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A B S T R A C T

Data management systems over the years evolved in two diametri-
cally opposite fields of application: data storage and stream process-
ing. Nowadays both the technologies are widespread and they are
often required to cooperate toward a common goal. However the
integration of the two is still in an early stage of development and
usually custom solutions are required for each specific deployment.

The purpose of the thesis is to model and evaluate a native and
general purpose integration of static data sources into the Complex
Event Processing tool T-Rex [4]. To do so we extended and re-designed
the T-Rex engine to integrate a static data source (namely a SQLite
database) with the event streams that flow into the engine. This re-
quired to go through the T-Rex rule language extension, followed by
an elaboration of the key algorithms to efficiently process this new
language, i.e., to combine static and streaming data, concluding with
a careful analysis of the performance of the new engine.

The project shows that events streams and data collections can be
modeled with similar logical abstractions, simplifying the description
of those problems that operate on the boundary of the two domains.
At the same time the real-time performances of the original T-Rex
implementation can be preserved, within reasonable limits.
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S O M M A R I O

I sistemi di data management nel corso degli anni si sono sviluppati
in due campi di applicazione diametralmente opposti: immagazzina-
mento di dati e elaborazione in tempo reale di flussi di informazione.
Al giorno d’oggi entrambe le tecnologie sono ampiamente diffuse e
spesso è necessario che cooperino per il raggiungimento di comuni
obiettivi. Tuttavia l’integrazione delle due è ancora in una fase in-
iziale di sviluppo e solitamente si rendono necessarie soluzioni per-
sonalizzate per specifico caso d’uso.

Lo scopo della tesi è di modellare e validare gli effetti di un’in-
tegrazione di sorgenti di dati statici nel tool di Complex Event Pro-
cessing T-Rex [4]. Per raggiungere questo obiettivo presentiamo l’im-
plementazione di un componente che permetta l’interazione con un
database SQLite. In particolare descriviamo l’estensione del linguag-
gio di definizione di regole di T-Rex, spieghiamo i principali algoritmi
e discutiamo le prestazioni ed i limiti analizzando i risultati di una
serie di test.

Il progetto mostra come stream di eventi e collezioni di dati pos-
sano in effetti essere descritti con astrazioni logiche del tutto simili,
permettendo di affrontare più facilmente problemi che operano sul
confine tra i due domini. Inoltre i risultati dei test evidenziano come
le prestazioni real-time dell’implementazione originale di T-Rex pos-
sano essere preservate sotto ragionevoli condizioni.
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I N T R O D U C T I O N

In the past Complex Event Processing (CEP) [10] was seen as a special-
ized product, applied to systems focused exclusively on streams and
real-time processing and used only when the constraints where so
strict that were impossible to satisfy with standard databases. Those
requirements had the maximum priority and users were willing to
sacrifice convenience to achieve the necessary speed.

Nowadays the increase in data production rate and the new trend
of reactive and proactive systems is helping CEP and stream process-
ing in general to gain popularity. In this new environment, require-
ments and architectures are often wider than just event handling and
system integration is starting to get valued as much or even more
than pure performance.

This thesis investigates the feasibility and limits of an interoperabil-
ity between the T-Rex CEP engine and the SQLite database engine,
showing that static data can find a natural fit into the TESLA1 [7]
rule definition language and that the performance of an embedded
database can satisfy the requirements of a real time execution, espe-
cially if in combination with a cache mechanism. We also highlight
how the response time of the external DBMS and the cache friendli-
ness of the processed data remain strict requirements for a practical
usability.

In particular my contribution were:
• Identification of ambiguities in some TESLA operators and pro-

posal of refinements, supported by a formal definition of the
syntax, which was previously presented mostly by examples.
• Rewrite of the T-Rex engine to make it more robust, extensible

and accurate with respect to the specification.
• Design and formalization of a syntactic and semantic extension

of the TESLA language to seamlessly combine event streams
with static, relational data.
• Development of the integration of the T-Rex engine with the

SQLite database to interpret the new rule language, and intro-
duction of a caching layer to improve performance in accessing
static data.

The rest of the thesis is organized as follows: the first chapter intro-
duces the field of study, providing a basic overview of features and
terminology related with Information Flow Processing and Complex
Event Processing in particular. The second chapter presents TESLA
and T-Rex, analyzing their strengths and weakness. The third chapter
describes the way we extended the TESLA language to enable CEP

1 TESLA is the T-Rex rule specification language
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rules that seamlessly combine static and streaming data. The fourth
chapter explains the architecture of the system and the algorithms
used. The fifth chapter studies, through a wide set of benchmarks,
how the various design choices we made impact the performance
of the resulting system, under various conditions. The last chapter
draws the main conclusions and proposes future development.
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1
C E P B A C K G R O U N D

1.1 introduction

Complex Event Processing (CEP) [10] consists in analysis and manip-
ulation of streams of data, where each data item models an event
occurring in an observed domain: starting from the primitive ones
received as external input to the system, events are filtered, pattern
matched, aggregated and combined into composite ones according to
a given set of rules.

CEP represents the dual to the classical databases model, in which
data are usually static or changing at a relatively slow pace and
queries vary from time to time, depending on the information re-
quired at the moment. CEP instead is characterized by persistent
rules applied to a continuous flow of new data.

Before stepping into more advanced topics, in this chapter I will
make an overview of the field of study, from a historical contextual-
ization to the general concepts and terminology.

1.2 history and context

The discipline was born in the ’90s as an evolution of publish-subscribe
systems, to satisfy the needs of expressing patterns of multiple events
rather than simple topic or content filtering. From that starting point
it focused on real-time applications (like IoT sensors, fraud and emer-
gencies detection, stock markets analysis, transportation) and devel-
oped high level languages and operators to support common time
related tasks.

In the meantime different approaches to Information Flow Process-
ing (IFP) [6] arose from other research fields and complemented CEP
requirements and features.
For example the database community developed Data Stream Man-
agement Systems (DSMSs) [1], which reduced everlasting streams to
relational collections using windowing operators and manipulating
them with continuous queries.
Moreover, recently distributed stream processors started getting a lot of
interest and traction from big tech companies as a new paradigm to
handle extremely parallelized and throughput focused stream manip-
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1.3 features

ulations, in the same way Hadoop MapReduce [8] revolutionized batch
processing.

Nowadays everything is slowly settling into a more unified and
standardized ecosystem: tools are expanding their functionalities to
match different needs of IFP and exploring the interaction with other
systems and data sources.

1.3 features

As mentioned before, CEP engines are characterized by the execution
of persistent rules in low-latency applications and one of the main
aspects that differentiate CEP from other similar technologies is its
focus on events patterns, opposed to single events or batches.

To ease rule development and optimization, CEP engines usually
define a Domain Specific Language (DSL). These DSL are typically declar-
ative and somehow inspired to SQL, meaning that they allow to de-
scribe the desired solution in terms of which data to retrieve and
under which constraints.
There is a common base of operators and language constructs that
can be found across most of the implementations, so let’s try to re-
view these building blocks and lay a terminology foundation for the
chapters to come.

First of all it is necessary to define a sequence of events described
as some kind of list of event types that have to be notified to activate
the rule. That sequence is characterized by relationships of happen-
before and other time constraints to delimit the eligibility to be part
of the pattern. In practice, there are operators to define windows in
terms of duration or number of events or delimited by the occurrence
of two events that acts as boundaries.
In addition to temporal properties we need to apply filters based on
content, so it is possible to write algebraic expressions, comparisons
and possibly parameterization over the attributes of one or more
events in the sequence.
Sometimes it is required the ability to iterate over a unknown number
of events to detect a trend, some others to negate a predicate, so that
the rule is fulfilled if there are no events that match the filters.
After a pattern is defined is important to declare selection policies,
that are a way of expressing how many and which events satisfying
the constraints should be picked for further processing. For example
we might want to propagate only the most/least recent candidate.
Then we need to transform the data, combining information from
multiple events or running aggregate functions.
Finally it may be desirable for an event notification to participate to
a rule evaluation only once and then be discarded, waiting for new
notifications. This practice is called event consumption and its effect
and tunability can vary a lot from one implementation to another.

12



2
T E S L A A N D T R E X

2.1 introduction

TESLA [7] is a declarative strongly typed CEP language that, as some
other alternatives, provides a comprehensive set of common opera-
tion on events (like filtering and parameterization, composition and
pattern detection, negation and aggregation) and allows to control
selection policies, time windows and event consumption. However,
while the competitors rely on informal documentation that leaves
room to ambiguities, TESLA’s unprecedented characteristic is its aim
to a complete semantic specification with TRIO [9], a first order tem-
poral logic. The definition in advance of a precise behavior for each
feature improves coherence in the development of engines based on
TESLA and helps users to understand the language deeply with less
empirical research. It is part of the purpose of the thesis to keep
working on this track.

TESLA reference implementation is T-Rex [4], a CEP engine writ-
ten in C++. It was initially designed around an algorithm called
Automata-based Incremental Processing (AIP), which transforms each
rule in a state machine that is spawned and activated by every in-
coming event until successful pattern detection or failure; AIP was
fundamental to analyze the complexity bounds imposed by the lan-
guage. Later T-Rex has been rewritten using a different algorithm
called Column-based Delayed Processing (CDP) [5], that works accumu-
lating events and processing them in batch as soon as a possible trig-
ger is detected; this technique was found to be faster and easier to
parallelize and offered the opportunity for a CUDA implementation.

While the specification of TESLA’s semantic was a central topic
of the very first paper, at the time of the writing the syntax was al-
ways described informally and through examples. This was identi-
fied as a risk of possible misunderstandings in the very foundation
of the project, so as first thing in this chapter I will try to define the
TESLA grammar in a more rigorous and hopefully clear way. Then I
will summarize the previous writings about semantic and finally will
highlight the inconsistencies between the semantics of TESLA and its
actual implementation in the T-Rex engine, which aroused after sys-
tem analysis and team discussion, followed by the clarifications or
modifications proposed.

13



2.2 bnf grammar

2.2 bnf grammar

Backus-Naur Form (BNF) is a notation for context-free grammars that
allows to recursively define the composition of every single syntax
feature. The components of this kind of writing are terminal sym-
bols, that are simple strings possibly empty (ε), and non terminal
ones, that are wrapped in angle brackets. Each non terminal is de-
fined in a derivation rule and on the right hand side there will be
the non terminal name, while on the left one there will be a sequence
of symbols possibly separated by a vertical line (|) to imply choice
between options.

BNF is also used, in a machine readable form, by parser generators
like ANTLR (the one used by the project), so technically there is a def-
inition already, but it had to go through some scarcely documented
compromises to avoid parsing ambiguities and to face some practi-
cal need. The version presented here instead is meant for human
comprehension and as a high level reference, so I will try make it as
clear and self explanatory as possible, giving up the irrelevant details
needed only for parsing purposes.

2.2.1 Rule basic structure

The outline of a rule is characterized by four main sections: defini-
tion of the derivate event, pattern of events, attribute assignment and
event consumption.

〈rule〉 |= 〈define〉 〈from〉 〈where〉 〈consuming〉

2.2.2 Define clause

The definition of a complex event is characterized by the name of the
soon to be generated tuple and by a list of attributes names and types.

〈define〉 |= define 〈capital identifier〉 ( 〈attributes〉 )

〈attributes〉 |= 〈attribute〉 〈attributes tail〉 | ε

〈attributes tail〉 |= , 〈attribute〉 〈attributes tail〉 | ε

〈attribute〉 |= 〈lower identifier〉 : 〈attribute type〉
〈attribute type〉 |= int | float | bool | string

2.2.3 From clause

From clause is the core of pattern detection and is made of a sequence
of predicates on different events and aggregates.

〈from〉 |= from 〈predicate body〉 〈predicates〉

14



2.2 bnf grammar

〈predicates〉 |= and 〈predicate〉 〈predicates〉 | ε

〈predicate〉 |= 〈event〉 | 〈aggregate〉

2.2.4 Where clause

The where section is composed by a set of assignments of the at-
tributes of the soon to be generated event using arbitrary expression
over the data processed in the pattern detection phase.

〈where〉 |= where 〈assignments〉 | ε

〈assignments〉 |= 〈assignment〉 〈assignments tail〉
〈assignments tail〉 |= , 〈assignment〉 〈assignments tail〉 | ε

〈assignment〉 |= 〈lower identifier〉 = 〈expression〉

2.2.5 Consuming clause

Consumption policy is simply defined as a list of names of events,
that took part in the from clause.

〈consuming〉 |= consuming 〈capital identifier〉 〈capital identifiers〉 | ε

2.2.6 Predicate body

The base of a predicate is made by a tuple constrained by a set of
boolean expression over current event’s data and parameters, possi-
bly followed by an alias definition.

〈predicate body〉 |= 〈constrained tuple〉 〈alias〉
〈constrained tuple〉 |= 〈capital identifier〉 ( 〈constraints〉 )

〈constraints〉 |= 〈expression〉 〈constraints tail〉 | ε

〈constraints tail〉 |= , 〈expression〉 〈constraints tail〉 | ε

〈alias〉 |= as 〈capital identifier〉 | ε

Note: in this formalization we use commas to separate constraint,
opposed to AND as in the original papers, to better distinguish pred-
icates vs. filters composition.

2.2.7 Event

An event predicate (except the trigger one that we can see in the
f rom clause) adds to tuple filtering a selection policy chosen between
each, not, f irst, last and constraints about the time window.

〈event〉 |= 〈event selection〉 〈predicate body〉 〈timing〉
〈event selection〉 |= each | not | first | last

15



2.2 bnf grammar

2.2.8 Aggregates

TESLA has the common aggregators that can be found in DBMS and
other CEP engines, but the list could be extended if needed. They are
applied on a set of tuples filtered in a similar way to event predicates
and the result can be used in an additional constraint for the event
pattern.

〈aggregate〉 |= 〈aggregate body〉 〈aggregate constraint〉
〈aggregate body〉 |= 〈aggregator〉 ( 〈aggregate inner〉 )
〈aggregate inner〉 |= 〈constrained tuple〉 〈attribute selection〉 〈timing〉

〈aggregator〉 |= AVG | SUM | MAX | MIN | COUNT
〈attribute selection〉 |= . 〈lower identifier〉 | ε

〈aggregate constraint〉 |= 〈binary operator〉 〈expression〉

2.2.9 Timing

Time constraint is imposed with two different type of window: one of
given duration from a starting event, the other delimited by a couple
of distinct events.

〈timing〉 |= 〈within〉 | 〈between〉
〈within〉 |= within 〈time〉 from 〈capital identifier〉
〈between〉 |= between 〈capital identifier〉 and 〈capital identifier〉
〈time〉 |= 〈float〉 〈time unit〉

〈time unit〉 |= d | h | min | s | ms | us

2.2.10 Expressions and constraints

Expressions in TESLA are common algebraic, boolean and string op-
erations composed with each other and they can operate on immedi-
ate values, references to current tuple attributes or parameters.

〈expression〉 |= 〈parenthesization〉 | 〈operation〉 | 〈atom〉
〈parenthesization〉 |= ( 〈expression〉 )

〈operation〉 |= 〈binary operation〉 | 〈unary operation〉
〈binary operation〉 |= 〈expression〉 〈binary operator〉 〈expression〉
〈unary operation〉 |= 〈unary operator〉 〈expression〉
〈binary operator〉 |= Common algebraic and comparison operators

〈unary operator〉 |= Common unary operators

〈atom〉 |= 〈identifier〉 | 〈parameter〉 | 〈immediate〉
〈identifier〉 |= 〈qualifier〉 〈lower identifier〉
〈qualifier〉 |= 〈capital identifier〉 . | ε
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2.3 semantic

2.2.11 Basic types

These basic symbols help defining the rest of the BNF. We can no-
tice the three types of identifiers: capital used for event names, lower
used for tuple attributes and parameter obviously used for parame-
terization.

〈capital identifier〉 |= An identifier starting with an uppercase letter

〈lower identifier〉 |= An identifier starting with a lowercase letter

〈parameter〉 |= $ 〈lower identifier〉
〈capital identifiers〉 |= , 〈capital identifier〉 〈capital identifiers〉 | ε

〈lower identifiers〉 |= , 〈lower identifier〉 〈lower identifiers〉 | ε

〈immediate〉 |= An immediate value, like a digit

〈float〉 |= A floating point number

2.3 semantic

2.3.1 TRIO overview

Created especially to address the needs of real-time systems specifi-
cation, TRIO [9] is a formalism based on the extension of First Order
Logic (FOL) with temporal operators that allow to describe proper-
ties in evolution and even to express distance and duration in time.
This ability to reason quantitatively makes TRIO different from classi-
cal temporal logics and particularly suitable to deal with events and
their occurrences.

The syntax is composed of the typical elements of a FOL, like vari-
ables, functions, predicates, propositional operators and quantifiers.
In addition to those there are special temporal operators Futr(A, t)
and Past(A, t) (plus derivatives). Moreover usual arithmetic func-
tions, like + and −, and common relational predicates, like = and <,
are assumed to be predefined at least for the temporal domain.

The semantic is again based on FOL, but some variables and predi-
cates are time-dependent, meaning that their value changes in differ-
ent instants. In the interpretation of a formula there is a present time,
left implicit, that is the reference point for any temporal expression.
The operator Futr(A, t) is true if A holds t time units in the future
and respectively Past(A, t) is true if A holds t time units in the past.
From those basic operators many others can be derived, but for the
purpose of the thesis we will need just two of them:

Alw(A) = A ∧ ∀t > 0 Futr(A, t) ∧ ∀t > 0 Past(A, t)

WithinP(A, t1, t2) = ∃x (t1 ≤ x ≤ t1 + t2 ∧ Past(A, x))

Alw(A) intuitively means that A is always true in the past, present
and future. While WithinP(A, t1, t2) means that A is valid in some
past instant within t1 and t1 + t2.
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2.3.2 Basic concepts

Labels and uniqueness of selection

First of all we have to introduce the concept of label: a unique global
identifier, that makes possible to discern one event from another, even
when they share the very same attributes and time. We assume that
incoming events have been correctly labeled before entering the sys-
tem, while to determine the label of a generated complex event we
define the function lab(r, s), where r is the rule that was triggered,
s is the list of labels of the events that satisfied the pattern and the
returned value is the label for the emitted event.
It is fundamental that lab will always generate a different label for
each new event, so the function must be injective:

Alw(∀ r1, s1, r2, s2 ((lab(r1, s1) = lab(r2, s2))↔ (r1 = r2 ∧ s1 = s2)))

At the same time we need to ensure the uniqueness o f selection, which
states that a rule r can be applied to the same list of events s only once.
We notice that there is always a trigger event that happen at the same
time of the generated one, so in a new time instant the trigger is
necessarily changed. While during a single instant it’s meaningless
to generate more than one event from the very same list.

Event occurence

To describe the occurrence of an event we introduce the time-dependent
predicate Occurs(e, l), where e is the type of the event and l is the la-
bel, the predicate is true in the single instant of occurrence and f alse
in any other.

Alw(∀e1, e2 ∈ E, ∀l ∈ L (Occurs(e1, l) ∧Occurs(e2, l)→ e1 = e2))

Alw(∀e1, e2 ∈ E, ∀l ∈ L, ∀t > 0 (Occurs(e1, l)→
¬Past(Occurs(e2, l), t) ∧ ¬Futr(Occurs(e2, l), t)))

Where E is the set of event types and L the set of valid labels.

Time of occurence

We define a time-dependent function time(l), where l is a label of an
event, that returns (if any) the time of occurrence in the past with
respect to the current instant.

Alw(∀l ∈ L, ∀t > 0 (time(l) = t↔ Past(Occur(l), t)))

18



2.3 semantic

Attributes values

Finally to reason about the content of an event we define the function
attVal(l, n), where l is a label, n is a valid attribute name and the
result is the value of the attribute. 1

2.3.3 Specification

Event emission

As introduced during the syntax description, the de f ine statement
declares the event to be generated and the rule is triggered as soon
as a sequence of events satisfies the pattern of f rom section.
The simplest rule is the one that produces a complex event CE for
any notification of simple event SE.

de f ine CE() f rom SE() ,

Alw(∀l(Occurs(CE, lab({l}))↔ Occurs(SE, l)))

The next step is being able to filter the trigger event, using basic op-
erations on its attributes. So that CE is generated if and only if SE’s
attributes matches the all the constraints.

de f ine CE() f rom SE(att1 op1 val1, ..., attn opn valn) ,

Alw(∀l(Occurs(CE, lab({l}))↔ (Occurs(SE, l) ∧
attVal(l, att1) op1 val1 ∧ ... ∧ attVal(l, attn) opn valn)))

The constraints can be generalized from a single operator to generic
expressions over tuple attributes and, as we will see, parameters.
Each expression is mapped over a corresponding TRIO predicate that
depends on the same arguments.

de f ine CE() f rom

SE(expr1(att1, ..., attn), ..., exprm(att1, ..., attn)) ,

Alw(∀l(Occurs(CE, lab({l}))↔ (Occurs(SE, l)∧
Pred1(attVal(l, att1), ..., attVal(l, attn)) ∧ ... ∧
Predm(attVal(l, att1), ..., attVal(l, attn)))))

To assign values to CE attributes we use the where clause and each
TESLA expressions is mapped to a TRIO function fi.

de f ine CE(att1, ..., attn) f rom SE()

where att1 = expr1(SE.att1, ..., SE.attm), ...,

attn = exprn(SE.att1, ..., SE.attm) ,

1 The concept is here simplified and doesn’t take into account attributes types and
domains, but for explanation purposes it is the right level of abstraction.
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Alw(∀l((Occurs(CE, lab({l}))↔ Occurs(SE, l))

∧ (Occurs(CE, lab({l}))→ attVal(lab({l}), att1) =

f1(attVal(l, att1), ..., attVal(l, attm)) ∧ ... ∧
attVal(lab({l}), attn) = fn(attVal(l, att1), ..., attVal(l, attm)))))

Event composition

To capture patterns of multiple events, TESLA provides some compo-
sition operators, made of a selection policy (each, f irst, last, not) and
a window (within or between).
The operator within defines a time range that goes from the occur-
rence of a specified event to a fixed amount of time in the past.
The operator between defines a time range delimited by two differ-
ent events.
The selection each emits an event for every occurrence inside the spec-
ified window.

de f ine CE() f rom A() and each B() within x f rom A ,

Alw(∀l0, l1 ∈ L (Occurs(CE, lab(r, {l0, l1})) ↔
(Occurs(A, l0) ∧ WithinP(Occurs(B, l1), time(l0), x))))

The selection last emits a single event using the most recent occur-
rence in the window (ties are broken using an artificial total ordering
on labels).

de f ine CE() f rom A() and last B() within x f rom A ,

Alw(∀l0, l1 ∈ L (Occurs(CE, lab(r, {l0, l1})) ↔
(Occurs(A, l0) ∧ WithinP(Occurs(B, l1), time(l0), x)

∧ ¬(∃l2 ∈ L, ∃t ∈ [time(l0), time(l1)) Past(Occurs(B, l2), t))

∧ ¬∃l3 ∈ L (Past(Occurs(B, l3), time(l1)) ∧ l3 > l1))))

The selection f irst emits a single event using the least recent occur-
rence in the window (ties are broken using an artificial total ordering
on labels).

de f ine CE() f rom A() and f irst B() within x f rom A ,

Alw(∀l0, l1 ∈ L (Occurs(CE, lab(r, {l0, l1})) ↔
(Occurs(A, l0) ∧ WithinP(Occurs(B, l1), time(l0), x)

∧ ¬(∃l2 ∈ L, ∃t ∈ (time(l1), time(l0) + x] Past(Occurs(B, l2), t))

∧ ¬∃l3 ∈ L (Past(Occurs(B, l3), time(l1)) ∧ l3 < l1))))

The negation emits an event if there aren’t occurrences in the window.

de f ine CE() f rom A() and not B() within x f rom A ,
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Alw(∀l0, l1 ∈ L (Occurs(CE, lab(r, {l0, l1})) ↔
(Occurs(A, l0) ∧ ¬WithinP(Occurs(B, l1), time(l0), x))))

The same principles apply with between operator:

de f ine CE() f rom A() and each B() within x f rom A

and each C() between A and B ,

Alw(∀l0, l1, l2 ∈ L (Occurs(CE, lab(r, {l0, l1, l2})) ↔
(Occurs(A, l0) ∧ WithinP(Occurs(B, l1), time(l0), x)

∧ WithinP(Occurs(C, l2), time(l0), time(l1)− time(l0)))))

Parameterization

Parameters, identified by the leading dollar sign, work as variables
to interconnect filter expressions in different predicates inside a rule.
In TRIO they can be represented simply by adding an additional con-
straint to the formula.

de f ine CE() f rom A(att0 = $x) and

each B(att2 < $x) within x f rom A ,

Alw(∀l0, l1 ∈ L (Occurs(CE, lab(r, {l0, l1})) ↔
(Occurs(A, l0) ∧ WithinP(Occurs(B, l1), time(l0), x)

∧ attVal(l0, att0) > attVal(l1, att1))))

Aggregates

TESLA provides the most common aggregates function, that compute
a single result from a set of events in a window. They can be used for
filtering and for value assignment.

AGGR(A.attr within x f rom B) = y ,

Alw(∀S(∀s(s ∈ S ↔ ∃l ∈ L(s = 〈l, attVal(l, attr)〉
∧ WithinP(Occurs(A, l), Time(B), x)))→ aggr(S) = y))

Event consumption

Event consumption is the ability to mark an event that previously
matched in a pattern to be removed from the list of the one available
to trigger the rule again. To describe this behavior in TRIO we intro-
duce the predicate Consumed(r, l), that should be f alse until the rule
r consumes the event labeled l and remain true from then on.

Alw(∀l ∈ L, ∀r ∈ R(Consumed(r, l)→
∀ t > 0 Futr(Consumed(r, l), t)))
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Alw(∀l ∈ L, ∀e ∈ E, ∀r ∈ R, ∀S ((¬∃t > 0 (l ∈ S ∧
Past(Occurs(e, lab(r, S), t))))→ ¬Consumed(r, l)))

We can use this predicate to describe rules with consuming clauses.

de f ine CE() f rom A() and each B()

within x f rom A consuming B ,

Alw(∀l0, l1(Occurs(CE, lab({l0, l1}))↔ Occurs(A, l0)∧
WithinP(Occurs(B, l1), time(l0), x) ∧ ¬Consumed(r, l1)

Occurs(CE, lab({l0, l1}))→ ∀t > 0 Futr(Consumed(r, l1), t)))

Hierarchies and iterations

Unlike other CEP languages, TESLA allows complex events, defined
through rules, to be part of other detection patterns and not only to
be used as subscription topics.

The straight forward consequence is the possibility to create a hi-
erarchical structure. The composition improves code organization,
reuse and maintainability, which are fundamental goals of any pro-
gramming language, but it also makes possible progressive data re-
finement, that eases development in contexts characterized by differ-
ent layers of information detail.

At the same time, complex events can be referenced in a recursive
approach, that gives the power to express iterations without any ad-
ditional language constructs. Iteration is necessary to analyze the
evolution in time of the input flows and detect trends that could span
over an undefined number of events.

de f ine RepA(Times, Val) f rom A()

where Times = 1 and Val = A.Val

de f ine RepA(Times, Val) f rom A($x)

and last RepA(Val ≤ $x) within 3min f rom A

where Times = RepA.Times + 1 and Val = $x

consuming RepA

de f ine B(Times) f rom RepA()

where Times = RepA.Times

This ability to create loops is powerful and tunable, but introduces
the risk of non-termination typical of highly expressive languages.
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2.4 ambiguities and clarifications

During the analysis of the previously defined syntax, it appeared
clear the presence of some ambiguities in the semantics of some spe-
cific TESLA operators and that, besides the additions of static data, a
general renewal of the language was appropriate.

2.4.1 Parameters

In previous papers, parameterization was presented only through ex-
amples and there was no explicit definition of its expressivity. So it
wasn’t clear if parameters needed two separate phases of assignment
and usage or they could appear as free variables in high level logical
constraints.
The former option appeared to be the intended one and few more
issues followed from that consideration, for example it wasn’t stated
if the order of definition and usage was relevant, there was no differ-
ence between assignment and comparison operators and parameters
definition was mixed with selection predicates, without any syntax
distinction.
We need the syntax to make everything more clear and intuitive by
reordering clauses and separating parameters definitions.

2.4.2 Event declaration

TESLA was presented as a strongly typed language and so it was
expected to prevent type incoherences before the actual rule evalua-
tion. However simple events weren’t declared beforehand and just
appeared at runtime as input to the system, while complex event
could be emitted by different rules possibly with different signatures.
That lack of information made hard to check in advance.
More over it was impossible to assign a numerical id to an event type
for more convenient interaction with external systems.
Some of these issues have been tackled informally in the implementa-
tion, but the solution adopted looked more like an unavoidable patch
rather than a design choice. To fill those gaps we propose a new in-
dependent statement to declare the signature and the id of any event
that is going to be processed by the system.

2.4.3 Filtering

The use of the keyword WHERE for attributes assignment can be
counterintuitive, since it wrongly reminds of the SQL clause for rows
filtering.
Moreover filtering was made in the FROM clause, mixed with the
selection predicates, in a way that could easily became messy.
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The language revision should improve keywords choice to facilitate
the approach of newcomers and it should better separate selection
and filtering to keep statements as clean as possible.

2.4.4 Timestamp and selection

During event composition, inclusion or exclusion of the present time
instant can make a great difference, but the topic wasn’t clearly dis-
cussed in previous writings.

In the original paper the predicate WithinP(A, t1, t2) was defined
using the symbol ≤, so the instants t1 and t2 were considered part
of the range. However motivations and consequences of this decision
weren’t explained.
The exclusion of the present instant wouldn’t allow hierarchical and
recursive composition, which are needed to modularize rules when
complexity increases and to have enough expressivity power to de-
scribe iterations.
Nevertheless the choice of closed ranges, which provides that kind of
expressivity, bring some downsides too. For example it is possible to
create paradoxes with events that should be generated if they are not
and shouldn’t be generated if they are, like:

de f ine A f rom B and not A within X f rom B

At the same time it is impossible to write a rule like:

de f ine B f rom A as A1 and not A within X f rom A1

that sounds reasonable at a first look, but it wouldn’t emit any event.
A practical solution is the one used by the reference implementa-

tion that breaks paradoxes introducing an implicit total ordering: it
evaluates conditions in execution order and never looks back. The
price paid is a runtime nondeterminism, which means that different
processing order of logically concurrent events could lead to different
outcomes.
This approach is the most reasonable found so far and should be
considered the standard, but the users should be aware of the impli-
cations and topic should remain open to further discussion.

2.4.5 Consuming

Event consumption was always described in combination with each
selection policy, while the use of f irst or last wasn’t really clarified.
In particular, when the first (resp. last) event satisfying the pattern
was already marked as consumed, it wasn’t specified if the match
should be considered terminated, without complex event emission, or
the processor should just look for the next one that is not consumed.
The reference implementation adopted the latter approach and we
decided to take it as the standard.
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3

L A N G U A G E E X T E N S I O N

3.1 introduction

Without a connection to a DBMS, whenever it is required to access
some data outside the characteristic event payload, it is unavoidable
to fall into cumbersome workarounds: one option is to attach the
needed information to each event, the other it to simulate a database
table with an everlasting events window filled with the entire dataset.

For example let’s say that we are processing information coming
from a public transport network, we receive an event of a bus stuck
in a traffic jam, the characteristic payload is the id of the bus and the
amount of time it will delay its ride. If we would like to notify every
bus stop on that line, we would first need to know on which line the
bus is traveling.
We could repeat the line information on every delay event. However
one issue it that all the information would have to be provided by
custom software from outside the engine, which implies technical ex-
pertise and effort. Moreover if we would like to know something else,
like the capacity of the bus or the name of the driver, we would have
to expand even more the payload and, every time a new field is re-
quired, we would have to restart the system to load the new event
structure. Finally if there were more than an event originating from
that bus, we would need to attach the same extras to each and every
one of them.
An alternative is to create a stream containing an event for each row
in the dataset and use predicates with extremely broad windows that
allow to interact with those entries at any time. This allows a better
separation and it eases the introduction of new information sources.
However it loses a lot of efficiency, making the engine almost unus-
able, because of its lack of optimizations and indexes.

That said and before getting into the details of the presented solu-
tion, let’s have an overview of the requirement and goals that influ-
enced the design and development.
The foundation is to keep it simple and natural, while preserving
the baseline performances of a real-time process. We would also like
to have the maximum expressivity and tunability of the system so
that it can be adapted to any context and situation. From a devel-
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oper point of view we want the code to be extensible to new storages
and optimizations, while remaining organized and small enough for
maintenance. Last but not least we want to continue to have a formal
definition of every aspect of the language.

In the following paragraphs I will propose some modifications to
TESLA to mitigate the issues highlighted at the end of the previous
chapter and an extension to express joins and filters over heteroge-
neous data sources. As before there will be two main sections: the
first focused on syntax changes, the second concerning the semantic
interpretation and specification.

3.2 syntax extension

3.2.1 Tuple declaration

This is an entirely new instruction that aims to provide all the re-
quired information for rules type-checking. In the beginning it is
specified if the tuple is an event or a data row. The main part is the
name of the tuple and the attributes types. At the end there is the
assignment of a numerical id.

〈declaration〉 |= 〈declare〉 〈capital identifier〉 ( 〈attributes〉 )〈with id〉
〈declare〉 |= declare | declare fact

〈attributes〉 |= 〈attribute〉 〈attributes tail〉 | ε

〈attributes tail〉 |= , 〈attribute〉 〈attributes tail〉 | ε

〈attribute〉 |= 〈lower identifier〉 : 〈attribute type〉
〈attribute type〉 |= int | float | bool | string

〈with id〉 |= with id 〈digits〉

3.2.2 Basic rule structure

The outline of the rule changes significantly in shape, but not in mean-
ing. There are still four section, but they are renamed and reordered.
Pattern detection clause at the beginning, then filtering, followed by
definition and assignment, at the end event consumption.

〈rule〉 |= 〈from〉 〈where〉 〈emit〉 〈consuming〉

3.2.3 From clause

The f rom clause is moved at the beginning of the rule since, since the
following sections rely on the tuples matched during this phase. As
before it’s composed by a sequence of predicates, that now can refer
to static data.

〈from〉 |= from 〈predicate body〉 〈predicates〉
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〈predicates〉 |= and 〈predicate〉 〈predicates〉 | ε

〈predicate〉 |= 〈event〉 | 〈aggregate〉 | 〈static〉

3.2.4 Where clause

The keyword where loses its previous meaning of assignment and
gets closer to the SQL-like interpretation. The clause is composed by
a sequence of boolean expression that filter the propagation of the
event when the f rom pattern is satisfied.

〈where〉 |= where 〈filters〉 | ε

〈filters〉 |= 〈expression〉 〈filters tail〉 | ε

〈filters tail〉 |= and 〈expression〉 〈filters tail〉 | ε

3.2.5 Emit clause

The old clause de f ine loses part its meaning because of event decla-
ration, that now specify in advance all the events attributes, so it is
joined to the old where in the emit clause. This section is composed
by the name of the complex event and a chain of variable assignment.

〈emit〉 |= emit 〈capital identifier〉 〈evaluations〉

〈evaluations〉 |= ( 〈evaluation〉 〈evaluations tail〉 ) | ε

〈evaluations tail〉 |= , 〈evaluation〉 〈evaluations tail〉 | ε

〈evaluation〉 |= 〈lower identifier〉 = 〈expression〉

3.2.6 Consuming clause

Event consumption preserves its position and syntax.

〈consuming〉 |= consuming 〈capital identifier〉 〈capital identifiers〉 | ε

3.2.7 Predicate body

To satisfy the goal of simplicity, we tried to reach a data format unifi-
cation as tuples. That may not seem important, but it helps handling
events and static data as similarly as possible. The predicate body,
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which describes tuple filtering, parameter assignment and alias defi-
nition, is one of main example this uniformity.

〈predicate body〉 |= 〈capital identifier〉 〈assignments〉 〈constraints〉 〈alias〉
〈assignments〉 |= [ 〈assignment〉 〈assignments tail〉 ] | ε

〈assignments tail〉 |= , 〈assignment〉 〈assignments tail〉 | ε

〈assignment〉 |= 〈parameter〉 = 〈expression〉
〈constraints〉 |= ( 〈expression〉 〈constraints tail〉 ) | ε

〈constraints tail〉 |= , 〈expression〉 〈constraints tail〉 | ε

〈alias〉 |= as 〈capital identifier〉 | ε

3.2.8 Event

Starting from the common predicate body, events are characterized by
windowing information and four types of selection, where f irst and
last are based on the implicit ordering given by notification times-
tamps.

〈event〉 |= 〈event selection〉 〈predicate body〉 〈timing〉
〈event selection〉 |= each | not | first | last

3.2.9 Aggregates

Aggregates can be applied to both a window of events or to a collec-
tion of static data, with almost no difference.
Moreover in this statement it isn’t possible any more to express com-
parisons and constraints, instead we can assign the resulting value to
a parameter and then use it in the where clause.

〈aggregate〉 |= 〈aggregate assignment〉 〈aggregate body〉
〈aggregate assignment〉 |= 〈parameter〉 = | ε

〈aggregate body〉 |= 〈aggregator〉 ( 〈constrained tuple〉 〈aggregate timing〉 )
〈aggregator〉 |= AVG | SUM | MAX | MIN | COUNT

〈constrained tuple〉 |= 〈capital identifier〉 ( 〈constraints〉 ) 〈attribute selection〉
〈aggregate timing〉 |= 〈timing〉 | ε

〈attribute selection〉 |= . 〈lower identifier〉 | ε

3.2.10 Static

Static predicates are really similar to event predicates, as we men-
tioned before, they share the core of parameters assignment and fil-
tering, but also the selection policies. There is a catch though: static
tuples don’t have timestamps, so no need for windowing and no nat-
ural ordering. The lack of an order implies that whenever we want to
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use the operators f irst and last we have to describe how to sort data
using their attributes in a SQL-like fashion.

〈static〉 |= 〈unordered static〉 | 〈ordered static〉
〈unordered static〉 |= 〈unordered selection〉 〈predicate body〉

〈unordered selection〉 |= each | not
〈ordered static〉 |= 〈ordered selection〉 〈predicate body〉 〈ordered by〉

〈ordered selection〉 |= first | last
〈ordered by〉 |= ordered by 〈ordering〉 〈orderings〉
〈ordering〉 |= 〈lower identifier〉 〈order〉
〈orderings〉 |= , 〈ordering〉 〈orderings〉
〈order〉 |= asc | desc

3.2.11 Timing

〈timing〉 |= 〈within〉 | 〈between〉
〈within〉 |= within 〈time〉 from 〈capital identifier〉
〈between〉 |= between 〈capital identifier〉 and 〈capital identifier〉
〈time〉 |= 〈float〉 〈time unit〉

〈time unit〉 |= d | h | min | s | ms | us

3.2.12 Expressions and constraints

〈expression〉 |= 〈parenthesization〉 | 〈operation〉 | 〈atom〉
〈parenthesization〉 |= ( 〈expression〉 )

〈operation〉 |= 〈binary operation〉 | 〈unary operation〉
〈binary operation〉 |= 〈expression〉 〈binary operator〉 〈expression〉
〈unary operation〉 |= 〈unary operator〉 〈expression〉
〈binary operator〉 |= Common algebraic and comparison operators

〈unary operator〉 |= Common unary operators

〈atom〉 |= 〈identifier〉 | 〈parameter〉 | 〈immediate〉
〈identifier〉 |= 〈qualifier〉 〈lower identifier〉
〈qualifier〉 |= 〈capital identifier〉 . | ε
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3.2.13 Basic types

〈capital identifier〉 |= An identifier starting with an uppercase letter

〈lower identifier〉 |= An identifier starting with a lowercase letter

〈parameter〉 |= $ 〈lower identifier〉
〈capital identifiers〉 |= , 〈capital identifier〉 〈capital identifiers〉 | ε

〈lower identifiers〉 |= , 〈lower identifier〉 〈lower identifiers〉 | ε

〈immediate〉 |= An immediate value, like a digit

〈float〉 |= A floating point number
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3.3 semantic of rules

3.3.1 Extension of basic concepts

In the previous chapter we introduced the concept of label, the TRIO
function lab(Rule, Labels), the predicate Occurs(Type, Label) and the
function attVal(Label, Attribute).
Before we continue further, we have to adjust those concepts to take
into account static data.

Labels and uniqueness of selection

We can extend the meaning of labels to identify data too, so that a
label can be associated to an event notification or to a tuple and only
one of them.
In the same way we do for simple events, we assume the static col-
lections to have been already labeled externally and so the function
lab remains unchanged, making no distinction between what a label
is associated to.
The uniqueness of selection remains valid, because a trigger event is
still required and that assures at least a different label for every new
execution.

Definition of predicate ThereIs

The predicate Occurs(Type, Label) is not applicable, since datasets re-
main unchanged in every time instant, so we define the predicate
ThereIs(Type, Label) with a similar meaning: it associates a label to a
single tuple type.

Alw(∀s1, s2 ∈ S, ∀l ∈ L ((ThereIs(s1, l) ∧ ThereIs(s2, l))→ s1 = s2))

If the label is associated to static data it cannot be tied to an event.

Alw(∀s ∈ S, ∀e ∈ E, ∀l ∈ L (ThereIs(s, l)→ Alw(¬Occurs(e, l))))

Differently from Occurs, this predicate is time independent, so if it is
satisfied in one instant it has to be true in any other.

Alw(∀s ∈ S, ∀l ∈ L (ThereIs(s, l)→ Alw(ThereIs(s, l)))

Where L is the set of all labels, E the set of all event types and S the
set of all static data types.

Extension of predicate attVal

The function attVal doesn’t need to be syntactically modified, but
should be extended to return attributes values of static tuples as well.
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3.3.2 Specification

Event composition

Since the first predicate has to be a trigger event, it is pointless to
make examples that do not include at least an additional predicate.
So the base case is a complex event CE generated every time the event
SE is notified and repeated for each entry found in the dataset SD.

f rom SE and each SD emit CE ,

Alw(∀l0, l1 ∈ L (Occurs(CE, lab(r, {l0, l1}) ↔
(Occurs(SE, l0) ∧ ThereIs(SD, l1))))

Using not operator, a complex event is emitted only if there are no
acceptable entries in the collection SD.

f rom SE and not SD emit CE ,

Alw(∀l0 ∈ L (Occurs(CE, lab(r, {l0}) ↔
(Occurs(SE, l0) ∧ ¬∃l1ThereIs(SD, l1))))

When we use the operators f irst or last, we have to define an ordering
so that the concept of coming first or last acquire its meaning. We
assume single attributes to be comparable. The choice between the
keywords asc and desc determine the direction of the comparison
operator. Ties are broken using the label to impose a total ordering.

f rom SE and f irst SD order by att1 asc emit CE ,

Alw(∀l0, l1 ∈ L (Occurs(CE, lab(r, {l0, l1})) ↔
(Occurs(SE, l0) ∧ ThereIs(SD, l1) ∧
(¬∃l2 ∈ L (ThereIs(SD, l2) ∧ ((attVal(l2, att1) < attVal(l1, att1))

∨ (attVal(l2, att1) = attVal(l1, att1)) ∧ (l2 < l1)))))))

When there are multiple attributes in the ordering clause, they are
checked in with lexicographical priority as in SQL.

f rom SE and f irst SD order by att1 asc, att2 desc emit CE ,

Alw(∀l0, l1 ∈ L (Occurs(CE, lab(r, {l0, l1})) ↔
(Occurs(SE, l0) ∧ ThereIs(SD, l1) ∧
(¬∃l2 ∈ L (ThereIs(SD, l2) ∧ ((attVal(l2, att1) < attVal(l1, att1))

∨ (attVal(l2, att1) = attVal(l1, att1)) ∧
((attVal(l2, att2) > attVal(l1, att2)) ∨
(attVal(l2, att2) = attVal(l1, att2)) ∧ (l2 < l1))))))))
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Filtering in static data selection is the same as in event selection.

f rom SE and each SD(expr(att1)) emit CE ,

Alw(∀l0, l1 ∈ Ł (Occurs(CE, lab(r, {l0, l1})) ↔
(Occurs(SE, l0) ∧ ThereIs(SD, l1) ∧ Pred(attVal(l1, att1)))))

Parameterization

Parameters have the new assignment syntax, but semantically pre-
serve their meaning and expressivity.

f rom SE[$par = atti]() and each SD(attj == $par) emit CE ,

Alw(∀l0, l1 ∈ L (Occurs(CE, lab(r, {l0, l1})) ↔ (Occurs(SE, l0)

∧ ThereIs(SD, l1) ∧ (attVal(l0, atti) = attVal(l1, attj)))))

Aggregates

To perform filtering using aggregates values now we have to make
use of parameters assignment and the where clause.

f rom SE and $par = AGGR(SD.att1)

where expr($par) emit CE ,

Alw(∀l0 ∈ L (Occurs(CE, lab(r, {l0})) ↔ (Occurs(SE, l0)

∧ ∀S (∀s (s ∈ S ↔ ∃l ∈ L (s = 〈l, attVal(l, attr1)〉 ∧
ThereIs(SD, l1))) → Pred(aggr(S))))))

Additional remarks

Also attribute assignment in the emit clause has to make use of pa-
rameters: they are now the only notation to refer to information from
another predicate or clause.

Moreover, while with the selection policy each may not be noticed,
there is a semantic difference between filtering in the selection predi-
cate or filtering in the where clause. The distinction appear in combi-
nation with f irst and last: if filtering in the selection, the engine will
search for the first (resp. last) tuple matching the constraints, if filter-
ing inside the where statement, the engine will retrieve the absolute
first (resp. last) tuple and then apply the filter possibly preventing
the event generation.
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4

I M P L E M E N TAT I O N

4.1 introduction

Given the real-time nature of a CEP engine and the extensive uptime
typical of a server, a thorough implementation is of maximum impor-
tance.

In this chapter I will explain how the project is structured and how
it evolved in time, highlighting the choices made to find a balance
between performance and convenience.

4.2 overview

The T-Rex project, in its entirety, is composed of the engine library,
a server, a client and an HTTP proxy. The engine, written in C++
and CUDA, is the foundation of the whole system and contains the
business logic and the computationally intensive tasks. The server,
written in C++ as well, links the core library and provides a network
interface on top of it, receiving and dispatching packets for rules and
events. The client, written in Java, allows full interaction with the CEP
server via TCP/IP sockets: from publish-subscribe, to rule registra-
tion, using a TESLA parser created with ANTLR. The proxy, written
in JavaScript for NodeJS, exposes an HTTP interface for publishing
and subscribing, but at the moment doesn’t implement rule parsing
and registration. For the purpose of the thesis we will focus on the
library, since its is the only one relevant in terms of feasibility and
performance of static data integration.

At the beginning of the collaboration the T-Rex engine was a rea-
sonably complex and well performing piece of software, although it
showed several signs of its age. It was crafted over different iterations
starting from 2010 and at that time C++ was still shaped according
to its 12 years old original standardization. The very next year the
C++11 standard came along, beginning an incredible period of ren-
ovation for both the language and the libraries, and the adoption of
these new paradigms have the potential of a great improvement of
safety and extensibility.
In particular the broad usage of dynamically allocated objects re-
quired exceptional caution during refactoring, because any minimal
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oversight could lead to leaks or attempts to access freed memory. In
T-Rex it was handled with manual reference counting, which is now
discouraged in favor of shared_ptr , that uses RAII to relieve the
programmer from the responsibility of updating the count.
Similarly a big part of the execution relied on the combination of type
unions, enums and switches to describe and process TESLA expres-
sions. The access to the wrong type or the absence of a switch case
can cause bugs that aren’t detected by the compiler and lead to unex-
pected runtime failures. In the upcoming C++17 the type variant will
be added to the standard library and it uses the power of template
metaprogramming to prevent those issues at compile time.
Moreover threading utilities and patterns are continuously evolving
and they offer new levels of abstraction that reduce the needs of syn-
chronization and locking, improving performances and preventing
data races and deadlocks.
In addition to those safety benefits, there are several small improve-
ments in terms of comprehensibility: like replacing array pointers
with vectors, avoiding output arguments now that compilers handle
efficiently the return statement, abandoning the cumbersome nam-
ing (inherited from the C tradition) for a wise usage of namespaces,
adopting foreach loops and making use of idiomatic std functions.

These innovations highlighted the weak points of the original im-
plementation and a renewal of the code base was deemed to be a
collateral requirement of the broad modifications that the library was
going to face. So, after an initial attempt of progressive refactoring, I
proceeded with a complete rewrite of the engine in Rust, a new lan-
guage which offers the aforementioned advantages and even more.

4.3 rust

Rust was born around 2010 as a side project of a Mozilla engineer and
later backed by the company. The first pre-alpha release was reached
in 2012 and the project hit version 1.0 in May 2015. So the language is
pretty young and still missing some of its planned features, but many
signs suggest that it may be on the right path.
First of all, while in the past there were several radical changes, after
they reached the release 1.0 they committed to stability and backward
compatibility, adopting a well defined workflow based on reference
proposals. However the project has kept evolving quickly, with a
release train model over 3 months windows.
Moreover it has raised a lot of interest within the community and
there is a strong traction from a big company, ensuring continuity.
Finally it is already used in production by Mozilla itself, Dropbox
and Coursera among the others.

Rust aims to be a safe and practical language for system program-
ming, with particular attention to concurrency. Its syntax, modern
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and expressive, combines the best aspects of imperative, object ori-
ented and functional programming, offering the right level of abstrac-
tion for many different task.
The type-system, inspired by Haskell, is based on the concept of trait,
which describe a property or a behavior of an object. Traits achieve
their maximum utility in combination with generics, allowing code
reuse while imposing clear restrictions on the applied types.
Rust also implements some features typical of higher level languages,
like advanced union types (enums in Rust jargon), tuples, type infer-
ence, destructuring and pattern matching.
However the most prominent and peculiar characteristic is its un-
precedented approach to safety with the concept of data ownership.
Each object is tied to a single owner at a time, ownership can be trans-
ferred via assignment, return or function arguments and the content
is moved and no longer accessible from the previous variable. If we
want to access data without loosing ownership, it’s possible to bor-
row multiple immutable references or a single mutable one, in the
meantime the variable is considered blocked in something conceptu-
ally similar to a read-write lock. Every reference is bounded by the
lifetime of the referee and can’t outlive the owner. In this way is al-
ways clear who is responsible for the resource and when the owner
goes out of scope the object can be safely dropped.
All these constraints and other minor ones are statically checked by
the compiler, which gives strong guarantees of memory safety with
no runtime overhead.

Last but not least it worth mentioning that there is a growing
ecosystem of tools and utilities, that ease setup and development. For
example: rustup.rs is an automated setup and update script, cargo is
a modern and simple package manager, build tool and documenta-
tion generator, crates.io is the official repository of open source li-
braries, rustfmt is a customizable code beautifier and racer is a code
completion utility. It’s also thanks to this simplicity of bootstrap and
distribution, that I was persuaded to adopt this new technology.

4.4 architecture

The T-Rex rewrite, T-Rex2 from now on, is composed by three crates
(Rust jargon for packages): tesla , that contains basic engine inter-
faces and language structures, trex , that is the implementation of
those traits, and benches , a set of executables to test performances
under simulated workload (on which we will focus in next chapter).

4.4.1 Tesla

In tesla package I extracted all the aspects that aren’t implementa-
tion related, so that it could work as minimal contact point between
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Figure 4.1: Tesla crate overview

components like the library and the server. The core of the package
is made of two traits: Engine , that defines methods for publish-
subscribe, tuple declaration and rule definition, and Subscriber ,
that is used for event reception. Starting from these entry points
the rest of the data structures just follows from the information re-
quired: in particular we have two sub-packages predicates and
expressions , the first contains all the tools to describe patterns of
events and static data, the latter contains the Abstract Sytax Tree (AST)
of algebraic and comparison expressions. They both heavily leverage
rust native union type, giving them a terse design compared to the
possible equivalent with C++ variant .

4.4.2 TRex

Figure 4.2: TRex crate overview

The structure of trex crate closely recalls the previous implemen-
tation, with some simplification and new abstractions.
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The core is the TRex struct, that implements the Engine trait and
acts as a coordinator between the different components and the exter-
nal world. The rest of the code can be divided in two main function-
alities: the rule definition and the event processing.

The rule definition procedure is basically a sequence of configu-
rations, that does not affect the performance of execution. When
a new rule is received, TRex invokes the validation module and
types, inferred from the collected tuple declarations, are checked to
be used properly in expressions and assignments. If the rule passes
the examination, a factory pattern is used to instantiate a dedicated
RuleProcessor . Then the processor is indexed by the events that
participate to the definition of the rule, so that is going to be acti-
vated only by those notifications that are relevant to its evaluation.
In the original project the index was more sophisticated than a sin-
gle hash-map and had a mechanism to filter the matches by checking
those predicate constraints that only depend on immediate values. In
practice the alternative appears to work well enough and additional
optimization could be added if needed.

Event handling, instead, is the core of the business logic. Event noti-
fications are sent to the TRex instance through the publish method,
presented in pseudo-code in listing 4.1. First the event is forwarded
to the registered subscribers, then the index of rule processors is ac-
cessed and for each match a task is scheduled to execute in a thread
pool, at this point the method is blocked waiting for tasks completion,
finally if the evaluation does not produce new events the execution
is complete otherwise the new events are submitted recursively to
publish and the execution repeated. Since there is the assumption
that incoming events are presented in time order and the blocking
code prevent the next event from being processed, the time order for
the generated complex events is guaranteed.

1 function publish(event ):

2 for_each subscriber in subscribers:

3 subscriber.notify(event)

4 done

5

6 let processors = index.find_by(event.id)

7 for_each processor in processors:

8 thread_pool.execute { processor.process(event) }

9 done

10

11 let events = thread_pool.collect_results ()

12 for_each event in events:

13 self.publish(event)

14 done

15 end

Listing 4.1: TRex publish method

Going deeper, the RuleProcessor , which correspond to StackRule

class in C++, is the coordinator of a sequence of PredicatesProcessor

38



4.4 architecture

and its main method (in listing 4.2) is a generalized version of the
Column-based Delayed Processing (CDP) algorithm that, as mentioned
in chapter 2, is at the core of T-Rex library itself.
On event reception RuleProcessor is responsible of dispatching
the notification to the predicates and, if the trigger is satisfied, of
propagating the chain of evaluation. The evaluation is based on a list
of objects called PartialResult , each them is a representation of
sequence of tuples (events or static data) that are compatible with the
pattern of predicates has been so far verified. Every step in the prop-
agation consumes the list of partial results, filters it and enriches it
with the predicate inner information, with the result that the list can
be shrunk, expanded or dropped altogether. Once the evaluation is
complete and successful, the RuleProcessor verifies the last con-
straints of the where clause and builds the events to emit from a
template, possibly handling the consumption of some of the events
used in the process.

1 function process(event) -> [event] :

2 for_each predicate in predicates_processors:

3 predicate.process(event)

4 done

5

6 results = []

7 if trigger.is_satisfied(event ):

8 time = event.time;

9 for_each predicate in predicates_processors:

10 time = predicate.remove_old(time)

11 done

12

13 partial_results = []

14 for_each predicate in predicates_processors:

15 partial_results =

16 predicate.evaluate(partial_results)

17 done

18

19 for_each partial_result in partial_results:

20 if where_clause.is_satisfied(partial_result ):

21 results.push(template.fill_with(partial_result)

22 mark_for_consumption(partial_result)

23 fi

24 done

25 fi

26

27 return results

28 end

Listing 4.2: RuleProcessor process method

In the previous version there were, clearly, only event based predi-
cates and their different types (in term of event selection, aggregates
and negations) were often coupled with business logic and in partic-
ular StackRule had to handle all of them explicitly, with specific
functions and separate collections. T-Rex2 introduces a new abstrac-
tion, that is the aforementioned trait PredicateProcessor which
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is implemented by any component that acts as a predicate evaluator.
In this way everything is handled uniformly: event and static proces-
sors are instantiated through a provider, for further decoupling, and
kept into a unique list. Every time that a notification arrives all the
elements of the list are notified and each of them decide how to han-
dle the information. Similarly, during evaluation, the only mean of
communication is through PartialResult and the nature of each
step remains encapsulated.
This design choice makes it much easier to experiment with new data
sources and hopefully this modularity will facilitate future develop-
ment of custom components for different DBMS.

Currently the system runs two implementations of predicate pro-
cessor: EventProcessor , which supports the previous functional-
ities and completes the CDP algorithm as in the original paper [5],
and SQLiteProcessor , that is the test implementation to interact
with a relational database.
The EventProcessor , at every notification, filters the received event
by ID and checking the constraint that depend only on immediate
values, if everything matches the event is stored into a time ordered
vector, which is periodically cleaned from old or consumed entries.
When the evaluation starts and a PartialResult is received, the
processor scans the events and propagates those that match every pa-
rameterized constraint.
The SQLiteProcessor , instead, doesn’t interact with event noti-
fications and it’s activated only during the evaluation phase, when
it queries the database to find suitable tuples, as we will see in the
following section.

An example of rule processor is shown in figure 4.3, where the
rule is composed in sequence by a trigger, two event predicates and a
static predicate. During the execution the two event processors have
collected a stack of events, instead the SQLite processor has direct
access to a DB table.

Figure 4.3: Processors chain example
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4.5 sqlite module

The SQLite module contains two main components: a translator and
an executor.

At creation time the predicate is fed to the translator and TESLA
syntax is mapped permanently to a SQL statement using the follow-
ing simple conversion rules.
The basic example is composed of an each predicate with no con-
straints nor parameters and, as we can see, the statement can be
translated to a simple SQL select.

each SD ,

SELECT 1 FROM SD;

When the predicate features a negation, the operator NOT EXIST can
be used to evaluate a subquery and return whether there are values
in the result set or not.

not SD ,

SELECT NOT EXIST (SELECT 1 FROM SD);

The selection policy f irst does not have an implicit absolute ordering
to work with, so it has to define one. The order clause is directly
mapped to the SQL one.

f irst SD order by attr1 ASC, . . . , attrn DESC ,

SELECT id FROM SD

ORDER BY attr1 ASC, . . . , attrn DESC LIMIT 1;

For last the same considerations made for f irst hold, except for the
mapping of the order clause, which is inverted.

last SD order by attr1 ASC, . . . , attrn DESC ,

SELECT id FROM SD

ORDER BY attr1 DESC, . . . , attrn ASC LIMIT 1;

The use of constraints inside tuple brackets find its correspondence
in the SQL where clause.

each SD(attr1 op val1, . . . , attrn op valn) ,

SELECT id FROM SD

WHERE attr1 op val1 AND . . . AND attrn op valn;

The definition of a parameter it’s processed adding its value to the
query return column.

each SD[$param = attri, . . .] ,

SELECT attri as param, . . . FROM SD;
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Finally the most common aggregation functions can be found in both
the languages, so a translation is immediate.

$param = AGGR(SD.attr1) ,

SELECT AGGR(attr1) as param FROM SD

The prepared statement produced is then stored for later use.
When the evaluation start, the executor populates the query with

the parameters contained in PartialResult and execute it through
rusqulite library (that is a wrapper of C SQLite embedded API)
and the result are processed and forwarded in the chain of evaluation.

4.6 cache

To improve performance of data retrieval and try to keep the speed
of execution above the constraints of real-time, a caching layer was
added between the executor and the database.

Figure 4.4: Cache module overview

The key of the cache is made by the combination of a SQL state-
ment and the parameters with which it was populated. The key is
intuitively unique for each result set1 and it is also descriptive of the
interrogation itself. So, instead of contacting the cache and database
directly, the SQLiteProcessor will construct a key and delegate
the task to a Fetcher . This new component will attempt a lookup in
the cache and if the result is missing will fall back to the DB, hiding
the complexity of cache update and multi-threaded synchronization.
The cache value is the result of a previously executed query and, de-
pending from the type of the predicate, it can be a list of tuples or the
result of an aggregate function or a flag of existence.

The system is integrated with several cache algorithms that can be
activated and configured through the engine construction arguments.

1 For the purpose of the thesis the data are considered immutable and cache invalida-
tion is omitted
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Each of them, as can be seen in figure 4.4, implements Cache trait
allowing to easily replace one implementation with another.

4.6.1 Simple Caches

We can categorize the first three algorithm as simple caches, because
they have basic storage approaches and do not leverage the context
information to chose what to preserve and what to discard.

dummy The first implementation is a dummy cache that doesn’t
store anything and it’s useful for testing the system in condition of
100% misses. The methods store and remove are just empty, while
contains will always return false and fetch will always None .

perfect The perfect cache is the opposite of the dummy and will
store everything, without capacity limits. Its purpose is to test the
maximum theoretical benefits of a cache. The methods simply for-
ward the calls to those of an hashmap.

collision The collision cache is basically an hashmap with a
reduced key space and a fixed capacity. The methods contains ,
fetch and remove act in the same way a normal map would. How-
ever the insertion possibly removes a single entry with the same hash
value.

4.6.2 Complex Caches

The last three algorithms, instead, store metadata about the entries
and exploit the context information to provide better chance to pre-
serve useful entries in their limited available capacity.

1 function store(key , entry ):

2 insert entry

3 while memory usage > capacity

4 remove the entry with least priority

5 done

6 end

Listing 4.3: Complex cache insertion

All the algorithms presented, as most of the caches in general, are
characterized by an insertion method that operates, as shown in list-
ing 4.3, by storing the new element to cache and removing the lowest
priority element until the memory usage is below the allowed capac-
ity. The difference between the three implementations is only the for-
mula they use to compute priorities. All the other methods behave
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as in a standard map, except that fetch and contains function
internally update the priority of the accessed element.

lru-size Least Recently Used is a family of caches that keep track
of the order of access and prioritize time locality. In its usual imple-
mentation is meant for fixed size entries and, since in our case results
sets can vary significantly in length we adopted the LRU-size vari-
ant. LRU-size has a maximum capacity set in terms of object sizes
and, every time a value is inserted, multiple entries can be evicted to
make room for the new one, keeping a controlled memory footprint.
The cache was implemented on top of a LinkedHashMap , that is an
hash map whose entries are connected one another in a linked list,
having O(1) complexity for each operation.

gds(1) Greedy-Dual Size(1) [2] is a cache developed in the context
of web browsers and proxies. GDS(1) rewards small entries, so that
in the same capacity will fit more values, increasing the probability
of a hit. The priority is computed with the following formula:

priority := 1 / size + clock

Where clock is an aging factor to avoid stagnation of entries that
aren’t relevant anymore and it’s updated monotonically as the pri-
ority value of the last discarded entry.

gdsf Greedy-Dual Size Frequency [3], an evolution of GDS(1), is
the current champion among the web caching algorithms and imple-
mented, for example, by Squid caching proxy. It tries to consider a
combination of how costly it is to obtain the entry, the size it occupies
and the frequency it was accessed so far, with the following formula:

priority := cost ∗ f requency / size + clock

Where clock is the same aging factor seen for GDS(1).
Both GDS(1) and GDSF can be implemented using a expecially

crafted combination of a binary heap and an hash map, with amor-
tized O(1) complexity and worst case of O(log(N)). However, for
simplicity, it has been implemented using a high level combination of
a B-tree set and an hash map, with complexity O(log(N)).
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E VA L U AT I O N

5.1 introduction

CEP engines are used in a variety of scenarios, each of which has dif-
ferent requirements and settings, and that makes performance evalua-
tion a true challenge. In fact there is not a universally agreed method-
ology of measurement and there are neither a reference workload,
recorded from a real execution, nor a standard emulator, to generate
a synthetic one.

The complexity is given by the high number of parameter that char-
acterize the execution of the application and in particular by the dif-
ferent ways in which they interact.
In a real world scenario most of those variables are bound to the en-
vironment and very specific: the inputs are correlated one each other
and together deliver a meaningful information, at the same time the
rules are manually tailored to the particular task.
On the opposite side, during a general purpose evaluation, it is nec-
essary to control the behavior of the inputs and the complexity of the
rules, while preserving the stability of the execution.

In this chapter I will present the results of a selected number of
test cases, explaining why each configuration was chosen and how it
could impact on a real world application.

5.2 environment

Processor: Intel Core i7-4770 @ 3.40GHz
4 Cores, 8 Threads

RAM size: 16GB
Operating System: Debian GNU/Linux 8.6 (jessie)

Kernel 3.16.0-4-amd64

C++ Compiler: G++ 4.9.2
Rust Compiler: 1.14.0-nightly (2016-11-05)
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5.3 general performances

First of all, setting temporarily aside the introduction of static data,
we will compare the previous T-Rex engine with the rewrite T-Rex2.
This will show that the new implementation is indeed correct and
efficient, mitigating the risk of a bias in the tests due to a poor real-
ization. In the meantime we will gradually introduce the key points
of the evaluation process and the general environment setup.

5.3.1 Characteristic variables

We start from the fundamental variables that characterize a CEP eval-
uation, in particular explaining their on the computation.

• The frequency of events and the size of predicate window are
two of the most characteristic control variables and, in combina-
tion one with each other, they regulate the amount of events re-
tained by the system. So higher frequencies and wider windows
imply that more events will be associated with every predicate
processor: those events have to be searched at each iteration of
the system and directly concur in rules satisfaction.

• The number of rules intuitively impact the computational re-
quirements increasing the number of step needed to process an
incoming event. However this aspect is strongly related with
the number of declared event types and since the latter influ-
ence the probability of a rule being activated by the next ran-
dom event. So a high number of rules composed by many dif-
ferent event types, may be activated just one at a time and stress
the system way less than the half of the rules with fewer event
declarations.

• The number of predicates per rule and the presence of con-
straints on them influence the probability of a rule to be sat-
isfied. In combination with the selection policy, measured in
terms of probability of being each, f irst or last, they determine
how many new events will be generated by each rule.

• Finally we mention the two most important output variables:
the drop rate and the time of completion. The drop rate an-
alyzes the system in a latency oriented fashion and it is mea-
sured as the percentage of discarded events: we feed the engine
through a buffer queue of finite length and if it is not emptied
fast enough the exceeding events are lost. On the other hand
the completion time is more throughput oriented and it is ob-
tained using an unbounded queue and waiting for the system
to process every single event.
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5.3.2 Base rule

As for the rule definition, the challenge is to create a model that is
simple enough to predictably work under all the circumstances exam-
ined and rich enough to be interesting and customizable. We found
the following rule to be representative of the different aspects we care
about, while being easy to extend.

declare SE0(x : int) with id 0

declare SE1(x : int) with id 1

declare . . .

declare SEi(x : int) with id i

declare CE() with id i + 1

f rom SE0(x == 1)

and each SE1(x == 1) within τ1 f rom SE0

and . . .

and each SEi(x == 1) within τi f rom SEi−1

emit CE

The rule is composed of a linear chain of simple events from SE0

to SEi, where every predicate has a temporal dependency with the
previous one and the number of predicates can be extended at will.
Each constraint is composed of a single equality to the immediate
value 1, this configuration allows to simply control the match through
the choice of event values. The time window is parameterized by τi
and, while the example shows only the use of each selection policy,
they can be varied with a given probability.
Exactly i + 1 tuples were declared, so that each one can only appear
in a specific position in the rule, improving the predictability of the
system.

5.3.3 Workload

For the benchmark we configured the previous rule with i = 2 and
τi as a random random value uniformly distributed in the range
τavg − 1s and τavg + 1s.
The probability of choosing each, f irst or last selection policies was
usually fixed to 100% of each to maximize the load of the system.
Regarding the rest of the system, 65 group of 4 event types were de-
clared and 650 rules were instantiated, 10 identical for each group of
events, so that every time a sequence was satisfied ten rules would
fire. The events were generated uniformly across the different decla-
rations, with all the attributes x set to 1 to satisfy the constraints, and
they were emitted at a tunable frequency. The number of events fed
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5.3 general performances

to the system was 60 ∗ f req, that is the quantity emitted in a minute at
the given frequency. The length of the queue was bound as f req/10
when measuring the drop rate and left unbound when measuring
execution time.

5.3.4 T-Rex and T-Rex2 comparison

For the first comparison we set the predicates window to at an av-
erage of 10s and varied the frequencies from 600 to 4000 events per
second, so that at the minimum both handle all the events, with a
drop rate of 0% and at the end of the scale most of them are lost.
Figure 5.1 shows that the drop rate of the rewrite is lower at every fre-
quency and similarly figure 5.2, that plot execution times in second
on logarithmic scale, shows that at frequencies where the engines
would loose events the speed of the rewrite is almost constantly four
times higher.
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Figure 5.1: T-Rex vs T-Rex2
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Figure 5.2: T-Rex vs T-Rex2
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To better explore the domain, for the second comparison we pick
a middle frequency, 1500, and vary the average windows size, in a
range from 3 to 12 seconds.
The results, shown in figure 5.3 and 5.4, are noticeably similar to the
first measurement and confirm the performance gain.
We can also observe how in both the test case the drop rate and the
corresponding execution time are closely correlated and most of the
time it is possible to switch from one to the other without loosing the
qualitative interpretation.

The results demonstrate the efficiency of T-Rex2, with improve-
ments that can be considered beyond the expectations, considering
that the rewrite closely followed the architecture of its predecessor.
The most likely and relevant motivation is a slightly improved paral-
lelism that take advantage of all the available processing units: they
both had 8 workers threads (plus few other to deal with coordination
and event publishing), but the old implementation distribute the jobs
statically using rule ids, while the rewrite allocate them dynamically
with a thread pool.
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Figure 5.3: T-Rex vs T-Rex2
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5.4 static data and cache

In this section we are going to explain how the execution must be
adapted to evaluate the interaction between events and persistent
data and to test the performance gains obtained from the cache.

5.4.1 Additional variables

We must refine the domain of the problem, since the new expressivity
inevitably causes the expansion of the control variables with the one
needed to describe the properties of the database and the cache layer.
In particular a database is a complex technology and have plenty of
settings and characteristic, but the fundamental ones are: the num-
ber of rows, the number of columns, the distribution of the values,
the latency of the connection and the presence of indexes. While the
integration into the CEP execution is characterized by the selection
policy, the constraints on the values, the number of results and the
frequency of invocation.
As for the cache, there is the choice of the algorithm among the many
presented, the size in terms of memory occupation and finally the
possibility to share the storage or split it among the different users.
Moreover there are environmental factors that influence the results
like the domain and the probabilistic distribution of the values. Fi-
nally miss rate and hit and miss time are the characteristic metrics of
performance.
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5.4.2 Rule adaptation

The previous TESLA rule was kept as a template and extended with
a static predicate with the following configuration:

declare SE0(x : int) with id 0

declare SE1(x : int) with id 1

declare . . .

declare SEi(x : int, y : int, z : int) with id i

declare SEi+1(col0 : int, . . . , colj : int) with id i + 1

declare f act SD(col0 : int, . . . , colj : int) with id i + 2

declare CE() with id i + 3

f rom SE0(x == 1)

and each SE1(x == 1) within τ1 f rom SE0

and . . .

and each SEi[$p1 = y, $p2 = z](x == 1) within τi f rom SEi−1

and each SD[$c0 = col0](col1 >= $p1, col1 < $p2)

emit CE(x = $c0)

There is a new declaration SD that describes the static data collection
and each of its attributes is mapped to a column of the table.
The event SEi acquire a special role, it has a second and third attribute,
that are referenced in the static predicate and they work as lower and
upper bound, controlling the result of the query.
Another declaration was introduced, SEi+1, that, as we will see, can
be used as a replacement of SD whenever we want to reduce the
access to the DB while keeping the same level of produced events.
Finally it is possible, through a configuration, to add a parametric
dependency between the static predicate and other predicates in the
rule: this allow to expand the domain of the cache key stressing the
cache algorithms.

5.4.3 Workload

First of all, a database table is created with 2 columns (an incremen-
tal index and a numerical payload) and populated with a given num-
ber of rows. In particular, for each entry the aforementioned pay-
load is randomly generated in a range between −1/2 ∗ #rows and
+1/2 ∗ #rows: having a uniform distribution of values, but in a non
sequential order, helps to avoid possible bias in term of DBMS archi-
tecture or file read.
The declaration were changed to 100 groups of 5, plus one single dec-
laration for the database table. The rule defined are 1000, preserving
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the ratio of 10 identical rule for each declaration group. Database in-
dexing can be switched on or off.
During the event generation, SEi.y (the second attribute of the events
of type SEi) is set to a random value, sampled from a selectable prob-
abilistic distribution, while SEi.z is set as SEi.y + ∆, so that they act
properly as lower and upper bound. Where ∆ is generated pseudo-
randomly with an average of 10.
What is not mentioned here is unchanged from the previous defini-
tion of the workload in section 5.3.3.

5.4.4 Table simulation and database

Even without a native support for DBMSs, it was already possible to
emulate the access to a persistent data collection, as we recall from
section 3.1. So it seems appropriate to verify the integration with
SQLite to be consistently faster than preexisting alternative.

So, to define two executions with the very same semantic, we ap-
plied the algorithm for DB population to produce events with the
same payload of the corresponding table and we emitted all of them
at the beginning of the execution. At the same time we adapted the
static predicate in each rule extract the same data from the simulated
event stream (using an unlimited window, to have the data available
at any time).
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Figure 5.5: Database vs simulation

We execute the programs with a small window of 2s average and
low frequency of 800 events per second, varying the number of static
data entries from 100 to 10000. As we can see from figure 5.5, the table
simulation fully handle the load only with a very small collection and
performances rapidly deteriorate as soon the number of static entries
grow. On the other hand, T-Rex2 does not lose events even with the
highest configuration considered. It is worth noting that, actually,
thanks to the benefits of the database index, the performance of T-
Rex2 are virtually not influenced by the size of the table (tested up to
10 million rows).
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The results show that a native support is clearly an important im-
provement to the previous possibilities, but at the same time they give
us little information about the limits of T-Rex2.

5.4.5 Performances contextualization

In the following benchmark we contextualize the measures collected
through a comparison of the results of three different configuration
that have the same rate of event production, meaning that given the
same number of input events they will output a similar number of
complex events.
Two out of thee different competitors share exactly the same work-
load described in section 5.4.3, one uses the dummy cache and the
other uses the perfect one. The remaining execution does not have
static predicates and is constructed in this way: each predicate of
type SD is replaced with one of type SEi+1, with no constraints and
unlimited window, and then events of type SEi+1 are generated in the
same number as the average length of the database result set (10 in
this case). In this way the behavior of the system is closely simulated.
The test is run with an average predicate window of 6 seconds, 1 mil-
lion of table rows (where used) and a frequency of events that vary
from 600 to 4000 events per second.
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Figure 5.6: Perfect cache - Frequency and Drop

The results in figure 5.6 shows that that T-Rex2 integrated with
SQLite in combination with a perfect cache (dashed line in the mid-
dle) can almost keep up with an execution that does not require ac-
cess to the database (lowest line), loosing just around 2% of events
more than the competitor. At the same time the execution with the
dummy cache draw a lower limit for the worst case performance: so,
even in presence of non cache-friendly data or using less perform-
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ing caches, the system is still capable of handling a remarkable load,
likely enough to satisfy the requirements of many real applications.

5.4.6 Cache algorithms

Now that we have defined some term of comparison and showed
the results of the best and worst cache, in the following paragraphs
we are going to analyze the performance of all the cache algorithms
presented in section 4.6 to see how they compare one with the others.

For the execution we set a frequency of 2000 event per second and 2

seconds window, with the event payload sampled from a normal dis-
tribution N (µ = 0, σ = 30) and making the static query dependent
from the last two predicates (expanding the query parameterization
space, making harder to cache enough values). Then we vary the
cache size, measured as the number of the rows contained in each
cache object, from 500 to 6000.
We first analyze the miss rate of each algorithm, see figure 5.7, and
then compare it to the corresponding drop rate to evaluate the impact
on the global execution, see figure 5.8.
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Figure 5.7: Cache comparison - Frequency and Miss

The dummy cache once again shows the worst case performances
with 100% miss rate. While the perfect cache sets the upper limit for
the maximum efficiency achievable, with a 10% of miss rate. They are
shown on the charts as a horizontal line respectively at the top and at
the bottom of the plots. At the end of the execution the perfect cache
contained about 12000 entries, that is the size of the key space.
The collision cache, that is built on a very basic replacement policy,
had a poor performance and was exceeded by every other algorithm.
However it was unexpected to see the GDSF cache, that is the de
facto standard and champion in HTTP caching, to be clearly left be-
hind in the comparison. My intuition is that its measure of frequency
does not work well with the repeated access patterns of a CEP engine
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Figure 5.8: Cache comparison - Frequency and Drop

would require a more precise tuning.
The second best is the LRU-size, that proves itself to be a good all-
round solution and the first choice for any caching purpose. The
winner of the comparison is the GDS(1) cache, that choosing smaller
entries is able to maximize the memory usage. We can also notice,
that both the top two algorithms reach the level of optimality of the
perfect cache with a size between 2000 and 4000 entries, that means 3

to 6 time less than the actual key space.
Comparing the results with the plot of system wide performances,

we show that the sole minimization of the miss rate it is not sufficient
affect the global execution. The most notable example is how GDS(1),
champion of the previous category, fails to keep up with LRU. The
phenomenon is explained by the difference in term of hit time: in fact
GDS(1) does have more hits (between 5% and 10% more), but with a
cost of almost the double of the LRU (∼ 1200νs compared to ∼ 650νs
of access time). The reason behind this slow down is likely due to the
suboptimal GDS(1) implementation.

5.4.7 Shared or per predicate

When the cache is allocated as a single storage accessed by different
predicates, if they request similar data they will share the space and
the cache loading cost. Also if there is some process that has more
benefits from caching, an advanced algorithm could reward it with
more space in memory. However there is always the risk that a single
component would hog the entire space, filling it with garbage and
degrading the system wide performance.
A cache per predicate, instead, would be much smaller, but it could
better adapt to the specific pattern or distribution of the data.
However we found out to be another the most relevant factor deci-
sion: sharing the cache across multiple threads require constant syn-
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chronization. In the implementation the cache is wrapped with a
mutex that soon became the bottleneck of the entire parallelization.

5.4.8 Data distribution

First of all we need to clarify that having a discrete and not too dense
domain of values is a fundamental requirement, otherwise even in
the smallest range there would be to many elements to hope for a
reasonable match in the cache. So for example floating point num-
bers usually not adapt to take part to the cache key.
The effectiveness of a cache is based on assumptions on the processed
data, for example time locality, meaning that a value requested re-
cently is likely to be requested again. Each assumption may fit better
or worse depending from the actual data distribution.

The system was built to offer a choice about the distribution of
the input event values. So it is possible to experimented with gaus-
sian, exponential and uniform distributions tuning the parameters to
spread or narrow the range of the samples.
However we found out that this is only partially relevant, in fact there
is a limit to the variability that can be introduced by a single event: be-
cause of the nature of the system, only a restricted number of events
is queued in a processor and that is the maximum expression of the
distribution. Conversely sequences of evaluation are executed repeat-
edly and the same data is requested many time during a single sys-
tem iteration, so the benefit of the cache prevail over any possible
distribution.
The situation changes when we make the static predicate dependent
from more than one event at a time: in this case the probability dis-
tributions combine with each other and generate a wider and more
diverse output, challenging the capacity of the cache.
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In this dissertation we presented an extension to the TESLA language
to describe the interaction between static data collections and event
streams, showing that is possible to have a powerful abstraction with-
out compromising the simple and declarative nature of TESLA lan-
guage or its formal definition.

We showed how the T-Rex engine, operating in connection with an
SQLite database, can handle queries over tables of millions of rows
within the strict latency requirements of a real-time system and how,
in presence of discrete and recurring query parameters, the use of a
cache can make the engine perform almost as fast as if it was handling
a similar load of pure events. In particular we demonstrated that
the component developed outperforms the workarounds that were
previously needed to emulate the access to persistent information.

However we verified that the response time of the database, even
with the use of caches, has a critical impact on the entire system and
the problem is emphasized by the guaranties of time order execution
enforced in T-Rex with a blocking architecture. This has been found
to be a risky point of failure, because a delay of even a single call to
the database may cause the engine to stall. So for future development
we suggest the investigation of a fine grained model of concurrency
and the possibility to configure the desired level of guaranties.

We also observed that the TESLA language allows multiple for-
mulation of equivalent rules, which may produce different execution
plans. At the moment the responsibility of choosing the most efficient
alternative is left to the programmer, but this task could be automated
introducing a step of rule rewriting.

In conclusion we think that the integration of SQLite into the T-
Rex engine was a successful example of the proposed interoperabiliy
between CEP tools and DBMSs. So we believe that the presented
implementation is worth expanding with new adapters for other data
sources. However, as for now, the introduction of so many changes
to the project will require a period of stabilization and reintegration
of all the existing modules, like the parser and the gpu processor.
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