
A Statistical Framework for the
Analysis of Genomic Data

Mustafa Anıl Tuncel

Supervisor: Prof. Stefano Ceri

Advisor: Dr. Arif Çanakoğlu

Department of Electronics, Informatics and Bioengineering
Polytechnic University of Milan

This dissertation is submitted for the degree of
Master of Science

September 2017

Yakarsa dünyayı garipler yakar.

Müslüm Gürses

Acknowledgements

Every person you encounter, whom you
interact with, is there to teach you something.
Sometimes it may be years before you realize
what each had to show you.

Raymond E. Feist

First of all, I would like to thank Prof. Stefano Ceri for giving me this opportunity to work
on the Genomic Computing project and for his supervision. I could not be more grateful
for the guidance and support of Dr. Arif Çanakoğlu throughout the year. I thank Michele
Leone, Luca Nanni and Dr. Safa Kurşun for their patience in explaining various interesting
concepts to me. Many thanks to my professors at the Atılım University for helping me build a
profound knowledge of computer science and software engineering. I often consider vision a
more valuable asset than the knowledge and I thank Kubilay Küçük on this wise. Thank you
Yashar Deldjoo for introducing me to the recommender systems community. Special thanks
to Hulya Francis for supporting me in my academic career. I thank the Alessandro Volta
Foundation for awarding me with the gold scholarship during my master’s degree. Lastly,
I thank my family for giving me the freedom to pursue my interests. This thesis is written
within the context of the Data-Driven Genomic Computing Project, which is funded by the
European Research Council.

Abstract

The recent advancements in the DNA sequencing technologies (next-generation sequencing)
decreased the time of sequencing a human genome from weeks to hours and the cost of
sequencing a human genome from million dollars to a thousand dollars. Due to this drop
in costs, a large amount of genomic data are produced. This amount of available genomic
data enabled the establishment of large scale sequencing data projects and the application
of the big data analysis techniques in the genomics domain. In 2013, the GenoMetric
Query Language (GMQL) is developed to operate on the heterogeneous genomic datasets.
This thesis introduces a machine learning and data analysis module of GMQL tailored for
analyzing the next-generation sequencing data.

The thesis also addresses two biological problems by using the module developed. The
first problem is to predict the cancer type in a multi-class cancer classification setting using
the Rna-seq data acquired from the Cancer Genome Atlas (TCGA) database. The 14 different
types of cancer are selected according to the leading estimated death rates by cancer type in
2017 statistic provided by the American Cancer Society. Various classification techniques
are applied to the problem and the linear models such as SVM with linear kernel and logistic
regression with l2 regularization term performed the best in predicting the cancer type.
Logistic regression with l2 regularization, in particular, yielded a 10-fold cross validated
accuracy of 93%. The second biological problem directed in this thesis is the association
of mutations occurring in enhancers to specific human traits/diseases. The mutations are
retrieved using a genome-wide association studies dataset and the enhancers are acquired
from the ENCODE dataset. By using GMQL we identified the most frequent mutations that
are associated with the diseases. Additionally, the spectral biclustering algorithm revealed a
subset of mutations showing similar behavior on the subset of traits. The results are reported
as an appendix for further biological interpretations.

Sommario

Il recente sviluppo delle tecnologie di sequenziamento del DNA (next generation sequencing)
ha ridotto il tempo necessario a sequenziare un genoma umano da diverse settimane a qualche
ora, così come il costo, che è passato da milioni di dollari a circa un migliaio, consentendo
così la produzione di enormi quantità di dati genomici. Ciò ha permesso la creazione di
progetti di sequenziamento dati su larga scala e l’applicazione di tecniche di analisi dei big
data nel campo genomico. Nel 2013, è stato sviluppato il linguaggio di interrogazione GMQL
(GenoMetric Query Language) per operare su dataset genomici eterogenei. Questo lavoro di
tesi introduce un modulo di GMQL per l’apprendimento automatico e l’analisi dei dati allo
scopo di analizzare i dati generati dalle tecniche di sequenziamento di nuova generazione.

La tesi affronta inoltre due problemi biologici utilizzando tale modulo. Il primo è
quello di prevedere il tipo di cancro all’interno di una catalogazione tumorale multi-classe
utilizzando i dati di Rna-seq acquisiti dal database Cancer Genome Atlas (TCGA). I 14
diversi i tipi di cancro sono stati selezionati in base ai principali tassi di mortalità stimati
nel 2017, statistica fornita dalla American Cancer Society. Sono state applicate diverse
tecniche di classificazione, e le migliori nel predire la tipologia di cancro sono state i modelli
lineari SVM con kernel lineare e la regressione logistica con termine di regolarizzazione l2.
Quest’ultimo, in particolare, ha avuto un’accuratezza di previsione di 0,9352. Il secondo
problema biologico trattato in questo lavoro tesi è la correlazione tra le mutazioni negli
enhancer e specifiche caratteristiche / malattie umane. Le mutazioni sono state ottenute
tramite un dataset di studi associativi sull’intero genoma, mentre i dati sugli enhancers sono
stati estratti dal dataset di ENCODE. Utilizzando GMQL sono state individuate le mutazioni
più frequenti associate alle malattie. Inoltre, l’algoritmo spettrale di bioclustering ha rivelato
un sottoinsieme di mutazioni che mostra comportamenti simili nel sottoinsieme dei caratteri.
I risultati sono riportati nell’appendice per ulteriori interpretazioni biologiche.

Table of contents

List of figures xv

List of tables xvii

1 Introduction 1
1.1 DNA Sequencing Technologies . 1
1.2 Analysis of Genomic Data . 2
1.3 Our Contributions . 4

2 Summary of Data Extraction Method 7
2.1 Genomic Data Model (GDM) . 7
2.2 GenoMetric Query Language (GMQL) . 9

2.2.1 Relational GMQL Operations . 9
2.2.2 Domain-specific GMQL Operations 10
2.2.3 Utility Operations . 12
2.2.4 Biological Example . 13
2.2.5 Web Interface . 13
2.2.6 Python Interface . 14

3 System Architecture for the Analysis of GenoMetric Space Data 17
3.1 Loading the Materialized Data into Memory 17
3.2 Region Data Representation . 18

3.2.1 Operations on the Region Data . 19
3.3 Compact Structure . 19
3.4 Support for Multi-Ref Mapped Data . 20
3.5 Text Analytics Using Metadata . 21

4 Machine Learning Techniques for the Tertiary Analysis of the RNA-Seq Data 25
4.1 Intrinsic Characteristics of RNA-Seq Data 26

xii | Table of contents

4.1.1 High-dimensionality . 26
4.1.2 Biases of the RNA-Seq Data . 27
4.1.3 Missing Values . 27

4.2 Gene Selection Methods . 29
4.2.1 Filter Methods . 30
4.2.2 Wrapper Methods . 32
4.2.3 Embedded Methods . 32

4.3 On the Classification of Gene Expression Data 33
4.3.1 Ensemble-based classification methods 33
4.3.2 KNN Classifier . 35
4.3.3 Logistic Regression . 36
4.3.4 Support Vector Machine . 38
4.3.5 Performance Assessment of Classifiers 40

4.4 Cluster Analysis of Gene Expression Data 42
4.4.1 Unsupervised Learning . 42
4.4.2 Types of Clustering Applications on Gene Expression Data 42
4.4.3 Clustering Algorithms . 45
4.4.4 Cluster Validation . 50

5 Human Cancer Classification using Rna-Seq Data 53
5.1 Background on Cancer Classification . 53
5.2 Methodology . 54

5.2.1 Preprocessing of TCGA Data . 56
5.2.2 Gene Selection . 57
5.2.3 Cancer Prediction . 57

5.3 Discussion and Conclusion . 61

6 Analysis of Mutations in Cell-Specific Enhancers 67
6.1 Background . 67
6.2 Datasets . 67
6.3 Methodology . 69
6.4 Discussion and Conclusion . 71

7 Conclusion 73

References 75

Appendix A Most Frequently Associated Traits to Mutations 83

Table of contents | xiii

Appendix B Similarity Measures 87

List of figures

1.1 The cost of genome sequencing over the last 15 years [1] 2
1.2 The number of sequenced human genomes over the years [2] 3
1.3 The genome analysis process . 4

2.1 An excerpt of region data . 8
2.2 An excerpt of metadata . 8
2.3 Example of map using one sample as reference and three samples as experi-

ment, using the Count aggregate function. 12
2.4 The web graphical user interface of GMQL 14
2.5 High-level representation of the GMQL system 15

3.1 Hierarchical indexed representation of region data 19
3.2 Cross section operation to filter the region data 19
3.3 Filtering using a boolean mask . 20
3.4 Compact representation . 20
3.5 Cloud of words representation . 23

4.1 TCGA Cancer Datasets with corresponding sample numbers 26
4.2 Bagging method . 34
4.3 Random forests . 35
4.4 The logistic function . 37
4.5 Linear hyperplanes separating the data . 38
4.6 Linearly non-separable data . 39
4.7 An illustration of gene expression matrix 43
4.8 Demonstration of biclustering . 44
4.9 The elbow method . 46
4.10 A sample dendrogram . 47
4.11 Common linkage methods . 48
4.12 An illustration of density based clustering 49

xvi | List of figures

4.13 An illustration of spectral biclustering . 50
4.14 Internal cluster validation metrics . 51

5.1 Estimated cancer cases and deaths of 2017 54
5.2 Pipeline of the experiment . 55
5.3 Comparison of sample correlation matrices 58
5.4 Confusion matrix for SVM linear kernel classifier 59
5.5 Confusion matrix for Logistic Regression with l1 penalization 64
5.6 Random forests with 200 estimators . 65

6.1 Expression level variations on different tissues 68
6.2 Illustration of an enhancer activating a gene [3] 69
6.3 Nomenclature for H3K4me3 . 69
6.4 Data analysis pipeline . 70
6.5 Biclustering the mutations and the traits together, rectangular shapes repre-

sent the similar frequencies of trait-mutation associations. 72

B.1 The similarity measures with advantages, disadvantages, complexities and
applications . 88

List of tables

3.1 Time comparison of the parsing methods 18

4.1 Kernel function of the SVM classifier . 39
4.2 Confusion matrix . 40

5.1 TCGA names and abbreviations of the chosen cancer types 57
5.2 The results of the SVM linear kernel classifier 60
5.3 The results of the Logistic Regression with l1 penalization classifier 61
5.4 The results of the random forest classifier with 200 estimators 62
5.5 Overall comparison of the classifiers . 63

A.1 Traits associated to the mutation on WERI-Rb-1 83
A.2 Traits associated to the mutation on GM12875 83
A.3 Traits associated to the mutation on fibroblast of lung 84
A.4 Traits associated to the mutation on GM12864 84
A.5 Traits associated to the mutation on LNCaP clone FGC 84
A.6 Traits associated to the mutation on MCF-7 84
A.7 Traits associated to the mutation on fibroblast of dermis 85
A.8 Traits associated to the mutation on BE2C 85

Chapter 1

Introduction

1.1 DNA Sequencing Technologies

The DNA Sequencing procedure attempts to determine the exact arrangement of the nu-
cleotides (adenine, guanine, cytosine and thymine) inside a DNA molecule. A wide range of
different sciences including molecular biology, genetics, forensic studies and biotechnology
are benefiting the DNA sequencing technologies [4].

The advancement of the DNA sequencing technologies over the last 15 years has lessened
the cost of sequencing a genome. The figure 1.1, depicts the cost of sequencing a genome
over the last 15 years. As seen, the figure illustrates Moore’s Law as well. Moore’s law
assumes that the number of transistors, in other words, the computation power, is going to be
doubled every two years [5]. Keeping up with Moore’s law is considered to be remarkably
successful in technological advancements. As the Figure 1.1 shows, the DNA sequencing
technologies had been keeping up with Moore’s law until 2007. In 2005, the Next Generation
Sequencing (NGS) technologies are introduced [6] and consequently, the DNA sequencing
technologies started to improve beyond Moore’s law. By the advent of the next-generation
sequencing, the cost of sequencing a genome is dropped to a mere thousand dollars from
millions of dollars.

2 | Introduction

Fig. 1.1 The cost of genome sequencing over the last 15 years [1]

1.2 Analysis of Genomic Data

As a result of the dramatic drop in the sequencing cost, the amount of sequenced genome
data is significantly increasing. Figure 1.2 represents the growth of the cumulative number of
human genomes throughout the years. This amount of available genomic data enabled the
establishment of large scale sequencing data projects including The Cancer Genome Atlas
(TCGA) [7], The Encyclopedia Of DNA Elements (ENCODE) [8] and the 1000 Genomes
Project Consortium [9]. Those projects continuously collect and store sequencing data. In
order to make an efficient use of the collected sequencing data, big data analysis techniques
are essential.

1.2 Analysis of Genomic Data | 3

Fig. 1.2 The number of sequenced human genomes over the years [2]

The analysis process is divided into three categories [10].

• Primary analysis converts the raw data into nucleotide sequences using the change in
the intensity of light.

• Secondary analysis maps the nucleotide sequences to a reference sequence in an effort
to determine the variants.

• Tertiary analysis, also known as the interpretation stage, consists of the analysis and
filtering of variants.

The tertiary analysis is the most important of all analyses since it is responsible for the
knowledge acquisition from the sequencing data.

In 2013, the GenData 2020 project is initiated to focus on the tertiary analysis of the
genomic data. The main outcomes of the project are so called GenoMetric Query Language
(GMQL) and Genomic Data Model (GDM). GMQL is a query language that is capable
of operating on the heterogeneous datasets produced by the next generation sequencing
experiments and GDM is the general data model that maps the genomic features and their
associated metadata. GMQL also provides interfaces for the programming languages that are

4 | Introduction

commonly adopted in data analysis: Python and R. Chapter 2 of the thesis describes GMQL
and GDM in detail.

Fig. 1.3 The genome analysis process

1.3 Our Contributions

The main contributions of this dissertation are threefold and expressed as follows:

1. The machine learning and data analysis module of the PyGMQL (Python interface
of GMQL) tailored for the processing of genomic data extracted using GMQL. The
module is named GenoMetric Space and it provides efficient data structures for both
parsing and in-memory processing of GDM data and metadata. Furthermore, the mod-
ule contains analysis, processing, dimensionality reduction, missing value imputation,
clustering, bi-clustering, prediction and validation methods that are intended for the
analysis of next generation sequencing data by taking the intrinsic characteristics of
the NGS data into consideration.

2. A study of the multi-class cancer classification problem. This study is considered as a
proof-of-concept of the GenoMetric Space module. This work addresses the cancer
prediction problem using data coming from TCGA cancer database. Furthermore, we

1.3 Our Contributions | 5

are solving a multi-class cancer prediction problem consisting of 14 different types
of cancer are selected according to the leading estimated death rates by cancer type
in 2017 statistic provided by the American Cancer Society. Several machine learning
algorithms are employed in the experiments and the results show that the linear models
are the best performing models.

3. An analysis of mutations in cell-specific enhancers. This study attempts to associate
the DNA variants (mutations) occurring in enhancers to the human diseases using
PyGMQL. The mutations data is retrieved through the Genome Wide Association
Study (GWAS) dataset. The enhancers are obtained using the ENCODE dataset.

The rest of the thesis is structured as follows: Chapter 2 summarizes the data extraction
method. Chapter 3 explains the data structures and the indexing techniques, while Chapter 4
describes the data analysis and machine learning methods and also provides suggestions on
their usages. Chapter 5 outlines the multi-class cancer prediction experiment in more detail.
Chapter 6 elaborates further on the analysis of mutations in cell-specific enhancers. Chapter
7, finally, concludes the thesis and discusses the future works.

Chapter 2

Summary of Data Extraction Method

2.1 Genomic Data Model (GDM)

GDM is a data model that acts as a general schema for genomic repositories. The GDM
datasets are literally collections of samples, where each sample consists of two parts, the
region data, which describe portions of the DNA, and the metadata, which describe the
sample specific properties[11]. Each GDM dataset is associated with a data schema in
which the first five attributes are fixed in order to represent the region coordinates and the
sample identifier. The fixed region attributes consist of the chromosome which the region
belongs to, left and right ends within the chromosome and the value denoting the DNA
strand that contains the region. 1 Besides the fixed region attributes there can be other
attributes associated with the DNA region. The metadata are represented with format-free
attribute-value pairs, storing the information about the sample. Figure 2.1 provides an excerpt
of GDM region data. As seen, the first five columns represent are the fixed region attributes
and the last column, in this case, is denoting the p-value of the region significance. Figure
2.2, instead represents the sample-specific metadata attributes. It is to be observed that the
first columns of both figure 2.1 and 2.2 are the sample id, which provides a mapping between
the region and the metadata of the same sample.

1DNA consists of two strands which are read in opposite directions by the biomolecular mechanism of the
cell.

8 | Summary of Data Extraction Method

Fig. 2.1 An excerpt of region data

Fig. 2.2 An excerpt of metadata

2.2 GenoMetric Query Language (GMQL) | 9

2.2 GenoMetric Query Language (GMQL)

The GenoMetric Query Language (GMQL) is a high-level query language designed for
large-scale genomic data management. The name is derived from its ability to deal with
genomic distances. GMQL is capable of supporting queries over thousands of heterogeneous
genomic datasets and it is adequate for efficient big data processing.

GMQL extends conventional algebraic operations with bioinformatics domain-specific
operations specifically designed for genomics; thus, it supports knowledge discovery across
thousands or even millions of samples, both for what concerns regions that satisfy bio-
logical conditions and their relationship to experimental, biological or clinical metadata
[12]. GMQL’s innate ability to manipulate metadata is highly valuable since many publicly
available experiment datasets (such as TCGA or ENCODE) provide the metadata alongside
with their processed data. GMQL operations form a closed algebra: results are expressed as
new datasets derived from their operands. Thus, operations typically have a region-based part
and a metadata part; the former one builds new regions, the latter one traces the provenance
of each resulting sample. A GMQL query (or program) is expressed as a sequence of GMQL
operations, each with the following structure:

<variable> = operation(<parameters>) <variables>

where each variable stands for a GDM dataset. Operators apply to one or more operand
variables and construct one result variable; parameters are specific for each operator. Most
GMQL operations can be seen as extensions of the relational algebra operations tailored to
the needs of genomics. These operations are called the relational operations. Aside from the
relational operations, GMQL supports domain-specific operations as well.

2.2.1 Relational GMQL Operations

• SELECT operator applies on metadata and selects the input samples that satisfy the
specified metadata predicates. The region data and the metadata of the resulting
samples are kept unaltered.

• ORDER operator orders samples, regions or both of them; the order is ascending as
default and can be turned to descending by an explicit indication. Sorted samples or
regions have a new attribute order, added to the metadata, regions or both of them; the
value of ORDER reflects the result of the sorting.

• PROJECT operator applies on regions and keeps the input region attributes expressed
in the result as parameters. It can also be used to build new region attributes as scalar

10 | Summary of Data Extraction Method

expressions of region attributes (e g., the length of a region as the difference between
its right and left ends). Metadata are kept unchanged.

• EXTEND operator generates new metadata attributes as a result of aggregate functions
applied to the region attributes. The supported aggregate functions are COUNT (with
no argument), BAG (applicable to attributes of any type) and SUM, AVG, MIN, MAX,

MEDIAN, STD (applicable to attributes of numeric types).

• GROUP operator is used for grouping both regions and metadata according to distinct
values of the grouping attributes. For what concerns metadata, each distinct value
of the grouping attributes is associated with an output sample, with a new identifier
explicitly created for that sample; samples having missing values for any of the
grouping attributes are discarded. The metadata of output samples, each corresponding
a to given group, are constructed as the union of metadata of all the samples contributing
to that group; consequently, metadata include the attributes storing the grouping values,
that are common to each sample in the group.

• MERGE operator merges all the samples of a dataset into a single sample, having all the
input regions as regions and the union of the sets of input attribute-value pairs of the
dataset samples as metadata.

• UNION operator applies to two datasets and builds their union, so that each sample of
each operand contributes exactly to one sample of the result; if datasets have different
schemas, the result schema is the union of the two sets of attributes of the operand
schemas, and in each resulting sample the values of the attributes missing in the original
operand of the sample are set to null. Metadata of each sample are kept unchanged.

• DIFFERENCE operator applies to two datasets and preserves the regions of the first
dataset which do not intersect with any region of the second dataset; only the metadata
of the first dataset are maintained.

2.2.2 Domain-specific GMQL Operations

We next focus on domain-specific operations, which are more specifically responding to
genomic management requirements: the unary operation COVER and the binary operations
MAP and JOIN.

• COVER operation is widely used in order to select regions which are present in a given
number of samples; this processing is typically used in the presence of overlapping

2.2 GenoMetric Query Language (GMQL) | 11

regions, or of replicate samples belonging to the same experiment. The grouping
option allows grouping samples with similar experimental conditions and produces a
single sample for each group. For what concerns variants:

– FLAT returns the union of all the regions which contribute to the COVER (more
precisely, it returns the contiguous region that starts from the first end and stops at
the last end of the regions which would contribute to each region of the COVER).

– SUMMIT returns only those portions of the result regions of the COVER where the
maximum number of regions intersect (more precisely, it returns regions that
start from a position where the number of intersecting regions is not increasing
afterwards and stops at a position where either the number of intersecting regions
decreases, or it violates the max accumulation index).

– HISTOGRAM returns the nonoverlapping regions contributing to the cover, each
with its accumulation index value, which is assigned to the AccIndex region
attribute.

• JOIN operation applies to two datasets, respectively called anchor (the first one) and
experiment (the second one), and acts in two phases (each of them can be missing).
In the first phase, pairs of samples which satisfy the joinby predicate (also called meta-
join predicate) are identified; in the second phase, regions that satisfy the genometric
predicate are selected. The meta-join predicate allows selecting sample pairs with
appropriate biological conditions (e.g., regarding the same cell line or antibody).

• MAP is a binary operation over two samples, respectively called reference and ex-
periment. The operation is performed by first merging the samples in the reference
operand, yielding to a single set of reference regions, and then by computing the
aggregates over the values of the experiment regions that intersect with each reference
region for each sample in the experiment operand. In other words, the experiment
regions are mapped to the reference regions.

A MAP operation produces a regular structure, called genometric space, built as a
matrix, where each experiment sample is associated with a column, each reference
the region with a row and the matrix entries are typically scalars; such space can
be inspected using heat maps, where rows and/or columns can be clustered to show
patterns, or processed and evaluated through any matrix-based analytical process. In
general, a MAP operation allows a quantitative reading of experiments with respect
to reference regions; when the biological function of the reference regions is not

12 | Summary of Data Extraction Method

Fig. 2.3 Example of map using one sample as reference and three samples as experiment,
using the Count aggregate function.

known, the MAP helps in extracting the most interesting reference regions out of many
candidates.

Fig. 2.3 shows the effect of this MAP operation on a small portion of the genome; the
input consists of one reference sample with 3 regions and three mutation experiment
samples, the output consists of three samples, each with the same regions as the
reference sample, whose features corresponds to the number of mutations which
intersect with those regions. The result can be interpreted as a (3×3) genome space.

2.2.3 Utility Operations

• MATERIALIZE operation saves the content of a dataset into the file system, and registers
the saved dataset in the system to make it seamlessly usable in other GMQL queries.
All datasets defined in a GMQL query are, temporary by default; to see and preserve
the content of any dataset generated during a GMQL query, the dataset must be
materialized. Any dataset can be materialized, however, the operation is time expensive.
Therefore to achieve the best performance it is suggested to materialize the relevant
data only [11, 13].

2.2 GenoMetric Query Language (GMQL) | 13

2.2.4 Biological Example

This example uses the MAP operation to count the peak regions in each ENCODE ChIP-seq
sample that intersect with a gene promoter (i.e., proximal regulatory region); then, in each
sample it projects over (i.e., filters) the promoters with at least one intersecting peak, and
counts these promoters. Finally, it extracts the top 3 samples with the highest number of such
promoters.

HM_TF = SELECT(dataType == 'ChipSeq') ENCODE;

PROM = SELECT(annotation == 'promoter') ANN;

PROM1 = MAP(peak_count AS COUNT) PROM HM_TF;

PROM2 = PROJECT(peak_count >= 1) PROM1;

PROM3 = AGGREGATE(prom_count AS COUNT) PROM2;

RES = ORDER(DESC prom_count; TOP 3) PROM3;

Further details about GMQL basic operators, GMQL syntax and relevant examples of
single statements and a notable combination of them are available at GMQL manual 2 and
GMQL user tutorial 3.

2.2.5 Web Interface

Web interfaces of GMQL system are designed and implemented by GeCo group in order
to make the GMQL publicly available and easy to use by biologists and bioinformaticians.
Two main services have been developed: a web service REST API and a web interface. Both
of them are serving the same functionalities of browsing the datasets of genomic features
and biological/clinical metadata that we collected in our system repository from ENCODE
and TCGA, building GMQL queries upon them, and efficiently running such queries on
thousands of samples in several heterogeneous datasets. Additionally, by using the user
management system, private datasets can be uploaded and used in the same way as the ones
available in the GMQL system. GMQL REST API is planned to be used by the external
systems such as Galaxy [14], which is a scientific workflow and data integration system
mainly used in the bioinformatics field, or any languages that can communicate to the REST
services over HTTP4. Figure 2.4 illustrates the web user interface of GMQL.

2GMQL Manual: http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQL/doc/
GMQL_V2_manual.pdf

3GMQL User Tutorial: http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQL/
doc/GMQLUserTutorial.pdf

4GMQL REST Services: http://www.bioinformatics.deib.polimi.it/GMQL/interfaces/

http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQL/doc/GMQL_V2_manual.pdf
http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQL/doc/GMQL_V2_manual.pdf
http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQL/doc/GMQLUserTutorial.pdf
http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQL/doc/GMQLUserTutorial.pdf
http://www.bioinformatics.deib.polimi.it/GMQL/interfaces/

14 | Summary of Data Extraction Method

Fig. 2.4 The web graphical user interface of GMQL

2.2.6 Python Interface

The Python interface, namely PyGMQL, can be considered as an alternative to the web
interface. Figure 2.5 depicts the interaction between the user and the GMQL engine via
PyGMQL. The Python library communicates GMQL through a Scala back-end. Besides,
PyGMQL allows users to write GMQL queries in a syntax that meets the standard Python
conventions. PyGMQL can be used both in local mode and the remote mode. The former
performs the execution of the queries on the local machine, whereas the latter operates on
the remote GMQL server. The users can also switch between local and remote modes during
the course of the analysis pipeline. Furthermore, PyGMQL defines efficient data structures
for the analysis of GDM data and it provides data analysis and machine learning packages
tailored for the manipulation of genomic data.

2.2 GenoMetric Query Language (GMQL) | 15

Fig. 2.5 High-level representation of the GMQL system

Chapter 3

System Architecture for the Analysis of
GenoMetric Space Data

This section introduces the GenoMetric Space module of the PyGMQL Python library.
GenoMetric Space module leverages the power of PyGMQL, by adding a wide range of
the machine learning and data analysis packages. GenoMetric Space module also provides
efficient data structures for both parsing and the in-memory processing of GDM data. PyG-
MQL is publicly available on the Python Package Index and it is ready to be used by the
bio-informatics practitioners 1.

3.1 Loading the Materialized Data into Memory

Materialized results of a GMQL dataset often belong to the scale of gigabytes. Therefore, it
is a demanding task to process the materialized GMQL output in memory.

To enhance the performance in both reading and processing of the large amount of
data, GenoMetric Space module provides the following optimizations for parsing the data
efficiently.

The first optimization is to parse only the region data and metadata of interest. Generally
it is the case that only a subset of region data and metadata are required for the tertiary
analysis. For example, in a binary tumor classification setting, 2 we are only interested in
a sample identifier, a gene region identifier and the expression value of that region for the
corresponding sample as the region attributes. As for the metadata attributes, we only need
to use the metadata attribute indicating whether the sample is tumorous or not; this metadata

1PyGMQL is available at https://pypi.python.org/pypi/gmql
2In binary tumor classification, the task is to generalize the samples into two categories implying whether

the sample is tumorous or not.

https://pypi.python.org/pypi/gmql

18 | System Architecture for the Analysis of GenoMetric Space Data

attribute is going to be used in the training of the model and in the estimation of the model
performance. Hence the remaining metadata and region data attributes are unrelated. To
this extent, GenoMetric Space module comprises functionality to parse only a subset of the
region data and metadata.

Table 3.1 Time comparison of the parsing methods

Method Parsing time (min.)

Normal 17
Omit zeros 11

A further optimization method is called omit zeros method. This method omits the parsing
of the gene expression values that are equal to zero. In other words, the zero values are treated
as missing values. Those missing values later can be set to zero again or they can be imputed
using statistical methods. Chapter 4 discusses the missing value imputation techniques. Omit
zeros technique significantly improves the parsing process. The table 3.1 illustrates the
runtime comparison of the omit zeros parsing method and the normal parsing method.
Note that, the experiments are conducted on the same machine using the TCGA-KIRC dataset
with the same region data and metadata attributes. The query below retrieves the Kidney
Renal Clear Cell Carcinoma (KIRC) tumor data from The Cancer Genome Atlas (TCGA).

DS = SELECT(manually_curated__tumor_tag == "kirc") HG19_TCGA_rnaseqv2_gene;

MATERIALIZE DS INTO Tcga_Kirc;

As the table shows, omit zeros optimization takes less time to read the region data into
the memory. As the sparsity of the dataset grows, omit zeros method performs better.

3.2 Region Data Representation

GenoMetric Space module employs advanced hierarchical indexing structures to operate
on complex structures of genomic data. Hierarchical / Multi-level indexing is a fascinating
technique as it allows certain sophisticated data analysis and manipulation, particularly when
the data is high dimensional [15].

Figure 3.1 shows how the GDM region data could be represented using the hierarchical
index. The region attributes to form the hierarchical index are adjustable. Chr, left,

right, strand and gene_symbol are chosen for this illustration. Instead, the columns
are indexed by the sample identifier.

3.3 Compact Structure | 19

Fig. 3.1 Hierarchical indexed representation of region data

3.2.1 Operations on the Region Data

The multi-level indexing representation enables effective processing of the region data in
a manner that follows the standard conventions of the Python community. The use of
hierarchical index gives users the freedom to explore the data either by using a single index
or by using a customized combination of indices. Figure 3.2 for instance, depicts how
cross-section could be performed to retrieve the regions of ’chromosome8’ located on the ’+’
strand. Figure 3.3 illustrates a more complex operation by using boolean operators to filter
the rows i.e. all of the resulting rows in the figure have their left position bigger than or equal
to 600.000.

Fig. 3.2 Cross section operation to filter the region data

3.3 Compact Structure

The metadata of the samples are kept in a separated dataframe having the same index (sample
id) as the region dataframe. However, another feature of the GenoMetric Space module
is to form a compact structure by constructing a two-sided hierarchical indexing structure
of both region data and the metadata combined together. This structure allows the data to

20 | System Architecture for the Analysis of GenoMetric Space Data

Fig. 3.3 Filtering using a boolean mask

be filtered, sliced, diced, sorted, grouped and pivoted by using both the region data and
metadata simultaneously. Figure 3.4 demonstrates the compact structure on an excerpt of the
TCGA-KIRC dataset. GenoMetric Space also provides the flexibility to modify the metadata
that are represented inside the index without having to reload the data. Since the metadata
dataframe is kept separately, any other metadata can be inserted into or deleted from the
compact structure at any time. For example, the gender of the patient can later be replaced
with the age of the patient or the daily drug dose usage of the patient or any other metadata
determined by the user based on the case of study. Later, those metadata attributes can be
used by the machine learning algorithms.

Fig. 3.4 Compact representation

3.4 Support for Multi-Ref Mapped Data

The MAP operation of GMQL is able to perform the mapping of the samples to more than one
reference. In case of mapping with N references, the number of resulting samples are equal to
N times the number of the input samples, as already defined in Section 2.2.2. Consequently,

3.5 Text Analytics Using Metadata | 21

the output data to be processed grows dramatically with the number of references to be
mapped. Accordingly, GenoMetric Space provides a particular loading function for the
data mapped with multiple references. While loading the data, GenoMetric Space asks
for an extra parameter to represent the unique identifier metadata attribute to separate the
data by the number of references. The data is now loaded into a list of GenoMetric Space
data structure. Length of that list is equal to the number of references used inside the MAP

operation. This feature allows the references to be analyzed separately. Further, GenoMetric
Space implements a merge function to merge both the region data and the metadata of
different references into one, should the need arise. This merge function takes a parameter
denoting the unique identifier metadata attribute to identify the identical samples having
different references, in order to merge them into one single data structure.

3.5 Text Analytics Using Metadata

This section describes how the text mining and information retrieval approaches can be
employed to model the metadata. As already told in Chapter 2 many publicly available
experiment datasets (such as TCGA or ENCODE) provide the metadata alongside with their
processed data. Thus, there is an immense potential of information that could be extracted
from metadata. For this purpose, PyGMQL applies various information retrieval and text
mining techniques on metadata. The main intention of this section is to build metadata-based
models that are capable of summarizing and describing a set of samples. In information
retrieval, tf–idf, short for term frequency–inverse document frequency, is a numerical statistic
that is intended to reflect how important a word is to a document in a collection or corpus
[16]. Tf stands for term frequency and accordingly; the terms having the highest tf value are
the most frequent terms occurring inside the document. However, this metric is not practical
since the most frequent terms are not informative regarding the contents of a single document.
Hence, it is also important to know the rare words that can help distinguish a document
among the others. To overcome this problem, idf (inverse document frequency) is taken into
account. Idf instead, measures whether a term is rare or common over all of the documents.
As shown in 3.1, Idf is computed by taking the logarithm of the division of the number of
documents over the number of documents that contain the term.

id fi = log(
N
dfi

) (3.1)

22 | System Architecture for the Analysis of GenoMetric Space Data

where: N = Number of documents

d fi = Number of documents containing term i

Tf-idf is computed as the multiplication of tf and idf, equation 3.2. Term frequency (tf)
considers all of the terms as equally important, however tf-idf, weights the terms by their
uniqueness to the document.

t f id fi, j= t fi, j ∗id fi (3.2)

where: t fi, j = Term frequency of term i in document j

id fi = Inverse document frequency of term i

Tf-idf is considered one of the most common text-weighting techniques. Today, more
than 80% of the digital library recommendation systems use tf-idf [17].

PyGMQL, processes the metadata prior to the tf-idf computations. First of all, the
tokenization process applies. Given a sequence of characters, tokenization is the operation of
cutting the sequence into parts, called tokens. After the tokenization, stop words removal
takes place. Stop word removal is the operation of removing the most common words
in a language. PyGMQL removes the stop words in the English language such as "that",
"this", "the", "who" etc. In addition to this, stop words in the genomic domain such as
"biospecimen" and "tcga" are also filtered out since they are not informative. Moreover, the
metadata attributes containing Uniform Resource Locator (URL) and Universally Unique
Identifier (UUID) are eliminated. Finally, the tf-idf values are computed for each term in the
document. As a result, PyGMQL yields the best descriptive metadata for any given set of
samples. Another feature of PyGMQL is to draw the cloud of words visual representation
across a collection of samples. Cloud of words, also known as Tag Cloud, is a method of
visualizing the free format text [18]. Figure 3.5 illustrates an example of how the results of a
clustering algorithm can be visually interpreted by using the tf-idf and the cloud of words
visualization facilities of PyGMQL. Refer to Chapter 4 for the explanation of the clustering
module of PyGMQL.

3.5 Text Analytics Using Metadata | 23

Fig. 3.5 Cloud of words representation

Chapter 4

Machine Learning Techniques for the
Tertiary Analysis of the RNA-Seq Data

There have been numerous studies done in the past years to analyze the transcriptome 1

under healthy and disease situations. To the best of our knowledge, one of the pioneer works
on the statistical analysis of transcriptome is the study of Golub et al. [19] that intends to
distinguish the various types of acute leukemia cancer. From then onwards, there have been
many subsequent studies of both supervised and unsupervised analysis on gene expression
data. The first technique that is used in the transcriptome analysis was DNA microarrays.
The earlier studies using microarray technology were limited to only a few types of cancer.
Yet, they were also suffering from the small sample size; usually less than a hundred samples.
Nowadays, the RNA-Seq technology provides a more precise and complete quantification of
the transcriptome and overcomes the problems above with the help of the publicly available
datasets. For instance, TCGA dataset contains 33 different types of cancer, including 10
rare cancers and hundreds of samples [20, 21, 7]. Figure 4.1 illustrates the TCGA cancer
types and the number of samples associated with them. The interested readers may refer to
[22–26] for a detailed explanation of the RNA-Seq technology.

The rest of the chapter is organized as follows: Section 4.1 describes the common intrinsic
characteristics of the gene expression datasets, Section 4.2 discusses the feature selection
algorithms to reduce the high dimensionality of the genomic data, Section 4.3, focuses on
the classification techniques and their applications to genomics, Section 4.4, instead explains
the clustering approaches and their impact on the gene expression dataset.

1Transcriptome is the sum of all RNA molecules in a cell or a group of cells that are expressed from the
genes of an organism.

26 | Machine Learning Techniques for the Tertiary Analysis of the RNA-Seq Data

Fig. 4.1 TCGA Cancer Datasets with corresponding sample numbers

4.1 Intrinsic Characteristics of RNA-Seq Data

4.1.1 High-dimensionality

One common characteristic of gene expression datasets is that they have a considerably small
number of samples and relatively bigger number of features (genes). This characteristic
is evident in both RNA-Seq and DNA Microarray technologies. Figure 4.1 shows that the
number of samples for each cancer type in the TCGA dataset is less than 500, on average.
However, each sample has approximately 20.000 genes. This problem is referred as large
p, small n problem in statistics. In other words, the sample-gene matrix is a sparse matrix
and the curse of dimensionality is strong. Curse of dimensionality is a phenomenon that
arises from the analysis of high-dimensional data. In Machine Learning, this phenomenon
is expressed as follows: given a fixed number of training samples, the predictive abilities
of the model decreases as the dimensionality of the features increase, this is also known as
the Hughes Phenomenon [27]. Various feature selection methods are proposed to cope with
the curse of dimensionality. Further details about the feature selection methods are given in
Section 4.2.

4.1 Intrinsic Characteristics of RNA-Seq Data | 27

4.1.2 Biases of the RNA-Seq Data

An important characteristic of RNA-Seq data is its biases. There exist certain biases in the
RNA-Seq data that should be taken into account, before going any deeper into the analysis.
The first bias of RNA-Seq data is due to the fact that, each observation in an RNA-Seq
experiment may have a different number of total reads, because of the technical issues
regarding the sequencing depth [28]. Therefore, the cell values of the expression matrix, that
we build from the RNA-Seq data, not only depend on the expression value of a gene on a tissue
but they also depend on the differences of the sequencing depth. A more critical bias, namely
transcript length bias, of RNA-Seq data is caused by the difference in the length of the genes.
Such that, a longer gene will tend to have more reads than to a relatively shorter gene and this
tendency towards longer genes causes several problems in both classification and clustering
approaches [23]. Thus, taking those biases into consideration before the analysis is essential,
lest the biases cause incorrect results. Normalization techniques are needed to be employed in
order to address those biases. Besides addressing the biases, normalization methods also have
an impact on the convergence speed of various machine learning algorithms. For instance,
normalization reduces the convergence time of the stochastic gradient descent algorithm and
normalization often reduces the time to find the support vectors in Support Vector Machines
(SVM) [29]. PyGMQL implements two methods for data normalization. One for shifting
the mean value of every feature (gene) to zero. Another for reducing the variance of every
feature to the unit variance. By applying those normalization techniques, we can assure that
all of the genes are equally weighted for the classification or clustering.

4.1.3 Missing Values

As for many experimental datasets, RNA-Seq datasets often contain missing values. Both
clustering and classification approaches require a matrix as an input and many of the al-
gorithms such as Hierarchical clustering are not robust in presence of the missing values.
Therefore the missing value imputation should be performed, in an effort to minimize the
impact of the incomplete datasets. A very simple way of dealing with the missing values is
discarding the samples that contain them. Yet, given our small number of samples, this is not
a particularly smart action to perform. De Souto et al. [30] pointed that it is common for the
gene expression datasets to have up to 5% of missing values, which could affect up to 90%
of the genes.

One of the most basic missing value imputation techniques is to replace the missing
values by, zero. Nonetheless, this technique yields poor results in terms of the estimation
accuracy, which measures how close the estimated value is to the actual (missing) value.

28 | Machine Learning Techniques for the Tertiary Analysis of the RNA-Seq Data

A more advanced technique, however, is to replace the missing values by the statistical
properties of the corresponding column such as mean, median or the minimum value of the
feature. The intuition behind replacing the missing values with the minimum expression
value of the column is, to ensure that the missing value will show a low expression value,
therefore it will not be significant during the computations. Another technique is to impute
the missing values by replacing them with random values that are generated from the same
distribution of the original dataset. Asides from the techniques discussed above, there are
more complex algorithms to minimize the estimation accuracy. Two of those algorithms are
explained below:

KNN Imputation

The nearest neighbor imputation technique (k-nearest neighbors), aims at imputing the
missing values of a gene by using the values of the K other genes that are the most similar
to the gene of interest. To identify the most similar genes, distance measures are taken
into consideration. Troyanskaya et al. [31], examined several distances measures for gene
similarity such as; Pearson correlation, Euclidean distance and Variance-minimization. They
concluded that the Euclidean measure is an adequately accurate norm for the gene similarities.
The equation 4.1 demonstrates the computation of the Euclidean measure for any two gene
expression vectors, namely xi and x j.

After selecting the nearest genes, the missing value is simply estimated by taking the
mean value of the corresponding values of the nearest gene expression vectors by using
equation 4.2.

distanceE(xi,x j) =

√√√√ K

∑
k=1

(xik − x jk)2 (4.1)

x̂i j =
1
K

K

∑
k=1

Xk (4.2)

where: x̂i j = The estimated missing value of gene i and sample j

K = Selected number of neighbors

An important issue of the KNN imputation algorithm is concerned with the selection
of the K value. To this extent, Lall and Sharma [32], suggested using k =

√
n, for n > 100,

(which is the usual case in the gene expression datasets) where n denotes the number of

4.2 Gene Selection Methods | 29

features. Further discussion on KNN based missing value imputation techniques can be
found at [33].

SVD Imputation

SVD imputation method is introduced by Troyanskaya et al. [31] and it tries to approximate
the missing values by using singular value decomposition, equation 4.3.

The singular value decomposition(SVD) is a matrix factorization technique. Given an
n×m matrix A, there exist a factorization of A, called the singular value decomposition of A
as a product of three factors:

A =UΣV T , (4.3)

where; U : an orthogonal n×n matrix

V : an orthogonal m×m matrix

V T : the transpose of V matrix

Σ : is an n×m non-negative, diagonal matrix

Supposing, σi j is the i, j entry of Σ, the values of σi j = 0 unless i = j and σii = σi ≥ 0.
The σi are so called the singular values and the columns of u and v represent the right and
left singular vectors, correspondingly. The values contained in matrix V T are the eigengenes
and their contribution is quantified by the corresponding singular values on the σ matrix. To
identify the most significant eigengenes, the singular values are sorted. After selecting the k
most significant eigengenes, the missing value of a gene i is estimated by regressing the gene
against k eigengenes and then using the coefficients of the regression to estimate i from a
linear combination of k eigengenes. Note that the SVD computations require the matrix to be
complete. Hence, before beginning the computations, all of the missing values are replaced
by the corresponding column mean values of the A matrix.

Bear in mind that, the PyGMQL module contains implementations of all of the missing
value imputation techniques that are discussed in this section.

4.2 Gene Selection Methods

Feature selection, as known also referred as gene selection in genomic studies, is considered
as a standard in the machine learning applications of gene expression datasets. Besides its
being a solution to deal with high-dimensional datasets, it also reduces the noise by removing

30 | Machine Learning Techniques for the Tertiary Analysis of the RNA-Seq Data

the irrelevant genes. In gene expression datasets, the phenotypes that affect the samples
can be identified by using only a small subset of the genes. Those genes are referred as
the informative genes. The rest of the genes, instead, are regarded as the irrelevant genes
and thus interpreted as noise in the dataset. Jiang et al. [34] state that, in gene expression
datasets, the informative gene - irrelevant gene ratio is usually less than 1 : 10. Therefore,
the role of feature selection is crucial for the gene expression datasets. Another objective
of feature selection is to prevent model overfitting. Overfitting occurs if the model fits not
only the signal but also the noise in the training dataset. The more complex a model gets, the
more probable it tends to overfit. The overfitted model fits the training data with a very high
accuracy, however, it will yield a poor performance on the unseen (test) data. Besides the
feature selection techniques, regularization is another common technique to avoid overfitting.
Regularization is a term that is added to the loss function of the model. The regularization
term is intended to result in big values for the complex models and smaller values for the
simple models. Since the goal of the learning problem is to minimize the loss function, the
regularization term will force the optimization to choose the simpler models [35].

β̂ = argmin
β

∑
i=1

(yi − (β0 +β
T xi))

2 +λ ||β ||22. (4.4)

where; β̂ : the estimated coefficients (features)

λ : the regularization term

β : the coefficients (features)

The feature selection algorithms are classified into three categories:

1. Filter methods

2. Wrapper methods

3. Embedded methods

4.2.1 Filter Methods

Filter methods, as the name suggests, filter the redundant features out prior to the learning
algorithm. Most filter methods calculate a relevance score for each feature and select the high
scoring features correspondingly. From the computational point of view, the filter methods

4.2 Gene Selection Methods | 31

are highly efficient since they do not have to take the learning function into consideration. Jin
et al. [36], proposed a technique that uses Pearson’s Chi-squared test to rank the individual
genes in both binary and multi-class classification. After the ranking, the algorithm chooses
the highest scoring features. Pearson’s Chi-squared (χ) test is a statistical method that
assesses the goodness of fit between a set of expected values and observed values. The
chi-squared test is computed by the following formula:

χ
2 = ∑(O−E)2/E (4.5)

where; O : stands for the observed values

E : represents the expected values

Additionally, entropy and Information Gain (IG) based techniques have been commonly
used for the gene selection procedures Salem et al. [37, 38], Yang et al. [39], Hall and Smith
[40]. The entropy of a random variable X is defined as:

H(X) =−∑
x

p(x) log p(x) (4.6)

where; X : represents a random variable

x ∈ X : is a value of a random variable

The entropy is often considered the best way to measure the uncertainty in a realization
of the random variable X .

The information gain is defined as the common uncertainty between X and Y .

I(X : Y) = H(X)−H(X |Y) = H(X)+H(Y)−H(X ,Y). (4.7)

Bharathi and Natarajan [41] proposed a gene selection scheme named ANOVA, stands
for Analysis of Variance, which uses F-test to select the features that maximize the explained
variance.

Jafari and Azuaje [42] used t-test feature selection that tries to find features having the
maximum difference of inter-group mean values and a minimal variability in intra-group.

32 | Machine Learning Techniques for the Tertiary Analysis of the RNA-Seq Data

4.2.2 Wrapper Methods

Wrapper methods instead, feeds the predictive model with different subsets of the features
and estimates the performance of them in order to select the best feature subset. In other
words, wrapper methods try to solve a search problem. and as the number of features grows,
the wrapper methods become more inefficient since the search space grows exponentially.
Due to its computational demand, wrapper methods are mostly avoided. Most of the works
employing the wrapper methods can be found in the early times of the gene expression data
analysis research. Inza et al. [43] conducted a comparative study between four common
filter methods and a wrapper search technique and they concluded that the wrapper method
shows a higher accuracy, however, it is computationally expensive. Ruiz et al. [44] presented
a heuristic for improving the search procedure of the wrapper methods and their approach
showed a significant performance in identifying the genes with a reasonable computational
cost. Wanderley et al. [45], presented a novel wrapper method that uses the nonparametric
density estimation method. The authors also suggested that the non-parametric methods
are a good choice for the sparse datasets as in the Bioinformatics problems. Their method
showed superior performance than the conventional feature selection methods in the literature.
Sharma et al. [46], proposed a new algorithm that first divides the genes into small subsets,
selects informative subsets and then merges them to create a more informative subset. The
authors also illustrated the effectiveness of their proposed algorithm by using three different
gene expression datasets and their method showed a promising classification accuracy in all
of the test sets.

4.2.3 Embedded Methods

Embedded methods select their features during the training phase of the model. They usually
perform better than both the filter and wrapper methods. However, those techniques depend
on the classifier itself. Therefore, one embedded method cannot be used in another classifier.
One popular embedded method is the Support Vector Machines based on Recursive Feature
Elimination (SVM-RFE). SVM-RFE starts with all of the features and step by step, it
eliminates the ones that do not separate the samples into different classes. SVM-RFE is
proposed for the gene expression datasets by Guyon et al. [47]. The authors (including
Vladimir Vapnik, the co-inventor of Support Vector Machines), demonstrated that their
technique yields an accuracy of 98% in the colon cancer dataset. Since then, this method is
considered one of the state-of-the-art algorithms for the gene selection.

One other promising embedded feature selection technique is the least absolute shrinkage
and selection operator (LASSO) [48]. LASSO is a well-established method introduced by

4.3 On the Classification of Gene Expression Data | 33

Tibshirani [49], for estimation of linear models. LASSO tries to minimize the residual sum of
squares (RSS) subject to the sum of the absolute value of the feature coefficients. In the end
it sets many of the feature coefficients to zero. Thus the model selects the non-zero features
in a regularization manner. The formula 4.8 is the original lasso formula in the context of
least squares.

min∑
i
(yi −∑

j
xi jβ j)

2 subject to ∑ j |β j| ≤ t (4.8)

where; t : parameter to determine the amount of regularization

yi ∈ I : the outcome

x j ∈ X : the features

β j ∈ J : the coefficients

Observe that for t ≥ 0 sufficiently small, some of the β̂ j will be equal to zero and the
features having their β̂ j coefficients equal to zero will be removed.

Another famous embedded feature selection method is the random forests [50]. Random
forests are set of decision tree classifiers. For the gene selection purposes, the random forests
are built by gradually eliminating subsets of the genes that are of the lowest importance. Due
to their ability to simultaneously select the features and classify, random forests are suitable
for the situation when the number of features is much larger than the number of samples,
Jiang et al. [51]. Further details on random forests will be given in Section 4.3.

4.3 On the Classification of Gene Expression Data

4.3.1 Ensemble-based classification methods

Ensemble based classifiers combine several individual classifiers in order to provide better
predictions. The main motivations behind using an ensemble based classifier are two-fold.

1. To reduce the bias.

2. To reduce the variance.

Kushwah and Singh [52], provide the following example 4.9 to emphasize the importance
of the ensemble based methods. They claim that the uncorrelated error of the base classifiers
can be eliminated by taking the mean value of their outcome. Supposing there are 25

34 | Machine Learning Techniques for the Tertiary Analysis of the RNA-Seq Data

individual classifiers, each having the same error p = 0.35. The probability for the ensemble
based method to make a wrong prediction can be computed as follows:

25

∑
i=1

(
25
i

)
pi = (1− p)25−i = 0.06 (4.9)

The most promising ensemble based methods are:

Bagging (is the abbreviation for Bootstrap Aggregation) is a method to reduce the variance
of the predictions. Bagging first generates samples from the combinations of the
training data i.e. increases the size of the training data by combining it with repetitions
of itself. Afterwards, different individual classifiers are trained using the generated
samples of the training data and the final prediction is made by combining the results
of the individual classifiers in a voting manner [53].

Given a learning algorithm (e.g. decision trees, which are unstable to small changes and
outliers in the training set), bagging is a suitable method to enhance the performance
by making the model more tolerable to small changes in the training set.

Fig. 4.2 Bagging method

Boosting is another method in which each individual classifier is trained on data weighted
by the performance of the previous classifiers. In the end, as done in Bagging, each
classifier vote for the final outcome. Notice that, unlike Bagging, the subset generation
of boosting is not random but depending on the performance of the preceding classifiers.
AdaBoost, introduced by Freund et al. [54], is considered the most common boosting
method by far.

4.3 On the Classification of Gene Expression Data | 35

Random Forest is an ensemble-based classifier that is proposed by Breiman [55]. Random
forests use a combination of decision tree classifiers such that each decision tree is
trained with a randomly sampled vector of the training dataset. Random forests employ
the bagging method to build an ensemble of decision trees. Additionally, random
forests also restrict the number of features. As a consequence, the variance is further
reduced. Random forests require two tuning parameters: one denoting the number
of trees to be used and the other is the number of features that are to be selected for
splitting each node of the tree. The figure below depicts the working steps of the
random forest algorithm.

Fig. 4.3 Random forests

To the best of our knowledge, the earliest work using decision trees for region and
tumor classification using the gene expression data was done by Zhang et al. [56]. The
authors proposed a deterministic procedure to form random forests. Random forests
became a popular technique in bioinformatics, ever since. Further works on the random
forests can be found at [57].

4.3.2 KNN Classifier

The KNN imputation method is described in Section 4.1.3. This section explains a similar
concept that uses the k-nearest neighbors for prediction purposes. KNN algorithm is a lazy

36 | Machine Learning Techniques for the Tertiary Analysis of the RNA-Seq Data

learning algorithm. A lazy learning algorithm stores the training data and when a new datum
is present, the algorithm computes the similarity between the new datum and each of the
training data. KNN algorithm requires a free parameter (namely k) and uses k nearest points
of the training dataset to predict the outcome of the test datum. Several approaches exist
to define the similarity measures. Refer to Appendix B for a detailed study on similarity
measures.

4.3.3 Logistic Regression

The idea of Logistic Regression comes from the idea of applying linear regression to classifi-
cation problems [58]. First, we are going to demonstrate why linear regression is not suitable
for the qualitative response. Given that we have a multi-class tumor prediction problem, in
which we are trying to classify the input into one of the tumor categories described below.
Those categories can respond to quantitative values such as 1,2 and 3.

Y =

1 Colon adenocarcinoma

2 Acute myeloid leukemia

3 Adrenocortical carcinoma

(4.10)

By using Least Squares, we are able to perform linear regression to predict Y . However
by doing so, we are implying that there exists a linear relationship on the outcomes and
accordingly, the difference between colon adenocarcinoma and the acute myeloid leukemia
is equal to the difference between acute myeloid leukemia and the adrenocortical carcinoma.
Moreover if one chooses another encoding such as 4.11, then the linear relationship among
the three classes would be totally different. Thus the model would yield different predictions.

Y =

1 Acute myeloid leukemia

2 Adrenocortical carcinoma

3 Colon adenocarcinoma

(4.11)

Yet the situation is relatively better for the binary variables such as 4.12.

Y =

0 Normal

1 Tumor
(4.12)

In this binary encoding, we can predict the tumor if Ŷ > 0.5 and normal if Ŷ < 0.5 and
the model would predict the same had we flipped the encoding. Nonetheless, by using linear

4.3 On the Classification of Gene Expression Data | 37

regression we cannot guarantee that the output falls into the [0,1] interval. Thus the responses
become hard to interpret since they do not represent probabilities.

Logistic regression tries to model the probability P(Y |X) by using the logistic function,
4.13.

p(X) =
e(b0+b1Xi)

1+ e(b0+b1Xi)
(4.13)

The use of logistic function overcomes the problem of output’s not falling into [0,1]
category. The y-axis of the s-shaped plot 4.4 represents the probability.

Fig. 4.4 The logistic function

−6 −4 −2 0 2 4 6

0.5

1

Given that our model is the logistic function, the maximum likelihood approach is em-
ployed to fit the model.

L(θ) = f (x1;θ) · f (x2;θ) · · · f (xn;θ) =
n

∏
i=1

f (xi;θ) (4.14)

The maximum likelihood method tries to estimate the parameters in order to maximize
the likelihood function [59]. The maximum likelihood is a common approach used fit various
nonlinear models. Certainly, it is possible to extend the binary logistic regression into a multi-
class solution. To this extent, Zhu and Hastie [60], proposed an approach and applied it to
classify a multi labeled cancer data using penalized logistic regression (PLR) and compared
the results with SVM. They concluded that both PLR and SVM yield similar results.

38 | Machine Learning Techniques for the Tertiary Analysis of the RNA-Seq Data

4.3.4 Support Vector Machine

Support Vector Machines is one of the most promising machine learning techniques. The
algorithm is proposed by Vapnik and Cortes [61] and it has been extensively used on the
classification of gene expression data with thousands of features and less than a hundred
variables [62–65]. Support vector machines are powerful even in high dimensional spaces.
SVMs are able to model complex and nonlinear data. The learned model is highly descriptive
compared to the Neural Networks. However, selecting the kernel function alongside with
the parameterization could be challenging. SVMs are originally designed for the binary
classification tasks. Yet, they can be extended to deal with multi-class classification problems.
The motivation behind SVMs can be best explained on a binary classification setting when
the data are linearly separable. Figure 4.5 represents the data that is linearly separable.
As seen, all of the red, green and the black lines can separate the data. In fact, there are
infinitely many hyperplanes that can separate the data. The challenge introduced here is to
find the optimal hyperplane that separates the blue points and the red points with a minimal
classification error. The intuition of SVM is to find the hyperplane that classifies the points
with the maximum margin from the nearest points of each group. This method is known
as the maximum margin classifier. In other words, the method tries to select the line that
separates the red and blue points while keeping the distance to the nearest point of each
group large as possible.

Fig. 4.5 Linear hyperplanes separating the data

Nonlinear Case

Nevertheless, not every data are linearly separable, i.e., a line cannot be drawn to separate
the points, as shown in Figure 4.6.

4.3 On the Classification of Gene Expression Data | 39

Fig. 4.6 Linearly non-separable data

In this manner, the SVM classifier uses a kernel function to nonlinearly transform the
data into a higher dimension in which the problem is reduced to the linear case. The table
below illustrates the widely used kernels for support vector machines.

Table 4.1 Kernel function of the SVM classifier

Classifier Kernel

Polynomial having degree p K(xi,x j) = (xix j)
p

Gaussian radial basis function (RBF) K(xi,x j) = e
−∥xi−x j∥2

2σ2

Two-layer sigmoidal neural network K(xi,x j) = tanh(κxix j −δ)p

Adoption to Multi-class Problems

As mentioned before, it is possible to apply the SVMs to multi-class problems. The most
commonly used multi-class SVM methods are One-Versus-Rest and One-Versus-One. Both
of these methods are introduced in the work titled as Pairwise classification and support
vector machines by Kreßel [66].

One-versus-Rest classification constructs k binary SVM classifiers and in each of those
binary classifiers, one class is fitted against the rest of the classes combined together.

40 | Machine Learning Techniques for the Tertiary Analysis of the RNA-Seq Data

After the fitting, a new datum is classified based on where the classifier value is the
largest.

One-versus-One classification constructs
(K

2

)
binary SVM classifiers for each pair of classes

where each classifier compares two classes. When a new observation arrives, it is
tested in all of the classifiers and it is assigned to the class that has made the highest
number of assignment of the observation to itself in

(K
2

)
cases.

4.3.5 Performance Assessment of Classifiers

Model Evaluation Metrics

After having performed the classification, one should evaluate the model performance by
using some predefined metrics. Accuracy is the simplest measure that comes into mind.
Accuracy measures the proportion of the instances that are correctly classified. However,
accuracy itself is not always reliable since it may be misleading if the dataset is unbalanced
[67]. In this manner, we are going to explain other metrics on a table called the confusion
matrix. The confusion matrix is a visual representation of the performance of a classifier.
Table 4.2 illustrates the confusion matrix. Each row of the matrix represents the actual classes
of the observations while each column represents the predicted class of the observations.

Table 4.2 Confusion matrix

Predicted class
Positive Negative Total

Actual class
Positive True Positives (TP) False Negative (FN) T P+FN
Negative False Positives (FP) True Negatives (TN) FP+T N

Total T P+FP FN +T N N

Given the binary cancer classification problem, we can define certain terms of the
confusion matrix as follows:

True positives (TP) are the cases in which the sample tissue is cancerous and our classifier
predicted it correctly.

True negatives (TN) are the cases in which the sample tissue is non-cancerous and the
classifier predicted it as non-cancerous.

4.3 On the Classification of Gene Expression Data | 41

False positives (FP) are the cases in which our classifier predicts the tissue as cancerous but
in fact, the tissue is not cancerous.

False negatives (FN) are the cases in which our classifier predicts the tissue as cancerous
yet it is not cancerous.

The most commonly used evaluation metrics are:

Accuracy measures the instances that are correctly classified.

Accuracy =
T P+T N

T P+T N +FP+FN
(4.15)

Precision , as known as positive predicted value, measures the proportion of the correctly
classified positive cases.

Precision =
T P

T P+FP
(4.16)

Recall as known as sensitivity or hit rate, measures the proportion of the actual positives
that are correctly classified.

Recall =
T P

T P+FN
(4.17)

Negative Predictive Value measures the proportion of the correctly classified negative
cases.

NPV =
T N

T N +FN
(4.18)

Specificity , also known as true negative rate, measures the proportion of the actual negatives
that are correctly classified.

Speci f icity =
T N

FP+T N
(4.19)

F-score is formulated as the harmonic mean of precision and recall.

F = 2∗ Precision∗Recall
Precision+Recall

(4.20)

G-score is formulated as the geometric mean of precision and recall.

G =
√

Precision∗Recall (4.21)

42 | Machine Learning Techniques for the Tertiary Analysis of the RNA-Seq Data

Model Validation Techniques

The techniques are that commonly used to validate the model are:

• Holdout Method randomly partitions the data into two independent sets called the
training and the test set. Holdout method simply trains the model using the training
dataset and validates the model using the test dataset. The size of the training set is
generally chosen to be bigger than the size of the test set. A common proportion of
split is to give 2/3 of the data to the training set and the 1/3 of the data to the test set.

• K-fold Cross Validation randomly partitions the data into k independent subsets of
the same size. Then it trains the model using the k−1 subsets and tests it on the last
subset. This procedure is repeated k times assuring that each subset is used once as
the test data. The k results are later averaged to produce the final result. A noteworthy
detail that should be taken into account when splitting the data into subsets, is to
preserve the distribution of the original data in the subsets as well. Stratified k-fold
cross validation sees to this situation [68]. A common value of k is 10. As the k grows,
the bias of the classification error decreases yet the variance increases.

• Leave-one-out-cross-validation (LOOCV) is a special case of k-fold cross validation
where k is equal to the number of observations in the data. In other words, at each
iteration, the data will be trained with all but one observation and validated only on
one observation.

4.4 Cluster Analysis of Gene Expression Data

4.4.1 Unsupervised Learning

Besides the supervised applications, various clustering techniques have been applied to
gene expression datasets. Clustering is an unsupervised learning technique that identifies
the existing patterns and similarities of the data. Unlike supervised learning, unsupervised
learning techniques do not rely on labels that are defined a priory.

4.4.2 Types of Clustering Applications on Gene Expression Data

Jiang et al. [34], categorized the clustering applications on gene expression data into three
biologically meaningful categories. Figure 4.7 illustrates the gene-expression matrix. As
seen, the rows represent the genes while the columns represent the samples.

4.4 Cluster Analysis of Gene Expression Data | 43

Fig. 4.7 An illustration of gene expression matrix

1. Gene-based Clustering

2. Sample-based Clustering

3. Subspace Clustering

Gene-based clustering (also referred to region-based clustering), tries to group the genes
that are showing similar expressions. The motivation behind gene-based clustering is to
assist the discovery of the genetic knowledge [69]. Additionally, gene-based clustering helps
to identify the genes that are expressed together in a certain phenotype.

Sample-based clustering, on the other hand, clusters the samples together and treats the
genes as features. Sample-based clustering approaches are commonly used for discovering
unknown diseases and subtypes of known diseases.

Keep in mind that both gene-based and sample-based clustering can be accomplished by
using the same clustering algorithms. One has to take the transpose of the matrix illustrated
in Figure 4.7 in order to perform sample-based clustering. Subspace clustering, however,
employs completely different and more complex algorithm than the conventional clustering
algorithms.

44 | Machine Learning Techniques for the Tertiary Analysis of the RNA-Seq Data

Subspace clustering (also known as bi-clustering or co-clustering or two-way clustering),
simultaneously clusters both rows and columns together to detect patterns that cannot be
detected by the conventional clustering algorithms. The key objective of biclustering is to
overcome the noise and the sparsity of the data. Therefore the biclustering algorithms are
very effective and commonly preferred on gene expression data. Biclustering is originally
proposed by Hartigan [70]. Cheng and Church [71] were the first to apply biclustering on
gene expression data. There have been several other applications of biclustering on gene
expression data [72–76]. Figure 4.8 denotes how biclustering can detect the subtle patterns
in the presence of noise and sparsity. Since the conventional clustering algorithms consider
the entire set of samples and genes, they are easily affected by the irrelevant samples and
genes. Another drawback of the conventional clustering techniques is that the majority of
the clustering algorithms, except for the fuzzy techniques, cluster a gene into exactly one
group [77]. Biclustering is proven to be an NP-Hard problem. Details about the biclustering
algorithms will be given in Section 4.4.3.

Fig. 4.8 Demonstration of biclustering

4.4 Cluster Analysis of Gene Expression Data | 45

4.4.3 Clustering Algorithms

K-means
The k-means algorithm partitions the input data into k distinct clusters. The number
k is taken as an input and the algorithm first randomly initiates k centroids (each
representing a cluster). Later, each observation(either gene or sample) is assigned to
the nearest centroid. Then the centroids are updated by using the mean value of the
observations around each centroid. This procedure is repeated until a certain threshold
is satisfied. The goal of the k-means algorithm is to minimize the following objective
function.

J = min
K

∑
j=1

N

∑
i=1

||x j
i − c j||2 (4.22)

where; c : the centroid points

x : the observation points

The k-means algorithm does not guarantee to find the global optimal value of the
objective function since the algorithm is dependent on the initialization of the centroids
[78]. Another issue of k-means algorithm is to select the number of clusters. In many
cases, we cannot know how many groups best describe the data [79]. To this extent,
PyGMQL implements three methods for selecting the number of clusters.

1. Elbow method is a visual technique that plots the percentage of the explained
variance against the number of clusters. Figure 4.9 illustrates the elbow method.
By looking at the figure, the method suggests picking the point where there is a
significant drop in the explained variance.

46 | Machine Learning Techniques for the Tertiary Analysis of the RNA-Seq Data

Fig. 4.9 The elbow method

2. Silhouette method follows a similar procedure to the elbow method. For a various
number of clusters, it computes a specific score called the silhouette score and
allows users to choose the correct number of clusters. The silhouette score ranges
between 0 and 1. The silhouette score for an observation close to 1 denotes that
the observation is belonging to the right cluster. For a gene expression data where
there are thousands of features, repeating the k-means several times for different
values of k would not be practical. X-means algorithm overcomes this problem
by estimating the number of clusters. More detail about the silhouette score will
be given in Section 4.4.4 alongside with other clustering validation techniques.

3. X-means algorithm is a variation of the k-means algorithm that does not require
the number of clusters in advance. X-means algorithm initiates like the k-means
algorithm, however, at each iteration it considers whether to split a cluster or
not. That decision is made by using the Bayesian Information Criterion (BIC).
In addition, the x-means algorithm is computationally more efficient than the
original k-means algorithm [80].

Hierarchical Clustering
Hierarchical clustering builds a hierarchy of clusters rather than partitioning the data
into a prespecified number of clusters. A well-established representation of hierarchical
clustering is dendrogram. Figure 4.10 illustrates a dendrogram in which the x-axis
shows the samples and the y-axis is the distance denoting how distant the two clusters
are. The dendrogram can be cut at any level to retrieve the clusters particularly at
that level. Consequently, hierarchical clustering does not require the k value to be
specified. Moreover, the dendrogram also exposes the relation among the clusters and

4.4 Cluster Analysis of Gene Expression Data | 47

Fig. 4.10 A sample dendrogram

those relations are crucial in genetic analysis. Therefore, hierarchical clustering is a
very common technique in gene analysis studies. A dendrogram can be constructed in
two ways.

1. Top-down (divisive), begins with only one cluster and divides it into two clusters
at each step. The division of the clusters is computationally expensive. Therefore
the divisive methods are not preferred in gene expression data where you have a
large amount of genes.

2. Bottom-up (agglomerative), on the other hand, starts with considering every
observation a singleton cluster. Afterwards, it merges the two most similar
clusters into one cluster at each step until a single cluster is reached. A similarity
metric is employed in both of the hierarchical clustering techniques. A detailed
table of the similarity metrics is provided in Appendix B. Having defined the
similarity metric, the agglomerative clustering method merges the clusters that
have the highest similarity. This is a straightforward task if the clusters are

48 | Machine Learning Techniques for the Tertiary Analysis of the RNA-Seq Data

singleton. However, if the clusters contain a set of observations (which is the
usual case) then the linkage methods should be taken into account [81].

Fig. 4.11 Common linkage methods

Figure 4.11, depicts the four standard linkage methods. Single linkage computes the
distance by considering the closest two points, one from each cluster. Complete linkage
instead, uses the farthest two points to compute the distance. Centroid linkage first
computes the centroid points of each cluster and then measures the distance between
those two points. Average linkage, however, computes the distance between every
point of the first cluster with every other point in the second cluster and averages them.
Interested readers are referred to [82] for further details on the linkage methods.

ROCK
ROCK is a variation of the hierarchical clustering algorithm specially designed for the
categorical or boolean attributes [83]. ROCK algorithm is not suitable to be used on
the gene expression data since the values of the gene expression matrix are numerical
values. However, ROCK algorithm can be operated on a selected subset of metadata.

Density Based Clustering
The first proposed technique belonging to this category is DBSCAN [84]. DBSCAN

4.4 Cluster Analysis of Gene Expression Data | 49

Fig. 4.12 An illustration of density based clustering

takes two prespecified parameters from the user. One for the radius and the other
for the minimum number of observations to reside in the local neighborhood defined
within the specified radius. The algorithm retrieves the neighbors of a point based
on the radius parameter. If the number of points within the neighborhood is less than
the minimum allowed number of observation (taken as a parameter), then the point
is considered as noise. Otherwise, the point is added to the cluster and the overall
process is repeated for each point. Unlike the partitioning based methods, density
based models are able to find clusters of any shape. Figure 4.12, shows the ability of
density based clustering to clusters data of arbitrary shapes. In this work, Jiang et al.
[85] used a density based clustering approach to cluster gene expression data and the
authors concluded that results met the biological knowledge of the experts.

Spectral Biclustering
Spectral biclustering algorithm is originally intended to the analysis of gene expression
data [86]. Spectral biclustering tries to find the checkerboard structures in the gene
expression matrices. In the cancer case, the checkerboards refer to the genes that are
either upregulated or downregulated in a subset of samples that are diagnosed with a
particular type of tumor. The algorithm attempts to find those checkboard structures
by using eigenvectors of the matrix. The proposed approach uses SVD to discover the
eigenvectors. Figure 4.13 demonstrates the spectral biclustering algorithm.

50 | Machine Learning Techniques for the Tertiary Analysis of the RNA-Seq Data

Fig. 4.13 An illustration of spectral biclustering

4.4.4 Cluster Validation

There exist various measures to validate the results of a supervised learning application.
However, validating an unsupervised method is more challenging due to the absence of
the labeled data. The cluster validation techniques are twofold: external and internal. The
external methods evaluate the resulting clusters by using the true labels of the classes.
Nonetheless, in many cases, the labels are not available. In such manner, it is more suitable
to employ internal measures in those cases. Internal measures assess the quality of the
resulting clusters without using labels. The majority of the external measures are based on
the confusion matrix. Some of those measures are:

• Jaccard index
Jaccard =

T P
T P+FP+FN

(4.23)

• Fowlkes-Mallows index

FM =

√
T P

T P+FP
.

T P
T P+FN

(4.24)

• Rand index
Rand =

T P+T N
T P+T N +FP+FN

(4.25)

4.4 Cluster Analysis of Gene Expression Data | 51

Fig. 4.14 Internal cluster validation metrics

• Dice index
Dice =

2T P
2T P+FP+FN

(4.26)

Readers are referred to Section 4.3.5 for a detailed explanation of the confusion matrix
and related measures. The internal measures are based on two criteria:

1. Compactness measures how relevant the objects inside a cluster are.

2. Separation measures how separate a cluster is from the others.

Liu et al. [87], provide a table of popular internal validation measures in Figure 4.14.
PyGMQL comprises both internal and external validation measures for the clustering results.
Moreover, it also allows the resulting clusters to be evaluated using the metadata attributes.

Chapter 5

Human Cancer Classification using
Rna-Seq Data

5.1 Background on Cancer Classification

As reported by the American Cancer Society, cancer is the second top leading cause of
death in the United Stated, after the heart diseases. In 2017, more than 1.600.000 people
are expected to be diagnosed with cancer and 600.000 of those who (this value could be
interpreted as around 1.600 people per day) are expected to lose their lives to cancer [88].
Early diagnosis of cancer could increase the chances of survival and could enhance the
prognostication process. Moreover, determining the type of cancer has severe importance in
following a relevant treatment. Accordingly, there are numerous studies employing machine
learning techniques to predict cancer.

Most of the previous works on cancer prediction are using microarray technologies
and the majority of those works are addressing the binary cancer prediction problem. In
other words, they address only one type of cancer. Readers are referred to [89–91] for a
comprehensive study of cancer prediction using microarrays. As explained in Chapter 4,
RNA-Seq technologies provide more stable and reliable measurements than the microarray
technologies. Unlike many preceding studies, this work addresses the cancer prediction
problem using data coming from TCGA cancer database. Furthermore, we are solving a
multi-class cancer prediction problem consisting of 14 different types of cancer selected
according to the leading estimated death rates by cancer type in 2017 statistic provided by
the American Cancer Society illustrated in Figure 5.1.

54 | Human Cancer Classification using Rna-Seq Data

Fig. 5.1 Estimated cancer cases and deaths of 2017

For the reasons above, this work addresses an up-to-date problem and the scope of this
work is wider than the aforementioned studies.

5.2 Methodology

Figure 5.2 illustrates the experiment pipeline step by step. The TCGA data is retrieved
through GMQL web interface with the following query below. The further steps of the
experiments are performed using PyGMQL.

DATA_SET = SELECT() HG19_TCGA_rnaseqv2_gene;

MATERIALIZE DATA_SET INTO TCGA_Data;

5.2 Methodology | 55

Fig. 5.2 Pipeline of the experiment

56 | Human Cancer Classification using Rna-Seq Data

5.2.1 Preprocessing of TCGA Data

The original TCGA data consist of 31 different types of cancer. There are 9.825 samples
with 20.271 diverse genes. The TCGA cancer type names and codes of the 14 chosen cancers
are provided in Table 5.1 for the reproducibility of the results [7]. After selecting the 14
cancers, the sample size shrinks to 5.271. This operation is followed by the filtering of the
genes containing missing values in more than %40 of the samples and the number of genes is
reduced to 17.282. Subsequently, the missing values of the sample-gene matrix are imputed
using the lowest expression value of the gene among all of the samples. Later on, the data
normalization is performed by transforming the distribution of every gene into unit variance
in order to remove the biases described in Chapter 4. The code snippet using PyGMQL for
loading and preprocessing of the data is given below. The interested readers are referred to
the GitHub repository [92] for the PyGMQL source code and documentation.

import gmql as gl

path = './ Datasets/tcga_data/files/'

the normalized count value is selected

selected_values = ['normalized_count ']

we are only interested in the gene symbol

selected_region_data = ['gene_symbol ']

all metadata are selected

selected_meta_data = []

gs = gl.ml.GenometricSpace ()

to load the data

gs.load(path ,selected_region_data ,selected_meta_data ,

selected_values ,full_load=False)

matrix representation

gs.to_matrix(selected_values , selected_region_data , default_value=

None)

compact representation of region and metadata

gs.set_meta(['biospecimen_sample__sample_type_id ',

'manually_curated__tumor_tag ','biospecimen_sample__sample_type '])

from gmql.ml.algorithms.preprocessing import Preprocessing

pruning the genes that contain more than %40 missing values

gs.data = Preprocessing.prune_by_missing_percent(gs.data , 0.4)

missing value imputation

gs.data = Preprocessing.impute_using_statistics(gs.data , method='min'

)

gene standardization

gs.data = Preprocessing.to_unit_variance(gs.data)

5.2 Methodology | 57

Table 5.1 TCGA names and abbreviations of the chosen cancer types

Cancer Types Abbreviation

Acute Myeloid Leukemia LAML
Prostate adenocarcinoma PRAD
Bladder Urothelial Carcinoma BLCA
Breast invasive carcinoma BRCA
Colon adenocarcinoma COAD
Glioblastoma multiforme GBM
Liver hepatocellular carcinoma LIHC
Lung adenocarcinoma LUAD
Lung squamous cell carcinoma LUSC
Lymphoid Neoplasm Diffuse Large B-cell Lymphoma DLBC
Ovarian serous cystadenocarcinoma OV
Pancreatic adenocarcinoma PAAD
Rectum adenocarcinoma READ
Uterine Corpus Endometrial Carcinoma UCEC

5.2.2 Gene Selection

All of the experiments employ Chi-squared (χ2) feature selection technique for selecting
the top 2.000 informative genes. Figure 5.3 depicts the impact of gene selection on our
experiment dataset by comparing the sample correlograms computed using different number
of genes. The correlograms are computed using Pearson correlation coefficient. The sample-
sample pearson correlation matrix is sorted by the cancer types prior to the rendering of the
figures. The G parameter in the figures stands for the number of genes. Yellow color represents
the maximum correlation, while blue color denotes no correlation. The correlogram 5.3a
uses all of the genes. Therefore, more noise is present in the first correlogram than the
second correlogram that uses 2.000 genes selected using the Chi-squared feature selection.
In fact, the second correlogram is the clearest one among the four correlograms. One can
even distinguish the cancer types by observing the squares on the main diagonal. However,
choosing too many genes causes loss of information as seen in 5.3c and more obviously, in
5.3d.

5.2.3 Cancer Prediction

The stratified 10-fold cross validation is used in all of the experiments. Regarding the multi-
class classification, one-versus-rest (OvR) strategy is chosen for the logistic regression and

58 | Human Cancer Classification using Rna-Seq Data

(a) G=17282 (b) G=2000

(c) G=200 (d) G=50

Fig. 5.3 Comparison of sample correlation matrices

SVM experiments. The experiments are conducted using PyGMQL and Scikit-Learn. The
random seed number is set to 123 in an effort to provide reproducible results.

SVM

Four kernels of support vector machines (sigmoid, polynomial, linear, radial basis function)
are used in the experiments. As a result, the linear kernel SVM with l2 regularization
outperformed the other kernels. This result is not surprising since some other previous works
in the gene expression classification also concluded that the linear kernel yields better results

5.2 Methodology | 59

than the other kernels [93, 62]. Table 5.2 and Figure 5.4 denote the classification performance
of the SVM linear kernel classifier with l2 penalization.

Fig. 5.4 Confusion matrix for SVM linear kernel classifier

Logistic Regression

The very first technique applied in the experiments is the Logistic Regression which is
applied to the cancer prediction problem under two different parametrization. One with the l1
penalization and the other with l2 penalization. The outcome of model with l2 penalization
is slightly better. In fact the outcome of SVM linear and logistic regression are quite similar.

60 | Human Cancer Classification using Rna-Seq Data

Table 5.2 The results of the SVM linear kernel classifier

precision recall fscore support

prad 0.92 0.93 0.93 427
read 1.00 0.99 0.99 1218
paad 0.79 0.79 0.79 329
gbm 0.95 0.81 0.88 48
lihc 0.99 0.93 0.96 174
coad 1.00 0.96 0.98 173
brca 0.99 0.98 0.99 424
laml 0.89 0.87 0.88 576
ucec 0.84 0.87 0.85 554
lusc 1.00 0.99 0.99 309
blca 0.94 0.95 0.94 183
luad 1.00 1.00 1.00 550
ov 0.36 0.41 0.38 105
dlbc 0.96 0.98 0.97 201

James et al. [58] indicated that the similarity between the two classifiers is due to the similarity
between their loss functions. They also pointed out that SVMs perform better if the classes
are well-separated. Logistic regression, on the other hand, yields better results if overlapping
exists among the classes. Figure 5.5 illustrates the confusion table and Table 5.3 represents
the performance of the logistic regression classifier with l1 penalization.

Random Forests

Random forest is a suitable algorithm for analyzing the gene expression dataset since it is
able to handle a vast amount of variables. In our experiments, gini index is employed to
define the quality of a decision tree split. The experiments are repeated under a different
number of estimators, i.e., trees. In this experiment, random forests with 10, 100 and 200
trees are used. Typically the number of estimators are chosen to be approximately around to
the square root of the number of features. We observed that the performance of the algorithm
is stabilized after a certain number of estimators. Both 100 and 200 estimators yield similar
results. 10 estimators instead, yield a slightly worse result. Figure 5.6 depicts the confusion
matrix of the classification results of random forests with 200 estimators and Table 5.4 shows
the precision, recall and f-score metrics for each cancer type.

5.3 Discussion and Conclusion | 61

Table 5.3 The results of the Logistic Regression with l1 penalization classifier

precision recall fscore support

prad 0.93 0.93 0.93 427
read 0.99 0.99 0.99 1218
paad 0.76 0.80 0.78 329
gbm 0.98 0.83 0.90 48
lihc 1.00 0.91 0.95 174
coad 1.00 0.97 0.99 173
brca 0.99 0.99 0.99 424
laml 0.89 0.87 0.88 576
ucec 0.83 0.88 0.85 554
lusc 1.00 1.00 1.00 309
blca 0.91 0.95 0.93 183
luad 1.00 1.00 1.00 550
ov 0.35 0.33 0.34 105
dlbc 0.96 0.94 0.95 201

5.3 Discussion and Conclusion

Table 5.5 compares the overall accuracies of the employed classifiers evaluated using 10-
fold cross validation. The highest accuracy is achieved using logistic regression with l2
penalization. This is reasonable since the gene expression datasets often hold substantial
multicollinearity. Random forests with 100 and 200 estimators also yielded high scores.
Yet, they were also the fastest to compute. As for the support vector classifiers, the best
performance is achieved with the linear kernel. Overall, accuracy greater than 0.9 in a
multi-class cancer classification problem is noteworthy. By observing the confusion matrices
and the classification results, one can easily notice that the f-score of the Ovarian serous
cystadenocarcinoma (ov) is the lowest in all of the top-performing classifiers (it is zero in
random forests classifier and below). Ovarian serous cystadenocarcinoma is often misclassi-
fied as Pancreatic adenocarcinoma (paad) and vice versa. One cause of this problem could
be that the genes that are informative in detecting the Ovarian serous cystadenocarcinoma
and/or Pancreatic adenocarcinoma cancer are not considered important in presence of the
other genes that identify other cancer types with more sample values. We also suspected
that while we are removing the genes containing missing values in more than %40 of the
samples, we might be removing some genes that distinguish certain types of cancer. In
order to validate our hypothesis, we repeated the experiments without filtering out the genes

62 | Human Cancer Classification using Rna-Seq Data

Table 5.4 The results of the random forest classifier with 200 estimators

precision recall fscore support

prad 0.92 0.93 0.92 427
read 0.97 0.99 0.98 1218
paad 0.73 0.88 0.80 329
gbm 0.92 1.00 0.96 48
lihc 0.99 0.97 0.98 174
coad 1.00 1.00 1.00 173
brca 0.99 0.99 0.99 424
laml 0.89 0.89 0.89 576
ucec 0.87 0.85 0.86 554
lusc 1.00 0.98 0.99 309
blca 0.95 0.91 0.93 183
luad 1.00 0.99 0.99 550
ov 0.00 0.00 0.00 105
dlbc 0.95 0.96 0.95 201

containing more missing values than a threshold. The results did not produce a significant
change in the f-score of the ’ov’ and ’paad’ cancers.

5.3 Discussion and Conclusion | 63

Table 5.5 Overall comparison of the classifiers

Method 10-CV mean accuracy

svm-rbf 0.9070
svm-polynomial 0.8664
svm-sigmoid 0.7753
svm-linear-l2 0.9296
random forests 10 estimators 0.9070
random forests 100 estimators 0.9261
random forests 200 estimators 0.9277
logistic regression with l1 penalization 0.9275
logistic regression with l2 penalization 0.9358

64 | Human Cancer Classification using Rna-Seq Data

Fig. 5.5 Confusion matrix for Logistic Regression with l1 penalization

5.3 Discussion and Conclusion | 65

Fig. 5.6 Random forests with 200 estimators

Chapter 6

Analysis of Mutations in Cell-Specific
Enhancers

6.1 Background

Each cell of the human body contain the same DNA sequence regardless of the tissue they
are belonging to. However, the cells that reside in different tissues show diverse functionality.
This is due to the variation of the gene expression values. Witzel et al. [94] visualize this
phenomena on different tissues taken from the immune system, neural system and internal
organs in Figure 6.1.

An enhancer is a region of DNA that could be bound to proteins in order to enhance
the activation of a particular gene [95]. Figure 6.2 depicts the activation process of a gene.
Enhancers are usually positioned nearby the genes that they regulate. Yet, it could also
happen that the enhancer is located far from the genes that it regulates.

It is known that mutations occurring in the coding region of a gene cause diseases.
Moreover, it is proposed by the recent studies that the mutations happening on the enhancers
could also be the cause of human diseases, Emison et al. [96] and Ramser et al. [97]. To this
extent, Pinoli [98] designed a GMQL pipeline to reveal the association between the traits
and the mutations occurring on enhancers. This work is an extension of the work done by
Pinoli [98] in the sense that it further analyzes the results retrieved by GMQL.

6.2 Datasets

The mutation data are retrieved from the GWAS Catalog [99] which is provided by the
European Bioinformatics Institute [100] and the National Human Genome Research Institute

68 | Analysis of Mutations in Cell-Specific Enhancers

Fig. 6.1 Expression level variations on different tissues

[101]. The GWAS Catalog contains more than 49.769 single nucleotide polymorphism-
trait associations that are manually curated. GWAS is the abbreviation for genome-wide
association studies and it focuses on identifying the relationship between human diseases
and the single nucleotide polymorphisms (SNP) across the entire genome. The GWAS
studies compare the genome of the participants having a particular type of disease. The SNPs
occurring more frequently in the participants having a specific disease are considered to be
associated with that disease.

The enhancers, on the other hand, are retrieved from the ENCODE project. The main
objective of the ENCODE project is to discover all of the functional elements of the hu-
man genome. This study particularly concentrates on the H3K4me3 histone modification.
H3K4me3 stands for trimethylation of lysine 4 on histone H3 protein subunit and its cor-
responding nomenclature is given in Figure 6.3 [102]. The modification of H3K4me3 is
frequently associated with the active transcription of the surrounding genes [103].

6.3 Methodology | 69

Fig. 6.2 Illustration of an enhancer activating a gene [3]

Fig. 6.3 Nomenclature for H3K4me3

6.3 Methodology

The GMQL pipeline begins with the loading of the ENCODE data that comes in the narrow
peak format. The peak values are assumed to be the exactly at the middle of the start and
the end positions of the region. Later, the peak is extended 1500 units to the left and right in
order to cover the mutations occurring nearby. This operation is followed by the merging of
the samples having the same biosample_term_name attribute. Finally, the traits associated

70 | Analysis of Mutations in Cell-Specific Enhancers

with the mutations are collected for every cell line. The overall procedure is represented in
Figure 6.4.

Fig. 6.4 Data analysis pipeline

import gmql as gl

login credentials for the remote service

gl.login("username", "password")

remote performing of the query

gl.set_mode("remote")

the loading of the ENCODE data

enc = gl.load(name = "HG19_TCGA_dnaseq")

enc = enc[enc['target '] == 'H3K4me3 -human ']

defining the position of the peak in the middle of the region

peaked = enc.reg_project(new_field_dict={'peak': enc.right/2 + enc.

left/2})

extending the peak 1500 units to the left and to the right

large = peaked.reg_project(new_field_dict={'left': peaked.peak - 1500

, 'right ': peaked.peak + 1500})

merging of the duplicates

rep = large.cover(minAcc=1, maxAcc="ANY", groupBy=['

biosample_term_name '])

to detect the enhancers specific to the cell lines

6.4 Discussion and Conclusion | 71

S = rep.cover(minAcc=1, maxAcc=2)

rep_count = rep.map(S)

cse = rep_count.reg_select(rep_count.count_REP_S > 0)

loading of the mutations data

gwas = gl.load(name = "GWAS")

detecting the mutations occurring in the ENCODE enhancers

mapped = gwas.map(cse , new_reg_fields={'bag' = gl.BAG('trait ')})

M = MAP(bag AS BAG(trait)) CSE GWAS ;

N = M.reg_select(M.count_CSE_GWAS > 0).materialize ()

After materializing the data, a GenoMetric space matrix is created to represent the
mutation-trait matrix. The resulting matrix is of shape 51 rows × 1113 columns, i.e.,
51 mutations and 111 traits. As expected, the resulting matrix is highly sparse (%93 of
the values are equal to zero). Given this very sparse matrix, we first identified the most
frequently associated traits. Several mutations occurring in the cells including ’WERI-Rb-1’,
’GM12875’, ’fibroblast of lung’, ’GM12864’, ’LNCaP clone FGC’, ’MCF-7’, ’fibroblast of
dermis’, ’BE2C’, ’B cell’, ’cardiac mesoderm’, ’HeLa-S3’, ’fibroblast of gingiva’, ’cardiac
fibroblast’ demonstrated stronger associations with certain diseases. However, many other
mutations appeared to have very weak associations. The most frequent associations are
reported in Appendix A for further biological examination.

6.4 Discussion and Conclusion

To further investigate the data, we performed biclustering to cluster both the traits and the
mutations together in an effort to detect the subset of mutations showing similar behavior
on the subset of traits and vice versa. The conventional clustering algorithms would not be
convenient to be employed at this stage since the most features of the samples are consisting
of zeros, therefore the spectral biclustering method is applied. Obesity and obesity related
traits indicated similar frequencies on the mutations in certain cells such as GM12878 and
GM06990, Figure 6.5. This study was an attempt to demonstrate the power of PyGMQL on
solving biological problems. The true underlying nature of histone modifications and their
impact on certain traits is still an open research topic. We hope that the insights obtained
from this work will support the further research and we look forward to seeing more usages
of PyGMQL to solve open biological research problems. PyGMQL is publicly available on
the Python Package Index 1 and it is ready to be used by the bioinformatics practitioners.

1PyGMQL is available at https://pypi.python.org/pypi/gmql

https://pypi.python.org/pypi/gmql

72 | Analysis of Mutations in Cell-Specific Enhancers

Fig. 6.5 Biclustering the mutations and the traits together, rectangular shapes represent the
similar frequencies of trait-mutation associations.

Chapter 7

Conclusion

With this thesis, we introduced a machine learning and data analysis module to the PyGMQL
which is tailored for the processing of the next-generation sequencing data by taking the
underlying characteristics and biases of the next-generation sequencing data into account.
The module is designed to be easy-to-use for biologist or bioinformaticians, yet it also
supports more advanced manipulation of data and the integration with the other Python
modules for the expert user. A comprehensive literature review is performed prior to the
design of the module, in order to follow up the tendency in the NGS data analysis research.
With Chapter 6, we demonstrated the power of PyGMQL to solve the biological problem of
associating mutations occurring in certain enhancers to human traits/diseases.

In Chapter 5 we solved a multi-class cancer prediction problem on the 14 cancers having
the highest estimated death rate in 2017 using the TCGA datasets. The majority of the
previous cancer prediction studies are intended for the binary setting, i.e. whether cancer
or not. Our work is focusing on distinguishing multiple types of cancers. Moreover, the
previous works are using old technologies such as DNA microarrays. Therefore, they suffer
from the small sample size problem. By using the RNA-Seq technologies we overcome this
problem of small sample size. Additionally, our results are more precise and complete due
to the use of RNA-Seq technologies. The results of this experiment demonstrated that the
linear models are the most suitable models for this type of prediction problems. Support
vector machines (SVM) with linear kernel and the logistic regression with l2 penalization
showed similar classification performance. The highest 10-fold cross validated classification
accuracy of 0.93% is reached by using logistic regression with l2 penalization. Also, as
suggested in the previous studies, selecting the top 10% informative genes improved the
classification accuracy in a substantial manner. We look forward to seeing more usages of

74 | Conclusion

PyGMQL in bioinformatics research and we hope the results of the cancer classification
experiment will serve as a basis for future gene expression classification studies.

References

[1] Wetterstrand ka. dna sequencing costs: Data from the nhgri genome sequencing
program (gsp). www.genome.gov/sequencingcostsdata, 2015. Accessed: 2017-08-08.

[2] Michael Eisenstein. Big data: The power of petabytes. Nature, 527(7576):S2–S4,
2015.

[3] The fantom project charts an atlas of gene activity over the human body. www.science.
ku.dk/english/press/news/2014/fantom/. Accessed: 2017-08-08.

[4] Lilian T C França, Emanuel Carrilho, and Tarso B L Kist. A review of DNA sequencing
techniques. Quarterly reviews of biophysics, 35(2):169–200, 2002. ISSN 0033-5835.
doi: 10.1017/S0033583502003797.

[5] I Present. Cramming more components onto integrated circuits. Readings in computer
architecture, 56, 2000.

[6] Stephan C Schuster. Next-generation sequencing transforms today’s biology. Nature
methods, 5(1):16, 2008.

[7] Tcga cancer types. https://tcga-data.nci.nih.gov/docs/publications/tcga, 2016. Ac-
cessed: 2017-08-08.

[8] ENCODE Project Consortium et al. Identification and analysis of functional elements
in 1% of the human genome by the encode pilot project. nature, 447(7146):799, 2007.

[9] 1000 Genomes Project Consortium et al. An integrated map of genetic variation from
1,092 human genomes. Nature, 491(7422):56, 2012.

[10] Sowmiya Moorthie, Alison Hall, and Caroline F Wright. Informatics and clinical
genome sequencing: opening the black box. Genetics in Medicine, 15(3):165–171,
2012.

[11] Stefano Ceri, Abdulrahman Kaitoua, Marco Masseroli, Pietro Pinoli, and Francesco
Venco. Data Management for Heterogeneous Genomic Datasets. IEEE/ACM
transactions on computational biology and bioinformatics / IEEE, ACM, 5963
(c):1–14, 2016. ISSN 1557-9964. doi: 10.1109/TCBB.2016.2576447. URL
http://www.ncbi.nlm.nih.gov/pubmed/27295683.

[12] Marco Masseroli, Pietro Pinoli, Francesco Venco, Abdulrahman Kaitoua, Vahid Jalili,
Fernando Palluzzi, Heiko Muller, and Stefano Ceri. GenoMetric Query Language:
A novel approach to large-scale genomic data management. Bioinformatics, 31(12):
1881–1888, 2015. ISSN 14602059. doi: 10.1093/bioinformatics/btv048.

www.genome.gov/sequencingcostsdata
www.science.ku.dk/english/press/news/2014/fantom/
www.science.ku.dk/english/press/news/2014/fantom/
https://tcga-data.nci.nih.gov/docs/publications/tcga
http://www.ncbi.nlm.nih.gov/pubmed/27295683

76 | References

[13] Abdulrahman Kaitoua. Scalable Data Management and Processing for Genomic
Computing. PhD thesis, 2016.

[14] Belinda Giardine, Cathy Riemer, Ross C Hardison, Richard Burhans, Laura Elnitski,
Prachi Shah, Yi Zhang, Daniel Blankenberg, Istvan Albert, James Taylor, et al. Galaxy:
a platform for interactive large-scale genome analysis. Genome research, 15(10):
1451–1455, 2005.

[15] Multiindex / advanced indexing. https://pandas.pydata.org/pandas-docs/stable/
advanced.html, 2017. Accessed: 2017-08-08.

[16] Anand Rajaraman and Jeffrey David Ullman. Data Mining, page 1–17. Cambridge
University Press, 2011. doi: 10.1017/CBO9781139058452.002.

[17] Joeran Beel, Bela Gipp, Stefan Langer, and Corinna Breitinger. Research-paper
recommender systems: a literature survey. International Journal on Digital Libraries,
17(4):305–338, 2016. ISSN 14321300. doi: 10.1007/s00799-015-0156-0.

[18] Tag cloud. http://www2007.org/htmlposters/poster988/, 2007. Accessed: 2017-08-08.

[19] T R Golub, C Huard, M Gaasenbeek, J P Mesirov, H Coller, M L Loh, J R Downing,
M A Caligiuri, C D Bloomfield, and E S Lander. Molecular Classification of Cancer:
Class Discovery and Class Prediction by Gene Expression Monitoring. 286(October):
531–538, 1999.

[20] Xing Fu, Ning Fu, Song Guo, Zheng Yan, Ying Xu, Hao Hu, Corinna Menzel,
Wei Chen, Yixue Li, Rong Zeng, and Philipp Khaitovich. Estimating accuracy of
rna-seq and microarrays with proteomics. BMC Genomics, 10(1):161, Apr 2009.
ISSN 1471-2164. doi: 10.1186/1471-2164-10-161. URL https://doi.org/10.1186/
1471-2164-10-161.

[21] Cancer Genome Atlas Network et al. Comprehensive molecular characterization of
human colon and rectal cancer. Nature, 487(7407):330, 2012.

[22] Zhong Wang, Mark Gerstein, and Michael Snyder. Rna-seq: a revolutionary tool for
transcriptomics. Nature reviews genetics, 10(1):57–63, 2009.

[23] Fatih Ozsolak and Patrice M Milos. Rna sequencing: advances, challenges and
opportunities. Nature reviews. Genetics, 12(2):87, 2011.

[24] Brian J Haas and Michael C Zody. Advancing rna-seq analysis. Nature biotechnology,
28(5):421–423, 2010.

[25] Jay Shendure. The beginning of the end for microarrays? Nature methods, 5(7):
585–587, 2008.

[26] Ali Mortazavi, Brian A Williams, Kenneth McCue, Lorian Schaeffer, and Barbara
Wold. Mapping and quantifying mammalian transcriptomes by rna-seq. Nature
methods, 5(7):621–628, 2008.

[27] G. Hughes. On the mean accuracy of statistical pattern recognizers. IEEE Transactions
on Information Theory, 14(1):55–63, January 1968. ISSN 0018-9448. doi: 10.1109/
TIT.1968.1054102.

https://pandas.pydata.org/pandas-docs/stable/advanced.html
https://pandas.pydata.org/pandas-docs/stable/advanced.html
http://www2007.org/htmlposters/poster988/
https://doi.org/10.1186/1471-2164-10-161
https://doi.org/10.1186/1471-2164-10-161

References | 77

[28] Sonia Tarazona, Fernando García-Alcalde, Joaquín Dopazo, Alberto Ferrer, and Ana
Conesa. Differential expression in rna-seq: a matter of depth. Genome research, 21
(12):2213–2223, 2011.

[29] P. Juszczak, D. M. J. Tax, and R. P. W. Duin. Feature scaling in support vector data
description.

[30] Marcilio CP De Souto, Pablo A Jaskowiak, and Ivan G Costa. Impact of missing
data imputation methods on gene expression clustering and classification. BMC
bioinformatics, 16(1):64, 2015.

[31] O Troyanskaya, M Cantor, G Sherlock, P Brown, T Hastie, R Tibshirani, D Bot-
stein, and R B Altman. Missing value estimation methods for DNA microar-
rays. Bioinformatics. 2001 Jun;, 17(6):520–525, 2001. ISSN 1367-4803. doi:
10.1093/bioinformatics/17.6.520.

[32] Upmanu Lall and Ashish Sharma. A nearest neighbor bootstrap for resampling
hydrologic time series. Water Resources Research, 32(3):679–693, 1996.

[33] Shichao Zhang. Nearest neighbor selection for iteratively knn imputation. J. Syst.
Softw., 85(11):2541–2552, November 2012. ISSN 0164-1212. doi: 10.1016/j.jss.2012.
05.073. URL http://dx.doi.org/10.1016/j.jss.2012.05.073.

[34] Daxin Jiang, Chun Tang, and Aidong Zhang. Cluster Analysis for Gene Expression
Data: A Survey. 16(11):1370–1386, 2004.

[35] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical
learning, volume 1. Springer series in statistics New York, 2001.

[36] Xin Jin, Anbang Xu, Rongfang Bie, and Ping Guo. Machine learning techniques
and chi-square feature selection for cancer classification using sage gene expression
profiles. In International Workshop on Data Mining for Biomedical Applications,
pages 106–115. Springer, 2006.

[37] Dina A Salem, Abul Seoud, Rania Ahmed, and Hesham Arafat Ali. Mgs-cm: a
multiple scoring gene selection technique for cancer classification using microarrays.
International Journal of Computer Applications, 36(6):30–37, 2011.

[38] Dina A Salem, R Seoud, and Hesham A Ali. Dmca: A combined data mining technique
for improving the microarray data classification accuracy. In 2011 International
Conference on Environment and Bioscience, pages 36–41, 2011.

[39] Pengyi Yang, Bing B Zhou, Zili Zhang, and Albert Y Zomaya. A multi-filter enhanced
genetic ensemble system for gene selection and sample classification of microarray
data. BMC bioinformatics, 11(1):S5, 2010.

[40] Mark A Hall and Lloyd A Smith. Practical feature subset selection for machine
learning. 1998.

[41] A Bharathi and AM Natarajan. Cancer classification of bioinformatics datausing
anova. International journal of computer theory and engineering, 2(3):369, 2010.

http://dx.doi.org/10.1016/j.jss.2012.05.073

78 | References

[42] Peyman Jafari and Francisco Azuaje. An assessment of recently published gene
expression data analyses: reporting experimental design and statistical factors. BMC
Medical Informatics and Decision Making, 6(1):27, 2006.

[43] Iñaki Inza, Pedro Larrañaga, Rosa Blanco, and Antonio J. Cerrolaza. Filter versus
wrapper gene selection approaches in dna microarray domains. Artif. Intell. Med., 31
(2):91–103, June 2004. ISSN 0933-3657. doi: 10.1016/j.artmed.2004.01.007. URL
http://dx.doi.org/10.1016/j.artmed.2004.01.007.

[44] Roberto Ruiz, José C. Riquelme, and Jesús S. Aguilar-Ruiz. Incremental wrapper-
based gene selection from microarray data for cancer classification. Pattern Recogn.,
39(12):2383–2392, December 2006. ISSN 0031-3203. doi: 10.1016/j.patcog.2005.11.
001. URL http://dx.doi.org/10.1016/j.patcog.2005.11.001.

[45] Maria Fernanda B Wanderley, Vincent Gardeux, René Natowicz, and Antônio de Pá-
dua Braga. Ga-kde-bayes: an evolutionary wrapper method based on non-parametric
density estimation applied to bioinformatics problems. In ESANN, 2013.

[46] Alok Sharma, Seiya Imoto, and Satoru Miyano. A top-r feature selection algorithm for
microarray gene expression data. IEEE/ACM Transactions on Computational Biology
and Bioinformatics (TCBB), 9(3):754–764, 2012.

[47] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection
for cancer classification using support vector machines. Mach. Learn., 46(1-3):
389–422, March 2002. ISSN 0885-6125. doi: 10.1023/A:1012487302797. URL
http://dx.doi.org/10.1023/A:1012487302797.

[48] Shuangge Ma, Xiao Song, and Jian Huang. Supervised group lasso with applications
to microarray data analysis. BMC bioinformatics, 8(1):60, 2007.

[49] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[50] Ramón Díaz-Uriarte and Sara Alvarez De Andres. Gene selection and classification
of microarray data using random forest. BMC bioinformatics, 7(1):3, 2006.

[51] Hongying Jiang, Youping Deng, Huann-Sheng Chen, Lin Tao, Qiuying Sha, Jun
Chen, Chung-Jui Tsai, and Shuanglin Zhang. Joint analysis of two microarray gene-
expression data sets to select lung adenocarcinoma marker genes. BMC bioinformatics,
5(1):81, 2004.

[52] Jogendra Singh Kushwah and Divakar Singh. A Comparative Result Analysis of
Human Cancer Diagnosis using Ensemble Classification Methods. 77(3):14–18, 2013.

[53] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[54] Yoav Freund, Robert Schapire, and Naoki Abe. A short introduction to boosting.
Journal-Japanese Society For Artificial Intelligence, 14(771-780):1612, 1999.

[55] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

http://dx.doi.org/10.1016/j.artmed.2004.01.007
http://dx.doi.org/10.1016/j.patcog.2005.11.001
http://dx.doi.org/10.1023/A:1012487302797

References | 79

[56] Heping Zhang, Chang-Yung Yu, and Burton Singer. Cell and tumor classification
using gene expression data: construction of forests. Proceedings of the National
Academy of Sciences, 100(7):4168–4172, 2003.

[57] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised
learning algorithms. In Proceedings of the 23rd international conference on Machine
learning, pages 161–168. ACM, 2006.

[58] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction
to statistical learning, volume 112. Springer, 2013.

[59] Anders Hald. On the history of maximum likelihood in relation to inverse probability
and least squares. Statistical Science, pages 214–222, 1999.

[60] Ji Zhu and Trevor Hastie. Classification of gene microarrays by penalized logistic
regression. Biostatistics, 5(3):427–443, 2004.

[61] Vladimir Vapnik and Corinna Cortes. Support-vector networks. Machine learning, 20
(3):273–297, 1995.

[62] Terrence S Furey, Nello Cristianini, Nigel Duffy, David W Bednarski, Michel Schum-
mer, and David Haussler. Support vector machine classification and validation of
cancer tissue samples using microarray expression data. Bioinformatics, 16(10):
906–914, 2000.

[63] Vladimir Vapnik. The nature of statistical learning theory. Springer science &
business media, 2013.

[64] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection
for cancer classification using support vector machines. Machine learning, 46(1):
389–422, 2002.

[65] Michael PS Brown, William Noble Grundy, David Lin, Nello Cristianini,
Charles Walsh Sugnet, Terrence S Furey, Manuel Ares, and David Haussler.
Knowledge-based analysis of microarray gene expression data by using support vector
machines. Proceedings of the National Academy of Sciences, 97(1):262–267, 2000.

[66] Ulrich H-G Kreßel. Pairwise classification and support vector machines. In Advances
in kernel methods, pages 255–268. MIT press, 1999.

[67] Stephen V Stehman. Selecting and interpreting measures of thematic classification
accuracy. Remote sensing of Environment, 62(1):77–89, 1997.

[68] Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Ijcai, volume 14, pages 1137–1145. Stanford, CA, 1995.

[69] Saeed Tavazoie, Jason D Hughes, Michael J Campbell, Raymond J Cho, and George M
Church. Systematic determination of genetic network architecture. Nature genetics,
22(3):281–285, 1999.

[70] John A Hartigan. Direct clustering of a data matrix. Journal of the american statistical
association, 67(337):123–129, 1972.

80 | References

[71] Yizong Cheng and George M Church. Biclustering of expression data. In Ismb,
volume 8, pages 93–103, 2000.

[72] Ali Oghabian, Sami Kilpinen, Sampsa Hautaniemi, and Elena Czeizler. Biclustering
methods: biological relevance and application in gene expression analysis. PloS one,
9(3):e90801, 2014.

[73] Amos Tanay, Roded Sharan, and Ron Shamir. Biclustering algorithms: A survey.
Handbook of computational molecular biology, 9(1-20):122–124, 2005.

[74] Kemal Eren, Mehmet Deveci, Onur Küçüktunç, and Ümit V Çatalyürek. A com-
parative analysis of biclustering algorithms for gene expression data. Briefings in
bioinformatics, 14(3):279–292, 2012.

[75] Stanislav Busygin, Oleg Prokopyev, and Panos M Pardalos. Biclustering in data
mining. Computers & Operations Research, 35(9):2964–2987, 2008.

[76] Sara C Madeira and Arlindo L Oliveira. Biclustering algorithms for biological data
analysis: a survey. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics (TCBB), 1(1):24–45, 2004.

[77] Beatriz Pontes, Raúl Giráldez, and Jesús S. Aguilar-Ruiz. Biclustering on expression
data: A review. Journal of Biomedical Informatics, 57:163–180, 2015. ISSN 15320464.
doi: 10.1016/j.jbi.2015.06.028. URL http://dx.doi.org/10.1016/j.jbi.2015.06.028.

[78] James MacQueen et al. Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pages 281–297. Oakland, CA, USA., 1967.

[79] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of
clusters in a data set via the gap statistic. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 63(2):411–423, 2001.

[80] Dan Pelleg, Andrew W Moore, et al. X-means: Extending k-means with efficient
estimation of the number of clusters. In ICML, volume 1, pages 727–734, 2000.

[81] Peng Liu and Yaqing Si. Cluster analysis of rna-sequencing data. In Statistical
Analysis of Next Generation Sequencing Data, pages 191–217. Springer, 2014.

[82] Richard Arnold Johnson, Dean W Wichern, et al. Applied multivariate statistical
analysis, volume 4. Prentice-Hall New Jersey, 2014.

[83] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Rock: A robust clustering al-
gorithm for categorical attributes. In Data Engineering, 1999. Proceedings., 15th
International Conference on, pages 512–521. IEEE, 1999.

[84] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Kdd,
volume 96, pages 226–231, 1996.

[85] Daxin Jiang, Jian Pei, and Aidong Zhang. Dhc: a density-based hierarchical clustering
method for time series gene expression data. In Bioinformatics and Bioengineering,
2003. Proceedings. Third IEEE Symposium on, pages 393–400. IEEE, 2003.

http://dx.doi.org/10.1016/j.jbi.2015.06.028

References | 81

[86] Yuval Kluger, Ronen Basri, Joseph T Chang, and Mark Gerstein. Spectral biclustering
of microarray data: coclustering genes and conditions. Genome research, 13(4):
703–716, 2003.

[87] Yanchi Liu, Zhongmou Li, Hui Xiong, Xuedong Gao, and Junjie Wu. Understanding
of internal clustering validation measures. In Data Mining (ICDM), 2010 IEEE 10th
International Conference on, pages 911–916. IEEE, 2010.

[88] Robert A Smith, Kimberly S Andrews, Durado Brooks, Stacey A Fedewa, Deana
Manassaram-Baptiste, Debbie Saslow, Otis W Brawley, and Richard C Wender. Cancer
screening in the united states, 2017: A review of current american cancer society
guidelines and current issues in cancer screening. CA: a cancer journal for clinicians,
67(2):100–121, 2017.

[89] Kaye E Basford, Geoffrey J Mclachlan, and Suren I Rathnayake. On the classification
of microarray gene-expression data. 14(4):402–410, 2012. doi: 10.1093/bib/bbs056.

[90] G Sophia Reena and P Rajeswari. A Survey of Human Cancer Classification using
Micro Array Data. 2(5):1523–1533, 2011.

[91] Emad Mohamed, Enas M F El, Houby Khaled, Tawfik Wassif, and Akram I Salah.
Survey on different Methods for Classifying Gene Expression using Microarray
Approach. 150(1):12–21, 2016.

[92] Pygmql repository. ttps://github.com/DEIB-GECO/PyGMQL/, 2016. Accessed:
2017-08-08.

[93] C. Devi Arockia Vanitha, D. Devaraj, and M. Venkatesulu. Gene expression data
classification using Support Vector Machine and mutual information-based gene
selection. Procedia Computer Science, 47(C):13–21, 2014. ISSN 18770509. doi:
10.1016/j.procs.2015.03.178. URL http://dx.doi.org/10.1016/j.procs.2015.03.178.

[94] Franziska Witzel, Louise Maddison, and Nils Blüthgen. How scaffolds shape mapk
signaling: what we know and opportunities for systems approaches. Frontiers in
physiology, 3:475–475, 2011.

[95] Elizabeth M Blackwood and James T Kadonaga. Going the distance: a current view
of enhancer action. Science, 281(5373):60–63, 1998.

[96] Eileen Sproat Emison, Andrew S McCallion, Carl S Kashuk, Richard T Bush, et al. A
common sex-dependent mutation in a ret enhancer underlies hirschsprung disease risk.
Nature, 434(7035):857, 2005.

[97] Juliane Ramser, Fatima E Abidi, Celine A Burckle, Claus Lenski, Helga Toriello,
Gaiping Wen, Herbert A Lubs, Stefanie Engert, Roger E Stevenson, Alfons Meindl,
et al. A unique exonic splice enhancer mutation in a family with x-linked mental
retardation and epilepsy points to a novel role of the renin receptor. Human molecular
genetics, 14(8):1019–1027, 2005.

[98] Pietro Pinoli. Modeling and Querying Genomic Data. PhD thesis, 2017.

ttps://github.com/DEIB-GECO/PyGMQL/
http://dx.doi.org/10.1016/j.procs.2015.03.178

82 | References

[99] Genome wide association studies. https://www.ebi.ac.uk/gwas/docs/about. Accessed:
2017-08-08.

[100] European bioinformatics institute. http://www.ebi.ac.uk/. Accessed: 2017-08-08.

[101] National human genome research institute. https://www.genome.gov/. Accessed:
2017-08-08.

[102] H3k4me3. https://en.wikipedia.org/wiki/H3K4me3. Accessed: 2017-08-08.

[103] Matthew G Guenther, Stuart S Levine, Laurie A Boyer, Rudolf Jaenisch, and Richard A
Young. A chromatin landmark and transcription initiation at most promoters in human
cells. Cell, 130(1):77–88, 2007.

[104] Ali Seyed Shirkhorshidi, Saeed Aghabozorgi, and Teh Ying Wah. A comparison study
on similarity and dissimilarity measures in clustering continuous data. PloS one, 10
(12):e0144059, 2015.

https://www.ebi.ac.uk/gwas/docs/about
http://www.ebi.ac.uk/
https://www.genome.gov/
https://en.wikipedia.org/wiki/H3K4me3

Appendix A

Most Frequently Associated Traits to
Mutations

Top five traits associated to the mutations are provided in this appendix. The results are
achieved using the GMQL pipeline defined in Chapter 6.

Table A.1 Traits associated to the mutation on WERI-Rb-1

Trait Frequency

Post bronchodilator FEV1 47.0
Post bronchodilator FEV1/FVC ratio 29.0
Obesity 19.0
Schizophrenia 18.0
Obesity-related traits 18.0

Table A.2 Traits associated to the mutation on GM12875

Trait Frequency

Post bronchodilator FEV1 11.0
QRS duration 7.0
Body mass index 7.0
Obesity 7.0
Schizophrenia 7.0

84 | Most Frequently Associated Traits to Mutations

Table A.3 Traits associated to the mutation on fibroblast of lung

Trait Frequency

Post bronchodilator FEV1 14.0
Post bronchodilator FEV1/FVC ratio 11.0
Blood protein levels 6.0
Rheumatoid arthritis 5.0
Post bronchodilator FEV1/FVC ratio in COPD 5.0

Table A.4 Traits associated to the mutation on GM12864

Trait Frequency

Obesity-related traits 15.0
Obesity 15.0
Height 9.0
Post bronchodilator FEV1 8.0
Crohn’s disease 8.0

Table A.5 Traits associated to the mutation on LNCaP clone FGC

Trait Frequency

Post bronchodilator FEV1 13.0
Schizophrenia 9.0
Obesity 7.0
Waist-to-hip ratio adjusted for body mass index 6.0
Post bronchodilator FEV1/FVC ratio 6.0

Table A.6 Traits associated to the mutation on MCF-7

Trait Frequency

Post bronchodilator FEV1 32.0
Post bronchodilator FEV1/FVC ratio 21.0
Body mass index 14.0
Waist-to-hip ratio adjusted for body mass index 13.0
Schizophrenia 13.0

| 85

Table A.7 Traits associated to the mutation on fibroblast of dermis

Trait Frequency

Post bronchodilator FEV1 9.0
Post bronchodilator FEV1/FVC ratio 5.0
Body mass index 5.0
PR interval 2.0
PR interval in Tripanosoma cruzi seropositivity 2.0

Table A.8 Traits associated to the mutation on BE2C

Trait Frequency

Post bronchodilator FEV1 18.0
Post bronchodilator FEV1/FVC ratio 13.0
Body mass index 10.0
IgG glycosylation 7.0
Obesity 7.0

Appendix B

Similarity Measures

This figure is extracted from the work of Shirkhorshidi et al. [104]. The interested readers can
refer to [104] for a detailed analysis, comparison and benchmark of the similarity measures
on fifteen publicly available datasets.

88 | Similarity Measures

Fig. B.1 The similarity measures with advantages, disadvantages, complexities and applica-
tions

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 DNA Sequencing Technologies
	1.2 Analysis of Genomic Data
	1.3 Our Contributions

	2 Summary of Data Extraction Method
	2.1 Genomic Data Model (GDM)
	2.2 GenoMetric Query Language (GMQL)
	2.2.1 Relational GMQL Operations
	2.2.2 Domain-specific GMQL Operations
	2.2.3 Utility Operations
	2.2.4 Biological Example
	2.2.5 Web Interface
	2.2.6 Python Interface

	3 System Architecture for the Analysis of GenoMetric Space Data
	3.1 Loading the Materialized Data into Memory
	3.2 Region Data Representation
	3.2.1 Operations on the Region Data

	3.3 Compact Structure
	3.4 Support for Multi-Ref Mapped Data
	3.5 Text Analytics Using Metadata

	4 Machine Learning Techniques for the Tertiary Analysis of the RNA-Seq Data
	4.1 Intrinsic Characteristics of RNA-Seq Data
	4.1.1 High-dimensionality
	4.1.2 Biases of the RNA-Seq Data
	4.1.3 Missing Values

	4.2 Gene Selection Methods
	4.2.1 Filter Methods
	4.2.2 Wrapper Methods
	4.2.3 Embedded Methods

	4.3 On the Classification of Gene Expression Data
	4.3.1 Ensemble-based classification methods
	4.3.2 KNN Classifier
	4.3.3 Logistic Regression
	4.3.4 Support Vector Machine
	4.3.5 Performance Assessment of Classifiers

	4.4 Cluster Analysis of Gene Expression Data
	4.4.1 Unsupervised Learning
	4.4.2 Types of Clustering Applications on Gene Expression Data
	4.4.3 Clustering Algorithms
	4.4.4 Cluster Validation

	5 Human Cancer Classification using Rna-Seq Data
	5.1 Background on Cancer Classification
	5.2 Methodology
	5.2.1 Preprocessing of TCGA Data
	5.2.2 Gene Selection
	5.2.3 Cancer Prediction

	5.3 Discussion and Conclusion

	6 Analysis of Mutations in Cell-Specific Enhancers
	6.1 Background
	6.2 Datasets
	6.3 Methodology
	6.4 Discussion and Conclusion

	7 Conclusion
	References
	Appendix A Most Frequently Associated Traits to Mutations
	Appendix B Similarity Measures

