)] = EZ∼pθ [∇θ log pθ(Z)f(Z)] (4.7)

The quantity ∇θ log pθ(Z) is usually called likelihood score. This result pro-
vides a simple way to approximate the gradient using a Monte Carlo estimate:
let {Z(m)}Mm=1 be i.i.d. samples from pθ, then

∇θEZ∼pθ [f(Z)] ≈ 1

M

M∑
m=1

∇θ log pθ(Z
(m))f(Z(m)) (4.8)

As we will see in the following sections, this technique provides the basis for some
of the most common policy gradient algorithms in the reinforcement learning
literature.

4.4.1 Monte Carlo Policy Gradient

Let h = {(st, at)}t≥0 ∈ H be a given trajectory of the MDP and let us denote
by pθ(h) = Pπθ (H = h) the probability of obtaining this trajectory under policy
πθ. Let G(h) denote the expected return obtained on trajectory h

G(h) = E [G0|H = h] =
∞∑
t=0

γtR(st, at)

Let us consider the start value objective function, which can be rewritten as an
expectation over all possible trajectories

Jstart(θ) = EH∼pθ [G(H)]

Chapter 4. Risk-Neutral Policy Gradient 27

Applying the likelihood ratio technique, we obtain

∇θJ(θ) = EH∼pθ [∇θ log pθ(H)G(H)] (4.9)

The crucial point is that ∇θ log pθ(H) can be computed without knowledge of
the transition probability kernel P . Indeed, by a recursive application of the
Markov property, we have

pθ(h) = P (S0 = s0)
∞∏
t=0

πθ(st, at)P(st, at, st+1)

taking the logarithm yields

log pθ(h) = logP (S0 = s0) +
∞∑
t=0

log πθ(st, at) +
∞∑
t=0

logP(st, at, st+1)

Since the only term depending on the parameters θ is the policy term,

∇θ log pθ(H) =
∞∑
t=0

∇θ log πθ(st, at) (4.10)

Therefore, we do not need the transition model to compute the ∇θ log pθ(H).
Moreover, it is easy to prove that

EH∼pθ [∇θ log pθ(H)] = 0 (4.11)

Hence, a constant baseline b ∈ R can always be subtracted in Eq. 4.9 without
changing the gradient value

∇θJ(θ) = EH∼pθ [∇θ log pθ(H)(G(H)− b)] (4.12)

Intuitively, the baseline b should measure the expected return under the policy,
so that better (resp. worse) than average returns would produce a positive (resp.
negative) gradient. A simple approach is to use a moving average of the returns
observed while improving the policy. A more elaborate approach is to compute
the baseline that minimizes the variance of the estimate of the gradient.
In an episodic environment, we can derive an estimate of the gradient by sam-
pling M trajectories h(m) = {(s(m)

t , a
(m)
t)}T (m)

t=0 under policy πθ and by approxi-
mating the expected value via Monte Carlo

ĝRF =
1

M

M∑
m=1

T (m)∑
i=0

∇θ log πθ(s
(m)
i , a

(m)
i)

T (m)∑
j=0

γjr
(m)
j+1 − b

 (4.13)

This method, synthetized in Algorithm 4.2, is known in the literature as the
REINFORCE algorithm and is guaranteed to converge to the true gradient at a

28 4.4. Likelihood Ratio Methods

Algorithm 4.2 Episodic REINFORCE policy gradient estimate

Input: Policy parameterization θ, number of trajectories M
Output: REINFORCE policy gradient estimate ĝRF ≈ ∇θJ(θ)
1: Sample M trajectories of the MDP following policy πθ
2: For all k, Compute the optimal baseline b∗k according to Eq. (4.15)
3: Compute ĝRF according to Eq. (4.13)

pace of O(M−1/2). In practice, we can obtain an approximation of the gradient
using only one sample which leads to a stochastic gradient ascent method

ĝSRF =

[
T∑
i=0

∇θ log πθ(si, ai)

][
T∑
j=0

γjrj+1 − b

]
(4.14)

This method is very easy and works well on many problems. However, the
gradient estimate is characterized by a large variance which can hamper the
convergence rate of the algorithm. A first approach to address this issue is to
optimally set the baseline to reduce the gradient variance.

4.4.1.1 Optimal Baseline

A standard variance reduction technique consists in setting the baseline so as to
minimize the gradient estimate variance. More in detail, the optimal baseline
for the k-th gradient component ĝk solves

b∗k = arg min
b

Var (ĝk)

It is easy to show that

b∗k =
E
[
G(H) (∂θk log pθ(H))2]
E
[
(∂θk log pθ(H))2]

which can be approximated by

b̂∗k =

∑M
m=1

[∑T (m)

i=0 ∂θk log πθ

(
s

(m)
i , a

(m)
i

)]2∑T (m)

j=0 γjr
(m)
j+1∑M

m=1

[∑T (m)

i=0 ∂θk log πθ

(
s

(m)
i , a

(m)
i

)]2 (4.15)

4.4.2 GPOMDP

The Monte Carlo policy gradient estimate is typically characterized by a large
variance, which may slow down the method’s convergence. To improve the esti-
mate, it is sufficient to notice that future actions and past rewards are indepen-
dent, unless the policy has been changed. Therefore, combining this observation
with Eq. (4.11) yields

Eπθ [∇θ log πθ(St, At)R(Ss, As)] = 0 ∀t > s

Chapter 4. Risk-Neutral Policy Gradient 29

Plugging this equation in Eq. (4.12) leads to the well-known Gradient of the
average reward in Partially Observable MDP (GPOMDP) algorithm [10] for
generating an estimate of the gradient of the objective function

ĝGPOMDP =
1

M

M∑
m=1

T (m)∑
i=0

∇θ log πθ(s
(m)
i , a

(m)
i)

T (m)∑
j=i

γjr
(m)
j+1 − b

 (4.16)

By removing almost half of the cross-products, this estimate typically has a
smaller variance than the trivial REINFORCE policy gradient and can be further
reduced by computing an optimal baseline. In the following sections we will see
how this algorithm can be easily derived from a more general result: the policy
gradient theorem.

4.4.3 Stochastic Policies

The likelihood ratio technique is a powerful tool and it allows to derive some
powerful policy gradient algorithms. However, this approach only works if the
policy is stochastic. In most cases this is not a big problem, since stochastic
policies are needed anyway to ensure sufficient exploration of the state-action
space. Moreover, stochastic policies might be beneficial in partially observable
MDP to avoid state aliasing and in adversarial learning where the Pareto optimal
strategies of different players are randomized, such as in the classical game “rock-
paper-scissors”. We introduce now two standard examples of stochastic policies
for discrete and continuous action spaces respectively.

4.4.3.1 Boltzmann Exploration Policy

In discrete action spaces, the Boltzmann exploration policy, also known as soft-
max policy, is a common choice. In state s ∈ S, this policy selects an action
a ∈ A with probability

πθ(s, a) =
eθ
TΦ(s,a)∑

b∈A e
θTΦ(s,b)

(4.17)

where Φ(s, a) ∈ RDθ is a given feature vector corresponding to state s and action
a. the likelihood score for this policy is thus given by

∇θ log πθ(s, a) = Φ(s, a)−
∑
b∈A

πθ(s, a)Φ(s, b) (4.18)

4.4.3.2 Gaussian Exploration Policy

In continuous action spaces, a Gaussian exploration policy is commonly used.
According to this policy, in a state s, actions are sampled from a Gaussian
distribution with a parametric state-dependent mean µψ(s) ∈ RDa , with ψ ∈
RDψ , and a covariance matrix Σ ∈ RDa×Da . The policy parameters consist of

30 4.4. Likelihood Ratio Methods

θ = {ψ,Σ} and the likelihood scores are thus given by

∇ψ log πθ(s, a) =

(
∂µψ(s)

∂ψ

)T
Σ−1(a− µψ(s)) (4.19)

∇Σ log πθ(s, a) =
1

2

[
Σ−1 (a− µψ(s)) (a− µψ(s))T Σ−1 − Σ−1

]
(4.20)

where
∂µψ(s)

∂ψ
denotes the Jacobian matrix of µψ with respect to ψ.

4.4.4 Policy Gradient with Parameter Exploration

In Monte Carlo Policy Gradient, trajectories are generated by sampling at each
time step an action according to a stochastic policy πθ and the objective function
gradient is estimated by differentiating the policy with respect to the parameters.
However, sampling an action from the policy at each time step leads to a large
variance in the sampled histories and therefore in the gradient estimate, which
can in turn slow down the convergence of the learning process. To address this
issue, in [91] the authors propose the Policy Gradient with Parameter-Based
Exploration (PGPE) method, in which the search in the policy space is replaced
with a direct search in the model parameter space. We start by presenting
the episodic case and we will later extend this approach to the infinite horizon
setting.

4.4.4.1 Episodic PGPE

Given an episodic MDP, PGPE considers a deterministic controller F : S×Θ→
A that, given a set of parameters θ ∈ Θ ⊆ RDθ , maps a state s ∈ S to an action
a = F (s; θ) = Fθ(s) ∈ A. The policy parameters are drawn from a probability
distribution pξ, with hyper-parameters ξ ∈ Ξ ⊆ RDξ . Combining these two
hypotheses, the agent follows a stochastic policy πξ defined by

∀B ∈ A, πξ(s, B) = π(s, B; ξ) =

∫
Θ

pξ(θ)1Fθ(s)∈Bdθ

The advantage of this approach is that the controller is deterministic and there-
fore the actions do not need to be sampled at each time step, with a consequent
reduction of the gradient estimate variance. Indeed, It is sufficient to sample
the parameters θ once at the beginning of the episode and then generate an
entire trajectory following the deterministic policy Fθ. As an additional benefit,
the parameter gradient is estimated by direct parameter perturbations, without
having to backpropagate any derivatives, which allows to use non-differentiable
controllers.
The hyper-parameters ξ will be updated by following the gradient ascent direc-
tion of the gradient of the expected reward, which can be rewritten as

J(ξ) = E θ∼pξ
H∼pθ

[G(H)] =

∫
Θ

∫
H
pξ(θ, h)G(h)dhdθ (4.21)

Chapter 4. Risk-Neutral Policy Gradient 31

Algorithm 4.3 Episodic PGPE algorithm

Input: Initial hyper-parameters ξ0, learning rate {αk}
Output: Approximation of the optimal policy Fξ∗ ≈ π∗
1: repeat
2: for m = 1, . . . ,M do
3: Sample controller parameters θ(m) ∼ pξk
4: Sample trajectory h(m) = {(s(m)

t , a
(m)
t)}t≥0 under policy Fθ(m)

5: end for
6: Approximate policy gradient ∇ξJ(ξk) ≈ ĝPGPE using Eq. (4.24)
7: Update hyperparameters using gradient ascent ξk+1 = ξk + αkĝPGPE

8: k ← k + 1
9: until converged

By remarking that h is conditionally independent from ξ given θ, so that pξ(θ, h) =
pξ(θ)pθ(h), and applying the likelihood ratio technique, we obtain

∇ξJ(ξ) = E θ∼pξ
H∼pθ

[∇ξ log pξ(θ)G(H)] (4.22)

Again, we can subtract a constant baseline b ∈ R from the total return

∇ξJ(ξ) = E [∇ξ log pξ(θ) (G(H)− b)] (4.23)

In an episodic environment, the gradient can be approximated via Monte Carlo
by first drawing M samples θ(m) ∼ pξ and then, for each combination of param-

eters, generating a trajectory h(m) = {(s(m)
t , a

(m)
t)}t≥0 where actions are selected

according to the deterministic controller Fθ(m) . This leads to the following esti-
mate

ĝPGPE =
1

M

M∑
m=1

∇ξ log pξ
(
θ(m)

) [
G
(
h(m)

)
− b
]

(4.24)

In order to further reduce the estimate variance, an optimal baseline can be com-
puted similarly to the REINFORCE case [112]. The episodic PGPE algorithm
obtained in this way is reported in Algorithm 4.3. In the following paragraphs,
we discuss some possible choices for the policy parameters distribution pξ, which
is the last component of the algorithm.

Independent Gaussian Parameter Distribution A simple approach is to
assume that all the components of the parameter vector θ are independent
and normally distributed with mean µi and variance σ2

i , in other words θi ∼
N (µi, σ

2
i), the gradient with respect to the hyper-parameters ξ = (µ1, . . . , µDθ , σ1,

. . . , σDθ)
T is given by

∂ log pξ(θ)

∂µi
=
θi − µi
σ2
i

∂ log pξ(θ)

∂σi
=

(θi − µi)2 − σ2
i

σ3
i

(4.25)

32 4.4. Likelihood Ratio Methods

Using a constant learning rate αi = ασ2
i , the gradient updates takes the following

form

µk+1
i = µki + α [G(h)− b] (θi − µi)

σk+1
i = σki + α [G(h)− b] (θi − µi)2

σi

(4.26)

where b can be computed as a moving average of the past returns. Intuitively,
if G(h) > b we adjust ξ so as to increase the probability of θ while if G(h) < b
we do the opposite.

Gaussian Parameter Distribution A more elaborate approach is to assume
a generic dependence among the controller parameters, namely θ ∼ N (µ,Σ).
However, if we directly used the covariance matrix Σ as an hyper-parameter,
it would be computationally difficult to enforce that it remains well-defined,
namely symmetric and semidefinite positive, during the gradient ascent itera-
tions. A simpler approach is to parameterize the distribution using the Cholesky
factor Σ, the matrix C such that Σ = CTC. This choice has two advantages:
first, C makes explicit the n(n + 1)/2 independent parameters determining the
covariance matrix Σ; in addition, CTC is by construction a well-defined covari-
ance matrix. Hence, the hyper-parameters are ξ = {µ,C}. The likelihood score
for this distribution does not have a simple expression, but it becomes extremely
easy in the Natural version of PGPE which will be discussed in the next sections.

Symmetric Sampling and Gain Normalization In some settings, com-
paring the gain with a baseline can be misleading. In their original work, the
authors propose a symmetric sampling technique similar to antithetic variates
that further improves the convergence of the method. More in detail, a more
robust gradient estimate can be obtained by measuring the difference in reward
between two symmetric samples on either side of the current mean. That is, we
sample a random perturbation ε ∼ N (0,Σ), where Σ = diag(σ2

1, . . . , σ
2
Dθ

), and
we define θ+ = µ + ε and θ− = µ − ε. Denoting by G+ (resp. G−) the gains
obtained on the trajectory associated to θ+ (resp. θ−), the objective function
gradient can be approximated with

∇µiJ(ξ) ≈ εi(G
+ −G−)

2σ2
i

∇σiJ(ξ) ≈ ε2i − σ2
i

σ3
i

(
G+ +G−

2
− b
) (4.27)

Hence, by choosing αki = 2ασ2
i , we have the following update rules

µk+1
i = µki + αεi(G

+ −G−)

σk+1
i = σki + α

ε2i − σ2
i

σi

(
G+ +G− − 2b

) (4.28)

Chapter 4. Risk-Neutral Policy Gradient 33

In addition, the authors propose to normalize the gains in order to make the
updates independent of the scale of the rewards. For instance, we could modify
the hyperparameters updates as follows

µk+1
i = µki + αεi

(G+ −G−)

2m−G+ −G−

σk+1
i = σki + α

ε2i − σ2
i

σi

(G+ +G− − 2b)

m− b

(4.29)

where m might be the maximum gain the agent can receive, if known, or al-
ternatively the maximum gain achieved so far. Symmetric sampling and gain
normalization can drastically improve the gradient estimate quality and conse-
quently the convergence time.

4.4.4.2 Infinite Horizon PGPE

While in the episodic PGPE the parameters θ are sampled only at the beginning
of each episode, in Infinite Horizon PGPE (IHPGPE) [90] the parameters and
learning are carried out simultaneously, while interacting with the environment.
Let 0 < ε < 1 the probability of updating the policy parameters, the parameters
θt can be sampled consecutively as follows

pξ(θi,t+1) = εN (µi,t, σ
2
i,t) + (1− ε)δθi,t (4.30)

In practice, ε should be chosen so that the expected frequency of changing
a single parameter is coherent with the typical episode length in the episodic
framework. Alternatively, one could sample all the parameters at a certain time
step simultaneously

pξ(θt+1) = εN (µt,Σt) + (1− ε)δθt (4.31)

This is equivalent to splitting the state-action space into artificial episodes. How-
ever, updating parameters asynchronously changes the policy only slightly thus
introducing less noise in the process. Again, parameters can be updated at every
time step by gradient ascent

µi,t+1 = µi,t + α [Gt(h)− b] (θi,t − µi,t)

σi,t+1 = σi,t + α [Gt(h)− b] (θi,t − µi,t)2

σi,t

(4.32)

Similarly to the episodic case, we can improve the gradient estimate by sym-
metric sampling and gain normalization.

4.5 Risk-Neutral Policy Gradient Theorem

In the previous sections, we saw that the core of a policy gradient algorithm
consist in the approximation of the objective function gradient. In this section

34 4.5. Risk-Neutral Policy Gradient Theorem

we present the policy gradient theorem [99], which shows that the gradient can
be rewritten in a form suitable for estimation from experience aided by an ap-
proximate action-value or advantage function. First, we will prove the theorem
in the risk-neutral setting for which it was originally proposed. In particular, we
will see how the GPOMDP algorithm can be easily derived by this result via a
Monte Carlo approximation. Moreover, we will illustrate a class of actor-critic
algorithms [54] that, in addition to a parametric approximation of the policy,
also exploit an approximation of the action-value function or of an advantage
function to reduce the variance of the gradient estimate. In particular, we review
the powerful idea of compatible function approximation [99] which assures the
convergence to a local optimum of the objective function. Finally, we discuss the
natural policy gradient idea [50], which forms the basis of many state-of-the-art
algorithms. The extension to the risk-sensitive setting will be done in the next
chapter.

4.5.1 Theorem Statement and Proof

Theorem 4.5.1 (Risk-Neutral Policy Gradient). Let πθ be a differentiable pol-
icy. The policy gradient for the average reward formulation is given by

∇θρ(θ) = ES∼dθ
A∼πθ

[∇θ log πθ(S,A)Qθ(S,A)] (4.33)

where dθ is the stationary distribution of the Markov chain induced by πθ. The
policy gradient for the start value formulation is given by

∇θJstart(θ) = ES∼dθγ(s0,·)
A∼πθ

[∇θ log πθ(S,A)Qθ(S,A)] (4.34)

where dθγ(s0, ·) is the γ-discounted visiting distribution over states starting from
the initial state s0 and following policy πθ

dθγ(s, x) =
∞∑
k=0

γkP(k)
θ (s, x) (4.35)

Proof. We first prove the result for the average-reward formulation and then for
the start state formulation. From the basic relation between state-value function
and action-value function, we have

∇θVθ(s) = ∇θ

∫
A
πθ(s, a)Qθ(s, a)da

=

∫
A

[∇θπθ(s, a)Qθ(s, a) + πθ(s, a)∇θQθ(s, a)] da

Using the Bellman expectation equation for Qθ

∇θQθ(s, a) = ∇θ

[
R(s, a)− ρθ +

∫
S
P(s, a, s′)Vθ(s

′)ds′
]

= −∇θρθ +

∫
S
P(s, a, s′)∇θVθ(s

′)ds′

Chapter 4. Risk-Neutral Policy Gradient 35

Hence, plugging in the first equation

∇θVθ(s) =

∫
A
∇θπθ(s, a)Qθ(s, a)da−∇θρθ +

∫
A
πθ(s, a)

∫
S
P(s, a, s′)∇θVθ(s

′)ds′

Integrating both sides with respect to the stationary distribution dθ and noting
that, because of stationarity,∫

S
dθ(s)

∫
A
π(s, a)

∫
S
P(s, a, s′)∇θV (s′)ds′dads =

∫
S
dθ(s)∇θVθ(s)ds

we obtain the result

∇θρθ =

∫
S
dθ(s)

∫
A
∇θπθ(s, a)Qθ(s, a)dads

=

∫
S
dθ(s)

∫
A
πθ(s, a)∇θ log πθ(s, a)Qθ(s, a)dads

= ES∼dθ
A∼πθ

[∇θ log πθ(S,A)Qθ(S,A)]

Let us now prove the theorem for the start state formulation. The first step is
exactly the same. Hence, using the Bellman expectation equation for Qθ

∇θQθ(s, a) = ∇θ

[
R(s, a) + γ

∫
S
P(s, a, s′)Vθ(s

′)ds′
]

= γ

∫
S
P(s, a, s′)∇θVθ(s

′)ds′

we obtain

∇θVθ(s) =

∫
A

[
∇θπθ(s, a)Qθ(s, a) + γ

∫
S
P(s, a, s′)∇θVθ(s

′)ds′
]
da

=

∫
S

∞∑
k=0

γkP(k)
θ (s, x)

∫
A
∇θπθ(x, a)Qθ(x, a)dadx

after unrolling ∇θVθ infinite times and denoting by P(k)
θ (s, x) the probability of

going from state s to state x in k steps under policy πθ. Defining the γ-discounted
visiting distribution of state x starting from state s as

dθγ(s, x) =
∞∑
k=0

γkP(k)
θ (s, x)

we have the result

∇θVθ(s) =

∫
S
dθγ(s, x)

∫
A
∇θπθ(x, a)Qθ(x, a)dadx

= ES∼dθγ(s0,·)
A∼πθ

[∇θ log πθ(S,A)Qπθ(S,A)]

36 4.5. Risk-Neutral Policy Gradient Theorem

The action-value function is typically unknown and needs to be approxi-
mated. As for the REINFORCE algorithm, we can subtract a state-dependent
baseline from the action-value function without changing the value of the ex-
pectation. Indeed

ES∼dθ
A∼πθ

[∇θ log πθ(S,A)Bθ(S)] =

∫
S
dθ(s)

∫
A
πθ(s, a)∇θ log πθ(s, a)Bθ(s)dads

=

∫
S
dθ(s)Bθ(s)

∫
A
∇θπθ(s, a)dads

=

∫
S
dθ(s)Bθ(s)∇θ

∫
A
πθ(s, a)da︸ ︷︷ ︸

=1

ds = 0

Hence, we can rewrite the policy gradient for the average reward formulation as

∇θρ(θ) = ES∼dθ
A∼πθ

[∇θ log πθ(S,A) (Qπθ(S,A)−Bθ(S))] (4.36)

and similarly for the start state formulation. This result can be used as the
starting point to derive several policy gradient methods that use different ap-
proximation of the action-value function.

4.5.2 GPOMDP

For an episodic MDP, the action-value function can be estimated with the total
return obtained on a sample trajectory

Qθ(s0, a0) ≈
T (m)∑
t=0

γtr
(m)
t+1

Combining this remark with a Monte Carlo approximation of Eq. (4.36), we
obtain the GPOMDP gradient estimate (4.16). Therefore, the GPOMDP algo-
rithm is a simple application of the policy gradient algorithm, which is much
more general than the likelihood ratio technique used to derive the algorithm in
the previous sections. In the next subsections we present other ways to exploit
the policy gradient theorem to design efficient learning algorithms.

4.5.3 Actor-Critic Policy Gradient

A baseline should ideally measure the typical return obtained by an agent in a
certain state when following a certain policy. Therefore, it becomes natural to
use the state-value function as a benchmark for the action-value function [43].
Eq. (4.36) thus becomes

∇θρ(θ) = ES∼dθ
A∼πθ

[∇θ log πθ(S,A)Aθ(S,A)] (4.37)

where we introduced the advantage function

Aθ(s, a) = Qθ(s, a)− Vθ(s) (4.38)

Chapter 4. Risk-Neutral Policy Gradient 37

Algorithm 4.4 Generic structure for an online actor-critic algorithm

Input:
• Initial actor parameters θ0,
• Initial critic parameters ψ0,
• Learning rate {αk}

Output: Approximation of the optimal policy πθ∗ ≈ π∗

1: repeat
2: Observe tuple < sk, ak, rk+1, sk+1 > sampled from the MDP.
3: Update critic parameters ψk+1 using a value-based method.
4: Estimate policy gradient as ĝAC

k = ∇θ log πθk(sk, ak)Âψk+1
(sk, ak)

5: Update actor by gradient ascent θk+1 = θk + αkĝ
AC
k .

6: k ← k + 1
7: until converged

which measures how good is to take action a in state s compared to simply
following the policy πθ. The advantage function is unknown and should be
estimated from samples of the MDP. Actor-Critic algorithms consist in all those
methods that employ an approximation of the advantage function or of the value
function, also known as critic, to estimate the policy gradient. These methods
thus maintain two sets of parameters: a critic that updates the action-value
function parameters ψ and an actor that updates the policy parameters θ in the
direction suggested by the critic. The general structure for an online actor-critic
algorithm is reported in Algorithm 4.4.

There are two possible approaches to estimate the advantage function: the
first one is to estimate both the state-value function V̂ψ ≈ Vθ and the action-

value function Q̂ξ ≈ Qθ and derive an estimate for the advantage function

Âψ,ξ = Q̂ξ−V̂ψ ≈ Aθ. The second approach directly approximates the advantage

function Âψ ≈ Aθ and is usually preferred, since it allows us to maintain only
one critic. Actor-critic algorithms typically use a Temporal Difference (TD)

algorithm to update an approximation of the value function V̂ψ ≈ Vθ, from
which we can derive an approximation for the advantage function. Assume that
the true state-value function Vθ is given. Then the TD error

δθ = R− ρθ + Vθ(S
′)− Vθ(S) (4.39)

is an unbiased estimate of the advantage function. Indeed

E [δθ|S = s, A = a] = E [R− ρθ + Vθ(S
′)|S = s, A = a]− Vθ(s)

= Qθ(s, a)− Vθ(s)
= Aθ(s, a)

By a simple conditioning argument, the policy gradient can be rewritten as

∇θρ(θ) = ES∼dθ
A∼πθ

[∇θ log πθ(S,A)δθ] (4.40)

38 4.5. Risk-Neutral Policy Gradient Theorem

Algorithm 4.5 Average-Reward Actor Critic

Input:
• Initial actor parameters θ0,
• Initial critic parameters ψ0,
• Learning rate {αk}

Output: Approximation of the optimal policy πθ∗ ≈ π∗

1: Initialize k = 0 and the eligibility trace e−1 = 0
2: repeat
3: Observe tuple < sk, ak, rk+1, sk+1 > sampled from the MDP.
4: Compute TD error δ̂k = rk+1 − ρ̂k + V̂ψk(sk+1)− V̂ψk(sk)
5: Update critic parameters ψk+1 = ψk + αkδ̂k∇ψV̂ψk(sk)
6: Update eligibility trace ek+1 = λek +∇θ log πθk(sk, ak)

7: Update actor parameters θk+1 = θk + αkδ̂kek.
8: k ← k + 1
9: until converged

In practice, we can use an approximate TD error

δ̂k = rk+1 − ρ̂k + V̂ψk(sk+1)− V̂ψk(sk) (4.41)

where ρ̂k is an estimate of the average reward. Hence, we can easily obtain an
approximation of the policy gradient by

ĝkTD(0) = ∇θ log πθ(sk, ak)δ̂k (4.42)

which can be used to update the critic parameter in the gradient ascent direction.
On the other hand, the critic parameters can be updated using a TD(0) temporal
difference scheme

ψk+1 = ψk + αkδ̂k∇ψV̂ψk(sk) (4.43)

The discussion can be easily extended to more complex value-based methods for
estimating the critic, such as the backward-view TD(λ). This method employs
eligibility traces to assign credit for the rewards obtained by the agent to all
previous states and actions. More formally, the policy parameters update rule
becomes

θk+1 = θk + αkδ̂kek (4.44)

where the eligibility trace ek is defined by the following recursive equation

ek+1 = λek +∇θ log πθk(sk, ak) (4.45)

0 ≤ λ ≤ 1 is a parameter that manages the amount of bootstrap: for λ = 0
the method is the standard temporal difference scheme while for λ = 1 the
method is equivalent to Monte Carlo. In the rest of the thesis we will refer to
this algorithm as Average Reward Actor-Critic (ARAC) and its pseudocode is
reported in Algorithm 4.5.

Chapter 4. Risk-Neutral Policy Gradient 39

4.5.4 Compatible Function Approximation

In the previous sections we saw that a critic may reduce the variance of thew
policy gradient estimate. However, this is achieved at the cost of introducing a
bias in the approximation which, in certain cases, may endanger the convergence
of the method to a good solution. Luckily, the compatible function approximation
[99] avoids introducing any bias by a careful choice of the critic. This technique
consists in estimating the advantage function with a linear regression on a family
of suitable basis functions consisting of the gradient of the likelihood score

Âθ(s, a) = ψT∇θ log πθ(s, a) (4.46)

The power of these basis functions becomes apparent in the following theorem

Theorem 4.5.2 (Compatible Function Approximation). If
i) the advantage function approximator is compatible to the policy

∇ψAψ(s, a) = ∇θ log πθ(s, a) (4.47)

ii) the advantage function parameters ψ minimize the mean square error

θ = arg min
ψ

Eπθ

[(
Aπθ(S,A)− Âψ(S,A)

)2
]

(4.48)

Then the policy gradient is exact

∇θJ(θ) = Eπθ
[
∇θ log πθ(S,A)Âψ(S,A)

]
(4.49)

Hence, the true advantage function in the policy gradient formula can be
replaced by the compatible function approximation without changing the policy
gradient value. A linear regression may seem a too simple representation of the
advantage function. However, one must bear in mind that this approximation is
only used to reduce the variance of the policy gradient estimate and should not
be expected to provide an accurate representation of the true-value function.
This technique has proved useful in many application.

4.5.5 Natural Policy Gradient

Despite all the advances in the variance reduction techniques, these methods still
tend to perform surprisingly poorly. Even when applied to simple examples with
rather few states, where the gradient can be determined very accurately, they
turn out to be quite inefficient. Typically, one of the reasons of this behavior
is the presence of large plateaus in the expected return landscape where the
gradients are small and often do not point directly towards the optimal solution.
In this context, the steepest ascent with respect to the Fisher information metric,
called the natural policy gradient, turns out to be significantly more efficient than
normal gradients for such plateaus. This technique was first proposed in the
reinforcement learning setting in [50] and later applied to actor-critic algorithms
in in [81]. The following properties of natural policy gradient make it one of the
more reliable policy-based methods,

40 4.5. Risk-Neutral Policy Gradient Theorem

Figure 4.1: “Vanilla” policy gradient (left) vs. natural policy gradient (right).
The main difference is how the two approaches punish the change in parameters.
This distance is indicated by the blue ellipses in the contour plot while the dashed
lines show the expected return. Obtaining a gradient then corresponds to finding
a vector pointing from the center of the ellipses to the location with maximum
expected return on the ellipse. A vanilla policy gradient (a) considers a change
in all parameters as equally distant, thus, it is a search for a maximum on a circle
while the natural gradient (b) uses scales determined by the Fisher information
which results in a reduction in exploration. The slower reduction in exploration
results into a faster convergence to the optimal policy [81].

i) Convergence to a local minimum is guaranteed.
ii) By choosing a more direct path to the optimal solution in parameter space,

the natural gradient typically has faster convergence and avoids premature
convergence of “vanilla gradients”.

iii) The natural policy gradient can be shown to be covariant, or equivalently
independent of the coordinate frame chosen for expressing the policy pa-
rameters.

iv) As the natural gradient analytically averages out the influence of the
stochastic policy (including the baseline of the function approximator),
it requires fewer data points for a good gradient estimate than “vanilla
gradients”.

4.5.5.1 Formalism of Natural Policy Gradients

Policy gradient methods improve the policy πθ by iteratively applying “small”
changes ∆θ to the policy parameters θ. However, the meaning of “small” is
ambiguous. For instance, when working with an Euclidean metric, the size of
this update ‖∆θ‖ =

√
∆θT∆θ and therefore the update size depends on the

parameterization of the policy, which often results in unnaturally slow learning
even if higher-order gradient methods were employed. This problem poses the
question whether we can achieve a covariant gradient descent, meaning a gra-
dient descent with respect to an invariant measure of the closeness between the
current policy and the updated policy based upon the distribution of the paths
generated by each of these. Standard measures of distance between probability
distributions are the Kullbach-Leibler divergence dKL(pθ(h) || pθ+∆θ(h)) and the

Chapter 4. Risk-Neutral Policy Gradient 41

Hellinger distance. These two distances can be approximation in first instance
by a second-order Taylor expansion

dKL(pθ(h) || pθ+∆θ(h)) ≈ 1

2
∆θTFθ∆θ

where Fθ is the Fischer information matrix

Fθ =

∫
H
pθ(h)∇θ log pθ(h)∇θ log pθ(h)Tdh

= EH∼pθ
[
∇θ log pθ(H)∇θ log pθ(H)T

] (4.50)

The goal is to find the optimal update ∆θ for the policy parameters so as to
maximize the objective function, under the constraint that the new policy must
be in a radius ε from the previous policy with respect to the Kullbach-Leibler
divergence {

max∆θ J(θ + ∆θ) ≈ J(θ) + ∆θT∇θJ(θ)

s.t. dKL(pθ(h) || pθ+∆θ(h)) ≈ 1
2
∆θTFθ∆θ < ε

The optimal solution is given by

∆θ = αnF
−1
θ ∇θJ(θ)

with

αn =

√
ε

∇θJ(θ)TF−1
θ ∇θJ(θ)

The direction ∇̃θJ(θ) = ∆θ/αn is called the natural gradient and learning al-
gorithms that use this gradient instead of the standard one are called natural
policy gradient algorithms. The strongest theoretical advantage of this approach
is that its performance no longer depends on the parameterization of the policy
and it is therefore safe to use for arbitrary policies. In practice, the learning
process converges significantly faster in most practical cases and requires less
manual parameter tuning of the learning algorithm. The only remaining point
to discuss is how to compute the inverse of the Fischer information matrix. This
is not an easy task and the matrix will usually need to be estimated from sample
trajectories. However, we will see that this matrix can be computed analytically
after reformulating the policy gradient theorem for the parameter-based search
methods such as PGPE. The formal derivation will be presented in Chapter 6
and this result will lead to the Natural PGPE (NPGPE) algorithm [70].

Chapter 5

Risk-Sensitive Policy Gradient

Risk aware decision making plays a crucial role in many fields, such as finance
and process control. In this chapter we discuss some policy gradient methods for
the risk-sensitive formulation of a sequential decision problem. This extension
presents some difficulties which have attracted the interest of many researchers
in the last years. In particular, while in the risk-neutral framework the policy
gradient theorem represents the keystone for all the learning algorithms, in the
risk-sensitive framework the approaches for the episodic setting, the discounted
reward and the average reward formulations are quite different. The goal of this
chapter is to give an overview of the methods found in the literature and to try
to unify them in a way similar to the risk-neutral framework. This chapter and
the following represent the main contribution of this thesis to the policy gradient
literature.

5.1 Risk-Sensitive Framework

In the risk-sensitive framework, in addition to maximizing the rewards, the
agent also wants to control the risk necessary to achieve it. It is thus necessary
to introduce a function Λ : Θ→ R such that Λ(θ) measures the risk associated
with the policy πθ. In an episodic framework where the system always starts
from the same initial state s0, the variance of the total return can be used [103].

Definition 5.1.1 (Start Variance). The start variance is the variance of the
return that can be obtained starting from the start state s0 ∈ S and following
policy πθ

Λstart(θ) = Varπθ (G0 | S0 = s0) = Uπθ(s0)− Vπθ(s0)2 (5.1)

In many application one may want control only the downside risk, that is
the risk of the actual return being below the expected return or the uncertainty
about the magnitude of that difference. This risk may be measured by the
semivariance.

Definition 5.1.2 (Semivariance).

Λdown(θ) = SVar(θ) = Eπθ
[
min {G0 − Eπθ [G0] , 0}2 |S0 = s0

]
(5.2)

44 5.1. Risk-Sensitive Framework

The square root of this quantity is called semideviation. In a continuing
environment, we might consider the long-run variance [82] defined in Section
2.4.

Definition 5.1.3 (Long-Run Variance). The long-run variance Λπ under policy
π is defined as

Λlong-run(θ) = lim
T→∞

1

T
Eπθ

[
T−1∑
t=0

(Rt+1 − ρ(θ))2

]
(5.3)

In order to formalize the trade-off between reward and risk from a mathemat-
ical point of view, we borrow two standard risk-sensitive performance measures
from the financial literature: the mean-variance criterion [69] and the Sharpe
ratio [93].

Definition 5.1.4 (Mean-Variance Criterion). The mean-variance criterion is
defined as

JMV(θ) = J(θ)− χΛ(θ) (5.4)

where χ > 0 is a constant that controls the trade-off between reward and risk.

Definition 5.1.5 (Sharpe Ratio). The Sharpe ratio is defined as

Sh(θ) =
J(θ)√
Λ(θ)

(5.5)

Let us remark that in the financial literature the ratio of the expected return
and the semideviation is called Sortino ratio. In a risk-sensitive policy gradient
algorithm, we try to approximate the optimal parameters that maximize these
objective functions by updating the parameters following the gradient ascent
directions. In the average-reward formulation, the ascent directions are given by

∇θJMV(θ) = ∇θρ(θ)− χ∇θΛ(θ) (5.6)

for the mean-variance criterion, where

∇θΛ(θ) = ∇θη(θ)− 2ρ(θ)∇θρ(θ) (5.7)

and by

∇θ Sh(θ) =
η(θ)∇θρ(θ)− 1

2
ρ(θ)∇θη(θ)

Λ(θ)
√

Λ(θ)
(5.8)

for the Sharpe ratio. Hence, in the risk-sensitive framework it is necessary to
estimate to different gradients: ∇θρ(θ) and ∇θη(θ). The equivalent expressions
for the episodic setting can be obtained by replacing ρ(θ) (resp. η(θ)) with Vθ(s0)
(resp. Uθ(s0)). The estimation of ∇θρ(θ) (resp. Vθ(s0)) has been the focus of
the last chapter. In the next sections, we discuss instead several techniques to
estimate the new gradient η(θ) (resp. Uθ(s0)).

Chapter 5. Risk-Sensitive Policy Gradient 45

5.2 Monte Carlo Policy Gradient

For an episodic environment, the REINFORCE algorithm can be easily extended
to the risk-sensitive framework described above [103]. Indeed, it is sufficient to
adapt its derivation for the average return to the second-moment of return

U(θ) = EH∼pθ
[
G(H)2

]
(5.9)

Applying the likelihood ratio technique, we obtain

∇θU(θ) = EH∼pθ
[
∇θ log pθ(H)G(H)2

]
(5.10)

Similarly to the risk-neutral framework, we can introduce a baseline without
affecting the value of the gradient

∇θU(θ) = EH∼pθ
[
∇θ log pθ(H)(G(H)2 − b)

]
(5.11)

In an episodic environment, we can estimate the gradient via its Monte Carlo
estimate

∇θU(θ) ≈ 1

M

M∑
m=0

∇θ log pθ
(
h(m)

) [
G
(
h(m)

)2 − b
]

(5.12)

where h(m) = {(s(m)
t , a

(m)
t)}T (m)

t=0 are M trajectories of the MDP sampled under
policy πθ. When using a single trajectory, we obtain the following stochastic
gradient estimate

∇θU(θ) ≈ ∇θ log pθ (h)
[
G (h)2 − b

]
(5.13)

Again the baseline can be set so as to minimize the variance of the gradient
estimate

b̂∗k =

∑M
m=1

[
∂θk log pθ

(
h(m)

)]2
G(h(m))2∑M

m=1 [∂θk log pθ (h(m))]
2 (5.14)

Combining this estimate with the one for the average return discussed in Sec-
tion 4.4.1 yields the risk-sensitive Monte Carlo Policy Gradient method, which
is outlined in Algorithm 5.1.
In an episodic setting, as long as we can rewrite the objective function as ex-
pected values on all possible trajectories of the MDP, the likelihood ratio tech-
nique yields an analytical expression for its gradient. Hence, this approach can
be generalized to more complex measures of risk commonly used in finance, such
as the semivariance introduced above. Indeed, the semivariance can be rewritten
as

SVar(θ) = EH∼pθ
[
min {G(H)− EH∼pθ [G(H)] , 0}2] (5.15)

Hence, by the likelihood ratio technique

∇θSVar(θ) = EH∼pθ
[
∇θ log pθ(H) min {G(H)− EH∼pθ [G(H)] , 0}2] (5.16)

From which we can easily derive a Monte Carlo estimate. Since the problems
we will consider in the next chapters are not episodic. In the episodic setting,
the extension of policy gradient algorithms to the risk-sensitive formulation does
not present particular difficulties. For a more thorough presentation as well as
some more advanced learning algorithms, we refer the interested reader to the
extensive work of Tamar et Al. [101], [104], [102], [32].

46 5.3. Policy Gradient Theorem

Algorithm 5.1 Risk-sensitive REINFORCE policy gradient estimate

Input: Policy parameterization θ, number of trajectories M
Output: Risk-sensitive REINFORCE policy gradient estimate
1: Sample M trajectories of the MDP following policy πθ
2: Compute the optimal baseline for the return via Eq. (4.15)
3: Compute the optimal baseline for the squared return via Eq. (5.14)
4: Compute the gradient of the expected return via Eq. (4.13)
5: Compute the gradient of the expected squared return via Eq. (5.12)
6: Compute the risk-sensitive policy gradient via either Eq. (5.6) or (5.8)

5.3 Policy Gradient Theorem

In this section the policy gradient theorem is extended to the risk-sensitive
framework. In the average reward formulation of the control problem, the the-
orem and its derivation are analogous to those for the risk-neutral framework.
This will allow us to derive in a trivial way the risk-sensitive versions of all the
learning algorithms seen in the previous chapter. The risk-sensitive policy gra-
dient theorem for the average-reward formulation was first derived in [82] and
the presentation of this section closely follows the original article.
On the other hand, obtaining an equivalent theorem for the discounted reward
formulation is more challenging. In the article cited above, the authors prove the
theorem under a very strong assumption on the dependence of rewards obtained
at different time steps which is not verified in many applications, among which
is the asset allocation problem that we will consider for the numerical applica-
tions. In the following sections, we will generalize this result by assuming that
the reward can depend on both the initial state and the final state of the system.
Furthermore, we will discuss the problems arising in the discounted setting and
why it is not easy to derive an online policy gradient theorem in this case.
In the original article the authors mostly considered the mean-variance criterion
since all the algorithms they propose are easily adapted to the Sharpe ratio cri-
terion. Here we take the opposite direction and present the algorithms for the
Sharpe ratio, referring to their article for the mean-variance counterparts.
Let us consider a family of parametrized policies πθ, with θ ∈ Θ ⊆ RDθ . The
optimization problem then becomes

max
θ

Sh(θ) =
ρ(θ)√
Λ(θ)

(5.17)

where we denoted by ρ(θ) = ρπθ and similarly for the other quantities. Using
a policy gradient approach, the policy parameters are updated following the
gradient ascent direction.

Chapter 5. Risk-Sensitive Policy Gradient 47

5.3.1 Average Reward Formulation

In the average reward formulation the gradient of the Sharpe ratio is

∇θSh(θ) =
η(θ)∇θρ(θ)− 1

2
ρ(θ)∇θη(θ)

Λ(θ)
√

Λ(θ)
(5.18)

Hence, to compute the update direction, it is sufficient to estimate the various
quantities appearing in this formula. For instance, the average reward ρ(θ), the
average square reward η(θ) and the reward variance Λ(θ) can be approximated
using exponentially weighted moving averages. On the other hand, the gradient
of the average reward ∇θρ(θ) is given by the standard policy gradient theorem
4.5.1. The only term remaining is the gradient of the average square reward
∇θη(θ), which is provided by the risk-sensitive policy gradient theorem

Theorem 5.3.1 (Risk-Sensitive Policy Gradient). Let πθ be a differentiable pol-
icy. The policy gradient for the average square reward is given by

∇θη(θ) = ES∼dθ
A∼πθ

[∇θ log πθ(S,A)Wθ(S,A)] (5.19)

where dθ is the stationary distribution of the Markov chain induced by πθ.

Proof. The proof is analogous to that of the risk-neutral version of theorem.
From the basic relation between state-value function and action-value function,
we have

∇θUθ(s) = ∇θ

∫
A
πθ(s, a)Wθ(s, a)da

=

∫
A

[∇θπθ(s, a)Wθ(s, a) + πθ(s, a)∇θWθ(s, a)] da

Using the Bellman expectation equation for Wθ

∇θWθ(s, a) = ∇θ

[
M(s, a)− ηθ +

∫
S
P(s, a, s′)Uθ(s

′)ds′
]

= −∇θηθ +

∫
S
P(s, a, s′)∇θUθ(s

′)ds′

Hence, plugging in the first equation

∇θUθ(s) =

∫
A
∇θπθ(s, a)Wθ(s, a)da−∇θηθ +

∫
A
πθ(s, a)

∫
S
P(s, a, s′)∇θUθ(s

′)ds′

Integrating both sides with respect to the stationary distribution dθ and noting
that, because of stationarity,∫

S
dθ(s)

∫
A
π(s, a)

∫
S
P(s, a, s′)∇θU(s′)ds′dads =

∫
S
dθ(s)∇θUθ(s)ds

48 5.3. Policy Gradient Theorem

we obtain the result

∇θηθ =

∫
S
dθ(s)

∫
A
∇θπθ(s, a)Wθ(s, a)dads

=

∫
S
dθ(s)

∫
A
πθ(s, a)∇θ log πθ(s, a)Wθ(s, a)dads

= ES∼dθ
A∼πθ

[∇θ log πθ(S,A)Wθ(S,A)]

The result is identical to that for the average reward, provided that we
replace the action-value function Qθ(s, a) by the square action-value function
Wθ(s, a). As in the standard risk-neutral case, a state-dependent baseline can
be introduced in the gradient without changing the result. In particular, by
using the average-adjusted square value function as baseline, we can replace
the average adjusted action-value functions with the following square advantage
function

Bθ(s, a) = Wθ(s, a)− Uθ(s) (5.20)

Thus, the gradients can be written as

∇θη(θ) = ES∼dπ
A∼π

[∇θ log πθ(S,A)Bθ(S,A)] (5.21)

From this result, following the exact same reasoning used in the risk-neutral
framework, we can design a variety of risk-sensitive actor-critic algorithms, which
employ an approximation of the standard and of the square advantage functions
to obtain a more accurate estimate of the objective function.

5.3.2 Risk-Sensitive Actor-Critic Algorithm

In [82], starting from Eqs. (4.37) and (5.21), the authors propose a TD(0) risk-
sensitive actor-critic algorithm for the average reward setting. The algorithm
maintains two critics that estimate the average adjusted value-functions Vθ(S)
and Uθ(S) respectively and are updated via a TD(0) temporal difference scheme.
Let δAn and δBn be the TD errors for residual value and square value functions

δAt = Rt+1 − ρ̂t+1 + V̂ (St+1)− V̂ (St)

δBt = R2
t+1 − η̂t+1 + Û(St+1)− Û(St)

(5.22)

where V̂ , Û , ρ̂ and η̂ are unbiased estimate of Vθ, Uθ, ρ(θ) and η(θ) respectively.
It is easy to show that δAt and δBt are unbiased estimates of the advantage
functions.

Eθ
[
δAt |St = s, At = a

]
= Aθ(s, a)

Eθ
[
δBt |St = s, At = a

]
= Bθ(s, a)

Chapter 5. Risk-Sensitive Policy Gradient 49

An estimate of the gradients can be obtained by replacing the advantage func-
tions with the TD errors

∇θρ(θ) ≈ ∇θ log πθ(St, At)δ
A
t

∇θη(θ) ≈ ∇θ log πθ(St, At)δ
B
t

(5.23)

The value functions are linearly approximated using some feature vectors ΦV :
S→ RDV and ΦU : S→ RDU as follows

V̂ (s) = ψTV ΦV (s)

Û(s) = ψTUΦU(s)
(5.24)

Combining all these ingredients lead to the Risk-Sensitive Average Reward
Actor-Critic (RSARAC), the pseudocode of which is reported in Algorithm 5.2.
Let us notice that the algorithm is a three time-scale stochastic approximation
algorithm, where the learning rates, in addition to the usual Robbins-Monro
conditions, should satisfy

αk < βk < γk

5.3.3 Discounted Reward Formulation

In the discounted reward formulation, we need to adapt the definition of the
Sharpe ratio associated to a policy. Let us suppose that the system always start
in the same initial state s0, then we can introduce the start-state Sharpe ratio
that can be achieved following policy πθ as

Sh(θ) =
Vθ(s0)√
Λθ(s0)

(5.25)

where Vθ and Λθ are the state-value function and the variance-function intro-
duced in Chapter 2. Hence, the gradient of the Sharpe ratio is given by

∇θSh(θ) =
Uθ(s0)∇θVθ(s0)− 1

2
Vθ(s0)∇θUθ(s0)

Λθ(s0)
√

Λθ(s0)
(5.26)

The gradient of the state-value function ∇θVθ(s0) is given by the risk-neutral
policy gradient theorem. Therefore, in order to approximate the gradient of the
Sharpe ratio, we need to estimate the value functions Vθ(s0), Uθ(s0), the variance
Λθ(s0), and the gradient of the square state-value function Uθ(s0). The first three
terms might be easily approximated using moving averages. On the other hand,
estimating ∇θUθ(s0) in the same spirit of the policy gradient theorem is much
more delicate.

Theorem 5.3.2 (Risk-Sensitive Policy Gradient). Let πθ be a differentiable pol-
icy. The policy gradient for the square state-value function is given by

∇θUθ(s0) = ES∼dθ
γ2

(s0,·)
A∼πθ(S,·)
S′∼P(S,A,·)

[∇θ log πθ(S,A)Wθ(S,A)

+ 2γR(S,A)∇θVθ(S
′) + 2γCθ(S,A)]

(5.27)

50 5.3. Policy Gradient Theorem

Algorithm 5.2 Risk-Sensitive Average Reward Actor-Critic algorithm

Input:
• Initial actor parameters θ0

• Initial critics parameters ψ0
V and ψ0

U

• Actor learning rate {αk}
• Critics learning rate {βk}
• Averages learning rate {γk}

Output: Approximation of the optimal policy πθ∗ ≈ π∗

1: repeat
2: Observe tuple < sk, ak, rk+1, sk+1 > sampled from the MDP.
3: Update averages

ρ̂k+1 = (1− γk)ρ̂k + γkrk+1

η̂k+1 = (1− γk)ρ̂k + γkr
2
k+1

4: Compute TD errors

δAk = rk+1 − ρ̂k+1 + (ψkV)TΦV (sk+1)− (ψkV)TΦV (sk)

δBk = r2
k+1 − η̂k+1 + (ψkU)TΦU(sk+1)− (ψkU)TΦU(sk)

5: Update critic parameters

ψk+1
V = ψkV + βkδ

A
k ΦV (sk)

ψk+1
U = ψkU + βkδ

B
k ΦU(sk)

6: Update actor parameters θk+1 = θk + αkŜh(θk).
7: k ← k + 1
8: until converged

where dθγ2(s0, ·) is the γ2-discounted visiting distribution over states starting from
the initial state s0 and following policy πθ

dθγ2(s0, x) =
∞∑
k=0

γ2kP(k)
θ (s0, x) (5.28)

Proof. From the basic relation between square state-value function and the
square action-value function, we have

∇θUθ(s) = ∇θ

∫
A
πθ(s, a)Wθ(s, a)da

=

∫
A

[∇θπθ(s, a)Wθ(s, a) + πθ(s, a)∇θWθ(s, a)] da

Chapter 5. Risk-Sensitive Policy Gradient 51

Hence, using the Bellman expectation equation for Wθ

∇θWθ(s, a) = ∇θ

[
M(s, a) + 2γR(s, a)TaVπ(s) + 2γCθ(s, a) + γ2TaUθ(s)

]
= 2γR(s, a)∇θTaVθ(s) + 2γ∇θCθ(s, a) + γ2∇θTaUθ(s)

=

∫
S
P(s, a, s′) [2γR(s, a)∇θVθ(s

′) + 2γ∇θCθ(s, a) +∇θUθ(s
′)] ds′

where we assumed to be able to exchange the gradient and the integral. Plugging
in the first equation and exploiting the fact that

∫
SP(s, a, s′)ds′ = 1, we obtain

∇θUθ(s) =

∫
A
πθ(s, a)

∫
S
P(s, a, s′)[∇θ log πθ(s, a)Wθ(s, a)

+ 2γR(s, a)∇θVθ(s
′) + 2γ∇θCθ(s, a) +∇θUθ(s

′)]ds′da

Unrolling ∇θUθ infinite times and denoting by P(k)
θ (s, x) the probability of going

from state s to state x in k steps under policy πθ, we obtain

∇θUθ(s) =
∞∑
k=0

γ2k

∫
S
P(k)
θ (s, x)

∫
A
πθ(x, a)

∫
S
P(x, a, x′)[∇θ log πθ(x, a)Wθ(x, a)

+ 2γR(x, a)∇θVθ(x
′) + 2γ∇θCθ(x, a)]dx′dadx

Defining the γ2-discounted visiting distribution of state x starting from state s
as

dθγ2(s, x) =
∞∑
k=0

γ2kP(k)
θ (s, x)

we have the result

∇θUθ(s) =

∫
S
dθγ2(s, x)

∫
A
πθ(x, a)

∫
S
P(x, a, x′)[∇θ log πθ(x, a)Wθ(x, a)

+ 2γR(x, a)∇θVθ(x
′) + 2γ∇θCθ(x, a)]dx′dadx

Compared to risk-sensitive policy gradient theorem in the average reward
formulation, we have two additional terms: one term depending on the gradient
of the state-value function at the next state and another term depending on the
covariance between the one-step reward and the successive return. These terms
are very difficult to approximate online in a continuing environment. Therefore,
the result is of practical interest only for an episodic environment where the
experiments have a finite (possibly random) lifespan. Since the application we
considered does not fall in this category, we will not discuss any risk-sensitive
algorithm for the discounted formulation.

Chapter 6

Parameter-Based Policy
Gradient

The learning algorithms derived from the policy gradient theorems look for a
set of optimal controller parameters by perturbing the control signal. Indeed,
the policy gradient theorem holds only for stochastic policies, which explore in
the action space. However, a significant problem with this sampling strategy is
that the high variance in their gradient estimates leads to slow convergence. On
the other hand, parameter-based algorithms such as PGPE look for an optimal
solution to the control problem by directly perturbing the controller parame-
ters. These algorithms thus employ a deterministic controller and explore in
the parameters space. However, in its original version, PGPE was conceived for
episodic environments and extended to continuing environment by artificially
truncating the experiments lifespan. In this section we propose a parameter-
based version of the policy gradient theorem, which can be used to derive online
learning algorithms both in the risk-neutral and the risk-sensitive frameworks.
The following discussion starts from and generalizes the results presented in [70],
where the authors propose an online natural PGPE algorithm for risk-neutral
problems. Given the difficulties to extend the policy gradient theorem to the
risk-sensitive discounted formulation, here we consider only the average reward
formulation.

6.1 Risk-Neutral Framework

Let us consider a deterministic controller F : S × Θ → A that, given a set of
parameters θ ∈ Θ ⊆ RDθ , maps a state s ∈ S to an action a = F (s; θ) = Fθ(s) ∈
A. The policy parameters are drawn from a probability distribution pξ, with
hyper-parameters ξ ∈ Ξ ⊆ RDξ . Combining these two hypotheses, the agent
follows a stochastic policy πξ defined by

∀B ∈ A, πξ(s, B) = π(s, B; ξ) =

∫
Θ

pξ(θ)1Fθ(s)∈Bdθ (6.1)

54 6.1. Risk-Neutral Framework

In the risk-neutral setting, the goal of the agent is to find a set of hyper-
parameters ξ∗ that maximizes the average reward obtained over a single time-
step

ξ∗ = arg max
ξ

ρ(ξ)

Following the policy gradient approach, we iteratively update the parameters in
the gradient ascent direction

ξk+1 = ξk + αk∇ξρ(ξk)

Theorem 6.1.1 (Risk-Neutral Parameter-Based Policy Gradient). Let pξ be
differentiable with respect to ξ, then the gradient of the average reward is given
by

∇ξρ(ξ) = ES∼dξ
θ∼pξ

[
∇ξ log pξ(θ)Qπξ(S, θ)

]
(6.2)

where we denoted Qξ(S, θ) = Qξ(S, Fθ(S)).

Proof. Thanks to the likelihood ratio technique, we have

∇ξπξ(s, a) =

∫
Θ

∇ξpξ(θ)1Fθ(s)=adθ

=

∫
Θ

pξ(θ)∇ξ log pξ(θ)1Fθ(s)=adθ

= Eθ∼pξ
[
∇ξ log pξ(θ)1Fθ(s)=a

]
hence, the policy πξ is differentiable with respect to ξ and the standard policy
gradient theorem holds

∇ξρ(ξ) = ES∼dξ
A∼πξ

[∇θ log πθ(S,A)Qθ(S,A)]

=

∫
S
dξ(s)

∫
A
πξ(s, a)∇ξ log πξ(s, a)Qπξ(s, a)dads

=

∫
S
dξ(s)

∫
A
∇ξπξ(s, a)Qπξ(s, a)dads

Plugging the first equation in the inner integral and exchanging the integral over
the action space with the expectation yields∫

A
∇ξπξ(s, a)Qπξ(s, a)da = Eθ∼pξ

[
∇ξ log pξ(θ)

∫
A
1Fθ(s)=aQπξ(s, a)da

]
= Eθ∼pξ

[
∇ξ log pξ(θ)Qπξ(s, Fθ(s))

]
= Eθ∼pξ

[
∇ξ log pξ(θ)Qπξ(s, θ))

]
Finally, plugging this equation in the policy gradient theorem, we obtain the
result

∇ξρ(ξ) = ES∼dξ
θ∼pξ

[
∇ξ log pξ(θ)Qπξ(S, θ)

]

Chapter 6. Parameter-Based Policy Gradient 55

This expression is very similar to the original policy gradient theorem, but
the expectation is taken over the controller parameters instead of the action
space and we have the likelihood score the controller parameters distribution
instead of that of the stochastic policy. Thus, we might interpret this result as if
the agent directly selected the parameters θ according to a policy pξ, which then
lead to an action through the deterministic mapping Fθ. Therefore, it is as if
the agent’s policy was in the parameters space and not in the control space. As
in the standard policy gradient methods, we can add a state-dependent baseline
Bξ(S) to the gradient without increasing the bias

∇ξρ(ξ) = E
[
∇ξ log pξ(θ)

(
Qπξ(S, θ)−Bξ(S)

)]
(6.3)

Indeed,

E [∇ξ log pξ(θ)B(S)] =

∫
S
dξ(s)

∫
Θ

pξ(θ)∇ξ log pξ(θ)Bξ(s)dθds

=

∫
S
dξ(s)Bξ(s)ds

∫
Θ

∇ξpξ(θ)dθ︸ ︷︷ ︸
∇ξ1=0

= 0

This result can be used to design several actor-only or actor-critic algorithms
that are the parameter-based equivalents of the traditional control-based policy-
gradient algorithms discussed in the previous sections. Algorithm 6.1 reports
the pseudocode for a parameter-based actor-critic algorithm, which is one of the
learning methods that will be used in the numerical applications.

6.1.1 Parameter-Based Natural Policy Gradient

Given the interpretation of pξ as a parameter-based stochastic policy, we can eas-
ily generalize the natural policy gradient methods by introducing the parameter-
based Fischer information matrix

Fξ = Eθ∼pξ
[
∇ξ log pξ(θ)∇θ log pξ(θ)

T
]

(6.4)

Natural parameter-based policy gradient methods update the hyper-parameters
following the natural gradient direction

∇̃ξρ(ξ) = F−1
ξ ∇ξρ(ξ) (6.5)

The advantage of this approach is that, for some particular probability distribu-
tions, the inverse of the Fisher information matrix can be computed analytically.
This is for instance the case if the controller parameters are normally distributed.
This choice leads to an efficient online algorithm called Natural PGPE (NPGPE)
[70]. More in detail, suppose that

θ ∼ N (µ,ΓΓT)

56 6.1. Risk-Neutral Framework

Algorithm 6.1 Actor-Critic PGPE

Input:
• Deterministic controller F : S×Θ→ A
• Initial hyper-parameters ξ0

• Initial critic parameters ψ0

• Learning rate {αk}
• Momentum parameter λ

Output: Approximation of the optimal hyper-parameters ξ∗

1: Initialize k = 0, average reward ρ̂0 = 0 and eligibility trace e−1 = 0
2: repeat
3: Observe current state sk
4: Simulate controller parameters θk ∼ pξk
5: Perform action ak = Fθk(sk) and receive reward rk+1

6: Update average reward estimate ρ̂k+1 = ρ̂k + αk(rk+1 − ρ̂k)
7: Compute TD error δ̂k = rk+1 − ρ̂k+1 + V̂ψk(sk+1)− V̂ψk(sk)
8: Update critic parameters ψk+1 = ψk + αkδ̂k∇ψV̂ψk(sk) .
9: Update eligibility trace ek = λek−1 +∇ξ log pξ(θk)

10: Update hyper-parameters ξk+1 = ξk + αkδ̂
k
ψk
ek.

11: k ← k + 1
12: until converged

where µ ∈ Rn is the controller parameters mean and Γ ∈ Rn×n denotes the
Cholesky factor of the distribution covariance matrix Σ. The hyper-parameters
are thus given by

ξ = (µ,Γ1,Γ2, ...,Γn) ∈ R
n2+3n

2

where we denoted Γk = ΓTk,k:n the k-th column of the Cholesky factor. For this
distribution, the parameter-based policy gradient is given by

∇µ log pξ(θ) = Σ−1(θ − µ) (6.6)

∇Γk log pξ(θ) =
[
0 Ik̄

] (
Γ−1Y − diag

(
Γ−1
))
ek (6.7)

where Y = Γ−T (θ−µ)(θ−µ)TΓ−1. These formulas might be used in a standard
PGPE algorithm. However, the inversion of Γ is computationally expensive
except for some very simple cases, for instance when Σ is a diagonal matrix. In
[97], the authors proved that the Fisher information matrix for this distribution
is a block diagonal matrix Fξ = diag{B0, B1, ..., Bn} where

B0 = Σ−1

Bk =
[
0 Ik̄

]
Γ−1(eke

T
k + I)Γ−T

[
0

Ik̄

]

where ek is the k-th element of the canonical basis of Rn and Ik̄ is n − k + 1-
dimensional identity matrix. In [4], the authors found the following analytical

Chapter 6. Parameter-Based Policy Gradient 57

expression for the inverse of each block
B−1

0 = Σ

B−1
k =

[
0 Ik̄

]
ΓT

([
0 0

0 Ik̄

]
− 1

2
eke

T
k

)
Γ

[
0

Ik̄

]

Multiplying the policy gradients by the inverse Fisher informatio matrix F−1
ξ =

diag{B−1
0 , B−1

1 , ..., B−1
n }, we obtain the following natural policy gradients

∇̃µ log pξ(θ) = θ − µ (6.8)

∇̃Γ log pξ(θ) =

(
triu(Y)− 1

2
diag(Y)− 1

2
I

)
Γ (6.9)

The natural policy gradients can be computed in O(n3), which is a sensible im-
provement compared to the O(n6) complexity for the standard PGPE updates.
Let us remark that for an independent multi-variate Gaussian distribution, i.e.
a diagonal covariance matrix Σ, the updates can be performed in O(n). How-
ever, this approach neglects the dependences among parameters and could lead
to suboptimal performances. On the other hand. updating the full Cholesky
factor introduces many more parameters to be learned which may slow down
the convergence of the method. The resulting NPGPE algorithm is reported in
Algorithm 6.2. Given the parameter-based policy gradient algorithm, we can
easily combine the actor-critic approach and the natural gradient technique in a
parameter-based natural actor-critic algorithm, which is outlined in Algorithm
6.3.

58 6.1. Risk-Neutral Framework

Algorithm 6.2 NPGPE

Input:
• Deterministic controller F : S×Θ→ A
• Initial hyper-parameters ξ0

• Learning rate {αk}
• Momentum parameter λ

Output: Approximation of the optimal hyper-parameters ξ∗

1: Initialize k = 0, average reward ρ̂0 = 0 and eligibility trace e−1 = 0
2: repeat
3: Observe current state sk
4: Draw ζk ∼ N (0, In)
5: Compute controller parameters θk = µk + ΓT ζk
6: Perform action ak = Fθk(sk) and receive reward rk+1

7: Update average reward estimate ρ̂k+1 = ρ̂k + αk(rk+1 − ρ̂k)
8: Compute natural policy gradients

∇̃µ log pξk(θk) = θk − µk

∇̃Γ log pξk(θk) =

(
triu(ζkζ

T
k)− 1

2
diag(ζkζ

T
k)− 1

2
I

)
Γ

9: Update eligibility trace ek = λek−1 +∇ξ log pξk(θk)
10: Update hyper-parameters ξk+1 = ξk + αk(rk+1 − ρ̂k)ek
11: k ← k + 1
12: until converged

Chapter 6. Parameter-Based Policy Gradient 59

Algorithm 6.3 Natural Actor-Critic PGPE

Input:
• Deterministic controller F : S×Θ→ A
• Initial hyper-parameters ξ0

• Initial critic parameters ψ0

• Actor learning rate {αk}
• Critics learning rate {βk}
• Momentum parameter λ

Output: Approximation of the optimal hyper-parameters ξ∗

1: Initialize k = 0, average reward ρ̂0 = 0 and eligibility trace e−1 = 0
2: repeat
3: Observe current state sk
4: Draw ζk ∼ N (0, In)
5: Compute controller parameters θk = µk + ΓT ζk
6: Perform action ak = Fθk(sk) and receive reward rk+1

7: Update average reward estimate ρ̂k+1 = ρ̂k + αk(rk+1 − ρ̂k)
8: Compute TD error δ̂k = rk+1 − ρ̂k+1 + V̂ψk(sk+1)− V̂ψk(sk)
9: Update critic parameters ψk+1 = ψk + αkδ̂k∇ψV̂ψk(sk) .
10: Compute natural policy gradients

∇̃µ log pξk(θk) = θk − µk

∇̃Γ log pξk(θk) =

(
triu(ζkζ

T
k)− 1

2
diag(ζkζ

T
k)− 1

2
I

)
Γ

11: Update eligibility trace ek = λek−1 + ∇̃ξ log pξk(θk)

12: Update hyper-parameters ξk+1 = ξk + αkδ̂kek.
13: k ← k + 1
14: until converged

60 6.2. Risk-Sensitive Framework

6.2 Risk-Sensitive Framework

In the risk-sensitive setting, the agent tries to find a policy that maximizes the
Sharpe ratio. Following the same reasoning of the control-based approach, we
simply need to estimate the gradient of the average square reward η(ξ). The
parameter-based policy gradient generalizes without any additional effort

Theorem 6.2.1 (Risk-Sensitive Parameter-Based Policy Gradient). Let pξ be
differentiable with respect to ξ, then the gradient of the average square reward is
given by

∇ξη(ξ) = ES∼dξ
θ∼pξ

[
∇ξ log pξ(θ)Wπξ(S, θ)

]
(6.10)

where we denoted Wξ(S, θ) = Wξ(S, Fθ(S)).

Again, we can add a state-dependent baseline Bξ(S) to the gradient without
increasing the bias

∇ξη(ξ) = E
[
∇ξ log pξ(θ)

(
Wπξ(S, θ)−Bξ(S)

)]
(6.11)

This leads in a straightforward way to a Risk-Sensitive PGPE (RSPGPE) algo-
rithm.

6.2.1 Parameter-Based Natural Policy Gradient

The natural policy gradient idea can be trivially extended to the gradient of the
average square reward. This leads to the following natural gradient estimate

∇̃ξη(ξ) = F−1
ξ ∇ξη(ξ)

= F−1
ξ ES∼dξ

θ∼pξ

[
∇ξ log pξ(θ)

(
Wπξ(S, θ)−Bξ(S)

)]
= ES∼dξ

θ∼pξ

[
∇̃ξ log pξ(θ)

(
Wπξ(S, θ)−Bξ(S)

)] (6.12)

which can be easily estimated via Monte Carlo. Combining this natural gradient
with the one for the average reward, we obtain the natural policy gradient for
the Sharpe ratio

∇̃ξSh(ξ) = F−1
ξ ∇ξSh(ξ) =

η(ξ)∇̃ξρ(ξ)− 1
2
ρ(ξ)∇̃ξη(ξ)

Λ(ξ)
√

Λ(ξ)
(6.13)

Hence, it is trivial to derive a Risk-Sensitive Natural PGPE (RSNPGPE) and
its pseudocode reported in Algorithm 6.4. Similarly to the risk-neutral case, it
is simple to introduce a critic both for the average reward and for the average
square reward.

Chapter 6. Parameter-Based Policy Gradient 61

Algorithm 6.4 Risk-Sensitive NPGPE

Input:
• Deterministic controller F : S×Θ→ A
• Initial hyper-parameters ξ0

• Learning rate {αk}
• Momentum parameter λ

Output: Approximation of the optimal hyper-parameters ξ∗

1: Initialize k = 0, average reward ρ̂0 = 0, average square reward η̂0 = 0 and
eligibility trace e−1 = 0

2: repeat
3: Observe current state sk
4: Draw ζk ∼ N (0, In)
5: Compute controller parameters θk = µk + ΓT ζk
6: Perform action ak = Fθk(sk) and receive reward rk+1

7: Update average reward estimate ρ̂k+1 = ρ̂k + αk(rk+1 − ρ̂k)
8: Update average square reward estimate η̂k+1 = η̂k + αk(r

2
k+1 − η̂k)

9: Compute natural policy gradients

∇̃µ log pξk(θk) = θk − µk

∇̃Γ log pξk(θk) =

(
triu(ζkζ

T
k)− 1

2
diag(ζkζ

T
k)− 1

2
I

)
Γ

10: Update eligibility trace ek = λek−1 +∇ξ log pξk(θk)

11: Compute natural gradient ∇̃ξρ(ξk) = ek (rk+1 − ρ̂k)
12: Compute natural gradient ∇̃ξη(ξk) = ek

(
r2
k+1 − η̂k

)
13: Compute Sharpe ratio natural gradient

∇̃ξSh(ξk) =
η̂k∇̃ξρ(ξk)− 1

2
ρ̂k∇̃ξη(ξk)

Λ̂k

√
Λ̂k

14: Update hyper-parameters ξk+1 = ξk + αk∇̃ξSh(ξk)
15: k ← k + 1
16: until converged

Chapter 7

Financial Applications of
Reinforcement Learning

Both in the academia and in the financial industry there has always been a
strong interest in developing automated systems able to take financial decisions
in the place of humans. The advent of computers made it possible to analyze
the huge amount of data available in the markets and to discover patterns that
can be exploited automatically by a program, in what is known as a statistical
arbitrage. However, finding these signals and transform them in a profit is not
straightforward. In Section 7.1 we briefly discuss the Efficient Market Hypothesis
(EMH) which states that it is impossible to ”beat the market” because stock
market efficiency causes existing share prices to always incorporate and reflect
all relevant information. However, the success of many quantitative hedge-funds
over the years provides strong evidence that real markets are not so efficient as
they are often considered in the literature. We thus discuss some weaker versions
of market efficiency which should always be kept in mind when trying to develop
automated trading systems able to outperform the market. In this chapter, out
of the many techniques that can be tested to achieve this goal, we will focus
on reinforcement learning. In Section 7.2, we describe the relevant works that
can be found in the literature. This presentation will give an overview of the
spectrum of financial problems that can be tackled with RL techniques. In
Section 7.3, we present in detail the problem of asset allocation with transaction
costs, which will be used for the numerical applications.

7.1 Efficient Market Hypothesis

When trying to forecast future returns of speculative assets, one should always
keep in mind the Efficient Market Hypothesis (EMH) [106]. In its most basic
form, the Efficient Market Hypothesis (EMH) states that asset returns cannot be
predicted, otherwise many investors would exploit them to generate unlimited
profits. Such a “money-machine” producing unlimited wealth is impossible in a
stable economy. This hypothesis seems intuitively sensible because as soon as an
inconsistency appears in the market, there will be an agent who exploits it and

64 7.1. Efficient Market Hypothesis

makes the opportunity disappear. Hence, forecasting models “self-destructs” in
an efficient market which auto-corrects the emerging anomalies. That might
appear as the end of the forecasters’ ambitions. However this idea is not com-
pletely convincing and papers continue to appear attempting to forecast stock
returns, usually with very little success. On the other hand, a number of success-
ful stories of quantitative hedge-funds which consistently made profits looking
for statistical arbitrages make us doubt the EMH. In the next sections we give
more formal definitions of the EMH in its various forms and discuss some of the
critics.

7.1.1 Formal Definitions of the EMH

Definition 7.1.1 (Efficient Market Hypothesis). A market is efficient with re-
spect to information set Ft if it is impossible to make economic profits by trading
on the basis of information set Ft.

In the previous definition, economic profits stand for risk adjusted returns
net of all costs. In other words, financial markets are efficient if they do not allow
investors to earn above-average risk-adjusted returns. The EMH is in essence an
extension of the zero-profit competitive equilibrium condition from the certainty
world of classical price theory to the dynamic behavior of prices in speculative
markets under conditions of uncertainty [47]. The application of the zero profit
condition to speculative markets under the assumption of zero storage costs and
zero transactions costs gives us the result that asset prices (after adjustment for
required returns) will behave as a martingales with respect to the information
set {Ft}. Several versions of the EMH have been proposed in the literature
depending on the information set considered.

Definition 7.1.2 (Weak Form of the EMH). Ft represents only the information
contained in the past price history of the market as of time t.

Definition 7.1.3 (Semi-Strong Form of the EMH). Ft represents all informa-
tion publicly available at time t.

Definition 7.1.4 (Strong Form of the EMH). Ft represents all information
(public and private) known to anyone at time t.

Let us notice that it is not usually asserted that a market is efficient with
respect to inside information since this information is not widely accessible and
hence cannot be expected to be fully incorporated in the current price. The
empirical evidence presented in [67] is largely supportive of weak form and semi-
strong form efficiency, while [38] reports stronger evidence of predictability in
returns based both on lagged values of returns and publicly available informa-
tion.

Chapter 7. Financial Applications of Reinforcement Learning 65

7.1.2 Critics to the EMH

The intellectual dominance of the efficient-market revolution has been strongly
challenged by economists who stress psychological and behavioral elements of
stock-price determination and by econometricians who argue that stock returns
are, to a considerable extent, predictable. Still, in [66], the author expresses the
following pro-EMH view

What I do not argue is that the market pricing is always perfect.
After the fact, we know that markets have made egregious mistakes
as I think occurred during the recent Internet bubble. Nor do I
deny that psychological factors influence securities prices. But I
am convinced that Benjamin Graham was correct in suggesting that
while the stock market in the short run may be a voting mechanism,
in the long run it is a weighing mechanism. True value will win out
in the end. And before the fact, there is no way in which investors
can reliably exploit any anomalies or patterns that might exist. I
am skeptical that any of the “predictable patterns” that have been
documented in the literature were ever sufficiently robust so as to
have created profitable investment opportunities and after they have
been discovered and publicized, they will certainly not allow investors
to earn excess returns.

This seems to be contradicted by the numerous examples of successful quantita-
tive hedge funds that would suggest that it is possible, even if extremely difficult,
to identify consistent and profitable patterns in market dynamics. Medallion,
the flagship fund of Renaissance Technologies, one of the most successful hedge
fund ever, returned 39 percent per year on average between the end of 1989
and 2006. Its founder Jim Simons, a mathematician who gave notable contri-
butions to string theory, a code breaker who worked worked at the Pentagon’s
Institute for Defense Analyses during the cold war, a lifelong speculator and
entrepreneur, assembled one of the most successful and secretive group of quan-
titative researchers ever. The following is the only information available on its
website1

Renaissance Technologies LLC is an investment management com-
pany dedicated to producing superior returns for its clients and em-
ployees by adhering to mathematical and statistical methods

This does not shed any light on how RenTech achieves its extraordinary re-
sults and the fact that almost nobody leaves the firm made its strategies one of
the best-kept secret in the world. Some may argue that using successful hedge
funds as a counterexample to market efficiency is affected by the well-known
survivorship bias, that is the logical error of concentrating on the people or
things that “survived” some process and inadvertently overlooking those that
did not because of their lack of visibility. This bias can lead to overly optimistic

1https://www.rentec.com/

https://www.rentec.com/

66 7.2. Bibliographical Survey

beliefs because failures are ignored and to the false belief that the successes in a
group have some special property, rather than just coincidence. In our opinion,
RenTech’s success is not a coincidence and perfectly shows how difficult it is to
identify and profitably exploit market inefficiencies. For a richer account of this
(and other) legendary hedge fund, the reader may refer to [68].
There is another important point that is worth mentioning. It is often argued
that there is a “file drawer” bias in published studies due to the difficulty associ-
ated with publishing empirical studies that find insignificant effects. In studies
of market efficiency, a reverse bias may be present. A researcher who genuinely
believes he or she has identified a method for predicting the market has little
incentive to publish the method in an academic journal and would presumably
be tempted to sell it to an investment bank or to an hedge fund.

7.2 Bibliographical Survey

Many financial applications can be represented as sequential decision problems
and can be naturally tackled with the reinforcement learning techniques pre-
sented in the previous chapters. Consider for instance the process of trading,
in which an investor tries to select the assets that will perform the best in the
future and will allow him to realize a profit. This activity is well depicted as an
online decision problem involving the two critical steps of market representation
and optimal action execution.
Financial markets are extremely complex systems, typically characterized by
a large degree of non-stationarity, non-linearity and low signal-to-noise ratios.
The first challenge is thus how to summarize the financial environment or, put
in more statistical terms, how to design powerful features to be used as input of
predictive models. The search for good indicators has been extensively studied
in quantitative finance and econometrics. In particular, technical analysis is a
security analysis methodology for forecasting the direction of prices through the
study of past market data, primarily price and volume [64]. Whether techni-
cal analysis actually works is a matter of controversy. Methods vary greatly,
and different technical analysts can sometimes make contradictory predictions
from the same data. Many investors claim that they experience positive returns,
but academic appraisals often find that it has little predictive power. Another
issue is that designing hand-crafted features requires a deep knowledge of the
financial markets. A solution to this drawback is offered by DL, a branch of
machine learning based on a set of algorithms that attempt to model high level
abstractions in data by using a deep graph with multiple processing layers, com-
posed of multiple linear and non-linear transformations [12]. In the last years,
deep learning has been in the spotlight as its application to fields like com-
puter vision, automatic speech recognition, natural language processing, audio
recognition and bioinformatics have produced state-of-the-art results on various
tasks. These successes have attracted the interest of the financial community
and the literature offers many examples of how deep neural network can be used

Chapter 7. Financial Applications of Reinforcement Learning 67

to predict future prices and invest on these forecasts. For example, the inter-
ested reader may refer to [52], [85], [62].
The second challenge is how to select the best possible action based on this
representation of the market. This is not a trivial task, as the action selected
by the investor may influence the market and modify the opportunities that
will be available to him in the future. A simple example of this situation is the
phenomenon of slippage, which consists in a loss due to the difference between
the expected price of a trade and the price at which the trade is executed. This
is common in limit-order books when there is no sufficient liquidity to com-
plete a market order at the best available price and the order “walks the book”,
obtaining progressively worse prices. Another difficulty is that the investor’s
actions may impact its profits in a non-trivial way. For example, frequently
changing its positions or entering in short positions will lead to large trans-
action costs which will undermine the performance of even the most accurate
predictive trading strategy, such as those based on deep neural networks. Hence,
these approaches are typically viable only on long investment horizons as their
performances quickly degrade on shorter horizons because of transaction costs.
Therefore, an investor should take into account the dynamic behavior of the
market and of the returns he obtains. Reinforcement learning appears as the
natural approach to determine the optimal strategy to be employed. In the
following sections we briefly present some of the financial applications of rein-
forcement learning that can be found in the literature. This will give us a better
feeling for the intrinsic difficulties of the financial markets and for how they can
be tackled.

7.2.1 Asset Allocation with Transaction Costs

One of the first financial applications of reinforcement learning has been the
problem of asset allocation with transaction costs. As discussed in the previ-
ous section, transaction costs introduce a dependence between the sequence of
positions selected by the investor and its future returns. In this setting, pre-
dictive trading systems typically perform poorly as they do not explicitly take
this mechanism into account. Therefore, a profitable trading system requires
prior decisions as input in order to properly take into account the effects of
transactions costs, market impact, and taxes. For this reason, in [73] the au-
thors propose to learn a trading strategy that maximizes various performance
measures, such as profit, economic utility, the Sharpe ratio and a differential
Sharpe ratio, by Recurrent Reinforcement Learning (RRL) [46]. This consists
in a policy gradient algorithm where the investor’s policy is recurrent, since
it considers the action selected at the previous step as an input. This intro-
duces a recursive dependence on the parameters of the policy and the policy
is updated iteratively using standard techniques for recurrent neural networks,
such as Backpropagation Through Time (BPTT) [108] or Real-Time Recurrent
Learning (RTRL) [110]. The trading strategy learned in this way results prof-
itable both on simulated and historical data. Moreover, the strategy reacts as

68 7.2. Bibliographical Survey

expected to transaction costs by reducing the reallocation frequency. In [71], the
authors extend their previous work by comparing the performance of recurrent
reinforcement learning with two standard value-based algorithms: TD-learning
and Q-learning. These papers are among the first applications of reinforcement
learning to finance to be published. Very similar approaches are presented in
[31], [30], [42], [29], [34] and [61]. In [36], the authors improve the parametric
strategy used by the trading system by introducing a deep neural network that
uses some fuzzy representation of past returns as input. This approach greatly
improves the representation ability of the policy which is able to extract much
more complex features from historical data. This learned strategy is shown to
be profitable both on historical data and outperforms purely predictive trading
systems when transaction costs are considered. The asset allocation problem
will be investigated further in the last section and will be used to test the state-
of-the-art methods presented in the previous chapters.

7.2.2 Optimal Order Execution in Limit Order Book

Another problem that has been tackled with reinforcement learning is the op-
timal order execution, which consists in determining how to modify a portfo-
lio from a given starting composition to a specified final composition within a
specified period of time so as to maximize the expected revenue of trading (or
equivalently minimizing the costs), with a suitable penalty for the uncertainty
of revenue (or cost) [5]. In its simplest form, the problem can be formulated as
follows: how to buy (or symmetrically sell) V shares of a given stock withing a
time horizon T so as to minimize the total cost payed. The optimal execution
problem can be viewed as an important horizontal aspect of quantitative trad-
ing, since virtually every strategy’s profitability will depend on how well it is
implemented.
This problem is of particular interest for a brokerage firm which may be asked
by a client to execute an order for a certain number of shares before a given
deadline. The broker will try to fulfill the client’s order so as to maximize its
revenue. Let us consider some naive strategies: the broker may decide to buy all
the shares required straight away and wait until the deadline. Without consid-
ering market impact, the price to pay is known and no uncertainty is involved.
However, the broker might obtain a better price before the client’s deadline. This
strategy involves more risk, since the price could move in the wrong direction
and the broker could end up paying more than what it could have by following
the previous strategy. If the order is sufficiently large compared to the liquidity
available for a stock, market impact cannot be neglected and the broker will
obtain progressively worse prices as the order is filled. Therefore, it is common
to break large orders into smaller chunks so as to minimize slippage. In practice,
the quality of execution is typically measured by the implementation shortfall,
that is the difference between the decision price and the final execution price
(including commissions, taxes, etc.) [48]. It seems natural to model the optimal
execution problem in the stochastic optimal control framework: the goal of the

Chapter 7. Financial Applications of Reinforcement Learning 69

broker is to determine the execution schedule that minimize the implementation
shortfall. Let us observe that the basic formulation of the problem given above
is finite-horizon and therefore the optimal policy will be time-dependent.
In [75], the authors present the first large-scale application of reinforcement
learning to the optimal execution problem in an electronic limit order book and
show that a custom version of Q-learning results in substantial improvements
in performance with respect to other usual execution policies. This approach is
extended in [45], where the authors propose a hybrid approach which enhances a
given analytical solution with attributes from the market microstructure. Using
the Almgren-Chriss (AC) model [5] as a base, for a finite liquidation horizon
with discrete trading periods, the algorithm determines the proportion of the
AC-suggested trajectory to trade based on prevailing volume/spread attributes.

7.2.3 Smart Order Routing Across Dark Pools

Reinforcement learning has also been applied to the Smart Order Routing (SOR)
problem. While the optimal execution problem consists in how to split an order
across time, in the smart order routing problem one looks for the optimal split
of an order across different trading venues. An increasingly popular source of
liquidity for traders is represented by dark pools, a recent type of stock exchange
in which information about outstanding orders is deliberately hidden in order to
minimize the market impact of large trades [28]. In a typical dark pool, buyers
and sellers submit unpriced orders to buy and sell securities, with the price de-
rived exogenously from another market at a specified time. Upon submitting an
order to buy (or sell) V shares, a trader is put in a queue of buyers (or sellers)
awaiting transaction. Matching between buyers and sellers occurs in sequential
arrival of orders, similar to a lit exchange. However, unlike a lit exchange, no
information is provided to traders about how many parties or shares might be
available in the pool at any given moment. Thus in a given time period, a sub-
mission of V shares results only in a report of how many shares up to V were
executed.
The SOR problem can be formulated as follows: given K dark pools, what is
the optimal way of splitting an order to buy V shares of a stock across these
venues so as to maximize the completion rate. In [40], the authors propose to
determine the optimal allocation using an approach similar to the reinforcement
learning techniques used for multi-armed bandits [41]. What differentiates the
SOR problem from most standard learning settings is that if an order for Vk
shares is submitted to venue k and the order is completely filled, we only learn
that at venue k the sell capacity is at least Vk, not the precise number of shares
that could have been bought there. This mechanism is known as censoring in
the statistics literature. The good performances of this algorithm demonstrate
once again the potential of reinforcement learning in the field of algorithmic
trading, where one seeks to optimize properties of a specified trade rather than
decide what to trade in the first place. For a more thorough presentation of this
application, the reader may also refer to [53] and the references therein.

70 7.3. Asset Allocation with Transaction Costs

7.3 Asset Allocation with Transaction Costs

The asset allocation problem consists in determining how to dynamically invest
the available capital in a portfolio of different assets in order to maximize the
expected total return or another relevant performance measure. Let us consider
a financial market consisting of I + 1 different stocks that are traded only at
discrete times t ∈ {0, 1, 2, . . .} and denote by Zt = (Z0

t , Z
1
t , . . . , Z

I
t)
T

their prices
at time t. Typically, Z0

t refers to a risk-free asset whose dynamic is given by Z0
t =

(1 +X)t where X is the deterministic risk-free interest rate. The investment
process works as follows: at time t, the investor observes the state of the market
St, consisting for example of the past asset prices and other relevant economic
variables, and subsequently chooses how to rebalance his portfolio, by specifying
the units of each stock nt = (n0

t , n
1
t , . . . , n

I
t)
T

to be held between t and t+ 1. In
doing so, he needs to take into account the transaction costs that he has to pay
to the broker to change his position. At time t+ 1, the investor realizes a profit
or a loss from his investment due to the stochastic variation of the stock values.
The investor’s goal is to maximize a given performance measure.

7.3.1 Wealth Dynamics

Let Wt denote the wealth of the investor at time t. The profit realized between
t and t+ 1 is simply given by the difference between the trading results and the
transaction costs payed to the broker. More formally

∆Wt+1 = Wt+1 −Wt = TPt+1 − TCt

where TPt+1 denotes the profit due to the variation of the asset prices between
t and t+ 1

TPt+1 = nt ·∆Zt+1 =
I∑
i=0

nit(Z
i
t+1 − Zi

t)

and TCt denotes the fees payed to the broker to change the portfolio allocation
and on the short positions

TCt =
I∑
i=0

δip
∣∣nit − nit−1

∣∣Zi
t − δfWt1nt 6=nt−1 −

I∑
i=0

δis(n
i
t)
−
Zi
t

The transaction costs consist of three different components. The first term
represents a transaction cost that is proportional to the change in value of the
position in each asset. The second term is a fixed fraction of the total value
of the portfolio which is payed only if the allocation is changed. The last term
represents the fees payed to the broker for the shares borrowed to build a short
position. The portfolio return between t and t+ 1 is thus given by

Xt+1 =
∆Wt+1

Wt

=
I∑
i=0

[
aitX

i
t+1 − δi

∣∣ait − ãit∣∣− δs(ait)−]− δf1at 6=ãt−1 (7.1)

Chapter 7. Financial Applications of Reinforcement Learning 71

where

X i
t+1 =

∆Zi
t+1

Zi
t

is the return of the i-th stock between t and t+ 1,

ait =
nitZ

i
t

Wt

is the fraction of wealth invested in the i-th stock between time t and t+ 1 and
finally

ãit =
nit−1Z

i
t

Wt

=
ait−1(1 +X i

t)

1 +Xt

is the fraction of wealth invested in the i-th stock just before the reallocation.
We assume that the agents invests all the available wealth at each step, so that
Wt can be also interpreted as the value of the portfolio. This assumption leads
to the following constraint on the portfolio weights

I∑
i=0

ait = 1 ∀t ∈ {0, 1, 2, . . .} (7.2)

We notice that we are neglecting the typical margin requirements on the short
positions, which would reduce the available capital at time t. Considering margin
requirements would lead to a more complex constraint on the portfolio weights
which would be difficult to treat in the reinforcement learning framework. Plug-
ging this constraint into Eq. (7.1), we obtain

Xt+1 = X +
I∑
i=1

ait(X
i
t+1 −X)−

I∑
i=0

[
δi
∣∣ait − ãit∣∣− δis(ait)−]− δf1at 6=ãt−1 (7.3)

which highlights the role of the risk-free asset as a benchmark for the portfolio
returns. The total profit realized by the investor between t = 0 and T is

ΠT = WT −W0 =
T∑
t=1

∆Wt =
T∑
t=1

WtXt

The portfolio return between t = 0 and T is given by

X0,T =
WT

W0

− 1 =
T∏
t=1

(1 +Xt)− 1

In order to cast the asset allocation problem in the reinforcement learning frame-
work, we consider the log-return of the portfolio between t = 0 and T

R0,T = log
WT

W0

=
T∑
t=1

log(1 +Xt) =
T∑
t=1

Rt (7.4)

72 7.3. Asset Allocation with Transaction Costs

where Rt+1 is the log-return of the portfolio between t and t+ 1

Rt+1 = log

{
1 +

I∑
i=0

[
aitX

i
t+1 − δi

∣∣ait − ãit∣∣− δs(ait)−]− δf1at 6=ãt−1

}
(7.5)

The portfolio log-return can be directly used as the reward function of the asset
allocation problem. However, more sophisticated approaches can be followed.

7.3.2 Rewards and Objective Functions

The results of the previous sections need to be adapted to the typical reinforce-
ment learning formulation. Two distinct routes can be followed: first the asset
allocation problem is seen as an infinite horizon task, either in the discounted or
in the average reward formulation. Second, an episodic formulation is proposed.
As discussed in the previous chapters, these scenarios require different learning
algorithms.

7.3.2.1 Infinite Horizon Task

The portfolio log-return between t = 0 and a maturity T is given by

R0,T =
T−1∑
t=0

Rt+1

where Rt+1 is given in Eq. (7.5). The maturity T is arbitrary and one may
be tempted to let T → ∞. In addition to posing some convergence issues, this
would be rather unrealistic as traders are typically evaluated on the short-run.
As discussed in Chapter 2, the typical solution in this situation is to consider
the discounted return

Gγ =
T−1∑
t=0

γtRt+1

where 0 < γ < 1 is the discount factor. This choice leads to the classical formu-
lation for infinite horizon optimal control problems, which can be addressed in
a fairly standard way using value-based or policy-based reinforcement learning
algorithms. However, as discussed in the previous chapters, for the discounted
rewards formulation it is difficult to extend the policy gradient theorem to the
risk-sensitive framework. On the other hand, this is easier for the average reward
formulation. In this case, the gain is measured as

Gavg = lim
T→∞

1

T

T−1∑
t=0

Rt+1

The relevant risk-neutral and risk-sensitive performance measures can be defined
as in the previous chapters.

Chapter 7. Financial Applications of Reinforcement Learning 73

7.3.2.2 Episodic Task

Both formulations discussed above treat the asset allocation problem on an
infinite horizon. On the other hand, it would be interesting to formulate this
problem as an episodic task, for which many policy gradient algorithms are
available as discussed in in Chapter 4. To achieve this, we can follow the idea
of [25].
Given an initial capital W0 and two constants L < 1 < U , the goal of the trader
is to increase his wealth to UW0, before going down to LW0. Let us reformulate
this goal in terms of log-returns. First, let l = logL and u = logU . We introduce
the first time when the portfolio log-return breaches these thresholds

τu = inf{t > 0 : R0,t ≥ u} (7.6)

τl = inf{t > 0 : R0,t ≤ l} (7.7)

Hence, the goal of the agent can be formalized as follows

max
π

Pπ (τu < τl) = Eπ [1τu<τl] (7.8)

This control problem can be interpreted as an episodic task in which the agent
receives a reward either 1 if R0,t > u or 0 if R0,t < l and then terminates. This
mechanism is illustrated in Figure 7.1. The upper cumulative log-return hits
the upper barrier before hitting the lower barrier and consequently the agent
receives a reward of 1. On the other hand, the lower path hits the lower barrier
before and the agent thus receives zero reward.
This formulation may appear simple, but it offers a nice practical interpretation.
The lower barrier can be seen as a stop-loss order, which forces the trader to exit
from his position when the losses exceed a given threshold. We remark that the
reward does not depend on the the time step at which one of the two barrier is
achieved. This could lead to extremely conservative policies which maximize the
probability of success taking however a long time to achieve it. To attenuate this
issue we might introduce a discount factor to represent the trader’s preference
to succeed as soon as possible. Formally, the optimization problem becomes

max
π

Eπ [γτu1τu<τl] (7.9)

where 0 < γ < 1 denotes as usual the discount factor.

7.3.3 States

At each time step, the agent observes the state of the system and subsequently
selects an action. First, we consider the P + 1 past returns of all risky assets
{Xt, Xt−1, . . . , Xt−P}. These input variables may be used to construct more
complex features for example using some deep learning techniques, such as a
deep auto-encoder.
In order to properly incorporate the effects of transaction costs into his decision

74 7.3. Asset Allocation with Transaction Costs

t

R0,t

u

l

1

τu

0

τl

Figure 7.1: Episodic formulation for the asset allocation problem.

process, the agent must keep track of its current position ãt. For simplicity, we
consider the past action as frozen and we will neglect the dependence from the
policy, which will lead to the recurrent formulation proposed in [73].
Finally, we might consider some external variables Yt that may be relevant to
the trader, such as the common technical indicator used in practice. Summing
up, the state of the system is given by

St = {Xt, Xt−1, . . . , Xt−P , ãt, Yt, Yt−1, . . . , Yt−P} (7.10)

In the episodic formulation, we might also include some feature measuring the
distance of the cumulative log-return from the barriers

Y u
t = u−R0,t Y d

t = R0,t − d (7.11)

7.3.4 Actions

The agent, or trading system, only specifies the portfolio weights at = (a0
t , . . . , a

I
t)
T

and therefore determines the allocation for the time interval [t, t+ 1). If we as-
sume that the agent invests all the available capital at each time step and that
short-selling is not allowed, then the portfolio weights should satisfy, for every
t ∈ {0, 1, . . .}, the following constraints{

ait ≥ 0 , ∀i ∈ {0, . . . , I}∑I
i=0 a

i
t = 1

(7.12)

This constraint can be easily enforced by considering a parametric softmax pol-
icy. If short-selling is allowed, weights might also be negative. A simple approach
is to assume that, for every t ∈ {0, 1, . . .}, the weights satisfy{

ait ∈ R , ∀i ∈ {1, . . . , I}
a0
t = 1−

∑I
i=1 a

i
t

(7.13)

Chapter 7. Financial Applications of Reinforcement Learning 75

Since a0
t is uniquely determined by the other weights, it is enough to define a

policy that specifies the allocation in the risky assets, for example a Gaussian
policy in RI . The obvious shortcoming of this approach is that the agent might
enter in huge short positions, which is not realistic. A first observation is that,
if the stochastic policy is concentrated around the origin, huge long or short
positions would have very small probabilities of being selected. Moreover, we
notice that the agent would pay large fees for entering into large short positions,
independently of the trading profits. Therefore, we expect the agent to learn
that short positions are very expensive and would therefore try to avoid them.
Working in a continuous action space is computationally difficult and only few
reinforcement learning algorithm are well-suited to this setting, for instance
policy gradient methods. A simpler approach is to reduce the action space to a
discrete space. For instance, in the two assets scenario we might assume that
at ∈ {−1, 0,+1}. Thus the agent may be long (+1), neutral (0) or short (−1) on
the risky-asset. Working in a discrete action space is more simple, and standard
value-based approaches might also be employed.

Chapter 8

Numerical Results for the Asset
Allocation Problem

In this chapter we present the numerical results of some of the policy gradient
algorithms discussed in Chapter 4 for the asset allocation problem. Two different
type of markets are analyzed: a market with only one risky asset and a market
where multiple risky assets are available, for which finding a trading strategy is
more difficult since the state and action spaces are much larger. The learning
algorithms are first applied both in their risk-neutral version and risk-sensitive
formulation to synthetically generated data, which present profitably tradable
features. Once the behavior of these algorithms is validated in this controlled
environment, the application on historical price series is considered.

8.1 Synthetic Risky Asset

To test the different reinforcement learning methods in a controlled environ-
ment, we generated log-price series for the risky asset as random walks with
autoregressive trend processes. The two-parameter model is thus given by

zt = zt−1 + βt−1 + κεt

βt = αβt−1 + νt

We then define the synthetic price series as

Zt = exp

(
zt

maxt zt −mint zt

)
This model is often taken as a benchmark test in the automated trading litera-
ture, see for instance [74], because the price series generated in this way present
some patterns that can be profitably exploited. Moreover the model is station-
ary and therefore the policy learned on the training set should generalize well
on the test set, also known as backtest in the financial jargon. Thus we would
expect our learning algorithms to perform well on this test case. If this wasn’t
the case, we should go back and improve the learning algorithms.

78 8.1. Synthetic Risky Asset

In this setting, we compare three the results of three long-short strategies ob-
tained with ARAC, PGPE and NPGPE in both the risk-neutral and risk-
sensitive framework. This means that the agent can either go long on the risky
asset (i.e. a1

t = 1) or short the security (i.e. a1
t = −1) and invest the proceedings

in the risk-less asset. Given the current conditions of the financial markets, we
always assume a risk-free rate X = 0. Let us describe in more detail the the
choice we made for each of the algorithms.

8.1.1 Specifications of the Learning Algorithms

Let us detail the choice of the parametric policies selected for each learning
algorithm.

ARAC We considered a Boltzmann exploration policy on the two actions
a1
t ∈ {−1, 1} and a linear critic in which the features coincide with the agent’s

observation of the system state. This critic is extremely simple and there is
surely some work to be done to improve it.

PGPE We considered a binary deterministic controller

Fθ(s) = sign(θ · s)

where the parameters and the state also include a bias term. The controller
parameters are sampled from a multi-variate Gaussian distribution

θ ∼ N (µ, diag(σ))

NPGPE We used the same controller as for PGPE but we assumed that the
controller parameters are sampled from a Gaussian distribution parameterized
by its mean and Cholesky factor

θ ∼ N (µ,CTC)

8.1.2 Experimental Setup

All the algorithms were tested on the same price series of size 9000, generated
from the process described above using α = 0.9 and κ = 3. The learning process
consisted of 1000 training epochs on the first 7000 days of the series with a
learning rate that decreased at each epoch according to a polynomial schedule.
The trained agents were subsequently backtested on the final 2000 days, during
which the agents kept learning online in order to try to adapt to the changing
environment. Since the price series is generated using a stationary model, it
is not necessary to backtest the algorithm using the rolling-window approach
typically employed in practice. The results that we present are the average of
10 independent experiments that used slightly different random initialization of
the policy parameters.

Chapter 8. Numerical Results for the Asset Allocation Problem 79

0 200 400 600 800
Training Epoch

−2

0

2

4

6

8

10
D

ai
ly

 A
ve

ra
ge

 R
ew

ar
d

[b
ps

]
ARAC
NPGPE
PGPE

0 200 400 600 800
Training Epoch

22.0

22.5

23.0

23.5

D
ai

ly
 R

ew
ar

d
St

an
da

rd
 D

ev
ia

tio
n

[b
ps

]

Convergence of Learning Process

0 200 400 600 800
Training Epoch

−1

0

1

2

3

4

5

6

7

An
nu

al
iz

ed
 S

ha
rp

e
R

at
io

Figure 8.1: Risk-neutral learning process for the asset allocation problem with
one synthetic risky asset.

8.1.3 Risk-Neutral Framework

8.1.3.1 Convergence

Let us first discuss the case with no transaction costs. Figure 8.1 shows the
learning curves for the three risk-neutral algorithms in terms of average daily
reward, which is the quantity being maximized by the algorithms, the daily
reward standard deviation and the annualized Sharpe ratio. The first thing we
observe is the ARAC algorithm seems not to be improving the trading strategy
as the training epochs go by. The average reward obtained is close to zero and
will be surely be negative once transaction costs are introduced. On the other
hand, PGPE and NPGPE show very similar behaviors and quickly converge to
a profitable strategy. It is interesting to notice that these algoriths also manage
to strongly decrease the variance of the rewards obtained, leading to a strong
improvement in the Sharpe ratio. Even if the algorithms are risk-neutral, they
manage to improve a risk-senitive measure at the same time of the average
reward. This might be simply a peculiarity of the very simple model assumed
for the synthetic risky asset. Moreover, since the price process is stationary, the
trading strategy learned on the training set perfectly generalizes to the test set.

8.1.3.2 Performances

Figure 8.2 compares the backtest performances of the three learned policies and
a Buy and Hold strategy, which simply consists in investing all the available
capital in the risky asset. Let us repeat that the solid lines are the averages of
10 independent experiments, which allows us to determine the 95% confidence
intervals represented with the dashed lines. We clearly see that NPGPE and
PGPE easily beat the market, realizing a total profit of 363.43% and 352.83%
respectively against the 7.81% profit of the Buy and Hold strategy over the
same period. We notice that the natural gradient technique allows to achieve
higher profits on average with a smaller variance in the outcomes. Table 8.1

80 8.1. Synthetic Risky Asset

0 500 1000 1500 2000
Time Step

−100

0

100

200

300

400

500

C
u
m

u
la

ti
v
e
 P

ro
fi
t

[%
]

Performance of Learning Algorithms

Buy and Hold
ARAC
NPGPE
PGPE

Figure 8.2: Backtest performance of trained trading systems for the asset allo-
cation problem with one synthetic risky asset.

reports more performance statistics for the trading strategies averaged over the
independent experiments. We remark that PGPE and NPGPE beat the simple
Buy and Hold strategy with respect to all measures, impressively achieving the
100% of profitable years and consecutive 12 months periods. These statistics
confirm that ARAC is not able to detect the profitable patterns in the synthetic
price series and the learned strategy is close to randomness, with a 50% proba-
bility of reallocation (i.e. a coin flip). On the other hand, PGPE and NPGPE
presents much lower reallocation frequencies. This seems promising for dealing
with transaction costs, which penalize reallocations and short positions. In the
next section we analyze in detail how to behavior of the learned strategies change
with the introduction of transaction costs.

8.1.3.3 Impact of Transaction Costs

In the algorithmic trading literature there are many examples of strategies based
on the prediction of future rewards starting from more or less complex indicators.
However, the performances of these methods quickly degrade when transaction
costs for changing the portfolio composition or for shorting a security are consid-
ered. Indeed, these methods simply invest based on the prediction of the future
returns, without explicitly taking into account transaction costs. On the other
hand, reinforcement learning algorithms should learn to avoid frequent reallo-
cations or shorts thanks to the feedback mechanism between the learning agent
and the system, thus generating better trading performances. In this section
we analyze how the strategies learned by PGPE and by NPGPE change when
gradually increasing the proportional transaction costs and the short-selling fees.
Intuitively, we expect a progressive reduction of the frequency of reallocation and
of shorting the risky asset.

Chapter 8. Numerical Results for the Asset Allocation Problem 81

Buy and Hold ARAC NPGPE PGPE

Total Return 7.81% -1.00% 363.43% 352.83%
Daily Sharpe 0.27 -0.06 5.39 5.30
Monthly Sharpe 0.19 -0.10 3.57 3.49
Yearly Sharpe 0.23 -0.11 1.96 1.84
Max Drawdown -22.35% -13.29% -2.72% -2.96%
Avg Drawdown -1.75% -4.44% -0.42% -0.42%
Avg Up Month 2.87% 1.03% 2.82% 2.79%
Avg Down Month -2.58% -1.08% -0.64% -0.76%
Win Year % 40.00% 44.00% 100.00% 100.00%
Win 12m % 56.36% 47.64% 100.00% 100.00%
Reallocation Freq 0.00% 49.58% 17.97% 14.75%
Short Freq 0.00% 49.84% 49.83% 42.50%

Table 8.1: Backtest statistics of the risk-neutral trading strategies for the asset
allocation problem with one synthetic risky asset. Total Return is the cumulative
return obtained following the strategy. Daily Sharpe is the daily Sharpe ratio,
annualized. Monthly Sharpe is the monthly Sharpe ratio, annualized. Yearly
Sharpe is the yearly Sharpe ratio. Max Drawdown is the maximum drawdown
observed, i.e. the maximum loss from a peak to a trough of a portfolio, before
a new peak is attained. Avg Drawdown is the average drawdown observed, i.e.
the average loss from a peak to a through of a portfolio. Avg Up Month is the
average profit on a positive month. Avf Down Month is the average loss on a
negative month. Win Year % is the percentage of positive years. Win 12%
is the percentage of profitable consecutive 12 months. Reallocation Freq is the
frequency with which the agent changes its position. Short Freq is the frequency
with which the agent shorts the risky asset.

Figure 8.3 shows the impact of proportional transaction costs on the trading
strategies learned by PGPE and by NPGPE. As expected, the frequency of re-
allocation for both strategies quickly decreases to zero as the transaction costs
increase, converging to the profitable buy and hold strategy. Both algorithms
are able to identify reallocation as the cause for lower rewards and to subse-
quently reduce the rate of reallocation, managing to outperform the naive buy
and hold strategy despite of transaction costs.
Figure 8.4 shows the impact of short-selling fees on the trading strategies learned
by PGPE and NPGPE. Both algorithms behave as expected, displaying a pro-
gressive reduction of the frequency of short positions as the fees increase. For
large values of short-selling fees, both strategies converge to the profitable buy
and hold strategy, which completely avoids paying the fees. However, NPGPE
displays a different convergence pattern compared to the one for proportional
transaction costs. In this case, the algorithm shows a threshold effect with the
short selling frequency remaining almost constant for small fees, then suddenly
dropping to zero if the fee exceeds a certain amount. This behavior is sensible

82 8.1. Synthetic Risky Asset

0 10 20 30 40 50
Proportional Transaction Costs [bps]

0

2

4

6

8

10

12

14

16

18

R
ea

llo
ca

tio
n

Fr
eq

ue
nc

y
[%

]

Buy and Hold
PGPE
NPGPE

0 10 20 30 40 50
Proportional Transaction Costs [bps]

0

50

100

150

200

250

300

350

400

C
um

ul
at

iv
e

Pr
of

it
[%

]

0 10 20 30 40 50
Proportional Transaction Costs [bps]

0

1

2

3

4

5

6

An
nu

al
iz

ed
 S

ha
rp

e
R

at
io

Figure 8.3: Impact of proportional transaction costs on the trading strategies
learned by PGPE and NPGPE.

0 10 20 30 40 50
Short-Selling Fees [bps]

0

10

20

30

40

50

Sh
or

t-
Se

lli
ng

 F
re

qu
en

cy
 [

%
]

Buy and Hold
PGPE
NPGPE

0 10 20 30 40 50
Short-Selling Fees [bps]

0

50

100

150

200

250

300

350

400

C
um

ul
at

iv
e

Pr
of

it
[%

]

0 10 20 30 40 50
Short-Selling Fees [bps]

0

1

2

3

4

5

6

An
nu

al
iz

ed
 S

ha
rp

e
R

at
io

Figure 8.4: Impact of short-selling fees on the trading strategies learned by
PGPE and NPGPE.

given that, for small amount of fees, shorting may still be profitable. On the
other hand, going long will certainly produce a loss. We expect that this pat-
tern will disappear if we allowed the agent to stay neutral, only investing in the
risk-free asset.

8.1.4 Risk-Sensitive Framework

In this section we present the results in the risk-sensitive framework, in which the
learning algorithms optimize the Sharpe ratio of the policy. Figure 8.5 shows the
learning curves for the three risk-sensitive algorithms RSPGPE and RSNPGPE.
We observe that the natural-gradient algorithm converges to a larger Sharpe
ratio compared to the non-natural algorithm, which converges to a suboptimal
policy. Moreover, the learning process for RSPGPE is characterized by a much
larger variance which prevents the algorithm to converge to the same strategy

Chapter 8. Numerical Results for the Asset Allocation Problem 83

0 200 400 600 800
Training Epoch

−2

0

2

4

6

8

10
D

ai
ly

 A
ve

ra
ge

 R
ew

ar
d

[b
ps

]
RSPGPE
RSNPGPE

0 200 400 600 800
Training Epoch

21.5

22.0

22.5

23.0

23.5

24.0

24.5

D
ai

ly
 R

ew
ar

d
St

an
da

rd
 D

ev
ia

tio
n

[b
ps

]

Convergence of Learning Process

0 200 400 600 800
Training Epoch

−1

0

1

2

3

4

5

6

7

An
nu

al
iz

ed
 S

ha
rp

e
R

at
io

Figure 8.5: Risk-sensitive learning process for the asset allocation problem with
one synthetic risky asset.

learned by RSNPGPE. Surprisingly, the strategies learned by the risk-sensitive
algorithms have smaller Sharpe ratio than those learned in the risk-neutral ver-
sion, in which we don’t explicitly control risk. We still don’t have a clear ex-
planation for this counter-intuitive behavior. A first hypothesis is that, for the
stationary dynamics considered to generate the price series, the optimal policy
in the risk-neutral sense also minimize risk, but directly optimizing the Sharpe
ratio is more difficult as more parameters and noise are involved in the learning
process. Further research should be carried out to investigate this issue in more
depth. Figure 8.6 shows the backtest performances for the risk-sensitive trading
strategies, both outperforming the simple buy-and-hold strategy. Again, we re-
mark that RSNPGPE is characterized by a much smaller variance, which leads
to more stable results. More statistics are reported in Table 8.2. In particu-
lar, we notice that the policy learned by PGPE takes much less short positions,
which may negatively impact the performance of the strategy.

84 8.1. Synthetic Risky Asset

0 500 1000 1500 2000
Time Step

−200

−100

0

100

200

300

400

500

C
u
m

u
la

ti
v
e
 P

ro
fi
t

[%
]

Performance of Learning Algorithms

Buy and Hold
RSPGPE
RSNPGPE

Figure 8.6: Backtest performance of the risk-sensitive trading strategies for the
asset allocation problem with one synthetic risky asset.

Buy and Hold RSPGPE RSNPGPE

Total Return 7.81% 167.00% 209.89%
Daily Sharpe 0.27 2.96 3.86
Monthly Sharpe 0.19 1.92 2.83
Yearly Sharpe 0.23 1.01 1.66
Max Drawdown -22.35% -7.48% -4.20%
Avg Drawdown -1.75% -0.78% -0.50%
Avg Up Month 2.87% 2.69% 2.34%
Avg Down Month -2.58% -1.14% -0.88%
Win Year % 40.00% 80.00% 100.00%
Win 12m % 56.36% 90.91% 100.00%
Reallocation Freq 0.00% 20.24% 33.56%
Short Freq 0.00% 27.98% 47.79%

Table 8.2: Backtest statistics of the risk-sensitive trading strategies for the asset
allocation problem with one synthetic risky asset.

Chapter 8. Numerical Results for the Asset Allocation Problem 85

NPGPE RSNPGPE

Total Return 363.43% 209.89%
Daily Sharpe 5.39 3.86
Monthly Sharpe 3.57 2.83
Yearly Sharpe 1.96 1.66
Max Drawdown -2.72% -4.20%
Avg Drawdown -0.42% -0.50%
Avg Up Month 2.82% 2.34%
Avg Down Month -0.64% -0.88%
Win Year % 100.00% 100.00%
Win 12m % 100.00% 100.00%
Reallocation Freq 17.97% 33.56%
Short Freq 49.83% 47.79%

Table 8.3: Comparison of NPGPE and RSNPGPE for the asset allocation prob-
lem with one synthetic risky asset.

8.1.4.1 Risk-Neutral vs. Risk-Sensitive

A question that naturally arises is if the trading strategies learned by NPGPE
in the risk-neutral and risk-sensitive frameworks are actually different. The
backtest statistics for the two strategies are reported in Table 8.3. Again, we
point out the counter-intuitive fact that risk-neutral version produces higher
Sharpe ratios, even if it is not the quantity directly being optimized. The most
interesting feature is the different behavior of the two policies in terms of re-
allocation and short-selling frequencies. The risk-sensitive policy reshuffle the
portfolio more frequently than the risk-neutral policy, although resorting less
often to short positions. This means that RSNPGPE holds the short positions
for shorter periods of time. This could be the reason why the risk-sensitive strat-
egy underperforms the risk-neutral one. This analysis shows that the policies
learned by the two algorithms are actually different.

8.1.4.2 Impact of Transaction Costs

Once again we analyze the sensitivity of the trading strategies learned by RSPGPE
and RSNPGPE with respect to transaction costs and short-selling fees. Intu-
itively, as the fees increase we expect a progressive reduction of the frequency
of reallocation and of shorting the risky asset.
Figures 8.7 and 8.8 show the impact of proportional transaction costs and
short-selling fees respectively on the trading strategies learned: we observe that
RSNPGPE quickly converge to the profitable Buy and Hold strategy in both
situations. On the other hand, RSPGPE reduces the reallocation and the short-
selling frequencies but not fast enough to avoid a loss for large fees and conse-
quently underperforming the Buy and Hold strategy. This behavior could be
due to the large variance that characterizes RSPGPE.

86 8.1. Synthetic Risky Asset

0 10 20 30 40 50
Proportional Transaction Costs [bps]

0

5

10

15

20

25

30

35

R
ea

llo
ca

tio
n

Fr
eq

ue
nc

y
[%

]

Buy and Hold
PGPE
NPGPE

0 10 20 30 40 50
Proportional Transaction Costs [bps]

−50

0

50

100

150

200

250

C
um

ul
at

iv
e

Pr
of

it
[%

]

0 10 20 30 40 50
Proportional Transaction Costs [bps]

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

An
nu

al
iz

ed
 S

ha
rp

e
R

at
io

Figure 8.7: Impact of proportional transaction costs on the trading strategies
learned by RSPGPE and RSNPGPE.

0 10 20 30 40 50
Short-Selling Fees [bps]

0

10

20

30

40

50

Sh
or

t-
Se

lli
ng

 F
re

qu
en

cy
 [

%
]

Buy and Hold
PGPE
NPGPE

0 10 20 30 40 50
Short-Selling Fees [bps]

−50

0

50

100

150

200

250

C
um

ul
at

iv
e

Pr
of

it
[%

]

0 10 20 30 40 50
Short-Selling Fees [bps]

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

An
nu

al
iz

ed
 S

ha
rp

e
R

at
io

Figure 8.8: Impact of short-selling fees on the trading strategies learned by
RSPGPE and RSNPGPE.

Chapter 8. Numerical Results for the Asset Allocation Problem 87

8.2 Historical Risky Asset

In this section we discuss the attempt to apply the algorithms above to an his-
torical price series. As a test case, we considered a Banca Monte dei Paschi di
Siena (BMPS IM) stock as the risky asset. The experimental setup is the fol-
lowing: the learning algorithms presented above have been trained during 5000
epochs over a period of 1000 days. Then, the performance of the learned trad-
ing strategy has been assessed on the following 100 days. As an alternative, we
could have employed a more standard “rolling-window” backtesting procedure.
In this case, the algorithms perform poorly and are not able to identify a prof-
itable trading strategy. In some measure, this was expected given the simplicity
of the parametric policy considered. When working on historical price series,
there are multiple challenges to be addressed. First, it is not clear if the price
series contains some patterns that could be traded profitably. This is the central
issue of the EMH which was discussed in Section 7.1. Now, even if the prices
contained a certain degree of predictability, the parametric policy should be
sufficiently expressive to capture these patterns. This is clearly an issue of the
current state of work, as the policy considered here is so simple that it would
be surprising if it managed to capture a profitably tradable structure in the
prices of a liquid stock. A possible development this work would be to employ
a much more complex parametric policy, such as a neural network, in order to
automatically extract more powerful features from the raw price series. Another
related issue is the signal-to-noise ratio of financial time-series. As the policy is
updated online, too much noise could mislead the policy gradient method and
prevent its convergence.

8.2.1 Risk-Neutral Framwork

These seems to be the issue in the application of the risk-neutral algorithms
developed above to the historical data considered. As showed in Figure 8.9,
the policy gradient methods fail to converge and the learning curves appear to
be dominated by noise. Figure 8.10 shows the average profits generated by the
learned strategies on the backtest set in 10 independent experiments. We see
that on average the strategies learned with the ARAC and NPGPE algorithms
slightly overperform the simple Buy and Hold strategy. However, the noise is
so large that we cannot conclude that the learned strategies are actually better
than the Buy and Hold. In addition, since the stock price remains almost flat
during the test period a purely random trading strategy would not perform
much differently than the Buy and Hold strategy. We suspect that the strategies
learned would underperform in a more trending situation. Table 8.4 reports a
breakdown of the performance measures of the learned strategies on the backtest
set. Again, we observe that the ARAC algorithm has a reallocation frequency
of around 50%, which reinforce our suspicion that this strategy actually consists
in a coin flip.

88 8.2. Historical Risky Asset

0 200 400 600 800
Training Epoch

−30

−20

−10

0

10

20

30

D
ai

ly
 A

ve
ra

ge
 R

ew
ar

d
[b

ps
]

ARAC
NPGPE
PGPE

0 200 400 600 800
Training Epoch

218.5

219.0

219.5

220.0

220.5

221.0

221.5

222.0

222.5

D
ai

ly
 R

ew
ar

d
St

an
da

rd
 D

ev
ia

tio
n

[b
ps

]

Convergence of Learning Process

0 200 400 600 800
Training Epoch

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

An
nu

al
iz

ed
 S

ha
rp

e
R

at
io

Figure 8.9: Risk-neutral learning process for the asset allocation problem with
an historical risky asset.

0 20 40 60 80 100
Time Step

−40

−30

−20

−10

0

10

20

30

40

C
um

ul
at

iv
e

Pr
of

it
[%

]

Performance of Learning Algorithms

Buy and Hold
ARAC
NPGPE
PGPE

Figure 8.10: Backtest performance of the trading systems learned for the asset
allocation problem with one historical risky asset.

Buy and Hold ARAC NPGPE PGPE

Total Return 3.29% 7.68% 4.11% -11.72%
Daily Sharpe 0.48 0.79 0.55 -1.37
Monthly Sharpe -0.25 -0.48 -0.33 -2.38
Max Drawdown -14.68% -12.33% -12.36% -20.46%
Avg Drawdown -6.90% -7.15% -5.12% -9.61%
Avg Up Month 4.43% 8.27% 3.66% 3.02%
Avg Down Month -2.65% -2.49% -4.00% -5.98%
Reallocation Freq 0.00% 50.20% 19.39% 23.47%
Short Freq 0.00% 49.80% 19.80% 38.40%

Table 8.4: Backtest statistics of the risk-neutral trading strategies for the asset
allocation problem with one historical risky asset.

Chapter 8. Numerical Results for the Asset Allocation Problem 89

8.2.2 Risk-Sensitive Framework

When applied to the historical data, the risk-sensitive algorithms shows a quite
different behavior compared to the risk-neutral methods. Figure 8.11 shows the
learning curves of the algorithms during the different training epochs. While
the RSPGPE algorithms seems not to improve the policy over time, the policy
learned with the RSNPGPE algorithm clearly improves with the training epochs
and achieves a positive Sharpe ratio. This means that the simple autoregressive
controller considered is able to capture some patterns in the training set which
leads to positive performance. However it is not guaranteed that what is learned
on the training set will hold during the backtest. This is exactly the situation
as showed in Figure 8.12. Indeed, we remark that the policy learned by the
RSNPGPE algorithm, although producing a profit on the training set, clearly
underperforms the naive Buy and Hold strategy in the backtest. We conclude
that the pattern learned in the training set does not generalize to the backtest
set. This phenomenon could be seen as a form of overfitting which, however, is
not due to the choice of an over-complicated parametric policy (it is clearly not
the case here), but to the inconsistence between the training set and the backtest
set. This is typical of financial time series, which are often characterized by a
strong non-stationarity. For this reason, even if the controller is able to identify
a signal in the training set, it is not guaranteed that this signal will persist in
the backtest set. Even if the risk-sensitive algorithms that were developed in
this thesis fail to learn a trading strategy which is profitable on the backtest set,
it is still remarkable that the RSNPGPE algorithm manages to learn a strategy
that is profitable on the training set while the risk-neutral algorithms could not.
This indicates that there is some value in the algorithms we proposed, even if
they could not succeed in the extremely difficult task of beating the market

8.2.3 The Challenge of Historical Data

In the previous sections, we presented the application of the reinforcement learn-
ing algorithms we developed in this thesis to the historical price series. In par-
ticular, we discussed how these algorithms fail to learn a trading strategy which
consistently outperforms the naive Buy and Hold strategy in the backtest phase.
This outcome was partly expected given the simplicity of the parametric policy
considered. However, even if we considered a more complex controller, success
would not be a-priori guaranteed. This is due to the inherent complexity of the
financial markets. Indeed, while identifying patterns in historical data is not
particularly hard, finding signals that work reliably in the real world is. Man
AHL, a quant unit of Man Group Plc, needed three years of work to gain enough
confidence in a machine learning strategy to devote client money to it. There-
fore, it is clear that there is still much work to be done to be able to beat the
markets with a strategy produced by a reinforcement learning algorithm.

90 8.2. Historical Risky Asset

0 1000 2000 3000 4000
Training Epoch

−30

−20

−10

0

10

20

30

D
ai

ly
 A

ve
ra

ge
 R

ew
ar

d
[b

ps
]

RSPGPE
RSNPGPE

0 1000 2000 3000 4000
Training Epoch

218.0

218.5

219.0

219.5

220.0

220.5

221.0

221.5

222.0

222.5

D
ai

ly
 R

ew
ar

d
St

an
da

rd
 D

ev
ia

tio
n

[b
ps

]

Convergence of Learning Process

0 1000 2000 3000 4000
Training Epoch

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

An
nu

al
iz

ed
 S

ha
rp

e
R

at
io

Figure 8.11: Risk-sensitive learning process for the asset allocation problem with
an historical risky asset.

0 20 40 60 80 100
Time Step

−30

−25

−20

−15

−10

−5

0

5

10

15

C
um

ul
at

iv
e

Pr
of

it
[%

]

Performance of Learning Algorithms

Buy and Hold
RSPGPE
RSNPGPE

Figure 8.12: Backtest performance of the trading systems learned for the asset
allocation problem with one historical risky asset.

Buy and Hold RSPGPE RSNPGPE

Total Return 3.29% 1.70% -8.12%
Daily Sharpe 0.48 0.30 -0.93
Monthly Sharpe -0.25 -0.90 0.12
Max Drawdown -14.68% -15.65% -19.40%
Avg Drawdown -6.90% -8.29% -9.22%
Avg Up Month 4.43% 2.58% 2.53%
Avg Down Month -2.65% -2.77% -5.15%
Reallocation Freq 0.00% 3.67% 39.59%
Short Freq 0.00% 3.10% 37.80%

Table 8.5: Backtest statistics of the risk-sensitive trading strategies for the asset
allocation problem with one historical risky asset.

Chapter 9

Conclusions

In this chapter, we take the time to revisit what has been achieved in this thesis
and to sum up our original contributions to the reinforcement learning litera-
ture. Moreover, we draw some conclusions about the impact that these modern
optimization techniques can have on the financial industry and the challenges
that must be overcome to make it possible. Finally, we suggest some possible
axis for future research.

9.1 What Has Been Achieved

In this thesis, we presented an innovative application of some state-of-the-art
policy gradient algorithms to the classical asset allocation problem with trans-
action costs.
In Chapter 2 we introduced the basic concepts of stochastic optimal control
in discrete time, which is the standard theoretical framework used to model
sequential decision problems. In particular, we presented both the traditional
risk-neutral formulation, in which the goal of the agent is to maximize its total re-
turns, and the less common risk-sensitive formulation, in which the agent wishes
instead to optimize the trade-off between the rewards and the risk required to
achieve them. This chapter laid the theoretical foundations and introduced the
notation used in the rest of the thesis.
In Chapter 3 we presented the main ideas of Reinforcement Learning (RL), a
general class of algorithms in the field of Machine Learning (ML) that allows an
agent to learn how to behave in a stochastic and possibly unknown environment
only by trial-and-error. This algorithms are typically based on the feedback
mechanism between the stochastic environment and the agent, which receives
a numerical reward for his actions. After having discussed the characteristic
features of the RL problem, we provided a high-level overview of the different
typologies of algorithms.
In Chapter 4 we gave an in-depth presentation of Policy Gradient algorithms
for the risk-neutral control problem. After having introduced the key ideas of
these methods, we provided a thorough review of the state-of-the-art algorithms
that can be found in the literature. For episodic environments, most of these

92 9.2. Final Remarks

methods are based on the well-known likelihood-ratio technique from stochastic
optimization that allows to rewrite the policy gradient as an expected value.
For non-episodic environments, the main result from which most of the learning
algorithms are derived is the policy gradient theorem.
In Chapter 5 we discussed policy gradient methods for the risk-sensitive control
problem, which is still an active field of research. In particular, we presented an
extension of the policy gradient theorem to the risk-sensitive framework, both
in the average reward and in the discounted reward formulations. To the best of
our knowledge, this is the first time that a risk-sensitive policy gradient theorem
is proved for a general discounted Markov decision process, in which rewards
might as well depend on the next state of the system.
In Chapter 6 we proposed an original parameter-based version of the policy
gradient theorem, both for the risk-neutral and the risk-sensitive framework.
This extension allowed us to derive efficient online learning algorithms similar
in spirit to the well-known PGPE algorithm, which was originally conceived
only for episodic environments. Moreover, these new algorithms can be easily
enhanced using a critic or the natural policy gradient idea. This chapter un-
doubtedly represents the most innovative contribution of this thesis to the RL
literature.
In Chapter 7, after a brief discussion about why finance represents an extremely
challenging field of research, we provided a bibliographical survey of successful
financial applications of RL techniques. In particular, we focused on the classical
asset allocation problem with transaction cost, which has been used to numeri-
cally test the algorithms proposed in the previous chapters.
In Chapter 8 we presented the numerical results for the asset allocation prob-
lem. We showed that the learning algorithms proposed in the previous chapters
perform extremely well on synthetic data, consistently outperforming a simple
buy-and-hold strategy and automatically adapting to transaction costs. On the
other hand, the algorithms encountered more difficulties on historical data and
we tried to provide an explanation for this behavior.

9.2 Final Remarks

The main contribution of this thesis to the RL literature is the development
of some original, online and parameter-based policy gradient algorithms both
for the traditional risk-neutral framework and the less common risk-sensitive
framework. These algorithms are highly versatile and can be easily combined
with some powerful techniques such as the use of a critic or the use of a natural
policy gradient.
The numerical application of this innovative algorithms to the classical financial
problem of determining a profitable long-short trading strategy confirmed their
potential. For a synthetic asset, the strategies learned by the algorithms outper-
formed the simple Buy & Hold strategy, even when investment decisions were
only based on extremely basic autoregressive features. Contrarily to standard

Chapter 9. Conclusions 93

prediction-based trading systems, the learning algorithms were able to adapt as
expected to the introduction of transaction costs by reducing the frequency of
reallocation and of short positions.
The algorithms encountered more difficulties in learning a profitable strategy
from historical data. In this case, the algorithms failed to converge to a prof-
itable trading strategy probably because of the low signal-to-noise ratio of the
historical price series considered and the low capabilities of representation of
the controller used. However, even if we considered a more complex controller
success would not be a-priori guaranteed. This is due to the inherent complex-
ity of financial markets. Indeed, while identifying patterns in historical data
is not particularly hard, finding signals that work reliably in the real world is.
Man AHL, a quant unit of Man Group Plc, needed three years of work to gain
enough confidence in a machine learning strategy to devote client money to it.
Therefore, it is clear that there is still much work to be done to be able to beat
the markets with a strategy produced by a RL algorithm.
Despite the difficulties encountered in applying the algorithms developed in this
thesis to historical data, we feel confident that in the future these techniques
will have a large impact on financial markets. The first reason is that these
algorithms have already proven successful in solving very difficult decision prob-
lems, such as mastering the game of Go or controlling robots in complex envi-
ronments. The second reason is the versatility of these techniques, which can be
applied with only minor modifications to very different domains. Finally, their
modularity allows them to be combined with other modern techniques, such as
Deep Learning (DL). These features have attracted the interest of the finan-
cial community, with investment banks and hedge funds investing large amount
of resources to develop innovative solutions based on ML methods to classical
problems.

9.3 Further Developments

To conclude, let us suggest some research directions that could be explored to
improve the work presented in this thesis.
The first idea is to develop more complex features so as to allow the agent to take
more informed decisions. A first approach would be to construct the indicators
typically used in the technical analysis of stock prices. These measures embed
the expert knowledge acquired by financial analysts over decades of activity
and could help in guiding the agent towards better decisions. Another approach
would be to employ some DL techniques to learn more powerful features directly
from data. A first possibility would be to extract new features using a deep
auto-encoder in a completely unsupervised way that would then be fed into a
simple parametric controller. A second possibility would be to directly replace
the simple autoregressive controller considered in this thesis with a deep neural
network. Using a deep neural network was one of the key ingredient of many of
the recent successes of RL. For a modern presentation of these techniques, the
interested reader may refer to [12].

94 9.3. Further Developments

The second idea would be to consider high-frequency data, such as intra-day
prices and traded volumes. It is well documented that high-frequency data show
some characteristic patterns that could be captured by a deep reinforcement
learning trading system. An example of application of RL to high-frequency
data can be found in [75], where the authors applied some basic algorithms such
as Q-learning to the optimal trade execution problem in a limit-order book. It
would thus be interesting to apply more advanced techniques to this problem.
As the RL and DL literatures grows at a frenetic rhythm, new research directions
keep opening up and new applications in different fields provide plenty of food
for thought. Given the versatility of these techniques, we are convinced that a
breakthrough application to finance is not far away.

Appendix A

Implementation

In this chapter we give a brief overview of the implementation of the algorithms
presented above. In the prototyping phase, the asset allocation learning task
has been implemented in Python as an extension of the PyBrain library. In a
second phase, the architecture has been translated into C++ to achieve better
performances. Here we only give an overview of the program, addressing the
reader to the Git repository www.github.com/pnecchi/Thesis for the scripts
and the detailed documentation.

A.1 Python Prototype

The first step of this project has been to implement a prototype in Python, a
high-level, general-purpose, interpreted, dynamic programming language which
is gaining a widespread popularity both in the academic world and in the in-
dustry. Python natively supports the object-oriented paradigm which makes it
perfect to quickly develop a prototype of the class architecture, which can then
be translated in C++. Moreover, thanks to external libraries such as Numpy,
Scipy and Pandas, Python offers an open-source alternative to Matlab for sci-
entific computing applications.
For the basic RL algorithms we exploited PyBrain1, a modular ML library for
Python whose goal is to offer flexible, easy-to-use yet still powerful algorithms for
ML tasks and a variety of predefined environments to test and compare different
algorithms [89]. An RL task in PyBrain always consists of an Environment, an
Agent, a Task and an Experiment interacting with each other as illustrated in
Figure A.4.
The Environment is the world in which the Agent acts and is characterized by a
state which can be accessed through the getSensors() method. The Agent

receives an observation of this state through the integrateObservation()

method and selects an action through the getAction() method. This action
is applied to the Environment with the performAction() method. However,
the interactions between the Environment and the Agent are not direct but are

1http://pybrain.org/

www.github.com/pnecchi/Thesis
http://pybrain.org/

96 A.2. C++ Implementation

Environment

Critic LearnerActor

Experiment

Task

Action

State

Reward

Agent

Observation

Figure A.1: PyBrain standard architecture for a RL problem.

mediated by the Task. The Task specifies what the goal is in an Environment

and how the agent is rewarded for its actions. Hence, the composition of an
Environment and a Task fully defines the MDP. An Agent always contains an
Actor, which represents the policy used to select actions. Based on the rewards
that the Agent receives via the getReward() method, the Learner improves the
policy via a learn() procedure. In this step, an Actor may be used to evaluate
a state with the goal of reducing the variance of the learning process. This entire
learning process is controlled by an Experiment object.
This structure is quite standard for a RL problem and can be easily adapted to
the problem at hand and extended to the learning algorithms developed in this
thesis. Based on this architecture, we thus developed a fully-working Python
prototype of the asset allocation problem. This prototype yielded some inter-
esting results both on simulated data and on historical data, in particular for
the PGPE algorithm. However, the learning process resulted too slow to be
run systematically for a large number of time-steps and training epochs. By
consequent, we quickly decided to pass to C++.

A.2 C++ Implementation

Passing from Python to C++ presents some challenges in the design of a suit-
able architecture for the RL algorithms discussed above. Following the approach
of [49], our main goal has been code reusability, which is based on the impor-
tant attributes of clarity and elegance of design. In addition, we always kept
in mind the possibility that our original design might need to be extended in
the future. In some cases we therefore favored extendability compared to effi-
ciency. First we describe the C++ adaptation of the PyBrain’s Environment,
Task, Agent and Experiment objects with a particular attention to their con-
crete implementations for the asset allocation problem. Secondly, we discuss the
design for an Average Reward Actor-Critic (ARAC), which provides a concrete

Appendix A. Implementation 97

implementation of the Agent interface.

A.2.1 Environment, Task, Agent and Experiment

Figure A.2 schematically represents the design of the base components of an
RL application, which closely replicates Pybrain’s architecture. The pure ab-
stract classes Environment, Task, Agent and Experiment define the generic
interfaces to which all the concrete implementations of these objects must ad-
here. To achieve code modularity, we make most of the objects in our design
clonable in order to allow for the polymorphic composition of classes. Exploit-
ing this design pattern, we couple a Task with an Environment by storing a
std::unique_ptr<Environment> as a private member of the class. Similarly,
an Experiment is coupled via composition with a Task and an Agent. The meth-
ods of these classes are similar to those in Pybrain. For all the linear algebra
operations we decided to use Armadillo2, a high quality linear algebra library
which provides high-level syntax (API) deliberately similar to Numpy and Mat-
lab aiming towards a good balance between speed and ease of use. Therefore,
the state of the system and the actions performed by the agent are represented
as arma::vector objects. Let us now present the concrete implementation of
these objects for the asset allocation task. MarketEnvironment implements a
financial market by storing the historical daily returns of the risky assets in an
arma::matrix. These values are read from a given input .csv file, which is
generated automatically running a Python script and which either contains real
historical returns downloaded from Yahoo Finance3 or synthetic returns gener-
ated according to a certain stochastic process. Therefore, we always work on
samples of the system without making any assumption on its Markov transition
kernel.

2http://arma.sourceforge.net/
3https://uk.finance.yahoo.com/

http://arma.sourceforge.net/
https://uk.finance.yahoo.com/

98 A.2. C++ Implementation

F
igu

re
A

.2:
C

lass
arch

itectu
re

for
th

e
learn

in
g

p
ro

cess
in

th
e

asset
allo

cation
p
rob

lem
.

Appendix A. Implementation 99

The AssetAllocationTask implements the MDP associated to the asset al-
location problem by providing a method to compute the reward that the Agent

obtains from investing on the risky assets. The AssetAllocationTask enlarges
the system state so that the Agent also observes the past P states and the
current portfolio weights. The AssetAllocationExperiment handles the in-
teractions between the Agent and the AssetAllocationTask. The learning
process is divided in two phases: the training phase consists of a certain number
of learning epochs over the same time period during which the Agent improves
the parameters of its policy via the learn method. Some estimates of the ob-
jective function are dumped in the StatisticsExperiment object and are used
in the post-processing phase to plot the learning curves of the algorithm. In
the backtest phase, the Agent applies the learned policy on the time period
which follows the one used for training and the relevant performance measures
are stored in the BacktestLog for successive analysis and comparison between
different learning algorithms.

A.2.2 ARACAgent

A concrete implementation of the Agent interface completes the standard struc-
ture of an RL task. In this section we discuss the design for an ARAC agent,
which includes most of the features of the other algorithms tested in this thesis.
The full architecture of this agent is illustrated in Figure A.3, but for brevity
we will only focus on the more interesting aspects.
The ARACAgent builds upon a StochasticActor and a Critic via composition.
A StochasticActor is simply a wrapper around a StochasticPolicy, a pure
abstract class defining the generic interface for a stochastic policy used by an
agent to select actions. In addition to getAction and get/set methods for the
policy parameters, a StochasticPolicy must implement the likelihoodScore

method which computes the likelihood score ∇θ log πθ(s, a) for a given state and
action and which plays a crucial role in any policy gradient algorithm.
We provide two examples of concrete implementations of the StochasticPolicy.
The first example is the BoltzmannPolicy typically used in discrete action
spaces. The implementation of this policy is quite straightforward and we won’t
discuss the details. The second and more interesting stochastic policy imple-
mented is the PGPEPolicy. This class is based on the decorator design pattern
which is typically used to extend the interface of a certain class. Indeed, the
PGPEPolicy is a StochasticPolicy which contains by polymorphic composi-
tion a Policy, a pure abstract class which provides the generic interface for a
policy, potentially deterministic. This Policy object represents the determinis-
tic controller Fθ used in the PGPE algorithm. Moreover, the PGPEPolicy con-
tains by polymorphic composition a ProbabilityDistribution, a pure abstract
class defining the generic interface for a probability distribution. This proba-
bility distribution represents the hyper-distribution pξ on the controller param-
eters. In order to be used in a PGPE algorithm, a ProbabilityDistribution

must implement a likelihoodScore method to compute the likelihood score

100 A.2. C++ Implementation

of the hyper-distribution ∇ξ log pξ(θ). Hence, the likelihoodScore method
of PGPEPolicy simply broadcasts the call to the likelihoodScore method
of its underlying ProbabilityDistribution. A concrete implementation of a
ProbabilityDistribution is provided by the GaussianDistribution, which
implements a multi-variate and axis-aligned normal distribution N (µ, diag(σ)).
The objects discussed so far are sufficient to implement an actor-only learning al-
gorithm, potentially using a baseline to evaluate the rewards. A more advanced
variance reduction technique consists in using a Critic, which approximates
the value function and provides an evaluation of a given state. The Critic class
is simply a wrapper around a FunctionApproximator which provides a generic
interface for a parametric function Bω(s). The key methods of this class are
evaluate, which evaluates the approximator at a given point, and gradient,
which computes its gradient at a given point.
Finally, the ARACAgent employs some LearningRate to control the speed of
the gradient descent optimization algorithm. A naive approach is to use a
ConstantLearningRate, but this leads to a large-variance in the objective func-
tion value attained by the stochastic optimization algorithm. A more sensible
choice is to use a DecayingLearningRate which decreases with the number of
learning epochs performed by the agent according to αn = a

nb
. In this way, the

learning process progressively “cools down” (using a simulated annealing termi-
nology) and stabilizes to a given policy. This concludes our quick overview of
the class architecture used for this project. In the thesis, other applications and
algorithms were considered and we refer the reader to the full document for a
more complete discussion.

Appendix A. Implementation 101

F
ig

u
re

A
.3

:
C

la
ss

ar
ch

it
ec

tu
re

fo
r

an
A

ve
ra

ge
R

ew
ar

d
A

ct
or

-C
ri

ti
c

ag
en

t
(A

R
A

C
).

102 A.3. Execution Pipeline

A.3 Execution Pipeline

In this section we describe the full pipeline of the program, which is schematically
represented in Figure A.3. This pipeline allows to run the learning algorithm
for the asset allocation problem and automatically determine a trading strategy.
The execution consists of the following steps.

A.3.1 Compilation

To build the thesis library it is sufficient to run the Makefile generated with
CMake. This produces two executables: main which is used to debug the program
in the Code::Blocks IDE and main_thesis which is used to run the experiment
in the full execution pipeline.

A.3.2 generate_synthetic_series.py

This Python script simulates the returns of a synthetic asset and prints them
on a .csv file which is then read by main_thesis and used to initialize the
MarketEnvironment object. Alternatively, market_data_collector.py col-
lects the historical returns for a list of given assets from Yahoo finance.

A.3.3 experiment_launcher.py

This Python script manages the execution pipeline. First, the experiment
parameters are specified and dumped in a .pot file which is then read by
main_thesis. Given the parameter values, the script determines the folders
where the output should be written so that the results can be easily associated
to a specific set of parameters. Subsequently, it launches the main_thesis ex-
ecutable passing the correct parameters via the command line. Finally it runs
the postprocessing.py scripts which processes the output files.

A.3.4 main_thesis

This executable takes some inputs from the command line, such as the algorithm
to use, the paths to the input files and the paths where the output files should
be generated. The experiment parameters are then read from the .pot file gen-
erated by the experiment_launcher.py using GetPot. The type of learning
algorithm is specified by a string passed to the executable via command line
and then used by the factory FactoryOfAgents to instantiate the correspond-
ing Agent. When the AssetAllocationExperiment is run, it outputs various
statistics to the given destination folders. More in detail, it prints two files
for every independent run of the experiment: a debug.csv file which contains
the learning curves of the algorithm and an output.csv file which contains the
backtest performance measures for the trading strategy learned by the Agent

during training.

Appendix A. Implementation 103

A.3.5 postprocessing.py

This Python script processes the various files produced by main_thesis and
generates an aggregate analysis of the various learning algorithms, so that they
can be easily compared and assessed. In particular, it computes the average and
confidence intervals for the learning curves of the algorithms and the backtest
cumulative profits of the learned strategies. Moreover, it computes some perfor-
mance measures typically used in Finance to evaluate a trading strategy, such
as the Sharpe ratio and the maximum drawdown. The results of this analysis
are stored in some .csv files and some images are generated using the Python
library matplotlib.

104 A.3. Execution Pipeline

e
x
p
e
r
i
m
e
n
t
_
l
a
u
n
c
h
e
r
.
p
y

g
e
n
e
r
a
t
e
_
s
y
n
t
h
e
t
i
c
_
s
e
r
i
e
s
.
p
y

s
y
n
t
h
e
t
i
c
.
c
s
v

S
i
n
g
l
e
_
S
y
n
t
h
_
R
N
_
P
0
_
F
0
_
S
0
_
N
5
.
p
o
t

p
o
s
t
p
r
o
c
e
s
s
i
n
g
.
p
y

o
u
t
p
u
t
.
c
s
v

d
e
b
u
g
.
c
s
v

p
e
r
f
o
r
m
a
n
c
e
.
c
s
v

c
o
n
v
e
r
g
e
n
c
e
.
c
s
v

m
a
i
n
_
t
h
e
s
i
s

F
igu

re
A

.4:
E

x
ecu

tion
fl
ow

of
an

asset
allo

cation
ex

p
erim

en
t.

B
lack

b
ox

es
d
en

ote
P

y
th

on
scrip

ts,
b
lu

e
b

ox
es

ex
ecu

tab
les

w
h
ile

red
b

ox
es

in
p
u
t/ou

tp
u
t

fi
les.

Bibliography

[1] “march of the machines”. The Economist, June 2016.

[2] “the return of the machinery question”. The Economist, June 2016.

[3] Agarwal, A., Bartlett, P., and Dama, M. Optimal allocation
strategies for the dark pool problem. arXiv preprint arXiv:1003.2245,
2010.

[4] Akimoto, Y., Nagata, Y., Ono, I., and Kobayashi, S. Bidirec-
tional relation between cma evolution strategies and natural evolution
strategies. In International Conference on Parallel Problem Solving from
Nature (2010), Springer, pp. 154–163.

[5] Almgren, R., and Chriss, N. Optimal execution of portfolio transac-
tions. Journal of Risk 3 (2001), 5–40.

[6] Alvarez Teleña, S. Systematic Trading: Calibration Advances through
Machine Learning. PhD thesis, UCL (University College London), 2015.

[7] Arapostathis, A., Borkar, V. S., Fernández-Gaucherand, E.,
Ghosh, M. K., and Marcus, S. I. Discrete-time controlled markov
processes with average cost criterion: a survey. SIAM Journal on Control
and Optimization 31, 2 (1993), 282–344.

[8] Basu, A., Bhattacharyya, T., and Borkar, V. S. A learning
algorithm for risk-sensitive cost. Mathematics of Operations Research 33,
4 (2008), 880–898.

[9] Bäuerle, N., and Rieder, U. Markov decision processes with applica-
tions to finance. Springer Science & Business Media, 2011.

[10] Baxter, J., and Bartlett, P. L. Infinite-horizon policy-gradient
estimation. Journal of Artificial Intelligence Research 15 (2001), 319–350.

[11] Bekiros, S. D. Heterogeneous trading strategies with adaptive fuzzy
actor–critic reinforcement learning: A behavioral approach. Journal of
Economic Dynamics and Control 34, 6 (2010), 1153–1170.

106

[12] Bengio, Y., Goodfellow, I. J., and Courville, A. Deep learn-
ing. An MIT Press book in preparation. Draft chapters available at
http://www.iro.umontreal.ca/ bengioy/dlbook, 2015.

[13] Bertoluzzo, F., and Corazza, M. Testing different reinforcement
learning configurations for financial trading: Introduction and applica-
tions. Procedia Economics and Finance 3 (2012), 68–77.

[14] Bertoluzzo, F., and Corazza, M. Q-learning-based financial trad-
ing systems with applications. University Ca’Foscari of Venice, Dept. of
Economics Working Paper Series No 15 (2014).

[15] Bertoluzzo, F., and Corazza, M. Reinforcement learning for auto-
mated financial trading: Basics and applications. In Recent Advances of
Neural Network Models and Applications. Springer, 2014, pp. 197–213.

[16] Bertsekas, D. P. Dynamic programming and optimal control, vol. 1.
Athena Scientific, Belmont, 1995.

[17] Bertsekas, D. P., and Shreve, S. E. Stochastic optimal control: the
discrete-time case, vol. 23. Academic Press New York, 1978.

[18] Bertsekas, D. P., and Tsitsiklis, J. N. Neuro-Dynamic Program-
ming, 1 ed. Optimization and neural computation series. Athena Scientific,
Belmont, 1996.

[19] Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., and Lee, M.
Natural actor–critic algorithms. Automatica 45, 11 (2009), 2471–2482.

[20] Bishop, C. M. Pattern Recognition and Machine Learning. Springer,
2006.

[21] Borkar, V. S. A sensitivity formula for risk-sensitive cost and the actor–
critic algorithm. Systems & Control Letters 44, 5 (2001), 339–346.

[22] Borkar, V. S. Q-learning for risk-sensitive control. Mathematics of
operations research 27, 2 (2002), 294–311.

[23] Borkar, V. S., and Meyn, S. P. Risk-sensitive optimal control for
markov decision processes with monotone cost. Mathematics of Operations
Research 27, 1 (2002), 192–209.

[24] Brogaard, J., Hendershott, T., and Riordan, R. High-frequency
trading and price discovery. Review of Financial Studies 27, 8 (2014),
2267–2306.

[25] Browne, S. Optimal investment policies for a firm with a random risk
process: exponential utility and minimizing the probability of ruin. Math-
ematics of operations research 20, 4 (1995), 937–958.

Chapter 9. Bibliography 107

[26] Browne, S., et al. Reaching goals by a deadline: Digital options
and continuous-time active portfolio management. Advances in Applied
Probability 31, 2 (1999), 551–577.

[27] Busoniu, L., Babuska, R., De Schutter, B., and Ernst, D. Rein-
forcement learning and dynamic programming using function approxima-
tors, vol. 39. CRC press, 2010.

[28] Cartea, Á., Jaimungal, S., and Penalva, J. Algorithmic and high-
frequency trading. Cambridge University Press, 2015.

[29] Casqueiro, P. X., and Rodrigues, A. J. Neuro-dynamic trading
methods. European Journal of Operational Research 175, 3 (2006), 1400–
1412.

[30] Chapados, N., and Bengio, Y. Cost functions and model combination
for var-based asset allocation using neural networks. IEEE Transactions
on Neural Networks 12 (2001), 890–906.

[31] Choey, M., and Weigend, A. S. Nonlinear trading models through
sharpe ratio maximization. International Journal of Neural Systems 8
(1997), 417–431.

[32] Chow, Y., Tamar, A., Mannor, S., and Pavone, M. Risk-sensitive
and robust decision-making: a cvar optimization approach. In Advances
in Neural Information Processing Systems (2015), pp. 1522–1530.

[33] Corazza, M., and Sangalli, A. Q-learning and sarsa: a comparison
between two intelligent stochastic control approaches for financial trad-
ing. University Ca’Foscari of Venice, Dept. of Economics Research Paper
Series No 15 (2015).

[34] Dempster, M. A., and Leemans, V. An automated fx trading system
using adaptive reinforcement learning. Expert Systems with Applications
30, 3 (2006), 543–552.

[35] Dempster, M. A. H., and Romahi, Y. S. Intraday FX trading: An
evolutionary reinforcement learning approach. Springer, 2002.

[36] Deng, Y., Bao, F., Kong, Y., Ren, Z., and Dai, Q. Deep direct re-
inforcement learning for financial signal representation and trading. IEEE
Transactions on Neural Networks and Learning Systems (2016).

[37] Deng, Y., Kong, Y., Bao, F., and Dai, Q. Sparse coding inspired
optimal trading system for hft industry. IEEE Transactions on Industrial
Informatics 11, 2 (2015), 467–475.

[38] Fama, E. F. Efficient capital markets: Ii. The journal of finance 46, 5
(1991), 1575–1617.

108

[39] Feldkamp, L. A., Prokhorov, D. V., Eagen, C. F., and Yuan,
F. Enhanced multi-stream kalman filter training for recurrent networks.
In Nonlinear Modeling. Springer, 1998, pp. 29–53.

[40] Ganchev, K., Nevmyvaka, Y., Kearns, M., and Vaughan, J. W.
Censored exploration and the dark pool problem. Communications of the
ACM 53, 5 (2010), 99–107.

[41] Gittins, J., Glazebrook, K., and Weber, R. Multi-armed bandit
allocation indices. John Wiley & Sons, 2011.

[42] Gold, C. Fx trading via recurrent reinforcement learning. In IEEE
2003 IEEE International Conference on Computational Intelligence for
Financial Engineering. Proceedings (2003).

[43] Grondman, I., Busoniu, L., Lopes, G. A., and Babuska, R. A
survey of actor-critic reinforcement learning: Standard and natural policy
gradients. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews) 42, 6 (2012), 1291–1307.

[44] Hastie, T., Tibshirani, R., and Friedman, J. The elements of
statistical learning: data mining, inference, and prediction. Springer, 2009.

[45] Hendricks, D., and Wilcox, D. A reinforcement learning extension
to the almgren-chriss framework for optimal trade execution. In IEEE
Conference on Computational Intelligence for Financial Engineering &
Economics (CIFEr) (2014), pp. 457–464.

[46] Jaeger, H. Tutorial on training recurrent neural networks, cover-
ing BPPT, RTRL, EKF and the echo state network approach. GMD-
Forschungszentrum Informationstechnik, 2002.

[47] Jensen, M. C. Some anomalous evidence regarding market efficiency.
Journal of financial economics 6, 2/3 (1978), 95–101.

[48] Johnson, B. Algorithmic Trading & DMA: An introduction to direct
access trading strategies, vol. 200. 4Myeloma Press London, 2010.

[49] Joshi, M. S. C++ design patterns and derivatives pricing, vol. 2. Cam-
bridge University Press, 2008.

[50] Kakade, S. A natural policy gradient. In NIPS (2001), vol. 14, pp. 1531–
1538.

[51] Kakade, S. Optimizing average reward using discounted rewards.
In International Conference on Computational Learning Theory (2001),
Springer, pp. 605–615.

Chapter 9. Bibliography 109

[52] Kamijo, K., and Tanigawa, T. Stock price pattern recognition-a recur-
rent neural network approach. In IEEE 1990 IJCNN International Joint
Conference on Neural Networks (1990).

[53] Kearns, M., and Nevmyvaka, Y. Machine learning for market mi-
crostructure and high frequency trading. High-Frequency Trading–New
Realities for Traders, Markets and Regulators (2013), 91–124.

[54] Konda, V. R., and Tsitsiklis, J. N. Actor-critic algorithms. In NIPS
(1999), vol. 13, pp. 1008–1014.

[55] Kumar, N., and Hall, T. Why machine still can’t learn so good.
Bloomberg (November 2016).

[56] Kushner, H., and Yin, G. G. Stochastic approximation and recursive
algorithms and applications, vol. 35. Springer Science & Business Media,
2003.

[57] L.A., P., and Ghavamzadeh, M. Actor-critic algorithms for risk-
sensitive mdps. In Advances in Neural Information Processing Systems
26 (2013), pp. 252–260.

[58] Laruelle, S., Lehalle, C.-A., and Pages, G. Optimal split of orders
across liquidity pools: a stochastic algorithm approach. SIAM Journal on
Financial Mathematics 2, 1 (2011), 1042–1076.

[59] Laruelle, S., Lehalle, C.-A., and Pages, G. Optimal posting price
of limit orders: learning by trading. Mathematics and Financial Economics
7, 3 (2013), 359–403.

[60] Lewis, M., and Baker, D. Flash boys. Allen Lane, 2014.

[61] Li, H., Dagli, C. H., and Enke, D. Short-term stock market timing
prediction under reinforcement learning schemes. In 2007 IEEE Interna-
tional Symposium on Approximate Dynamic Programming and Reinforce-
ment Learning (2007), pp. 233–240.

[62] Liang, J., Song, W., and Wang, M. Stock price prediction based on
procedural neural networks. Advances in Artificial Neural Systems 2011
(2011), 6.

[63] Littman, M. L. Algorithms for sequential decision making. PhD thesis,
Brown University, 1996.

[64] Lo, A. W., Mamaysky, H., and Wang, J. Foundations of technical
analysis: Computational algorithms, statistical inference, and empirical
implementation. The journal of finance 55, 4 (2000), 1705–1770.

110

[65] Mahadevan, S. Average reward reinforcement learning: Foundations,
algorithms, and empirical results. Machine learning 22, 1-3 (1996), 159–
195.

[66] Malkiel, B. G. The efficient market hypothesis and its critics. The
Journal of Economic Perspectives 17, 1 (2003), 59–82.

[67] Malkiel, B. G., and Fama, E. F. Efficient capital markets: A review
of theory and empirical work. The journal of Finance 25, 2 (1970), 383–
417.

[68] Mallaby, S. More money than god: Hedge funds and the making of the
new elite. A&C Black, 2010.

[69] Markowitz, H. Portfolio selection. The journal of finance 7, 1 (1952),
77–91.

[70] Miyamae, A., Nagata, Y., Ono, I., and Kobayashi, S. Natural pol-
icy gradient methods with parameter-based exploration for control tasks.
In Advances in Neural Information Processing Systems (2010), pp. 1660–
1668.

[71] Moody, J., and Saffell, M. Learning to trade via direct reinforce-
ment. Neural Networks, IEEE Transactions on 12, 4 (2001), 875–889.

[72] Moody, J., Saffell, M., Liao, Y., and Wu, L. Reinforcement
learning for trading systems. In Decision Technologies for Computational
Finance: Proceedings of the fifth International Conference Computational
Finance (2013), vol. 2, Springer Science & Business Media, p. 129.

[73] Moody, J., and Wu, L. Optimization of trading systems and portfolios.
In Proceedings of the IEEE/IAFE 1997 Computational Intelligence for
Financial Engineering (CIFEr) (1997), pp. 300–307.

[74] Moody, J., Wu, L., Liao, Y., and Saffell, M. Performance func-
tions and reinforcement learning for trading systems and portfolios. Jour-
nal of Forecasting 17 (1998), 441–470.

[75] Nevmyvaka, Y., Feng, Y., and Kearns, M. Reinforcement learning
for optimized trade execution. In Proceedings of the 23rd international
conference on Machine learning (2006), ACM, pp. 673–680.

[76] Nocedal, J., and Wright, S. Numerical optimization. Springer Sci-
ence & Business Media, 2006.

[77] O, J., Lee, J., Lee, J. W., and Zhang, B.-T. Adaptive stock trading
with dynamic asset allocation using reinforcement learning. Information
Sciences 176, 15 (2006), 2121–2147.

Chapter 9. Bibliography 111

[78] Pages, G. Introduction to Numerical Probability for Finance. LPMA-
Université Pierre et Marie Curie, 2016.

[79] Peters, J., Mülling, K., and Altun, Y. Relative entropy policy
search. In AAAI (2010), Atlanta.

[80] Peters, J., and Schaal, S. Policy gradient methods for robotics. In
Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference
on (2006), IEEE, pp. 2219–2225.

[81] Peters, J., and Schaal, S. Reinforcement learning of motor skills with
policy gradients. Neural networks 21, 4 (2008), 682–697.

[82] Prashanth, L., and Ghavamzadeh, M. Actor-critic algorithms for
risk-sensitive reinforcement learning. arXiv preprint arXiv:1403.6530,
2014.

[83] Puterman, M. L. Markov decision processes: discrete stochastic dy-
namic programming. John Wiley & Sons, 1994.

[84] Russo, C., and Detrixhe, J. Wall street’s speed demons are heroes.
Bloomberg (October 2016).

[85] Saad, E. W., Prokhorov, D. V., and Wunsch, D. C. Comparative
study of stock trend prediction using time delay, recurrent and probabilis-
tic neural networks. IEEE Transactions on Neural Networks 9, 6 (1998),
1456–1470.

[86] Sanderson, C. Armadillo: An open source c++ linear algebra library for
fast prototyping and computationally intensive experiments. Tech. rep.,
NICTA, 2010.

[87] Sato, M., and Kobayashi, S. Variance-penalized reinforcement learn-
ing for risk-averse asset allocation. In Intelligent Data Engineering and
Automated Learning—IDEAL 2000. Data Mining, Financial Engineering,
and Intelligent Agents. Springer, 2000, pp. 244–249.

[88] Sato, M., and Kobayashi, S. Average-reward reinforcement learning
for variance penalized markov decision problems. In Proceedings of the
Eighteenth International Conference on Machine Learning (San Francisco,
CA, USA, 2001), ICML ’01, Morgan Kaufmann Publishers Inc., pp. 473–
480.

[89] Schaul, T., Bayer, J., Wierstra, D., Sun, Y., Felder, M.,
Sehnke, F., Rückstieß, T., and Schmidhuber, J. PyBrain. Journal
of Machine Learning Research 11 (2010), 743–746.

[90] Sehnke, F., et al. Parameter exploring policy gradients and their im-
plications. PhD thesis, Technische Universität München, 2012.

112

[91] Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Pe-
ters, J., and Schmidhuber, J. Policy gradients with parameter-
based exploration for control. In Artificial Neural Networks-ICANN 2008.
Springer, 2008, pp. 387–396.

[92] Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Pe-
ters, J., and Schmidhuber, J. Parameter-exploring policy gradients.
Neural Networks 23, 4 (2010), 551–559.

[93] Sharpe, W. F. The sharpe ratio. The journal of portfolio management
21, 1 (1994), 49–58.

[94] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van
Den Driessche, G., Schrittwieser, J., Antonoglou, I., Pan-
neershelvam, V., Lanctot, M., et al. Mastering the game of go
with deep neural networks and tree search. Nature 529, 7587 (2016), 484–
489.

[95] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and
Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings
of the 31th International Conference on Machine Learning (2014).

[96] Sobel, M. J. The variance of discounted markov decision processes.
Journal of Applied Probability (1982), 794–802.

[97] Sun, Y., Wierstra, D., Schaul, T., and Schmidhuber, J. Efficient
natural evolution strategies. In Proceedings of the 11th Annual conference
on Genetic and evolutionary computation (2009), ACM, pp. 539–546.

[98] Sutton, R. S., and Barto, A. G. Introduction to reinforcement learn-
ing, vol. 135. MIT Press Cambridge, 1998.

[99] Sutton, R. S., McAllester, D. A., Singh, S. P., Mansour, Y.,
et al. Policy gradient methods for reinforcement learning with function
approximation. In Advances in Neural Information Processing Systems
(1999), vol. 99, pp. 1057–1063.

[100] Szepesvári, C. Algorithms for reinforcement learning. Synthesis lectures
on artificial intelligence and machine learning 4, 1 (2010), 1–103.

[101] Tamar, A., Castro, D. D., and Mannor, S. Temporal difference
methods for the variance of the reward to go. In Proceedings of the 30th
International Conference on Machine Learning (2013), pp. 495–503.

[102] Tamar, A., Chow, Y., Ghavamzadeh, M., and Mannor, S. Policy
gradient for coherent risk measures. In Advances in Neural Information
Processing Systems (2015), pp. 1468–1476.

Chapter 9. Bibliography 113

[103] Tamar, A., Di Castro, D., and Mannor, S. Policy gradients with
variance related risk criteria. In Proceedings of the 29th International
Conference on Machine Learning (2012), pp. 387–396.

[104] Tamar, A., and Mannor, S. Variance adjusted actor critic algorithms.
arXiv preprint arXiv:1310.3697 (2013).

[105] Tan, Z., Quek, C., and Cheng, P. Y. Stock trading with cycles: A
financial application of anfis and reinforcement learning. Expert Systems
with Applications 38, 5 (2011), 4741–4755.

[106] Timmermann, A., and Granger, C. W. Efficient market hypothesis
and forecasting. International Journal of forecasting 20, 1 (2004), 15–27.

[107] Tsay, R. S. Analysis of financial time series, vol. 543. John Wiley &
Sons, 2005.

[108] Werbos, P. J. Backpropagation through time: what it does and how to
do it. Proceedings of the IEEE 78, 10 (1990), 1550–1560.

[109] Wiering, M., and Van Otterlo, M. Reinforcement Learning: State-
of-the-Art, 1 ed., vol. 12 of Adaptation, Learning, and Optimization.
Springer, 2012.

[110] Williams, R. J., and Zipser, D. A learning algorithm for continually
running fully recurrent neural networks. Neural computation 1, 2 (1989),
270–280.

[111] Yang, S., Paddrik, M., Hayes, R., Todd, A., Kirilenko, A.,
Beling, P., and Scherer, W. Behavior based learning in identifying
high frequency trading strategies. In IEEE Conference on Computational
Intelligence for Financial Engineering & Economics (CIFEr) (2012).

[112] Zhao, T., Hachiya, H., Niu, G., and Sugiyama, M. Analysis and
improvement of policy gradient estimation. In Advances in Neural Infor-
mation Processing Systems (2011), pp. 262–270.

[113] Zhao, T., Niu, G., Xie, N., Yang, J., and Sugiyama, M. Regular-
ized policy gradients: Direct variance reduction in policy gradient estima-
tion. In Proceedings of The 7th Asian Conference on Machine Learning
(2015), pp. 333–348.

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Introduction
	The Computerization of Finance
	The New Dawn of Artificial Intelligence
	Structure

	Discrete-Time Stochastic Optimal Control
	Markov Decision Processes
	Policies
	Risk-Neutral Framework
	Discounted Reward Formulation
	Average Reward Formulation

	Risk-Sensitive Framework
	Discounted Reward Formulation
	Average Reward Formulation

	Dynamic Programming Algorithms
	Value Iteration
	Policy Iteration

	Reinforcement Learning
	The Reinforcement Learning Problem
	Model-Free RL Methods
	Model Approximation
	Value Approximation
	Policy Approximation

	Risk-Neutral Policy Gradient
	Basics of Policy Gradient Methods
	Risk-Neutral Objective Functions
	Finite Differences
	Likelihood Ratio Methods
	Monte Carlo Policy Gradient
	GPOMDP
	Stochastic Policies
	Policy Gradient with Parameter Exploration

	Risk-Neutral Policy Gradient Theorem
	Theorem Statement and Proof
	GPOMDP
	Actor-Critic Policy Gradient
	Compatible Function Approximation
	Natural Policy Gradient

	Risk-Sensitive Policy Gradient
	Risk-Sensitive Framework
	Monte Carlo Policy Gradient
	Policy Gradient Theorem
	Average Reward Formulation
	Risk-Sensitive Actor-Critic Algorithm
	Discounted Reward Formulation

	Parameter-Based Policy Gradient
	Risk-Neutral Framework
	Parameter-Based Natural Policy Gradient

	Risk-Sensitive Framework
	Parameter-Based Natural Policy Gradient

	Financial Applications of Reinforcement Learning
	Efficient Market Hypothesis
	Formal Definitions of the EMH
	Critics to the EMH

	Bibliographical Survey
	Asset Allocation with Transaction Costs
	Optimal Order Execution in Limit Order Book
	Smart Order Routing Across Dark Pools

	Asset Allocation with Transaction Costs
	Wealth Dynamics
	Rewards and Objective Functions
	States
	Actions

	Numerical Results for the Asset Allocation Problem
	Synthetic Risky Asset
	Specifications of the Learning Algorithms
	Experimental Setup
	Risk-Neutral Framework
	Risk-Sensitive Framework

	Historical Risky Asset
	Risk-Neutral Framwork
	Risk-Sensitive Framework
	The Challenge of Historical Data

	Conclusions
	What Has Been Achieved
	Final Remarks
	Further Developments

	Appendices
	Implementation
	Python Prototype
	C++ Implementation
	Environment, Task, Agent and Experiment
	ARACAgent

	Execution Pipeline
	Compilation
	generatesyntheticseries.py
	experimentlauncher.py
	mainthesis
	postprocessing.py

	Bibliography

