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ABSTRACT 

 

Automata are set to become ubiquitous in modern society, fulfilling assistive, 

collaborative industrial and domestic roles. In fulfilling these roles, the robots will 

come in contact with users of varied technical backgrounds, often having no special 

training for operating them. It is crucial, therefore, to provide novel ways in which 

humans may command them, lowering the barrier of entry to provide a safer, more 

intuitive and collaborative interactive environment. Pointing is one of the first ways 

humans interact with one another and throughout their lives it remains a very 

important element in human communication. As such, it is a natural candidate for 

being used as a means to interact with robots. Therefore, properly establishing an 

effective point-and-command human-machine interface comes as a natural milestone 

in the process of universalizing the application of automata. In interacting with robots, 

one of the crucial tasks to be performed is picking and placing objects. In domestic or 

uncontrolled industrial environments, the objects involved in these operations are 

often previously unknown. This work, thus, set out to provide a broad view on how 

human-robot interfaces have been done in the past, while proposing a different 

pipeline for commanding the grasping of unknown objects. This system proposes the 

use of an RGB-D sensor – the Microsoft Kinect – as a main visual sensor and by 

using its embedded skeleton tracking capabilities, is able to identify which object the 

user wants the robot to grasp (i.e. the object the user is pointing at) and 

autonomously generate a grasping pose for said object. The proposed system offers 

added robustness with respect to object traits, such as varying and non-uniform 

colors and different lighting conditions of the scene by applying an extension of 

Felzenszwalb and Huttenlocher’s graph-based image segmentation algorithm instead 

of traditional color tresholding or background removal techniques and by 

implementing a different kind of Point-Cloud filtering technique that allows it to reduce 

the effect of false-negative identifications in the image segmentation step. 
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ESTRATTO IN LINGUA ITALIANA 

 

Gran parte delle previsioni indicano che i robot diventeranno onnipresenti nella 

società umana, integrati in tutte gli ambiti della nostra vita - domestici, professionali e 

personali. Questa onnipresenza, però, presenterà una grande sfida, mai affrontata 

per coloro che hanno il compito di progettare i robot, cioè il cambiamento radicale del 

profilo degli utilizzatori e del contesto nel quale il robot è adoperato. 

Con la diffusione dei sistemi automatici, la classe degli utilizzatori, che 

inizialmente comprendevano soltanto operai specializzati da aziende, includerà 

elementi meno esperti, dal momento che non sarà possibile dedicare all'intera 

popolazione il tempo e le risorse che inizialmente venivano destinati agli operai. 

Inoltre, in particolar modo per gli assistive robot, l'utilizzatore potrebbe non 

essere capace di interagire con il robot in modo convenzionale; questo potrebbe 

essere il caso delle persone disabili, impossibilitate nell'utilizzo, ad esempio, persino 

della tastiera con la quale avviare un dispositivo vigilante. 

Di conseguenza, sia per questioni di sicurezza che di praticità, l'interfaccia 

uomo-macchina deve diventare necessariamente più semplice ed intuitiva. Inoltre 

anche nell'ambito industriale, in cui gli utilizzatori continueranno a possedere una 

formazione tecnica adeguata e le difficoltà associate alle persone con disabilità sono 

meno rilevanti, l'area dei robot sarà interessata da importanti cambiamenti. 

Con l'avvento dell'Industria 4.0, vi è una crescente richiesta di un ambiente 

industriale che sia più dinamico e più flessibile, che permetta di modificare sia il 

prodotto finale, sia la disposizione delle macchine e degli operati all'interno 

dell'azienda. Per questi motivi, l'approccio tradizionale con il quale sono programmati 

i robot di oggi, caratterizzati da traiettorie fisse e hard-coded (cioè difficili da 
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modificare, dal momento che alcune volte è richiesta buona esperienza in diversi 

linguaggi di programmazione), presto non sarà più adeguata per grande parte delle 

nuove aziende. 

Dato questo paronama, è evidente che vi sia la necessità di introdurre nuove 

tecniche per programmare gli automi futuri,e ci sono già numerose proposte che 

prevedono un'interfaccia uomo-computer che faciliterebbe questo incarico. 

Alcune soluzioni (come, ad esempio, il caso di Matlab e Simulink) mirano a 

questo obiettivo introducendo elementi visuali nel linguaggio di programmazione, che 

prende il nome di programmazione con blocchi; queste alternative, sebbene siano 

utili ai fini dell'apprendimento della programmazione, sono a volte molto limitanti. 

D'altro canto, vi sono anche altre alternative che propongono di utilizzare 

mezzi più intuitivi. 

Sin dai primi anni della sua vita, l'essere umano è infatti abituato a interagire 

per mezzo di gesti, i quali rappresentano per l'uomo la tecnica più diffusa di 

comunicazione a breve distanza. 

Per questo motivo un'interfaccia uomo-macchina che sia capace di capire e 

processare i comandi emessi per mezzo dei gesti sarebbe molto intuitiva e semplice 

da usare. 

Infine, una tra le attività più basilari dei robot è quella di raccogliere e 

posizionare oggetti; dal momento che i nuovi robot saranno usati in ambienti e 

contesti sconosciuti, è conveniente sviluppare una Human Machine Interface (HMI) 

che sia robusta rispetto a variazione ambientali e delle caratteristiche degli oggetti. 

Sulla scorta del discorso che è stato presentato finora, questa tesi si dedica a 

studiare e proporre un metodo alternativo alle tradizionali HMI basato sul paradigma 
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point-and-command per operazioni di prelievo e posizionamento di pezzi per 

manipolatori robotici. 

Dopo aver effettuato un'ampia ricerca sullo stato dell'arte, è stata identificata 

un'importante mancanza nelle HMI proposte, cioè che esse fossero allo stesso 

tempo robuste a variazioni ambientali (a causa delle tecniche di rimozione di fondo 

usate) e a variazioni nelle caratteristiche degli oggetti (a causa delle tecniche di 

identificazione degli oggetti manipolati). 

In riposta a questa mancanza, è stata proposta una nuova interfaccia che usa 

il paradigma point-and-command; essa utilizza una tecnica di segmentazione di 

immagini basata sulla teoria dei grafi e lo skeletal tracking per identificare l’obiettivo 

del manipolatore. I risultati ottenuti in questo modo sono sia robusti rispetto 

all'ambientazione, sia rispetto a molte caratteristiche degli oggetti, come ad esempio 

colore, riflettività e struttura. 

Per la sua semplicità e robustezza, la pinza utilizzata è di natura a ventosa, e 

la strategia di generazione delle configurazioni di grasping è basata sulle euristiche 

ricavate dalla letteratura; esse consistono nell'afferrare l'oggetto nelle aree più piatte 

della sua superficie e quanto più vicino possibile al suo centro di massa. 

Il risultato finale è stato quello di ottenere una HMI funzionale, comandata 

unicamente tramite gesti, capace di funzionare in ambienti generici e di permettere la 

manipolazione di oggetti di diversa natura; essa può essere utilizzata anche 

affiancata ad altri moduli di controllo per fornire un'esperienza più intuitiva e sicura 

per gli utilizzatori non esperti.  

Infine, un ulteriore e importante contributo di questa tesi è stato quello di 

fornire un'estensione del paradigma point-and-command basato sulla 
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segmentatzione di immagini che ne migliora la versatilità, e una tecnica innovativa 

per filtrare le nuvole di punti migliorandone la robustezza. 
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1. Introduction & Thesis Outline 

1.1. Introduction 

In its September 2016 press release, the International Federation of Robotics 

(IFR) highlighted that the annual supply of industrial robots in the world was expected 

to grow up to 60% by 2019, as seen in Figure 1. This large growth reflects the 

growing adoption of robotics and overall automation of industrial processes. This 

growth, however, is not directly linked with the traditional model of automation. As 

noted in [1], the current and future industrial environment differs from the past ones in 

many factors, including the need for increasingly more versatile manufacturing 

plants, increased interaction with non-specialized workers in the same work 

environment [2] and, consequently, increased complexity of tasks to be performed by 

the machines under a constantly shifting workspace. One example of this shift is the 

increase in research [3]–[5] and market availability of collaborative robots, such as 

ABB’s IRB 14000 YuMi, Rethink Robotics’ Baxter, Fanuc’s CR-35iA, KUKA’s LBR 

iiwa and Universal Robot’s UR3 UR5 and UR10. These robots are designed to be 

used safely in the same environment as humans without requiring usual safety 

features such as cages and no-go areas, allowing for deeper interaction between 

workers and machines.  
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Figure 1 - Worldwide annual supply of industrial robots [1] 

Parallel to the Industry 4.0 movement, another important paradigm shift has 

occurred, in which the focus of robotics has been shifting from strictly specific 

industrial settings to more consumer, home and service-oriented environments, as 

noted by [6] and [7]. Under this new framework, an automaton is forced to interact 

with a highly disorganized environment, while being operated by a wide variety of 

users, which are likely not to have access to specialized training on how to operate 

such robots or, in the case of assistive robotics, may not have physical conditions to 

operate them the usual way – that is – through robot-specific programming 

languages. 

When considering these scenarios for the future of robotics and automation, a 

flexibilization of the way robots are programmed is due in order to both lower the 

barrier of entry to their usage and speed up reprogramming industrial robots in a 

dynamic environment, as the rigid way conventional programming methods work ( by 

requiring the user to learn syntax and semantics of a proprietary robot programming 

language and exhaustively debugging the program) makes changing the robot’s task 

slow and difficult, even for trained operators, as highlighted in [8] and [9]. Moreover, 
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being able to freely and easily interact with the machine has been reported in 

literature as one of the crucial factors in determining the successful incorporation of 

robots into ordinary people’s lives [10], [11].  

Many paradigms for human-robot interaction (HRI) have been proposed over 

the years trying to facilitate and make it more intuitive. In their survey of Robot 

Programming Systems [9], the authors separate those efforts in two fronts: Those of 

manual and automated programming. For them, manual programming systems are 

those that require the user to directly specify the robot’s actions in its code, while 

automatic programming allows users to specify the robot’s actions without ever 

directly changing the machine’s code. Relevant efforts in simplifying manual 

programming systems listed are generic procedural languages – such as Motion 

Description Language, for Java-; behavior based languages – like Functional 

Reactive Programming; Graphic Programming Interfaces - like that of Lego 

Mindstorms or the one presented in [12] as efforts in improving manual programming.  

On the automatic front, learning systems like that of  [13] are able to perform 

complex actions by joining together simply-defined ones using a conditioning 

protocol, whereas [14] uses kinesthetic teach-in to teach simple movements to the 

robot and use reinforcement learning to later allow the robot to perform more 

complex tasks by joining them together. [15] instructed a six legged robot on how to 

walk by performing Q-learning into each of the legs to learn optimal policies of 

movement given the goal to either swing or stand. Finally, [16] and [17] present an 

extensive survey on the use of reinforcement learning in robotics and which I shall 

not detail as they are out of the scope of this work. 

Another approach to automated programming is programming by 

demonstration (PbD). In this paradigm, the user guides the robot through a teach-
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pendant, like the one in Figure 2 - which allows for the direct control of the robot’s 

joint positions or of the robot’s end-effector’s 6 degrees of freedom- to guide the 

robot to its desired positions, recording those point’s coordinates at each step, which 

are later replicated by the robot. Some robots, collaborative robots in particular, allow 

the robot’s joints or end-effector to be manually moved to the set-points This 

facilitates the programming steps, but still requires training on how to operate the 

teach-pendant and basic knowledge of the robot-specific language, as some 

semantics of the programming language still need to be applied in order to specify 

the kind of motion to be performed between the registered spatial points – e.g. linear 

or circular motion and specifying the speed of motion. 

 

Figure 2- ABB teach-pendant  [18] 

  

In addition to those methods, some additional paradigms have been 

presented, extending the concept of PbD by allowing for the use of multi-modal 

systems in the process of teaching. Teach-by-showing, for instance, allows automata 

to infer motion patterns from observing human subjects performing the goal task. For 

instance, in [8], a robot received the force, torque and position inputs of a human 
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demonstrating the goal activity of inserting a PC cart into a motherboard and used 

those to generalize subtasks and tasks and then perform those tasks by itself; [19] 

used a similar paradigm to teach a robot how to perform the ball-in-a-cup task and 

[20] used imitation learning associated with reinforcement learning to train a 

humanoid robot to grasp items in front of it, proving the potential of this strategy. 

Finally, another programming paradigm is that of instructive systems. In this 

case, the robot already possesses a set of well-defined tasks and operations on 

which he has already been instructed – by means such as manual coding or any of 

the previously mentioned programming paradigms – and executes those tasks on 

demand based on human input, usually through gestures and voice recognition [9]. 

Examples of the application are found in [21] , which provided a system to allow for 

commanding a fetching robot using gestures and [22] provided a framework to 

identify complex gestural commands to be interpreted by the robot. 

 On a highly interactive work environment, this paradigm, which represents a 

very high-level kind of programming, is expected to be the most useful, as many of 

the industrial tasks to be performed are standard, but their targets, their order or their 

frequency are not well defined or fixed. Thus, allowing the users of the automata to 

freely assign it a specific task on demand by voice commands or gestures should 

provide the flexible workspace cooperation that is demanded from a modern 

industrial setting or the ease of use necessary for the application of assistive robotics 

in a domestic environment. 

 Considering the above-mentioned arguments, this work will focus on the 

study and development of a simple instructive system to command an industrial robot 

through a known set of gestures, captured by a Kinect V2.0, focusing on the task of 

identifying and grasping unknown objects within the fixed robot’s field of view, which 
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will start with an bibliographical overview of each of the isolated components of the 

project. 

1.2. Objectives and Chapter Structure 

1.2.1. Objectives  

This work’s ultimate goal is to create a framework that can be applied in the 

creation of an instructive system that will allow users to command robots to perform 

grasping tasks using their bodies. In order to demonstrate this framework in action, a 

simple demonstration is designed, in which a simple instructive system that allows 

users to command a robotic manipulator that is fixed in space to pick completely 

unknown objects in unknown positions by using gestures captured by a Kinect V2.0 

system, also fixed in space. Considering a modular approach to robot control, one 

may imagine it as shown in Figure 3. In this model, the user conveys his intention to 

the robot by whatever means (in the context of this work, it would be through 

gestures). The Human Robot Interface (HRI) then interprets this intention and turns it 

into a set of high level instructions to be followed by the robot, such as “place your 

end-effector at position pose P1 coming from pose P2”. This set of high level 

instructions is fed into the Robot Control Module, which will compute the set of low-

level instructions to be given to the robot, such as the intermediate steps between the 

robot’s current position and the starting point P1 and the joint positions that the robot 

should assume in order to reach those poses, while also checking for the feasibility of 

those instructions and notifying the HRI when the instruction is unfeasible ( out of 

reach or in a singular position or would cause the robot to collide with itself or the 

environment).  
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Figure 3 -Simplified Robot Control Workflow 

 While much research exists in the area of robot control, focusing on avoiding 

singularities, solving kinematic redundancies and avoiding collisions, often achieving 

satisfactory great run-time performance, the field of development of HRIs still needs 

much work. Thus, this work will focus in the red module in Figure 3, while most of the 

already available modules for robotic control, such as collision detection, singularity 

avoidance and redundancy resolution being either bypassed completely or done in 

the simplest way possible- via hardcoding of solutions- in order to focus on the main 

goal in the limited time available for the development of the project.   

1.2.2. Chapter Structure 

In the framework for the creation of the HRI, three key aspects must be taken into 

account, namely: 

 Finding the most intuitive ways to interact with the robot; 

 Establishing the robot’s task given the command; 

 Generating the high-level description of the task to be fed into the robot 

controller. 

 

In this work, each of these aspects will be dealt with in a more theoretical 

approach Section  2, Bibliographical Review. Section  3 will detail the proposed 
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system regardless of implementation, while the implementation details for the 

demonstration will be detailed in Section  3.2. Experimental Results will be displayed 

in Section  4 and Section 5 will present the closing remarks on the project and 

suggestions on how to improve upon this work.   
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2. Bibliographic Review 

An instructive system is an integrated software solution, which involves many 

software components sewn together with the aim of allowing the final user to 

intuitively interact with the automaton. This interaction is done through multimodal 

systems of interaction, which provide a natural, human-like way through which 

commands are issued. The current state of the art for multi-modal HRI is described in 

detail in this section. In addition, instructive systems also rely on the existence of 

high-level functional blocks, which represent autonomous routines that implement 

each of the robot’s high-level commands. Some of these blocks, with special 

attention to autonomous grasping, are also presented in depth in this section.  

2.1. Human Robot Interaction 

In his survey on HRI, [23] defines the field as the search for ways to 

“understand and shape the interactions betweenone or more humans and one or 

more robots”. In that context, the authors highlight five key attributes that define and 

affect the interactions between user and robot. These are: Autonomy; Nature of 

Information exchange; Structure of the Team; Adaptation, learning and training of 

people and the robot and Shape of the task. Each of those attributes is briefly 

discussed in the following section. 

2.1.1. Autonomy 

Autonomy is a still much debated concept in robotics, as literature has not yet 

settled on a single definition that is appropiate for all contexts. Indeed, [24] presents 

a summary of such definitions, reproduced in Table 1 
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Table 1- Definitions of Agent and Robot Autonomy [24] 

Definitions of Agent and Robot Autonomy 

“The robot should be able to carry out its actions and to refine or modify the task and its own behavior 
according to the current goal and execution context of its task.” [25] 

“Autonomy refers to systems capable of operating in the real-world environment without any form of 
external control for extended periods of time” [26] 

“An autonomous agent is a system situated within and a part of an environment that sense that 
environment and acts on it, over time, in pursuit of its own agenda and so as to effect what it senses in 
the future;” “Exercises control over its own actions.” [27] 

“An Unmanned System’s own ability of sensing, perceiving, analyzing, communicating, planning, 
decision-making, and acting, to achieve goals as assigned by its human operator(s) through designed 
HRI ... The condition or quality of being self-governing.” [28] 

“‘Function autonomously’ indicates that the robot can operate, self-contained, under all reasonable 
conditions without requiring recourse to a human operator. Autonomy means that a robot can adapt to 
change in its environment (the lights get turned off) or itself (a part breaks) and continue to reach a 
goal.” [29] 

“A rational agent should be autonomous—it should learn what it can to compensate for partial or 
incorrect prior knowledge.” [30] 

“Autonomy refers to a robot’s ability to accommodate variations in its environment. Different robots 
exhibit different degrees of autonomy; the degree of autonomy is often measured by relating the 
degree at which the environment can be varied to the mean time between failures, and other factors 
indicative of robot performance.” [31] 

“Autonomy: agents operate without the direct intervention of humans or others, and have some kind of 
control over their actions and internal states.” [32] 

 

Although a single definition for autonomy has yet to be achieved, [24] propose 

several guidelines for categorizing it, most notably the one presented in Figure 4, 

where the author classifies and defines 10 Levels Of Robotic Autonomy (LORA) 

accoding to the roles taken by the  user and the robot in the normal operation of the 

automaton, providing as well a brief description on how each LORA could be 

characterized and a list of few examples of those LORAs that were available in 

literature at the time. 
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Figure 4 - Taxonomy for robot autonomy classification[24] 

These definitions account for several layers of autonomy and automatization 

of the process, allowing for a fine classification of robotic systems. 

2.1.2. Information Exchange 

As defined by [23], the way in which robots and users exchange information is 

also crucial in the proper analysis of a HRI. The media through which this information 
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is conveyed between them varies from visual displays presented as a Graphical User 

Interface (GUI) or Augmented Reality (AR) interfaces; gestures; speech and natural 

language; non-speech audio; and physical interaction and haptics. Though formerly 

employed mostly in a separate way, these interactive media have been facing an 

increasing pressure to be used in conjunction to one another, with crescent interest 

for multimodal interfaces [22], [33]–[35] , as they are deemed more intuitive and 

efficient in conveying commands than traditional separate methods. 

2.1.3. Team Structure 

Another crucial feature in an HRI analysis is defining who will be taking part of 

the interactions. Indeed, teams of humans and robots have different compositions 

when applied to different fields and each of these compositions requires different 

interaction protocols. For instance, a team composed solely of robots may use the 

fastest communication means available, whereas teams which contain one human 

and several robots have to abide by a slower communication protocol to allow human 

oversight – and teams with more than one human are subject to even slower 

communication constraints, to allow for human understanding and consensus. 

2.1.4.  Learning and Training 

As remarked by [23], one of the objectives of a good HRI design is to minimize 

the training time for both users and robots without compromising the system’s 

operability. This may be done through increasing the robot’s learning capabilities or 

by making the interfacing intuitive to humans.  

2.1.5. Task-Shaping 

Another crucial factor in the design of HRIs is the attention to how the 

introduction of the robot to the task will affect how the human who is interacting with 
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him will change the way in which the task is done.  Indeed, when designing an HRI 

the designer should ponder whether he may improve the process he is working on, 

rather than just replacing to some degree the human effort that was previously 

needed. Robots often do not have the same restrictions that humans do (such as 

temperature, orientation, positioning) and- as such- create new possible ways to 

perform a task, often much more efficiently. 

That being said, we may conclude that the design of an HRI consists in finding a 

way for humans and robots to collaborate, while minding their environment, their 

interaction media, the shaping of the task at hand and the composition of the teams 

that are working on it. This process of collaboration relies heavily on the media 

through which we interact with those robots and thus, if we are to improve it, we need 

to provide the users with intuitive interactive interfaces. As noted by [36], humans 

naturally interact with the world using multiple resources simultaneously. It should be, 

therefore, simpler for them to interact with machines in a similar manner. Hence, the 

next session will detail the many scientific initiatives in providing multimodal HRIs. 

2.2. Multimodal Human-Robot Interaction  

Vision, hearing, touch, olfaction and gustation have long been considered the 

five basic senses, the gateways used by the human brain to communicate with the 

environment around it. Even though this paradigm has been facing scientific scrutiny 

over the past few years, as proprioception and balance are now often included in the 

list of senses, these 5 remain the main media of conscious human interaction with its 

surroundings.  

Taste is mostly neglected as valid means of human-machine interaction due to 

its intrinsic contact-based chemical nature. Olfaction has seen some innovation with 

growing development of electronic-noses, applied in several fields , such as chemical 
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plants monitoring [37]  and even object recognition [38], with varying degrees of 

success. Its use in the field of robotics is, however, still fairly restricted and thus left 

out of this survey.  

With recent advances in haptics, touch is seeing an increase in usage as a 

form to enrich Human-Computer-Interaction (HCI), both in tele-operated robots, such 

as [39] and in virtual reality environments [40]. Though this dimension of 

multimodality shows promise in enriching user experiences in simulation systems, 

improving accuracy in tele-operated tasks, improving safety in human-robot 

collaborative spaces (with the implementation of tactile kill switches in industrial 

robots, often implemented in collaborative robots) and improving teaching by 

demonstration robot programming [41], it is not further detailed in this thesis for the 

sake of brevity, with the reader being referred to [42] for a broad survey of advances 

in the field, their methods and technologies, though a short detailing of force-

feedback robotic programming is presented in the following section, as it was 

necessary for the implementation of suction-based grasping on a collaborative robot. 

Considering the factors exposed above, most of the research pertaining to the 

field of multimodal HRI concerns the use of visual or auditory information to mediate 

the exchange of information between users and systems, being used in concurrency 

to improve the effectiveness of the process according to Wicken’s multiple resources 

theory [43].  An overview of the forms of unimodal audiovisual HRI paradigms will 

thus be provided first, alongside a brief overview of how they are being combined in 

the current research landscape.  

2.2.1. Vision-Based Human Robot Interaction  

By adding a visual input to a robotic system, many ways for interacting with 

them arise. In particular, visual systems that possess embedded depth sensing, such 
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as the Microsoft Kinect® allow for better tracking of human intention. All forms of 

visual-based HRIs can be seen as special cases of object detection and tracking. In 

their survey on object tracking, [44] provide an ample analysis of the field which is, 

alongside [45] the basis for this section. Visual-Based HRIs can be based in four 

main techniques, all subfields of object tracking: Blob Detection, Background 

Removal, Skeletal Tracking and Gaze Tracking, explained in further detail below.  

2.2.1.1. Blob Detection  

As defined by [45], a blob is : 

“…a region inside which the pixels are considered to be similar to each other, 

meanwhile be different from the surrounding neighborhoods." 

 As such, they remark that blob detection methods rely mostly in identifying 

interest points and interest regions, with interest points being classified as extrema in 

scale-location spaces denoting regular regions, whereas interest regions being 

classified as irregular segmented regions that are considered “constant” in a given 

metric. 

 Classic interest point detection algorithms, such as Laplacian of Gaussian 

(LoG), Difference of Gaussian (DoG) and Hessian-Laplacian, rely on the construction 

of Gaussian pyramids in order to detect points of interest. LoG has a high 

computation cost due to the computation of second derivatives involved in its 

application and has in DoG an approximation of lower computational cost.. In both 

cases, the extrema of both pyramids are recorded as being LoG ad DoG points of 

interest, respectively. Another alternative method to locate points of interest is based 

on the Determinant of Hessian, in which the scale-normalized determinant of the 

Hessian matrix,𝜎4det (𝐻), is used to detect interest points. 
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 The interest points indicated through these metrics can then be applied in 

many algorithms to detect key points in an image, such as Scale Invariant Feature 

Transform (SIFT, used in object recognition, visual tracking and baseline 

matching[45], [46]). Some methods, such as Speeded-Up Robust Feature ( SURF, 

which uses box filters approximations to generate efficient Hessian interest point 

detection [45], [47]), try to generate these points in a more computationally efficient 

way, while more modern methods, such as KAZE features [48] avoid Gaussian 

smoothing-induced blurring of the images by making use of nonlinear diffusion 

filtering techniques, preserving natural image boundaries though at a higher 

computational cost [45]. 

 Another important component of blob detection is interest region detection. An 

interest region can be defined as a “region segmented from neighboring areas by 

exploiting the constancy of image properties” [45], like pixel intensities. One of the 

algorithms used to obtain interest regions is Maximally Stable Extremal Region 

(MSER) [49]. MSER is based on thresholding pixel intensities with several different 

thresholds and finding regions that remain stable over the largest number of different 

thresholds. Though not free from questioning [50], MSER is still used in many fields 

due to its simplicity. Other commonly used algorithms include Edge-Based Region 

(EBR)  and Intensity Extrema-based Region (IBR) [51].  

 Regardless of the algorithms used, blob detection is usually used as an initial 

step in more complex image processing algorithms or for applications that do not 

require finely detailed knowledge of the objects surrounding the actor in the 

environment, such as obstacle avoidance [52]. 



17 
 

2.2.1.2. Background Removal 

 Commonly used in the pre-processing steps of many complex computer vision 

algorithms, background removal can take many forms. If both the robot and the 

camera are fixed in space – and most of the robot’s workspace remains unaltered 

during its operation, one may resort to the technique applied in [53], in which the 

authors took an image of the workspace before the introduction of the robot and the 

human, which they labelled as reference image, which they edge-filtered using 

Laplacian Filters. Then, when it came time to detect the relevant objects in the scene, 

the authors took another picture, now with all the relevant elements within the 

camera’s field of view. After also edge-filtering the new image, they proceeded to 

take the difference between the two images and, through thresholding, determine 

whether an interesting object is located in a given position within the frame, i.e., the 

authors used the difference between images to determine what changed between 

frames and, knowing the reference frame was of an empty room, conclude that 

whatever changed must be an object. The authors later perform many post-

processing steps to identify which objects were modelled- like the robot- and which 

were invading its workspace, like the human, and later used the labelled images to 

calculate the distance between them, enabling the implementation of a safety 

stopping monitoring mechanism. Though the implementation details are beyond the 

scope of this work, their processing pipeline is exposed in Figure 5. 
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Figure 5 - [53]'s pipeline for vision-based distance calculation 

 Though a rather complete survey of background removal techniques may be 

found in [54], [55],  two other techniques are of interest within the scope of this 

project. One of them is presented in [56], presented here for the novelty of using 

traditional clustering technique K-means as a pre-processing background removal 

technique. The other one is presented in [57], which made use of Microsoft Kinect®’s  

depth camera to segment the image into foreground and background by means of 

auto thresholding, which is based on finding the valley following the first large peak in 

an image’s depth histogram. 

 Both these techniques allow for fast and slightly more detailed object 

identification, even though several more pre-processing steps are needed to render 

this new information useful in most settings.  

2.2.1.3. Skeletal Tracking 

In many interactive settings, the most intuitive way of interacting with robots 

rely on pointing [21] or at least identifying the pose of the humans around the 

automata. In order to do so, skeletal tracking is often used. Skeletal tracking is a 

tracking technique in which the human body is represented by a number of 3D 

points, called joints, each associated with a part of the human body. Initial models 

that applied this technique had low reliability due to the fact that many of them relied 
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on specific models of human anatomy not being robust, therefore, to changes in 

height, weight and orientation. However, with the advent of the Microsoft Kinect®, an 

effective and robust skeletal tracking device was now available and its use boosted 

the research on HRIs that relied in this technology [58].  

In the Kinect, the skeletal tracking is done by treating the segmentation of the 

Kinect’s depth image as a pixel-per-pixel classification task. In it, a deep randomized 

decision forest classifier is trained using a large motion-capture database and run on 

a GPU to accelerate execution of the classifier. Once the depth image has been 

classified by body parts, a global centroid of probability mass is found through mean 

shift. Finally, the hypothesized joints are mapped to their corresponding skeletal 

joints and adjustments are made to the skeletal model to fit the observed proportions, 

taking into account temporal continuity of the depth image [58]. 

Indeed, many projects make use of the Kinect the main visual robotic 

interface. Some apply it to recognizing fine human gestures [57], [59], whereas 

others apply it as a means to identify pointing gestures [21], [60], and others even 

apply it to detect falls in the context of geriatric care [61]. There is still, however, 

active research in finding alternatives with better performance than the Kinect, 

notably in hand tracking [62]. 

2.2.1.4. Gaze Tracking 

Though skeletal tracking is a very intuitive way to detect human intention, 

there are settings in which the large scale of skeletal movements are prohibitive (like 

when driving a car [63]) and some others where the camera’s field of view is too 

small to capture the entire body, and, most importantly, those where the user is 

disabled and, thus, unable to perform large scale motion, like in cases where the 

user suffers from tetraplegia or advanced Amyotrophic Lateral Sclerosis (ALS). In 
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those instances, gaze tracking is one of the go-to methods to identify human 

attention and intention. Gaze is defined as the direction to which the eyes are 

pointing in space, and is widely regarded as one of the prime ways of indicating 

human focus [33]. 

There exist three main approaches to gaze tracking: Analytical vision-based, 

Machine-learning vision-based and intrusive methods [64], [65]. Intrusive methods 

have fallen out of use in recent years due to their cumbersomeness [66] and will not 

be detailed any further.  

In the realm of analytical gaze tracking, three main algorithms are presented: 

One-Point Calibration (OPC)  [67], Longest Line Scanning (LLS) and Occluded 

Circular Edge Matching (OCEM) [68]. 

OPC relies on a geometric eyeball model by the same author to perform the 

tracking, while using the single calibration point to determine the differences between 

the eye being observed and the model, with the distance between the eye and the 

camera being determined by the camera’s auto-focus and the distance between two 

infrared lights arranged near the camera [67] 

LLS relies on the facts that the projection of the iris unto a picture is an ellipse 

and that the center of an ellipse lies on the center of the longest horizontal line within 

the ellipse. Thus, the algorithm looks to the midpoint of said line to determine the 

center of the iris. This method by itself, however, is not sufficient for measuring eye-

gaze precisely due to intra-iris noise, rough iris edges in the image and occlusion of 

longest line by eyelids [68].   

In order to address these weaknesses in LLS, OCEM was developed. In 

general lines, due to the low eccentricity of the ellipse and the small angle of rotation 

of the eyeball, the iris may be approximated with a circle, which then has it’s center 
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and radius inferred based on a pixel-matching score, with more details being 

available in [68]. 

As for machine-learning based methods, a wide survey of these techniques for 

gaze tracking is presented in [65], with the reader being directed to their work for 

more details on the subject, as there are many approaches with varying degrees of 

success, with notable success in deep learning based approaches [69]. 

Regardless of the method used for tracking the gaze, many notable projects 

make use of this technology in order to improve user experience when interacting 

with robots, be it by providing a driver monitoring system [63],  providing easy access 

to computers for disabled people [70] or even improving user experience in glasses-

free 3D devices [71]. 

2.2.2. Voice Based Human Robot Interaction 

As is the case with vision-based HRIs, voice-based ones figure as a very 

intuitive way to issue commands, since it is one of the primary means of interactions 

with fellow humans in daily life.  This approach, however, presents many challenges, 

including translating the voice sample to text, so the robot can analyze the command. 

In the realm of speech-to-text transcription, the state of the art involves Context-

Dependent Deep Neural Network Hidden Markov Models (CD-DNN-HMMs), whose 

complexity is beyond the scope of this project, with the reader being directed to the 

seminal paper for further details. [72]. Nowadays, however, many off-the-shelf 

speech-to-text transcriptors exist, such as Google’s speech API, Amazon’s Alexa and 

the Kinect’s Speech Recognition modules, making it easier for robotic systems to 

integrate speech into their projects without the concern of developing the transcriptor. 

Once the text has been obtained from speech, one must then establish the 

syntax which shall be used with the robot. Simpler applications, such as [73] allow for 
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the designer to create a simple, rule-based syntax, comprised of a small set of 

commands which are characterized by a specific sequence of words appearing only 

in a set order. For more complex systems, such as chatbots, Deep Neural Networks 

and Recurrent Neural Networks tend to be used in order to determine the robot’s 

response, allowing it to have a broader range of dialogue options and to understand 

a wider range of commands [74], [75]. 

Speech is often used to complement visual inputs to the system, as is the case 

in [21], as it allows for deeper interaction with the robotic systems. 

2.3. Autonomous Grasping 

In this thesis, a two-fold problem is addressed: that of providing a vision-based 

HRI for interacting with a robot- i.e. – commanding the robot to pick up unknown 

objects- and providing the robot with a routine that will allow it to autonomously grasp 

unknown objects in unknown environments. The state of the art in HRIs was 

presented in chapter  2.2, while the state of the art for the second task is discussed in 

the current chapter.  

Autonomous grasp synthesis can be divided into four main categories: Model 

Based, Recognition based, On-line based grasp synthesis [76] and machine learning 

based [77], detailed in the following sections. 

2.3.1. Model Based Grasp Synthesis 

If all the objects that are to be manipulated possess a detailed 3D CAD model, 

precise geometric and dynamic analysis may be performed in those models in order 

to find the optimal grasp pose for each of the objects. One popular tool used in the 

process of finding the optimal grasping pose is “GraspIt!” [78] , a simulator 

specialized in grasp synthesis and analysis. In order to generate optimal grasping 

poses, “GraspIt!” performs a decomposition of the object into its basic, primitive 
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shapes in order to easily calculate the approach directions [76]. Then, with the model 

of the gripper being positioned along those approach directions, collision and contact 

detection are performed in order to determine the optimal grasping pose [76]. 

Refinements to this method have been proposed, especially with regards to the 

feasibility of the proposed poses with respect to the environment around the robot, 

such as with the introduction of global accessibility [79], which considers the robot’s 

kinematic restrictions, as well as environmental constraints, such as obstacles, in the 

evaluation of any given grasp solution and [80], whose decomposition trees help 

reduce the searching space for optimal grasping points, speeding up the selection 

process.  

As [76] highlights, this approach is often used in an industrial setting which used 

to be- prior to the Industry 4.0 push – highly controlled environments, with repeatable 

tasks and identical manipulated objects. This approach, however, is not suited to be 

applied in a modern industrial – or even domestic- setting, as the variety of objects 

and the constantly shifting environments make it impractical to keep a log of all the 

objects in the robot’s environment. 

2.3.2. Recognition Based Grasp Synthesis 

Another approach consists of building a database composed of a list of known 

objects – and their respective 3D models- and their optimal grasping poses 

computed in advance using any of the model-based grasp synthesis approaches. 

Then, at run-time, this approach is responsible only for identifying the object to be 

manipulated at the time with one contained with the database and adapting the 

grasping pose to the orientation and position of the identified object.  

In their implementation of this approach, [81] built a database of object models 

and compiled their optimal grasping poses using “GraspIt!”. Then, at run-time, the 
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authors proceeded to identify the objects to be manipulated at the moment through 

the use of Scale Invariant Feature Transform algorithm, as described in [82]. The 

authors also allowed their system to be manually updated with additional information, 

such as preferred grasping positions or no-go zones. In another example, [83] 

implemented a similar system, in which the object was identified through the Nearest 

Neighbor Algorithm. Their systems defining feature, however, was that it updated its 

database after each grasping attempt, keeping a log of which grasping poses were 

the most stable for which object.  

 As [76] points out,  recognition based techniques have found wide use in 

academia and industry, as their implementation often requires low effort and 

computational power and there are a fair number of open-source object model 

databases and object recognition frameworks available. One may not ignore, 

however, the biggest downfalls of these analytical techniques, as they fail to 

generalize grasping poses for objects outside their knowledge base and could 

potentially perform wrong object recognition, leading to potentially disastrous failures 

at execution time. This approach, as with the model-based ones, is not suited for the 

application described in this work. 

2.3.3. Machine Learning-based Grasp Synthesis  

With advances in computing power and machine learning techniques, their use 

in a wide variety of fields has seen a sharp increase in recent years, with grasp 

synthesis being no exception to it. Of most notoriety at present is U.C. Berkley’s Dex-

Net [77], [84]. Dex-Net implements a cloud-computing machine learning based grasp 

synthesis method. In a sense, [84] still draws from the ideas of a recognition based 

approach, but does not rely on the objects being the same as those in the database. 

Instead, using Multi-View Convolutional Neural Networks [85], the authors 
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constructed a similarity metric between different objects by embedding their 3D 

properties into a latent space and calculating the Euclidean distance between them 

as a metric of their similarity.  Once a list of most similar objects has been produced, 

their grasps are obtained from the database and then, using a Bayesian Multi-Armed 

Bandit (MAB) model with correlated rewards [86]–[88] in order to estimate which of 

them has the highest chance of success – and optimize the Gaussian process to find 

the grasping pose with the highest chance of success.  

 While this approach has seen impressive results, of up to 99% accuracy in 

grasping known objects [77] either with a suction cup or with a parallel jaws gripper, 

while being robust to sensing noise and uncertainty, it requires a special 

infrastructure to be applied, and thus was deemed not suitable for the specific 

application presented in this work, as it would require either constant internet 

connectivity or an unrealistic amount of embedded computational power and 

memory. 

2.3.4. On-Line Based Grasp Synthesis  

In stark contrast to the other methods presented thus far, on-line techniques do 

not demand any prior knowledge of the objects to be manipulated or any databases 

of 3D models and grasping positions.  Indeed, in this method, object models are 

reconstructed on-the-fly based on the sensory input from the robot at the time of the 

grasping task and the grasp synthesis is performed using this model. As noted by 

[76], the reconstruction of object models is critical phase in this methodology, since 

sensors are subject noise, uncertainty and partial information and any grasp 

estimation’s quality is directly related to the quality of the model it receives. 

One example of application of this paradigm can be found in [89], where 

Structure from motion is used in conjunction with a voxeling technique to reconstruct 
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surfaces and volumes of the objects. Those surfaces are then used to calculate their 

surface normals, which are then used as candidate gripping poses, later evaluated 

according to the size of contact area between object and gripper, momentum 

balance, manipulability and robot motions. In [90], grasp synthesis is performed 

simultaneously with the motion planning, with the configurations obtained during the 

execution of Rapidly-exploring Random Trees being verified for compatibility with the 

geometry of the object that must be grasped. In [80] the authors reconstruct the 

models with superquadrics approximation, while using “GraspIt!” for pose generation 

and validation.  

However, the framework that seemed most fitting for application in this work 

was the one presented in [76].  Ancona proposes a four-step process to generate the 

desired grasping pose, comprised of: Point Cloud Acquisition, Data Pre-Processing, 

Grasp Generation and Grasp Selection. A brief description of each step is provided in 

the following section, followed by the alterations that were provided in this work in 

order to adequate his approach to the context of multi-modal robot programming. 

In addition, as pointed in [77],  suction grasping presents clear advantages over 

parallel-jaw and multi-finger grasping due to its ability to reach narrow spaces and 

pick objects from just a single point of contact. In addition, when considering a 

domestic environment, a parallel jaw gripper (as multi-finger grippers tend to be 

prohibitively expensive) would present a serious restriction in size of objects that 

could be grasped due to the maximum aperture of its jaws. Indeed, this superiority in 

performance and versatility were made evident in the Amazon Picking Challenge 

[91], where teams armed with suction grippers tended to outperform other groups. 

Therefore, though Ancona’s four-step methodology is followed, his method has been 

adapted for a suction-gripper based grasping problem. 
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2.3.4.1. Ancona’s 4-step method: Point Cloud Acquisition 

The first step of the method consists of finding a 3D description of the object to 

be grasped in the form of a 3D point cloud. Though many commercially available 

products exist that can provide the full colored 3D point cloud of the scene in front of 

a camera, it is still necessary to segment the scene into its several components – i.e. 

objects. In his particular application, [76] considered a simple color-based 

segmentation algorithm. In this method, a certain color threshold in the red, green 

and blue channels of the colored image is established, and any points whose colors 

fell within those limits were considered as part of the object. This algorithm is 

computationally efficient, running at O(k), with k being the number of pixels in the 

color image and can be simply implemented, as shown in Figure 6. 

 

Figure 6 - Ancona's Image Segmentation Algorithm in Pseudo-code [76] 
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While this segmentation strategy sufficed for the purposes of that work, this 

simplistic approach is not applicable to a domestic or modern industrial setting. In 

domestic settings, the colors of objects are not set and objects often have many 

colors associated with them, like in Figure 7. In addition, many elements of the visual 

elements of a domestic scene may be composed of similar colors, as is common in 

harmonized and well-designed homes. This poses a threat to the house and to the 

humans around it, as the robot may be inclined to try and manipulate items it was not 

originally supposed to manipulate – or even worse – mistake the human’s clothes for 

the object to be manipulated. This same threat is present in modern industrial 

settings, with a dynamic, ever changing environment around the automata – and with 

even greater risks for the humans, should they be mistaken for an object. The 

simplicity of this algorithm hasn’t stopped it from being used in other contexts, 

however, as can be seen in [21]. 

 

Figure 7 - Domestic objects that would provoke failure in threshold-based segmentation techniques [92] 
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 Having considered these caveats to Ancona’s algorithm and the additional 

information provided by the HMI, a small section of this work will be dedicated to 

analyzing image segmentation algorithms to be applied in this step. 

2.3.4.2. Ancona’s 4-step method: Data pre-processing 

After applying any method of image segmentation to the colored 3D point 

cloud, the resulting model will still be raw and populated with false-positive and false-

negative identifications. These detection imperfections would cause the grasping 

algorithm to underperform and, thus, need to be filtered out through some pre-

processing steps, namely Density Filtering, Uniformity Filtering and Surface Normals 

Smoothing. 

Density Filtering 

 Due to imperfections in the image segmentation algorithm and uncertainties in 

the depth sensor, the identified model may contain several false-positive 

identifications. These are usually present in the form of low-density regions in the 

observed point-cloud, and may be filtered out using a simple density-based filtering 

algorithm designed to remove outliers [93]. In [76], this filter was implemented in the 

following way: Let pi be the i-th point of the point cloud Ƥ and N (K) the neighbor set, 

defined as the set of K points closest to pi . Then the local density of point pi, di(K), 

can be calculated by Equation 1, where ‖𝑉 ‖ stands for the L2 norm of a vector. 

Equation 1 -Point Cloud Density in a neighborhood K of point i 

𝑑𝑖(𝐾) =
1

𝐾
∑ ‖𝑝𝑖 − 𝑝𝑗‖

𝑝𝑗∈𝑁𝑖(𝐾)

 

 The mean point cloud local density and the standard deviation of said mean, 

μ(di(K)) and σ(di(K)) can then be calculated. The filter can then be defined as in 

Equation 2, with n being a flexible threshold for variance in density, set as 3 in [76]. 
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Equation 2 - Density Filter Definition 

𝐹𝑑(𝑃, 𝐾) = {𝑝𝑖  ∈ 𝑃, 𝑑𝑖(𝐾) >  μ(𝑑𝑖(K))  − 𝑛𝜎(𝑑𝑖(𝐾))} 

 The effects of this filter can be seen in Figure 8 , with the first image to the left 

being the raw point cloud, the middle image being the resulting filtered cloud and the 

rightmost image being the points that were filtered out, which clearly shows the 

removal of outliers. 

 

Figure 8 - Outlier removal through density filtering [93] 

Uniformity Filtering  

As an additional filtering step, [76] suggested removing points within the point 

cloud that were too close from one another, in order to improve the stability of the 

inference of surface normals and the performance of grasp selection algorithms, as it 

reduces the amount of candidate grasping positions to be analyzed. This uniformity 

filter is defined as in Equation 3, where dmin stands for the minimum allowed distance 

between points in the point-cloud.  

 

Equation 3 - Definition of uniformity filter [76] 

𝐹𝑢(𝑃, 𝑑𝑚𝑖𝑛) = {𝑝𝑖 ∈ 𝑃, ∄𝑝𝑖 ∈ 𝑃, ‖𝑝𝑗 − 𝑝𝑖‖ <  𝑑𝑚𝑖𝑛} 

This method, though computationally efficient, is not very adequate, as it 

simply removes points that are close together, simply discarding their information 

without making any use of it. A better method for smoothing out point clouds is 

presented in [94], where the Weighted Locally Optimal Projection (WLOP) is 

introduced. Given an unorganized point cloud P, WLOP defined a set of projected 
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points X by a fixed point iteration where, given the current iterate Xk , k ∈ ℕ, the next 

iterate Xk+1 is  defined by Equation 4, where vj is defined in Equation 5 , 𝑤𝑖
𝑘
 is defined 

in Equation 6 , 𝜉𝑖𝑗
𝑘 = 𝑥𝑖

𝑘 − 𝑝𝑖 , 𝛿𝑖𝑖′
𝑘 = 𝑥𝑖

𝑘 − 𝑥𝑖′
𝑘 , 𝜃(𝑟) defined in Equation 7,being a 

rapidly decreasing smooth weight function that penalizes point xi that get too close to 

other points in X, 𝛼𝑖𝑗
𝑘 =

𝜃(‖𝜉𝑖𝑗
𝑘‖)

‖𝜉𝑖𝑗
𝑘‖

, 𝛽𝑖𝑖′
𝑘 =

𝜃(‖𝛿𝑖𝑖′
𝑘 ‖)|𝜂(‖𝛿𝑖𝑖′

𝑘 ‖)|

‖𝛽𝑖𝑖′
𝑘 ‖

 and η being a repulsion 

function, in this case being defined as 𝜂(𝑟) = −𝑟. This algorithm is an improvement 

over the Locally Optimal Operator (LOP), as it allows for the attraction of point 

clusters in a given set P to be relaxed by the local density v in the first term, and the 

repulsion force from points in dense areas to be strengthened by the ω term. This 

process produces a point cloud that still adheres to the original shape, but has its 

points more evenly spread out, with a more constant density, as can be illustrated in 

Figure 9. As can be seen, this method produces an evenly distributed sparse point 

cloud, with superior quality than that obtained through the usual LOP method. 

 Unfortunately, even though WLOP provides excellent filtering and normalizing 

features in point cloud density, its iterative nature and heavy computational costs 

make it prohibitively expensive to be applied in a real-time-based HRI, though the 

suggestion of its implementation in systems in which time is not of essence remains 

noted.  
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Equation 4 - Definition of the iteration of WLOP 

𝑥𝑖
𝑘+1 = ∑𝑝𝑗

𝛼𝑖𝑗
𝑘

𝑣𝑗

∑ (
𝛼𝑖𝑗
𝑘

𝑣𝑗
)𝑗∈𝐽

𝑗∈𝐽

+  𝜇 ∑ 𝛿𝑖𝑖′
𝑘 𝜔𝑖′

𝑘𝛽𝑖𝑖′
𝑘

∑ (𝜔𝑖′
𝑘𝛽𝑖𝑖′

𝑘 )𝑖′∈𝐼\{𝑖}

  

𝑖′∈𝐼\{𝑖}

 

Equation 5- definition of vj 

𝑣𝑗 = 1 + ∑ 𝜃(‖𝑝𝑗 − 𝑝𝑗′‖)

𝑗′∈𝐽{𝑗}

 

Equation 6- definition of 𝑤𝑖
𝑘 

𝑤𝑖
𝑘 = 1 + ∑ 𝜃(‖𝛿𝑖𝑖′

𝑘 ‖)

𝑖′∈𝐼\{𝑖}

 

Equation 7 - Rapidly decreasing weighting function 

𝜃(𝑟) =  𝑒
−

𝑟2

(ℎ/4)2 

 

Figure 9 - Performance comparison of WLOP on a scan of a Japanese lady statue[94]  
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Surface normals smoothing  

 After having performed these filtering operations, Ancona then estimates the 

surface normals of the filtered point cloud. In order to do that, for each point p i in the 

point cloud P he defines the neighbor set Ni(K) of K nearest points. Within this set, he 

performs the regression of the plane equation (𝑧𝑝𝑘 = 𝛽0 + 𝛽1𝑥𝑝𝑘 + 𝛽2𝑦𝑝𝑘 by applying 

the Least Squares algorithm, with the resulting normal vector to point pi, ni, being 

described by Equation 8. 

Equation 8 - Surface normal ni 

𝑛𝑖 =
[𝛽1, 𝛽2, 1]

√1 + 𝛽1
2 + 𝛽2

2
 

 

 These calculated surface normals may be smoothed out even further by 

defining the smoothed surface normal, ñi(K) as the average surface normal within a 

vicinity K of point i, as shown in Equation 9 

Equation 9  - Smoothed surface normal ñi 

ñ𝑖(𝐾) =
∑ 𝑛𝑘
𝐾
𝑘=1

‖∑ 𝑛𝑘
𝐾
𝑘=1 ‖

 

 This smoothing operation improves the estimation of surface normals, in 

particular in corners, in which the estimation of surface normals through the Least 

Squares method presented above fails, due to there being no plane defined by the 

nearest neighbors of the point [76]. The results of this operation can be seen in 

Figure 10. 
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Figure 10 - Example of surface normal smoothing [76] 

 

2.3.4.3. Ancona’s 4-step method: Grasp Generation 

In his work, Ancona detailed two analytical methods to generate valid grasping 

poses, one called Locally Approximated Algorithm and another one he called Exact 

Algorithm. In the locally approximated algorithm, he approximates the gripper by 

three planes, disposed in space as shown in Figure 11 and looks for candidate 

gripping points that keep the parallelism between its fingers and the faces of the 

objects, while avoiding collisions with it in the neighborhood of the gripper structure, 

limiting his search to positions where the object’s surface normals would either be 

aligned with the gripper’s fingers or with the gripper’s base. [76] 
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Figure 11 - Gripper planar approximation [76] 

 In the exact algorithm, Ancona approximates the gripper as a junction of 3D 

cuboids and performs the same checks he performed in the approximated algorithm, 

but for the 3D structure. As his gripping pose generation strategy is focused in 

generating grasping poses for parallel-jawed grippers, this section is not detailed any 

further in this work, being replaced by section  2.5. In general lines, however, this step 

is responsible for generating a number of candidate grasping poses, to be selected in 

the following step according to feasibility and quality of grasp criteria. 

2.3.4.4. Anconas 4-step method: Grasp Selection 

Once a list of candidate poses has been produced by the previous step, one 

must now evaluate them according to some metric in order to select the best possible 

among them. Ancona chose to apply those presented [81], [95], from which he 

selected three main criteria: Feasibility, Stability and Robot Motion. In the context of 

his work, feasibility scores are used to rule out grasping poses which result in 

collisions with the object or its surroundings or grasp configurations that result in 

placing the robotic manipulator in a singularity. Stability scores are supposed to 

grade grasping poses with respect to the “firmness” of each grasping pose, being 
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defined as robustness to external disturbances and wrenches that act on the grasped 

object. Finally, the Robot motion score tends to evaluate which poses require the 

least motion of the manipulator’s joints. Ancona then synthetizes them into a single 

global score, used for grasp evaluation. Each of the scores is detailed in the following 

section for clarity. 

Feasibility 

First, the manipulator’s kinematics is used to determine if the suggested pose 

is reachable. As a second step, given a reachable pose, a model of the robot must 

be provided, possibly by approximating the manipulator’s links as cuboids, to check if 

by positioning the robot in that pose results in having any of the points detected from 

the scene colliding with the manipulator or the gripper. This is a Binary eliminatory 

index, not really providing a score rather than “feasible” or “unfeasible”.  

Stability 

 As pointed out by [76], a more precise estimation of the stability of grasp 

poses with the traditional force closure method is impossible without a complete 

dynamic model of the object, including its masses and inertias, which is not available 

from its Point Cloud. Therefore, he proposes two heuristic methods to approximate 

this scoring, both based in the distance between the grasping point and the 

estimated center of mass of the object. In one method, the center of mass is 

estimated as the centroid of the object’s point cloud, with 𝑷𝑪𝑶𝑴 = 
1

|𝑃|
∑ 𝑝𝑖
|𝑃|
𝑖=1 . In this 

case, the stability of a grasping pose G is SCOM(G), defined in Equation 10. 

 

Equation 10 - Stabilit score with centroid 

𝑆𝐶𝑂𝑀(𝐺) =
1

‖𝑃𝐺 − 𝑃𝐶𝑂𝑀‖
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 Another possible heuristic, designed to compensate for the incompleteness of 

the model and the varying densities of points in the perceived point cloud would be to 

estimate the center of mass as PECOM, defined in Equation 11, with its stability score 

SECOM(G) being defined in similar fashion as SCOM(G), in Equation 12. 

Equation 11 - Heuristic estimate of the center of mass of a point cloud 

𝑃𝐸𝐶𝑂𝑀 = [
𝑥𝑚𝑎𝑥 + 𝑥𝑚𝑖𝑛

2
,
𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛 

2
,
𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛

2
]
𝑇

 

 

Equation 12 - Stability score using PECOM 

𝑆𝐸𝐶𝑂𝑀(𝐺) =
1

‖𝑃𝐺 − 𝑃𝐸𝐶𝑂𝑀‖
 

 

 One final heuristic evaluation of stability of grasp posture is proposed in [76], 

which implements a way of estimating the extension of the object that is in full 

contact with the gripper by extending the gripper model of a small amount ε and 

counting the amount of points of the object’s point cloud that are now contained 

within this extended model. Formally, this score is SCONTACT(G,P) = |PCONTACT(G,P)|. 

Robot motion score 

 This score arises from the desire to minimize the movement of the robot, 

improving the energy efficiency of the algorithm and reducing the execution time of 

the grasping task [76]. Let a robot configuration required to execute a grasping pose 

G be defined by the state of its joints qG, obtained through inverse kinematics of the 

manipulator. Let qnow denote the current state of the manipulator. The robot motion 

score, SRM(G) can then be defined as in  
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Equation 13 - Robot Motion Score SRM(G) 

𝑆𝑅𝑀(𝐺) =
1

‖𝑞𝑛𝑜𝑤 − 𝑞𝐺‖
 

Global Performance Index 

 Having defined the individual performance indices, a global performance index 

was devised, S(G,P), being defined in Equation 14, where W(G) is a weighting factor 

used by Ancona to prioritize grasping poses with vertical configurations as they 

synergized better with the redundancies of his mobile manipulator. 

Equation 14 - Global performance index S(G,P) 

𝑆(𝐺, 𝑃) = 𝑊(𝐺)𝑆𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝐺, 𝑃)𝑆𝐸𝐶𝑂𝑀(𝐺) 

2.4. Image Segmentation Algorithms 

 

As discussed in section  2.3.4.1, Ancona’s approach of segmentation the 

image by a simple color thresholding algorithm is not suitable for the application of a 

versatile HMI. Given that through skeletal tracking and pointing the robot is provided 

with a sense of selection, one of the natural ways for dealing with the issue of finding 

out which object must be manipulated lies in simply segmenting the image and 

manipulating which object has been indicated, much like a point-and-command 

paradigm would advise. In that context, one must then evaluate image segmentation 

algorithms that could serve as an alternative to color thresholding, while still being 

computationally efficient enough to be used on-line without jeopardizing execution 

times. As pointed in [96], image segmentation remains an active area of research in 

computer vision, since it is an inherently ill-posed problem.   

Though recent advances in artificial neural networks have afforded a great 

increase in usage of the technique in the field of computer vision, they often require 

powerful CPUs and GPUs to train and heavy hardware to be run on, not being, yet, 
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suitable for use in embedded hardware. These techniques will not be exposed in 

great detail in this section, but briefly mentioned, as their successes are staggering 

and their results quite promising. Notable examples of the application of artificial 

neural networks in image segmentation can be found in [97], which  uses a simple 

multi-layer perceptron to reconstruct cells and neurons and [98], which makes use of 

Deep Convolutional Neural Networks (DCNNs) associated with fully-connected 

Conditional Random Fields (CRF) to match – and in some cases outperform- state-

of-the-art algorithms in image segmentation standard datasets, like Cityscapes [99], 

as can be seen in Figure 12, where G.T. stands for Ground Truth.  

 

Figure 12 - Performance of DeepLab in Cityscapes dataset [98] 

This section will thus focus on detailing analytical methods for image 

segmentation. Analytical image segmentation algorithms can be grouped into five 

main categories: threshold-based, edge-based, region-based, watershed-based and 

graph-based approaches [100], detailed in the following sections. 

2.4.1. Threshold-based segmentation 

This segmentation strategy is based on the idea that different parts of the 

image, like foreground and background, follow a distinct set of values and that, by 

finding the boundary between those values, one may segment the image by putting 
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each pixel in the appropriate bin. Threshold based segmentation is held as one of the 

easiest, fastest and most intuitive segmentation techniques [100], being used in  [21], 

[76], in which the authors established thresholds in the 3 color channels of an image 

and segmented the image according to them. 

 In more general segmentation challenges, such as separating foreground and 

background from any given image, Otsu’s algorithm [101] may be used in order to 

automatically find the appropriate threshold, by maximizing pixel variance between 

the regions and  minimizing pixel variance within them. Some improvements over the 

algorithm have been made in recent years by proving its analogy to k-means 

clustering techniques [102], yet its peak performance lies in segmenting images in 

foreground and background, which is, unfortunately, not enough for the proposed 

application in this work.  

2.4.2. Edge-based segmentation 

Edge-based segmentation methods rely on the fact that the boundaries 

between different elements in images are often marked by sudden changes in pixel 

properties and that, by finding these sudden spikes in pixel property, one could find 

the outlines of different visual elements within a scene and, based on these outlines 

find the separate elements in the scene, which will be surrounded by their edges. 

These edges are often found by applying filters that approximate pixel intensity 

derivatives, like Canny [103], and Sobel filters or by other techniques, such as Prewitt 

or Roberts methods [100]. These techniques, however, are not very robust to noise 

in images and tend to underperform in natural, more nuanced photos, as the 

gradients of color tend to be smoother and boundaries blurred. These methods also 

tend to be plagued by false edge detections [100], like it can be seen in Figure 13, 

where it fails to detect edges between teeth and tongue and either ignores 
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boundaries between the dog and the car or finds edges where there are none. These 

methods, thus, are also not suited for this works application, as it aims to be applied 

in domestic organic environments. 

 

Figure 13 - Lasagna, my dog, under several edge detection schemes 

2.4.3. Region-based segmentation 

Region-based algorithms can be divided into two categories: region growing 

and region merging algorithms. In region growing algorithms, pixels are grouped into 

sub-regions according to predefined criterion, with the number of regions being 

defined by the number of initial “region seeds” provided to the algorithm. The 

performance of this algorithm is heavily dependent on the choice of seeds.  Region 

splitting and merging algorithms, on the other hand, start by segmenting the image 

into random disjoint small clusters and proceeding to merge neighboring clusters 

according to some predefined criteria, often minimizing an energy function. These 
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algorithms, too, are heavily reliant on the quality of the initial super-segmentation 

[100], [104], [105]. Due to their heavy reliance on seeds and priors, these techniques 

are also not suited for the application discussed in this work. 

2.4.4. Watershed-based segmentation 

Watershed-based segmentation can be explained by a simple physical analogy. 

Let the image be seen as a topographical map, with the pixel intensity of the black-

and-white image being seen as the height. If this topography starts being filled with 

water it springing from the local minima in height. As the water level rises, those 

valleys should become isolated lakes. As the water level continues to rise, though, 

some of these isolated lakes will tend to merge. At these merging points, called 

watersheds, we erect infinitely tall dams, which will be the borders between separate 

regions in our image. Once the water level has risen atop all the topography, the 

dams should now define clear borders between isolated regions in the map.  

 In a similar fashion, watershed algorithms transform images into these depth 

maps (usually by looking at pixel gradient measures) and iteratively find those 

borders between the regions [106]. Their performance, though, is also heavily reliant 

on the initial seeds (the water sources) and their resulting images tend to be over-

segmented due to irregularities of the pixel gradients and to noise [100]. This 

method, then, is also not suited for this application.  

2.4.5. Graph-based segmentation 

The final family of image segmentation algorithms relies on graph theory to 

section the image. This is done by transforming the image’s elements into nodes in a 

graph- and finding a set of disjoint subgraph to this graph that establishes the most 

uniformity within subgraphs and the most variance between subgraphs. This 

transformation of the image into a graph is useful because there are many efficient 



43 
 

algorithms established in the field of graph theory that can be used to find suitable 

segmentations. Indeed, so strong is this connection that [96] classifies these 

algorithms based on the original graph theoretical problem they arose from, namely: 

minimal spanning tree based, graph cut based, shortest path based etc.  

In their survey of these algorithms, [96] proposed a framework to analyze the 

efficiency of segmentation algorithms, based on 5 indices: Probabilistic Rand (PR), 

Normalized Probabilistic Rand (NPR), Variation of Information (VI), Global 

Consistency Error (GCE) and Boundary Displacement Error (BDE), briefly explained 

below. 

PR provides a statistical measure of segmentation correctness. If we describe 

image segmentation in a binary representation (𝑙𝑖
𝑆𝑘 = 𝑙𝑗

𝑆𝑘) on each pair of pixels 

(xi,xj), then these numbers follow a Bernoulli distribution with a random variable 

whose expected value is pij. If we are to let a series of humans perform manual 

segmentation on the test images to produce the set of possible ground truths {SK} , 

then the PR score can then be defined as in Equation 15, where N is the number of 

pixels and pij is the ground truth probability that the labels of (xi,xj) are the same [96]. 

The PR score is a number between 0 and 1, indicating how much the algorithm 

agrees with the human segmented images. 

Equation 15 - Definition of PR 

𝑃𝑅(𝑆𝑡𝑒𝑠𝑡, {𝑆𝑘}) =
1

(𝑁
2
)
∑ [𝐼(𝑙𝑖

𝑆𝑡𝑒𝑠𝑡 = 𝑙𝑗
𝑆𝑡𝑒𝑠𝑡)𝑝𝑖𝑗 + 𝐼(𝑙𝑖

𝑆𝑡𝑒𝑠𝑡 ≠ 𝑙𝑗
𝑆𝑡𝑒𝑠𝑡)(1 − 𝑝𝑖𝑗)]

𝑖,𝑗

𝑖<𝑗
 

NPR is a refinement of PR, because it provides a way to compare scores 

across algorithms and images by providing an “expected” value for PR, used to 

normalize its value across evaluations. NPR can be similarly defined as in Equation 

16, where Φ is the number of different images in the dataset, KΦ is the number of 
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ground truth segmentations of a given image φ and 𝒑𝒊𝒋
′  is can be estimated by 

Equation 17 [96].  

Equation 16 - Expected value of NPR 

𝐸(𝑁𝑃𝑅(𝑆𝑡𝑒𝑠𝑡, {𝑆𝑘})) =
1

(𝑁
2
)
∑ [𝑝𝑖𝑗

′ 𝑝𝑖𝑗 + (1 − 𝑝𝑖𝑗
′ )(1 − 𝑝𝑖𝑗)]

𝑖,𝑗

𝑖<𝑗
 

Equation 17 - Estimation of p'ij 

𝑝𝑖𝑗
′ =

1

𝛷
∑

1

𝐾𝛷
∑ 𝐼(𝑙𝑖

𝑆𝑘
𝛷

= 𝑙𝑗
𝑆𝑘
𝛷

)
𝐾𝛷

𝑘=1
𝛷

 

 VI is an information-theory based metric. It can be interpreted as the average 

conditional entropy of one segmentation given another, as defined by Equation 18, 

where I() stands for the mutual information between segmentation Stest and the 

ground truth, SK, while H() stands for the entropy of the given segmentation [96]. 

Equation 18 - Definition of VI 

𝑉𝐼(𝑆𝑡𝑒𝑠𝑡, 𝑆𝐾) = 𝐻(𝑆𝑡𝑒𝑠𝑡) + 𝐻(𝑆𝐾) − 2𝐼(𝑆𝑡𝑒𝑠𝑡, 𝑆𝐾) 

 GCE, in turn, is a metric designed to quantify the segmentation quality in 

different granularities. Its definition is as follows: Let R(S,pi) be the set of pixels in 

segmentation S that contains pixel pi, then the local refinement error is defined in 

Equation 19 and the GCE index is defined by Equation 20, where S1 and S2 are two 

segmentations at different granularities, “\” stands for difference between sets and n  

is the number of pixels within the image [96]. 

 

Equation 19 - Local Refinement Error 

𝐸(𝑆1, 𝑆2, 𝑝𝑖) =
|𝑅(𝑆1, 𝑝𝑖)\𝑅(𝑆2, 𝑝𝑖)|

|𝑅(𝑆1, 𝑝𝑖)|
 

Equation 20 - Global Consistency Error 

𝐺𝐶𝐸(𝑆1, 𝑆2) =
1

𝑛
𝑚𝑖𝑛 {∑𝐸(𝑆1, 𝑆2, 𝑝𝑖)

𝑖

,∑𝐸(𝑆2, 𝑆1, 𝑝𝑖)

𝑖

} 
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 Finally, BDE takes as a base for the metric the boundaries between 

segmentations, defining the error of one boundary pixel as the distance between it 

and its closest pixel in the other boundary image. Let B1 stand for a boundary point in 

segmentation S1. Then, the BDE for point B1 is the minimum distance between it all 

the boundary pixels in the ground truth [96].  

Making use of these metrics, the authors in [96] designed an experiment 

where they measured these 5 performance indices for a set of algorithms on the 

Berkley dataset [107]. The algorithms that were chosen for this experiment were the 

best three of the best performing and fastest easily available graph-based 

segmentation algorithms, namely Felzenszwalb and Huttenlocher’s (FH) [108], 

normalized cut (Ncut) [109] and ratio cut (Rcut) [110], as well as the traditional mean 

shift algorithm [111], being used as a baseline. The results of the experiment may be 

seen in Figure 14. The reader is kindly reminded that an ideal segmentation 

algorithm should have high PR and NPR scores and low GCE, VI and BDE scores. 

The authors note that all four algorithms present good performance in PR and NPR, 

though mean-shift is clearly superior to the other ones in those metrics. The authors 

also note, however, that no single algorithm dominates all metrics, with FH being the 

best in BDE and VI.  
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Figure 14 Image segmentation algorithms evaluation [96] 

 In a subsequent evaluation step, [96] performed another round of experiments, 

this time aiming to determine the stability of the performance of the three graph-

based algorithms (FH, Ncut,Rcut) with respect to their hyperparameters, in which 



47 
 

they concluded that FH tends to extract the main structure of objects, particularly 

when the number of segments was high. The authors also noted that, though Rcut 

had better stability of performance with respect to its hyperparameters, FH had better 

average segmentation quality, measured by NPR, than the other two [96]. 

 Having considered these performance evaluations, one may be inclined to 

consider that the ideal segmentation algorithm would be mean-shift – as it 

outperformed the graph-based algorithms in NPR and PR scores. However, as this 

segmentation algorithm is supposed to be applied on-line, the use of an iterative 

algorithm could impact the HRI’s run-time performance (since the time complexity of 

the mean-shift algorithm is O(Tn2), where n is the number of pixels and T is the 

number of iterations).  

Therefore, one of the graph-based algorithms had to be selected instead. As FH 

presented a good performance on average in all scores, had a time complexity of 

O(mlogm) (where m stands for the number of edges in the graph) and had a robust 

performance with respect to hyperparameters, it was chosen for this project’s 

application. As an added bonus, there had been publications which extended FH 

method to an application where a full RGB-D image was available in the context of 

grasping unknown objects [112], which further inspired me to use it in the project. As 

such, the FH algorithm is presented in detail in section  3.2.2.2, Software 

implementation. 

As a final remark, recent literature suggests that the use of an initial super-

segmentation (also named superpixels) often generated by the simple linear iterative 

clustering (SLIC) algorithm could improve the performance of image segmentation 

algorithms, as it reduces the number of nodes in the graph and this, theoretically, 

would improve performance at run time [118]. Unfortunately, during experimental 
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trials using standard libraries, my experiments showed that this did not positively 

impact the performance of the segmentation algorithm, neither in accuracy, nor in run 

time. The accuracy loss comes from the fact that superpixelation causes a loss of 

detail and forces homogeneity within pixels and the loss of run time performance is 

probably due to the fact that superpixelation eliminates the inherent definition of 

neighbors in an image – and the calculation of superpixel distances, associated with 

the time to run superpixelation does not compensate the run-time improvement 

caused by the reduction of dimensionality of the segmentation algorithm’s input in the 

resolutions used in these experiments. 

2.5.  Grasp generation for suction-cup grippers 

As remarked by [77], most of the research done in the area of suction-cup 

gripping has been guided by two basic heuristic principles being applied directly on 

point clouds: Grasping near the inferred object centroid [116] and just targeting 

planar surfaces [117]. The intuition behind these strategies is that by trying to grasp 

the object from its most planar surface, the suction gripper will have better chances 

of maintaining a vacuum – and thus, holding on tightly to the object it is trying to 

grasp and by gripping an object as close as possible from its center of gravity, the 

gripper is maximizing its stability with respect to external perturbations (note, for 

instance, how the stability score is calculated in Ancona’s work, reflecting this notion. 

In an effort to improve upon these heuristics, a mixed approach was proposed, 

which tries to implement both of these heuristics at once and is described in further 

detail in section  3.2.2.4. 
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3. Proposed Method & Implementation 

3.1. Proposed Method 

As mentioned in Section  1.2.1, this project aimed at developing a novel HRI 

that would allow humans to command robots’ grasping tasks for unknown objects. 

After reviewing the possible levels of autonomy, this project could be classified with a 

LORA of Batch Processing (the reader being referred to Figure 4 for further 

reference), as the human is responsible for indicating which object to the picked and 

where to place it, while the robot is responsible for processing all the tasks and 

motions required to achieve said goal. In a brief review of Multimodal HRIs, it was 

concluded that Audio-visual HRIs tend to be the most intuitive for human operators 

and- for simplicity, a visual-based HRI was chosen for the project. As for the grasping 

task planning, the pipeline proposed in [76] was used. Having these things in mind, 

the workflow presented in Figure 15 is proposed.  

 

Figure 15 – High-Level Proposed System Workflow 
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In this workflow, we see that the Kinect is responsible for tracking the human 

and providing the HRI with the visual information it needs. This is done through three 

embedded Kinect V2.0 functions: skeletal tracking, hand state tracking and colored 

point cloud generation. Skeletal tracking provides a 25-point model of the human 

body, as can be seen in Figure 16, with their respective corresponding tracked points 

and hand tracking is a rudimentary gesture recognition module, which provides us 

with three possible states for each hand: Open, Closed in a fist and “Lasso”, 

equivalent to pointing with the middle and index fingers held together [119].These 3 

components are fed as visual information to the HRI. The HRI is composed of two 

main components: the interpreter, which interprets the user’s commands, and the 

grasp generation module, which generates the grasping pose for the robot’s end-

effector that is fed into the Robot Control Unit, which will then process the low level 

commands for the robot. Each module is discussed in detail below. 

 

Figure 16 - Kinect Skeletal Model [120] 

3.1.1.  Interpreter 

In order for an HRI to be effective, one must establish a clear communication 

protocol between the user and the robot. A usual syntax for this protocol consists of a 

Subject Verb Object syntax. As this HRI is designed (presently) to control a single 

robot, the Subject is already defined. We must then establish the action- which fills 
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the role of the Verb and the Object, which in this case is either the object to be 

manipulated or the point where to place it and the Object, which is the object to be 

manipulated or the position to place it. These tasks are performed by the Interpreter 

module, whose workflow is shown in Figure 17 

 

Figure 17 - Interpreter Workflow 

The selection of the action is performed by the Task Selector. In this particular 

application, since there are two possible commands and three possible right hand 

states, one may map each hand state to a given action – Pick, Place or wait for 

command, as a simple dictionary. Once the human command has been given by the 

right hand, another problem still stands: How to identify the object pointed at by the 

human.  

In order to do so, one must section the scene observed by the Kinect. In this 

particular work, the altered Felzenszwalb and Huttenlocher’s (FH) algorithm, 

proposed in section  0 is used. Then, given the sectioned point cloud and the 

estimated skeleton, we infer the object that was being pointed at by projecting a line 

from the user’s left arm (defined by the user’s elbow and wrist) and considering as 

the object to be manipulated all the points in the point cloud that belong to the same 
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section as the point intersected by the user’s extended left arm line.  In pseudo-code, 

the process is defined as in Figure 18 – : 

 

Figure 18 – Original Target Identification Algorithm 

The action to be performed and the object’s point cloud are then fed into the 

Grasp Generation Module. 

3.1.2. Grasp Generation Module 

This module is composed of two simple parts. If the action it receives from the 

interpreter is “Pick”, the Grasp Generation algorithm described is executed. If, on the 

other hand, the action received is “place”, the algorithm simply translates the current 

robot position to be directly above the point it received as a placing point, while 

keeping the orientation of the end-effector ( as it supposes the object will be placed 

on top of the same surface from which it was picked, for simplicity).  
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Either way, as this system is supposed to be implementation-independent, it 

feeds the final pose into a Robot Control Unit, responsible for implementing all the 

interfacing with the robot and performing all the usual robot motion planning checks – 

Collision detection, singularity avoidance and redundancy resolution. An example 

implementation of this method was then executed as a proof of concept, which is 

detailed in the next section. 

3.2. Implementation 

3.2.1. Hardware setup 

Since the main focus of the thesis was in developing the HMI, little focus will 

be given to the hardware and robot-specific details, as these should ideally be 

adapted to whatever robotic setup is available at the moment. A very broad overview 

of the project’s infrastructure is, however, provided for the sake of completeness.  

In this demonstration, an ASUS G75 personal laptop was used as high-level 

control unit, a Kinect V2.0 sensor was used as a 3D camera device, the controlled 

robot was ABB IRB 1400 prototype, FRIDA, present at the Mechatronics and 

Robotics Laboratory for Inovation (MeRLIn) at Politecnico di Milano, alongside its 

accompanying infrastructure, i.e. the Rosetta computers and connected to them via 

the OPCOM system. A simplified infrastructural diagram is presented in Figure 19. As 

it can be seen, the laptop interfaces with the Kinect V2.0 through a USB connection, 

while the laptop interfaces with the robot through an Ethernet connection, via TCP/IP 

protocol. Meanwhile, FRIDA interfaces with the Rosetta computers through the 

OPCOM system, which integrates the robots and the computers in the laboratory. It 

is also though OPCOM that the Rosetta computers can control the vacuum valves 

that are used in the manipulator’s end-effector.  This complicated infrastructure is 

partly due to the fact that FRIDA is a prototype robot and thus still lacks some 
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features that would be native to its final version, forcing the lab to circumvent the 

absence of these features, such as embedded vacuum pumps. 

 In this experimental setup, the Kinect sensor is placed immediately above 

FRIDA, being tilted by about 42 degrees in order to be able to see the table and the 

human in front of it at the same time, as can be seen in Figure 20, where Frida is 

indicated by the blue arrow and the Kinect V2.0 is indicated by the red arrow. 

 

Figure 19- Simplified Infrastructural Diagram 

 

Figure 20 - Experimental Setup with FRIDA and the Kinect 
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3.2.2. Software Implementation 

As mentioned in section  1.2.1, this work aims to develop a simple instructive 

system that allows users to command a robotic manipulator fixed its position by using 

gestures captured by the Kinect V2.0 system as a demonstration of the proposed 

system. This demonstration was coded mostly using MATLAB, with most of the code 

being compiled into MEX functions through the MATLAB coder add-on [121] in order 

to improve run-time performance. 

Due to time constraints and to the Kinect V2.0 instability in detecting the state 

of the hands, the system had to be simplified to obey a single task – picking, while 

the placing task was hard coded to place the picked object into a bin fixed in space. 

In order to follow the workflow proposed in Figure 15 the following concrete steps 

must be achieved: 

 Interfacing between the Kinect and the computer; 

 Developing a system that allows for the interpretation of the user’s pointing 

direction and desired command; 

 Developing and applying an efficient image segmentation algorithm to 

allow for the differentiation of the target object from the background; 

 Development of a point-cloud extraction and filtering procedure.  

 Developing and implementing a grasp selection algorithm; 

 Interfacing with the robot in order to allow it to be controlled by the 

computer 

 Implementing force-feedback on the robot’s end-effector to allow for 

effective suction-cup coupling and usage. 

 

First and foremost, the use-case diagram of the project, though extremely 

simple, was elaborated in order to properly define the scope of the project. As can be 
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seen in Figure 21, for my current system, there is only one possible use case, that is, 

the one in which the user points at an object and gives the robot the command to 

pick it up. 

 

Figure 21- Use case diagram of the instructive system 

Then, the workflow of the project was determined. Following the structure 

proposed in [122] and in [76], the component diagram was created, and is displayed 

in Figure 22. The system is composed mostly of 6 components: one main 

component, acting as a centralized controlling unit, one Kinect component, 

responsible for interfacing the Kinect and the computer, providing it with the color, 

depth, skeletal and scene point cloud information, each with its own method. The 

robot component, likewise, is responsible for interfacing the robot to be controlled 

and the computer. The “Image Sectioner” component is responsible for dividing the 

color image obtained from the Kinect into different sections, to allow for the 

identification of the robot’s target. The “Point Cloud Manager”, on the other hand, is 

responsible for extracting the object’s point cloud when given the full scene point 

cloud and the user’s 3D skeleton model, filtering this cloud and, finally, performing 

the coordinate transformations operations necessary to display the point cloud in the 

same coordinate frame as the robot so that the grasping pose may be generated, 

each with their own method. The “Grasp Selector” is responsible for generating a 

grasping pose and for generating the low level instructions for the robot. The “Robot” 
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component, finally, is responsible for communicating the low level instructions to the 

robot. Each of these components is detailed in the following sections. 

 

Figure 22 - Component Diagram for the proposed instructive system 

3.2.2.1. Kinect 

This component was a simple wrapper for the library Kinect 2 Interface for 

Matlab, by Juan R Terven and Diana M. Cordova [123], which, in turn, is a MATLAB 

wrapper for the Kinect V2.0 Development Kit standard implementations in C++. As 

specified in the library’s manual [124], once the k2 object has been instantiated 

through the command k2 = Kin2(‘color’,’depth’,’body’), a series of other useful 

methods may be called, which is listed below. 

 K2.updateData: Fills an internal buffer with the most recent data from the 

Kinect and should be called before any other methods to ensure that the 

data obtained is “fresh” 
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 K2.getDepth: Obtains the depth image as a 512x424 matrix of floating 

point numbers, where each point is the distance, in millimeters, from that 

point to the Kinect’s depth sensor 

 K2.getColor: Obtains the color image as a 1920x1080x3 matrix of 

unsigned integers from 0 to 255, each indicating the pixel intensity in the 

Red, Green and Blue specters.  

 K2.getPointCloud: Obtains the point cloud of the scene observed by the 

Kinect, returning it as a 217088x3 matrix (with depth pixels being listed 

row-wise, note that 217088 = 512*424), containing one line for each pixel 

in the depth image and one columns for each coordinate of said point in 3D 

space (x,y,z) in the coordinate frame of the Kinect, which is defined in 

Figure 23.  

 K2.mapColorPoints2Depth(ptColor): Takes as input a series of points in 

the color space (1920x1080) and maps them into the Depth space 

(512x424).  

 K2.mapCameraPoints2Depth(ptCam): Takes as in input a series of 

points in 3D and maps them to the camera space. 

 

 

Figure 23 - Kinect V2 Reference Frame [125] 

In initial implementations of this component, it used to output purely the color 

image, the depth image and the point cloud as they were output from the library. 
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However, in order to implement the image segmentation algorithm, the pixels needed 

to be all in the same space. In order to do that, a conversion matrix was established 

between the color and depth spaces. Unfortunately, this conversion is not perfect as 

the color camera and depth camera have different viewing angles, different positions 

and different resolutions. Consequently, when the color image is converted to a 

depth space, some holes and lines appear in the image, as can be seen in Figure 

25a), which is a conversion of Figure 24  to depth space. In order to remedy that a 

bit, a two-dimensional median filtering is applied to the converted image in all of the 

color channels with a neighborhood of 4x4 pixels. The resulting image can be seen in 

Figure 25b), where it is clear that the scan lines are gone, at the expense of some 

fine details in the image. The greater problem remains that there are still points in the 

converted image that could not have any color associated to them. No solution, 

however, was found in time for this issue and- as the main area where the objects 

would be placed remained mostly unaffected by this phenomenon, the author 

decided to overlook this issue.  The same filtering process is applied to the depth 

image, in order to remove dead pixels, smooth out the image and filter out noise. The 

median filtering in the depth image is performed, however, with a 3x3 neighborhood 

definition. The results of this filtering can be seen in Figure 26. 

 

Figure 24 - Original Color Image 
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Figure 25 - Color Images Converted to Depth Space 

 

Figure 26 -Depth Image a) before and b) after filtering 

3.2.2.2.  Image Sectioner  

As detailed in section  3, in order to properly identify the object to be grasped 

the HMI must be able to properly distinguish between the visual elements present in 

the scene. As discussed in section  2.4, image segmentation is still an active area of 

research, yet, for the reasons exposed in the same chapter, the altered FH algorithm 

[108], [112] was chosen and is presented in detail below. 
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Felzenszwalb and Huttenlocher’s (FH) algorithm [108] 

Let each pixel in an image I be considered as a vertex v ∈ V, set of all the 

vertices of a graph G. Connect each vertex to its nearest neighbors by a weighted 

edge e ∈ E, set of all edges of the graph G. The weight we of an edge e between 

verticies vi and vj can be defined in a variety of ways, but [108] and [112]’s are of 

particular interest in this context. Let a pixel be represented by its RGB-D values as 

an array of form [R,G,B,D]. Then, the weight we is defined generically in Equation 21, 

where k1, k2, k3 and k4 are weighting terms responsible for measuring the 

importance of each of the information channels with respect to one another. In their 

implementation, [112] found that k1 = k2 = k3 = 0.3 and k4 = 0.7 resulted in the best 

performance for the algorithm, and, as such, these parameters are the ones used in 

this work. 

Equation 21- Generic Edge Weight Definition 

𝑤𝑒 = ‖[𝑘1, 𝑘2, 𝑘3, 𝑘4] ∗ [𝑅𝑖 − 𝑅𝑗 , 𝐺𝑖 − 𝐺𝑗 , 𝐵𝑖 − 𝐵𝑗 , 𝐷𝑖 − 𝐷𝑗]
𝑇
‖ 

We must then define a few key concepts. A component C is a subset of V. The 

internal difference of a component C is defined as being the largest weight in the 

minimum spanning tree of the component, MST(C,E), as shown in Equation 22. 

Meanwhile, the difference between two disjoint components C1,C2, Dif(C1,C2) is 

defined as being the weight of the minimum weighted edge connecting the two 

components, formally defined in Equation 23, where w(vi,vj) stands for the weight of 

the edge connecting vertices i and j. Finally, the minimum internal difference between 

two components C1,C2, Mint(C1,C2) is defined in Equation 24, where 𝜏(𝐶) =
𝑘

|𝐶|
 , in 

which k is an arbitrary constant. The term 𝝉(𝑪) is a threshold function that controls 

the degree to which the difference between two components must be greater than 

their internal differences in order for there to be evidence of a boundary between 
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them and is necessary because for small components the internal difference Int(C) is 

not a good estimate of the local characteristics of the data, making it necessary that 

the slack term τ be introduced. The normalization of the threshold by |C|, however, 

guarantees that as the components grow larger, this slack term becomes 

insignificant, since the Int(C) starts being a proper estimate of the data’s local 

characteristics.[108]. 

Equation 22 - Definition of internal difference 

𝐼𝑛𝑡(𝐶) =  max
𝑒 ∈𝑀𝑆𝑇(𝐶,𝐸)

𝑤𝑒 

Equation 23- Definition of difference between Components 

𝐷𝑖𝑓(𝐶1, 𝐶2) = {
min

𝑣𝑖∈𝐶1,𝑣𝑗∈𝐶2,(𝑣𝑖,𝑣𝑗)∈𝐸
𝑤(𝑣𝑖, 𝑣𝑗) , ∃ (𝑣𝑖, 𝑣𝑗) | 𝑣𝑖 ∈ 𝐶1, 𝑣𝑗 ∈ 𝐶2, (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸

+∞, 𝑒𝑙𝑠𝑒
 

Equation 24 - Definition of the minimum internal difference MInt 

𝑀𝐼𝑛𝑡(𝐶1, 𝐶2) = min ((𝐼𝑛𝑡(𝐶1) +  𝜏(𝐶1), (𝐼𝑛𝑡(𝐶2) +  𝜏(𝐶2)) 

The segmentation algorithm may then be described in pseudo-code in Figure 

27 , as in [108] :  
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Figure 27 - Pseudo-code for the FH algorithm 

An brief intuition of this algorithm can be provided in layman’s terms: This 

algorithm merges groups of pixels that present a connection between them that has a 

weight lower than the maximum weight already present in either of the groups- i.e.- if 

the groups were to be merged, the maximum weight between its vertices would 

remain inaltered.  The algorithm, however, provides a relaxation term at the 

beginning, since at that point all pixels are isolated and, thus, no component has any 

weights and, therefore, in order to start joining pixels together, one must establish a 

minimum starting criterion. 
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This algorithm is rather versatile, as it possesses both robustness to noise and 

to smooth variations in tone and depth [108]. In the seminal paper, the authors 

suggest values of k between 150 and 300. This hard-coded hyperparameter was 

faced as an initial challenge by me and I empirically determined that setting the factor 

k as 10 times the mean value of all the edges in the graph (k = 10μ(w(E))) yielded 

the best results, regardless of setting ( both in training datasets, such as the NYU 

depth dataset [113] and the OSD dataset [114] and during the lab experiments). 

Though this evaluation was mostly qualitative, the author would like to recommend 

further inquiry into this problem, possibly posing it as a Gaussian process of 

hyperparameter optimization by using the 5 metrics mentioned in the beginning of 

this section [115], as finding a threshold k that varies automatically according to the 

complexity of the scene could be of great value to the field of computer vision.  

Implementation details of the FH algorithm  

 The image sectioned module is a simple implementation of the algorithm 

described above, with a few minor alterations. In this application, the neighborhood of 

a pixel, i.e., the pixels to which the current pixel is connected by edges was defined 

as any pixel within a 5*5 grid of the pixel, as can be seen in Figure 28. This definition 

of neighborhood was chosen in order to avoid that small gaps in pixels due to faulty 

resolution conversion (as seen in Figure 25) or due to reflective surfaces in the depth 

images would disrupt the stability of the segmentation algorithm. When calculating 

the edge weights, the biasing vector suggested in [112] was used, [0.3,0.3,0.3,0.7], 

for the red, green, blue and depth channels respectively. 
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Figure 28 - Pixel neighborhood definition 

In addition, all pixels belonging to segments that are considered too small (this 

was a manually set threshold of 30 pixels) were considered as belonging to the same 

segment – segment 0, the ignored segment, as these small segments are likely a 

product of the artifacts cause by color image conversion to depth space. Additionally, 

the parameter k was set to 10 times the average weight of the edges in the image 

graph for the reasons exposed in section  0.  

 This module receives as input the color image converted to depth space and 

the depth image and outputs two things: a matrix with the same resolution as the 

depth image (512x424) containing the segment to which each pixel belongs (result of 

the segmentation) and a colored image that is a visual representation of these 

segmentations, as the one shown in Figure 29. It can be seen that the segmentation 

quality is rather good near the center of the image and decreases in quality as it 

approaches the borders. That is a direct consequence of the lack of color information 

in the borders that is a result from the conversion of the color image to the depth 

space. Yet, in the crucial area- that is- the area within the robot’s reach- the 

segmentation is satisfactory for our purposes. As a final implementation detail, both 

images received in the output are then scaled by a factor of 0.5 in order to optimize 

run time performance while still maintaining accuracy. 
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Figure 29 - Test Segmentation of the scene in Figure 24 

3.2.2.3. Point Cloud Manager 

This object is responsible for extracting, filtering and rotating the object’s point 

cloud so that it is in the same reference frame as the robot, each of these roles being 

fulfilled by a different software component, detailed below. 

get_object_clouds 

This function is responsible for extracting two point clouds from the scene – 

The point cloud corresponding to the section of the object being indicated and an 

extended point cloud, which is basically a bounding box around this section. It 

receives as input the entire point cloud, the segmented image and the skeleton 3D 

model. 

The first step in this algorithm lies in identifying the intersection between the 

line inferred by the user’s left forearm and the scene’s total point cloud, being a 

simple implementation of the algorithm described in section  3.1.1, with slight 

modifications, being reported in pseudo-code in Figure 30. 
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Figure 30 – Target Identification Algorithm 

An example of the raw point cloud returned by applying this algorithm to the 

scene in Figure 24 is seen in Figure 31 (note that the axes have a weird orientation 

due to the pitch angle of the sensor with respect to the table). One must note that for 

the most part the structure of the helmet has been captured – besides the already 

expected misdetections due to image space conversions and noise in the depth 

sensors. One must also note, however, that due to the abrupt color transition in a 

region of smooth depth gradient, the white sticker in the cap brim was put in a 

different section than that of the cap – and this generates a non-existing hole in the 

brim. One could be tempted to suggest solving this issue by means of a flood-fill 

algorithm. However, this segmentation hole could be due to an actual hole in the cap 

– and the flood fill operation in the segmented image would actually deform the true 

object’s point cloud. Thus, a different solution was proposed. 



68 
 

 

Figure 31- Raw red helmet extracted point cloud 

 

In order to solve this issue, an extra step was added to the point cloud 

extraction algorithm: Now, instead of just returning the points that belong to the same 

segment as the point being indicated, we now take the maximum and minimum 

indices of the pixels in this section and create an extended bounding box for them. 

That is, let (xmax,ymax,ymin,xmin) denote the extrema of the coordinates of all the pixels 

that belong to segment Sclosest. The bounding box can then be formally defined as 

𝐩(𝐱, 𝐲)| 𝐱𝐦𝐢𝐧  ≤ 𝐱 ≤  𝐱𝐦𝐚𝐱 ; 𝐲𝐦𝐢𝐧 ≤ 𝐲 ≤ 𝐲𝐦𝐚𝐱 . The pixels contained within this bounding 

box can then be projected unto a 3D point cloud, named Pextended. We then return 

both the pure set of segmented pixels, hereby named Praw, as seen in Figure 31 and 

Pextended, shown in Figure 32. Note that the extended point cloud has many points 

that clearly do not belong to the hat, as was expected, yet restores some points that 

had been erroneously removed from it in the raw point cloud. That is why these two 

point clouds will be used in the filtering steps in order to extract the best possible 3D 
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point cloud of the object to be picked, with the filtering steps to be performed being 

detailed in the next section.  

 

Figure 32 - Extended point cloud 

filter_clouds 

This method is responsible for clearing out the misdetections and odd points 

from the detected point clouds, being equivalent to the filtering step proposed in [76] 

and described in section  2.3.4.2, with one added step. The filtering step that was 

added is now described.  

As noted in the previous section, due to segmentation errors, some parts of 

the object tend to be put in different sections than that of the object to which they 

belong. In order to remedy that, a new filter is proposed. This filtering technique is 

based on the fact that the raw point cloud contains a series of false negatives, but 

most points contained within it are true positive identifications, while the extended 

point cloud has many false positives, but probably contains the entire object. 

Additionally, we know that if a point belongs to the object, it obeys some sort of 

spatial continuity. Thus, one may follow the following heuristic to filter the point 
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clouds: Calculate the inferred Centroid of the raw point cloud. Then, for each point in 

the extended point cloud, calculate its distance to the inferred centroid of the raw 

point cloud. It this distance is within the mean distance of points in the raw point 

cloud to their respective centroid, keep this point in the final cloud. Otherwise, discard 

it. The algorithm can then be more formally define in pseudo-code in Figure 33. 

 

Figure 33 - Point-cloud filtering algorithm using two point-clouds 

The results of this filtering step are shown in Figure 34. The first picture on the 

left being Pextended, the middle one being Pfiltered and the one on the right being the 

resulting point cloud after performing the additional filters suggested by Ancona 

(Density and Uniformity) and rotating and translating the point cloud so that it would 

be in robot’s coordinate frame. One should note that the resulting point cloud is not 

free from noise, but is of much better quality than that of Figure 31.  
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Figure 34 - Point cloud progression 

Rotate_clouds 

This method is a simple implementation of traditional reference frame rotation 

and translation from robotics literature. That is, let VR denote a vector in the robot’s 

frame and let VK denote a vector in the Kinect’s frame. Then, this module simply 

implements the Homogeneous Transformation 𝑉𝑅 =  𝑇𝐾
𝑅𝑉𝐾 for all points in the points 

in the point cloud. In this particular setting, the transformation was comprised of 3 

sequential rotations: One of -42 degrees around the Kinect’s x axis, one rotation of -

90 degrees around y’, one rotation around x’’ of -90 degrees and one translation of 

[0.09 0.0603 1.0591]Tin the robot’s frame, resulting in this final transformation matrix 

expressed in Equation 25. 

Equation 25 - Definition of the homogeneous transformation 

𝑅𝐾
𝑅 = (

0 0.6691 0.7431
−1 0 0
0 . 7431 −0.6691

) ; 𝑂𝐾
𝑅 = [

0.09
0.0603
1.0591

] ; 𝑇𝑘
𝑅 = (𝑅𝐾

𝑅 𝑂𝐾
𝑅

0 1
) 

 

3.2.2.4. Grasp Selector 

This module is responsible for selecting the optimal grasping position – and 

providing the appropriate low level instructions for the robot, each implemented in 

their own function, reported in detail below. 
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Pick_grasping_position 

This module implements a grasp generation algorithm that uses the two 

common strategies used in grasp syntheses simultaneously: it tries to grab the object 

at the most planar surface, while also trying to grasp it near its center of mass. The 

algorithm is described in detail below. 

Grasp Generation Algorithm 

After acquiring the object’s point cloud, filtering and smoothing it, one must 

then calculate the estimated surface normals of the object, possibly by means of the 

Least Squares algorithm, as described by [76]. Once the surface normals have been 

calculated, let 𝑵𝒊
𝑹 denote the set of points within a neighborhood of a given point pi of 

radius R. Let R be slightly bigger than the radius of the gripper, RGripper, as R = 

1.5*RGripper and let nj denote the estimated surface normal of a point pj within 𝑵𝒊
𝑹. We 

can then calculate 𝑻𝒊𝟐̅̅ ̅, the average squared cosine of the angle between the surface 

normals within 𝑵𝒊
𝑹 according to Equation 26, if one remembers that the surface 

normals are unit vectors. 

Equation 26 - Definition of 𝑻𝒊
𝟐̅̅ ̅ 

𝑇𝑖2̅̅̅̅ =  ∑ (𝑛𝑖 . 𝑛𝑗)
2

𝑗 ∈𝑁𝑖
𝑅

 

 Then, one may pick the k most uniform points – i.e. – the k points I whose 𝑻𝒊𝟐̅̅ ̅̅  

is closest to 1 (since cos(0)2 = 1) and pick the point pj among them whose distance to 

the inferred centroid of the object Cinf
 is the smallest. The grasping pose, thus is one 

centered at this point, with the suction cup parallel to the average normal vector 

within a vicinity of RGripper of it. This algorithm can then be succinctly described in 

pseudo-code in Figure 35: 
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Figure 35 - Suction Gripper Grasp Generation Algorithm 

The gripping pose to be used, thus, is defined by the point pbest and the 

direction parallel to the average normal vector. 
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The pick_grasping_position is simply an implementation of the algorithm 

presented in section  2.5 with the radius R being set to 0.01, the minimum number of 

neighbors η being determined by the average number of neighbors within a vicinity of 

radius R minus one half of the standard deviation of the number of neighbors within 

the radius and the number of smoothest points K being set to 25. The algorithm is 

otherwise unaltered. After running this algorithm on the filtered point cloud obtained 

in the previous steps in the scene presented in Figure 24, the algorithm selects the 

grasping point represented by the red arrow in Figure 36. It can be seen that the 

algorithm has selected one of the smoothest points to grasp the hat, with the 

orientation being normal to the surface.  

One may criticize the chosen point due to it being far from the actual center of 

gravity of the hat. That is true and is likely to be caused by the biased view the 

algorithm has of the object (there are more points towards the front and in the 

superior part, and thus, the estimated centroid is skewed in those directions). One 

way to solve this issue would be to implement the centroid estimate proposed by [76] 

, which uses the extrema of the point cloud to estimate the centroid. This was not 

implemented due to a programming oversight. However, during the tests this 

oversight did not seem to significantly impact the robustness of the grasp, as will be 

seen in section  4. This is probably due to the fact that the selected points are still 

fairly close to the actual center of gravity of the objects and to the fact that the suction 

cup was reasonably overpowered for the objects it was being used to handle. 
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Figure 36 - Several views of the grasping pose 

Get_robot_coordinates 

The output of the pick_grasping_position method is the 3D coordinates of 

the grasping point and the estimated normal vector of the object’s surface at that 

point. However, FRIDA’s programming language, ABB RAPID, requires quaternions 

to fully define the orientation of a pose, which, in turn, require a full coordinate 

system to be defined in order to be obtained. Luckily, the suction cup gripper is 

axisymmetric and, thus, once we define the approach axis (Z) as the surface’s 

normal vector at the approaching stance, we are free to choose any arbitrary X and Y 

axis for the end effector. For this specific project, the arbitrary X and Y axis were 

chosen so that the γ component of the Euler angles of the end-effector’s frame with 

respect to the robot would be zero. With that assumption, the remaining Euler angles 

were calculated (a,b) according to Equation 27, where (Xn, Yn, Zn) is the normal 

vector expressed in the robot’s coordinate frame. 

Equation 27 -Euler angles, given γ is zero 

𝛼 = arctan (
𝑌𝑛
𝑋𝑛
) , 𝑏 = arccos (𝑍𝑛) 
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From these angles, the rotation matrix for the goal end-effector’s frame as 

calculated as shown in Equation 28 and the quaternions for this frame can be 

calculated as shown in Equation 29. 

Equation 28- Rotation matrix of the End Effector 

𝑅𝐸𝑒𝑓𝑓
𝑅 = (

cos(𝛼) cos(𝛽) −sin(𝛼) 𝑐𝑜𝑠(𝛼)sin (𝛽)

sin (𝛼)cos (𝛽) cos (𝛼) sin(𝛼) sin (𝛽)
−sin (𝛽) 0 cos (𝛽)

) =  (

𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2
𝑥3 𝑦3 𝑧3

) 

Equation 29- Quaternions from rotation matrix 

{
 
 
 
 

 
 
 
 𝑞1 =

√𝑥1 + 𝑦2 + 𝑧3 + 1

2

𝑞2 =
𝑠𝑖𝑔𝑛(𝑦3 − 𝑧2)√𝑥1 − 𝑦2 − 𝑧3 + 1  

2

𝑞3 = 
𝑠𝑖𝑔𝑛(𝑧1 − 𝑥3)√𝑦2 − 𝑥1 − 𝑧3 + 1  

2

𝑞4 =  
𝑠𝑖𝑔𝑛(𝑥2 − 𝑦1)√𝑧3 − 𝑥1 − 𝑦2 + 1  

2

 

The contact point and the quaternions that defined the end-effector frame 

were then returned. 

3.2.2.5. Robot 

On the robot software side, there were three main components running, 

though only one of them directly interfaced with the laptop. These were, in order: The 

communicator, the robot’s main program and the force estimator, explained in further 

detail below. 

The Communicator  

This module is a part of the main program running on the laptop and is 

responsible for establishing a TCP/IP connection with FRIDA using an Ethernet 

cable. This module simply sends the 3 coordinates of the point slightly above the 



77 
 

grasping point and the 4 quaternions defining the orientation of the end-effector. It is 

implemented using the tcpclient [126] function from MATLAB. 

Robot’s Main 

A brief description of the ABB RAPID code running on FRIDA during the whole 

experiment in pseudo-code is given. The main idea of this code is that it waits until a 

TCP/IP connection is established, then starts a loop where it receives the 

coordinates of the approximation point for an object to be manipulated, the moves to 

that position, starts lowering the end effector in the given orientation until it detects 

contact with the object (as a signal from the force estimator), point in which it 

activates the suction cup to grasp the object. In this demonstration, due to time 

constraints, the robot was then hard-coded to move to a position immediately above 

a bin, located to the right-hand side of the robot and drop the gripped object. The 

robot should then return to its waiting position and wait for new instructions to arrive 

via the TCP/IP connection. One must note that, as mentioned previously, due to time 

constraints, no obstacle avoidance, fine motion planning, singularity avoidance or 

complex redundancy resolution were implemented – being either ignored (such as 

motion planning and obstacle avoidance), while redundancy resolution and 

singularity avoidance were solved by hard-coding a solution (by fixing the 

configuration of the joints and making sure FRIDA would not enter a singular position 

during operation.  

Force Estimator 

Since the suction gripper requires the seal to be closed, there has to be some 

level of contact between the cup and the object before one opens the vacuum valves. 

One naïve way to solve this problem would be to position the suction cup a few 

millimeters “inside” the point cloud and then activate the vacuum gripper. However, 
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there is one main issue with this approach: First of all, the 3D point cloud obtained 

from the object has a high degree of uncertainty and, thus, establishing the minimum 

displacement necessary to effectively touch the object would be a complex and 

uncertain procedure. A graver issue, though, is presented when this distance is 

overestimated. In this critical failure, the robot will try to push into the object too far, 

possible damaging both the robot and the object. Thankfully, FRIDA is a collaborative 

robot and will thus enter into a protective stop should it detect a big and sudden 

external torque, such as one provoked by a collision. This, however, presents 

another issue: Even if the offset is correctly identified, the force resulting from 

touching the object could send FRIDA into a protective stop. This solution is, 

therefore, not viable. 

An alternative solution, slightly more complex, would be place a force sensor 

at the end-effector of the robot. Though this option was preferable (as it is more 

accurate and simpler to implement) this option was not available. Thankfully the lab 

possessed a module that used a state observer to estimate external torques acting 

over the robot. This module’s general idea is presented in the following paragraphs. 

Let q denote the states of FRIDA’s joints (which also happen to be our 

generalized coordinates), the dynamic model of the robot can then be derived from 

the Lagrangian energy equations [127] and be described by Equation 30, where Fv is 

a diagonal matrix of the viscous friction coefficients, fS(𝒒, �̇�) is a function that models 

the static friction at all the joints, τ is the actuation torques acting on each of the joints 

and g(q) represents the gravitational forces acting on the manipulator along the 

generalized coordinates q. The definitions for matrices B and C can be found in 

Equation 31. In the definition of the inertia matrix, B(q), mi is the mass of the i-th link,  

n is the number of links in the kinematic chain, 𝑱𝑷
𝑰𝒊 is the Jacobian of the prismatic 
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joints and 𝑱𝑶
(𝑰𝒊)is the Jacobian for the rotational joints, 𝑰𝒊

𝒊 is the Inertia tensor of the 

segment as seen from a frame fixed to itself, 𝑹𝒊 is the rotation matrix such that 

𝝎𝒊
𝒊 = 𝑹𝒊

𝑻𝝎𝒊, where 𝝎𝒊
𝒊 is the angular velocity of the link as seen from a frame solidary 

to its motion and 𝝎𝒊 is the angular velocity of the link expressed in the global 

coordinate frame. Meanwhile, in the definition of matrix C(𝒒, �̇�), bij is the element in 

row i and column j of matrix B(q) and cij  is the element in row i and column j of 

matrix C(𝒒, �̇�). 

Equation 30 - Dynamic Model of a Generic Manipulator 

𝐵(𝑞)�̈� +  𝐶(𝑞, �̇�)�̇� + 𝐹𝑣�̇� + 𝑓𝑠(𝑞, �̇�) + 𝑔(𝑞) =  𝜏𝑡𝑜𝑡 = 𝜏𝑒𝑥𝑡 + 𝜏𝑗𝑜𝑖𝑛𝑡𝑠 

Equation 31- Definitions of B(q) and 𝐶(𝑞, �̇�) 

{
 
 

 
 𝐵(𝑞) =   ∑ (𝑚𝑖𝐽𝑝

(𝐼𝑖)𝑇𝐽𝑃
𝐼𝑖 + 𝐽𝑂

(𝐼𝑖)𝑇𝑅𝑖𝐼𝑖
𝑖𝑅𝑖

𝑇𝐽𝑂
(𝐼𝑖))

𝑛

𝑖=1

𝐶 | 𝑐𝑖𝑗 = ∑
1

2
(
𝜕𝑏𝑖𝑗

𝜕𝑞𝑘
+ 
𝜕𝑏𝑖𝑘
𝜕𝑞𝑗

−
𝜕𝑏𝑗𝑘

𝜕𝑞𝑖
)

𝑛

𝑘=1

𝑞�̇�

 

 

 Therefore, if one knows the matrices, the joint torques, the joint positions and 

joint velocities one may then apply the method proposed in [128], which detects 

collisions based on the robot’s momentum. Let 𝒑 = 𝑩(𝒒)�̇� denote the robot’s 

momentum. One can then calculate a residual r through Equation 32, setting r(0) = 0 

and where KI > 0 is a diagonal matrix. The decoupled dynamics of r can then be 

calculated by Equation 33, wherein, under perfect conditions (i.e. no noise or 

uncertainties: KI ∞), we have that r ≈ 𝝉𝒆𝒙𝒕, obtaining an estimate of a vector of 

external torques. 

Equation 32 - Residual (external) estimation 

 𝑟(𝑡) = 𝐾𝐼 [𝑝(𝑡) − ∫ (𝜏𝑗𝑜𝑖𝑛𝑡𝑠 + 𝐶
𝑇(𝑞, �̇�)�̇� − 𝑔(𝑞) − 𝐹𝑣�̇� − 𝑓𝑠(𝑞, �̇�) + 𝑟)

𝑡

0

− 𝑝(0)]  

Equation 33  Residual's decoupled dynamics 

�̇� =  −𝐾𝐼𝑟 + 𝐾𝐼𝜏𝑒𝑥𝑡 
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 Ideally, a detailed dynamical model of the end-effector should also be provided 

in order for the external torque estimation to be precise. However, since this observer 

was being used purely to detect when contact had been made with the object (and 

since the end-effector approaches the object very slowly, the inertial torques are 

negligible) a generic model was used to describe the end effector, and a high 

threshold was set to indicate when contact was made. This module would then 

continuously evaluate the external forces and, once they had reached the specified 

threshold that was indicative of contact being made between the suction cup and the 

object, it would set a flag within the robot’s main program that would signal it to open 

the vacuum valves.  

This estimation was performed not by FRIDA, but by the Rosetta Computers. 

However, since these implementation details are too specific to this project due to 

FRIDA being a prototype, no further details are provided on this infrastructure.  
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4. Experimental Results 

4.1. Description of Experiments 

In order to evaluate the feasibility and effectiveness of this HMI – and the 

associated grasping generation algorithm – a series of tests were performed. In 

these tests, different objects were selected from the lab environment and placed 

within the region delineated with tape in Figure 37. The reason why the objects had 

to be placed exclusively in that region is because it represents the approximate 

intersection between the Kinect’s depth camera field of view and FRIDA’s 

workspace. Should the targets be placed too close to the robot, the KINECT would 

not be able to see it and should they be placed too far from it, they would be correctly 

identified by the HMI, but completely out of reach.  

 

Figure 37 - Top view of Frida's workspace 

Each of the tests was designed to test the robustness of the proposed 

algorithms to the characteristics of the manipulated elements. The first one consisted 

in grasping a simple rather shiny black mouse placed in a matte white background, 

displayed in Figure 38, which served as a baseline for the basic functionality of the 
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code, as the scene was easily segmented and the colors were reflective – since 

reflectiveness is one source of noise in depth cameras.  

 

Figure 38 - First test: Matte black mouse on white matte surface 

In the second experiment, four nearly identical matte white mice were 

positioned in a line in front of the robot with a black slightly reflective table surface as 

background. The robot was then ordered to pick each one of them. This setup was 

designed to test two aspects of the algorithm: The robustness of the algorithm with 

respect to objects with the same color being placed close together and the negative 

impact of a black reflective surface in the background. In this example, both the 

algorithm proposed in [76] and the HMI proposed by [21] would fail, as they would 

not be able to isolate one single mouse from the scene in order to pick it up. 

Additionally, the curved surface of the mice makes them rather challenging to grasp 

with suction cups, as it makes it harder for the vacuum seal to form. 
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Figure 39- Four nearly identical mice in black table surface 

The third and final scenario involved placing four different objects in the 

grasping area with different shapes, colors and textures, shown in Figure 40. Once 

again, each object has been selected in order to challenge the robustness of the 

system in different ways. First of all, each object was picked with a different color, to 

test whether the HMI is robust with respect to the color of the object. The mouse and 

the box on the right share the same color, to verify if the algorithm is robust to colors 

with slightly different shades. The white box was picked because it had a lid that, 

although provided a simple planar surface for grasping, could detach or break should 

the force exerted by the manipulator be too great, acting as a test for the 

effectiveness of the force-estimator software switch. The red box was chosen for a 

similar reason, with the added complexity of having a bright reflective surface, which 

both made color segmentation harder and jeopardized the depth sensor’s 

performance. Finally, the banana was chosen as a final challenge for the HMI, since 

its color is not uniform (being instead a smooth color gradient from yellow to green), 

its shape is organic and uneven and its structure is rather fragile, being easily 

crushed – thus testing all three robustnesses at once.  
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Figure 40 - Four final objects 

4.2. Result Analysis 

The results of the first test were satisfactory, as can be seen in Figure 41. 

These images are, from the top left in clockwise order: The color image transformed 

into the depth image space, the sectioned image, a binary highlight of the selected 

section and the extracted point cloud, with the grasping point and direction. It can be 

clearly seen that the image segmentation, though jeopardized by the transformation 

between color and depth spaces is still efficient in separating relevant objects in the 

robot’s workspace. One should also note that the resulting point cloud is considerably 

noisy. This stems from two reasons: One is that the mouse is rather small and, thus, 

we see it at a much closer scale than the previous example (the red hat, shown in 

Figure 31 ). Additionally, one should also notice that even though the resulting point 

cloud is quite noisy, the grasping pose that was chosen is placed at a rather central 

location of the mouse and at an orientation that is approximately normal to the 

surface of the mouse. We may conclude, therefore, that the approximation proposed 

in section  2.5 of using the average surface normal vector within the gripper radius 

adds robustness to the algorithm with respect to noisy point clouds. 
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Figure 41 - Summary of the results of the first experiment 

The results of the second experiment can be seen in Figure 42, Figure 43, 

Figure 44 and Figure 45, which have the same order of pictures as Figure 41 and 

depict, respectively, the choosing of the mice from left to right. From these 

experiments, a few conclusions can be taken. First, one should note that due to the 

mice being used in this experiment being matte, their extracted point clouds were 

considerably smoother and accurate to the shape of the mice than the ones obtained 

in experiment 1. Second, one must also notice that the segmentation of the table on 

which the mice are standing is considerably less consistent. The reason for this 

phenomenon is because the reflectiveness of the black surface of the table 

introduces considerable noise and imprecision to the measurements of the depth 

sensor, clearly shown in Figure 46. One must also note that the grasping poses for 

all four mice were similar- as it would be expected- since the mice were oriented in 

about the same direction and were topologically very similar. Finally, one should note 

that the proposed HMI was able to correctly identify and pick a grasping pose for 
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virtually identical objects placed close to one another, demonstrating the robustness 

of this method with respect to object color. 

 

Figure 42 - Second Experiment: Leftmost mouse 

  

 

Figure 43 - Second Experiment: Middle left mouse 
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Figure 44 - Second Experiment: Middle right mouse 

 

Figure 45 -Second Experiment: Rightmost mouse 
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Figure 46 - Depth image from Figure 45 

In the final set of evaluations, a similar procedure was followed, and the 

results are shown in Figure 47, Figure 48, Figure 49 and Figure 50 representing, 

respectively, the picking of the red box, the mouse, the white box and the banana 

and using the same structure of the previous photo montages. In Figure 47 one may 

see the fruits born by the alternative point cloud filter proposed in this work – as the 

white label on top of the red box had been cut out of the box in the segmentation 

steps, but its points were restituted to the final point cloud.  

A more notable robustness result, however, can be seen in Figure 48. In this 

stage of the experiment, while trying to select the white mouse, two events that could 

lead to miss-picking an object happened simultaneously: One event was a miss-

segmentation, which was probably due to the reflective surface of the mouse causing 

its borders to be put in a different section from the rest of the body of the mouse and 

a selection misinterpretation, likely caused by the imprecise skeletal estimation of the 

Kinect. This caused the algorithm to initially select only the borders of the mouse as 

the object to be grasped. However, due to the filtering step using the extended point 
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cloud proposed in this work, the whole mouse was still identified and a grasping pose 

was still successfully picked. The same phenomenon can be observed for Figure 49, 

wherein a selection and segmentation error occurs, but the algorithm is still able to 

correctly identify the full object’s point cloud and correctly pick a grasping pose for it.  

Additionally, in Figure 50 we can see the robustness of the segmentation 

algorithm, which managed to correctly section the banana even though it did not 

have a consistent color scheme, unlike industrialized objects.  It should be noted that 

the simple force-feedback that was implemented in the robot was enough to prevent 

it from crushing a delicate banana, as can be seen in Figure 51 and Figure 52, which 

depicts, a sequence of frames from a demonstration video where the banana is 

picked. In Figure 51 subplot a) indicated the moment in which the “grasp” is issued; 

subplot b) shows the moment the program plots the selected grasping pose on the 

screen and issues the commands to the robot; subplot c) shows the robot’s 

approaching angle to the banana and subplot d) indicates the moment in which the 

robot makes contact with the banana and activates the suction gripper. In Figure 52 

subplot e) represents the moment in which the banana is lifted from the table; subplot 

f) depicts the moment when the robot stops moving slightly above the bin where it will 

deposit the banana; subplot g) depicts moments after the releasing of the banana 

from the gripper and subplot h) depicts the robot returned to its standby position to 

wait for new instructions. 

 Finally, for the sake of completion, it should be noted that the average time 

elapsed between the HMI receiving the command with the right hand and the robot 

starting to move was of 6 seconds, a tolerable run-time performance for a complex 

HMI. 
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Figure 47 - Third Experiment: Red Box 

 

Figure 48- Third Experiment: White Mouse 
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Figure 49- Third Experiment: White Box 

 

Figure 50- Third Experiment: Banana 
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Figure 51- Banana Picking Video Screenshots 

 

Figure 52 - Banana picking Video Screenshots (II) 
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4.3. Main issues 

This HMI, however, is not free from issues. The greatest problem faced when 

using this HMI was the instability of the Kinect’s skeletal tracking mode. As can be 

seen in Figure 53, the estimation of the joints is not very robust – and the 

estimation of the position of the tips of the hands is often times way off. This 

imprecision was already noted in literature. In [129] the authors noted that the 

Kinect is a good tool for tracking large scale movement, but rather imprecise in 

tracking fine motion and 3d positioning of joints. Whereas in [130] it is noted that 

the Kinect could present tolerable skeletal tracking performances, but that, in 

general positions when seen from different angles than the optimal observation 

angles (for which it was developed and trained), the Kinect skeletal estimation 

points could be off by over 10 cm. This effect was indeed observed as, often 

times, the estimation of the skeleton flickered uncertainly and at times the Kinect 

simply failed to track the skeleton at all.   

 

Figure 53 - Estimated Skeleton over the color image 

 Another  issue that was also faced at times was that due to the removal of 

Ancona’s uniformity filtering step (such as WLOP, described in [94]) in order to 

improve run-time performance of the HMI, sometimes the estimated object’s point 
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cloud ended up being too noisy, with the estimated surface normals being sufficiently 

skewed from the actual surface normals to prevent the vacuum seal from forming. 

 Another difficulty faced when using the suction grippers was that sometimes 

the picked grasping points contained crevices – like those associated with mouse 

buttons – which prevented the vacuum from forming at the smoothest surfaces of the 

object. This, in turn, made it impossible for the HMI to effectively grasp the object in 

the current grasp selection framework since these crevices cannot be detected by 

the Kinect at a long distance and cannot, thus, be accounted for during the grasp 

generation stage.  

 Two final criticisms to the HMI framework remain. One is that it is rather 

cumbersome to give a command with the right hand while pointing at the object you 

wish to be manipulated with the left hand. Often, while trying to have the state of the 

right hand acknowledged by the Kinect, the users ended up pointing away from the 

object they desired to manipulate, causing the system to either enter an error state or 

try and grasp something that it was not supposed to grasp.  The final Issue is that 

even though the run time performance was still largely improved with the compilation 

of most of the Matlab code into MEX files, (from around 60 seconds to around 7), this 

execution time is still a bit sluggish for it to be acceptably applied to a domestic or 

industrial  setting. Possible solutions to these issues are hypothesized in the next 

section. 
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5. Conclusion, Improvements and Future Work 

5.1. Improvements and Future Work 

As mentioned in section  4.3, many issues were observed during the execution 

of this HMI’s proof of concept. This section will try to provide a few glimpses of 

possible solutions to these problems and leave them as suggestions for future 

development upon this work.  

The first issue to be addressed here is the instability of the skeletal tracking of 

the Kinect under non-ideal conditions (viewing the user at an angle, for instance). 

There are a few ways to approach this problem. One of them would be to add more 

Kinect sensors, one responsible for tracking the user, being placed at an optimal 

angle and distance from him, and one responsible for tracking the robot’s field of 

view and then later merging their point clouds. This approach could provide the HMI 

with better detailing of the scene at a comparatively low computational cost. 

However, adding another Kinect sensor would increase production cost of the HMI, 

as well as its energy consumption and, even more crucially, encumber the robot with 

one more element. Software solutions, thus, should be preferred. Two possible 

approaches may be suggested, both claiming to be applicable in real time. In [131] a 

Random Decision Forest is trained to classify body parts and the output of this 

classification process is then fed into a local mode finding algorithm to estimate the 

joint locations on a hand skeleton model. This framework, however, can be easily 

extended to the full skeleton. The second approach, presented in [132], proposes a 

piecewise linear predicting Kalman filter framework to fill in gaps in skeletal models 

missing some parts. This could be ideally used as a way to refine the raw skeletal 

estimation provided by the Kinect. 
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The second issue is the cumbersomeness of issuing commands with one 

hand while pointing with another. This issue is associated with another, more serious 

one: With the Kinect’s limited fine gesture recognition, the best possible command 

vocabulary is rather limited. One possible way of solving this problem would be to 

follow the same framework as the one proposed in [21], where a full speech 

recognition capability was added to the HMI, which vastly expands the possible array 

of commands that could be given to the robot. While still on the topic of extending the 

robot’s vocabulary of actions by introducing voice-based interaction to the HMI, a few 

modules could greatly benefit from this. By adding a memory (or database) to the 

system, one could allow the user to store the pictures, point clouds and optimum 

grasping poses for objects that were already manipulated by the robot in previous 

moments, associating them with a name. Such expansion could later allow users to 

merely order the robot to pick the object by name, eliminating the need to point at it 

to identify it. This model matching could be performed using the Nearest Neighbor 

algorithm or any of the other algorithms discussed in section  2.3.2.  

The third issue that is addressed here is that of the crevices that keep the 

vacuum seal from being formed. Though no analytic solution was found to this 

problem, a simple heuristic is proposed here in order to solve it. In order to avoid this 

issue, one could establish an n-try protocol for attempting to grasp a given object. In 

this protocol, the robot is allowed to try grasping an object n times. At each time it 

tries grabbing the object, should it fail, it should try a different position, calculated 

from the point cloud model. In order to avoid the same positions being selected over 

and over again, after each failed attempt, the algorithm should mark the previous 

grasping points – as well as a small area around them – as forbidden points – and 

compute the next viable candidate points from the new list of points.  
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The final issue addressed here is the run-time performance. This issue could 

be solved by using more efficient data structures and writing the code directly in a 

faster compiled language, such as C++ or C#, since even though compiling MEX 

functions helps with performance, it is still reportedly 30% slower than true C++ code 

[123] 

As already mentioned in the introductory paragraphs, the focus of this work 

was developing and proposing a new HMI framework, with the grasping components 

being simplified in order to make a demonstration viable given the strict time 

constraints of this project. Thus, one final suggestion for improvement over this 

project would be to couple this HMI to additional robot control modules, such as 

obstacle avoidance, motion planning and proper force estimation modules in order to 

take the project one step closer to being applied in a real setting, outside of 

academia. 

5.2. Conclusion 

With the ever growing pervasion of robots in both industrial and domestic 

settings, automata are bound to be commanded by increasingly less technologically 

literate people in increasingly more chaotic environments. In the realm of human-

robot interaction, grasping objects is one of the fundamental uses of assistive robots, 

both in the industry and at home. However, after performing a broad review of the 

current HMI technology, it was verified that there existed a significant gap in 

technology in the field that could be used for commanding a grasping task for 

completely unknown objects in a completely unknown environment. Therefore, in an 

effort to lower the barrier of entry to commanding automata in grasping tasks, this 

work aimed to create a simple and intuitive way through which a user could issue 

commands, by following the point-and-command paradigm.  
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Though not free of issues, the proposed framework managed to achieve 

considerable stability and consistency of performance with respect to the several 

object characteristics that would pose a problem to existing technologies by 

integrating a smarter 3D image segmentation algorithm with simple, yet effective, 

heuristic for grasping objects with suction-based grippers.  

In conclusion, the author hopes that this work helps establish a little better the 

field of multimodal HRIs, lowering the barrier of entry to programming robots and 

allowing for a brighter, more efficient future for all humans, in better synchrony with 

the automata around them.  
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