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ABSTRACT 

In this thesis, we analyze flow and transport phenomena in porous media, for both constant and 

variable density conditions.   

In the context of constant density condition, we focus on scenarios characterized by middle to 

high levels of heterogeneity in the porous media conductivity. Solutions of the flow and transport 

problems are obtained by means of numerical simulations. In particular, we rely on adaptive 

discretization technique to solve the transport problem. We adopt an anisotropic spatial and temporal 

discretization guided by a posteriori recovery error estimator. We found a satisfactory comparison 

between results grounded on the use of adaptive discretization and results for fixed uniform 

discretization, of which level of refinement is established through a convergence study.  

In the context of stable variable density flow within heterogeneous porous media, we analyze 

the reduction of solute dispersion, respect to its equivalent for constant density condition. To highlight 

the interaction between the heterogeneous porous media permeability and the stabilizing effects 

induced by the flow and transport coupling, we decompose the velocity field as the sum of a stationary 

components, associated with the solution of the flow problem for constant density, plus a dynamic 

components, related to the coupling effects. The proposed decomposition allow us to identify and 

quantify the origin of the solute spread reduction. In essence, the stabilizing effects identified with 

the dynamic components leads to a regularization of the stationary velocity field at the solute front. 

This regularization of the velocity field is at the origin of the solute dispersion reduction. Then we 

derive an effective model satisfied by the ensemble average of the horizontal average of the 

concentration. The spatial averaging (upscaling) operation leads to the introduction of a dispersive 

flux in the effective model, allowing us to retain the effects of the unresolved details of the 

permeability in terms effective prediction. Ensemble averaging allow us to deal with our limited 

knowledge of the porous media properties. For the proposed model, we provide both semi-analytical 

results and Monte Carlo based solution, which compare well.  

For the environmental issue of saltwater intrusion along coastal aquifer we perform a Global 

Sensitivity Analysis (GSA) for global descriptor of the intruding wedge with respect to typically 

unknown flow condition and porous media properties. In particular, we rely on variance-based Sobol’ 

indices to quantify the sensitivity. Due to the high computational costs associated with the numerical 

solution of the coupled flow and transport problems that govern the saltwater intrusion dynamics we 

introduce a generalized Polynomial Chaos Expansion (gPCE) of the global descriptor of interest. The 

gPCE allows for a direct evaluation of the Sobol’ indices and allows us to obtain probability density 

function (pdf) of the output at affordable computational costs. This task is computationally prohibitive 

when relying on the full numerical model. As conceptualization of seawater intrusion we take the 

anisotropic dispersive Henry problem. Results show that the dispersive properties of the media greatly 

affects mixing between salt and fresh waters, the intensity of the buoyancy effects determine the 

inland intrusion of the wedge and the anisotropy ratio of the media permeability dictates the 

variability of the vertical height of the wedge along the coast. The same kind of GSA is applied to a 

hydraulic fracturing operation, with the aim of define the sensitivity of the global level of 

contamination in a vulnerable aquifer in communication with the production aquifer. For the test case 

here analyzed, results shows a great level of sensitivity of the level of contamination to the aperture 

of the fracture and the pressure of injection of the fracturing fluid. These two applications demonstrate 

the benefits of carrying out GSA to aid in the understanding of system behavior and proper 

quantification of the sensitivity.   

In the end, we propose a new GSA grounded on the first four statistical moments of the model 

output pdf. We define the sensitivity of an output with respect to an input on the base of new metrics 

entailing the mean, variance, skewness and kurtosis of the output. Our methodology provides a 
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comprehensive characterization of the output sensitivity. Results show that the output sensitivity to 

input parameters is a function of the particular statistical moment analyzed. The application of our 

approach can be of interest in the context of current practices and evolution trends in factor fixing 

procedures (i.e., assessment of the possibility of fixing a parameter value on the basis of the associated 

output sensitivity), design of experiment, uncertainty quantification and environmental risk 

assessment, due to the role of the key features of a model output pdf in such analyses. We demonstrate 

our methodology for an analytic test function widely used as benchmark for GSA studies, in the 

context of variable density scenario for the critical pumping rate in coastal aquifer and regarding 

constant density problems, we focus on the breakthrough curve of a tracer solute at the outlet of a 

heterogeneous sand box.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

 

  



viii 

 

 

 

 

 

  



ix 

 

CONTENTS 

 

1 Thesis Introduction ................................................................................................................ 2 

1.1 Adaptive mesh and time discretization for tracer transport in heterogeneous porous 

                  media          ..................................................................................................................... 2 

1.2 Dispersion for stable variable density flow, within heterogeneous porous media. ........ 3 

1.3 Variance-based Global Sensitivity Analysis for Hydrogeological Problems ................ 5 

1.4 Moment-based Metrics for Global Sensitivity Analysis of Hydrogeological Systems . 6 

2 Adaptive mesh and time discretization for tracer transport in heterogeneous porous media 

           ............................................................................................................................................. 10 

2.1 Introduction .................................................................................................................. 11 

2.2 Problem Setting ............................................................................................................ 13 

2.2.1 Mathematical and Numerical Model .................................................................... 13 

2.2.2 Observables ........................................................................................................... 15 

2.2.3 Fixed Uniform Discretization ............................................................................... 16 

2.3 Adaptive Discretization Technique .............................................................................. 17 

2.3.1 Anisotropic Mesh Adaptation ............................................................................... 17 

2.3.2 Time Step Adaptation ........................................................................................... 20 

2.3.3 Solution adaptation procedure .............................................................................. 21 

2.4 Results .......................................................................................................................... 21 

2.4.1 Test case with variance of Log-conductivity: 2 5Y  . ......................................... 21 

2.4.2 Test case with variance of Log-conductivity: 2 1Y  . ......................................... 31 

2.5 Conclusion ................................................................................................................... 33 

3 Dispersion for stable variable density flow, within heterogeneous porous media .............. 40 

3.1 Introduction .................................................................................................................. 41 

3.2 Methodology ................................................................................................................ 44 

3.2.1 Flow and transport Model ..................................................................................... 44 

3.2.2 Numerical solution ................................................................................................ 45 

3.2.3 Section Average Concentration ............................................................................ 46 

3.2.4 Ensemble Analysis ................................................................................................ 49 

3.3 Results .......................................................................................................................... 51 

3.3.1 Covariance of Vertical Velocity ........................................................................... 52 

3.3.2 Cross Covariance between Concentration and Permeability ................................ 61 

3.3.3 Ensemble Dispersive Flux and Concentration Variance ...................................... 63 



x 

 

3.4 Conclusions .................................................................................................................. 65 

Appendix A.3 Section average concentration and effective dispersive flux ....................... 67 

Appendix B.3 Ensemble average of horizontal spatial mean concentration ....................... 68 

Appendix C.3 Velocity and pressure Fluctuations .............................................................. 69 

Appendix D.3 Covariance of Vertical Velocity ................................................................... 71 

Appendix E.3 Cross covariance between permeability and concentration .......................... 74 

Appendix F.3 Concentration Covariance............................................................................. 75 

4 Variance-based Global Sensitivity Analysis of Hydrogeological Systems: Probabilistic 

               Assessment of Seawater Intrusion under multiple sources of uncertainty .......................... 83 

4.1 Introduction .................................................................................................................. 84 

4.2 Complete model and definition of the global quantities of interest ............................. 85 

4.3 Uncertainty quantification via global sensitivity analysis and generalized Polynomial 

                  Chaos Expansion .......................................................................................................... 88 

4.4 Test Case description and Numerical Implementation ................................................ 91 

4.4.1 Complete Numerical Model ................................................................................. 91 

4.4.2 Construction and validation of the gPCE approximation of the global quantities ...  

       .............................................................................................................................. 92 

4.5 Results and Discussion................................................................................................. 95 

4.5.1 Variance-based Sobol’ Indices ............................................................................. 95 

4.5.2 Probability Distributions of Global Quantities of interest .................................... 96 

4.6 Conclusion ................................................................................................................... 99 

Appendix A.4 Analytical derivation of the marginal pdf of the target global variables ... 100 

Appendix B.4 Variance-based Global Sensitivity Analysis for Hydraulic Fracturing, a 

    preliminary study. ..................................................................................... 105 

5 Moment-based Metrics for Global Sensitivity Analysis of Hydrogeological Systems..... 117 

5.1 Introduction ................................................................................................................ 118 

5.2 Theoretical Framework .............................................................................................. 120 

5.2.1 New metrics for multiple-moment GSA ............................................................. 120 

5.3 Illustrative Examples.................................................................................................. 122 

5.3.1 Ishigami function ................................................................................................ 123 

5.3.2 Critical Pumping Rate in Coastal Aquifers ........................................................ 128 

5.3.3 Solute transport in a laboratory-scale porous medium with zoned heterogeneity 

      ....................................................................................................................... 132 

5.4 Conclusions ................................................................................................................ 138 

 

 



xi 

 

 

 

  



 

  



2 

 

1 Thesis Introduction 

Facing fluid flow and transport problems in porous media is a challenging task, usually 

exacerbated by the complex heterogeneous nature of the media properties (see e.g. Rubin, 2003). 

Numerical simulations are crucial to understand and predicted the solute behavior (de Druzey et al., 

2007; Bellin et al., 1992), but retain a detailed description of the media heterogeneity and its effects, 

in terms of solute fate, may be a challenging task to achieve. Adaptive discretization technique 

represent an interesting and promising approach to simulate the concentration evolution in 

heterogeneous media (Esfandiar, 2015). 

  Depending on the scopes, available resources and knowledge about the problem, a description 

of the flow and transport problems in terms of average quantities (spatial and/or ensemble average) 

may be of interest. This goal is reached through the definition of an effective model (see e.g. Neuman 

and Tartakovsky, 2009; Woods et al., 2003). Usually effective model requires proper parameters, 

which spatial arrangement and temporal evolution are inherently related with the unresolved and 

typically unknown heterogeneity details. Further complexity and difficulties in describing and 

understanding flow and transport mechanism through an effective model arise when the flow and 

transport processes are coupled because of the additional features of the feedback. Analysis and 

understanding of the dynamics governing the effective behavior of solute transport for stable variable 

density flow in heterogeneous porous media is pursued in this thesis.  

The manifested heterogeneous nature of porous media and the common scarcity of data for 

environmental related problems rend uncertain the input parameters as well as initially and boundary 

conditions ( see e.g. Dongxiao, 2002; Rubin, 2003). Moreover, many hydrogeological application of 

interest are governed by complicated systems of equations, which may interact among themselves. In 

the light of the uncertainty and complexity associated with the solution of flow and transport in porous 

media, may be hard to understand and quantify which is the relative importance of input parameters 

in terms of investigated quantities of interest. In this thesis we firstly explore the use of variance-

based Sobol’ indices (Sobol, 1993) to assess the output-input sensitivity and then we propose new 

metrics based on the first four statistical moments of an output of interest to determine its sensitivity 

with respect to input parameters. 

1.1 Adaptive mesh and time discretization for tracer transport in 

heterogeneous porous media 

In the context of solute transport in heterogeneous media, is a common practice to resort 

numerical simulation to obtain a proper description of the solute plume evolution (see e.g. de Druzey 

et al., 2007; Bellin et al., 1992). In this work we focus on the description of solute transport at the 

continuum scale, assuming valid the advection-dispersion equation (ADE) at the local scale (see e.g. 

Bear and Cheng, 2011). The velocity field conserves fluid mass and Darcy’s law is valid (Bear and 

Cheng, 2011).  

As the heterogeneity in the permeability increases, variability and contrast in the flow field and 

in the resulting solute plume increase too. The complex evolution of the concentration field may be 

challenging to capture, since high gradients arise and a proper numerical discretization of the problem 

is required. A brute force refinement of the time and space discretization is the simplest strategy in 

order to reduce numerical discretization errors (e.g. Landman, 2007a). Inevitable drawback are the 

increase in computational cost and time to obtain the solution. A second possibility is the use of 

adaptive space-time discretization, which aims for discretization refinement automatically guided by 

the characteristic of the solution itself (Mansell et al., 2002).  

In Section 2 of this work, we assess the impact of adaptive space and time discretization (Porta 

et al. 2012; Micheletti et al. 2010) on the modeling of tracer solute transport. Previous work 
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demonstrated the capability of the anisotropic space-time adaptive discretization technique for tracer 

transport in homogenous and block-wise heterogeneous porous media (Esfandiar et al., 2014, 2015). 

We extend the methodology for random heterogeneous media. The adaptive discretization is guided 

by a suitable gradient-based recovery error estimator, which in essence optimizes the mesh and time 

stepping discretization according to the intensity of gradients of interest(Porta et al. 2012; Micheletti 

et al. 2010). We investigate two different guiding strategies for the anisotropic meshes adaptation, 

defining the guiding error estimator on the base of: (i) the concentration field only; (ii) both 

concentration and velocity field. We tested the methodologies for two dimensional synthetic cases 

with moderate, 2 1Y  , an high, 2 5Y  , level of heterogeneity, 2

Y  being the variance of Y. We 

found a satisfactory comparison between results for the adaptive methodologies and corresponding 

results for fixed space-time discretization characterized by mesh cardinality greater of order of 

magnitude and time step equal to the minimum allowed in the adaptive solutions. As quantities for 

the comparison we focus on concentration related global metric, like the scalar dissipation rate, and 

punctual metric like point wise break through curves.  

Results encourage further developments of the adaptive methodologies in order to treat flow and 

transport at field scale, capturing directly the effects of detailed small-scale heterogeneity relaxing 

the need of an upscaled-effective descriptions.   

 

 

Figure 1.1. Example of a complex concentration plume developed in highly heterogeneous porous 

media. The resulting adapted mesh is overlapped to the normalized solute maps ( logarithmic scale;  

red one, blue zero).  

 

1.2 Dispersion for stable variable density flow, within heterogeneous 

porous media.  

In the context of miscible stable variable density flow within porous media, it is well known that 

an increase in the intensity of the stabilizing flow components lead to a reduction in the size of the 

dispersion zone ( see e.g. Flowers and Hunt, 2007; Hassanizadeh and Leijn, 1995; ). In our work, we 

focus on a linear dependency of the fluid density on the dissolved solute concentration, while the 
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viscosity is assumed constant. Such choices are consistent with the analysis of process regarding the 

mix between freshwater and saltwater (Abarca et al. 2007).  

In Section 3 of this work, we provide a clear link between heterogeneity in the media 

permeability and the stabilizing mechanism which arise because of the coupling between flow and 

transport, in order to find an explanation of the manifested contraction of the solute dispersion zone. 

To do so we  decompose the flow field as a stationary component, associated with the solution of the 

flow problem for constant density, plus a dynamic component which allow to highlight the flow and 

transport coupling effects. The main results is that dynamic fluctuation component exhibit an opposite 

sign respect to the stationary fluctuations, leading to a suppression of the velocity and concentration 

fluctuation in case of stable conditions. We highlight the concepts and utility of the proposed 

decomposition for a simple explanatory setting.    

 

 

Figure 1.2. Explanatory representation of the progressive reduction of solute dispersion and of the 

tendency to resemble an homogenous-like behavior at the solute front, as the stabilizing effects 

increase. Depicted normalized solute concentration maps ( red one, blue zero ). Density is a linear 

function of concentration.  The underlying heterogeneous permeability field is the same for all the 

three columns. 

 

  Then, we find that the same regularizing dynamics highlighted by means of the stationary and 

dynamic decompositions holds also in random heterogeneous media. On these bases, we firstly 

propose an upscaled effective model, in which the upscaling operator correspond with the lateral 

spatial average. We do so because in many cases just integrated measurement are available rather 

than pointwise measurement. Secondly, in order to accommodate our uncertainty in the permeability 

field and its effect on the solute concentration, we derive a model satisfied by the ensemble average 

of monodimensional solute profiles and for the associated variance. In the effective model appears 

the dispersive flux, which quantifies the level of spreading of solute and has expected decrease for 

increasing intensity of stabilizing buoyancy effects. We investigate the evolution of the dispersive 

flux for different intensity of the stabilizing effects and of the permeability heterogeneity. Both semi-

analytical and Monte Carlo based results are proposed.  

The proposed decomposition of the flow field and related interpretations throughout the 

theoretical developments, encourage its application in other set up, e.g. unstable condition, or for 

other coupled problems.  
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1.3 Variance-based Global Sensitivity Analysis for Hydrogeological 

Problems 

In the context of hydrogeological problems the nature of the involved process, e.g. coupling 

between flow and transport, the mathematical formalism used for the problem description, specific 

problem configuration, imposed boundary and initially condition, variability and/or uncertainty in the 

input parameters can lead to an high level of complexity (Herman et al., 2013; Wagener et al., 2010). 

The problem complexity may render it difficult to understand the relationship and the sensitivity 

between input quantities and sought model outputs of interest (Razavi and Gupta, 2015). Anyway, 

understanding and quantifying properly the influence of a model parameter on  investigated results is 

of crucial importance.  

In a broad sense sensitivity analysis aims to quantify how variation in an input leads to variation 

in outputs. If variations in an input lead to great variation in the output, it is said that the output is 

highly sensitivity to the input. Different ways to define the sensitivity are available in the literature ( 

see e.g. Pianosi et al., 2016). In Section 4 of this work we focus on variance-based Global Sensitivity 

Analysis (GSA) and in particular on the Sobol’ indices (Sobol, 1993). Sobol’ indices quantify the 

relative contribution to the output variance associated with the variability of an input parameter. So, 

the metric employed in the context of Sobol’ indices to define the sensitivity between output and 

input is based on the variance of the output. The word global in GSA, indicates that the sensitivity is 

evaluated with reference to the entire parameter range of variation and not just around a single fixed 

value of the parameter, as in local sensitivity analysis. The beauty and power of Sobol’ indices relay 

in their conceptual simplicity that renders them easy to interpret. On the other hand, Sobol’ indices 

evaluation requires many model evaluations for different combination of parameters values, in order 

to explore the parameters space of definition.  

When easy to evaluate analytical expression for the input-output relationship are not available, 

we must rely on numerical simulation of the problem. For complex problems, the typically high 

computational costs associated with a single numerical run may render it unfeasible to perform global 

sensitivity analysis. In order to overcome this difficulty we resort a generalized Polynomial Chaos 

Expansion (gPCE) surrogate modelling (see e.g. Sudret, 2008; ) of output quantities of interest. Once 

available, the gPCE representation allow for a direct evaluation of the Sobol’ indices and to derive 

probability density function (pdf) of the output at feasible computational costs. Note that pdf of target 

output allow a complete uncertainty quantification, which is useful in the context of risk assessment 

analysis.    

We focus on two different complex hydrogeological problematics, the saltwater intrusion along 

coastal aquifer and the hydraulic fracturing operation in deep basins. As conceptualization of 

saltwater intrusion along coastal aquifer we select the dispersive anisotropic Henry problem proposed 

in Abarca et al. (2007), because despite its simplicity respect to a real world scenario it encapsulate 

important features of the typical saltwater wedge. We evaluate the sensitivity of proper dimensionless 

global metrics introduced to describe the overall aspect of the saltwater wedge with respect to 

dimensionless parameters of the problem, that summarize the intensity of the dispersive mechanism, 

buoyancy forces and anisotropy of the permeability formation. Regarding the analysis of hydraulic 

fracturing operations, we focus on a simple and preliminary conceptualization, in which an already 

fractured reservoir of production underlie a so called target aquifer, which is representative of water 

resource to preserve form contamination. We evaluate the sensitivity of the global level of 

contamination of the target aquifer with respect to both media properties and operational conditions. 

For both the scenarios the use of variance-based Sobol’ indices allow for a precise quantification of 

the sensitivity and enrich our understanding of the system behavior. Moreover, despite the problem 

complexity we find a satisfactory representation of the investigated output quantities through the 

constructed gPCE surrogate models. 
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1.4 Moment-based Metrics for Global Sensitivity Analysis of 

Hydrogeological Systems 

Despite their simplicity of interpretation variance-based sensitivity metrics, e.g. Sobol’ indices, 

have some limitations (Borgonovo, 2007; Pianosi et al., 2016). The sensitivity is defined only in terms 

of process variance, which means that only the second statistical moment of the output pdf is tested. 

Moreover, considering the close link between Sobol’ indices and uncertainty quantification analysis 

(see Saltelli et al., 2008) becomes clear that Sobol’ indices are fully informative of the possibility of 

reduce the output uncertainty by knowing an input parameter, if the variance is a good proxy of the 

uncertainty, which is not the case for highly skewed and tailed pdf. 

These criticisms of the variance-based GSA approach has lead to the definition of sensitivity 

analysis methodologies in which the output-input sensitivity metric entails the entire output pdf, and 

not only of the output variance, variations due to input parameters variability. Methodologies based 

on this last approach are said moment-independent GSA, since no particular moments of the output 

distribution are selected in the definition of the sensitivity. Moment-independent GSA ( see e.g. 

Borgonovo, 2007; Pianosi and Wagner, 2015;) can be view as a more complete way of determining 

the output-input sensitivity respect to variance-based GSA. However two main drawbacks occurs 

comparing moment-independent with variance-based GSA: (i) in the former approach is not evident 

which particular feature of the pdf is affected by an input variation while in the second approach is 

explicit that it is the variance, which in particular case is a good proxy of spread of the pdf around its 

mean value; (ii) an accurate evaluation of entire pdf requires more model evaluations respect to an 

accurate evaluation of the process variance. The last drawback is of concern when we must rely on 

heavy computational model to obtain the sought output. Moreover, even if the use of a gPCE surrogate 

model rend the evaluation of the probability function feasible, it is expected that more accurate 

surrogate models are needed in order to capture the entire probability function respect to just low 

order statistical moments.  

To overcome the disadvantages of variance-based and moment-independent GSA, in Section 5 

we define a new GSA methodology based on the first four statistical moment of the output pdf. Our 

methodology allow defining the sensitivity of the output, respect to input parameters, on the base of 

the mean, variance, skewness and kurtosis separately. Results are easy to interpret, since each of the 

first statistical moments has a clear relationship with the pdf structure. The application of our 

approach can be of interest in the context of current practices and evolution trends in factor fixing 

procedures (i.e., assessment of the possibility of fixing a parameter value on the basis of the associated 

output sensitivity), design of experiment, uncertainty quantification and environmental risk 

assessment, due to the role of the key features of a model output pdf in such analyses. We test and 

exemplify our methodology on three testbeds: (a) the Hishigami test function, which is widely 

employed to test sensitivity analysis techniques (Borgonovo, 2007); (b) the evaluation of the critical 

pumping rate to avoid salinization of a pumping well in a coastal aquifer, as studied by Pool and 

Carrera (2011);  and (c) a laboratory-scale nonreactive transport experiment where the temporal 

evolution of solute concentrations,  C t , is available, as studied by Esfandiar et al. (2015). 
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2 Adaptive mesh and time discretization for tracer transport 

in heterogeneous porous media 

 
We assess the impact of adaptive anisotropic space and time discretization on the modeling of 

tracer solute transport in heterogeneous porous media. The heterogeneity is characterized in terms of 

the spatial distribution of permeability, whose natural logarithm, Y, has been treated as a second order 

stationary random process. We assume that transport of solute mass obeys an advection-dispersion 

equation at the continuum scale. Solution of the flow problem is obtained from the numerical solution 

of Darcy’s law, and provides the advective velocity field. A suitable recovery-based error estimator 

guides the adaptive discretization. We investigate two different guiding strategies for the anisotropic 

meshes adaptation, defining the guiding error estimator on the basis of spatial gradients of: (i) the 

concentration only; (ii) both concentration and velocity components. We tested the methodologies 

for two dimensional synthetic cases with moderate, 2 1Y  , an high, 2 5Y  , level of heterogeneity, 
2

Y  being the variance of Y. As quantities of interest, we focus on the time evolution of section-

averaged and point-wise breakthrough curves, second centered spatial moment and the scalar 

dissipation rate. We found a satisfactory comparison between results for the adaptive methodologies 

and reference solutions found for fixed space-time discretization, whose resolution is established on 

the basis of a convergence study. Comparison of the two adaptive strategies highlights that: (i) 

defining the error estimator only in terms of concentration fields leads to some advantages in treating 

the solute transport in correspondence of low velocity spots, where diffusion-dispersion mechanism 

dominate; (ii) incorporation of the velocity field in the guiding error estimator leads to a better 

characterization of the forward fringe of the solute fronts which propagate through fast velocity 

channels. 
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2.1 Introduction 

In the analysis and prediction of contaminant transport within heterogeneous porous material 

numerical models represent a powerful and flexible tool. One of the key challenges is the 

development of numerical methodologies which are suitable to approximate solute transport within 

media characterized by large variations of effective properties, e.g. permeability.  

In this work, we focus on transport of a non-reactive solute in heterogeneous porous media at 

continuum scale, which is here described through an Advection Dispersion Equation (ADE) (Bear 

and Cheng, 2011). We therefore assume that at the continuum scale, the total effective dispersion 

coefficient is described as the sum of an effective diffusion and hydrodynamic dispersion, (i.e. the so 

called Fickian analogy, Scheidegger 1961). The effective dispersion coefficient in the ADE accounts 

for the enhancement of solute dispersion due to the unresolved velocity variability at scales which 

are not explicitly included in the model, e.g. at pore scale (see, e.g., Bear and Cheng, 2011; de Barros 

and Dentz, 2015). This is consistent with the idea of dispersion in capillary tubes (Taylor, 1953; Salles 

et al., 1993) where hydrodynamic dispersion arises from enhanced diffusion due to the presence of a 

spatial velocity distribution.  

The advection term appearing in the ADE accommodates the resolved velocity details emerging 

from the solution of the flow problem, which is defined by combining the steady state fluid mass 

conservation and the Darcy’ law. In the last two decades a considerable amount of literature focuses 

on the analysis of transport features which are not consistent with the ADE formulation (e.g., long 

tails, corresponding to long residence times of solute mass within the porous domain). This has 

provided motivation for the development of models which can capture non-Fickian (or so-called 

anomalous) transport features. These approaches include continuous time random walk (CTRW, 

Berkowitz et al., 2006), fractional derivatives (Zhang et al., 2012) and multi-rate mass transfer models 

(Haggerty et al., 2004). All of these effective formulations include nonlocal transport terms and the 

mathematical formulations can be related with each other (Neuman and Tartakovsky, 2012).  

According to a number of recent studies, the ability of the ADE model to interpret solute 

transport processes in randomly heterogeneous media is largely dependent on the level of detail 

associated with the characterization of the system properties. For example, the results by Riva et al. 

(2008) suggest that, apparent non-Fickian features observed in field-scale data can be interpreted 

through Monte Carlo simulations of an ADE. In this context it is of paramount importance the proper 

characterization of the heterogeneity of hydraulic conductivity and consequently of the velocity field. 

The chosen space-time resolution selected to approximate the ADE can also have a considerable 

impact on the ability of this simple model in interpreting observed results (e.g., Rubin et al., 2003; 

Lawrence and Rubin, 2007). It appears then crucial to be able to approximate the ADE with a 

sufficiently small space-time resolution to be able to retain all the relevant details of the 

heterogeneous conductivity (or trasmissivity) field in input, which in turn determine the non-Fickian 

transport feature through the spatial organization of preferential pathways (Edery et al., 2015). In this 

context, the selection a priori of appropriate space and time discretization is a challenging task, 

particularly in highly heterogeneous media where the solute typically can travel relatively fast along 

preferential pathways and reside for long times in stagnant regions. 

The simplest way to set up a discretization mesh is to select a fixed numerical mesh where all 

elements have the same spatial dimension and of the time step for all the window of simulation. In 

this context, an appropriate discretization grid can be selected upon resolving the numerical problem 

at hand on different space and time discretization, obtained through a sequential uniform refinement 

of the full spatial mesh and of the time step. This type of blind refinement can lead to unaffordable 

computational costs as the domain size increases and/or a detailed description of the tracer plume is 

needed. Adaptive discretization techniques provide a valuable alternative in this context. The 
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common idea of adaptive discretization is to exploit the features of the solution in order to increase 

or decrease atuomatically the space and time resolution associated with the numerical approximation. 

As a consequence, the element and time step size and shape is not chosen a priori, but dynamically 

selected. Typically, this is obtained upon relying on a specific error indicator. A number of previous 

works provide implementation of adaptive grids in the context of numerical modeling of flow (Knupp 

1996; Bresciani et al. 2012; Cao and Kitanidis, 1999; Mehl and Hill, 2002; Cirpka et al. 1999; 

Jayasinghe, 2015) and  solute transport processes in homogenous (see e.g. in Pepper and 

Stephenson,1995; Pepper et al., 1999; Saaltink et al., 2004; Kavetski et al., 2002; Younes and 

Ackerer, 2010; and heterogeneous (see e.g. Trompert, 1993; Huang and Zhan, 2005; Gedeon and 

Mallants, 2012; Chueh et al., 2010; Amaziane et al. 2014; Klieber and Rivière, 2006; Mansell et al., 

2002 and references therein) porous media. Recently, Amaziane et al. (2014) employ both space and 

time adaptive technique for simulating radionuclide transport in block wise heterogeneous media, but 

without incorporating the anisotropic features of the solution in guiding the spatial adaptation. 

Jayasinghe (2015) implement an anisotropic spatial and time step refinement for both single and two 

phase flow, focusing on homogenous field scale scenario. In anisotropic mesh adaptivity the size, 

orientation and shape of the elements are optimized to match the directional features of the problem 

at hand.  

With respect to the above cited works, the key element of originality of our work is that we 

combine anisotropic mesh and time step adaptation to simulate solute transport within randomly 

heterogeneous media. Heterogeneity of the considered porous media is characterized here in terms of 

the spatial distribution of conductivity, whose natural logarithm, Y, is treated as a second-order 

stationary random process. By performing a verification study on a single realization of the 

conductivity field, our work provides an assessment of the reliability of adaptive grids to be employed 

within uncertainty quantification and model calibration procedures, e.g., based on Monte Carlo 

approaches. We focus on synthetic test cases characterized by middle to high heterogeneity, i.e. with 

a level of variance in Y up to five.  

Our works starts from the anisotropic mesh and time step adaptive discretization technique 

recently devised in Esfandiar et al. (2014, 2015). The numerical technique relies on the a posteriori 

recovery-based error estimators for space and time discretization errors devised in Micheletti and 

Perotto (2010) and Porta et al. (2012a,b). In particular, Esfandiar et al. (2015) assess the impact of 

employing a space and time adaptation procedure in the context of parameter estimation. This is 

obtained upon comparing parameter estimates obtained through inverse modeling of solute transport 

within a block-wise heterogeneous porous medium at laboratory scale, i.e. when the domain is 

composed by regions of uniform properties. Results of Esfandiar et al. (2015) show that the quality 

of parameter estimation results improves when the space-time adaptive methodology is implemented, 

with respect to those obtained using fixed uniform discretization characterized by an apparently 

sufficient resolution.  

In this paper we focus on modelling solute transport in randomly heterogeneous porous media 

employing the adaptive discretization technique of Esfandiar et al. (2015). As typically done, the flow 

problem is solved on a fixed numerical grid which is built to honor the spatial structure of the random 

conductivity field. The resulting velocity field may exhibit complex spatial structure, with the 

presence of high velocity channels and large stagnant regions that may be linked to emerging non 

Fickian solute transport features (Edery et al., 2015). When spatial meshes are dynamically adapted 

coarsening and refinement is performed at each time step. In this context, a key challenge in 

implementing dynamically adaptive spatial meshed is that the original velocity field needs to be 

projected to the adapted mesh, which can be characterized by local element sizes which may be totally 

unrelated to the original definition of the conductivity field. Esfandiar et al. (2014,2015) show that 

mesh adaptation driven by gradients of concentration leads to accurate result when the porous 

medium is characterized by homogeneous or block heterogeneous properties. Here, we investigate 
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two diverse strategies guiding the anisotropic meshes adaptation. The error estimator of each of these 

is assessed on the basis of spatial gradients of (i) only solute concentration, or (ii) both concentration 

and fluid velocity components, upon following the procedure proposed in Porta et al. (2012a) to 

combine diverse error indicators to adapt the mesh. The idea to include the velocity components in 

the error estimator is consistent with the link between the spatial derivatives of the components of the 

velocity vector and the resulting folding, stretching, mixing and spreading of the evolving 

concentration plume especially for highly heterogeneous media, ( see e.g. de Barros et al. 2012, Le 

Bronge et al., 2015). 

To assess the quality of the adaptive methodologies we focus on the evolution in time of both 

local and spatially integrated concentration as well as global spreading and mixing indicators, i.e. the 

second centered spatial moment and the scalar dissipation rate.  

The rest of this chapter is organized as follows. Section 2.2 describe the problem setting, while 

in section 2.3 the main features of the adaptive methodology proposed in Esfandair et al. (2014) are 

briefly recalled. Results and comparison of the adaptive space-time discretization technique are 

presented in section 2.5. Conclusion are drawn in section 2.6.  

 

2.2 Problem Setting 

2.2.1  Mathematical and Numerical Model  

We consider a two dimensional rectangular domain,  , of height H = 0.14 m and width L = 0.04 

m. In our reference system we indicate the horizontal and the vertical direction with y, z (see Fig. 

2.1.a ). The Advection Dispersion Equation (ADE) reads  

  0
C

C C
t


    


v D   (2.1) 

where ( , )C C t x  [-] is the solute concentration at position x and time t, v [LT-1] is the velocity vector 

of horizontal vy and vertical vz components, and D [L2T-1] is the local dispersion tensor ( see Bear and 

Cheng, 2011) given by 

    with , = ,
i j

T m ij L T

v v
D i j y z      D

v
 (2.2) 

here T  [L] and L  [L] are the transverse and longitudinal dispersivity, 
mD [L2T-1] is the molecular 

diffusion, ij  is the Kronecker’ delta and v  is the module of the velocity. Here we set 

310T L m     and 9 210 /mD m s  The imposed boundary conditions for (2.1)-(2.2) are: time 

varying concentration along the bottom edge, exp( ( 3))BCC t   ; impermeable boundary along the 

vertical edges and a free boundary at the top, 0C  n  ( see also Figure 2.1.c ). At initial time the 

concentration is zero everywhere in the domain. The advective velocity, v, is here assumed steady 

and obeys the fluid mass conservation and the Darcy’ law 

0; ;h


    
K

v v     (2.3) 

where, h [L] is the hydraulic head and   [-] is the constant porosity, here assumed to be constant and 

equal to 0.35. The hydraulic conductivity of the porous medium is modelled as an isotropic stationary 

random field exp( ( , ))GK Y y z IK [LT-1], where I  is the identity matrix, 910 /GK m s  is the 

geometric mean of conductivity and Y(y, z) is a zero-mean second order stationary random process 

characterized by an isotropic exponential covariance function  
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2 | |
expYY YC

l


 
  

 

r
  (2.4) 

where r, 2
Y , l are the separation vector between two points, variance and correlation length of the Y 

process, respectively. The correlation length is fixed at l = 0.02 m and therefore we obtain H/l = 7 and 

L/l = 2, which are suitable for the objective of the work. Regarding the level of heterogeneity we 

consider two different values  2 1;5Y  , in order to obtain an increasing level of complexity in the 

velocity and concentration fields. The heterogeneous conductivity fields has been generated with 

SGSIM (Deutsch and Journel, 1998) on a discretization grid with 50yn   element along L and 

175zn   along H. These choice lead to a great representation of the heterogeneity in K, since we set 

25 element for correlation length, l. Hereafter we label as K  the size of the square element of the 

mesh employed for generating K. Figure 2.1.a depicts the selected Y realization for the test case with 
2 5Y  . The imposed boundary conditions for (2.3) are: fixed head along the bottom edge, BCh ; no 

flow along the vertical edges and imposed constant vertical velocity at the top boundary equal to ,z BCv  

( see also Figure 2.1.b). A global Péclet number can then be defined as the ratio between average 

diffusion-dispersion and advective time scales i.e.,  , ,/ 19.9z BC m z BCPe lv D v    . 

The final simulation time is equal to 4 PVT t  and 2 PVT t  respectively for 
2 5Y   and 

2 1Y 

, where 200PVt s  is equal to the total volume of   occupied by the pores divided by the total 

imposed flowrate and it is usually defined as pore volume, and computed as    ,/PV z BCt hl q l  . 

Following Esfandiar et al. (2014, 2015), we discretize (2.1)–(2.2) by means of a stabilized finite 

element method, which is based on a streamline diffusion technique (Brooks and Hughes, 1991). 

Spatial discretization is performed upon relying on a spatial mesh  h KT , i.e., a conformal 

discretization of   into triangular elements K. Discretization of the time window [0,T] is performed 

upon introducing the time levels  0 0,.., nt t T  , which define the set  kI  of the time intervals kI  

of amplitude 
1k k kt t t   . Time discretization is performed through the standard θ-method 

(Quarteroni et al., 2007). To guarantee the unconditionally absolute stability of the θ -method, we 

resort to an implicit scheme and set θ= 2/3. The numerical solution of the flow problem (2.3) is 

obtained through a standard finite element of degree two for the pressure, which means that velocity 

components are obtained as piecewise linear functions, through (2.3). 

Figure 2.1.a depicts the selected Y realization for the test case with 
2 5Y  . Figure. 2.1.b depicts 

the logarithm in base ten of the module of velocity, i.e.  log v , for 
2 5Y   and Fig. 2.1.c depicts the 

resulting concentration field at t = 0.5tPV for 
2 5Y  . Fig. 2.1.b shows the spatial distribution of the 

modulus of velocity, which displays the presence of two preferential pathways characterized by large 

velocities, identified by a black dashed line in Fig. 2.1.b. 
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Figure 2.1. Test case for 2 5Y  : (a) Spatial distribution of the log-conductivity field Y, (b) spatial 

distribution of the velocity modulus, (c) solute concentration field at t = 0.5tPV. High-velocity 

channels (dashed lines) and the low velocity region (dash-dotted line) are highlighted in (b). Location 

associated with section averaged concentrations 1 2 3, ,C C C  and local concentrations ,F SC C  is 

indicated in (c) (see text for definitions). Imposed boundary conditions for the flow, (b), and transport 

(c) problem are reported. 

 

2.2.2 Observables 

We introduce here the variables that will be considered as key target outputs of our analysis.  

We consider the variation of solute concentration at specific locations within the computational 

domain. In particular, we consider 

  ( , , )F F FC t C y z t     ( , , )S S SC t C y z t  (2.5) 

where PF = (yF, zF), PS =(yS, zS) indicate the location in the domain where the modulus of fluid velocity 

is maximum and minimum respectively (i.e., subscripts F and S indicate fast and slow). For the highly 

heterogeneous test case, 
2 5Y  , we find 23.8 10 ;Fy m  22.2 10Fz m  and 21.5 10 ;Sy m 

23.6 10Sz m  , see Fig. 2.1.c. For the middle heterogeneous case,
2 1Y  , we find 

3 24 10 ; 6.9 10F Fy m z m      and 21.8 10 ;Sy m   23.3 10Sz m  .  

Moreover, we consider spatially integrated concentrations along a section located at constant z 
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 
1

( , , ) 1,2,3i i

L

C C y z t dy i
L

    (2.6) 

where 1C  is evaluated at Z1=H/4; 2C  at Z2=H/2 and 3C  at Z3=H (see Fig. 2.1.c).  

Finally, we introduce some globally integrated variables, which can quantify spreading and mixing 

of the plume within the domain. We consider in particular the second centred spatial moment, i.e. Szz, 

of the concentration plume along the z-direction 

    
21

( , )zz AVS t C t z Z t d
M



  
 

x   (2.7) 

where M is the integral of concentration in the domain and ZAV is the center of mass of the plume 

   
1

( , )AVZ t C t z d
M



 
 

x  (2.8) 

We focus on  Szz due to its important role for the characterization of solute plume spreading (see e.g. 

Rubin 2003 ). Furthermore, we consider the scalar dissipation rate 

  Tt C Cd



    D  (2.9) 

The scalar dissipation rate,  , quantify the rate of mixing of the plume and turn out to be crucial for 

the study of  mixing-driven reactive transport (see e.g. de Simoni et al, 2005).  

 

2.2.3 Fixed Uniform Discretization 

We solve the transport (2.1) and flow (2.3) problems for the explained set up for fixed uniform 

triangular mesh with an increasing level of discretization and decreasing length of the time step. The 

space-time refinement is pursued until convergence is reached. As convergence criterion we impose 

that all the integrated quantities of interest, (2.6)-(2.9), do not exhibit a relative absolute error greater 

than 1% and that the pointwise breakthrough curves, (2.5), do not exhibit an absolute variation greater 

than 42.5 10 . As a reference grid we select a structured Cartesian grid where the distance between 

two nodes along the y, y , and z, z , axes is equal to K . The resulting mesh, called G1, consist 

of 1 17500Gn   triangles. For the second level of discretization, we subdivide each conductivity 

element in four sub-element that in turn are composed of two triangles. The edges of the triangles are 

now / 2y z    K  and G2 is made of 2 70000Gn   elements. We proceed in this way until we 

reach / 6y z    K  for mesh G6, composed of 6 630000Gn   triangles. Regarding the time step 

we analyse three different values, i.e. 1

1 10t s  , 2

2 5 10t s    and 2

3 2.5 10t s   . We verify 

that the quantities of interest introduced in section 4.2 are at convergence respect to the fixed mesh 

discretization and time stepping for G5 and 2

2 5 10t s   . In the following, the results associated 

with G6 and 2

2 5 10t s    represent the reference solution for the fixed time-space discretization 

and results for the adaptive procedure will be compared against them.  
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2.3 Adaptive Discretization Technique 

We briefly recall here the main features of the adaptive methodology. This has been previously 

applied to shallow water modeling (Porta et al., 2012) and computational fluid dynamics (Micheletti 

et al., 2010). Esfandiar et al. (2014, 2015) have applied this procedure to solute transport within 

homogeneous and block-wise heterogeneous porous media.  

The adaptive technique is grounded on the definition of an a posteriori error estimator for the 

global (space-time) discretization error 

A A

ht h t        (2.10) 

where 
A

h  is an anisotropic spatial error estimator that allow to optimize the size, shape, orientation 

of the mesh elements and t  is an error estimator for the time discretization. To compute both terms 

in (2.10) we rely on recovery-based error estimators (Zienkiewicz and Zhu, 1987), which are devised 

in Micheletti and Perotto (2010) and Porta et al. (2012b).  

 

2.3.1 Anisotropic Mesh Adaptation    

Let Ch be the piece-wise linear finite element approximation of the concentration C involved in 

the solution of (2.1). Following Porta et al. (2012a) and Micheletti and Perotto (2010), we introduce 

the local anisotropic estimator 

       

      

22
2

, 1, 1,

1, 2,

2

2, 2, , 0

1A

K C K K R h h

K K K

K K R h h h

t P C t C t

P C t C t K td K

 
 





        

      
 

 r

r T

  (2.11) 

where ,i K   and ,i Kr  ( i = 1, 2 ) identify the eigenvalues and the eigenvectors of the tensor MK, 

defining the mapping between a reference triangle K̂  and the generic element K of the mesh hT  (see 

Figure 2.2.a). Note that ,i K  measure the length of the semiaxes of the ellipse circumscribing K, while 

,i Kr  identify the directions of these semiaxes (Formaggia and Perotto, 2001, 2003). The quantity 

  R hP C t  represents the recovered spatial gradient of Ch at time t. As depicted in Figure 2.2.b, 

 R hP C  is computed as the area-weighted average of the discrete gradient  hC t  within the patch 

K  of triangles sharing at least one vertex with K. The global error a posteriori estimator associated 

with the finite element spatial discretization of the concentration field is computed as 

   
2 2

, 0
h

A A

C K C

K

t t t 


       
T

 (2.12) 

Equation (2.12) represents an anisotropic error estimate, as it directly involves the anisotropic 

quantities ,i K  and ,i Kr  identifying the size, shape, and orientation of element K. For a rigorous 

presentation of the error estimator (2.11)-(2.12), we refer to Porta et al. (2012) and Micheletti and 

Perotto (2010). The same strategy has been employed for homogeneous and block-wise 

heterogeneous media by Esfandiar et al. (2014, 2015). This adaptation strategy and associated results 

will be referred as CG  in the following.  

Along with (2.12) we consider in this work a second version of the error estimator, where our 

aim is to embed the spatial variability of the velocity components. Let us then assume that the field 
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 ,h h hu vv  represents the piece-wise linear interpolation of the velocity field on the grid hT . For 

the sake of a posteriori error estimation, we define the dimensionless components 

( , ) min( ( , ))
( , )

max( ( , )) min( ( , ))

h h
h

h h

u t u t
U t

u t u t
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max( ( , )) min( ( , ))

h h
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 (2.13) 

We then define the estimator  
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  (2.14) 

 

Where ,h KC  represents the average concentration in the triangle K. We can then define an estimator 

 ,

A

K V t  upon replacing Uh with Vh. From definition (2.14) it is then possible to obtain global error 

estimates A

V , A

V , as in (2.12). Note that estimator (2.14) is defined as a measure of the variability of 

the dimensionless velocity component Uh, but is conditional to the value of local concentration ,h KC

. The rationale behind this choice is that our aim is at targeting those parts of the domain where solute 

mass is present, i.e. where transport phenomena are active at a given time. In general, a posteriori 

error estimation targets the estimation of the numerical error resulting from finite element 

approximation of a target variable (e.g., Ch in (2.12)). Quantity Uh is the result of piece-wise linear 

interpolation of the velocity on the grid hT . In this sense, estimator (2.14) provides an a posteriori 

estimation of the H1 seminorm of the interpolation error associated with quantity Uh.  

Our aim is here is to embed in a single error indicator the information on the spatial distribution 

of concentration and on the velocity components. Following Porta et al. (2012), we then define a 

global error estimator  

        2 2 2 21

3

A A A A

CUV C U Vt t t t                     (2.15) 

where the concentration field and the velocity components are jointly employed in order to guide the 

adaptive procedure. This adaptation strategy and associated results will be referred as CUVG . Note 

that criterion (2.15) is provided in Porta et al. (2012a) for the solution of the shallow water equations, 

i.e. a system of partial differential equations. Here, we apply the same concept to the solution of the 

scalar equation (2.1), where the velocity components are parameters and not unknowns. The rationale 

behind this choice is that the solution of problem (2.1) requires to project the velocity components 

onto the grid employed to compute concentration, and therefore a linear interpolation between an 

original velocity field and the mesh where Ch is computed. Indicator (2.15) is designed to control the 

error associated with the solution of Ch as well as that related to the interpolation of Uh, Vh. 

The final goal is to construct an anisotropic spatial grid driven by the estimator (2.12) or (2.15). 

In this work our goal is to fix the number of elements of the adapted grid to
410eleN  . Let us assume 

here that Ch, Uh, Vh are known piece-wise linear functions on a generic grid hT . Our aim is then to 

generate a new mesh, which is designed to minimize the chosen error, conditional to the selected 

number of elements. This is here obtained through an iterative procedure which relies on the metric 

based adaptation technique proposed in Formaggia and Perotto (2003), and then applied in diverse 
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contexts in a number of works (e.g., Porta et al. 2012; Esfandiar et al., 2014,2015; Micheletti and 

Perotto, 2010). The mesh adaptation procedure can be summarized as follows: 

1. Following Formaggia and Perotto (2003) we arbitrarily set a global tolerance  and impose 

that the same error  is assigned to each triangle K of hT , i.e. upon applying the error 

equidistribution principle.  

2. We solve a constrained local optimization problem in each tringle K of the mesh which yields 

the optimal values of ,

new

i K  and ,

new

i Kr  ( i = 1, 2 ) for all triangles in the mesh hT  (see e.g., 

Formaggia and Perotto, 2003; Micheletti and Perotto, 2010). 

3. We define then the new metric tensor ,0

new

KM . To ensure that the new mesh satisfies the imposed 

number of triangles we apply a global and uniform rescaling the metric tensor ,0

new

KM  to obtain 

new

KM  in a way to obtain the desired cardinality for the mesh 
new

hT . Note that the rescaling is 

assigned upon estimating the area of the elements from the optimized quantities ,i K  and ,i Kr

, i.e. it does not require to actually generate 
new

hT . 

4. Once 
new

KM  is known, we generate the adapted mesh 
new

hT  through the metric –based mesh 

generator BAMG (Hecht et al., 2010). 

Some constraints are imposed to the mesh adaptation procedure, to guarantee the robustness of 

the methodology. Excessive element clustering is locally prevented by setting a minimum threshold 
910p   value for the product 1, 2,

new new

K K   within the local optimization solution. This is equivalent to 

assign a lower limit on the element area, since 
1, 2,

ˆ
K KK K   .  

 

 

Figure 2.2. Spatial error estimator  A

K t    in (2.12): (a) geometric definition of the anisotropic 

setting, and (b) definition of the recovered gradient  R hP Q . 
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2.3.2 Time Step Adaptation    

Time step adaptation is implemented upon relying on a recovery-based estimate of the time 

discretization error. We aim at predicting the time step kt  that can be used at each time level tk for 

the subsequent time advancement. The recovery-based estimator for the time discretization error 

within time interval 1

1 ,k k

kI t t


     is then defined as (Porta et al., 2012; Esfandiar et al., 2014): 

 
     

1 1
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 
       

x x x
x  (2.16) 

where  RC x  is a recovered solution, coinciding with the parabola which interpolates the 

concentration values      2 1, ,k k k

h h hC C C   x x x at 2 1, ,k k kt t t     respectively (see Figure 2.3); and 

 k

hC x  is the numerically computed concentration at time tk and at point x. Note that the 

multiplicative factor 1kt   in (2.16) renders the time error estimator dimensionless, consistent with 

the spatial error estimator  A

h t  in (2.12) and (2.15). Note that in this work estimator (2.16) is always 

evaluated on the basis of the concentration C, since flow is steady and the fluid velocities are then 

constant in time. The recovery-based error estimator in (2.16) is evaluated at each vertex, i.e. Vi, of 

the current mesh 
b

hT . The global time error estimator is obtained as an area weighted average 
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 (2.17) 

the new time step is computed by fixing a tolerance for the time error, i.e., we impose the 

condition 610t

t t     . The error control is applied on each time slab 1kI  , because the global 

error estimator can be evaluated only at the end of the simulation when the whole time partition is 

known. Following Porta et al. (2012b) and Esfandiar et al. (2014), the adaptive time step is then 

calculated as 

1
t

k kt

t

t t





    (2.18) 

The predicted time step (2.18) is constrained by a minimum, 0.05MINt s  , and a maximum, 

30MAXt s  which are chosen to avoid excessive coarsening/refinement of the time discretization. 

 

 

 

Figure 2.3. (a) Time derivative recovery procedure: recovered solution CR (dotted and dashed lines) 

versus linear interpolant of values hC  (continuous line). (b) comparison between the time derivatives 

/RC t   (dotted and dashed lines) and /hC t   (continuous lines). 
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2.3.3 Solution adaptation procedure 

We detail here all the steps which we follow to obtain the numerical solution of (2.1) through 

our adaptive strategy. As a first step we compute a reference velocity field upon solving the flow 

problem 2.(3) on a fixed uniform and sufficiently fine grid 
F

hT , to obtain the numerical approximation 

of the fluid velocity field      ,h h

F F F

h h h hu vv T T T . In this study we set 3F

h GT . We then detail 

how we employ the space time adaptive procedure for a generic time level tk. Let us assume the 

concentration ( )k k

h hC C t  and the grid k

hT  are known. The adaptive solution is employed to 

compute 1k

hC  , the adapted grid 1k

h


T  and the new time level tk+1. These are obtained through the 

following steps: 

1. Obtain the velocity field  hh h

kv v T  upon projecting      ,h h

F F F

h h h hu vv T T T  onto the 

grid k

hT . This is here performed through linear interpolation. 

2. Solve the transport equation (2.1) upon employing the velocity field  hh h

kv v T  to 

determine the advective and dispersive parameters. This allows obtaining  1 kk

h hC 
T . 

3. Apply the mesh adaptation procedure, upon relying on estimator (12) or (15) and compute 
1k

h


T . As detailed in Section 2.3.2 we obtain this adapted grid so that the number of elements 

of 1k

h


T  is approximately equal to 104 elements. 

4. Project the concentration fields 1 1, ,k k k

h h hC C C   onto the new grid 1k

h


T  to obtain the adapted 

time step kt . The next time level for the simulation is then defined as 1k k kt t t    . 

The procedure is then repeated until 1kt T  . Note that step 4. of the above procedure can be 

performed only when k > 1, that is the two steps 
0 1,t t   are assigned by default to a fixed time step 

MINt , which is assigned a priori as anticipated in Section 2.3.2.  

 

2.4  Results  

This section is devoted to the comparison of numerical results for the observables described in 

Section 2.2.2, obtained relaying up on: (a) fixed time step and fixed uniform spatial discretization; 

space-time adaptive methodology guided by error estimators based on (b) the concentration fields 

only, i.e. (2.12) and (c) both the concentration and the velocity fields, i.e. (2.15). We discuss results 

obtained for
2 5Y   (section 2.4.1), and then those obtained for 

2 1Y   (section 2.4.2). 

2.4.1 Test case with variance of Log-conductivity: 
2 5Y  . 

The realization of the log-conductivity field is reported in Figure 2.1.a. Figure 2.1.b depicts the 

logarithm of the modulus of the velocity field, i.e.  log | |v , as obtained from the numerical 

discretization on the fixed grid G3 of the flow problem. Fig. 2.1.b reveals the presence of two high 

velocity channels ( see dashed curves in Fig. 2.1.b ), which act as preferential pathways for fluid flow 

and are expected to largely influence transport behaviour as well. An approximately circular low 

velocity region is also identified, centred around location z = 0.035 m, y = 0.02 m (see dash-dotted 

circle in Figure 2.1.b). Figure 2.1.c depicts the resulting concentration field at t = 0.5tPV. Before going 

into details, we can observe that solute mass distribution of the domain is largely influenced by the 
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structure of the velocity field, and in particular part of the mass is delayed due to the presence of the 

above mentioned low velocity region.  

We start our analysis by focusing on the early time behaviours of the adapted mesh and resulting 

concentration fields for CUVG  and CG , and compare the results with those obtained by the reference 

solution. Figure 2.4 depicts, at t = 0.05tPV, the concentration field obtained by the three discretization 

strategies (Figure 2.4.a-c) and the adapted meshes (Figure 2.4.d-e). We report concentrations in 

logarithmic scale, given that small values of concentration are critical to evaluate early arrivals and 

tailing, which are often of interest in practical applications. In all panels of Figure 2.4 we focus on a 

limited region close to the inflow boundary. Comparison between Figure 2.4.a-c shows that the 

overall behavior of the solution is consistent among CUVG , CG  and G6. We note that for early times 

two solute finger appear, due to the channeling in the velocity field around the low velocity region 

zone indicated in Figure 2.4.b.  

 

 

 

 

Figure 2.4. Test case with 
2 5Y  : spatial distribution of the concentration field in logarithmic scale 

at time t = 0.05tPV, for discretizations (a) G6; (b) CG ; (c) CUVG  and the associated adapted meshes 

for (e) CG ; (f) CUVG . 
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The spatial topology of the adapted grid CG  reveals that the element dimension is relatively 

coarse close to the forward solute fringe (see Figure 2.4.d). This can be seen, e.g., in the region 

y=[0,0.01]m× z=[0.04,0.05]m and is justified upon observing that the concentration varies between 

approximately 10-7 and 10-4 in the same region, i.e. the concentration gradient is lower with respect 

to other portions of the domain body (see Figure 2.4.b). As a consequence, the log-concentration field 

rendered by CG  appears to be characterized by a local loss of accuracy. We also observe that some 

oscillation of the order of 10-6-10-5 appear in the solution (e.g., y ≈ 0.02 m, z ≈ 0.02 m). These are 

probably linked to interpolation of the solution between adapted meshes, which is associated to a 

small error in the presence of relatively coarse elements. The adapted mesh CUVG  is characterized 

by elements of small size along the whole forward solute fringe, since the adaptation is guided also 

by the spatial gradients of Uh and Vh which are embedded in criterion (2.15)-(2.16). As a result, the 

solution yielded by CUVG  is capable to reproduce the fine scale details of the log-concentration field 

which are partially lost in CG . We also observe that the shape of the triangular elements is close to 

isotropic when the velocity components are considered for mesh adaptation, consistent with the 

isotropic model selected for the variation of the hydraulic conductivity. 

Figure 2.5 depicts the log-concentration field for time t = 1.5tPV, as given by G6 (a), CG  (b) and 

CUVG  (c). A first visual inspection reveals that the three solutions appear to be very similar: the 

concentration field displays smooth variations. Solute mass remains trapped in the low velocity region 

located in the center-bottom part of the domain (see also Figure 2.1.b), while in the upper portion of 

the domain (z > 0.07 m) the solute is uniformly distributed throughout the domain. These features of 

the solution are reflected in the adapted meshes. Grid CG  is refined within the low conductivity zone 

where relative high concentration gradients arise (see Figure 2.5.d). Mesh CUVG  is constituted by 

elements of comparable size the vast majority of the domain of the considered domain, i.e. at all 

locations where C > 10-7 (see Figure 2.5.c and 2.5.e). At these late times, visually the solutions 

obtained for G6, CG  and CUVG  appear to be very similar, even if the adapted meshes display 

marked differences.  

Figure 2.6 show a magnification of the log-concentration field and of the adapted grids at t = 

1.5tPV around the low velocity area. The solution associated with mesh CG  exhibits local variations 

of the order of 10-6-10-5 which are particularly evident at z ≈ 0.015 m, i.e. the light blue fringes of 

log(C) in Figure 6.b are not found in the reference solution (Figure 2.6.a) and when CUVG  is 

considered. As previously noted, this observation can be linked to difference between CG  and 

CUVG  in the local dimensions of the elements of the grid. We observe that CUVG  is composed by 

elements of similar size. Only mild variations in the element shape and orientation are seen in Figure 

2.6.d, which allow to barely recognize the footprint of the concentration field on the mesh topology. 

On the other hand the mesh CG  is completely tied to the concentration field gradients and displays 

large variations of the elements size and shape around the low velocity area.  
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Figure 2.5. Test case with 
2 5Y  : spatial distribution of the concentration field in logarithmic scale 

over the entire domain,  , at time t = 1.5tPV, for discretizations (a) G6; (b) CG ; (c) CUVG  and the 

associated adapted meshes for (e) CG ; (f) CUVG .  



25 

 

 

 

 

 

 

 

Figure 2.6. Test case with 
2 5Y  : spatial distribution of the concentration field in logarithmic scale 

in the low velocity region indicated in Figure 1 for t = 1.5tPV and discretizations (a) G6; (b) CG ; (c) 

CUVG  together with the associated adapted meshes for (e) CG ; (f) CUVG  
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The evolution of the time step, t , as a function of time is depicted in Figure 7 for CUVG  (red 

curve) and CG  (blue curve). In Fig. 7 the minimum allowed time step which coincide with the one 

settled in G6, MINt , and the maximum, MAXt , are also reported. At early times the time steps is 

identical to MINt , due to the rapid variation of the C field in time. As time advances, MINt t    are 

allowed, since the solute plume spreads over a greater portion of the domain and diffusive/dispersive 

process gain importance leading to slower time variation of the C fields. The combination of the time 

step and mesh adaptivity allows obtaining a relative speed up the computational costs between CUVG  

and G6 equal to 1

/ 6 1.27 10CUV GCPU 

   , and for CG  equal to 1

/ 6 1.56 10C GCPU 

   . 

 

 

Figure 2.7. Test case with 
2 5Y  : evolution of the adaptive time step, t , against time t. Red curve 

for CUVG  and blue curve for CG . 

 

We now proceed to analysis the selected quantities of interest described in Section 2.2.2. Figure 

2.8.a shows the section-averaged concentrations at locations Z1, Z2, Z3 (see Fig. 2.1.c) evaluated for 

G6. For the sake of clarity the comparison between the results obtained with the different strategies 

is then reported in various subpanels, which focus on particular parts of the ( )iC t  trends. The reader 

can note the asymmetry in all the iC  , which is due to the level of heterogeneity in K (see, e.g., Edery 

et al., 2015). A marked tailing behavior appears at late times particularly in 1C , due to the presence 

of the low velocity spot where solute accumulates at early times and from which are slowly released 

by diffusion-dispersion. Fig. 2.8.b shows detail of the early times behavior of 1C , for G6 (black 

curve), G1 (green curve), CG  (blue curve) and CUVG  (red curve). Overall we observe that the 

differences between the various solutions is relatively small (of the order of 10-5) when the tails of 

section-averaged concentrations are of concern. This can be seen for early and late solute arrivals in 

Fig. 2.8.b and 2.8.d, respectively. We observe that for late arrivals the fixed mesh G1 tends to 

underestimate the section average concentration, while the adaptive grids reproduce well the results 

given by G6. While the absolute difference between section-average concentrations is small we 

observe that such small variations may be important in some practical applications. The two adaptive 

strategies also reproduce well the peak concentration given by G6 while G1 tends to underestimate 

the maximum concentration by approximately 10-3 at both locations Z1 and Z2, as depicted in Figure 

2.8.c.  
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Figure 2.8. Test case with 
2 5Y  : time evolution of the section-averaged concentrations 1C  

(continuous curves), 2C  (dashed curves), and 3C  (dotted curves), for (a) G6. Panels (b-d) display 

magnifications of specific time intervals, associated with early times (b), peak (c) and late times (d), 

as indicated in panel (a). In all plots black curves are associated with G6, green curves with G1, red 

curves with CUVG  and blue curves with CG . 

 

Figure 2.9 displays the same type of comparisons obtained this time upon focusing on local 

values of concentrations, i.e. CF and CS related to the fastest and slowest flow velocity within the 

domain. Note that, while the two considered locations are quite close in the domain the local 

concentration dynamics exhibits very different characteristics at the two locations. For example CF 

peaks at t = 0.1tPV, while CS reaches a maximum value at t = 1.5tPV and then slowly decreases. The 

delay observed in these two locations reflects the fact that transport is advection dominated at location 

PF, while solute mass exchanges around location PS are dominated by diffusion and transverse 

dispersion.  

Fig. 2.9 show a magnification of CF at (b) early, (c) intermediate, (d) and late times for G6 

(continuous black curves), G1 ( green curves), CG  (blue curves) and CUVG  (red curves). The 

differences between G1 and G6 are can here reach values up to 10-2 and are particularly evident for t 

< 0.1PV, i.e. as long as CF increases with time (see Figure 2.9 b-c). The two adapted meshes are here 

in close agreement with G6. Note that at these early times the two adaptive strategies tend to predict 

later solute arrivals at PF, while G1 predicts earlier solute arrivals (due to numerical diffusion). For t 

> 0.1PV (Figure 2.9.c-d) the difference between the solutions given by all strategies tend to reduce 

to values below 10-4. We observe that the solution associated with CG  displays oscillations of the 

order of 10-5 which are visible in both forward and backward tail. Such oscillations are related to the 



28 

 

small inaccuracies noted in Figure 2.4 and 2.5, and are explained upon observing that the local 

element size is characterized by large variations of element size at location PF across time.  

The variation of concentration CS (i.e., concentration at point PS) with time is considered in 

Figure 2.9 e-f. Large differences appear between G1 and G6, while the adaptive strategies closely 

reproduce the results given by the reference solution. As a results, for instance, the arrival time of a 

concentration CS = 10-5 is largely overestimated by G1 (see Figure 2.9.e).  

 

 

Figure 2.9. Test case with 
2 5Y  : time evolution of the local concentration values FC  (continuous 

curves) and SC  (dashed curves), for (a) G6. Panels (b-f) display magnifications related to specific 

time intervals associated with FC  (b-d) and SC  (e-f) as indicated in (a). In all plots black curves are 

associated with G6, green curves with G1, red curves with CUVG  and blue curves with CG . 
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As last we consider the evolution of global indicators of spreading and mixing of solute mass in 

the domain, i.e. Szz and  . Fig. 2.10.a compare Szz, evaluated with G6 (black curve), G1 (green 

curve), CUVG  (red curve) and CG  (blue curve). No great difference can be noted between the four 

solutions, with G1 which overestimates only slightly Szz for t < 0.25tPV and then underestimates it. 

Fig. 2.10.b reveals instead a marked difference between the scalar dissipation rate   obtained 

through G1 when compared against reference results obtained through G6, while CG  and CUVG  

provide values of   which compare extremely well with the reference solution G6. This result 

suggests that while different meshing strategies may have a reduced impact on the prediction of 

spreading they can heavily impact the prediction of mixing, which is crucial also with a view to the 

simulation of reactive processes. 

 

 

Figure 2.10. Test case with 
2 5Y  : time evolution of (a) Second center plume spatial moment, Szz, 

and (b) scalar dissipation rate,  . Black curves are associated with G6, green curves with G1, red 

curves with CUVG  and blue curves with CG . 

 

As a final term of comparison, Figure 2.11 depicts the global a posteriori error estimator (12), 
A

C , (i.e. based solely on Ch) for G6 (black curve), G1 (green curve), CUVG  (red curve) and CG  

(blue curve). Note that the value assumed by the estimator provides an approximation of the 

computational error in H1 semi-norm (i.e., based on the gradients of the concentration). Inspection 

of Fig. 2.11 reveals that G1 shows the highest A

C  for all the times. For 0.05tPV < t < 1tPV, the resulting 
A

h  for G6 is the smallest. Note that for the interval 0.05tPV < t < 1tPV  the slope of the curves for CG  

and CUVG  is smaller respect to the slope of the curve for G6. The smaller slope given by the adaptive 

procedures for the highlighted interval is due to the fact that, even if the gradients in solution are 

smearing out, the plume spreads across the z directions, i.e. its total size increases and the assigned 

number of elements eleN  need to cluster within an increasing area of the domain. As consequence of 

this dynamics, the reduction in A

C  is less marked in the adaptive procedure when compared against 

the G6. At late times, i.e. t > 1tPV, the elements of the adaptive grid CG  tend to concentrate around 

the low velocity region (see Fig. 2.4) allowing a proper resolution of concentration gradients which 

arise in the low velocity spot, leading to a sensible reduction of A

C , i.e. a marked negative slope of 

the blue curve in Fig. 2.11. Interestingly, for t < 0.05tPV, when A

C  reaches its maximum value, the 
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values A

C  associated with CG  and CUVG  are smaller than the ones for G6. Moreover, inspection of 

the CG  and CUVG  meshes at times t < 0.05tPV, reveals that almost all the eleN  elements are properly 

placed near the inlet, with elements having an average size smaller than the one of the uniform 

elements in G6. Therefore, it is reasonable to assume that at these early time adaptive grids may lead 

to a slightly more accurate spatial solution than the reference G6. 

 

 

 

 

 

 

Figure 2.11. Test case with 
2 5Y  : Time evolution of the a posterior estimation (2.13) of the spatial  

discretization error associated with concentration, t, computed for discretization G6 (black curve) G1 

(green curve), CUVG  (red curve) and CG  (blue curve). 
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2.4.2 Test case with variance of Log-conductivity: 2 1Y  . 

In this section we present results for the test case with 2 1Y  , to assess the sensitivity of the 

results to the heterogeneity of the porous medium. Note that, the Y field has been generated with the 

same seed number used for the case with 2 5Y   in SGSIM and then properly rescaled to obtain the 

desired variance. We do not show here results related with section-averaged concentrations iC , which 

display a satisfactory agreement between G6 and the two adaptive strategies, while G1 provides the 

most flat and less picked trends also for this level of permeability heterogeneity. Figure 2.12.a depicts 

then the time evolution of the local concentrations CS and CF for G6. Note that the location of the two 

points PF and PS is not the same as in the previous case (see Section 2.2.2).  

The behavior of CS and CF  is not dramatically different, reflecting the less marked influence of 

the heterogeneity on the concentration. Fig. 2.12.b show a magnification of CS at early times, note 

that the agreement between G6, CG  and CUVG  results is much more satisfactory than that noted for 

2 5Y   for the early times behaviour of CS (see Fig. 2.9.e). A good agreement between the results 

obtained through G6, CG  and CUVG  results is obtained also for the early times in CF (not shown) 

and for late times in both CS and CS, see Fig. 2.12.d. The two adaptive strategies also reproduce well 

the observed peak of CF, as shown in Fig. 2.12.c, the same result holds for the peak of CS (not shown). 

Results obtained through G1 display the smallest peak and heavier tails, which can be attributed to 

the presence of numerical dispersion.  

 

 

Figure 2.12. Test case with time evolution of the local concentration values FC  (continuous curves) 

and SC  (dashed curves), for (a) G6. Panels (b-f) display magnifications related to specific time 

intervals, associated with FC  (c-d) and SC  (b-d), as indicated in (a). Black curves are associated with 

G6, green curves with G1, red curves with CUVG  and blue curves with CG . 
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Figure 2.13 depicts the time evolution of (a) Szz and (b)  . As for the 2 5Y   case, we note that 

the time evolution of Szz and   associated with CG  and CUVG  is in good agreement with the results 

obtained through G6. Fig. 13.a-b highlights that upon employing mesh G1 solute spreading Szz is 

overestimated and the scalar dissipation rate   is underestimated, which is related to smaller 

concentration gradients. The adaptive mesh CUVG  provides the smallest Szz and the highest   

values. This is in agreement with the general tendency of predicting a more compact and sharp 

evolution of the injected plume by using this adaptive strategy.  

 

 

 

 

 

 

Figure 2.13. Test case with 
2 1Y  : time evolution of (a) Second center plume spatial moment, Szz, 

and (b) scalar dissipation rate,  . Black curves are associated with G6, green curves with G1, red 

curves with CUVG  and blue curves with CG . 
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2.5 Conclusion  

We applied a space-time adaptive methodology guided by a posteriori error estimator for solving 

solute transport in porous media with spatial distributions of log-conductivity Y characterized by 

middle, 2 1Y  , and high, 2 5Y  , levels of heterogeneity. The key goal of our work is to test the 

applicability of an automatic mesh and time step adaptation procedure to solve solute transport in 

such conditions. We perform a series of numerical tests and compare the results of the implemented 

adaptive strategies against those obtained through fixed uniform discretizations. In all adaptive 

simualtions the number of elements of the adapted meshes is kept constant in time, while the time 

step is allowed to change within two extreme values ( MINt , MAXt ) set a priori. The fixed uniform 

discretization strategies are set such that the spatial meshes are structured and tailored on the spatial 

structure of the conductivity field and the time step is fixed to the minimum value employed for the 

fixed uniform discretizations, MINt . Our results lead to the following major conclusions: 

 For the highest considered levels of heterogeneity, the convergence of the numerical results 

as quantified by local and spatially averaged indicators is achieved for a grid (G6) whose 

element size is six time smaller than K, i.e. the size of elements employed to build the log-

conductivity field. This result indicates that in general it may not be appropriate to routinely 

employ the same spatial discretization to describe the random conductivity field and 

numerically approximate solute mass transport. 

 We implement two different strategies to guide the space adaptive procedure. In the first 

strategy, labeled CG ,  the mesh is adapted only on the basis of the spatial gradients of the 

concentration field. In the second strategy, labeled CUVG , we combine both the concentration 

and the velocity components. Both these adaptive strategies can reproduce the results obtained 

through G6 and a fixed time step equal to MINt  in terms of section-averaged and local 

concentration values, as well as global spreading and mixing metrics. This result is achieved 

upon reducing the computational cost by approximately one order of magnitude. 

 The two adaptive strategies lead to different meshing of the computational domain along time. 

When both velocity and concentration are included in the mesh adaptation strategy the mesh 

tends to cover more uniformly the region of the domain where solute mass is present. In spite 

of the difference in the spatial distribution of the elements, the two strategies yield to very 

similar results as for what concern spatially averaged concentration and global mixing and 

spreading. The key difference is that local concentration values obtained through CG  exhibit 

numerical oscillations where the location of interest falls within coarse meshed subregions of 

the domain. These oscillations are of the order of 10-5. This highlights the importance of 

controlling the maximum element size, when such low values of concentration are of interest.  

 Evolution of the CUVG  and CG  meshes suggests that the former is more appropriate to 

capture the fast dynamics, i.e. the advective transport of solute through fast velocity channels, 

while the second is particularly able to grasp the slow transport mechanism which occurs in 

low velocity spots. 

 Results obtained upon employing to solve the transport problem the same grid used to 

discretize the log-conductivity field (G1) are compared to those yielded by the mesh 

adaptation strategy. Mild differences can be observed when section-averaged concentration 

and global solute spreading are considered. On other hand, the discretization strategy matters 

most when local concentration values and global mixing are of concern. This result suggests 
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that mesh adaptation techniques may be suited to simulation of reactive transport processes. 

Note that mesh G1 is characterized by approximately the same number of elements as that 

assigned to the adaptive grids. 
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3 Dispersion for stable variable density flow, within 

heterogeneous porous media 

 

We present an investigation on the nature of the processes underpinning the reduced spreading 

documented in stable variable density flow through heterogeneous porous media in contrast to 

constant density flow. We do so by decomposing velocity and pressure as the sum of a stationary (or 

static) and a dynamic component. The former corresponds to the solution of the constant density flow 

problem, while the latter accounts for the effects induced by density variability. We focus on a stable 

flow configuration and analyse the longitudinal spread of saltwater injected from the bottom of a 

heterogeneous porous medium column initially fully saturated by freshwater. We apply a perturbation 

expansion approach and derive the equations satisfied by section-averaged concentrations and by 

their ensemble mean values. These formulations are respectively characterized by the appearance of 

a single realization and ensemble dispersive flux, which we analyze through the formulations of 

appropriate closure equations. Semi-analytical and numerical solutions of the two types of averaged 

equations as well as of the associated closure formulations are evaluated and analyzed. Our 

formulations and associated results enable us to discriminate the relative importance on the density-

driven solute displacement associated with (a) the covariance of the heterogeneous permeability, (b) 

the cross-covariance between permeability and concentration, which is in turn linked to the coupling 

of the flow and transport problems, and (c) the cross-covariance between the dynamic and stationary 

velocity fields. This work has been conducted in collaboration with Prof. Jesùs Carrera (GHS UPC-

CSIC, IDAEA, CSIC, Barcelona, Spain) 
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3.1  Introduction 

Proper understanding and quantification of the feedback between space-time variability of fluid 

density and the ensuing flow and transport is relevant for a variety of environmental and industrial 

problems. These include, e.g., coastal aquifer management ( e.g. Abarca et al., 2007; Dentz et al., 

2006; Held et al., 2005; Kerrou and Renard, 2010; Riva et al., 2015; Werner et al., 2013; ), enhanced 

oil recovery strategies ( e.g. Hagoort, 1980; Monger et al., 1991; Di Donato et al., 2007; Spagnuolo 

et al., 2015, 2016; ), design and engineering of safe CO2 disposal protocols ( e.g. Woumeni and 

Vauclin, 2006; Dentz and Tartakovsky, 2009; Pool et al., 2013; ) as well as the quantification of 

solute transport in fractured media in the context of site remediation and/or groundwater source 

protection ( e.g.  Tenchine and Gouze, 2005; Bouquain et al., 2011; ). In this framework, the effect 

of density contrasts between miscible fluids has been seen to influence the spreading of contaminants 

both along directions parallel ( e.g. D’angelo et al., 2008; Flowers and Hunt, 2007; Menand and 

Woods, 2005; Zoia et al., 2009; ); and normal to mean flow velocity ( e.g. OOstrom et al., 1992a, b; 

Simmons et al., 2001; Diersch and Kolditz, 2002; Welty et al., 2003; Nick et al., 2009;  Konz et al., 

2009; Woumeni and Vauclin, 2006; Alkindi et al., 2011; Strake et al., 2006; ). A notable feature is 

that settings associated with variable density are characterized by reduced spreading with respect to 

constant density for stable configuration ( where the light fluid lies above the dense fluid ), and by 

enhanced spreading for unstable configurations. 

Reduced spreading is typically attributed to the stabilizing effects associated with variable 

density. A local increase in velocity causes a perturbation in the concentration front that does not 

affect velocities in constant density settings, but the ensuing density increase drags down the fluid, 

resulting in a reduction of the velocity surge and of the overall spreading. This stabilizing effect has 

been documented in nearly homogenous ( e.g. Buès and Aachib, 1991; Hassanizadeh and Leijnse, 

1995; Jiao and Hötzl, 2004; Kempers and Haas, 1994; Moser, 1995; Watson et al., 2002; ) as well as 

in heterogeneous ( e.g. Loggia et al., 1996; Kretz et al., 2003; ) porous media. 

The complexity of the pore scale geometry and flow patterns ultimately governs the variability 

of solute concentration ( e.g. Rhodes et al., 2009; Siena et al., 2014; ). A common practice to address 

this complexity relies on decomposing the velocity and concentration fields in terms of the sum of a 

mean value and a zero-mean fluctuation (perturbation). This decomposition is non-unique and can be 

performed by considering spatial ( e.g. Bianchi Janetti et al., 2015; Davit et al., 2013; Porta et al., 

2015; Whitaker, 1999; ), temporal ( e.g. Bolster et al., 2009; Dentz and Carrera, 2005; Pool et al., 

2013; ) or ensemble ( e.g. Cushman et al., 2002; Dongxiao, 2002; Morales et al., 2006a, b; Naff, 1990; 

Neuman and Taratkovsky, 2009; ) averaging techniques. Regardless the nature of this decomposition, 

a key research goal is the formulation and solution of an effective model satisfied by a representative 

(mean/average) concentration. A term which is commonly denoted as dispersive flux, and is given 

by the divergence of the average of the cross product between velocity and concentration fluctuations, 

typically arises in such effective models. Even if, under some conditions, the dispersive flux can be 

written in a Fickian format, e.g. introducing macrodisperion coefficients (Gelhar and Axness, 1983), 

its nature is fundamentally advective since it describe the advective transport component of the 

effective concentration due to concentration and velocity fluctuations.  

Here, we focus on the interaction between the effects of (a) buoyancy and (b) heterogeneity 

induced by the spatial variability of permeability, on density-dependent flow and transport behavior. 

Our key aim is to provide a physically-based quantitative analysis of the above documented reduction 

of the width of the dispersion zone stable flow configurations. The essence of the issue is summarized 

in Fig. 3.1, which is obtained using the procedures described in Section 3.2. Salt water is continuously 

injected within a porous domain initially saturated with fresh water and whose permeability, k(x), is 

modeled as a random function. A . realization of Y(x) = lnk(x) is displayed in Figure 3.1a. Figures 

3.1b, 3.1c, and 3.1d display a snapshot of solute concentration, for three different values of the density 

http://www.sciencedirect.com/science/article/pii/S0309170805002162
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contrast, quantified through the gravity number, Ng, which reflects the relative importance of 

buoyancy and viscous forces (see Section 3.2.1 for additional details). These plots highlight two major 

patterns: (a) the progressive reduction of the width of the dispersion zone and (b) the tendency of the 

concentration profile to resemble a configuration typical of homogenous media for increasing values 

of Ng, i.e., strength of the stabilizing effect. It is then natural to ask: (a) Can we detect the basic 

physical mechanisms at the heart of this behavior? (b) What is the feedback between the effects of 

buoyancy and physical heterogeneity of the domain in the concentration distribution? and (c) Can we 

quantify the relative importance of buoyancy and permeability heterogeneity on the pattern of the 

spreading process observed? These are precisely the key questions we address in this work. 

 

 

 

Figure 3.1. (a) Flow and transport problem set-up. Sample contour plot of the permeability field for 
2 0.5Y  . Sample contour plots of normalized concentration for (b) constant density, Ng = (c) 1 and 

(d) 10. Magnification at solute front of (e) spatial variance of the vertical velocity, i.e. 
2

zv , (f) spatial 

variance of concentration, i.e. 
2

C .  

 

Previous studies have addressed these questions. Hassanizadeh and Lejnse (1995) proposed an 

extension of Fick’s law to model the local dispersive flux, i.e. the dispersive flux appearing in the 

upscaled (from pore- to continuum-scale) transport equation. The authors modelled the local 

dispersive flux as a nonlinear function of the local concentration gradient through the introduction of 

a coefficient of proportionality, termed β by the authors. This model has been shown to accurately 

reproduce a set of laboratory experiments in homogenous media under a stable configuration ( 

Watson et al., 2002; ), as well as breakthrough curves obtained from a suite of two-dimensional 

numerical simulations in heterogeneous media (Landman et al., 2007;). However a clear and 

unambiguous link between the parameter β and the underlying physical processes is still lacking. 

Watson et al. (2002) and Landman et al. (2007b) observed that β depends on the mean flow rate. 
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Landman et al. (2007) observed also a clear dependence of β on the fluid density contrast in 

heterogeneous formation. Landman et al. (2007) also report two additional models based on 

homogenization theory: one from continuum-continuum (Darcy) scale, one from pore to continuum 

scale ( see also Demidov, 2006; ). Both models render a good reproduction of the numerical results 

of Landman et al. (2007b) provide relative simple nonlinear relationship between the dispersive flux 

and the concentration gradient of the section-averaged concentration.  

Welty and Gelhar (1991) derive an analytical expression for the asymptotic (long-time) 

longitudinal macro-dispersivity, under the assumption that the velocity field is a second-order 

stationary random process. The authors show that macro-dispersion is a function of the gradient of 

the ensemble mean concentration, flow rate, displacement distance, gravity, fluid density and 

viscosity and log permeability correlation scale and variance. However, as we highlight in section 

3.2, the velocity field cannot be stationary in a variable density problem, due to the coupling between 

flow and transport equations.  

The objective of this work is precisely to obtain an upscaled equation for transport in a variable 

density context and, specifically, to highlights the factors and mechanism which control the dispersive 

flux, in order to explain the reduced solute dispersion that is observed under stable displacement 

conditions. 
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3.2  Methodology  

We start by deriving the equation satisfied by section-averaged concentrations in the setting of 

Figure 3.1, which naturally leads to an effective one-dimensional model. This equation includes a 

term, called single realization dispersive flux, which enables us to embed the effect of the spatial 

heterogeneity of k in a simple one-dimensional (along the mean flow direction). The single realization 

dispersive flux can be related to the temporal derivative of the second centered spatial moment of 

concentration gradients, which can in turn be viewed as a measure of the width of the spreading zone 

( e.g. Bolster et al., 2009 ). Then, we leverage on this one-dimensional (section-averaged) model and 

average it in the probability space, to take into account our incomplete knowledge of the permeability 

field, k. The ensuing model includes an ensemble dispersive flux that enables us to encapsulate the 

effect of the uncertainty in the spatial arrangement of k on the mean concentration distribution.  

An important point in common between the works of Gelhar and Welty (1991), Landam et al 

(2007a, b) and our work is that the stabilizing buoyancy effects take place because the heterogeneity 

of the medium, this observation being lacking in the study of Hassanizadeh and Lejnse (1995). In this 

context, Landman et al. (2007a) report a reduction of the effectiveness of the stabilizing effects as the 

permeability heterogeneity increase. We seek to provide a theoretical analysis supporting and 

quantifying this behavior.  

3.2.1 Flow and transport Model  

Fluid flow in porous media is described by conservation of mass and Darcy’s law,  

   
* *

* * * * * * * * * *

* *
0 ;

ρ
ρ = p ρ g z

t






       



k
q q , (3.1) 

where *ρ  [ML-3], * [M T-1 L-1] and *p  [M T-2 L-1] are fluid density, viscosity, and pressure, 

respectively; *g  [LT-2] is the gravitational acceleration; 
*z  [L] is elevation; *

q  [L T-1] is Darcy’s flux; 
*

k  [L2] is the permeability tensor and ϕ [-] is porosity.  

Solute transport is governed locally by the advection-dispersion equation 

 
   

* *

* * * * * * * * *

*
0

ρ C
ρ C ρ C

t





     


q D .  (3.2) 

Here C* [-] is the solute concentration, and D* [L T-2] is the local dispersion tensor, modeled as 

   
* *

* * * * * *

*
| |

| |
m T L TD      I

v v
D v

v
,  (3.3) 

where *

mD  is the molecular diffusion; *

T  and *

L  [L] respectively are transverse and longitudinal 

dispersivities; I is the identity matrix and *
v  [L T-1] is the mean fluid velocity defined as  

* * v q / . (3.4) 

In the following we neglect *

mD  in (3.3) because its contribution to the dispersion tensor is usually 

negligible ( see Landman et al., 2007a ). 

We focus on a stable density-dependent problem within a heterogeneous porous media, Ω, of 

width, W* [L], and height, H* [L], depicted in Fig. 3.1. In our set-up Darcy’s flux *
q  has components 

*

zq  and 
*

yq  along the vertical z*- and horizontal y*- directions, respectively (see Fig. 3.1). Initially, the 

column is filled by freshwater with density *

f . At time t  0 seawater with density *

s  and 

concentration sC  is injected at the bottom of the column, 
* 0z  . Remaining boundary conditions 
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are: (1) no flow at * *0,y W ; (2) constant pressure * *

BCp p  at * 0z  ; (3) prescribed vertical flux, 

* *

z BCq q , and solute mass flux  * * * * * * * *

BCC C q C   q D n  at 
* *z H , where n* is a unit vector 

pointing outwards.  

Closure of the system (3.1)–(3.4) is obtained by assuming viscosity to be constant and expressing
*ρ  as a linear function of *C (e.g. Abarca et al., 2007 ) 

* * * *

fρ =ρ + C , (3.5) 

where *  =  * * /s f sρ ρ C . In the following we assume isotropic dispersivity, * * *
T L    , so 

(3.3) reduces to  

* * *| | ID v . (3.6) 

The problem lacks a well-defined characteristic distance because L* and W* will be assumed large 

enough to not affect the solution. Therefore, we adopt *k , 
*

k  being the geometric mean of the 

permeability field, as characteristic distance, which leads to the following dimensionless quantities  

* * * * *
* *

* ** * * *
, ,,

* * * *

* * *

; ; ; ; ; ;
/

; ; ;

z BC z BCz BC

c s

y z t
y z k t

v vk k k v

p C
p C

p Ck






       

   


q v
q v

k
k

  (3.7) 

with 
* * *

s f     , 
* *

, /z BC BCv q   and *

cp  being a characteristic pressure. Using (3.7), eqs. (3.1), 

(3.2), (3.5) and (3.6) can be written in dimensionless form as 

   g0 ; N Np

ρ
ρ = p ρ z

t


      


q q k   (3.8) 

  0
C

ρ ρ C ρ C
t

 


    


q D  (3.9) 

fρ=ρ +C       with 
* /f f                                                              (3.10) 

| |

Pe
 I

v
D    (3.11) 

where
* * * *

,N /p c z BCk p v , 
* *Pe /k   and 

* * * * *

g ,N / z BCk g v    are, respectively, 

dimensionless group for the pressure, Péclet and gravity numbers. The latter expresses the intensity 

of buoyancy over viscosity effects. In the following, we set the characteristic pressure *

cp  such that 

Np = 1. Note that such choice is allowed, since the problem is independent from the value of pressure 

but is its gradient that matter.  

 

3.2.2 Numerical solution 

We solve the flow and transport problem described above by means of the widely tested code 

SUTRA ( Voss and Provost, 2002; ) to evaluate the relative importance of all the terms in our 

subsequent derivations and to assess the validity of the approximations involved in our analytical 

derivations. Heterogeneity is modeled by treating the dimensionless permeability k  as an isotropic 

random field exp( ( , ))Y y z Ik , where Y(y, z) is a zero-mean second order stationary random process 

characterized by an isotropic exponential covariance function 
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* * *2( ) exp( / )YY YC l r r  (3.12) 

*
r  [L], 2

Y  [-] and 
*l  [L] being the separation vector between two points, variance and correlation 

length of Y, respectively. In the numerical simulation we set 0.35  , 
*

k  = 10-9 m2, H* = 0.3 m, D* 

= 0.05 m (i.e. * */D H = 6; 
* /H k  9500; 

*
* /D k  1600), 

*
* /l l k = 79 (i.e., * */H l =120; D

*
/

*l = 20), Pe = 0.25  ( * */ 20l   ) and 40fρ  .  

The domain is discretized by a regular mesh of square elements. We performed a set of 

preliminary simulations aimed at testing the influence of space and time grid discretization on the 

quantities of interest (namely, horizontal mean concentration, single realization and ensemble 

dispersive flux and velocity covariance). Accurate results at an affordable CPU time have been 

obtained with a spatial grid formed by 100  600 elements (i.e., * * 0.0005z y m    ) and 

dimensionless time step 2.8t  . In this work we investigate four scenarios characterized by diverse 

levels of heterogeneity of the permeability field , i.e.  2 0.1;0.5Y  , combined with diverse intensity 

of buoyancy effects quantified by  gN 0.1;1 . Our numerical result are ground on 1000 Monte 

Carlo (MC) numerical simulations for each parameter set investigated. Moreover, we derive, at 

second order in the permeability fluctuations, semi-analytical solution for the quantities of interest 

described in Section 3.2.4. Note that the level of heterogeneity investigated in this chapter are clearly 

lower respect to the level investigated in chapter 2. This choice has been dictated by our main interest 

in the understanding of the basic mechanisms at the origin of the solute spread reduction for stable 

variable density flow within heterogeneous porous media. Anyway, the reader can note that our 

setting allow to grasp the effects of varying 2

Y  and/or Ng, in terms solute spreading behavior, 

enhancing our understanding of the system behavior as its heterogeneity level increase and of the 

resulting effectiveness of the stabilizing forces ( see Section 3.3),    .   

 

3.2.3  Section Average Concentration 

Point concentration values ( , , )C y z t  are seldom available from laboratory or field experiments, 

Boso et al. (2013), while section-average concentration profiles can be monitored ( e.g. Ciriello et al., 

2013; Gramling et al., 2002; Landman et al., 2007a; Menand and Woods, 2005; ). Therefore, we focus 

on the cross-section (or horizontal) average concentration, ( , )C z t , where the overbar indicates the 

horizontal averaging operator defined as 

0

1
( )

W

y dy
W

   , (3.13) 

where   is any generic quantity (a parameter or a state variable). In the following, we derive the 

equation satisfied by ( , )C z t invoking the Boussinesq approximation ( e.g. Dentz et al., 2006; Diersch 

and Kolditz, 2002; ), i.e. assuming that  
ρ ρ

ρ C
ρ t ρ




 
     


q >> q D . Under this hypothesis 

(3.8) and (3.9) can be simplified as  

 g0; Np z       v q k ,    (3.14) 

  0
C

C C
t


    


v D . (3.15) 
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Note that k is spatially variable and all remaining variables (i.e., v, q, p, ρ, C and D) are both the 

spatially and temporally variable.  

We decompose each variable in (3.14)-(3.15) as the sum of a horizontal spatial mean and a 

(spatial) zero-mean fluctuation (along the y-direction), i.e. 

'; '; ' ; '; '; 'p p p C C C k                I I   k v v v D D D                      (3.16) 

where it should be clear that horizontal averages depend on ( , )z t , while fluctuations depend on 

( , , )y z t . Further, according to (3.11) 

; ' 'f C C     .   (3.17) 

At second order in the perturbations, horizontal average concentration, ( , )C z t , satisfies (see A.3.4 

in Appendix A.3),  

2

2

1 ' '
0

Pe

zC C C v C

t z zz

   
   

  
,  (3.18) 

where ' 'zv C  is the single realization dispersive-flux which reads (see A.3.11a) 

0 0

( , )
' ' '( , ) '( , ) ( , , , )

t H
T

z z z z

C
v C v z t v G z t d d

 
     




 

  . (3.19) 

Here ( , ; , )T
zG z t    is the deterministic Green’s function introduced in (A.3.10) and ' ( , ) ' ( , )z zv z t v  

, defined in (A.3.11b), is the horizontal mean of ' ( , , ) ' ( , , )z zv y z t v y   , i.e. the product between 

vertical velocity fluctuations evaluated at the same horizontal location and diverse vertical positions 

and times. The term ' 'zv C  in (3.18) embeds the effect of permeability fluctuations on the section 

average concentration. ( , )C z t  (e.g. de Barros and Dentz, 2015; ). 

In order to highlight the effect of density variations on ( , , )C y z t , we decompose the velocity 

fluctuations vector as the sum of (a) a stationary component, '( , )st z yv , which corresponds to the 

solution of (3.14) with constant density, f  , and a dynamic component, '( , , )dy z y tv , accounting 

for the stabilizing buoyancy effects due to density variations, i.e. 

'( , , ) '( , ) '( , , )st dyy z t y z y z t v v v .  (3.20) 

The expressions of the vertical components of '( , )st z yv  and  '( , , )dy z y tv  are derived in Appendix 

C.3, (C.3.10)-(C.3.11). Here, we briefly elucidate the benefit of the proposed decomposition (3.20) 

by focusing on a simple heterogeneous domain formed by a single semi-circular inclusion of high 

permeability (in red in Fig.s 3.2a-3.2c), ( , ) 10y z  Ik  within a uniform porous media with 

( , )y z  Ik . The remaining relevant key dimensionless quantities are set as gN 0.35 , Pe = 0.25,  

ϕ = 0.35, ρf = 40. Figures 3.2a, 3.2b and 3.2c respectively depict '( , )st y zv , '( , , )dy y z tv  and '( , , )y z tv  

at t = 664. The total velocity field ( , , )y z tv  is reported in Fig. 3.2d together with the concentration 

field. As an additional term of comparison, Fig. 3.2e depicts ( , )y zv  and ( , , )C y z t  computed for a 

tracer solute with f   (i.e., with constant density) at the same dimensionless time. Figures 3.2d 

and 3.2e clearly show that the dispersion of the solute decreases when density effects are considered. 

The reduction of solute dispersion for the stable variable density scenario is strictly linked to the 

resulting velocity distribution. Figure 3.2a highlights that vertical stationary flow fluctuations, 

'( , )st
zv y z , are positive in the high permeability zone causing  the solute to advance within this area.  
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Figure 3.2. (a) ' ( , )st y zv , (b) ' ( , , )dy y z tv  and (c) '( , , )y z tv  for the variable density flow problem. 

The underlying ( , )y zk  field is also reported. Velocity, ( , , )y z tv , and concentration, ( , , )C y z t , for 

(d) variable density and (e) tracer case. (f) Vertical distribution of the variance of vertical velocity, 

i.e. 
2

zv , and (g) single realization dispersive flux (3.19), i.e. ' 'zv C  for the tracer (red curve) and 

variable density (black curve) case.  All the curves have been evaluated at t = 664. 
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This generates positive density fluctuations, '( , , )y z t , which, due to the buoyancy term, trigger 

negative vertical dynamic flow fluctuations, '( , , )dy
zv y z t (see Fig. 3.2b). The opposite occurs in the 

portion of the domain adjacent to the high permeability inclusion. Since '( , )st
zv y z  and '( , , )dy

zv y z t  

have opposite signs the total vertical flow fluctuation '( , , )zv y z t  is smaller than its constant density 

counterpart (compare Fig. 3.2c and Fig. 3.2a). Ultimately, the velocity field at the solute front is more 

uniform in the variable density problem than in the tracer case (compare the velocity fields in Figs. 

3.2d and 3.2e) causing a less solute dispersion in the former than in the latter case. This observation 

is further supported by Fig. 3.2f where the vertical distribution of the variance of the vertical velocity 

for the tracer case, i.e. 
2

2( ) '( )st
z

st
v zz v z  , is compared against the counterpart evaluated for the 

variable density case, 
2

2( , ) '( , )
zv zz t v z t  .  

Figure 3.2g reports the single realization dispersive flux (3.19) computed for the tracer (red 

curve) and the variable density (black curve) case. One can clearly note the reduction of the single 

realization dispersive flux for the variable density scenario. The basic mechanisms highlighted in this 

section for a relatively simple heterogeneous configuration are at the bases of the observed reduction 

in solute spreading observed for stable variable density flow versus the outcomes relative to tracer 

cases within heterogeneous porous media. In section 3.3 we will further investigate this phenomenon 

for randomly heterogeneous porous media. 

 

3.2.4 Ensemble Analysis 

Here we treat k as a second order stationary random field and we derive the equation satisfied by 

the ensemble mean of the section average concentration, ( , )C z t , where indicates the ensemble 

mean operator. This analysis allows us to link the statistical features of ( , )C z t  to the ones of the 

permeability field. The equation satisfied by ( , )C z t  results from ensemble averaging (3.18) 

2

2

' '1

Pe

zv CC C C

t z z z

  
   

   
,  (3.21) 

where ' 'zv C  is the ensemble dispersive-flux defined in (B.3.6) as 

0 0

( , )
'( , ) '( , ) '( , ) '( , ) ( , , , )

t H
T

z z z z

C z t
v z t C z t v z t v G z t d d

z
     


 

  . (3.22) 

Here ' ( , ) ' ( , )z zv z t v    is the horizontal spatial mean of ' ( , , ) ' ( , , )z zv y z t v y    which is the 

covariance between the vertical velocity fluctuation at z at time t, and its counterpart evaluated at   

at time  , both at the same horizontal coordinate y . The ensemble dispersive flux takes into account 

the effect of the spatial heterogeneity of k in all the ensemble of realizations on the evaluation of the 

ensemble mean of the section average concentration. Note that, even if the ensemble dispersive flux 

as been localized both in space and time, a Fickian-type expression characterized by a constant 

coefficient of dispersion can not be introduced since the results of the convolution between the 

horizontal average of the velocity covariance and the Green’ function vary both in space and time. 

As discussed by Morales et al., (2006a, b), ensemble dispersive-flux does not quantify a physical 

spreading of ( , , )C y z t , as the single realization dispersive flux does. It allows to accommodate the 
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lack of knowledge of k, and therefore of the velocity field, on the prediction of ( , , )C y z t  through 

C . Note that, due to the imposed boundary conditions for the flow and transport problems and 

under the validity of the Boussinesq’ assumption, no additional uncertainty and artificial spreading ( 

see e.g. de Barros and Dentz, 2015; ) arise due to the variability of the center of mass of the solute 

fronts which is always the same for each single realization.  

Equation (3.22) highlights the key role of velocity field statistics in controlling the ensemble 

dispersive flux. In Appendix D.3 we show that the velocity covariance, ' ( , ) ' ( , )z zv z t v   , can be 

decomposed as the sum of four terms, involving stationary and dynamic velocity fluctuations, as 

defined in (3.20). In particular, we obtain (see (D.3.12)) 

       
2

g g g

' ( , ) ' ( , ) '( ) '( ) '( ) '( , ) '( , ) '( ) '( , ) '( , )

N N N
( ) ( ) ( ) '( , ) '( , ) ( ) '( , ) '( , )

st st st dy dy st dy dy
z z z z z z z z z zv z t v v z v v z v v z t v v z t v

Y z Y Y z C C z t Y C z t C

       

     
  

    

 
    

 
= A B C D

, 

                     (3.23) 

where  A ,  B  ,  C ,  D  are operators defined in Appendix D.3 (see, (D.3.8)-

(D.3.11)). Equation (3.23) highlights that while the horizontal spatial mean of stationary-stationary 

term, '( ) '( )st st

z zv z v  , depends on the covariance of the log-permeability field, both stationary-

dynamic, '( ) '( , )st dy

z zv z v   , and dynamic-stationary, '( , ) '( )dy st

z zv z t v  , counterparts depends on the 

cross covariance between permeability and concentration ( ) '( , )Y z C   and quasi-linearly 

proportionality respect to Ng (note that ( ) '( , )Y z C    depends on Ng, see (E.3.5)), while the 

dynamic-dynamic component, '( , ) '( , )dy dy

z zv z t v   , is a function of the covariance of the 

concentration field, '( , ) '( , )C z t C    and exhibit a quasi linearly proportionality respect to Ng
2 (note 

that '( , ) '( , )C z t C    depends on Ng, see (F.3.6)). The main features of these covariances and related 

consequence on the solute transport behavior are analyzed in Section 3.3.1.  
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3.3  Results 

The illustration of our results is organized as follows. We analyze the four velocity covariance 

terms appearing in (3.23) and identify the cause of reduction of the ensemble dispersive flux (3.22) 

in Section 3.3.1. We investigate the features of spatial mean of cross-covariance ( ) '( , )Y z C    

between permeability and concentration fluctuations in Section 3.3.2.  

In this section MC based results are presented for all the quantities. Moreover, we derive semi-

analytical solution for all the quantities here presented ( see Section 3.2 and Appendix A.3-F.3). Due 

to the coupled nature of the problem at hand, semi-analytical solutions of the quantities presented in 

Section 3.3 must be sought by a numerical and iterative procedure, e.g. '( , ) '( , )zv z t C z t  and 

( , ) /C z t z   depends non linearly on each others (see (B.3.4)-(B.3.7)). Since the iterative strategy 

requires a computational effort, which is comparable with the one associated with the MC 

simulations, we take advantage of the MC resulting ( , ) /C z t z   to numerically resolve 

expressions detailed throughout Appendix A.3-F.3 and presented in follow. Main simplifications 

invoked in our semi-analytical derivation are: (i) the second order approximation in the log 

conductivity fluctuations, see (A.3.5), (C.3.1), (C.3.2); (ii) the use of 1D Green’ function associated 

with the flow, see (D.3.4), and transport, see (A.3.10), problems even if the set-up is 2D; (iii) the use 

of already available analytical solution for the cross-covariance between log conductivity and 

hydraulic head derived in Dagan,(1984) for mean uniform steady-state flow in an infinite two-

dimensional domain, see also (E.3.5), in the evaluation of the cross-covariance between permeability 

and concentration; (iv) the approximation of the contribution of '( ) '( )st st

z zv z v   in (3.22) as 2
Y l , 

which corresponds to the asymptotic value of macro dispersion derived in Gelhar and Axness, 1983. 

The main purpose of our semi-analytical derivation is not the correct prediction of ( , )C z t , but to 

enrich and support our understating of the interplay between permeability and stabilizing effects at 

the origin of the solute spread reduction in case of stable flow within heterogeneous media. Our semi-

analytical treatment help to grasp the impact of varying Ng and 2

Y  on the system behavior in terms 

of flow structure and resulting solute spreading. 

Note that for exposition purpose, we present just our Monte Carlo numerical results for the four 

velocity covariance in (3.23) and ( ) '( , )Y z C   , corresponding semi-analytical results compare well 

(details not shown) and support associated discussions. We present our numerical and semi-analytical 

results for the ensemble dispersive flux ' ( , ) '( , )zv z t C z t  and concentration covariance in Section 

3.3.3. 
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3.3.1  Covariance of Vertical Velocity 

The covariance of the vertical velocity components (3.23) plays a critical role in determining the 

mean solute transport behavior, as highlighted by (3.22). Here, we compare the results obtained for 

the constant and variable density scenarios to elucidate and quantify the origin of the reduced solute 

spreading documented in Fig. 3.1. 

Figures 3.3a and 3.3c respectively depict the velocity variance, 
2' ( , )zv z t , and the mean 

concentration gradient, ( , ) /C z t z  , for gN 1  and 2 0.1Y   at three dimensionless times 

3

1 2.2 10t   , 3

2 4.4 10t   , and 3

3 6.6 10t   . Corresponding depictions are shown in Figs. 3.3b and 

3.3d for gN 0.1  and 2 0.1Y  , in Figs 3.3e and 3.3g for gN 1  and 2 0.5Y   and in Figs 3.3f and 

3.3h for gN 0.1  and 2 0.5Y  . Figure 3.3 confirms that vertical velocity is a non-stationary 

stochastic process. Non-stationary is clearly manifested at the solute fronts, where the salinity 

variations induce stabilizing buoyancy effects. The occurrence of the local minima in 
2' ( , )zv z t  and 

peaks of ( , ) /C z t z   peaks is evident for gN 1 . Decreasing the intensity of buoyancy effect 

(i.e. for gN 0.1 ) and/or increasing the permeability field heterogeneity leads to a reduction of 

smallest and largest values of 
2' ( , )zv z t  and ( , ) /C z t z  , respectively. We remark that the 

behavior of these two quantities is strongly related. Increasing 
2' ( , )zv z t , the vertical velocity 

fluctuation '( , , )zv y z t  increases as well as the solute spreading. This in turns involves a decrease of 

the mean concentration gradient, ( , ) /C z t z  , and therefore gives rise to less steep ( , )C z t  

profiles. 
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Figure 3.3. Section average vertical velocity variance , 2' ( , )zv z t , and gradient of ensemble 

concentration ( , ) /C z t z   for (a), (c) for 2 0.1Y   and gN 1 , (b) , (d) 2 0.1Y   and gN 0.1 , 

(e), (g) 
2 0.5Y   and gN 1 , (f) , (h) 

2 0.5Y   and gN 0.1 . All curves have been evaluated at three 

dimensionless time 1 2 3, ,t t t . 
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We have shown in (3.23) that the vertical velocity covariance, '( , ) '( , )z zv z t v   , can be 

decomposed as the sum of four components. Figure 3.4a depicts the dependence of '( , ) '( , )z zv z t v    

(red curve) and its constant density counterpart '( ) '( )st st

z zv z v   (black curve) on ξ for Ng = 1, 

2 0.1Y  , 
3

2 4.4 10t t     and 
3

2 4.27 10z z   , which corresponds to the location where 

( , ) /C z t z   attains its maximum value. We note that (i) the peak displayed by '( , ) '( , )z zv z t v    

at ξ = z is smaller than that of '( ) '( )st st

z zv z v  , a finding which is consistent  with the above discussion 

about the effect of density on the vertical velocity variance; (ii) these two covariances tend to 

coincide, i.e. '( , ) '( , ) '( ) '( )st st

z z z zv z t v v z v   , for ξ > z; and (iii) '( , ) '( , )z zv z t v    becomes 

smaller than '( ) '( )st st

z zv z v   for ξ < z, '( ) '( )st st

z zv z v   and '( , ) '( , )z zv z t v    respectively attaining 

positive and negative values. This anti-correlated behavior is linked to the dynamic and stationary 

velocity components and to the cross-correlation between Y and C, as we clarify in Section 3.3.2. As 

expected, '( , ) '( , )z zv z t v    and '( ) '( )st st

z zv z v   tends to coincide when Ng decrease (see Fig. 3.4b), 

because the intensity of the stabilizing buoyancy effects decreases. 

In order to help the comprehension of the following discussions, we recall that the velocity 

fluctuations for our setup can be written as (see (C.3.5)-(C.3.6))  

1 '( , )
'( , ) ( , )

st
st
z

p y z
v y z Y y z

z


 


 (3.24) 

g

1 '( , , )
'( , , ) N '( , , )

dy
dy
z

p y z t
v y z t y z t

z




 
     

 (3.25) 

where, similar to (3.20), we decompose pressure fluctuation  as the sum of a stationary, 

 (see (C.3.12)-(C.3.14)), and a dynamic, (see (C.3.10)-(C.3.14)), component. A 

numerical analysis of (3.24)-(3.25) (details not shown) reveals that ( , ) '( , ) /stY y z p y z z    and 

gN '( , , ) '( , , ) /dyy z t p y z t z    . Therefore, a rough simplification of (3.24)-(3.25) read  

'( , ) ( , )st
zv y z Y y z  (3.26) 

gN '( , , )
'( , , )dy

z

y z t
v y z t




   (3.27) 

While (3.26)-(3.27) show a clear dependence of  on the fluctuation Y(y,z) of the permeability 

field, the behavior of  depends on that of , through the multiplying factor 

 gN / . In order to further clarify the behavior of 'dy
zv  we note that , see 

(3.10) and according to (A.3.8), decomposition (3.20) and simplifications (3.26)-(3.27), we rewrite 

(3.27) as 

g g g

0

N N N ( , )
'( , , ) '( , , ) ( , ) '( , , ) ( , , ; , , )

t
Tdy

z

C
v y z t z y t Y G y z t d d d

 
            

   


  
  

 
    

                        (3.28) 

'( , , )p y z t

'( , )stp y z '( , , )dyp y z t

'( , )st
zv y z

'( , , )dy
zv y z t '( , , )y z t

'( , , ) '( , , )y z t C y z t 
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Equation (3.28) shows that '( , , )dy
zv y z t  is a non-local quantity which nature is rooted in the coupling 

between transport and flow. Equation (3.28) shows that three effects are involved in determining 

'( , , )dy
zv y z t : (i) permeability fluctuations triggers density variations; (ii) in turn stabilizing buoyant 

term acts in reducing them, with an intensity proportional to Ng and to the density fluctuation 

themselves; (iii) triggering and stabilizing competing mechanisms are weighted by the mean density 

gradient, which behavior is a net results of the competition between these two opposite mechanisms 

(see Fig. 3.3 and relative discussion). Even if based on rough approximations equations (3.26) and 

(3.28) help in understand the following discussion about the behavior of the velocity covariance in 

(3.23) as a function of  and 2
Y .  

Figure 3.4c depicts '( , ) '( )dy st

z zv z t v   versus ξ for Ng = 1, 
2 0.1Y  , z = z2 and  t = t2. This cross-

covariance is always negative and attains its largest (absolute) values mainly for z < ξ. This finding 

suggests that the stabilizing dynamic fluctuation arising at a given space-time location (z, t) is strongly 

correlated with the stationary velocity fluctuations occurring at points which lie upstream (in space) 

and manifest at earlier times. This result is consistent with our discussion in Section 3.2.3 according 

to which positive values of stationary velocity fluctuations, '( )st

zv  , favour solute to advance within 

the domain, thus originating positive density fluctuations, '( , )z t  . These, in turn, trigger negative 

dynamic velocity fluctuations, '( , )dy

zv z t  (see also (C.3.6)). The same type of reasoning also holds 

when values of '( )st

zv   are negative, because in this case positive values of '( , )dy

zv z t  are 

promoted. Corresponding results for Ng = 0.1 are depicted in Fig. 3.4.d. A comparison against the 

setting characterized by Ng = 1 reveals: (i) a quasi linear dependence of '( , ) '( )dy st

z zv z t v   in Ng, 

consistent with the presence of the multiplying factor involving directly Ng in both (3.23) and (3.28) 

and with the further dependence on Ng of the stabilizing buoyant term and of the mean concentration 

gradients in the convolution presented in (3.28); (ii) a different rate of decrease of the correlation for 

( )z  , which is related to the dependence of '( , ) '( )dy st

z zv z t v   on gN '( , ) '( ) /C z t Y    (see 

(D.3.9)) and to the fact that a diminished stabilizing buoyancy effects leads to a correlation between 

'( , )C z t  and Y(ξ) which persists over larger distances because perturbations at the solute front are 

more sensible to the underlying permeability organization than in the case of higher stabilizing effects 

(i.e. for higher Ng; see Fig. 3.1 and Section 3.3.2 for additional discussion ). 

gN
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Figure 3.4. Section average vertical velocity covariance components: (a, b) '( , ) '( , )z zv z t v    (red 

curve) and, '( ) '( )st st

z zv z v   (black curve), (c, d) '( , ) '( )dy st

z zv z t v  , inserts show the entire vertical 

domain, (e, f) '( ) '( , )st dy

z zv z v    , (g, h) '( , ) '( , )dy dy

z zv z t v    versus  for  and  (left 

column)  (right column). In (a)-(h) ,and ; in (e)-(h) 

, , .  

 

 2 0.1Y  gN 1

gN 0.1 3

2 4.27 10z z   3

2 4.4 10t t  

3

1 4.4 10   3

2 3.9 10   3

3 3.3 10  
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Figures 3.4e, f depict '( ) '( , )st dy

z zv z v    versus ξ for
2 0.1Y  , z = z2, t = t2 and three values of τ 

when when Ng = 1 and 0.1, respectively. The clear negative correlation of '( ) '( , )st dy

z zv z v    along 

the ( ; )z t    segment and its rapid decay in the region ( ; )z t    are explained by considering 

that stationary components are linked with (a) the dynamic velocity components arising at points 

which lie downstream along the mean flow direction (i.e. for z   for t   ; see also Section 3.2.3), 

and (b) with the observation that dynamic fluctuations in the region ( ; )z t    are, in a mean sense, 

less sensitive to the fluctuations of the stationary flow field arising at locations downstream of . This 

rapid decaying of '( ) '( , )st dy

z zv z v    at ( ; )z t    is a result of (i) the coupling between flow and 

transport (as documented by the dependency of 'dy
zv  on '  in (3.25)), and (ii) the nature of the 

transport problem for which, in a mean sense and at first order (see also (A.3.8)-(A.3.10)), the density 

perturbation are mainly dictated by the perturbations in the velocity which has been already 

experienced, i.e. the Green’ function of the transport problem, (A.10), is non zero mainly for the 

space-time coordinates ( ; )z t   . As a consequence, fluctuations 'dy
zv , which are rooted in the 

coupled nature of flow and transport, are less sensitive to the corresponding stationary flow 

perturbation, 'st
zv , which occur at forward (in space and time along the mean flow direction) 

locations.  

The covariance component '( ) '( , )st dy

z zv z v    can be seen as an indication of the extent in space 

and time of the region within which the stationary velocity fluctuation can induce dynamic 

perturbation of the flow, an effect which is mainly felt at spatial locations   > z (i.e.,   downstream 

of z). At the same time, the term '( , ) '( )dy st

z zv z t v   evidences the strength of the effect of stationary 

velocity perturbations at   < z (i.e., considering locations   upstream of z) in triggering dynamic 

fluctuations at (z ; t). These reasoning are supported by the observations that a change in the value of 

Ng induces a quasi linear variation of the magnitude of '( ) '( , )st dy

z zv z v    and '( , ) '( )dy st

z zv z t v  , the 

shape of these spatial cross-covariances respectively being insensitive and sensitive to Ng, i.e. to the 

intensity of stabilizing buoyancy effects. The similar shapes observed for '( ) '( , )st dy

z zv z v    in the 

plots of Fig. 3.4e, f is due to the fact that the stationary velocity fluctuations trigger dynamic 

fluctuations in a way which is independent of the effects of density (as rendered by Ng ). The latter 

only affect the relative strength of '( ) '( , )st dy

z zv z v   .  

Figures 3.4g, h depict '( , ) '( , )dy dy
z zv z t v    versus   for z = z2, t = t2 and three values of τ when 

Ng = 1 and 0.1, respectively. This covariance represents the correlation between the dynamic velocity 

components and, as expected, is positive. It can then be noted that '( , ) '( , )dy dy
z zv z t v    exhibit a 

dependence on Ng with a power different from two (compare Figs. 3.4g and 3.4h) according with 

equation (3.28), which highlights that variations of Ng affects 'dy
zv  also through the buoyant term and 

the mean concentration gradient in convolution (3.28) ,determining a deviation from a pure square 

dependence of '( , ) '( , )dy dy
z zv z t v    on Ng.. We note that the quantities '( , ) '( )dy st

z zv z t v  , 
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'( ) '( , )st dy

z zv z v    and '( , ) '( , )dy dy
z zv z t v    display a behavior which is qualitatively similar to what 

illustrated above at all space-time locations (z, t) investigated (details not shown). 

Figure 3.5 depicts results analogous to those of Fig. 3.4 for . As expected we found a 

linear proportionality of '( ) '( )st st
z zv z v   in 

2

Y  ( see e.g. Rubin, 2003). Increasing the heterogeneity 

of the permeability field increases also ' ( , ) ' ( , )z zv z t v   , (note the vertical scales in Figs. 3.4a and 

3.5a). Moreover, assigned Ng, we found that the relative damping of the buoyant term on the 

permeability induced fluctuations diminish as 
2

Y  increase, i.e. ' ( , ) ' ( , )z zv z t v    and 

'( ) '( )st st
z zv z v   in Fig. 5a-b are closer than results depicted in Fig. 4.a-b. This behaviour is 

essentially due to the relative diminished capability of the negative cross-covariance 

'( , ) '( )dy st

z zv z t v   and '( ) '( , )st dy

z zv z v    of stabilizing the flow. In order to clarify this tendency, we 

provide here an explanation, based on rough assumptions: (i) neglecting the buoyant term on the right 

hand side of (3.28); (ii) approximating ( , ) /C      in (3.28) with a Gaussian bell that spread 

according to the macro-dispersion coefficients for tracer case (see Gelhar and Axness, 1983); (iii) 

multiplying (3.28) by '( )st
zv z  as treated in (3.26); (iv) applying both spatial and ensemble expectation, 

after some manipulation we get: 

 
2

g

2
0

N exp
'( ) '( , ) exp ( , ; , )

4 4

t
st dy T
z z Y z

Y

z
v z v z t G z t d d

ll l

  
    

    


    
   
    

   (3.29) 

which highlight a sublinear grow of the cross-covariance of vertical velocity in 
2

Y , for a fixed Ng. 

Note that the first and second assumptions can be view as we are disregarding the buoyant stabilizing 

effects, in terms of the regularization of the density perturbations and the associated steepening of the 

mean concentration gradients, which spreading rate is surely smaller than the one dictated by the 

macro-dispersion coefficient for the tracer case. The spirit of (3.29) is not that of provide an exact 

results, but to clarify the effects of varying the permeability variance. Recalling (3.22) and (3.23), the 

sublinear dependence in 
2

Y  for the cross-covariance between dynamic and stationary components, 

compared with the linear scaling of the stationary velocity covariance in 
2

Y , suggests that the 

effective stabilization of the flow field, and therefore of the solute front, performed by 

'( , ) '( )dy st

z zv z t v   and '( ) '( , )st dy

z zv z v    decrease as the porous media heterogeneity increases. 

 

 

 

2 0.5Y 
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Figure 3.5. Section average vertical velocity covariance components: (a, b) '( , ) '( , )z zv z t v    (red 

curve) and, '( ) '( )st st

z zv z v   (black curve), (c, d) '( , ) '( )dy st

z zv z t v  , inserts show the entire vertical 

domain, (e, f) '( ) '( , )st dy

z zv z v    , (g, h) '( , ) '( , )dy dy

z zv z t v    versus  for  and  (left 

column)  (right column). In (a)-(h) ,and ; in (e)-(h) 

, , . 

 

 2 0.5Y  gN 1

gN 0.1 3

2 4.27 10z z   3

2 4.4 10t t  

3

1 4.4 10   3

2 3.9 10   3

3 3.3 10  
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According to (3.22)-(3.23), the two negative cross-covariances '( , ) '( )dy st

z zv z t v   and 

'( ) '( , )st dy

z zv z v    cause the reduction of the ensemble dispersive flux observed in a variable density 

problem as compared to the uniform density setting. It can then be concluded that the main 

contribution to the reduction of the covariance ' 'zv C  in (3.22) stems from '( , ) '( )dy st

z zv z t v  . This 

result can be interpreted by considering the nature of the transport problem under study in which the 

expected average evolution of the concentration at (z, t) is affected by the perturbations that the 

velocity field experiences at  ;z t    (as seen from (3.22)) and by those already experienced, 

i.e. for times t  and locations z  . These effects are encapsulated in the Green’s function 

( , ; , )T
zG z t    (A.10) which displays a peak at  ;z t    and decays for  ;z t   . Note that 

'( , ) '( )dy st

z zv z t v  exhibits long negative tails precisely in the space-time region  ;z t   , these 

tails producing an effects which is opposite to the one produced by '( ) '( )st st

z zv z v   for ξ < z. Note 

that both '( ) '( )st st

z zv z v   and '( , ) '( )dy st

z zv z t v   do not depend on  .  

The contribution of the cross-covariance '( ) '( , )st dy

z zv z v    in the convolution (3.23) is very 

small. This is so because (i) its marked negative tail for z   at t   is practically weighted by 

( , ; , )T
zG z t    solely at  ;z t   , and (ii) the cross-covariance '( , ) '( )dy st

z zv z t v   rapidly decays 

for t   (see e.g. Fig. 3.4f). From a physical point of view, one can see that the convolution between 

( , ; , )T
zG z t    and '( , ) '( )dy st

z zv z t v   accommodates for about half of the reduction of the correlation 

between the concentration and velocity fluctuations at  ;z t    and for the reduction of 

correlation in  ;z t   . The effect of the convolution in this latter (space-time) region is that of 

a net reduction of the memory of concentration perturbation on the experienced velocity field due to 

the stabilizing effects of the density driven scenario. The convolution of ( , ; , )T
zG z t    and 

'( ) '( , )st dy

z zv z v    essentially accounts for about half of the reduction of the correlation between 

concentration and velocity at  ;z t   . This reduction is due to the negative correlation between 

stationary and dynamic velocities at  ;z t   . Otherwise, the contribution of '( ) '( , )st dy

z zv z v    

in the convolution (3.23) is small for  ;z t   . The latter outcome is consistent with previous 

observation that the behavior of '( ) '( , )st dy

z zv z v    is related to the way stationary velocity 

fluctuations act in triggering stabilizing dynamic velocity components at downstream locations, as 

described in Section 3.2.3. 
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3.3.2 Cross Covariance between Concentration and Permeability 

In this section we analyze the section-averages cross-covariance between permeability and 

concentration, ( ) '( , )Y z C   . This quantity quantifies the way permeability and concentration 

fluctuations are related  and plays an important role in the velocity and concentration covariances, as 

detailed in Appendices D.3 and F.3. 

Figure 3.6 depicts ( ) '( , )Y z C    versus ξ when 2

34.27 10z z    (black curves) and versus z 

when 2 2z    (red curves) at time 3

2 4.4 10t     for 2 0.1Y   when gN 1  (Fig. 3.6a) or 0.1 

(Fig. 3.6b). A corresponding depiction for 2 0.5Y   and gN 1 , or 0.1 is illustrated in Fig. 3.6c, d. 

Results obtained for 2( ) '( , )Y z z C    (blues curves) and 2 2( ) '( , )Y z C t     (green curves) 

when gN 0  are also included. In general, fixing z in ( ) '( , )Y z C    highlight how permeability 

fluctuations, Y(z), are correlated with concentration fluctuation, '( , )C   , at ( , )   space-time 

coordinates. The opposite holds when we choose to fix ( , )  , i.e. we highlight how concentration 

fluctuation '( , )C    are affected by the permeability fluctuation at various z space coordinates. It can 

be noted that: (a) peak values of
2( ) '( , )Y z C t   do not take place at the selected reference locations 

2  or 2z ; (b) values of 2 2( ) '( , )Y z C t  at 2z   are larger than those at 2z  , implying that 2( )Y z  

influences 2'( , )C t  at downstream (i.e. when 2z  ) locations along the direction of the mean flow 

more than it does at 2z  . This behavior can be explained by noticing that only small amounts of 

solute (i.e. 2 2'( , ) 0C z t   ) are advected within low permeability regions, where 2( ) 0Y z  , the 

opposite being observed for regions where 2( ) 0Y z  . According to the same mechanism, 2 2'( , )C t  

is highly correlated with ( )Y z  when 2z   (see red curve in Fig. 3.6). In summary, it can be seen 

that Fig. 3.6 suggests that permeability at a given location highly influences concentration at 

downstream positions. This result also implies that, in a mean sense, permeability data are expected 

to be beneficial to a reduction of the uncertainty on solute transport behavior at downstream location 

(along the mean flow direction), concentration measurements conveying relevant information to infer 

permeability within upstream zones. 
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Figure 3.6. Section average log permeability and concentration cross-covariance, ( ) '( , )Y z C   , 

versus ξ when 2

34.27 10z z    (black curves) and versus z when 3

2 4.27 10     (red curves) 

at time 3

2 4.4 10t     for 2 0.1Y   and 0.5 setting (a,c) gN 1  (b,d) gN 0.1 . The results 

obtained for the tracer case (i.e. cost  ) are also reported for 2 2( ) '( , )Y z C t  (blues curves) and 

2 2( ) '( , )Y z C t  (green curves). 

One can note that 2 2( ) '( , )Y z C t   values for the density uniform case are larger than their 

counterparts associated with the variable density scenario (compare green and red curves in Fig. 3.6). 

The reduction of 2 2( ) '( , )Y z C t  for the variable density scenario is linked to the effects of the last 

terms on the right hand side of (E. 3.5), which cause a decrease of correlation between permeability 

and concentration associated with the emerging stabilizing effects. This term depends linearly on gN  

and vanishes for the uniform density. From a physical point of view, the stabilizing buoyancy effect 

tends to reduce the concentration variability causing a reduction of the cross-correlation between log 

permeability and concentration. As a consequence, when buoyancy effects increase concentration 

profiles in heterogeneous domains tend to display a regular shape, which is akin to the one observed 

in homogeneous media (see the exemplary setting in Fig. 3.1). Values of ( ) '( , )Y z C    in density-

driven flows tend to coincide with those associated with uniform density scenarios for increasing 2

Y  

and/or decreasing gN  because of the decreasing stabilizing effect due to gravity. 

Comparison of Figs. 3.4c-d and Fig. 3.4a, b reveal that the shape of '( , ) '( )dy st

z zv z t v   and 

'( ) '( , )st dy

z zv z v    is respectively similar to that of '( , ) ( )C z t Y   and ( ) '( , )Y z C   . This numerical 
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result is in agreement with our analytical solution (D.3.8)-(D.3.9), according to which 

g'( , ) '( ) N '( , ) ( ) /dy st

z zv z t v C z t Y     and g'( ) '( , ) N ( ) '( , ) /st dy

z zv z v Y z C      . We 

remark that our analysis of the cross-covariance between permeability and concentration leads to 

conclusions which are consistent with those stemming from our discussion about velocity covariances 

because for the scenario here investigated the characteristics of Y mainly dictate the behavior of 'st
zv

, 'C  being clearly related with 'dy
zv .  

We now provide an analysis of the occurrence of the negative values of 2 2' ( , ) ' ( , )z zv z t v t  

observed in Fig. 3.4a for the set of spatial coordinates  2 2 2 2| ' ( , ) ' ( , ) 0z zz v z t v t     . As 

discussed in Sections 3.2.1 and 3.3.1, negative velocity correlations are mainly due to 

2 2'( , ) '( )dy st
z zv z t v  , contributions of 2 2'( ) '( , )st dy

z zv z v t  being negligible (compare black curves in 

Fig. 3.4.c and Fig. 3.4e). As noted above (see Fig. 3.4 and related comments), positive (negative) 

values of Y  induce positive (negative) values of 'st
zv  and 'zv . This is so because the stabilizing 

effect of 'dy
zv  tends to decrease the intensity of 'zv  (with respect to the uniform density case) without 

altering its sign for the investigated values of Ng. Positive (negative) fluctuations 2'( , )zv t  generate 

positive (negative) values of 'C  at    as well as at 2z , thus promoting stabilization of flow 

through the term 2 2'( , )dy
zv z t  which is associated with a negative (positive) sign. If this stabilizing 

effect due to gravity is not negligible with respect to the enhancement of velocity fluctuation due to 

heterogeneity, the resulting field of 2 2'( , )zv z t  is characterized by an opposite sign with respect to 

2'( , )zv t . Interesting for 2z   Negative vertical velocity covariances do not appear in the variable 

density configuration, because the negative contribution of 2 2'( ) '( , )st dy
z zv z v z t   vanishes for 

2z   approximately in the same way as the 2'( ) '( )st st
z zv z v   . 

3.3.3 Ensemble Dispersive Flux and Concentration Variance 

Here we analyze the ensemble dispersive flux, '( , ) '( , )zv z t C z t  introduced in (3.21)-(3.22). We 

recall (3.22)-(3.23), (D.3.12), (E.3.3), (E.3.5), (F. 3.4) and (F.3.6) and remark that '( , ) '( , )zv z t C z t  

depends non-linearly on the mean concentration gradient, ( , ) /C z t z  . This observation is 

consistent with previous analytical and numerical results ( see, e.g. Welty and Gelhar, 1991; Landman 

et al., 2007a, b;). The root of this non-linear dependency lay in the coupling between flow and 

transport problems and in particular is due to the stabilizing buoyant term in the dynamic velocity 

fluctuations, which by itself depends on the mean concentration gradient. A clear definition of the 

non linear dependency is hard to track through out (3.22)-(3.23), (D.3.12), (E.3.3), (E.3.5), (F. 3.4) 

and (F.3.6). Interested readers may refers to Landman et al. 2007b who provided relative simple 

expression, valid for large travel times. 

Figures 3.7a and 3.7b respectively depict the dependence on z of '( , ) '( , )zv z t C z t  and of the 

concentration variance, 2 2( , ) '( , )c z t C z t   , at five selected times, for 2 0.1Y   and gN 0  (blue 
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curves), 0.1 (red curves), and 1.0 (black curves) as a result of the numerical Monte Carlo simulations 

(continuous curves) performed. The semi-analytical solutions of (3.22) and (F.3.6) are also depicted 

(dashed curves). Corresponding results for 2 0.5Y   are depicted in Figs. 3.6c, d. From Fig. 3.7 it can 

be noted that our semi-analytical solution captures quite accurately the Monte Carlo numerical results 

despite the strong assumptions at its basis. 

Values of '( , ) '( , )zv z t C z t  and 2 ( , )c z t  in Figs. 3.6a, d decrease in time and/or for increasing 

gN  suggesting that ( , )C z t  can be considered as a good approximation of ( , )C z t  as well as of the 

(random) concentration, ( , , )C y z t , (a) at late times when the solute front has sampled the overall k 

variability and fluctuations along the transverse direction tend to be smoothed out due to mixing, 

and/or (b) for large values of gN , because the solute front in heterogeneous domains tends to 

resemble the pattern documented in homogenous media. Increasing the heterogeneity of the 

permeability field, both '( , ) '( , )zv z t C z t  and 2 ( , )c z t  increase and the regularizing ability of the 

stabilizing buoyancy effects for a given gN  tends to decrease (see Section 3.3.1). This finding is in 

agreement with that of Landman 2007a, which on the base of experimental results ( see Fig. 13 of 

Landman 2007a) shows that the relative reduction of the solute spreading in case of stable flow 

respect to the tracer case scenario, assigned Ng, diminish as 2
Y  increase. 

 

 

Figure 3.7. Section average ensemble dispersive flux, '( , ) '( , )zv z t C z t , and concentration variance, 

2 2( , ) '( , )c z t C z t  , for gN 1 , (black curves), gN 0.1 , (red curves), cost  , (blue curves), 

(a)-(b) for 2 0.1Y   and (c)- (d) for 2 0.5Y  . Numerical Monte Carlo and semi-analytical results are 

reported by solid and dashed curves, respectively.  
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3.4  Conclusions  

We analyze the occurrence, for stable variable density flow in heterogeneous porous media, of 

the solute spreading reduction and tendency to a more homogeneous-like behavior of the resulting 

concentration profile respect to corresponding results for the constant density counterpart case. That 

is, density dependence leads to sharper concentration fronts than constant density.  

The main finding of this work is that the reduction of dispersion and contraction of the 

concentration profile are due to a reorganization of the velocity field. In particular we observed a 

reduction of the velocity variance and a shrink of the spatial extension of velocity correlation. The 

reduction in both variance and correlation distance of velocity causes a reduction of the dispersive 

flux.  

Even if the regularization of the velocity field as responsible for the reduction of the solute 

dispersion was something to be expected ( similar observations has been done for immiscible flow in 

Neuweiler et al., 2003 ), its proper quantification and understanding is a difficult task, due to the 

heterogeneous nature of permeability and the coupling between flow and transport.  

We faced this challenge by decomposing the variable density flow field, and its fluctuations, in 

a stationary component, i.e. 'st
zv , associate with the solution of the flow problem for constant density, 

plus a dynamic component, i.e. 'dy
zv , which take into account the coupling between transport and 

flow. The introduced decomposition of the velocity field allowed for a better understanding of the 

interplaying and triggering mechanism, which occurs between permeability, velocity, and 

concentration, which is a crucial aspect for coupled problem as the one here analyzed.  

Similarly to tracer transport scenario, we found that the dispersive flux is a function of the 

velocity covariance. The origin of the solute dispersion reduction has been linked, both from a 

mathematical and physical point of view, to the negative '( ) '( , )st dy
z zv z v    and '( , ) '( )dy st

z zv z t v   

velocity cross-covariance, which are to be subtracted from the of the stationary velocity covariance, 

'( ) '( )st st
z zv z v  . The two cross-covariance essentially describe the interplay between permeability 

induced stationary fluctuation, which promote solute spreading, and the stabilizing buoyancy induced 

dynamic perturbation, which suppress solute dispersion.   

Interestingly, we found that the shape of '( , ) '( )dy st
z zv z t v   varies with the intensity of the ratio 

between buoyant and viscous forces, i.e. Ng, and with 
2
Y . In particular the rate of correlation of 

'( , ) '( )dy st
z zv z t v   increases as 

2
Y  increases and/or Ng decreases, because density fluctuations are 

more sensitive to the underlying permeability variations as the regularization of the flow field pursued 

by the buoyant components decrease. On the other hand, the shape of '( ) '( , )st dy
z zv z v    remains 

virtually unaffected by the permeability variance and Ng, suggesting that stationary fluctuations 

trigger dynamic components in the same fashion. Instead, the absolute values of both 

'( , ) '( )dy st
z zv z t v   and '( ) '( , )st dy

z zv z v    scale approximately linearly with Ng and sublinealry with 

2
Y . This contrast with the well-known linear scaling in 

2
Y  of '( ) '( )st st

z zv z v  . Therefore the relative 
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importance of the stabilizing components induced by density variations decreases as the media 

becomes more heterogeneous.  

The resulting reduction of the dispersive flux for stable flow, in comparison with the value 

obtained for constant density flow, increases with the relative importance of the stabilizing effects, 

i.e. high Ng and low 
2
Y . In terms of solute concentration behavior, the contraction of the dispersive 

flux leads to concentration profile that resemble an homogenous like solution, even if the underlying 

permeability is still heterogeneous. 

Future studies will focus on the triggering mechanism and interplay between flow and transport 

in order to analyze the transverse dispersion and the possibility of enrich our understanding for  

unstable conditions.  
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Appendix A.3 Section average concentration and effective dispersive 

flux  

Substituting (3.16)-(3.17) in (3.15), applying spatial mean operator (3.13) and making use of the 

first of (3.14) we obtain that, for the problem set up presented in Fig. 3.1, the horizontal spatial 

average concentration, ( , )C z t , satisfies the following equation 

' ' '
' 0z

z zz zz

C C C v C C
v D D

t z z z z z z

         
       

         
          (A.3.1a) 

where 

0

1
' ' '( , , ) '( , , )

D

z zv C v y z t C y z t dy
D

  ;    

0

' 1
' '( , , ) '( , , )

D

zz zz

C
D D y z t C y z t dy

z D z

 


  .      (A.3.1b) 

The last term of (A.3.1a) A numerically analysis of (A.3.1a) (details not shown) allows to 

recognize that, for the test cases considered in this work, it is possible to neglect and to approximate 

( , )zzD z t  by 1/ Pe , yielding  

2

2

1 ' '
0

Pe

z
z

C C C v C
v

t z zz

   
   

  
. (A.3.2) 

Applying (3.13) to the first of (3.14) and making use of (3.16)-(3.17), yields  

 
( , )

( , ) '( , ) 0
zv z t

z t z t
z


   


v v , (A.3.3) 

i.e. the spatial mean vertical velocity is constant and equal to the prescribed flux divided by porosity, 

which equals 1 in dimensionless form. Making use of (A.3.3), Equation (A.3.2) simplifies as  

2

2

1 ' '
0

Pe

zC C C v C

t z zz

   
   

  
, (A.3.4) 

where ' 'zv C  is the effective dispersion flux discussed in section 3.2.2. Closure of (A.3.4) is obtained 

upon writing ' 'zv C  as function of C . Subtracting (A.3.4) from (3.15) and neglecting terms involving 

the product of fluctuations we get  

 2' 1
' ' ' ' ( , )

Pe

C
C C C C z t

t z

 
       

 
v D  (A.3.5) 

Our numerical simulations show that  ' 'C C    v D  (details not shown), therefore (A.3.5) 

simplifies as 

2' 1
' ' '

Pe
z

C
C C v C

t z z

  
    

  
   (A.3.6) 

Equation (A.3.6) is subject to the following initial and boundary conditions  

1 '( , , )
'( , , ) 0 0; '( , , ) 0 ;

Pe

'( , , )
0 0, ; '( , , ) 0 0 ( , ) ;

C y z t
C y z t for z C y z t for z H

z

C y z t
for y W C y z t for t y z

y


    




    



 (A.3.7) 

Note that these are homogeneous. Therefore, (A.3.6)-(A.3.7) is driven by the rhs of (A.3.6). Its 

solution can be expressed in terms of 
T

G ,  Green’s function that satisfies (A.3.6) with the source term 
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replaced by ( ) ( ) ( )y z t         subject to homogeneous initial and boundary conditions, as 

0

'( , , ) '( , , ) ( , ) ( , , ; , , )

t
T

zC z y t v C G y z t d d d          





 

  , (A.3.8) 

Multiplying (A.3.8) by '( , , )zv y z t  and applying (3.13) we derive the expression for the effective 

dispersive flux as 

0

( , )
'( , ) '( , ) '( , ) ( , ; , , ) '( , , )

t
T

z z z

C
v z t C z t v z t G z t v d d d

 
        





 

  , (A.3.9a) 

with  

0

1
'( , ) ( , ; , , ) '( , , ) ( , , ; , , )

D
T T

z zv z t G z t v y z t G y z t dy
D

       .   (A.3.9b) 

In order to further simplify our analysis, we follow Bolster et al. (2009, 2011) and consider a 1D 

problem (along the vertical z-direction) within a semi-infinite domain, [0, )z  . Under this 

hypothesis a close analytical expression of 
T

G  can be derived as (see Leij and Van Genuchten, 2000) 

   
2 2

)
Pe Pe

4( ) 4( )

( , , ; , , ) ( ) ( , ; , )

Pe
with ( , ; , )

4 ( )

T T
z

z t z t
z

t tT
z

G y z t y G z t

G z t e e
t

   

 

      

 
 

        
    
    
   

 

 
 

  
  

 

, (A.3.10) 

where ( )y   is the Dirac’ delta function. Making use of (A.3.10) equation (A.3.9) simplifies as 

0 0

( , )
'( , ) '( , ) '( , ) '( , ) ( , , , )

t H
T

z z z z

C
v z t C z t v z t v G z t d d

 
     




 

  (A.3.11a) 

with  

0

1
'( , ) '( , ) '( , , ) '( , , )

D

z z z zv z t v v y z t v y dy
D

      (A.3.11b) 

Note that, by virtue of (A.3.10),  η = y, so that only  the product of velocity fluctuations along the 

vertical is retained in (A.3.11). 

 

Appendix B.3 Ensemble average of horizontal spatial mean 

concentration 

We derive the equation satisfied by the ensemble average of horizontal spatial mean 

concentration, ( , )C z t   by introducing the following decomposition: 

( , ) ( , ) ( , )C z t C z t C z t  ,  ( , ) ( , ) ( , )zv z t v z t v z t  ,   (B.3.1) 

ˆC C C  ,               zv v v  , (B.3.1) 

where ˆ ( , )C z t  and ( , )zv z t  respectively indicate fluctuations of ( , )C z t  and ( , )v z t  around their 
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ensemble mean, i.e. ˆ 0C v  . Introducing (B.3.1) into (A.3.2) and applying the ensemble mean 

operator yields 

 
2

2

1 ˆ ' ' 0
Pe

z z z

C C
v C v C v C

t z zz

        
   

.  (B.3.2) 

Note that, as discussed in Appendix A.3, the spatial mean vertical velocity is constant and equal to 

the velocity fixed at top boundary in Fig. 3.1, i.e. 

( , ) ( , ) 1z zv z t v z t  ;   ( , ) 0zv z t  . (B.3.3) 

Making use of (B.3.3), equation (B.3.2) becomes  

2

2

'( , ) '( , )( , ) ( , ) ( , )1

Pe

zv z t C z tC z t C z t C z t

t z z z

  
   

   
 (B.3.4) 

The ensemble dispersive flux '( , ) '( , )zv z t C z t  in (B.3.4) can be computed applying the ensemble 

operator to (A.3.11) as 

0 0

0 0

0 0

( , )
'( , ) '( , ) '( , ) '( , ) ( , , , )

( , )
'( , ) '( , ) ( , , , )

ˆ ( , )
'( , ) '( , ) ( , , , )

t H
T

z z z z

t H
T

z z z

t H
T

z z z

C
v z t C z t v z t v G z t d d

C
v z t v G z t d d

C
v z t v G z t d d

 
     



 
     



 
     




 




 








 

 

 

  (B.3.5) 

Neglecting terms involving products of fluctuations larger than two, (B.3.5) becomes 

0 0

( , )
'( , ) '( , ) '( , ) '( , ) ( , , , )

t H
T

z z z z

C
v z t C z t v z t v G z t d d

 
     




 

  .   (B.3.6) 

Equation (B.3.6) clearly elucidates that the ensemble dispersive flux is a non-local quantity in time 

and space since it depends on velocity cross-covariances and concentration gradients evaluated along 

the full domain at all times   t. A (partial) localization of (B.3.6) is offered by  

0 0

( , )
'( , ) '( , ) '( , ) '( , ) ( , , , )

t H
T

z z z z

C z t
v z t C z t v z t v G z t d d

z
     




      (B.3.7) 

 

Appendix C.3 Velocity and pressure Fluctuations  

First order approximation of velocity fluctuation components '( , , )yv y z t  and '( , , )zv y z t  defined 

in (3.16) are derived by subtracting the spatial mean of vertical velocity (recall that  , 1zv z t  ) from 

the second of (3.14), approximating the permeability fluctuation as 

'( , ) exp( ( , )) 1 ( , )k y z Y y z Y y z    and neglecting terms involving products of fluctuations larger 

than one. Following this procedure we obtain 
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1 '( , , )
'( , , )y

p y z t
v y z t

y


 


 (C.3.1) 

g

1 '( , , )
'( , , ) ( , ) N '( , , )z

p y z t
v y z t Y y z y z t

z




 
   

 
, (C.3.2) 

Recalling the stationary and dynamic decomposition introduced in (3.20) and remembering (B.3.3) 

we rewrite (C.3.1)-(C.3.2) as 

1 '( , )
'( , )

st
st
y

p y z
v y z

y


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
 (C.3.3) 

1 '( , , )
'( , , )

dy
dy
y

p y z t
v y z t

y


 


 (C.3.4) 

1 '( , )
'( , ) ( , )

st
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z

p y z
v y z Y y z

z


 


 (C.3.5) 

g

1 '( , , )
'( , , ) N '( , , )

dy
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z

p y z t
v y z t y z t

z




 
     

, (C.3.6) 

where 0
stp  is obtained by solving (3.9)-(3.12) within an homogeneous system, i.e. ( , )y z  Ik   and 

considering a fluid with constant density equal to f , 0 00
dy stp p p  , 0 0

dy

f    , '( , )stp y z  and 

'( , , )dyp y z t  are stationary and dynamic pressure (random) fluctuations which expressions are 

evaluated in the following. Note that from (B.3) we can also write 

 , 1 ( ) ( , ) . . ( , ) 0
st dy st dy

z z z z zv z t v z v z t v i e v z t      (C.3.7) 

which justify simplification in (C.3.6). Using (C.3.3) and (C.3.5) and the fact that 
st

v is divergence 

free, we write the equation for '( , )stp y z  as  

2 ( , )
'( , )st Y y z

p y z
z




 


 (C.3.8) 

Note that (C.3.8) is the conventional first order approximation to the equation of (constant density) 

flow through heterogeneous media. Considering the problem set up of Fig. 3.1, equation (C.3.8) is 

subjected to the following boundary conditions 

'( , ) '( , )
'( , ) 0 0; 0 ; 0 0,

st st
st p y z p y z

p y z for z for z H for y D
z y

 
     

 
 (C.3.9) 

Solution of (C.3.8)-(C.3.9) is 

'( , ) ( , ) ( , ; , )
Fstp y z Y G y z d d      








 (C.3.10) 

where ( , ; , )
F

G y z    is the flow Green’s function that satisfies (C.3.8)-(C.3.9) with the source term 

replaced by ( ) ( )y z      subject to homogeneous boundary conditions.  

Proceeding in a similar way, we derive the equation satisfy by pressure perturbation 

2
g'( , , ) ( , ) N '( , , )p y z t Y y z y z t

z z
 
 

  
 

.   (C.3.11) 

Subtracting (C.3.8) from (C.3.11) and making use of (3.17) we obtain the equation satisfied by the 

dynamic pressure fluctuation  
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'( , , ) Ndy C y z t

p y z t
z


  


, (C.3.12) 

subject to the following boundary conditions 

'( , ) '( , )
'( , ) 0 0; 0 ; 0 0,

dy dy
dy p y z p y z

p y z for z for z H for y D
z y

 
     

 
    (C.3.13) 

Solution of (C.3.12)-(C.3.13) is given by  

g

'( , , )
'( , , ) N ( , ; , )

Fdy C t
p y z t G y z d d

 
   





 

  (C.3.14) 

 

Appendix D.3 Covariance of Vertical Velocity 

Making use of (3.20) the horizontal spatial mean of the covariance of vertical velocity 

components can be written as  

' ( , ) ' ( , ) '( ) '( ) '( ) '( , ) '( , ) '( ) '( , ) '( , )st st st dy dy st dy dy
z z z z z z z z z zv z t v v z v v z v v z t v v z t v             

                      (D.3.1)  

Equation (D.3.1) elucidates that ' ( , ) ' ( , )z zv z t v    can be decomposed as the sum of four terms, a 

stationary covariance '( ) '( )st st
z zv z v  , a dynamic covariance, '( , ) '( , )dy dy

z zv z t v   , and two terms 

involving stationary and dynamic velocity fluctuations, '( ) '( , )st dy
z zv z v    and '( , ) '( )dy st

z zv z t v   

(called rispectivly stationary-dynamic and dynamic-stationary velocity covariances). Exploiting 

(C.3.5)-(C.3.6) and remembering (3.11) '( ) '( , )st dy
z zv z v    can be written as  

2

g

1 1
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   

 
  

 
 

 (D.3.2) 

The first term on r.h.s of (D.3.2) can be computed, making use of (C.3.14), as  
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       
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 
  

 

 






  

    (D.3.3) 

We then approximate ˆˆ( , ; , )
F

G y     as 

 ˆ ˆˆ ˆ( , ; , ) ( ; )
F FG y y G           (D.3.4a) 

with (Butkovskiy and Longdon, 1982) 
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                 (D.3.4b) 

Here 0I  and 0K  are the modified Bessel function of first and second kind respectively and 

/n n H  . Making use of (D.3.4a)-(D.3.4b), equation (D.3.3) becomes 

g

0 0

g
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    (D.3.5) 

Adopting the same strategy allows to obtain the following expressions for the remaining terms of 

(D.3.2)  
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                   (D.3.6) 

and 

g g
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 (D.3.7) 

Substituting (D.3.5)-(D.3.7) into (D.3.2) we finally obtain 
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    (D.3.8) 

Equation (D.3.8) highlights that '( ) '( , )st dy
z zv z v    depends linearly on the dimensionless group 

gN /  and it is a function of the cross-covariance ( ) '( , )Y z C   . 

In a similar way '( , ) '( )dy st
z zv z t v   becomes: 
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 (D.3.9) 

and the dynamic-dynamic velocity covariance, '( , ) '( , )dy dy
z zv z t v   , can be written as  
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     (D.3.10) 

Equation (D.3.10) highlights that '( , ) '( , )dy dy
z zv z t v    depends linearly on the dimensionless group 

 
2

gN /  and it is a function of '( , ) '( , )C z t C   , i.e. the horizontal spatial mean of concentration 

covariance.  

Finally the stationary-stationary velocity covariance becomes  
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 (D.3.11) 

Note that '( ) '( )st st
z zv z v   is a function of the covariance of Y.  

We now introduce the following notation  
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 (D.3.12) 

where operators  A ,  B  ,  C ,  D  are respectively defined by the terms in parenthesis  

right hand side of (D.3.11), (D.3.8), (D.3.9) and (D.3.10). As highlighted by (D.3.12), in order to 

determine ' ( , ) ' ( , )z zv z t v    we need to derive the equations satisfied by the cross covariances 

'( , ) ( )C z t Y   and '( , ) '( , )C z t C   . These expressions are derived in Appendix E.3 and F.3, 

respectively.  

 

Appendix E.3 Cross covariance between permeability and 

concentration 

In this section we derive the horizontal spatial mean of cross-covariance between the log 

permeability and concentration, i.e. ( ) '( , )Y z C   . Multiplying (A.3.8) by ( , )Y y z , applying (3.13) 

and the  ensemble average operator, making use of (A.3.10) and disregarding products of fluctuations 

larger than two, we obtain 
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 (E.3.1) 

Recalling (C.3.5)-(C.3.6), equation (E.3.1) becomes  
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       (E.3.2) 

A numerically analysis of (E.3.2) (details not shown) shows that, for the test cases considered in this 

work, it is possible to disregard the last term on the r.h.s. of (E.3.2). Introducing the operator  F  

defined as  
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we rewrites (E.3.2) as 
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F F F  (E.3.4) 

Equation (E.3.4) furnishes the link amongst the cross-covariance between the permeability and the 

concentration field, ( ) '( , )Y z C   , and (i) the covariance of the underlying permeability field, 

( ) ( )Y z Y  , (ii) the cross-covariance between stationary pressure and permeability, i.e. 

( ) '( )stY z p  . Introducing the dimensionless hydraulic head, h, defined as /st
fh p g z  , with 

* * 2 *
,/ z BCg k g v  being the dimensionless gravity, (E.3.4) can be written as 
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F F F     (E.3.5) 

where ˆ( ) '( )Y z h   is the cross-covariance between permeability and hydraulic head in case of 

constant density and * * * 2 *
,C = /f z BCk g v   is constant of conversion between the dimensionless 

pressure and hydraulic head. The last term on right hand side of (E.3.5) take into account the 

stabilizing buoyancy effects which reduce the correlation between permeability and concentration, 

see Section 3.3.2. 

  

Appendix F.3 Concentration Covariance 

In this section we derive the equation satisfied by the horizontal spatial mean of concentration 

covariance, '( , ) '( , )C z t C   . Multiplying (A.3.8) by '( , , )C    , taking the ensemble mean 

operator, making use of (A.10) and neglecting terms involving power of fluctuations larger than two 

we obtain  
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The term '( , ) '( , )C z t C    is defined as  
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Recalling (C.3.5)-(C.3.6), equation (F.3.2) becomes  
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                    (F.3.3) 

A numerically analysis of (F.3.3) (details not shown) shows that, for the test cases considered in 

this work, it is possible to disregard the last term on the r.h.s. of (F.3.3).  Introducing the operator 

 H  defined as  
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equation (F.3.3) becomes 
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The last term in (F.3.5) present the effects of the stabilizing buoyancy effects which leads to a 

reduction in the concentration variance, see Section 3.3.3. Finally, making use of (C.3.10) and 

(D.3.4a), equation (F.3.5) can be written as 
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4 Variance-based Global Sensitivity Analysis of 

Hydrogeological Systems: Probabilistic Assessment of 

Seawater Intrusion under multiple sources of uncertainty 
 

In this chapter, we perform variance-based Global Sensitivity Analysis (GSA) of complex 

hydrogeological systems. In particular we rely on the variance-based Sobol’ indices to quantify the 

sensitivity of model output respect to model parameters. These last indices quantify the relative 

contribution of uncertain model inputs to the total variance of the model output of interest. Sobol’ 

indices of a parameter close to zero means that the overall contribute of that parameter to the output 

variability, as quantified by the variance, is small. The opposite holds for parameter with Sobol’ index 

close to one. Following these statements it is customary to determine the influence of a parameter, on 

the output, on the base of the associated Sobol’ index. In this work, Sobol’ indices are evaluated upon 

representing the investigated model output through a generalized Polynomial Chaos Expansion 

(gPCE) representation. The latter also serves as a surrogate model of the model output allowing to 

compute and analyze the probability density function (pdf) of the output in a Monte Carlo framework 

at an affordable computational cost. Such task may be impossible to achieve relaying on the complete 

mathematical description and associated numerical implementation for the complex problems 

analyzed in this work.   

As first case of interest, we select the environmental issue of saltwater intrusion along coastal 

aquifer (Werner et al., 2013). The dependency of the density on the solute concentration rend coupled 

the flow and transport problems, leading to high level of nonlinearity in system. These aspects rend 

hard to understand clearly the influence of an input over an output quantity of interest. Moreover, the 

computational costs of the full numerical emulator are typically high for such coupled problem 

rendering unfeasible the uncertainty propagation within a Monte Carlo framework. These aspects 

motivate us to perform a GSA, relaying on a gPCE representation. The details about the evaluation 

of the Sobol’ indices, construction of the gPCE and interpretation of the GSA results are described in 

the following, with reference to the scenario of seawater intrusion along coastal aquifers.  

In Appendix B.4 we evaluate Sobol’ indices, through the same procedure employed for the 

seawater intrusion problem, in the context of hydraulic fracturing operation in deep basins. The aim 

is to investigate model parameters influence over possible negative environmental consequences 

related with the hydraulic fracturing technology.  
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4.1 Introduction 

Saltwater intrusion (SWI) is a critical and widespread contamination problem in coastal aquifers. 

The complex interactions between fresh and salt water, with particular emphasis on management 

issues, has been the subject of active and intense research, including, e.g., a recent series of works 

highlighted in a special issue of Hydrogeology Journal (Special issue on: Saltwater and freshwater 

interactions in coastal aquifers, 2010, Vol 18, No 1). 

Analytical or semi-analytical solutions of SWI problems have been mainly developed for 

homogeneous aquifers and consider saltwater and fresh water as immiscible fluids separated by a 

sharp interface ( e.g., Reilly and Goodman, 1985; Bear et al., 1999; Bear and Cheng, 2010; 

Bruggeman, 1999 ). Within this context, Dagan and Zeitoun (1998) illustrate a first attempt to analyze 

the effect of aquifer heterogeneity on SWI. These authors consider a vertical cross section of a 

confined aquifer with randomly layered permeability distribution and show that the variability of the 

position of the salt - fresh water interface ( particularly the location of the toe ) is markedly influenced 

by the permeability variance and integral scale. Al-Bitar and Ababou (2005) adopt a vertically-

integrated sharp interface approach and analyze the effects of variability of aquifer properties on the 

saltwater wedge through numerical simulations within horizontal two-dimensional randomly 

heterogeneous unconfined aquifer. Chang and Yeh (2010) employ a spectral approach and determine 

the mean interface position and its associated variability due to heterogeneity of aquifer conductivity 

and to the spatial variability of recharge for an unconfined horizontal aquifer model. 

A realistic approach dealing with SWI should explicitly account for the occurrence of a transition 

zone where variable density flow is coupled with a transport model. This coupling makes it difficult 

to obtain analytical solutions of SWI scenarios. Henry (1964) presents a semi-analytical solution for 

steady-state variable density flow taking place along a two-dimensional vertical cross-section in a 

homogeneous isotropic coastal aquifer. Since this is the only analytical solution available, it has been 

widely used as a benchmark problem to SWI numerical approaches (e.g., Simpson and Clement, 

2004; Werner et al., 2013 ). Dentz et al. (2006) present a methodology conducive to an analytical 

solution of the Henry’s problem in dimensionless form. The Henry’s problem has limited use in 

practical applications because it considers only diffusion while dispersion is not simulated. Abarca et 

al. (2007) modified the Henry’s problem upon introducing anisotropy in the conductivity tensor and 

a dispersion tensor to improve the representation of wide transition zones of the kind observed in 

several field sites. Held et al. (2005) investigated the Henry’s problem within a randomly 

heterogeneous aquifer. Making use of the homogenization theory, these authors found that the 

effective conductivity and dispersion coefficients are not affected by density effects, the effective 

dispersivity being close to its local counterpart. Otherwise, Kerrou and Renard (2010) showed that 

macrodispersion coefficients differ from their local counterparts in two- and three-dimensional 

heterogeneous scenarios. The effect of density contrast on effective parameters has also been 

analyzed by Jiang et al. (2013) by way of a stationary spectral approach. A discussion of current 

challenges in modeling density driven flows in the subsurface is offered by Werner et al. (2013). 

Here we consider the anisotropic dispersive Henry’s problem introduced by Abarca et al. (2007). 

As key sources of model uncertainty we consider the following dimensionless parameters: (i) the 

gravity number, expressing the relative importance of buoyancy and viscous forces; (ii) the anisotropy 

ratio between aquifer vertical and horizontal permeabilities; (iii) the longitudinal and (iv) transverse 

Péclet numbers, quantifying the relative importance of the longitudinal and transverse dispersion on 

solute transport. These are critical in governing the general dynamics of density dependent flow and 

transport processes ( see e.g., Kretz et al., 2003; Menand and Woods, 2005; Dentz et al., 2006; Abarca 

et al., 2007 ). We then focus on a number of dimensionless global quantities (GQs) which are 

controlled by these parameters and are relevant to describe key features of the saltwater wedge and 

the width of the mixing zone. These global descriptors, as well as all system states such as pressure, 
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concentration and velocity distributions within in the aquifer, are affected by uncertainty due to the 

lack of knowledge of the characteristic model parameters ( e.g., Rubin, 2003 ). Proper quantification 

of the uncertainty associated with the characterization of these GQs is of critical relevance for the 

management of coastal aquifers. 

Propagation of model parameter uncertainty to a given quantity of interest can be quantified 

through a Global Sensitivity Analysis (GSA). Here, we employ a variance-based GSA which allows 

assessing the relative impact of the model uncertain input parameters on the variability of model 

outputs ( Archer et al., 1997 ). We base our analysis on the Sobol’ indices ( Sobol, 2001), which are 

widely used sensitivity metrics and do not require any linearity assumptions in the underlying 

mathematical model of the system behavior. 

Estimation of the Sobol’ indices is traditionally performed by Monte Carlo (MC) sampling in 

the uncertain parameter space. Therefore their computation can become highly demanding in terms 

of CPU time when the dimension of the parameters space and the degree of complexity of the problem 

increase. In this context, estimation of the Sobol' indices is practically unfeasible in SWI problems 

because of the coupled nature of the flow and transport problems. We circumvent this problem upon 

relying on a generalized Polynomial Chaos Expansion ( gPCE) approximation of the target GQs (e.g., 

Ghanem and Spanos, 1991; Le Maître and Knio, 2010; ). This approach allows obtaining a surrogate 

model for a given quantity of interest and enables one to calculate the Sobol’ indices analytically via 

a straightforward post-processing analysis (e.g. Crestaux et al., 2009; Sudret, 2008; ). Examples of 

application of this technique include the study of flow and transport in heterogeneous porous media 

(e.g. Laloy et al., 2013). Formaggia et al. (2013) and Porta et al. (2014) demonstrate the reliability 

and computational efficiency of gPCE-based approaches in highly non-linear systems under the effect 

of mechanical and geochemical compaction processes. 

The work is organized as follows. Section 4.2 presents the complete flow and transport 

mathematical model, the key dimensionless parameters governing the process and the global 

descriptors of interest. Section 4.3 is devoted to a brief description of the methodology we employ to 

perform GSA and to derive the gPCE surrogate model. Section 4.4 presents the setting analyzed and 

some details of the full and surrogate system models. In Section 4.5 we show the main results of our 

analysis in terms of the relative contribution of the uncertain parameters to the variance of each of 

the global quantities analyzed. We then study the joint and marginal probability density functions 

(pdfs) of these global quantities. We remark that these tasks are computationally unaffordable by 

making use of the complete system model, while they can be performed by means of the gPCE 

surrogate model. Moreover, our relying on the gPCE allows obtaining analytical expressions for the 

marginal pdf of the global quantities of interest. 

4.2 Complete model and definition of the global quantities of interest  

We consider the anisotropic dispersive Henry’s problem introduced by Abarca et al. (2007). The 

setting is a modification of the original Henry’s problem ( Henry, 1964 ) and enables one to describe 

seawater intrusion in coastal aquifers in a way which renders vertical salinity distributions that mimic 

field evidences. Saltwater intrusion is modeled across a vertical cross-section of a homogeneous 

aquifer under isothermal conditions (see Figure 4.1). Fluid flow is governed by the mass balance and 

Darcy equations, i.e. 

( )
( ) 0

t





 


q ;  = p g z


    

k
q  (4.1) 

where q  [L T1] is specific discharge vector with components qx and qz respectively along x- and z-

directions (see Figure 1); k  [L2] is the homogeneous and anisotropic diagonal permeability tensor 

with components k11 = kx and k22 = kz, respectively along directions x and z;  [ - ] is the porosity of 
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the medium;   [M L1 T1] and   [M L3] respectively are dynamic viscosity and density of the 

fluid; p  [M L1 T2] is pressure; and g [L T2] is the gravitational constant. Solute transport is 

described by the advection-dispersion equation 
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Here C  [-] is solute concentration and D [L2 T1] is the dispersion tensor, whose entries are defined 

as 
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where mD  is the molecular diffusion coefficient and L  and T  [L] respectively are the longitudinal 

and transverse dispersivity coefficients, which are considered as uniform in the system. Since 

molecular diffusion is commonly neglected in transport settings taking place in porous media under 

the conditions we consider ( e.g. Fetter, 1999; ), in the following we disregard the contribution of mD  

in (4.3). Initial conditions corresponding to freshwater hydrostatic pressure distribution are set in the 

system. No-flow conditions are imposed at the bottom and top of the domain; constant freshwater 

influx, fq , is prescribed along the inland boundary ( x = 0 ), where C = 0; saltwater hydrostatic 

pressure distribution is imposed along the seaside boundary, x = l ( i.e., p = s g (d  z), s being 

density of seawater ) where the salt mass flux is set as  

0
( )

0

x x

x s x

q C if q
C C

q C if q

 
    



q D n  x l  (4.4) 

n and Cs respectively being the normal vector pointing outward from the aquifer and the concentration 

of salt in seawater (salinity). According to (4.4) water entering and leaving the system has salt 

concentration Cs and C, respectively. Key features and limitations of this schematization are 

illustrated in Abarca et al. (2007). 

Closure of the system (4.1)-(4.4) is obtained upon specifying a constitutive relationship between 

fluid properties,  and , and salt concentration. For the range of concentrations typically associated 

with SWI ( e.g. Bear and Cheng, 2011; ), viscosity can be assumed as constant and the following 

linear relationship can be employed to describe the evolution of  with C 

 f s f

s

C

C
       (4.5) 

f  being the freshwater density.  

Introducing the following dimensionless quantities  

' ;
x

x
d

  ' ;
z

z
d

  ' d   ; '
/ f

t
t

d q
 ; '

fq


q
q ; '

s f

 


  
 

 
; 

2
'

f

p
p

q



 (4.6) 

equation (4.1) can be rewritten in dimensionless form as  
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where   is a diagonal matrix with entries 11 1   and 22 kr  , /k z xr k k  being the permeability 
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anisotropy ratio, 2 /fq gd  is a representative Froude number, and /g x fN g k q    is the gravity 

number (e.g., Kempers and Haas, 1994; Menand and Woods, 2005). 

 

 

Figure 4.1. Scheck of the flow and transport test problem for the anisotropic dispersive Henry’ 

problem here considered as conceptualization of seawater intrusion along coastal aquifer. 

 

The transport equation can be written in dimensionless form as 
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where /L LPe d   and /T TPe d   are longitudinal and transverse Péclet number, respectively, and 

' / sC C C . Equations (4.7)-(4.9) highlight that the problem under investigation is governed by eight 

dimensionless quantities, i.e.,  , kr , /f  , gN , LPe , TPe , sC  and 2 /fq gd . 

Since point-wise measurements of state variables ( e.g., salt concentration, velocity and pressure 

values ) in SWI problems are usually scarce due to technical and economic constraints ( e.g., Boso et 

al., 2013 ) in our study we focus on a global description of the process by considering dimensionless 

global quantities, GQs, that enable us to describe the overall seawater intrusion process. A similar 

approach has also been adopted by Abarca et al., 2007. The four GQs of interest (note that each GQ 

is rendered dimensionless by normalization through d) are depicted graphically in Figure 4.2 and 

defined in the following. 

- The dimensionless toe penetration, LT. This corresponds to the inland penetration, measured 

along the bottom of the domain, of the 50% 'C  isoline. This metric characterizes the inland 

extent of the saltwater wedge. 

- A measure, LS, of the spread of solute at the toe of the saltwater wedge. This is defined as the 

dimensionless distance, evaluated along the bottom of the domain, between the 20% and 80% 

'C  isolines. 

- The dimensionless average width of the mixing zone, WD. Here WD  is evaluated as the 

average of wmz(x') within the region 0.2×LT  x'  0.8×LT; wmz(x') being the dimensionless 

vertical distance between the 25% and 75% 'C  isolines (in case the 75% 'C  isoline has 
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intruded the domain up to a distance less than 0.8×LT, we consider wmz(x') as the vertical 

distance between the 25% 'C  isoline and the bottom of the aquifer). 

- The dimensionless sinking of the saltwater wedge at the seaside boundary, LY. This is 

quantified as the dimensionless vertical distance between the bottom of the aquifer and the 

50% 'C  contour curve at the seaside boundary. 

 

 

Figure 4.2. Schematic description of the target GQs. Iso-concentration line 'C  = 20% and 80% 

(dashed black), 25% and 75% (dashed grey), and 50% (solid black) are depicted. 

 

4.3 Uncertainty quantification via global sensitivity analysis and 

generalized Polynomial Chaos Expansion  

In this section we introduce the Sobol’ indices that will be used to investigate the way lack of 

knowledge of key parameters appearing in the problem formulation (4.6)-(4.9) propagates to the 

selected global descriptors. We also briefly describe the way we alleviate the computational burden 

by introducing a surrogate model of the coupled flow-transport problem illustrated in Section 4.2. 

As seen in previous Section 4.2, the seawater intrusion problem is governed by eight 

dimensionless quantities. Amongst these, we consider as uncertain the following four parameters: (i) 

the permeability anisotropy ratio , kr , (ii) the longitudinal, LPe , and transverse, TPe , Péclet numbers, 

expressing the effect of the longitudinal and transverse dispersivity, and (iii) the gravity number, gN

, quantifying the relative importance of buoyancy and viscous forces. Uncertainty in these quantities 

is associated with our imperfect knowledge of the aquifer hydraulic (i.e., permeability tensor 

components) and dispersive parameters related to saltwater spreading in the system at the scale of 

observation. 

We collect the four uncertain quantities Ng, rk, PeL and PeT in a random parameter vector x  (x1, 

..., xN; with N = 4) and treat each xn as an independent random variable. The occurrence of correlation 

among entries of x could be included in the methodology ( see, e.g., Li et al., 2009; ). However, this 

would require the knowledge of the marginal probability density functions of the uncertain parameters 

and the associated correlation matrix. The type of correlations which can be found in the literature, 

e.g., between  and  ( i.e., between PeL and PeT ) are purely empirical and not generally L T
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supported by theoretical arguments. Due to the general lack of prior information on x, we also assume 

that each xn can be described by a uniform distribution within the interval , ,[ , ]n n min n maxx x  . 

This study is based on a global sensitivity analysis (GSA) which is performed through the 

evaluation of the variance-based Sobol’ indices (e.g., Sobol, 1993; Archer et al., 1997; ). The latter 

provide a description of the way the variability of a given quantity of interest, quantified in terms of 

its total variance, is affected (separately and jointly) by the random parameters collected in x. Sobol’ 

indices provide generally robust results, as these are not constrained by any linearity assumption on 

the underlying mathematical model ( Saltelli et al., 2006; ) a feature which is particularly critical in a 

complex system of the kind we investigate. 

A target quantity y(x), representing a given GQ, which depends on N independent random 

variables can be decomposed as  
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and so on. Here, ( ) x  is the pdf of x , 
1

[ ... ]
Nx x      is the parameters space,  
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 x x x  represents integration of y ( )x  over the space of all entries of vector x 
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yV  being the total variance of y(x), i.e. 

2 2

0( ) ( )yV y p d y



  x x x   (4.13) 

From (4.12), the principal sensitivity index of nx , denoted as 
nxS , describes the contribution of only 

nx  (without considering interactions with the other parameters) on the total variance, 
yV . The overall 

contribution of parameter nx  to 
yV  is then given by the total sensitivity index 
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and includes 
nxS  and all the joint terms where nx  appears. Denoting by 

n

L

xS  the contribution to 
nxS

of the linear term associated with nx ,  
n n n

NL T L

x x xS S S   represents the total contribution of non-linear 
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terms involving nx , i.e., 
n

NL

xS  indicates the degree of nonlinearity of the input-output mapping of y(x) 

with respect to nx . 

Computing the indices (4.12) requires multiple integrations of the model response ( )y x  for 

diverse combinations of the uncertain parameters. This is typically achieved by numerical Monte 

Carlo simulation and the associated computational cost can be very high, depending on model 

complexity and on the number of random parameters considered, see Sudret, (2008).  

The generalized Polynomial Chaos Expansion (gPCE) (e.g. Ghanem and Spanos, 1991; Le 

Maître and Knio, 2010; Sudret, 2008; Xiu and Karniadakis, 2002;) can be employed to build surrogate 

models of target quantities at a relatively affordable computational cost (see, e.g. Ciriello et al., 2013; 

Fajaouri et al., 2011; Formaggia et al., 2013; and references therein). As such, the gPCE 

approximation can be used to ascertain the way uncertainty associated with unknown model 

parameters propagates to system states of interest. In this context, the gPCE of ( )y x  can be 

constructed as a spectral expansion of ( )y x  in terms of a set of orthonormal polynomials representing 

a basis of the probabilistic space  within which an approximation of the model response surface is 

built. The specific family of polynomials which can be used depends on the probability distribution 

of the uncertain model parameters considered. Since each nx  is here assumed to be uniformly 

distributed, we adopt the family of multivariate Legendre polynomials (Xiu and Karniadakis, 2002;). 

The way a multidimensional Legendere polynomial is constructed starting from univariate Legendre 

polynomials is described by Gautschi (2004) to which we refer for additional details. The gPCE 

approximation of ( )y x  can be constructed as 
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Here  1 2, ,..., N

Np p p p  is a multi-index expressing the degree of each univariate Legendre 

polynomial, , ( )
ii p ix , employed to construct the multivariate orthogonal Legendre polynomial 

( )
p

x ,  p  is the associated polynomial coefficient, and i  contains all indices such that only the i-

th component does not vanish, i.e.,  0, 0i i kp p for k i     .  

Considering (4.10)-(4.15) allows deriving the equivalence between the Sobol’ indices and the 

coefficients  p  of the gPCE representation of ( )f x , i.e.  
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Equation (4.16) can be rendered workable upon truncation of the summation to a set of polynomials 

with total degree w , i.e., i

i

p w . Other possible truncation schemes are discussed by Bäck et al. 

(2011). The accuracy of the resulting gPCE approximation increases with the regularity of ( )y x  and 

as w . This aspect is explored in Section 4.4. 
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4.4 Test Case description and Numerical Implementation 

4.4.1 Complete Numerical Model 

We solve the coupled flow and transport problem defined by (4.1)-(4.5) by means of the widely 

tested numerical code SUTRA, Voss and Provost (2002) within a homogeneous anisotropic porous 

medium with porosity  = 35%. We set the height and length of the domain respectively to d = 1 m 

and l = 2 m (see Figure 4.1). The density of fresh and sea water are given respectively by ρf = 1000 

kg/m3 and ρs = 1025 kg/m3, while the fluid viscosity is constant and equal to μ = 10-3 kg/m s. 

Freshwater enters the system with a Darcy velocity fq  = 6.610-5 m/s and the concentration of salt 

in seawater, Cs, is set equal to the standard value 35.7103 kg/kg. As highlighted in Section 3, we 

treat Ng, rk, PeL, and PeT as uncertain parameters. In this work we do not investigate the impact of the 

uncertainty of the geometrical setting, boundary conditions, and fresh and sea water density and 

viscosity. The intervals of variability of the four dimensionless uncertain parameters are listed in 

Table 4.1. The lower and upper bounds for each range of parameter variability have been selected on 

the basis of available information on the dimensional parameters involved in their definition. In our 

work the variability of Ng arises from the uncertainty in the horizontal permeability, having fixed the 

fluid properties and the inland freshwater flux. Since PeL, and PeT affect solute spreading (e.g. Volker 

and Rushton, 1982; Werner et al, 2013;), the large range of variability we consider attempts to cover 

several situations encountered in real scenarios. Note that the selected range of variability for rk 

enables one to consider both isotropic and strongly anisotropic aquifers. 

The computational domain depicted in Figure 4.1 is discretized through a grid with uniform 

square elements with side  = x = y. We performed a set of preliminary simulations aimed at 

testing the influence of grid discretization on the quantification of the global quantities of interest 

defined in Section 2. We found no appreciable difference between the numerical results associated 

with grids formed by 200  100 (i.e.,  = 10-2 m), 256  128 (i.e.,  = 7.810-3 m) or 400  200 (i.e., 

 = 510-3 m) elements (details not shown). On these bases, all results reported in the following are 

associated with a uniform grid of 256  128 elements. To ensure numerical stability (e.g., Voss and 

Provost, 2002; ), all numerical simulations have been performed using a grid Péclet number 

/ 4m LPe    , while keeping T  . Equations (4.1)-(4.5) are solved until steady-state 

conditions are reached. The latter are attained after a total simulated time of about 17 hours. The 

effect of different time steps has been tested and a uniform time discretization t = 60 s has been 

found to render accurate results. With these settings, a single simulation via SUTRA is associated 

with a computational cost of about 30 minutes. All numerical results reported here have been obtained 

on an Intel® Core™ i5-2410M CPU @ 2.30GHz processor. The target global quantities LT, LS, WD 

and LY are then analyzed at steady-state. This study is consistent with the original formulation of 

Henry's solution (Henry, 1964; Dentz et al., 2006;) and with the way the saltwater intrusion scenario 

is characterized in most environmental applications (e.g. Abarca et al., 2007; and references therein). 

Table 4.1. Range of variability of the dimensionless uncertain parameters. 

 , ,[ , ]n n min n maxx x   

gN  [3.04; 5.06] 

kr
  [10-8; 1.0] 

LPe  [3.33; 10] 

TPe  [10; 100] 
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4.4.2 Construction and validation of the gPCE approximation of the 

global quantities 

As described in Section 4.3, constructing the gPCE of a target system response entails solving 

the complete system model (4.1)-(4.5) for diverse combinations of the selected random parameters 

Ng, rk, PeL, and PeT. The number of these combinations depends on the total degree w selected for the 

polynomial representation. In this section we assess the robustness of the gPCE approximations with 

diverse degrees w, in terms of their ability to provide accurate representations of the (random) global 

quantities LT, LS, WD and LY. We base our analysis on comparisons between values of each GQ 

obtained via the solution of the full model (4.1)-(4.5), ( )FMy x , against corresponding gPCE 

approximations, ( )gPCEy x . The coefficients  p  are calculated by solving the multidimensional 

integral in (4.15) through the sparse grids interpolation technique (e.g., Formaggia et al., 2013;) (i.e., 

the so-called non-intrusive spectral projection). We do so by using Legendre-Gauss points. Figure 

4.3 depicts the results of such an analysis in terms of the relative error, defined as 

 ( ) ( ) ( )y gPCE FM FMe y y y x x x  (with f = LT, LS, WD and LY) resulting from NMC = 100 random 

MC realizations of the system parameters drawn from the parameter space. Note that these 

simulations do not coincide with those employed for the construction of the gPCE. The gPCE 

approximations have been evaluated using two values of w, i.e., w = 2, 3, for which the sparse grid is 

formed by 41 and 137 collocation points in the parameter space and the associated computational 

costs are about 20 and 68 hours, respectively. A very good agreement can be seen between both gPCE 

approximations and the full system model solution, the maximum absolute values of ye  being smaller 

than 18% or 9%, while the mean absolute values of ye  is smaller than 2.0% or 1.1%, respectively for 

w = 2 or w = 3. 

 

 

Figure 4.3. Relative error, ey, between values of the GQs obtained via the solution of the full model 

(4.1)-(4.5), and the corresponding gPCE approximations associated with 3w   (solid curves) and 

2w   (dashed curves) for y = (a) LT, (b) WD, (c) LS, (d) LY.  
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It is worthwhile to note that once expressions of the gPCE approximations are available, a large 

number of Monte Carlo iterations can be obtained at a very low additional computational cost upon 

sampling the random input parameter space. This allows grounding the analysis of the statistics of 

the target GQs on a very large sample of Monte Carlo realizations of the gPCE approximations. 

Figures 4.4 and 4.5 respectively depict the dependence of the sample mean, y, and variance, 2

y , of 

the GQs on the number NMC of MC realizations obtained via gPCE with w = 3. The 95% estimated 

confidence intervals (CIs) are also graphically reported (see, e.g. Balio and Guadagnini, 2004; ). Also 

depicted in the figures are corresponding results obtained via (i) 100 MC simulations of the complete 

model (performed independent of the simulations upon which the gPCE construction is based) and 

the gPCE using the same set of random input parameters, and (ii) analytical values of y and 2

y  

evaluated directly by (4.16) without resorting to the MC procedure. The latter values coincide with 

their Monte Carlo estimates with NMC  105, as expected. The results embedded in these figures 

clearly demonstrate that stabilization of the statistical moments of interest ( and in particular of 2

y  ) 

can be reached only at very large values of NMC ( larger than 104 ). Note that such analysis would be 

unfeasible by solving the complete model (4.1)-(4.5). Our analysis also indicates that (i) all moments 

and the associated 95% CIs evaluated via the full model and via the gPCE approximations practically 

coincide for the NMC = 100 random parameters realizations considered independent of those 

employed for the construction of the gPCE; (ii) these moments lie within the 95% CIs obtained by 

independent gPCE realizations (dashed line); (iii) the estimates of the mean, f, and variance, 2

f , 

obtained via gPCE and NMC = 5×105 and the 95% CIs lie within the full model-based CIs evaluated 

by NMC = 100.  

 

 

Figure 4.4. Convergence of sample mean, y (solid black curve), and associated 95% CIs (grey 

dashed curves) with the number of Monte Carlo simulations (NMC) for y = (a) LT, (b) WD, (c) LS, 

and (d) LY obtained through a gPCE with w = 3. Corresponding results obtained via 100 independent 

MC simulations of (i) the complete model (y  - black circle - and 95% CIs - grey square) and (ii) the 

gPCE (y  - black cross - and 95% CIs - grey cross) based on the same set of input random parameters 

are also depicted. The black diamond represents the analytical solution of (4.16) with w = 3. 
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Figure 4.5. Convergence of sample variance, 2

y  (solid black curve) and associated 95% CIs (grey 

dashed curves) with the number of Monte Carlo simulations (NMC) for y = (a) LT, (b) WD, (c) LS, 

and (d) LY obtained through a gPCE with w = 3. Corresponding results obtained via 100 independent 

MC simulations of (i) the complete model ( 2

y   - black circle - and 95% CIs - grey square) and (ii) 

the gPCE ( 2

y  - black cross – and 95% CIs - grey cross) based on the same set of input random 

parameters are also depicted. The black diamond represents the analytical solution of (4.16) with w 

= 3. 

 

To further explore the reliability of our gPCE approximations, we perform a two-sample 

Kolmogorov-Smirnov (K-S) test ( Papoulis, 1991; ) to compare the marginal probability distribution 

of the GQs obtained via the full model and their gPCE-based counterparts evaluated with w = 3. The 

null hypothesis that the samples belong to the same population is not rejected by the K-S test at a 

significance level of 0.05 (p-values always being larger than 0.9, details not reported), thus supporting 

the use of the gPCE surrogate models not only for the analysis of the statistical moments of the global 

quantity but also their probability distributions. 

Finally, we analyze the level of correlation between two GQs of interest, e.g., ( )y x  and ( )g x , 

by relying on the Pearson’ correlation coefficient, p . It is worthwhile to note that, when the gPCEs 

of ( )y x  and ( )g x  are available, p  can be evaluated analytically making use of (4.15)-(4.16) as  

 
,1 , 1

...
cov ( ), ( )

i i j

N N

i i j

p

y g y g

y g

V V V V

   


   

 

 

   
p,q

p q p q

p,qx x
   (14.7) 

Table 4.2 lists the Pearson’ correlation coefficients evaluated via (4.17) with w = 3 and the 

corresponding values obtained on the basis of the above mentioned 100 MC realizations of the full 

model. Once again, it can be noted that the agreement between the full model- and the gPCE-based 

results is quite remarkable, especially for the highly (positively or negatively) correlated quantities. 

On these bases, the analyses presented in the following section are grounded on gPCE approximations 

of order w = 3 for all of the global quantities of interest. 
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Table 4.2. Pearson’ correlation coefficient of the GQs evaluated via gPCE, (black fonts) and 100 MC 

random realizations of the full model (grey fonts). 

 WD LT LS LY 

WD 1 -0.49 0.75 -0.21 

LT -0.51 1 -0.02 0.80 

LS 0.76 -0.18 1 -0.03 

LY -0.13 0.77 -0.08 1 

 

4.5 Results and Discussion 

4.5.1 Variance-based Sobol’ Indices 

Principal, 
nxS , and total, 

n

T

xS , Sobol indices, together with linear contributions, 
n

L

xS , are listed in 

Table 4.3 for all global quantities of interest and considering all of the random input dimensionless 

variables ( i.e., in Table 4.3 nx  = Ng, rk, PeL, and PeT ). Values of 
n

L

xS , 
nxS  and 

n

T

xS  coincide ( or are 

very close to each other ) indicating that non-linear terms and joint interaction between the uncertain 

parameters are almost negligible for all GQs with the exception of LY. The results embedded in Table 

4.3 show that non-linear terms including rk cannot be neglected for the evaluation of LY. 

The uncertainty associated with the intrusion of the toe of the wedge, as represented by LT, is 

mainly controlled by /g x fN g k q    ( which has about 50% weight in directing the total variance 

of LT ). The nature of Ng allows recognizing that increasing /x fk q   causes a reduction of the 

pressure drop required by a given fq  to flow towards the sea and the ensuing retreat of the wedge. 

On the other hand, an increase of ∆ρ results in an increased capability of seawater to intrude the 

aquifer. The wedge intrusion is also strongly affected by TPe . This is so because mixing of fresh and 

salt water tends to be reduced with increasing TPe  so that a high density contrast can be sustained, 

leading to an increase of LT. 

Spreading of solute at the bottom of the wedge, as described by LS, is mainly affected by PeL  

and to a less extent by PeT. This result is consistent with the previous observation of Abarca et al. 

(2007) that longitudinal dispersivity controls the distribution of concentrations in the lowest (bottom) 

part of the domain. 

The roles of PeL and PeT are then reversed in governing the variability of WD, describing the 

extension of the mixing zone. Abarca et al. (2007) suggested a linear relationship between WD and 

L T  , thus implying that L  and T  contribute in equal measure to WD. Our results, which are 

based on independence between PeL and PeT, show that PeT (i.e., T ) plays the main role in 

controlling the uncertainty of WD. Our finding that WD is almost insensitive to Ng or rk suggests that 

for given values of PeL and PeT  the spatial distribution of the entries of the dispersion tensor remains 

essentially unaltered within the transition zone. Therefore, changes in Ng and rk only cause a 

horizontal (inland or seaward) and vertical shift of the transition region whose extension remains 

practically constant. 

Finally, variations of kr  only affect variability of LY and LT. This result is consistent with the 

observation that decreasing kr  (i.e., decreasing the vertical permeability) causes the vertical 

component of the freshwater velocity to decrease so that the capability of the horizontal freshwater 
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flux to contrast the intrusion of the saltwater is augmented. As a consequence, LY and LT tend to 

decrease with kr . 

Table 4.3. Principal (
nxS ) and total (

n

T

xS ) Sobol indices ( nx  = Ng, rk, PeL, PeT), together with the 

linear component 
n

L

xS  of 
nxS . 

 

 LT LS WD LY 

g

L

NS ;
gNS ; 

g

T

NS  0.49; 0.50; 0.51 0.16; 0.17; 0.19 0.00; 0.00; 0.00 0.16; 0.16; 0.20 

k

L

rS ;
kr

S ; 
k

T

rS  0.10; 0.14; 0.14 0.01; 0.02; 0.02 0.03; 0.04; 0.04 0.60; 0.70; 0.70 

L

L

PeS ;
LPeS ; 

L

T

PeS  0.05; 0.05; 0.05 0.51; 0.51; 0.51 0.27; 0.27; 0.28 0.00; 0.00; 0.00 

T

L

PeS ; 
TPeS ; 

T

T

PeS  0.29; 0.31; 0.32 0.25; 0.27; 0.28 0.65; 0.67; 0.69 0.13; 0.13; 0.13 

 

4.5.2 Probability Distributions of Global Quantities of interest 

This Section is devoted to the analysis of the marginal and joint probability distributions, pdfs, 

of the global quantities we analyze. These results are relevant for management of coastal aquifers as 

they can be assist in the quantification of the probability of failure of the system (i.e., the probability 

to exceed a given threshold values of the GQ). 

We construct these sample pdfs by relying on the gPCE representation. The latter is employed 

to perform 5  105 Monte Carlo simulations of the target system states at a remarkably low 

computational cost (about 68 hours for the construction of the gPCE approximations, plus about 2 

hours for the generation of the MC realizations), as opposed to standard Monte Carlo simulations 

performed with the complete model which would be unfeasible (the estimated CPU time is about 

1.7105 hours). Uniform sampling of the parameter space is here employed. 

Once a gPCE representation is constructed, it is also possible to derive an analytical expression 

of the marginal probability distribution (marginal pdf) of the GQ, without resorting to numerical MC 

sampling. The procedure is detailed in Appendix A.4. Appendices A.4.1-A.4.3 show that, when the 

gPCE approximation (4.15) can be truncated to the first order Legendre polynomials of the parameters 

which are identified as relevant on the basis of the associated Sobol indices (see Table 4.3), as in the 

case of our analysis for WD, LT, and LS, the related marginal pdfs are fully determined by the 

coefficients of the Legendre polynomial of orders zero and one. When non-linear terms are relevant 

in the gPCE (i.e., for LY, as described in Section 4.5.1), the complexity of the analytical expression 

of the marginal pdf increases. Details for this case are illustrated in Appendix A.4.4 for completeness. 

Figure 4.6 juxtaposes the MC-based marginal pdfs of the GQs with the corresponding analytical 

formulations. The agreement between the numerical and analytical results is remarkable. The 

marginal pdfs of LT, WD and LS, for which non-linear effects can be neglected, are symmetric around 

the mean. Otherwise, the marginal pdf of LY, where non-linear effects due to kr  are relevant, is 

negatively skewed, its long tail being associated with settings characterized by low values of the 

vertical permeability. 

Figure 4.6 also depicts contour plots of the joint pdf of all pairs of the global variables. A negative 

correlation between LT  and WD  is evident. The latter is mainly due to the contrasting effects that 

TPe  has on these quantities. While increasing TPe  (i.e., decreasing T ) causes the mixing zone to 

decrease, the inland intrusion of seawater increases. The joint pdf of WD and LS is characterized by 
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a clear positive correlation. This is related to the observation that both quantities are primarily affected 

by the longitudinal and transverse Péclet numbers and they both decrease with LPe  and TPe . Note 

also that the joint pdf of LT and LY shows a marked elongation in the region corresponding to 

relatively low values of both global variables. This behavior is representative of settings characterized 

by low values of the vertical permeability, i.e. by small values of rk. The joint pdfs reported in Figure 

4.6 are also in agreement with the picture offered by the Pearson’ correlation coefficients introduced 

in Section 4.4.2 and listed in Table 4.2. In particular, these confirm the lack of correlation between 

WD and LY and between LS and all global variables with the exception of WD. 

In practical applications, some of the global quantities here considered can be known through 

experimental campaigns. A relevant question in the management of coastal aquifers is therefore how 

can the knowledge of one global quantity affect the probability distribution (and therefore the 

predictability) of the remaining GQs. An answer to this question can be directly obtained by applying 

Bayes’ theorem to the joint pdfs described above and then deriving the conditional pdf of the GQs of 

interest. 

 

 

Figure 4.6. Numerical (black continuous) and analytical (grey dashed) marginal pdf for , ,LT WD LY  

and LS. Contours of joint pdf for all pairs of GQs are also shown (color curves). For rendering 

purposes, the iso-probability curves in each subplot are normalized by the corresponding maximum 

pdf value. 
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For the problem here considered, while measurements of LY can be obtained with relatively 

modest efforts (e.g., through electrical conductivity profiles), acquiring data on the remaining GQs 

(and in particular of LT and LS) is problematic. It is therefore of interest to analyze the way the 

availability of LY data would affect predictions of the remaining GQs. On the basis of Figure 4.6, one 

can anticipate that while LY measurements would affect the predictability of LT, these data would not 

influence markedly the marginal pdf of WD and LS because of their weak level of correlation with 

LY. As an example of the type of results which one can obtain, Figure 4.7a depicts the marginal pdf 

of LT conditioned to the mean value of LY, i.e., LY  = 0.61. In Figure 4.7a we consider a measurement 

error with amplitude equal to  1% LY  and condition the marginal pdf of LT on the range of LY 

values [ LY  6.110-3, LY + 6.110-3]. The unconditional pdf is also depicted for comparison. 

Corresponding results for WD and LS are depicted in Figures 7b and 7c, respectively. These results 

clearly show the reduction of the variability of LT, which is, e.g., quantified by its variance that 

decreases from 4.2×102 for the unconditional case to 1.8×102 for the conditional one. On the other 

hand, knowledge of LY practically does not affect the pdf of WD and LS, as expected by the reasoning 

illustrated above. 

 

Figure 7. Marginal pdf of (a) LT , (b) WD and (c) LS conditioned to LY= LY  + 6.1  10-3 (solid 

curves). Corresponding unconditional pdfs are also depicted (dashed curves).  
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4.6 Conclusion 

We analyze the way key global dimensionless quantities (GQs) characterizing the saltwater 

wedge in the dispersive Henry’s problem are affected by the incomplete knowledge of system 

properties, as encapsulated in the gravity number (Ng), the anisotropic ratio of permeability (rk), the 

transverse (PeT) and longitudinal (PeL) Péclet number. The analysis is based on the generalized 

Polynomial Chaos Expansion (gPCE) of the following GQs: the median toe penetration (LT), the 

spread of solute around the toe (LS), the mean width of the mixing zone (WD) and the sinking of the 

wedge at the seaside boundary (LY). These kinds of analyses can be useful to assist coastal aquifer 

management and risk assessment procedures as they lead to an appropriate probabilistic 

characterizations of the saltwater wedge. 

Our uncertainty quantification procedure relies on the variance-based Sobol indices. We found 

that the variability of the gravity number greatly influences LT, while uncertainty of the permeability 

anisotropy ratio chiefly controls LY. On the other hand, transverse and longitudinal Péclet number 

respectively affects mainly the variance of the width of the mixing zone and of the spread of solute 

around the toe. 

We then compute the joint and marginal probability density functions (pdfs) of the target global 

descriptors. We remark these tasks are computationally unaffordable by making use of the complete 

system model, while they can be performed with a relatively modest computational effort by means 

of the constructed gPCE surrogate model. We also derive analytical expressions for the marginal pdf 

of the global quantities on the basis of the gPCE approximations. The study of the joint pdfs allows 

us to highlight the degree of correlation between the GQs. This analysis is relevant to management 

and assessment of quality of coastal aquifers because it enables us to identify the way information on 

one state variable impacts on the reduction of uncertainty associated with other target quantities, thus 

ultimately constituting a potential driver to planning required experimental campaigns. 

Future extensions of this study comprise the study of seawater intrusion processes in randomly 

heterogeneous systems, the inclusion of additional uncertain quantities such as porosity, inland 

freshwater flux and salt concentration at the sea boundary. The investigation of flow scenarios of 

increased complexity, such as those involving pumping and recharge wells in coastal aquifers is also 

envisioned. 
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Appendix A.4 Analytical derivation of the marginal pdf of the target 

global variables 

In this Appendix we detail our derivations conducive to the analytical expressions of the 

marginal probability density function, pdf, of the target global variables we consider. For illustration 

purposes, in the following we retain in (4.15)-(4.16) all terms which allow representing at least 90% 

of the total variance of each state variable. 

 

Appendix A.4.1: Marginal pdf of WD 

Within the range of variability of the uncertain parameters listed in Table 4.1, one can note that 

91% of the total variance of WD can be retained upon truncating (4.15) up to the first order Legendre 

polynomials 
TPe  and 

LPe , defined as 

2 2
3 ; 3

T L

T L
Pe Pe

Pe g h Pe e f

h g f e
 

   
 

 
  (A.4.1) 

where [ , ]
TT PePe g h   and [ , ]

LL PePe e f   (see Table 4.1). Therefore, (4.15) becomes  

;0 ; ;'
T T L LWD WD Pe Pe WD Pe PeWD WD          (A.4.2) 

where ;0WD  is the mean of WD, ; TWD Pe  and ; LWD Pe  are the coefficients of the Legendre polynomial 

of order one in TPe  and LPe , respectively. 

Equation (A.4.2) can be rewritten as 

' WD WD T WD LWD A B Pe C Pe    (A.4.3) 

where 

; ;

; ;

2 3 2 3
3 ; ;T L

T L

WD Pe WD Pe

WD WD Pe WD Pe WD WD

h g f e
A B C

h g f e h g f e

 
 
  

     
    

  (A.4.4) 

The probability density function, of TPe  and LPe  are respectively given by 

   
1 1

( ) ( ) ; ( ) ( )
T LPe T T Pe L Lpdf H Pe g H Pe h pdf H Pe e H Pe f

h g f e
       

 
  (A.4.5) 

H being the Heaviside step function. Since TPe  and LPe  are two independent random variables, the 

marginal pdf of WD is given by the convolution of 
TPepdf  and 

LPepdf  as  

   
'1

'
T L

WD WD L
WD Pe Pe L L

WD WD

wd A C Pe
pdf wd pdf pdf Pe dPe

B B





  
  

 
    (A.4.6) 

Making use of (A.4.5), (A.4.6) becomes 
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 
'1

' ( )
( )( )

'
( )

'
( )

'
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WD WD L
WD L

WD WD

WD WD L
L

WD

WD WD L
L

WD

WD WD L
L L

WD

wd A C Pe
pdf wd H h H Pe e

B h g f e B

wd A C Pe
H h H Pe f

B

wd A C Pe
H g H Pe e

B

wd A C Pe
H g H Pe f dPe

B





   
     

    

  
   

 

  
   

 

   
    
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

   (A.4.7) 

The first integral appearing in (A.4.7) can be evaluated as  

1,

' '
( )

' '

WD WD L WD WD L
WD L L L

WD WDe

WD WD WD WD WD

WD WD WD

wd A C Pe wd A C Pe
I H h H Pe e dPe H h dPe

B B

B wd A C e wd A C e
h H h

C B B

 



      
       

   

      
     

   

 
 

                    (A.4.8) 

All remaining terms in (A.4.7) can be evaluated in a similar way, so that (A.4.7) becomes 

 
' '1

'
( )( )

' '

' '

' '

WD WD WD WD
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 (A.4.9) 

Finally, after some manipulations and making use of (A.4.3)-(A.4.4), (A.4.9) can be rewritten as  

 
1 1

,

,

0 0; ; ;

1
( 1)

12
L T T

wd iji j

WD wd ij

i jWD Pe WD Pe WD Pe

pdf wd H
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  


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 
   

  
 

   (A.4.10) 

with  , ;0 ; ;3 ( 1) ( 1)
L T

i j

wd ij WD WD Pe WD Pewd          
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Appendix A.4.2: Marginal pdf of LT 

Within the range of variability of the uncertain parameters listed in Table 4.1, one can note that 

93% of the total variance of LT can be retained upon truncating (4.15) up to the first order Legendre 

polynomials 
TPe  introduced in (A.4.1) and 

gN  and 
kr

  defined as 

2 2
3 ; 3 ;

g k

g k
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N a b r c d

b a d c
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 
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where [ , ]
gg NN a b   and [ , ]

kk rr c d  . Therefore, (4.15) can be simplified as  

;0 ; ; ;'
g g k k T TLT LT N N LT r r LT Pe PeLT LT               (A.4.12) 

where ;0LT  is the mean of LT, 
; gLT N , ; kLT r  and ; TLT Pe  are the coefficients of the Legendre 

polynomial of order one in gN , kr , and TPe  , respectively. 

Equation (A.4.12) can be rewritten as 
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The pdfs of gN  and kr  are given respectively by 

 
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Since gN , kr  and TPe  are independent random variables, the marginal pdf of LT is 
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Making use of (A.4.5) and (A.4.15) and following the same strategy adopted in Appendix A.4.1, 

(A.16) can be evaluated as  
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with  , ;0 ; ; ;3 ( 1) ( 1) ( 1)
g k T

i j k

lt ijk LT LT N LT r LT Pelt            . 
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Appendix A.4.3: Marginal pdf of LS 

Within the range of variability of the uncertain parameters listed in Table 4.1, one can note that 

95% of the total variance of LS can be retained upon truncating (4.15) up to the first order Legendre 

polynomials 
LPe , 

TPe  introduced in (A.4.1) and 
gN , given by (A.4.11). Therefore, (4.15) can be 

simplified as  

;0 ; ; ;'
L L T T g gLS LS Pe Pe LT Pe Pe LS N NLS LS                (A.4.18) 

where ;0LS  is the mean of LS, ; LLS Pe , ; TLS Pe  and 
; gLT N are the coefficients of the Legendre 

polynomial of order one in LPe , TPe  and gN  respectively. Following the same procedure outlined in 

Appendix A.4.2, we obtain the following expression for the marginal pdf of LS  
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with  , ;0 ; ; ;3 ( 1) ( 1) ( 1)
L T g

i j k

ls ijk LS LS Pe LS Pe LS Nls            . 

 

Appendix A.4.4: Marginal pdf of LY 

Within the range of variability of the uncertain parameters listed in Table 4.1, one can note that 

97% of the total variance of LY can be retained upon truncating (4.15) up to the first order Legendre 

polynomials 
TPe , 

gN  and 
kr

  defined by (A.4.1) and (A.4.11) and to the second order Legendre 

polynomial 

2

2
5 2

3 1
2k

k

r

r c d

d c

   
      

   (A.4.20) 

Therefore, (4.15) can be written as  
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where ;0LY  is the mean of LY, 
; gLY N , ; TLY Pe  and ; kLY r  are the coefficient of the Legendre 

polynomial of order one in gN , TPe  and kr , respectively, and 
2; kLY r

  is the coefficient of the 

Legendre polynomial of order two in kr . Equation (A.4.21) can be rewritten as 
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                            (A.4.23)  

Since gN , kr  and TPe  are independent random variables, the marginal pdf of LY is  
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Equation (A.4.24) can be evaluated as 
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Equation (A.4.26) can be rewritten as 

1, 2, 3, 4,( ')LY LY LY LY LYpdf ly I I I I     (A.4.27) 
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Since A > 0 in our case, the integral expression (A.4.28) can be evaluated as 
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Appendix B.4 Variance-based Global Sensitivity Analysis for 

Hydraulic Fracturing, a preliminary study.   

Hydraulic fracturing operation consist in the injection of fracking fluid at high pressure in 

compact formation, containing gas and oil, in order to increase the overall permeability and 

connectivity of the formation (Hyman et al., 2016). This last goal is reached by promoting the aperture 

and extension of already existing fracture or by creating new ones.  Only through this, an extraction 

of gas is economically feasible.  The increased reservoir production achieved through fracking 

operation led to a widespread diffusion of the technology (see e.g.  Arthur et al. 2009; USEPA 2012). 

The fluid used for fracturing is typically water mixed with proppants and a varying number of 

chemicals depending on the characteristics of a geological site. The proppants keep the fractures open 

after the fracturing process to make sure that desired flow rates can be achieved, while the added 

chemicals can range from friction reducers to biocides. 

Despite the benefits, concerns has been raised about the environmental impact of hydraulic 

fracturing operations ( Heinecke et al. 2014; Jabbari et al. 2015b; Kargbo et al. 2010 ). Three potential 

issue of main concern are the induced earthquakes ( Aminzadeh et al. 2014 ) , air pollution ( McKenzie 

et al. 2012; Moore et al. 2014 ) and water contamination ( Osborn et al. 2011; Kissinger et al. 2013; 

Jabbari et al. 2015a; Llewellyn et al. 2015 ). The recently started research project FracRisk (funded 

within the EU Horizon 2020, see www.frackrisk.eu) seeks to identify the potential risks of the 

technology as well as corresponding mitigation and monitoring strategies. A well-established 

approach in the regulatory risk assessment procedures regarding sources (hydrocarbon bearing 

formation), pathways (e.g. fault zones, abandoned wells) and targets/receptors (e.g. a groundwater 

reservoir) is used, which will be applied to six focused scenarios (see Fig. 4.8). They are designed to 

capture a whole range of features, events and processes (FEPs) associated with unconventional gas 

production. Scenario 1-3 of the six focused scenarios (see Fig. 4.8) take a closer look at the source, 

i.e. the hydrocarbon bearing formation to be fracked, while Scenarios 4-6 consider larger spatial and 

temporal scales and focus rather on the intermediate- to long-term fate of a contaminant that has 

escaped from the source rock. Naturally, the scenarios are interconnected and the results and findings 

of one scenario can be used as an input for others. Scenario 1 attempts to identify the main processes 

occurring during the fracturing operations, such as the release of gas molecules, formation of 

pathways, increase of permeability, etc. The main focus lies on the mechanical description of the 

hydraulic fracturing process, i.e. the accurate description of fracture propagation, the creation of the 

fracture network and the occurrence of microseismic events. Findings on the fracture network 

characteristics can then be embedded into Scenario 2, where the interest is on pressure propagation 

in the reservoir and on the flow and transport processes through the fracture network and the 

surrounding porous matrix. The hydrocarbon-bearing formation is represented in detail and the 

temporal scale of investigation is short. Scenario 3 is an extension of Scenario 2, additionally 

considering reactive transport phenomena. This will allow investigations on the chemical interaction 

of the fracturing-fluid components with the reservoir fluids and the rock minerals, e.g. for an 

evaluation of the flow-back composition. Scenario 4 investigates the fate of a potential leakage in the 

overburden in the presence of e.g. fault zones or poorly sealed abandoned wells. In comparison to 

Scenario 4, which considers mid-term processes on the field-scale, Scenario 5 addresses the long-

term regional-scale (tens of kilometers) flow and transport of gas, fracturing fluids, or saline water. 

The last scenario, S6, looks at long-term (tens of years) diffusive transport of methane through the 

overburden. 

Numerical models are used in order to perform sensitivity analyses of certain FEPs on the 

severity of the consequences. Results will then be embedded into an FEP-based evaluation of risk 

and counteractive measures. The collection of data on selected sites across Europe & USA will allow 

http://www.frackrisk.eu/


106 

 

the definition of parameter ranges to be scanned in the sensitivity analyses, and it provides necessary 

baseline data for a future application of the monitoring strategies developed in the project.  

 The main objective of this work is the introduction of a workflow for the determination of the 

parameter sensitivities as mentioned above. We show the procedure using an exemplary showcase 

(see Appendix B.4.1), which does not claim to be a realistic representation of a hydraulic fracturing 

operation. In particular the showcased example belong to previously defined Scenario 2. A numerical 

investigation of the environmental impact of hydraulic fracturing can also be found in Reagan et al., 

2015, where numerical simulations were performed for a range of parameters. The procedure is 

somewhat similar to the one presented in this paper; however, in this work we base our analysis on a 

global sensitivity analysis (GSA) grounded on variance-based Sobol’ indices. The extensive 

numerical modeling that will be carried out in the project and subsequent statistical analysis will pave 

the way to an abstracted model for risk evaluation. This work has been conducted in collaboration 

with D. Gläser, H. Class, R. Helmig (Dept. of Hydromechanics and modelling of Hydrosystems, 

University of Stuttgart), A. Tatomir (Dept. of applied Geology, University of Göttingen), M. Sauter 

(EWRE Environmental and Water Resources Engineering, Israel) and M. Sauter (School of 

Geosciences, University of Edinburg).   

 

 

 

Figure 4.8. Illustration of the six focused modelling scenarios. S1: modelling of the fracture growth; 

S2: Pressure propagation around the fracked source; S3: geochemical modelling; S4: Flow and 

transport in faults and abandoned wells; S5: Regional transport of displaced fluid; S6: Diffusive 

transport through the overburden overlying formations and aquifers. Source: www.fracrisk.eu. 

 

Appendix B.4.1: Showcase Scenario 

The showcase presented in this work has been elaborated in order to test a general workflow and 

the tools being used and developed within the FracRisk project. Based on Scenario 2 (see Fig. 4.8), 

the showcase looks at the potential contamination of a target aquifer with a fracturing-fluid 

component due to the injection of such fluid at high pressure into an underlying formation (see Fig. 

4.9). Highly conductive pathways through the lower formation are present by means of a fracture 

network, which are directly connected to the target aquifer, i.e. there is no sealing layer between the 

source and the target. An injection is imposed on a section of the lower boundary and the overall mass 

accumulated in the target formation is evaluated at the end of the simulation, i.e. after six hours of 

injection 

In this showcase, single-phase flow and transport phenomena through porous media are 

considered, for which the governing system of equations can be found in e.g. Flemish et al., 2011. A 

vertex-centered finite volume method (box) is used for the spatial discretization, see Heling, 1997, in 

which control volumes are constructed around the vertices of a grid connecting the midpoints of the 

element edges and faces around a node with the barycenters of the surrounding elements. The 

conservation equation is integrated over the finite volume; thus, local conservation of the considered 

http://www.fracrisk.eu/
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quantity is guaranteed. Fluxes are computed on the bounding faces of these control volumes using 

the finite element basis functions of the elements that intersect with the box to evaluate the necessary 

quantities and their gradients at the flux computation points. The model used for the simulations in 

this paper extends the box formulation to account for discrete fractures. Element entities of 

codimension 1 (faces in 3d, edges in 2d) can herein be identified as fracture entities. In control 

volumes that are intersected by fracture entities, the flux and storage terms of the system of equations 

are split into contributions from fracture and matrix respectively. A detailed description of this can 

be found in Tatomir, 2012. An implicit Euler method has been chosen for the time discretization and 

the Newton-Raphson method is used to handle the non-linear dependencies of the water-phase density 

and of the viscosity on pressure and temperature, for which the IAPWS 97 formulation of Wagener 

et al., 2000 was used. For simplicity, the fluid density and viscosity do not depend on the 

concentration of the transported component. The numerical model is implemented in the free open-

source numerical simulator DuMux ( Flemish et al., 2011 ) and works in two and three dimensions. 

However, the presented showcase is two-dimensional. 

The fracture network as an input for the simulations can be obtained from measurements or by 

using a geostatistical fracture network creator as e.g. Frac3D (see Assteerawat , 2008; Silberhorn-

Hemminger, 2013;). As the model presented in this paper does not solve for the geomechanical 

deformations of the rock, fracture propagation is not simulated and the fracture network is assumed 

to be static throughout the entire simulation. The fracture network geometry for this showcase has 

been obtained from a scan of a limestone outcrop in Bristol (Belayneh at al., 2006; Tatomir et al., 

2011;) scaled by a factor of five. Even though it is not representative for shale, the geometry has been 

chosen to show that the numerical model does not impose any geometrical restrictions. 

The injection length of approximately 20m on the lower boundary (see Fig. 4.9) is designed to 

represent one stage during a hydraulic fracturing operation. Injection occurs at five discrete positions 

representing the perforated parts of the stage. These five injection points were chosen to be at the 

intersections of fractures with the boundary to ensure maximum injection rates directly into the 

fracture network. The injection is simulated by a Cauchy-type boundary condition, where the pressure 

at the boundary is specified and the resulting mass flux into the domain is calculated via Darcy's law: 
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( )

f inj f

inj f w inj inj f w

w inj f

q a p p p 


 
      

k x x
g n

x x
 (B.4.1) 

Here, pf is the actual pressure in the fracture when evaluating the boundary condition with the 

specified injection pressure pinj, xinj is the position of the injection point, i.e. the intersection of a 

fracture with the boundary, xf is the center of the fracture entity and af is its aperture, n is the unit 

outer normal vector of the boundary face. The averaged water phase density

( ( ) ( )) / 2w w inj w fp p     is used to evaluate the gravitational forces, where g is the gravitational 

acceleration. A fully-upwind approach is applied for the density ρw and the viscosity µw outside of 

the brackets. fk  is the intrinsic permeability of the fracture. For the transport equation of the 

component the boundary influx qinj has to be multiplied by the specified concentration of the 

component in the fracturing fluid to be injected. This has been set to Xc = 0.01. The remaining parts 

of the lower, as well as the two lateral boundaries were set to Neumann no-flow. As initial and 

Dirichlet boundary conditions on the upper boundary a hydrostatic pressure distribution and a 

component concentration of zero were applied. We assumed a constant and fixed geothermal gradient 

of 30 K/km throughout the simulations.  

The authors are aware of the fact that the scenario setup at this early stage of the project is not a 

realistic representation of an actual hydraulic fracturing operation. The fracture network geometry, 

obtained from a limestone, does not adequately represent a shale formation. Furthermore, the fracture 

network does not evolve during the simulations but is already fully developed prior to the injection. 



108 

 

A reduction of the problem to two dimensions and no-flow boundaries on the lateral sides both 

contribute to an overestimation of the pressure and, thus, to higher flow rates towards the target 

formation. The absence of a sealing layer above the source rock and the relatively long injection time 

of six hours further increase the likelihood and the level of a contamination within the target aquifer. 

However, the showcase has not been designed to actually evaluate the potential risks of the 

technology, which is a final aim of the project. As mentioned before, it aims for a testing of the 

workflow and the tools involved. For the actual modelling of the scenarios within the project, more 

realistic setups will be created and a larger set of parameters will be included in the sensitivity 

analysis. 

 

Figure 4.9. Snapshot of a simulation result edited to illustrate the model domain, its dimensions and 

the features included.  

 

Appendix B.4.2: Definition of global quantity of interest and GSA 

results 

In this study, as global quantity of interest we focus on the accumulated mass of contaminant in 

the target aquifer, TA ,at the end of the injection period  

M

TA

c

w TA TAX d


    (B.4.2) 

We investigate the sensitivity of M  with respect to the permeability of the target aquifer, kTA, the 

aperture of the fracture, af, and the pressure of injection of the fracturing fluid, pinj . The first two 

represent our lack of knowledge about aquifer properties, whereas pinj represents varying operational 

conditions. The parameters kTA, af, and pinj are treated as independent uniformly distributed random 

variable, which interval of variation are listed in Table 4.4. 
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Table 4.4. Parameter value for the showcase.  

Parameter Unit Value 

Fracture aperture, af m [1e-5 – 1e-3] 

Injection pressure, pinj bar [150 - 350] 

Intrinsic permeability of the target formation, kTA m2 [1e-11 – 1e-13] 

Intrinsic permeability of the source matrix, kS m2 1e-14 

Intrinsic permeability of the source fractures, kF m2 1e-8 

Porosity of the target formation, ΦTA - 0.25 

Porosity of the source matrix, Φs - 0.1 

Porosity of the source fractures, Φf - 0.7 

 

We perform a GSA grounded on variance-based Sobol indices computed through a gPCE 

representation (see Section 4.3) of M . The quality of the gPCE representation is ensued by 

comparing resulting values of M  obtained with (a) the full mathematical-numerical model with those 

(b) resulting from the gPCE surrogate model for 20 random combination of input parameters drawns 

in the parameter space. Figure 4.10 depicts a scatter plot of values of M , where the continuous line 

represents the full model results while crosses, circles and diamonds are the corresponding results 

based on a gPCE representation of total degree (see Section 4.3) w = 2, 3, 4 respectively. A 

satisfactory agreement is reached.  

 

 

 

Figure 4.10. Scatter plot of the total accumulated mass of contaminant in the target aquifer obtained 

by the full model (x-axis) vs. the corresponding gPCE representations. Continuous line: results for 

the full model of section 3. gPCE of total degree w = 2, crosses; w = 3, circles; w = 4, diamonds. 

Twenty simulations randomly selected in parameter space. 
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Table 4.5 lists the mean value, 
M

 , variance, 
M

V , coefficient of variation, 0.5

M M M
/  CV V   and 

principal, 
ixS , and total, 

i

T

xS , Sobol’ Indices, for xi = kTA, af, pinj,  for M  and for the different level of 

accuracy of the gPCE representation, i.e w = 2, 3, 4. Inspection of Tab. 4. suggests that the 

investigated statistical moment of M  and both principal and total Sobol’ indices reached convergence 

with respect to the gPCE accuracy, i.e. w. In the following, we will refer to the results for w = 4. A 

look at both 
TA

S
k and 

TA

TS
k indicates that the uncertainty affecting kTA practically does not contribute to 

the output variance 
M

V . Instead, the major contribution to 
M

V  comes from af, as can be seen by 

looking at 
faS and 

f

T

aS , indicating that the uncertainty in the fracture aperture determines more than 

the seventy per cent of output variance. The examination of 
injpS and 

inj

T

pS  suggests that more than 

twenty per cent of the output variance is dictated by the variation of pinj. It is also noted that the 

principal and total Sobol’ indices values are relatively close, indicating a small level of interaction 

between parameters. The GSA results suggest that, for the showcase here considered, the aperture of 

the fracture and the pressure of injection of fracturing fluid plays key roles in determining the level 

of contamination of the target aquifer, while the permeability of the last in uninfluential. This can be 

explained by considering that it is mainly through the fracture network and with an intensity 

proportional to the imposed pressure of injection, that contaminant travels throughout the production 

aquifer reaching the overlaying target formation. 

 

Table 4.5. Mean, 
M

 , variance, 
M

V , coefficient of variation, 
M

CV , principal, 
ixS , and total, 

i

T

xS , 

Sobol’ indices for xi = kTA, af, pinj. 

 w = 2 w = 3 w = 4 

M
  2.28 x103 2.25 x103 2.23x103 

M
V  2.63 x106 2.40 x106 2.27x106 

M
CV  0.71 0.69 0.68 

TA
S

k  1.9 x10-6 1.0 x10-5 9.1 x10-5 

faS  0.70 0.70 0.71 

injpS  0.25 0.25 0.24 

TA

TS
k  2.4 x10-6 4.3 x10-5 2.5x10-4 

f

T

aS  0.75 0.75 0.77 

inj

T

pS  0.30 0.31 0.29 
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Appendix B.4.3: Summary and Outlook  

A variance-based GSA for the determination of parameter sensitivities, to be embedded into an 

FEP-based risk assessment of hydraulic fracturing operations, has been presented on an exemplary 

showcase. This showcase considers a naturally fractured reservoir into which the injection of a fluid 

carrying a potentially hazardous component leads to a contamination in an overlying aquifer (target). 

The contamination is identify with the total mass of accumulated contaminant in the overlaying target 

aquifer. The first two statistical moments of the accumulated mass of contaminant has been evaluated 

and its sensitivities with respect to model input parameters has been determined by means of variance-

based Sobol’ indices. The current procedure is an essential tool for investigating all six focused 

modelling scenarios defined in the FracRisk project. However, the current work is only a very first 

step towards an extensive investigation of the potential environmental impact of hydraulic fracturing 

by applying this approach to a number of different scenarios with a large number of different setups 

and parameter ranges to be evaluated. This will be carried out within the scope of the project together 

with the development of an FEP-based model for risk assessment. 
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5 Moment-based Metrics for Global Sensitivity Analysis of 

Hydrogeological Systems 

In this chapter we propose new metrics/indices to assist Global Sensitivity Analysis (GSA) of 

hydrogeological systems. We quantify sensitivity of model uncertain parameters through the use of 

indices based on the first four (statistical) moments of the probability density function (pdf) of a model 

output of interest. Evaluating parameter sensitivity in terms of multiple statistical moments leads to 

the assessment of the impact of model parameters on main features governing the shape of the pdf of 

target model outputs. These include the expected value of the output as well as the spread around the 

mean (as quantified by the variance), and the degree of symmetry and tailedness of the pdf of interest.  

Since reliable assessment of higher order statistical moments can be computationally demanding 

for complex models, we couple our GSA approach with the construction of a surrogate model, 

approximating the full model response at a reduced computational cost. Here, we consider the 

generalized Polynomial Chaos Expansion (gPCE), other model reduction techniques being fully 

compatible with our theoretical framework.  

We demonstrate our approach through three test cases, including a popular analytical benchmark, 

a simplified scenario mimicking pumping in a coastal aquifer, and a laboratory-scale conservative 

transport experiment. Our results allow discriminating which parameters can be more influential to 

some moments of the model output pdf while being uninfluential to others. We also investigate the 

error associated with the evaluation of our sensitivity metrics by replacing the original system model 

through the selected surrogate model. In general, our results indicate that the construction of a 

surrogate model with increasing level of accuracy might be required depending on the statistical 

moment considered in the GSA. Our approach is fully compatible with (and can assist the 

development of) analysis techniques employed in the context of model calibration, design of 

experiment, uncertainty quantification and risk assessment. 
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5.1 Introduction 

Our improved understanding of basic mechanisms governing hydrological processes at multiple 

space and time scales and the ever increasing power of modern computational resources are at the 

heart of the formulation of conceptual models characterized by unprecedented levels of sophistication 

and complexity. This is typically transparent when one considers the spectrum of mathematical 

formulations and ensuing level of model parametrization rendering our conceptual understanding of 

given environmental scenarios (Grauso et al., 2007; Wagener and Montanari, 2011; Hostache et al., 

2011; Koutsoyiannis, 2010; Wagener et al., 2010; Paniconi and Putti, 2015; Markstrom et al. 2016; 

Alzraiee et al., 2014; Hartmann et al., 2013; Herman et al., 2013; Willmann et al., 2006; Lee et al., 

2012; Elshorbagy et al., 2010a,b; Förster et al., 2014). Model complexity can in turn exacerbate 

challenges associated with the need to quantify the way uncertainty associated with parameters of a 

given model propagate to target state variables. 

In this context, approaches based on rigorous sensitivity analysis are valuable tools to improve 

our ability to (i) quantify uncertainty, (ii) enhance our understanding of the relationships between 

model input and outputs, and (iii) tackle the challenges of model- and data- driven design of 

experiments in hydrological sciences. These also offer critical insights to guide model simplification, 

e.g., by identifying model input parameters that have limited effects on a target output. The variety 

of available sensitivity analysis methodologies can be roughly subdivided into two broad categories, 

i.e., local and global approaches. Local sensitivity analyses consider the variation of a model output 

against variations of model input solely in the neighbourhood of a given set of parameters values. 

Otherwise, global sensitivity analysis (GSA) quantifies model sensitivity across the complete support 

within which model parameters can vary. Error measurements and/or lack of knowledge about 

parameters can be naturally accommodated in a GSA by specifying appropriate parameter intervals 

and evaluating sensitivity over the complete parameter space. A review of the diverse available 

sensitivity analysis approaches and of the various interpretations of the concept of model sensitivity 

is outside the scope of this study. Recent works providing extended appraisals of these issues include, 

e.g., the studies of Pianosi et al. (2016), Sarrazin et al. (2016), and Razavi and Gupta (2015). 

Our study is framed in the context of GSA approaches. A broadly recognized strategy to quantify 

global sensitivity of uncertain model parameters to model outputs relies on the evaluation of the 

Sobol’ indices (Sobol, 1993). These quantify the relative amount of the variance of a target model 

output that is apportioned to the variability of one parameter alone or in conjunction with other 

parameters across the domain (support) of parameter definition (i.e., across the parameter space). 

Sobol’ indices are typically referred to as variance-based sensitivity measures because the output 

variance is taken as the metric upon which sensitivity is quantified. A key limitation of a variance 

based- GSA is that the uncertainty of the output is implicitly considered to be fully characterized by 

the variance. Relying solely on this criterion can provide an incomplete picture of a system response 

to model parameters, also considering that probability densities of typical hydrological quantities can 

be characterized by higher order (statistical) moments, e.g., in the presence of highly skewed 

distributions (e.g., Borgonovo, 2011). Some studies introduce a sensitivity metric grounded on the 

complete probability density function (pdf) of the model output (see, e.g., Krykacz-Hausmann, 2001; 

and Borgonovo, 2007). These so-called moment-independent analyses may suffer from operational 

constraints for complex and computationally demanding problems, because a robust evaluation of the 

complete probability distribution may require a number of model runs which is unaffordable. The 

PAWN method introduced by Pianosi and Wagener (2015) attempts to overcome this limitation 

introducing a sensitivity metric based on the cumulative density function, which can potentially be 

estimated more robustly than its associated pdf for a given sample size. 

A comparison between variance-based and moment-independent GSA suggests that (a) the 

meaning of the former and the relationship between variance and spread of the pdf around the mean 
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are straightforward information to convey, albeit incomplete to fully characterize the variability of a 

model response; and (b) in the case of the latter it is hard to extract quantitative information about the 

way variations of a parameter can affect the main features of the pdf. It is then clear that while a 

variance-based GSA can be favored for its (conceptual and implementation) simplicity and variance 

can be considered in several cases as an adequate proxy of the spread around the mean, it does not 

yield a forthright quantification of the way variations of a parameter can affect the structure of the 

pdf of a target model output. Otherwise, moment-independent methodologies condense the entire pdf 

in only one index, somehow clouding our understanding of how the structure of the pdf is affected by 

variations of each uncertain model parameter. 

Our distinctive objective is to contribute to bridge the gap between these two types of GSA. We 

do so by introducing theoretical elements and an implementation strategy which enable us to appraise 

parameter sensitivity through the joint use of sensitivity indices based on the first four (statistical) 

moments of the probability distribution of the model output of interest, i.e., (i) expected value, (ii) 

variance, (iii) skewness and (iv) kurtosis. The key idea at the basis of this strategy is that linking 

parameter sensitivity to multiple statistical moments leads to improved understanding of the way a 

given uncertain parameter can govern important features of the shape of the pdf of desired model 

outputs. As such, our strategy yields a quantification of the effects of uncertain model parameters in 

terms of the selected statistical moments, that have well-known properties in controlling elements of 

the shape of the pdf which are of interest in modern applications of hydrological sciences. 

Variance-based GSA has also been applied (a) to guide reduction of model complexity, e.g., by 

setting the value of a parameter which is deemed as uninfluential to the variance of a target model 

output (see, e.g., Fu et al., 2011; Chu et al., 2015; Punzo et al., 2015), and (b) in the context of 

uncertainty quantification (Saltelli et al., 2008; Pianosi et al., 2014; Colombo et al., 2016). Only 

limited attention has been devoted to assess the relative effects of uncertain model parameters to the 

expected value of the desired model output. This information would complement a model complexity 

analysis by introducing a quantification of the impact that conditioning the process on prescribed 

parameter values would have on the expected value of the output. Our approach is based on the joint 

use of multiple (statistical) moments for GSA. It enables us to address the following critical questions: 

When can the variance be considered as a reliable proxy for characterizing model output uncertainty? 

Which model parameter mostly affects asymmetry and/or the tailing behavior of a model output pdf? 

Does a given model parameter have a marked role in controlling some of the first four statistical 

moments of model output pdf, while being uninfluential to others? 

Even as the richness of information content that a GSA grounded on the first four statistical 

moments might carry can be a significant added value to our system understanding, it may sometimes 

be challenging to obtain robust and stable evaluation of the proposed metrics for complex and 

computationally demanding models. This can be especially true when considering higher-order 

moments such as skewness and kurtosis. To overcome this difficulty, we cast the problem within a 

computationally tractable framework by relying on the use of surrogate models, which mimic the full 

model response with a reduced computational burden. Amongst the diverse available techniques to 

construct a surrogate model (see, e.g., Razavi et al., 2012a,b), we exemplify our approach by 

considering the generalized Polynomial Chaos Expansion (gPCE) that has been successfully applied 

to a variety complex environmental problems (Riva et al., 2015; Ciriello et al., 2013; Formaggia et 

al., 2013; Sudret, 2008; Gläser et al. 2016 and references therein), other model reduction techniques 

being fully compatible with our GSA framework. In this context, we also investigate the error 

associated with the evaluation of the sensitivity metrics we propose by replacing the original (full) 

system model through the selected surrogate model for three test cases, including a widely employed 

analytical benchmark, a simplified pumping scenario in a coastal aquifer, and a laboratory-scale 

transport setting. The rest of the work is organized as follow. Section 5.2 presents our theoretical 
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developments; Section 5.3 illustrates our results for the three diverse test cases indicated above, our 

conclusions being drawn in Section 5.4. 

5.2 Theoretical Framework 

  The widely used variance-based Sobol’ indices employed as metrics for GSA are described 

in previous Section 4.3. Details about the generalized Polynomial Chaos Expansion (gPCE) technique 

which we use to construct a surrogate of the full system model and to evaluate analytically the Sobol’ 

indices can be found in Section 4.3 and are not repeated here. Sobol’ indices allow quantifying the 

contribution of each uncertain parameter to the total variance of a state variable of interest, y. We then 

illustrate in Section 5.2.1 the theoretical developments underlying our approach and introduce new 

global sensitivity indices. Our novel metrics enable us to quantify the impact of model uncertain 

parameters on the first four statistical moments of the probability density function (pdf) of y. 

5.2.1 New metrics for multiple-moment GSA 

We introduce new metrics to quantify the expected relative change of main features of the pdf 

of y(x) due to variability of model input parameters. In contrast with traditional variance-based GSA 

techniques of the kind described in Section 4.3, we quantify changes in the pdf of y(x) through its 

first four statistical moments, i.e., mean, variance, skewness, [ ]y , and kurtosis, [ ]k y . The latter is 

an indicator of the behavior of the tails of the pdf of y and is particularly useful in the context of risk 

analysis, [ ]y  quantifying the asymmetry of the pdf. 

We consider a target system state variable, y, which depends on N random parameters collected 

in vector x = ( 1x , 2x , …, Nx ) and defined in the parameter space 
1 2

...
Nx x x      , 

,min ,max[ , ]i i ix x   being the support of the i-th random variable ix .The effect of changes of x on the 

mean of y cannot be systematically analysed by the metrics currently available in the literature. 

Assessment of the effect of variations of ix  on the mean value of y(x) is achieved through the 

following quantity 

0 0 0
0 0
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1 1
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  (5.1) 

0y  being the unconditional expected value of y and the symbol | ix  indicates conditioning the process 

y on knowledge of ix . Extension of (5.1) to consider the joint effect of 
1 2
, ,...,

si i ix x x  is 

straightforward, leading to the following index 
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 (5.2) 

Note that index 
ixAMAE  quantifies the expected relative variation of the mean of y due to variations 

of only ix , while 
1 2

, ,...,
i i is

x x xAMAE  also includes all interactions amongst parameters 
1 2
, ,...,

si i ix x x . 

Along the same lines, we introduce the following index 

 
 

   

 

|1
[ | ] ( )

i xi

xi
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ix i i
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AMAV V y V y x x dx

V y V y
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    (5.3) 

quantifying the relative expected discrepancy between unconditional,  V y , and conditional (on ix ) 

process variance. Note that (5.3) does not generally coincide with the principal Sobol’ index 

     | /
ix iS E V y V y x V y     that quantifies the expected relative reduction of the variance due 

to knowledge of ix  alone, without interaction with other parameters (or, in other words, the relative 

contribution to the variance arising from uncertainty in ix ). Index 
ixAMAV  reduces to 

ixS  only if the 

conditional variance, [ | ]iV y x , is always (i.e., for each value of ix ) smaller than (or equal to) its 

unconditional counterpart  V y . The difference between 
ixAMAV  and 

ixS , as well as advantages of 

using 
ixAMAV , will be elucidated through the numerical examples illustrated in Section 5.3. Note 

that equivalent writings for the principal Sobol’ index are 

       
2

0| / | /
ix i iS V E y x V y E y E y x V y        

 (see Borgonovo 2007), which highlight a 

relevant similarity with 
ixAMAE . This observation suggest that the resulting parameters ranking ( i.e. 

parameters relevancy is assigned according to the values of the sensitivity index) based on (5.1) or 

(5.3) will be the same, but the reader should bear in mind that they are convening different 

information. Extension of (5.3) to consider the joint effect of 
1 2
, ,...,

si i ix x x  reads 
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 (5.4) 

Index 
1 2

, ,...,
i i is

x x xAMAV  quantifies the expected relative discrepancy between  V y  and the variance 

of the process conditional to joint knowledge of 
1 2
, ,...,

si i ix x x . 

We then quantify the relative expected discrepancy between unconditional ( [ ]y ) and 

conditional ( [ | ]iy x ) skewness through the index 
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Extension of (5.5) to consider the joint effect of 
1 2
, ,...,

si i ix x x  gives 
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  (5.6) 

The relative variation of the kurtosis ( [ ]k y ) of y ( )x  due to variations of a parameter ix  or of the set 

1 2
, ,...,

si i ix x x  can be respectively quantified through 
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Relying jointly on (5.1)-(5.8) enables one to perform a comprehensive GSA of the target process y

( )x  quantifying the impact of x on the first four (statistical) moments of the pdf of y ( )x . This strategy 

yields information about the way important elements of the distribution of y ( )x , such as mean, spread 

around the mean, symmetry, and tailedness, are affected by model uncertain parameters collected in 

x. This analysis is not feasible through a classical variance- based GSA. 

Calculation of the indices we propose entails evaluation of conditional moments of y ( )x . This 

step can be computationally very demanding. Along the lines of our discussion about Sobol’ indices 

in Section 4.3, the new metrics (5.1)-(5.8) can be evaluated via a surrogate model, as we illustrate in 

Section 5.3. 

5.3 Illustrative Examples 

The theoretical framework introduced in Section 5.2 is here applied to three diverse testbeds: (a) 

the Ishigami function, which constitutes an analytical benchmark typically employed in GSA studies; 

(b) a pumping scenario in a coastal aquifer, where the state variable of interest is the critical pumping 

rate, i.e. the largest admissible pumping rate to ensure that the well is still not contaminated by 

seawater; and (c) a laboratory-scale setting associated with non-reactive transport in porous media. 

In the first two examples the computational costs associated with the complete mathematical 

description of the targeted outputs are low. This enables us to assess the error associated with the 

evaluation of the sensitivity indices (5.1), (5.3), (5.5) and (5.7) through a gPCE representation of the 
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output. In the third case, due to the complexity of the problem and the associated computational costs, 

we solely relay on the gPCE representation for the target quantity of interest. We emphasize that the 

use of a gPCE as a surrogate model is here considered only as an example, our GSA approach being 

fully compatible with a model order reduction technique of choice. 

In all of the above scenarios, uncertain parameters ix  collected in x are considered as 

independent and identically distributed (i.i.d.) random variables, each characterized by a uniform 

distribution within the interval ,min ,max,
ix i ix x     . All results are grounded on 

55 10  Monte Carlo 

realizations, enabling convergence of all statistical moments analysed. Series appearing in the gPCE 

(4.15) are evaluated up to a given order of truncation in all three examples. Here, we apply the total-

degree rule and construct a polynomial of order w through a sparse grid technique (see, e.g., 

Formaggia et al., 2013 and references therein). We then analyze the way the selected order w 

influences the results. Note that the optimal choice of the polynomial ( )
p

x  in (4.15) depends on the 

pdf of the random variables collected in x (Xiu and Karniadakis, 2002;). In our exemplary settings 

we use the multidimensional Legendre polynomials which are orthonormal with respect to the 

uniform pdf. 

5.3.1 Ishigami function 

The non-linear and non-monotonic Ishigami function 

   
42

1 2 3 1sin(2 ) sin (2 ) 2 sin(2 )y ISH x a x b x x              x   (5.9) 

is widely used in the literature (e.g., Homma and Saltelli, 1996; Chun et al., 2000; Borgonovo, 2007, 

2011; Sudret, 2008; Crestaux et al., 2009) to benchmark GSA methods. Here, ix  (i = 1, 2, 3) are i.i.d. 

random variables uniformly distributed within the interval [0, 1]. Unconditional mean  E ISH , 

variance,  V ISH , skewness,  ISH , and kurtosis,  k ISH , of (5.9) can be evaluated analytically 

as 
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Equation (5.10) reveals that the unconditional pdf of ISH is symmetric with tails that increase with |b| 

and decrease with |a|, as quantified by  k ISH  (5.10b). The conditional mean  | iE ISH x , variance 

 | iV ISH x , skewness  | iISH x  and kurtosis  | ik ISH x  can be evaluated analytically as 
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For the sole purpose of illustrating our approach, here and in the following we set a = 5 and b = 0.1, 

which corresponds to   2.50E ISH  ,   10.84V ISH   and   4.18k ISH  . Figure 5.1 depicts the 

first four moments of ISH conditional to values of 1x  (blue curves), 2x  (red curves) and 3x  (green 

curves) within the parameter space. The corresponding unconditional moments (black curves) are 

also depicted for completeness. 

 

 

Figure 5.1. Variation of the first four moments of ISH (5.9) conditional to values of 1x  (blue curves), 

2x  (red curves) and 3x  (green curves) within the parameter space: (a) expected value,  | iE ISH x , 

(b) variance,  | iV ISH x , (c) skewness,  | iISH x , and (d) kurtosis,  | ik ISH x , (i = 1, 2, 3). The 

corresponding unconditional moments (black curves) are also depicted. 

 

Comparing (5.10a) and (5.11), it is seen that  3|E ISH x  coincides with its unconditional 

counterpart  E ISH , indicating that conditioning on any value of 3x  does not impact the mean of 

ISH. Otherwise, setting 1x  or 2x  to a given value clearly affects the mean of ISH in a way which is 
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governed by (5.11) and shown in Fig. 5.1a. It is clear from (5.11) that  2|E ISH x  has a higher 

frequency of oscillation within 
2x  than has  2|E ISH x  within 

1x . The new global index (5.1) can 

be evaluated analytically as 

1

44
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5
x

b
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a



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2

2
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
 ;        

3
0xAMAE   (5.15) 

Note that 
2xAMAE  does not depend on specific values of a and b. Table 5.1 lists the values of 

ixAMAE  ( ix  = 1x , 2x , 3x ) corresponding to the a and b values selected for our demonstration. 

Equation (5.12) shows that all random model parameters influence the variance of ISH, albeit to 

different extents, as also illustrated in Fig. 1b. Note that  2|V ISH x  is always smaller than  V ISH  

(compare (5.10a) and (5.12)) and does not depend on 2x , i.e., conditioning ISH  on 2x  reduces the 

process variance regardless the conditioning value. Otherwise,  3|V ISH x  can be significantly 

larger or smaller than its unconditional counterpart. Tab. 1 lists values of 
ixAMAV  ( ix  = 1x , 2x , 3x ) 

computed via (5.3) with the a and b values selected for our demonstration. The principal Sobol’ 

indices (Sudret, 2008) 
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3
0xS    (5.16) 

are also listed for completeness. As expected, values of 
ixAMAV  listed in Tab. 5.1 suggest that 

conditioning on 3x  has the strongest impact on the variance of ISH, followed by 2x  and 1x . Note that 

3xS  = 0, a result which might be interpreted as a symptom that ISH is insensitive to 3x . The apparent 

inconsistency between the conclusions which could be drawn by analyzing 
3xAMAV  and 

3xS  is 

reconciled by the observation that the function    3|V ISH V ISH x  can be positive and negative in 

a way that its integration over 
3x  vanishes (see also Fig. 5.1b). As a consequence, the mean reduction 

of the variance of ISH due to knowledge of (or conditioning on) 3x  is zero. It is remarked that this 

observation does not imply that that the variance of ISH does not vary with 3x , as clearly highlighted 

by Fig. 5.1b and quantified by 
3xAMAV . 

The symmetry of the pdf of ISH is not affected by conditioning on 2x  or 3x , as demonstrated by 

(5.13). Otherwise,  1|ISH x  is left (or right) skewed when 1x  is smaller (or larger) than 0.5, as 

dictated by (5.13) and shown in Fig. 5.1c for our test showcase. Tab. 5.1 lists the resulting 
ixAMA  

( ix  = 1x , 2x , 3x ) for the selected a and b values. 

The conditional kurtosis  2|k ISH x  does not depend on the conditioning value 2x  and on the 

value of a (see (5.14)). We then note that it is always larger than (or equal to) its unconditional 

counterpart  k ISH , regardless the particular values assigned to b, as we verified through extensive 

numerical tests. This result implies that the pdf of ISH conditional on 2x  is characterized by tails 

which are heavier than those of its unconditional counterpart. Fig. 1d reveals that  1|k ISH x  and 

 3|k ISH x  are smaller than  k ISH  for the values of a and b implemented in this example. Tab. 

5.1 lists the resulting 
ixAMAk  ( ix  = 1x , 2x , 3x ) for the selected a and b values.  
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Table 5.1. Global sensitivity index 
ixAMAE  (5.1), 

ixAMAV  (5.3), 
ixAMA  (5.5), and 

ixAMAk  (5.7) 

associated with the Ishigami function (5.9). Principal Sobol’ indices, 
ixS , are also listed; ix  = 1x , 2x

, 3x .  

 
ixAMAE  

ixAMAV  
ixS  

ixAMA  
ixAMAk  

1x  0.75 0.40 0.40 0.45 0.37 

2x  0.64 0.29 0.29 0.00 0.33 

3x  0.00 0.84 0.00 0.00 0.53 

 

We close this part of the study by investigating the error which would arise when one evaluates 

our GSA indices by replacing ISH through a gPCE surrogate model. We do so on the basis of the 

absolute relative error 

0

0
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where j = 
ixAMAE , 

ixAMAV , 
ixAMA  or 

ixAMAk  ( ix  = 1x , 2x , 3x ); the subscripts full model and 

gPCE respectively indicate that quantity j  is evaluated via (5.9) or through a gPCE surrogate model, 

constructed as outlined in Section 4.3.1. Figure 5.2 depicts (5.17) versus the total degree w of the 

gPCE. Note that the lower limit of the vertical axis of Fig. 5.2 is set to 0.001% for convenience of 

graphical representation. Approximation errors associated with GSA indices related to the mean, 

ixAMAE , rapidly approach zero as w increases. Note that 
3xAMAEe  is smaller than 0.001% for all tested 

values of w. Values of 
je  linked to 

ixAMAV , 
ixAMA  and 

ixAMAk  do not show a consistently 

decreasing trend until w > 5, which is consistent with the presence of a fourth power exponent in 

(5.9). Values of 
je  associated with the variance, skewness and kurtosis decrease with approximately 

the same average linear rate (in log-log scale) for the largest w considered (Fig. 5.2b, c, d). This 

example reinforces the need to reliably test the accuracy of a gPCE-based model approximation as a 

function of the total degree desired, depending on the statistical moment of interest. 
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Figure 5.2. Error 
je  (5.17) versus the total degree w of the gPCE; j = (a) 

ixAMAE , (b) 
ixAMAV , (c) 

ixAMA  and (d) 
ixAMAk , with ix  = 1x  (blue curves), 2x  (red curves), 3x  (green curves). Note that

3xAMAE  is always smaller than 0.01%. Average slope of the rate of decrease of 
je  associated with 

the variance, skewness and kurtosis are indicated as a reference. 
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5.3.2 Critical Pumping Rate in Coastal Aquifers 

The example we consider here is taken from the study of Pool and Carrera (2011) related to the 

analysis of salt water contamination of a pumping well operating in a homogenous confined coastal 

aquifer of uniform thickness 
'b . The setting is sketched in Figure 3 and is that of an imposed constant 

freshwater flux ( '

fq  [L T-1]) flowing from the inland to the coastline and pushing against invading 

saltwater advancing from the seaside boundary. A constant discharge, '

wQ  [L3 T −1], is pumped from 

a fully penetrating well located at a distance '

wx  [L] from the coastline. Pool and Carrera (2011) 

introduced a dimensionless well discharge ' ' ' '/ ( )w w w fQ Q b x q  and defined the critical pumping rate 

cQ  as the value of wQ  at which a normalized solute concentration monitored at the well exceeds 

0.1%. A key result of the study of Pool and Carrera (2011) is that cQ  can be approximated through 

the following implicit equation 

 

 

1/2
1/2

1/2

1 1 /
2 1 ln

1 1 /

c
c c

D

c

QQ Q

Q




  

             
 

  (5.18) 

where 

* 1 1
D

wx J
  ;  

1/6* 1 TPe 
  

 
; ' '/ f        (5.19) 

Here, ' '/w wx x b ; ' /fJ q K ; ' '/T TPe b  ; K [L T-1] is the uniform hydraulic conductivity; '

T  [L] 

is transverse dispersivity; '  is the density difference between fresh and saltwater; and '

f  is 

freshwater density. Here, TPe  is a measure of the intensity of dispersive effects, J is the natural head 

gradient of the incoming freshwater, and wx  is the dimensionless distance of the well from the 

coastline. Pool and Carrera (2011) suggest that (25) holds for (0 10]D   . Additional details about 

the problem setting, boundary and initial conditions, as well as geometrical configuration of the 

system can be found in Pool and Carrera (2011). Here, we focus on the main results (5.18)-(5.19) 

which represent the complete mathematical description of the problem we analyze. We perform a 

sensitivity analysis of cQ  with respect to TPe , J, and wx . While the first two quantities are difficult 

to characterize experimentally in practical applications, the well location can be considered as an 

operational/design variable. Table 2 lists the intervals of variation we consider for TPe , J and wx . 

These are designed to (a) resemble realistic field values and (b) obey the constraint about D . 

Table 5.2. Intervals of variations of TPe , J, wx . 

 
,min ,max[ ]n n nx x    

TPe  [0.01 0.1]  

J  4 3[8 2.5 ]e e   

wx  [10 33]  
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Figure 5.3. Sketch of the critical pumping scenario taking place within a coastal aquifer of thickness 
'b . A constant freshwater (in blue) flux ( '

fq ) flows from the inland to the coastline; invading 

saltwater (in red) comes from the seaside boundary. A constant discharge, '

wQ , is pumped from a 

fully penetrating well located at a distance '

wx  from the coastline. Color scale indicating variable 

concentration of saltwater is only qualitative and for illustration purposes. 

 

Numerical evaluation of the first four unconditional statistical moment of cQ  yields a mean 

value   1.65cE Q  , variance   0.17cV Q  , skewness   0.30cQ    (which indicates a light 

asymmetry in the pdf), and kurtosis   2.51ck Q   (i.e., pdf tails decrease faster than for Gaussian 

distributions). Figure 5.4 depicts the first four moments of cQ  conditional to values of TPe  (blue 

curves), J  (green curves), and wx  (red curves) within the parameter space. The corresponding 

unconditional moments (black curves) are also depicted for completeness. Note that each parameter 

interval of variation has been normalized to span the range [0, 1] for ease of graphical comparison. 

Table 5.3 lists the values of 
ixAMAE , 

ixAMAV , 
ixS , 

ixAMA  and 
ixAMAk  (xi = TPe , J, wx ) 

associated with cQ . As in our first example, it is clear that sensitivity of cQ with respect to TPe , J, 

wx  depends on the statistical moment of interest. 

 

Table 5.3. Global sensitivity index 
ixAMAE  (5.1), 

ixAMAV  (5.3), 
ixAMA  (5.5), and 

ixAMAk  (5.7) 

associated with the critical pumping rate cQ  (5.18). Principal Sobol’ indices, 
ixS , are also listed; ix  

= TPe , J, wx . 

 
ixAMAE  

ixAMAV  
ixS  

ixAMA  
ixAMAk  

TPe  0.07 0.14 0.09 0.35 0.09 

J 0.14 0.41 0.41 0.88 0.12 

wx  0.15 0.48 0.48 0.78 0.11 
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Inspection of Fig. 5.4a reveals that the mean of cQ  is more sensitive to conditioning on J or wx  

than to conditioning on TPe . Note that increasing TPe , i.e., considering advection-dominated 

scenarios, leads to an increase of the mean value of cQ . This is so because the dispersion of the 

intruding saltwater wedge is diminished and the travel time of solutes to the well tends to increase. 

High values of the natural head gradient of the incoming freshwater, J, are associated with high mean 

values of cQ . This is consistent with the observation that the inland penetration of the wedge is 

contrasted by the effect of freshwater which flows in the opposite direction. As expected, increasing 

wx  (moving the pumping well towards the coast) leads to a reduction of the mean value of cQ . 

Figure 5.4a shows that mean cQ  varies with wx  and J in a similar way. This outcome is consistent 

with (5.19) where cQ  depends on the product wx J, i.e. increasing wx  or J has the same effect on cQ

. It can be noted (see Table 5.3) that 
TPeAMAE  is smaller than JAMAE  and 

wxAMAE , consistent with 

the results of Fig. 5.4a. Fig. 5.4b shows that the variance of cQ  decrease as TPe , J, or wx  increase. 

This trend suggests that the uncertainty on cQ , as quantified by the variance, decreases as (i) the 

intruding wedge sharpens or is pushed toward the seaside boundary by the incoming freshwater or 

(ii) the well is placed at increasing distance from the coastline. Inspection of Fig. 4c, d shows that 

conditioning on TPe , J, or wx  causes the pdf of cQ  to become less asymmetric and less heavy tailed 

than its unconditional counterpart. This behavior suggests that the relative frequency of occurrence 

of (high or low) extreme values of cQ  tends to decrease as additional information about the model 

parameters become available. 

 

 

Figure 5.4. First four moments of cQ  conditional to values of TPe  (blue curves), J  (green curves), 

and wx  (red curves) within the parameter space: (a) expected value,  |c iE Q x , (b) variance, 

 |c iV Q x , (c) skewness,  |c iQ x , and (d) kurtosis,  |c ik Q x , ( ix  = TPe , J , wx ). The 

corresponding unconditional moments (black curves) are also depicted. Intervals of variation of TPe

, J  and wx  has been rescaled between zero and one for ease of comparison (see Table 5.2).  
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Figure 5.5 depicts the dependence of the error 
je  (5.17) on the total degree w of the gPCE 

representation of cQ , for j = (a) 
ixAMAE , (b) 

ixAMAV , (c) 
ixAMA  and (d) 

ixAMAk  ( ix  = TPe  

(blue curves), J  (red curves), wx  (green curves)). These results indicate that: (i) 
je  associated with 

ixAMAE  is not significant even in the worst case considered, where it is about 1%; (ii) 
PeT

AMAVe   10% 

for w = 2 and rapidly decreases to values below 1% for increasing w; (iii) values of 
je  for 

ixAMAV  (

ix  = J, wx ) are always smaller than 1%; and (iv) the trend of 
xi

AMAe   is similar to that of 
xi

AMAke  for 

all ix , with values of the order of 10% or higher for w = 2 and displaying a slow decrease with 

increasing w to then stabilize around values smaller than 1% when w  4 or 5. It is then clear from 

Fig. 5 that attaining a given acceptable level of accuracy for the gPCE-based approximation of our 

moment-based GSA indices for Qc requires increasing the total order w of the gPCE with the order 

of the statistical moment considered. As such, following the typical practice of assessing the 

reliability of a gPCE surrogate model solely on the basis of the variance or of a few random model 

realizations does not guarantee a satisfactory accuracy of the uncertainty analysis of a target model 

output which should consider higher-order statistical moments. 

 

 

Figure 5.5. Dependence of the error 
je  (5.17) on the total degree w of the gPCE representation 

of cQ , for j = (a) 
ixAMAE , (b) 

ixAMAV , (c) 
ixAMA  and (d) 

ixAMAk  ( ix  = TPe  (blue curves), J  

(red curves), wx  (green curves)). 
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5.3.3 Solute transport in a laboratory-scale porous medium with zoned 

heterogeneity 

As a last exemplary showcase, we consider the laboratory-scale experimental analysis of 

nonreactive chemical transport illustrated by Esfandiar et al. (2015). These authors consider tracer 

transport within a rectangular flow cell filled with two types of uniform sands. These were 

characterized by diverse porosity and permeability values, which were measured through separate, 

standard laboratory tests. A sketch of the experimental set-up displaying the geometry of the two 

uniform zones respectively formed by coarse and fine sand is illustrated in Figure 5.6. 

After establishing fully saturated steady-state flow, a pulse injection of a solution containing a 

constant tracer concentration takes place at the cell inlet. The tracer breakthrough curve is then 

measured at the outlet. Esfandiar et al. (2015) modeled the temporal evolution of normalized  

concentration at the outlet, ( )C t  (t denoting time), by numerically solving within the flow domain 

the classical Advection-Dispersion Equation (ADE) (e.g., Bear and Cheng, 2011) implementing an 

original and accurate space-time grid adaptation technique. Longitudinal dispersivities of the two 

sands (
,L ia , i = 1, 2 respectively denoting the coarse and fine sand) were considered as uncertain 

system parameters to be estimated against the available experimental solute breakthrough data. To 

minimize the computational costs in the model calibration process, Esfandiar et al. (2015) relied on 

a gPCE approximation of ( )C t . The authors constructed a gPCE of total degree w = 3 by considering 

 10 ,log L ia  (i = 1, 2) to be two i.i.d. random variables uniformly distributed within  10 ,log L ia
  = [-6, -

2] (i = 1, 2; 
,L ia  being expressed in [m]). Further details about the problem set-up, numerical 

discretization and grid adaptation technique as well of the construction of the gPCE representation 

can be found in Esfandiar et al. (2015). Here, we ground the application of our new GSA metrics on 

the gPCE surrogate model already constructed by Esfandiar et al. (2015) to approximate ( )C t . 

 

 

Figure 5.6. Sketch of the solute transport setting considered by Esfandiar et al. (2015). The 

laboratory-scale porous medium is formed by two zones filled with coarse or fine sand.  

 

Figure 5.7 depicts the temporal evolution of the unconditional expected value,  E C t 
  , 

variance,  V C t 
  , skewness,  C t  

  , and kurtosis, ( )k C t 
  , of normalized ( )C t . Time steps 

0.4t , 0.02t  and 0.96t , i.e., the times at which  E C t 
   = 0.02, 0.4, and 0.96, respectively, are highlighted 

in Fig. 5.7a, for the sake of the discussion presented in the following. 
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Fig. 5.7a reveals a pronounced tailing of  E C t 
 

 at late times, the short time mean 

breakthrough being associated with a rapid increase of  E C t 
 

. A local minimum at 0.4t  and two 

local peaks and are recognized in  V C t 
 

 (Fig. 5.7b). The variance peaks at times approximately 

corresponding to the largest values of the local concavity of  E C t 
 

, as expressed by 

 2 2/E C t t   
. This outcome is consistent with the results of numerical Monte Carlo (MC) 

simulations depicted in Figure 8 of Esfandiar et al. (2015) where the largest spread of the MC results 

is observed around these locations. The local minimum displayed by  V C t 
 

 suggests that ( )C t  at 

observation times close to 0.4t  is mainly driven by advection, consistent with the observation that 

advective transport components are the main driver of the displacement of the center of mass of a 

solute plume. The late time variance  V C t 
 

 tends to vanish because the normalized breakthrough 

curve is always very close to unity irrespective of the values of 
,1La  and 

,2La . Joint inspection of Fig.s 

5.7c, d reveals that the pdf of ( )C t  tends to be symmetric around the mean (Fig. 5.7c) and 

characterized by light tails (Fig. 5.7d) at about 0.4t . Otherwise, the pdfs of ( )C t  tend to display heavy 

right or left tails, respectively for observation times shorter and longer than 0.4t . These observations 

suggest that the relative frequency of rare events (i.e., very low or high solute concentrations, which 

can be of some concern in the context of risk assessment) is lowest at intermediate observation times 

across the duration of the experiment. 

 

Figure 5.7. Temporal evolution of the unconditional (a) expected value,  E C t 
  , (b) variance, 

 V C t 
 

, (c) skewness, ( )C t  
 

, and (d) kurtosis, ( )k C t 
 

, of normalized ( )C t . Vertical lines in 

(a) correspond to time steps 0.4t , 0.02t  and 0.96t , i.e., the times at which  E C t 
   = 0.02, 0.4, and 0.96, 

respectively. 
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Figure 5.8 depicts the temporal evolution of (a) 
ixAMAE , (b) 

ixAMAV , (c) 
ixAMA , and (d) 

ixAMAk  (xi = 10 ,1log ( )La , 10 ,2log ( )La ) of ( )C t . These results suggest that ( )C t  (i) is more sensitive 

to 
10 ,1log ( )La  than to 

10 ,2log ( )La  at early times, (ii) is almost equally sensitive to both dispersivities 

for t  0.4t , and (iii) is more sensitive to the dispersivity of the fine sand (i.e., to 
10 ,2log ( )La ) at late 

times. Our set of results suggests that the overall early time pattern of solute breakthrough is mainly 

dictated by the value of 
,1La , the late time behavior being chiefly influenced by 

,2La .  

 

 

 

 

Figure 5.8. Time evolution of the global sensitivity index (a) 
ixAMAE , (b) 

ixAMAV  and 
ixS  (dashed 

curves), (c) 
ixAMA , and (d) 

ixAMAk  of ( )C t  (xi = 
10 ,1log ( )La  (blue), or 

10 ,2log ( )La  (red)). 
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These conclusions are supported by the results of Figures 5.9-5.11, where we depict the expected 

value, variance, skewness, and kurtosis of C (t) conditional to 
10 ,1log ( )La  (blue curves) and 

10 ,2log ( )La  (red curves), at times t = 0.02t  (Fig. 5.9), 0.4t  (Fig. 5.10), and 0.96t  (Fig. 5.11). The 

corresponding unconditional moments are also depicted (black curves) for ease of comparison. Fig. 

5.9 shows that the first four statistical moments of  0.02C t  are practically insensitive to the value of 

the fine sand dispersivity, 
,2La . As one could expect by considering the relative size and geometrical 

pattern of the two sand zones, Fig. 5.9a shows that the average amount of solute reaching the cell 

outlet at early times increases with 
,1La , because dispersion of solute increases through the coarse 

sand which resides in the largest portion of the domain. Fig. 5.9b shows that knowledge of 
,1La  causes 

a marked reduction of 0.02( )V C t 
 

, which attains an essentially constant value across the overall 

range of values of 
,1La . Consistent with this result, Fig.s 5.9c, d respectively show a reduction in the 

asymmetry and in the tailing behavior of the pdf of  0.02C t  when 
,1La  is fixed. These results are a 

symptom of a reduced process uncertainty, which is in line with the observation that the bulk of the 

domain is filled with the coarse sand whose dispersive properties become deterministic when 
,1La  is 

known. 

 

 

Figure 5.9. First four moments of 0.02( )C t t  conditional on 
10 ,1log ( )La  (blue curves) and 

10 ,2log ( )La  (red curves), at time t = 0.02t : (a) expected value,  0.02 10 ,( ) log L iE C t a 
 

, (b) variance, 

 0.02 10 ,( ) log L iV C t a 
 

, (c) skewness,  0.02 10 ,( ) log L iC t a  
 

, and (d) kurtosis, 

 0.02 10 ,( ) log L ik C t a 
 

 (i = 1, 2). The corresponding unconditional moments are also depicted (black 

curves). 
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Inspection of the first four unconditional statistical moments of  0.4C t  (black curves in Fig. 

5.10) indicates that the unconditional pdf of C  at this intermediate time is closely resembling a 

Gaussian distribution. The very act of conditioning  0.4C t  on dispersivity causes a variance 

reduction, an increase of the tailing and the appearance of a negative (left) or positive (right) 

skewness, respectively when conditioning is performed on ,1La  or ,2La . The latter behavior suggests 

that in the type of experimental setting analyzed the variability of ,1La  promotes the appearance of 

values of  0.4C t  larger than the mean, the opposite occurring when solely ,2La  is considered as 

uncertain. 

 

 

 

 

 

 

 

 

Figure 5.10. First four moments of 0.4( )C t t  conditional on 
10 ,1log ( )La  (blue curves) and 

10 ,2log ( )La  (red curves), at time t = 0.02t : (a) expected value,  0.4 10 ,( ) log L iE C t a 
 

, (b) variance, 

 0.4 10 ,( ) log L iV C t a 
 

, (c) skewness,  0.4 10 ,( ) log L iC t a  
 

, and (d) kurtosis,  0.4 10 ,( ) log L ik C t a 
 

 

(i = 1, 2). The corresponding unconditional moments are also depicted (black curves). 
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Fig. 5.11 shows that all the four statistical moment of  0.96C t  are chiefly sensitive to the 

dispersivity of the fine sand box, which is placed near the cell outlet. One can note that knowledge of 

,2La  yields a diminished variance of  0.96C t , which drops almost to zero, an increased degree of 

symmetry and a reduce tailing of the pdf of  0.96C t , all these evidences being symptoms of 

uncertainty reduction. 

Results depicted in Fig. 5.9-5.11 and our earlier observations about Fig. 5.7 are consistent with 

the expected behavior of transport in the system and the relative role of the dispersivities of the two 

sand regions. The high level of sensitivity of ( )C t  to 
,1La  at the early times of solute breakthrough is 

in line with the observation that solute are mainly advected and dispersed through the coarse sand. 

Both dispersivities affect the behavior of ( )C t  at intermediate times, when solute is traveling through 

both sands (see Figure 4c of Esfandiar et al., 2015). The dispersivity of the coarse sand plays a minor 

role at late times, because virtually no concentration gradients arise in this portion of the domain. 

Otherwise, concentration gradients persist in the fine sand zone close to the outlet and the solute 

breakthrough is clearly controlled by the dispersive properties of the fine sand. 

 

 

 

Figure 5.11. First four moments of 0.96( )C t t  conditional on 10 ,1log ( )La  (blue curves) and 

10 ,2log ( )La  (red curves), at time t = 0.02t : (a) expected value,  0.96 10 ,( ) log L iE C t a 
 

, (b) variance, 

 0.96 10 ,( ) log L iV C t a 
 

, (c) skewness,  0.96 10 ,( ) log L iC t a  
 

, and (d) kurtosis, 

 0.96 10 ,( ) log L ik C t a 
 

 (i = 1, 2). The corresponding unconditional moments are also depicted (black 

curves). 

  



138 

 

5.4 Conclusions 

We introduce a set of new indices to be employed in the context of global sensitivity analysis, 

GSA, of hydrological and Earth systems. These indices consider the first four (statistical) moments 

of the probability density function, pdf, of a desired model output, y. As such, they quantify the 

expected relative variation, due to the variability in one (or more) model input parameter(s) of the 

expected value (5.1)-(5.2), variance (5.3)-(5.4), skewness (5.6)-(5.7) and kurtosis (5.8)-(5.9) of y. 

When view in the current research trend, our work is intended to bridge the gap between variance-

based and pdf-based GSA approaches since it embeds the simplicity of the former while allowing for 

a higher-order description of how the structure of the pdf of y is affected by variations of uncertain 

model parameters. We cope with computational costs which might be high when evaluating higher-

order moments by coupling our GSA approach with techniques approximating the full model 

response through a surrogate model. For the sake of our study, we consider the generalized 

Polynomial Chaos Expansion (gPCE), other model reduction techniques being fully compatible with 

our approach. Our new indices can be of interest in applications in the context of current practices 

and evolution trends in factor fixing procedures (i.e., assessment of the possibility of fixing a 

parameter value on the basis of the associated output sensitivity), design of experiment, uncertainty 

quantification and environmental risk assessment, due to the role of the key features of a model output 

pdf in such analyses. 

We test and exemplify our methodology on three testbeds: (a) the Ishigami function, which is 

widely employed to test sensitivity analysis techniques, (b) the evaluation of the critical pumping rate 

to avoid salinization of a pumping well in a coastal aquifer and (c) a laboratory-scale nonreactive 

transport experiment. Our theoretical analyses and application examples lead to the following major 

conclusions. 

1. The sensitivity of a model output, y, with respect to a parameter depends on the selected global 

sensitivity index, i.e., variability of a model parameter affects statistical moments of y in different 

ways and with different relative importance. Relying on the indices we propose allows enhancing 

our ability to quantify how model parameters affect features of the model output pdf, such as 

mean and degree of spread, symmetry and tailedness, in a straightforward and easily transferrable 

way. 

2. Joint inspection of our moment-based global sensitivity indices and of the first four statistical 

conditional and unconditional moments of y increases our ability to understand the way the 

structure of the model output pdf is controlled by model parameters. As demonstrated in our 

examples, classical variance-based GSA methods cannot be used for this purpose, leading, in 

some cases, to the false conclusion that a given parameter have a limited impact on a target 

output. 

3. Analysis of the errors associated with the use of a surrogate model for the evaluation of our 

moment-based sensitivity indices suggests that the construction of a surrogate model with 

increasing level of accuracy (as rendered, in our examples, by the total degree w of gPCE 

approximation) might be required depending on the statistical moment considered in the GSA, 

i.e. on the target statistical moment of y.  
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