
Politecnico di Milano

Scuola di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

An AI assisted framework for the design
of 2D platformers

Relatore: Prof. Pier Luca LANZI

Correlatore: Ing. Daniele LOIACONO

Tesi di Laurea di:

Antonio Umberto ARAMINI Matr. 836202

Anno Accademico 2015–2016

Ai miei nonni

Ringraziamenti

Ringrazio innanzitutto il Prof. Pier Luca Lanzi, per il tempo dedicatomi e per
avermi permesso di svolgere un lavoro di tesi che coniugasse gli studi e la mia
passione per i videogiochi. Ringrazio l'Ing. Daniele Loiacono, per i preziosi sug-
gerimenti e il supporto fornitomi.
Un sincero grazie va ai miei genitori, per avermi sempre incoraggiato a puntare al
massimo e non avermi mai fatto mancare nulla, anche nelle situazioni più di�cili.
Un grazie speciale a Clara, per avermi supportato e sopportato durante lo svol-
gimento della tesi.
Ringrazio poi tutti i compagni di corso con cui ho avuto la fortuna di condividere
questi anni. In particolare, ringrazio Federico, Mauro e Davide per i bei momenti
condivisi e i progetti svolti in gruppo; un grazie anche agli amici di Como: Jaco-
po, Marco, Nadir, Gabriele, Cristina e Alberto.
Ringrazio i miei amici di Stupidi Pixel, Simone, Fabio e Alessio, per l'avventura
che stiamo vivendo assieme.
Un grosso grazie va a tutti coloro che hanno dedicato parte del loro tempo per
partecipare ai test sui salti.
In�ne, ringrazio i miei nonni per tutto l'amore che mi hanno donato e per avermi
reso la persona che sono.

Antonio Umberto Aramini

Sommario

Il design di livelli di videogiochi è un compito complesso e di importanza critica.
I livelli devono suscitare divertimento e s�da, mentre la frustrazione va evitata
a tutti i costi. Strumenti di intelligenza arti�ciale possono rivelarsi e�caci per
supportare il design di livelli godibili e di qualità.
In questa tesi, viene descritto come l'intelligenza arti�ciale è stata usata per af-
frontare il problema di supportare il design di livelli di videogiochi, e si o�re
una panoramica delle metriche utilizzate per valutare i contenuti di gioco. Pre-
sentiamo un framework per supportare i designer nella creazione di livelli per
platformer 2D. Il nostro framework mette a disposizione dei designer un insieme
di strumenti (i) per creare livelli per platformer 2D, (ii) per stimare la di�coltà
e la probabilità di successo delle azioni di salto, e (iii) un insieme di metriche per
valutare i livelli in termini di di�coltà e probabilità di completamento.
In�ne, presentiamo i risultati di un insieme di esperimenti che abbiamo svolto
con giocatori umani per validare le metriche incluse nel nostro framework.

Abstract

The design of video game levels is a complex and critical task. Levels have to elicit
fun and challenge while avoiding frustration at all costs. Arti�cial intelligence
tools can prove e�ective in assisting the design of enjoyable and quality levels.
In this thesis, we discuss how arti�cial intelligence has been used to approach
the problem of assisting level design in video games and overview the metrics
employed to evaluate game content. We present a framework to assist designers
in the creation of levels for 2D platformers. Our framework provides designers
with a toolbox (i) to create 2D platformer levels, (ii) to estimate the di�culty
and probability of success of jump actions, and (iii) a set of metrics to evaluate
levels in terms of di�culty and probability of completion.
At the end, we present the results of a set of experiments we carried out with
human players to validate the metrics included in our framework.

Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Thesis objectives . 2
1.2 Thesis structure . 2

2 State of the Art 5
2.1 History of 2D Platformers . 5

2.1.1 The 1980s . 5
2.1.2 The 1990s . 7
2.1.3 The new millennium . 8

2.2 AI-assisted design in videogames 10
2.3 AI-assisted design in 2D platformers 12
2.4 Summary . 14

3 Level design metrics 15
3.1 The importance of design metrics 15
3.2 Structural features . 16
3.3 Gameplay features . 19
3.4 Summary . 23

4 Our approach to level design 25
4.1 Introduction . 25

4.1.1 Conceptual model and abstract representation of a level . . 25
4.1.2 Our framework . 26

4.2 Analysis of structural features . 26
4.2.1 The platforms . 33

4.3 Analysis of gameplay features . 35
4.3.1 Trajectory de�nition . 35
4.3.2 Trajectory generation . 37
4.3.3 Types of trajectory . 42

xii CONTENTS

4.3.4 Jump di�culty evaluation 55
4.4 Summary . 58

5 Modeling level success probability 59
5.1 Jumps start point noise functions 59

5.1.1 Simple trajectory jumps 60
5.1.2 Reentrant trajectory jumps 69
5.1.3 Falling trajectory jumps 71

5.2 Experimental validation of single jumps probability 75
5.3 Level di�culty and probability of success 82
5.4 Summary . 84

6 Framework tools 85
6.1 Introduction . 85
6.2 Platforms Custom Editor . 85
6.3 Platformer Design Tools window 87
6.4 Summary . 90

7 Conclusions 91

Bibliography 93

List of Figures

2.1 A screenshot from Donkey Kong. 6

2.2 A screenshot of Super Mario Bros. 3 map. 7

2.3 Screenshots from Pandemonium (left) and Crash Bandicoot (right). 8

2.4 Screenshots from Braid (left) and Super Meat Boy (right). 9

2.5 A screenshot of Sentient Sketchbook User Interface. 11

2.6 A screenshot of Tanagra User Interface. 13

3.1 Examples of rhythm groups in Launchpad. A 20s long, regular,
low density rhythm group (top), a 15s long, swing, normal den-
sity rhythm group (center) and a 10s long, random, high density
rhythm group (bottom). 18

4.1 Bounds Boxes (in red) for a STATIC_FLOATING platform (left)
and for a MOVING platform with a horizontal trajectory (right). 35

4.2 Two generated trajectories. Target point in green. The orange
trajectory fails to reach the target point. The red trajectory is
able to reach the target point. 37

4.3 A trajectory composed by three functions. P0, P1 and P2 (in black)
are the starting points of each function. 42

4.4 A boundary trajectory (in red) and a subset of its covered trajec-
tories (in green). 43

4.5 Starting platform on the left and target platform on the right.
Optimal takeo� points highlighted in green and landing points
highlighted in blue. 45

4.6 Two platforms with overlapping projections. 46

4.7 Boundary trajectories (in green) for two Trivial con�gurations. . . 46

4.8 An example of Simple con�guration. The character, standing on
the starting platform (left), needs to jump over the gap to reach
the target platform (right). 47

4.9 The four boundary trajectories generated in case of SINGLE_JUMP
and WALK_AND_RUN mechanics. 48

xiv LIST OF FIGURES

4.10 The maximum number of boundary trajectories (twelve) that can
be generated in case ofDOUBLE_JUMP andWALK_AND_RUN
mechanics. 49

4.11 An example of Falling con�guration. The character, standing on
the starting platform (top), needs to fall down and land on the
target platform (bottom). 50

4.12 Boundary trajectories generated for the same Falling con�gura-
tion with two di�erent mechanics settings. On the left, SIN-
GLE_JUMP and WALK_AND_RUN settings. On the right,
DOUBLE_JUMP and WALK_AND_RUN settings. 51

4.13 An example of Reentrant con�guration. The character is standing
on the starting platform (bottom), with the target platform above
him. 53

4.14 The set of boundary trajectories generated for a Reentrant con�g-
uration. 54

4.15 The set of boundary trajectories generated for a Reentrant con-
�guration. The �rst jump green trajectory has been generated
multiple times to avoid the collision with the upper platform. . . . 55

5.1 The boundary trajectories for a Simple jump con�guration. The
only successful boundary trajectory is the one in green. The op-
timal takeo� point is highlighted in blue. The interval width δ
associated to the successful trajectory is displayed in black. 61

5.2 The generated sample trajectories for the scenario of Figure 5.1
using the Uniform noise function. 61

5.3 The boundary trajectories for a Simple jump con�guration. Suc-
cessful trajectory in green and unsuccessful trajectories in red. The
optimal takeo� point is highlighted in blue. The Gaussian distri-
bution associated to the successful trajectory is displayed in black. 63

5.4 The generated sample trajectories for the scenario of Figure 5.3
using the Gaussian without resampling noise function. 63

5.5 The generated sample trajectories for the scenario of Figure 5.3
using the Gaussian with resampling noise function. 64

5.6 The boundary trajectories for a Simple jump scenario. 65

5.7 The Uniform noise function intervals for two sample �rst jump
trajectories. 65

5.8 The sample trajectories generated for the scenario of Figure 5.6
using the Uniform noise function. 66

5.9 Two sample �rst jump trajectories with the respective Gaussian
distributions for the random takeo� points of the double jump
trajectories. The optimal takeo� points for the double jump tra-
jectories are displayed in blue and in yellow. 67

LIST OF FIGURES xv

5.10 The sample trajectories generated for the scenario of Figure 5.9
using the Gaussian without resampling noise function. 67

5.11 The sample trajectories generated for the scenario of Figure 5.9
using the Gaussian with resampling noise function. 68

5.12 The directed edge computed for a Simple trajectory con�guration.
The di�culty and probability values of the edge are displayed. The
probability is computed using the Uniform noise function. 68

5.13 The directed edge computed for the same Simple trajectory con-
�guration is displayed together with its di�culty and probability
values. On the left, the edge probability is computed using the
Gaussian without resampling noise function. On the right, the
edge probability is computed using the Gaussian with resampling
noise function. 69

5.14 Two boundary trajectories for a Reentrant con�guration. The op-
timal takeo� points for the �rst jump and the double jump are
highlighted in yellow and in blue respectively. 70

5.15 A sample Reentrant trajectory and the two intervals used by the
Uniform noise function to generate the random takeo� points. . . 70

5.16 A sample Reentrant trajectory and the Gaussian distributions used
to generate the random takeo� points. 71

5.17 Boundary trajectories and Uniform noise function intervals for a
Falling con�guration. On the left, the character jumping mode is
not set to DOUBLE_JUMP ; on the right, the character jumping
mode is set to DOUBLE_JUMP. 72

5.18 Sample trajectories generated with the Uniform noise function for
the scenario of Figure 5.17. 72

5.19 Boundary trajectories and Gaussian distributions for the random
start points for a Falling con�guration. On the left, the character
jumping mode is not set to DOUBLE_JUMP ; on the right, the
character jumping mode is set to DOUBLE_JUMP. 73

5.20 Sample trajectories generated with a Gaussian noise function for
the scenario of Figure 5.19. 74

5.21 Bar chart comparing Mean Absolute Error (MAE) values for the
Uniform noise function. 78

5.22 Bar chart comparing Mean Absolute Error (MAE) values for the
Gaussian without resampling noise function. 79

5.23 Bar chart comparing Mean Absolute Error (MAE) values for the
Gaussian with resampling noise function. 79

5.24 Bar chart comparing the Di�culty Ordering Error Ratio (DOER)
values for the Uniform noise function. 80

5.25 Bar chart comparing the Di�culty Ordering Error Ratio (DOER)
values for the Gaussian without resampling noise function. 81

xvi LIST OF FIGURES

5.26 Bar chart comparing the Di�culty Ordering Error Ratio (DOER)
values for the Gaussian with resampling noise function. 81

5.27 An example of cumulative frequency distribution displayed by the
framework. 83

5.28 An example of minimum di�culty path (in red) displayed by the
framework. 84

6.1 Custom editor interface for a STATIC_FLOATING platform. . . 86
6.2 Custom editor interface for a MOVING platform. 86
6.3 Visualization of the outgoing edges (left) and incoming edges (right)

for the selected platform. 87
6.4 A screenshot of the design tools main view. 88
6.5 An example of level generated with the feasibility constraint. . . . 88
6.6 The graph computed for a small level. 89
6.7 A screenshot of the design tools extended view. 89
6.8 A heatmap computed for a level based on the probabilities of the

outgoing edges of each platform. 89

List of Tables

4.1 Parameters regulating the character movement. 28
4.2 Parameters regulating the character jump. 30
4.3 Parameters regulating the character health and damages interac-

tions. 31
4.4 Parameters regulating the character shooting ability. 32
4.5 Parameters regulating the resource depletion mechanic. 32
4.6 Platforms parameters. 34

5.1 A summary of the data collected for each jump trial. 76
5.2 Mean Absolute Error (MAE) values for the Gaussian without re-

sampling (GNR) and the Gaussian with resampling (GR) noise
functions with respect to di�erent combinations of Rt and Ps. . . 78

5.3 Mean Absolute Error (MAE) values for the Gaussian without re-
sampling (GNR) and the Gaussian with resampling (GR) noise
functions with respect to di�erent combinations of Rt and Ps. . . 78

5.4 Di�culty Ordering Error Ratio (DOER) values for the Gaussian
without resampling (GNR) and theGaussian with resampling (GR)
noise functions with respect to di�erent combinations of Rt and Ps. 80

Chapter 1

Introduction

In the recent years, arti�cial intelligence tools have started to play a key role in
assisting game designers by providing immediate feedback on the created content
and foster the creativity of human authors by suggesting novel solutions. One
area of video game development in which arti�cial intelligence is focusing is Level
Design, that is the creation of the environments (i.e. levels) that players interact
with. Level Design is a critical task for the genre of 2D platformers, in which
the character controlled by the player can move and jump in order to reach a
goal location within a level while avoiding obstacles; in this category of games,
platforms (i.e. blocks on which the character can stand) are the fundamental
elements that make it possible for the character to travel from one point to an-
other in a level. Platformer levels have to be designed to achieve the fundamental
goal of eliciting fun and challenge; by contrast, frustration must be avoided at
all costs and thus, designers put extreme attention to successfully gauge the dif-
�culty of levels. Research in this area of game design has been typically focused
on the generation of levels that a�ect players in terms of emotions [24, 18, 23].
In this context, design metrics are extracted both from structural features of lev-
els (i.e. characteristics of levels based on the placement of game elements) and
gameplay characteristics of levels (i.e. data describing players' skill and playing
style obtained with sessions of playtesting) to build models for the generation of
personalized levels. For instance, Smith et al. proposed a mixed-initiative tool
[27, 28] that allows designers to place constraints on the generation of levels, both
in terms of the positioning of game elements and on the rhythm at which players
must execute actions (e.g. jumping); the tool assists designers by �lling in in-
complete levels and informing if there is no solution that satis�es the constraints,
thus guaranteeing the playability of levels.

2 Introduction

1.1 Thesis objectives

In this thesis, we propose an arti�cial intelligence based approach for the de-
sign of 2D platformers and introduce a framework to assist level designers in the
creation of quality game content. Our approach employs a directed graph rep-
resentation for game levels and associates each directed edge to the jump action
that allows the connection between two platforms. A di�culty value is assigned
to each directed edge, indicating how di�cult the corresponding jump is; this
is achieved by studying the possible jump trajectories starting from an optimal
position. Similarly, the probability of success of jumps is associated to the corre-
sponding edge; this probability is obtained by considering a sample of trajectories
starting from random points generated, using a noise function, around the opti-
mal position. We apply di�erent noise functions, based on the average reaction
time and skill of players, to generate the distribution of random start points.
The di�culty and probability metrics associated to directed edges are a form of
gameplay features obtained without actually performing sessions of playtesting
and provide key feedback on the designed content. Furthermore, the framework
provides a tool to design platformers with a set of structural features that can be
adjusted by designers to modify the physics parameters (e.g. the gravity or the
jump vertical takeo� speed) and other generic game mechanics (e.g. whether the
character can run or not); in addition, the platformer design tool can be used as a
quick playtesting tool. Our framework is developed as a modular extension of the
popular Unity game engine, taking advantage of its physics engine and several
other features. We present and discuss the results of a preliminary validation of
our approach for the estimation of the probability of success of jumps; the vali-
dation involved a set of trials with human players whom were asked to perform
several jumps across platforms. The noise functions have been evaluated both in
terms of estimates accuracy and on their ability to identify the harder jump in a
pair of jumps. At the end, we present an approach for the evaluation of levels in
terms of a variety of di�culty metrics and probability of completing the level by
extending the approach for single jumps.

1.2 Thesis structure

The thesis is structured as follows.

In Chapter 2, we discuss the state of the art of 2D platformers and the related
tools used for design tasks. We overview the history of platformers and survey
AI-assisted design in videogames and especially in 2D platformers, examining
level generation techniques and the tools used.

In Chapter 3, we describe in depth how structural and gameplay features have
been used to evaluate created content and to guide the generation of levels in 2D
platformers.

1.2 Thesis structure 3

In Chapter 4, we introduce our approach and present the framework to assist
designers in the creation of levels. Then, we overview the structural features pro-
vided by the framework and examine how jump trajectories are used to estimate
the di�culty of jumps.

In Chapter 5, we describe how noise functions are employed to estimate the
probability of success of single jumps and present the data collected to validate
this method. Then, we propose an approach and a set of metrics to evaluate
levels in terms of di�culty and probability of completion.

In Chapter 6, we give an overview of the tools provided by our framework
within the Unity game engine.

In Chapter 7, we give a summary of this work and describe the plans to extend
it.

4 Introduction

Chapter 2

State of the Art

In this chapter, we discuss the state of the art of 2D platformers and the related
tools used for design tasks. At �rst, we overview the history of platformers; the
section is by no means a complete history of the genre, but it is intended to
highlight the titles that had a signi�cant impact on the evolution of this category
of games. Next, we survey AI-assisted design in videogames, examining the tools
used and the published research in this area. Finally, we focus on 2D platformers
AI-assisted design.

2.1 History of 2D Platformers

Platformers are de�ned as games where the character controlled by the player
can move and jump in order to reach a goal location within a level while avoiding
obstacles; in this context, platforms (i.e. blocks on which the character can stand)
are the fundamental elements that make it possible for the character to travel
from one point to another in a level.

2.1.1 The 1980s

Platformers have been introduced in the early 1980s. Space Panic1 (1980) and
Crazy Climber 2 (1980) are considered precursors of this genre, albeit they are
solely focused on the mechanic of climbing and have no jumping. The �rst true
2D platformer is Donkey Kong3 (1981); in this game, which introduced the jump
mechanic, the main character has to rescue his kidnapped girlfriend on the top
of a building, by moving upward and at the same time avoiding barrels thrown
by the antagonist; the game also launched the character Mario, originally named
Jumpman. Figure 2.1 shows the �rst level in Donkey Kong. In the same period,

1https://en.wikipedia.org/wiki/Space_Panic
2https://en.wikipedia.org/wiki/Crazy_Climber
3https://en.wikipedia.org/wiki/Donkey_Kong_(video_game)

6 State of the Art

Figure 2.1: A screenshot from Donkey Kong.

Jump Bug4 (1981) introduced horizontally scrolled levels and a shooting mechanic
to �re simple bullets and kill enemies; a year later, Pitfall! 5 (1982) added rope
swinging to the mix. Next, Nintendo launched Mario Bros.6 (1983), in which for
the �rst time two players could cooperate to defeat all enemies in single screen
and non-scrolling levels. Cooperation is also a huge feature in Bubble Bobble7

(1986), which boasts an evolved shooting mechanic that was conceived so that
�red bubbles could trap enemies and also be jumped upon to reach otherwise
unreachable areas. Super Mario Bros.8 (1985) shook the 2D platformers world
with innovative gameplay elements such as size boosting mushrooms that allows
the player to destroy certain blocks in the levels and take an extra hit from mon-
sters without dying. In the same year, Ghosts 'n Goblins9 (1985) emerged as
one of the most di�cult game of the genre; the game has the player run through
levels full of monsters with poor play controls and timed (around three minutes
long) lives that allow the character to endure two hits from enemies; in addition,
checkpoints are also placed far apart, whereas other games have frequent restart
and save points. Metroid10 (1986) features exploration, a dark atmosphere and
nonlinear gameplay; it inspired several games giving way to combinations with
other genres. In fact, Metroid and the Castlevania11 series (�rst installment in
1986) gave birth to the greatly in�uencing Metroidvania subgenre, characterized

4https://en.wikipedia.org/wiki/Jump_Bug
5https://en.wikipedia.org/wiki/Pitfall!
6https://en.wikipedia.org/wiki/Mario_Bros.
7https://en.wikipedia.org/wiki/Bubble_Bobble
8https://en.wikipedia.org/wiki/Super_Mario_Bros.
9https://en.wikipedia.org/wiki/Ghosts_'n_Goblins

10https://en.wikipedia.org/wiki/Metroid_(video_game)
11https://en.wikipedia.org/wiki/Castlevania

2.1 History of 2D Platformers 7

Figure 2.2: A screenshot of Super Mario Bros. 3 map.

by strong emphasis on story and a large map that has to be explored to unlock
new areas and power-ups for the main character. Mega Man12 (1987) represents
an important milestone in terms of nonlinear gameplay; the game gives the possi-
bility to play levels in arbitrary order, although the weaknesses of bosses and the
power-ups received in each level provides a recommended order for their comple-
tion. The third installment installment of the Super Mario Bros. series (Super
Mario Bros. 3 13, 1988) broke new ground by introducing a level progression sys-
tem in the form of a fully interactive world map, which is a level in itself (Figure
2.2). Prince of Persia14 (1989) introduced a peculiar sword-based combat system
and realistic character animations.

2.1.2 The 1990s

Next, Sega released Sonic the Hedgehog15 (1991) in an attempt to oppose the
Super Mario Bros. series domination on the scene; the game features fast paced
action thanks to the ability to run through the levels at a much higher speed
than other games and curl the character into a ball in order to hit enemies and
obstacles. In its sequel (Sonic the Hedgehog 2 16, 1992), for the �rst time in plat-
form games, two players could race against each other through selected stages in
a simultaneous split-screen versus mode.
In the 1990s, graphics and technology improvements led videogames to shift to
3D worlds and platformers were no exception, although many 2D platformers
continued to be produced. Some examples of successful 3D platformers are Crash

12https://en.wikipedia.org/wiki/Mega_Man_(video_game)
13https://en.wikipedia.org/wiki/Super_Mario_Bros._3
14https://en.wikipedia.org/wiki/Prince_of_Persia_(1989_video_game)
15https://en.wikipedia.org/wiki/Sonic_the_Hedgehog_(1991_video_game)
16https://en.wikipedia.org/wiki/Sonic_the_Hedgehog_2

8 State of the Art

Figure 2.3: Screenshots from Pandemonium (left) and Crash Bandicoot (right).

Bandicoot17 (1996) and Super Mario 64 18 (1996). This transition was not easy
and the di�culty of adapting some mechanics gave birth to 2.5D games like Pan-
demonium! 19 (1996) and Klonoa: Door to Phantomile20 (1997), which adopted
3D visuals while retaining 2D gameplay. Figure 2.3 illustrates the 2.5D visuals of
Pandemonium! and the 3D world of Crash Bandicoot. Rayman21 (1995) was the
�rst platform game to implement the possibility to make user-created content; in
fact, its updated version (Rayman Gold, 1997) allows players to create and share
levels using the Internet thanks to the Rayman Mapper tool.

2.1.3 The new millennium

Entering the new century, Prince of Persia: The Sands of Time22 (2003) intro-
duced a time rewinding mechanic and much more freedom of movement in the
environment (e.g. running on wall); the latter probably in�uenced games such
as Mirror's Edge23 (2008). The Jak and Daxter 24 main saga (2001-2009) merged
platforming elements in an open world action adventure featuring racing and
puzzle sections. The Little Big Planet25 series (2008-2014) put strong emphasis
on content creation and sharing; the games allow to upload levels online so that
other players can play, write reviews or comments and share links to levels via
social networks.
With the exception of some historic series (e.g. Super Mario Bros.), platforming

17https://en.wikipedia.org/wiki/Crash_Bandicoot_(video_game)
18https://en.wikipedia.org/wiki/Super_Mario_64
19https://en.wikipedia.org/wiki/Pandemonium!_(video_game)
20https://en.wikipedia.org/wiki/Klonoa:_Door_to_Phantomile
21https://en.wikipedia.org/wiki/Rayman_(video_game)
22https://en.wikipedia.org/wiki/Prince_of_Persia:_The_Sands_of_Time
23http://www.mirrorsedge.com/
24https://www.naughtydog.com/games/jak_and_daxter_the_precursor_legacy
25http://littlebigplanet.playstation.com/

2.1 History of 2D Platformers 9

Figure 2.4: Screenshots from Braid (left) and Super Meat Boy (right).

elements became less and less relevant in major 3D games, leaving the spotlight
to intricate stories, cinematic sequences, shooting and much more depending on
the context, such as in the Uncharted26 series (2007-2016). With the introduc-
tion of mobile devices and their exponential spread, 2D games with simple and
immediate mechanics returned to be popular. The simpli�cation of controls gave
birth to the new subgenre named endless runner, in which levels are procedu-
rally generated and the character is always running and trying to avoid obstacles
and gaps; this category of games satis�es the need of short gaming sessions for
casual gamers, but also encourages hardcore players to achieve the highest possi-
ble scores with online leaderboards; some notable examples for this subgenre are
Temple Run27 (2011) and Subway Surfers28 (2012).
In recent years, the independent scene saw the rise of some original games that,
while remaining essentially pure 2D platformers, tried to innovate and gave the
genre new life. For instance, Braid29 (2008) amazed with the perfect mix of time
manipulation powers and puzzle elements. Next, Super Meat Boy30 (2010) o�ers
a peculiar experience in which the loss of lives is an integral part of the game, as
the levels are designed to be completed with near perfectly timed actions; also,
the online leaderboard recording levels completion times is a huge factor for re-
playability. Figure 2.4 shows levels from Braid and Super Meat Boy. Fez 31 (2012)
proposed a 3D world that can be observed from one of the four 2D planes around
a cube-like space and has its puzzles focus on this feature. As a �nal example
for the independent scene, Ori and the Blind Forest32 (2015) gives players full
freedom on how to manage checkpoints: energy cells scattered around the world
can be used to manually create a restart point, but the limited amount of cells

26https://www.unchartedthegame.com/en-us/
27https://en.wikipedia.org/wiki/Temple_Run
28http://www.kiloo.com/games/subway-surfers/
29http://braid-game.com/
30http://supermeatboy.com/
31http://www.fezgame.com/
32http://www.oriblindforest.com/

10 State of the Art

forces the player to carefully use them.
Finally, the recent Super Mario Maker 33 (2015) is of particular interest for the
research subject, as it gives players the design tools necessary to create original
content starting from the basic blocks and elements from the Super Mario Bros.
series; levels can then be shared using the Internet, encouraging the rise of play-
ers and designers communities focused on creation and playing challenges (e.g.
world record completion times).

2.2 AI-assisted design in videogames

Computer-aided design tools have become widely used in many production envi-
ronments as they help reduce development time, costs and human e�orts, while
enabling collaboration between team members. This software category often im-
plements Procedural Content Generation (PCG) of one or more types of artifact;
notable examples include SpeedTree34 (IDV, 2002), which allows the automatic
generation of vegetation in 3D environments, and Volcano [13], that creates 3D
models of swords by exploiting interactive evolution. In the context of 3D arti-
facts creation, Maddegoda and Karunananda [15] developed a multi agent based
approach to generate 3D models starting from agents having a set of simple rules,
while Peña et al. [19] presented a mechanism to generate 3D buildings given de-
signer constraints and guidelines.
Especially in the videogames development scene, tools such as Unreal Engine35

(Epic Games, 1998) and Unity3D36 (Unity Technologies, 2005) are greatly sup-
porting the creation of games both in the independent community and in major
companies and have established themselves as the standard in the industry. Al-
though these tools are extremely �exible, they limit the human designer actions
to the positioning of objects (game elements) in a scene (level) and to the tweak-
ing of parameters (e.g. how fast an enemy runs or how much health it has); they
don't provide feedbacks on the player's perspective (i.e. feasibility and di�culty
of levels). In addition, initiative for the creation of contents solely depends on the
human designer and his creativity, without any concrete input from the software.
As a consequence, some works have focused on researching mixed-initiative de-
sign, meaning that arti�cially intelligent tools are designers themselves and take
part in the design process at the same level of human authors. In this context,
Yannakakis et al. [33] investigated the process of game levels design where a
human designer and the computer proactively make contributions to the prob-
lem solution, highlighting the fact that computational initiative is useful and can
foster human creators' creativity. Browne and Colton [1] studied how to make a

33http://supermariomaker.nintendo.com/
34http://www.speedtree.com/
35https://www.unrealengine.com/
36https://unity3d.com/

2.2 AI-assisted design in videogames 11

Figure 2.5: A screenshot of Sentient Sketchbook User Interface.

computer emulate the creative process of a human designer, whereas Lopes et al.
[14] examined how a mixed-initiative drawing tool can stimulate the creativity
of young learners. One of the most relevant work in this �eld is Sentient Sketch-
book [10], a software that supports a designer in the creation of levels for strategy
games, by giving the possibility to sketch a map, automating playability checks
and evaluations of signi�cant gameplay properties and lastly, using constrained
novelty search to provide alternatives to the human's design (Figure 2.5); this
research showed how to make an AI tool provide suggestions that are more ap-
propriate to a speci�c user's style, focus and end-goals by modeling the designer's
behavior [9][12]. Tutenel et al. [32] proposed a solution to better understand a
designer's intent, combining a semantic class library, which includes information
about the objects that can be placed in the scene and their relationships, and a
layout solver that places objects in the environment by following a set of rules.
Next, di�erent methods of re�nement for map sketches of distinct game genres
were studied, such as increasing map resolution, linking more sketches together
and going from high level evaluations to game-speci�c estimations; the study in
[8] showed promising results on how an AI design tool can iteratively improve
the level of detail of a game level, in a similar way to how a human designer goes
from the big picture to the �ne points.
In the context of mixed-initiative creation, Karavolos et al. used the Ludoscope
tool [7] to research the approach of creating a content generator by making a
model of the design process; the software at issue de�nes levels as expressions
that are generated by a grammar: the designer declares the alphabet of the
grammar and the rules that can transform expressions, then the tool probabilis-
tically executes the rules to create content, while allowing editing from the human
author. A similar approach was carried out with BIPED [25], a tool that allows
the prototyping of board games by having the designer give a concise game def-

12 State of the Art

inition; the system also provides access to signi�cant insights: feedback from
human players (e.g. hesitation or fun) and automated analysis, which revealed
hidden properties of the games. A suite of tools, including PRIME Designer [31],
was developed to study how AI can support a common language for the design
process, maximize e�ectiveness of collaboration and teach design methodology.
In the speci�c scope of computer role-playing games (CRPGs), a relevant study
was performed with the combination of the Grail Framework, supporting goal-
based quests and giving more variety to the actual gameplay, and QuestBrowser,
conceived to help designers in �nding new and innovative solutions for each quest
by using a common-sense knowledgebase of thousands of people [30]. Finally,
Liapis et al. showed in [11] how to evaluate the quality of game levels across dif-
ferent games and genres, by de�ning high level concepts which can be evaluated
in various domains.

2.3 AI-assisted design in 2D platformers

Many analyses were carried out on the 2D platformer genre, ranging from high
level studies about the fundamental elements in this kind of games to advanced
PCG algorithms aiming at maximizing one or more metrics. Smith et al. [26]
dissected level components in terms of their roles and the structure of 2D plat-
formers, in order to better understand the design behind levels and to provide
designers a common vocabulary for the items forming the game worlds. In a sim-
ilar fashion, Dahlskog and Togelius discussed in [2] the potential roles of design
patterns in PCG, identifying them in levels of the original Super Mario Bros.;
they also proposed how these patterns can be combined to create new levels that
comply with speci�c constraints, while retaining variety of contents; these clas-
si�cation of patterns was then used to actually generate game levels, by using
micro-patterns as building blocks in a search-based algorithm as showed in [3].
In the context of AI-assisted design, the mixed-initiative tool Tanagra [27] was de-
veloped with the goal of making a human designer and a computer work together
to produce game levels; Tanagra allows the human author to place constraints
on a running level generator, both on the geometry layer (e.g. positioning of
objects) and on the level's rhythm (Figure 2.6). In fact, Tanagra bases its oper-
ations on the concept of "beat", that represents an interval of play time, during
which the player must take some action, such as running or jumping. The tool
can �ll in the rest of the level or inform the designer that there is no solution
(i.e. game elements placement) that satis�es the requirements while at the same
time guaranteeing playability; the whole process is managed using the reactive
planning language ABL to respond to designer input and the constraints solving
library Choco to determine the physical placement of components in the level
[28]. StreamLevels [6] was developed to support the description of level struc-
tures using streamlines, which can be drawn or uploaded as real players trace

2.3 AI-assisted design in 2D platformers 13

Figure 2.6: A screenshot of Tanagra User Interface.

data; the tool works on a grid and generates levels with a constructive algorithm
by placing platforms in each of the tile crossed by the streamline such that there
is always a feasible path from the beginning to the �nal tile.
Moving the focus to PCG techniques, levels generation in 2D platformers has been
deeply researched and even competitions, such as the Level Generation Track in
the Mario AI Championship, were held to foster researches in the �eld [22]. One
of the main approaches in content creation has been experience-driven, meaning
that the goal is to make the player feel a speci�c emotion while playing. In order
to do so, Pedersen et al. investigated in [18] the relationship between level design
parameters, individual playing characteristics and player experience; a neural
network model was used to map levels structural parameters, gameplay data and
reported emotions; results showed that fun is the hardest reaction to predict,
but the models were accurate enough to consider deploying them in generating
game levels that enhance player experience. Further contributions to this work
were given by using a much larger data set and performing validation through
algorithms and human players [23]. In addition, investigations were made about
having levels with multiple paths and integrating puzzle based content requiring
the player to explore [17]. New re�nements on these methods were pursued by
analyzing the impact of the session size and weighting features (e.g. number of
collected coins or number of obtained powerups) and structural patterns, as well
as their position in the levels [24].
Another path in PCG was followed by Occupancy-Regulated Extension (ORE)
[16], a general geometry assembly algorithm, whose core concept is occupancy,
which is expressed as potential positions (de�ned as anchors) that the player
can occupy during gameplay; anchors are used to iteratively expand the existing
content by merging human-authored chunks. An approach that minimizes the
amount of manually authored content is used in Launchpad [29], a rhythm-based

14 State of the Art

level generator in which levels are built out of small segments called "rhythm
groups".
Ferreira et al. presented in [5] a multi-population genetic algorithm for gener-
ating levels by evolving four elements (terrain, enemies, coins and blocks), each
one with its own encoding, population and �tness function; at the end of the
evolution the best four elements are combined to build the level.
A combinatorial approach is followed with Non-negative Matrix Factorisation
(NMF) [21], an algorithm that, using levels from �ve dissimilar content genera-
tors, generates novel content through exploring new combinations of patterns.
Next, Reis et al. [20] proposed a system which uses human computation to eval-
uate the quality of small portions of levels generated by another system and the
tested sections are combined into a full level; results showed that this approach
was able to create levels that were better both in terms of visual aesthetics and
fun.
Lastly, as a commercial game and design tool, Super Mario Maker o�ers an easy
and intuitive interface to create levels; each level is represented as a grid in which
game elements (i.e. blocks, enemies and power-ups), selected from a palette,
can be placed. The design tools in the game do not include automated checks for
playability or di�culty, thus the designer has to beat the levels in order to upload
them on the Internet. For what concerns di�culty estimation, a clear rate (e.g.
number of completions on number of tries) is displayed for each level and, once
a su�cient number of players have played the level, an undisclosed algorithm,
probably taking into consideration parameters such as the average number of
deaths per player and their locations in the level, assigns a di�culty value from
one (minimum di�culty, labelled as Easy) to four (maximum di�culty, labelled
as Very Hard).

2.4 Summary

In this chapter, we discussed the state of the art of 2D platformers; we overviewed
the history of this category of games, highlighting the most relevant titles. Then,
we surveyed AI-assisted design in videogames, examining the tools used and the
published research in this �eld. Finally, we focused on 2D platformers AI-assisted
design, describing the techniques used for the generation of levels and the tools
employed.

Chapter 3

Level design metrics

In this chapter, we introduce the concept of design metrics and discuss the goals
they try to accomplish in the context of game content creation. First, we de�ne
metrics and explain why they are used, also giving an example of how general-
purpose metrics can be applied to di�erent game genres. Next, we discuss struc-
tural features for 2D platformers and their role in the evaluation and generation
of levels. Finally, we review gameplay features for 2D platformers and how they
can be used to improve the player experience within the game.

3.1 The importance of design metrics

When designing game levels, it is often useful to analyse created content numer-
ically. This is done using metrics that can either describe a speci�c property of
a level or evaluate it as a whole. These numeric evaluators can provide key feed-
backs to human designers and drive the automatic content generation process.
Liapis et al. [11] proposed a genre-independent method to evaluate game levels
in the form of map sketches consisting of a grid layout that involves three high
level concepts: area control, exploration and balance. Area control is the feature
that quanti�es the control over the game's resources; exploration incorporates
the "goal of learning the layout of the game world, or locating speci�c parts or
objects in it"; balance "ensure that players have equal opportunities". In ad-
dition, Liapis et al. [11] showed that speci�c and domain-dependent evaluation
functions can easily be derived from the three abstract concepts. In fact, they
de�ned the safety of any tile t to a reference tile in the grid (i.e. a tile with a
special purpose in the game, such as a checkpoint tile) i as follows:

st,i(SN) = min
1≤j≤N,j 6=i

{max {0, dt,j − dt,i
dt,j + dt,i

}}

Where N is the number of elements in the set SN of reference tiles and dt,i is the
distance from tile t to element i. Next, the strategic resource control metric was

16 Level design metrics

derived from it, obtaining the following expression:

fs(SN , SM) =
1

M

M∑
k=1

max
1≤i≤N

{sk,i}

Where M is the number of elements in the set SM of possible target tiles.
fs(SN , SM) was then summed with strategic resource control balance, which is
expressed as follows:

bs(SN , SM) = 1− 1

MN(N − 1)

M∑
k=1

N∑
i=1

N∑
j=1,j 6=i

|sk,i − sk,j|

This allowed to obtain a �tness function which was used to evaluate individuals
in a two-population Genetic Algorithm performing map generation for a strategy
game.

3.2 Structural features

Structural features are the ones based on the placement of game elements and
describe levels just by looking at them, without any need to perform playtesting.
A trivial example of structural feature can be the number of platforms in the level,
although it does not provide any signi�cant insight by itself, thus it should be
combined with other metrics to obtain a notable indicator (e.g. use the level width
to attain how many platforms there are, on average, for each unit of horizontal
space). Structural features are referred as controllable if they are used to guide
the generation of levels; in [24], [18] and [23] a combination of the following
controllable features are exploited to create levels for a modi�ed version of Markus
Persson's In�nite Mario Bros.1:

• Number of gaps in the level; that is the number of empty horizontal spaces
between two platforms;

• Average width of gaps; that is the average width of the empty spaces be-
tween two platforms;

• Number of enemies in the level;

• Enemies placement (de�ned by three probabilities which sum to one: Px,
Pg and Pr):

� Px: probability of placing an enemy on or under a set of horizontal
blocks;

1http://indiegames.com/2008/10/browser_game_pick_in�nite_mar.html

3.2 Structural features 17

� Pg: probability of placing an enemy within a close distance to the edge
of a gap;

� Pr: probability of placing an enemy on a �at space on the ground.

• Number of power-ups in the level;

• Number of boxes (i.e. game elements that can be pressed to obtain rewards)
in the level;

• Entropy of gap-placements expressed as follows:

Hg = −
1

logG

G∑
i=1

gi
G

log
gi
G

Where G is the number of equally spaced segments and gi is the number of
gap-placements into level segment i;

• Number of direction switches (i.e. the number of times the player needs to
turn around and go the other way) needed to complete the level.

Most of the listed features are easy to interpret and provide a very direct feedback
or goal values for content generation to designers. Entropy of gap-placements pro-
vides a measure of how the gaps, or equivalently the jumps to overcome them, are
distributed in the various segments of the level; as a result, the entropy metric
can be seen as an indicator of the unpredictability of gaps, which is a huge factor
for the player experience. The number of direction switches provides a measure
of non linearity for the level; if the number of direction switches is zero then
the level is extremely linear as the character will always move from left to right;
otherwise, as the number of direction switches increases, the character will have
to turn around more often in order to go through the level.
A di�erent approach is taken by Launchpad [29], a rhythm-based level generator
which works on the concept of rhythm group: a small level segment consisting of
a rhythm of player actions (also referred as beats) and a level geometry that cor-
responds to that rhythm; Figure 3.1 illustrates some examples of rhythm groups.
Launchpad presents the following set of parameters that the designer can manip-
ulate to obtain di�erent levels:

• Rhythm type:

� Regular : beats are evenly spaced;

� Swing : a short beat is followed by a long one;

� Random: beats are randomly spaced.

• Rhythm density: describes how closely the beats are spaced (can be "low",
"medium" or "high");

18 Level design metrics

• Rhythm length: de�nes the length (in seconds) of the rhythm group;

• Action probabilities: the probabilities of jump and wait actions occurring;

• Jump components: the desired frequency for speci�c geometry being used
in a level for a jump action;

• Wait components: the desired frequency for speci�c geometry being used
in a level for a wait action;

• Repeating geometry: probability that a rhythm group is immediately re-
peated;

• Line equation: the path that the �nal level should follow, de�ned as a set
of non-overlapping line segments;

• Number of coins: game elements that can be collected to increase the score
in rhythm group;

• Platform length: threshold platform length for coin placement, meaning
that any platform with a length greater than this value will have coins
placed along it;

• Coin over gap probability: probability that a coin is placed over a gap.

Figure 3.1: Examples of rhythm groups in Launchpad. A 20s long, regular, low
density rhythm group (top), a 15s long, swing, normal density rhythm group
(center) and a 10s long, random, high density rhythm group (bottom).

In addition to the listed parameters, a level designer can adjust the importance
(i.e. assign a weight) of two critics: the line distance critic and the components
frequency critic; the line distance critic measures the di�erence between the gen-
erated level structure and the speci�ed line equation, whereas the components
frequency critic measures the discrepancy between the components (i.e. geome-
try elements corresponding to jump or wait actions) frequency in the generated

3.3 Gameplay features 19

level and the desired parameters. The two critics are combined to evaluate gen-
erated levels and, since they often contradict each other, the level with the lowest
weighted sum is selected.
Finally, a combinatorial approach to cover and widen the expressive range of �ve
di�erent level generators is followed in [21], and, in order to evaluate generated
levels, the following expressivity metrics are used:

• Linearity : measures how �at a level is (e.g. a level with high linearity
presents little to no �uctuations in the height of platforms, meaning that
the player will go through the level following a perfectly horizontal line);

• Leniency : measures how easy a level is by counting the number of occur-
rences of rewarding and harmful items such as coins and enemies;

• Density : measures the number of platforms stacked on top of each other at
each level segment.

3.3 Gameplay features

Gameplay features describe a player's skill and playing style and they are usu-
ally obtained collecting data with one or more sessions of playtesting on a set
of levels and describe players' behavior in a number of ways; for instance, these
dynamic metrics can provide the number of times an action was executed, report
how players went through the level (both in terms of speed and path followed),
or highlight where in the level players encountered the most di�culties; to sum
up, these numeric evaluators describe a player's skill and playing style. Further-
more, gameplay features can reveal hidden properties of levels, which may not
be captured by structural features, such as points in the levels where players are
not sure how to proceed and, as a consequence, they may try random actions in
order to advance; recording this type of data allow designers to spot ambiguous
or misleading design elements and �x them.
In [24], [18] and [23], the goal was to create personalized content: after pro�l-
ing players, they generated levels that would �t the players' skill and playing
style, eliciting fun and challenge. In order to do that, hundreds of game sessions
were performed on levels generated exhausting the controllable features space
for In�nite Mario Bros.; a combination of the following gameplay features was
collected:

• Generic features:

� Level completion time;

� Duration of last life over total time spent on the level;

� Time spent in Small Mario mode over total time spent on the level;

20 Level design metrics

� Time spent in Big Mario mode over total time spent on the level;

� Number of times the player shifted the Mario mode (Small, Big, Fire);

� Total number of player's deaths;

� Cause of the last player's death;

� Number of times the player was killed by an enemy;

� Number of deaths due to gaps;

� Whether the level was completed or not (boolean value).

• Actions related features:

� Time spent ducking over total time spent on the level;

� Time spent jumping over total time spent on the level;

� Time spent moving left over total time spent on the level;

� Time spent moving right over total time spent on the level;

� Time spent running over total time spent on the level;

� Number of times the jump button was pressed;

� Number of times the duck button was pressed;

� Number of times the run button was pressed;

� Total number of jumps;

� Number of jumps over gaps;

� Number of jumps without any purpose;

� Di�erence between the number of gaps and the number of jumps;

� Number of times the player changed the state between: standing still,
running, jumping, moving left and moving right.

• Items related features:

� Number of collected items over total items in the level;

� Number of coins collected over total number of coins in the level;

� Number of empty blocks destroyed over their total number in the level;

� Number of coin blocks pressed or coin rocks destroyed over their total
number in the level;

� Number of power-ups blocks pressed over their total number in the
level;

� Sum of all blocks and rocks pressed or destroyed over their total num-
ber in the level.

3.3 Gameplay features 21

• Enemies related features:

� Number of times the player killed a speci�c enemy;

� Total number of enemies killed;

� Number of enemies killed by stomping;

� Number of enemies killed by �re shots;

� Number of enemies killed by unleashing a turtle shell;

� Number of times the player kicked an opponent shell;

� Total number of kills over total number of opponents;

� Number of enemies killed minus number of deaths caused by enemies.

All player actions and interactions with game items and their timestamps were
recorded together with the full trajectory of Mario within the level [24][18][23].
In addition to the listed features, a jump di�culty heuristic, proportional to the
number of deaths due to gaps, number of gaps and average gap width, was com-
puted to provide an estimation of the level di�culty. Players were also asked
to report their experience after playing the levels; a questionnaire was presented
to the players asking to report their emotional states among fun, challenge and
frustration. In order to analyse the e�ects of sequential features (i.e. sequence
of player actions), the study in [24] applied data mining techniques, such as
Generalised Sequential Pattern (GSP), to extract the most frequent sequences of
interactions. Next, the relevant subsets of features for predicting each emotional
state were selected; this was achieved with di�erent algorithms: Sequential For-
ward Selection (SFS), n best individual feature selection (nBest) and Perceptron
Feature Selection (PFS). The quality of a features subset was evaluated using it
as the input for a set of multi-layer perceptron (MLP) models: the performance
of each MLP was obtained as the average classi�cation accuracy in three inde-
pendent runs using 3-fold cross validation across �ve runs. The resulting neural
networks, approximating the function between gameplay features, controllable
features, and reported emotional states, presented di�erent number of selected
features and performance; the most accurate model was the one predicting chal-
lenge (approximately 91% accuracy), whereas fun was determined to be the most
di�cult emotion to predict from controllable features.
Another interesting approach for personalized level generation has been presented
in [17]. As a �rst step, each player was asked two pre-game questions; the �rst
requested to choose a subgenre preference among Combat, Flow and Puzzle. As
the names indicate, Combat indicates the player wish to �ght enemies; Flow
indicates a preference for level structures that require tactile skills, and Puzzle
expresses the wish to explore di�erent paths through the level in order to com-
plete it. The second question asks the player to indicate a di�culty level. Next,
the player's abilities were measured with a set of trials (i.e. hand-made levels),

22 Level design metrics

which were shorter than typical levels, but of greater di�culty. The following
gameplay features were derived from the trials:

• Time spent to complete the trial;

• Distance travelled on the ground;

• Distance travelled in the air;

• Average speed on ground;

• Average speed in air;

• Number of shots �red;

• Percentage of �reball hits per shot;

• Highest number of kills with a single jump;

• Highest number of kills with a single shell kick;

• Number of enemies killed with �reballs;

• Number of enemies killed by kicking a shell;

• Number of jumps;

• Number of combat jumps (i.e. used to hit enemies);

• Number of portal (i.e. game elements working as teleporters, connecting
di�erent parts of a level) usages.

In order to track the player's trajectory, every time the screen rendered a new
image the player's position was recorded together with a timestamp. In addition,
other events, such as an enemy being killed or the usage of a portal, were recorded
with the event position and current system time. This data collection allowed to
set the values of the four high-level parameters that were used in the generation
phase: combat, �ow, puzzle and clutter ; the latter described the quantity of coins
and items that would be placed in the level; as such, a high value of clutter was
bound to result in the generation of levels with a lot of rewarding items, which
is common in easy levels. The four above-mentioned parameters were all scaled
in a [0, 1] interval. Before actually creating a level, a graph was generated as
an abstract representation of the �nal level. A feasible-infeasible two population
Genetic Algorithm was used to generate graphs, employing a weighted sum of
the four following parameters as the �tness function:

• Average number of outgoing edges;

3.4 Summary 23

• Number of starting node connections: the count of outgoing edges from the
starting node (ideally low or exactly one);

• Number of �nal node connections: the count of incoming edges in the �nal
node (ideally as close to one as possible);

• Length of the shortest path from the starting node to the �nal one.

Furthermore, a set of feasibility constraints was applied to obtain feasible graphs,
which were used in the next steps of level generation. The following constraints
had to be ful�lled to guarantee feasibility:

• Path length: in order to make sure that the starting and �nal nodes were
not adjacent, the shortest path from these nodes had to traverse at least a
fraction of the graph size (i.e. nodes count), de�ned as 1.0− 0.3puzzle;

• Forward reachability: every node had to be reachable from the starting
node;

• Backward reachability: every node had to be reachable from the �nal node.

It must be noted that the backward reachability constraint prevents the presence
of points where the player would be forced to fail and restart the level, allowing
him to backtrack. Together, the two reachability constraints guarantee that, for
every node, there will be a path from the starting to the �nal node that passes
through it. As a �nal step, the best feasible graph found by the Genetic Algorithm
was converted into a grid layout; cells were then iteratively populated with game
elements while preserving the graph properties.

3.4 Summary

In this chapter we discussed level design metrics. In particular, we focused on
structural features and gameplay features for 2D platformers, reviewing their role
in the process of game content creation. We examined the most relevant works in
this area and their approach to level design. In the next chapter, we discuss how
we tackled the level design problem and describe our framework for designing 2D
platformers.

24 Level design metrics

Chapter 4

Our approach to level design

In this chapter, we review our approach to level design in 2D platformers that
extends the previous works in this area. In the next sections, we �rst introduce
the philosophy of our approach. We examine how we conceptually model game
levels and present our framework for the design of 2D platformers. Next, we
discuss the structural features o�ered by our framework. Finally, we review our
trajectory based approach for the evaluation of gameplay features.

4.1 Introduction

In Chapter 3, we reviewed several approaches that employed either structural or
gameplay features or both for the evaluation and generation of 2D platformer
levels. Our approach is a hybrid: it provides a set of structural features that can
be adjusted by designers and employs a method for the estimation of gameplay
features, namely the jumps di�culty and their probability of success. In order
to accomplish this, we had to use a �tting conceptual model for game levels and
to develop a framework that supports the analysis of gameplay dynamics. Con-
sidering our needs and goals, a directed graph representation is used to abstract
game levels, whereas the framework allows to perform speci�c simulations on
level graphs and playtest the designed content.

4.1.1 Conceptual model and abstract representation of a

level

As we discussed in Chapter 3, being able to inspect game content using met-
rics is of key importance to improve its quality. For this reason, employing the
appropriate abstract representation for game levels is critical, as it allows to
study the created content properties with minimal e�ort. Thus, we decided to
use a directed graph representation for the levels: each graph vertex represents a
platform, whereas each directed edge represents the connection between two plat-

26 Our approach to level design

forms. Directed edges are essential because we need to know the direction of the
connections, as there are cases in which, for example, a platform A is reachable
from a platform B, but not vice versa. In the context of 2D platformers, the jump
is the fundamental action that allows to move from one platform to another, or,
equivalently, from one vertex to another. As a consequence, our approach is based
on the concept of Reachability through the evaluation of jump trajectories, and
provides the estimation of the jumps di�culty and their probability of success.
In order to do that, we use the set of physics parameters handling the movement
of the character, both on ground and in air. As such, to achieve a �exible and
general method, we implemented a 2D platformer as a module of our framework
that o�ers a wide set of adjustable physics parameters and di�erent mechanics
(e.g. single or double jump).

4.1.2 Our framework

Our framework for the design of 2D platformers consists of two modules: a para-
metric 2D platformer and a level evaluator. The 2D platformer was designed and
developed to support our approach and to serve as a quick testing tool for the
designer. In addition, the 2D platformer was implemented keeping in mind the
goal of �exibility, and, as such, presents several changeable physics parameters
(e.g. gravity) and a set of mechanics with di�erent operating modes, which can
be switched on or o�. Furthermore, the platformer implementation provides a set
of platforms of di�erent types, covering the macro categories of platforms that
can be encountered in games of this genre. These elements allow to design lev-
els with a good variety and let us test the generality of our approach and make
it possible to virtually apply it to several types of 2D platformers. The level
evaluator takes into account the physics and mechanics settings, building a set
of constraints that are used to de�ne the possible jump trajectories. These tra-
jectories are evaluated according to whether they allow the character to proceed
through the level or not, thus providing a feedback on the jumps di�culty. This
approach allows designers to have an estimation of gameplay features, in terms
of how di�cult or easy a level is, without performing gameplay sessions with test
players.

4.2 Analysis of structural features

As described in [4], a number of physics parameters are necessary to describe
in a correct and complete way the movement, both on ground and in air, and
the jump trajectories of an object (in our case the controllable character) in a
two-dimensional environment. Thus, it is mandatory, for example, to de�ne pa-
rameters which specify the maximum movement speed on ground and the related
acceleration. We selected a set of parameters and mechanics to obtain a frame-

4.2 Analysis of structural features 27

work that is as �exible as possible, also taking into account accessibility and ease
of use for a human designer. As for the space measurement unit, we use the space
unit de�ned by the physics engine underlying our framework; we refer to it as u.
In addition, di�erent operating modes for the movement and jump mechanics are
provided. Table 4.1 lists and describes the adjustable parameters that regulate
the character movement. Table 4.2 lists and describes the adjustable parameters
that regulate the character jump.
For what concerns the features that are unrelated to the physical model, the
framework provides parameters for three macro areas: management of the char-
acter health and of damages in�icted by harmful game elements (described in
Table 4.3), management of the character shooting ability (described in Table
4.4), and management of the depletion of a resource (described in Table 4.5).
The latter represents an on/o� mechanic that involves the gradual consumption
(as time passes) of a generic resource; when the value of this resource reaches
zero, the character dies and must restart the level from the beginning; activating
the resource depletion mechanic is equivalent to setting a time limit for the com-
pletion of the level.
All the values of the described parameters can be adjusted by a designer through
a user interface.
To clarify the role of the movement parameters (Table 4.1), we describe how they
work together. First, the movement input from the player is only horizontal,
thus acting solely on the x axis. This axis values increase from left to right; as
such, a positive speed indicates a movement toward the right, whereas a nega-
tive speed indicates a movement toward the left. Given this consideration, the
movement input has a positive value if the player wants to move the character
toward the right and a negative value if the desired direction is the left. We sup-
pose to describe a series of character movement interactions on ground; the air
movement is managed in the same way, the only di�erence being the parameters
used. The character starts motionless, with zero speed. As soon as a movement
input is received, the character accelerates with a constant acceleration equal to
groundAcceleration (with the same sign as the input); the character moves with
a uniformly accelerated motion until his speed is equal to maxGroundSpeed (with
the same sign as the input) and continues moving with this speed value if the
movement input is not changed; In this condition, if the movement input changes
its sign, the character starts accelerating in the opposite direction with a constant
acceleration equal to groundTurnAcceleration until his speed has the same sign
as the new input, and the acceleration value goes back to groundAcceleration. If
the character speed is not zero and the movement input is released, the character
decelerates with a constant deceleration value equal to groundDeceleration (with
the opposite sign of his speed) until his speed reaches zero. If the hasInstantAc-
celeration and hasInstantDeceleration parameters are set to true, the acceleration
and deceleration times are, respectively, reduced to zero. If the character can run,
the runningMultiplier value provides the parameters for maximum speed and ac-

28 Our approach to level design

Name Description Type

movementType De�nes how the character moves on the
horizontal axis. It has three possible val-
ues:
WALK_ONLY : the character can only
walk.
WALK_AND_RUN : the character can
both walk and run (pressing the run but-
ton).
RUN_ONLY : the character can only run.

Enum

maxGroundSpeed (maxGS) De�nes the maximum horizontal movement
speed on ground. Measured in u/s.

Float

groundAcceleration (gndAcc) De�nes the constant horizontal accelera-
tion for ground movement. Measured in
u/s2.

Float

groundTurnAcceleration (gndTAcc) De�nes the constant horizontal accelera-
tion for ground movement when the move-
ment direction is changed. Measured in
u/s2.

Float

groundDeceleration (gndDec) De�nes the constant horizontal decelera-
tion for ground movement (applied when
no movement input is received). Measured
in u/s2.

Float

maxAirSpeed (maxAS) De�nes the maximum horizontal movement
speed in air. Measured in u/s.

Float

airAcceleration (airAcc) De�nes the constant horizontal accelera-
tion for air movement. Measured in u/s2.

Float

airTurnAcceleration (airTAcc) De�nes the constant horizontal accelera-
tion for air movement when the movement
direction is changed. Measured in u/s2.

Float

airDeceleration (airDec) De�nes the constant horizontal decelera-
tion for air movement (applied when no
movement input is received). Measured in
u/s2.

Float

runningMultiplier (runMult) De�nes the horizontal speed and accelera-
tion multiplier used when the character is
running.

Float

hasInstantAcceleration Indicates whether the character instantly
reaches the maximum horizontal movement
speed (both on ground and in air) when he
starts moving.

Boolean

hasInstantDeceleration Indicates whether the character instantly
stops moving horizontally (both on ground
and in air) when no movement input is re-
ceived.

Boolean

Table 4.1: Parameters regulating the character movement.

4.2 Analysis of structural features 29

celeration related to running, by multiplying the ones related to the standard
movement (e.g. if maxGroundSpeed is equal to 3u/s and the runningMultiplier
is equal to 2, then the maximum running speed on ground is 6u/s).
Moving the attention to the jump parameters (Table 4.2), the jump mechanic
allows to move the character on the vertical axis, thus acting solely on the y
axis; this mechanic, together with the movement (described in Table 4.1) allow
to move the character in the two-dimensional space. The y axis values increase
from bottom to top; as such, a positive speed indicates the character is moving
upward, whereas a negative speed indicates the character is falling down. The
jump physics works in an extremely simple way: when the character is standing
on a platform and the jump button is pressed, he is instantly accelerated to ToS
and starts moving upward; the speed value is gradually reduced by the action of
gravity and when it becomes negative, the character starts falling down. If the
hasTerminalFallingSpeed parameter is set to true, the character falling speed caps
at TFS. If the isJumpDynamic parameter is set to false the jump height is not
in�uenced by how long the jump button is kept pressed, thus every jump reaches
the same height; otherwise, if the isJumpDynamic parameter is set to true, we
chose to make the jump reached height work as in Super Meat Boy : if the jump
button is released during a jump and the character is moving upward (positive
speed), then his speed is instantly set to zero, stopping his ascent; this makes the
jump reached height dynamic, with a minimum time interval (minimumJumpDu-
ration) in which releasing the jump button does not trigger the reset of the speed;
this means that releasing the jump button before the minimum time interval is
elapsed is equivalent to the release of the jump button as soon as the time interval
elapses. As a consequence, the minimumJumpDuration, ToS and g parameters
de�ne together the minimum jump height. If the isTakeo�SpeedDynamic param-
eter is set to false, the takeo� speed is always equal to ToS regardless of the
horizontal movement speed; otherwise, if the isTakeo�SpeedDynamic parameter
is set to true and the character can run, the takeo� speed is dynamic and pro-
portional to how much the horizontal movement speed is greater than maxGS ;
the following equations describe how the dynamic takeo� speed is computed:

speedBonus =
(|vx| −maxGS)(maxToS − ToS)
maxGS × runMult−maxGS

(4.1)

dynamicTakeoffSpeed = ToS + speedBonus (4.2)

Equation 4.1 computes the takeo� speed bonus proportional to the current hor-
izontal movement speed vx, whereas equation 4.2 de�nes the dynamic takeo�
speed by adding the speed bonus to the standard takeo�Speed (ToS); as the
equations show, if the character is moving at his maximum running speed, then
his takeo� speed is equal to maxTakeo�Speed (maxToS). All the movement and
jump parameters must be positive numbers.
It should be noted that, having a physical model that works on speed and accel-
eration parameters, allows to have physical behaviors that are not dependent on

30 Our approach to level design

Name Description Type

gravity (g) De�nes the gravitational acceleration applied to
the character on the vertical axis. Measured in
u/s2.

Float

jumpType De�nes the jumping mode of the character. It has
three possible values:
NO_JUMP : the character cannot jump.
SINGLE_JUMP : the character can perform a sin-
gle jump when standing on a platform.
DOUBLE_JUMP : the character can perform a
second jump in the air after having executed a �rst
jump while standing on a platform.

Enum

hasTerminalFallingSpeed Indicates whether the character has a terminal
falling speed. If set to true, when the character
reaches his terminal falling speed due to gravity,
the character will stop accelerating and maintain
his vertical speed constant.

Boolean

terminalFallingSpeed (TFS) De�nes the terminal falling speed value. Used only
if hasTerminalFallingSpeed is set to true. Mea-
sured in u/s.

Float

takeo�Speed (ToS) De�nes the vertical speed at which the character
moves when he takes o� from ground (i.e. per-
forming the �rst jump). Measured in u/s.

Float

isJumpDynamic Indicates whether the height of the jump is in�u-
enced by how long the jump button is kept pressed.

Boolean

minimumJumpDuration De�nes the time interval from the jump button
pression during which releasing the jump button
does not a�ect the height of the jump. Used only
if isJumpDynamic is set to true. Measured in s.

Float

isTakeo�SpeedDynamic Indicates whether the takeo� speed is dependent
on the character horizontal movement speed at the
time of the jump button pression.

Boolean

maxTakeo�Speed (maxToS) De�nes the vertical speed at which the character
moves when he takes o� from ground (i.e. perform-
ing the �rst jump) while running at his maximum
horizontal speed. Used only if isTakeo�SpeedDy-
namic is set to true. Measured in u/s.

Float

doubleJumpSpeed (DJS) De�nes the vertical speed at which the character
moves when he starts performing a second jump
in the air. Used only if jumpType is set to DOU-
BLE_JUMP. Measured in u/s.

Float

Table 4.2: Parameters regulating the character jump.

4.2 Analysis of structural features 31

Name Description Type

healthMode De�nes how the character health is managed. It has three
possible values:
ONE_SHOT_KILLED : the character is killed if he suf-
fers any damage.
TWO_SHOTS_KILLED : the character is killed when he
su�ers any damage for the second time.
HEALTH_BAR: the character is killed when his health
value reaches zero.

Enum

maxHealth De�nes the character health starting value when health-
Mode is set to HEALTH_BAR.

Float

knockedTime De�nes how long the character remains knocked out (i.e.
unable to perform any action) after being damaged. Mea-
sured in s.

Float

recoveryTime De�nes how long the character remains in a recovery state
in which he cannot be damaged after being knocked out.
Measured in s.

Float

spikesDamage De�nes the amount of damage in�icted to the character
when colliding with a SPIKED platform.

Float

enemyContactDamage De�nes the amount of damage in�icted to the character
when making contact with an enemy. This value varies
from enemy to enemy.

Float

Table 4.3: Parameters regulating the character health and damages interactions.

the mass of the character, leaving the computation of the forces to apply to the
physics engine.
For what concerns the character health and harmful game elements (Table 4.3),
the elements that can harm the character are SPIKED platforms and enemies.
The platformer implementation provides two types of enemies that can be placed
in levels: a static enemy that starts shooting bullets at the character if he enters
its visual range and a moving enemy that moves back and forth between two
points in a straight line. Both types of enemies can be killed by striking them
with a �reball, and the moving enemy can also be killed by jumping on its head.
When the character su�ers any damage and the parameters values allow him to
survive the hit, he gets knocked out for knockedTime seconds; after being knocked
out, he enters a recovery phase lasting recoveryTime seconds, in which he cannot
be damaged; �nally, after his recovery, he returns to a normal state, in which he
can be damaged as usual.
For what regards the character shooting ability (Table 4.4), the platformer im-
plementation o�ers a set of power-up items that change the �reballs shooting
mode of the character, allowing the designer to place these power-ups in strategic

32 Our approach to level design

Name Description Type

timeBetweenShots De�nes the minimum time that must elapse between two
shots. Measured in s.

Float

shootingMode De�nes the �reballs shooting mode of the character. It
has three possible values:
NO_SHOOTING : the character cannot shoot �reballs.
CLASSIC_SHOOTING : the character can shoot �reballs
that are not a�ected by gravity. This means that �reballs
travel in a straight line in front of the character until they
collide with a game element.
MARIO_LIKE_SHOOTING : the character can shoot
�reballs that are a�ected by gravity. This means that
�reballs falls down and, if they hit a platform, they will
bounce upwards and start falling again. This is similar
to how �reballs shot by Mario in the Super Mario Bros.
series behave.

Enum

multipleShotsInterval De�nes the time interval in which a maximum number of
shots can be �red. Measured in s.

Float

maxShotInInterval De�nes the maximum number of shots that can be �red
in the time interval set with multipleShotsInterval.

Integer

rechargeTime De�nes the time that must pass to resume shooting after
�ring the maximum number of shots in the limit interval.
Measured in s.

Float

Table 4.4: Parameters regulating the character shooting ability.

points of the levels (e.g. segments where a lot of enemies are present).

Name Description Type

isResourceDepleting Indicates whether the resource associated to the character
is currently depleting.

Boolean

maxResourceValue De�nes the starting value for the resource. Measured in
ResourceUnits.

Float

depletionSpeed De�nes the speed at which the resource depletes. Mea-
sured in ResourceUnits/s.

Float

Table 4.5: Parameters regulating the resource depletion mechanic.

4.2 Analysis of structural features 33

4.2.1 The platforms

Platforms (i.e. concrete blocks where the character can lean on) are the funda-
mental elements that make it possible for the character to travel from one point
to another in a level. Given their key role, the platformer implementation pro-
vides a set of parameters that characterize the type, shape and other type-related
properties of platforms. This features give wide choice to the designer and allow
him to create levels of great variety.
Table 4.6 lists and describes the parameters that de�ne every platform. To clar-
ify on the length parameter role, all platform types, with the exception of the
STATIC_GROUNDED and SPIKED_GROUNDED types, are formed by a sin-
gle layer of tiles horizontally placed next to each other; as such, the length pa-
rameter de�nes the number of tiles composing each layer of a platform.
The movSO, movEO and movSp parameters are used only if the platform is
of MOVING type. MOVING platforms are designed to move back and forth
between two points in space in a straight line; we refer to these two points as
beginningPoint (BP) and endPoint (EP). BP and EP are computed using the
platform initial position IP (i.e. the position in the level space where it has been
placed by the designer) and the movSO and movEO parameters. In order to
simplify our analysis, MOVING platforms are allowed to move either with a a
horizontal trajectory (constant y coordinate) or with a vertical trajectory (con-
stant x coordinate). Given this constraint, MOVING platforms are set to have a
horizontal trajectory if any of the x components of movSO or movEO is not zero,
whereas a vertical trajectory is set if both the x components of movSO or movEO
are equal to zero. Equations 4.3 de�ne the condition for a horizontal trajectory
and the related beginningPoint and endPoint. Equations 4.4 de�ne the condition
for a vertical trajectory and the related beginningPoint and endPoint.

movSO.x 6= 0 ∨ movEO.x 6= 0

BP = (IP.x−movSO.x, IP.y)
EP = (IP.x+movEO.x, IP.y)

(4.3)

movSO.x = 0 ∧ movEO.x = 0

BP = (IP.x, IP.y −movSO.y)
EP = (IP.x, IP.y +movEO.y)

(4.4)

For what regards FADING platforms, their behavior is quite simple: when
the character makes contact with a platform of this type, the alpha channel
(i.e. the value de�ning the transparency of an image) of the platform texture is
gradually decreased with a rate equal to fadSp; once the alpha channel reaches
a prede�ned threshold (we set it to 0.1), the platform disappears and, if the
character is standing on it, he will fall. The platform is then restored to its
normal state after a short time interval.

34 Our approach to level design

Name Description Type

platformType De�nes the platform type. It has six possible
values:
STATIC_FLOATING : a static �oating plat-
form.
STATIC_GROUNDED : a static multilayer
platform that acts as a pillar planted in the
ground.
MOVING : a moving platform.
SPIKED_FLOATING : a spiked static �oating
platform that damages the character on con-
tact.
SPIKED_GROUNDED : a static multilayer
platform that acts as a pillar planted in the
ground and damages the character on contact.
FADING : a static �oating platform that starts
fading when the character collides with it.

Enum

length De�nes the length of the platform. This value
represents the number of tiles composing the
platform, except when it is multilayered.

Integer

platformConnections De�nes the platform appearance to �t one or
more possible linked platforms. It has four pos-
sible values:
NO_CONNECTIONS : a platform that has no
linked platforms.
CONNECTED_LEFT : a platform with the
appropriate appearance to have a platform
linked on its left.
CONNECTED_RIGHT : a platform with the
appropriate appearance to have a platform
linked on its right.
CONNECTED_LEFT_RIGHT : a platform
with the appropriate appearance to have a plat-
form linked on its left and another on its right.

Enum

isStartingPlatform Indicates whether this is the platform where the
character will start the level.

Boolean

isFinalPlatform Indicates whether this is the �nal platform the
character has to reach to complete the level.

Boolean

hasCheckpoint Indicates whether this platform has a check-
point on itself.

Boolean

movementStartO�set (movSO) De�nes the o�set from the position the plat-
form is placed to the starting point of its path.

Vector2

movementEndO�set (movEO) De�nes the o�set from the position the plat-
form is placed to the �nal point of its path.

Vector2

movementSpeed (movSp) De�nes the speed at which the platform moves
along its path. Measured in u/s.

Float

fadeSpeed (fadSp) De�nes the speed at which the platform fades.
Measured in alpha/s.

Float

Table 4.6: Platforms parameters.

4.3 Analysis of gameplay features 35

Figure 4.1: Bounds Boxes (in red) for a STATIC_FLOATING platform (left)
and for a MOVING platform with a horizontal trajectory (right).

4.3 Analysis of gameplay features

We based our platforms reachability analysis on the study of the possible jump
trajectories; the result of this analysis is a directed graph of the level, which
allows us to make speci�c considerations on how the level can be tackled by the
player, both in terms of the available paths for reaching the �nal platform and
on their di�culty.
One module of our system is responsible for the computation of physics con-
straints deriving from movement and jump parameters de�ned for the character.
For instance, the pair of values assigned to takeo�Speed and gravity determine a
speci�c maximum reachable height for a single jump. This set of constraints is
fundamental for the generation of jump trajectories that are coherent with the
physical model of the character.
As a preliminary step that guarantees the correctness of the reachability analysis,
our method checks that there are no overlapping platforms in the level; in order to
achieve that, for every platform in the level, we compute the related Bounds Box,
which represents, for all the platform types, with the exception of the MOVING
type, the margins of the platform texture; in the case of MOVING platforms,
the Bounds Box speci�es the area of space within which the platforms move; as
a consequence, this prevents that other platforms are placed inside the range of
movement of each MOVING platform. Figure 4.1 shows the Bounds Boxes for a
STATIC_FLOATING and a MOVING platform.

4.3.1 Trajectory de�nition

A trajectory is formally de�ned as the path followed by a moving object. In our
case, the trajectory represents the sequence of points in the bidimensional space
followed by the feet of our character, considering the feet as a point-like object;
this is because the landing on a platform occurs with the lower part of the char-
acter body; thus, in order to check if the character can reach a platform, the feet
must be considered as the moving element that actually lands on the platform
surface.

36 Our approach to level design

We chose to represent trajectories as piecewise de�ned functions; this choice de-
rives from the fact that physics parameters related to movement can determine
the variation of the laws of motion in di�erent space intervals; for example, in the
�rst space interval the character moves with a uniformly accelerated motion on
the x axis, whereas in the following space interval his speed is constant; as such,
the functions describing the motion in the two intervals are di�erent. In order to
simplify the reachability check of a point in space (i.e. verify if a certain point is
reachable with a trajectory), we chose to de�ne each function composing a tra-
jectory as a y(x) (i.e. a function where the x is the independent variable). Given
these considerations, we de�ne a trajectory T as a piecewise de�ned function in
the following form:

T ([y1(x), (x1,s, x1,e)], [y2(x), (x2,s, x2,e)], ...,

..., [yn−1(x), (xn−1,s, xn−1,e)], [yn(x), (xn,s)], direction) (4.5)

Or with the following equivalent compact form:

T (y1(x), y2(x), ..., yn−1(x), yn(x), direction) (4.6)

Where:

• yi(x) is the i-th function composing the trajectory. Although there is no
limit to the number of functions composing the trajectory, the various phys-
ical behaviors involve a maximum of four functions forming a trajectory.

• xi,s de�nes the starting x value for the interval of the i-th function.

• xi,e de�nes the �nal x value for the interval of the i-th function. It must be
noted that the n-th function composing the trajectory has no �nal x value
because the associated physical behavior does not change after xn,s.

• direction indicates the direction (i.e. left or right) of the trajectory. If the
direction is right, the x values of intervals increase (i.e. xi,s < xi,e), whereas
if the direction is left, the x values of intervals decrease (i.e. xi,s > xi,e).

In particular, polynomial functions of the �rst and second degree (i.e. lines and
parabolas) are used. This formulation allows to check if a generic point P (xp, yp)
is reachable by a trajectory T (y0, y1, ..., yn−1, yn, direction) with the following
condition:

yi(xp) > yp (4.7)

Where:

• xi,s ≤ xp ≤ xi,e if direction = right

• xi,e ≤ xp ≤ xi,s if direction = left

4.3 Analysis of gameplay features 37

Figure 4.2: Two generated trajectories. Target point in green. The orange tra-
jectory fails to reach the target point. The red trajectory is able to reach the
target point.

Basically, we consider the function that covers the interval in which xp belongs
and check if the function value is greater than yp. The inequality 4.7, which is
referred as reachability check from now on, formalizes the fact that, in order for
the character to land on a speci�c point, he must be in a more elevated position
when horizontally aligned with the target. Figure 4.2 shows two trajectories
generated from the border of the platform on the left and a target point (in green),
that is part of the border of the platform on the right; the orange trajectory fails
the reachability check as it is below the target, whereas the red trajectory passes
the reachability check as it is above the target.

4.3.2 Trajectory generation

In order to generate a trajectory, the following set of parameters is used:

• startPoint (SP): the starting point of the trajectory. This is the position in
which the jump is executed.

• verticalTakeo�Speed (vy,Takeoff): the character speed on the y axis at the
moment of takeo�.

• horizontalTakeo�Speed (vx,Takeoff): the character speed on the x axis at the
moment of takeo�.

38 Our approach to level design

• direction: the direction of the trajectory. Can be either left or right. The
generation algorithm works by considering the horizontal movement input
(i.e. -1 for left and 1 for right) constant for the entire trajectory.

• isRunning : boolean parameter indicating whether the run button is pressed
at the moment of takeo� and for the entire trajectory. The generation
algorithm works by considering the run button state constant for the entire
trajectory.

• jumpDuration: how long the jump button is kept pressed. Given how
the jump works if isJumpDynamic is set to true, this de�nes the time at
which the movement speed on the y axis is set to zero. This is an optional
parameter: if not speci�ed, the trajectory reaches the maximum reachable
height.

Together with these parameters, which determine a speci�c trajectory in space,
also the character movement and jump parameters are used for the generation.
Based on how the physical model of the character has been con�gured, both the
motion on the x axis and on the y axis can either be uniformly accelerated (or
decelerated) or at constant speed; it follows that there are four possible combi-
nations for the overall motion and the framework has been designed to recognise
each one of them to output the proper trajectory.

4.3.2.1 Accelerated (or decelerated) horizontal movement and decel-
erated vertical movement

If the absolute value of the horizontal speed at which the character takes o� from
the ground is less or greater than the maximum horizontal reachable speed in air
(maxAS) then the horizontal movement is, respectively, uniformly accelerated or
uniformly decelerated. For what concerns the movement on the y axis, the char-
acter vertical speed is decelerated due to gravity. This combination of motion, if
part of the trajectory to generate, is always in the �rst section of the piecewise
de�ned function (y0). In this context, the following equations describe, respec-
tively, the variation of the x and y coordinates and the horizontal movement
speed with respect to time:

x(t) =
1

2
airAcc× t2 + vx,P0 × t+ x0 (4.8)

y(t) =
1

2
g × t2 + vy,P0 × t+ y0 (4.9)

vx(t) = airAcceleration× t+ vx,P0 (4.10)

Where:

4.3 Analysis of gameplay features 39

• airAcc is the constant acceleration value for the horizontal movement. The
sign of this value re�ects the direction of the trajectory. This parameter is
replaced by airDec if the horizontal takeo� speed is greater than maxAS,
thus the character decelerates.

• g is the constant deceleration value for the vertical movement.

• P0(x0, y0) is the point in space at which the overall motion starts following
the set of physical laws at issue. For this combination of motion, this
parameter correspond to the startPoint of the trajectory.

• vx,P0 is the horizontal speed of the character at P0.

• vy,P0 is the vertical speed of the character at P0.

As this type of motion always characterizes the �rst section of the trajectory,
vx,P0 and vy,P0 are, respectively, the horizontal and vertical takeo� speed. The hor-
izontal movement stays uniformly accelerated (or decelerated) until vx = maxAS.
Given that our goal is to obtain a function in the form y(x), we observe that for
this combination of motion it is not trivial nor direct to �nd an expression for
t that encapsulates the x and allows us to achieve the desired expression. Fur-
thermore, the fact that the time interval in which the horizontal movement is
accelerated (or decelerated) is supposed to be small, we approximate the trajec-
tory for this combination of motion as a line connecting P0(x0, y0) and P1(x1, y1),
where the latter is the point at which the character starts moving at a constant
speed (vx = maxAS). Considering t0 = 0 as the instant of jump, the following
equation, derived from expression 4.10, is used to compute the time at which the
horizontal movement speed becomes constant:

t1 =
maxAS − vx,P0

airAcc
(4.11)

As noted above, the airAcc parameter is replaced by airDec if the character
horizontal movement is decelerated in the air. Using equation 4.11, we can obtain
P1 coordinates by substituting t1 in expressions 4.8 and 4.9 as x1 = x(t1) and
y1 = y(t1). We can then use the two points to de�ne the approximating line with
the following equations:

y(x) =
y1 − y0
x1 − x0

x+ c c = y0 − x0
y1 − y0
x1 − x0

(4.12)

4.3.2.2 Constant speed horizontal movement and decelerated vertical
movement

In this combination of motion, the horizontal movement is at constant speed,
whereas the vertical movement is decelerated due to gravity and, as such, follows

40 Our approach to level design

equation 4.9. This type of motion characterizes the �rst section of a trajectory
if the acceleration (or deceleration) is instantaneous, thus making the character
reach the maximum horizontal speed in air immediately; otherwise, this combina-
tion of motion is typical of the second section of a trajectory, after the character
has passed an acceleration phase (motion described in 4.3.2.1). The following
equation describes the variation of the x coordinate with respect to time:

x(t) = maxAS × t+ x0 (4.13)

Where x0 is the x coordinate of P0, the point at which this combination of motion
starts. In this case, we can easily obtain an expression of t from equation 4.13 that
allows us to achieve the proper y(x) form of the motion at issue. The following
equation de�nes how t can be expressed in terms of x (derived from equation
4.13):

t =
x− x0
maxAS

(4.14)

By substituting expression 4.14 in equation 4.9, and after expanding it to high-
light the parameters that de�ne each coe�cient of the polynomial form, we obtain
the �nal y(x) expression:

y(x) = (
g

2maxAS2
)x2 + (

vy,P0

maxAS
− g × x0
maxAS2

)x+ (
g × x20

2maxAS2
− vy,P0 × x0

maxAS
+ y0)

(4.15)

4.3.2.3 Constant speed horizontal movement and constant speed ver-
tical movement

In this combination of motion, the movement on both the axes is at constant
speed. This happens when the hasTerminalFallingSpeed parameter is set to true
and, as such, during the descending phase of the jump the character reaches a
constant falling speed. This type of motion is typical of the last section of a
trajectory. We refer to equation 4.13 to describe the x coordinate, whereas the
variation of the y coordinate with respect to time is expressed by the following
equation:

y(t) = TFS × t+ y0 (4.16)

It must be noted that, as the character is falling down, the terminalFallingSpeed
parameter (TFS) is always negative.
As for the case studied in 4.3.2.2, we can substitute t with the expression 4.14 in
equation 4.16 to obtain the y(x) form that describes the motion:

y(x) =
TFS

maxAS
x+ (y0 −

TFS

maxAS
x0) (4.17)

4.3 Analysis of gameplay features 41

4.3.2.4 Accelerated (or decelerated) horizontal movement and con-
stant speed vertical movement

The �nal case for the motion is the one in which the horizontal movement is
uniformly accelerated (or decelerated) and the vertical movement happens at
constant speed (terminal falling speed). This combination of motion is very
unusual, as it occurs if the character takes more time to reach his maximum
horizontal speed in air than to get to the jump descending phase and reach the
terminal falling speed. Given the facts that the physics parameters con�guration
should avoid that this type of motion occurs, and that it is not direct to obtain
a y(x) expression to describe it, we approximate the motion in a very rough way
by using two lines. The �rst line connects the trajectory starting point P0(x0, y0)
with the highest point P1(x1, y1) (i.e. the apex of the jump) of the trajectory;
the second line connects P1 with the point P2(x2, y2) at which the horizontal
movement speed becomes constant. It must be noted that the �rst section of
such a trajectory would normally be approximated following the rules described
in 4.3.2.1, but that would result in a single line connecting P0 and P2, excluding
the apex of the jump from the generated trajectory. The following equations
describe the two lines approximating the trajectory:

yP0,P1(x) =
y1 − y0
x1 − x0

x+ c1 c1 = y0 − x0
y1 − y0
x1 − x0

(4.18)

yP1,P2(x) =
y2 − y1
x2 − x1

x+ c2 c2 = y1 − x1
y2 − y1
x2 − x1

(4.19)

The module in charge of computing the physics constraints determines the times
at which the type of motion changes, then they are ordered to de�ne the proper
sequence of motions for the trajectory.
In order to give a clearer view of the trajectory generation process, we provide
a non-numeric example of the algorithm performing this task. We assume that
the hasTerminalFallingSpeed parameter is set to true, thus the character falling
speed caps at TFS ; in addition, we suppose the jump is directed toward the right.
First, the physics module computes the following two values:

• timeToMaxSpeed (tMS): the time needed to reach the maximum horizontal
speed in air.

• timeToTerminalFallingSpeed (tTFS): the time needed to reach the terminal
falling speed.

We assume that the following conditions hold true for this example:

tMS 6= 0 ∧ tMS < tTFS (4.20)

Given this fact, the trajectory is composed by three functions, each one de�ned in
a speci�c interval of x values. The �rst function y1 describes a motion character-
ized by a uniformly accelerated horizontal movement and a uniformly decelerated

42 Our approach to level design

Figure 4.3: A trajectory composed by three functions. P0, P1 and P2 (in black)
are the starting points of each function.

(due to gravity) vertical movement (4.3.2.1). The second function y2 describes a
motion characterized by a constant speed horizontal movement and a uniformly
decelerated (due to gravity) vertical movement (4.3.2.2). Finally, the third func-
tion y3 describes a motion at constant speed on both the axes (4.3.2.3). The
three points at which the functions respectively start being valid are P0(x0, y0),
P1(x1, y1) and P2(x2, y2). The algorithm generates the functions composing the
trajectory T (y1(x), y2(x), y3(x), right) as follows:

y1(x) =
y1 − y0
x1 − x0

x+ c c = y0 − x0
y1 − y0
x1 − x0

(4.21)

y2(x) = (
g

2maxAS2
)x2 + (

vy,P1

maxAS
− g × x1
maxAS2

)x+ (
g × x21

2maxAS2
− vy,P1 × x1

maxAS
+ y1)

(4.22)

y3(x) =
TFS

maxAS
x+ (y2 −

TFS

maxAS
x2) (4.23)

Figure 4.3 shows the �nal trajectory generated by the algorithm and the starting
point of each function.

4.3.3 Types of trajectory

Our method evaluates the reachability by considering two platforms at once; the
starting one, from which the character performs the jump; the target one, on
which the character intends to land. If the analysis outcome is positive (i.e. the
target platform is reachable from the starting platform), the result in the graph
representation is a directed edge from the vertex corresponding to the starting
platform to the one associated to the target platform; in case of non-reachability,

4.3 Analysis of gameplay features 43

Figure 4.4: A boundary trajectory (in red) and a subset of its covered trajectories
(in green).

the graph does not have an edge connecting the two vertices. Once the reach-
ability is evaluated in a direction, the system also evaluates it in the opposite
direction.
Based on how the two platforms are positioned, we identi�ed four possible con-
�gurations, from which result four methods for the generation of the possible
trajectories. It must be noted that we are considering boundary jump trajec-
tories: trajectories re�ecting the extreme approaches to the jump action (e.g.
jumping from a stationary position without pressing the run button or jumping
with a running start while pressing the run button). These trajectories assume
a maximum jump duration (i.e. the player keeps the jump button pressed to
maximize the jump height) and a constant horizontal input. Given that the
player has control over the jump duration and the horizontal speed in the air, the
boundary trajectories cover a wide set of possible player's actions. In addition,
the boundary trajectories are generated from one of the two terminal points of
the starting platform, which we call optimal takeo� points ; this because, ideally,
the player tries to jump in correspondence of these positions (i.e. performing a
pixel perfect jump) in order to maximize the width of the trajectory and try to
reach the most distant points from the starting platform. Thus, the boundary
trajectories are, in fact, boundaries for all possible jumping approaches. Figure
4.4 shows a boundary trajectory in red and a subset of trajectories it covers (re-
sulting from di�erent jump duration values) in green. By counting the number
of boundary trajectories that pass the reachability check, we are able to provide
an estimation of the jump di�culty (see section 4.3.4). Note that, the framework
does not employ any checks on whether the generated trajectories are blocked by
other platforms; this is because its main goal is to provide feedbacks on human

44 Our approach to level design

authored content and designers can identify the issue using a speci�c tool of the
framework to view the boundary trajectories (see Section 6.3). If this work is
extended to include the automatic generation of levels that must satisfy speci�c
properties (i.e. search-based content generation) then the issue of blocked trajec-
tories should de�nitely be addressed.
Note that, our approach works by considering the platforms as static (i.e. with
�xed positions), but, as our platformer implementation also o�ersMOVING plat-
forms, the reachability analysis is designed to e�ectively handle the cases in which
one or even both the two considered platforms are of MOVING type. In general,
the Bounds Box (i.e. the area of space within which the platform moves) of a
MOVING platform is discretized according to the direction of its trajectory. If
the platform moves with a horizontal trajectory, the discretization step is equal
to the platform width; If the platform moves with a vertical trajectory, the dis-
cretization step is equal to the platform height. This means that the reachability
analysis is performed considering all the possible positions of the MOVING plat-
form inside its Bounds Box using the platform width or height as a step between
adjacent positions. An ad hoc method is followed in the positions discretization
if both the platforms are MOVING ; in fact, the �rst step in this scenario is to
compute each platform movement half-period, which is the time needed to go
from the beginningPoint to the endPoint. If the two platforms have the same
half-period value, they are synchronized, meaning that their mutual positions
stay the same at every movement cycle. Thus, if the two platforms are synchro-
nized, the reachability analysis performs the discretization of their positions with
respect to time, generating the possible trajectories for their mutual positions
over a time interval equal to their period. In case the two MOVING platforms
are not synchronized, the discretization process is executed normally (i.e. using
their width or height as a step) and all the possible combinations of positions are
tested. In order to determine the boundary trajectories if at least one of the two
platforms considered in the reachability analysis is of MOVING type, for each
one of the discretized positions, the jump di�culty is evaluated (see 4.3.4) and
the boundary trajectories are the ones corresponding to the position with the
lowest jump di�culty.
As a preliminary step for the reachability analysis, the physics module computes
the maximum reachable height with a jump, taking into account the involved
parameters (e.g. if the character can perform a double jump or not); if the target
platform is above the starting platform and the vertical distance between them
is greater than the maximum reachable height then it is not possible to reach the
target, thus the analysis stops and returns a negative output. Next, the optimal
takeo� and landing positions (i.e. points used for the reachability check) are com-
puted from the starting and target platforms parameters; as we are considering
the terminal points of each platform, we come up with the following:

• startLeft (SL): left terminal point of the starting platform.

4.3 Analysis of gameplay features 45

Figure 4.5: Starting platform on the left and target platform on the right. Opti-
mal takeo� points highlighted in green and landing points highlighted in blue.

• startRight (SR): right terminal point of the starting platform.

• targetLeft (TL): left terminal point of the target platform.

• targetRight (TR): right terminal point of the target platform.

Figure 4.5 shows the optimal takeo� points and landing points for a pair of
platforms.

4.3.3.1 Trivial trajectories

If one of the two platforms is above the other and the projections on the x axis of
its terminal points overlap with the respective projections of the other platform
(Figure 4.6), then we identify this case as a Trivial trajectory scenario. This is
because, theoretically, there is no possibility of failing the jump in this situation,
as no gap is present between the two platforms. Equation 4.24 formalizes the
condition for a Trivial trajectory when the target is above the starting platform.
Equation 4.25 formalizes the condition for a Trivial trajectory when the target
is below the starting platform.

SL.x ≤ TL.x ≤ SR.x ∨ SL.x ≤ TR.x ≤ SR.x (4.24)

TL.x ≤ SL.x ≤ TR.x ∨ TL.x ≤ SR.x ≤ TR.x (4.25)

In this scenario, it is not necessary to actually generate a trajectory. If the target
platform is above the starting one, the character just needs to perform a jump

46 Our approach to level design

Figure 4.6: Two platforms with overlapping projections.

Figure 4.7: Boundary trajectories (in green) for two Trivial con�gurations.

while standing still and slightly move toward the target when he reaches the same
height; if the target platform is below the starting one, the character just needs to
fall straight to land on the target. Figure 4.7 illustrates two instances of Trivial
trajectories.

4.3.3.2 Simple trajectories

If the two platforms projections are not overlapping, then we identify this case
as a Simple trajectory scenario. This is the most common con�guration in 2D
platformers. The gap between the two platforms represents the obstacle the
character needs to overcome to move from one platform to the other. Figure 4.8
shows an example of Simple con�guration. Equation 4.26 formalizes the condition
for this scenario.

TL.x > SR.x ∨ TR.x < SL.x (4.26)

4.3 Analysis of gameplay features 47

Figure 4.8: An example of Simple con�guration. The character, standing on the
starting platform (left), needs to jump over the gap to reach the target platform
(right).

For what concerns the trajectory generation, the start point (SP) of the trajectory
and the target point used for the reachability check are determined according
to how the two platforms are positioned. If the target is to the right of the
starting platform (TL.x > SR.x) then SP = SR and the target point is equal
to TL; if the target is to the left of the starting platform (TR.x < SL.x) then
SP = SL and the target point is equal to TR. A big distinction is made by the
framework according to the character jumping mode. If the jumping mode is set
to SINGLE_JUMP, then a maximum of four boundary trajectories are generated,
covering the majority of possible approaches to the jump. Using Figure 4.9 as a
reference, the following four boundary trajectories are de�ned:

• Green trajectory : corresponds to the trajectory with vy,Takeoff = ToS,
vx,Takeoff = 0 and isRunning = false. This case represents the approach
to the jump without a running start (i.e. horizontal movement speed equal
to zero) and without pressing the run button while performing the trajec-
tory. This trajectory is generated only if the movement mode is not set to
RUN_ONLY.

• Yellow trajectory : corresponds to the trajectory with vy,Takeoff = ToS,
|vx,Takeoff | > 0 and isRunning = false. vx,Takeoff is computed by consid-
ering a running start on the 90% of the starting platform length without
pressing the run button. This case represents the approach to the jump
with a running start and without pressing the run button while performing
the trajectory. This trajectory is generated only if the movement mode is
not set to RUN_ONLY.

• Orange trajectory : corresponds to the trajectory with vy,Takeoff = ToS,

48 Our approach to level design

Figure 4.9: The four boundary trajectories generated in case of SINGLE_JUMP
and WALK_AND_RUN mechanics.

vx,Takeoff = 0 and isRunning = true. This case represents the approach to
the jump without a running start, but with the pression of the run button
while performing the trajectory. This trajectory is generated only if the
movement mode is not set to WALK_ONLY.

• Red trajectory : corresponds to the trajectory with vy,Takeoff ≥ ToS, |vx,Takeoff | >
0 and isRunning = true. vx,Takeoff is computed by considering a running
start on the 90% of the starting platform length while pressing the run
button. If the isV erticalTakeoffSpeed parameter is set to true, vy,Takeoff

is based on the vx,Takeoff value and computed using equations 4.1 and 4.2.
This case represents the approach to the jump with a running start and with
the pression of the run button while performing the trajectory. This trajec-
tory is generated only if the movement mode is not set to WALK_ONLY.

The direction parameter for the trajectories is set according to the position of
the target with respect to the starting platform. Basically, the trajectories color
acts as an indicator of their starting horizontal speed and running settings.
If the character jumping mode is set to DOUBLE_JUMP, then, for each one of
the four boundary trajectories described above, two additional trajectories are
generated only if the respective initial trajectory (i.e. describing the �rst jump)
fails the reachability check: the �rst starting at the apex of the �rst jump and
the second starting at the same y coordinate of the �rst jump takeo� point on
the descending phase of its trajectory. The double jump trajectories parameters
are de�ned as follows:

• vy,Takeoff = DJS.

4.3 Analysis of gameplay features 49

Figure 4.10: The maximum number of boundary trajectories (twelve) that can
be generated in case of DOUBLE_JUMP and WALK_AND_RUN mechanics.

• vx,Takeoff is set to the horizontal movement speed reached at that point on
the respective �rst jump trajectory.

• The isRunning parameter keeps the same value assigned to the respective
�rst jump trajectory.

• The direction paramater keeps the same value assigned to the respective
�rst jump trajectory.

These two trajectories guarantee a good spatial coverage both horizontally and
vertically. Figure 4.10 shows an instance of Simple con�guration with all the
twelve possible trajectories generated.

4.3.3.3 Falling trajectories

If the target platform is below the starting one and the projections of the former
are completely contained in the projections of the latter, then we identify this
case as a Falling trajectory scenario. Figure 4.11 shows an example of Falling
con�guration. Equation 4.27 formalizes the condition for this con�guration.

TL.x > SL.x ∧ TR.x < SR.x (4.27)

As a preliminary step for trajectories generation, the framework determines the
side (i.e. left or right) of the starting platform from which the character performs
the fall. This is done by computing the euclidean distances between the terminal
points on the same side of the two platforms; in order to maximize the chances
of landing on the target, the side with the smaller distance is chosen. The target
point used for the reachability check is the terminal point of the target platform

50 Our approach to level design

Figure 4.11: An example of Falling con�guration. The character, standing on
the starting platform (top), needs to fall down and land on the target platform
(bottom).

on the chosen side.
According to the character jumping mode, two di�erent approaches are followed
for the trajectories generation. If the jumping mode is set to SINGLE_JUMP,
we consider a free fall trajectory without the use of the jump. Also, we want the
character to keep the horizontal distance from the target platform to a minimum
while falling next to the starting platform. As a consequence, the start point SP
of the trajectories, assuming the left side as the one chosen to start the fall, is
computed as follows:

SP = (SL.x− charWidth

2
, SL.y − platHeight− charHeight) (4.28)

Where:

• charWidth is the character width, measured in u.

• charHeight is the character height, measured in u.

• platHeight is the starting platform height, measured in u.

4.3 Analysis of gameplay features 51

Figure 4.12: Boundary trajectories generated for the same Falling con�gu-
ration with two di�erent mechanics settings. On the left, SINGLE_JUMP
and WALK_AND_RUN settings. On the right, DOUBLE_JUMP and
WALK_AND_RUN settings.

It must be noted that SP represents the position at which the character can start
moving horizontally toward the target platform without colliding with the border
of the starting platform. In addition, the framework needs to know the vertical
movement speed at SP to de�ne the correct trajectories, thus the following equa-
tions are used:

tSP =

√
2
−verticalOffset

g
(4.29)

vy,SP = g × tSP (4.30)

Where tSP is the time it takes to the character to reach SP, whereas verticalOffset =
platHeight+ charHeight. It must be noted that, if the hasTerminalFallingSpeed
parameter is set to true and the time needed to reach the terminal falling speed is
less or equal to tSP , then vy,SP = TFS. Given these considerations, the following
two boundary trajectories can be generated in case of SINGLE_JUMP :

• Green trajectory : corresponds to the trajectory with vy,Takeoff = vy,SP ,
vx,Takeoff = 0 and isRunning = false. This trajectory is generated only if
the movement mode is not set to RUN_ONLY.

• Orange trajectory : corresponds to the trajectory with vy,Takeoff = vy,SP ,
vx,Takeoff = 0 and isRunning = true. This trajectory is generated only if
the movement mode is not set to WALK_ONLY.

52 Our approach to level design

The trajectories direction is the opposite of the side chosen to start the fall (e.g.
if the left side of the starting platform is chosen then the trajectories direction is
equal to right).
If the jumping mode is set to DOUBLE_JUMP, the character can exploit the sec-
ond jump to have a better control in the air and maximize his chances of landing
on the target. As such, the basic assumption for the de�nition of the boundary
trajectories is that the character performs a �rst jump with jumpDuration =
minimumJumpDuration to start the free fall and to enable the double jump;
then, when he is at half the vertical distance between the two platforms, he
performs the second jump, directed toward the target. As a consequence, the
startPoint of the trajectories, assuming the left side as the one chosen to start
the fall, is computed as follows:

SP = (SL.x− charWidth

2
,
SL.y − platHeight+ TL.y

2
) (4.31)

Equations 4.29 and 4.30 are used to compute vy,SP = 0, but in this case verticalOffset =
SL.y+heightMinJump−SP.y, where heightMinJump is the height reached with
the �rst jump. As in the SINGLE_JUMP setting, the same considerations about
the terminal falling speed also hold true in this case. The two trajectories that
can be generated in the DOUBLE_JUMP case are the same as in the SIN-
GLE_JUMP situation, with the di�erence being their vy,Takeoff , that is equal to
DJS. Figure 4.12 compares the trajectories generated in case of SINGLE_JUMP
and DOUBLE_JUMP.

4.3.3.4 Reentrant trajectories

If the target platform is above the starting one and the projections of the latter
are completely contained in the projections of the former, then we identify this
case as a Reentrant trajectory scenario. In this con�guration, the character needs
to jump and follow a reentrant trajectory to land on the target platform. Figure
4.13 shows an example of Reentrant con�guration. Equation 4.32 formalizes the
condition for this con�guration.

TL.x < SL.x ∧ TR.x > SR.x (4.32)

As the character needs to follow a reentrant path while in the air, having access
to a second jump is mandatory to succeed in reaching the target platform. As
such, if the jumping mode is not set to DOUBLE_JUMP, the reachability anal-
ysis returns a negative output without proceeding to the trajectories generation
step.
Similarly to the Falling con�guration case discussed in 4.3.3.3, the side of the
starting platform from which the character takes o� is de�ned by computing the
distances between the platforms terminal points on the same side and choosing
the one with the smaller value. The possible �rst jump trajectories are the same

4.3 Analysis of gameplay features 53

Figure 4.13: An example of Reentrant con�guration. The character is standing
on the starting platform (bottom), with the target platform above him.

described in 4.3.3.2 for the takeo�; in addition, the �rst jump trajectories jump-
Duration is set to guarantee the maximum reachable height and at the same
time avoid the collision with the upper platform; this is because, if the character
collides with the target platform, he is pushed down and unable to follow the
generated trajectory. Ideally, the character needs to change his direction while
in air and perform the second jump in correspondence of the �rst jump apex.
Clearly, if the character acceleration is not instantaneous, it takes some time to
change direction as the air turn acceleration (airTAcc) in�uences the character
horizontal speed; while airTAcc is in e�ect, the character still moves in the di-
rection of the �rst jump trajectory and this determines a horizontal o�set for
the start point SP of the double jump trajectory. Given these considerations,
we assume that the character starts changing his movement direction at the �rst
jump apex and that he performs the second jump at the time his horizontal
speed becomes zero (entire airTAcc e�ect). With these assumptions, we make
the following computations:

tZS =
−vx,Apex

airTAcc
(4.33)

horizontalOffset =
1

2
airTAcc× t2ZS + vx,Apex × tZS (4.34)

Where:

• tZS is the time needed for the horizontal speed value to reach zero due to

54 Our approach to level design

Figure 4.14: The set of boundary trajectories generated for a Reentrant con�gu-
ration.

airTAcc. Measured in s.

• vx,Apex is the horizontal speed of the character at the �rst jump apex. This
parameter has the opposite sign of airTAcc, hence the minus in the fraction.
Measured in u/s.

• horizontalO�set is the horizontal distance travelled by the character while
changing direction. Measured in u.

As such, the second jump SP is taken on the �rst jump trajectories with hori-
zontalO�set distance from the apex. To sum up, the parameters that de�ne the
double jump trajectories are the following:

• vy,Takeoff = DJS

• vx,Takeoff = 0

• The isRunning parameter keeps the same value assigned to the respective
�rst jump trajectory.

• The direction is the opposite of the one assigned to the respective �rst jump
trajectory.

Figure 4.14 shows the trajectories generated for a Reentrant con�guration, in
case of WALK_AND_RUN movement mode. Figure 4.15 illustrates the tra-
jectories generated for a Reentrant con�guration that causes the algorithm to
generate multiple times a speci�c trajectory (the �rst jump green one) to avoid
the character collision with the upper platform, in case of WALK_AND_RUN
movement mode.

4.3 Analysis of gameplay features 55

Figure 4.15: The set of boundary trajectories generated for a Reentrant con�g-
uration. The �rst jump green trajectory has been generated multiple times to
avoid the collision with the upper platform.

4.3.4 Jump di�culty evaluation

As we previously mentioned, the goal of the reachability analysis is not only to
conclude if a platform can be reached from another platform, but also to provide
information on the jump di�culty. As such, the reachability analysis performed
on two platforms outputs a directed edge which comes with two indicators: a
weight and a probability. The edge probability and its meaning in the context of
jumping from one platform to another are discussed in depth in Chapter 5. The
edge weight provides an evaluation of the jump di�culty based on the generated
boundary trajectories. The formula for the computation of the edge weight is the
following:

Weight =
generatedTrajectories

trajectoriesReachingTarget
×DC (4.35)

Where:

• generatedTrajectories is the number of generated trajectories for the current
two platforms con�guration.

• trajectoriesReachingTarget is the number of generated trajectories that pass
the reachability check (i.e. allow the character to reach the target platform).

• DC is the di�culty coe�cient measuring how much context-speci�c prop-
erties (e.g. if the target platform is MOVING) change the overall jump
di�culty.

The edge weight is clamped between 1 and 12, with 1 indicating trivial jumps
and 12 indicating maximum di�culty jumps. This interval of values has been

56 Our approach to level design

chosen for two reasons; �rst, to give designers a range that is not too wide,
thus making their life easier in classifying di�erent jumps; secondly, as the max-
imum number of trajectories that can be generated for a Simple con�guration
is twelve, the extreme case that still guarantees the reachability is the one in
which only one of the twelve trajectories passes the reachability check, resulting
in generatedTrajectories/trajectoriesReachingTarget = 12.
For what concerns DC, it is computed as follows:

DC =MOV INGStart×MOV INGTarget×FADINGStart×FallingTraj (4.36)

Each one of the factor in equation 4.36 depends on platforms speci�c properties
and on their con�guration (i.e. trajectory type). The next paragraphs review the
meaning of these factors and how they are computed.

4.3.4.1 MOVING platforms e�ect

If one or both the two platforms is of MOVING type, the jump di�culty is
clearly in�uenced by their speed of movement. Intuitively, the faster a platform
moves, whether it is the starting one or the target, the more di�cult it is for the
character to successfully perform the jump and land on the target. Given this
consideration, we consider the movement speed parameter ofMOVING platforms
(movSp) to de�ne the MOV INGStart and MOV INGTarget factors of equation
4.36 as follows:

MOV INGStart =
√
movSpStarting + 1 (4.37)

MOV INGTarget =
√
movSpTarget + 1 (4.38)

Where movSpStarting and movSpTarget are the movement speed parameters of the
starting and target platforms respectively. The +1 under the square root is used
so that the two factors are always greater than 1, even if movSp ≤ 1. The jump
di�culty is directly proportional to the movement speed of MOVING platforms,
but we observed that their relation is not linear, thus we employed the square
root to slow the factors growth.
If the starting or the target platform is not of MOVING type, the respective
factor is set to 1, having no in�uence on DC.

4.3.4.2 FADING platforms e�ect

If the starting platform is of FADING type, the character has a limited amount
of time to perform a jump and land on another platform before the platform he
is standing on disappears. As such, the shorter the time needed for the FADING
platform to disappear, the less time the character has to accurately jump and thus
the more di�cult it is to safely reach another platform. Due to this consideration,

4.3 Analysis of gameplay features 57

having a FADING platform as target has no in�uence over the jump di�culty.
The following equations are used to compute the FADINGStart factor:

tDis =
alphaTotalDecreaseToDisappear

fadSp
(4.39)

FADINGStart =
1

log10(tDis + 1)
(4.40)

Where:

• tDis is the time needed for the FADING platform to disappear since the
collision with the character. This value is always greater than 0. Measured
in s.

• alphaTotalDecreaseToDisappear is the alpha decrease that cause the FAD-
ING platform to disappear. As we set the alpha threshold for disappearing
to 0.1 and the alpha value starts at 1, the alphaTotalDecreaseToDisappear
is equal to 0.9.

• fadSp is the FADING platform parameter that de�nes the rate at which
the alpha value decreases. Measured in alpha/s.

The logarithm in equation 4.40 allows to obtain a di�culty factor that is high
when tDis is close to 0, whereas when tDis becomes bigger the factor is slightly
greater than 1. In fact:

tDis = 0.9s→ FADINGStart =
1

log10(1.9)
≈ 3.6

tDis = 3s→ FADINGStart =
1

log10(4)
≈ 1.66

If tDis > 9s, then equation 4.40 is not applied and FADINGStart is automatically
set to 1, as we assume that the time needed for the starting platform to disappear
is long enough to not a�ect the jump di�culty. If the starting platform is not of
FADING type, the FADINGStart factor is set to 1, having no in�uence on the
DC.

4.3.4.3 Falling trajectories e�ect

We observed that the di�culty related to Falling trajectories con�gurations is
in�uenced by at least two parameters: the target platform width and the vertical
speed at which the character falls. Intuitively, the wider the target the easier it is
for the character to land on it; by contrast, the faster he falls, the more di�cult it

58 Our approach to level design

is to reach the target platform. Given these considerations, the following equation
de�nes the di�culty factor assigned to Falling trajectories:

FallingTraj =
|vy|

2 log5(lengthTarget + 1)
(4.41)

Where:

• vy is the vertical speed value de�ned with equation 4.30. Measured in u/s.

• lengthTarget is the length parameter of the target platform, indicating the
number of tiles that are horizontally placed next to each other to form the
platform.

The jump di�culty is considered linearly dependent from the vertical speed,
whereas the in�uence of the target length tends to fade as it increases, hence the
use of the logarithm. In addition, if the target platform is formed by more than
four tiles (i.e. length > 4), then this has the e�ect of slightly easing the jump. If
the two platforms are not in a Falling con�guration, then the FallingTraj factor
is set to 1, having no in�uence on DC.

4.4 Summary

In this chapter we discussed our approach for designing 2D platformer levels.
First, we examined the conceptual model for game levels. Next, we introduced
and described our framework. We presented the structural features o�ered by the
platformer implementation. Finally, we reviewed our method for the trajectories
generation and discussed how it supports the evaluation of the jumps di�culty.

Chapter 5

Modeling level success probability

In this chapter, we introduce how we employed noise functions to estimate the
jumps probability of success. Next, we examine the experimental data we col-
lected to validate our approach for single jumps. Finally, we discuss how the
estimate for single jumps was extended to evaluate the di�culty and probability
of success of a level.

5.1 Jumps start point noise functions

Since players can tackle a jump in di�erent ways, there are multiple trajectories
that they can follow when performing a jump between two platforms. To evaluate
the probability of success of a jump, we generate for each successful boundary
jump trajectory (i.e. reaching the target landing point; Section 4.3.3) a set of
random takeo� points. These are generated around the optimal position using a
noise function based on the following parameters:

• the average reaction time of the player Rt which de�nes the quickness in
reacting to game events and, as such, it is critical for the survival of the
character. We employed this parameter with values ranging from 0.01s to
1s.

• the player skill value Ps which de�nes how good at playing 2D platformers
the player is, the higher the better. We employed this parameter with values
ranging from 1 to 50. For some noise models, this parameters is weighted
by k, a factor determined empirically.

• the absolute value of either the horizontal speed or the vertical speed at
which the character approaches the jump: |vx| or |vy|; the choice between
the two components depends on the jump type, whereas the speed value is
bound to the considered optimal trajectory.

60 Modeling level success probability

Intuitively, the higher Rt and |vx| (or |vy|) are the more the noise a�ects the
sample trajectories, moving them away from the optimal ones. By contrast, the
higher Ps is the lower the e�ect of the noise becomes.
For each random takeo� point, we generate a sample trajectory. Thus, the prob-
ability of success of the jump is given by the percentage of successful sample
trajectories. In addition, the probability is weighted by the inverse of the di�-
culty coe�cient DC (Section 4.3.4) to take into consideration the di�erent prop-
erties of the two platforms. It must be noted that, for unsuccessful optimal jump
trajectories, the framework counts the respective sample trajectories as unsuc-
cessful without actually generating them. Furthermore, if the target platform is
of MOVING type, the probability is computed as the average of the estimated
probabilities obtained considering the target optimal position (i.e. the position
resulting in the lowest di�culty) and the adjacent ones.
The framework supports three noise functions, each one with its peculiar features:
Uniform, Gaussian without resampling and Gaussian with resampling. Note that,
since Trivial con�gurations do not involve the generation of trajectories (see Sec-
tion 4.3.3.1), they make no use of noise functions for jumps, thus their probability
of success is simply computed as the inverse of the directed edge weight (i.e. the
inverse of the di�culty evaluation).

5.1.1 Simple trajectory jumps

If the two platforms involved in the jump for which we want to estimate the
probability of success are in a Simple trajectory con�guration (Section 4.3.3.2),
the noise function a�ects the x coordinate of the optimal takeo� point to generate
random start points for the sample trajectories. When the Uniform noise model
is used, the random start points are selected with a uniform probability distribu-
tion from a interval of width δ = 2(|vx|+ ε)/Ps, where ε is a constant value used
to avoid that δ is zero in case vx = 0. The formula to compute δ re�ects the fact
that, the faster the character is approaching the jump, the more likely he is to
perform the jump far from the optimal point. By contrast, the higher the player
skill is, the more likely she is to perform the jump close to the optimal point. If
we consider the extreme case of jumping from a stationary position (vx = 0), a
skilled player should always be able to jump from the optimal takeo� point. Note
that δ caps at half the starting platform length.
Using Figure 5.1 as a reference, we see the four boundary trajectories (de�ned
with di�erent parameters, see Section 4.3.2) considered for a Simple jump sce-
nario. The red trajectories fail to reach the target platform, whereas the green
one is successful. The optimal takeo� point P ∗(x∗, y∗) is highlighted in blue. The
interval δ associated to the successful optimal trajectory is displayed in black.
Figure 5.2 shows the sample trajectories obtained using the Uniform noise func-
tion to generate the random start points: the red trajectories are unsuccessful,
whereas the green ones are successful. Given the number of successful sam-

5.1 Jumps start point noise functions 61

ple trajectories and the ones that are unsuccessful (also due to the unsuccessful
boundary trajectories) the estimated probability of success for the jump is 0.075,
which is unin�uenced by the di�culty coe�cient in this scenario.

Figure 5.1: The boundary trajectories for a Simple jump con�guration. The only
successful boundary trajectory is the one in green. The optimal takeo� point is
highlighted in blue. The interval width δ associated to the successful trajectory
is displayed in black.

Figure 5.2: The generated sample trajectories for the scenario of Figure 5.1 using
the Uniform noise function.

When the Gaussian without resampling or the Gaussian with resampling
noise function is used, the sample trajectories random takeo� points are sam-
pled from a Gaussian distribution. These distributions have a standard deviation
σ = (|vx| + ε)/(k × Ps) and a mean value µ = x∗ − Js × Rt × |vx|, where x∗

62 Modeling level success probability

is the x coordinate of the optimal takeo� point and Js is either equal to 1 or
-1 if the jump direction is, respectively, right or left. If µ exceeds the platform
half then it is set to be equal to the x coordinate of the platform center. Since
in this case we sample without bounds, the random takeo� points can be o� the
starting platform. The key di�erence between the two Gaussian noise functions
lies in how they manage the above-mentioned issue: the Gaussian without resam-
pling noise function counts the takeo� points that are o� the starting platform
as unsuccessful sample trajectories, whereas the Gaussian with resampling noise
function generates a new random takeo� point until it is on the starting platform.
By doing that, the Gaussian without resampling noise function takes into account
the possibility of failing a jump because the player pressed the jump button too
late while moving toward the optimal takeo� point. The only instance for which
the random takeo� points are constrained to be on the platform is for vx = 0: we
assume that from a stationary position there is no possibility of failing a jump.
In Figure 5.3, we see the four boundary trajectories considered for a Simple jump
scenario. The red trajectories fail to reach the target platform, whereas the green
one is successful. The optimal takeo� point P ∗(x∗, y∗) is highlighted in blue.
The Gaussian distribution for the random takeo� points associated to the suc-
cessful boundary trajectory is displayed in black. Figures 5.4 and 5.5 show the
sample trajectories obtained using, respectively, the Gaussian without resampling
and the Gaussian with resampling noise function to generate the random takeo�
points: the red trajectories are unsuccessful, whereas the green ones are success-
ful. Figure 5.4 also shows the random takeo� points that are o� the starting
platform (in red) and result in unsuccessful sample trajectories. The two esti-
mated probabilities for the jump success are 0.035 (Gaussian without resampling)
and 0.043 (Gaussian with resampling), which are unin�uenced by the di�culty
coe�cient in this scenario.

If the character can perform a second jump while in the air (i.e. double
jumping), we need to account for this event to estimate the probability of success
of a jump. In this case, a jump is considered as the composition of two trajectories:
the �rst jump trajectory and the double jump trajectory. Referring to Figure
5.6, which shows for simplicity only the optimal trajectories that involve the
player pressing the run button, we see the two double jump trajectories generated
for each initial jump trajectory. The two points from which the double jump
trajectories originate are the apex of the �rst jump P ∗1 (x

∗
1, y
∗
1) (highlighted in

blue) and the point at the same y coordinate of the �rst takeo� point on the
�rst jump trajectory P ∗2 (x

∗
2, y
∗
2) (highlighted in yellow). As usual, the successful

trajectories are displayed in green, whereas the unsuccessful ones are in red.
Since we consider the jump as the composition of two trajectories, to estimate its
probability of success, we apply the noise function to the takeo� points of both
the �rst jump and the double jump trajectories. As such, we have sample double
jump trajectories originating from sample �rst jump trajectories. This means
that the random takeo� points for the double jump trajectories are generated

5.1 Jumps start point noise functions 63

Figure 5.3: The boundary trajectories for a Simple jump con�guration. Successful
trajectory in green and unsuccessful trajectories in red. The optimal takeo� point
is highlighted in blue. The Gaussian distribution associated to the successful
trajectory is displayed in black.

Figure 5.4: The generated sample trajectories for the scenario of Figure 5.3 using
the Gaussian without resampling noise function.

64 Modeling level success probability

Figure 5.5: The generated sample trajectories for the scenario of Figure 5.3 using
the Gaussian with resampling noise function.

around the points P ∗1 and P ∗2 of the sample �rst jump trajectories. If the Uniform
noise function is used, the interval width is computed as in the single jump case
(δ = 2(|vx|+ε)/Ps). The �rst jump takeo� points are sampled using the uniform
interval employed in the single jump scenario, whereas two intervals for the double
jump takeo� points are obtained for each sample �rst jump trajectory: [x∗1 −
0.5δ, x∗1+0.5δ] (centered on P ∗1) and [x∗2−0.5δ, x∗2+0.5δ] (centered on P ∗2). Figure
5.7 shows the intervals obtained for two sample �rst jump trajectories. Note that,
we sample the x coordinate of the double jump random takeo� points from these
intervals, whereas the y coordinate is obtained evaluating the respective �rst jump
trajectory in the sampled x coordinate. Figure 5.8 shows the sample trajectories
obtained using the Uniform noise function to generate the random takeo� points;
the estimated probability of success for the jump in this scenario is 0.208, which
is not a�ected by the di�culty coe�cient.

When using the Gaussian without resampling or the Gaussian with resam-
pling, the random takeo� points for the �rst jump and double jump trajectories
are sampled from a Gaussian distribution. The takeo� points for the �rst jump
trajectories are sampled with the Gaussian distribution described for the single
jump case. For what concerns the Gaussian distribution of the double jump take-
o� points, the standard deviation is σ = (|vx| + ε)/(k × Ps), whereas the mean
value is µ = x∗ +Rs×Rt× |vx|, where x∗ is the x coordinate of either P ∗1 or P ∗2
(the two optimal takeo� points on the respective �rst jump trajectory) and Rs is
randomly 1 or -1 so that the mean can be, respectively, on the right or left of the
optimal takeo� point. Figure 5.9 shows two sample of initial jump trajectories
and their P ∗1 and P ∗2 points (in blue and in yellow respectively); the Gaussian
distributions for the random takeo� points of the double jump trajectories are
centered around P ∗1 and P ∗2 . Figures 5.10 and 5.11 show the sample trajectories

5.1 Jumps start point noise functions 65

Figure 5.6: The boundary trajectories for a Simple jump scenario.

Figure 5.7: The Uniform noise function intervals for two sample �rst jump tra-
jectories.

66 Modeling level success probability

Figure 5.8: The sample trajectories generated for the scenario of Figure 5.6 using
the Uniform noise function.

obtained using, respectively, the Gaussian without resampling and the Gaussian
with resampling noise function to generate the random takeo� points; note that,
in the former case, the red points that are o� the starting platform are counted as
unsuccessful sample trajectories. The two estimated probabilities for the jump
success are 0.098 (Gaussian without resampling) and 0.123 (Gaussian with re-
sampling); since the target platform is MOVING with a movement speed of 1
(movSp = 1), the probabilities are computed by weighting the percentage of
successful trajectories with 1/

√
2 as DC =

√
movSp+ 1.

To recap, Figure 5.12 illustrates the di�culty and probability associated to
the directed edge computed for a Simple trajectory con�guration, using the Uni-
form noise function. The same platforms con�guration is used in Figure 5.13 to
compare the directed edge parameters between the Gaussian without resampling
and the Gaussian with resampling noise functions. Notice how the edge di�culty
value is the same among the three cases, as the considered optimal trajectories re-
mains the same, whereas the probability value changes according to the employed
noise function. Also, the Gaussian without resampling characteristic of consid-
ering random takeo� points o� the starting platform as unsuccessful trajectories
in the edge probability computation results in the most pessimistic probability
estimate.

5.1 Jumps start point noise functions 67

Figure 5.9: Two sample �rst jump trajectories with the respective Gaussian dis-
tributions for the random takeo� points of the double jump trajectories. The
optimal takeo� points for the double jump trajectories are displayed in blue and
in yellow.

Figure 5.10: The sample trajectories generated for the scenario of Figure 5.9
using the Gaussian without resampling noise function.

68 Modeling level success probability

Figure 5.11: The sample trajectories generated for the scenario of Figure 5.9
using the Gaussian with resampling noise function.

Figure 5.12: The directed edge computed for a Simple trajectory con�guration.
The di�culty and probability values of the edge are displayed. The probability
is computed using the Uniform noise function.

5.1 Jumps start point noise functions 69

Figure 5.13: The directed edge computed for the same Simple trajectory con�gu-
ration is displayed together with its di�culty and probability values. On the left,
the edge probability is computed using the Gaussian without resampling noise
function. On the right, the edge probability is computed using the Gaussian with
resampling noise function.

5.1.2 Reentrant trajectory jumps

If the two considered platforms are in a Reentrant trajectory con�guration (Sec-
tion 4.3.3.4), the character must be able to double jump in order to reach the
target platform. Figure 5.14 shows two boundary jump trajectories for a Reen-
trant con�guration; the optimal takeo� points for the �rst jump and the double
jump are highlighted in yellow and in blue respectively. To estimate the jump
probability of success for this con�guration, the noise function a�ects the x coordi-
nate of the takeo� points of both the �rst jump and the double jump trajectories.
Similarly to the Simple trajectory case (Section 5.1.1), the sample double jump
trajectories originate from sample �rst jump trajectories. For a Reentrant con�g-
uration, a single double jump trajectory originates from a �rst jump trajectory.
The main di�erence with respect to the Simple trajectory scenario is the direc-
tion change of the double jump trajectory, which causes the optimal takeo� point
for the second jump to be moved away from the apex of the �rst jump. When
the Uniform noise function is used, the random takeo� points are sampled with
a uniform probability distribution from a interval of width δ = 2(|vx| + ε)/Ps.
Figure 5.15 shows a sample reentrant trajectory and the uniform intervals gen-
erated around the optimal takeo� points. When using one of the two Gaussian
noise models, the random takeo� points are sampled from a Gaussian distribution
having standard deviation σ = (|vx| + ε)/(k × Ps). Note that, as in the Simple
trajectory con�guration with double jump, the takeo� points for the �rst jump
trajectories are sampled from a di�erent Gaussian distribution with respect to
the takeo� points for the double jump trajectories. In fact, for the �rst jump
trajectories the mean of the distribution is µ = x∗ − Js × Rt × |vx|, whereas
for the double jump trajectories µ = x∗ + Rs × Rt × |vx|. As in the Simple
trajectory case, the �rst jump random takeo� points are constrained to be on

70 Modeling level success probability

Figure 5.14: Two boundary trajectories for a Reentrant con�guration. The op-
timal takeo� points for the �rst jump and the double jump are highlighted in
yellow and in blue respectively.

the platform if vx = 0. Figure 5.16 shows a sample reentrant trajectory and

Figure 5.15: A sample Reentrant trajectory and the two intervals used by the
Uniform noise function to generate the random takeo� points.

the Gaussian distributions for the random takeo� points. In the scenario of Fig-
ure 5.14, the three estimated probabilities are 0.376 (Uniform), 0.161 (Gaussian
without resampling) and 0.232 (Gaussian with resampling); since the starting
platform is FADING with a fade speed of 0.55 (fadSp = 0.55), these estimates

5.1 Jumps start point noise functions 71

Figure 5.16: A sample Reentrant trajectory and the Gaussian distributions used
to generate the random takeo� points.

are computed by weighting the percentage of successful trajectories with 1/2.37
as DC = 1/(log1 0(tDis + 1)) and tDis = 0.9/fadSp. Note that the estimated
probability of the Gaussian without resampling model is the lowest, as it accounts
for the possibility of failing the �rst jumps.

5.1.3 Falling trajectory jumps

If the two considered platforms are in a Falling trajectory con�guration (Section
4.3.3.3), the noise function a�ects the y coordinate of the boundary trajectories
optimal start point to generate sample trajectories. Since the player tackles
this category of jumps by falling down, we consider the vertical speed vy as
the approach speed for the computation of the parameters that de�ne the noise
functions. As we discussed in Section 4.3.3.3, depending on whether the character
can double jump or not the considered boundary trajectories and the optimal
start points are di�erent. When the Uniform noise function is used, the interval
width for the random start points is δ = 2(|vy| + ε)/Ps. If we call the optimal
start point P ∗(x∗, y∗), the interval is [y∗ − δ, y∗] if the character cannot double
jump, whereas the interval is [y∗−0.5δ, y∗+0.5δ] if the character can double jump.
Note that the interval upper bound in case of double jump is limited to minimize
the possibility of collision with the starting platform when performing the second
jump. Figure 5.17 shows the boundary trajectories for a Falling con�guration in
case of single jump and double jump modes, the respective optimal start point
(highlighted in blue) and the Uniform noise function intervals. Figure 5.18 shows
and compares the sample trajectories in case of single jump and double jump for
the scenario of Figure 5.17. When using one of the two Gaussian noise models, the

72 Modeling level success probability

Figure 5.17: Boundary trajectories and Uniform noise function intervals for a
Falling con�guration. On the left, the character jumping mode is not set to
DOUBLE_JUMP ; on the right, the character jumping mode is set to DOU-
BLE_JUMP.

Figure 5.18: Sample trajectories generated with the Uniform noise function for
the scenario of Figure 5.17.

5.1 Jumps start point noise functions 73

random start points are sampled from a Gaussian distribution having standard
deviation σ = (|vy|+ ε)/(k×Ps). The mean value µ of the distribution depends
on whether the character can double jump or not: if only a single jump can be
performed µ = y∗−Rt×|vy|; if double jumping is possible µ = y∗+Rs×Rt×|vy|,
where Rs is randomly 1 or -1 so that the mean can be, respectively, above or
below the optimal start point. It must be noted that, for Falling con�gurations,
the two Gaussian noise functions are equivalent. Figure 5.19 shows the boundary

Figure 5.19: Boundary trajectories and Gaussian distributions for the random
start points for a Falling con�guration. On the left, the character jumping mode
is not set to DOUBLE_JUMP ; on the right, the character jumping mode is set
to DOUBLE_JUMP.

trajectories for a Falling con�guration in case of single jump and double jump
modes, the respective optimal start point (highlighted in blue) and the Gaussian
distribution for the generation of the random start points of sample trajectories:
note that, in case of double jump, two Gaussian distributions are displayed to
highlight the fact that they can be centered either above or below the optimal
start point; as a matter of fact, the player can perform the double jump either
too early or too late with respect to the assumed optimal position. Figure 5.20
shows and compares the sample trajectories in case of single jump and double
jump for the scenario of Figure 5.19. The four estimated probabilities are 0.161
(Uniform, single jump), 0.500 (Uniform, double jump), 0.104 (Gaussian, single
jump) and 0.500 (Gaussian, double jump); these estimates are computed by
weighting the percentage of successful trajectories with the inverse of the di�culty
factor associated to Falling trajectories (see Section 4.3.4.3).

74 Modeling level success probability

Figure 5.20: Sample trajectories generated with a Gaussian noise function for the
scenario of Figure 5.19.

5.2 Experimental validation of single jumps probability 75

5.2 Experimental validation of single jumps prob-

ability

In order to validate our approach for the computation of the single jumps prob-
ability of success and establish which of the noise model provides the best es-
timates, we carried out an experiment to collect data. We asked several users
with di�erent skill levels to perform from 10 up to 50 jumps for each experi-
ment session. Users could repeat the experiment as many times as they wanted.
The experiment was carried out online, using a web build of our platformer im-
plementation; in particular, the build was con�gured to allow the character to
double jump and run. The experiment involved a set of 16 game screens, each
one asking the players to jump across two platforms positioned in di�erent con�g-
urations: (i) 2 screens involved Trivial jumps across two nearby platforms with
no possibility of failing; (ii) 6 screens involved Simple trajectory jumps across
two platforms, which were positioned to have a gap of variable width between
them; (iii) 4 screens involved Falling trajectories with the starting platform posi-
tioned above the target one; (iv) 4 screens involved Reentrant jumps across two
platforms, with the starting platform below the target one, requiring good skills
and timing to be overcome. Users tackled a sequence of jump tests randomly
sampled from the 16 trials set, with the constraint of never presenting the same
jump trial twice in a row. The following information were recorded for each jump
performed: (i) the trialID, that is the identi�er of the jump trial; (ii) the takeo�
point coordinates; (iii) the landing point coordinates (only if the user managed
to land on the target platform); (iv) the horizontal speed at which the character
took o� for the jump; (v) whether the character successfully reached the target
platform with this jump or not; (vi) the array of points forming the trajectory
followed by the character during the jump. A total of 58 users took part in the
experiment, 26 of them also �lled in a form to provide their age, how much they
liked platformer and how di�cult the jump trials felt. The users who provided
additional information were between 20 and 40 years old and reported an above
the average liking of platformers. A total of 2361 jumps were recorded, 1477 of
which performed by users that �lled in the form. Table 5.1 shows a summary of
the information collected with the experiments for each jump screen (identi�ed
by trialID) available to the players: the jump type (Trajectory Type), the to-
tal number of times the jump screen was presented to the users (#Jumps), the
total number of times the jump screen was successfully completed by the users
(#Successes) and the ratio of successes for the jump screen (Experimental Prob-
ability). We observe that almost all jump trials have an experimental probability
of success greater than 30%, whereas the two most di�cult jumps (experimental
probability equal to 21.6%) were trials #4 and #8; the former required jumping
with a running start and performing a well timed double jump; the latter was ex-
tremely tricky due to the Reentrant con�guration featuring a MOVING starting

76 Modeling level success probability

trialID Trajectory Type #Jumps #Successes Experimental Probability

0 Simple 156 136 0.872

1 Simple 131 80 0.611

2 Simple 158 114 0.722

3 Simple 159 104 0.654

4 Simple 153 33 0.216

5 Reentrant 150 53 0.353

6 Reentrant 139 76 0.547

7 Reentrant 134 43 0.321

8 Reentrant 148 32 0.216

9 Trivial 157 139 0.885

10 Falling 151 142 0.940

11 Falling 156 143 0.917

12 Trivial 157 156 0.994

13 Falling 140 128 0.914

14 Falling 141 93 0.660

15 Simple 131 64 0.489

Table 5.1: A summary of the data collected for each jump trial.

platform. The two Trivial con�gurations reported a probability that is close to
one; in particular, the jump with trialID 12 was failed only once out of 157 tries.
In general, Reentrant con�gurations seemed to be the hardest to tackle, whereas
Falling con�gurations appeared to be the easiest.

We estimated the probability of success of each jump trial using the three
noise models and employing di�erent combinations of average reaction time Rt
and player skill Ps. Note that the Uniform noise function employs only the Ps
parameter, thus its performance are compared solely with regard to the player
skill value. To compare the probability estimates provided by our framework
against the experimental data, we used two metrics: the Mean Absolute Error
(MAE) and the Di�culty Ordering Error Ratio (DOER). MAE provides a mea-
sure of how much the probability estimates obtained with a noise model di�er
from the experimental data; it was computed as:

MAE =

∑N−1
i=0 |Pi,exp − Pi,noise|

N
(5.1)

Where N is the total number of jump trials (16), Pi,exp is the experimental prob-
ability obtained for jump trial i and Pi,noise is the probability estimated using the

5.2 Experimental validation of single jumps probability 77

noise model for jump trial i.
DOER provides an evaluation of the noise models based on their accuracy in or-
dering jump trials according to their probability of success. In particular, given a
pair of trials, a good noise model should be able to report which of the two is the
harder (or the easier) using the probability estimates. Thus, DOER provides a
measure of how much the noise model fails at deciding which is the harder jump
between two jump trials and it is computed as:

DOER =
WronglyOrderedPairs

PairsCount
(5.2)

Where WronglyOrderedPairs is the number of jump trial pairs that the noise
model ordered in the wrong way (e.g. P0,noise < P1,noise when P0,exp > P1,exp)
and PairsCount is the total number of possible jump trial pairs. In our case,
PairsCount is equal to the 2-combinations of 16 elements (120).
MAE and DOER result from the estimates obtained on the 16 jump trials. Figure
5.21 shows MAE values for the Uniform noise function. Tables 5.2 and 5.3 report
MAE values and the respective standard error computed for the two Gaussian
noise models according to di�erent combinations of Rt and Ps. Figures 5.23 and
5.22 compare MAE values for each Gaussian noise model. Figure 5.24 shows
DOER values for the Uniform noise function. Table 5.4 reports DOER values
computed for the two Gaussian noise models according to di�erent combinations
of Rt and Ps. Figures 5.26 and 5.25 compare DOER values for each Gaussian
noise model.
By observing the performance metrics, we see that the three noise models keep
MAE values below 0.32. In particular, for the Uniform noise model, the minimum
is 0.227, corresponding to Ps = 5; for what concerns the Gaussian models, the
minimum MAE value is 0.217, corresponding to the Gaussian with resampling
noise function with Ps = 1 and Rt = 0.1s. For what concerns DOER, the
Uniform noise model provides the best performance among the three models with
Ps = 1 and an error rate equal to 17.5%; the Gaussian models have minimum
DOER values corresponding to Ps = 1 and Rt = 0.5s: 26.7% for Gaussian
without resampling and 27.5% for Gaussian with resampling.

78 Modeling level success probability

Figure 5.21: Bar chart comparing Mean Absolute Error (MAE) values for the
Uniform noise function.

MAE
Rt=0.01s Rt=0.05s

GNR GR GNR GR

Ps=1 0.229± 0.044 0.233± 0.042 0.225± 0.044 0.224± 0.043
Ps=5 0.269± 0.044 0.295± 0.050 0.302± 0.050 0.303± 0.051
Ps=15 0.286± 0.048 0.293± 0.051 0.306± 0.053 0.306± 0.053
Ps=25 0.292± 0.050 0.293± 0.051 0.306± 0.053 0.306± 0.053
Ps=50 0.293± 0.051 0.293± 0.051 0.306± 0.053 0.306± 0.053

Table 5.2: Mean Absolute Error (MAE) values for the Gaussian without resam-
pling (GNR) and the Gaussian with resampling (GR) noise functions with respect
to di�erent combinations of Rt and Ps.

MAE
Rt=0.1s Rt=0.5s

GNR GR GNR GR

Ps=1 0.220± 0.046 0.217± 0.045 0.231± 0.050 0.225± 0.049
Ps=5 0.297± 0.047 0.298± 0.047 0.260± 0.045 0.260± 0.045
Ps=15 0.315± 0.051 0.315± 0.051 0.262± 0.047 0.262± 0.047
Ps=25 0.316± 0.051 0.316± 0.051 0.262± 0.047 0.262± 0.047
Ps=50 0.316± 0.051 0.316± 0.051 0.261± 0.047 0.261± 0.047

Table 5.3: Mean Absolute Error (MAE) values for the Gaussian without resam-
pling (GNR) and the Gaussian with resampling (GR) noise functions with respect
to di�erent combinations of Rt and Ps.

5.2 Experimental validation of single jumps probability 79

Figure 5.22: Bar chart comparing Mean Absolute Error (MAE) values for the
Gaussian without resampling noise function.

Figure 5.23: Bar chart comparing Mean Absolute Error (MAE) values for the
Gaussian with resampling noise function.

80 Modeling level success probability

Figure 5.24: Bar chart comparing the Di�culty Ordering Error Ratio (DOER)
values for the Uniform noise function.

DOER
Rt=0.01s Rt=0.05s Rt=0.1s Rt=0.5s

GNR GR GNR GR GNR GR GNR GR

Ps=1 0.358 0.375 0.342 0.358 0.300 0.317 0.267 0.275
Ps=5 0.417 0.433 0.425 0.433 0.417 0.417 0.383 0.383
Ps=15 0.408 0.483 0.525 0.525 0.483 0.483 0.383 0.383
Ps=25 0.417 0.483 0.525 0.525 0.525 0.525 0.358 0.358
Ps=50 0.483 0.483 0.525 0.525 0.525 0.525 0.358 0.358

Table 5.4: Di�culty Ordering Error Ratio (DOER) values for the Gaussian with-
out resampling (GNR) and the Gaussian with resampling (GR) noise functions
with respect to di�erent combinations of Rt and Ps.

5.2 Experimental validation of single jumps probability 81

Figure 5.25: Bar chart comparing the Di�culty Ordering Error Ratio (DOER)
values for the Gaussian without resampling noise function.

Figure 5.26: Bar chart comparing the Di�culty Ordering Error Ratio (DOER)
values for the Gaussian with resampling noise function.

82 Modeling level success probability

5.3 Level di�culty and probability of success

Designers aim at building levels that elicit quality gameplay experiences. The role
of our framework is to assist the designers during this process. Accordingly, we
extended the evaluation of di�culties and probabilities of success from the single
jump instance to the evaluation of entire levels viewed as multiple sequences of
consecutive jumps. In order to do this, we de�ned a path as the sequence of jumps
that allows the character to move through a level; a path P is de�ned as a list
of directed edges (e1, e2, ..., eL − 1, eL), where ei is the i-th directed edge of path
P , which is of length L. In addition, we only consider acyclic paths, meaning
that a vertex of the graph (or equivalently a platform) can be visited only once
in a path. In order to evaluate the di�culty and the probability of success of a
path, we assumed that each jump is independent from the others. As such, we
introduced the following metrics to evaluate a path P of length L:

p(P) =
∏
ei∈P

p(ei) (5.3)

dt(P) =
∑
ei∈P

d(ei) (5.4)

d(P) = 1/L
∑
ei∈P

d(ei) (5.5)

dM(P) =Median(d(e1), d(e2), ..., d(eL−1), d(eL)) (5.6)

dw(P) =

∑
ei∈P d(ei)p(ei)∑

ei∈P p(ei)
(5.7)

di(P) =
∑
ei∈P

d(ei)α
i (5.8)

As implied by our independence hypothesis, the probability of success p of a path
P (equation 5.3) is computed as the product of the probability of each edge p(ei)
composing the path. The total di�culty dt of a path P (equation 5.4) is given
by the sum of the di�culty of each edge d(ei) composing the path. The dt metric
is agnostic to the position of the jump in the level (e.g. the �rst jump has the
same weight of the last jump in the path), thus it provides a rough estimate of
the path di�culty, also in terms of its length; in addition, dt can be considered
as a metric that models the player's fatigue. The average di�culty d of a path P
(equation 5.5) is the mean value of the edges di�culties and represents a basic
indicator of the overall di�culty of the path, but provides no information on the
path length. The median di�culty dM of a path P (equation 5.6) is the median
value of the edges di�culties and provides an indicator of the path di�culty that
is not a�ected by extreme (i.e. very low or high) edge di�culty values. The
weighted di�culty dw of path P (equation 5.7) weighs the edges di�culties by

5.3 Level di�culty and probability of success 83

Figure 5.27: An example of cumulative frequency distribution displayed by the
framework.

their probability and in doing so balances the e�ect of the di�culty value. The
increasing di�culty di of a path P (equation 5.8) weighs the di�culty of each edge
by an increasing factor αi, thus modeling the player's fatigue: a jump at the end
of a long path is considered more di�cult than a jump with the same estimated
di�culty but placed at the beginning of the path; the α coe�cient represents the
rate at which the player gets tired and as such impacts the increase of the jump
di�culty.
Since there are usually multiple paths that traverse a level from the starting
platform to the �nal one, our framework features a method to extract all the
available paths that connect the beginning and the end of the level. This method
applies a Depth First Search (DFS) on the level graph and accounts for the
character health mode and harmful platforms to �nd only the paths that are
actually traversable without dying. Our framework provides a set of tools to
assist designers in the creation of quality levels; in particular, to evaluate the
probability and di�culty of the available paths in a level in an aggregate form, the
framework provides a cumulative frequency diagram to display the distribution
of the selected metric. Figure 5.27 shows an example of cumulative frequency

84 Modeling level success probability

Figure 5.28: An example of minimum di�culty path (in red) displayed by the
framework.

distribution for the total di�culty metric dt. The diagram displays the minimum
and maximum values for the selected di�culty metric on the x axis. Furthermore,
our framework supports the visualization of the minimum di�culty path, where
the di�culty metric can be selected by the designer among the set of metrics that
we previously discussed. Figure 5.28 shows the minimum di�culty path (in red)
with respect to the dt metric for an example level; each one of the edge composing
the path is displayed together with its di�culty and probability of success.

5.4 Summary

In this chapter, we discussed how we estimated the probability of success of
single jumps using noise functions. Next, we described the experiments carried
out to perform a preliminary validation of such estimates. Finally, we proposed
an approach to evaluate platformer levels in terms of di�culty (total, average,
median, weighted and increasing) and probability of reaching the �nal platform
by extending the approach for single jumps.

Chapter 6

Framework tools

In this chapter we overview the tools provided by our framework and describe
the interfaces the designers can use to customize platforms and to evaluate levels
in terms of di�culty and probability of completion.

6.1 Introduction

Our framework was designed and developed as a modular extension of the popular
game engine Unity. As such, it is integrated within the development environment
and takes advantage of its physics engine and several features; our framework
extends Unity standard features to provide dedicated tools for the design of 2D
platformers. For what concerns the actual platformer implementation that is part
of our framework, all the main game elements (e.g. the character and platforms)
are accessible as Prefabs (i.e. template objects that can be reused in di�erent
levels) so that designers can easily replicate them to build levels. The physics
parameters regulating movement, jump and the other variables associated to the
platformer implementation (Section 4.2) can be accessed and modi�ed through
the inspector view (i.e. the user interface provided by Unity to edit objects). Our
framework provides two dedicated interfaces to assist designers in the creation of
levels: a Custom Editor for platforms and a Platformer Design Tools window to
access levels related features.

6.2 Platforms Custom Editor

Our framework employs a customized inspector view to edit platforms properties
and obtain information about their reachability in the level. Figure 6.1 shows
the custom editor interface for a STATIC_FLOATING platform; the interface
allows to edit the appearance of the platform through the type, length and con-
nections attributes; note that, if the platform type is changed, the editor interface
dynamically updates its structure in order to display the current platform type

86 Framework tools

Figure 6.1: Custom editor interface for a STATIC_FLOATING platform.

speci�c properties. Figure 6.2 shows the editor interface for a MOVING plat-
form: movement related parameters are displayed and can be edited. In addition,
the platform can be set as a special element of the level (i.e. starting, �nal or
checkpoint platform). The framework applies the constraint of a single starting
platform and a single �nal platform in a level, thus the editor interface is updated
accordingly. The editor allows to hide the platform from the scene view (i.e. the
interface in which the level is being built) and to show its Bounds Box (see Sec-
tion 4.3). Finally, the interface provides the visualization of the outgoing and

Figure 6.2: Custom editor interface for a MOVING platform.

incoming edges computed with the approach described in Chapters 4 and 5 for
the selected platform. Figure 6.3 shows the outgoing and incoming edges together
with their di�culty and probability estimates for the selected platform.

6.3 Platformer Design Tools window 87

Figure 6.3: Visualization of the outgoing edges (left) and incoming edges (right)
for the selected platform.

6.3 Platformer Design Tools window

Our framework employs a customized window that provides a set of tools for the
design of platformers. The main view of the design window is shown in Figure
6.4. The user interface elements in the green rectangle provide the following set of
features: (i) the selection of the noise function used to estimate jumps probability
of success among the three described in Section 5.1; (ii) the generation of levels
with a selected maximum length (in game units u); in particular, the generation
can be completely random or with the constraint of feasibility (i.e. a path must
exist between the starting platform and the �nal one); (iii) the possibility to show
or hide all platforms in the scene view. Figure 6.5 shows an example of level
generated with the feasibility constraint. Note that, the automatic generation of
levels is not the focus of this work; as such, this feature is implemented to provide
a �rst rough sketch of a level. In addition, the absence of a check for blocked
trajectories (see Section 4.3.3), implies that levels that are generated as feasible
might not satisfy the constraint, especially due to the platforms occupying a lot
of space vertically. The interface elements in the blue rectangle provide the view
of the boundary trajectories (see Section 4.3.3) for the desired pair of platforms;
note that, the framework automatically names the platforms using an increasing
index (Platform0, Platform1, Platform2 and so on), thus designers only need
to input the indexes of the two platforms to obtain the associated boundary
trajectories. The button in the red rectangle allows to compute and display
the graph of the current level in the scene view. Figure 6.6 shows the graph
computed for a small level with the information associated to each directed edge.
If any changes are applied to the level (e.g. changing the position of a platform),
the graph is marked as dirty and the design tools interface forces the update of
the graph before further analysis are performed. Once the level graph has been
computed, the design interface is extended to o�er additional analysis tools for
the level. Figure 6.7 shows the extended interface; the elements in the green
rectangle of this extended view allow to view a heatmap of the level based on a

88 Framework tools

Figure 6.4: A screenshot of the design tools main view.

Figure 6.5: An example of level generated with the feasibility constraint.

selected metric (e.g. average probability of the incoming edges); Figure 6.8 shows
the heatmap of a level based on the probability of the outgoing edges: the higher
the probability the more the color tends to green; viceversa the color tends to
red, indicating a critical point in the level. The elements in the blue rectangle
of the extended interface provide the following features: (i) show the number of
paths available to reach the �nal platform from the starting one; (ii) view the
minimum di�culty path either ignoring harmful elements or considering them;
(iii) display the cumulative frequency distribution of the paths probabilities or
di�culties (the di�culty metric can be selected among those described in Section
5.3).

6.3 Platformer Design Tools window 89

Figure 6.6: The graph computed for a small level.

Figure 6.7: A screenshot of the design tools extended view.

Figure 6.8: A heatmap computed for a level based on the probabilities of the
outgoing edges of each platform.

90 Framework tools

6.4 Summary

In this chapter, we overviewed the tools provided by our framework within the
Unity game engine and described the interfaces the designers can use to customize
platforms and evaluate levels in terms of di�culty and probability of completion.

Chapter 7

Conclusions

In this thesis we proposed an approach for the design of 2D platformers and
introduced our framework to assist designers in the process of game content
creation. We discussed the state of the art for AI-assisted design in videogames
and then focused on design metrics employed for the evaluation and procedural
generation of platformer levels. Next, we presented the conceptual model of our
framework and reviewed how it manages the structural and gameplay features.
We examined our method for the evaluation of the jumps di�culty, involving
the generation of boundary jump trajectories. Then, we extended this approach
to estimate the jumps probability of success using noise functions to generate
random takeo� points for sample trajectories around the optimal takeo� point.
We collected gameplay data from several users to validate our approach for the
estimation of the jumps probability of success and compared the performance
of the employed noise models. We proposed a method and a set of metrics
to evaluate the di�culty and probability of success of levels, by extending the
single jumps scenario under the assumption of independent jumps. Finally, we
reviewed the tools provided by our framework in the form of customized interfaces
for Unity.

We plan to extend this work in two ways. First, we want to validate the
method proposed for the evaluation of levels by collecting gameplay data on levels
with distinct features and involving di�culty spikes in speci�c points; in addi-
tion, we plan to verify how our approach handles combinations of di�erent jump
types (see Section 4.3.3) by collecting gameplay data on screens involving two
consecutive jumps (employing all possible combinations of jump types). Second,
we plan to add to our framework a search-based procedural content generator in
order to create levels with speci�c properties or metrics values.

92 Conclusions

Bibliography

[1] C. Browne and S. Colton. Computational creativity in a closed game system.
IEEE Conference on Computational Intelligence and Games, 2012.

[2] S. Dahlskog and J. Togelius. Patterns and procedural content generation
revisiting mario in world 1 level 1. Proceedings of the Workshop on Design
Patterns in Games (DPG 2012), 2012.

[3] S. Dahlskog and J. Togelius. A multi-level level generator. IEEE Conference
on Computational Intelligence and Games, 2014.

[4] M. Fasterholdt. You say jump, i say how high? Master's thesis, IT University
of Copenhagen, 2015.

[5] L. Ferreira, L. Pereira, and C. Toledo. A multi-population genetic algo-
rithm for procedural generation of levels for platform games. Proceedings of
the 2014 Conference Companion on Genetic and Evolutionary Computation
Companion (GECCO Comp '14), 2014.

[6] L. N Ferreira. Streamlevels: Using visualization to generate platform levels.
ACM Computers in Entertainment, 2015.

[7] D. Karavolos, A. Bouwer, and R. Bidarra. Mixed-initiative design of game
levels: Integrating mission and space into level generation. Proceedings of
the International Conference on the Foundations of Digital Games, 2015.

[8] A. Liapis and G. N. Yannakakis. Re�ning the paradigm of sketching in
ai-based level design. Proceedings of the AAAI Arti�cial Intelligence for
Interactive Digital Entertainment Conference, 2015.

[9] A. Liapis, G. N. Yannakakis, and J. Togelius. Designer modeling for person-
alized game content creation tools. Proceedings of the AIIDE Workshop on
Arti�cial Intelligence & Game Aesthetics, 2013.

[10] A. Liapis, G. N. Yannakakis, and J. Togelius. Sentient sketchbook:
Computer-aided game level authoring. Proceedings of the 8th Conference
on the Foundations of Digital Games, 2013.

94 BIBLIOGRAPHY

[11] A. Liapis, G. N. Yannakakis, and J. Togelius. Towards a generic method of
evaluating game levels. Proceedings of the AAAI Arti�cial Intelligence for
Interactive Digital Entertainment Conference, 2013.

[12] A. Liapis, G. N. Yannakakis, and J. Togelius. Designer modeling for sentient
sketchbook. IEEE Conference on Computational Intelligence and Games,
2014.

[13] D. Loiacono, R. Mainetti, and M. Pirovano. Volcano: An interactive sword
generator. Games, Entertainment, and Media, 2015.

[14] P. Lopes, A. Liapis, and G. N. Yannakakis. The c2create authoring tool:
Fostering creativity via game asset creation. IEEE Conference on Compu-
tational Intelligence and Games, 2014.

[15] R. Maddegoda and A. S. Karunananda. Multi agent based approach to assist
the design process of 3d game environments. The International Conference
on Advances in ICT for Emerging Regions, 2012.

[16] P. Mawhorter and M. Mateas. Procedural level generation using occupancy-
regulated extension. IEEE Conference on Computational Intelligence and
Games, 2010.

[17] N. Nygren, J. Denzinger, B. Stephenson, and J. Aycock. User-preference-
based automated level generation for platform games. IEEE Conference on
Computational Intelligence and Games, 2011.

[18] C. Pedersen, J. Togelius, and G. N. Yannakakis. Modeling player experience
in super mario bros. IEEE Conference on Computational Intelligence and
Games, 2009.

[19] J. M. Peña, J. Viedma, S. Muelas, and A. LaTorreand L. Peña. Designer-
driven 3d buildings generated using variable neighborhood search. IEEE
Conference on Computational Intelligence and Games, 2014.

[20] W. M. P. Reis, L. H. S. Lelis, and Y. Gal. Human computation for procedural
content generation in platform games. IEEE Conference on Computational
Intelligence and Games, 2015.

[21] N. Shaker and M. Abou-Zleikha. Alonewe can do so little, togetherwe can do
so much: A combinatorial approach for generating game content. Conference
on Arti�cial Intelligence and Interactive Digital Entertainment, 2014.

[22] N. Shaker, J. Togelius, G. N. Yannakakis, B. Weber, T. Shimizu,
T. Hashiyama, N. Sorenson, P. Pasquier, P. Mawhorter, G. Takahashi,
G. Smith, and R. Baumgarten. The 2010 mario ai championship: Level

BIBLIOGRAPHY 95

generation track. IEEE Transactions on Computational Intelligence and AI
in Games, 2011.

[23] N. Shaker, G. N. Yannakakis, and J. Togelius. Towards automatic personal-
ized content generation for platform games. Proceedings of the Sixth AAAI
Conference on Arti�cial Intelligence and Interactive Digital Entertainment,
2010.

[24] N. Shaker, G. N. Yannakakis, and J. Togelius. Digging deeper into plat-
form game level design: Session size and sequential features. Proceedings
of the European Conference on Applications of Evolutionary Computation
(EvoApplications), 2012.

[25] A. M. Smith, M. J. Nelson, and M. Mateas. Prototyping games with biped.
Proceedings of the Fifth Arti�cial Intelligence for Interactive Digital Enter-
tainment Conference, 2009.

[26] G. Smith, M. Cha, and J. Whitehead. A framework for analysis of 2d plat-
former levels. Proceedings of the 2008 ACM SIGGRAPH symposium on
Video games, 2008.

[27] G. Smith, J. Whitehead, and M. Mateas. Tanagra: A mixed-initiative level
design tool. IEEE Transactions on Computational Intelligence and AI in
Games, 2010.

[28] G. Smith, J. Whitehead, and M. Mateas. Tanagra: Reactive planning and
constraint solving for mixed-initiative level design. IEEE Transactions on
Computational Intelligence and AI in Games, 2011.

[29] G. Smith, J. Whitehead, M. Mateas, M. Treanor, J. March, and M. Cha.
Launchpad: A rhythm-based level generator for 2-d platformers. IEEE
Transactions on Computational Intelligence and AI in Games, 2011.

[30] A. Sullivan, M. Mateas, and N. Wardrip-Fruin. Questbrowser: Making
quests playable with computer-assisted design. Proceedings of the Digital
Arts and Culture Conference, 2009.

[31] S. L. Tanimoto, T. Robinson, and S. B. Fan. A game-building environment
for research in collaborative design. IEEE Conference on Computational
Intelligence and Games, 2009.

[32] T. Tutenel, R. M. Smelik, and R. Bidarra. Using semantics to improve the
design of game worlds. Proceedings of the Fifth Arti�cial Intelligence for
Interactive Digital Entertainment Conference, 2009.

96 BIBLIOGRAPHY

[33] G. N. Yannakakis, A. Liapis, and C. Alexopoulos. Mixed-initiative co-
creativity. Proceedings of the 9th Conference on the Foundations of Digital
Games, 2014.

	List of Figures
	List of Tables
	Introduction
	Thesis objectives
	Thesis structure

	State of the Art
	History of 2D Platformers
	The 1980s
	The 1990s
	The new millennium

	AI-assisted design in videogames
	AI-assisted design in 2D platformers
	Summary

	Level design metrics
	The importance of design metrics
	Structural features
	Gameplay features
	Summary

	Our approach to level design
	Introduction
	Conceptual model and abstract representation of a level
	Our framework

	Analysis of structural features
	The platforms

	Analysis of gameplay features
	Trajectory definition
	Trajectory generation
	Accelerated (or decelerated) horizontal movement and decelerated vertical movement
	Constant speed horizontal movement and decelerated vertical movement
	Constant speed horizontal movement and constant speed vertical movement
	Accelerated (or decelerated) horizontal movement and constant speed vertical movement

	Types of trajectory
	Trivial trajectories
	Simple trajectories
	Falling trajectories
	Reentrant trajectories

	Jump difficulty evaluation
	MOVING platforms effect
	FADING platforms effect
	Falling trajectories effect

	Summary

	Modeling level success probability
	Jumps start point noise functions
	Simple trajectory jumps
	Reentrant trajectory jumps
	Falling trajectory jumps

	Experimental validation of single jumps probability
	Level difficulty and probability of success
	Summary

	Framework tools
	Introduction
	Platforms Custom Editor
	Platformer Design Tools window
	Summary

	Conclusions
	Bibliography

