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ABSTRACT

Acute Hypotensive Episode in the Intensive Care Unit represents a
severe condition that, if not treated promptly, leads to irreversible or-
gan damage (Bassale, 2001) and increased mortality (Physionet, 2009).
Therefore, it would be of relevant importance if mathematical algo-
rithms were able to provide clinicians with statistical predictions on
the onset of such condition.
Other works addressed this issue with different methods, sometimes
proposing new definition of hypotension. Of those, relevant importance
are the studies of Chen et al., 2009 and Ghassemi, 2011. In 2009 Phys-
ionet even proposed a challenge on the subject.
Our work starts from developing methods to win the challenge to
then apply those to a wider cohort of patients. In both cases we used
data that can be found in MIMIC: a public database offered by Phys-
ionet.org, in which are stored waveforms and clinical data of more than
4000 patients (MIMIC II) in the Intensive Care Unit.
Unlike other works, what we present are algorithms that use informa-
tion at a beat to beat level. It was necessary, therefore, to develop a
peak detection logic able to find the actual data to work on. After build-
ing a large feature space, a process of feature selection made possible to
select those with the higher predictive power to use in the classification
step.
Following training, our classifiers were able to stand the comparison
with the winner of the challenge. The extension to a wider cohort of
subjects also brought good results: the best performances were achieved
with Discriminant Analysis and Classification Trees.
The features used in this first analysis are relative to blood pressure am-
plitude in the moments preceding hypotension. To actually express the
power of the beat to beat level information, it was necessary to reduce
the dimension of the cohort to those waveform showing perfect conti-
nuity in the heart rate variability signal. On this selected cohort was
possible to extract information about the baroreflex. We demonstrate
here that these new informations are able to boost the classification re-
sults incrementing specificity from 0.739 to 0.796s and sensitivity from
0.745 to 0.834.
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SOMMARIO

Episodi di ipotensione acuta nell’unità di terapia intensiva rappresen-
tano una condizione grave che, se non trattata tempestivamente, porta
a danni irreversibili agli organi e maggiore probabilità di mortalità.
Pertanto, è di importanza significativa avere algoritmi matematici in
grado di fornire al medico previsioni sull’esordio di tale condizione. Di-
versi studi hanno affrontato il problema con varie metodologie, a volte
proponendo nuove definizioni di ipotensione. Di rilevante importanza
sono gli studi di Chen et al., 2009 e Ghassemi, 2011. Nel 2009, Phys-
ionet ha persino indetto una Challenge sul tema.
Il nostro lavoro parte dallo sviluppo di metodi per vincere la Challenge
per poi applicarli ad un più ampio dataset di pazienti. In entrambi i
casi abbiamo utilizzato i dati del MIMIC: un database pubblico fornito
da Physionet.org, in cui sono presenti forme d’onda e dati clinici di
oltre 4000 pazienti (MIMIC II) in terapia intensiva.
A differenza di altri, presentiamo algoritmi che sfruttano informazione
a livello battito-battito. É stato quindi necessario sviluppare una log-
ica di rilevamento battiti in grado di trovare i dati reali su cui lavorare.
Dopo aver creato un ampio dataset, un processo di selezione delle fea-
tures ha permesso di selezionare quelle con maggiore potenza predittiva
da utilizzare nella fase di classificazione.
Dopo il training, i nostri classificatori hanno sostenuto il confronto
con il vincitore della Challenge. Anche l’estensione a una più ampio
dataset di soggetti ha portato buoni risultati: le migliori prestazioni
sono state ottenute con Analisi del Discriminante e Alberi di Clas-
sificazione. Le features utilizzate in questa prima analisi sono per lo
più relative all’ampiezza della pressione sanguigna nei momenti prece-
denti all’ipotensione. Per esprimere efficacemente la potenza delle infor-
mazioni a livello battito battito, era necessario ridurre la dimensione
della coorte a quelle forme d’onda che mostravano una perfetta con-
tinuità nel segnale di variazione della frequenza cardiaca. In questa
coorte selezionata, è stato possibile estrarre informazioni sul barorif-
lesso. Dimostriamo qui che queste nuove informazioni sono in grado di
aumentare i risultati della classificazione aumentando la specificità da
0, 739 a 0, 796 punti e la sensibilità da 0, 745 a 0, 834.
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ESTRATTO

Nell’unità di terapia intensiva di un ospedale, gli operatori sanitari mon-
itorano attentamente i pazienti con gravi lesioni, traumi post-operatori
o condizioni di salute instabili utilizzando sistemi di monitoraggio del
letto che registrano continuamente forme d’onda come elettrocardio-
gramma (ECG) e pressione sanguigna arteriosa (ABP). Gli episodi
ipotensivi acuti (AHE) sono tra gli eventi più critici che si verificano
nelle unità di terapia intensiva e richiedono un intervento rapido e effi-
cace per evitare danni irreversibili agli organi e/o la morte del paziente.
La predizione anticipata di AHE (entro poche ore) potrebbe essere di
fondamentale importanza per fornire interventi terapeutici tempestivi
e appropriati.
Grave ipotensione può essere il risultato di molteplici cause, che vanno
da ipovolemia, iperkaliemia, ipotiroidismo e disfunzioni del sistema ner-
voso autonomo (ANS), sindrome da arresto cardiaco, insufficienza car-
diaca congestizia, sepsi e altri. Quindi, l’origine dell’ipotensione puó
essere ricondotta a un ampio spettro di cause che evidenzia le comp-
lesse dinamiche dietro tali eventi.
Numerosi studi hanno giá affontato questo tema. Molti di questi fanno
parte di studi svolti per affrontare la challenge indetta da Physionet.org.
PhysioNet è uno dei repository più grandi, più completi e più ampia-
mente usati al mondo di segnali fisiologici registrati liberamente disponi-
bili e dati clinici ad alta risoluzione provenienti dai reparti di terapia
intensiva, con relativo software open source per la ricerca.
PhysioNet, il primo repository di questo tipo, è stato fondato nel 1999
per fornire risorse di dati e software in biomedicina alla comunità di
ricerca.1

Figure 0.1: Physionet & LCP.

Annualmente Physionet propone delle challenge in cui i partecipanti
devono presentare metodi per risolvere il problema oggetto dell’analisi.
La challenge del 2009 aveva come focus la predizione di attacchi ipoten-
sivi acuti che vengono definiti come una porzione di pressione arteriosa

1 http://lcp.mit.edu/physionet.shtml
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in cui la pressione media sia sotto i 60 mmHg per almeno 30 minuti.
Per svolgere la predizione erano disponibili tracciati di ECG e ABP.

Figure 0.2: Esempio di ipotensione da un record MIMIC. La linea verde rap-
presenta la pressione arteriosa media che diventa rossa durante
l’attacco ipotensivo. L’intervallo di tempo tra le linee della griglia
è di 30 minuti. La linea rosa intermittente contrassegna la soglia
di 60 mmHg.

Lo studio presentato in questa tesi parte dall’analisi della challenge
per sviluppare metodi che verranno poi applicati su una coorte di pazi-
enti piú grande in modo da verificare l’efficacia degli algoritmi svilup-
pati.
Un secondo studio andrá a focalizzarsi su un insieme piú ridotto di
pazienti su cui verrá svolta un analisi piú particolare: la predizione
dell’ipotensione svolta con l’aiuto aggiuntivo dell’informazione portata
dal baroriflesso.

Per il rilevamento dei complessi QRS (insieme di onde prodotto
dalla depolarizzazione dei ventricoli), é stato utilizzato l’algoritmo di
Pan Tompkins, mentre per il rilevamento dei punti di sistole, diastole
e punto fiduciario 2, é stato utilizzato un algoritmo chiamato Pulse
Waveform Delineator (PUD) (Li, Dong, and Vai, 2010). Analogamente
a Pan-Tompkins, PUD funziona contemporaneamente su due canali,
l’ABP stesso e la sua derivata. Cerca coppie di punti di flesso e zero
crossing per identificare i picchi sistolici e le valli diastoliche usando
soglie dinamiche, quindi cerca i nodi dicrotici.

Ottenuti i tracciati di sistogramma, diastogramma, fiduciogramma
3 e tacogramma é stato possibile costruire un ampio dataset per de-
scrivere la fisiologia dei pazienti ipotensivi e di controllo. L’opera di
predizione infatti si basa sull’identificare lo stato fisiologico di queste
due classi di pazienti prima dell’onset della patologia sotto analisi, per
poi effettuare una classificazione tra pazienti sani e quelli che andranno
in contro all’evento ipotensivo.

Sull’ampio dataset costruito é stata fatta un analisi per trovare le fea-
tures che racchiudono il maggiore potere predittivo, in modo da ridurre
la dimensionalitá del problema e rendere piú interpretabili i modelli che
sarebbero risultati. Per far questo è stato utilizzato l’algoritmo LASSO.
Il dataset ottimale risulta infine composta da:

2 Punto di massima derivata nel segnale ABP
3 Successione dei punti fiduciari
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- ag70;

- m_diast;

- as10;

- minof;

- CO 4;

Una volta ottenuti i dataset ottimali é stato possibile cominciare con
la classificazione. Sono stati addestrati 17 diversi classificatori per val-
utare il potere predittivo di diversi metodi e trovare quale dei diversi
modelli offrisse il migliore fit ai dati in training e test set. I 17 classif-
catori utilizzati sono:

- Disc_Lin: Analisi del discriminante lineare;

- Discr_Quad: Analisi del discriminante quadratica;

- Discr_Sub: Analisi del discriminante migliorata con il Random
Subspace mathod;

- KNN_Coarse: K-nearest neighbor con 100 neighbor e distanza
euclidea;

- KNN_Medium: K-nearest neighbor con 10 neighbor e distanza
euclidea;;

- KNN_Cosine: K-nearest neighbor con distanza cosinoidale;

- KNN_Mikowski: K-nearest neighbor con distanza di Mikowski;

- KNN_Weight: K-nearest neighbor con distanza euclidea usata
come inverso del quadrato;

- KNN_Sub: K-nearest neighbor migliorata con il Random Sub-
space mathod;

- LogRegr: Regressione Logistica;

- SVM_Lin: Support Vector Machine con kernel lineare

- SVM_Quad: Support Vector Machine con kernelquadratico;

- SVM_Cub: Support Vector Machine con kernel cubico;

- Tree_AdaBoost: alberi di classificazione con Adaptative Boost-
ing;

- Tree_RF: alberi di classificazione con Random Forest;

4 Si rimanda all’appendice A per i dettagli
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- Tree_RUSBoost: alberi di classificazione con Random Under Sam-
pling;

- Tree_TotalBoost: alberi di classificazione con Totally Corrective
Boosting.

I risultati ottenuti sul test set della challange Physionet sono molto
buoni: con Support Vector Machine quadratiche e cubiche ed i Random
Forrest Trees é stato possibile ottenere una classificazione con il 90% di
accuracy (36 corrette classificazioni su 40). Anche con gli altri metodi
é stato possibile ottenere buoni risultati.
L’applicazione di questi metodi ad un cohort di pazienti piú grande ha
portato anch’essa a buoni risultati. Una coorte di 442 pazienti é stata
divisa in train test e test set con una suddivisione rispettivamente di
75% e 25%. Con le performance sul training e test set, oltre agli al-
beri di classificazione, spiccano i classificatori che sfruttano l’analisi del
discriminante. Questi ultimi, mostrano un bilancio molto buono tra
sensibilitá e specificitá ed ottimi performance di classificazione. Come
ultimo, é stato provato un utilizzo dei classificatori addestrati sul train-
ing set della coorte di 442 pazienti sul test set della Challenge Physionet.
In questo caso le prestazioni sono state piú alte del caso precedente: si
passa dal 90% al 92.5% di accuracy (37 corrette classificazioni). Questo
risultato viene raggiunto con i Tree_RF. Le performance di tutti i clas-
sificatori sono riassunte nelle tabelle 0.3a 0.3b 0.3c 0.3d.
Per il secondo studio sul baroriflesso é stato necessario scegliere con

cura i pazienti con cui lavorare: nella coorte di 442 pazienti, numerosi
artefatti sporcavano i segnali e non era possibile ottenere tracciati puliti
di tacogramma e sistogramma. Dopo ispezione visiva, sono stati scelti
83 pazienti su cui effettuare questa seconda analisi.
Per estrarre il baroriflesso é stato necessario costruire un modello bi-
variato che fosse alimentato da tacogramma e sistogramma. Il modello
creato é un modello stocastico che utilizza la metodologia del Point Pro-
cess. Una volta costruito il modelo bivariato é stato possibile calcolare
il baroriflesso come modulo della funzione di trasferimento tra i due sis-
temi. Il baroriflesso trovato in questo modo é una funzione del tempo
ma anche delle frequenze. Per ottenere un segnale é stato fatto un in-
tegrale nel dominio delle Low Frequency (0.04− 0.15 Hz). Dal segnale
cosí ottenuto sono state estratte feature atte a descrivere il diverso com-
portamento del segnale tra le due classi di pazienti. Sono stati utilizzati
classici indici statistici ma anche parametri piú complessi come misure
di entropia e caoticitá del segnale. Altri indici particolari estratti sono
stati gli indici statistici di linea di base e attività dei picchi in relazione
alla linea di base.
L’ipotesi che sta alla base di questa scelta é che il baroriflesso puó

essere considerato come composto da due meccanismi separati:

baroreflex = baseline+ bursts (0.1)
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Classifier AUC AUC_OP SENS SPEC ACC
Discr_Lin 0.865 0.775 0.788 0.762 0.77
Discr_Quad 0.855 0.775 0.779 0.771 0.773
Discr_Sub 0.868 0.769 0.788 0.749 0.761
KNN_Coarse 0.853 0.773 0.779 0.767 0.77
KNN_Cosine 0.84 0.757 0.721 0.793 0.77
KNN_Medium 0.844 0.756 0.692 0.819 0.779
KNN_Mikowski 0.85 0.766 0.779 0.753 0.761

KNN_Sub 0.786 0.714 0.596 0.833 0.758
KNN_Weight 0.844 0.762 0.731 0.793 0.773
LogRegr 0.86 0.765 0.705 0.825 0.787
SVM_Cub 0.805 0.756 0.74 0.771 0.761
SVM_Lin 0.862 0.768 0.769 0.767 0.767
SVM_Quad 0.834 0.757 0.769 0.744 0.752

Tree_AdaBoost 0.835 0.756 0.644 0.868 0.798
Tree_RF 0.855 0.767 0.702 0.833 0.792

Tree_RUSBoost 0.831 0.755 0.663 0.846 0.789
Tree_TotalBoost 0.852 0.797 0.721 0.872 0.825

(a) Performance from the 10 fold cross vali-
dation of the models on the training set
of our main dataset (CR). LT=10min
DW=10min.

Classifier AUC AUC_OP SENS SPEC ACC
Discr_Lin 0.886 0.788 0.735 0.84 0.807
Discr_Quad 0.884 0.773 0.706 0.84 0.798
Discr_Sub 0.884 0.788 0.735 0.84 0.807
KNN_Coarse 0.88 0.773 0.706 0.84 0.798
KNN_Cosine 0.86 0.793 0.706 0.88 0.826
KNN_Medium 0.862 0.772 0.676 0.867 0.807
KNN_Mikowski 0.865 0.758 0.824 0.693 0.734

KNN_Sub 0.79 0.726 0.559 0.893 0.789
KNN_Weight 0.875 0.824 0.794 0.853 0.835
LogRegr 0.888 0.786 0.706 0.867 0.817
SVM_Cub 0.763 0.758 0.676 0.84 0.789
SVM_Lin 0.88 0.773 0.706 0.84 0.798
SVM_Quad 0.831 0.753 0.706 0.8 0.771

Tree_AdaBoost 0.876 0.755 0.618 0.893 0.807
Tree_RF 0.87 0.8 0.706 0.893 0.835

Tree_RUSBoost 0.854 0.814 0.735 0.893 0.844
Tree_TotalBoost 0.817 0.735 0.618 0.853 0.78

(b) Performance of all classifiers trained on
the main dataset training set (CR) and
tested on the main dataset test set (CS).
LT=10min DW=10min.

Classifier AUC AUC_OP SENS SPEC ACC
Discr_Lin 0.942 0.852 0.857 0.846 0.85
Discr_Quad 0.942 0.852 0.857 0.846 0.85
Discr_Sub 0.929 0.852 0.857 0.846 0.85
KNN_Coarse 0.948 0.852 0.857 0.846 0.85
KNN_Cosine 0.911 0.854 0.786 0.923 0.875
KNN_Medium 0.875 0.799 0.714 0.885 0.825
KNN_Mikowski 0.891 0.832 0.857 0.808 0.825

KNN_Sub 0.868 0.728 0.571 0.885 0.775
KNN_Weight 0.886 0.816 0.786 0.846 0.825
LogRegr 0.929 0.871 0.857 0.885 0.875
SVM_Cub 0.843 0.78 0.714 0.846 0.8
SVM_Lin 0.926 0.852 0.857 0.846 0.85
SVM_Quad 0.882 0.832 0.857 0.808 0.825

Tree_AdaBoost 0.9 0.854 0.786 0.923 0.875
Tree_RF 0.915 0.926 0.929 0.923 0.925

Tree_RUSBoost 0.897 0.835 0.786 0.885 0.85
Tree_TotalBoost 0.951 0.874 0.786 0.962 0.9

(c) Performance of classifiers trained on the
training set of our dataset (CR) and
tested on the test set of the Physionet
challenge.

Classifier AUC AUC_OP SENS SPEC ACC
Discr_Lin 0.937 0.871 0.857 0.885 0.875
Discr_Quad 0.931 0.871 0.857 0.885 0.875
Discr_Sub 0.931 0.852 0.857 0.846 0.85
KNN_Coarse 0.5 0.5 1 0 0.35
KNN_Cosine 0.902 0.871 0.857 0.885 0.875
KNN_Medium 0.909 0.852 0.857 0.846 0.85
KNN_Mikowski 0.87 0.852 0.857 0.846 0.85

KNN_Sub 0.817 0.709 0.571 0.846 0.75
KNN_Weight 0.905 0.799 0.714 0.885 0.825
LogRegr 0.937 0.871 0.857 0.885 0.875
SVM_Cub 0.945 0.874 0.786 0.962 0.9
SVM_Lin 0.937 0.852 0.857 0.846 0.85
SVM_Quad 0.945 0.907 0.929 0.885 0.9

Tree_AdaBoost 0.533 0.5 1 0 0.35
Tree_RF 0.933 0.907 0.929 0.885 0.9

Tree_RUSBoost 0.533 0.5 1 0 0.35
Tree_TotalBoost 0.533 0.5 1 0 0.35

(d) Performance of models trained on the
Physionet Challenge training set (TR)
tested on the Physionet Challenge test
set (TS).

Figure 0.3: Performance table

Dove la linea di base potrebbe rappresentare l’equilibrio dinamico
del sistema nervoso autonomo mentre l’attività dei picchi è la risposta
a una condizione specifica. In tale ipotesi, quindi, il valore assoluto di
un picco non è paragonabile a quelli vicini a causa di cambiamenti della
linea base, rendendo difficile fare ipotesi sul comportamento del barorif-
lesso e quindi su ipotetici cambiamenti emodinamici. Quello che, invece,
è stato valutato come affidabile era l’ampiezza del burst rispetto alla
linea di base, quindi quanto il picco di attività è in relazione all’attuale
stato dinamico del baroriflesso. Purtroppo gli indici calcolati in questo
modo non sono stati in grado di comprendere la differenza tra pazienti
ipotensivi e no. É stato pensato, quindi, di fare il calcolo del baroriflesso
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(a) Raw baroreflex. (b) Effect of a moving average filter.

(c) Baseline and filtered baroreflex with wan-
dering artifact the first couple of minutes.

(d) Relative burst amplitude and filtered
baroreflex.

Figure 0.4: Baroreflex processing steps.

AUC Spec Sens Acc
M5 + skewpks+ kurtLW 0.815 ± 0.013 0.834 ± 0.03 0.796 ± 0.03 0.811 ± 0.015

M5 0.742 ± 0.016 0.745 ± 0.09 0.739 ± 0.09 0.742 ± 0.026

Table 0.1: Performance table

nel dominio delle High Frequency (0.15− 0.4 Hz). Gli indici statistici
di linea di base e picchi relativi a essa del baroriflesso cosí calcolato, si
sono rivelati molto utili nel miglioramento delle performance di classi-
ficazione. In particolare le features scelte per aumentare le prestazioni
sono state la assimmetria (skewness) dei picchi e la kurtosis della linea
di base. Usando un dataset costituito dalle cinque features giá identi-
ficate nel precedente studio e le due nuove relative al baroriflesso ed
un’altro con solo le prime cinque, sono stati ripetuti i processi di train-
ing e cross-validazione per cento volte. É stato possibile, in questo modo,
quantificare l’effettivo aumento di prestazioni che il baroriflesso porta.
Il risultato é visibile nella tabella 0.1.

É da tenere in considerazione come i segnali dei pazienti utilizzati
in queste analisi non siano andati in contro a processi di esclusione
secondo stato fisiologico o medicazioni. Questo é stato fatto di proposito
per mantenere un approccio che richiami un ipotetico utilizzo nella vita
reale di questi algoritmi. In un secondo momento é stata fatta un’analisi
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delle prestazioni a seconda delle medicazioni 5 ricevute dai pazienti per
rendersi conto di come il risultato di classificazione dipenda da queste.

Intervention AUC Sens Spec Acc

Vasopressors Yes 0.786 ± 0.01 0.788 ± 0.01 0.785 ± 0.01 0.786 ± 0.01
No 0.765 ± 0.01 0.848 ± 0.01 0.681 ± 0.01 0.75 ± 0.01

Sedative Yes 0.786 ± 0.01 0.795 ± 0.01 0.776 ± 0.01 0.782 ± 0.01
No 0.783 ± 0.01 0.821 ± 0.01 0.744 ± 0.01 0.772 ± 0.01

Ventilation Yes 0.806 ± 0.01 0.803 ± 0.01 0.809 ± 0.01 0.807 ± 0.01
No 0.766 ± 0.01 0.800 ± 0.01 0.732 ± 0.01 0.756 ± 0.01

Pacemaker No 0.806 ± 0.01 0.794 ± 0.01 0.819 ± 0.01 0.811 ± 0.01
Yes 0.735 ± 0.01 0.820 ± 0.01 0.651 ± 0.01 0.705 ± 0.01

Table 0.2: Tabella con indici di prestazione analizzate a seconda delle medi-
cazioni. Ogni intervento ha due righe: la prima mostra gli indici di
prestazione sui pazienti senza medicazione specifica (riga ’No’), e
la seconda gli stessi indice dei pazienti che l’hanno ricevuta (riga
’Yes’). Questi valori sono il risultato di una cross-validazione 5-
fold di un analisi con discriminante lineare utilizzando tutti i 442
pazienti del cohort.

In Tabella 0.2 é possibile vedere quanto le prestazioni di classifi-
cazione varino a seconda se i pazienti hanno ricevuto o meno med-
icazioni. É possibile vedere come la differenza di prestazioni sia piú
marcata tra pazienti che fanno uso di pacemaker e non. Anche la venti-
lazione meccanica mostra effetti simili ma meno marcati. Ció potebbe
essere dovuto al fatto che i pazienti con ventilazione assistita, in genere,
sono pazienti in condizioni critiche e/o pesantemente sedati. Per ap-
purare l’effettiva causa saranno necessarie piú analisi. Vasopressori e
sedativi, invece, sembrano non alterare troppo la classificazione cre-
ando solamente uno squilibrio tra sensibilitá e specificitá. Questo forse
riflette una gravitá piú lieve dello stato di salute di questi pazienti.

5 Somministrazioni di vasopressori, sedativi o uso di ventilaizione meccanica o pace-
maker
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1
INTRODUCTION

In a hospital’s Intensive Care Unit (ICU), healthcare professionals
closely monitor patients with serious injuries, post-surgery trauma or
unstable health conditions using bedside monitoring systems that con-
tinuously record electrocardiogram (ECG) and arterial blood pressure
(ABP) waveforms. Acute hypotensive episodes (AHE) are among the
most critical events that occur in ICUs and require effective, prompt
intervention to avoid irreversible organ damage and death. Early predic-
tion of AHE (within hours) could be of pivotal importance to establish
timely and appropriate therapeutic interventions.
Severe hypotension can be the result of multiple causes, ranging from
hypovolemia, hyperkalemia, hypothyroidism and ANS dysfunctions car-
diac arrest syndrome, congestive heart failure, cepsis and others1.
Hence, the origin of hypotension might be brought back to a broad
spectrum of causes not considering comorbid ones, which highlight the
complex dynamics behind such events.
Several studies tried to characterize hypotension and different models
were proposed.
This thesis will examine the predictive power of the information gath-
ered at the beat to beat level. In a first analysis we face the 2009
Physionet Challenge to develop methods to apply, in a second moment,
to a much wider cohort of patients. This analysis will use features ex-
tracted from standard vital signs.
In a second analysis we will focus on a cohort formed by patients se-
lected by the quality of their heart rate variability and systograms. On
this restricted cohort we will extract features about the baroreflex to
prove the predictive power of such kind of information.
In the second chapter are reviewed the nature of an AHE and the im-
portance of AHE prediction in the ICU, and the work described in
the literature related to the AHE prediction. The third chapter will
describe the methods used to clean the raw data, annotate signals, ex-
tract features and classify patients. In the last chapter will be presented
the performance of the methods and some consideration about the au-
tonomic assessment in ICU and the influence of interventions on the
classification results.

1 Yildiran et al., 2010
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2
BACKGROUND

2.1 acute hypotensive episodes

Blood pressure is the pressure of flowing blood against the walls of
vessels and is considered a vital Sign. It is variable in time, showing
long term patterns during the day cycle, which is considered an adap-
tive behavior to external and internal changes. An healthy person is
thought the have a blood pressure lying in the 120/80mmHg1, the first
number indicating systolic pressure while the second diastolic. There is,
though, great variability, where a certain pressure may result abnormal
for a person while normal for an other. Blood pressure is controlled by a
range of different mechanism: arterial stiffness, cardiac output, total pe-
ripheral resistance, moreover the short term response is also controlled
by other physiological mechanism, like baroreceptors. The ANS2 has a
strong influence in the vascular regulation, it has the ability to control
vessels dilation and heart rate. There are several models describing the
pressure behavior and the general control mechanism behind it.
Probably the oldest model describing the vascular system is the wind-
kessel lumped model for the arterial properties. A typical windkessel
model is the three elements windkessel model (wk3), taking as input
ventricular pressure and aortic inflow from the heart. The wk3 model

Figure 2.1: Three elements windkessel model. The capacitive element C rep-
resents the arteries compliance, the parallel resistive element is
the hydraulic resistance to blood flow of the arteries while the
the resistance in series is the aortic characteristic impedance.

is inspired from an RC electric analogue and of simple resolution. It
models peripheral resistance and compliance and aortic compliance so
to obtain the total impedence of the circulatory system. The wind-
kessel model is a representation of the vascular mechanical system but

1 De Backer and Vrints, 2017
2 Autonomic Nervous System
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4 background

Figure 2.2: RR-SBP-RESP interaction model. The model explains the differ-
ent interactions between respiration, systolic pressure and heart
rate. One can see that heart rate is influenced by respiration
(RSA) through Htr and by systolic pressure (Baroreflex) through
Hts plus a colored residual. On the other hand, systolic pressure
is dependent form heart rate, the so called mechanical effect, res-
piration and vessels configuration (Baroreflex on vessels in figure).
RR intervals and systolic pressure are heavily interconnected.

it doesn’t take into account ANS influence. Another approach, with
broader reach, is the model proposed by Baselli. The Baselli model is
a stochastic model which focuses into the interaction between heart
rate, systolic pressure and respiration. It is a model fed by noise, and
is able to examine all various interactions between the different vari-
ables. For instance the model provide the closed loop Systolic – Heart
rate relations, so baroreflex sensitivity and mechanical effects, therefore
including ANS influence. Blood pressure is essential in providing the
correct amount of oxygen to the organs, therefore abnormal variations,
being upward or downward variations, must be cautiously kept under
control.

Blood pressure disorders belongs to two main groups: hypotension
and hypertension. Hypertension increases heart workload and mechan-
ical stress on vessels. Long standing hypertension might lead to heart
and kidney failure. Hypertension is correlated with shortened life ex-
pectancy.
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Hypotension is characterized by abnormally low pressure, after a cer-
tain point the blood flow is so weak that oxygen perfusion in the brain
and other organs reach critical levels and might yield to permanent
damage. It is therefore a critical condition to be carefully monitored.
Hypotension is not always a critical trait, for instance orthostatic hy-
potension due to postural variations is a short term condition which
usually resolves by itself while the body adjusts for the gravitational
pull. This thesis focuses into predicting and characterizing Acute Hy-
potensive Episodes in ICU, life threatening conditions.
Several studies are based on hypotension, trying to understand the
physiology of this condition as well as identifying possible causes and
solutions. As it turns out, hypotension is a complex condition, most
of all because it is usually a symptoms of one or many other comor-
bid pathologies. Severe Hypotension might occur from blood loss, ANS
disorders, heart conditions, medications, hypethyroidism, sinus dysfunc-
tions, dehydration, cardiac output anomalies, bradycardia , septic shock
and others(Kharod et al., 2014). Hypotension is significantly correlated
with increased mortality, so that mortality of patients suffering form
hypotension is more than twice that of normopressure subjetcs3.

2.1.1 ANS

The autonomic nervous system is composed by the sympathetic nervous
system and parasympathetic nervous system. Sympathetic actions are
associated with the flight and fight mechanism, increased pupil dilation,
sweat, increased heart rate and blood pressure. The sympathetic re-
sponse is abrupt and less delicate than its counterpart, the parasympa-
thetic effect is that of heart rate relaxation and lowered blood pressure.
Together, parasympathetic and sympathetic nervous system compose
the sympathovagal balance. This is because when there is sympathetic
activation there is parasympathetic deactivation and vice versa, they
are complementary mechanism. ANS has influence on the sinus node,
so it can influence heart rate, but it also has influence on baroreflex
sensitivity. Barorecptors are sensors mostly located in the carotid sinus
and aortic heart; their purpose is to monitor pressure. The baroreflex
is the response to pressure variations, for instance when there is a pos-
tural change, let’s say from a supine position to standing, there is a
sudden drop in blood pressure due to the gravitational pull.

Receptors detect this variation, resulting in vasoconstriction and
increased heart rate for pressure normalization. Another example of
baroreflex is the mechanical effect of respiration. During inspiration,
pressure grows in the thoracic cavity; adding to that of blood pressure,
resulting in a decrease in heart rate, the opposite occurs during expi-
ration: pressure drops yielding to faster heart rate. This reflex is gen-

3 Physionet, 2009
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Figure 2.3: Aortic arch on the left and carotid sinus to the right are the sites
of baroreceptors.

erally called Respiratory Sinus arrhythmia4. The blood pressure- heart

Figure 2.4: RSA model.

rate relation can be studied though a simple closed loop. Moreover by
studying the interaction and spectra of given time series (tachogram
and spectrogram) it is possible to identify some indicators. As indicated
form the TaskForce, three spectral bands are associated with ANS ac-
tivity, LF, HF and VLF. VLF are indicators of slow variations, maybe
due to hormonal changes, while LF and HF might be due to parasym-
pathetic balance. It has been shown for instance that in diabetic neu-
ropathic patients, HF and LF presence is almost null, in accordance to
the pathology. It comes not as a surprise, that a disorder in th ANS
is reflected as disorders of vascular control, hence is a variable to keep
under control.

4 RSA
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2.1.2 Medications

Hypotension can result from response to medications. Vasopressors can
cause hypotension due to adverse reactions. Medications for hyper-
tension, like beta blockers, which impairs the normal control systems,
might yield to hypotension. Without prior knowledge, it can be hard
to distinguish between an ANS disorder and the effect of medications,
both resulting in alterations of the underlying system.

2.1.3 Septic Shock

Septic Shock is a serious condition caused by infections. Spesis naturally
yields to severe low blood pressure caused by uneven distribution of
blood in the system.
Other causes of hypotension are:

• Hypovolemia

• Pregnancy

• Anaphylaxis

• Nervous system damage

• Pulmonary embolism

• Anemia

• Lack of nutrients
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2.2 state of the art

Given the severity of the condition, in literature is possible to find sev-
eral studies about the subject, each with different implications, methods
and settings but with the shared goal to promptly alarm the clinician.
Through the years many studies were proposed starting from simpler
statistical descriptions to advanced deep learning methods.
Early studies were constrained by the lack of data, like the work of
Bassale, 2001, which proposed an insightful waveform based analysis.
The work of Jules Bassale inspects the behavior of the arterial blood
pressure waveforms prior to the hypotension as mean to charcterize
hypotension itself in septic patients. The subjects pool is rather small,
with only 5 patients, from which 28 hypotensive episodes were chosen.
From this records the author had waveforms available for the analysis.
Hypotension was defined as a drop in blood pressure of 20mmHg in less
than 2 minutes. Each record consisted of 10 minutes of blood pressure
waveform, 5 minutes before and 5 after the hypotension.

The author investigates how the shape of ABP changes as it ap-
proaches the event, and to do so he makes use of statistical indices
and correlation functions. As a first step, waveforms are subdivided
into 80 seconds windows from which than a distribution analysis is
performed. The author highlight how the distribution of the window
containing the hypotension is different from the Others, with the claim
being supported by a significant difference in the skewness of the sam-
ple. Moreover, as shown in the paper, such variation can be visually
assessed (See figure 2.5) as the waveform becomes less “smooth”. To

Figure 2.5: Waveform variation prior to hypotension.

even further characterize such changes the autocorrelation function is
been used. The authors argue that a variation in the ABP shape will
also induce a change in the linear coefficients describing the autoregres-
sion of the waveform, see figure 2.6. As final proof, the sminorv test
shows effectively how shapes form the hypotensive window are actually
part of a different population (p-value < .0001).

This paper was widely cited in different publications as it gives an
insight of the hypotension phenomena.

Always in the contest of Sepsis,Crespo et al., 2002 evaluates varia-
tion of mean and variance as precursors of hypotension in 7 subjects of
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Figure 2.6: Autocorrelation coefficients difference due to impending hypoten-
sion.

young age ( < 20 yrs). Of interest is the definition of hypotension: for
each candidate episode ABP is divided in three intervals, a stable region
of 300 seconds, a 10-120 seconds region of decreasing ABP and critical
region, of 20 seconds, in which hypotension persists. An episode to be
considered so, needs to have a blood pressure of maximum 80mmHg
in the critical region , which also has to be at least 20% less than the
pressure in the stable region and the drop must be more than 10 mmHg.
Authors claims that this criteria were chosen to identify only critical
hypotensions.
As for Bassale, 2001, many hypotensive episodes are recorded for each
subject (with at least a 20 minutes separation).
Prior to the hypotension onset, ABP is sampled in five 20 seconds in-
tervals distant 40 seconds from each other. Within each it is measured
Pulse pressure, Peak to peak distance and the percussion wave slope
(See Section 3.5) . The idea is to prove that some of the described vari-
ables have a statistical significance (p-value < .005) difference between
the fifth sampled interval and the remaining four. It was shown that
ABP and percussion wave slope variances were significantly different.

By using bigger cohorts it possible to apply more complex models to
the point where machine learning methods are an option. For instance
the Laboratory of Computational Physiology -LCP- hosts annually a
"challenge" where teams solves clinical problem using various classifiers,
one of which focused on hypotension. Moreover the LCP, where part
of this thesis was developed, is the creator of Physionet, a collection of
large clinical databases and softwares. Apart from the database used
for this study, which will be subject of a next chapter, Physionet is
also the host of the yearly Physionet Challenge: An event that brings
together data scientists, engineers and clinicians to discover new forms
of cooperation. In 2009 Physionet organized the 10th Challenge in com-
puting in Cardiology: Prediciting Acute Hypotensive Episodes in ICU.
The challenge was designed in two events, the first one about the iden-
tification of subjects under vasopressors medications, the second about
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hypotensive episodes forecasts, the latter being the focus of our efforts.
The dataset for the CinC5 consisted of 60 patients in the training set
and 40 for the test, therefore can be considered a dataset larger, but
still of medium size, compared to the ones previously described, and
also doesn’t comprehend multi-compilation observations in contrast to
the previous analysis. As a result of this challenge, participants re-
leased their solutions to physionet, which can be easily accessed6. In
the following sections are described some of the best approaches to the
challenge.

One of this is Henriques and Rocha, 2009 solution. They attempt to
solve the challenge with Generalized Regression Neural Network in an
extremely interesting work, which also held the highest score ever for
this event. A such can be probably considered the state of the art in
Hypotension prediction.

Figure 2.7: GRNN multi-model workflow proposed by Henriques and Rocha,
2009.

The proposed methodology applies generalized regression multi-models
as an alternative to the simple autoregressive methods, which, quoting
the authors, allows to “not recursively use model outputs as inputs for
step ahead predictions. As result, prediction errors are not propagated
over the forecast horizon and long-term predictions can be accurately

5 Computers in Cardiology.
6 https://physionet.org/challenge/2009/papers/
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estimated”. Multi-Models are discrete time non-linear auto regressive
representations.

step0 : y(k) = f1(y(k− 1), y(k− 2), .., y(k− n)) (2.1)
step1 : y(k+ 1) = f1(y(k), y(k− 1), .., y(k+ 1− n)) (2.2)
step2 : y(k+ 2) = f1(y(k+ 1), y(k), .., y(k+ 2− n)) (2.3)

(2.4)

The expression in 2.4 can be rewritten:

y(k+ 2) = f1(f1(y(k), ..., y(k+ 1− n)), y(k), ..., y(k+ 2− n))
= f2(y(k), y(k− 1), .., y(k+ 1− n))

Finally:

y(k+ P ) = fp(y(k), y(k− 1), ..., y(k+ 1− n))

As demonstrated above,it can be proven that the P prediction step
is not function of past outputs (no error propagation, Henriques and
Rocha, 2009) but only the of the values till the current step. Instead,
different autoregressive models are used for the prediction, to be precise
one need P prediction models for a prediction of P steps ahead. Each of
these models is approximated by a GRNN, thanks to the generalization
capabilities of NN, moreover the great advantage of this methods, con-
trary to RNN, is that the back-propagation algorithm can be directly
applied. This introduce a simplification, but an RNN might achieve
even better results once learning difficulties are overcome.
To define the templates in the training phase, the designer needs to
select a threshold, the size of the template and its order. The author
propose that size and order are to be chosen so to minimize the predic-
tion error. Hence, each record in the training phase has its own tem-
plate. The model proposed is mono-variate, with only ABP, excluding
clinical records and other waveforms. ABP is preprocessed and normal-
ized. Then, the signal undergoes a correlation analysis with a series of
templates elaborated in the training phase. The results will be many
correlation coefficients relatives to the different templates.By using a
fixed score, the most similar template, and the associated multi-models
are chosen and used for the prediction. The power of this methodology
is that it actually predicts the pressure values in the future, and not
hypotension. Hypotension is defined afterwards.
While the work of Henriques and Rocha, 2009 focuses on a template

base approach, Chen et al., 2009 proposed a simple index based classifi-
cation for the challenge. Specifically all indices were drawn from blood
pressure, yet again leaving out additional waveforms such as heart rate.
Moreover apart from one index, all other are not optimized indices,
meaning they are not optimally parametrized during the training phase.
For the classification it self, each index is take singularly and used as
the solely feature in the classification. The authors justifies the use of
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simple indices taken from ABP only saying that most of the predictive
information lies on pressure itself, and as such, they favor a pragmatic
approach. Following the list with description of said indices:

• Index I: 5 minutes average of the mean arterial pressure before
T0 (the forecast window)

• Index II: 5 minutes average of the ABP before the forecast win-
dow.

• Index III: Exponentially weighted ABP in the 10 hours prior to
the forecast window. Of all features this is the only which is opti-
mized in the training set, meaning that the time constant for the
weighting was selected through ROC analysis to better classify
training observations.

• Index IV: prediction of the ABP 30 minutes within the forecast
window by means of linear interpolation.

• Index V: 5 minutes average of the diastolic pressure before the
forecast window.

• Index VI: index function of index II and V, and acts as a voting
system whereas when both this two indecies identify an hypoten-
sion then index VI is raised.

Accuracies and AUC in test and train for each index are in table 2.1.

Index Training AUC Test Accuracy
I .76 .825
II .75 .90
III .82 .80
IV .76 .90
V .79 .925
VI .75 .90

Table 2.1: Performance of Chen’s Indices.

Results are quite high in the test, although with big differences (from
32 to 37), moreover AUC in the training doesn’t seem to indicate a sim-
ilar performance in the test (indeed the highest AUC in the training
set yields to the lowest score in the test, maybe said feature doesn’t
grasp the difference between the two classes or probably it is due to
overfitting). Anyhow, Chen et al., 2009 proved that even a very sim-
ple method can yield to very good performance, and highlights the
importance of ABP as a predictor of hypotension.

In the last section were described the best scores from the challenge
they also shows two different approaches, a complex model and a simple
index based classification. The two studies share the same dataset, the
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challenge dataset, with a training set having the size of 60 patients.
Overall the population size is not the largest, and it might not fully
represent hypotension. Differently Jiang, Hu, and Wu, 2017 use a large
dataset, with more than a thousand entries, for their study.

This paper proposes a classification algorithm based on the Hilbert-
Huang Transform for feature extraction and Genetic Programming for
the classification model. This method is applied on two datasets, the
challenge dataset and a large dataset, always from MIMIC, with 2866
records. The fact that the challenge dataset is used comes in handy
since it allows us to compare our model through the challenge, even
if unfortunately the challenge test sets used from Jiang, Hu, and Wu,
2017 was incomplete (they could retrieve only 37 out of the 40 patients
for the challenge test set).

Figure 2.8: Workflow emphasizing the role of the HHT role.

The Hilbert-Huang transform is technique for time series decompo-
sition into Intrinsic Mode Functions (IMF) in fashion similar to the
Fourier transform and wavelet decomposition, but better suited for
non-stationary and non-linear signals. The HHT is based on the em-
pirical mode decomposition or EMD, able to break down the signal
into a finite number of orthogonal basis, called IMF. The IMF roughly
describe the harmonic component of the original signal, where the first
component contains the highest frequency and so on. Each IMF than
can be processed via the Hilbert Spectrum Analysis (or HSA) from
which one can extract the Amplitude Modulation Bandwidth (AMB)
and the Frequency Modulation Bandwidth (FMB) for each IMF. Along
with the power of the last IMF, the AMB and FMB of each IMF acts
as features to be fed to the genetic classifier for the classification of
Hypotensive patients, which brings to the second Part of this paper:
Genetic Programming.
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Genetic Programming is born from evolutionary computation, and is
method capable of “evolving” computer programs to achieve a designed
purpose. Genetic Programming in itself is not particularly complex, in-
deed it interacts with tree structured computer programs by setting
the tree structure in the optimal way (figure 2.9). Each tree is assigned

Figure 2.9: Simple example of a tree structured program for genetic program-
ming.

with a set of actions, for instance the authors used:

+ − x ÷ sqrt exp ln 2 3 1/3 sin cos tan−1

The algorithm will have to combine in certain way the features to
achieve the goal following a cost function (fitness). The authors suggest
that genetic programming “may be more powerful than neural networks
and other machine learning techniques”. For the purpose of the study, as
said earlier, features are the AMB and FMB of the different IMFs from
the HHT. The training set is divided in many subsets (figure 2.10),on
each subsets a genetic model is trained, and through a voting system,
an observation is classified (if more than half of the models chose the
observation as hypotensive, than it is classified as such). The training
performance is applied with cross validation like methods, where the
voting system is applied to one of these subsets of the training set itself.
The results is a 34/37 accuracy in the challenge test set (91.89%) and
of 82.41% in the large MIMIC dataset. What we think is remarkable
about this study is the impressive sensitivity of around 85%, which
is considered by us very high. Jiang, Hu, and Wu, 2017 proposed an
effective method, on both a large sets and the challenge, although it
is not clear to us their definition of hypotension, which we assume
being the same of the challenge, moreover being that their challenge
test set is not complete, we cannot compare our results with the one
from the study. Also, although the high sensitivity is very important, it
carries a lower specificity (although still very high) , hence an intrinsic
unbalance in the classification performance in the two classes. For an
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Figure 2.10: Classification logic.

overall assessment it would have been easier to have AUCs, but are not
present in the paper. Overall, the performance achieved in the study is
impressive.

In line with Jiang, Hu, and Wu, 2017 Work, Lee and Mark, 2010
cohort is made of 1311 records, therefore a quite large dataset. Data
source was Always MIMIC. As it will be described in this paragraph,
from the original pool of records are going to be selected up to 141000
subset with a mechanism called multi-compilation explained later. The
design is to use a feed-forward classification network with three lay-
ers with the hidden one composed of 20 neurons. The choice of the
model was justified by the fact that a three layers FNN is able to
map any kind of input-output relation (Lee and Mark, 2010). Features
were extracted form Systole, Diastole, Heart Rate ,Pulse Pressure and
relative cardiac output. Said features represents the different statisti-
cal moments (mean, standard deviation, skewness and kurtosis of each
time series), wavelet coefficients, clinical information, such as age and
medications and correlation at zero log to estimate the coupling be-
tween time series. The large amount of features, though, prove to be
challenging to be handled by a neural network because of the curse of
dimensionality and collinearity (Haykin et al., 2009). Hence, PCA was
applied for dimensionality reduction using 90% of explained variance.

Classification is performed in two datasets built differently based on
the compilation method. With single compilation the author means
that from each record it is taken at most on sample, hypotensive or
normotensive, while with multiple compilation from each records are
taken as many samples as possible using a sliding window. Quality
of the samples was assessed using a simple interval of physiological
limits. (ie. Pressure must be between 10mmHg and 200mmHg). It is
clear that, by design, the multi-compilation dataset is much larger than
the single compilation one, but also requires more attention in the
train/test split In the multi-compilation dataset samples form the same
record could only belong to either the train or test set and not both,
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Figure 2.11: Predicted ABP versus actual ABP.

reason being that two samples taken from the same record and with
relative small time apart would follow the same behavior, therefore
classification performance would seem to overperform, while that is
not true.

PCA7 was applied in the training set, and classification was per-
formed in the PCA dimension with test observation being projected
using the loading obtained from the training. The performance differ-
ence between single compilation and multi-compilation is high. On the
multi-compilation set AUCs are 10% higher on average than in the
simple compilation dataset.In the table 2.2 are shown the AUCs and
sensitivities for the different methods.

Single-compilation Multi-compilation
AUC .809 ± .042 .914 ± .018

Sensitivity .745 ± .053 .812 ± .030
Specificity .732 ± .036 .864 ± .014
Accuracy .737 ± .026 .863 ± .014

Table 2.2: Comparison between single-compilation and multi-compilation
performance one hour before hypotension onset.

But the study goes further, Lee also attempts to predict the value
of ABP itself in the future, using the same NN architecture but with
an hyperbolic activation function instead of a sigmoid one for dynamic
range, see figure 2.11. The MSE achieved is of around 10% on average.
Authors do not provide a comparison with the challenge.

By performance, this results are second only to Henriques and Rocha,
2009, although, as noted by the authors, the biggest limitation of the
study is the quality assessment of the records, hence they did not ex-
cluded all corrupted data.

7 See Section 3.8.1



2.3 mimic 17

2.3 mimic

PhysioNet is one of the world’s largest, most comprehensive, and most
widely used repositories of freely available recorded physiologic signals
and high resolution clinical ICU data, with related open-source soft-
ware for research.
PhysioNet was established in 1999 to provide data and software re-
sources in biomedicine to the research community.8

Figure 2.12: Physionet & LCP.

Physionet is the union of the following branches9:

• PhysioBank The Data archive, with clinical information and
waveforms recorded from ICU patients.

• PhysioToolkit A collection of softwares, like the WFDB toolbox,
for data driven analysis.

• PhysioNetWorks Incubation Laboratory.

The archive was created by the Laboratory For Computational Phys-
iology, or LCP, where part of the development of this study took place.
LCP is lead by Distinguished Professor Roger Mark and conducts re-
search on improving health care through new data driven technologies
and approaches.
Section 2.3 describes the MIMIC Database form which Records were
pulled for this thesis.

Among the databases collected by PhysioNet, the biggest and most
comprehensive ones are those of the MIMIC Family.
As of writing, MIMIC has reached its third upgrade, although for the
thesis only a part of this last update was used while waveforms were
pulled from the second version.
MIMIC is an acronyms standing for: Multi-parameter Intelligent
Monitoring in Intensive Care.

8 http://lcp.mit.edu/physionet.shtml
9 http://lcp.mit.edu/physionet.shtml
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Figure 2.13: High-Level Structure of the MIMIC Database.

It contains Data gathered from the Intensive Care Unit with medica-
tions, vital signs, diagnosis, notes and patients’ outcomes with approx-
imately sixty thousand admissions10.

Before data was incorporated into the MIMIC-III database, it was
first de-identified in accordance with HIPAA11 standards using struc-
tured data cleansing and date shifting. Dates were shifted into the
future by a random offset for each individual patient in a consistent
manner to preserve intervals, resulting in stays which occur sometime
between the years 2100 and 2200. Time of day, day of the week, and
approximate seasonality were conserved during date shifting.
The database has two main subsets, the Clinical Database and the
Waveform Database.

2.3.1 MIMIC Clinical Database

The MIMIC Clinical Database is a relational database containing tables
of data relating to patients who stayed within the intensive care units
at Beth Israel Deaconess Medical Center.1213 The Clinical Database is
made of 40 different tables, each bringing different information about
a give subject, .
Within the Clinical Database were found valuable information for

this study, such ICU admissions time and confounding factors, like
vasopressors, sedation or mechanical ventilation.
Management and acquisition of Clinical Data from the Database is
performed through PostgreSQL using SQL.

10 https://physionet.org/physiobank/database/mimic3cdb/
11 Health Insurance Portability and Accountability Act
12 https://mimic.physionet.org/gettingstarted/overview/
13 http://www.bidmc.org/
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Figure 2.14: Data Skeleton for the clinical Database

2.3.2 MIMIC Waveform Database

The MIMIC Waveform Database contains recordings of multiple phys-
iologic signals and time series of vital signs collected from bedside pa-
tient monitors in ICU. Most of the Records have (usually) multichannel
ECG, ABP and less frequently respiration while in a best case scenario
for each patient there can be up to eight physiological recordings at the
same time.
Waveform quality is an issue as well as other recurrent artifacts in the
Data. As reported from PhysioNet itself, major issues that could arise
form MIMIC waveform analysis are:

• Gaps and patient identification: some records can have data from
more than one patient. This is due to the bedside monitor not
being reset after a patient discharge.

• Inter-waveform alignment problems: MIMIC was not designed for
multi-waveform analysis14. Because of this there might be delays,
mis-alignments and time varying delays between the different
channels. Such artifact is quiet problematic for the evaluation
of Pulse Transit Times15, and as explained in a next section, was
used an exclusion criteria for records in the cohort.

• Varying Sampling Frequency in ECG: ECGs were originally sam-
pled at 125Hz but later scaled using a technique called peak-
picking. What happens is that the effective resolution of the
ECG degrades from 12 bits to less than ten.

14 https://physionet.org/physiobank/database/mimic3wdb/
15 See appendix Pulse Transit Times or PTT definition.
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Artifacts are dealt with in Section 3.2.

Figure 2.15: Waveforms samples as seen from Lightwave.

2.3.3 MIMIC Matched Subset

The MIMIC Waveform Database Matched Subset16 contains all Wave-
forms that have been associated with the Clinical Database records.
This allow to cross to Clinical Database with Waveform Database.
All used records belong to this database.

16 Saeed et al., 2011 Johnson et al., 2016b
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METHODS

3.1 experimental settings

3.1.1 Definition of Hypotension

An Acute Hypotensive Episode is defined as any period of 30
minutes in which at least 90% of the Mean Arterial Pressure
(MAP1) is below or equal to 60 mmHg2.

Figure 3.1: Example of Hypoyension from a MIMIC record. The green line
represent the MAP of the waveform, it turns red during the AHE.
The time interval between grid lines is 30 minutes. The intermit-
tent pink line labels the 60 mmHg threshold.

The above definition was suggested by the Physionet Challenge Team
and it was chosen for this study for two reasons:

1. A considerable amount of literature is based on this definition,
allowing for results comparison.

2. Methods can be tested directly on the Physionet Challenge dataset.

Moreover the simplicity of this AHE rationale lowers the likelyhood
of false AHE detections or mis-detection, specially in the contest of
MIMIC waveforms where the noise influence during features extraction
is already relevant.
On the other hand one could argue that such definition does not con-
sider the normal pressure variability between patients: some people
might naturally have very low blood pressure without any physiologi-
cal damage or, on the contrary, relatively high pressure associated with
the hypotensive condition: clearly the choice of a fixed threshold has
its downsides.
However, on average pressure below 60 mmHg is considered hypoten-
sive regardless of population diversity, often leading to irreversible tis-
sue damage and death due to low organ perfusion (Bassale, 2001).

1 See Section 3.5.6 for MAP definition.
2 https://physionet.org/challenge/2009/

21
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Another risen criticism toward this definition, but in the contest of
AHE prediction, regarded the ease to identify AHE subject solely on
their MAP, using the assumption that hypotensive patients already
have very low blood pressure even much before the AHE onset. For
instance a subject with a MAP in which 89% of its values are below 60
mmHg is likely to be hypotensive sometime in the future based on the
current definition.
This last point is partially true: some subjects fit the "always-low-blood-
pressure" profile, but it accounts only for a subset of AHE typologies
that were observed in the cohort.
As shown in Section 2.2, different AHE definitions were already pro-
posed: some tried to define a relative threshold (Crespo et al., 2002)
others a more relaxed definition of the current one (Ghassemi, 2011).
Given the complexity of the cardiovascular system, it will be challenging
to find a universally accepted definition of hypotension that completely
grasps its nature.

3.1.2 Data Window and Lead Time

The overall settings for the experiment rely on two parameters only:
Data Window and Lead Time.
The Data Window (DW) is the time interval of a given size of the record
from which the features for the classification are extracted. The time
interval between the upper limit of the Data Window and the onset of
the hypotension is the Lead Time (LT) and represents how far in time
we want to predict the onset of the AHE. All the information contained
in the LT is inaccessible.
As LT increases the harder the prediction3.

Figure 3.2: Data Window and Lead time.

For a better understanding of the phenomena in the general frame-
work, various lead times and data windows were used. Precisely up to
30 datasets were built with different combinations of five different data
windows and six different lead times.
The choice for an even higher number of combinations, specially for
longer intervals, was constrained by the records length of only five
hours: with a 120 min lead time the biggest allowed data windows

3 Chen et al., 2009
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is of 180 minutes.
It was decided to investigate lead times and data windows with different
time scales.
The influence of data windows and lead times will be discussed in

Chapter 4.

3.2 preprocessing

Waveforms were recorded with a sampling frequency of 125 Hz with 8,
10 or 12 bit resolution and stored with the WFDB (Silva and Moody,
2014) supported format.
All channels, but ECG in particular, present various degrees of noise,
form 60 Hz noise, movements artifacts, trigger signals and so on. More-
over noise not always appears concurrently in all of the channels.
Waveforms were filtered, fed to a SQI4 logic and then annotated.

3.2.1 ECG

ECG was treated so to be fed to a Pan-Tompkins5 based algorithm, see
Section 3.5 for details.
ECG is first filtered using a bandpass butterworth filter designed to get
rid of the baseline wander and high frequency noise.
The lower and higher cutoff frequency were chosen to be 8% and 24%
of the Nyquist frequency (62.5 Hz) at respectively 5 Hz and 15 Hz.
The filter order was chosen to be 3 for performance reasons (while
maintaining good results).

f(Hz) % of Fmax
FLow 5 8
FHigh 15 24

Table 3.1: Butterworth Bandpass cutoff frequencies.

To minimize shape deformations, zero-phase distortion, it was used
the zero-phase digital filter technique6. The signal was filtered in both
forward and reverse directions. This process generates the following
effects:

• Zero-phase distortion

• The Transfer function of the final function equals the squared
magnitude of the original

• The filter order is effectively doubled.
4 Signal Quality Index, See Section 3.3
5 Pan and Tompkins, 1985
6 Oppenheim, 1999



24 methods

Figure 3.3: Magnitude and phase response for the ECG filter and filtering
effect on the QRS.

Raw ECGs also present missing values. This can be handled in two
ways depending on the size:

• Interval of at most a couple of samples: missing values are as-
signed to zero (common case).

• Longer intervals: missing values cannot be replaced, and the wave-
form must be treated accordingly.

3.2.2 ABP

Blood Pressure underwent a third order lowpass Bessel filter before the
delineation process7. The cutoff frequency was chosen to be 25Hz. The
advantage of the lowpass bessel filter is that delay up to the cutoff fre-
quency is approximately constant limiting distortion effects. Compared

7 See Section 3.5, Automatic Delineator for Blood Pressure.
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to the back-to-back filtering method this saves some computation time.
Also, for blood pressure, missing values were problematic, even more
than in the ECG: actual values of the ABP signal are important while
in the QRS we were only interested in its position.
A simple but efficient fix for small intervals is to assign to missing values
the average from the boundaries of the region by means of interpola-
tion. For large intervals on the other hand, there is little that can be
done since all values all lost. If the interval is large, the record has to
be discarded.

3.3 signal quality index

Since the signals we use come from the ICU, it is not unusual that
waveforms show artifacts of different natures, with non Gaussian and
non stationary properties. Both ECG and ABP are affected by such
kind of artifacts.
The artifact that we want to identify are:

* Saturation;

* Movement artifact;

* Trigger signal.

(a) Exampe of saturation in ABP signal (b) Trigger signal in ABP

(c) Movement artifact in ECG (d) Trigger signal in ECG

Since we use features extracted from the signal to forecast the onset
of a pathology, it is crucial to be sure that the signal under analysis
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is clear of artifacts that could alter the measure of the characteristics
that describe the signal. To facilitate subsequent processing of peak
detection algorithms, it was thought to use an algorithm that was able
to figure out whether the annotations produced were reliable or not.
This is also used to make the synchronization operation between ECG
and ABP annotations easier. It was therefore necessary to develop an
algorithm to ensure the goodness of the waveforms of both ECG and
ABP signals.
The algorithm works with the same pattern on both signals:

- Beat to beat distance analysis;

- Analysis of characteristic of signal

3.3.1 Beat to beat distance analysis

Processing component common to both SQI algorithms, ECG and ABP,
that is performed in the same way for both signals. The program ana-
lyzes the heart-rate variability and mark as suspicious the beats with
temporal distances of less than 200 ms, and the signal portion where
the distance between two beats is greater than three seconds (Pan and
Tompkins, 1985).

3.3.2 Analysis of characteristics of signal

The program at this point makes a distinction on the processing to be
made depending on whether the signal to be analyzed is either ECG
or arterial pressure.
In case of the ECG, in addition to knowing the position of the R peak, it
is not possible to extract other features that can be considered reliable
and useful to determine the goodness of the trace under examination.
It was decided therefore to consider the base line of the signal. The pro-
gram performs a 5 Hz lowpass filtering on the signal. When the base
line thus obtained passes an empirically determined threshold (1.5 mV)
into the module, the non-reliability flag is raised for that signal portion.
In case of arterial pressure, given the morphology of such signal, it is
possible to individuate some characteristics that can be used to ascer-
tain the presence of artifacts. These characteristic are:

- Diastolic pressure (Pdiast)

- Systolic pressure (Psyst)

- Pulse pressure (PP)

The listed physical quantities are compared with physiological values
for each beat in the track. A beat is labeled as non-physiological when:

- Psyst >170 mmHg
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- Psyst <50 mmHg

- Pdiast >110 mmHg

- Pdiast <15 mmHg

- PP <PP− 4× σPP

In which PP and σPP are mean and standard deviation of Pulse Pres-
sure.

3.4 exclusion criteria

Records were downloaded from the MIMICWaveform Database Matched
Subset (see Section 2.3 for details) using the WFDB Toolbox provided
by PhysioNet8 and automatically annotated ( Section 3.2).
Only records with five hours of contiguous ABP and ECG were chosen.
Additionally, for hypotensive subjects only the first episode was consid-
ered. Finally all records were visually inspected and only those with no
to little artifacts were selected to be included in the final cohort, see
Figure 3.4.

Figure 3.4: Exclusion criteria.

In the end, the cohort reached a size of 442 subjects. See Table 3.2 for
an overall statistical description. The population characteristics are in
line from what reported in (Li, Mark, and Clifford, 2009), interesting is
to observe how mortality is more than twice for patients who suffered
AHE at least once compared to the control population.
Injection of Vasopressors is statistically correlated ( p < .5 ) to hy-
potension; this was expected as clinicians try to rise blood pressure in
those with already low blood pressure.

8 https://physionet.org/physiotools/matlab/wfdb-app-matlab/
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Age is significantly correlated with hypotension, although it doesn’t
seem to have predictive power when included for classification; more-
over the scope of this study is toward a methodological approach to
general hypotension prediction.
Pacemakers and sedation were equally present in both population, while
ventilation is almost significant ( p < .09 ).

C H p-value unit
% 68.33 (303) 31.45 (139) %(num)
Age 62.01 ± 14.28 68.78 ± 13.70 > .0001 years

Gender 1.23 1.60 .2162 M/F
Vasopressors 14.57 22.46 .0413 %
Pacemakers 28.81 29.71 .8473 %
Sedation 19.54 23.91 .2957 %

Ventilation 50.33 59.42 .0767 %
Mortality 9.93 25.36 > .0001 %

Table 3.2: Cohort Description, C stands for Control population while H for
Hypotensive population.

The final cohort is unbalanced class-wise with only 31.54% of records
being hypotensive. This skew will require the need of some tweeks fur-
ther in the classification chapter.
A second, smaller cohort, described in Table 3.4, was used to further in-
vestigate baroreflex sensitivity with a pool of waveforms of the highest
quality.

3.5 annotations

3.5.1 RRI

For ECG peak detection were investigated two routines: Pan-Tompkins
(Pan and Tompkins, 1985) and gQRS(gQRS). The former is a well know
and simple peak detector while the second is an evolution of the first
one. For the first part of the project it was used gQRS but then it was
discovered that Pan-Tompkins for given tasks behaved better and it
was more suited for the job, moreover it was much faster.
Pan-Tompkins is a three-layered algorithm:

• Linear Processing: Bandpass filtering, derivation and moving win-
dow integrator.

• Non-Linear Transforms: Amplitude squaring.

• Decision Rule Algorithm: Adaptive thresholds and T-wave dis-
crimination.
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The squaring of the derivative makes all the points positive and it
emphasizes higher ECG frequencies. The window integration fuses the
QRS in one single wave, easing the detection process; although it is
important not to set a too large moving window since it would also
fuse the T-wave. Therefore two signals are simultaneously scanned, the
original ECG and the processed ECG, using two sets of thresholds,
see Figure 3.5. Each set is composed by two limits, an higher one and
a lower one. The latter is a search back threshold triggered when no
R-peak was found.

Figure 3.5: The waveforms studied by pan-tompkins.

3.5.2 Systole, Diastole and Percussion Wave Onset

One of the biggest challenges in the annotation process was to find a
solid ABP waveform detector able to withstand MIMIC Records; in-
deed it took a great amount of time to find/build/train/test different
algorithms; but we decided it was better to spend more time looking
for a good solution rather than to relying on an approximate one and
then use interpolation.
For the first attempt we relied on the first ABP derivative for mark-
ers; although this works in normal controlled conditions it is not ro-
bust enough for pathological patients or very noisy records. Afterwards,
we used wavelet decomposition for diastolic valleys identification with
much more promising results, only drawback: it was terribly slow, be-
cause of the Mallat algorithm requiring the application of filter banks.
Then we designed a new algorithm (gpABP) based on a non-linear
adaptive threshold function of RR-intervals and derivative peaks; the
performance was similar to that of the wavelet analysis, but an order
of magnitude faster, but still not sufficient.
Finally we were introduced to the Pulse Waveform Delineator (PUD)
(Li, Dong, and Vai, 2010). Similarly to Pan-Tompkins, PUD works con-
currently on two channels, the ABP itself and its derivative. It looks



30 methods

Figure 3.6: PUD workflow.

Figure 3.7: Bisferiens pulse, a challenging waveform to automatically anno-
tate.

for pairs of inflection points and zero-crossing to identify systolic peaks
and diastolic valleys using dynamic thresholds, then it searches back
for dicrotic notches.
Of all the option we have investigated, PUD was the only capable to re-
liably annotate and recognize Bisferiens pulses9, plus it was reasonably
fast, see Table 3.3 for comparisons.

Type Controlled Conditions Irregular Rythms Bisferiens Pulses Robustness to noise Speed
First Derivative Peak Detection Good Fail Fail Fail Sufficient
Wavelet Decomposition Excellent Excellent Sufficient Good Fail
gpABP Excellent Excellent Fail Sufficient Excellent
Zong et al., 2003 Excellent Excellent Sufficient Sufficient Sufficient
PUD Excellent Excellent Good Good Good

Table 3.3: Scoring of different algorithms.

3.5.3 Pulse Transit Times

Pulse Transit Times were defined as the time interval between the R-
Peak and peak of the maximum derivative in the following pressure
waveform. Although this definition was simple, the actuation of it, on
the other hand, required great effort. Because the PTTs are the bridge
between ABP and ECG, We had to be sure to make the correct assign-
ment of R-peaks and ABP waveforms; step necessary for connectivity
features like the Baroreflex.

9 https://medical-dictionary.thefreedictionary.com/bisferiens+pulse
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Figure 3.8: Visual description of Systole, Diastole, Percussion Wave Onset
(fiducial point in figure) and Pulse Transit Times.

To assign to each R-peak the relative ABP waveform, we built a point
process-like framework assuming Gaussanity10 to model the RR-distribution.
We used Maximum Likelihood estimates for the parameters used than
to compute the probabilities for each event.
At this point we had automated and streamlined all the annotation
process form which we had R-peaks, Systoles, Diastoles and PTTs for
each single beat in the five hour long record window.
Having those basic time series, we reached a level where we were confi-
dent we could extract high quality features. See Figure 3.8.
The biggest limitation regarding PTT is the quality of the features:
the low sampling frequency11 causes a relevant quantization error in
the PTT estimation, artifact that can be seen in Figure 3.9e. The esti-
mated SNR when considering quantization noise only is 25.9 dB, which
is an optimistic estimate that ignores peak detectors and ABP-ECG
synchronization errors. Assuming an average PTT of 200ms and con-
sidering a resolution of 8ms then the quantization error represent 4% of
the value, which is acceptable for mean values estimates but completely
destroys the dynamic of the signal12.

3.5.4 Pulse Pressure

Pulse Pressure is difference between the Systolic Pressure and the Di-
astolic pressure for a given beat:

PPi = SBPi −DBPi (3.1)

Pulse Pressure is itself a useful indicator: high blood pressure is re-
lated to stiffness of the aorta (What is pulse pressure? How important

10 We knew that the best option was HDIG, but at price of higher computation times
and moot performance increase.

11 125Hz.
12 Only slow oscillations might be taken into account.
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is pulse pressure to your overall health?); the greater the pulse pressure
the more stiff are vessels. Low pulse pressure is a sign of decreased car-
diac function. PP is also related to heart conditions and cardiovascular
problems and can be used as a predictor of death (Yildiran et al., 2010).

3.5.5 Relative Cardiac Output

To compute Cardiac Output13 We relied on the Liljestrand nonlinear
compliance both for its good estimation (Sun et al., 2005) and for the
easier compliance with our data format14:

COi = K
SBPi −DBPi
SBPi +DBPi

1
RRi

= K
PPi

SBPi +DBPi
fi (3.2)

3.5.6 Mean Arterial Pressure

Mean Arterial Pressure, MAP, was defined as the arterial blood pres-
sure one minute average without overlaps between windows following
Physionet guidelines15.

MAPk =
1

∆k

∫ k+∆k

k
abp(t)δt

with ∆k = 60sec.
AHE were defined on the MAP making it one of the most predictive

time series under analysis. MAP dynamics are often hard to analyze
both at the inter and intra patients level.

13 CO
14 The formula allowed us to use of all the beat-to-beat information resulting from our

processing.
15 https://physionet.org/challenge/2009/
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(a) Systole (Blu) , Diastole (Red) and Percussion
Wave Slope Pressure (Yellow).

(b) RRI.

(c) Cardiac Output. (d) MAP.

(e) Pulse Transit Times. (f) Pulse Pressure.

Figure 3.9: Sample time series form Record s01418-2947-11-14-12-10.
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3.6 modeling

3.6.1 Point Process

The baroreflex is an homeostatic mechanism that helps to regulate
blood pressure: When it increases, the baroreceptors (sensors mainly
present in the aortic arch) trigger an autonomic reflex that reduce the
heart rate so that the blood pressure could return to a proper value.
From a mathematical point of view the baroreflex can be seen as a
coefficient that quantify the influence of the blood pressure on the heart
rate.
There are various way to estimate this gain. One simple method to
estimate this gain is measuring the spectral power of the heart rate
variability and systogram in the Low Frequency band (LF = 0.04 -
0.15 Hz) and doing the ratio between the two:

α =

√
PLF (RR)

PLF (S)
[ms/mmHg]

(3.3)

Where:

- PLF (RR) is the spectral power of the low frequencies of the
tachogram;

- PLF (S) is the spectral power of the low frequencies of the sys-
togram;

This is an evaluation of the baroreflex in a open loop system: the ampli-
tude of systoles have an effect on the heart rate. In this situation there
is no feedback from the variation the heart period ∆RR to a variation
of blood pressure ∆P .
A more sophisticated model allows the closed-loop computation of the
baroreflex gain α taking into account the feedbacks. In this case the
baroreflex can be computed as the absolute value of the transfer func-
tion that describe the transfer of information from systole to heart
period (Hts).

α =

∣∣∣∣ A12
1−A11

∣∣∣∣ (3.4)
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Figure 3.10: Description of a point process in time domain: the process is a
succession of events in continuous time.

This requires to build a mathematical model that describe the dy-
namics between the two systems. Of course it is possible to do this in
various way. The model chosen in this study is a Point Process model16:
a point process is a discrete event happening in continuous time. It can
be seen that this definition suit perfectly the succession of heart beats.

Assuming history dependence, the Point Process model that express
the waiting time until the next heart beat is:

p(t) =

[
θ

2πt3
] 1

2
e
−
θ(t−uj−ut)

2

2µ2
t
(t−uj ) (3.5)

Where:

- uj denotes the previous heart beat occurred before time t

- µt denotes the instantaneous heart beat distance value.

Since the effects of the sympathovagal balance occur on a millisecond
timescale, but its effects last for several seconds, the interval must be
modeled as dependent on the recent history of the Sino-Atrial node
inputs

µt ≡ µRR(t) = a0 +
p∑
i=1

aiRRt−1 (3.6)

We define the time interval between heart beats as the elapsed time
RR between R peaks of the ECG.
Since the objective is to track the physiological changes along time, the
evaluation of the parameters in 3.5 and 3.6 are adaptive. The measure
of µRR(t) is time varying and is determined by the time varying AR
coefficients ai(t)pi=0.
The instantaneous variance of the inverse Gaussian model can be de-
rived as

σ2
RR(t) =

µ3
RR(t)

θ(t)
(3.7)

16 Barbieri et al., 2005
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Heart Rate (HR) is defined as the reciprocal of the heart period RR.
HR and Heart Rate Variability (HRV) indexes can be computed as

µHR = µ̃−1 + θ̃−1 (3.8)

σHR =

[
2µ̃+ θ̃

µ̃θ̃2

]
(3.9)

Where:

- µ̃ = µRR
60

[s]
[s/min]

- θ̃ = θ
60

[]
[s/min]

Since to study the baroreflex is used the information brought by the
systole S in ABP, the model has to take in consideration the influence
of this covariate. To do this q coefficients are added to 3.6:

µt ≡ µRR(t) = a0 +
p∑
i=1

aiRRt−1 +
q∑
j=1

bjSt−j (3.10)

Where St−j denote the previous jth measure of systole before time t.
Now the mean RR is evaluated by a bivariate AR model.
It has to be highlighted that this model does not take in account the
different occurring time of the two inputs: as it is known, the systole in
the ABP happen after the R wave in the ECG. Anyway this does not
affect the measures.
With a linear system assumption, baroreflex can be estimated as the ab-
solute value of the transfer function of the built bivariate model. Given
the parametric model in 3.10 it is possible to evaluate the frequency
response of the baroreflex as

H12(w) =

∑q
j=1 bj(k)z

−j

1−∑p
i=1 ai(k)z

−i

∣∣∣∣∣
z=ej2πfs

(3.11)

Where fs is the beat rate of the RR.
It is possible also to estimate the power spectrum or the gain in the
frequency domain

PRR(ω, t) = σRR(t) |H11(ω, t)| (3.12)
Baroreflexgain(ω, t) = |H12(ω, t)| (3.13)

3.6.2 Characterizing baroreflex sensitivity

Baroreflex sensitivity is a measure of connectivity between heart rate
and blood pressure, particularly the influence that systolic blood pres-
sure has on heart rate. Although a very complex mechanism involving
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many physiological variables, like respiration, with only the contribu-
tion of pressure is possible to make some general assessments.
Baroreflex has a very complex dynamic with no trivial behaviours not
even in simple situations. For instance, when blood pressure drops, one
could expect a rise in the magnitude of baroreflex sensitivity to in-
crease the heart rate to then reach a plato: heart rate increase to the
maximum to compensate for the drop in pressure and mantain organ
blood perfusion. The reality is that it is not this simple, with the signal
showing bursting activity not easy to decipher. The analysis become
even more complex in ICU, where one has to consider not only all the
complications related to the patient pathology but also has to adjust
for medications.
This study was performed in this very conditions.

Figure 3.11: Example of baroreflex from control subject s03279-2984-08-26-
14-42.

3.6.2.1 Cohort

For this second study, patients were pulled again from the MIMIC
matched subset waveform database. Signals were processed and anno-
tated in the same manner as 3.2 and 3.5, it is necessary for the applica-
tion of the point process, it adds another layer of control to grant the
best quality of the signals and minimizes the need to use interpolation
techniques.
Only records with at least five hours of continuous ABP ad ECG were
chosen, if a patient was hypotensive, than its onset is always 30 minutes
before the end of the observation. For control patient it was chosen the
first available 5 hour window.
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C H p-val
% (num) 61.45 % (51) 38.55 % (32)

Age 54.5 ± 13.80 yrs 63.28 ± 16.3 yrs .0093
Vasopressors 17.65 % 25.00 % .4258
Sedatives 33.33 % 21.88 % .2679
Ventilation 52.94 % 46.88 % .5966
Pacemakers 19.61 % 18.75 % .9291
Gender(M) 52.94 % 68.75 % .1581
Mortality 9.80 % 28.13 % .0316

Table 3.4: Cohort Description.

Annotations results were visually inspected and those records with ar-
tifacts were discarded. Differently from the dataset described in Table
3.2, exclusion criteria were made much more strict this time as we kept
only those records that showed extremely clean waveforms. In the end
we obtained a cohort of 83 subject, see Table 3.4 for cohort description.

The cohort description is in line with that described form the 2009
Physionet Challenge, particularly mortality in hypotensive patients be-
ing more than twice that of control.

3.6.2.2 Background & Working Hypothesis

The task of identifying predictive features within the baroreflex has
been challenging. All statistical descriptors failed to differentiate be-
tween the two classes even at the onset of hypotension. This is perhaps
due to the high non linear non stationary dynamic of the signal. To our
surprise, however, not even non linear and caothic measures were able
to grasp a significant difference, the reason for this behaviour is still to
be understood.
In light of these findings it was then decided to simplify the problem by
identifying specific well distinguishable markers: baseline and relative
burst amplitude (RBA).
The hypothesis behind this choice was that the baroreflex is composed
by two separated mechanism:

baroreflex = baseline+ bursts (3.14)

Where the baseline might represents the dynamic equilibrium of the
ANS while the bursting activity the response to a specific condition
change. In such hypothesis then, the absolute value of a peak is not
comparable to those nearby due to baseline changes, making it difficult
to make assumption on baroreflex behaviour and therefore to hypo-
thetic hemodynamic changes. What, instead, was valued as reliable
was the amplitude of the burst relative to the baseline, therefore how
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strong the burst really is in the current dynamic state of the baroreflex.
To realize what just stated it was needed to define the baseline:

• The baseline must be always lower and at most equal to the raw
baroreflex.

• The baseline must be always greater and at most equal to zero.

• The baseline is computed by means of polynomial fitting by us-
ing the lowest possible polynomial order that respects the two
previous conditions.

• Fitted points are local minima of the baroreflex.

In this study, barosensitivity was estimated using a point process frame-
work. Thanks to this model it was possible to achieve a high signal
resolution (200Hz) at the price of some high frequency noise. To solve
for this, raw signals were treated with a simple moving average filter
before being fed to the baseline computation algorithm.

(a) Raw baroreflex. (b) Effect of a moving average filter.

(c) Baseline and filtered baroreflex with wan-
dering artifact the first couple of minutes.

(d) Relative burst amplitude and filtered
baroreflex.

Figure 3.12: Baroreflex processing steps.

The algorithm implementation was straightforward since the baseline
is defined with strong conditions. Baseline where found using a local
minima search algorithm.
A drawback in the application of this routine is the baseline values at
the extremes of the data window: Often the fitting algorithm generates
wandering lines, see Figure 3.12c for an example. In the end, though,
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this was just minor issues since for the analysis it was only used the
central section of the baseline.
Relative Burst Amplitude -RBA- evaluation was trivial at this point.
Given that there was interests only towards the peaks amplitude com-
pared to baseline, it was just a matter of baroreflex normalization:

RBA =
(baroreflex− baseline)

baseline
(3.15)

See Figure 3.12 for examples.

3.6.2.3 Feature Crafting

Features were crafted from the baseline and relative bursts only. Again
some of them were simple statistical descriptors while others required
some more crafting. It is the peaks amplitude compared to baseline and
frequency we are interested in, but not of all detectable peaks: some
of them could be noise or just minor variation and they can confound
the analysis. Therefore in the peak detection process we restrained the
research to only those that have a prominence equal or greater to 30%
the baseline. With prominence it is meant the amplitude of a peak com-
pared the closest local minima. See Figure 3.13a and Figure 3.13b.

(a) Detected peaks. (b) Peaks amplitude (Blu) and frequency
(Orange).

Within this framework, it was computed for peaks amplitudes and
peaks frequency the first four statistical moments. From the baseline
it was investigated the zero crossing and mean crossing in addition to
the first four moments. With a simple ranksum analysis we observed
statistical significance for the skewness and standard deviation of the
peaks and the kurtosis of the normalized bursts activity, to our sur-
prise17, in the HF band. This is, of course, a naive result, being not
adjusted to confounding factors, but still the best result observed so
far. See Chapter 4 for results.
We were not able to find any relevant feature in the LF band.

17 Despite the influence of respiration in this band.
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3.7 feature engineering

Differently from other studies(see Section 2.2) where features where
crafted from either a single time serie, like MAP, and different domains
or from many series and few domains, like statistical descriptors and
wavelet coefficients, this work extends the reach of the analysis to a
multivariate ad multi-domain model: The patient physiology was de-
scribed with ninety-six features covering many different domains and
time series.
The feature space contains non-linear and chaotic indices, spectral fea-
tures, statistical descriptors, connectivity measures and different scores
and flags, see Figure 3.13.
The choice to build a large set of regressors insures to reach a greater
"field of view" increasing the likelihood to grasp the dynamics of the
condition. The drawback of using a large number of features is the
limited size of the cohort, therefore of the training set, and the pres-
ence of co-linearities and co-dependencies between predictors: feature
selection/transform is unavoidable.

Figure 3.13: Feature space. For TBP features see Section 3.7.4.

3.7.1 Time Features

Time domain features are all the statistical descriptors, polynomial fit-
tings and clinical measures. Amongst time features there are some of
the most predictive for the task.
Statistical descriptors were computed for all time series up to the sec-
ond order (mean and standard deviation) and within different time
intervals. Particularly, mean measures closer to the hypotension com-
puted in small intervals (in the couple of minutes order) turned out to
be specially predictive in the classification, as was also noted by Chen
et al., 2009. For a brief overview see Table 3.5.
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Serie Interval
DW lstm

Mean STD Mean STD
RRI V V X X
SBP V V V X
DBP V V V X
PP V V V X
MAP V V V X
CO V V X X
PTT V V X X

Table 3.5: Statistical description of different signals. DW means the interval
for calculation was equal to that of the data window while lstm to
the last available minutes before the end of the data window. V
means that specific feature was computed X otherwise.

First order polynomial coefficients were computed to fit a line in the
MAP. This operation yielded to three features: the slope, the intercept
and a future estimate. The slope and the intercept are simply the coef-
ficients from the fitting algorithm while the future estimate is a value
representing the MAP 30 minutes in the future if the interpolating
line were to remain the same. See Figure 3.14. This kind of estimation
was inspired from the work of Chen et al., 2009 to solve the Physionet
Challenge, although it worked in their attempt it didn’t seem to be as
powerful in our dataset. The intercept is generally the most predictive
feature of the three, as all related to the MAP.

Figure 3.14: Line fitted using information from the data window to estimate
pressure 30 minutes into the future. In this example it was used
a data window of 80 minutes. The polynomial MAP features are
highlighted in red.
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Clinical indexes, only related to the HRV, are NN20,NN50 and RMSSD.
The Root Mean Square of Successive Differences, or RMSSD, is a mea-
sure of short term variability of the RR intervals given by Eq.3.16.

RMSSD = 2

√√√√ 1
N − 1

N−1∑
j=1

(RRj+1 −RRj)2 (3.16)

NN20 and NN50 are similar in nature, they both measure the rela-
tive distance between successive RR intervals, specifically they count
the number of successive interval which have a difference greater to
a given threshold. The threshold is 20ms and 50ms respectively for
NN20 and NN50. However it might be of greater interest to investigate
NN20/NN50 to the total of beats, hence the introduction of pNN20
and pNN50 which are only a normalization of the previous features,
see Eq.3.17 for a generalization.

scj =

1 if (RRj+1 −RRj) > x

0 otherwise

NNx =
N−1∑
j=1

scj

pNNx =
NNx

N − 1 × 100

(3.17)

Those described are the most relevant time features, other were ap-
plied to study the behaviour of spectral bands in time but with moot
results and therefore were discarded for reasons explained in Subsection
3.7.2.

3.7.2 Spectral Features

From ECGs and ABPs we extracted heart rate variability, systograms
and diastograms. It is well known the information that can be extracted
from those signals(Camm et al., 1996): ANS activation.
Therefore spectral features are those describing the autonomic activa-
tion.

3.7.2.1 Spectral bands

Three main spectral components are considered for ANS evaluation:
VLF, LF and HF.

• VLF: This is the less defined component as its physiological expla-
nation. Typically it is considered as that spectral band with fre-
quencies lower than .04Hz. An additional spectral component can



44 methods

be identified, the Ultra Low Frequencies -ULF-, with frequencies
lower than .0033Hz. A broad system of variables may attributed
to the power in the VLF band but it is typically associated to ther-
moregulatory processes, hemodynamic delays, mechanical effects
of the breathing pattern, spinal reflexes and vascular autoryth-
micity. Some say that specially those rhythms in the ULF range
might be correlated to hemodynamic abnormalities(Camm et al.,
1996).

• LF: Low frequencies tend to reflect the baroreflex resonance fre-
quency and belongs to the .04 to .15 Hz range. RSA may contami-
nate the rhythm. This factor become problematic for LF estimate
validity since can render more complex the interpretation.
LF activity might be attributed to symphatetic activation more
so after normalization although this statement is discussed. Over-
all LF might contain three different rhythms: RSA, baroreflex
oscillations and 30-s rhythms(Camm et al., 1996).

• HF: associated in the .15 to .4 Hz range. HF might be heav-
ily contaminated from the RSA and it might be associated to
parasymphatetic activity(Camm et al., 1996).

• LF/HF: It is usually associated to the autonomic balance. In nor-
mal subjects it takes values around two units, where an increase
represent symphatetic activation and a decrease parasymphatetic
activation. The feature is therefore a relative measure of the para-
symphatetic balance.

• Open Loop Baroreflex: This is the simplest baroreflex estimation.
We have also tested and measures a point process related barore-
flex estimate, for this refer to the point process section. When
computed in open loop, baroreflex gain is given by:

α = 2

√
LFRR
LFSBP

(3.18)

Where LFRR and LFSBP are respectively the total power in the
LF band of the HRV and sytogram.

3.7.2.2 PSD Estimation

MIMIC records are very noisy making direct FFT analysis rather com-
plex and hardly interpretable. We then relied on parametric methods
such as autoregressive models given the added robustness to noise. The
Yule-Walker equations were used for AR coefficients estimates from
which the PSD was extracted, see Eq.3.19.

PSD(f) =
σ2
Z

|1−∑p
k=1 φke

−i2πfk|2
(3.19)
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Figure 3.15: Spectral decomposition of the three components in two scenarios:
Rest and Tilt.

Additionally we investigated the Lomb-Scargle Periodogram to ac-
count for the RR uneven sampling.

For non-parametric methods, differing from simple FFT, we investi-
gated the performance of the Welch’s Spectral estimate. The advantage
of the technique is noise reduction in the estimate. The signal is split
into many overlapping windows that are then windowed. Afterwards
FFT is applied to each window and averaged.
Following the guidelines from Camm et al., 1996 we relied on intervals
of different length for the different spectral bands. VLF were computed
on forty minutes windows, LF on a two minutes window and HF on a
one minute window.

3.7.3 Non Linear Features

Non-linear mechanisms are involved in the heart variability system.
Some measures of chaos can be correlated to CHF and mortality, for
instance to generally have a higher level of chaos in the HRV might be
considered healthy. Several non-linear features were investigated, con-
tributing to the bulk of processing power required for the computation
of out features.

3.7.3.1 SD1 and SD2

Heart rate variability can be projected on the plane to show the rela-
tion between successive RR intervals. The Pointcare plot is the tool for
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the task.

Figure 3.16: Pointcare plot.

The Pointcare plots RRi+1 as function of RRi, the points distribution
on the plane hides two interesting features called SD1 and SD2 which
describe the shape the RR intervals take. In healthy subjects there
should be a good dispersion on the plane as a result of good variability
and therefore heart rate adaptability to everyday tasks. Pathological
subjects show a broader spectrum of shapes which hopefully can be
grasped by the crafted features.
SD1 and SD2 are a measure of dispersion of the plane: the standard
deviations of the first and second principal components respectively.
Therefore, once drawn, the Poincare plot undergoes a PCA transfor-
mation (see Section 3.8.1), after which is trivial to compute the two
features.

3.7.3.2 Approximate Entropy

Approximate entropy or ApEn is an irregularity measure, the higher
the more irregular the signal(Tarvainen et al., 2014).
Given the RRI signal, then lets define:

uj = (RRj , RRj+1, ...., RRj+m−1) with j = 1, 2, ....N −m+ 1
(3.20)

With N being the number of samples in the RR series and m the
embedding dimension. m was chosen to be equal to 2 following the
guidelines of (Tarvainen et al., 2014).
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Figure 3.17: Pointcare plot.

Following for each pair of the N-m+1 uj vectors we compute the pair-
wise difference and we search for the largest one. see Eq.3.24.

d(uj , uk) = max{|RRj+n −RRk+n|n = 0, 1, ...m− 1} (3.21)

Cmj =
Number of elements{uk|d(uj , uk) ≤ r}

N −m+ 1 ∀k (3.22)

ϕm(r) =
1

N −m+ 1

N−m+1∑
j=1

lnCmj (r) (3.23)

ApEn(m, r,N ) = ϕm(r)−ϕm+1(r) (3.24)

Ideally N should be large so that the variable can reach the asymp-
totic value, moreover r should be equal to 0.2× SDNN where SDNN
is the standard deviation of the heart rate variability.

3.7.3.3 Sample Entropy

Another measure of irregularity similar to ApEn but with a slightly
different formulation(Tarvainen et al., 2014).

Cmj =
Number of elements{uk|d(uj , uk) ≤ r}

N −m
∀k 6= j (3.25)

Cm =
1

N −m+ 1

N−m+1∑
j=1

Cmj (r) (3.26)

SampEn(m, r,N ) = ln(
Cm(r)

Cm+1(r)
) (3.27)

m and r are equal to those of the ApEn.
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3.7.3.4 Correlation Dimension

The correlation dimension, D2, measures the complexity of a wave-
form(Tarvainen et al., 2014). As for for ApEn and SampEn, the corre-
lation dimension requires a similar steps for its computation:

d(uj , dk) = 2

√√√√ m∑
l=1

(uj(l)− uk(l))2 (3.28)

D2(m) = lim
r→0

lim
N→inf

logCm(r)

log(r)
(3.29)

Given that in reality is difficult to solve the above equations we had
to rely on some approximations: the value of the correlation dimension
is calculated as the slope of the linear part of the logCm(r), log(r) plot.
See Figure 3.18.

Figure 3.18: Correlation Dimension

3.7.3.5 Detrended Fluctuation Analysis

The Detrended Fluctuation Anlysis, DFA, measures the correlation of
the signal with itself on different time scales(Tarvainen et al., 2014).
The necessary steps to measure the DFA are the following:

y(k) =
k∑
j=1

(RRj −RR) for k = 1, 2, ...N (3.30)

y(k) is split up into n non overlapping windows. Within each window
it is fitted a regressing line. Given the nth window then the respective
regressing line is indicated by yn(k).
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F (n) = 2

√√√√ 1
N

N∑
k=1

(y(k)− yn(k))2 (3.31)

(3.32)

F is evaluated for several values of n. Afterwards, two slopes in the
log-log plot of F (n) and n are fitted generating the two features of
interests: α1 and α2. The former keeps track of short-term fluctuations
while the latter long-term fluctuations, see Figure 3.19.

Figure 3.19: Visualization of α1 and α2 give by the detrended fluctuation
analysis.

3.7.4 Score Features

As noted by Chen18, most of the predictive information resides in the
ABP itself, so we defined a transformation which allowed us to have
a simplified representation of the time series to better understand its
long term dynamics.
Given the ABP time series as:

ABPk = abp(k∆t1) with k = 1, 2, 3....n (3.33)

Where ∆t1 = 1/fs, namely the sampling frequency.Let’s then define a
new time series TBP:

TBPj,∆t2 =
m

n

j+ n
2m∑

k=j− n
2m

ABPk with j = 1, 2, 3....m (3.34)

18 Chen et al., 2009
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Figure 3.20: TBP

With the condition m∆t2 = n∆t1. Basically the signal is subdivided
in m non-overlapping windows each of width ∆t2 and the average of
every window is computed to form a TBP point. We tried different sizes
of ∆t2 for different data windows. From this new series We compute a
set of indices, like:

• ag_area: Weighted sum of the entire series using exponential
weighting.

ag_area =
m∑
i=1

TBPi,∆t2wi (3.35)

• d_ag: Average TBP derivative.

d_ag = 1
m− 1

m∑
i=2

(TBPi,∆t2 − TBPi−1,∆t2) (3.36)

• l_ag: Exponentially weighted average TBP derivative.

l_ag = 1∑m−1
j=1 wj

m∑
i=2

(TBPi,∆t2 − TBPi−1,∆t2)wi−1 (3.37)

• mean_ag: Average TBP.

• ag_70: Number of elements in TBP lower than 70 mmHg.

• b_80: Number of elements in TBP lower than 80 mmHg.

• agsudden: Flag set to 1 when a d_ag is lower than one and the
last available value in TBP is lower than 80.
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• ag_80: Number of elements in TBP with value between 70 and
80 mmHg.

• up90: Score defined as the product of the number of elements in
TBP with value between 90 and 100 mmHg times the number of
elements with value greater than 100 mmHg.

s90i,∆t2 =

1 if 90 mmHg < TBPi,∆t2 < 100 mmHg

0 otherwise
(3.38)

s100i,∆t2 =

1 if TBPi,∆t2 > 100 mmHg

0 otherwise
(3.39)

up90∆t2 = (
m∑
i=1

s90i)(
m∑
j=1

s100j) (3.40)

3.8 feature selection

After feature engineering, the number of predictors in the model was
ninety-six. To feed a classifier the integrity of this dataset can only
yield to poor results:

• The number of feature is almost as the number of the observations
(≈ 100 features for ≈ 450 observations), creating convergence
problems.

• Existence of Co-linear and co-dependent features. In this case
some classifier fail even to train, like quadratic discriminants. This
phenomena is often present in our features: systolic, MAP and
diastolic pressure, for example, are strictly related and so all the
their features.

• Confounding features: features that don’t carry any relevant in-
formation ends up only to confuse the model.

• Overfitting.

• Curse of dimensionality.

A dimensionality reduction method is therefore needed. In this study
we investigated three methods to, in the end, chose the best one for our
model.
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3.8.1 PCA

The Principal Component Analysis is a transformation to convert ob-
servations in a set of linearly uncorrelated variables19. The resulting
components are ordered by variance magnitude: the first component
explains the biggest variance, the second the second biggest and so on.
Apart form transforming the space in a linearly uncorrelated one, PCA
can also be used as a mean of feature selection. The last components ex-
plains only a small percentage of the total variance, which could mean
that are not very informative, hence they can be discarded. Therefore
PCA has a two fold advantage: feature selection and feature transfor-
mation.
Before applying the transformation the dataset needs to be normalized:

X =
X̃ − X̄
std(X)

(3.41)

Where X̄ is the column wise mean of the dataset X̃. X is m×n matrix,
with m observations and n features. Mathematically the PCA can be
expressed as follows:

T = XẆ (3.42)

Where W is a n× n matrix called the loading matrix and T are the
principal components of the same dimension of X. The first component
is given by:

w1 = arg max

{
wTXTXw

wTw

}
(3.43)

Principal components are orthogonal to each other, therefore the re-
maining can be computed:

Xk = X −
k−1∑
s=1

Xwsw
t
s (3.44)

wk = arg max

{
wTXT

k Xkw

wTw

}
(3.45)

PCA is better suited for LDA, QDA and NN analysis, but not always.
Moreover usually it leads to poor results when used with Trees and
KNN, maybe because of the loss of some particular structure in the
data. Overall the PCA was the worst performer amongst the feature
selection techniques we have tested.

3.8.2 Forward Selection

The Forward Selection (FS) is greedy20 subset selection algorithm. The
FS is an iteration of different steps till convergence:

19 Jolliffe, 1986
20 The algorithm at each stage settles for the locally optimal choice rather than the

global.
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1. Initialization with the original feature subset and an empty sub-
set.

2. Each feature from the original subset is added in the subset and
its performance is assessed by mean of 10fold CV on a given
criterion.

3. The feature that has the biggest performance, if any, is added to
the subset and the removed form the original, the algorithm goes
to state 2. If no feature is beneficial the algorithm stops.

Forward selection worked well on Trees and KNN and on average
yielded to better results across the board compared to PCA. The biggest
drawback of Forward Selection is its greedy nature: the predictive power
of features combinations is underestimated.

3.8.3 LASSO

LASSO (Least Absolute Shrinkage ans Selection Operator) is an al-
gorithm used both for regularization and feature selection purposes,
(Tibshirani, 1996). The output of the LASSO algorithm are the coeffi-
cients β of the regression. To obtain this it could be sufficient to use
the Ordinary Least Squares (OLS) estimate approach. Here the coef-
ficients are obtained by minimizing the residual square error. LASSO
addresses a drawback of OLS method related to model interpretation:
with a large set of predictors it would be useful to identify a subset of
predictors that contain most of the information needed to do a good
prediction/classification.
LASSO is able to set the coefficients of the weak predictors to zero
reducing, in this way, the dimensionality of the problem.
LASSO constrain the sum of the regressors coefficients β to be less then
a tuning parameter t fixed by the user (l1 norm). This force some coeffi-
cient to be set to zero. The idea is similar to Ridge regression in which
what is constrained to be less than a fixed value is the sum of squares
of the coefficients (l2 norm). In this case, though, only the amplitude of
the coefficients is affected. Given a set of features X = x1, . . . xn, that
are supposed normalized, the problem addressed by LASSO is:

min
β0,β

1
N

N∑
i=1

(
yi − β0 − xTi β

)2
subject to‖β‖1 ≤ t (3.46)

Where:

- t is a tuning parameter that describe the amount of shrinkage
applied.

- ‖β‖p =
(∑N

i=1 |βi|p
) 1
p is the standard lp norm.
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Figure 3.21: Constrain region and
square of error term for
l1 norm

min
β0,β

N∑
i=1

(yi − β0 − β1x1i − β2x2i)
2 + t

2∑
j

|βj |

(3.47)

Using l2 instead of l1 norm lead to different shape of the constrain
region. Using a bi-dimensional case, with l1 norm, using Lagrange mul-
tiplier, the results is Eq. 3.47.
The diamond shape in the middle of figure 3.21 show the constrain

region for β1, β2. The elliptical contour plot represents sum of square
error term. The optimal point is a point which is common point be-
tween ellipse and circle as well as gives a minimum value for the above
function. There is a high probability that optimum point falls in the
corner point of diamond region. An optimal point falls in the corner
point, it means that one of the feature’s estimate (βj = 0) is zero.
In Ridge regression is used the l2 norm so the resulting constrain re-
gion will be elliptical (3.22). This means that there are no corner for
the contours to hit, so solutions equal to zero will rarely happen.

Figure 3.22: Constrain region and square of error term for l2 norm

3.9 classification

For the classification part Matlab functions have been used. A large
number of classifiers have been trained to assess the predictive power
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Figure 3.23: Example of logistic curve

of various methods that are re-proposed with different hyper parameter
settings.

3.9.1 Logistic Regression

Logistic regression was one of the first approaches we tried. In statistics,
logistic regression, or logit regression, or logit model is a regression
model where the dependent variable Y is categorical. Logistic regression
measures the relationship between the categorical dependent variable
and one or more independent variables X by estimating probabilities
using a logistic function, which is the cumulative logistic distribution.
Let’s write p(X) = Pr(Y = 1|X). Logistic regression uses the form:

p(X) =
eβ0+β1X

1 + eβ0+β1X
(3.48)

It is easy to see that no matter what value β0, β1 or X take, p(X) will
have values between 0 and 1.
We use maximum likelihood to estimate the parameters.

L(β0, β1) =
∏
i:yi=1

p(xi)
∏
i:yi=0

(1− p(xi)) (3.49)

This likelihood gives the probability of the observed zeros and ones
in the data (the joint probability). We pick 0 and 1 to maximize the
likelihood of the observed data.

3.9.2 Discriminant Analysis

In discriminant analysis, the idea is to model the distribution of the
feature space X in each of the classes separately and use the Bayes
theorem to flip things around to get the probability of Y given X:
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Pr (Y |X). The Bayes theorem is a basis for discriminant analysis.
The Bayes theorem for classification:

Pr (Y = k|X = x) =
Pr (X = x|Y = k) ∗ Pr (Y = k)

Pr (X = x)

=
πkfk (x)
K∑
l=1

πlfl (x)

(3.50)

Where πk is the prior probability for class k, and the marginal is the

summing over all the classes
K∑
l=1

πlfl (x). This formula is quite general

where we can plug in any probability densities: fk (x) = P (Y = k|X = x)
is the density for X in class k.
The Gaussian density has the form

fk (x) =
1√
2π

e
− 1

2

(
x−µk
σk

)
(3.51)

If we assume σk = σ, taking logs and discarding terms that do not
depend on k, we see that this is equivalent to assigning x to the class
with the largest discriminant score:

δk (x) = x.µk
σ2 −

µ2
k

2σ2 + log(πk) (3.52)

Once we have estimates µ̂k (x) we can turn these into estimates for
class probabilities:

P̂ r (Y = k|X = x) =
eµ̂k(x)∑K
l=1 e

µ̂k(x)
(3.53)

This approach is quite general, and other distributions/density can be
used including non-parametric approaches. By altering the forms for
fk (x), we get different classifiers (ie classification rule). When fk (x)
are Gaussian densities, with the same covariance matrix in each class,
this leads to linear discriminant analysis.

When the variances of all X are different in each class, the cancel-
lation doesn’t occur because when the variances are different in each
class, the quadratic terms don’t cancel. In this case the discriminant
function becomes 3.54:

δk (x) = −
1
2 (x− µk)T

−1∑
k

(x− µk) + log (πk) (3.54)

And therefore, the discriminant functions are going to be quadratic
functions of X. Quadratic discriminant analysis uses a different covari-
ance matrix for each class. Quadratic discriminant analysis lead to good
results if the number of variables is small.

In Our study we used both linear and quadratic approach.
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Name Num Neighbors Distance Distance Weight
KNN_Coarse 100 Euclidean Equal
KNN_Medium 10 Euclidean Equal
KNN_Cosine 10 Cosine Equal

KNN_Mikowski 10 Mikowski Equal
KNN_Weight 10 Euclidean Square Inverse

Table 3.6: List of KNN variants.

3.9.3 K-nearest neighbor

In pattern recognition, the k-Nearest Neighbors algorithm (or k-NN for
short) is a non-parametric method used for classification and regression.
K-NN is a type of instance-based learning, or lazy learning, where the
function is only approximated locally and all computation is deferred
until classification. The k-NN algorithm is among the simplest of all
machine learning algorithms.
A peculiarity of the k-NN algorithm is that it is sensitive to the local
structure of the data. Given a matrix of n observation and m variables,
to decide what class assign to a new observation, the algorithm base
its decision on the predominant class above the k neighbors in the m
space created. The selected k neighbors taken in consideration to de-

Figure 3.24: The result of classification is depending the number neighbors
took in consideration.

cide the belonging class of the new observation, are those that show
the smaller distance from the new point under analysis. There are vari-
ous way to calculate this distance and various way to use it as a weight.

We used 6 type of k-NN, to test different numbers of neighbor and
distances. In table 3.6 are shown used settings:
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- Cosine: one minus the cosine of the included angle between ob-
servations (treated as vectors);

- Mikowski:
(∑N

i=1 |xi − yi|p
) 1
p ;

- Square inverse: weight is 1/distance2

3.9.4 Support Vector Machines

In machine learning, support vector machines (SVMs, also support vec-
tor networks) are supervised learning models with associated learning
algorithms that analyze data used for classification and regression anal-
ysis. Given a set of training examples, each marked for belonging to
one of two categories, an SVM training algorithm builds a model that
assigns new examples into one category or the other, making it a non-
probabilistic binary linear classifier.
To do this, an hyperplane able to divide the two classes is constructed.
The hyperplane equation is

β0 + β1X1 + β2X2 + ...βpXp = 0 (3.55)
If f(X) = β0 + β1X1 + β2X2 + ...βpXp, then f(X) > 0 for points on
one side of the hyperplane and f(X) < 0 for point on the other.
The vector w = [β0, β1, β2, ..., βp] is called normal vector. It point in a
direction orthogonal to the surface of the hyperplane.
To find the values of w we have to solve the optimization problem
known as Soft-margin Linear Support Vector Machine. In this type of
problem points are allowed to violate the constrain, but pay a price
("loss") proportional to their distance from the margin boundary.

[ŵ, β̂0] = arg min
[w,β0]

1
2‖w‖+C

N∑
t=1

lh(r
t(〈w, xt〉 − β0)) (3.56)

Where:
- lh is the hinge loss;

- rt define the class;

- C is a constant.
In addition to performing linear classification, SVMs can efficiently

perform a non-linear classification using what is called the kernel trick,
implicitly mapping their inputs into high-dimensional feature spaces.
In this way we are able to separate classes non linearly separable.
In our approach we used 3 types of Support Vector Machine with
different polynomial kernels:

- Linear;

- Quadratic;

- Cubic.
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Figure 3.25: Soft margin example

Figure 3.26: Example of a distribution of two classes that can be separate
only using a non linear kernel.

3.9.5 Classification Trees

Tree based methods are simple and useful for interpretation. They can
be applied to both regression and classification. A classification tree
is composed by terminal nodes, leaves terminal part of the tree, and
internal nodes, points along the tree where the predictor space is split.
To build a tree means to divide the predictor space for X1, X2, . . . , Xp

into J distinct and non-overlapping regions R1, R2, . . . , Rj . The goal is
to find boxes that minimize the Residual Sum of Squares given by

J∑
j=1

∑
i∈Rj

(yi − ŷRj )2 (3.57)

Where ŷRj is the mean response for the training observations within
the jth box.
The process however is likely to overfit the data. One possible alterna-
tive to this process is to grow the tree only so long as the decrease in
the RSS due to the split exceeds some threshold. A better strategy is
to grow a very large tree T0 and then prune it back in order to obtain
a subtree. Cost complexity pruning, known as weakest link pruning is
used.

|T |∑
m=1

∑
i:xi∈Rm

(yi − ŷRm) + α|T | (3.58)

Where:

- α is a tuning parameter;

- |T | indicates the number of terminal modes of the tree T;
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- Rm is the rectangle corresponding to the mth terminal node;

- ŷRm is the mean of the training observations in Rm.

The tuning parameter controls a trade-off between the subtree’s com-
plexity and its fit to the training data. We select an optimal α̂ using
cross-validation.

In the classification settings, RSS cannot be used as a criterion for
making the binary split. A natural alternative is the classification error
rate: the fraction of the training observation in that region that do not
belong to the most common class:

E = 1−max
k

(p̂mk) (3.59)

Where p̂mk represent the portion of training observation in the mth re-
gion that are from the kth class. Other indexes to measure the pureness
of a leaf are:

- Gini index

- Cross-entropy

Classification trees are usually not competitive with the best supervised
learning approaches in term of prediction accuracy, however, boosting
methods are able to dramatically improve the performance. In this
study ensemble boosting method have been used to improve the out-
comes of this classification method. The common paradigma of the
ensemble boosting method is to train an ensemble of weak learners to
then build a final model that, hopefully, will lead to better classifica-
tion results. Following are the boosting methods used to improve tree
classification in this study.

3.9.5.1 Adaptive boosting

Known as AdaBoost21, this algorithm take as input an instance space
X = x1, ..., xn and the associate class vector Y = y1, ..., yn. Adaboost
train a given weak learner algorithm repeatedly in a series of rounds
t = 1, ..., T . The weights on the training example on the round t is
denoted Dt(i). Initially all weights are equal to 1/n. The weak learner
at iteration t is used to find a weak hypothesis ht appropriate for the
distribution Dt. After this the weights of incorrectly classified examples
of ht(x) are increased so that the weak learner is forced to focus on the
hard examples in the training set.

21 Freund, Schapire, and Abe, 1999
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3.9.5.2 Totally corrective boosting

Upgrade of Adaptive Boosting, here is improved the weight adjustment
logic. In AdaBoost at every step t, the new weights distribution Dt is
chosen to minimize test errors, (Warmuth, Liao, and Rätsch, 2006). In
this way the next added weak learner is assumed to bring new infor-
mation from the preceding one. However, there remains the possibility
that this new information could be similar to the one brought from the
(t− 2)th iteration. Totally corrective algorithms, optimize the updating
values of weights, such that new added learners always bring new infor-
mation. This can be accomplished by backfitting, linear programming
or some other method.

3.9.5.3 Random forest

As in the Bagging method, the initial dataset X = x1, ..., xn is boot-
strapped to obtain B different "new" dataset. A different classifier is
then trained with every single bootstrapped dataset. After training,
predictions for unseen samples x′ can be made by averaging the predic-
tions fb(x′) from all the individual regression trees on x′

f̂(x′) =
1
B

B∑
b=1

fb(x
′) (3.60)

or by taking the majority vote in case of classification trees.
Random forests provide an improvement over bagged trees by way of
a small tweak that decorrelates trees. As in bagging, we build a num-
ber of decision trees on bootstrapped training samples. When building
these decision trees, each time a split in a tree is considered, a random
selection of m predictors is chosen as split candidates from the full set
of p predictors. This reduces the variance when we average the trees,
(Breiman, 2001). This means that while the predictions of a single tree
are highly sensitive to noise in its training set, the average of many
trees is not, as long as the trees are not correlated.

3.9.5.4 Random under-sampling boosting

Classification methods designed for health application: in this fields it
is usual to deal with imbalanced dataset, in which the pathologic pa-
tients are in minority in respect to the control class. For this reason
classification methods are usually biased toward the control group.
In this method the majority class in randomly undersampled to create
an artificial balanced dataset upon which machine learning algorithm
will be applied (Dai and Hua, 2016). This process is repeated for sev-
eral iteration generating a model. The final model is an aggregation of
models over all iterations.



62 methods

3.9.6 Applied Models

Following the list of models tested in this study:

- Disc_Lin: Linear Discriminant Analysis;

- Discr_Quad: Quadratic Discriminant Analysis;

- Discr_Sub: Discriminant Analysis boosted with Random sub-
space method;

- KNN_Coarse: K-nearest neighbor with 100 neighbors and Eu-
clidean distance;

- KNN_Medium: K-nearest neighbor with 10 neighbors and Eu-
clidean distance;

- KNN_Cosine: K-nearest neighbor with cosine distance;

- KNN_Mikowski: K-nearest neighbor with cosine Mikowski dis-
tance;

- KNN_Weight: K-nearest neighbor with Euclidean distance used
an square inverse weight;

- KNN_Sub: K-nearest neighbor boosted with Random Subspace
method;

- LogRegr: Logistic Regression;

- SVM_Lin: Support Vector Machine with linear kernel;

- SVM_Quad: Support Vector Machine with quadratic kernel;

- SVM_Cub: Support Vector Machine with cubic kernel;

- Tree_AdaBoost: tree boosted with Adaptative Boosting method;

- Tree_RF: tree boosted with Random Forest method;

- Tree_RUSBoost: tree boosted with Random Under Sampling
method;

- Tree_TotalBoost: tree boosted with Totally Corrective Boosting
method.

3.10 medications and interventions

Table 3.2 and Table 3.4 provide a brief clinical description for the two
cohorts used in this study.
In Section 4.3.2 is discussed the importance and influence of these fac-
tors in the model. This section has the purpose to describe and list
what kind of medications the patients were given and the difficulties
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encountered to identify them.
Starting with drugs, Vasopressors are powerful vasoconstriction medicines.
There are two classes of vasopressors: Alpha adrenergic and Beta adren-
ergic. The former effects receptors on vascular walls inducing contrac-
tion, the latter increases heart contractility22. These drugs are usually
given as last stance against critical pressure conditions while injection
of fluids is preferred for milder situations, also because of side effects.
Vasopressors considered in this study are:

• norepinephrine

• epinephrine

• phenylephrine

• vasopressin

• dopamine

• dobutamine

Sedatives depresses patient’s awareness in ICU, relieving the sensation
of painful procedures. Moreover sedatives ease the applications of cer-
tain procedures, such as mechanical ventilation23. Hypotension is a
possible side effect of these drugs. Sedatives considered for this study
are:

• midazolam

• lorazepam

• ativan

• fentanyl

• dilaudid

• propofol

• dexmedetomidine

• precedex

Mechanical-ventilation is that procedure which, partially or totally, sub-
stitute the physiological respiration process in the patient. Due to in-
creased intra-thoracic pressure, venous return is diminished which as
a consequence might reduce cardiac output. As a result hypotension is
again a possible side effect for these kind of interventions24.
Finally subjects with pacemakers were included in the study to extend
the casuistry even though it’s the class of subject where is hardest to

22 Use of vasopressors and inotropes
23 Sedation in ICU
24 Mechanical Ventilation: Physiologic effects of mechanical ventilation.
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predict hypotension.
Information from the interventions and medications were extracted
from the MIMIC Clinical Database25, after which their times of applica-
tion were crossed with waveform dates. Time resolution for medication
is of 15 minutes, meaning that the drug might have been injected at
any point within the window of application.

25 Section 2.3
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RESULTS

4.1 ahe prediction

To split train and test set we used stratified sampling to maintain the
Hypotensive/Control proportion fixed in both sets. Samples in each set
were chosen randomly in a 75%-25% Train-Test split. Afterwards the
2009 Physionet Challenge test set was used as benchmark for validation
of the algorithms. See Table 4.1. For brevity we named the different
train and test set with labels.

Table 4.1: Datasets Composition

Main Dataset
train - CR test - CS

C 228 - 68.47% 75 - 68.81%
H 105 - 31.53% 34 - 31.19%

Challenge Dataset
train - TR test - TS

C 25 - 54.35% 26 - 65%
H 21 - 45.65% 14 - 35%

Regardless of the Data Window, the best performers are always those
with the smallest LT. This is expected since the shortest the time to
the event the easiest the prediction. Generally data window size doesn’t
seem to influence the quality of the prediction, although it can be seen
a recurrent pattern in which shorter data windows behave better with
smaller LT and bigger data windows with longer prediction times. We
set up a voting system to select the DW given the LT. For instance,
given six classifiers and computed their training AUCs1 for each LT,
we ranked their performance based on the DW. With LT=10 min the
majority of classifiers achieved higher AUCs with a DW of 10 min,
hence for the LT of 10min the ideal DW was chosen to be 10 min.

With LT equal to 10min, all predictors chosen by LASSO are fea-
tures somewhat related to the magnitude of the blood pressure. Table
4.2 and Table 4.3 shows the p-values and odd ratios of these features
respectively for LT equals to 10 minutes and 30 minutes. The farthest
in the time the prediction, the less relevant ABP related features are.
This might be due to the fact that the closer we move to the AHE
the more likely is to have a lower blood pressure or a decreasing blood

1 Using 10-fold crossvalidation

65
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pressure in hypotensive subjects.
For features description refer to the appendix.

Feature AUC p-value OddRatio LowerOdds UpperOdds
ag70 0.81 3.6e-19 1.3492 1.2635 1.4406

m_diast 0.8511 2.14e-15 0.8532 0.8204 0.8873
as10 0.8376 2.59e-15 0.8876 0.8607 0.9136
minof 0.6924 5.25e-8 126.7743 22.1656 725.0740
CO 0.6569 1.59e-5 161.2032 16.0193 1.6222e+03

Table 4.2: Features analysis with LT=10min, DW = 10min in the training
set of our Main Dataset (CR).

Feature AUC p-value OddRatio LowerOdds UpperOdds
ag70 0.7663 2.8e-14 1.2633 1.1893 1.3418
as10 0.7991 1.74e-12 0.9107 0.8873 0.9347
as9 0.8040 5.59e-12 0.9098 0.8856 0.9346

m_diast 0.7923 7.42e-12 0.9044 0.8787 0.9308
minof 0.6358 4.55e-6 2245.8 82.9007 6.0839e+04
CO 0.6510 2.52e-5 125.7553 13.2628 1.1924e+03

Table 4.3: Features analysis with LT=30min, DW = 10min in the training
set of our Main Dataset (CR).

Since the dataset is not balanced, during the training phase it was
necessary to use weights to equilibrate sensitivity and specificity. As
seen in figure 4.1a, without some form of misclassification cost the
model tends to sacrifice sensitivity for higher specificity. On the other
hand if We weight more hypotensive observations by means of misclassi-
fication cost, We reach a equivalence between sensitivity and specificity
(see figure 4.1b). The tables 4.1a 4.1b 4.1c 4.1d show in details the per-
formance of every classifier trained using weights.
Discriminant Analysis, overall, behaved the best with the best AUCs
and equilibrium in the classification of both classes (Table 4.1a). When
considering accuracy, trees have the upper hand. Of course, this cannot
be considered a good measure for evaluating the model given the ratio
of the two classes. Table 4.1b shows results on the test set; Discrimi-
nant Analysis, again, leads to better results in term of AUC. In this
case, the sensitivity/specificity balance is degraded compared to the
training, but still satisfying. As it concern KNN and SVM, we can say
that they achieve pretty good classifications with reasonable results in
term of AUC and accuracy in both validation and test set.
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Classifier AUC AUC_OP SENS SPEC ACC
Discr_Lin 0.865 0.775 0.788 0.762 0.77
Discr_Quad 0.855 0.775 0.779 0.771 0.773
Discr_Sub 0.868 0.769 0.788 0.749 0.761
KNN_Coarse 0.853 0.773 0.779 0.767 0.77
KNN_Cosine 0.84 0.757 0.721 0.793 0.77
KNN_Medium 0.844 0.756 0.692 0.819 0.779
KNN_Mikowski 0.85 0.766 0.779 0.753 0.761

KNN_Sub 0.786 0.714 0.596 0.833 0.758
KNN_Weight 0.844 0.762 0.731 0.793 0.773
LogRegr 0.86 0.765 0.705 0.825 0.787
SVM_Cub 0.805 0.756 0.74 0.771 0.761
SVM_Lin 0.862 0.768 0.769 0.767 0.767
SVM_Quad 0.834 0.757 0.769 0.744 0.752

Tree_AdaBoost 0.835 0.756 0.644 0.868 0.798
Tree_RF 0.855 0.767 0.702 0.833 0.792

Tree_RUSBoost 0.831 0.755 0.663 0.846 0.789
Tree_TotalBoost 0.852 0.797 0.721 0.872 0.825

(a) Performance from the 10 fold cross vali-
dation of the models on the training set
of our main dataset (CR). LT=10min
DW=10min.

Classifier AUC AUC_OP SENS SPEC ACC
Discr_Lin 0.886 0.788 0.735 0.84 0.807
Discr_Quad 0.884 0.773 0.706 0.84 0.798
Discr_Sub 0.884 0.788 0.735 0.84 0.807
KNN_Coarse 0.88 0.773 0.706 0.84 0.798
KNN_Cosine 0.86 0.793 0.706 0.88 0.826
KNN_Medium 0.862 0.772 0.676 0.867 0.807
KNN_Mikowski 0.865 0.758 0.824 0.693 0.734

KNN_Sub 0.79 0.726 0.559 0.893 0.789
KNN_Weight 0.875 0.824 0.794 0.853 0.835
LogRegr 0.888 0.786 0.706 0.867 0.817
SVM_Cub 0.763 0.758 0.676 0.84 0.789
SVM_Lin 0.88 0.773 0.706 0.84 0.798
SVM_Quad 0.831 0.753 0.706 0.8 0.771

Tree_AdaBoost 0.876 0.755 0.618 0.893 0.807
Tree_RF 0.87 0.8 0.706 0.893 0.835

Tree_RUSBoost 0.854 0.814 0.735 0.893 0.844
Tree_TotalBoost 0.817 0.735 0.618 0.853 0.78

(b) Performance of all classifiers trained on
the main dataset training set (CR) and
tested on the main dataset test set (CS).
LT=10min DW=10min.

Classifier AUC AUC_OP SENS SPEC ACC
Discr_Lin 0.942 0.852 0.857 0.846 0.85
Discr_Quad 0.942 0.852 0.857 0.846 0.85
Discr_Sub 0.929 0.852 0.857 0.846 0.85
KNN_Coarse 0.948 0.852 0.857 0.846 0.85
KNN_Cosine 0.911 0.854 0.786 0.923 0.875
KNN_Medium 0.875 0.799 0.714 0.885 0.825
KNN_Mikowski 0.891 0.832 0.857 0.808 0.825

KNN_Sub 0.868 0.728 0.571 0.885 0.775
KNN_Weight 0.886 0.816 0.786 0.846 0.825
LogRegr 0.929 0.871 0.857 0.885 0.875
SVM_Cub 0.843 0.78 0.714 0.846 0.8
SVM_Lin 0.926 0.852 0.857 0.846 0.85
SVM_Quad 0.882 0.832 0.857 0.808 0.825

Tree_AdaBoost 0.9 0.854 0.786 0.923 0.875
Tree_RF 0.915 0.926 0.929 0.923 0.925

Tree_RUSBoost 0.897 0.835 0.786 0.885 0.85
Tree_TotalBoost 0.951 0.874 0.786 0.962 0.9

(c) Performance of classifiers trained on the
training set of our dataset (CR) and
tested on the test set of the Physionet
challenge.

Classifier AUC AUC_OP SENS SPEC ACC
Discr_Lin 0.937 0.871 0.857 0.885 0.875
Discr_Quad 0.931 0.871 0.857 0.885 0.875
Discr_Sub 0.931 0.852 0.857 0.846 0.85
KNN_Coarse 0.5 0.5 1 0 0.35
KNN_Cosine 0.902 0.871 0.857 0.885 0.875
KNN_Medium 0.909 0.852 0.857 0.846 0.85
KNN_Mikowski 0.87 0.852 0.857 0.846 0.85

KNN_Sub 0.817 0.709 0.571 0.846 0.75
KNN_Weight 0.905 0.799 0.714 0.885 0.825
LogRegr 0.937 0.871 0.857 0.885 0.875
SVM_Cub 0.945 0.874 0.786 0.962 0.9
SVM_Lin 0.937 0.852 0.857 0.846 0.85
SVM_Quad 0.945 0.907 0.929 0.885 0.9

Tree_AdaBoost 0.533 0.5 1 0 0.35
Tree_RF 0.933 0.907 0.929 0.885 0.9

Tree_RUSBoost 0.533 0.5 1 0 0.35
Tree_TotalBoost 0.533 0.5 1 0 0.35

(d) Performance of models trained on the
Physionet Challenge training set (TR)
tested on the Physionet Challenge test
set (TS).
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Models trained on the training set from the challenge for further de-
tails.

(a) Sensitivity Vs. Specificity for different classifiers
on the training set of our main dataset. The vari-
ous models didn’t use weight during the training
phase.

(b) Sensitivity Vs. Specificity for different classi-
fiers on the training set of our main dataset.
LT= 10min DW=10min. Classifiers with sensi-
tivity/specificity inside the unit circle were dis-
carded.

Some of the trained models seemed to be badly parametrized: four
models classify every observation as hypotensive. This might be caused
by the excessive weight given to observations of this class in the training
phase. The KNN_Sub has troubles to recognize hypotensive patients.
This is may due to the fact that the subspace ensemble method rely on
the instability of the classifiers to improve their performance, as KNN
is fairly stable with respect to resampling, these methods fail in their
attempt to improve the performance of KNN classifier.

Figure 4.1: ROC curve of classifiers took as examples for all types of models.

In addition, classifiers trained on our dataset were tested on the Test
Set of the challenge (TS) as well.
Of those, accuracy drops below .85 (34/40) only once (KNN_Sub) and
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peaks at 0.925 (37/40) with the Tree_RF (see Table 4.1c), again. This is
a satisfactory result, being that is tied to the currently highest challenge
score2.
For clarity we will call the pool of LASSO selected features (those form
Table 4.2) as M5 as it will be a topic of the following Section3.

2 https://physionet.org/challenge/2009/final-scores
3 Section 4.2.
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4.2 autonomic assessment

4.2.1 Limitations and Problematics in ANS assessment in ICU

Intensive Care Unit patients suffers from severe pathologies and are,
more often then not, under the effect of several treatments. These two
factors made the classical spectral bands analysis (see Section 3.7.2)
particularly difficult. Moreover subject with pacemaker were charac-
terized by controlled heart rate variabilities hiding their natural sinus
rhythm. An overall analysis shows that LF and HF bands, either in
absolute or normalized units, do not carry relevant information for the
differentiation of the classes. Also, we couldn’t find any statistically
significant difference between the two groups at any point before or
during the hypotension. For the aforementioned reasons also baroreflex
sensitivity didn’t reflect any pattern, at least with a statistical analy-
sis4.
Figure 4.2a,4.2b and 4.2c picture the median behaviour of the LF,HF
and LF/HF computed using a PP routine for the two classes thirty
minutes before the hypotension onset. As it can be seen, there is no
difference in the value and in the pattern. Interestingly, although not
significant, the LF/HF ratio from an open loop baroreflex model is
consistently lower for hypotensive subjects (Figure 4.2d), suggesting
impaired sympathatetic activation for this group. However, given the
susceptibility of these model to noise, we are skeptical on the reliability
of these results, fact highlighted by the absence of classification perfor-
mance increase when included in the final prediction model.

4.2.2 Classification

This phase was split in three distinct analysis:

1. Univariate Logistic Regression to evaluate the predictive power
of single features using only baroreflex regressors5.

2. Multivariate Logistic Regression for overall performance evalua-
tion using only baroreflex regressors.

3. Predictive model implementation using a large feature space with
features from baroreflex, arterial blood pressure and heart rate
variability.(metti citazione a noi stessi)

Predictions were performed for all three cases ten minutes before the
hypotension onset (lead time) using a ten minutes worth of data (data
window) for feature extraction.

4 Although we were still able to find promising results using a closed Point Process
model, see next section.

5 skewpks and LWkurtosis, see Section 3.6.2.3.
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(a) (b)

(c) (d) LF /HF ratio using an open loop model for con-
trol and hypotensive subjects. Values to the left
of the black line occurs in the hypotension. Times
goes right to left.

Figure 4.2: Median behaviour of spectral components computed using a Point
Process framework. Figure 4.2d was calculated using the Welch’s
Periodogram.

From univariate logistic regression we discovered that the skewness of
detected peaks, see 3.6.2.3 for explanation, when used alone is able
to discriminate to a certain degree the two classes, reaching an AUC
of .71. This is by itself a very good results because it remarks on the
ranksum outcome but also achieves a good classification performance:
all other tested features failed to obtain this level. Moreover the peaks
skewness also shows a p-value of .0038, but still without confoundings
considerations.
All other features did not surpass the null hypothesis and also achieved
much lower AUCs. See Figure 4.3a.

In the multivariate case, first we tried to fed the entire dataset to the
classifier. Results were poor, with AUC below .6 using ten fold cross-
validation. This outcome was somewhat expected because the number
of feature is almost a half the number of observations, moreover predic-
tors might be co-linear.
To overcome the issue and to identify relevant features we used a feature
selection algorithm. With LASSO we identified two features: Baseline
kurtosis and, again, the skewness of the peaks.
With ten-fold cross-validation the AUC was .74, see Figure 4.3b, which
is more than peak skewness alone, by a 3% margin, but still not accept-
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(a) The first ten features by pvalue tested with
univariate logistic regression. Horizontal
bars are the AUCs for respective features,
while the value lying in each bar is the asso-
ciated p-value. skewpks is the peaks skew-
ness.

(b) Multivariate Logistic Regression after
LASSO on the baroreflex only feature
space.

Feature C H p-val OddsRatio
skew_pks -0.0247 ± 0.5566 0.3896 ± 0.5668 .0064 4.0375

Table 4.4: The significance threshold is p-val<.05.

able: Sensitivity was below 60% and Accuracy of 73.5%. Probably by
assigning weights, one could increase the sensitivity/specificity balance
at cost of lower accuracy, but, overall, with only marginal gains in per-
formance.

After the identification of the features with the highest predictive
power, it was time to make sure that this new information helps the fea-
tures selected in the previous analysis to discriminate between the two
classes. Two classification were performed using two different dataset:
the first composed with the same five features used previously (ag70,
m_diast, as10, minof and CO), and the second one equal to the first
with skewness and kurtosis. As classifier was used the Linear Discrimi-
nant Analysis, since it has already demonstrated to be one of the most
performing algorithms.
The training and cross-validation of the classifier was performed 100
times to have a better estimation of the values of AUC of the optimal
point, Sensitivity, Specificity and Accuracy.

As shown form Figure 4.3,whit the addition of the two baroreflex
related features the classification improves significantly in every aspect:
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Figure 4.3: Graphs showing the values of AUC in the optimal point, Sensi-
tivity, Specificity and Accuracy for both classification with and
without baroreflex features.

AUC Spec Sens Acc
M5 + skewpks+ kurtLW 0.815 ± 0.013 0.834 ± 0.03 0.796 ± 0.03 0.811 ± 0.015

M5 0.742 ± 0.016 0.745 ± 0.09 0.739 ± 0.09 0.742 ± 0.026

Table 4.5: Performance table

every single graph shows a non negligible improvement of the specific
quantity. It is important to notice that by using skewness and kurtosis
the graphs relative to Sensibility and Specificity, not only show a much
higher mean value, but also a more steady value along the different
iterations. In table 4.5 is possible to quantify the improvement: the
AUC of the optimal point has an improvement of more than 6 percent-
age points. Sensitivity improves by 5 percentage points and Specificity
jumps from 0.745 to 0.834, an improvement of nine percentage points.

With a deeper analysis we investigated the influence of interventions
to understand if we were missing something trivial. We used the logis-
tic regression to assess the influence of medications and treatments: of
the new features, only skewpks is really significant once adjusted for
confoundings, with a p-value of .0064.
The distribution of skewpks between hypotensive and control is shown
in Figure 4.4. The zero-mean normality test tells us that control pa-
tients follow a Gaussian distribution with a p-value of .9 while sick
subjects not (Table 4.6). Even though the number of samples is not
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Figure 4.4: Skewness of the baroreflex peaks.Controls are orange, Hypoten-
sives are blu.

pval H
C .9656 0
H .0028 1

Table 4.6: Zero-mean normality distribution test for the population of peaks
skewness for control and hypotensive records. The test rejects the
null hypothesis at the 5% significance level.

the largest, it is easy to see how hypotensive subjects (blu in Figure
4.4) are shifted towards positive skewness values compared to controls.
In terms of values, controls have a slightly negative mean skewness
(-0.0247, Table 4.4) when hypotensives average at 0.3896. Standard de-
viations are similar for both groups at around .5. Hypotensive subjects
seem to follow a bimodal distribution, one peak assuming zero value
the other just more than .5. Perhaps a subset of the AHE-group suffers
from a different type of hypotension we are yet to identify.

In the end we are satisfied with the results, having improved the
overall performance of the model.
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4.3 conclusions

4.3.1 Physiology of hypotension

By inspecting the mean behavior of single annotations, one could make
some general considerations. First of all, some were of little surprise:
Figure 4.5b displays the relative cardiac output6 for control (blu line)
and hypotensive (orange line) subjects starting almost two hours before
hypotension onset to 30 minutes after it. Mean Cardiac output is one of
the most predictive features and we were expecting to see a lower value
compared to the controls. As it turns out, AHE-patients on average
have a relative cardiac output .45 while control of .4; moreover neither
class shows relevant changes in variability hinting to very different dy-
namics or common patterns. The drop is concurrent to the hypotension
onset, leaving no warnings beforehand, but always maintaining a value
greater than the healthy counterpart.
Another interesting behavior is the increase of pulse transit times after
hypotension. Any feature related to PTTs is not significant for the dif-
ferentiation of the two groups, still they show a pattern. This is in line
from what reported by Kounalakis and Geladas, 2009, hence a nega-
tive correlation with systolic pressure and cardiac output and positive
correlation with arterial stiffness.

(a) (b)

(c) (d)

Figure 4.5: Mean and standard Error for selected physiological variables.

6 See Eq.3.2
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In contrast with relative cardiac output and PTT, pulse pressure
shows signs of instability before the insurgence of the condition, antic-
ipating it by a couple of minutes. Pulse pressure narrows sharply with
hypotension, perhaps due to a drop in stroke volume or blood loss. Also,
this suggests that the rate at which systolic pressure drops is higher
than diastolic.
In Figure 4.6b is shown the mean behavior of the RRI: heart rate be-
comes more bradycardic with hypotension, but again, with no definite
pattern.
In the end, the most relevant features for the goal of prediction are
those extracted from blood pressure: MAP, systolic and diastolic pres-
sure. All these features were shown to be the most predictive (Tables
4.2, 4.3), particularly the ones related to diastolic pressure and MAP.
Score features , features extracted from the TBP transform7, had the
highest predictive power: predictors like ag70 (See Figure 4.6d) create
a good contrast at any point time.

(a) (b)

(c) (d)

Figure 4.6: Mean and standard Error for selected physiological variables.

To look for patterns we used hierarchical clustering with euclidean
distance. Figures 4.7a and 4.7c are the result of the clustering on the
signals using euclidean distance as measure for similarity. The analysis
was performed on hypotensive subjects only, since controls did not show
any relevant trend.
The clusters of the systole (closely related to that of the diastole) shows

7 Section 3.7.4.
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something that we have already noticed by looking through the data:
the are several manifestations of hypotension. We identified three main
kinds of hypotension:

• Slow AHE: The pressure drops slowly, taking hours to reach crit-
ical levels. This is the easiest kind to predict, showing a well
defined trend. The reason behind the event might maybe be re-
lated to sepsis mechanisms. In Figure 4.7a those records are the
one portrayed in the upper interval of the figure.

• Sudden AHE: Pressure is relatively stable to drop suddenly before
hypotension. These are the observations in the mid-lower interval
of Figure 4.7a.

• Inverse AHE: Pressure is rising before rapidly falling to critical
levels. They can bee seen near the lower bezel of the systolic
pressure cluster figure.

Talking with clinicians we have been suggested that case two and three
might be an allergic reaction to a medication. Case two and three are
also the hardest to predict, since they give little or none notice. The
frequency of occurrence of the two is lower than the first type.

(a) Normalized Systolic Pressure. (b) Absolute Systolic Pressure.

(c) Normalized Pulse Pressure. (d) Absolute Pulse Pressure.

Figure 4.7: Hierarchical clustering of systolic pressure and pulse pressure of
the AHE-patients. In Figures 4.7a and 4.7c brighter colors mean
that the value is above the population average in that instant,
darker colors below average. Figures 4.7b and 4.7d are instead in
absolute values.
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4.3.2 Influence of interventions.

The patients that have been used to train and test the selected models
didn’t encounter any kind of selection process regarding health state
or medication. In this study the approach is to simulate a real case
scenario in which any patient could be included in the analysis. The
obtained performance are still good and this highlight the solidity of
the trained models.
An analysis was conducted to investigate the classification of patients
with and without specific kind of interventions. In table 4.7 is possi-
ble to see the different classifications performance obtained with the
Linear Discriminant Analysis, repeating one hundred times the process
of training and cross-validation on the cohort of 442 subjects. This
algorithm was choose because it showed more consistency and better
performance during the various analysis.

Intervention AUC Sens Spec Acc

Vasopressors No 0.786 ± 0.01 0.788 ± 0.01 0.785 ± 0.01 0.786 ± 0.01
Yes 0.765 ± 0.01 0.848 ± 0.01 0.681 ± 0.01 0.75 ± 0.01

Sedative No 0.786 ± 0.01 0.795 ± 0.01 0.776 ± 0.01 0.782 ± 0.01
Yes 0.783 ± 0.01 0.821 ± 0.01 0.744 ± 0.01 0.772 ± 0.01

Ventilation No 0.806 ± 0.01 0.803 ± 0.01 0.809 ± 0.01 0.807 ± 0.01
Yes 0.766 ± 0.01 0.800 ± 0.01 0.732 ± 0.01 0.756 ± 0.01

Pacemaker No 0.806 ± 0.01 0.794 ± 0.01 0.819 ± 0.01 0.811 ± 0.01
Yes 0.735 ± 0.01 0.820 ± 0.01 0.651 ± 0.01 0.705 ± 0.01

Table 4.7: Table with performance indices analyzed by interventions. Every
intervention has two rows: the first shows the indeces about pa-
tients without the specific intervention (row ’No’), and the second
indeces about patients with it (row ’Yes’).

It can be seen that in all the four categories there is a different be-
havior between who received the medication and who did not. The
intervention that less affected the classification outcomes are the seda-
tives. The drop of performance is in fact less marked than the others
and the main affect is an imbalance between Sensitivity and Specificity.
Vasopressors show a stronger but similar behavior.
The interventions that mostly affect the classifications are mechanical
ventilation and pacemakers. In mechanical ventilation Specificity is the
quantity that shows the strongest loss of more than 7 percentage points:
patients without ventilation shows a specificity of 0.81 while for patients
with ventilation, it drops at 0.73. The Sensitivity seems to be invariant
but the general effect is a weakening of AUC and overall Accuracy. This
could be caused, not directly by the presence of assisted ventilation but
by the concauses of this intervention: this kind of patients are often in
critical condition and/or heavily sedated.



4.3 conclusions 79

(a) (b)

(c) (d)

Figure 4.8: Effect of different medications/interventions on mean arterial
pressure. C are control, H are hypotensive patients. the number
1 indicates the group has received the medication, number 2 they
did not. The strongest effect on MAP is given by pacemakers.

Pacemakers show the same effects: the Specificity of patients that use
this intervention is 0.65. Patients without need of pacemaker are much
easier to classify, in fact they show a Specificity of 0.82. This is caused
by the different physiology caused by this intervention: when the heart
rhythm is controlled by a pacemaker, the control feedback from ABP
to heart beat does no longer exist.
Like in Mechanical Ventilation, Sensitivity does not vary. Due to the de-
creased Specificity, the classification results of patients with Pacemaker
are lower than in patients without them.
The same analysis can be performed even on the selected cohort for

the analysis of baroreflex. It is possible to see in table 4.9a that, also
in this case, interventions have a strong impact on classification perfor-
mance. However their influence seems to be quite different: the presence
of Vasopressor, Sedative and Ventilation still alter the balance between
Sensitivity and Specificity but to a lesser extent. Even more, the effect
of these medications seems to increase the AUC and Accuracy by a non
negligible quantity. This could be caused by the fact that the analysis
of the effect of every intervention is made comparing the performance
of the patients using as control group those patients that didn’t receive
the intervention under analysis. It is possible however that this "control
group" could have been undergone one or more of the other interven-
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tions.
However, it is possible to see that Pacemakers have the same effect as
before: they alter the physiology of the interested patients and conse-
quently they lower the classification performance.
This highlight the fact that an analysis made taking into account the
various types of interventions would lead to better results.

Intervention AUC Sens Spec Acc

Vasopressors No 0.793 ± 0.02 0.789 ± 0.02 0.796 ± 0.02 0.794 ± 0.02
Yes 0.874 ± 0.02 0.855 ± 0.02 0.892 ± 0.02 0.875 ± 0.02

Sedative No 0.803 ± 0.02 0.765 ± 0.02 0.842 ± 0.02 0.81 ± 0.02
Yes 0.851 ± 0.04 0.949 ± 0.04 0.754 ± 0.04 0.811 ± 0.04

Ventilation No 0.753 ± 0.02 0.727 ± 0.02 0.779 ± 0.02 0.757 ± 0.02
Yes 0.872 ± 0.02 0.902 ± 0.02 0.841 ± 0.02 0.861 ± 0.02

Pacemaker No 0.824 ± 0.01 0.815 ± 0.01 0.833 ± 0.01 0.826 ± 0.01
Yes 0.751 ± 0.03 0.762 ± 0.03 0.741 ± 0.03 0.748 ± 0.03

(a) Performance indices on the selected cohort for the analysis on baroroflexes.

Intervention AUC Sens Spec Acc

Vasopressors No 0.749 ± 0.02 0.739 ± 0.02 0.76 ± 0.02 0.752 ± 0.02
Yes 0.757 ± 0.06 0.656 ± 0.06 0.858 ± 0.06 0.763 ± 0.06

Sedative No 0.756 ± 0.02 0.721 ± 0.02 0.79 ± 0.02 0.762 ± 0.02
Yes 0.728 ± 0.05 0.706 ± 0.05 0.751 ± 0.05 0.737 ± 0.05

Ventilation No 0.731 ± 0.03 0.719 ± 0.03 0.743 ± 0.03 0.733 ± 0.03
Yes 0.76 ± 0.03 0.716 ± 0.03 0.805 ± 0.03 0.775 ± 0.03

Pacemaker No 0.79 ± 0.02 0.746 ± 0.02 0.834 ± 0.02 0.799 ± 0.02
Yes 0.57 ± 0.06 0.57 ± 0.06 0.569 ± 0.06 0.569 ± 0.06

(b) Table that show performance indeces on classification performed with a Linear Discriminant
Analysis on the selected cohort for baroreflex analysis. The used features are: ag70, m_diast,
as10, minof and CO.

In table 4.9b are shown the results of the classification done without
using the features related to baroreflex. These data show the same
behavior: interventions alter the classification results, and in particular
pacemaker negatively skew the outcomes.
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4.3.3 Machine Learning as a Decision Making tool in ICU

We couldn’t find a single feature embodying all types of hypotensions.
The condition is the result of many alterations affecting an already
complex system. In addition each subject has its own clinical history
with distinctive characteristics making extremely hard to generalize
patterns. Moreover the poor quality of raw data lower even more the
accuracy of the outcomes.
The task, therefore, requires the development of predictive models for
long sequences of non-stationary multivariate time series in sub-optimal
conditions.
However, thanks to the advancement in technology and its expansion
in critical care, researcher have at their disposal an always increasing
amount of health data. The rise of relational databases, such as MIMIC,
provide them with resources to finally apply those techniques, once con-
strained by the lack data, falling under term of machine learning. These
models can analyze bigger and more complex data, grasp hidden factors
and provide useful decision making tools. A possible solution might be
the coupling of reinforcement learning models, Deep Q-Learning before
all, with advanced signal processing techniques like the Point Process.
The latter enables the extraction of strong measurements of the auto-
nomic activation at the beat-to-beat level, where others, instead, fail.
The importance of having a strong base for feature extraction is shown
in this work: the inclusion of features originating form the Point Pro-
cess increased substantially the quality of the model, a model already
using most of the predictors seen in literature, in a real-life scenario
typical of the ICU environment. On the other hand, Temporal Differ-
ence Learning could be a key into merging information from the many
with patterns from the single to enter the era of precision medicine8:
to tailor the medical treatment to the individual characteristics of each
patient.

8 Johnson et al., 2016a
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A
RELEVANT FEATURES DESCR IPT ION

• AVNN: Average RR interval computed in seconds;

• SDNN: Standard Deviation of the RR intervals in seconds;

• NN20: NN20 count;

• pNN20: NN20 expressed as percentage of the total;

• NN50: NN50 count;

• pNN50: NN50 exspressed as percentage of the total

• RMSSD: Square root of the mean squared differences between
successive RR in ms;

• meanABP: mean arterial blood pressure, as mean of the whole
signal;

• stdABP: standard deviation of arterial blood pressure;

• slopeABP: slope of the line used to interpolate the ABP signal;

• intrcptABP: intercept of the line used to interpolate the ABP
signal;

• m_syst: mean systole amplitude;

• st_syst: standard deviation of systole;

• m_diast: mean diastole amplitude;

• st_diast; standard deviation of diastole;

• meanPP: pulse pressure mean amplitude;

• stdPP: pulse pressure standard deviation

• meanPS: mean time between fiducial point and the following sys-
tole;

• stdPS: standard deviation of time between fiducial point and the
following systole;

• meanSD: mean time between systole and diastole;

• stdSD: standard deviation of time between systole and diastole;

• minof: percentage ABP signal of points below 60 mmHg;
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• minof70: percentage ABP signal of points below 70 mmHg;

• minof80: percentage ABP signal of points below 80 mmHg;

• minof90: percentage ABP signal of points below 90 mmHg;

• est_P: see chapter 3.7.1

• MAP: mean arterial pressure;

• CO: Cardiac Output. See 3.5.5

• MAPslop: slope of the line that interpolate MAP signal;

• MAPintrcpt: intercept of the line that interpolate MAP signal;

• stslope: slope of the linear regression of the last 10% of available
MAP;

• stint: intercept of the linear regression of the last 10% of available
MAP;

• slow: Flag set to one when stslope and MAPslope are lower than
zero.

• sudden1: Flag set to one when stslope and MAPslope are grater
than zero.

• sudden2: Flag set to one when stslope is greater than zero and
MAPslope is lower than zero.

• sudden3: Flag set to one when stslope is lower than zero and
MAPslope is greater than zero.

• meanPTT: mean Pulse Transit Time;

• stdPTT: standard deviation of PTT;

• meanD: mean diastole;

• stdD: standard deviation of diastole;

• meanPO: mean Pulse Onset (fiducial point);

• stdPO: standard deviation of Pulse Onsets;

• rr_apen: Sample Entropy of RR distances. See 3.7.3;

• rr_D2: Correlation Dimention of RR distances. See 3.7.3;

• ss_apen: Sample Entropy of systogram. See 3.7.3;

• ss_D2: Correlation Dimension of systogram;

• dd_apen: Sample Entropy of diastogram;
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• dd_D2: Correlation Dimension of diastogram;

• rr_TOTPWR: tachogram total spectral power. See 3.7.2

• rr_ULF: tachogram spectral power of Ultra Low Frequency;

• rr_VLF: tachogram spectral power of Very Low Frequency;

• rr_LF: tachogram spectral power of Low Frequency;

• rr_HF: tachogram spectral power of High Frequency;

• rr_L_H: ratio of tachogram low frequency and high frequency
power;

• BRFX: estimation of baroreflex;

• po_TOTPWR: Total power of the fiducial pressure.

• po_ULF: ULF of the fiducial pressure*.

• po_VLF: VLF of the fiducial pressure*.

• po_LF: LF of the fiducial pressure*.

• po_HF: HF of the fiducial pressure*.

• po_L_H: LF/HF of the fiducial pressure*.

• ss_TOTPWR: systogram total spectral power;

• ss_ULF: systogram spectral power of Ultra Low Frequency;

• ss_VLF: systogram spectral power of Very Low Frequency;

• ss_LF: systogram spectral power of Low Frequency;

• ss_HF: systogram spectral power of High Frequency;

• ss_L_H: ratio of systogram low frequency and high frequency
power;

• dd_TOTPWR: Total power of the diastogram.

• dd_ULF: ULF power of the diastogram.

• dd_VLF: VLF power fo the diastogram.

• dd_LF: LF power of the diastogram.

• dd_HF: HF power of the distogram.

• dd_L_H: LF/HF ratio of the diastogram.

• PPslope: See section 3.7.1.

• PPintrcp: See section 3.7.1.
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• as1: First TBP element.

• as2: Second TBP element.

• as3: Third TBP element.

• as4: Fourth TBP element.

• as5: Fifth TBP element.

• as6: Sixth TBP element.

• as7: Seventh TBP element.

• as8: Eighth TBP element.

• as9: Ninth TBP element.

• as10: Tenth TBP element.

• ag_area: See Equation 3.35.

• d_ag: See Equation 3.36.

• l_ag: See Equation 3.37.

• meanag: Mean TBP.

• ag70: See section 3.7.4.

• b80: Elements in TBP lower than 80mmHg.

• agsudden: Flag set to one when ag10 is lower than 80mmHg and
d_ag is lower than one.

• ag80: Number of elements in TBP with values between 70mmHg
and 80mmHg.

• scr90: Flag set to one when up90 is greater than 3.

• up90: See Equation 3.40.

• lstABP: Mean ABP of the last two minutes and half available in
the Data Window.

*fiducial pressure is that time series composed by the percussion wave
slope pressure for each beat, see Section 3.5.
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ACRONYMS

• ANS: Autonomic Nervous System

• AUC: Area Under the Curve

• RBA: Relative Bursts Amplitude

• PP: Pulse Pressure

• RRI: RR Intervals

• ABP: Arterial Blood Pressure

• SBP: Systolic Blood Pressure

• DBP: Diastolic Blood Pressure

• PTT: Pulse Transit Times

• MAP: Mean Arterial Pressure

• ROC: Receiver Operating Characteristic

• SNR: Signal to Noise Ratio

• MIMIC: Medical Information Mart for Intensive Care

• CO: (relative) Cardiac Output

• AHE: Acute Hypotensive Episode

• LASSO: Least Absolute Shrinkage and Selection Operator

• PCA: Principal Component Analysis

• DFA: Detrended Fluctuation Analysis

• RMSSD: Root Mean Square of Successive Differences

• SQI: Signal Quality Index

• GRNN: General Regression Neural Network

• LCP: Laboratory for Computational Physiology

• PSD: Power Spectral Density

• ICU: Intensive Care Unit

• RSA: Respiratory Sinus Arrhythmia
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• NN: Neural Network

• FNN: Feed forward Neural Network

• RNN: Recurrent Neural Network

• GRNN: Generalized Regression Neural Network

• HHT: Hilbert-Huang Transform

• IMF: Intrinsic Mode Functions

• EMD: Empirical Mode Decomposition

• HSA: Hilbert Spectrum Analysis

• AMB: Amplitude Modulation Bandwidth

• FMB: Frequency Modulation Bandwidth

• DW: Data Window

• LT: Lead Time



C
MEASURES OF PERFORMANCE

Specificity or TNR =
TN

TN + FP
(C.1)

Sensitivity or TPR =
TP

TP + FN
(C.2)

False Positive Rate FPR = 1− TNR (C.3)

AUC =
∫ −∞
∞

TPR(T )(−FPR′(T ))δT (C.4)

Accuracy =
(TP + TN)

TP + TN + FP + FN
(C.5)

(C.6)

Where T is the Threshold.
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