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Abstract

Mancala games are an important family of board games with a millennial

history and a compelling gameplay. The goal of this thesis is the design

of artificial intelligence algorithms for mancala games and the evaluation of

their performance. In order to do so, we selected five of the main mancala

games, namely Awari, Oware, Vai Lung Thlan, Ohvalhu and Kalah. Then,

we designed and developed several artificial intelligence mancala players: a

greedy algorithm, that makes the locally optimal choice; three different ver-

sions of the classic Minimax, that applies tree search, guided by an heuristic

function that evaluates the state of the game; the more recent Monte Carlo

Tree Search algorithm, that builds the search tree in an incremental and

asymmetric manner by doing many simulated games, balancing between

exploration and exploitation. We evaluated all the mancala algorithms we

designed through an extensive series of experiments and discussed their pros

and cons.
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Sommario

I mancala sono un’importante famiglia di giochi da tavolo grazie alla loro

storia millenaria e alle meccaniche di gioco avvincenti. L’obiettivo di questa

tesi è il design algoritmi di intelligenza artificiale per i mancala e l’analisi

delle prestazioni in termini di percentuale di vittorie ottenute contro altri

algoritmi. Per farlo, abbiamo scelto e implementato cinque tra i più impor-

tanti mancala, ovvero Awari, Oware, Vai Lung Thlan, Ohvalhu and Kalah.

Abbiamo quindi progettato e sviluppato diversi algoritmi di intelligenza ar-

tificiale: un algoritmo greedy, ispirato alle tipiche strategie presentate nei

libri di mancala; tre versioni differenti di Minimax, che applica una ricerca

ad albero, guidato da una funzione euristica che valuta lo stato di gioco; il

più recente Monte Carlo Tree Search, che costruisce l’albero di ricerca in mo-

do incrementale ed asimmetrico simulando molte partite e bilanciando tra

esplorazione e ottimizzazione. Abbiamo condotto una estesa serie di espe-

rimenti per valutare la performance degli algoritmi di intelligenza artificiale

sviluppati discutendone i pro e contro.
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Chapter 1

Introduction

This thesis focuses on the application of Artificial Intelligence to board

games. This area was born in the ’50s, when the first AI algorithms, devel-

oped for checkers and chess, were able to play only at the level of beginners

or they could only play the final moves of the game. In the following years,

thanks to the design of more advanced techniques, AI programs could com-

pete against human-expert players. In some cases, the programs are able to

solve a game, i.e. predict the result of a game from a certain state, when all

the players made the optimal moves.

The aim of this thesis is to design competitive artificial intelligence al-

gorithms for mancala games, a family of board games played all around the

world. Mancala games are several thousand years old and there are more

than 800 traditional known games, played in 99 countries, with almost 200

games that have been designed in more recent times. Mancala games use a

board composed of two rows of usually 6 pits that contain some counters;

during their moves players sow these counters around the board and can

sometimes capture them. The goal of the games is to capture more coun-

ters than the opponent. No luck is involved but high intellectual skills are

required.

In this thesis, we selected five well-known games of the mancala fam-

ily, namely Awari, Oware, Vai Lung Thlan, Ohvalhu and Kalah, and we

designed five artificial intelligence algorithms: (i) a greedy algorithm in-

spired by players guides to Mancala games; (ii) the well-known minimax

algorithm; (iii) an alpha-beta pruning minimax algorithm using alpha-beta

pruning to reduce computational time and memory consumption; (iv) an

advanced heuristic minimax strategy using minimax with a more refined

heuristic function, based on the work of Divilly et al. [11]; (iv) Monte Carlo

tree search (MCTS) with the Upper Confidence Bounds for trees (UCT)
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CHAPTER 1. INTRODUCTION

and three simulation strategies. We evaluated the five algorithms with an

extensive set of experiments. Finally, we developed an application to allow

users to play all the games we studied against all the artificial intelligence

we explored.

1.1 Original Contributions

This thesis contains the following original contributions:

• The analysis and implementation of the five mancala games, Awari,

Oware, Vai Lung Thlan, Ohvalhu and Kalah.

• The design and implementation of five artificial intelligence algorithms

for the mancala games: greedy, basic minimax, alpha-beta pruning

minimax, advanced heuristic minimax and Monte Carlo tree search.

• An extensive experimental analysis of the performance of the devel-

oped artificial intelligence algorithms on the five selected games

• The development of an application to let users play the five mancala

games we studied against all the artificial intelligence players we de-

signed.

1.2 Thesis Outline

The thesis is structured as follows. In Chapter 1, we introduce the goals of

this work, showing the original contributions and the thesis structure. In

Chapter 2, we present several applications of AI in board and card games

and we introduce the minimax and MCTS algorithms. In Chapter 3, we

introduce an overview of the history of mancala games and then describe

the rules of the mancala games we selected. In Chapter 4, we present the

various AI we developed for mancala games. In Chapter 5, we show and

discuss the results obtained from the experiments we did with the AIs we

designed. In Chapter 6, we evaluate the work done for this thesis. In

Appendix A, we briefly describe the two applications we developed.
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Chapter 2

Artificial Intelligence in

Board Games

In this chapter, we overview the most interesting applications of Artificial

Intelligence in board games related to this work. Then we introduce Mini-

max and Monte Carlo tree search and we compare them showing advantages

and disadvantages of the two methods.

2.1 Artificial Intelligence in Board Games

Artificial Intelligence aims to develop an opponent able to simulate a ra-

tional behavior, that is, do things that require intelligence when done by

humans. Board games are particularly suited for this purpose because they

are difficult to solve without some form of intelligence, but are easy to model.

Usually, a board configuration corresponds to a state of the game, while a

legal move is modeled with an action that changes the state of the game.

Therefore, the game can be modeled with a set of possible states and a set

of legal actions for each state.

2.1.1 Checkers

The first applications of Artificial Intelligence to board games were presented

in the ’50s, when Christopher Strachey [1] designed the first program for

the game of Checkers. Strachey wrote the program for Ferranti Mark I

that could play a complete game of Checkers at a reasonable speed using

evaluation of board positions. Later Arthur Samuel developed an algorithm

to play Checkers that was able to compete against amateur players [37].

The algorithm used by Samuel was called Minimax with alpha-beta pruning

3
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(Section 2.2), which then became one of the fundamental algorithm of AI.

Samuel tried to improve his program by introducing a method that he called

rote learning [36]. This technique allowed the program to memorize every

position it had already seen and the reward it had received. He also tried

another way of learning, he trained his artificial intelligence by let it play

thousands of games against itself [27]. At the end of the ’80s Jonathan

Schaeffer et al. began to work on Chinook, a program for Checkers developed

for personal computers. It was based on alpha-beta pruning and used a

precomputed database with more than 400 billion positions with at most

8 pieces in play. Chinook became world champion in ’94 [30]. In 2007,

Schaeffer et al. [29] were able to solve the game of Checkers (in the classical

board 8 x 8) by proving that the game played without errors leads to a draw.

2.1.2 Chess

Chess is more widespread than Checkers but also much more complex. The

first artificial intelligence algorithm to play this game was presented in the

’50s by Dietrich Prinz [2]. Prinz’s algorithm was able to find the best action

to perform when it was only two moves away from checkmate [1], known as

the mate-in-two problem; unfortunately the program was not able to play a

full game due to the low computational power of the used machine, Ferranti

Mark I. In 1962, Alan Kotok et al. designed Kotok-McCarthy, which was the

first computer program to play Chess convincingly. It used Minimax with

alpha-beta pruning and a single move took five to twenty minutes. In 1974,

Kaissa, a program developed by Georgy Adelson-Velsky et al., became the

first world computer chess champion. Kaissa was the first program to use

bitboard (a special data structure), contained an opening book (set of initial

moves known to be good) with 10000 moves, used a novel algorithm for move

pruning, and could search during the opponent’s move. The first computer

which was able to defeat a human player was Deep Thought in 1989 [38].

The machine, created by the computer scientist of the IBM Feng-hsiung

Hsu, defeated the Master of Chess David Levy, in a challenge issued by the

latter. Later, Hsu entered in the Deep Blue project, a computer designed

by IBM to play Chess only. The strength of Deep Blue was due to its high

computational power, indeed it was a massively parallel computer with 480

processors. The algorithm to play Chess was written in C and was able

to compute 100 million of positions per second. Its evaluation functions

were composed by parameters determined by the system itself, analyzing

thousands of champions’ games. The program’s knowledge of Chess has

been improved by the grandmaster Joel Benjamin. The opening library was

4
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provided by grandmasters Miguel Illescas, John Fedorowicz, and Nick de

Firmian [41]. In 1996 Deep Blue became the first machine to win a chess

game against the reigning world champion Garry Kasparov under regular

time controls. However, Kasparov won three and drew two of the following

five games, beating Deep Blue. In 1997 Deep Blue was heavily upgraded

and it defeated Kasparov, becoming the first computer system to defeat a

reigning world champion in a match under standard chess tournament time

controls. The performance of Chess software are continuously improving. In

2009 the software Pocket Fritz 4, installed on a smart phone, won a category

6 tournament, being able to evaluate about 20000 positions per second [39].

2.1.3 Go

Another widely studied board game in the field of artificial intelligence is

Go, the most popular board game in Asia. The board of Go is a square of 19

cells and basically a player can put a stone wherever he wants, therefore it

has a very high branching factor in search trees (361 in the first ply), hence

it is not possible to use the traditional methods such as Minimax. The first

Go program was created in the ’60s, when D. Lefkovitz [7] developed an

algorithm based on pattern matching. Later Zobrist [7] wrote the first pro-

gram able to defeat an amateur human player. The Zobrist’s program was

mainly based on the computation of a potential function that approximated

the influence of stones. In the ’70s Bruce Wilcox [7] designed the first Go

program able to play better than an absolute beginner. His algorithm used

abstract representations of the board and reasoned about groups. To do so,

he developed the theory of sector lines, dividing the board into zones. The

next breakthroughs were at the end of the ’90s, when both abstract data

structures and patterns were used [27]. These techniques obtained decent

results, being able to compete against player at higher level than beginners,

however the best results waere found with the Monte Carlo tree search al-

gorithm, that we discuss in Section 4.5. DeepMind Technologies Limited, a

british company acquired by Google in 2014, developed AlphaGo [32], the

first computer Go program able to beat a human professional Go player

without handicaps on a full-sized 19x19 board. Its algorithm uses Monte

Carlo tree search to find its moves based on knowledge previously learned

by machine learning. This proves the capabilities of Monte Carlo tree search,

since Go has been a very challenging game for AIs.
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2.1.4 Other Games

Thanks to the good results with Checkers, Chess, and Go, the interest of

artificial intelligence was extended to other games, one of them is Backgam-

mon. The main difficulty in creating a good artificial intelligence for this

game is the chance event related to the dice roll. This uncertainty makes

the use of the common tree search algorithm impossible. In 1992 Gerry

Tesauro [27] combining the learning method of Arthur Samuel with neural

networks techniques was able to design an accurate evaluator of positions.

Thanks to hundreds of millions of training games, his program TD-Gammon

is still considered one of the most strong player in the world.

In the ’90s, programs able to play Othello were introduced. The main

applications of artificial intelligence for this game was based on Minimax

with alpha-beta pruning. In 1997 the program Logistello, created by Micheal

Buro defeated the world champion Takaeshi Murakami. Nowadays Othello

is solved for the versions with board dimensions 4 x 4 and 6 x 6. In the 8 x 8

version (the standard one), although it has not been proven mathematically,

the computational analysis shows a likely draw. Instead, for the 10 x 10

version or grater ones, it does not exist any estimation, except of a strong

likelihood of victory for the first player [40].

With the spread of personal computers, the research field of artificial in-

telligence has also been extended to modern board games. Since 1983 Brian

Sheppard [31] started working on a program that can play the board game

Scrabble. His program, called Maven, is still considered the best artificial in-

telligence to play Scrabble [43] and competes at the World Championships.

Maven combines a selective move generator, the simulation of plausible game

scenarios, and the B* search algorithm.

The artificial intelligence algorithms have been applied to many other

games. Using these algorithms it was possible to solve games like Tic Tac

Toe, Connect Four, Pentamino, Gomoku, Nim, etc [44].

2.2 Minimax

Minimax is a tree search algorithm that computes the move that minimize

the maximum possible loss (or alternatively, maximize the minimum gain).

The original version assumes a two-player zero-sum game but it has also

been extended to more complex games. The algorithm starts from an initial

state and builds up a complete tree of the game states, then it computes the

best decision doing a recursive calculus which assumes that the first player

tries to maximize his rewards, while the second tries to minimize the rewards

6
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Algorithm 1 Minimax pseudo-code

1: function Minimax(node,maximizingP layer)

2: if node is terminal then

3: return the reward of node

4: end if

5: if maximizingP layer then

6: bestV alue← −∞
7: for all child of node do

8: val← Minimax(child,False)

9: bestV alue← max(bestV alue, val)

10: end for

11: return bestV alue

12: else

13: bestV alue← +∞
14: for all child of node do

15: val← Minimax(child,True)

16: bestV alue← min(bestV alue, val)

17: end for

18: return bestV alue

19: end if

20: end function

of the former [27]. The recursive call terminates when it reaches a terminal

state, which returns a reward that is backpropagated in the tree according

to the Minimax policy. The Minimax pseudo-code is given in Algorithm 1.

Minimax turns out to be computationally expensive, mostly in games where

the state space is huge, since the tree must be completely expanded and

visited. Alpha-beta pruning is a technique that can be used to reduce the

number of visited nodes, by stopping a move evaluation when it finds at least

one possibility that proves the move to be worse than a previously examined

one, as shown in Algorithm 2. In the worst case scenario, that is when moves

are analyzed from the worst to the best ones, Alpha-beta pruning Minimax

is identical to standard Minimax. Given a branching factor b in the best case

scenario, that is when moves are analyzed from the best to the worst ones,

Alpha-beta pruning allows to reduce the effective branching factor to
√
b,

drastically reducing the computational time or, in alternative, the search

could go twice as deep with the same amount of computation. In an average

case scenario, the reduced branching factor is
4
√
b3 [35].

7
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Algorithm 2 Alpha-beta pruning minimax pseudo-code

1: function α-β-Minimax(node, α, β,maximizingP layer)

2: if node is terminal then

3: return the reward of node

4: end if

5: if maximizingP layer then

6: bestV alue← −∞
7: for all child of node do

8: val← α-β-Minimax(child, α, β,False)

9: bestV alue← max(bestV alue, val)

10: α← max(α, bestV alue)

11: if β ≤ α then

12: break

13: end if

14: end for

15: return bestV alue

16: else

17: bestV alue← +∞
18: for all child of node do

19: val← α-β-Minimax(child, α, β,True)

20: bestV alue← min(bestV alue, val)

21: β ← min(β, bestV alue)

22: if β ≤ α then

23: break

24: end if

25: end for

26: return bestV alue

27: end if

28: end function

8
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2.3 Monte Carlo Tree Search

The traditional artificial intelligence algorithms for games are very powerful

but require high computational power and memory for problems with a huge

state space or high branching factor. Methodologies to decrease the branch-

ing factor have been proposed, but they often rely on an evaluation function

of the state in order to prune some branches of the tree. Unfortunately such

function may not be easy to find and requires domain-knowledge experts.

A possible algorithm to overcome these issues is the Monte Carlo method.

This technique can be used to approximate the game-theoretic value of a

move by averaging the reward obtained by playing that move in a random

sample of games. Adopting the notation used by Gelly and Silver [14], the

value of the move can be computed as

Q (s, a) =
1

N (s, a)

N(s)∑
i=1

Ii (s, a) zi

where N (s, a) is the number of times action a has been selected from state

s, N (s) is the number of times a game has been played out through state

s, zi is the result of the ith simulation played out from s, and Ii (s, a) is 1

if action a was selected from state s on the ith playout from state s or 0

otherwise. If the actions of a state are uniformly sampled, the method is

called Flat Monte Carlo and this achieved good results in the games Bridge

and Scrabble, proposed by Ginsberg [16] and Sheppard [31] respectively.

However Flat Monte Carlo fails over some domains, because it does not allow

for an opponent model. Moreover, it has no game-theoretic guarantees, i.e

even if the iterative process is executed for an infinite number of times, the

move selected in the end may not be optimal.

In 2006 Rémi Coulom et al. combined the traditional tree search with

the Monte Carlo method and provided a new approach to move planning in

computer Go, now known as Monte Carlo Tree Search (MCTS) [9]. Shortly

after, Kocsis and Szepesvári formalized this approach into the Upper Confi-

dence Bounds for Trees (UCT) algorithm, which nowadays is the most used

algorithm of the MCTS family. The idea is to exploit the advantages of

the two approaches and build up a tree in an incremental and asymmetric

manner by doing many random simulated games. For each iteration of the

algorithm, a tree policy is used to find the most urgent node of the current

tree, it seeks to balance the exploration, that is look at areas which are not

yet sufficiently visited, and the exploitation, that is look at areas which can

return a high reward. Once the node has been selected, it is expanded by

taking an available move and a child node is added to it. A simulation is

9
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then run from the child node and the result is backpropagated in the tree.

The moves during the simulation step are done according to a default policy,

the simplest way is to use a uniform random sampling of the moves avail-

able at each intermediate state. The algorithm terminates when a limit of

iterations, time or memory is reached, for this reason MCTS is an anytime

algorithm, i.e. it can be stopped at any moment in time returning the cur-

rent best move. A Great benefit of MCTS is that the intermediate states do

not need to be evaluated, as for Minimax with alpha-beta pruning, therefore

it does not require a great amount of domain knowledge, usually only the

game’s rules are enough.

2.3.1 State of the art

Monte Carlo Tree Search attracted the interest of researchers due to the

results obtained with Go [5], for which the traditional methods are not able

to provide a competitive computer player against humans. This is due to

the fact that Go is a game with a high branching factor, a deep tree, and

there are also no reliable heuristics for nonterminal game positions (states

in which the game can still continue, i.e. is not terminated) [8]. Thanks

to its characteristics, MCTS achieved results that classical algorithms have

never reached.

Hex is a board game invented in the ’40s, played on a rhombus board

with hexagonal grid with dimension between 11 x 11 and 19 x 19. Unlike

Go, Hex has a robust evaluation function for the intermediate states, which

is why it is possible to create good artificial intelligence using minimax [4].

Starting in 2007, Arneson et al. [4] developed a program based on Monte

Carlo tree search, able to play the board game Hex. The program, called

MoHex, won the silver and the gold medal at Computer Olympiads in 2008

and 2009 respectively, showing that it is able to compete with the artificial

intelligence algorithms based on minimax.

MTCS by itself is not able to deal with imperfect information game,

therefore it requires the integration with other techniques. An example

where MCTS is used in this type of games is a program for Texas Hold’em

Poker, developed by M. Ponsen et al. in 2010 [23]. They integrated the

MCTS algorithm with a Bayesian classifier, which is used to model the

behavior of the opponents. The Bayesian classifier is able to predict both the

cards and the actions of the other players. Ponsen’s program was stronger

than rule-based artificial intelligence, but weaker than the program Poki.

In 2011, Nijssen and Winands [22] used MCTS in the artificial intelli-

gence of the board game Scotland Yard. In this game the players have to

10
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reach with their pawns a player who is hiding on a graph-based map. The

escaping player shows his position at fixed intervals, the only information

that the other players can access is the type of location (called station)

where they can find the hiding player. In this case, MCTS was integrated

with Location Categorization, a technique which provides a good prediction

on the position of the hiding player. Nijssen and Winands showed that their

program was stronger than the artificial intelligence of the game Scotland

Yard for Nintendo DS, considered to be one of the strongest player.

In 2012, P. Cowling et al. [10] used the MCTS algorithm on a simplified

variant of the game Magic: The Gathering. Like most of the card games,

Magic has a strong component of uncertainty due to the wide assortment of

cards in the deck. In their program, MCTS is integrated with determiniza-

tion methods. With this technique, during the construction of the tree,

hidden or imperfect information is considered to be known by all players.

Cowling et al. [34] also developed, in early 2013, an artificial intelligence

for Spades, a four players card game. Cowling et al. used Information Set

Monte Carlo Tree Search, a modified version of MCTS in which the nodes of

the tree represents information sets. The program demonstrated excellent

performance in terms of computing time. It was written to be executed on

an Android phone and to find an optimal solution with only 2500 iterations

in a quarter of a second.

2.3.2 The Algorithm

The MCTS algorithm relies on two fundamental concepts:

• The expected reward of an action can be estimated doing many random

simulations.

• These rewards can be used to adjust the search toward a best-first

strategy.

The algorithm iteratively builds a partial game tree where the expansion

is guided by the results of previous explorations of that tree. Each node

of the tree represents a possible state of the domain and directed links to

child nodes represent actions leading to subsequent states. Every node also

contains statistics describing at least a reward value and the number of visits.

The tree is used to estimate the rewards of the actions and usually they

become more accurate as the tree grows. The iterative process ends when a

certain computational budget has been reached, it can be a time, memory or

iteration constraint. With this approach, MCTS is able to expand only the

most promising areas of the tree avoiding to waste most of the computational

11
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budget in less interesting moves. At whatever point the search is halted, the

current best performing root action is returned.

The basic algorithm can be divided in four steps per iteration, as shown

in Figure 2.1:

• Selection: Starting from the root node n0, MCTS recursively selects

the most urgent node according to some utility function until a node

nn is reached that either represents a terminal state or is not fully

expanded (a node representing a state in which there are possible

actions that are not outgoing arcs from this node because they have

not been expanded yet). Note that can be selected also a node that is

not a leaf of the tree because it has not been fully expanded.

• Expansion: If the state sn of the node nn does not represent a terminal

state, then one or more child nodes are added to nn to expand the tree.

Each child node nl represents the state sl reached from applying an

available action to state sn.

• Simulation (or Rollout or Playout): A simulation is run from the new

nodes nl according to the default policy to produce an outcome (or

reward) ∆.

• Backpropagation: ∆ is backpropagated to the previous selected nodes

to update their statistics; usually each node’s visits count is incre-

mented and its average rewards updated according to ∆.

These can also be grouped into two distinct policies:

• Tree policy : Select or create a leaf node from the nodes already con-

tained in the search tree (Selection and Expansion).

• Default policy : Play out the domain from a given nonterminal state

to produce a value estimate (Simulation).

These steps are summarized in Algorithm 3. In this algorithm s(n) and

a(n) are the state and the incoming action of the node n. The result of the

overall search a(BestChild(n0)) is the action that leads to the best child

of the root node n0, where the exact definition of “best” is defined by the

implementation. Four criteria for selecting the winning action have been

described in [28]:

• max child : select the root child with the highest reward.

• robust child : select the most visited root child.

12
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Figure 2.1: Steps of the Monte Carlo tree search algorithm.

Algorithm 3 Monte Carlo Tree Search

1: function MCTS(s0)

2: create root node n0 with state s0
3: while within computational budget do

4: nl ← TreePolicy(n0)

5: ∆← DefaultPolicy(s(nl))

6: Backpropagate(nl,∆)

7: end while

8: return a(BestChild(n0))

9: end function
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• max-robust child : select the root child with both the highest visits

count and the highest reward; if none exists, then continue searching

until an acceptable visits count is achieved.

• secure child : select the child which maximizes a lower confidence

bound.

Note that since the MCTS algorithm does not force a specific policy, but

leaves the choice of the implementation to the user, it is more correct to say

that MCTS is a family of algorithms.

2.3.3 Upper Confidence Bounds for Trees

Since MCTS algorithm leaves the choice of the tree and default policy to

the user, in this section we present the Upper Confidence Bounds for Trees

(UCT) algorithm which has been proposed by Kocsis and Szepesvári in 2006

and is the most popular MCTS algorithm.

MCTS uses the tree policy to select the most urgent node and recursively

expand the most promising parts of the tree, therefore the tree policy plays

a crucial role in the performance of the algorithm. Kocsis and Szepesvári

proposed the use of the Upper Confidence Bound (UCB1) policy which has

been proposed to solve the multi-armed bandit problem. In this problem one

needs to choose among different actions in order to maximize the cumulative

reward by consistently taking the optimal action. This is not an easy task

because the underlying reward distributions are unknown, hence the rewards

must be estimated according to past observations. One possible approach

to solve this issue is to use the UCB1 policy, which takes the action that

maximizes the UCB1 value defined as

UCB1(j) = X̄j +

√
2 lnn

nj

where X̄j ∈ [0, 1] is the average reward from action j, nj is the number of

times action j was played, and n is the total number of plays. This formula

faces the exploitation-exploration dilemma: the first addendum considers

the current best action; the second term favors the selection of less explored

actions.

The UCT algorithm takes the same idea of the UCB1 policy applying

it to the selection step, it treats the choice of the child node to select as a

multi-armed bandit problem. Therefore, at each step, it selects the child

node n′ that maximizes the UCT value defined as

UCT (n′) =
Q(n′)

N(n′)
+ 2Cp

√
lnN(n)

N(n′)
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where N(n) is the number of times the current node n (the parent of n′) has

been visited, N(n′) is the number of times the child node n′ is visited, Q(n′)

is the total reward of all playouts that passed through node n′, and Cp > 0

is a constant. The term X̄j in the UCB1 formula is replaced by Q(n′)/N(n′)

which is the actual average reward obtained from all the playouts. When

N(n′) is zero, i.e. the child has not been visited yet, the UCT value goes to

infinity, hence the child is going to be selected by the UCT policy. This is

why in the selection step we use the UCT formula only when all the children

of a node have been visited at least once. As in the UCB1 formula, there is

the balance between the first (exploitation) and second (exploration) term.

The contribution of the exploration term decreases as each node n′ is visited,

because it is at the denominator. On the other hand, the exploration term

increases when another child of the parent node n is visited. In this way

the exploration term ensures that even low-reward children are guaranteed

to be selected given sufficient time. The constant in the exploration term

Cp can be chosen to adjust the level of exploration performed. Kocsis and

Szepesvári showed that Cp =
√
2/2 is optimal for rewards ∆ ∈ [0, 1], this

leads to the same exploration term of the UCB1 formula. If the rewards are

not in this range, Cp may be determined from empirical evaluation. Kocsis

and Szepesvári also proved that the probability of selecting a suboptimal

action at the root of the tree converges to zero at a polynomial rate as

the number of iterations grows to infinity. This means that, given enough

time and memory, UCT converges to the Minimax tree and is thus optimal.

Algorithm 4 shows the UCT algorithm in pseudocode. Each node n contains

four pieces of data: the associated state s(n), the incoming action a(n), the

total simulation reward Q(n), and the visits count N(n). A(s) is the set of

possible actions in state s and f(s, a) is the state transition function, i.e. it

returns the state s′ reached by applying action a to state s. When a node

is created, its values Q(n) and N(n) are set to zero. Note that in the UCT

formula used in line 31 of the algorithm, the constant c = 1 means that we

are using Cp =
√
2/2.

2.3.4 Benefits

MCTS offers three main advantages compared with traditional tree search

techniques:

• Aheuristic: it does not require any strategic or tactical knowledge

about the given game, it is sufficient to know only its legal moves

and end conditions. This lack of need for domain-specific knowledge

makes it applicable to any domain that can be modeled using a tree,
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Algorithm 4 UCT algorithm

1: function UCT(s0)

2: create root node n0 with state s0
3: while within computational budget do

4: nl ← TreePolicy(n0)

5: ∆← DefaultPolicy(s(nl))

6: Backpropagate(nl,∆)

7: end while

8: return a(BestChild(n0))

9: end function

10:

11: function TreePolicy(n)

12: while s(n) is nonterminal do

13: if n is not fully expanded then

14: return Expand(n)

15: else

16: n← BestUctChild(n, c)

17: end if

18: end while

19: return n

20: end function

21:

22: function Expand(n)

23: a← choose untried actions from A(s(n))

24: add a new child n′ to n

25: s(n′)← f(s(n), a)

26: a(n′)← a

27: return n′

28: end function

29:

30: function BestUctChild(n, c)

31: return arg maxn′∈children of n
Q(n′)
N(n′) + c

√
2 lnN(n)
N(n′)

32: end function
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33: function DefaultPolicy(s)

34: while s is nonterminal do

35: a← choose uniformly at random from A(s)

36: s← f(s, a)

37: end while

38: return reward for state s

39: end function

40:

41: function Backpropagate(n,∆)

42: while n is not null do

43: N(n)← N(n) + 1

44: Q(n)← Q(n) + ∆

45: n← parent of n

46: end while

47: end function

hence the same MCTS implementation can be reused for a number of

games with minimum modifications. This is the main characteristic

that allowed MCTS to succeed in computer Go programs, because its

huge branching factor and tree depth make it difficult to find suitable

heuristics for the game. However, in its basic version, MCTS can have

low performance and some domain-specific knowledge can be included

in order to significantly improve the speed of the algorithm.

• Anytime: at the end of every iteration of the MCTS algorithm the

whole tree is updated with the last calculated rewards and visits counts

through the backpropagation step. This allows the algorithm to stop

and return the current best root action at any moment in time. Al-

lowing the algorithm for extra iterations often improves the result.

• Asymmetric: the tree policy allows spending more computational re-

sources on the most promising areas of the tree, allowing an asymmet-

ric growth of the tree. This makes the tree adapt to the topology of

the search space and therefore makes MCTS suitable for games with

high branching factor such as Go.

2.3.5 Drawbacks

Besides the great advantages of MCTS, there are also few drawbacks to take

into consideration:
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• Playing Strength: the MCTS algorithm may fail to find effective moves

for even games of medium complexity within a reasonable amount of

time. This is mostly due to the sheer size of the combinatorial move

space and the fact that key nodes may not be visited enough times to

give reliable estimates. Basically MCTS might simply ignore a deeper

tactical moves combination because it does not have enough resources

to explore a move near the root, which initially seems to be weaker in

respect to the others.

• Speed : MCTS requires many iterations to converge to a good solution,

for many applications that are difficult to optimize this can be an issue.

Luckily, there exists a lot of improvements over the basic algorithm

that can significantly improve the performance.

2.4 Summary

In this chapter, we overviewed applications of artificial intelligence in board

games. We discussed artificial intelligence for Checkers, Chess, Go, and

other board games. Then, we showed the well-known AI algorithm, Min-

imax, illustrating the alpha-beta pruning technique. Then, we introduced

the Monte Carlo tree search algorithm, showing the state of the art, the

basic algorithm, the Upper Confidence Bounds for Trees implementation,

and benefits/drawback with respect to Minimax.
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Chapter 3

Mancala

In this chapter, we present the family of board games known as mancala. We

start from a brief history, present an overview of the mancala main board

games, namely Wari, Awari, Oware, Ohvalhu, Vai Lung Thlan and Kalah,

providing a detailed description of the rules.

3.1 History of Mancala Board Games

Mancala is a family of board games played all around the world, known also

as ‘sowing’ games or ‘count-and-capture’ games. The word mancala comes

from the Arabic word naqala meaning literally ‘moved’. Many believe that

there is an actual game named mancala, however the word mancala gathers

hundreds of games under its name. More than 800 names of traditional

mancala games are known, played in 99 countries, with almost 200 games

designed in more recent times. Usually mancala games involve two players.

They are played on boards with two three or four rows of pits. Sometimes

they have additional pits at each end of the board, called stores. Each game

begins with counters arranged in the pits according to the rules of that game.

Often the goal of the game is to collect more counters than the opponent.

Generally boards are made of wood, but holes can also be dug out of the

earth or sand. Depending on what is readily available, the counters can be

seeds, beans, nuts, pebbles, stones etc.

Figure 3.1: An example of starting board.
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The origin and the diffusion of mancala gamesremain much of a mystery at

the present time, but there are indications that the game is several thou-

sand years old and was spread through the Bantu expansion, along trading

routes and by the expansion of Islam. As a result, mancala games are played

throughout the African continent as well as in India, Sri Lanka, Indonesia,

Malaysia, the Philippines, Kazakhstan and Kyrgyzstan, etc. In many re-

gions a single name is often used when referring to two or three different

mancala games. Furthermore, it is not uncommon that neighboring african

villages have different game rules for the same name, or different names for

the same game. This has made recording the various games and supplying

them a complete set of rules challenging. The main sources we used for rules

are “The complete mancala games book” [25] and mancala.wikia.com [3].

3.2 Two-row Mancala

The most widespread type of game is the Two-Row mancala. Each row has

a fixed number of pits that varies from one to fifty. The goal of the game

is to gather more counters than the opponent and put them in the player’s

store. Usually they are games for two players and each player control the

row closer to him. An example of board is shown in Figure 3.1: the south

player controls the bottom row of pits and the store on the right side and

plays first, the north player controls the top row of pits and the store on

the left side and plays second. The move consists in choosing a pit of the

player’s row, picking up all the counters contained in that pit and sowing

them counterclokwise usually.

Sowing is shown in Figure 3.2, the counters are put one by one in the

following pits; when the end of the row is reached, the sowing continues on

the opponent’s row and continues this way until all the counters have been

sown. Depending on the game being played, sowing either is also made in

the store of the moving player or skips it. For example in Figure 3.2 the

store is skipped. After the sowing, depending on the game, a capture may

occur and a bonus turn may be gained. There are four types of captures [11]:

• Number capture: after a player has sown all of her counters and the

Figure 3.2: How a move works: south player moves form his third pit.
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last counter sown is placed in one of their opponent’s pits with that

pit now containing a specific number of counters (for example, two or

three counters in the games of Wari and Awari), then these counters

may be captured.

• Place capture: after a player has sown all of her counters and the last

counter sown is in one of their own pits with that pit now containing

one counter, the counters in this pit and in the pit on the opposite

side of the board (the opponents pits) are captured.

• En-passant capture: while a player is sowing her counters, a capture

can occur if any of her own pits now contain a specific number of

counters (for example, four counters in the games of Anywoli, Ba-awa,

Pasu Pondi).

• Store capture: while a player is sowing her counters, if she pass over

her own store, she captures one counter.

In our work we focused on Two-Row Mancala. In particular, we selected

five games of the most well-known, developed and analized them in detail.

3.3 Traditional Games

3.3.1 Wari

Wari is the most widespread mancala game. It is played with the same rules

in a large portion of Africa (Senegal, Gabon, Mali, Burkina Faso, Nigeria,

Ghana, etc) and in the Caribbean (Antigua and Barbados) with different

names (Owari, Ayo, Oware, Weri, Ouril, Awale, etc). Wari is played on a

board of two rows, each consisting of six pits, that have a store at either

end. Initially there are four counters in each pit. When a player is sowing, if

the starting pit contained twelve counters or more (meaning that the move

will complete a full wrap around the board), it is skipped. The capture

type is number capture: if the last counter was placed into an opponent’s

pit that brought its total to two or three, all the counters in that pit are

Figure 3.3: Wari: how a capture works. South player moves form her third pit and

captures all the counters contained in the third pit of the opponent.
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Figure 3.4: Wari: how a multiple capture works. South player moves form her fourth

pit and captures all the counters contained in the third, fourth and fifth pit of the

opponent.

captured and placed in the player’s store. An example of capture is shown

in Figure 3.3. Furthermore, if the previous-to-last counter also brought an

opponent’s pit to two or three, these are captured as well, and so on, as

shown in Figure 3.4.

However, if a move would capture all the opponent’s counters (a move

known as grand slam), the counters are not captured and are left on the

board, since this would prevent the opponent from continuing the game. A

player has to make a move that allows the opponent to continue playing

(‘to feed’)1, if possible. If it is not possible to feed the opponent, the game

ends. For example Figure 3.5 shows two forbidden moves. When an endless

cycle is reached, that is a board position that repeats itself during the last

stages of play, the players can agree to end the game. When the game ends,

either because of a cycle or because a player cannot move, the remaining

counters are given to the player that controls the pits they are in. The player

who captured more counters wins the game. If both players have captured

twenty-four counters, the game is declared a draw.

There are several variats of Wari. Grand slam Wari introduces the pos-

sibility to make a grand slam move. Since this move leaves the opponent

without available moves, the player that makes a grand slam, captures all the

counters left on the board and the game ends. Other variations of Wari that

focus on grand slam require that either: (i) grand slam moves are forbidden;

1This rule has an interesting origin. Most probably, it comes from the mutual help

between farmer: despite being rivals, a farmer would help another one during bad years.

Figure 3.5: Wari: in the picture on the left south player must move from the third or

sixth pit to give north player the possibility to move; in the other picture, south player

cannot move from the third and fifth pit because she would capture all the counters on

the opponent side of the board.
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(ii) grand slam captures are allowed, however, all remaining counters on the

board are awarded to the opponent; (iii) grand slam captures are legal, but

the last (or first) pit is not captured. Another variant, called Cross-Wari,

was invented by W. Dan Troyka in 2001 and modifies Wari rules as follows:

the players make the moves from pits containing an odd number of counters

clockwise and the moves from pits containing an even number of counters

counterclockwise; when the game ends, no player captures the counters left

on the table.

3.3.2 Awari

Awari was invented by Victor Allis, Maarten van der Meulen, and H. Jaap

van den Herik in 1991 [19]. It is based on the rules of Wari and tweaked to

better suit in AI experiments:

• The game ends if a position is repeated and the players are awarded

the counters left on their side.

• A grand slam move is not allowed. The only exception to this rule

happens when all the available moves are grand slam. In this case,

the counters left on the board are awarded to the player on whose side

they are (that is the player doing the grand slam).

3.3.3 Oware

Oware was first mentioned by E. Sutherland, in her 1962 book on children’s

activities in Africa. Oware is a variant of Wari. In Oware, a capture happens

also with four counters: if the last counter was placed into an opponent’s pit

that brought its total to two, three or four, all the counters in that pit are

captured and placed in the player’s store. If the previous-to-last counter also

brought an opponent’s pit to two, three or four these are captured as well,

and so on. We implemented it using the rules of Awari (Subsection 3.3.2)

to better fit AI experiments.

3.3.4 Vai Lung Thlan

Vai Lung Thlan is a game played by the Lushei Kuki clans in Assam, India.

It is played on a board with two rows, each consisting of six pits that have a

store at either end. Initially there are five counters in each pit. The capture

is number capture, except that it can also happen in the moving player’s

pits: if the last counter is dropped into an empty pit on either side of the

board, the player captures it as well as all the counters which precede this
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Figure 3.6: Vai Lung Thlan: south player moves from her fourth pit and captures a

chain of 4 single counters.

pit by an unbroken chain of single counters. Captured counters are removed

and placed in the player’s store. Figure 3.6 shows an example of a capture

move. If a player has no counter in her pits and therefore no available move,

she must pass. The game ends when no counters are left on the board or a

player captured more than 30 counters. The player who has captured more

counters wins. If each player has captured 30 counters, the game is a draw.

3.3.5 Ohvalhu

Ohvalhu is a game from the Maldives. Ohvalhu is also referred in the liter-

ature as Dakon [20]. It is played on a two-row board, each row consisting of

eight pits, and has a store at either end. Initially there are eight counters

in each pit. This game features the so called multi lap sowing that works

as follows: if the last counter of the sowing falls into an occupied pit, all

the counters are removed from that pit and are sown starting from that pit.

The process continues until the last counter falls into a player’s store, or an

empty pit. This causes a feeling of randomness in a human player since the

multi lap sowing might last for long, but is not random. If the last counter

sown falls into a player’s own store, they immediately gain another turn. If

the last counter sown falls into an empty pit on the current player’s side,

then the player captures all the counters in the pit directly across from this

Figure 3.7: Ohvalhu: south player moves from her third pit. The result of the first lap

is in the second board. The last counter is sown in the second pit of the opponent.

From here the second lap starts. The result is shown in the third board. Then south

player makes a capture, as shown in the fourth board.
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one, on the opponent’s side and the counter causing the capture (place cap-

ture). If the opposing pit is empty, no counter is captured. Figure 3.7 shows

how a move and captures work. The first round of the game ends when a

player has no counters in her pits at the start of his turn. The remaining

counters are awarded to his opponent. The counters are then redistributed

as follows: from the left to the right, both players use the counters in their

store and fill their pits with eight counters. Remaining counters are put in

the store. If the number of counters is too low to fill all the pits, the pits

that cannot be filled are marked with a leaf and are skipped in the next

round. The player that won the last round starts playing. The game is over

when at the end of a round one of the players cannot even fill one pit. For

our work, we decided to implement only the first round and deem the player

with the most counters following one round to be the winner. If each player

has captured 64 counters, the game is a draw.

When the game starts, multi lap sowing and the extra turn rules allow

the south player to move for several consecutive turns. Human players have

found some sequences of moves that result in a win for the starting player

without letting her opponent make a move. For example, here it is a 20

moves long winning sequence, counting pits from 1 to 8 from left to right:

1-8-5-4-8-3-5-2-7-7-8-3-2-1-3-6-8-2-8-7.

3.4 Kalah

Kalah was invented by William Julius Champion Jr., a graduate of Yale

University, in 1940 [42]. The game is played on a board consisting of six pits

per row and two stores; at the beginning there are four counters in each pit.

The players control the pits on their side of the board and the store on their

right. There are two ways to capture counters. Store capture: while a player

is sowing counters and pass over their store, they sow in their store, too; it

should be noted that this does not happen when passing over an opponent

store. Place capture: when a player moves and their last counter is sown in

one of her own pits which was previously empty (so that now it contains one

counter), that counter and all the counters in the pit on the other side of

the board are captured as shown in the example of Figure 3.8. Kalah has a

rule that allows players to gain additional turns. This happens when the last

counter of a move is sown in the player’s store, as shown in Figure 3.9. Due

to this rule, multiple moves can be made by the same player in sequence by

properly choosing the pit to move from. The game ends when a player no

longer has counters in any of his pits. The remaining counters are captured

by his opponent. The player who has captured most counters is declared
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Figure 3.8: Kalah: south player moves from her first pit and captures all the counters

in her fifth pit and in her opponent’s second pit.

the winner. If each player has captured twenty-four counters, the game is a

draw.

3.5 Number of Positions on a Board

Mancala games might seem simple in that, they are deterministic, have

perfect information and the available moves are always less or equal to the

number of pits in a row (6 or 8 in the games we consider). However, a

single move can have an effect on the contents of all the pits on the board

and games can last for a great number of turns (in the order of 102). The

number of possible positions may give insight on the complexity of mancala

games. A position in mancala games consists of a certain distribution of the

counters over the pits of the board, but also includes the captured counters

in the stores [12]. Furthermore, a position includes the knowledge which

player is to move next. The number of possible positions depends on the

number of pits, stores and on the number of counters and it is computed as:

P (k, n,m) = k ∗
(
n+m− 1

m

)
where k is the number of players, m is the total number of counters, n

is the total number of pits and stores. The number of possible positions

P(k, n, m) increases very rapidly. Table 3.1 has some example of this. Of

course, only a fraction of all possible positions can actually appear during a

game. This depends on the starting position of the game and on the rules.

For instance, in Kalah, only about 5% of the possible positions can appear.

That means 6.56622x1011 possible positions in Kalah.

Figure 3.9: Kalah: a possible starting move of south player that allows her to capture

a counter and get an extra turn by sowing the last counter in her store.
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m p

1 28

2 210

3 1,120

4 4,760

5 17,136

12 (1 counter per pit) 10,400,600

24 (2 counters per pit) 7,124,934,600

36 (3 counters per pit) 5.25x1011

48 (4 counters per pit) 1.31x1013

60 (5 counters per pit) 1.72x1014

72 (6 counters per pit) 1.47x1015

Table 3.1: Number of possible positions in a mancala board with two rows of six pits

and two stores for two players.

3.6 Artificial Intelligence in Mancala

Mancala games have been studied relatively less than other games as chess

or backgammon and most research is restricted to only two games: Kalah

and Awari. Kalah has been studied as early as 1964 by Richard Russel [26].

In 1968, A.G. Bell wrote another computer program that could learn in

some way from the errors that it made [6]. A year later, Slagle and Dixon

used the game of Kalah to illustrate algorithms for playing several board

games [33]. After that, Kalah lost the interest of AI game community until

2000, when, using some advanced techniques that were developed for chess,

Irving, an undergraduate student at Caltech University, was able to find the

winning strategy for Kalah [17].Concerning Awari, the interest in it started

by the construction of a program called ’OLITHIDION’ [21] and has been

growing steadily since then. Romein and Bal solved Awari, using a large

computing cluster. It executed a parallel search algorithm that determined

the results for 889 billion positions in a 178 gigabyte database. The game

is a draw when both players play optimally [24]. They also provided the

database, the statistics, and an (infallible) awari-playing program online,

but unfortunately the web site is no longer available. The game of Awari is

the only mancala game that is played on the computer olympiad. This is an

event in which all kind of computer programs compete in several classical

games like Chess, Checkers and Go.

Although Awari is played with the same amount of pits and counters per

pit as Kalah, it appears to have a higher complexity. The branching factor
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of both is 6, but on average a game of Kalah lasts shorter than a game of

Awari. This is due to the fact that Kalah allows store captures, ensuring

that the number of counters in play is reduced faster.

3.7 Summary

In this chapter, we presented the family of board games known as man-

cala. We depicted its history and we illustrated the general rules of two-row

mancala games. Then we explained the detailed rules of some of the main

mancala games, Wari, Awari, Oware, Vai Lung Thlan, Ohvalhu, Kalah. Fi-

nally we gave an insight about their complexity and talked about previous

research in mancala games. In the next chapter, we will see the artificial

intelligence algorithms we have designed for mancala games.
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Figure 3.10: Number of possible positions in a mancala board with two rows of six pits

and two stores for two players.
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Chapter 4

Artificial Intelligence for

Mancala

In this chapter, we present the artificial intelligence strategies we devel-

oped for the mancala games considered in this work: (i) a greedy algorithm

that applies well-known mancala strategies; (ii) an algorithm using mini-

max guided by a simple heuristic function; (iii) another minimax algorithm

that uses alpha-beta pruning, a technique to reduce computational time and

memory consumption; (iv) another alpha-beta pruning minimax algorithm

that uses an improved heuristic function to evaluate mancala board; (v)

finally, Monte Carlo Tree Search.

4.1 Greedy

The greedy player we implemented is based on the work of Neelam Gehlot

from University of Southern California [13]. It applies basic rules to capture

the most counters in one move. The algorithm considers the current state of

the board and all the available moves. It evaluates the consequences of ap-

plying one move to the current board and selects the move that corresponds

to the highest difference between the counters in the player’s store and the

ones in the opponent’s store. when the move considered allows for an extra

turn, the greedy algorithm analyzes in the same way the candidate moves

of then next turn. This foresight is limited only to one extra turn.

The pseudo-code of the greedy strategy is shown in Algorithm 5. The

best value is initialized to −∞; the list of available moves is retrieved; for

each move the evaluation function is called which returns the difference

between the counters in the player’s store and the ones in the opponent’s

store after playing the move; if this value is greater than the current best
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Algorithm 5 Greedy

1: function Greedy(board, player, opponent)

2: bestV alue← −∞
3: chosenMove← 0

4: M ← availableMoves(board)

5: for all m in M do

6: if Evaluate(m, board, player, opponent) ≥ bestV alue then

7: bestV alue← Evaluate(m, board, player, opponent)

8: chosenMove← m

9: end if

10: end for

11: return chosenMove

12: end function

13:

14: function Evaluate(move, board, player, opponent)

15: evalBoard← DoMove(board,move)

16: return Store(evalBoard, player) - Store(evalBoard, opponent)

17: end function

value, the best value and the chosen move are updated; after the algorithm

has considered all the available moves, it returns the chosen move. Note

that the algorithm is deterministic.

4.2 Basic Minimax

This algorithm is based on Minimax (see Section 2.2) and it is inspired to

the work of Neelam Gehlot from University of Southern California [13]. The

root node of the tree is the current state of the board. From the root node,

the algorithm considers the available moves and plays them one by one to

obtain a new state of the board that represents a child of the root node.

From this child node, the algorithm uses the same mechanism to get the

children of this node, until the algorithm reaches a leaf, a node that either

is a terminal state of the game or a node that reached a predefined depth

of the tree. In the leaf, the algorithm applies an evaluation function that

computes the difference between the counters in the player’s store and the

ones in the opponent’s store. These values are then backpropagated from

the leaves up to the root. In the end the root node obtains the values of

every available move and selects the move with the highest value.

The pseudo-code of the implementation is in Algorithm 6. In Line 2
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and 3 the algorithm checks if the node is a leaf and, in that case, returns

the value of the evaluation function. From Line 5 to Line 12 the algorithm

handles the case in which the turn player of the node is the player that is

using minimax: the best value is first initialized to −∞. All the children

of this node are computed using the children function, for each child the

minimax is called and the returned value is saved; if this value is higher

than the best value found until now, the best value is replaced with it.

After evaluating all the moves, the algorithm returns the best value. Line

13 to Line 20 are used when the turn player is the opponent: the procedure

is different in that the best value is initialized to +∞ and the minimum

value is chosen as best value. Children function (Line 28) calls the available

moves function to get all the possible moves in the board and then plays the

moves one by one to obtain the child states; it adds them to a list that it

returns to the caller. Note that the algorithm is deterministic.

4.3 Alpha-Beta Pruning Minimax

This algorithm uses Minimax with the Alpha-beta pruning technique (see

Section 2.2) and is based on the work of Neelam Gehlot from University of

Southern California [13]. Algorithm 8 shows its pseudo-code. Alpha and

beta are initialized to −∞ and ∞ respectively; while the turn player of

the node is the player of the algorithm, if the best value obtained from the

evaluation is higher than Alpha, Alpha is updated to that value (Line 12).

When the turn player of the node is the opponent, if the best value obtained

from the evaluation is less than Beta, Beta is updated to that value (Line

24). The algorithm also checks if Beta is less than or equal to Alpha (Line

13 and 25); in that case the cycle is stopped and the following branches are

skipped, as their move is of no interest. We want to compare this algorithm

to the previous one in order to test the benefits of Alpha-Beta Pruning.

We expect this algorithm to considerably reduce computational time and

memory consumption and be equally robust.

4.4 Advanced Heuristic Minimax

This minimax uses a more refined heuristic function, based on the work of

Divilly et al. [11]. They developed a set of heuristics that could be applied to

different mancala games, namely Awari, Oware, Vai Lung Thlan, Érhérhé.

The heuristics are the following:

• H1: Hoard as many counters as possible in one pit. This heuristic,
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Algorithm 6 Basic minimax pseudo-code

1: function Minimax(node, player, opponent, depth)

2: if node is terminal OR depth = 0 then // leaf node

3: return Evaluate(board, player, opponent)

4: end if

5: if TurnPlayer(board) = player then // player playing: maximize

6: bestV alue← −∞
7: children← Children(board)

8: for all child in children do

9: val← Minimax(child, player, opponent, depth− 1)

10: bestV alue← max(bestV alue, val)

11: end for

12: return bestV alue

13: else// opponent playing: minimize

14: bestV alue← +∞
15: children← Children(board)

16: for all child in children do

17: val← Minimax(child, player, opponent, depth− 1)

18: bestV alue← min(bestV alue, val)

19: end for

20: return bestV alue

21: end if

22: end function

23:

24: function Evaluate(board, player, opponent)

25: return Store(board, player) - Store(board, opponent)

26: end function

27:

28: function Children(board)

29: M ← availableMoves(board)

30: for all m in M do

31: child← DoMove(board,m)

32: Add child to Children

33: end for

34: return Children

35: end function
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Algorithm 7 Alpha-beta pruning minimax pseudo-code

1: function α-β-Minimax(node, α, β, player, opponent, depth)

2: if node is terminal OR depth = 0 then // leaf node

3: return Evaluate(board, player, opponent)

4: end if

5: if TurnPlayer(board) = player then // player playing: maximize

6: bestV alue← −∞
7: children← Children(board)

8: for all child in children do

9: val← α-β-Minimax(child, α, β, callingP layer, depth− 1)

10: bestV alue← max(bestV alue, val)

11: α← max(α, bestV alue)

12: if β ≤ α then // pruning

13: break

14: end if

15: end for

16: return bestV alue

17: else// opponent playing: minimize

18: bestV alue← +∞
19: children← Children(board)

20: for all child in children do

21: val← α-β-Minimax(child, α, β, callingP layer, depth− 1)

22: bestV alue← min(bestV alue, val)

23: β ← min(β, bestV alue)

24: if β ≤ α then // pruning

25: break

26: end if

27: end for

28: return bestV alue

29: end if

30: end function

31:

32: function Evaluate(board, player, opponent)

33: return Store(board, player) - Store(board, opponent)

34: end function

35:

36: function Children(board)

37: M ← availableMoves(board)

38: for all m in M do

39: child← DoMove(board,m)

40: Add child to Children

41: end for

42: return Children

43: end function
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Table 4.1: Weights of the evolved player.

Heuristic H1 H2 H3 H4 H5 H6

Weight 0.198649 0.190084 0.370793 1 0.418841 0.565937

with a look ahead of one move, works by attempting to keep as many

counters as possible in the left-most pit on the board. At the end of

the game, all the counters on a side of the board are awarded to that

player’s side. There is some evidence in literature that this is the best

pit in which hoard counters [15].

• H2: Keep as many counters on the players own side. This heuristic is

a generalized version of H1 and is based on the same principles.

• H3: Have as many moves as possible from which to choose. This

heuristic has a look ahead of one and explores the possible benefit of

having more moves to choose from.

• H4: Maximize the amount of counters in a players own store. This

heuristic aims to pick a move that will maximize the amount of coun-

ters captured. It has a look ahead of one.

• H5: Move the counters from the pit closest to the opponents side.

This heuristic, with a look ahead of one, aims to make a move from

the right-most pit on the board. If it is empty, then the next pit is

checked and so on. It was chosen because it has a good performance

in Kalah [18] and the perfect player’s opening move in Awari is to play

from the rightmost pit [24].

• H6: Keep the opponents score to a minimum. This heuristic, with a

look ahead of two moves, attempts to minimize the number of counters

an opponent can win on their next move.

In their work [11], Divilly et al. applied a genetic algorithm to find

a strong strategy that combines different heuristics. The formula of the

evolved player is computed as:

V = H1×W1 +H2×W2 +H3×W3 +H4×W4 +H5×W5−H6×W6

where V is the value of a move, H1...H6 are the heuristics, W1...W6 are the

weights. Table 4.1 shows the weights of the evolved player. This evolved

player performs strongly in Awari, Oware, Érhérhé, while its performance

is not robust in Vai Lung Thlan.
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Algorithm 8 Advanced heuristic function for minimax

1: function Evaluate(board, player, opponent)

2: H1 ← CountersInLeftMostPit(board, player)

3: H2 ← CountersInAllPits(board, player)

4: H3 ← NumberOfNon-EmptyPits(board, player)

5: H4 ← Store(board, player)

6: if PreviousMove(board, player) was the rightmost then

7: H5 ← 1

8: else

9: H5 ← 0

10: end if

11: H6 ← Store(board, opponent)

12:

13: return H1∗W1+H2∗W2+H3∗W3+H4∗W4+H5∗W5−H6∗W6

14: end function

Our advanced heuristic function uses this heuristic function to enhance

the pruning of the tree and to select the best move. Its heuristic function is

illustrated in Algorithm 8. Furthermore, the algorithm applies beam search:

it considers a subset of the most promising moves and picks one of them

randomly. Given the root node, its set of moves m0...mx, their relative

values v0...vx and the best value vk, the result move is picked randomly

between the moves that have a value vi ≥ 0.99× vk if the value is positive,

or vi ≥ 1.01 × vk if the value is negative. The goal is to remove the effect

that small differences of values between two or more moves may have: this

way, a move with a value slighty lower than the best value, has the same

probability of being played of the move with the best value.

4.5 Monte Carlo Tree Search

Monte Carlo tree search (MCTS) is a versatile algorithm. In comparison

to Minimax it does not need an heuristic function. Each node represents a

state of the board of the mancala game and the root node represents the

current state. Each node provides the following informations: the available

moves; if it is a terminal state, that is the game is over, and in that case

which player won (or if it was a tie). MCTS uses these informations to

play simulation games: from the root node, it picks moves until it reaches

a terminal state, balancing between moves already played (exploitation) or

moves never played (exploration). The result of the simulated game is then
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backpropagated to the root node. After MCTS played all the simulation

games, it chooses the best move.

We set the computational budget as number of iterations: the algorithm

stops after a number of iterations, that is the number of nodes visited by the

algorithm. The tree policy is the upper confidence bounds for trees (UCT)

with constant Cp =
√
2/2: during the selection step the nodes are picked

using the UCT formula (see Subsection 4.5). The UCT formula considers

only the score of the player acting in that node. In the expansion step, the

move to expand the node is chosen randomly from the moves available in the

corresponding state. The default policy used is the random sampling : during

the simulation step of the algorithm the simulated game is played using

moves picked randomly within the available moves. The backpropagated

reward is a vector containing the score of each player. The reward term for

a victory is 1, the reward for a defeat is 0. At the end of the algorithm, the

incoming move of the most visited root node is selected.

4.5.1 Other Simulation strategies

In the basic version of the MCTS algorithm we used a Random Simulation

strategy, this is very efficient, but it does not always give good results.

Previous studies [10] suggest that using heuristics in the simulation step can

increase the performance of the algorithm. Therefore, we designed two other

simulation strategies:

• Greedy Simulation: It simply uses the Greedy strategy to play the

game until the end.

• Epsilon-Greedy Simulation: At each turn, it plays at random with

probability ε, otherwise it plays the move chosen by the Greedy strat-

egy.

Greedy Simulation, relying on a non-random simulation strategy, can be too

restrictive, in fact, the results of a simulation from a given state will be

always equal. Therefore, we think that adding some random factor might

be beneficial.

4.6 Summary

In this chapter, we presented the artificial intelligence algorithms we used

in our work, namely greedy, basic minimax, alpha-beta pruning minimax,

advanced heuristic minimax and Monte Carlo tree search. We explained the
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choices we made while developing them and provided their pseudo-code. In

the next chapter, we will test them in several experiments to evaluate their

performance.
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Chapter 5

Experiments

In this chapter, we discuss the experiments we performed to evaluate the

playing strength of the various strategies we developed. We start analyz-

ing what happens when the players play randomly. Then, we evaluate the

performance of the artificial intelligence algorithms we developed in the pre-

vious chapter: (i) the greedy algorithm; (ii) the basic minimax algorithm;

(iii) the alpha-beta pruning minimax algorithm; (iv) the advanced heuristic

minimax algorithm; (v) the Monte Carlo tree search algorithm. At the end,

we discuss the performance of the simulation strategies we developed for

Monte Carlo tree search.

5.1 Random Playing

In the first experiment 1, we used the random strategy for both players.

We played 1000 times for each one of the five mancala games we developed

(Awari, Oware, Vai Lung Thlan, Ohvalhu, Kalah). With this experiment we

wanted to find out how much the games are biased towards a specific player.

Table 5.1 shows the winning rates and the percentages of ties for all the

games we chose when both players apply a random strategy. Interestingly

some games are biased towards the south player (the first one to play),

while others towards the north player (the second one to play). Kalah, Vai

Lung Thlan and Ohvalhu have a bias towards the south player when playing

randomly. In these games, there are sequence of moves that brings the south

player to make a capture as soon as her second turn, not considering store

capture. The first possible capture of the north player can happen on her

second turn, thus later in the game. Furthermore, Kalah and Ohvalhu allows

to sow in a player’s own store, so the player going first is the first one able

1In all the experiments, we used a Dual Xeno 8-core with 64GB of RAM.
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to gain multiple turns while capturing some counters. These facts give the

south player an advantage that is especially great in Ohvalhu (the difference

of the winning rate is 17.62%), less remarkable in Kalah (3.75%) and even

lesser in Vai Lung Thlan (1.52%). The data are consistent with what we

expected: Vai Lung Thlan is the longest game and as such the advantage

gained by the first player is less impactful, while Ohvalhu is considerably

faster due to multi lap sowing, therefore going first is really favorable.

When playing randomly, Awari and Oware are biased towards the north

player, and in fact, the considerations on the sequences of moves needed to

make a capture are reversed: the fastest sequences of moves that bring to

a capture are in favour of the second player. She might make a capture

on her second turn, while the fastest capture of the first player can happen

only in her third turn. No more considerations arise, since store captures

do not exist in these game. Thus, the north player has an advantage: the

difference of the winning rate is 3.4% in Awari and 4.47% in Oware. To

further support our hypothesis, Oware has a greater difference in winning

rates, since it allows easier captures with regards to Awari (Awari allows

captures when a pit contains 2 or 3 counters, Oware allows captures when

a pit contains 4 counters, too). In fact, because Oware games are shorter,

going second is a more impactful advantage.

Table 5.1: Random versus Random

Game South Player North Player Ties

Awari 45.40% 48.8% 5.8%

Oware 45.34% 49.81% 4.85%

Vai Lung Thlan 47.45% 45.93% 6.62%

Ohvalhu 57.23% 39.61% 3.16%

Kalah 48.64% 44.89% 6.47%

5.2 Greedy

In the second experiment, we wanted to evaluate the performance of the

greedy player we developed (see Section 4.1). We played 200 games for each

of the five mancala games we developed (Awari, Oware, Vai Lung Thlan,

Ohvalhu, Kalah) when it is playing versus random. The starting player

(the south player) alternates between greedy and random. Table 5.2 shows

the results. As expected, we note that even a simple greedy strategy is a

huge improvement when compared to the random strategy. Winning rates

of greedy against random are considerably high, over 75%. The game in
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which greedy obtains the lowest winning rate is Vai Lung Thlan. This one

is the longest game, suggesting that in longer games some kind of foresight

might be needed.

Then, we played 200 games for each of the five mancala games when

greedy plays against itself. Greedy is a deterministic algorithm, thus, when

facing another deterministic algorithm, it outputs always the same set of

moves. This fact lead to the repetition of the same game. To avoid this, we

set that the first 10 moves of each player are randomly chosen. Table 5.3

shows the results. We note that the south player has an advantage. This

fact is in contrast with what happened in the case random against random,

where two games, Awari and Oware, were biased towards the second player,

however it can be easily explained. After the initial ten random moves, the

board is likely to present some capture moves, thus, the first player is the

first one to have the chance to make such moves and take the lead. The

Table 5.4 shows the very tiny time the greedy algorithm takes to choose its

moves during a game.

Table 5.2: Winning rates of greedy against random. The columns South and North

contain the winning rate when the player is first and second, respectively. The column

Wins is the average of these values, that is the winning rates when each player plays

an equal number of games as first and as second.

Greedy Random

Game Wins South North Wins South North

Awari 97.5% 96% 99% 1.5% 0% 3%

Oware 89.5% 86% 93% 6% 2% 10%

Vai Lung Thlan 75% 74% 76% 21% 21% 21%

Ohvalhu 99.5% 100% 99% 0% 0% 0%

Kalah 96% 97% 95% 3.5% 5% 2%

Table 5.3: Greedy versus greedy

Game South North Ties

Awari 48% 44% 8%

Oware 55% 39.5% 5.5%

Vai Lung Thlan 50% 46% 4%

Ohvalhu 57.5% 40% 2.5%

Kalah 53% 39.5% 7.5%
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Table 5.4: The average time the greedy algorithm takes for a game.

Game Time

Awari 0.0048

Oware 0.0024

Vai Lung Thlan 0.0599

Ohvalhu 0.0033

Kalah 0.001

5.3 Basic Minimax

In this experiment, we want to evaluate the performance of the basic mini-

max player (BMM) we developed (see Section 4.2). We chose three depths

for the search tree: 1, 4 and 8 (denoted as BMM1, BMM4, BMM8). We

selected these depths to cover a wide spectrum of skill: BMM1 represents a

beginner player, that looks only at the immediate consequences of its moves;

BMM4 is an intermediate player, able to see ahead of 4 moves; BMM8 is an

avanced player, that examinates what will happen in the next 8 turns. Then,

for each of these depths and for each of the mancala games we developed,

we played 200 games comparing BMM against random, against greedy and

against itself. In 100 of these games BMM played first (south player) and

in the remaining 100 it played second (north player).

BMM proves to be considerably stronger than the random player (Ta-

bles 5.5 and 5.5), especially if we use higher depth. In our test, BMM8 wins

always against random. Still, BMM1 wins 75.5% of the games in Vai Lung

Thlan. This is because Vai Lung Thlan is the longest game we developed

and more in depth search is needed to achieve good results.

Because BMM is a deterministic algorithm, similarly to what we did

with greedy, we set that the first 10 moves of each player are randomly

chosen in BMM against greedy and in BMM against BMM, to avoid the

repetition of the same game. Tables 5.7, 5.8 and 5.9 report the results of

BMM against greedy. Note that in Ohvalhu and Kalah, greedy has an edge

against BMM1. One may argue that BMM1 should perform similarly to

greedy: this is generally true, in fact, these algorithms are substantially even

in Awari, Oware and Vai Lung Thlan. However, we implemented greedy

such that it is able to exploit the extra turns that Kalah and Ohvalhu allow.

Prevedibly, with higher depths BMM gets stronger and achieves a higher

winrate against greedy in all the games (Table 5.8).

When BMM plays against itself (from Table 5.10 to Table 5.15), it is

clear that the algorithm with higher depth is stronger, especially in Awari,
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Oware and Vai Lung Thlan. When playing Ohvalhu and Kalah, however,

a greater depth of search results in a smaller advatage. When both BMM

algorithms have the same depth, we note that in general all the games favour

the south player and that the higher the depth the higher is the advantage of

the south player. For example, in Oware when BBM4 plays against BBM4,

the difference in winning rates in favour of the south player is 2.5%, however

when BBM8 plays against BBM8 the difference in winning rates in favour

of the south player rises to 9%. This fact confirms that going first is better,

especially if the player going first is strong.

Table 5.5: BMM1 versus random

BMM1 random

Game Wins South North Wins South North

Awari 94.5% 95% 94% 3.5% 3% 4%

Oware 90% 89% 91% 7.5% 7% 8%

Vai Lung Thlan 75.5% 72% 79% 20.5% 17% 24%

Ohvalhu 96% 100% 92% 4% 8% 0%

Kalah 92.5% 92% 93% 6% 5% 7%

Table 5.6: BMM4 versus random

BMM4 random

Game Wins South North Wins South North

Awari 100% 100% 100% 0% 0% 0%

Oware 99.5% 100% 99% 0% 0% 0%

Vai Lung Thlan 99.5% 100% 99% 0.5% 1% 0%

Ohvalhu 100% 100% 100% 0% 0% 0%

Kalah 98.5% 97% 100% 1% 0% 2%

Table 5.7: BMM1 versus greedy

BMM1 greedy

Game Wins South North Wins South North

Awari 44% 43% 45% 51% 52% 50%

Oware 46% 46% 46% 50% 48% 52%

Vai Lung Thlan 49% 45% 53% 44.5% 44% 45%

Ohvalhu 40% 51% 29% 56.5% 68% 45%

Kalah 38.5% 41% 36% 57% 62% 52%
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Table 5.8: BMM4 versus greedy

BMM4 greedy

Game Wins South North Wins South North

Awari 88% 84% 92% 9% 5% 13%

Oware 85.5% 91% 80% 13.5% 18% 9%

Vai Lung Thlan 97% 97% 97% 2.5% 2% 3%

Ohvalhu 60% 72% 48% 38% 50% 26%

Kalah 71.5% 74% 69% 24.5% 26% 23%

Table 5.9: BMM8 versus greedy

BMM8 greedy

Game Wins South North Wins South North

Awari 95.5% 94% 97% 3.5% 3% 4%

Oware 83% 89% 77% 16% 23% 9%

Vai Lung Thlan 97.5% 98% 97% 2% 3% 1%

Ohvalhu 62.5% 70% 55% 35% 41% 29%

Kalah 75% 84% 66% 19.5% 29% 10%

Table 5.10: BMM1 versus BMM1

Game South North Ties

Awari 46.5% 46.5% 7%

Oware 49.5% 46.5% 4%

Vai Lung Thlan 42% 53.5% 4.5%

Ohvalhu 59% 38% 3%

Kalah 52.5% 37.5% 10%

Table 5.11: BMM1 versus BMM4

BMM1 BMM4

Game Wins South North Wins South North

Awari 13% 14% 12% 84% 85% 83%

Oware 16% 19% 13% 82.5% 85% 80%

Vai Lung Thlan 3% 3% 3% 94% 94% 94%

Ohvalhu 23.5% 29% 18% 75% 82% 68%

Kalah 20% 21% 19% 75.5% 79% 72%
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Table 5.12: BMM1 versus BMM8

BMM1 BMM8

Game Wins South North Wins South North

Awari 5.5% 11% 0% 93% 99% 87%

Oware 14% 13% 15% 83.5% 83% 84%

Vai Lung Thlan 1.5% 1% 2% 97.5% 98% 97%

Ohvalhu 25% 33% 17% 72% 78% 66%

Kalah 16% 23% 9% 79.5% 85% 74%

Table 5.13: BMM4 versus BMM4

Game South North Ties

Awari 49% 49.5% 1.5%

Oware 49.5% 47% 3.5%

Vai Lung Thlan 52% 46.5% 1.5%

Ohvalhu 55.5% 44% 0.5%

Kalah 55.5% 39.5% 5%

Table 5.14: BMM4 versus BMM8

BMM4 BMM8

Game Wins South North Wins South North

Awari 19% 21% 17% 80% 82% 78%

Oware 26% 29% 23% 71.5% 74% 69%

Vai Lung Thlan 6% 8% 4% 93% 96% 90%

Ohvalhu 46.5% 54% 39% 53.5% 61% 46%

Kalah 38% 42% 34% 58.5% 63% 54%

Table 5.15: BMM8 versus BMM8

Game South North Ties

Awari 51% 43% 6%

Oware 52% 43% 5%

Vai Lung Thlan 52.5% 44.5% 3%

Ohvalhu 56% 43% 1%

Kalah 54% 38.5% 7.5%
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5.4 Alpha-Beta Pruning Minimax

In the third experiment, we aimed at evaluating the performance of the

alpha-beta pruning minimax algorithm (ABMM) we developed (see Sec-

tion 4.3). We selected three depths for the search tree: 1, 4 and 8 (denoted

as ABMM1, ABMM4, ABMM8). These depths show three different level of

skills: ABMM1 represents a beginner player, that looks only at the imme-

diate consequences of its moves; ABMM4 is an intermediate player, able to

see ahead of 4 moves; ABMM8 is an avanced player, that examinates what

will happen in the next 8 turns. Then, for each of these depths and for each

of the mancala games we developed, we played 200 games to compare the

performance of ABMM against the previous algorithms and against itself.

In 100 of these games ABMM was the first one to play (south player) and

in the remaining 100 it was second (north player).

ABMM is much stronger than the random player (Tables 5.16 and 5.17),

especially with higher depth. In our test, ABMM8 won always against

random.

Because ABMM is a deterministic algorithm, when ABMM is facing

another deterministic algorithm, we set that the first 10 moves of each player

are randomly chosen, to avoid the repetition of the same game, as we did

in previous experiments. We also measured the computational time of the

algorithms when ABMM plays against BMM to quantify the time saved

using the alpha-beta pruning technique.

When ABMM1 plays against greedy (Table 5.18), the results show that

the algorithms perform similarly in the games that do not allow extra turns,

like Awari, Oware and Vai Lung Thlan. In the games that allow extra turns,

like Ohvalhu and Kalah, the greedy player is stronger, because it is able to

take advantage of the extra turns. As expected, with higher depths, ABMM

achieves a higher winrate against the greedy player (Table 5.19). Still, when

playing Ohvalhu ABMM8 has a small winrate against the greedy strategy,

only 51% (Table 5.20). On the one hand this shows that in Ohvalhu a deeper

search does not result in higher winrate as much as in other mancala games;

on the other hand it shows that the ability to exploit extra turns of the

greedy algorithm is particularly strong in Ohvalhu.

When ABMM plays against itself (from Table 5.21 to Table 5.26) with

different depths, we note that the higher the depth is, the more ABMM

performs. Higher depths are especially advantegeous in Awari, Oware and

Vai Lung Thlan; in these games tree search with higher depths is much

more beneficial than in Ohvalhu and Kalah. For example when ABMM4

plays against ABMM8 (Table 5.25), ABMM8 wins 83.5% of the games in
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Awari, while it wins only 53% of the games in Kalah.

At the end, we compare ABMM and BMM (from Table 5.27 to Ta-

ble 5.36): the results show that BMM and ABMM have similar perfor-

mance. Their winrates are very similar when facing the same type of algo-

rithm: for example, when playing Awari against the greedy player, BMM4

and ABMM4 winrates are 88% (Table 5.8) and 87% (Table 5.19), respec-

tively; when playing Oware against the greedy player, BMM8 and ABMM8

winrates are 97.5% (Table 5.9) and 98% (Table 5.20), respectively. This is

even more noticeable when they face each other with the same depth (Ta-

bles 5.27, 5.31 and 5.36). It might seem that BMM is worse than ABMM in

Oware, looking at their winrates with depth 1 (44.5% and 54%, respectively),

however the data are capsized with depth 4 (50% and 45%, respectively). In

particular, increasing the depth does not favour one algorithm or the other

one, supporting our hypothesis. Yet, the substantial difference between the

two algorithms is the computational cost. Tables 5.33 and 5.37 show the

time the algorithms take for a game and the time saved with alpha-beta

pruning, used by ABMM. When the depth of the algorithms is 4 the time

is approximatively halved, however with depth 8 the time saved is approxi-

matively 90%. Ohvalhu is the game that benefits the most from alpha beta

pruning, probably because it has the higher branching factor, having up to

eight moves available per turn (other games have up to six moves per turn).

Table 5.16: ABMM1 versus random

ABMM1 random

Game Wins South North Wins South North

Awari 95.5% 92% 99% 3% 1% 5%

Oware 86.5% 82% 91% 12% 9% 15%

Vai Lung Thlan 73% 66% 80% 25% 19% 31%

Ohvalhu 93.5% 96% 91% 4.5% 5% 4%

Kalah 94.5% 95% 94% 4% 5% 3%
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Table 5.17: ABMM4 versus random

ABMM4 random

Game Wins South North Wins South North

Awari 100% 100% 100% 0% 0% 0%

Oware 100% 100% 100% 0% 0% 0%

Vai Lung Thlan 100% 100% 100% 0% 0% 0%

Ohvalhu 100% 100% 100% 0% 0% 0%

Kalah 97.5% 97% 98% 2% 2% 2%

Table 5.18: ABMM1 versus greedy

ABMM1 greedy

Game Wins South North Wins South North

Awari 49% 54% 44% 47% 53% 41%

Oware 40% 41% 39% 53% 53% 53%

Vai Lung Thlan 43% 44% 42% 53% 53% 53%

Ohvalhu 40% 57% 23% 58% 74% 42%

Kalah 38.5% 48% 29% 57.5% 68% 47%

Table 5.19: ABMM4 versus greedy

ABMM4 greedy

Game Wins South North Wins South North

Awari 87% 89% 85% 11% 14% 8%

Oware 84.5% 80% 89% 13.5% 10% 17%

Vai Lung Thlan 96% 95% 97% 3% 2% 4%

Ohvalhu 53.5% 65% 42% 42.5% 54% 31%

Kalah 66.5% 74% 59% 25.5% 30% 21%

Table 5.20: ABMM8 versus greedy

ABMM8 greedy

Game Wins South North Wins South North

Awari 93.5% 96% 91% 5% 7% 3%

Oware 86% 87% 85% 12% 12% 12%

Vai Lung Thlan 98% 99% 97% 2% 3% 1%

Ohvalhu 51% 62% 40% 47% 59% 35%

Kalah 71.5% 80% 63% 24% 30% 18%
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Table 5.21: ABMM1 versus ABMM1

Game South North Ties

Awari 47% 46.5% 6.5%

Oware 50.5% 41% 8.5%

Vai Lung Thlan 48.5% 48% 3.5%

Ohvalhu 58% 40.5% 1.5%

Kalah 50.5% 41% 8.5%

Table 5.22: ABMM1 versus ABMM4

ABMM1 ABMM4

Game Wins South North Wins South North

Awari 12% 13% 11% 86.5% 88% 85%

Oware 19% 23% 15% 78.5% 83% 74%

Vai Lung Thlan 1.5% 1% 2% 97% 96% 98%

Ohvalhu 31% 38% 24% 66.5% 75% 58%

Kalah 17% 22% 12% 80.5% 86% 75%

Table 5.23: ABMM1 versus ABMM8

ABMM1 ABMM8

Game Wins South North Wins South North

Awari 5.5% 7% 4% 92% 94% 90%

Oware 10% 11% 9% 88% 88% 88%

Vai Lung Thlan 0.5% 0% 1% 99.5% 99% 100%

Ohvalhu 27.5% 32% 23% 71.5% 77% 66%

Kalah 16% 21% 11% 81% 87% 75%

Table 5.24: ABMM4 versus ABMM4

Game South North Ties

Awari 46.5% 47% 6.5%

Oware 52% 46% 2%

Vai Lung Thlan 52.5% 44.5% 3%

Ohvalhu 61.5% 37.5% 1%

Kalah 50.5% 45% 4.5%
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Table 5.25: ABMM4 versus ABMM8

ABMM4 ABMM8

Game Wins South North Wins South North

Awari 13.5% 19% 8% 83.5% 90% 77%

Oware 18.5% 25% 12% 79% 85% 73%

Vai Lung Thlan 7% 7% 7% 92.5% 92% 93%

Ohvalhu 37% 39% 35% 60.5% 63% 58%

Kalah 40.5% 52% 29% 53% 60% 46%

Table 5.26: ABMM8 versus ABMM8

Game South North Ties

Awari 46% 46.5% 7.5%

Oware 51% 43.5% 5.5%

Vai Lung Thlan 48% 47% 5%

Ohvalhu 62% 36.5% 1.5%

Kalah 54.5% 40.5% 5%

Table 5.27: BMM1 versus ABMM1

BMM1 ABMM1

Game Wins South North Wins South North

Awari 51.5% 53% 50% 40% 37% 43%

Oware 44.5% 42% 47% 54% 52% 56%

Vai Lung Thlan 47% 40% 54% 46.5% 41% 52%

Ohvalhu 54% 60% 48% 44% 49% 39%

Kalah 52% 54% 50% 42% 41% 43%

Table 5.28: BMM1 versus ABMM4

BMM1 ABMM4

Game Wins South North Wins South North

Awari 13.5% 15% 12% 83.5% 86% 81%

Oware 20% 21% 19% 77.5% 77% 78%

Vai Lung Thlan 4.5% 4% 5% 94.5% 94% 95%

Ohvalhu 30% 33% 27% 68.5% 73% 64%

Kalah 21% 25% 17% 73.5% 81% 66%
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Table 5.29: BMM1 versus ABMM8

BMM1 ABMM8

Game Wins South North Wins South North

Awari 3% 3% 3% 94.5% 96% 93%

Oware 13% 16% 10% 84.5% 87% 82%

Vai Lung Thlan 1% 1% 1% 98.5% 99% 98%

Ohvalhu 28.5% 31% 26% 69% 73% 65%

Kalah 17.5% 23% 12% 78% 84% 72%

Table 5.30: BMM4 versus ABMM1

BMM4 ABMM1

Game Wins South North Wins South North

Awari 85.5% 89% 82% 9.5% 13% 6%

Oware 77.5% 81% 74% 18% 22% 14%

Vai Lung Thlan 95% 95% 95% 2.5% 3% 2%

Ohvalhu 64% 77% 51% 32% 45% 19%

Kalah 76% 83% 69% 16.5% 23% 10%

Table 5.31: BMM4 versus ABMM4

BMM4 ABMM4

Game Wins South North Wins South North

Awari 48.5% 56% 41% 46.5% 55% 38%

Oware 50% 54% 46% 45% 50% 40%

Vai Lung Thlan 47% 49% 45% 50% 51% 49%

Ohvalhu 53% 64% 42% 45% 57% 33%

Kalah 45.5% 49% 42% 48% 50% 46%

Table 5.32: BMM4 versus ABMM8

BMM4 ABMM8

Game Wins South North Wins South North

Awari 12% 12% 12% 86.5% 86% 87%

Oware 24% 29% 19% 75% 80% 70%

Vai Lung Thlan 5.5% 3% 8% 93.5% 90% 97%

Ohvalhu 43% 55% 31% 54.5% 67% 42%

Kalah 36.5% 43% 30% 57% 66% 48%
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Table 5.33: Time saved with alpha beta pruning in BMM4 versus ABMM4. The values

reported are the average time the algorithms take for a game.

Game BMM4 time ABMM4 time Time Saved

Awari 0.1084 0.0509 53.049%

Oware 0.08 0.0374 53.2558%

Vai Lung Thlan 0.2082 0.101 51.479%

Ohvalhu 0.1387 0.0456 67.14%

Kalah 0.0252 0.02 20.834%

Table 5.34: BMM8 versus ABMM1

BMM8 ABMM1

Game Wins South North Wins South North

Awari 92.5% 88% 97% 6.5% 3% 10%

Oware 83.5% 87% 80% 14.5% 18% 11%

Vai Lung Thlan 97% 95% 99% 3% 1% 5%

Ohvalhu 71.5% 71% 72% 26.5% 26% 27%

Kalah 80.5% 84% 77% 18% 21% 15%

Table 5.35: BMM8 versus ABMM4

BMM8 ABMM4

Game Wins South North Wins South North

Awari 85.5% 92% 79% 13% 18% 8%

Oware 74% 74% 74% 23% 25% 21%

Vai Lung Thlan 92.5% 93% 92% 6% 6% 6%

Ohvalhu 59% 65% 53% 38.5% 46% 31%

Kalah 58.5% 71% 46% 37.5% 49% 26%

Table 5.36: BMM8 versus ABMM8

BMM8 ABMM8

Game Wins South North Wins South North

Awari 45.5% 43% 48% 50% 48% 52%

Oware 48.5% 55% 42% 49% 55% 43%

Vai Lung Thlan 50.5% 49% 52% 44% 44% 44%

Ohvalhu 48.5% 56% 41% 47% 55% 39%

Kalah 53% 61% 45% 40.5% 51% 30%
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Table 5.37: Time saved with alpha beta pruning in BMM8 versus ABMM8. The values

reported are the average time the algorithms take for a game.

Game BMM4 time ABMM4 time Time Saved

Awari 78.35 3.63 95.367%

Oware 25.74 1.75 93.2%

Vai Lung Thlan 160.85 9.2 94.28%

Ohvalhu 119.81 3.54 97.044%

Kalah 9.51 1.14 88.013%

5.5 Advanced Heuristic Minimax

In the next experiment, we wanted to evaluate the performance of the ad-

vanced heuristic minimax algorithm (HMM) we developed (see Section 4.4).

We decided three depths for the tree search: 1, 4 and 8 (denoted as HMM1,

HMM4, HMM8). Similarly to the previous experiments, these three depths

represent a beginner player, an intermediate player and an expert player.

Then, we played 200 games for each of the mancala games we developed

to compare the performance of HMM against the previous algorithms and

against itself. In 100 of these games HMM was the south player and in the

remaining 100 it was the north player.

When HMM plays against the random player (Tables 5.38 and 5.39),

HMM performs better than BMM and ABMM, providing an initial hint on

the robustness of this algorithm. For example, when playing Kalah against

the random player ABMM1 wins 94.5% (Table 5.16), while HMM1 wins

99.5% (Table 5.38). In our test, HMM8 won always against the random

player.

To be consistent with previous experiments, we set that the first 10 moves

of each player are randomly chosen when HMM is facing a deterministic

opponent. When HMM is against the greedy strategy, it outperforms BMM

and ABMM, winning an higher % of games. Note that HMM1 performs

better than its opponent against the greedy player also in Kalah and Ohvalhu

(Table 5.40). The greedy algorithm has a mechanism that allows it to exploit

extra turns, giving it an edge in these two games. Still, it is not enough to

obtain a winrate higher than 50% against HMM1, as it was against BMM

and ABMM (Tables 5.7 and 5.18). However, we note that with higher depths

HMM improves its winrates against the greedy player in Awari, Oware and

Vai Lung Thlan, but not quite as much in Ohvalhu and Kalah (Table 5.42.

This is coherent with our previous results: we have already observed that

deeper tree search results in a smaller advantage in these two games.
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When HMM is facing BMM and ABMM (from Table 5.43 to Table 5.60),

HMM is clearly superior: it has better performance in every game against

BMM and ABMM, when both the algorithms that are playing have the

same depth. As expected, thanks to the method used to obtain its heuristic

function, HMM is particularly strong in Awari, Oware and Vai Lung Thlan.

Surprisingly, in some of the tests involving the games Awari and Oware,

HMM obtains a higher winrate than its opponent against BMM and ABMM,

despite using a lower depth (Tables 5.44, 5.48, 5.53 and 5.57). This fact

points out that a good heuristic function can be better than an higher depth.

When HMM plays against itself (from Table 5.61 to Table 5.66), we note

that generally the HMM player with higher depth has an higher winrate,

however the difference in winrates between the players is higher in some

games more than in others. For example when HMM4 is facing HMM8

(Table 5.65), the difference of winrates in favour of HMM8 is 55.5% in Awari,

while it is only 6.5% in Ohvalhu, because in this game deeper search is not

as much beneficial. When both HMM players have the same depth, we note

that the advantage of the south player is not clear as it was in ABMM versus

ABMM and BMM versus BMM. While Awari, Ohvalhu and Kalah favour

the south player, in Oware and Vai Lung Thlan it seems unclear which player

has an advantage on the other. Still, the south player should be favoured,

maybe only by a small margin. In fact, with the exception of Ohvalhu, as

the depth increases, the difference in winrates of the players shrinks. This

might mean that when the players are stronger, the advantage of the south

player is lower.

Table 5.38: HMM1 versus random

HMM1 random

Game Wins South North Wins South North

Awari 100% 100% 100% 0% 0% 0%

Oware 100% 100% 100% 0% 0% 0%

Vai Lung Thlan 98% 98% 98% 2% 2% 2%

Ohvalhu 100% 100% 100% 0% 0% 0%

Kalah 99.5% 100% 99% 0.5% 1% 0%
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Table 5.39: HMM4 versus random

HMM4 random

Game Wins South North Wins South North

Awari 100% 100% 100% 0% 0% 0%

Oware 100% 100% 100% 0% 0% 0%

Vai Lung Thlan 98.5% 98% 99% 1.5% 1% 2%

Ohvalhu 100% 100% 100% 0% 0% 0%

Kalah 100% 100% 100% 0% 0% 0%

Table 5.40: HMM1 versus greedy

HMM1 greedy

Game Wins South North Wins South North

Awari 86% 91% 81% 13.5% 18% 9%

Oware 79% 83% 75% 18.5% 20% 17%

Vai Lung Thlan 98.5% 99% 98% 1% 1% 1%

Ohvalhu 53.5% 60% 47% 45% 53% 37%

Kalah 64% 66% 62% 30% 31% 29%

Table 5.41: HMM4 versus greedy

HMM4 greedy

Game Wins South North Wins South North

Awari 90.5% 92% 89% 9% 11% 7%

Oware 86% 90% 82% 13% 17% 9%

Vai Lung Thlan 99.5% 100% 99% 0.5% 1% 0%

Ohvalhu 60% 68% 52% 39% 46% 32%

Kalah 69.5% 72% 67% 23.5% 29% 18%

Table 5.42: HMM8 versus greedy

HMM8 greedy

Game Wins South North Wins South North

Awari 95.5% 96% 95% 4.5% 5% 4%

Oware 88.5% 90% 87% 11% 13% 9%

Vai Lung Thlan 100% 100% 100% 0% 0% 0%

Ohvalhu 60.5% 67% 54% 38.5% 45% 32%

Kalah 71.5% 82% 61% 24% 34% 14%
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Table 5.43: HMM1 versus BMM1

HMM1 BMM1

Game Wins South North Wins South North

Awari 85% 86% 84% 12.5% 13% 12%

Oware 79% 82% 76% 19.5% 22% 17%

Vai Lung Thlan 95.5% 98% 93% 4.5% 7% 2%

Ohvalhu 69% 72% 66% 28.5% 31% 26%

Kalah 73.5% 73% 74% 21.5% 24% 19%

Table 5.44: HMM1 versus BMM4

HMM1 BMM4

Game Wins South North Wins South North

Awari 56% 55% 57% 42.5% 42% 43%

Oware 57% 61% 53% 42% 46% 38%

Vai Lung Thlan 38% 34% 42% 58.5% 56% 61%

Ohvalhu 49% 60% 38% 47% 57% 37%

Kalah 45% 50% 40% 49.5% 53% 46%

Table 5.45: HMM1 versus BMM8

HMM1 BMM8

Game Wins South North Wins South North

Awari 28% 30% 26% 72% 74% 70%

Oware 38% 40% 36% 59% 61% 57%

Vai Lung Thlan 10.5% 11% 10% 86% 85% 87%

Ohvalhu 35.5% 42% 29% 63% 71% 55%

Kalah 29.5% 32% 27% 63.5% 66% 61%

Table 5.46: HMM4 versus BMM1

HMM4 BMM1

Game Wins South North Wins South North

Awari 95% 97% 93% 5% 7% 3%

Oware 88% 87% 89% 11.5% 11% 12%

Vai Lung Thlan 100% 100% 100% 0% 0% 0%

Ohvalhu 70.5% 78% 63% 28% 34% 22%

Kalah 78.5% 83% 74% 17% 18% 16%

58



5.5. ADVANCED HEURISTIC MINIMAX

Table 5.47: HMM4 versus BMM4

HMM4 BMM4

Game Wins South North Wins South North

Awari 86.5% 89% 84% 12% 14% 10%

Oware 72% 80% 64% 26.5% 35% 18%

Vai Lung Thlan 78.5% 81% 76% 17% 20% 14%

Ohvalhu 52% 61% 43% 46% 55% 37%

Kalah 61% 67% 55% 32.5% 39% 26%

Table 5.48: HMM4 versus BMM8

HMM4 BMM8

Game Wins South North Wins South North

Awari 56.5% 56% 57% 41.5% 41% 42%

Oware 59% 65% 53% 39% 44% 34%

Vai Lung Thlan 35% 39% 31% 57% 60% 54%

Ohvalhu 46.5% 48% 45% 49% 53% 45%

Kalah 43.5% 56% 31% 48.5% 61% 36%

Table 5.49: HMM8 versus BMM1

HMM8 BMM1

Game Wins South North Wins South North

Awari 95.5% 98% 93% 4.5% 7% 2%

Oware 91% 94% 88% 8% 12% 4%

Vai Lung Thlan 100% 100% 100% 0% 0% 0%

Ohvalhu 63.5% 70% 57% 33% 41% 25%

Kalah 83.5% 88% 79% 15.5% 20% 11%

Table 5.50: HMM8 versus BMM4

HMM8 BMM4

Game Wins South North Wins South North

Awari 96% 96% 96% 3.5% 4% 3%

Oware 85.5% 86% 85% 12.5% 12% 13%

Vai Lung Thlan 93% 94% 92% 4% 5% 3%

Ohvalhu 53.5% 67% 40% 45.5% 58% 33%

Kalah 64.5% 69% 60% 31% 36% 26%
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Table 5.51: HMM8 versus BMM8

HMM8 BMM8

Game Wins South North Wins South North

Awari 87% 87% 87% 11% 12% 10%

Oware 80.5% 82% 79% 18% 19% 17%

Vai Lung Thlan 86% 87% 85% 10% 10% 10%

Ohvalhu 52.5% 62% 43% 47% 56% 38%

Kalah 61% 66% 56% 34% 39% 29%

Table 5.52: HMM1 versus ABMM1

HMM1 ABMM1

Game Wins South North Wins South North

Awari 87.5% 86% 89% 10.5% 8% 13%

Oware 81.5% 83% 80% 18% 19% 17%

Vai Lung Thlan 96.5% 98% 95% 1.5% 3% 0%

Ohvalhu 66% 70% 62% 30.5% 33% 28%

Kalah 73% 78% 68% 20% 22% 18%

Table 5.53: HMM1 versus ABMM4

HMM1 ABMM4

Game Wins South North Wins South North

Awari 58.5% 63% 54% 38.5% 44% 33%

Oware 53% 53% 53% 43.5% 43% 44%

Vai Lung Thlan 35.5% 38% 33% 55.5% 57% 54%

Ohvalhu 49% 54% 44% 49.5% 56% 43%

Kalah 44% 54% 34% 51% 63% 39%

Table 5.54: HMM1 versus ABMM8

HMM1 ABMM8

Game Wins South North Wins South North

Awari 33% 34% 32% 61.5% 65% 58%

Oware 39% 40% 38% 57.5% 57% 58%

Vai Lung Thlan 15.5% 13% 18% 82.5% 80% 85%

Ohvalhu 45% 60% 30% 52.5% 68% 37%

Kalah 22.5% 33% 12% 71% 82% 60%
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Table 5.55: HMM4 versus ABMM1

HMM4 ABMM1

Game Wins South North Wins South North

Awari 91.5% 90% 93% 6.5% 7% 6%

Oware 87% 85% 89% 12% 11% 13%

Vai Lung Thlan 100% 100% 100% 0% 0% 0%

Ohvalhu 69% 80% 58% 28% 38% 18%

Kalah 79.5% 85% 74% 17.5% 20% 15%

Table 5.56: HMM4 versus ABMM4

HMM4 ABMM4

Game Wins South North Wins South North

Awari 88% 85% 91% 10.5% 6% 15%

Oware 79% 84% 74% 19.5% 23% 16%

Vai Lung Thlan 68% 67% 69% 25.5% 24% 27%

Ohvalhu 56.5% 61% 52% 42% 46% 38%

Kalah 59.5% 71% 48% 33% 44% 22%

Table 5.57: HMM4 versus ABMM8

HMM4 ABMM8

Game Wins South North Wins South North

Awari 54.5% 57% 52% 42.5% 47% 38%

Oware 57% 67% 47% 39% 50% 28%

Vai Lung Thlan 34% 34% 34% 59% 56% 62%

Ohvalhu 45% 55% 35% 53% 63% 43%

Kalah 46.5% 59% 34% 49% 62% 36%

Table 5.58: HMM8 versus ABMM1

HMM8 ABMM1

Game Wins South North Wins South North

Awari 96.5% 99% 94% 3.5% 6% 1%

Oware 87% 92% 82% 9.5% 13% 6%

Vai Lung Thlan 100% 100% 100% 0% 0% 0%

Ohvalhu 70.5% 76% 65% 28.5% 33% 24%

Kalah 82.5% 87% 78% 15.5% 20% 11%
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Table 5.59: HMM8 versus ABMM4

HMM8 ABMM4

Game Wins South North Wins South North

Awari 92.5% 94% 91% 6.5% 8% 5%

Oware 86% 88% 84% 12.5% 14% 11%

Vai Lung Thlan 97.5% 97% 98% 1% 1% 1%

Ohvalhu 55% 61% 49% 43.5% 50% 37%

Kalah 64.5% 71% 58% 28% 33% 23%

Table 5.60: HMM8 versus ABMM8

HMM8 ABMM8

Game Wins South North Wins South North

Awari 83% 86% 80% 14.5% 17% 12%

Oware 78% 78% 78% 21% 22% 20%

Vai Lung Thlan 81% 81% 81% 11.5% 10% 13%

Ohvalhu 53% 61% 45% 44% 52% 36%

Kalah 49.5% 54% 45% 44% 47% 41%

Table 5.61: HMM1 versus HMM1

Game South North Ties

Awari 54.5% 39.5% 6%

Oware 52.5% 46.5% 1%

Vai Lung Thlan 46% 47% 7%

Ohvalhu 62% 36.5% 1.5%

Kalah 45.5% 50% 4.5%

Table 5.62: HMM1 versus HMM4

HMM1 HMM4

Game Wins South North Wins South North

Awari 24% 22% 26% 75% 73% 77%

Oware 27% 34% 20% 70% 78% 62%

Vai Lung Thlan 6.5% 6% 7% 90.5% 90% 91%

Ohvalhu 48.5% 58% 39% 48% 56% 40%

Kalah 31.5% 45% 18% 63.5% 74% 53%
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Table 5.63: HMM1 versus HMM8

HMM1 HMM8

Game Wins South North Wins South North

Awari 8% 10% 6% 90% 94% 86%

Oware 20.5% 22% 19% 78% 80% 76%

Vai Lung Thlan 1% 0% 2% 98% 97% 99%

Ohvalhu 37% 44% 30% 60.5% 66% 55%

Kalah 25.5% 33% 18% 71% 79% 63%

Table 5.64: HMM4 versus HMM4

Game South North Ties

Awari 54% 41.5% 4.5%

Oware 52% 45% 3%

Vai Lung Thlan 49.5% 41% 9.5%

Ohvalhu 55% 43.5% 1.5%

Kalah 60% 34% 6%

Table 5.65: HMM4 versus HMM8

HMM4 HMM8

Game Wins South North Wins South North

Awari 20% 25% 15% 75.5% 77% 74%

Oware 36% 40% 32% 60.5% 65% 56%

Vai Lung Thlan 9.5% 11% 8% 81% 80% 82%

Ohvalhu 45.5% 51% 40% 52% 59% 45%

Kalah 36% 37% 35% 59% 59% 59%

Table 5.66: HMM8 versus HMM8

Game South North Ties

Awari 50% 44.5% 5.5%

Oware 45.5% 47.5% 7%

Vai Lung Thlan 41% 43.5% 15.5%

Ohvalhu 60.5% 39% 0.5%

Kalah 50% 43% 7%
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5.6 Monte Carlo Tree Search

In the next experiment, we evaluated the performance of the Monte Carlo

tree search (MCTS) we developed (see Section 4.5). We decided a set of

values of numbers of iterations as computational budget: 10, 100, 250, 500,

1000, 2000, 4000 (denoted as MCTS10, . . . , MCTS4000). This wide array

of values allows to test how the performances of MCTS change when the

number of iterations is modified. The simulation strategy used is random

sampling. Then, we played 200 games for each of the mancala games we

developed, comparing MCTS against the previous algorithms and against

itself. In 100 of these games MCTS was the first one to play (south player)

and in the remaining 100 it was second (north player).

When MCTS is facing the random player, we note that even with such a

small number of iterations MCTS10 is able to obtain a winrate higher than

79% in every game, (Table 5.68). MCTS100 is close to reach 100% winrate

versus the random player in every game (Table 5.69). In our test MCTS500

always won against the random player.

When MCTS is facing the greedy algorithm (from Table 5.71 to Ta-

ble 5.75), we note that MCTS10 obtains poor results, except in Vai Lung

Thlan where it almost has an even winrate against greedy, 46% and 48.5%

respectively. This result confirms that greedy has poor performance in Vai

Lung Thlan. With higher number of iterations, MCTS increases its winrates

in all the games: MCTS100 has higher winrates than the greedy strategy in

all the games, except for Ohvalhu. The winrates of MCTS in Ohvalhu and

Kalah remain lower, because greedy is able to exploit the extra turn feature

of these games.

The plots from Figure 5.1 to Figure 5.10 show the results of MCTS

playing against BMM and ABMM. We note that MCTS1000 is close to 100%

winrate against BMM1 and ABMM1 and gets closer to winning always with

an higher number of iterations. MCTS obtains lower results against BMM

and ABMM when they have higher depths. When playing Awari, Oware and

Vai Lung Thlan against BMM4 and ABMM4, MCTS wins a considerably

high % of games, provided that it uses a number of iterations high enough.

For example, MCTS4000 has a winrate over 80% in these games. In the game

Kalah, MCTS4000 performs similarly to BMM4 and ABMM4 when MCTS

plays against them. We will talk in detail of Ohvalhu in the next subsection.

When MCTS plays against BMM8 and ABMM8, MCTS performances are

lower: in Oware, MCTS has a winrate higher than 50%; in Awari, Vai Lung

Thlan and Kalah MCTS has a lower winrate, between 20% and 50%, in

particular in the game Kalah it is a little over 20%.
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The plots from Figure 5.11 to Figure 5.15 show the results of MCTS play-

ing against HMM. We note that MCTS performs much worse against HMM

in comparison to what it did against BMM and ABMM. When MCTS4000 is

playing against HMM1, even with a high number of iterations, MCTS4000

obtains only a winrate ≈ 80% in Awari, Oware, and Kalah; in Vai Lung

Thlan the winrate of MCTS4000 is closer to 100%. When MCTS is play-

ing against HMM4 and HMM8, its performances are considerably worse:

against HMM8, MCTS4000 obtains a 23.5% winrate in Awari and 31% win-

rate in Oware. MCTS4000 is better in the game Vai Lung Thlan, where

it obtains 52% winrtate against HMM8, but it is much worse in the game

Kalah, where it obtains only 12.5% winrate against HMM8. We will talk in

detail of Ohvalhu in the next subsection. The unsatisfying results of MCTS

against HMM attest the robustness of HMM, that is the best algorithm we

designed. Also, HMM uses less computational time than MCTS. For ex-

ample, in the game Vai Lung Thlan, where MCTS4000 performs slightly

better than HMM8, it should be noted that the average time HMM takes

for a game is 60.6s, while MCTS takes 120.3s. In other games the difference

in time spent is higher: for example, when MCTS4000 plays Awari against

HMM8, the average time HMM takes for a game is 21.7s, while MCTS takes

107.8s.

5.6.1 Ohvalhu

Ohvalhu requires specific considerations. When playing Ohvalhu against

minimax opponents, MCTS performs much worse than in the other four

mancala games (except when the search depth is 1, that is, when facing

BMM1, ABMM1 or HMM1). This is due to the peculiar rules of Ohvalhu

that grants player additional moves when the current sowing ends in an

occupied pit, thus, allowing long sequences of sowing. In fact, there exist

sequences of moves that allow the first player to win the game without giving

the chance to the second player to play even one move, abusing the extra

turn rule and the multi lap sowing. Thus, in Ohvalhu the first move can

have devastating effects and when an algorithm can find a sufficiently long

sequence of initial moves can basically win the game against any opponent.

The analysis of the played games show that, when BMM4, ABMM4, HMM4

play first, they are able to find sequences of moves that cause multiple sowing

thus winning the game in their very first turn by collecting a large number

of points. In contrast, MCTS4000 manages only to find a small number of

consecutive moves. The ability to chain a lot of consecutive moves is really

useful not only during the first turn of play, but also during all the stages of
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Iterations Wins South North Ties

MCTS 32000 36.5% 36.5% 0% 11%

MCTS 64000 45% 45% 0% 1.5%

Table 5.67: MCTS versus HMM8 using 32000 and 64000 iterations.

the game: MCTS fails at this, while the minimax strategies we developed

are especially strong because they are guided by an heuristic function that

seems to push them to make these consecutive moves. In particular BMM,

ABMM, HMM with depth equal to 4 or higher are playing as perfect players

when they are first.

Table 5.67 reports the winning rate of MCTS using 32000 and 64000

iterations playing against HMM8. As can be noted as the number of iter-

ations increases, MCTS can find more effective first moves and thus wins

several more games against our best minimax algorithm. Note however that

all the victories are as first player (i.e. South player) since in Ohvalhu when

facing strong players (like HMM8) the match must be won with the very

first move.

Table 5.68: MCTS10 versus random

MCTS10 random

Game Wins South North Wins South North

Awari 80.5% 87% 74% 16% 22% 10%

Oware 82.5% 77% 88% 16.5% 12% 21%

Vai Lung Thlan 84% 83% 85% 13% 14% 12%

Ohvalhu 79.5% 82% 77% 18% 22% 14%

Kalah 84% 83% 85% 11.5% 10% 13%

Table 5.69: MCTS100 versus random

MCTS100 random

Game Wins South North Wins South North

Awari 99.5% 99% 100% 0% 0% 0%

Oware 100% 100% 100% 0% 0% 0%

Vai Lung Thlan 98.5% 99% 98% 1% 1% 1%

Ohvalhu 100% 100% 100% 0% 0% 0%

Kalah 99.5% 100% 99% 0.5% 1% 0%
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Table 5.70: MCTS250 versus random

MCTS250 random

Game Wins South North Wins South North

Awari 100% 100% 100% 0% 0% 0%

Oware 100% 100% 100% 0% 0% 0%

Vai Lung Thlan 99% 98% 100% 0.5% 0% 1%

Ohvalhu 99% 100% 98% 1% 2% 0%

Kalah 100% 100% 100% 0% 0% 0%

Table 5.71: MCTS10 versus greedy

MCTS10 greedy

Game Wins South North Wins South North

Awari 16.5% 20% 13% 82.5% 85% 80%

Oware 32.5% 32% 33% 62.5% 59% 66%

Vai Lung Thlan 46% 45% 47% 48.5% 46% 51%

Ohvalhu 0.5% 1% 0% 99.5% 100% 99%

Kalah 18.5% 21% 16% 81% 84% 78%

Table 5.72: MCTS100 versus greedy

MCTS100 greedy

Game Wins South North Wins South North

Awari 71% 71% 71% 23.5% 22% 25%

Oware 76.5% 75% 78% 19.5% 21% 18%

Vai Lung Thlan 88.5% 90% 87% 11% 13% 9%

Ohvalhu 10% 4% 16% 87.5% 81% 94%

Kalah 56.5% 65% 48% 37% 45% 29%

Table 5.73: MCTS250 versus greedy

MCTS250 greedy

Game Wins South North Wins South North

Awari 85.5% 85% 86% 11% 10% 12%

Oware 93.5% 95% 92% 3.5% 5% 2%

Vai Lung Thlan 95.5% 95% 96% 4% 4% 4%

Ohvalhu 30% 19% 41% 63.5% 48% 79%

Kalah 65.5% 72% 59% 26.5% 33% 20%

67



CHAPTER 5. EXPERIMENTS

Table 5.74: MCTS500 versus greedy

MCTS500 greedy

Game Wins South North Wins South North

Awari 90.5% 88% 93% 6.5% 6% 7%

Oware 97% 96% 98% 2% 2% 2%

Vai Lung Thlan 97.5% 97% 98% 2% 2% 2%

Ohvalhu 47.5% 39% 56% 42% 26% 58%

Kalah 81% 90% 72% 14% 21% 7%

Table 5.75: MCTS1000 versus greedy

MCTS1000 greedy

Game Wins South North Wins South North

Awari 97.5% 98% 97% 1% 0% 2%

Oware 99% 99% 99% 0.5% 1% 0%

Vai Lung Thlan 99% 100% 98% 1% 2% 0%

Ohvalhu 73.5% 74% 73% 18% 14% 22%

Kalah 87.5% 96% 79% 5.5% 10% 1%
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Figure 5.1

Figure 5.2
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Figure 5.3

Figure 5.4
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Figure 5.5

Figure 5.6
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Figure 5.7

Figure 5.8
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Figure 5.9

Figure 5.10
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Figure 5.11

Figure 5.12
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Figure 5.13

Figure 5.14

75



CHAPTER 5. EXPERIMENTS

Figure 5.15

Figure 5.16
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Figure 5.17

Figure 5.18

77



CHAPTER 5. EXPERIMENTS

Figure 5.19
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Figure 5.20

5.6.2 ε-Greedy Strategy

MCTS requires the estimation of the state’s value of leaf nodes accordingly

and at each node it applies a simulation strategy to play a game from a

given state until the end so as to obtain an evaluation of the state value.

In the previous experiments, we used the standard simulation strategy that

applies a basic random strategy to reach the end state and it is equiva-

lent to playing against a random opponent. Previous studies [10] suggested

that using heuristics in the simulation step can increase the performance

of the algorithm. Therefore in the final set of experiments we compared

the performance of MCTS using ad ε-greedy strategy and different number

of iterations (namely, 10, 100, 250, 500, and 1000) against the best per-

forming algorithm we developed, the advanced heuristic minimax (HMM),

with a search depth of 1, 4, and 8. The ε-greedy applies with probability ε

the usual random strategy and with probability 1 − ε it applies the greedy

strategy. Thus, when ε = 0, ε-greedy is equivalent to the greedy strategy

employed in the previous experiments, when ε = 1, ε-greedy is equivalent

to the plain random strategy.

Figure 5.21 shows the winning rate of HMM when playing Awari against

of MCTS using an ε-greedy strategy. As the value of ε increases, and the

simulation strategy becomes more and more random, HMM winning rate
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linearly increases. As already shown in the previous experiments, the higher

the number of iterations used by MCTS the lower the win rate of HMM.

Overall HMM confirms to be a very strong player. Even with a search

depth of 1 (Figure 5.21a) MCTS needs at least 500 iterations and more

than 70% of greedy simulated actions to win slightly more than half of the

matches. When HMM uses a search depth of 4 (Figure 5.21) MCTS with

1000 iteration needs at least 50% of greedy simulated actions to win slightly

more than half of the matches.

The results for Oware and Kalah (Figure 5.22 and Figure 5.24) do not

show the same trend in fact, as the value of ε increase, and the simula-

tion strategy becomes more and more random, HMM winning rate increases

only for a depth of 1 (Figure 5.22a and Figure 5.24a) whereas it remains

basically stable for a search depth of 4 and 8. Again overall, HMM proves

to be a very strong player. MCTS can only win more 50% of the games

when HMM search depth is 1 and MCTS employs at least 250 iterations

using more than 50% of greedy simulated actions. The same plots for Vai

Lung Thlan (Figure 5.23) confirms HMM as a very strong player winning

more than 80% of the matches when a depth search of 4 and 8 are used.

Interestingly the plot for HMM1 (Figure 5.23a) suggests that in Vai Lung

Thlan the ε-greedy simulation strategy might perform worse than plain ran-

dom simulation strategy. In fact, as the percentage of random simulated

actions increases the winning rate of HMM decreases. A similar behavior

is noticeable also for HMM4 and HMM8: when the probability of perform-

ing a random simulated action increases HMM winning rate decreases; with

a depth of 4, HMM winning rate goes slightly below 50% whereas with a

depth of 8, although decreasing for values of ε between 30% and 80%, HMM

maintains a winning rate way above 50%.

80



5.6. MONTE CARLO TREE SEARCH

(a)

(b)

(c)

Figure 5.21: Winning rates of the advanced heuristic minimax (HMM) with depth of

(a) 1, (b) 2, and (c) 4 when playing Awari against MCTS using the ε-greedy strategy

with different number of iterations (10, 100, 250, 500, and 1000) and different values

of ε.
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(a)

(b)

(c)

Figure 5.22: Winning rates of the advanced heuristic minimax (HMM) with depth of

(a) 1, (b) 2, and (c) 4 when playing Oware against MCTS using the ε-greedy strategy

with different number of iterations (10, 100, 250, 500, and 1000) and different values

of ε.
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(a)

(b)

(c)

Figure 5.23: Winning rates of the advanced heuristic minimax (HMM) with depth of

(a) 1, (b) 2, and (c) 4 when playing Vai Lung Thlan against MCTS using the ε-greedy

strategy with different number of iterations (10, 100, 250, 500, and 1000) and different

values of ε.
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(a)

(b)

(c)

Figure 5.24: Winning rates of the advanced heuristic minimax (HMM) with depth of

(a) 1, (b) 2, and (c) 4 when playing Kalah against MCTS using the ε-greedy strategy

with different number of iterations (10, 100, 250, 500, and 1000) and different values

of ε.
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5.7 Summary

In this chapter, we discussed the experiments we performed to evaluate

the playing strength of the Artificial Intelligence algorithms we designed.

The first experiment showed that, if playing at random, the south player is

favoured in Vai Lung Thlan, Ohvalhu and Kalah, while in Awari and Oware

the north player is the one favoured. In the second experiment, we tested

the greedy algorithm, showing its performance. In the third experiment, we

tested the basic minimax algorithm that is much stronger than the greedy

strategy when using high enough search depths. The fourth experiment

showed that the alpha-beta pruning minimax algorithm has performances

comparable to basic minimax, yet it is less computational expensive, espe-

cially with high search depths. In the fifth experiment, we tested the ad-

vanced heuristic minimax algorithm that turned out to be the best, having

robust performance especially in Awari and Oware. In the sixth experi-

ment, we tested the Monte Carlo tree search algorithm: at first we used

the random simulation strategy, then we used the ε-greedy strategy. Monte

Carlo tree search obtains good results, however it requires a high number

of iterations to perform on par with the minimax algorithms, thus resulting

in a high computational time. Overall, heuristic minimax proved to be the

strongest algorithm developed.
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Conclusions

We designed and evaluated artificial intelligence algorithms for five mancala

games, Awari, Oware, Vai Lung Thlan, Ohvalhu and Kalah. We developed

five different algorithms. The greedy algorithm is inspired by players guides

to Mancala games and applies well-known strategies to capture the most

counters in one move; when the move considered allows for an extra turn,

the greedy algorithm analyzes in the same way the candidate moves of its

next turn. The basic minimax algorithm (BMM) uses the well-known Min-

imax algorithm to find the best move, guided by an heuristic function that

computes the difference between the counters in the player’s store and the

ones in the opponent’s store. The alpha-beta pruning minimax algorithm

(ABMM) uses Minimax with the alpha-beta pruning technique to reduce

computational time and memory consumption. The advanced heuristic min-

imax strategy (HMM) uses Minimax with a more refined heuristic function,

based on the work of Divilly et al. [11]. The Monte Carlo tree search strat-

egy (MCTS) uses the Upper Confidence Bounds for Trees (UCT) and one of

the simulation strategies we implemented: (i) the random strategy; (ii) the

greedy strategy presented previously; (iii) the ε-greedy strategy that plays

at random with probability ε, otherwise it plays the move chosen by the

greedy strategy.

We evaluated all the algorithms through a series of experiments. Our

results show that the greedy strategy is computational inexpensive and ob-

tains good results in the games Ohvalhu and Kalah. BMM with high search

depths performs better but it is, as expected, computational demanding.

ABMM performs similarly to BMM and it saves a lot of computational

time, especially with higher search depths. HMM is the best algorithm we

developed, because it is guided by a robust heuristic function, that works

especially well in Awari and Oware. MCTS with a random simulation strat-
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egy plays acceptably considering it does not have any knowledge about the

game nor it employs any state evaluation function. However MCTS requires

a high number of iterations to obtain results on par with the Minimax al-

gorithms, resulting in a high computational time. Finally, we tested MCTS

with the ε-greedy simulation strategy. The results show that the best ε

value for Awari is 0 (that is a full greedy simulation strategy), while data

for other games were not decisive enough to indicate a definitive value of ε.

Still, MCTS with a ε-Greedy simulation strategy performs worse than than

HMM, which confirms to be the stronger player we developed. As result of

this thesis, we developed an application, using the game engine Unity, to

play all the five games against all the five artificial intelligence strategies we

developed.
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The Applications

In this appendix, we show the main features of the two versions of the

application we developed for this thesis: one to conduct the experiments,

and one to let the users play it.

A.1 The Experiments Framework

In order to conduct the experiments we needed for this work, we developed

a console application written in C# with the Microsoft Integrated Develop-

ment Environment (IDE) Visual Studio 2015. We designed the framework in

such a way that it is easy to use it also with other games. For this purpose,

we defined two interfaces:

• IGameState: it represents the state of a game and includes methods

to get the available moves, apply a move, check if it is a terminal state,

get the scores fo the game, know the last player to move, clone the

state, and get a simulation move.

• IGameMove: it represents a move of the game. It does not define

any particular method because the moves of different games can be

very different. We need only to test if a move is equal to another one,

but this is already provided by the Object interface by overriding the

Equals method.

Then, we implemented these interfaces with the classes MancalaGameState

and MancalaMove. We implemented five subclasses of MancalaGameState,

one for each mancala games we developed. The parent class MancalaGameS-

tate contains general mancala rules such as how a move work, while the sub-

classes deal with game specific rules such as captures and when the game

is over. The subclasses also contain boolean flags that tell the parent class
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the details of how a move works in that game. For example, the boolean

extraTurn is set false in Awari because it does not allow extra turns and it

is true in Kalah, since players can gain additional turn in this game.

After that, we implemented the different algorithms presented. For ex-

ample, Source Code A.1 shows the core of advanced heuristic minimax and

Source Code A.2 shows the implementation of MCTS.

Source Code A.1: advanced heuristic minimax algorithm implementation

1 float Iterate (Node node, int depth, float alpha, float beta, int callingPlayer ) {
2 // Leaf node

3 if (depth == 0 || node.IsTerminal()) {
4 return node.GetTotalScore(callingPlayer);

5 }
6 // player playing: maximize

7 if (node.mancalaGameState.currentPlayer == callingPlayer) {
8 float v = −1000;
9 foreach (Node child in node.Children()) {

10 v = Math.Max(v, Iterate(child, depth − 1, alpha, beta, callingPlayer )) ;

11 alpha = Math.Max(alpha, v);

12

13 if (alpha >= beta) {
14 break;

15 }
16 }
17 return v;

18 } else {
19 // opponent playing: minimize

20 float v = 1000;

21 foreach (Node child in node.Children()) {
22 v = Math.Min(v, Iterate(child, depth − 1, alpha, beta, callingPlayer )) ;

23 beta = Math.Min(beta, v);

24 if (beta <= alpha) {
25 break;

26 }
27 }
28 return v;

29 }
30 }
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Source Code A.2: Monte Carlo Tree Search algorithm implementation

1 IGameMove Search(IGameState rootState, int iterations) {
2 ITreeNode rootNode = treeCreator.GenRootNode(rootState);

3 for (int i = 0; i < iterations ; i++) {
4 ITreeNode node = rootNode;

5 IGameState state = rootState.Clone();

6

7 // Select

8 while (!node.HasMovesToTry() && node.HasChildren()) {
9 node = node.SelectChild();

10 state .DoMove(node.Move);

11 }
12

13 // Expand

14 if (node.HasMovesToTry()) {
15 IGameMove move = node.SelectUntriedMove();

16 state .DoMove(move);

17 node = node.AddChild(move, state);

18 }
19

20 // Rollout

21 while (!state .IsTerminal()) {
22 state .DoMove(state.GetSimulationMove());

23 }
24

25 // Backpropagate

26 while (node != null) {
27 node.Update(state.GetResult(node.PlayerWhoJustMoved));

28 node = node.Parent;

29 }
30 }
31

32 return rootNode.GetBestMove();

33 }

A.2 The User Application

In order to let the user play with our artificial intelligence, we developed

a user application with the cross-platform game creation system Unity. It

includes a game engine and the open-source IDE MonoDevelop. The game

engine’s scripting is built on Mono, the open-source implementation of .NET

Framework. It provides a number of libraries written in C# and Javascript

in order to manage graphics, physics, sound, network, and inputs of a game.

One of the greatest advantages of Unity is that it allows the deployment of

the same code on several platforms. In fact, it is able to build an application

for Windows, Mac OS X, Linux, iOS, Android, BlackBerry, Windows Phone,

web browsers, and game consoles. It allows also to develop a 2D game by

means of dedicated libraries and components. For the development of our

game we used Unity 5.5 with the C# programming language, so that we can
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Figure A.1: The opening screen of the application.

use the same code we created for the console application. Beatrice Danesi,

student of fashion design from Politecnico di Milano, helped us with the

graphical aspect of the application.

The application provides a menu (Figure A.2), in which the user can

choose the game, the players and, in the case of an AI player, the level

of difficulty. The menu provides also a small description of the rules of the

game currently selected. When the user presses the ‘Start’ button, the board

of the game is presented and the game begins (Figure A.3). To choose a

move, the player must click the pit she wants to move from. In the case the

player cannot move from that pit, a message ‘Invalid Move’ appears. When

the AI is thinking its move, a rotating gear is shown, indicating that the AI

is considering its options. When the game is over, a message declares the

winner (Figure A.4). The user can press the ‘Esc’ button to open a small

menu that gives the options to go back to the main menu or to restart the

game with the same settings.
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Figure A.2: The main menu.

Figure A.3: The game starts.
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Figure A.4: The end of a game.
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