
Cancer Classification using Gene
Expression Data with Deep Learning

Güray Gölcük

Supervisor: Prof. Stefano Ceri

Advisor: Dr. Arif Çanakoğlu

Department of Electronics, Informatics and Bioengineering
Polytechnic University of Milan

This dissertation is submitted for the degree of
Master of Science

December 2017

Abstract

Technological advances in DNA sequencing technologies allow sequencing the human
genome for a low cost and with in a reasonable time span. This advance conduces to a huge
increase in available genomic data, enabling the establishment of large-scale sequencing data
projects. Producing genomic datasets, which describe genomic information in particular,
we concentrate on our attention on gene expression datasets which describe healthy and
tumoral cells for various cancer types. The purpose of this thesis is to apply deep learning to
classification of tumors based on gene expression.

Two different Deep Learning approaches for analyzing the genomic data. First one is to
create a feed-forward network (FFN) with supervised learning, second one is using ladder
network with semi-supervised learning [42] . Main purpose of both approaches is to perform
binary classification, cancerous or healthy as the outcome, over the Cancer Genome Atlas
(TCGA) database.Two cancer types selected from TCGA. Breast cancer is selected because
it has the highest available amount of sample in all cancer types in TCGA. The reason for
kidney cancer to be selected is because, it has the one of the highest mortality rate among rest.
Moreover, three feature extraction method, PCA, ANOVA and random forests, employed
to preprocess the selected datasets. Experiments show that, FFN reaches the acceptable
accuracy rate but fails to reach a stabilization. On the other hand, ladder network, outperforms
the FFN in both accuracy and stabilization meaning. Effects of feature extraction method
shows us that, main goal as accuracy is reached by PCA & ladder network combination,
main goal as performance is reached by ANOVA & ladder network combination.

Abstract

Le innovazioni riguardanti le tecniche di sequenziamento del DNA stanno permettendo
analisi del genoma umano sempre più veloci ed economiche. Ciò ha provocato un aumento
considerevole dei volumi di dati disponibili riguardanti il genoma umano, permettendo
l’instaurazione di progetti di sequenziamento su larga scala. In questo contesto di database
genomici, ci concentreremo sui dati di espressione genica, i quali descrivono cellule tumorali
e sane provenienti da diversi tipi di tessuto. Lo scopo di questa tesi è di applicare il deep-
learning alla classificazione dei tumori in base all’espressione genica.

Ci siamo concentrati su due approcci fondamentali per l’analisi dei dati genomici. Il
primo consiste nella creazione di una rete Feed-Forward (FFN) per l’apprendimento supervi-
sionato, il secondo utilizza una Ladder Network tramite apprendimento semi-supervisionato.
L’obiettivo principale di entrambi gli approcci è di eseguire classificazione binaria, avente
tumore o sano come risultato. Come dataset abbiamo utilizzato The Cancer genome Atlas
(TCGA) e in particolare ci siamo concentrati su due tipi specifici di tumore: tumore della
mammella e ai reni. Questa scelta è principalmente dettata dalla più alta disponibilità di sam-
ples per questi due tipi di tumore. Abbiamo utilizzato tre differenti tipi di feature extraction,
PCA, ANOVA and random forest.

Gli esperimenti hanno mostrato che FFN raggiunge un accuratezza accettabile ma fallisce
in quanto a stabilità dei risultati. D’altra parte la Ladder Network sorpassa FFN sia in
accuratezza che in stabilità. Gli effetti della feature extraction mostrano che la migliore
combinazione per quanto riguarda l’accuratezza è PCA con Ladder Network, mentre per
quanto riguarda le performance la combinazione ANOVA e Ladder network prevale.

Table of contents

List of figures xi

List of tables xiii

1 Introduction 1
1.1 DNA Sequencing . 1
1.2 Analysis of Genomic Data . 3
1.3 Machine Learning with Genomic Data . 4

2 Summary of Data Extraction Method 7
2.1 Genomic Data Model (GDM) . 7
2.2 GenoMetric Query Language (GMQL) . 9

2.2.1 Relational GMQL Operations . 9
2.2.2 Domain-specific GMQL Operations 10
2.2.3 Utility Operations . 12
2.2.4 Biological Example . 12
2.2.5 Web Interface . 13
2.2.6 Python Interface . 14

3 Tertiary Analysis of the RNA-Seq Data 17
3.1 Characteristics of RNA-Seq Data . 18

3.1.1 High Dimensionality . 18
3.1.2 Biases of the RNA-Seq Data . 18
3.1.3 Missing Values . 19
3.1.4 Unbalanced Distribution . 19
3.1.5 Dealing with Imbalanced Data . 20

3.2 Loading TCGA Data into Repository . 21

viii Table of contents

4 Theoretical Background 23
4.1 Machine Learning . 23

4.1.1 Supervised Learning . 24
4.1.2 Unsupervised Learning . 24
4.1.3 Semi-supervised Learning . 24
4.1.4 Linear Regression . 25
4.1.5 Classification . 27

4.2 Deep Neural Network . 32
4.2.1 Perception . 32
4.2.2 Multilayer Perception . 35
4.2.3 Training an DNN . 36

5 FFN Methodology 39
5.1 Preprocessing . 39
5.2 Feature Extraction . 39
5.3 Train, Test, Validation split . 40
5.4 FFN Structure . 40
5.5 Results & Discussion . 41

6 Ladder Network with Semi-Supervised learning 45
6.1 How Semi-Supervised Learning works . 45
6.2 Ladder Network . 48

6.2.1 Aspects of Ladder Network . 48
6.2.2 Implementation of Ladder Network 48

6.3 Ladder Network with TCGA Data . 50
6.3.1 Structure of Ladder Network . 50
6.3.2 Results . 52

7 Comparison 57

8 Conclusion 59

References 61

Appendix A Error Rates of the experiments with FFN 65
A.1 TCGA kidney data with three layered (1 hidden layer) FFN 65
A.2 TCGA breast data with five layered (3 hidden layer) FFN 66

Table of contents ix

Appendix B Error Rates of the experiments with Ladder Network 69
B.1 TCGA kidney data with Ladder Network 69
B.2 TCGA breast data with Ladder Network 70

List of figures

1.1 The cost of genome sequencing over the last 16 years [27] 2
1.2 The amount of sequenced genomes over the years [17] 3

2.1 An excerpt of region data . 8
2.2 An excerpt of metadata . 8
2.3 Example of map using one sample as reference and three samples as experi-

ment, using the Count aggregate function. 12
2.4 The web graphical user interface of GMQL 14
2.5 High-level representation of the GMQL system 15

3.1 TCGA Cancer Datasets with corresponding sample numbers 18

4.1 Example of linear regression estimation 26
4.2 Decision Surface . 28
4.3 Steps of random forest algoritm [22] . 30
4.4 Decision Surface . 31
4.5 Decision Surface . 32
4.6 Perception . 33
4.7 Activation functions: sigmoid, tanh, ReLU 34
4.8 MLP (FFN) with one hidden layer . 35

5.1 Final structure . 41
5.2 Best accuracy with kidney data . 42
5.3 Best accuracy with breast data . 43
5.4 Effects of number of features . 44

6.1 Example of semi-supervised input data . 46
6.2 Steps of classification based on smoothness assumption 47
6.3 Structure of 2 layered ladder network . 49
6.4 Ladder Network algorithm presented in paper 50

xii List of figures

6.5 Structure of model that is used for classification of TCGA data 51
6.6 Accuracy in kidney data when PCA is used for feature selection method . . 53
6.7 Accuracy in breast data when PCA is used for feature selection method . . 53
6.8 Accuracy in kidney data when ANOVA is used for feature selection method 54
6.9 Accuracy in breast data when ANOVA is used for feature selection method 54
6.10 Accuracy in kidney data when Random Forest is used for feature selection

method . 55
6.11 Accuracy in breast data when Random Forest is used for feature selection

method . 55

List of tables

A.1 Error rate for TCGA kidney data with 200 features with 1 hidden layer . . . 65
A.2 Error rate for TCGA kidney data with 300 features with 1 hidden layer . . . 65
A.3 Error rate for TCGA kidney data with 500 features with 1 hidden layer . . . 66
A.4 Error rate for TCGA kidney data 700 features with 1 hidden layer 66
A.5 Error rate for TCGA kidney data with random forests with 1 hidden layer . 66
A.6 Error rate for TCGA breast data with 200 features with 3 hidden layer . . . 66
A.7 Error rate for TCGA breast data with 300 features with 3 hidden layer . . . 67
A.8 Error rate for TCGA breast data with 500 features with 3 hidden layer . . . 67
A.9 Error rate for TCGA breast data 700 features with 3 hidden layer 67
A.10 Error rate for TCGA breast data 1000 features with 3 hidden layer 67
A.11 Error rate for TCGA breast data with random forests with 3 hidden layer . . 68

B.1 Error rate for TCGA kidney data with 200 features with ladder 69
B.2 Error rate for TCGA kidney data with 300 features with ladder 69
B.3 Error rate for TCGA kidney data with 500 features with ladder 70
B.4 Error rate for TCGA kidney data with 606 features with ladder 70
B.5 Error rate for TCGA kidney data with random forests with 1 hidden layer . 70
B.6 Error rate for TCGA breast data with 200 features with ladder 70
B.7 Error rate for TCGA breast data with 300 features with ladder 71
B.8 Error rate for TCGA breast data with 500 features with ladder 71
B.9 Error rate for TCGA breast data with 700 features with ladder 71
B.10 Error rate for TCGA breast data with 1000 features with ladder 71
B.11 Error rate for TCGA breast data with ladder network 72

Chapter 1

Introduction

1.1 DNA Sequencing

The DNA sequencing is a process of detecting the exact sequence of the nucleotides (adenine,
guanine, cytosine, and thymine) that creates the DNA. The advancements in the DNA
sequencing technologies greatly effects the discoveries the in biological and medical science
[24, 32]. Developments in DNA sequencing also helps biotechnology and forensic studies
significantly [18].
Sequencing a whole DNA has been very complex and an expensive task. Breaking DNA
into smaller sequences and reassembling it into a single line is still complex, even so,
improvements into computer science and discoveries of new methods over past two decades,
makes it cheaper and faster.

2 Introduction

Fig. 1.1 The cost of genome sequencing over the last 16 years [27]

It is evident from the Figure 1.1 that in 2001, DNA sequencing per genome cost 100M
dollar however after 2015, the cost has been significantly drop down to the order of 1K dollar.
Improvements in DNA sequencing technology keep up with Moore’s law. 1 till 2007. After
the introducing of Next Generation Sequencing (NGS) technologies, sequencing cost fall
sharply and reach the value of 1K dollar today [44].

1According to Moore’s law the number of transistors in dense integrated circuits meaning the performance
of the chips approximately doubles every two years. [41]

1.2 Analysis of Genomic Data 3

1.2 Analysis of Genomic Data

Fig. 1.2 The amount of sequenced genomes over the years [17]

The drop in the sequencing cost allows a huge increase in sequenced genome data as shown
in the Figure 1.2. Increase in sequenced genomic data made it possible to establish huge
genomic projects such as Human Genome Project [9], The Encyclopedia Of DNA Elements
(ENCODE) [11] and the 1000 Genomes Project Consortium [10]. These projects ceaselessly
gather and store sequencing data. Importance of big data analyzing techniques shines after
this point. Big data analysis are essential to utilize collected data efficiently.
Sequence Data analysis can be broadly separated into three categories [37].

• Primary Analysis (Base Calling): Converts raw data into nucleotides with respect
to the changes in electric current and light intensity.

• Secondary Analysis (Alignment & Variant calling) Maps the short sequence of
nucleotides into reference sequence to determine variation from.

• Tertiary Analysis: (Interpretation) Analyses variant to estimate their origin, impact,
and uniqueness.

4 Introduction

Out of these three categories, the tertiary analysis is the most important one, since knowledge
gathering from sequenced data handled in the tertiary analysis.

GenData 2020 project, which introduced in 2013, was concentrate on tertiary analysis of
genomic sequence data. GenoMetric Query Language (GMQL) and Genomic Data Model
(GDM) is the most important outcomes of this project. GMQL is query language that works
with heterogeneous datasets such as sequenced genomic data while GDM is the general
data model for mapping genomic features with its metadata. GMQL also have interface for
Python an R which are most commonly used in data analysis. More information on GMQL
can be found on Chapter 2.

1.3 Machine Learning with Genomic Data

Machine learning is a data analysis method that allows the automation of model building
and learning with given input data. It is a subset of artificial intelligence based on the idea
that machines should learn through experience. With machine learning, computers could use
pattern recognition to find hidden insights without any explicit programming. In comparison
to the traditional biological computational methods, machine learning has been put into
practice with the research on the binary or multiple cancer classification with genomic data
[49, 53], For instance, Stacked Denoising Autoencoder (SDAE) [13] , Fuzzy Support Vector
Machine (FSVM) [33] and Deep Belief Networks (BDN) [3] have been proposed to do
binary and multi-class classification to genomic data.

Deep learning is a branch of machine learning with more complicated algorithms which
can model features with high-level abstraction from data. It has achieved the state-of-the-art
performance in several fields such as image classification [29, 46, 50], semantic segmentation
[31] and speech recognition [25]. Recently, deep learning methods have also achieved
success in computational biology [47, 4]. This thesis is the continuation of similar work
of Tuncel [52], classification of cancer types with machine learning algorithms, through
the deep networks. The goal of this thesis is to analysis the effects of the feature selection
methods on the final accuracy of the created Deep Neural Networks. The study can be
divided into two part. First part is the creation of the feed forward network and effects of the
feature selection algorithm on final accuracy and second part is implementation of the ladder
network structure for binary classification, and effects of feature selection algorithms. The
input data is the breast and cancer data from the Cancer Genome Atlas (TCGA) database.

This thesis is arranged as follows: In Chapter 2 background for GMQL method is
presented. In Chapter 3 information on the input data is presented. Chapter 4 theoretical
background for data analyzing is explained, it includes machine learning, neural networks

1.3 Machine Learning with Genomic Data 5

and used methods for feature extracting. Chapter 5 describes the created feed forward
network and the results achieved. Chapter 6 introduces the ladder network, and explains
implementation for binary classification. Chapter 7 compares the final result of the both
network and effects of the feature extraction on them. Finally, conclusions and possible
future work are discussed in Chapter 8.

Chapter 2

Summary of Data Extraction Method

2.1 Genomic Data Model (GDM)

GDM acts as a general schema for genomic repositories. The GDM datasets are a collection
of samples. Each sample has two parts, region data, and metadata. Metadata describes the
sample-specific properties while region data describes the portions of the DNA. [7]. Each
GDM dataset has a corresponding data schema that has few fixed attributes to represent the
coordinate of the regions and identifier of the samples. The fixes attribute which represents
the region information consists of a chromosome, the region that chromosome belongs to,
left and right ends of the chromosome and the denoting value of the DNA strand that contains
the region. There may be other attributes besides fixed ones that have information on DNA
region. Metadata stores information about the sample with format-free attribute-value tuples.
Figure 2.1 illustrates an excerpt of GDM region data. As seen, First five columns are the
fixed attributes of the region data that represents the region information. The last column, on
the other hand, is the p-value of the region significance in this case. Figure 2.2 illustrates
sample-specific metadata properties. The first column of both figures (id) maps the region
data and metadata together.

8 Summary of Data Extraction Method

Fig. 2.1 An excerpt of region data

Fig. 2.2 An excerpt of metadata

2.2 GenoMetric Query Language (GMQL) 9

2.2 GenoMetric Query Language (GMQL)

GMQL is high-level query language which is designed to deal with large-scale genomic data
management. The name genometric, come from its ability to deal with genomic distances.
GMQL is capable to deal with queries with has over thousands of heterogeneous dataset and
it is suitable for efficient big data processing [52].

GMQL combines the traditional algebraic operation with domain-specific operations
of bioinformatics, which are spastically designed for genomics. Therefore it supports the
knowledge discovery between millions of biological or clinical samples, which satisfies the
biological conditions and their relationship to experimental [34].

The inclusion of metadata along with processed data in the many publicly available
experimental datasets, such as TCGA, makes the initial ability of GMQL to manipulate the
metadata is exceptionally important. GMQL operation forms a closed algebra meaning result
are denoted as new dataset derived from operand. Hence, region-based operations build new
regions, metadata based operations traces the root of each sample outcome. GMQL query,
expressed as a sequence of GMQL operations, follows the structure below.

<variable> = operation(<parameters>) <variables>

Each variable indicates GDM dataset. The operator can apply one or more operand to
construct one result variable. Each operator has its own parameters. Most of the GMQL op-
erations are relational operations, which are mostly algebraic operations which are modified
to fit the need of genomics data.

2.2.1 Relational GMQL Operations

• SELECT operator applies on metadata and selects the input samples that satisfy the
specified metadata predicates. The region data and the metadata of the resulting
samples are kept unaltered.

• ORDER operator orders samples, regions or both of them; the order is ascending as
default and can be turned to descending by an explicit indication. Sorted samples or
regions have a new attribute order, added to the metadata, regions or both of them; the
value of ORDER reflects the result of the sorting.

• PROJECT operator applies on regions and keeps the input region attributes expressed
in the result as parameters. It can also be used to build new region attributes as scalar
expressions of region attributes (e g., the length of a region as the difference between
its right and left ends). Metadata are kept unchanged.

10 Summary of Data Extraction Method

• EXTEND operator generates new metadata attributes as a result of aggregate functions
applied to the region attributes. The supported aggregate functions are COUNT (with
no argument), BAG (applicable to attributes of any type) and SUM, AVG, MIN, MAX,

MEDIAN, STD (applicable to attributes of numeric types).

• GROUP operator is used for grouping both regions and metadata according to distinct
values of the grouping attributes. For what concerns metadata, each distinct value
of the grouping attributes is associated with an output sample, with a new identifier
explicitly created for that sample; samples having missing values for any of the
grouping attributes are discarded. The metadata of output samples, each corresponding
a to given group, are constructed as the union of metadata of all the samples contributing
to that group; consequently, metadata include the attributes storing the grouping values,
that are common to each sample in the group.

• MERGE operator merges all the samples of a dataset into a single sample, having all the
input regions as regions and the union of the sets of input attribute-value pairs of the
dataset samples as metadata.

• UNION operator applies to two datasets and builds their union, so that each sample of
each operand contributes exactly to one sample of the result; if datasets have different
schemas, the result schema is the union of the two sets of attributes of the operand
schemas, and in each resulting sample the values of the attributes missing in the original
operand of the sample are set to null. Metadata of each sample are kept unchanged.

• DIFFERENCE operator applies to two datasets and preserves the regions of the first
dataset which do not intersect with any region of the second dataset; only the metadata
of the first dataset are maintained.

2.2.2 Domain-specific GMQL Operations

Domain-specific operations are created specifically to respond the genomic management
requirement needs.

• COVER operation is widely used in order to select regions which are present in a given
number of samples; this processing is typically used in the presence of overlapping
regions, or of replicate samples belonging to the same experiment. The grouping
option allows grouping samples with similar experimental conditions and produces a
single sample for each group. For what concerns variants:

2.2 GenoMetric Query Language (GMQL) 11

– FLAT returns the union of all the regions which contribute to the COVER (more
precisely, it returns the contiguous region that starts from the first end and stops at
the last end of the regions which would contribute to each region of the COVER).

– SUMMIT returns only those portions of the result regions of the COVER where the
maximum number of regions intersect (more precisely, it returns regions that
start from a position where the number of intersecting regions is not increasing
afterwards and stops at a position where either the number of intersecting regions
decreases, or it violates the max accumulation index).

– HISTOGRAM returns the nonoverlapping regions contributing to the cover, each
with its accumulation index value, which is assigned to the AccIndex region
attribute.

• JOIN operation applies to two datasets, respectively called anchor (the first one) and
experiment (the second one), and acts in two phases (each of them can be missing).
In the first phase, pairs of samples which satisfy the joinby predicate (also called meta-
join predicate) are identified; in the second phase, regions that satisfy the genometric
predicate are selected. The meta-join predicate allows selecting sample pairs with
appropriate biological conditions (e.g., regarding the same cell line or antibody).

• MAP is a binary operation over two samples, respectively called reference and ex-
periment. The operation is performed by first merging the samples in the reference
operand, yielding to a single set of reference regions, and then by computing the
aggregates over the values of the experiment regions that intersect with each reference
region for each sample in the experiment operand. In other words, the experiment
regions are mapped to the reference regions.

The output of MAP operation is called genometric space, which is structured as a matrix.
In this matrix, each column indicates the experiment sample and each row indicates
the reference of the region while matrix entries are scalar. Resulting matrix can be
easily inspected with heat maps, which can cluster the columns and/or rows to display
the patterns, or processed and analyzed by any other matrix-based analytical process.
To summarize MAP operation allows the quantitive readings of stored experiments
with respect to reference region. If the reference region of the biological data is not
known, Map function allows extracting the most interesting reference region out of the
candidates.

Fig. 2.3 illustrate the effect of MAP operation on a small portion of the genome; Input
has one reference sample with 3 regions and three corresponding mutation experiment

12 Summary of Data Extraction Method

Fig. 2.3 Example of map using one sample as reference and three samples as experiment,
using the Count aggregate function.

samples, Output has three samples, which locates int he same region as the reference
sample, as well. The features of reference sample correspond to the number mutations
that are interacting with those regions. The final result can be explicated as a (3x3)
genome space.

2.2.3 Utility Operations

• MATERIALIZE operation saves the content of a dataset into the file system, and registers
the saved dataset in the system to make it seamlessly usable in other GMQL queries.
All datasets defined in a GMQL query are, temporary by default; to see and preserve
the content of any dataset generated during a GMQL query, the dataset must be
materialized. Any dataset can be materialized, however, the operation is time expensive.
Therefore to achieve the best performance it is suggested to materialize the relevant
data only [7].

2.2.4 Biological Example

The biological example below uses the MAP operation from domain-specific GMQL op-
erations to count the regions that are peaked in each ENCODE ChIP-seq sample that is
intersected with a gene promoter. After that, for each sample, it projects over the promoters

2.2 GenoMetric Query Language (GMQL) 13

with eat least one intersecting peak and counts these promoters. As the last step, it extracts
the top three samples with highest count number of such promoters

HM_TF = SELECT(dataType == 'ChipSeq') ENCODE;

PROM = SELECT(annotation == 'promoter') ANN;

PROM1 = MAP(peak_count AS COUNT) PROM HM_TF;

PROM2 = PROJECT(peak_count >= 1) PROM1;

PROM3 = AGGREGATE(prom_count AS COUNT) PROM2;

RES = ORDER(DESC prom_count; TOP 3) PROM3;

Further details about GMQL basic operators, GMQL syntax and relevant examples of
single statements and a notable combination of them are available at GMQL manual 1 and
GMQL user tutorial 2.

2.2.5 Web Interface

In order to make GMQL publicly available and user-friendly for the ones with limited
computer science experiment, a web interface designed and implemented by GeCo group.
Two services developed for this purpose. REST API and web interface. Both of them have the
functionalities to search the genomic features dataset and biological/clinical metadata, which
are collected in system repository from ENCODE and TCGA, and build GMQL queries
upon them. GMQL interface can efficiently run such queries with thousands of samples with
few heterogonous dataset. Moreover, with user management system, private datasets can
also be upload to the system repository and used in the same way with the available datasets
in the system. GMQL REST API planned to used them with the external systems such as
GALAXY [20], which is another data integration system and workflow that is commonly
used in bioinformatics, or other systems that can run REST services over HTTP. 3. Figure
2.4 illustrates the web user interface of GMQL.

1GMQL Manual: http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQL/doc/
GMQL_V2_manual.pdf

2GMQL User Tutorial: http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQL/
doc/GMQLUserTutorial.pdf

3GMQL REST Services: http://www.bioinformatics.deib.polimi.it/GMQL/interfaces/

http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQL/doc/GMQL_V2_manual.pdf
http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQL/doc/GMQL_V2_manual.pdf
http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQL/doc/GMQLUserTutorial.pdf
http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQL/doc/GMQLUserTutorial.pdf
http://www.bioinformatics.deib.polimi.it/GMQL/interfaces/

14 Summary of Data Extraction Method

Fig. 2.4 The web graphical user interface of GMQL

2.2.6 Python Interface

Python interface of GMQL, PyGMQL, is an alternative to the web interface of the system.
Python library interact with the GMQL through Scala back-end. With PyGMQL it is also
possible for users to write GMQL queries with the same syntax as standard Python pattern.
PyGMQL can be used locally or remotely. GMQL queries executed on the local computer
when it is used locally while it is executed on the remote GMQL server when it is used
remotely. It is also possible to switch between remote and local mode during the pipeline
analyzing stage. Moreover, PyGMQL introduces efficient data structure to analyze GDM
data and provides specifically developed data analysis and machine learning packages to
manipulate genomic data. Figure 2.5 describe the interaction between the user and GMQL
with PyGMQL in a high-level representation.

2.2 GenoMetric Query Language (GMQL) 15

Fig. 2.5 High-level representation of the GMQL system

Chapter 3

Tertiary Analysis of the RNA-Seq Data

Numerous studies made in past years to examine the transcriptome 1 to identify healthy
or diseased. Study of Golub et al. [21], about distinguishing the types of severe leukemia
cancer is one of the pioneering work in this area. After that, many ensuing studies on both
supervised and unsupervised on expression data is done. Preceding studies on transcriptome
analysis (DNA microarrays) were only available for few types of cancer yet they still did not
have enough sample most likely fewer than a hundred. DNA-Seq technology of today gives
more precise and complete quantification of the transcriptome with the publicly available
dataset. For instance, TCGA dataset contains 33 different types of cancer, including 10
rare cancers and hundreds of samples [19, 39, 2]. Figure 3.1 shows the available cancer
types and the amount of samples in TCGA dataset. The interested readers may refer to
[54, 40, 23, 45, 38] for a detailed explanation of the RNA-Seq technology.

1Transcriptome is the sum of all RNA molecules in a cell or a group of cells that are expressed from the
genes of an organism.

18 Tertiary Analysis of the RNA-Seq Data

Fig. 3.1 TCGA Cancer Datasets with corresponding sample numbers

3.1 Characteristics of RNA-Seq Data

3.1.1 High Dimensionality

Gene expression data has a considerably small amount of sample while a relatively high
amount of features (genes). However, this characteristic is very common an expected in
RNA-Seq and DNA Microarray technologies. As it can be clearly seen in Figure 3.1, only
few cancer type has more than 500 sample. Despite that, each sample has approximately 20k
genes. These phenomena is called the curse of dimensionality. Curse of dimensionality has 2
important traits that make data hard to deal.

1. o have a large number of features which may be irrelevant in a certain comparison of
similarity, have corrupt the signal-noise ratio.

2. In higher dimension, all samples "seem similar"

There few feature extraction methods to overcome the high dimensionality problem. Chapter
4 introduces few methods that are used in this thesis.

3.1.2 Biases of the RNA-Seq Data

Having biases is yet another characteristic of RNA-sequential data. Some of the biases
need to be taken care before deeply analyzing the data. First bias occurs because of the

3.1 Characteristics of RNA-Seq Data 19

technical issues regarding the sequencing depth [51]. Observations in RNA-seq data suffer
from a strong dependency on sequencing depth for their differential expression calls, and
each observation might have a different number of total reads. Thus, values on the dataset
do not only depend on the expression value of the genes but also depends on the depth
of sequence matrix. The difference in the length of genes in the RNA-seq data causes
another, more critical bias. Longer the genes more the readings it gets. This tendency cause
several problems for analysing methods such as classification and clustering [40]. Hence,
these need to be solved before analyzing in detailed, otherwise, the final results can not be
trusted. Normalization techniques need to be performed in order to clear up the problems
with biases. Normalization also helps to improve the convergence speed of various machine
learning algorithms. Normalization also necessary for feature reduction techniques such
as PCA (explained in Section4.1.5), to allow all genes to have an opportunity to contribute
the analysis. PyGMQL implements two methods for data normalization. One for shifting
the mean value of every feature (gene) to zero. Another for reducing the variance of every
feature to the unit variance. By applying those normalization techniques, we can assure that
all of the genes are equally weighted for the classification or clustering.

3.1.3 Missing Values

RNA-Seq data commonly contain missing values like most of the experimental datasets.
Classification approaches are not robust in presence of the missing values. Therefore missing
value problem should be solved. The most simple solution to deal with the missing problem
is to erase the samples to minimize the effects of incomplete datasets. However, considering
the amount of sample in TCGAS datasets, erasing might not be a "smart" approach. De Souto
et al. [14] pointed that it is common for the gene expression datasets to have up to 5% of
missing values, which could affect up to 90% of the genes. Another method is filling the
missing values with 0. Yet this approach performs poorly in terms of estimation accuracy.
More advanced approach is instead of filling with 0, missing values filled by mean or median
values of its corresponding column so the effects of the missing values over the general set
minimized in computations. Filling missing values, with random values from the original
dataset is another approach to solve this problem.

3.1.4 Unbalanced Distribution

Even though the cost of DNA sequencing falls around 1K$, the amount is not small enough
for collecting the sequential data casually.Also, finding volunteers that allows sharing their
DNA information on public domains is hard to find. As a result, most of the samples in

20 Tertiary Analysis of the RNA-Seq Data

the available data collections are cancer positive. Unbalancing in the samples make the
data unfavorable for direct feed to Deep Learning network. Methods explained in bleow is
necessery to sole this problem

3.1.5 Dealing with Imbalanced Data

Imbalanced input data most of the time cause the predictions of DNN model to give prediction
highly on one label. There are few methods to prevent them.

Up-sampling / Down-Sampling

Up-sampling and Down-sampling basically means to increase or decrease the sample of
desired class. Up-sampling means, randomly duplicating the samples of the class, which
has smaller sample amount until the balanced ratio between the classes is reached while
Down-sampling means, instead of taking the whole samples from the overly populated class,
just takes the same amount of sample with the other class so the final dataset will be balanced.
Since the amount of sample in the data is already too small, down-sampling of the cancerous
data is not logical. Furthermore, up-sampling of healthy data does not just fail to stabilize
the result, but also fails the train data. Training accuracy moves around 50% as same as null
hypothesis.
There is also another method named SMOTE [8] published for up-sampling, which introduced
a new way to create new samples. SMOTE calculate the k nearest neighbors for each minority
class observations. Depending upon the amount of oversampling needed, it creates a synthetic
example along the line connecting the observation with k random nearest neighbors. However
this method might be risky. There is a possibility for newly created synthetic data to indicate
complete new life form, and there is not any way to check it. Because of the this reason,
SMOTE is passed.

Penalized weight

Penalized the weight, of the class with superior sample number, in the logistic regression
function or in the loss calculation step have possibility to solve the imbalanced data problem.

Proportioned Batch

Imbalanced data may not be a problem if the input batch that is used to feed training step has
the same proportion of classes with the whole training data.

3.2 Loading TCGA Data into Repository 21

3.2 Loading TCGA Data into Repository

The original TCGA data consist of 31 different types of cancer. There are 9.825 samples with
20.271 diverse genes. Only two cancer types (kidney and breast) selected for classification
test in deep learning. Breast data selected number of samples , which is the highest amount
included in TCGA dataset, and kidney is selected randomly from the rest. In the raw data,
samples do not have values for all the genes sequences so these missing values are filled with
the mean of that gene expression values to not change the outcome. Also, data normalization
is performed in order to remove the biases described in section 3.1.2. How to load and
preprocess the data is explained in code snippet 3.1. Whole code can be seen in Github
repository [1].

1 i m p o r t gmql as g l
2 p a t h = ’ . / D a t a s e t s / t c g a _ d a t a / f i l e s / ’
3 # t h e n o r m a l i z e d c o u n t v a l u e i s s e l e c t e d
4 s e l e c t e d _ v a l u e s = [’ n o r m a l i z e d _ c o u n t ’]
5 # we a r e on ly i n t e r e s t e d i n t h e gene symbol
6 s e l e c t e d _ r e g i o n _ d a t a = [’ gene_symbol ’]
7 # a l l m e t a d a t a a r e s e l e c t e d
8 s e l e c t e d _ m e t a _ d a t a = []
9 gs = g l . ml . Genomet r i cSpace ()

10 # t o l o a d t h e d a t a
11 gs . l o a d (pa th , s e l e c t e d _ r e g i o n _ d a t a , s e l e c t e d _ m e t a _ d a t a ,
12 s e l e c t e d _ v a l u e s , f u l l _ l o a d = F a l s e)
13 # m a t r i x r e p r e s e n t a t i o n
14 gs . t o _ m a t r i x (s e l e c t e d _ v a l u e s , s e l e c t e d _ r e g i o n _ d a t a , d e f a u l t _ v a l u e =None)
15 # compact r e p r e s e n t a t i o n o f r e g i o n and m e t a d a t a
16 gs . s e t _ m e t a ([’ b i o s p e c i m e n _ s a m p l e _ _ s a m p l e _ t y p e _ i d ’ ,
17 ’ m a n u a l l y _ c u r a t e d _ _ t u m o r _ t a g ’ , ’ b i o s p e c i m e n _ s a m p l e _ _ s a m p l e _ t y p e ’])
18

19 from gmql . ml . a l g o r i t h m s . p r e p r o c e s s i n g i m p o r t P r e p r o c e s s i n g
20 # p r u n i n g t h e genes t h a t c o n t a i n more t h a n %40 m i s s i n g v a l u e s
21 gs . d a t a = P r e p r o c e s s i n g . p r u n e _ b y _ m i s s i n g _ p e r c e n t (gs . da t a , 0 . 4)
22 # m i s s i n g v a l u e i m p u t a t i o n
23 gs . d a t a = P r e p r o c e s s i n g . i m p u t e _ u s i n g _ s t a t i s t i c s (gs . da t a , method= ’ min ’)
24 # gene s t a n d a r d i z a t i o n
25 gs . d a t a = P r e p r o c e s s i n g . t o _ u n i t _ v a r i a n c e (gs . d a t a)

Code Listing 3.1 Preprocessıng of raw TCGA data

Chapter 4

Theoretical Background

This chapter provides basic knowledge for machine learning, neural network and deep
learning concepts, that are used during thesis.

4.1 Machine Learning

Machine learning is one of the many areas in artificial intelligence that gives computers to
ability to learn without being specifically programmed. The main idea behind the machine
learning is, regardless of the instructions to solve a problem, constructing a model with
an acceptable amount of data, which can produce valuable predictions of the solutions. In
consequence, machines learning is about various models, which use various methods to
learn by adapt and improve their result from experience. "A computer program is said to
learn from experience E with respect to some class of tasks T and performance measure P
if its performance at tasks in T , as measured by P , improves with experience E " Mitchell
[36]. Machine learning can be applied in many fields, such as financial services, health-
care, customer segmentation , transportation and so on. In this thesis, it is used a binary
classification task with TCGA data. Main goal is to create a model which can minimize the
differences between predictions ŷi = (ŷ1, ŷ2, ..., ŷn) and desired labels yi = (y1,y2, ...,yn) of
input xi = (x1,x2, ...,xm). The i corresponds to instance of the predictions while m and n
corresponds to the total number of input and output instances, respectively.

There are three subfields of machine learning; supervised learning, unsupervised learning
and semi-supervised learning.

24 Theoretical Background

4.1.1 Supervised Learning

Supervised learning is where the input variables and the output variables are already de-
termined and a learning algorithm is used to learn how to map the input to the output. In
other words, the supervised learning algorithms learn by inspecting the given inputs x and
desired outputs y with correcting the predictionsyi. There are several supervised learning
algorithms such as Linear Regression (LR), K-nearest Neighbors (KNN), support vector
machine, decision trees, Naïve Bayes classifier in the literature.

4.1.2 Unsupervised Learning

Unsupervised learning is where the input data do not contain any information of correspond-
ing output variables. The main goal of unsupervised learning is to find meaningful patterns
in distribution or model the underlying structure to increase the understanding of the input
data. It is called unsupervised because unlike the supervised learning there is no "correct
answer" or supervisor to control the learning process. Algorithms are free to make their own
connections and discover new structures in order to interpret the data. Most common use of
unsupervised learning is cluster analysis.

4.1.3 Semi-supervised Learning

Semi-supervised learning is placed between supervised and unsupervised learning, it involves
the function estimation on labeled and unlabeled data. The main goal of semi-supervised
learning is to use unsupervised learning to make predictions for unlabeled data and feed
these data into supervised learning to predict the new data. Most of the real world machine
learning problems are in the semi-supervised category since collecting labeled data could be
expensive, time-consuming while collecting unlabeled data is relatively easier cheaper and
easier to collect.

Semi-supervised learning, as an idea is the most similar learning method for the human
and animal brain. “We expect unsupervised learning to become far more important in the
longer term. Human and animal learning is largely unsupervised: we discover the structure
of the world by observing it, not by being told the name of every object.” LeCun et al. [30]

Regression and classification are the two essential problems of the supervised learning.
Regression is used to model the correlation between input samples and targets which are
continuous while the targets of classification are categorical. To make it clear with example,
classification is classifying the given genomic data as "cancerous" or "healthy", which is the

4.1 Machine Learning 25

classification task handled in this thesis, while regression example could be estimating the
market price of the certain house.

4.1.4 Linear Regression

Linear Regression is an statistical method that enables to figure out the statistical rela-
tionships between two numerical variables. Supposed that the input data is in form of
(x1,y1), ...,(xn,yn), where the x is the input value and y is the corresponding output while xi

and yi are real numbers with i within 1,...,n and n refers to the sample size, the model that
predict the numerical response f (X) = Y by assuming there exist a linear relation between
the input and the output. The relation between input and output can be mapped as Equation
(4.1).

Y = β0X +β1 (4.1)

In Equation (4.1), β0 and β1 are the unknown constants that represent the slope and
intercept of the predicted regression line. Main goal is, by training the model, finding a best
fitting line through all data.

26 Theoretical Background

Fig. 4.1 Example of linear regression estimation

An example with one variable linear regression is shown in Figure 4.1 1. Figure consistent
of multiple black points with two straight lines. The green line consist of the predicted values
ŷi for each possible value of xi while the red line indicates the correct outputs yi. The distance
between each black point and and green line is called prediction error or loss.

The better estimations is done by minimizing the loss function. The loss function L is
the sum of all individual losses over the instances of X. Assuming ei = yi − ŷi represent the

1Source of the picture is https://dzenanhamzic.com/2016/07/25/linear-regression-with-one-variable-in-
matlab

4.1 Machine Learning 27

ith individual loss, the loss function becomes:

L =
n

∑
i=1

ei (4.2)

The aim is to find the β0 and β1 values, which can minimize the L . Thus the important
thing is to choice of selection the best loss function for the problem. The most commonly
used one is residual sum of squares (RSS):

RSS =
n

∑
i=1

e2
i (4.3)

4.1.5 Classification

Classification used for predicting the numerical responses. The main goal is to create a
model, which can assign the given input vector into available classes accurately based on
the training set and labels. In most of the cases, the input classes are disjoint meaning each
sample could only belong to one and only one class. Therefore, input space separates into
decision regions which is called decision boundary or decision surface [6].

28 Theoretical Background

Fig. 4.2 Decision Surface

Figure 4.2 2 illustrates the decision surface. It consists of 2 different points, 0 and X that
indicates the class labels and 2 lines that draws a boundary between points such as when the
new data comes If it not visualized in very controversial spot, the class it belongs to will be
easy to predict.

Classification task consist of four main phases, preprocessing, feature extraction, training
and lastly classification.

Preprocessing: In preprocessing stage, raw data, which is gathered from source, handled
before employed as an input. This phase is necessary since most of the cases, input data
obtained is noisy, incomplete or /and inconsistent. Preprocessing involves data-related tasks
such as cleaning, transformation, reduction and so on. Preprocessing steps that is used to
prepare the input data for the task handled in this thesis is explained in Section 3.1 to deal
with problems of the raw data.

Feature Extraction: Next phase is feature extraction. Features are the domain-specific
measurements, which have relative information to create the best possible representation of

2Source for the figure is http://www.work.caltech.edu/ htlin/program/libsvm/

4.1 Machine Learning 29

the input. For classification, most relevant features need to be extracted from raw data. There
is a lot of feature selection methods in literature such as ANOVA, PCA, LDA and etc. all
with their own advantages and disadvantages.

As a task in this thesis is a classification problem with input data having a lot of features,
three feature extraction algorithms, all chosen from commonly used as feature extracting
methods from related genomic classification papers; ANOVA, PCA, Random Forest are
introduced in this part.

• ANOVA (Analysis of Variance) : ANOVA is the one of the mostly used feature section
methods that is used in machine learning to deal with high dimensionality problem.
Proposed by Bharathi and Natarajan [5], it uses F-test to select the features that
maximize the explained variance.

• Random Forests: Random forests is another commonly used feature selection algorithm
[16]. Random forests is set of decision tree classifiers. Each node splits dataset
into two, based on the condition value (impurity) of every single feature. This way
similar instance to falls in the same set. For classification purposes, Gini impurity or
information gain/entropy is chosen to be impurity condition. This structure calculates
the effect (how much it decrease the impurity) of every feature on the tree. The
flowchart for random forests can be seen in the Figure 4.3. 7

• PCA Principal Component Analysis : Rather than feature selection, Principal Com-
ponent Analysis is a dimensionality reduction technique that used to transform high-
dimensional dataset into a smaller dimension. Reducing the dimensionality of dataset
also reduces the size of space, number of freedom of hypothesis. Algorithms work
faster when they need to deal with a smaller dimension and visualization become
simpler.

PCA transforms the dataset to a lower dimension one with a new coordinate system. In
that coordinate system first axis indicates the first principal component which has the
greatest variance in data. With PCA it is possible to explain 95-97% of the variance in
the input dataset with fewer PCA compare to the original dataset. For instance, 500
PC is enough to explain 98% of the variance in the TCGA kidney dataset, while it only
explains 89% of the variance in breast dataset. Since PCA focus to find the principal
component with the highest variance, the dataset should be normalized, so that each
attribute has an opportunity to contribute the analysis.

Training: In this phase as also explained before, model trains to give the most accurate
prediction as possible.

30 Theoretical Background

Fig. 4.3 Steps of random forest algoritm [22]

Classification: In classification, the created model assign input into one of the available
classes based on created the decision rules.

Classification problem consists of three main parts. First, the frequency of the classes to
occur in the input data, probability distribution. Second, characteristic features to define the
relationship between input and output for separating the classes. Third, defined loss function
which penalized the inaccurate predictions such that the final cost should be minimized as it
mentioned in Subsection 4.1.4 (Regression) [35]. Therefore most of the classification tasks
in real world, based on the probability theory. Probabilistic model outputs a vector which
contains the probability of all possible classes, to show the degree of certainty.

After training model is finalized and the training is done, model can be used to predict the
possible class of the new data. After training model is finalized and the training is done, the
model can be used to predict the possible class of the unseen data. However, every classifier
that is built tries to memorize the training set. Training constantly may cause the model to
memorize the training set which will end up with poor performance when dealing with new

4.1 Machine Learning 31

data while getting perfect accuracy with the training set. These phenomena called over-fitting.
What is needed is, to create a model which is capable of generalizing so that it performs well
new data as well as the training data. Over-fitting also could occur because of the complexity
of the model.It is hard for a model to generalize the inputs with complex structures. There
are few methods to detect the over-fitting, one of which is explained in Section 5.3.

Fig. 4.4 Decision Surface

Figure 4.4 3 shows three models which are trained with three different complexity level
on top. The figure on the bottom shows the training and prediction error rate. Training error
rate getting lower and lower which the increase in complexity, however, prediction error
rate starts to increase after some point. Top right graphic, shows the over-fitting example
which has the perfect curve to include all existing data yet it gets poor performance when to
deal with a new sample. On the other hand, the graph in the middle has pattern instead of
following each data point which has worse training error but better prediction error. In order

3Source for the figure is http: // scott. fortmann-roe. com/ docs/ MeasuringError. html

32 Theoretical Background

to create a "good" model which is capable of dealing with new data, the complexity of the
model and the amount of training steps should be chosen carefully.

4.2 Deep Neural Network

The deep network is a subsection of machine learning, that models the data using multiple
layered artificial neurons. The idea is copying the interactions of the actual nervous system.
The figure illustrates the real neural network, as seen, dendrites bring input signals where
axons pass the information from one cell to another cell through synapses.

Fig. 4.5 Decision Surface

Artificial network "learns" by adopting changes in the synaptic weights of the network.
The architecture has parallelly distributed structure with an ability to learn, which make it
possible to solve complex classification tasks with in reasonable time.

.

4.2.1 Perception

Perception is a feed forward network that builds the boundaries of a linear decision, which
is a fundamental part of the neural networks. Figure 4.6 4,illustrates the perception in the
ANNs. Input signal can be represented as weights. Transfer function sums the response
and feed the resulting signal to the activation function. Based on the activation function’s
threshold, output is determined. To simplify it can be represent as wighted sum of inputs:

4Source for the picture is https: // nl. wikipedia. org/ wiki/ Perceptron

4.2 Deep Neural Network 33

y =
n

∑
j=1

w jx j +w0 (4.4)

where: n = The number of outputs

w0 = Value of interception from bias unit x0 =+1

Fig. 4.6 Perception

For linear cases, binary threshold can be used as an activation function (e.g. step function)
to determine the output. Then, output of the system decided as a:

o(x) = sgn(w · x) (4.5)

where:

sgn(y) =

+1 if y > 0

−1 otherwise
(4.6)

On the other hand, to represent non-linear functions, non-linear activation functions are
necessary. There are few non-linear activation functions in the literature. Figure 4.7 illustrates
tanh, sigmoid and rectified linear unit (ReLU), which also three of the most common ones.

34 Theoretical Background

Sigmoid function compress the input in to [0; 1] range, where 0 means it is not activated
and 1 means it has maximum frequency. Tanh, compress it in to [-1 ; 1] range with same
logic. Relu has an output of 0 if the input is smaller than 0, output the the raw input otherwise

Fig. 4.7 Activation functions: sigmoid, tanh, ReLU

sigmoid(x) =
1

1+ e−x
(4.7)

tanh(x) =
e2x −1
e2x +1

(4.8)

ReLU(x) = max(x,0) (4.9)

Tanh can be considered as a scaled version of sigmoid function:

tanh(x) = 2sigmoid(2x)−1 (4.10)

There are a lot of approaches for perception to predict the correct class label by finding the
optimum weight vector of the training data. The most common one known as the perception
learning rule. If the classification problem is linearly separable, perception learning rule
always converges the optimum weights in finite time [43]. For this approach, all weights are
initialized with random values between (-1, +1). Then perception applies to each training
example. With each wrong classification, weights are updated by adapting them at each
iteration with equation (4.11) until the output is correctly classified.

wi <−wi +∆wi (4.11)

4.2 Deep Neural Network 35

where:

∆wi = α(t −o)xi

4.2.2 Multilayer Perception

Single perception is limited to linear mapping, so it fails to solve complex tasks. To solve
complex tasks, more comprehensive model, which is capable of performing the arbitrary
mapping. With perception, it is possible to build larger and more practical structure that can
be described as a network of perceptions named multilayer perception (MLP). The basic
structure of MLP could also be called as feedforward network (FFN) since it has a direct
connection between all layers. General MLP has three main layers; one layer for input, one
or more layer as a hidden layer and one layer for the output. Hidden layer is "hidden" from
inputs and outputs as it is indicated in the name. Learning task of the complex model by
extracting features from input data, handled in the hidden layer. MLP with one hidden layer
structure is known as two-layer perception, is shown in Figure 4.8.

Fig. 4.8 MLP (FFN) with one hidden layer

Furthermore, as proved in [12] and [26], an MLP with a single hidden layer represents a
universal function approximation. A two-layer perception can be written mathematically as:

y = f (x) = ϕ(b(2)+W (2)(ϕ(b(1)+W (1)x))) (4.12)

36 Theoretical Background

where:

W (1),W (2) = Weights

b(1),b(2) = Biases

ϕ = activation function

In the equation (4.12), ϕ(b(1)+W (1)x)) forms the hidden layer and the rest establish the
output layer.

4.2.3 Training an DNN

Deep neural network learns by minimizing the loss function by changing the parameters
(θ = {W (∗),b(∗)}) of the model in training. stochastic gradient descent (SGD) is the one
of the most common approach to used for learning the parameters. The gradients of a loss
function are calculated by using the back-propagation (BP) algorithm, then the results fed to
the SGD method to update the weights and biases.

Stochastic Gradient Descent

SGD algorithm updates the set of parameters θ incrementally after each epoch. An epoch
indicates the number of times all of the training input used to update the parameters. All
training samples get through the leaning phase in one epoch before parameters are updated.

SGD calculates the approximation of the true error gradient error based on a single
training sample, instead of compute the gradient of the error based on the all training sample
like in gradient descent (GD). Thus DNN can train faster with SGD, since calculating the
approximation is faster.

w j := w+∆w j (4.13)

∆w j = α

n

∑
i=1

(target(i)−out put(i))x(i)j (4.14)

where:

α = Learning rate

After each epoch, weights in Equation (4.13), updated as:

∆w j = α(target(i)−out put(i))x(i)j (4.15)

4.2 Deep Neural Network 37

Backpropogation

To use SGD in multi-layer networks, gradient of the loss function is needed to be computed.
Backpropogation is the most common method used to overcome this problem. In backpro-
pogation, calculating the partial derivatives ∂L/∂w of the loss function L with respect to
some weight w is enough to analyse the cahnge in the loss with the change of weights. Using
mean squared error (MSE) as cost function one output neuron over all n examples is:

L =
1
2

n

∑
j=1

(t j − y j)
2 (4.16)

where:

t = target label

y = output of the perceptron

L is scaled by 1
2 for mathematical convenience of Equation (4.22). Error gradient is

calculated in equation (4.17) to use SGD

∆wk j =−α
∂L

∂wk j
(4.17)

where a node in layer k is connected to a node in layer j. The result is taking negative
We take the negative because the change of the weights are in the direction of where error is
decreasing. because weight changes are in the direction where the error is decreasing. Using
chain rule gets us:

∂L
∂wk j

=
∂L
∂y j

∂y j

∂x j

∂x j

∂wk j
(4.18)

In Equation (4.18), x j is the weighted sum of the inputs being passed to jth node and
y j = f (x j) is the output of the activation function. As a result:

∂x j

∂wk j
= yk (4.19)

If the sigmoid function is used as an activation function, the derivative becomes:

d f (x)
dx

= f (x)(1− f (x)) (4.20)

38 Theoretical Background

Plugging it in to Equation (4.18):

∂y j

∂x j
= y j(1− y j) (4.21)

Finally, the first partial derivative of the remaining part ∂L
∂y j

, which is the derivative of
Equation (4.16):

∂L
∂y j

=−(t j − y j) (4.22)

Putting the whole thing together, algorithm for the output-layer case become: Overall, putting
all things together, we form the algorithm for the output-layer case:

∂L
∂wk j

=−(t j − y j)y j(1− y j)yk (4.23)

Chain rule for the propagation of the error, :

∂L
∂wk j

=
∂L
∂y j

∂y j

∂x j

∂x j

∂wk j
(4.24)

First two partial derivatives in equation (4.24), can be donated as δi and the rest is the
derivate of the weighted sum of the inputs w ji:

∂L
∂y j

=−∑δiw ji (4.25)

As a result, it can be written as equation (4.26) for the hidden layers:

∂L
∂wk j

=−∑(δiw ji)yi(1− y j)yk (4.26)

In the end, gradient of the calculated error feed to the SGD algorithm.

Chapter 5

FFN Methodology

In this chapter, the details of the implementation steps for the first part of the thesis, creating
a Feed-forward network for binary classification of TCGA data is described. This chapter
introduces the result of our first attempts to solve the classification problem. Throughout
this chapter, the following steps will be covered respectively: data preprocessing, feature
extraction and FNN architecture.

5.1 Preprocessing

As briefly mentioned in the Section 4.1.5 preprocessing is an important step to properly
analyze the input data. The problems of input data are explained in 3.1. To summarise, input
data have three problems to solve in preprocessing phase. It has a bias on expression values,
missing values in samples and input data is unbalanced. Normalization function of PyGMQL
library is used to normalize the input data to overcome the bias problem of the raw input.
Missing values filled with its mean value of the respective column. Sequence of the input
data is change to guarantee each batch has the same proportion of the input as whole data.

5.2 Feature Extraction

The most important thing in feature extraction is to select most relevant features, whose
has enough information about input to differentiate the different classes easily. Optimal
solution is the selecting most important features by hand. However for this case, it is not
possible to managed that. So as a feature extracting, PCA with 200, 300, 500, 700 principal
components, ANOVA with 200, 300, 500, 700 selected features and random forest with
importance level higher than .001, .0005, .0001 selected for experiment to find the optimum

40 FFN Methodology

model and the optimum feature selection method. The threshold of PCA algorithm is 606
principal components for kidney data. With 606 principal components, the 99.999% of the
variance in the input data is covered. It is not possible to include more principal components.
Therefore 606 the highest amount to feature selected for kidney database to make comparison
simple.

5.3 Train, Test, Validation split

Deep learning needs two inputs. Once for training the data, one for testing the trained model.
It is important to use different samples for training and test to actually trigger learning
process. Sealing the test information from training cause the model to learn from training
data without knowing the answer.
Since input data will be used for classification(in our case), the proportion of the labels in the
splits must be preserved. Stratified split algorithms are perfect for this job. Python library
sklearn have a method named stratified shuffle split[sklearn] that can handle this part. It
takes random partitions the data into k independent subsets of the same size.Then it trains
the model using k-1 subsets and tests it on the last subset. This procedure is repeated k times
assuring that each subset is used once as the test data. The k results are later averaged to
produce the final result while preserving the label proportions. Input Data split into 2 parts,
80% training dataset, 20% test dataset as the most suggested train-test ratio.
However, every system tends to memories the outcomes. After continues training with the
same train- test data allow the system to have an idea about the content of test data indirectly.
To prevent that another dataset completely separated from train and test is needed. After
training done, instead of checking the accuracy of test data (which can be over-fitting because
of indirect learning) the accuracy of separate validation dataset gives the correct result.
Thus, training data needed to split again. Splitting training dataset into two with 75% , 25%
proportion for validation dataset give us the final parts of parts 60% for training dataset,
20% validation datasetand 20% test dataset.

Data predation steps explained above (Section 5.1, 5.2, 5.3) are essential for any classifi-
cation tasks. The resulting output is used for the input feed for both FFN, explained in this
chapter, and ladder network explained in Chapter 6.

5.4 FFN Structure

FFN follows the steps mentioned in the Section 4.2. Input TCGA data is fetch from the
GMQL server with the GMQL web interface and loaded into the local repository, explained

5.5 Results & Discussion 41

in Section 3.2. For FFN, expression values of the selected genes are used for the input
training feed. Corresponding input training labels, gathered from the TCGA metadata as
healthy or cancerous.

Various combinations of different complexity level is tried to prevent over-fitting which is
mentioned in Subsection 4.1.5. Best results are gathered by using FFN consist of three layers,
one for input, one for hidden and one for output. Nodes in the input layer changes evenly
depending on the feature selection method and how many features are extracted. Hidden
layer consist of 20 nodes and output layer has nodes same number as output class, which
is two in this case. ReLU used for activation function. The used batch size is 60, trained
with 60 - to 80 epochs. For training stochastic gradient descent optimization is used and
cross-entropy used for the calculation of the loss function. Figure 5.1 illustrates the final
structure of used FFN model. I1...In indicated the input nodes where the n is the number of
the extracted features. H1...Hm indicates the hidden nodes where m is 20 for this case and
O1...O2 indicates the output nodes: one for healthy, one for cancerous.

...

...

I1

I2

I3

In

H1

Hm

O1

O2

Input
layer

Hidden
layer

Ouput
layer

Fig. 5.1 Final structure

5.5 Results & Discussion

Highest achieved validation accuracy can be seen in Figure 5.2 and Figure 5.3. Best results,
the lowest error rate, achieved with PCA (300 principal components) as feature extraction
method, and 2 layer neural network structure (5.1) as model structure for TCGA kidney

42 FFN Methodology

data. PCA (700 principal components) for feature extraction and 4 layered neural network as
structure achieves best result, the lowest error rate, for TCGA breast data.

Fig. 5.2 Best accuracy with kidney data

5.5 Results & Discussion 43

Fig. 5.3 Best accuracy with breast data

The feature extraction methods is absolutely necessary for this level of analysis. Deep
learning do not have enough samples to find possible connections between all features. With
out any feature selection method, input with all 20206 features, fails to improve the null
hypothesis. The amount of features also affecting the learning accuracy, with too much
feature involved, the model fails to predict new samples accurately. Figure 5.4 shows the
general behavior through the effect of features over models prediction. The number of the
features for the classification task is highly dependent on the input data. In other words,
around 700 features are necessary for the model to have a good approximation on prediction
new samples, in TCGA breast data, while only 300 features are enough with TCGA kidney
data.

Taking into consideration that, 300 principal components of PCA can protect 94% of the
variance in the kidney dataset, on the other hand it can only protect 82% of breast dataset.
Therefore, in order to reach 94% of the variance, 400 additional principal components are
required. As it is expected, the number of the features that preserve the accuracy are different
for each dataset. The detailed result for each feature selection and method are available in
the Appendix A.

44 FFN Methodology

Fig. 5.4 Effects of number of features

The discrepancy in datasets also affects the constructional complexity. 1-layered feed-
forward network with small amount of hidden nodes is enough to train kidney data but it
is too simple to train breast data. While overfitting/underfitting occurs with more complex
structures when training kidney data, it is necessary to reach a decent model with breast data.

To summaries, both input datasets are trained to do binary classification task. Because of
the discrepancy in dataset, different structures are necessary to obtain satisfactory results.
PCA gives the best performance as a feature extraction method, followed closely by ANOVA.
Random forest, on the other hand, has the worst performance, training barely improves the
null hypothesis

Final accuracy can be considerable as exceptionally high, especially with kidney data
(99%). However, model gives highly unstable results. As it can bee seen on the tables in
Appendix A, system generally fails to improve the null hypothesis. Mostly, the model under-
fits the healthy samples from input, which most probably occurs because of the imbalance
in input data. However, stability of the model does not improve with any of the methods
mentioned in 3.1.5. All in all, the created feed-forward model is not trustworthy for binary
classification of TCGA data.

Chapter 6

Ladder Network with Semi-Supervised
learning

The created feed-forward network in Chapter 5 is failed to give a satisfying result. Even
though the final accuracy is good, the stability of the system is not acceptable. The final
opinion we can infer with is that the resulting model actually is not a trustful model. What
is required to achieve a more stable structure that can reach an acceptable accuracy level
result with a low amount of input data. Ladder network is satisfying these conditions. It
achieves dropping the error rate to 1.06% with only 100 labeled examples with publicly
known MNIST (Modified National Institute of Standards and Technology database) [15]
dataset.

This chapter will consist of 3 sections: Section 6.1 explains the process of semi-supervised
learning. Section 6.2 explains what is ladder network. Section 6.3 shows the ladder structure
and illustrates the final accuracy results.

6.1 How Semi-Supervised Learning works

Semi-supervised learning uses supervised learning tasks and techniques to make use of
unlabeled data for training. Generally, the amount of labeled data is very small, while the
unlabeled data is much larger.

Figure 6.1 illustrates a visualization of semi-supervised input data. Grey point are the
unlabled datas, where the black one and white one indicates different labels of unlabeled
data.

46 Ladder Network with Semi-Supervised learning

Fig. 6.1 Example of semi-supervised input data

It is really hard to make sense when having very small number of labeled and unlabeled
data, but when all unlabeled ones are seen 6.1, it can be worked out to process.

6.1 How Semi-Supervised Learning works 47

Fig. 6.2 Steps of classification based on smoothness assumption

Assuming, there is a structure underlying the distribution of data and labels are homo-
geneous in densely populated space i.e. With smoothness assumption1, classification of the
unlabeled data became much more easier to deal. Figure 6.2 shows steps of classification of
unlabeled data based on smoothness assumption.

It has been found that the utilization of unlabeled data together with a small amount
of labeled data can enhance accuracy extensively. In the most of the real world situation,
collecting labeled data is very expensive while there is a lot of unlabeled data is on hand.
Semi-supervised learning is best to be used in these kind of situations. Also, such learning
system is very similar to how our brain works. For instance humans don’t need to see all
versions of chairs to understand if the new object is a chair or not. Seeing a small number of
chair sample (labeled data) with all past experiences (unlabeled data) help us to categorize
the objects. Hence, semi-supervised learning is a rational model for the human brain.

1 According to smoothness assumption data points, which are close to each other tend to have the same label

48 Ladder Network with Semi-Supervised learning

6.2 Ladder Network

Ladder network unites both supervised and unsupervised learning in deep neural network.
Generally, unsupervised learning is used for train the model in advance, a.k.a. as pre-training,
before supervised training. Ladder network trains it simultaneously minimize the cost
of supervised and unsupervised by back-propagation function, without using layer-wise
pre-training.

6.2.1 Aspects of Ladder Network

• Compatibility: Ladder Network consists of feedforward networks (FFN), any super-
vised learning model can easily be added to existing structure. network.

• Scalability: Ladder network has unsupervised learning target in each layer, which
make it suitable for deep neural networks.

• Cost Efficiency: Since the Ladder network is basically modified feedforward networks,
structure is simple and easy to implement. Training function of ladder network is based
on from a simple cost function. So it is quick to train and the convergence is fast with
the help of batch normalization [28] 2.

6.2.2 Implementation of Ladder Network

This section has a simple introduction of implementation of the ladder network introduced in
Rasmus et al. [42]:

1. Ladder network has a feed-forward model that used as a supervised learning encoder.
The complete system has 2 encoder paths, one is clean the other is corrupted. The
difference between the clean and corrupted one is, the corrupted encoder adds Gaussian
noise at all layers.

2. Decoder added to invert the mapping on each layer of the encoder to support unsuper-
vised learning. The decoder uses a denoising function to reconstruct the activation of
each layer in corrupted encoder based on the activation of the clean encoder. Difference
between reconstruction and the clean version is count as the denoising cost of that
layer.

2Batch Normalization is a technique to provide any layer in a Neural Network with inputs that are zero
mean/unit variance to improve the performance and stability

6.2 Ladder Network 49

3. Difference between the output of corrupted encoder and output target is count as a
supervised cost while summing of denoising cost of all layers scaled by significance
parameter count as an unsupervised cost. Final cost is the sum of supervised and
unsupervised cost.

4. It is possible to train both fully labeled and semi labeled using optimization techniques
to minimize the cost.

Figure 6.3 illustrates the structure of 2 layered ladder network example in Rasmus et al.
[42].

Fig. 6.3 Structure of 2 layered ladder network

Furthermore, batch normalization is applied to each pre-activation including the top
most layer to improve convergence and to prevent the ladder network to end up with a
futile solution. Encoder tends to output constant values that are easier to denoise which
cause finding futile solutions. There is a direct connection between a layer and its decoded
reconstruction.

The whole system is called Ladder network because the encoder-decoder architecture
resembles a ladder.

50 Ladder Network with Semi-Supervised learning

Figure 6.4 illustrates the algorithm to calculate output and loss in ladder network.

Fig. 6.4 Ladder Network algorithm presented in paper

6.3 Ladder Network with TCGA Data

Before using the ladder network model, FFN that is created in the Section 5.4 also gives a
good result on TCGA kidney and breast data, but the imbalance of the input data makes it
hard to reproduce the similar result after every training. In the repetitive trails, FFN model
generally only gives a prediction for the class with the superior number while ignoring the
other.

6.3.1 Structure of Ladder Network

As briefly mentioned in the Section 4.1.5 preprocessing is an important step to properly
analyze the input data. To deal with the problem of the raw input data, and preparation data
for the classification task, same steps as (Section 5.1, 5.2, 5.3) are followed. Same inputs and
outputs as FFN is used for the ladder network as well.

Same 6 layer structure is adopted but the nodes in layers are modified. First and the last
layer is modified with respect to the inputs and outputs of the system. Meaning, the first layer
has the same number of nodes as the input features and the last layer has the same number of

6.3 Ladder Network with TCGA Data 51

nodes as the number of output class which is 2 in this case. The number of input features
is changed depending on the selected feature selection method and the selected number of
features. The layers between ,hidden layers, have exponentially increased nodes from output
layer through input layer. Significance number which is mentioned in Section 6.2.2 in step 4,
is selected [1000, 10 , 0.1,0.1,0.1,0.1,0.1] respectively to indicate the importance of the layer.
Figure 6.5 illustrates the model that is used for classification of TCGA data.

Fig. 6.5 Structure of model that is used for classification of TCGA data

The number of nodes in hidden layers are much smaller than the ones used in reference
paper because of the same behavior with the FFN model through experiments. The more
hidden nodes in the model the more complex the structure became, so the final accuracy falls
because of over-fitting. So simpler is the better in this case.
The various number of labeled data is used in the experiments. As it can be guessed, if the

52 Ladder Network with Semi-Supervised learning

amount of the labeled sample is too small, the model can not improve the null hypothesis,
such as 2, 10, 20. But after 50 labeled data, which is relatively higher amount which can be
still be considered as a small amount of sample, the model work with very high accuracy. The
ratio of the labeled data that feeds the supervised learning is 50%, 50% for both cancerous
and healty samples.

The amount of the labeled data did not have a significant change in accuracy after 50.
The final accuracy of 50 labeled data and 200 labeled data is very similar. This means that
unsupervised learning works without bothering the supervised learning.

Batch size is chosen to be 60 as well as the number of labeled data in input feed to use in
trials.

6.3.2 Results

Even though 60 is the selected number of labeled data for kidney and breast dataset from
TCGA, smaller and higher amounts of labels also used for the experiment. Same feature
selection methods with FFN is used to make the comparison easier, PCA with 200, 300, 500,
700 principal components, ANOVA with 200, 300, 500, 700 selected features and random
forest with importance level higher than .001, .0005, .0001 selected for experiment to analyze
the effects of the feature selection methods on the models accuracy. The graphics below
show the result of the experiment on both data. More detailed information can gathered from
Appendix B

6.3 Ladder Network with TCGA Data 53

Fig. 6.6 Accuracy in kidney data when PCA is used for feature selection method

Fig. 6.7 Accuracy in breast data when PCA is used for feature selection method

54 Ladder Network with Semi-Supervised learning

Fig. 6.8 Accuracy in kidney data when ANOVA is used for feature selection method

Fig. 6.9 Accuracy in breast data when ANOVA is used for feature selection method

6.3 Ladder Network with TCGA Data 55

Fig. 6.10 Accuracy in kidney data when Random Forest is used for feature selection method

Fig. 6.11 Accuracy in breast data when Random Forest is used for feature selection method

56 Ladder Network with Semi-Supervised learning

The effects of the feature extraction are very similar with the FFN. Ladder network also
fails to improve the null hypothesis when no feature extraction algorithm applied. However,
ladder network works stable while having better accuracy result on most cases. It gives
similar accuracy regardless of number of times it runs . To analyze the results, especially
with the breast data, the difference between the PCA and ANOVA become clear. The final
accuracy reaches the highest value even with only 200 features selected with ANOVA,
while system needs 700 to 1000 principal components selected by PCA to reach the similar
accuracy level. Features selected with random forest, on the other hand, fails even to reach
the null hypothesis.

Chapter 7

Comparison

In this thesis, feedforward network model (Chapter 5) and ladder network model (Chapter 6)
are created to do binary classification for TCGA breast and kidney data. In order to reach the
highest accuracy possible, few feature selection methods with different amount of features
applied. This chapter gives a comparison between created models, input data and selected
feature selection methods.

TCGA kidney data has 606 samples and 20206 genes (features) in its raw form. We split
the data with 60%,20%,20% for train, test and validation, respectively. As a final result, in
training test, there is 363 samples in training dataset, in test and validation set, there is 122
sample.

TCGA breast data has 1218 sample with 20207 genes (features) in its raw form. Same
ratio as kidney is used for train, test and validation split. Training set of breast data has 730
sample, test and validation set has 244 sample.

The input data feed through the both used structures in small batches, which follows the
same ratio to overcome the problem with the imbalanced data. Thus, the null hypothesis,
minimum expected accuracy is 79.8% for kidney data, and 84.5% for the breast data.

Both structures improves the null hypothesis with selected feature selection methods.
Feed-forward network as a choice is a good model to do experiments for the ones, who

do not have much experience with deep learning. In structure, each deep learning step can be
easily seen and modified for the preferred adaptations. It also reached acceptable accuracy
rate with kidney data. However, the methods tried to stabilize the result whose, instability
occurs most probably because of imbalanced input data, are failed and most of the time it
ends up with highly biased prediction in favor of cancerous data.

Ladder network, on the other hand, gives a stable result with higher accuracy in all cases.
The ladder network structure is complex when comparing with simple FFN, yet since as a
base it uses FFN for encoder paths and training is based on back-propagation from a simple

58 Comparison

cost function, the structure is simple and easier to implement than most of other deep learning
structures. Imbalance in the input samples also does not affect the stability and final result in
this model since the input feed of the supervised part is balanced.

Effects of the feature extracting algorithm changes through the selected structure and
selected input data. For kidney data in FFN structure, best accuracy reached by the principal
components selected by PCA. Result followed closely by the features selected by ANOVA
and Random Forest gives the worst result, which only reaches 95% accuracy. FFN with
breast data, on the other hand, best results are collected with features selected with Random
Forests, followed closely by PCA and ANOVA. The performance of PCA and ANOVA is
similar while the performance of random forest differs. It is possible to say that, random
forest works better with complex datasets since breast data is more complex than kidney
dataset. To protect the 94% of the variance in the breast dataset, 400 principal component is
needed.

Moreover, the performance of the feature selection algorithms is more stable with the
Ladder Network. Both in the breast and kidney dataset, best performance reached by the
principal components by PCA, followed closely by ANOVA, while Random Forest falls
too behind. However, if we focus on breast data, effects of the ANOVA is the outperform
the PCA with a small number of features. FInal accuracy in breast dataset with ANOVA is
around 97.5%, 98.1% without depending on the number of selected features. Yet, PCA only
reaches the maximum accuracy with 1000 features involves. Performance after 1000 features
starts to decrease for all algorithms. On the other hand, features selected by Random forest
performs poorly, even fails to reach null hypothesis most of the time.

As a result, ladder network outperforms the FFN network, and best accuracy reached
with PCA. Ladder network works accurately without being troubled by the 2 most important
problem of input dataset; imbalance in the dataset, low amount of sample. Accuracy result
may improve with different feature extracting methods, or selecting by hand with the one
who have field information on the topic.Ladder network work fine with tow selected dataset,
similar results are expecting with other cancer datasets in TCGA dataset. Further research
of multiple label classification,instead of binary classification could be considered as future
work.

Chapter 8

Conclusion

There is a lot of research on analyzing biological data and solutions related to these problems.
Different machine learning methods have become more and more popular in this area. Deep
learning stands out among rest, due to its remarkable performance. One weakness of deep
learning that should be considered is its need of data. It really shines where there is high
amount of data available to train. When there is not, it may lack of reflecting desired accuracy
levels. Having said that, there are still new structures being developed to overcome this
weakness.

In this thesis, two approaches has been introduced to solve binary classification problem
of the TCGA mRNA sequencing data, and cancer data (breast and kidney), both of which
trained with FFN and Ladder network structures. Besides of these data processing structures,
three different feature extracting algorithms for pre-processing have been utilized: PCA,
ANOVA, and random forest to observe the effects. After several experiments, it can be
cleary seen that FFN reaches 99.2% accuracy rate with kidney dataset. However, despite
of that accuracy level, it fails to achieve a stable result. On the other hand, Ladder network
outperforms FFN not only in accuracy but also in stability. Therefore, one may selecting
Ladder network over FFN should not be a suprizing result. As a side note, Appendix A can
be given as a reference to see the instability between results of FFN.

To sum up, selecting appropriate data preprocessing and feature extraction methods, and
defining a subsidiary model architecture are keys in binary classification and prediction tasks.
To explain why these are the keys, it can be given as an example that the same ladder network
acquires 2 different scores with 2 different selection methods. The best accuracy acquired is
with Ladder network using PCA extraction algorithm in both datasets. Also, a very close
result can be achieved in accuracy with ANOVA algorithm using much less selected features.
This proves us utilizing different feature extraction algorithms may be preffered based on the
purpose of experiment.

60 Conclusion

As a future work, this paper can be extended with including remaining datasets in TCGA
representing other types of cancer which results in having multi-class classification. By
having multi-class classification, one might have flexible approach to represent and work
with multiple cancer data.

References

[1] (2016). Pygmql repository. ttps://github.com/DEIB-GECO/PyGMQL/. Accessed:
2017-08-08.

[2] (2016). Tcga cancer types. https://tcga-data.nci.nih.gov/docs/publications/tcga. Ac-
cessed: 2017-08-08.

[3] Abdel-Zaher, A. M. and Eldeib, A. M. (2016). Breast cancer classification using deep
belief networks. Expert Systems with Applications, 46:139–144.

[4] Angermueller, C., Pärnamaa, T., Parts, L., and Stegle, O. (2016). Deep learning for
computational biology. Molecular systems biology, 12(7):878.

[5] Bharathi, A. and Natarajan, A. (2010). Cancer classification of bioinformatics datausing
anova. International journal of computer theory and engineering, 2(3):369.

[6] Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

[7] Ceri, S., Kaitoua, A., Masseroli, M., Pinoli, P., and Venco, F. (2016). Data Management
for Heterogeneous Genomic Datasets. IEEE/ACM transactions on computational biology
and bioinformatics / IEEE, ACM, 5963(c):1–14.

[8] Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote:
synthetic minority over-sampling technique. Journal of artificial intelligence research,
16:321–357.

[9] Chial, H. (2008). Dna sequencing technologies key to the human genome project. Nature
Education, 1(1):219.

[10] Consortium, . G. P. et al. (2012). An integrated map of genetic variation from 1,092
human genomes. Nature, 491(7422):56.

[11] Consortium, E. P. et al. (2007). Identification and analysis of functional elements in 1%
of the human genome by the encode pilot project. nature, 447(7146):799.

[12] Cybenko, G. (1992). Approximation by superpositions of a sigmoidal function. Mathe-
matics of Control, Signals, and Systems (MCSS), 5(4):455–455.

[13] Danaee, P., Ghaeini, R., and Hendrix, D. A. (2017). A deep learning approach for
cancer detection and relevant gene identification. In PACIFIC SYMPOSIUM ON BIO-
COMPUTING 2017, pages 219–229. World Scientific.

ttps://github.com/DEIB-GECO/PyGMQL/
https://tcga-data.nci.nih.gov/docs/publications/tcga

62 References

[14] De Souto, M. C., Jaskowiak, P. A., and Costa, I. G. (2015). Impact of missing data
imputation methods on gene expression clustering and classification. BMC bioinformatics,
16(1):64.

[15] Deng, L. (2012). The mnist database of handwritten digit images for machine learning
research [best of the web]. IEEE Signal Processing Magazine, 29(6):141–142.

[16] Díaz-Uriarte, R. and De Andres, S. A. (2006). Gene selection and classification of
microarray data using random forest. BMC bioinformatics, 7(1):3.

[17] Eisenstein, M. (2015). Big data: The power of petabytes. Nature, 527(7576):S2–S4.

[18] França, L. T., Carrilho, E., and Kist, T. B. (2002). A review of dna sequencing
techniques. Quarterly Reviews of Biophysics, 35(2):169–200.

[19] Fu, X., Fu, N., Guo, S., Yan, Z., Xu, Y., Hu, H., Menzel, C., Chen, W., Li, Y., Zeng,
R., and Khaitovich, P. (2009). Estimating accuracy of rna-seq and microarrays with
proteomics. BMC Genomics, 10(1):161.

[20] Giardine, B., Riemer, C., Hardison, R. C., Burhans, R., Elnitski, L., Shah, P., Zhang, Y.,
Blankenberg, D., Albert, I., Taylor, J., et al. (2005). Galaxy: a platform for interactive
large-scale genome analysis. Genome research, 15(10):1451–1455.

[21] Golub, T. R., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L.,
Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., and Lander, E. S. (1999). Molecular
Classification of Cancer: Class Discovery and Class Prediction by Gene Expression
Monitoring. 286(October):531–538.

[22] Guan, X., Chance, M. R., and Barnholtz-Sloan, J. S. (2012). Splitting random forest
(srf) for determining compact sets of genes that distinguish between cancer subtypes.
Journal of clinical bioinformatics, 2(1):13.

[23] Haas, B. J. and Zody, M. C. (2010). Advancing rna-seq analysis. Nature biotechnology,
28(5):421–423.

[24] Hargreaves, A. D., Zhou, L., Christensen, J., Marlétaz, F., Liu, S., Li, F., Jansen, P. G.,
Spiga, E., Hansen, M. T., Pedersen, S. V. H., et al. (2017). Genome sequence of a diabetes-
prone rodent reveals a mutation hotspot around the parahox gene cluster. Proceedings of
the National Academy of Sciences, 114(29):7677–7682.

[25] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T. N., et al. (2012). Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups. IEEE Signal
Processing Magazine, 29(6):82–97.

[26] Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks.
Neural networks, 4(2):251–257.

[27] Institute, N. H. G. R. (2017). Dna sequencing costs: Data.

[28] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift.

References 63

[29] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105.

[30] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–
444.

[31] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3431–3440.

[32] Lovell, P. V., Wirthlin, M., Wilhelm, L., Minx, P., Lazar, N. H., Carbone, L., Warren,
W. C., and Mello, C. V. (2014). Conserved syntenic clusters of protein coding genes are
missing in birds. Genome biology, 15(12):565.

[33] Mao, Y., Zhou, X., Pi, D., Sun, Y., and Wong, S. T. (2005). Multiclass cancer classifica-
tion by using fuzzy support vector machine and binary decision tree with gene selection.
BioMed Research International, 2005(2):160–171.

[34] Masseroli, M., Pinoli, P., Venco, F., Kaitoua, A., Jalili, V., Palluzzi, F., Muller, H., and
Ceri, S. (2015). GenoMetric Query Language: A novel approach to large-scale genomic
data management. Bioinformatics, 31(12):1881–1888.

[35] Mindru, F., Tuytelaars, T., Van Gool, L., and Moons, T. (2004). Moment invariants
for recognition under changing viewpoint and illumination. Computer Vision and Image
Understanding, 94(1):3–27.

[36] Mitchell, T. M. (1997). Machine learning. 1997. Burr Ridge, IL: McGraw Hill,
45(37):870–877.

[37] Moorthie, S., Hall, A., and Wright, C. F. (2012). Informatics and clinical genome
sequencing: opening the black box. Genetics in Medicine, 15(3):165–171.

[38] Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B. (2008). Map-
ping and quantifying mammalian transcriptomes by rna-seq. Nature methods, 5(7):621–
628.

[39] Network, C. G. A. et al. (2012). Comprehensive molecular characterization of human
colon and rectal cancer. Nature, 487(7407):330.

[40] Ozsolak, F. and Milos, P. M. (2011). Rna sequencing: advances, challenges and
opportunities. Nature reviews. Genetics, 12(2):87.

[41] Present, I. (2000). Cramming more components onto integrated circuits. Readings in
computer architecture, 56.

[42] Rasmus, A., Berglund, M., Honkala, M., Valpola, H., and Raiko, T. (2015). Semi-
supervised learning with ladder networks. In Advances in Neural Information Processing
Systems, pages 3546–3554.

[43] Rosenblatt, F. (1961). Principles of neurodynamics. perceptrons and the theory of brain
mechanisms. Technical report, CORNELL AERONAUTICAL LAB INC BUFFALO NY.

64 References

[44] Schuster, S. C. (2008). Next-generation sequencing transforms today’s biology. Nature
methods, 5(1):16–18.

[45] Shendure, J. (2008). The beginning of the end for microarrays? Nature methods,
5(7):585–587.

[46] Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556.

[47] Singh, R., Lanchantin, J., Robins, G., and Qi, Y. (2016). Deepchrome: deep-learning for
predicting gene expression from histone modifications. Bioinformatics, 32(17):i639–i648.

[sklearn] sklearn. StratifiedShuffleSplit.

[49] Statnikov, A., Wang, L., and Aliferis, C. F. (2008). A comprehensive comparison of
random forests and support vector machines for microarray-based cancer classification.
BMC bioinformatics, 9(1):319.

[50] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 1–9.

[51] Tarazona, S., García-Alcalde, F., Dopazo, J., Ferrer, A., and Conesa, A. (2011). Differ-
ential expression in rna-seq: a matter of depth. Genome research, 21(12):2213–2223.

[52] Tuncel, M. A. (2017). A statistical framework for the analysis of genomic data.

[53] Wang, L., Chu, F., and Xie, W. (2007). Accurate cancer classification using expressions
of very few genes. IEEE/ACM Transactions on Computational Biology and Bioinformatics
(TCBB), 4(1):40–53.

[54] Wang, Z., Gerstein, M., and Snyder, M. (2009). Rna-seq: a revolutionary tool for
transcriptomics. Nature reviews genetics, 10(1):57–63.

Appendix A

Error Rates of the experiments with FFN

A.1 TCGA kidney data with three layered (1 hidden layer)
FFN

Table A.1 Error rate for TCGA kidney data with 200 features with 1 hidden layer

Algorithm Min Mean Median Max

PCA 200 1.8 17.8 20.2 20.2
ANOVA 200 2.4 18.2 20.2 20.2

Table A.2 Error rate for TCGA kidney data with 300 features with 1 hidden layer

Algorithm Min Mean Median Max

PCA 300 0.8 16.4 20.2 20.2
ANOVA 300 1.5 17.1 20.2 20.2

66 Error Rates of the experiments with FFN

Table A.3 Error rate for TCGA kidney data with 500 features with 1 hidden layer

Algorithm Min Mean Median Max

PCA 500 2.0 17.8 20.2 20.2
ANOVA 500 2.8 18.2 20.2 20.2

Table A.4 Error rate for TCGA kidney data 700 features with 1 hidden layer

Algorithm Min Mean Median Max

PCA 606 3.8 18.8 20.2 20.2
ANOVA 606 4.2 19.6 20.2 20.2

Table A.5 Error rate for TCGA kidney data with random forests with 1 hidden layer

Algorithm Min Mean Median Max

RF (higher 0.0010 (250)) 16.4 19.6 20.2 20.2
RF (higher 0.0005(393)) 10.1 14.7 20.2 20.2
RF (higher 0.0001(919)) 18.0 26.4 20.2 79.8

A.2 TCGA breast data with five layered (3 hidden layer)
FFN

Table A.6 Error rate for TCGA breast data with 200 features with 3 hidden layer

Algorithm Min Mean Median Max

PCA 200 8.2 11.9 15.5 15.5
ANOVA 200 9.1 12.2 15.5 15.5

A.2 TCGA breast data with five layered (3 hidden layer) FFN 67

Table A.7 Error rate for TCGA breast data with 300 features with 3 hidden layer

Algorithm Min Mean Median Max

PCA 300 7.8 11.7 15.5 15.5
ANOVA 300 8.5 11.9 15.5 15.5

Table A.8 Error rate for TCGA breast data with 500 features with 3 hidden layer

Algorithm Min Mean Median Max

PCA 500 5.7 10.1 15.5 15.5
ANOVA 500 6.3 10.0 15.5 15.5

Table A.9 Error rate for TCGA breast data 700 features with 3 hidden layer

Algorithm Min Mean Median Max

PCA 700 3.3 10.0 15.5 15.5
ANOVA 700 3.7 10.1 15.5 15.5

Table A.10 Error rate for TCGA breast data 1000 features with 3 hidden layer

Algorithm Min Mean Median Max

PCA 1000 3.6 11.0 15.5 15.5
ANOVA 1000 3.5 10.8 15.5 15.5

68 Error Rates of the experiments with FFN

Table A.11 Error rate for TCGA breast data with random forests with 3 hidden layer

Algorithm Min Mean Median Max

RF (higher 0.0010 (250)) 10.1 14.2 15.5 15.5
RF (higher 0.0005(400)) 3.7 13.7 15.5 15.5
RF (higher 0.0001(989)) 19.6 22.2 21.5 26.2

Appendix B

Error Rates of the experiments with
Ladder Network

B.1 TCGA kidney data with Ladder Network

Table B.1 Error rate for TCGA kidney data with 200 features with ladder

Algorithm Min Mean Median Max

PCA 200 1.1 1.2 1.7 3.3
ANOVA 200 0.8 1.0 0.8 1.2

Table B.2 Error rate for TCGA kidney data with 300 features with ladder

Algorithm Min Mean Median Max

PCA 300 0.8 1.2 0.8 2.5
ANOVA 300 0.8 1.6 1.6 3.9

70 Error Rates of the experiments with Ladder Network

Table B.3 Error rate for TCGA kidney data with 500 features with ladder

Algorithm Min Mean Median Max

PCA 500 0.8 2.0 2.5 2.5
ANOVA 500 0.8 1.6 1.6 3.9

Table B.4 Error rate for TCGA kidney data with 606 features with ladder

Algorithm Min Mean Median Max

PCA 606 3.3 4.8 4.9 5.8
ANOVA 606 1.7 2.1 1.7 4.1

Table B.5 Error rate for TCGA kidney data with random forests with 1 hidden layer

Algorithm Min Mean Median Max

RF (higher 0.001 (250)) 5.8 6.6 6.6 9.9
RF (higher 0.0005(393)) 8.3 9.8 10.7 11.5
RF (higher 0.0005(919)) 79.2 82.2 80.2 87.3

B.2 TCGA breast data with Ladder Network

Table B.6 Error rate for TCGA breast data with 200 features with ladder

Algorithm Min Mean Median Max

PCA 200 6.2 7.2 7.1 8.2
ANOVA 200 2.5 3.2 3.7 3.7

B.2 TCGA breast data with Ladder Network 71

Table B.7 Error rate for TCGA breast data with 300 features with ladder

Algorithm Min Mean Median Max

PCA 300 5.7 6.1 6.2 7.1
ANOVA 300 2.4 2.5 3.7 3.7

Table B.8 Error rate for TCGA breast data with 500 features with ladder

Algorithm Min Mean Median Max

PCA 500 2.9 4.4 4.8 4.9
ANOVA 500 3.3 4.4 4.9 5.4

Table B.9 Error rate for TCGA breast data with 700 features with ladder

Algorithm Min Mean Median Max

PCA 700 2.1 2.5 2.7 4.1
ANOVA 700 2.5 4.4 4.9 4.9

Table B.10 Error rate for TCGA breast data with 1000 features with ladder

Algorithm Min Mean Median Max

PCA 1000 1.7 2.5 3.3 3.3
ANOVA 1000 2.1 2.7 2.9 4.1

72 Error Rates of the experiments with Ladder Network

Table B.11 Error rate for TCGA breast data with ladder network

Algorithm Min Mean Median Max

RF (higher 0.0010 (250)) 74.5 84.5 84.1 87.3
RF (higher 0.0005(400)) 27.5 29.0 29.1 30.8
RF (higher 0.0001(989)) 59.2 61.5 60.2 63.5

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 DNA Sequencing
	1.2 Analysis of Genomic Data
	1.3 Machine Learning with Genomic Data

	2 Summary of Data Extraction Method
	2.1 Genomic Data Model (GDM)
	2.2 GenoMetric Query Language (GMQL)
	2.2.1 Relational GMQL Operations
	2.2.2 Domain-specific GMQL Operations
	2.2.3 Utility Operations
	2.2.4 Biological Example
	2.2.5 Web Interface
	2.2.6 Python Interface

	3 Tertiary Analysis of the RNA-Seq Data
	3.1 Characteristics of RNA-Seq Data
	3.1.1 High Dimensionality
	3.1.2 Biases of the RNA-Seq Data
	3.1.3 Missing Values
	3.1.4 Unbalanced Distribution
	3.1.5 Dealing with Imbalanced Data

	3.2 Loading TCGA Data into Repository

	4 Theoretical Background
	4.1 Machine Learning
	4.1.1 Supervised Learning
	4.1.2 Unsupervised Learning
	4.1.3 Semi-supervised Learning
	4.1.4 Linear Regression
	4.1.5 Classification

	4.2 Deep Neural Network
	4.2.1 Perception
	4.2.2 Multilayer Perception
	4.2.3 Training an DNN

	5 FFN Methodology
	5.1 Preprocessing
	5.2 Feature Extraction
	5.3 Train, Test, Validation split
	5.4 FFN Structure
	5.5 Results & Discussion

	6 Ladder Network with Semi-Supervised learning
	6.1 How Semi-Supervised Learning works
	6.2 Ladder Network
	6.2.1 Aspects of Ladder Network
	6.2.2 Implementation of Ladder Network

	6.3 Ladder Network with TCGA Data
	6.3.1 Structure of Ladder Network
	6.3.2 Results

	7 Comparison
	8 Conclusion
	References
	Appendix A Error Rates of the experiments with FFN
	A.1 TCGA kidney data with three layered (1 hidden layer) FFN
	A.2 TCGA breast data with five layered (3 hidden layer) FFN

	Appendix B Error Rates of the experiments with Ladder Network
	B.1 TCGA kidney data with Ladder Network
	B.2 TCGA breast data with Ladder Network

