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Abstract 
 

 

In today’s society everything is happening on the Internet, in particular on social networks. Social 

networks play central role in everyday life of average people. So naturally, companies recognize the 

opportunity and try to make use of that by changing their business plans and focusing on potential 

customers on social networks. Business is realized by means of the  presence of the company on web and 

by producing content that will take customer’s attention. In return, users share their opinions about 

particular products by leaving comments on them and reacting to the company’s posts. 

  Taking this scenario into consideration, it is useful to have automated techniques to analyse user 

reactions on products that a company is offering. Also knowing types of people fallowing and leaving 

opinions on products can be turned into advantage for defining future business plans. For example, to 

predict which products can be attractive for specific user groups or to determine the best time when to 

lunch products. We recognized the potential of that and that’s why we were eager to examine sentiment 

analysis tools and machine learning algorithms to improve the analysis. 

 In this thesis we have built an automatic procedure for calculating sentiment of users who 

comment on specific company’s posts properly cleaned by means of intelligent spam filter. Sentiment 

analysis was done separately on text and on emojis. For evaluating text sentiment, we used open source 

APIs and for emojis we used tables of evaluation for each emoji. The spam filter was designed using 

supervised machine learning techniques to determine spam, not just by searching URL patterns in 

comments, but checking the whole text content. We have also built a clustering module that uses 

unsupervised learning techniques on user data and visualize characteristics for each discovered group. 

Finally, in last chapter we define how the defined models and algorithm can be used together in an API to 

evaluate success of company’s posts. 

  

 

 

 

 

 

 

 

 



 
 

 

 

 

  



 
 

 

 

Sommario 
 

  

Nella società di oggi tutto accade in Internet, in particolare nei social network. I social network 

svolgono un ruolo centrale nella vita di tutti i giorni. Naturalmente, le aziende riconoscono diverse 

opportunità derivanti da questo uso diffuso dei canali social e cercano di farne uso cambiando i loro piani 

aziendali e concentrandosi sui potenziali clienti così come essi emergono dai social network. Parte del 

business delle aziende è quindi realizzato attraverso la loro presenza sul web e producendo contenuti che 

cattureranno l'attenzione del cliente. Come reazioni, gli utenti condividono le loro opinioni su determinati 

prodotti, lasciando commenti su di loro e reagendo ai post della dell’azienda. 

  Prendendo in considerazione questo scenario, è utile disporre di tecniche automatizzate per 

analizzare le reazioni degli utenti sui prodotti offerti da un'azienda. Anche la conoscenza dei tipi di 

follower e degli utenti che lasciano i commenti sui prodotti può essere trasformata in vantaggio per la 

definizione di piani aziendali futuri. Per esempio, tali informazioni possono essere utili per prevedere 

quali prodotti possono essere attraenti per specifici gruppi di utenti o per determinare il momento 

migliore in cui lanciare e presentare i prodotti. Abbiamo riconosciuto il potenziale di questo aspetto ed è 

per questo che abbiamo esaminato gli strumenti di analisi delle opinioni e gli algoritmi di apprendimento 

automatico per migliorare l'analisi. 

In questa tesi abbiamo costruito una procedura automatica per il calcolo delle opinioni degli utenti che 

commentano i messaggi specifici di un'azienda, correttamente filtrate mediante un algoritmo anti-spam 

intelligente. L'analisi delle opinioni è stata fatta separatamente sul testo e sugli emoticon. Per valutare le 

opinione emergenti dal testo, abbiamo utilizzato API open source; per gli emoticon abbiamo utilizzato 

tabelle di valutazione predefinite per ogni emoticon. Il filtro anti-spam è stato progettato utilizzando 

tecniche di apprendimento automatico supervisionato per determinare lo spam, non solo ricercando URL 

nei commenti, ma controllando l'intero contenuto del testo. Abbiamo anche creato un modulo di 

clustering che utilizza tecniche di apprendimento non supervisionato sui dati degli utenti e visualizza le 

caratteristiche per ciascun gruppo individuato. Infine, nell'ultimo capitolo definiamo come i modelli e gli 

algoritmi definiti possono essere utilizzati in modo combinato in un'API per valutare il successo dei post 

pubblicati da un’azienda. 
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Chapter 1 

 

Introduction 
 

 

Social media gives businesses an unprecedented opportunity for connecting with customers and 

prospects. While there are numerous social networks that provide  a vast array of tools for offering 

customer service, explaining how your products work and much more, it is important to realize that 

simply having a social media presence is no guarantee of success.  It is essential to test and track your 

results so that you can discover the most effective strategies and that is why analytics of social data are so 

important.  

We know that users of social networks represent potential customers, they are also proactive in a 

sense that they can share their opinion about certain products that company or brand shares. So, in order 

to grow their business and to increase the profit, companies need to analyse user reactions and behaviour 

on their products shared on social networks. As a result, a company can have models of the users and can 

predict weather new product will be successfully accepted and attractive to potential customers. 

Analysis of social network content is difficult because conversation on social networks differs in 

many ways from normal conversation. Contents are enriched with emojis, hashtags, mentions and spams. 

They need to be cleaned and the raw text needs to be processed to find the information behind it. 

By analysing social networks, data about certain products, brands or certain marketing campaigns can 

be very useful for companies and their business. Companies can predict future trends, increase the profit 

and thus be in advantage over the competition.  

 Within previously described context, this project gives the opportunity to companies to analyse 

contents to determine sentiment of customers on specific products, to use supervised machine learning 

algorithms within spam filter module to efficiently detect and remove spams from datasets, and finally to 

exploit a clustering module that discover user groups and their characteristics. The clustering module can 

be used by companies in a marketing segmentation process, which is very important for creating long-

term business plans.  

Sentiment analysis mentioned before represents the process of computationally identifying and 

categorizing opinions expressed in a piece of text, especially to determine whether the writer's attitude 

towards a topic is positive, negative, or neutral [Oxford dictionary definition].  The sentiment analysis 

process in this project can be divided into two separate processes. The first one determines sentiment of 

raw text data using a sentiment analysis API. We used the Vader sentiment analysis API because of its 

performance and accurate results. The second process considers just emojis filtered from text data and 

determines their sentiment using predefined emoji-sentiment tables. Finally, those two sentiments are 
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combined in an optimal way, using weights for text and emoji sentiment, that represents the real 

sentiment of provided data. It can be used to determine reactions of customers on social networks about 

specific product.  

The spam filter module is one of most important components in every application that focuses on 

user interactions. It is widely used in e-mail applications, instant messaging applications and in all kinds of 

websites publishing user generated content. The spam filter we created is equipped with two components. 

A text processor uses regex expressions to detect links inside the text. It is used in filtering comments 

without links. Comments with links are classified as spams without further inspection, and the rest of 

them are inspected with a second component. The second component is more intelligent, and it is 

implemented as a trained machine learning model that detects spams by checking the text content. Among 

the supervised machine learning algorithm, we selected Naïve Bayes algorithm because it showed the best 

performance and represents the best fit for this kind of dataset. 

The clustering module is created as an unsupervised machine learning model that finds patterns in 

user data and discovers user groups. Each user group has specific characteristics that are examined in a 

visualization module after clusters are determined. This is particular useful in marketing segmentation 

where company can make strategies on which are specific user groups and how to target them. In that 

way a company can manage its resources in optimal and more effective way.  The K-means algorithm was 

selected for this purpose and the (optimal number of) clusters are determined using elbow analysis 

technique.  

Finally, the previously described models, combined together, can be used in one complete API 

which makes predictions on successfulness of company’s posts left on social networks by doing analysis 

on customers data. This API can be used as a component in any company’s business intelligence 

application. 

 

1.1   Structure 

 

This thesis is organized as follows: 

 

• Chapter 2 illustrates the reasons for having tools for analysing social networks within 

company’s applications, the advantage of having them and how to use it. We will mention 

examples of use. 

• Chapter 3 is dedicated to automated sentiment analysis of social media content. Here we will 

talk about sentiment computation, pre-processing of emoji’s and their sentiment, and 

combining text emoji sentiment. We also describe our approach and architecture. 

• Chapter 4 is about a machine learning approach to create a spam filter. This includes pre-

processing, training of the dataset and evaluation of classifier. 

• In Chapter 5 we present an unsupervised approach to social data analysis. We will go through 

all steps of this process which include: fetching the data from social networks, pre-processing, 

unsupervised learning techniques, elbow analysis and visualization of clusters characteristics. 
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•  Chapter 6 is dedicated to describing the API that uses the previously mentioned modules in 

order to analyse custom social data. 

• Chapter 7 finalizes the purpose of this project and present the conclusion. It also describes 

future improvements of this project. 
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Chapter 2 

 

State of Art 
 

 This chapter describes state of art of analysis of social data using machine learning techniques. 

Chapter consists of four sections, each of them describing currently used techniques for analysis of social 

data, emphasising the need of such activities and the impact on the company’s business. 

 

1. Applications of social data analytics in various companies 

2. Commercial tools used for social data analytics 

3. Open source libraries and frameworks 

4. Research work 

 

2.1     Applications of social data analytics in various companies 

      

“What other people think” has always been an important piece of information for most  companies 

during the decision-making process. 

 Social data analytics is one of the enabling technologies that can be applied in many types of 

companies and fields. Especially the ones that includes marketing and where the competition is big. So, 

when there is strong competition it is very important to be innovative, but also successful in the same 

way. This is done by analysis and predicting the success of new products. For example, social data 

analytics can be used by fashion industry brands to see the reactions of their followers about new 

products. They can also use it to see which types of user groups their followers belong to, in order to make 

right predictions in the future. Fashion companies can use it to decide what is the best way to launch 

specific products. It is also useful to gather information whether their followers are students, mid-age or 

older people, which of two genders are reacting better and what to do to stimulate their better reaction. 

Another use case of social data analysis is discovering the influential entities inside a social network 

(people, places etc.) and discovering trends and trending topics 

 

2.2     Commercial tools used for social data analytics 

 

 Some of the most used tools that have been used for social data analytics are Sprout social1, 

Buzzsumo2 and Google analytics3.  

                                                             
1 https://sproutsocial.com/ 
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Sprout social can measure performance across Facebook, Twitter, Instagram and LinkedIn, all within a 

single platform. Having analytics at one place makes it easier to track and compare the company’s efforts 

across multiple profiles and platforms. It is recommended for any brand that manages multiple social 

media profiles across multiple networks.  

 

Buzzsumo is different than the other social media analytics tools on our list. Instead of analysing your 

brand’s individual social media performance, Buzzsumo looks at how content from the company’s website 

performs on social media. For instance, if one wants to see how many shares the latest blog post received 

on Facebook and Twitter, Buzzsumo can provide hat data. Buzzsumo not only shows the number of shares 

for each piece of content, but also which type of content performs best on each network based on length, 

type, publish date and more.  

 

Google analytics is not technically a “social media analytics tool,” it is one of the best ways to track social 

media campaigns and even help measure social return on investment. Most companies likely already have 

GA setup on their website to monitor and analyse your traffic. 

  

The previous tools use statistical techniques for analysing the social network data. While they are able to 

analyse user reactions, they don’t support the analysis of contents left by users, such as comments and 

posts. For this part it is useful to have some machine learning techniques for analysing text context and 

that is what we recognize and tries to create a complete API that includes all modules together. 

 

2.3 Open source libraries and frameworks 

 

Besides previously mentioned commercial tools, there are many open source solution like libraries, 

modules frameworks for sentiment analysis, clustering and natural language processing that can be used 

to build automated systems for specific tasks like for example Twitter opinion mining or Facebook user 

base clustering. Some of these tools were also used for our project. 

 

NLTK4 is a leading platform for building Python programs to work with human language data. It 

provides easy-to-use interfaces, along with a suite of text processing libraries for classification, 

tokenization, stemming, tagging, parsing, and semantic reasoning. It is usually used for preprocessing but 

it also includes out of the box algorithms for text classification. 

 

                                                                                                                                                                                                                 
2 http://buzzsumo.com/ 
3 https://analytics.google.com/ 
4 http://www.nltk.org/ 
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VADER[1]  (Valence Aware Dictionary and Sentiment Reasoner) Sentiment Analysis is a lexicon and 

rule-based sentiment analysis tool that is specifically attuned to sentiments expressed in social media, and 

works well on texts from other domains.  

 

Scikit-learn5 is a machine learning library for the Python programming language. It features various 

classification, regression and clustering algorithms including SVM, random forests, neural networks, Naive 

Bayes, and is designed to interoperate with the Python numerical and scientific libraries NumPy and 

SciPy. Sklearn can be a base for building custom-made machine learning solutions for analysis of social 

data. It supports all parts of creating machine learning model, from pre-processing and training to 

evaluating the results. 

 

2.4 Research work 

 

    With the population of blogs and social networks, opinion mining and sentiment analysis became a field 

of interest for many researches. A broad overview of the existing work was presented in (Pang and Lee, 

2008)[10]. In their survey, the authors describe existing techniques and approaches for an opinion-

oriented information retrieval.  

      

J. Read in (Read, 2005)[11] used emoticons such as “:-)” and “:- (” to form a training set for the 

sentiment classification. For this purpose, the author collected texts containing emoticons from Usenet 

newsgroups. The dataset was divided into “positive” (texts with happy emoticons) and “negative” (texts 

with sad or angry emoticons) samples. Emoticons- trained classifiers: SVM and Naive Bayes, were able to 

obtain up to 70% of an accuracy on the test set.  

     

In (Go et al., 2009)[12], authors used Twitter to collect training data and then to perform a sentiment 

search. The approach is similar to (Read, 2005). The authors construct corpora by using emoticons to 

obtain “positive” and “negative” samples, and then use various classifiers. The best result was obtained by 

the Na ̈ıve Bayes classifier with a mutual information measure for feature selection. The authors were able 

to obtain up to 81% of accuracy on their test set. However, the method showed a bad performance with 

three classes (“negative”, “positive” and “neutral”)  

 

We also considered the problem of spam filtering using machine learning techniques, as it is useful to 

separate such data from the ones that have real information and are thus useful for analysis. 

 

W.A. Awad and S.M. ELseuofi (2011) [4] give a brief overview of machine learning techniques and 

algorithms suitable for spam filtering. They compared Naive Bayes, SVM, k-nearest neighbors, neural 

                                                             
5 http://scikit-learn.org/ 
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networks and few more approaches and concluded that Naive Bayes has the overall best performance in 

terms of precision, recall and accuracy. 

 

Paul Attewell, David B. Monaghan and Darren Kwon [6] give an overview of general data mining 

process. They explain all steps and the challenges after performing data mining methods, from pre-

processing techniques, such as ways of handling missing values, one-hot encoding, to how to interpret the 

obtained outputs. 

 

In the book “Pattern Recognition And Machine Learning” by Christopher M. Bishop [5]  (Springer, 

2006) we find more detailed explanations about the machine learning algorithms like K-means and Naive 

Bayes. There are also well-explained concepts about dimensionality reduction techniques like Principal 

Component Analysis. The author explains the mathematical background of the technique and also gives 

examples where this technique can be used. One of the examples was dimensionality reduction technique 

for data visualization purpose, which we use in our project. 

  



8 
 

Chapter 3 

 

Machine Learning Spam Filter 
 

 

Machine learning is a subfield from the broad field of artificial intelligence, this aims to make machines 

able to learn like human. Learning here means understanding, observing and representing information 

about some statistical phenomenon. In unsupervised learning one tries to uncover hidden regularities 

(clusters) or to detect anomalies in the data like spam messages or network intrusion. In spam filtering 

task, features could be the bag of words or the subject line analysis. Thus, the input to the classification 

task can be viewed as a two-dimensional matrix, whose axes are the messages and the features. 

Classification tasks are often divided into several sub-tasks. First, Data collection and representation are 

mostly problem- specific, second, feature selection and feature reduction attempt to reduce the 

dimensionality (i.e. the number of features) for the remaining steps of the task. Next step is the actual 

training of the classifier based on these features, from which the classifier builds a model of the training 

data that tries to generalize as much as possible in order for it to be useful for the samples that are not yet 

seen. Finally, the classification phase of the process finds the actual mapping between the message and 

whether it belongs to the certain class (in the case of spam filtering: spam or ham). 

 

There are various algorithms and approaches to achieve this task, and in the following sections we are 

going to justify why we decided to use the Naïve Bayes approach for detecting whether some social 

content is spam or not. First let’s review briefly some of the machine learning algorithms that are often 

used for this purpose. 

 

 

3.1   Comparison of machine learning algorithms for spam filtering 

 

In “Machine Learning Methods for Spam E-mail classification”[4] W.A. Awad
 
and S.M. ELseuofi  tested 

the performance of several algorithms in the task of spam classification. Corpora of spam and legitimate 

messages was compiled which contains total of 6000 messages of which 37% are spam. The messages 

were modelled as bag-of-words, where the top 100 most frequent words used in the whole corpora were 

chosen as features. The performance of the algorithms was presented in terms of spam recall, precision, 

and accuracy. Algorithms that were compared were: Naïve Bayes (NB), Support Vector Machine (SVM), K 
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– nearest neighbours (KNN), Neural Network (NN), Artificial Immune System (AIS) and Rough Set (RS). 

 

 

 

Figure 1: Comparison of machine learning algorithms for spam classification 

 

In terms of accuracy we can find that the Naïve Bayes method is the most accurate while the Artificial 

Immune System and the k- nearest neighbour gives us approximately the same lower percentage. In 

terms of spam precision we can find that the Naïve Bayes method has the highest precision among the six 

algorithms while the k-nearest neighbour has the worst precision percentage and surprisingly the 

Rough Sets method has a very competitive percentage. Finally we can find that the Rough Sets recall has 

the less percentage among the six classifiers while the Naïve Bayes still has the highest performance.   

 

Overall from the chart above we can see that Naïve Bayes has the best performances in terms of 

precision, recall and accuracy, which was a reason why we chose it as an approach for training and 

implementing social networks content spam filter. 

 

In the next chapter, Naïve Bayes algorithm is described in detail because it is important to understand 

the mathematical background in order to justify why it works for the specific task of classifying spam 

content. 

 

3.2   Naïve Bayes classifier method 

 

Naive Bayes classifier is a linear classifier based on the popular Bayes’ probability theorem, and it is 

known for creating simple yet well performing models, especially in the fields of document classification. 
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Naïve come from the assumption that the features of the dataset used for learning are mutually 

independent, which is very contradictory to the reality, since this assumption is rarely true, but 

surprisingly Naïve Bayes tends to perform very well under this unrealistic assumption. 

 

Bayes’ theorem forms the core of the whole concept of naive Bayes classification.6 

 

 

𝑎 − 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑝𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
 

 

 

The a-posteriori (or posterior) probability can be interpreted as: “what is the probability that the 

object belongs to the class i given its observed feature value. The general notation of posterior probability 

can be written as: 

 

𝑃(𝑊𝑗 |𝑥𝑖 ) =  
𝑃(𝑥𝑖 | 𝑊𝑗) ∗ 𝑃 (𝑊𝑗)

𝑃(𝑥𝑖)
 

 

Where 𝒙𝒊 is the feature vector of sample i, and 𝑾𝒋 is the notation for the class j. 𝑷(𝒙𝒊 | 𝑾𝒋) is the 

probability of observing feature, given that the sample belongs to the class 𝑾𝒋. 

 

One assumption that Bayes classifiers make is that the samples are i.i.d. 

The abbreviation i.i.d. stands for “independent and identically distributed” and describes random 

variables that are independent of one another and are drawn from a similar probability distribution. 

Independence means that the probability of one observation does not affect the probability of another 

observation (e.g., time series and network graphs are not independent). One popular example 

of  i.i.d.variables is the classic coin tossing: The first coin flip does not affect the outcome of a second coin 

flip and so forth. Given a fair coin, the probability of the coin landing on “heads” is always 0.5 no matter of 

how often the coin if flipped. 

 

An additional assumption of naive Bayes classifiers is the conditional independence of features. Under 

this naive assumption, the class-conditional probabilities or (likelihoods) of the samples can be directly 

estimated from the training data instead of evaluating all possibilities of x. Thus, given a d-dimensional 

feature vector x, the class conditional probability can be calculated as follows: 

 

𝑃(𝑥 | 𝑊𝑗) = 𝑃(𝑥1 | 𝑊𝑗) ∗  𝑃(𝑥2 | 𝑊𝑗) ∗ … ∗ 𝑃(𝑥𝑑  | 𝑊𝑗) =  ∏ 𝑃(𝑥𝑘  | 𝑊𝑗)

𝑑

𝑘=1

 

                                                             
6 https://arxiv.org/abs/1410.5329/ 
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Here, 𝑃(𝑥 | 𝑊𝑗) = simply means: “How likely is it to observe this particular pattern x given that it 

belongs to class 𝑊𝑗. The “individual” likelihoods for every feature in the feature vector can be estimated 

via the maximum-likelihood estimate, which is simply a frequency in the case of categorical data: 

 

𝑃(𝑥𝑖 | 𝑊𝑗) =  
𝑁𝑥𝑖𝑤𝐽

𝑁𝑤𝑗

 

 

Where the denominator is the total count of samples of class 𝑊𝑗, and the numerator represents the 

number of times a feature 𝑥𝑖 appears in samples of class 𝑊𝑗. 

 

 

To illustrate this concept with an example, let us assume that we have a collection of documents where 

some documents are spam messages. Now, we want to calculate the class-conditional probability for a 

new message “Hello World” given that it is spam. Here, the pattern consists of two features: “hello” and 

“world,” and the class-conditional probability is the product of the probability of encountering “hello” 

given that the message is spam with the probability of encountering “world” given that the message is 

spam. 

 

 

𝑃(𝑥 = [ℎ𝑒𝑙𝑙𝑜, 𝑤𝑜𝑟𝑙𝑑] | 𝑠𝑝𝑎𝑚) = 𝑃(ℎ𝑒𝑙𝑙𝑜 |𝑠𝑝𝑎𝑚) ∗  𝑃(𝑤𝑜𝑟𝑙𝑑 | 𝑠𝑝𝑎𝑚) 

 

 

Prior probability (or just prior) is introduced that can be interpreted as the prior belief or a-

priori knowledge. In the context of pattern classification, the prior probabilities are also called class 

priors, which describe “the general probability of encountering a particular class.” In the case of spam 

classification, the priors could be formulated as: 

 

𝑃(𝑠𝑝𝑎𝑚) =
# 𝑜𝑓 𝑠𝑝𝑎𝑚 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

# 𝑜𝑓 𝑎𝑙𝑙 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 

 

 

𝑃(ℎ𝑎𝑚) =  1 − 𝑃(𝑠𝑝𝑎𝑚) 

 

After defining the class-conditional probability and prior probability, there is only one term missing in 

order to compute posterior probability, that is the evidence. The evidence 𝑃(𝑥) can be understood as the 

probability of encountering a particular pattern x independent from the class label. Although the evidence 

term is required to accurately calculate the posterior probabilities, it can be removed since it is merely a 

scaling factor. 
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The rule for deciding whether to classify a sample with a certain class 𝑃(𝑊𝑗 |𝑥𝑖 ) = is simply: 

 

Classify sample 𝑥𝑖 as  𝑊1 if 𝑃(𝑊1 |𝑥𝑖 ) >  𝑃(𝑊2 |𝑥𝑖 ) else classify the sample as 𝑊2, in case where we 

have two classes. 

 

Now that we have a mathematical background about the classification algorithm that is going to be 

used for implementing the spam filter, we can proceed with a detailed explanation of the dataset used for 

training the classifier, pre-processing and feature extraction, as well as the concrete implementation of 

Naïve Bayes spam filter for social data. 

 

3.3   Naïve Bayes implementation of spam filter for social data 

 

3.3.1   Dataset 

 

 The dataset we used for training the Naïve Bayes spam filter is YouTube Spam collection from the UCI 

Machine Learning Repository7. The dataset consists of YouTube comments that have been labelled as 

spam or ham (not spam). The spam filter will be used to classify social content, thus for comments on 

social media it resulted natural to use this dataset, since the contents of the comments on videos and 

social networks are similar. 

 

The collection consists of 1956 rows of comments on various YouTube videos. Among those, exactly 

1005 comments were labelled as spam. This means the dataset is very balanced and easier to train the 

classifier on. In the ideal case, the dataset used to train the classifier should be content of a specific social 

network that the spam filter is going to be used on, and in fact the classifier can be re-trained on this other 

collection if one wishes to. 

 

The rows in the dataset have five attributes: COMMENT_ID, AUTHOR, DATE, CONTENT, TAG 

and the label associated with the class. In our case the only useful attribute was the actual content of 

the comment, so the first step in pre-processing this dataset was to drop all columns except the CONTENT 

column. After this, we are left with a 1956x2 matrix where the first column is the content and the second 

is the label (1-spam, 0-ham). Next step is to perform some feature extraction and selection on the dataset, 

meaning that it is necessary to extract the useful features on which the spam filter will be trained. 

 

 

 

                                                             
7 https://archive.ics.uci.edu/ml/datasets/YouTube+Spam+Collection/ 
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3.3.2   Bag of Words model 

 

Important sub-tasks in pattern classification are feature extraction and selection; the three main 

criteria of good features are listed below: 

• Salient. The features are important and meaningful with respect to the problem domain. 
• Invariant. The features are insusceptible to distortion, scaling, orientation, etc. 
• Discriminatory. The selected features bear enough information to distinguish well between patterns 

when used to train the classifier. 

Prior to fitting the model and using machine learning algorithms for training, we need to think about 

how to best represent a text content as a feature vector. A commonly used model in Natural Language 

Processing is the so-called bag of words model. The idea behind this model really is as simple as it sounds. 

First comes the creation of the vocabulary — the collection of all different words that occur in the training 

set and each word is associated with a count of how it occurs. This vocabulary can be understood as a set 

of non-redundant items where the order doesn’t matter. Let D1 and D2 be two comments in a training 

dataset: 

• D1: “Hey, http://believemefilm.com” 

• D2: “Hey, Katy Perry reminds me of a tiger” 

Based on these two comments, the vocabulary could be written as: 

 

 

V = {hey: 2, katy: 1, perry: 1, reminds: 1, me: 1, of: 1, a: 1, tiger: 1, http://believemefilm.com: 1} 

 

The vocabulary can then be used to construct the d-dimensional feature vectors for the individual 
documents where the dimensionality is equal to the number of different words in the vocabulary (d=|V|). 
This process is called vectorization. 

 
Table 1: Bag of words representation of two sample documents D1 and D2 

 hey katy perry reminds me of a tiger http://believemefilm.com 

𝑥𝑑1 1 0 0 0 0 0 0 0 1 

𝑥𝑑2 1 1 1 1 1 1 1 1 0 

 

This is done for every row on the CONTENT column. Since in our dataset number of different words in 

the vocabulary is huge, we reduced this feature vector to the top 300 most frequent words in the dataset 

and by doing this the classifier focuses only on the important features not some words that occur once in 

1956 comments. 

http://believemefilm.com/
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Before the feature extraction and transformation to bag of words model, there are some other steps 

applied to pre-process the textual data so that we could get the best possible features. These steps are: 

tokenization, stop words elimination, stemming and lemmatization. The tool used for all the processing of 

natural language and text is NLTK library for Python3. 

 

3.3.3   Tokenization 

 

Tokenization describes the general process of breaking down a text corpus into individual elements 

that serve as input for various natural language processing algorithms. Usually, tokenization is 

accompanied by other optional processing steps, such as the removal of stop words and punctuation 

characters, stemming or lemmatizing, and the construction of n-grams. Below is a simple example of 

tokenization. 

 

 

Figure 2: Sentence Tokenization 

 

3.3.4   Stop Words 

 

Stop words are words that are particularly common in a text corpus and thus considered as rather un-

informative (e.g., words such as so, and, or, the, …”). One approach to stop word removal is to search 

against a language-specific stop word dictionary. An alternative approach is to create a stop list by sorting 

all words in the entire text corpus by frequency. The stop list — after conversion into a set of non-

redundant words — is then used to remove all those words from the input documents that are ranked 

among the top n words in this stop list. 

 

 

Figure 3: Stop words removal 
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The stop words that we considered are the word defined in the stopwords corpora of NLTK library. 

Some of them are: 

 

 

 

 

Figure 4: NLTK stop words 

 

Also, punctuation marks were appended to the list of the stop word, such as [‘[‘, ‘]’, ‘.’, ‘,’, ‘:’, ‘;’, ‘(‘, ‘)’] 

since they don’t carry any valuable information for the training the classifier. 

 

3.3.5   Stemming and Lemmatization 

 

Stemming describes the process of transforming a word into its root form. The original stemming 

algorithm was developed by Martin F. Porter in 1979 and is hence known as Porter stemmer. Stemming 

can create non-real words, such as “thu” in the example below. 

 

Figure 5: Stemming 
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 In contrast to stemming, lemmatization aims to obtain the canonical (grammatically correct) forms of 

the words, the so-called lemmas. Lemmatization is computationally more difficult and expensive than 

stemming. 

 

 

Figure 6: Lemmatization 

 

Given the information above we choose to only apply lemmatization in the pre-processing of features, 

not stemming. The lemmatizer used is the WordNetLemmatizer from NLTK library. 

 

3.3.6   Training the Naïve Bayes classifier 

 

Now that each row of the training dataset was first tokenized then lemmatized and all the stop words 

and punctuation marks were remove, the collection is almost ready for training the spam filter classifier. 

As was said earlier, since the vocabulary in this case is huge, we only chose to use the first 300 most 

frequent words used in the dataset. Some of these words are: 

 

 

 

Figure 7: Most frequent words from the dataset 
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Every row is transformed into the bag of words model as was described earlier and the dataset is 

ready for training. The library used for training the Naïve Bayes model is sklearn for Python, which used 

the Gaussian Naïve Bayes and works very similarly to the method described earlier, except it assumes 

Gaussian distributions of samples. After the training is done, the classifier is ready to use. In order to 

validate the quality of the generated model, 75:25 holdout test dataset was used (original dataset was 

split, and 25% of it was left for evaluation). It is very important to use a separate set of data for evaluation 

of the model, in order to test how well the classifier is generalizing, meaning how well it will perform on 

never before seen data. If we used the same training dataset for evaluation also, then the model might be 

overfitting, and it would have excellent results on this dataset, but in reality, on new data it would perform 

very poorly.  

 

Metrics used for evaluation of the classifier are all based on the confusion matrix. A confusion matrix, 

also known as an error matrix, is a specific table layout that allows visualization of the performance of an 

algorithm, typically a supervised learning one (in unsupervised learning it is usually called a matching 

matrix). Each row of the matrix represents the instances in a predicted class while each column 

represents the instances in an actual class (or vice versa). 

 

Figure 8: Confusion Matrix 

 

The output of the evaluation of spam filter and the confusion matrix in this case is: 

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
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Table 2: Spam filter confusion matrix 

 Positive Negative 

Positive 203 0 

Negative 30 93 

 

There are several scores that are relevant for evaluation of the classifier, which are calculated based 

on the confusion matrix. These scores are: 

 

Accuracy - Accuracy is the most intuitive performance measure and it is simply a ratio of correctly 

predicted observation to the total observations. One may think that, if we have high accuracy then our 

model is best. Yes, accuracy is a great measure but only when you have symmetric datasets where values 

of false positive and false negatives are almost same. Therefore, you have to look at other parameters to 

evaluate the performance of your model. For our model we have got 0.907, which means our model is 

approximately 90% accurate. 

 

Accuracy = TP+TN/TP+FP+FN+TN 

 

Precision - Precision is the ratio of correctly predicted positive observations to the total predicted 

positive observations. High precision relates to the low false positive rate. We have got 1.0 precision, since 

there are no false positives, which means that precision might not be the best metrics to evaluate the 

model. But having no FP might be good for spam filter, since it’s better to classify something as not spam, 

then to lose that information, in the case of social media content. 

 

Precision = TP/TP+FP 

 

Recall (Sensitivity) - Recall is the ratio of correctly predicted positive observations to the all 

observations in actual class - yes. We have got recall of 0.756 which is good for this model as it’s above 0.5. 

 

Recall = TP/TP+FN 

 

F1 score - F1 Score is the weighted average of Precision and Recall. Therefore, this score takes both 

false positives and false negatives into account. Intuitively it is not as easy to understand as accuracy, but 

F1 is usually more useful than accuracy, especially if you have an uneven class distribution. Accuracy 

works best if false positives and false negatives have similar cost. If the cost of false positives and false 

negatives are very different, it’s better to look at both Precision and Recall. In our case, F1 score is 0.861. 

 

F1 Score = 2*(Recall * Precision) / (Recall + Precision) 
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Chapter 4 

 

Automated sentiment analysis of social network 

content 
 

 

4.1   Social network content 
 

Data that is most useful for sentiment analysis on social networks is user-generated content, which 

includes comments, tweets, posts etc. In the case of our problem we focused on calculating the sentiment 

from comments on posts in order to automate feedback from the user base on the published post. The 

output of this module is the combined sentiment from all comments on a certain post, excluding spam 

comments (described in chapter 4). The sentiment is calculated from both text and emoji data on each 

comment and then it is combined as a single result in the range from -1 to 1, where the negative values 

denote negative sentiment/opinion, positive values positive sentiment/opinion and 0 means that the 

analysed content has neutral sentiment. 

 

 

Figure 9: Overview of the Sentiment module 

 

 

4.1.1 Database 

 

The contents of the social media are stored in a database that has tables including attributes such as 

comments, posts, social media channels, users etc. 
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Figure 10: Social Media Channels Database 

 

The table we are interested in is comments, which holds content of the comments (including text and 

emoji encoded in extended utf-8), user that posted it, corresponding postId and other meta-data. The 

input into the SentimentCalculator module in this case is the postId with which we can fetch all the 

corresponding comments. 

 

4.2   SentimentCalculator 

 

SentimentCalculator is used to calculate sentiment results given the text, or array of textual data, 

including text and emojis. In our case the input of SentimentCalculator will be an array of comments from 

a certain post and the result is the combined sentiment score in the range -1 to 1.  

SentimentCalculator is developed in Python 3, using multiple libraries and packages, including google-

translate for translation (since the content can be in any language) and VaderSentiment for sentiment 

calculation. The workflow of SentimentCalculator is the following: 
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• Take the array of text (emojis included) as input  

• For each item (in this case social network comment) check if it’s spam (using machine 

learn spam filter (chapter 4) 

• If it is not spam, split the comment into two part – text and emojis 

• Calculate sentiment for text part (using VaderSentiment) 

• Calculate emoji sentiment (using custom emoji sentiment calculator) 

• Combine both score into a single one (using some metrics) 

• Combine scores for each comment into a single result (per post) 

 

 

 

Figure 11: SentimentCalculator class diagram 

 

At the end of the computation the result is the total sentiment of all the comments for a given post (or, 

whatever array of text and emoji data was provided as input), which can be used for further analysis and 

different fields. It is important to note that SentimentCalculator can be used as a generic module for 

different kinds of content. It is enough that the input is an array of text (and possibly emoji) data, which 

can come from different sources (doesn’t have to be social media content). 

 

4.2.1 Text Sentiment 

 

Text sentiment determines if a text is positive, negative, or neutral, and to what degree (in the range -1 

to 1). In our scope text sentiment refers only to the textual part of the social media comment, and it is 

calculated using VaderSentiment [1]. VADER (Valence Aware Dictionary and Sentiment Reasoner) is a 

lexicon and rule-based sentiment analysis tool that is specifically tuned to sentiments expressed in social 

media. It is fully open-sourced under the MIT licence.  
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The compound score is computed by summing the valence scores of each word in the lexicon, adjusted 

according to the rules, and then normalized to be between -1 (most extreme negative) and +1 (most 

extreme positive). This is the most useful metric if you want a single uni-dimensional measure of 

sentiment for a given sentence. We call it a “normalized, weighted composite score”. 

It is also useful for researchers who would like to set standardized thresholds for classifying sentences 

as either positive, neutral, or negative. Typical threshold values are: 

 

• positive sentiment: compound score >= 0.5 

• neutral sentiment: (compound score > -0.5) and (compound score < 0.5) 

• negative sentiment: compound score <= -0.5 

 

The pos, neu, and neg scores are ratios for proportions of text that fall in each category (so these 

should all add up to be 1 - or close to it with float operation). 

 

The condition that needs to be satisfied in order to use VaderSentiment is that the textual data needs 

to be in English. Thus, as a preprocessing step, each comment is translated using Google translate 

(googletrans Python package).  

 

4.2.2 Emoji Sentiment 

 

Emoji sentiment is calculated using emoji sentiment data stored in json format based on the work of of 
Kralj Novak, Petra; Smailović, Jasmina; Sluban, Borut and Mozetič, Igor [2]. They engaged 83 human 
annotators to label over 1.6 million tweets in 13 european languages by sentiment polarity (negative, 
neutral or positive). Example of an emoji sentiment datum: 
 
[ 
  ... 
  { 
    // original properties: 
    "sequence": "1F602", 
    "occurrences": 14622, 
    "negative": 3614, 
    "neutral": 4163, 
    "positive": 6845, 
    // derived properties: 
    "pNegative": 0.24717948717948718, 
    "pNeutral": 0.2847179487179487, 
    "pPositive": 0.4681025641025641, 
    "score": 0.22092307692307694, 
    "sem": 0.006751317877016391 
  }, 
  ... 
] 

 

 
Figure 12: Emoji sentiment datum 
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Here is the explanation of the properties of an emoji sentiment datum: 

• sequence (original): normalized code point sequence (sequence without any variation selector 

or modifier applied) e.g. 1F602; it is used for mapping the sentiment datum to a specific (emoji) 

unicode character or for connecting it with further meta data (e.g. unicode-emoji-data, unicode-

emoji-annotations or emoji-datasource) 
 

• occurrences (original): absolute number of occurrences of the (emoji) unicode character in 

tweets 
 

• negative (original): absolute number of occurrences of the (emoji) unicode character in tweets 

labeled negative 
 

• neutral (original): absolute number of occurrences of the (emoji) unicode character in tweets 

labeled neutral 
 

• positive (original): absolute number of occurrences of the (emoji) unicode character in tweets 

labeled positive 
 

• pNegative (derived): relative negativity component of the sentiment distribution for those 

tweets associated with the (emoji) unicode character, ranging from 0 to 1 
 

• pNeutral (derived): relative neutrality component of the sentiment distribution for those tweets 

associated with the (emoji) unicode character, ranging from 0 to 1 
 

• pPositive (derived): relative positivity component of the sentiment distribution for those tweets 

associated with the (emoji) unicode character, ranging from 0 to 1 
 

• score (derived): resulting sentiment score of the (emoji) unicode character, ranging from -
1 to +1, calculated as the mean of the discrete sentiment distribution of negative (-
1), neutral (0) and positive (+1) 

 

• sem (derived): precalculated Standard Error Mean for further deriving the confidence interval, 

e.g. for 95%: [score − 1.96 * sem, score + 1.96 * sem] 
 

The sum of negative, neutral and positive is occurrences. 
The sum of pNegative, pNeutral and pPositive is 1. 
 

We extended this by neutralizing all sentiments for emojis that had very few occurrences, since the 

score is unreliable, and it’s better to assign a neutral sentiment to the given emoji that use this score that 

can lead to false conclusions. 

 

The input to the emoji sentiment calculation method is an array of all the emojis extracted from the 

comment, duplicates included. The algorithm for emoji sentiment calculation from SentimentCalculator is 

the following: 

https://www.npmjs.com/package/unicode-emoji-data
https://www.npmjs.com/package/unicode-emoji-annotations
https://www.npmjs.com/package/unicode-emoji-annotations
https://www.npmjs.com/package/emoji-datasource


24 
 

 

• If there are no emojis (i.e if the array has length 0) then the emoji sentiment is neutral (0) 

• For each emoji get sentiment from the json file mentioned earlier and sum it to the previous 

sentiment 

• Every three occurrences of the same emoji increase it’s importance by a small amount (this is 

mentioned in “Spice up your Chat: The intentions and Sentiment Effects of using Emojis”[3]) 

• At the end, normalize the summed emoji sentiment in order to be in the range -1 to 1 

 

The output of the emoji sentiment calculation is the same as the output from the text sentiment 

calculation, and it is used to enhance the total combined sentiment and to take into the account also the 

emoji content of the comment. 

 

4.2.3 Combined Sentiment 

 

Combined sentiment (i.e., total sentiment) is produced putting together text sentiment (3.2.1) and 

emoji sentiment (3.2.2). The output will again be normalized in the range -1 to 1. The formula for 

combining sentiments that was used is the following: 

 

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 =
(𝑡𝑒𝑥𝑡𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 + 𝑟𝑒𝑔𝑒𝑚𝑜𝑗𝑖 ∗ 𝑒𝑚𝑜𝑗𝑖𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡)

2
 

 

This is the formula for calculating combined sentiment if reg is different from. 0. reg is a regularization 

term for importance of emoji sentiment. If reg is 0 only text sentiment combined sentiment is equal to text 

sentiment. 

 

4.3   Usage and results 

 

SentimentCalculator can be used as a separate independent module, or in our case in correspondence 

with db_helper module which fetches the data from the comments table and forwarding it to the 

SentimentCalculator. SentimentCalculator can be used to calculate sentiment from a single comment by 

calling SentimentCalculator.calcSentiment(comment) or calculate the summed sentiment from all the 

comments of the given post by calling  SentimentCalculator.calcSummedSentiment(listComments), where 

the list of comments is fethed from the database by the db_helper for a given postId. The results are then 

written back into the sentiment table using the db_helper. A more detailed description of the architecture 

of this module will be illustrated in Chapter 6. 
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Figure 13: SentimentCalculator output 
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Figure 14: SentimentCalculator output example for negative comments 

 

There is also a batched sentiment calculation, which calculates sentiment for all the post in the 

database. It iterates over all the posts, fetches all the comments for that post and calls the same 

SentimentCalculator.calcSummedSentiment(listComments) as before. 
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Chapter 5 
 

Unsupervised approach to Social Data Analysis 
 

 

 Social data also includes data about the users like their gender, city, description, date of birth. 

These data can be used to detect similarities between the users. Similar users can be identified in the same 

group, so that it becomes easier to target their preferences within marketing campaigns. So, the main goal 

of this module is to find those groups of users and to visualize their characteristics.  

 

5.1     Fetching data from social networks 

  

To be able to analyse user data, first we need to gather those data. User data are present on social 

networks, but to gather them we need to have right permissions. For the purpose of this project we were 

provided a dataset that included comments, posts, social channels, brands and desired social networks 

with fallowing relationships: 

 

Figure 15: Sentiment_db 
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So, from the logic schema of the data we see that for every post from im_post table we can fetch all 

comments that are located in table im_commento. Chapter 2 explained how to determine summarised 

sentiment of all users about a post. Now, to go further and characterize the user groups that posted 

comments, we are interested in the characteristics and behaviour of each group. To get user data we need 

to use the API each social channel we are interested in. We will explain how Facebook API is used for this 

purpose and for the rest the procedure is very similar.  

 Facebook Graph API requests user authorization access before applying search. User connects to 

Facebook API by sending access token and to get it the developer need to register at 

developers.facebook.com and to register the application that will use the search. After successful 

authorization then the developer can do the search.  

Id parameter is target user id and the other is list of user attributes that we are interested in. The 

problems we met are related to permissions and user privacy options, since not all users shared all 

desired attributes. So, our dataset is not full, and we used some pre-processing techniques to overcome 

this problem. This is explained in the next part of this chapter. The returned result is a JSON formatted 

string. All the data fetched are stored into user_social table.  

 

{ 

     "birthday": "01/01/2010", 

     "about": "Fashion, Trends, Beauty Style, Personal Shopper and Stylist.", 

     "email": "info@driferreira.com", 

     "city": "San Diego", 

     "country": "United States", 

     "category": "Personal Assistant", 

     'description": "Dri Ferreira is a Stylist and Personal Shopper for the Fashionable Elite for... " 

} 

      

 

5.2     Pre-processing 

  

 Getting the target data is one thing, but getting the information behind that data is something else. 

Raw data usually need some modifications, transformations or, in one word data, pre-processing. 

In every project related to data science and machine learning, the pre-processing step takes almost 60% of 

time. 

 

 5.2.1   Exploratory data analysis 

 

 First thing that is usually done in pre-processing is exploratory data analysis. We are inspecting 

features (columns) of the dataset. We are inspecting basic statistic, types, visualize distributions, 

Figure 16: FB API response 
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correlations, and other interesting measures. In the next picture there is an example from the data of a 

user who commented on a specific post: 

  

 

 Also, data types can be numeric, categorical or string variables. Here we must pay great attention 

to string variables, since they are unstructured and enriched with hashtags, links and emojis. Also, content 

is generated on many different languages, so we need to translate it in order to have useful information. 

We can see examples on next dataset. 

 

 

 

Figure 18: User dataset table 

       

 5.2.2   Missing data  

   

 Datasets that are collected directly from users usually are not 100% full. We have to handle 

missing data in one of many ways following certain policy. For example, we chose to discard rows that 

have more than two missing fields. For the rest of the rows we fill missing fields using policy depending on 

the type of the field. For features that are: 

 

 

Figure 17: User dataset info 
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• Categorical – we fill the missing value with most frequent category in specified feature 

• Numerical – we selected median value since it is more resistant to outliers than median 

In our dataset, all the variables was categorical, and we choose to fill-in missing data following 

distribution of values. 

 

 5.2.3   String data 

 

 String variables need to be handled in special way. We decided to transform them in categorical 

variables by fallowing next steps. 

 First, we need to have language consistency, so we used Google Translator to translate text to 

English. After that, we tokenize string by removing punctuations and stop words. Now we have a list of 

tokens instead of the string. Next, we create dictionary, where we count occurrence of each token and 

select top 10 since they take most of the variance of the dataset. Finally, we go again through all rows,  

calculate similarity between the tokens and categories, and select most similar categories. In that way we 

achieve a categorization of this string feature. We did this categorization on about and description 

features.  

 The birthday feature, which was also stored as a string, was split into three new integer features: 

day, month and year. 

 

5.2.4 Categorical data 

 

 Categorical data are variables that often contain label values rather than numerical values. The 

number of possible values are limited to fixed set.  

Some examples include: 

• A “gender” variable with the values: “male” and “female “. 

• A “vehicle” variable with the values: “car “, “motorcycle” and “truck “. 

• A “language” variable with the values: “Italian”, “English” and “Serbian “. 

 

Categorical data are perfect choice for some type of algorithms like decision trees. Although, there are also 

some algorithms that cannot work on label data directly, they require input and output variables to be 

numeric. This means that categorical data needs to be converted to a numeric form. Method for doing 

transformation is also used in this project has two steps: 

1) Integer encoding step where each category is assigned an integer value. For example, “car” is one, 

“motorcycle” is two and “truck” is three. 

2) One-hot encoding is necessary for categorical variables where no such relationship exists. One-hot 

encoding is applied to integer representation of categorical variable. This is where integer 

encoded variable is removed, and binary variable is added for each unique integer value. One 
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binary variable is redundant and thus it can be removed. Final binary variables are called dummy 

variables. 

 

5.3     Unsupervised learning techniques 

  

 Unsupervised machine learning is the machine learning task of inferring a function to describe 

hidden structure from “unlabelled” data. Classification or categorization problems are not included in this 

observation. Since the data in those problems are not label it is not possible to measure accuracy of the 

model output by the relevant algorithm, which is one difference between supervised and unsupervised 

machine learning algorithms. 

 

 5.3.1 Hierarchical clustering 

   

Hierarchical clustering is one possible type of clustering. It can be agglomerative or divisive. 

Agglomerative clustering starts with all individual points as separate clusters and then starts merging 

them by similarity, which means in each step we merge most similar clusters until we get one cluster. 

Divisive clustering goes in other way. It starts with one cluster and at each step it separates into more 

similar clusters until it reaches number of clusters as there are data points. With this method we use 

dendrogram to visualise clustering and choose the best number of clusters. Advantage of this method is 

that we don’t need to know number of clusters in advance and the disadvantage is the complexity of the 

algorithm which is time exhausting for big datasets. 

 

5.3.2 K-Means 

 

K-means clustering is another type of clustering that we applied in our project. Before we use it, 

we need to specify the number of clusters that we expect to have. At the beginning, random centroids 

whose number we specified are initialized and other data points are assigned to a cluster which is the 

closest centroid. The algorithm is specified in the following figure: 
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Figure 19: K-Means algorithm 

 

An advantage of this algorithm is that it is computationally fast and it also produces tighter 

clusters, especially if the clusters are globular. A disadvantage is that we need to know number of clusters 

in advance and it is not good for clusters with non-globular shape or with variating density. This algorithm 

had the best performance on our data, so we chose it for our dataset. The number of clusters was 

determined using the Elbow analysis method, explained in the following. 

 

5.4     Elbow analysis 

  

 As we mentioned before, we have chosen K-means clustering technique to inspect our dataset. It 

had the best performance, but we still need to find the best number of clusters. So, to be able to do that, we 

need to measure performance for each trial number. We used two measures: 

• Within-cluster sum of squares (WSS): 

𝑊𝑆𝑆(𝐶) =  ∑ ∑ ||𝑥𝑗 − µ𝑖||
2

𝑥𝑗𝜖𝐶𝑖

𝑘

𝑖=1

 

 

where µ𝑖 is the centroid of cluster 𝐶𝑖 (in case of Euclidean spaces) 

 

• Between-cluster sum of squares (BSS): 

𝐵𝑆𝑆(𝐶) =  ∑ |𝐶𝑖| ∗ ||µ − µ𝑖||2

𝑘

𝑖=1

 

  

where µ is the centroid of the whole dataset 
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 For each number of clusters, we are making a WSS/BSS trade-off. We can plot this and use elbow method 

to determine optimal number of clusters. We can see that on next figure: 

 

 

     

  

From the graph we need to find one point after which WSS is stabilized. In our case, the x-axis represents 

number of clusters and we can see that after four clusters WSS is not changing much, i.e., it is stabilized. 

So, in our case the optimal number of clusters is four. 

 

5.5     Visualization of clusters 

 

 Once we have done clustering on the dataset and we get the result, we need to understand the 

meaning of it, i.e.  the characteristics of each cluster. In our project, all the variables are categorical, so we 

decided to visualize the distribution of values for each feature labelled by specific cluster. 

 

5.5.1   Principal Component Analysis 

 

 Principal component analysis (PCA) is a technique used for dimensionality reduction, data 

compression, feature extraction and data visualization. PCA represents the orthogonal projection on a 

Figure 20: Knee for K-means clustering 
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lower-dimensional linear space, which is also known as principal subspace, in such a way that the 

variance of the projected data is maximized.  

 

 

 In our project we used PCA for dimensionality reduction of multidimensional user dataset to be 

able to visualize clustering results. Clustering of dataset is shown in the next figure, where the dataset is 

clustered into 4 distinct groups.  

 

 

 

Figure 21: Example of PCA 

Figure 22: User data clusters 
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5.5.2   Visualization of characteristics 

 

 From the previous picture we cannot infer anything about the clusters characteristics. So, as we 

mentioned before, we need to display distributions of user variables, for every cluster, to draw 

conclusions about the cluster characteristics.  

For examples, value distributions for each feature describing one of the clusters are shown at next 

figures.  

 

 

Figure 23:  About and Country features distributions of user data 

  

We can see that in cluster 3 for example users or pages are mostly coming from Italy and are dominantly 

related to accessories category. There are also other nationalities present but in lower number. 
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Figure 24: Description feature distribution of user data 

 

Also, from the distribution of description feature of user data we can conclude that user/pages mostly 

relate to a job in the design sector.  

 

 

Figure 25: Category and City features distributions of user data 
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Finally, we look at the category and city features and observe that most users/pages from these clusters 

are websites coming from Milan.  

 While the current dataset has a low number of features, companies have more permissions on 

user data and their analysis thus can be more complex. The described clustering and other unsupervised 

techniques have an important role in the market-segmentation part of any business process. Market-

segmentation is a process where the market or potential customers are grouped in finite number of 

groups, where each group have specific characteristics. This is done because it is neither feasible for 

companies to target the entire market, nor each single customer. So, companies are making marketing 

strategies and target-specific user groups that are the best fitting in their business plan. The main goal of 

marketing segmentation is to reach consumers with specific needs and preferences. It is very useful for 

the company in the long way because its resources are used in more effective and optimal way. Companies 

today are confronted with many competitors and social media analysis is one of the most important parts 

since it can bring advantage w.r.t competitors. 

One of the advantages of our API that is not supported by currently available solutions is 

sentiment analysis on the clustering results. Each cluster has its own characteristics, so as users belonging 

to it. Having that in mind, we can determine summarized sentiment of users separately to each cluster and 

then compare the obtained results. 

 

 

Figure 26: Sentiment analysis of clusters 
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In Figure 26 we can see summarised sentiment values of users for each cluster separately. We see in this 

example that all groups have positive average sentiment. In our dataset we see that users of cluster 3 have 

most positive reactions among other users. That fact represents one of the most important points in 

marketing segmentation process and can be used in making further conclusions in analysis. 
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Chapter 6 

 

API design and development 
 

 

 In this chapter we present the way the API combining the analyses presented in the previous 

chapters is structured, how it is used and how it was developed. First, we will describe the main modules 

of the API and the way of use. Then we will use a top down-approach to describe the structure of the API, 

which means that we are going from global components description and their interaction and then we will 

describe each component in more detail. 

 

6.1   Design 

  

 In today’s technological world, it is very important to follow the best practices when designing 

your solutions. Best practices involve solutions created in optimal way, which are easy to use at the same 

time. So, it is available also for users who are not programmers or who are not generally technically 

experienced. Good practices are usually solved with nice graphical solutions. API development is different. 

API stands for Application Programming Interface and it is designed for programmers. API’s users are 

other applications, it is designed to retrieve and manipulate data. APIs are used as a service they usually 

have single point of entry, which allow developers to manipulate remote resources in a consistent and 

automated way.  

 That is the reason why we choose the API approach to structure our project. We created a RESTful 

API that offers analysis as a service. It is built on top of the database systems. Its components also use 

external APIs to complete some inner tasks. A high-level picture of the system is presented in Figure 27. 

The API consists of three components: Sentiment API, Spam Filter and Clustering API. Each of those 

components is created in a separate package and can be used independently. However, sentiment API is 

using spam filter in one of its inner tasks.  
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Figure 27: Social data analysis overview 

 

6.2   Development 

 

 In this section we describe the technologies used for the development of the system. We sill 

specify how and where are each one of them is used. Technologies that were utilized are: 

 

• DBMS: MySQL 5.7.14 

• Scripts: python 3.6.1 

• Package manager: conda 4.3.17 

• APIs: Facebook API, Google Translate API 

• Version control system: Git 

 

We were provided a dump database file, where we had over 500000 comments posted by users as a 

reaction on posts provided by company. It is not a very large dataset, so it is mainly used as proof of 

concept.   
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In the following parts of this chapter, we describe the most important considerations and decisions we 

took in development phase. 

 

6.2.1   Spam filter 

 

 Social networks or emails or blogs are places where people can interact. This is potential target for 

entrepreneurs and malicious users who want to make promotion in atypical way. Spam is irrelevant or 

unsolicited messages sent over the Internet, typically to a large number of users, for the purposes of 

advertising, phishing, spreading malware, etc. [Oxford dictionary definition] In the beginning, we created 

spam filter to be a simple function that uses regex expression for detecting links inside the text. After that, 

we identified that we needed a more intelligent spam filter based on supervised machine learning 

techniques. As described in Chapter 3, this new spam filter can detect spam based on text content.   

Training and creation of new spam filter is done inside spam_detection.py script. First step in this 

process is to filter strings with links inside. Those are detected as spams using regex expression to search 

for links inside. After that rest of the text is tokenized and lemmatized. After dataset is pre-processed we 

performed holdout split into training and test set with sizes 75% and 25% respected. Next, Gaussian 

Naïve Bayes model is selected since it is shown very good for this purpose. The model is initialized and 

trained on the training dataset, before we made classification of the spams. This model as its evaluation is 

supported with scikit-learn library. The model is evaluated as 90% accurate. 

 

 

 

Figure 28: Sentiment calculator class diagram 

 

6.2.2   Sentiment API 

  

 The Sentiment API module uses several components which are displayed in Figure 29. Sentiment 

API starts by obtaining the comments that satisfy some condition. For example, all comments left by users 

on specific post, or all comments left by user or group of users. After that, we are filtering actual 

comments from spams. For that purpose, we are using Spam filter that was previously trained.  
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Figure 29: Sentiment analysis package components 

 

Next, for each comment we are splitting emojis from real text. We are determining sentiment of emojis 

by summing up their sentiment values obtained from hash table of emojis with sentiments. Hash table 

with emoji sentiments is shown in Figure 30.  

 

After that, the sentiment of the text part for every comment is processed. For that purpose, we used 

Google Translate API methods to translate text from various languages into English. Next, the translated 

text is inspected with Vader Sentiment API methods to determine the sentiment. Finally, two sentiments 

are combined to determine the total sentiment. It is described in more detail in Chapter 4.2.3. 
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Figure 30: Emoji sentiment hash table 

 

6.3.2   Clustering API 

 

 The Clustering API consists of many interconnected components. Two main modules are: pre-

processing and clustering modules. One module is also devoted to inspecting the results of clustering 

where the main focus is on cluster visualizations. 

The pre-processing module represents a separated package that is shown in Figure 31. Two main 

components, that represent an interface of the package, are fetch user data and create user dataset 

components. Fetch user data component find the id of users that we want to analyse and get the data that 

describes them from one of targeted social channels. Data is stored in user_social table of sentiment_db 

created for that purpose. In that process that component uses helper classes stored into utils package. 

Database class is a class that provides connection to the database. It uses singleton design pattern, to 

ensure unique database connection. We use this class to get relevant user ids, which afterwards we use as 

input to FacebookAPI class. This class is used to connect Facebook network and return data from users 

with provided ids. 
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Figure 31: Pre-processing package component diagram 

 

The Create user dataset component is used after user data are fetched and stored in the database. It loads 

data about users and modifies it so that after the process data is ready to be analysed. It uses the Database 

component to read fetched data. Database component realizes singleton design pattern to ensure one 

open connection for current process to database. Then the usual prep-processing steps are applied, 

missing data are filled in with respect to their distribution. Categorical variables are handled with integer 

encoding and one-hot encoding technique, where integer encoding is just enumerating categories, and 

replacing them to an integer number. One-hot encoding technique is performed after integer encoding is 

completed and enlarges dataset by adding number of columns equal to number of categories. Values of 

those columns are ones and zeroes, which indicates weather current instance belongs to a category or not. 

After columns are added, one random column is removed to prevent redundancy in data. String variables 

are handled using helper Category Similarity class. Category similarity class uses Google Translate API and 

Natural Language Toolkit component, first to perform translating string into English and then to 

categorise it into one of the target classes. Classes are better described in Figure 32.   
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Figure 32: Pre-processing utils package class diagram 

 

In categorization step of string variables, categories are not assumed in methods of Category Similarity 

class, they are previously determined. This is done with nlp_about component. The components included 

are presented in Figure 33. First, all string data are tokenized and, using a dictionary, word occurrences 

are counted. Top ten of most frequent relevant tokens are selected as default categories.  

 

 

 

Figure 33: Component used to determine default categories 
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Next, the clustering step is done after pre-processing is finished. First, we load created pre-processed data 

and determined which are relevant features of users for the analysis. Sequence diagram of actions during 

the clustering process is described in Figure 34. 

 

 

 

 

 

 

Figure 34: Clustering process 
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Chapter 7 

 

Conclusion 
 

 

In this final chapter, we will sum up the main reasons for developing this project. We will also 

describe in what aspects and how much our project contributes to them. We will also describe how our 

project improved existing solutions. After that, we will give a brief overview of expectations and obtained 

results. Finally, we will describe possible future improvements. 

 Current companies today are creating business plans where it is very important to be innovative 

and to have good prediction of future trends. This gives an advantage over the competitors. So, companies 

are trying to obtain as much information about their potential market share. Now, business is moved to 

the Internet and the main focus is on social networks and user generated data. All users are observed as 

customers and their behaviour is treated with great consideration. So, companies are now searching for 

tools that “predicts future” using the mentioned data.  

 Our project gives support for these kinds of problems. To be able to correctly analyse user data, 

we need to handle them properly. One of these problems is related to spam filtering. Spam relates to 

useless data that need to be removed before performing any kind of analysis. We dedicated one part of our 

project specifically to this topic. We created an intelligent spam filter that automatically detects and 

removes spams from dataset of interest. Spams with links are easily detected with simple regex 

expressions, but other cases need to be handled in more complex ways and that is why we decided to use 

supervised machine learning algorithms to solve this problem.  

 We have already mentioned that user reactions are very important, so companies need to find a 

way to use them as an advantage of social networks. Now we see that companies are very active on 

Facebook, Instagram, Twitter. They are posting information on new products and try to see how potential 

customers react. We recognized that companies need a tool to measure sentiment of users about specific 

product, so we built a sentiment analysis API that takes user’s comments on some entities, process them 

and returns summarized sentiment  on the commented entties. Users can be of different nationalities and 

thus they will most probably use their native language when leaving a comment. Moreover, now there is 

the possibility of using emojis or hashtags to express reactions. In other words, we have reach multi-

lingua textual data that need to be managed. In the development of the Sentiment Analysis API we used an 

external component that detects language and translate it in English, thus ensuring consistency in the 

treated data. Because it is rich text, we exploit emojis to determine sentiment more precisily. So this 

component split data in two parts: emojis and raw text. Sentiment is calculated separately for each part 

and then it is summarized in optimal way.  
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Another point that this report indicates is the need for clustering of customers. Since, it is 

impossible for most of companies to target the whole market space, they adopt marketing segmentation, 

which is one of most important elements of creating business plans. Through clustering, users are 

grouped based on their characteristics, and they are identified in a group with most similarity among 

others. So, when a company decides for example to launch a product, it can see which groups best match 

particular products. In that way, companies can manage their resources in a more effective and more 

optimal way. In our project we used k-means clustering algorithm with initial number of clusters that was 

previously determined with elbow analysis technique. In existing solutions there is no support in user 

clustering methods and that is one problem that our project solved. 

A lot can be done to improve the developed modules and make them more robust. The machine 

learning spam filter can be trained on a different dataset that the one we used. It would be ideal to gather 

data from the social network the spam filter is going to be used for, and then train it over this specific 

content. Also, the dataset that we used was quite small, and improved accuracy can be achieved by 

training the classifier against larger datasets.  

Sentiment analysis can be enriched with a social network specific content that was not taken into 

account. For example: Facebook reactions could provide very useful information for the sentiment, or 

likes or Twitter hashtags. 
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