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Sommario

Lo studio dell’evoluzione e della persistenza della cooperazione tra individui
“egoisti”, cioè che ottimizzano il proprio beneficio, è un argomento a lungo
dibattuto e tutt’ora di grande interesse in vari ambiti, dalla biologia alle
scienze sociali fino all’ingegneria, come testimoniato da ricerche recenti.
Il contesto standard in cui l’analisi della cooperazione è inserita è quello della
Teoria dei Giochi Evolutiva, ossia l’applicazione dei modelli della Teoria dei
Giochi a situazioni in cui l’attenzione è centrata sulla dinamica del cambio di
strategia. In quest’ottica, infatti, gli individui possono esibire diversi tipi di
comportamento, alcuni dei quali riescono a persistere e diffondersi all’interno
della popolazione, mentre altri tendono a scomparire.
Le interazioni tra gli individui sono tipicamente modellate attraverso il Dilem-
ma del Prigioniero, un gioco a due giocatori e due strategie, in cui gli indi-
vidui coinvolti nell’interazione possono decidere se collaborare con l’avversario
oppure sfruttarlo.
In particolare, considerando l’ambito sociale, la popolazione può essere rap-
presentata tramite una rete, dove i nodi sono individui e gli archi simboleg-
giano le possibili interazioni tra di essi. Gli individui intraprendono ripetuta-
mente il gioco del Dilemma del Prigioniero con i loro vicini, e tra un’interazio-
ne e l’altra possono decidere se cambiare la strategia utilizzata a seconda del
comportamento dei vicini. In questo modo si verifica un’evoluzione delle
frazioni di cooperatori e sfruttatori all’interno della rete. Il cambiamento
di strategia avviene secondo regole ben precise e, spesso, quella utilizzata è
l’imitazione di un vicino che ha ottenuto risultati migliori. Questo metodo,
tuttavia, non sembra essere adatto a situazioni in cui la popolazione è etero-
genea e gli individui giocano quindi in condizioni molto differenti tra di loro:
imitare un vicino che ha caratteristiche molto differenti non garantisce di
ottenere i suoi stessi risultati. Bisogna inoltre tenere in considerazione che
spesso i giocatori non hanno informazioni sulla composizione e sulla struttura
del vicinato dei loro stessi vicini; sarebbe quindi sbagliato includere questo
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2 SOMMARIO

tipo di informazione nel processo di scelta della strategia, in quanto spesso
non è disponibile.
Per questi motivi proponiamo una nuova regola per l’aggiornamento di strate-
gia, che chiamiamo selfish reciprocal altruism, la quale utilizza solo le infor-
mazioni locali disponibili agli individui in seguito agli incontri diretti con gli
altri giocatori e si basa sul concetto di reciprocità, unito alla natura egoistica
di ogni individuo.
Come risultato mostriamo che, con questa regola, la cooperazione non solo
evolve all’interno della popolazione, ma addirittura riesce ad emergere anche
se inizialmente presente in frazioni particolarmente ridotte.

Parole chiave: Cooperazione, evoluzione, reti sociali, reciprocità, infor-
mazioni locali, comportamento egoista.



Abstract

The emergence and persistence of cooperation among self-interested individ-
uals is a long-standing and still debated topic in various fields of study, going
from biology to social sciences and with recent attention in engineering.
The standard modeling framework for the study of cooperation is Evolution-
ary Game Theory (EGT), where individuals can exhibit different forms of
behavior, some of which have the ability to persist in the population, while
others have a tendency to be driven out. In particular, the paradigmatic
game describing individuals’ interactions is the Prisoner’s Dilemma (PD).
When considering the social framework, a population can be represented by
a network, where the nodes are individuals and links are the possible in-
teractions among them. Individuals engage repeated PD games with their
neighbors and, depending on the behavior of the neighbors, they can decide
to change strategy following rules for strategy update. One of the most com-
mon rules is the imitation of a better performing neighbor. This method,
however, is not suitable where neighbors might act in completely different
conditions, e.g. in strongly heterogeneous networks.
We propose a new rule for strategy update, called selfish reciprocal altruism,
where players decide to update strategy only if it is convenient for them in
the next few iterations, basing their decision only on the local information
gathered through direct interactions.
As a result, we show that this selfish updating does not simply favor the
evolution of cooperation, but also its emergence in populations where the
initial fraction of cooperators is very small.

Key-words: Cooperation, evolution, social networks, reciprocity, local in-
formation, selfish behavior.
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Chapter 1

Introduction

1.1 The role of cooperation

The emergence and persistence of cooperation among self-interested indi-
viduals is a long-standing and still debated topic in various fields of study,
going from biology to social sciences and with recent attention in engineering.
Cooperation is often needed for evolution to construct new levels of organi-
zation. For example, genomes, cells, multicellular organisms, social insects,
and human societies are all based on cooperation.

Many studies have been done about cooperation in its various scenarios, here
we present a selection of these works to introduce the topic and its relevance
in different applications.

One of the early works is G. Hardin’s The tragedy of the commons (1968)
[1], where the author considers the “population problem”. Since the world is
finite, he claims, it can only support a finite population; thus, the population
growth must eventually equal zero. What we would like to reach is “the
greatest good for the greatest number”, but this is not possible. First of
all we need to understand what we mean by “good”: this changes from one
person to another and different goods seem to be incommensurable. The
mankind should learn from nature, where goods are compared in term of
survival, but no cultural group could imitate this process so far. In fact
there’s no prosperous population that has had a growth rate equal zero for a
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6 1. INTRODUCTION

certain period of time, and a positive growth rate is taken as evidence that
a population is below its optimum size. Referring to Adam Smith’s [2] idea
that an individual who “intends only his own gain” is “lead by an invisible
hand to promote...the public interest” the author introduces the concept of
the tragedy of commons : if we imagine a pasture open to all, a rational
herdsman will try to keep as many cattles as possible on the commons in
order to maximize his gain. But the same reasoning will be done by every
man, with the result that each of them will try to increase his herd without
limit in a world that is limited. Pursuing personal interests, the mankind
can thus only rush into ruin, hence proving that freedom in commons leads
to tragedy.

In The Evolution of Reciprocal Altruism (1971) [3], R.L. Trivers presents a
model to account for the natural selection of what is called reciprocally al-
truistic behavior. This model can be applied to several fields and the author
discusses three different instances of this behavior: (1) behavior involved
in cleaning symbioses, (2) warning cries in birds and (3) human reciprocal
altruism. He defines the altruistic behavior as the one that benefits an-
other organism, not closely related, while being apparently detrimental to
the organism performing the behavior, benefit and detriment being defined
in terms of contribution to fitness. A human being saving another, who is
not closely related and is about to drown, is an instance of altruism. Assume
that the chance of dying for the drowning man is one-half if no one leaps in
to save him, but that the chance that his potential rescuer will drown if he
leaps in to save him is much smaller. Assume also that the drowning man
always drowns when his rescuer does and that he is always saved when the
rescuer survives the rescue attempt. If the drowning man reciprocates at
some future time, and if the survival chances are then exactly reversed, it
is beneficial to each participant to have risked his life for the other. If we
assume that the entire population is sooner or later exposed to the same risk
of drowning, the two individuals who risk their lives to save each other will be
selected over those who face drowning on their own. Note that the benefits
of reciprocity depend on the unequal cost/benefit ratio of the altruistic act,
that is, the benefit of the altruistic act to the recipient is greater than the
cost of the act to the performer. Note also that the benefits and costs may
differ from an individual to another depending on their age and other charac-
teristics. A natural question is why should the rescued individual bother to
reciprocate? Why not cheat? Selection will discriminate against the cheater
if cheating has later adverse affects on his life which outweigh the benefit of
not reciprocating. This may happen if the altruist responds to the cheating
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by curtailing all future possible altruistic gestures to this individual.

In human reciprocal altruism, each individual is seen as possessing both
altruistic and cheating tendencies, and the model shows how selection can
operate against the cheater. Sometimes cheating can pay, for example when
the partner will not find it out or when he is unlikely to survive long enough
to reciprocate adequately, but at the same time selection can discriminate
against cheater if cheating decreases the possibility of receiving any future
altruistic gesture. In human reciprocal altruism an important role is played
by friendship, dislike, moralistic aggression, gratitude, sympathy, suspicion,
trustworthiness, and another central aspect is the psychological influence of
the cost/benefit ratio in the decision of performing an altruistic act.

In The Evolution of Cooperation [4] R. Axelrod and W.D. Hamilton, taking
into account the manifest existence of cooperation and related group behav-
ior in nature, introduce a model based on the assumption that interactions
between pair of individuals occur on a probabilistic basis, thus being possible
that two individuals interact multiple times during their life. The model is
based on the Prisoner’s Dilemma game and in particular on the existence of
an evolutionary stable strategy in this context.

The emergence and persistence of cooperation keeps being studied, as it can
be noticed for example from the recently published paper Think global, act
local: Preserving the global commons [5], where the authors propose a method
by which reciprocity can maintain cooperation in a large-scale public goods
game (PGG). Here again the framework of Prisoner’s Dilemma (PD) game
is used: in one of the experiments performed, participants play one round
of PD with their two nearest neighbors on a cyclic network after each PGG
round. It’s observed that participants reduce PD cooperation with neighbors
who contribute little in the PGG. Instead, low PGG contributors increase
their contributions if both neighbors defect in PD. In conclusion the authors
claim that this “local-to-global” reciprocity seems to facilitate large-scale
cooperation.

Papers [6, 11, 12] show that the same topic has become interesting also from
an engineering point of view, where the attention is focused for example on
sensor networks used in communications, controls and mechanics.

E. Semsar-Kazerooni and K. Khorasani in A Game Theory Approach to
Multi-Agent Team Cooperation [6] use cooperative game theory to design
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a team of agents in Sensor Networks that can accomplish consensus over
a common value for the agents’ output. The goal is to ensure cooperation
minimizing a cost function that is a combination of individual costs of each
agent.

The authors of When Structure Meets Function in Evolutionary Dynamics
on Complex Networks [11] show how the system structure is essential in the
formation of collective behavior. In the specific they define the theoretical
framework of evolutionary dynamics on complex networks by describing the
main elements that characterize this framework and studying the impact of
the network structure on the evolutionary dynamics.

Cooperation stimulation mechanisms for wireless multihop networks: A sur-
vey [12] focuses on wireless sensor networks and mobile ad hoc networks.
In these types of networks nodes have to rely on their peer neighbors in
transmitting packets to destinations, although a successful rate of commu-
nication is assured only if all nodes fully cooperate to relay packets for each
other. This paper summarizes existing cooperation stimulation mechanisms
and discusses important issues in this field.

A broad literature is available about the subject, and those presented are
simply some of the examples available in the various fields. We continue
our work by focusing on the Prisoner’s Dilemma game and proposing a new
model to account for cooperation.

1.2 About this work

In the first part of this thesis we observe that, when the PD game is played in
large and well-mixed populations, defection is the dominant strategy, while
cooperation cannot invade and disappears if initially present. We then con-
sider the various mechanisms proposed in the literature to foster cooperation
in this context and relax the social dilemma [14].

The work continues with the study of more recent researches, where evo-
lutionary games have been analyzed on structured populations, represented
either by regular lattices or by complex networks of contacts [21]. We notice
that the locality of interactions – named network reciprocity after [22] – has
been proposed as a new basic mechanism to explain cooperation, because,
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thanks to it, it is possible that groups of cooperators (C) perform better
than clustered or little-connected defectors (D). Starting with the seminal
works [22, 23], hundreds of influential contributions have been published on
the topic, with the emerging result that heterogeneous networks of contacts,
the so-called scale-free networks [24], benefit cooperation.

Here we focus on social networks and we question network reciprocity as a
mechanism favoring cooperation. This mechanism works in biological evo-
lution, where the strategy update is determined by a selection that acts on
birth, death and competition processes, but when considering the social con-
text the spreading of strategies is modeled in different ways, usually through
imitation rules, and therefore some questions arise. Why should we imitate
a better performing neighbor in a heterogeneous setting? Does it make sense
to imitate a neighbor, considering that he/she potentially operates in radi-
cally different conditions?
Moreover, network reciprocity only supports the persistence of a significant
level of cooperation, whereas the emergence of cooperation in a popula-
tion dominated by defection remains unexplained. Cooperation needs to
be present in an initial cluster to have the chance to take off.

The connectivity of the player to be imitated can be taken into account
to attenuate the chances that little-connected individuals – leaves – imitate
highly-connected ones – hubs – and vice-versa [25, 26], but typically the in-
formation on the size and composition of the neighbors’ neighborhoods is not
available to the players. Furthermore, the locality of the interaction opens
the way to complex strategies requiring cognitive tasks such as remembering
past interactions, foreseeing future ones, and identifying good and bad play-
ers. In this sense hubs need more memory than leaves, because they have
more neighbors and consequently more interactions, but this is already in-
trinsic in the social structure, where central individuals have a large address
book.

Therefore, we finally go back to the original idea of direct reciprocity [3] that
is made practicable by network reciprocity. We implement an updating rule
based on selfish reciprocal altruism that makes only use of local information,
gathered through direct social interaction. At each update step, an individual
computes his/her own expected payoff, accumulated behaving as C or D
over an investment horizon of few of the next interactions and accordingly
decides whether to switch strategy or not. With no mechanism discouraging
defection, D will eventually dominate independently of the network structure.
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However, we find that a mechanism of direct reciprocity, where Cs play less
frequently with defecting neighbors, allows the invasion of cooperation in
populations initially dominated by defection, its long-term persistence, and
even the eventual dominance of C, provided the benefit-to-cost ratio of the
interaction and the investment horizon is sufficiently large. And all this
is indeed enhanced by heterogeneous network structures, provided the few
initial Cs occupy the hubs of the network.

This thesis is structured as follows. In Chapter 2, we introduce the Prisoner’s
Dilemma game and we review some of the mechanisms proposed in the lit-
erature to favor cooperation in a population. We then illustrate some of the
main properties of networks and present the network models used through-
out this thesis. We discuss the Prisoner’s Dilemma when played in social
networks and we study the effects on the evolution of cooperators when an
imitation process is taken into account. In Chapter 3, we propose a new evo-
lutionary rule and show the results of the simulations. Finally, in Chapter 4
we give our conclusions and outline possible future works.



Chapter 2

Evolutionary Dynamics

2.1 The Prisoner’s Dilemma game

The standard modeling framework for the study of cooperation is Evolution-
ary Game Theory (EGT), where individuals can exhibit different forms of
behavior, some of which have the ability to persist in the population, while
others have a tendency to be driven out.
Evolutionary Game Theory is the application of game theory to evolving
populations. EGT originated as an application of the theory of games to bi-
ological contexts, arising from the realization that the strategic aspect plays
an important role in evolution. Recently, however, EGT has become of in-
creased interest to economists, sociologists, and anthropologists and social
scientists in general.

As it can be noticed from the examples reported in the previous chapter,
the paradigmatic game describing individuals’ interaction is the Prisoner’s
Dilemma [13], that can be explained with the following example: two sus-
pects of a bank robbery are caught and interrogated by the police. The
police offers them separately the following deal. If a suspect testifies against
his colleague (a strategy of defection – D), and the other does not (coopera-
tion – C), his sentence will be reduced by five years. If both suspects testify,
that is defect, they will get the reduction of only one year. However, if they
both cooperate and do not testify, their sentence, because of the lack of a
hard evidence, will be reduced by three years.

11



12 2. EVOLUTIONARY DYNAMICS

We thus obtain the payoff matrix in Table 2.1, where the strategy of the 1st
player is the rows and that of the 2nd player on the columns, and the matrix
contains the payoff for the 1st player.

C D
C 3 0
D 5 1

Table 2.1: Prisoner’s Dilemma example

The Prisoner’s Dilemma is a two-player-two-strategy game that can be para-
metrized in multiple ways: a first way to see it is to generalize the payoffs in
the four different cases. As it can be seen in Table 2.2, the game payoffs be-
come respectively: reward (R), sucker (S), temptation (T ) and punishment
(P ) with T > R > P > S.

C D
C R S
D T P

Table 2.2: PD 4-parameter

We can normalize the above quantities by reducing the number of parameters
to two. Consider the following inequalities:

T − P
R− P

>
R− P
R− P

> 0 >
S − P
R− P

(2.1)

We rename these fractions, writing T instead of T−P
R−P and S instead of S−P

R−P .
We therefore obtain the following inequalities:

T > 1 > 0 > S (2.2)

The resulting payoff matrix is shown in Table 2.3.

C D
C 1 S
D T 0

Table 2.3: PD 2-parameter: T and S

The two-parameter normalization can also be written in another way, as
shown in Table 2.4. Cooperators (C) provide a benefit b to the other player
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at a cost c < b, whereas defectors (D) provide no benefit at no cost.
The punishment’s payoff P will thus be zero and consequently S = −c < 0,
T = b and the reward’s payoff will be the difference between the benefit b
and the cost c.

C D
C b− c −c
D b 0

Table 2.4: PD 2-parameter: b and c

We can further reduce the number of parameters by introducing the benefit-
to-cost ratio r = b/c > 1 and using the cost c as scaling unit. The game
payoffs become T = b = rc, R = b − c = (r − 1)c, P = 0, S = −c. We will
consider c = 1 in the following and this is the resulting payoff matrix:

C D
C r − 1 −1
D r 0

Table 2.5: PD 1-parameter

2.2 Mechanisms to favor cooperation

The one introduced in the previous section is the simplest version of the Pris-
oner’s Dilemma game, where only two players are involved in a single round
of the game. However, when studying the evolution of cooperation, we gener-
ally take into consideration an entire population of individuals playing among
each others. Furthermore, the same pair of individuals will probably interact
more than once during the lifetime, as described by the theory of repeated
games.
In game theory, a repeated game is simply a repetition of some base game
(called stage game) a certain number of times: considering an evolutionary
process in a population, it will most likely happen that the same two in-
dividuals interact multiple times during their lifetimes, thus engaging the
same game not once, but repeatedly. After an interaction, an individual may
decide, for various reasons, to change strategy, and the same can be done
by many individuals in the population. Consequently, the ratio between co-
operators and defectors is not always the same and their number can vary
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after each round of the game. In this way we obtain a population that is
dynamic, in the sense that the strategy of its components can evolve toward
a new status at every step.

In particular, let’s first consider a large and well-mixed population, i.e. a
population with a large number of individuals, all of which are playing in the
same (or very similar) conditions. When the PD game is played this popula-
tion, it turns out that defection is the dominant strategy while cooperation
cannot invade and disappears if initially present in the population.

In this context, several mechanisms have been proposed to foster cooperation
and relax the social dilemma [14], for example:

1. reciprocal altruism [3] (also known as direct reciprocity, among kin or
unrelated individuals);

2. establishment of reputations [15] (also known as indirect reciprocity);

3. mechanisms of group rather than individual selection;

4. recognition of perceptible traits [17];

5. optional participation [18];

6. punishment of antisocial behaviors [19, 30].

Direct Reciprocity
In 1971, Trivers [3] proposes a mechanism for the evolution of cooperation
that could explain the cooperation between unrelated individuals or even
between members of different species, and not only among relatives or kin
individuals. This mechanism, called reciprocal altruism or direct reciprocity,
is based on the idea that the same two individuals can meet and interact
repeatedly. In the framework of the repeated Prisoner’s Dilemma game, the
key point is that, if I cooperate now, you may decide to cooperate later. In
every round of the game, each player can decide whether to cooperate or not.
One of the many possible strategies in this game is the one known as tit-for-
tat : cooperation is chosen on the first move, while on the following moves
the player does whatever the other player did on the preceding move. This
strategy, although being simple, can be the winning strategy [4], catalyzing
cooperation, when in the society defection is prevailing. A wide variety of
strategies is available, but one general rule seems to always be valid: direct
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reciprocity can lead to the evolution of cooperation only if the probability,
w, of another encounter between the same two individuals exceeds the cost-
to-benefit ratio of the altruistic act, that is:

w >
c

b
(2.3)

Many of the human behaviors that can be seen as example of altruistic acts
– such as helping in time of danger, helping the sick or sharing knowledge –
meet the criterion of small cost to the giver and a great benefit to the taker,
making the above rule easily satisfiable and favoring cooperation.

Indirect Reciprocity
Direct reciprocity relies on repeated encounters between the same two in-
dividuals, and both of them must be able to provide help. But often the
interactions among humans are asymmetric: one person is in a position to
help another, but there is no chance for a direct reciprocation. In Evolution
of indirect reciprocity by image scoring [15], Nowak and Sigmund present a
new theoretical framework which does not require the same two individuals
to meet multiple times. This model, called indirect reciprocity, takes into ac-
count the fact that helping someone establishes a good reputation, which will
be rewarded by others. When deciding how to act, in fact, we not only think
about direct consequences of our behavior, but also consider the possible
effects on our reputation. In the standard framework of indirect reciprocity,
individuals of a population have the option to help one other or not. In one
generation of the game, m random pairs of players are chosen, of which one
is the potential donor of the altruistic act and the other is the recipient. If
the donor cooperates and helps the recipient, he/she pays a cost c to himself,
and the recipient receives a benefit of value b (with b > c). Instead, if the
donor decides not to help, they will both receive a zero pay-off. Furthermore,
each player has an image score, s, that is related to his/her reputation and
status. If an individual, chosen for the role of donor, decides to cooperate
then his/her image score increases by one unit, while if he/she doesn’t co-
operate it decreases by one unit. The image score of a recipient does not
change. In the basic model, donors decide to help according to the image
score of the recipient: a player with the strategy k, for example, provides help
if and only if the image score of the potential recipient is at least k. This
means that a donor provides help if the recipient is likely to help others, i.e.
if the recipient has helped others in the past. Helping someone increases the
chances to become the recipient of an altruistic act in the future.
In an idealized scenario, each member of the population knows the image
score of all the other individuals, but in a more realistic case everyone simply
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have a personal perception of the image score of the other players. Calling q
the probability of knowing someone’s reputation, the authors state that indi-
rect reciprocity can promote cooperation only if q exceeds the cost-to-benefit
ratio of the altruistic act:

q >
c

b
(2.4)

Group Selection
Selection acts not only on individuals but also on groups. A group of coop-
erators might be more successful than a group of defectors. A simple model
of group selection [16] works as follows. Consider a population subdivided
into groups. The fitness of individuals is determined by the payoff gained
from an evolutionary game and interactions occur between members of the
same group. In each step, a single individual in the population is chosen
for reproduction with a probability proportional to its fitness and the off-
spring is added to the same group. If the group reaches a critical size, n,
it will divide into two groups with probability q and the members will be
randomly distributed over the two new groups. If the group does not divide,
i.e. with probability 1− q, a randomly selected individual is eliminated from
the group. Therefore, n represents the maximum number of individuals in
a single group. The total number of groups is m and it is constant; in fact,
whenever a group splits into two, another one is eliminated. Considering
these constraints, the population size varies from the lower bound of m to
the upper bound of mn individuals. Note that selection emerges on two
levels: on the one hand the evolutionary dynamics are driven by individual
fitness, because only individuals are assigned payoff values and only individ-
uals reproduce. On the other hand, groups can stay together or split when
reaching a certain size and groups containing fitter individuals reach the criti-
cal size faster and separate more often. In particular, pure cooperator groups
grow faster than pure defector groups, whereas in any mixed group, defectors
reproduce faster than cooperators. Therefore, selection on the lower level –
within groups – favors defectors, while selection on the higher level – between
groups – favors cooperators.

Recognition of Perceptible Traits
The evolution of altruism can be facilitated if there exist mechanisms that
allow discrimination against defectors. An example of such mechanisms is the
green beard effect [17] regarding genes reproduction, in which altruists can
recognize each other using a conspicuous tag or signal. Imagine a population
where all individuals have a recognizable tag in the form of a colored beard.
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Each individual plays the PD game with all its neighbors.Altruistic actions
are only towards individuals with the same beard color.

Optional Participation
Another mechanism proposed to foster cooperation is the optional partic-
ipation [18]. Differently from previous models, the optional participation
considers three different strategic types instead of two: cooperators, defec-
tors and loners. Cooperators and defectors are willing to play, while loners
prefer to rely on a risk-averse behavior. In a large population, from time to
time, a random sample of M individuals is offered the option to engage in
a public goods game. Loners, if selected, will always refuse to play obtain-
ing a side income that does not depend on other individuals. This model
has been proposed to overcome the difficulties encountered in other settings,
such as the need of repeated encounters between the same individuals or the
necessity of identifying who are the defectors. In such a voluntary public
good games, cooperators will not stably dominate, but neither will defectors.
Their frequencies oscillate, because the public good becomes unattractive if
loners abound.

Punishment
One last mechanism to favor cooperation is the punishment of antisocial be-
haviors, [19, 30]. Consider a large population, divided into groups of size n.
Three behavioral types are coexisting in the population, contributors, defec-
tors and punishers. Contributors incur a cost c to produce a total benefit b
that is shared equally among group members. Defectors incur no costs and
produce no benefits. Punishers cooperate and then punish defectors in their
group, reducing each defector’s payoff.
Let x be the fraction of contributors in the group, then the expected pay-
off for contributors is bx − c and the expected payoff for defectors is bx, so
the payoff disadvantage of the contributors is a constant c independent of
the distribution of types in the population. Punishers act reducing each the
payoff of each defector in their group by p/n at a cost k/n to themselves. If
the frequency of punishers is y, the expected payoffs become b(x+ y)− c for
contributors, b(x+ y)− py for defectors, and b(x+ y)− c− k(1− x− y) for
punishers.
If the fraction of punisher is such that that the cost of being punished exceeds
the cost of cooperating, that is py > c, then contributors have higher fitness
than defectors. Punishers suffer a fitness disadvantage of k(1− x− y) com-
pared with non-punishing contributors, so it may arise the following ques-
tion: why do people incur costs to punish others and provide benefits to
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nonrelatives? Punishment is an altruistic act and mere contributors can be
considered as “second-order free riders”. Note, however, that the payoff dis-
advantage of punishers relative to contributors approaches zero as defectors
become rare because there is no need for punishment.
Variants of this model are also possible and it is plausible that altruistic
punishment is a method to pave the way to the fixation of cooperation.

2.3 Networks

Recently, evolutionary games have been studied on structured populations,
represented either by regular lattices or by complex networks of contacts. In
this section we introduce the concept of graph (or network) and some of the
network models often used in the literature.

A graph is defined as a pair G = (V,E), where V is the set of vertices,
or nodes, and E is the set of edges, links or arcs. Nodes usually represent
individuals, objects or subsystems, while links represent the interaction or
dependencies among them.
A graph can be undirected or directed, weighted or unweighted.

An undirected graph is characterized by edges that have no orientation, i.e.
the edge (i, j) is identical to the edge (j, i).

Figure 2.1: Undirected graph

A directed graph instead is a graph in which edges have orientations. Links
are arrows, and the arrow (i, j) is considered to be directed from i to j

If a real or integer number (the weight) is assigned to each link, the graph is
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Figure 2.2: Directed graph

called weighted, otherwise it is unweighted. Such weights can represent costs,
lengths, capacities or other quantities, depending on the problem at hand.

(a) Weighted (b) Unweighted

Figure 2.3: Examples of weighted and unweighted graphs

An unweighted network is completely described by the N × N adjacency
matrix A = [aij], where N = |V | is the number of nodes in the network and
aij = 1 if the link i→ j exists, aij = 0 otherwise.

The adjacency matrix is symmetrical if the network is undirected, while it is
asymmetrical if the network is directed. Usually A is a sparse matrix, i.e. the
density of links ρ is small: ρ = L

N(N−1)
for directed networks and ρ = L

N(N−1)/2

for undirected ones, where L = |E| andN(N−1) (or respectivelyN(N−1)/2)
is the maximum possible number of links in the network.

A weighted network is described also by the N×N weight matrix W = [wij]:
wij > 0 if the link i→ j exists, wij = 0 otherwise.

Finally, a graph is connected if there exists a path between every pair of
vertices, ie. there are no unreachable vertices.
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(a) Connected (b) Disconnected

Figure 2.4: Examples of connected and disconnected graphs

2.3.1 Network Properties

In this section we introduce some of the quantities used to describe the main
properties that characterize networks.

Distance and Diameter
The distance dij is the length of the shortest path connecting i to j, measured
in number of links.
For a connected network, the diameter D is the length of the shortest path
between the two most distant nodes in the network. In other words, once
the shortest path length from every node to all other nodes is calculated, the
diameter is the longest of all the calculated distances:

D = max
i,j

dij (2.5)

The average distance d is:

d = 〈dij〉 =
1

N(N − 1)

∑
i,j(i 6=j)

dij (2.6)

If the network is weighted, several generalized definitions are available.

Degree and Strength
In an undirected network, the degree ki of the node i is the number of links
connected to i, i.e. the number of neighbors of i:

ki =
∑
j

aij (2.7)
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In an undirected weighted network, the strength si of node i is the total
weight of the links connected to i:

si =
∑
j

wij (2.8)

If the network is directed, we differentiate among in-, out- and total degree,
and in-, out- and total strength of node i.

The degree distribution P (k) of a network specifies the fraction of nodes
having exactly degree k, i.e. the probability that a randomly selected node
has degree k:

P (k) =
#nodes with degree k

N
(2.9)∑

k

P (k) = 1

Often, instead of the degree distribution, the cumulative degree distribution
is used:

P̄ (k) =
# nodes with degree ≥ k

N
=

kmax∑
h=k

P (h) (2.10)

P̄ (kmin) = 1

The r-moments of the degree distribution P (k) are:

〈kr〉 =
∑
k

krP (k) , r = 1, 2, ... (2.11)

In particular, the first moment (r = 1) is the average degree of the network:

〈k〉 =
∑
k

kP (k) =
1

N

∑
i

ki =
2L

N
(2.12)

Clustering Coefficient
The local clustering, or transitivity, coefficient quantifies the “local link den-
sity” by counting the triangles in the network. It counts how frequently, if
we have the links j ↔ i and i↔ l, then we also have j ↔ l and thus it exists
the triangle i, j, l. Saying it in another way, in a social network it counts
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how frequently two friends of mine are also friends each other. The (local)
clustering coefficient 0 ≤ ci ≤ 1 of node i is:

ci =
# triangles connected to i

# triples j, i, l centered on i
=

ei
ki(ki − 1)/2

(2.13)

where ki is the degree of i, and ei is the number of links directly connecting
neighbors of i (at most ki(ki − 1)/2).
The global clustering coefficient C is the average ci over the whole network:

C = 〈ci〉 =
1

N

∑
i

ci (2.14)

Correlated Networks
A network is correlated if the probability Q(h|k) that a node with degree k
has a neighbor with degree h does depend on k. Correlations can be captured
by the average nearest neighbors degree function:

knn(k) =
∑
h

hQ(h|k) (2.15)

As shown in the examples of Figure 2.5, a network is assortative if high-
degree nodes tend to connect to high-degree nodes, on the contrary, it is
disassortative if high-degree nodes tend to connect to low-degree ones. For
example, social networks are typically assortative, while technological net-
works are disassortative.

(a) Assortative (b) Disassortative

Figure 2.5: Examples of assortative and disassortative networks
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When the network is uncorrelated, the probability Q(h|k) does not depend
on k, thus Q(h|k) = Q(h) and the degree distribution of neighbors of node
i does not depend on the degree k of i. For uncorrelated network the degree
distribution of neighbors is:

Q(h) =
# links from nodes with degree h

# links from nodes with any degree

=
hP (h)∑
k kP (k)

=
hP (h)

〈k〉

(2.16)

and the average nearest neighbors degree knn(k) is constant and larger than
the average degree 〈k〉, in fact:

knn(k) =
∑
h

hQ(h|k) =
∑
h

h2P (h)

〈k〉
=
〈k2〉
〈k〉

(2.17)

knn =
〈k2〉
〈k〉

=
〈k2〉+ σ2

〈k〉
= 〈k〉+

σ2

〈k〉
(2.18)

2.3.2 Network Models

Complete Network
A complete network is characterized by full connectivity, i.e. each node
is connected to all the others, thus the network is homogeneous. Given a
complete graph with N nodes, since all pairs of vertices are connected, the
diameter is 1 and for every node i the degree ki is ki = N −1, while the total
number of edges is N(N−1)

2
.

Figure 2.6: Complete network

Single-scale Network (ER Network)
The Erdös-Rényi network (ER) is built connecting L randomly extracted
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pairs among N nodes and it is an example of a “random” network. An
alternative procedure to build it is the following: starting from a graph with
N nodes an no links, connect each pair i, j with a given probability p.
When N is large enough, the degree distribution of an ER network behaves
as a Poisson distribution with 〈k〉 = 2L

N
= p(N − 1):

P (k) = e−〈k〉
〈k〉k

k!
(2.19)

The network is almost homogeneous and the typical scale of node degree is
ki = 〈k〉, with small fluctuations around 〈k〉.

Scale-free Network (BA Network)
The model introduced by Barabási and Albert (BA) [24] is an example of
scale-free network and it is obtained by adding one node at a time and
connecting it according to the mechanism of preferential attachment: starting
with m0 nodes arbitrarily connected, at each step, add a new node i with m ≤
m0 new links and attach these m link with higher probability to nodes that
have high degree. This procedure is easily understandable and follows the
principle “rich get richer ”: given a new node i, the probability of connecting
it to an existing node j is

kj∑
h kh

.

When N goes to infinity, the average degree of a BA network tends to 〈k〉 =
2m and the degree distribution tends to a power-law P (k) ≈ k−3

Star Network
Star networks are characterized by one central node, called hub, connected
to many nodes, the leaves, which are not connected among each other. The
degree of the hub is N − 1, while the degree of the leaves is 1.

Figure 2.7: Star network
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2.4 Evolutionary Dynamics in Social

Networks

2.4.1 Strategy Update

As we have seen in the previous chapter, cooperation is often formulated in
the framework of Evolutionary Game Theory. The evolutionary dynamics
on networks offer an appropriate tool to study diffusion of cooperation in
complex systems.

Generally, evolutionary dynamics evolve on a structured complex system,
which is often characterized by a network, where nodes and edges represent
respectively the individuals (or components) and their mutual interactions.
Moreover, the interaction intensity on each edge can be described by a specific
weight value.

The admissible states of each node are usually discrete and each state s,
which corresponds to a strategy of the game, is assigned a fitness value, f(s),
to measure its success in a specified task performed on the evolving system.
Some typical fitness functions are described as follows.

− Random Drift : Random drift refers to the situation in which all states
are equally successful in the evolving system, i.e. f(s) = 1 for all states
s. In other words, the fitness is not affected by the strategy adopted
by the player, so that players randomly update their strategy. It is a
simple approximation of a realistic evolution and it is used to study
evolution under neutral selection [7].

− Constant Selection: In this scenario, the fitness of a state is kept un-
changed in the whole evolutionary process. In other words, for each
state s, f(s) is a positive constant, but it may be different among states.
Thus, constant selection is more general than random drift. Constant
selection is often used for investigating how successful behaviors spread
out over a network [8, 9].

− Networked Game: In a networked game, the states of nodes are usually
called strategies. The fitness of an individual player (node) is acquired
by playing games with its neighbors. In such a networked game, the
fitness of each state depends on all the states of its neighbors, and it is
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often expressed as the expected payoff of the game.

The most commonly studied case of evolutionary dynamics is the binary-
state evolutionary dynamics, where only two different states are possible.
This evolutionary dynamics can be used to characterize the invasion process
of new ideas, behaviors and innovations [10].
In evolutionary dynamics on complex networks, every node updates its state
according to the states and the fitness of its neighbors. Some typical updating
rules are listed in the following, including the birth-death (BD) process,
death-birth (DB) process, link dynamics (LD), and imitation (IM) process.

− In the BD process, firstly a node is selected with a probability propor-
tional to its fitness. Then, a neighboring node of this selected node
is randomly chosen. Finally, the selected node reproduces a copy and
uses this copy to replace the above-chosen neighboring node, as shown
in Figure 2.8. If the network is weighted, the neighboring node is cho-
sen with a probability proportional to the weight of the corresponding
edge. For example, if node i is first selected, then a neighboring node
j is chosen with probability proportional to the weight wij.

Figure 2.8: BD updating process: node i is selected with a probability proportional
to its fitness. Then node j is randomly chosen among i’s neighbors and it is
replaced by a copy of i.

− In the DB process, firstly a node is randomly chosen. Then, a neigh-
boring node of the above chosen node is selected with a probability
proportional to its fitness. Finally, the selected neighbor reproduces a
copy and uses this copy to replace the first-chosen node, as shown in
Figure 2.9. For weighted networks, if node i is randomly chosen first,
then a neighboring node j is selected with a probability proportional
to rjwji. Here, rj denotes the fitness of node j and wji is the weight of
edge (j, i).
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Figure 2.9: DB updating process: node i is randomly chosen. Then node j is
selected among i’s neighbors with a probability proportional to its fitness. Finally,
node i is replaced by a copy of j.

− In the LD process, a directed edge is selected with a probability propor-
tional to its weight at each step. If the edge (i, j) is selected, then node
j adopts the state of node i at the next step, as shown in Figure 2.10.

Figure 2.10: LD updating process: the directed edge (i, j) is selected with a
probability proportional to its weight. Node j updates, adopting the state of node
i.

− In the IM process, a node is randomly chosen firstly. Then, another
node is selected, among the neighbors of the above-chosen node and the
node itself, with a probability proportional to its fitness. Finally, the
first node copies the state of the second node, as shown in Figure 2.11.

Figure 2.11: IM updating process: Node i is randomly chosen. Node j is selected
with a probability proportional to its fitness. Node i imitates node j and updates
its state.
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2.4.2 The PD Game in Social Networks

Evolutionary Game Theory is often studied through the analysis of games
such as the Prisoner’s Dilemma, which is used as a metaphor describing
cooperation among unrelated individuals. In the framework of evolutionary
dynamics, a single round of the PD game is not enough to represent the
entire process, therefore we need to make use of (infinitely) repeated games.
When studying the evolution of the cooperation in a population, in fact,
it is reasonable to assume that the same pair of players will interact more
than once during the period of time considered, repeating the same game an
undefined number of times. When the PD game is played in a social network,
every individual engages a game with all his/her neighbors and accumulates
a payoff in each of these interactions. The total payoff obtained in one round
is the sum of all the payoffs gained in the single interactions. Depending
on the payoff accumulated and on the behavior of their neighbors, players
may decide to change strategy before the next round starts, switching from
cooperation to defection, or vice versa. The update of strategy can take place
according to various rules, for example the ones described in the previous
section.

We now show how the evolutionary dynamic works in the context of PD
game played in social networks.

As done in many contributions, we parameterize the PD game with the
benefit-to-cost ratio r = b/c > 1 and use the cost c as scaling unit (c = 1 in
the following). Given a population of N individuals with all-to-all connectiv-
ity (representable with a complete network), the expected payoff – calculated
referring to Table 2.5 – for a C in a single round of the game is

πC,NC
= (r − 1)

NC − 1

N − 1
− N −NC

N − 1
(2.20)

while the expected payoffs for a D is

πD,NC
= r

NC

N − 1
(2.21)

where NC ≤ N is the number of Cs and NC

N
and N−NC

N
are the fractions

(or frequencies) of Cs and Ds. It is easily noticeable that πC,NC
is always

smaller than πD,NC
, hence, in this framework, it is always convenient being

a defector rather than a cooperator and thus, independently of the rule for
strategy update, cooperation will disappear even if initially non zero.
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This is exactly the result obtained in the classical context for infinite and well-
mixed populations, where the evolution of the frequency is deterministically
described by the replicator equation [13]. The replicator model is the limit
model for large and well-mixed populations, where all individuals play in
the same condition, in the sense that all individuals are equally likely to
interact with each other. This setting can be interpreted in two ways: from
a social point of view it represents an imitation process, where the focal
individual imitates a better performing strategy, while in a biological setting
it represents a situation in which the birth rates of C and D are proportional
to the expected payoffs.

Consider a population of N individuals and call x = NC

N
the fraction of

cooperators. When N is large, the limits of the expected payoffs for C and
D are respectively:

πC = (r − 1)x− (1− x)

and
πD = rx

and the average payoff of the population is:

〈π〉 = xπC + (1− x)πD

The replicator equation describing the evolution of the frequency of Cs can
thus be written as follows:

ẋ = x(πC − 〈π〉) = x(1− x)(πC − πD) = −x(1− x) (2.22)

Since x ∈ (0, 1), it will always be ẋ < 0 and it is immediately clear that
the result is the same as the one seen above: the fraction of cooperators will
disappear even if initially non zero.

ẋ = −x(1− x)

Figure 2.12: Replicator Dynamics

In a structured population, where individuals are represented by the nodes of
a static network and interactions occur only between neighbors, the expected
payoffs for a C and a D in a single PD round depend on the composition of
their neighborhoods.
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Given a node with degree k (i.e. with k neighbors), kC ≤ k of which are Cs,
we have

πC,k,kC = (r − 1)
kC
k
− k − kC

k

and

πD,k,kC = r
kC
k

In a situation of Cs mainly connected to Cs and Ds mainly connected to Ds,
πC,ki,kCi

can exceed πD,kj ,kCj
for a C node i and a D node j and this can

locally allow the diffusion of cooperation.
Consider for example the situation shown in Figure 2.13. The two central
hubs have degree k and are connected to k−1 leaves with their same strategy.
In the limit of large k, the expected payoffs for the C and D hubs in a single
round of the PD game are respectively πC,k,k−1 = r − 1 > 0 and πD,k,1 = 0.
For the D hub it is then more convenient to imitate the better performing C
strategy, allowing in this way the diffusion of cooperation.

Figure 2.13: A simple heterogeneous network, with two central hubs connected
to many leaves.

The locality of the interaction – network reciprocity [22] – can thus explain
the persistence of a significant fraction of Cs in the population, but it does
not support the invasion of Cs starting from a few isolated individuals. In
[22] the authors found a surprisingly simple rule that partly clarifies the issue:
network reciprocity favors cooperation if the benefit-to-cost ratio r exceeds
the average degree 〈k〉 of the network of contacts. Under this condition, and
basically independently of the network structure, the fixation probability of
cooperation, i.e. the probability to go from a single C to all-C, is higher
under selection for best performances than under totally random strategy
update. The probability that the isolated C switches to D is however much
higher than that of going from 1 to 2 Cs, i.e., cooperation does not invade,
even though its fixation is favored by selection.

More recent studies, reviewed in the next section, have shown that network
reciprocity is further enhanced in heterogeneous networks, typically in scale-
free networks characterized by a power-law degree distribution [24]. In all
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studies, evolution has been described by the so-called finite population repli-
cator dynamics [21], an imitation rule according to which the evolutionary
dynamics converge to the deterministic replicator limit in the case of large
and all-to-all networks. The results again support the persistence of cooper-
ation, but not its emergence.

2.5 Evolution by imitation

Many studies support the importance of the role of network heterogeneity
in the evolution of cooperation and they are all based on variations of the
following procedure, an imitation process here described with reference to
the PD game.

Evolution is modeled as a process based on discrete steps that generally co-
incide with generations or rounds of the game. At each step, all pairs of
neighbors engage in a single round of the game and each individual accu-
mulates the payoffs obtained playing in his/her own neighborhood. When
the round of the game is over and the payoffs have been accumulated, each
individual randomly selects a neighbor and updates his/her own strategy by
possibly copying the one of the selected player with a probability related to
the difference of their accumulated payoffs. This is a generalization of the
imitation rule (IM) for strategy update seen in the previous section. More
precisely, if individual i, with accumulated payoff Pi, randomly selects indi-
vidual j, with accumulated payoff Pj, then i copies the strategy of j with
probability:

probi→j = max

{
0,

Pj − Pi

(r + 1) max {ki, kj}

}
(2.23)

i.e. i copies j only if Pj > Pi and with a probability that increases with the
difference Pj−Pi of the accumulated payoffs. Note that in the above rule the
denominator is a normalization factor, necessary to ensure that probi→j does
not exceed one and, at the same time, to reduce the chances of imitation if
one or both nodes are highly connected.

The above described mechanism is simply one version of the imitation rule,
but several variants are available. For example, instead of giving to every
player the chance of updating his/her strategy at each step, it is possible to
introduce an asynchronous update. After every generation of the game, only
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one individual or a small fraction of the population is offered the possibility
to update strategy. In this case the imitation probability typically used is
the smoothed imitation probability:

probi→j =
1

1 + exp(−(Pj − Pi)/K)

where K is a parameter of the process. A small value of K means that
individual i is highly sensitive to the expected payoff gain (the probability of
imitating j sharply rises to 1 with Pj−Pi > 0 and drops to 0 with Pj−Pi < 0),
whereas a large K indicates a low sensitivity.

Nonetheless, the role played by network heterogeneity seems to be unaffected
by the particular choice [25, 26].

It is important to note that imitation based on the payoffs accumulated by
neighbors is not a strictly local evolutionary rule. Local informations are
those gathered by a player during his/her own interactions, whereas the pay-
offs accumulated by the player’s neighbors are not necessarily available to the
player and need, at best, to be estimated. The same is true for the informa-
tion on our neighbor’s connectivity, used to scale the imitation probability
in (2.23). Thus, this type of imitation process requires informations that are
not always available to the player, or, if available, demand a cognitive and
memory effort to the player.

2.5.1 Evolutionary Dynamics of Social Dilemmas in
Structured Heterogeneous Populations

F. C. Santos and coauthors [25, 26] were the first to show that network
heterogeneity favors cooperation, by using the imitation rule (2.23) under
synchronous update. They study what is the impact of moving from complete
to scale-free [24] networks and document an increase of the long-term fraction
of cooperation, respectively going from 0 (dominance of defection) in large
complete networks to 1 (full cooperation) in large scale-free networks.
In particular they model the PD game with the 4-parameter formulation (see
Table 2.2), with:

T > R > P > S

and assume R = 1 and P = 0 without loss of generality:

T > 1 > 0 > S
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What they show is that, in heterogeneous populations, the sustainability
of cooperation is simpler to achieve than in homogeneous populations. In
particular they start from complete networks and move to scale-free (BA)
networks, passing through the single-scale (ER) ones. Going from complete
to ER populations, it clearly appears that cooperation is enhanced. When
considering ER and BA graphs, the authors explain that other mechanisms
should be taken into account besides the heterogeneity, but in the end, also
in this case, the result is that the cooperation is enhanced.

Santos and coauthors implement a model based on an imitation rule, but
their approach may be subject to a criticism: why should we imitate a bet-
ter performing neighbor in a heterogeneous network? Traditionally, imitation
has been used by classical Evolutionary Game Theory in unstructured pop-
ulations as the social evolutionary driver of cultural transmission and learn-
ing. But in structured populations, where the situation is heterogeneous,
a blind imitation of a better performing neighbor can seriously reduce the
performance of an individual. The size and composition of the neighbors’
neighborhoods do strongly matter, as exemplified in Figure 2.13, where the
D hub would drastically reduce his/her own accumulated payoff by imitating
the better performing C neighbor.

Besides the fact that imitation in a heterogeneous setting might not be the
best practice, the results obtained by Santos and coauthors are based on
simulations starting from random initial conditions with 50% cooperation,
and thus only support the persistence of C, not its emergence.
We have reproduced their experiment using the Barabási-Albert and Erdös-
Rényi network models, selecting the initial cooperators both with a random
initialization and with a preferential selection for hubs. We have then re-
peated it with 10% initial cooperation and we have observed that defection
takes over the population most of the times, even if the initial Cs occupy the
hubs of scale-free networks as shown in Figure 2.14. This proves that, with
this model, cooperation is hardly able to invade the population.
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(a) BA network with 50% initial Cs
placed randomly

(b) ER network with 50% initial Cs
placed randomly

(c) BA network with 10% initial Cs
placed randomly

(d) ER network with 10% initial Cs
placed randomly

(e) BA network with 10% initial Cs
placed in hubs

(f) ER network with 10% initial Cs
placed in hubs

Figure 2.14: Results of simulations based on the model implemented by Santos and
coauthors [26]. For each pair (T, S) of parameters, the plots display (in color code)
the eventual fraction of cooperators. In figures (a) and (b) the initial proportion
of cooperators is equal to 50%, as in [26]. In all the other figures the initial
proportion of cooperators is equal to 10%. Figures (a) and (c) show the results
for BA networks with random initialization. Figure (e) shows the results for BA
network with preferential initialization for hubs. Figures (b), (d) and (f) show the
same but for ER networks



Chapter 3

Selfish Reciprocal Altruism

3.1 The model

In a heterogeneous framework, imitating a better performing neighbor might
not always be the best choice. Moreover, the imitation process seen in Section
2.5 uses information that may not be available to the players. In fact, in
the described model, individual i imitates individual j with a probability
that depends on the payoff Pj accumulated by j and on the degree kj of j.
However, having information about these quantities is not always possible,
as it is not possible in the real world to have full information about all
our acquaintances. We thus introduce a new evolutionary rule, that we call
selfish reciprocal altruism, based on strictly local information and on a selfish
updating process.

Local Information is directly gathered by individuals when playing with their
neighbors. No extra information is considered nor needed in our model.
Selfish Updating refers to the individuals’ choice of changing their strategy
only if it is convenient for themselves, in terms of accumulated payoff, in the
next few generations.
For the evaluation of the accumulated payoffs we make use of an asynchronous
strategy update: at each step, only a small portion of the population is given
the chance to change strategy, so that, when an individual faces this oppor-
tunity, he/she can reasonably assume that no variations will occur in the
neighborhood in the next few generations.

35
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An asynchronous update, by itself, would not help the emergence of cooper-
ation. In fact, the payoffs accumulated by a C and a D player with degree k
and kC cooperators neighbors are respectively:

PC,k,kC = (r − 1)kC − (k − kC) (3.1)

and

PD,k,kC = rkC (3.2)

where PC,k,kC is obviously smaller than PD,k,kC .

We therefore introduce a sort of penalization for defectors, using the idea
of direct reciprocity [3] together with a mechanism for optional participation
[18]. The original idea of reciprocity is maintained: when a C meets another
C – that means, he/she is reciprocated in his/her cooperative behavior –
he/she will be eager to play again with this individual. On the opposite,
when a C meets a D, he/she is defected (or exploited) and therefore he/she
reduces the probability of engaging another game with this individual.

More in detail, our evolutionary rule is defined as follows:

1. Initialization. Given a population of N individuals, individual i is
willing to play with individual j with probability pij. Initially, for
every i, j = 1, ..., N , pij = 1 if i and j are neighbors, while pij = 0
otherwise. (Note that, during the evolution of the game, we will have
pij 6= pji, in general.)

Figure 3.1: Initialization step: pij = 1 if i and j neighbors, 0 otherwise. For
example, p12 = 1, while p14 = 0.
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2. Interaction. At each round, every individual i decides the neighbors
with whom he/she wants to play. Called j one of the neighbors, indi-
vidual i wants to play with j with probability pij. The game between i
and j takes place only if both players are willing to play, i.e. it happens
with probability pijpji.
If i is a C and he/she is exploited by a D neighbor j, then pij is halved.
If i is a C and he/she is reciprocated by a C neighbor j, then pij, is
restored to 1.
If i does not engage a game with the neighbor j, then the probability
pij remains unchanged.
If i is a D, then pij = 1 no matter what is the strategy of j.
Note that the information accessible to players about the strategy of
neighbors depends on their own strategy. Ds are always willing to play
with everyone and therefore they know the exact state of their neigh-
bors: they either played in the previous step, and consequently learned
the state, or they did not. But in the second case they are necessar-
ily facing Cs, because Ds would never reject engaging a game. On
the other hand, Cs cannot be certain of the state of their opponents
and base their knowledge on the results of the latest interactions with
the interested neighbor, hence being liable to miss the variation of a
neighbor’s strategy. In particular, the belief of the C node i on the
state of the neighbor j is stored, by construction, in the probability pij.
Specifically, if pij < 1 then i believes j to be D, otherwise it is a C.

3. Update. After each round, a fraction α of the population is randomly
selected and given the opportunity to update strategy. When individual
i is selected, he/she computes the expected payoffs accumulated in
the neighborhood behaving as C or D in the next h ≥ 1 interaction
steps. The computation is done assuming that no other change will
occur in the meantime in the neighborhood. Moreover, cooperators
cannot know the exact state of their neighbors, hence they can only base
their calculation on the information gathered in the last interactions
occurred. Also note that it is plausible that a D knows the value of
pji, because he/she can remember how many consecutive times he/she
defected the C neighbor i. At this point, the individual compares the
two expected payoffs and changes strategy only if the expected gain
is positive. If the player updates strategy, the probabilities of playing
with neighbors are consequently modified:
When i is C and switches to D, pij is set to 1 for all neighbors j.
When i is D and switches to C, pij is set to 1

2
for those neighbors j that

are D and remains 1 for C neighbors.
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(a) First interaction (b) Another interaction

Figure 3.2: Interaction step: Consider player 1. At the first round of the game
he/she will play with all the neighbors, because all the pijs are equal to 1. After
the first round p12 and p16 will become 1

2 because 2 and 6 are Ds while 1 is C; p13

will remain 1. If the interaction is not the first one, games are played according
to the values of pijpji: for example, it may happen that player 1 engages a game
with players 2 and 3, but not with 6. In this case, after the interactions, p12 will
be halved again, while p13 will remain equal to 1. p16 will not be changed, because
there is no interactions between players 1 and 6.

(a) Selection for update (b) Updating

Figure 3.3: Update step: Imagine that player 1 is selected for the update. He/she
evaluates the expected payoffs over the horizon h in the two possible cases: if
he/she stays C and if he/she decides to switch to D. Finally, player 1 will choose
the strategy that gives him/her the higher expected payoff. If 1 decides to switch
to D, then p12 and p16 are restored to 1.

As a result of this modelization, the population and its state are defined by
the binary vector of status, C or D, for each individual and by the N × N
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matrix of the probabilities pij, that gives information both about the network
structure and the reciprocity status at the same time.

Considering the description of the model, the resulting network representing
the population is thus undirected, because link i→ j always exists together
with link j → i, but directionally weighted, because pij 6= pji (by construc-
tion, one of the two probabilities is always equal to 1) and adaptive, because
the pijs change in time.

Note that the information used by individuals only comes from their in-
teractions with other players. This satisfies one of the requirements of our
evolutionary rule: using only local information in order to avoid the necessity
of extra knowledge that might not be available to players.

Finally, it is important to observe the role of the prediction horizon h, the
number of steps over which the opportunity to change strategy is evaluated.
If h = 1 the winning strategy is always defection and everyone switches to
D; only under the assumption of h ≥ 2 it makes sense to reciprocate and
cooperation can persist.
As already mentioned, when an individual evaluates whether it is convenient
to change strategy or not, he/she assumes that no changes will occur in
his/her neighborhood during the next h generations. In order to make this
assumption reasonable, the value of α – the fraction of the population who
is given the possibility to change – should be small enough, when considered
together with the prediction horizon h, so that it will most likely be true that
no variations occur around the selected individual during the h prediction
steps. Note that αh is a gross upper-bound of the average fraction of the
neighbors that might have changed state in h steps. In particular, we will
choose values of the investment horizon h and of the fraction α so that
αh ≤ 0.25.

3.2 Preliminary Analysis

To show that selfish reciprocal altruism favors the emergence and persistence
of cooperation in heterogeneous social networks we have performed some
preliminary analysis using an investment horizon of h = 2 steps.

Consider the situation at the first strategy update, just after the first round
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of the interaction. Keep in mind that when a C individual thinks his/her
neighbor is a C, then he/she will want to play with probability one, while
when the neighbor is a D, the probability is halved at every interaction.
On the other hand, a D individual always wants to play with probability
one. Therefore, the expected payoffs (evaluated with reference to the payoff
matrix shown in Table 2.5) for a player with degree k and kC C neighbors are
those discussed below, depending on the strategy used in the first round and
on the choice of behaving as C or D over the next two interaction rounds.

If at round one he/she was a C and decides to stay C in the next two rounds,
then:

PCC = 2(r − 1)kC − (k − kC)
(1

2
+

1

2

1

4
+

1

2

1

2

)
= 2(r − 1)kC −

7

8
(k − kC)

(3.3)

If at round one he/she was a C and decides to switch to D, then:

PCD = rkC

(
1 +

1

2

)
=

3

2
rkC (3.4)

If at round one he/she was a D and decides to stay D in the next two rounds,
then:

PDC = (r − 1)kC

(1

2
+

1

2
1 +

1

2

1

2

)
− (k − kC)

(1

2
+

1

2

1

4
+

1

2

1

2

)
=

5

4
(r − 1)kC −

7

8
(k − kC)

(3.5)

If at round one he/she was a D and decides to switch to C, then:

PDD = rkC

(1

2
+

1

2

1

4
+

1

2

1

2

)
=

7

8
rkC (3.6)

Observe that expectations are computed assuming that no variations will
occur in the neighborhood of the player over the considered horizon, a hy-
pothesis that is plausible under the assumption of asynchronous update.
As an example, consider a player that behaves as C in round 1. If he/she
keeps cooperating at rounds 2 and 3, the cooperation with the kC C neigh-
bors gives the term 2(r − 1)kC , whereas the interaction with the (k − kC)
Ds takes place with probability 1

2
at round 2, because defection is for sure

detected at round 1, and with probability 1
2

1
4

+ 1
2

1
2

= 3
8

at round 3, because
defection occurs with probability 1

2
at round 2.
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The expressions for payoffs are summarized in Table 3.1, together with the
conditions on parameters that gives rise to a switch of strategy.

C D Condition

C PCC = 2(r − 1)kC − 7
8
(k − kC) PCD = 3

2
rkC r < 4 + 7

4
k−kC
kC

D PDC = 5
4
(r − 1)kC − 7

8
(k − kC) PDD = 7

8
rkC r > 10

3
+ 7

3
k−kC
kC

Table 3.1: Payoff values and conditions for strategy update with investment hori-
zon h = 2. Note that, if kC = 0, a C player always switches to D, while a D player
does not change strategy. In fact, PCC < 0 and PDC < 0, while PCD = 0 and
PDD = 0: thus, if kC = 0, being a D always gives higher payoffs.

From the expected payoffs written above we notice that:

− A C with only D neighbors changes to D when selected for update. Be-
ing C he/she is exploited by all neighbors and hence receives a negative
payoff, while switching to D will give him/her a null payoff.

− A C with only C neighbors does not change to D provided r ≥ 4. In
this case, in fact, the payoffs are respectively PCC = 2(r − 1)kC and
PCD = 3

2
rkC and PCC ≥ PCD if and only if r ≥ 4.

− A D with only D neighbors does not change strategy, because it would
be PDC < 0, while PDD = 0.

− In all-to-all networks, reciprocity does not support the emergence of
cooperation. Let NC be the total number of Cs and N the size of the
population, then a C decides to switch if r < 4 + 7

4
N−NC

NC−1
, while a D

switches if r > 10
3

+ 7
3
N−NC−1

NC
. If NC is much smaller than N , then the

few Cs change to D while Ds remain Ds.

− Low-degree Ds connected to a C might change to C. For example, if
k = 1 the switch takes place provided r > 10

3
.

3.2.1 Preliminary analysis for star network

Recall the configuration of a star network, where a single central hub is
connected to many leaves (Figure 2.7). This represents the simplest case of
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heterogeneous network.
Imagine a single C is placed in the hub, while all the leaves are Ds as shown
in Figure 3.4 (a): this is exactly the above mentioned situation of low-degree
Ds connected to a C.

(a) (b)

Figure 3.4: (a) Star network with a single C in the central hub. (b) Star network
with C hub and some C leaves.

In this case, for a D leaf we have PDC = 5
4
(r − 1) and PDD = 7

8
r, so the

leave changes strategy if r > 10
3

. It is very likely that some leaves will change
strategy before the central node is selected for the update, so that the fraction
of Cs will initially increase. If this fraction gets to the level above which the
C hub has no incentive to change, then cooperation will eventually dominate.

We can analytically determine what is this level: let kC be the number of C
leaves and k the total number of leaves, as shown in Figure 3.4 (b).

For the C hub, we have:

PCC = 2(r − 1)kC −
7

8
(k − kC)

PCD =
3

2
rkC

so

∆P = PCD − PCC =
(9

8
− 1

2
r
)
kC +

7

8
k

If we want the C hub not to change to D, then it should be ∆P < 0.
If r < 9

4
, then ∆P is always greater than zero and the hub always switches

to D.
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But, if r > 9
4
, ∆P is smaller than zero if the number kC of C leaves satisfies

kC >
7
8
k

1
2
r − 9

8

So, if the value of the benefit-to-cost ratio is large enough and at least kC >
7
8
k/(1

2
r− 9

8
) leaves decide to change strategy before the C hub is selected for

the update, starting from a star configuration with a single C placed in the
central hub, cooperation can invade.

As we will show in the following, this result extends to complex topologies:
selfish reciprocal altruism supports the emergence of cooperation in hetero-
geneous networks, provided the benefit-to-cost ratio r is sufficiently high and
the few initial Cs occupy some of the network’s hubs.

3.3 Simulations

We have performed extensive numerical simulations to confirm the intuition
raised by the above analytical considerations. We test four types of networks
– complete, single-scale (ER), scale-free (BA) and star – and use two different
types of initialization, cooperators randomly chosen or cooperators initially
in hubs.

For each of the considered typologies, we generate multiple networks, initial-
ize them, and then perform simulations to evaluate the eventual proportion
of cooperators. The parameters defining the simulation setting are listed
below:

− N : Number of nodes in the network;

− initial fraction of Cs: Initial proportion of cooperators in the net-
work;

− h: Investment horizon. It is the number of steps considered by an
individual while computing the expected payoffs to decide whether to
change strategy or not;

− α: Fraction of the population selected for the strategy update after
each round. It is important to notice that, varying the value of α,
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the dynamics of the model crucially varies too. If α is too small, the
validity of the model is compromised. For example, if α is very small,
it may happen that a C individual is not selected for the update for
a very long time. This player, therefore, keeps being defected by a D
neighbor, reducing the probability of playing with him/her every time,
till the moment in which this probability becomes so small that the two
players do not engage a game almost anymore. But in this case, the C
individual will not realize if the D neighbor changes strategy, because
the probability of playing with that neighbor has become so small that
he/she will not have the chance of changing his/her belief.
On the other hand, if α is too large, the hypothesis of an asynchronous
update where the neighborhood stays unchanged becomes unrealistic.
A large value of α means that a greater portion of the population is
selected for the update, and therefore it is more likely that some of the
neighbors of a selected individual will be selected as well.
For this reasons, taking into account the horizon h, we choose a value
of α such that αh ≤ 0.25;

− r: Benefit-to-cost ratio, that is, the rate between the benefit obtained
by receiving an altruistic act, and the cost paid performing it. This is
a very important parameter in the model. Changing it’s value allows
to favor the emergence of cooperation. In particular, high values of r
tend to enhance cooperation;

− number of realizations: For each of the network typology considered
(in particular, for ER and BA networks), n realizations networks with
the same parameters are generated to perform simulations;

− number of runs: Given a network and an initialization, n runs sim-
ulations are performed on it, randomly assigning the opportunity of
strategy update to different nodes every time.

We introduce a convergence test. For each simulation – a network and its
initialization, evaluated for an investment horizon h and a specific benefit-
to-cost ratio r – several iterations are performed. The simulation ends when
either the convergence criteria is met or the maximum number of iteration
is reached. Hence, we need some new parameters to model this rule:

− ε: Convergence parameter (see below);
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− maximum number of iterations: The maximum number of iterations
n max allowed in a single simulation is needed to avoid the risk of never
ending simulations.

Given a network with an initialization and a specified value for the investment
horizon h and for the benefit-to-cost ratio r, a simulation is performed. At
each iteration of the simulation, the number of cooperators in the network is
computed. The code keeps track of the results of the last L iterations (L = 20
in the following) to check if the convergence has been reached. Specifically,
the convergence criterion is based on variation of the moving average, i.e.
the average number of cooperators in the network calculated on the last L
iterations performed.

The moving average can be expressed in recursive form, as follows. Let
y(t) be the number of cooperators at iteration t, L the number of iterations
considered and m(t) the floating average at iteration t, then:

m(t) =
1

L

L−1∑
k=0

y(t− k) =

= m(t− 1)− 1

L
y(t− L) +

1

L
y(t)

(3.7)

Once the moving average is computed, it is compared with the average at
the previous step, and if the variation is smaller than ε we are one step closer
to the convergence. If this condition is satisfied s consecutive times (s = 10),
then the equilibrium is reached and the simulation ends.
For each of the n realizations networks, n runs simulations are performed.
The number of cooperators is averaged on the total number of realizations
and runs, and is divided by the number of nodes N to obtain the fraction of
cooperators.

3.3.1 Explanatory example

To better understand how the entire process works, we present here a small
example to clarify the evolution of cooperation in a network. In particular
consider the network in Figure 3.5, generated according to the BA model
[24].
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Figure 3.5: Example of a small network generated with BA algorithm [24]

The values of the parameters used in this example are: N = 10, h = 4,
α = 0.05, r = 15, n realizations = 1, n runs = 1, ε = 0.005, n max = 1000.

We perform an initialization of the state of the network, so that the initial
Cs are placed randomly. Here, we see that two Cs, colored in green, have
been placed. Defectors appear in red.

Figure 3.6: Initialization: cooperators are green, defectors are red.

At this point, the evolutionary process can start. Following the rules de-
scribed at the beginning of this chapter, each node engages games with
his/her neighbors, and if selected for the update, he/she can decide whether
to keep playing with the actual strategy or to switch to the other one, ac-
cording to his/her knowledge and belief on the status of the neighbors.

Let us describe the process of asynchronous update with an example which is
purely illustrative. The first node changing strategy is node 7, that switches
from D to C. However, after few iterations, node 9 realizes that it is not
convenient for him/her being a C and has the chance to switch to D (see
Figure 3.7).

Node 6 decides to update strategy, followed then by player 3 (see Figure 3.8).
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(a) (b)

Figure 3.7

(a) (b)

Figure 3.8

Node 9 faces now a different neighborhood, and thus decides to go back to
the original C strategy. Also node 4, evaluating the expected payoffs, chooses
to move towards a cooperative attitude.

(a) (b)

Figure 3.9

Node 1, now surrounded by a majority of Cs, understands that is better
for him/her to cooperate, and the same does node 5 because both his/her
neighbors are Cs (see Figure 3.10).

Finally, the last two defectors abandon their strategy and adopt the more
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(a) (b)

Figure 3.10

favorable cooperation.

(a) (b)

Figure 3.11: The final state of the evolutionary process.

This is a very simple example of how cooperation can evolve in a network. It
is possible that a player decides to change strategy, but after few iterations
goes back to the other one, as it happened with node 9, because in the
meantime the strategies of his/her neighbors have changed as well, and the
assessment done in the past are not valid anymore. Here we started from 2
initial cooperators, and we reached a complete dominance of the cooperative
behavior. We will see in the next section that, depending on the values of the
parameters used in simulations, it is possible to reproduce a similar result in
larger networks and also with different types of initialization.

3.3.2 Results

The values of the parameters used for the simulations are the following:

− N = 1000;
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− initial fraction of Cs ∈ {0.01, 0.05, 0.10}

− h ∈ {2, 3, 4, 5};

− α = 0.05;

− r varying from 1 to 15;

− n realizations = 15;

− n runs = 10;

− ε = 0.005;

− n max = 1000

The specific choice of ε and n max has been made in order to ensure that the
equilibrium is always reached, and thus the maximum number of iterations
is only needed to handle exceptional situations.

Figures from 3.12 to 3.15 show the results of simulations with respect to the
two most important parameters of our evolutionary rule, the benefit-to-cost
ratio r and the investment horizon h. For each scenario, we report how the
average asymptotic fraction 〈x̄〉 of Cs changes with r and h.
The same type of image is shown when considering an initial fraction of co-
operators of respectively 1%, 5% and 10%.
For networks generated with BA [24] and ER models, results are shown in
Figure 3.12 and Figure 3.13 considering two different types of initialization:
images on the left show results obtained when the initial cooperators are
placed randomly, images on the right show results obtained when the initial
cooperators are placed in hubs, the most connected nodes. For complete
networks only the random initialization is considered, for the three different
levels of the initial proportion of cooperators, as shown in Figure 3.14. Ini-
tialization in hubs does not make sense in this case, because all the nodes
have the same degree, hence there are no hubs. For star networks, instead,
we simply focus on one case: Figure 3.15 shows the results for a single initial
cooperator placed in the only hub of the network, which is connected to all
the defector leaves.

In networks generated according to the BA model [24], the selfish reciprocal
altruism can promote cooperation in all cases, but the heterogeneous struc-
ture of the networks is best exploited if the initial Cs occupy the hubs of the
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structure.
As expected, when the initial proportion of cooperators grows, cooperation
can dominate even for small values of r (see figures 3.12 (a), (c) and (e) or
3.12 (b), (d) and (f)). When all the other parameters are fixed, increasing the
value of h favors cooperation significantly. In fact, when the prediction hori-
zon h is larger, cooperation tends to become more convenient than defection,
in terms of expected payoff, hence players decide to switch to a cooperative
behavior rather than defecting. Finally, comparing the results of the two
different types of initialization with the same initial level of cooperators, it is
clear that the emergence of cooperation is favored when the Cs are initially
placed in hubs. Hubs are connected to many other individuals and, being
C, they can influence the decision of switching to C for a higher number of
individuals. When the initialization places Cs in hubs, in fact, the collabora-
tive behavior is able to dominate also for smaller values of the benefit-to-cost
ratio r and of the investment horizon h, as it can be seen comparing the left
side and the right side of Figure 3.12.
Note that the results are shown in figures for r going from 1 to 15. In many
cases the average asymptotic fraction 〈x̄〉 of Cs reaches 1. For the cases in
which the dominance of cooperation was not reached yet, we made simula-
tions using higher values of r: if the value of r is large enough, the dominance
of cooperation is reached for all the values of h and of the initial proportion
of Cs (i.e. we obtain 〈x̄〉 = 1 in all cases).

In networks generated with the ER algorithm, as in the previous case, cooper-
ation is enhanced when the initial proportion of Cs, the benefit-to-cost ratio
r and the prediction horizon h grow. However, in this case, starting with
Cs in the most connected nodes does not have any significant and beneficial
effect. Comparing results obtained with a random initialization and with an
initialization in hubs, the difference of the initialization does not influence the
outcome (see left side and right side of Figure 3.13). This aspect is a result of
the characteristic structure of ER networks: they are essentially single-scale
networks, which means that the degree of each node slightly varies from the
average degree of the network. Consequently there are no hubs or, in other
words, the influence of the most connected nodes is not so powerful, because
the degree of the other nodes is similar.
Note that also for this type of networks, increasing the benefit-to-cost ratio
r to values larger than 15 results in a dominance of cooperation for all the
combinations of the parameters.

In complete networks cooperation cannot invade, as shown in Figure 3.14



3.3. Simulations 51

(a), and can hardly persist, as shown in Figure 3.14 (b). In such homo-
geneous networks, defection is often the best strategy for players, because
all individuals are playing in similar conditions, as seen throughout the the-
sis. Although, also for this type of network, for higher values of the initial
proportion of Cs it is possible to see that 〈x̄〉 reaches 1.

Finally, as expected from the preliminary analysis, we can notice that in the
simplest case of heterogeneous network, the star network, starting from a
single cooperator placed in the central hub, cooperation is able to invade
and persist, as shown in Figure 3.15.
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(a) BA, random initialization
with 1% C

(b) BA, hub initialization
with 1% C

(c) BA, random initialization
with 5% C

(d) BA, hub initialization
with 5% C

(e) BA, random initialization
with 10% C

(f) BA, hub initialization
with 10% C

Figure 3.12: Results obtained for scale-free Barabási-Albert networks [24]. The
left side shows results for random initializations, the right side those for initial-
izations of Cs in hubs. Images are shown for three different initial fraction of
cooperators: 1%, 5% and 10%.
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(a) ER, random initialization
with 1% C

(b) ER, hub initialization
with 1% C

(c) ER, random initialization
with 5% C

(d) ER, hub initialization
with 5% C

(e) ER, random initialization
with 10% C

(f) ER, hub initialization
with 10% C

Figure 3.13: Results obtained for single-scale Erdös-Rényi networks. The left side
shows results for random initializations, the right side those for initializations of
Cs in hubs. Images are shown for three different initial fraction of cooperators:
1%, 5% and 10%.
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(a) Complete, random initialization with
1% C

(b) Complete, random initialization with
5% C

(c) Complete, random initialization with
10% C

Figure 3.14: Results obtained for complete networks with random initialization.
Images are shown for three different initial fraction of cooperators: 1%, 5% and
10%



3.4. A possible extension: Mean Field Analysis 55

Figure 3.15: Results obtained for star networks, where a single initial cooperator
is placed in the central hub, and defectors are places in all the leaves. As seen in
the preliminary analysis, for the star network the dominance of cooperation can
be reached.

3.4 A possible extension: Mean Field Analy-

sis

An interesting approach for future works could be the study of the mean
field model. Specifically, introducing some approximations, it is possible
to simplify the above described model, so that it can represent an average
behavior.

Consider discrete time steps and take into account nodes grouped according
to their grade, going from 1 to the maximum grade k̄. Call xk(t) the fraction
of cooperators with degree k and Nk = P (k)N the number of nodes with
degree k, where P (k) is the degree distribution evaluated for the degree k
and N is the total number of nodes. Then, the number of cooperators with
degree k at time t is Nkxk(t). The number of cooperators with degree k at
time t+ 1 will be:

Nkxk(t+ 1) = Nkxk(t)−Nkxk(t)Prob(Ck → Dk)

+Nk(1− xk(t))Prob(Dk → Ck)
(3.8)

that is the number of cooperators at the previous step, minus the number of
Cs that became Ds, plus the number of Ds that switched to C.

Let’s now compute these terms one by one.
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The probability that a C with degree k changes to D is:

Prob(Ck → Dk) = α
k∑

kC=0

Prob(Ck,kC → Dk)Prob(kC) (3.9)

where α is the fraction of the population selected for the strategy update at
each step, Prob(Ck,kC → Dk) is the probability that a C with degree k with
kC C neighbors switches to D, and Prob(kC) is the probability of having kC
C neighbors.

The probability Prob(kC) of having kC C neighbors is:

Prob(kC) =

(
k

kC

)
P kC
C P k−kC

D (3.10)

where PC and PD are respectively the probabilities that a selected neighbor
is a C or a D:

PC =
k̄∑

k′=1

xk′Prob(neighbor with degree k
′) (3.11)

PD = 1− PC (3.12)

The probability of having a neighbor with degree k′ can be written as follows:

Prob(neighbor with degree k′) =
k′Nk′∑k̄

k′′=1 k
′′Nk′′

=
k′P (k′)

〈k〉

(3.13)

where P (k′) is the degree distribution evaluated for k′, and 〈k〉 is the average
degree.

An individual decides to change strategy if it is convenient for him/her in
the next few iterations, in terms of accumulated payoffs. We consider here
an investment horizon of h = 2 rounds.
Let’s call ∆PayC→D(kC) the difference between the payoff accumulated by
a C player if he/she switches to D and if he/she decides to stay C. If this
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difference is positive, he/she will change strategy, else no variation will occur.
In formulas, it can be expressed as follows:

Prob(Ck,kC → Dk) =

{
1 if ∆PayC→D(kC) > 0

0 if ∆PayC→D(kC) > 0
(3.14)

where, being π the average probability of engaging a game (that we assume
being constant), the variation of the accumulated payoff is:

∆PayC→D(kC) = rkC

[
π + π

π

2
+ (1− π)π

]
−
{

(r − 1)kC

[
π + π2 + (1− π)π

]
− (k − kC)

[π
2

+
π

2

π

4
+
(

1− π

2

)π
2

]}
(3.15)

On the other hand, the probability that a D with degree k changes to C is:

Prob(Dk → Ck) = α
k∑

kC=0

Prob(Dk,kC → Ck)Prob(kC) (3.16)

And following the argument seen above, the probability that a D with degree
k with kC neighbors updates his/her strategy to D is:

Prob(Dk,kC → Ck) =

{
1 if ∆PayD→C(kC) > 0

0 if ∆PayD→C(kC) > 0
(3.17)

∆PayD→C(kC) = (r − 1)kC

[
π + π2 +

(
1− π

)
π
]

− (k − kC)
[1

2
+

1

2

1

4
+
(

1− 1

2

)1

2

]
− kC

[π
2

+
π

2

π

4
+
(

1− π

2

)π
2

] (3.18)

∆PayD→C(kC) being the difference between the payoff accumulated by a D
player if he/she switches to C and if he/she decides to stay D.

As a future work it can be interesting to analyze the mean field model and
study whether it yields the same results obtained in previous sections.





Chapter 4

Conclusions

In this thesis we have questioned the locality of interaction [22] – network
reciprocity – as a mechanism favoring cooperation in social networks. Consid-
ering in specific the social context, the evolution of cooperation in structured
populations has been described as an imitation process, where individuals
copy the strategies of better performing neighbors [21]. However, copying a
neighbor who operates in drastically different connectivity conditions does
not ensure to obtain the neighbor’s performance. This is evident in many
real social and economic situations, where performance is intrinsically related
to the connectivity of the individual or enterprise, other than to the adopted
strategy.

The imitation of the best performing strategies is certainly a social driver,
but in heterogeneous contexts a slightly different approach is needed. A
way to deal with heterogeneous networks of contacts could be that of scal-
ing the players’ payoffs by the neighborhood size before comparison. Some
sort of scaling has been implemented in the literature (as discussed in Sec-
tion 2.5), but only after the payoffs comparison, thus leaving the hope to
little-connected nodes of inheriting the performance of highly-connected ones.
However, a proper scaling before payoff comparison would essentially kill the
effect of heterogeneity in fostering cooperation. Moreover, the connectivity
of neighbors is a non-local information, that is not always available.

We propose an alternative explanation for the evolution of cooperation in het-
erogeneous networks, based only on local information together with a selfish
reciprocal altruism. With information only available through the outcome of
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direct pairwise interactions according to the PD game, individuals act fol-
lowing a selfish approach, deciding whether to switch to C or D depending
on what is best for them over an investment horizon of a few interaction
rounds. Instead of defecting non cooperative neighbors, we choose to allow
Cs to avoid participation with D neighbors, reducing the probability of play-
ing with them after each defection. We hence use a mix of reciprocal altruism
[3] and optional participation [18].

Selfishness and reciprocity together are able to explain both the emergence
and persistence of cooperation in heterogeneous networks, and eventually
even its dominance, provided the benefit-to-cost ratio of the interaction is
sufficiently high relative to the investment horizon. This result is strongly
enhanced if the few initial cooperators occupy some of the central nodes of
the network structure (hubs). Of course, the condition for the evolution of
cooperation are necessarily demanding, though this is true for all proposed
mechanisms. Even network reciprocity essentially works – in birth-death bi-
ological processes or according to the above criticized imitation paradigm –
when cooperators are initially assumed sufficiently frequent to form clusters
of protected Cs. Pure network reciprocity indeed does not explain the emer-
gence of cooperation, whereas selfish reciprocal altruism does it. In other
words, we can say that network reciprocity allows more sophisticated rules
of strategy update, that in turns pave the way to cooperation.

Many variants and extensions of the present work are possible.
Different reciprocity strategies could be considered, for example nodes that
behave as C with certain neighbors and as D with others according to the
past history of the interaction. Another possible variant could be the intro-
duction of a new mechanism when facing D neighbors: for example, when a
player encounters a D neighbor he/she sets the probability of playing with
him/her to a very low level for a certain number of rounds. After that time is
passed, the probability is increased again, so that it is possible to understand
whether the neighbor changed strategy in the meantime or not. This could
be a method to overcome the problems raised by a very low level of α, the
fraction of population updating strategy.
Group cooperation, described in terms of public goods games, could be intro-
duced to go beyond the pairwise interaction [27]. The role of other network’s
aspects, such as clustering [28] and communities [29] or core-perifery struc-
tures [30], is worth to be investigated. Network dynamics and formation [31]
to be possibly coupled to the game dynamics [32], are crucial to see whether
the network evolves toward the structures favoring cooperation. Multiplex
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and interdependent networks [33] could cope with several coupled layers of
biological, social, and economic structures. All of this has so far been an-
alyzed in the social context based on the crucial assumption that evolution
proceeds by imitation, a process that should be reconsidered in real hetero-
geneous situations.
Finally, the mean field model seen in the previous chapter – where the evolu-
tion of cooperation is not studied looking at the behavior of single individuals,
but focusing on the average behavior of nodes with degree k – could be an
interesting variant when trying to reduce the complexity of calculation.
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più sopportare i miei “Non posso, devo studiare”. Ad Elisa, che nonostante
la lontananza sa sempre essermi accanto e farmi sentire la sua presenza. In-
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