ABBATTIMENTO DEI GAS ACIDI E CONTROLLO DEL MERCURIO NELLA TERMOVALORIZZAZIONE DEI RIFIUTI: ANALISI DEL PROBLEMA E STUDIO DI UN CASO REALE

Relatore: Prof. Mario Grosso
Correlatori: Ing. Roberto Marras
Dott. Giorgio Cassamagnaghi

Tesi di laurea di:
Andrea Martino Amadei, 863726
Federico Monti, 863965

Anno Accademico 2016-2017
Ringraziamenti

Desideriamo ringraziare innanzitutto il Prof. Mario Grosso in qualità di relatore per averci dato la possibilità di svolgere il presente lavoro.

Ringraziamo di cuore l’Ing. Roberto Marras per la sua disponibilità, precisione e infinita pazienza nel seguire passo dopo passo tutte le fasi dell’elaborato.

Un ringraziamento al Dott. Giorgio Cassamagnaghi e all’Ing. Irene Viglione, per le risposte puntuali e la presenza in questi mesi.

Uno speciale ringraziamento all’Ing. Nicholas Tarabelloni, alla Prof.ssa Ilenia Epifani e al nostro amico Luca per i preziosi consigli ed il tempo dedicatoci.

Infine desideriamo ringraziare tutti i nostri amici che ci hanno accompagnato in questo lungo percorso universitario, supportandoci e soprattutto sopportandoci.

Un abbraccio di cuore alle nostre famiglie per esserci stati accanto nei momenti difficili e in quelli felici, condividendo con noi i piccoli e i grandi traguardi raggiunti nella nostra vita.

Andrea e Federico
Al mio babbo

Andrea
5.3.1 Interazione tra mercurio e acido cloridrico ... 81
5.3.2 Interazione tra mercurio e altre specie chimiche .. 84
5.3.3 Il mercurio nei principali processi di combustione .. 86
5.3.4 Il mercurio nelle ceneri volanti .. 91
5.4 Tecniche di abbattimento del mercurio .. 95
5.4.1 Processi di desolforazione e rimozione dei gas acidi 96
5.4.2 Tecnologie di riduzione catalitica - SCR ... 101
5.4.3 Tecnologie di depolverazione ... 105
5.4.4 Utilizzo di sostanze adsorbenti ... 109
5.4.5 Influenza delle componenti del flusso gassoso .. 120
5.4.6 Tecniche innovative per incrementare la rimozione del mercurio 127

CAPITOLO 6 - ANALISI DELLE PRESTAZIONI AMBIENTALI DEL PRODOTTO
DEPURCAL®MG .. 131
6.1 Materiali e metodi .. 131
6.1.1 Il prodotto Depurcal®MG .. 131
6.1.2 Dosaggio di Depurcal®MG presso il termovalorizzatore di Torino 137
6.1.3 Scenari e parametri analizzati .. 139
6.1.4 Pulizia dei dati .. 148
6.2 Valutazione delle prestazioni ambientali – Risultati e discussione 150
6.2.1 Analisi dello Scenario A .. 150
6.2.2 Analisi dello Scenario B .. 156
6.2.3 Analisi dello Scenario C .. 162
6.2.4 Analisi delle correlazioni tra i parametri .. 166
6.2.5 Effetti del Depurcal®MG sul mercurio e analisi dei dosaggi di carbone attivo 171
6.2.6 Analisi dell’effetto dell’unità SCR ... 179

CAPITOLO 7 - ANALISI DELLE PRESTAZIONI GESTIONALI DEL PRODOTTO
DEPURCAL®MG .. 185
7.1 Materiali e metodi .. 188
7.1.1 Scenari analizzati e gestione dei dati per l’analisi dei residui 188
7.1.2 Gestione dei dati e scenari analizzati per il bicarbonato di sodio 189
7.2 Valutazione delle prestazioni gestionali – Risultati e discussione 191
7.2.1 Analisi della produzione dei residui .. 191
7.2.2 Analisi degli effetti sul bicarbonato di sodio ... 195

CAPITOLO 8 - ANALISI DELLE PRESTAZIONI ENERGETICHE DEL PRODOTTO
DEPURCAL®MG .. 209
8.1 Materiali e metodi .. 209
8.1.1 Pulizia e gestione dei dati .. 209
8.1.2 Scenari considerati e parametri utilizzati ... 210
8.2 Valutazione delle prestazioni energetiche – Risultati e discussione 212
8.2.1 Analisi delle caratteristiche delle ceneri ... 212
8.2.2 Analisi dei risultati delle prove di fusibilità delle ceneri.................................... 223
8.2.3 Analisi del profilo di temperatura dei fumi in caldaia .. 226
8.2.4 Effetti sulle operazioni di pulizia effettuate con micro-cariche 233

APPENDICI .. I
Appendice A1 – Valori di riferimento da D.lgs. 4 marzo 2014 n.46 I
Appendice A2 – Analisi merceologiche Amiat S.p.A. ... III
Appendice A3 – Il mercurio in atmosfera e negli ambienti acquatici VIII
Appendice A4 – Metodologie di retrofit per il mercurio ... XIII
Appendice A5 – Impianto pilota di dosaggio del reagente Depurcal®MG XV
Appendice A6 – Statistiche descrittive dei parametri dell’analisi ambientale XVII
Appendice A7 – Statistiche descrittive dei parametri dell’analisi gestionale XXI
Appendice A8 – Andamenti settimanali dei residui .. XXIII
Appendice A9 – Giorni di innesco delle micro-cariche ... XXV

BIBLIOGRAFIA .. XXVII

SITOGRAFIA ... XXXVIII
Il presente elaborato ha come obiettivo la valutazione degli effetti del dosaggio in camera di combustione di un reagente magnesiaco (Depurcal®MG) prodotto e commercializzato dal Gruppo Unicalca S.p.A. presso il termovalorizzatore del Gerbido di Torino. La prova industriale di dosaggio del reagente ha avuto luogo in una delle tre linee identiche dell’impianto (Linea 3), a partire dal 26/09/2017 fino al 31/01/2018. Lo studio è stato condotto secondo tre differenti modalità di analisi volte a indagare gli effetti del reagente sui seguenti aspetti:

- Valutazione delle prestazioni ambientali del reagente Depurcal®MG nei confronti degli inquinanti acidi in caldaia (HCl e SO₂) e del mercurio totale in caldaia (Hg_TOX) - Analisi ambientale;
- Valutazione delle prestazioni gestionali del reagente Depurcal®MG nei confronti della produzione dei residui (scorie di fondo griglia, ceneri volanti e prodotti sodici residui) ed effetti sul risparmio di bicarbonato di sodio dosato - Analisi gestionale;
- Valutazione dell’alterazione delle ceneri di caldaia in seguito al dosaggio del reagente Depurcal®MG ed influenza delle stesse sui profili di temperatura - Analisi energetica.

I dati delle tre linee di trattamento sono stati suddivisi in due differenti periodi:

- Periodo 0 - precedente al dosaggio di reagente;
- Periodo 1 - relativo al periodo di dosaggio di reagente (suddiviso in tre livelli pari a 60 kg/h, 90 kg/h e 120 kg/h).

Analisi ambientale

L’analisi è stata condotta sulla base dei seguenti scenari:

- Scenario A - confronto tra la Linea 3 durante il Periodo 0 e la Linea 3 durante il Periodo 1;
- Scenario B - confronto tra la Linea 3 e la Linea 2 entrambe durante il Periodo 1;
- Scenario C - confronto tra la sola Linea 3 durante il Periodo 1, tra le ore in cui è avvenuto il dosaggio di reagente e quelle in cui non è avvenuto.

Per quanto concerne lo Scenario A e lo Scenario B, dalla Tabella I e dalla Tabella II si evidenzia una rilevante efficienza di abbattimento (\(\eta\) [%]) dei gas acidi HCl e SO₂, che risulta essere sensibilmente crescente all’aumentare del dosaggio di Depurcal®MG. Quanto riscontrato è in linea con i risultati disponibili relativi a diversi casi di studio del sorbente dolomitico in differenti impianti di termovalorizzazione (Tabella VIII). Per quanto concerne lo Scenario C, in Tabella III sono riportate le variazioni percentuali (\(V_i\) [%]) dei parametri nel confronto tra le ore di presenza e di assenza del dosaggio del reagente. Si evince come durante le ore in cui è dosato il reagente dolomitico si rilevano produzioni specifiche degli inquinanti acidi inferiori rispetto alle ore in cui il reagente non è dosato.
Per quanto riguarda il mercurio in caldaia, il valore negativo di efficienza di abbattimento (Tabella I e Tabella II) è dovuto alla quantità maggiore di mercurio stesso rilevata in Linea 3 per il Periodo 1 rispetto al quantitativo con cui viene confrontato nello Scenario A e nello Scenario B. Si osserva al crescere del dosaggio del sorbente un abbassamento in modulo del valore di efficienza riportato, a testimonianza di un effetto di attenuazione del mercurio totale in uscita caldaia ad opera del sorbente dolomitico.

Tabella I – Risultati delle prestazioni ambientali: efficienza di abbattimento in caldaia – Scenario A.

<table>
<thead>
<tr>
<th>Dosaggio specifico [kg/t Rifiuti]</th>
<th>HCl [kg/t Rifiuti]</th>
<th>SO₂ [kg/t Rifiuti]</th>
<th>HgTOT [µg/t Rifiuti]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario A</td>
<td>Media ± Dev.std.</td>
<td>η [%]</td>
<td>η [%]</td>
</tr>
<tr>
<td>Dosaggio 60 kg/h</td>
<td>2,95 ± 1,19</td>
<td>17,38</td>
<td>38,56</td>
</tr>
<tr>
<td>Dosaggio 90 kg/h</td>
<td>3,87 ± 1,53</td>
<td>28,71</td>
<td>63,30</td>
</tr>
<tr>
<td>Dosaggio 120 kg/h</td>
<td>5,68 ± 2,50</td>
<td>42,00</td>
<td>89,44</td>
</tr>
</tbody>
</table>

Tabella II – Risultati delle prestazioni ambientali: efficienza di abbattimento in caldaia – Scenario B.

<table>
<thead>
<tr>
<th>Dosaggio specifico [kg/t Rifiuti]</th>
<th>HCl [kg/t Rifiuti]</th>
<th>SO₂ [kg/t Rifiuti]</th>
<th>HgTOT [µg/t Rifiuti]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario B</td>
<td>Media ± Dev.std.</td>
<td>η [%]</td>
<td>η [%]</td>
</tr>
<tr>
<td>Dosaggio 60 kg/h</td>
<td>2,95 ± 1,19</td>
<td>9,99</td>
<td>35,70</td>
</tr>
<tr>
<td>Dosaggio 90 kg/h</td>
<td>3,87 ± 1,53</td>
<td>18,07</td>
<td>64,85</td>
</tr>
<tr>
<td>Dosaggio 120 kg/h</td>
<td>5,68 ± 2,50</td>
<td>26,34</td>
<td>83,73</td>
</tr>
</tbody>
</table>

Tabella III – Risultati delle prestazioni ambientali: variazione percentuale in caldaia – Scenario C.

<table>
<thead>
<tr>
<th>Dosaggio specifico [kg/t Rifiuti]</th>
<th>HCl [kg/t Rifiuti]</th>
<th>SO₂ [kg/t Rifiuti]</th>
<th>HgTOT [µg/t Rifiuti]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario C</td>
<td>Media ± Dev.std.</td>
<td>𝑉_{ij} [%]</td>
<td>𝑉_{ij} [%]</td>
</tr>
<tr>
<td>Dosaggio 60 kg/h</td>
<td>2,95 ± 1,19</td>
<td>-15,07</td>
<td>-37,29</td>
</tr>
<tr>
<td>Dosaggio 90 kg/h</td>
<td>3,87 ± 1,53</td>
<td>-22,63</td>
<td>-51,46</td>
</tr>
<tr>
<td>Dosaggio 120 kg/h</td>
<td>5,68 ± 2,50</td>
<td>-29,29</td>
<td>-78,49</td>
</tr>
</tbody>
</table>

Inoltre si è indagato il potenziale effetto di accumulo e rilascio di mercurio dalle superfici del catalizzatore DeNOx SCR (in configurazione “tail end”), analizzando il rapporto che intercorre tra questo fenomeno, gli effetti del dosaggio del sorbente e il dosaggio di carbone attivo. Le analisi, condotte in termini di mercurio totale, hanno evidenziato per tutte le linee valori orari di concentrazione di mercurio maggiori a camino rispetto a quelli in uscita caldaia, con frequenza rilevante per quanto riguarda la Linea 3. In particolare, per la Linea 3, si sono osservati episodi più intensi del fenomeno nelle ore di assenza del sorbente dolomitico, nonostante il regolare dosaggio di carbone attivo e bicarbonato di sodio. La contemporanea presenza di ossido di vanadio e di acido cloridrico all’altezza del reattore catalitico potrebbe avere un ruolo significativo nel favorire il processo di rilascio di mercurio adsorbito sulla superficie catalizzante.
Analisi gestionale

L’analisi della produzione dei residui (scorie, ceneri e prodotti sodici residui) generati complessivamente da tutte e tre le linee dell’impianto è basata sul Periodo 0 e sul Periodo 1, suddiviso per le tre fasi di dosaggio. In Tabella IV è riportata la variazione percentuale della produzione di ciascuna tipologia di residuo calcolata sulla base dei dati aggregati per le tre linee di trattamento, essendo gli stessi residui computati complessivamente. Sono stati successivamente quantificati il risparmio reale \(R_{\text{Reale}} [\%] \) e il risparmio teorico \(R_{\text{Teorico}} [\%] \) di bicarbonato di sodio, conseguito a seguito del dosaggio del reagente per lo Scenario A (Tabella V) e lo Scenario B (Tabella VI).

Tali risparmi sono valutati in funzione del consumo specifico reale e teorico, entrambi riferiti alla tonnellata di rifiuto. Il consumo specifico reale è calcolato considerando i dati orari di dosaggio di bicarbonato di sodio registrati in impianto, mentre il consumo specifico teorico indica quanto bicarbonato di sodio sarebbe corretto dosare considerando l’algoritmo di calcolo basato sulla stechiometria della reazione di abbattimento dei gas acidi e l’eccesso del reagente alcalino.

Per quanto riguarda lo Scenario C (Tabella VII) è riportata la variazione percentuale del consumo di bicarbonato di sodio nelle condizioni reali \(V_{I,\text{Reale}} [\%] \) e teoriche \(V_{I,\text{Teorica}} [\%] \).

Tabella IV – Variazione \(\Delta [\%] \) della produzione di scorie, PSR e ceneri in funzione del dosaggio.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Rifiuti ([\t/d])</th>
<th>(\Delta_{\text{Rifiuti}} [%])</th>
<th>Scorie ([\text{kg/t}\text{Rifiuti}])</th>
<th>(\Delta_{\text{Scorie}} [%])</th>
<th>Ceneri ([\text{kg/t}\text{Rifiuti}])</th>
<th>(\Delta_{\text{Ceneri}} [%])</th>
<th>PSR ([\text{kg/t}\text{Rifiuti}])</th>
<th>(\Delta_{\text{PSR}} [%])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodo 0</td>
<td>1400,94</td>
<td>-</td>
<td>260,54</td>
<td>-</td>
<td>28,09</td>
<td>-</td>
<td>24,23</td>
<td>-</td>
</tr>
<tr>
<td>Periodo 1 – Dosaggio 60 kg/h</td>
<td>1671,41</td>
<td>19,31</td>
<td>288,08</td>
<td>10,57</td>
<td>25,01</td>
<td>-10,96</td>
<td>18,32</td>
<td>-24,39</td>
</tr>
<tr>
<td>Periodo 1 – Dosaggio 90 kg/h</td>
<td>1538,37</td>
<td>9,81</td>
<td>290,23</td>
<td>11,40</td>
<td>22,74</td>
<td>-19,05</td>
<td>22,62</td>
<td>-6,64</td>
</tr>
<tr>
<td>Periodo 1 – Dosaggio 120 kg/h</td>
<td>1458,02</td>
<td>4,07</td>
<td>291,41</td>
<td>11,85</td>
<td>31,56</td>
<td>12,35</td>
<td>23,77</td>
<td>-1,90</td>
</tr>
</tbody>
</table>

Tabella V – Risultati dei risparmi di bicarbonato di sodio riferiti allo Scenario A.

<table>
<thead>
<tr>
<th>Scenario A</th>
<th>(R_{\text{Teorico}} [%])</th>
<th>(R_{\text{Reale}} [%])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosaggio 60 kg/h</td>
<td>18,86</td>
<td>-7,03</td>
</tr>
<tr>
<td>Dosaggio 90 kg/h</td>
<td>31,14</td>
<td>17,33</td>
</tr>
<tr>
<td>Dosaggio 120 kg/h</td>
<td>45,46</td>
<td>10,34</td>
</tr>
</tbody>
</table>

Tabella VI – Risultati dei risparmi di bicarbonato di sodio riferiti allo Scenario B.

<table>
<thead>
<tr>
<th>Scenario B</th>
<th>(R_{\text{Teorico}} [%])</th>
<th>(R_{\text{Reale}} [%])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosaggio 60 kg/h</td>
<td>11,91</td>
<td>33,93</td>
</tr>
<tr>
<td>Dosaggio 90 kg/h</td>
<td>21,93</td>
<td>2,88</td>
</tr>
<tr>
<td>Dosaggio 120 kg/h</td>
<td>29,86</td>
<td>17,30</td>
</tr>
</tbody>
</table>
Come atteso, il dosaggio del reagente dolomitico non influenza sulla produzione delle scorie di fondo griglia, le quali sono invece dipendenti dalla quantità e dalla tipologia di rifiuto trattato dall’impianto. Al contrario esso agisce direttamente sulla produzione di ceneri leggere di caldaia e prodotti sodici residui (PSR), aumentandone e diminuendone la rispettiva produzione (Tabella IV).

Generalmente dai risultati osservabili dalla Tabella V, dalla Tabella VI e dalla Tabella VII, si evince inoltre come il dosaggio di reagente garantisca un risparmio di bicarbonato di sodio più marcato nel caso teorico (dosaggio completamente automatico, senza intervento da parte degli operatori) rispetto a quello reale.

È osservabile come questi valori siano in linea con quelli ottenuti con precedenti sperimentazioni in differenti impianti di termovalorizzazione (Tabella VIII).

Analisi energetiche

Presso le tre linee del termovalorizzatore di Torino sono state raccolte dalle rispettive tramogge le ceneri relative al tratto iniziale e finale della sezione convettiva e al filtro elettrostatico.

L’analisi granulometrica e l’analisi chimica dei campioni evidenziano come le ceneri raccolte nella linea in cui avviene il dosaggio del reagente risultino di granulometria più fine e caratterizzate da un contenuto percentuale in peso di magnesio più elevato rispetto a quelle raccolte nelle altre due linee dell’impianto.

Sui campioni di ceneri prelevati in corrispondenza del tratto iniziale della sezione convettiva della caldaia, è stata inoltre effettuata un’analisi di fusibilità allo scopo di investigare il comportamento delle stesse alle alte temperature. Dai risultati sperimentali emerge come le ceneri della Linea 3 subiscano processi di rammollimento e fusione per valori di temperatura fino anche a 60-160°C superiori rispetto alle ceneri raccolte dalla Linea 1 e dalla Linea 2. Ciò si traduce con una minore tendenza da parte delle suddette ceneri a fondere e quindi ad aderire alle pareti dei fasci tubieri, garantendo una migliore pulizia durante la fase di esercizio.

Successivamente si è osservato l’andamento dei profili di temperatura del lato destro e sinistro delle varie sezioni della caldaia, con lo scopo di verificare come il dosaggio del reagente (che nella sperimentazione è avvenuto in un solo punto sul lato destro) possa influenzare le temperature dei fumi, parametro indicatore di un migliore scambio termico coi fasci tubieri. È stato quindi confrontato l’andamento tra i due lati della sola Linea 3 per il Periodo 1, la Linea 3 e la Linea 2 per il Periodo 1 e tra i due lati della Linea 3 per le ore in cui è avvenuto il dosaggio del reagente e le ore in cui tale dosaggio non ha avuto luogo.

Queste analisi sono state riferite ai periodi in cui è stata effettuata la pulizia della caldaia con micro-cariche. È stato inoltre confrontato, relativamente a tali periodi, il profilo di temperatura del lato fumi della Linea 3 con

Tabella VII – Variazione percentuale di bicarbonato di sodio riferita allo Scenario C.

<table>
<thead>
<tr>
<th>Scenario C</th>
<th>(V_{\text{teorica}}) [%]</th>
<th>(V_{\text{reale}}) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosaggio 60 kg/h</td>
<td>-16,65</td>
<td>-11,38</td>
</tr>
<tr>
<td>Dosaggio 90 kg/h</td>
<td>-24,30</td>
<td>-8,04</td>
</tr>
<tr>
<td>Dosaggio 120 kg/h</td>
<td>-30,97</td>
<td>-13,46</td>
</tr>
</tbody>
</table>
quello della Linea 2, con lo scopo di osservare variazioni nel profilo stesso indotte dalle differenti caratteristiche delle ceneri tra le due linee.

I risultati di queste analisi mostrano come, nonostante il dosaggio del reagente avvenga sul solo lato destro della Linea 3, la turbolenza dei gas di combustione all’interno della caldaia garantisca comunque un’equa distribuzione, osservabile dai profili di temperatura in caldaia sostanzialmente simili tra i due lati.

Inoltre, dagli andamenti di temperatura della Linea 2 e della Linea 3 in relazione al giorno di pulizia con microcarica, si nota come le caratteristiche delle ceneri della Linea 3 generalmente consentano di conseguire temperature dei fumi inferiori su questa linea al termine delle operazioni di pulizia, indice di uno scambio termico più efficiente. Tuttavia tale scambio termico in impianti di termovalorizzazione è tipicamente influenzato anche da altri fattori, come la tipologia e la variabilità di rifiuto trattato e la configurazione stessa della caldaia. Per questo motivo la valutazione delle prestazioni energetiche in funzione del dosaggio del reagente è assai complessa e necessita di ulteriori approfondimenti.
Tabella VIII – Sintesi delle prestazioni ambientali e gestionali del reagente Depurcal®MG: efficienze di abbattimento dei gas acidi (η_i [%]) e risparmio di bicarbonato di sodio (R_{NaHCO_3} [%]) ottenuti presso il termovalorizzatore di Torino in confronto ai risultati riportati da Biganzoli et al. (2015).

<table>
<thead>
<tr>
<th>Impianto</th>
<th>Test #</th>
<th>Scenario</th>
<th>Dosaggio Depurcal®MG</th>
<th>η_{HCl} [%]</th>
<th>η_{SO_2} [%]</th>
<th>η_{HF} [%]</th>
<th>R_{NaHCO_3} [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milano - Silla 2</td>
<td>1</td>
<td>A</td>
<td>60 2,6 ± 0,1</td>
<td>16</td>
<td>69</td>
<td>n.a.</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80 3,4 ± 0,1</td>
<td>18</td>
<td>67</td>
<td>n.a.</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120 5,4 ± 0,3</td>
<td>34</td>
<td>90</td>
<td>n.a.</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>B</td>
<td>60 2,6 ± 0,1</td>
<td>16</td>
<td>90</td>
<td>n.a.</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80 3,4 ± 0,1</td>
<td>14</td>
<td>87</td>
<td>n.a.</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120 5,4 ± 0,3</td>
<td>28</td>
<td>95</td>
<td>n.a.</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>A</td>
<td>70 2,8 ± 0,1</td>
<td>16</td>
<td>34</td>
<td>n.a.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 4,5 ± 0,4</td>
<td>7</td>
<td>51</td>
<td>n.a.</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150 6,4 ± 0,5</td>
<td>17</td>
<td>66</td>
<td>n.a.</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>B</td>
<td>70 2,8 ± 0,1</td>
<td>19</td>
<td>48</td>
<td>n.a.</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 4,5 ± 0,4</td>
<td>22</td>
<td>56</td>
<td>n.a.</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150 6,4 ± 0,5</td>
<td>37</td>
<td>79</td>
<td>n.a.</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Range</td>
<td>60-150 2,6-6,4</td>
<td>7-37</td>
<td>34-95</td>
<td>n.a.</td>
<td>13-49</td>
</tr>
<tr>
<td>Valmadrera</td>
<td>1</td>
<td>A</td>
<td>55 8,9 ± 4,0</td>
<td>26</td>
<td>83</td>
<td>80</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>A</td>
<td>51,5 ± 8,0 8,0 ± 4,0</td>
<td>28</td>
<td>88</td>
<td>77</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Range</td>
<td>≃ 55 ≃ 8,5</td>
<td>26-28</td>
<td>83-88</td>
<td>77-80</td>
<td>38-42</td>
</tr>
<tr>
<td>Piacenza</td>
<td>1</td>
<td>B</td>
<td>33 4,5 ± 0,4</td>
<td>33</td>
<td>66</td>
<td>n.a.</td>
<td>17</td>
</tr>
<tr>
<td>Como</td>
<td>1</td>
<td>A</td>
<td>29,7 ± 15,2 7,5 ± 6,1</td>
<td>35</td>
<td>59</td>
<td>39</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>B</td>
<td>30,7 ± 15,1 7,7 ± 5,6</td>
<td>23</td>
<td>79</td>
<td>56</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Range</td>
<td>≃ 30 ≃ 7,5</td>
<td>23-35</td>
<td>59-79</td>
<td>39-56</td>
<td>20-21</td>
</tr>
<tr>
<td>Torino</td>
<td>1</td>
<td>A</td>
<td>60 3,0 ± 1,2</td>
<td>17</td>
<td>39</td>
<td>n.a.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90 3,9 ± 1,5</td>
<td>29</td>
<td>63</td>
<td>n.a.</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120 5,7 ± 2,5</td>
<td>42</td>
<td>89</td>
<td>n.a.</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>B</td>
<td>60 3,0 ± 1,2</td>
<td>10</td>
<td>36</td>
<td>n.a.</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90 3,9 ± 1,5</td>
<td>18</td>
<td>65</td>
<td>n.a.</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120 5,7 ± 2,5</td>
<td>26</td>
<td>84</td>
<td>n.a.</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Range</td>
<td>60-120 3,0-5,7</td>
<td>10-42</td>
<td>36-84</td>
<td>n.a.</td>
<td>12-45</td>
</tr>
<tr>
<td>Media</td>
<td></td>
<td></td>
<td>5 23 69 63</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

Scenario A: stessa linea, differente periodo;
Scenario B: differente linea, stesso periodo.
Conclusioni

In conclusione il dosaggio ad alta temperatura del prodotto dolomitico esaminato è in grado di ridurre il carico inquinante alla linea fumi operando una pre-neutralizzazione dei gas acidi generati dalla combustione del rifiuto. Nel presente studio sono stati investigati gli effetti su HCl e SO₂, con risultati rilevanti specialmente per quanto concerne l’anidride solforosa. L’effetto è risultato essere crescente all’aumentare del quantitativo di sorbente dosato.

La riduzione del carico inquinante acido operata dal reagente dolomitico comporta un considerevole risparmio di bicarbonato di sodio additivato a valle della caldaia.Questo effetto comporta una minore produzione di prodotti sodici residui a discapito di un aumento più marcato delle ceneri. Un ulteriore effetto è stato riscontrato sul mercurio totale in uscita caldaia la cui concentrazione si riduce all’aumentare del dosaggio di sorbente dolomitico.

Considerazioni qualitative sugli aspetti energetici evidenziano l’effetto del dosaggio direttamente in camera di combustione di sorbenti magnesiaci (come il prodotto Depurcal®MG), dal momento che si originano ceneri con punto di fusione più elevato e caratterizzate da maggiore friabilità, quindi in grado di facilitare le operazioni di pulizia.

L’iniezione di un reagente dolomitico ad alta temperatura è quindi in grado di apportare una serie di vantaggi agli impianti di termovalorizzazione di rifiuti. Oltre ai vantaggi precedentemente descritti, tale tecnologia risulta essere semplice, economica e facilmente integrabile ai sistemi esistenti senza doverne modificare sensibilmente la configurazione. Mentre la valutazione delle prestazioni ambientali e gestionali risulta ben consolidata e replicata in più casi di studio, quella delle prestazioni energetiche risulta più critica da misurare e pertanto necessita di ulteriori valutazioni in lavori successivi al presente. È bene notare come il ciclo termico dell’impianto in esame sia dimensionato per garantire la costanza dei parametri del vapore immesso in turbina al variare delle condizioni di funzionamento. Il dosaggio di Depurcal®MG potrebbe quindi avere benefici più rilevanti di quelli osservati qualora venisse integrato sin dalla prima fase della progettazione della caldaia.
LA TERMOVALORIZZAZIONE IN ITALIA ED IN EUROPA

La crescita tecnologica degli ultimi anni ha agevolato la gestione dei rifiuti, riducendone il potenziale impatto ambientale. Il concetto stesso di rifiuto si è infatti evoluto col passare del tempo, ed oggi rappresenta una risorsa dalla quale è possibile ottenere un beneficio. Le recenti normative a livello europeo hanno avuto un ruolo fondamentale per garantire lo sviluppo nella gestione integrata dei rifiuti, a partire dalla loro produzione fino al loro smaltimento o distruzione finale. La termovalorizzazione si presenta come una delle tecniche maggiormente affermate di smaltimento e mira all’inertizzazione ed al recupero energetico e termico dalla combustione del rifiuto stesso.

1.1 Il contesto europeo ed italiano

La normativa di riferimento a livello italiano (D.lgs. n.152/2006 Testo Unico Ambiente) presenta una classificazione dei rifiuti secondo la loro origine e secondo la loro pericolosità (art.184). È possibile identificare:

- Rifiuti urbani (RU): lo sono ad esempio i rifiuti derivanti da abitazioni domestiche, i rifiuti vegetali da aree verdi, i rifiuti provenienti dallo spazzamento delle strade, ecc.;
- Rifiuti speciali: lo sono ad esempio i rifiuti derivanti dalle attività di demolizione, da lavorazioni industriali o commerciali, derivanti da attività sanitarie, da veicoli a motore, ecc.;

A livello europeo i rifiuti sono catalogati attraverso uno specifico elenco e categorizzati attraverso uno specifico codice definito dal Catalogo Europeo dei Rifiuti (detto codice CER): a ciascuna tipologia di rifiuto viene affiancato un codice di sei cifre per una più rapida identificazione. La presenza dell’asterisco “*” al termine delle sei cifre identifica i rifiuti pericolosi.

Grazie al Rapporto Rifiuti Urbani redatto annualmente dall’ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale) è possibile ottenere informazioni riguardanti l’andamento della produzione e conseguente gestione dei rifiuti a livello europeo ed italiano.

Prendendo in considerazione l’edizione relativa all’anno 2016 (ISPRA, 2016) dal rapporto emerge come negli ultimi anni si stia sempre più consolidando la tendenza alla riduzione della produzione totale e pro capite dei rifiuti urbani nel territorio dell’Unione Europea (UE 28). Tale trend potrebbe essere legato esclusivamente alla penalizzazione dei consumi dettata dalla crisi economica internazionale, oppure potrebbe avere radici identificabili con l’affermarsi di modelli più virtuosi e attenti alla prevenzione ed al contenimento della produzione dei rifiuti in linea con le politiche comunitarie.
In Figura 1.1 è riportata, per singolo Stato membro, per l’UE 28, per l’UE 15 (paesi fondatori) e per i NSM (nuovi stati membri), la ripartizione percentuale delle principali forme di gestione scelte da Eurostat (riciclaggio, compostaggio e digestione anaerobica, incenerimento, discarica), cui sono stati avviati i rifiuti urbani nel 2014. Circa il 28% dei rifiuti urbani gestiti nei 28 Stati membri è stato avviato a riciclaggio, circa il 16% a compostaggio e digestione anaerobica, mentre circa il 27% e il 28% sono stati, rispettivamente, inceneriti e smaltiti in discarica.

![Figura 1.1 – Ripartizione percentuale della gestione dei rifiuti urbani nell'UE, anno 2014 (dati ordinati per percentuali crescenti di smaltimento in discarica). (Elaborazioni ISPRA su dati Eurostat). (*) = Dato 2013.](image)

La Figura 1.2 mostra la distribuzione percentuale nella gestione dei RU a livello italiano.

![Figura 1.2 – Ripartizione percentuale della gestione dei rifiuti urbani, anno 2015. (Elaborazioni ISPRA).](image)
Analizzando i dati relativi alle diverse forme di gestione messe in atto a livello regionale italiano si evidenzia come, laddove esista un ciclo integrato dei rifiuti grazie ad un parco impiantistico ben articolato e sviluppato, si manifesta una riduzione significativamente dell’utilizzo della discarica. L’analisi dei dati mostra anche che l’incenerimento non sembra determinare un disincentivo alla raccolta differenziata, come risulta evidente per alcune regioni quali Lombardia, Friuli Venezia Giulia, Emilia Romagna, Campania e Sardegna. In queste regioni, infatti, a fronte di percentuali di incenerimento pari rispettivamente al 45%, 22%, 33%, 28% e 21% del totale dei rifiuti prodotti, la raccolta differenziata raggiunge valori elevati (ISPRA, 2016).

1.2 La termovalorizzazione

Analizzando in particolare la termovalorizzazione è possibile osservare (Figura 1.3) come il quantitativo medio pro capite dei rifiuti urbani inceneriti nei Paesi UE 28 nel 2014 sia pari a 127 kg/abitante per anno. Il ricorso all’incenerimento è particolarmente diffuso negli Stati dell’Europa centro-settentrionale. L’Italia si attesta a 97 kg/abitante per anno (-2 kg/abitante per anno rispetto al 2013).

![Figura 1.3 – Quantità pro capite di rifiuti urbani avviati a incenerimento nell’UE (kg/abitante per anno), anno 2012 – 2014. (Elaborazioni ISPRA su dati Eurostat).](image)

Nel 2015, sul territorio nazionale, sono risultati essere operativi 41 impianti di incenerimento. Il parco impiantistico non è uniformemente distribuito sul territorio nazionale, infatti il 63% delle infrastrutture è localizzato nelle regioni settentrionali (26 impianti) e, in particolare, in Lombardia e in Emilia Romagna con, rispettivamente, 13 ed 8 impianti operativi. Nel Centro e nel Sud Italia, gli impianti di incenerimento operativi sono rispettivamente 8 e 7. I rifiuti urbani inceneriti nel 2015, comprensivi della frazione secca e del CSS (Combustibile Solido Secondario) ottenuto dal loro trattamento, sono stati quasi 5,6 milioni di tonnellate (+5% rispetto al 2014), dei quali il 70% dei rifiuti incenerito in impianti del Nord Italia.

Delle 5,6 milioni di tonnellate di rifiuti avviati ad incenerimento circa la metà è costituita da rifiuti urbani tal
quali, mentre l’altra metà è rappresentata da rifiuti derivanti dal trattamento dei rifiuti urbani (frazione secca, CSS e, in minor misura, bioessiccato). Negli stessi impianti, inoltre, vengono incenerite anche diverse tipologie di rifiuti speciali, per un totale di circa 576 mila tonnellate delle quali 43.700 tonnellate di rifiuti pericolosi (ISPRA, 2016).
Contrariamente all’andamento di riduzione della produzione totale e pro capite dei rifiuti urbani nel territorio, l’andamento dei rifiuti inviati ad incenerimento segue un trend opposto (Figura 1.4).

L’andamento dell’incenerimento per regione è apprezzabile invece dal seguente grafico (Figura 1.5).

Figura 1.5 – Andamento dell’incenerimento di rifiuti urbani per Regione (tonnellate), anno 2013 – 2015. (Elaborazioni ISPRA).

L’analisi svolta da ISPRA mostra come, nel 2015, tutti gli impianti sul territorio nazionale producano energia. Di questi, 24 impianti sono dotati di soli sistemi di recupero energetico elettrico ed hanno trattato oltre 3,4
milioni di tonnellate di rifiuti, recuperando 2,7 milioni di MWh di energia elettrica, mentre 15 impianti sono dotati di cicli cogenerativi ed hanno incenerito quasi 2,6 milioni di tonnellate di rifiuti con un recupero di energia termica di oltre 2,7 milioni di MWh e di energia elettrica di 1,7 MWh.

![Figura 1.6 – Recupero energetico in impianti di incenerimento (1000*MWh), anni 2005 – 2015. (Elaborazioni ISPRA).](image_url)

1.2.1 Il processo e le tecnologie di combustione

Attraverso la combustione dei rifiuti si procede all’ossidazione completa (grazie all’apporto di una sufficiente quantità di ossigeno, ad un buon mescolamento, a temperatura e tempo di residenza adeguati) degli elementi combustibili presenti nel rifiuto stesso. Il processo di combustione è un processo esoterico che porta alla formazione di prodotti di combustione (fumi) ad elevata temperatura e ad un residuo solido inerte.

Le buone caratteristiche “energetiche” del rifiuto prodotto nei paesi sviluppati consentono l’autosostenimento della combustione, pertanto non è necessario ricorrere a combustibili ausiliari di supporto al di là delle fasi di accensione e spegnimento dei fornì. Il processo porta ad una notevole riduzione della massa fino all’80% e, soprattutto, del volume del rifiuto fino al 90% (Grosso, 2013). La produzione specifica di fumi è elevata, a causa di due fattori: l’utilizzo di aria come comburente ed il ricorso ad elevati valori di indice d’aria compreso generalmente tra 1,5 e 1,8; l’indice d’aria è calcolato come la differenza tra la quantità di aria effettivamente impiegata e la quantità di aria stechiometrica, rapportata alla quantità di aria stechiometrica. Un indice d’aria pari a 0 indica una combustione stechiometrica. In generale i combustibili solidi richiedono eccessi d’aria tanto più elevati quanto più è elevata la pezzatura del materiale.

La ripartizione percentuale tra le differenti tecnologie di combustione (fornì a griglia, a letto fluido ed a tamburo rotante) negli impianti italiani è riportata in Figura 1.7. La tecnologia di combustione più utilizzata, è quella dei fornì a griglia con un’incidenza rispettivamente dell’82%, seguono le tecnologie a letto fluido (12%) e a tamburo rotante (6%).

I combustori a griglia

I fornì a griglia (Figura 1.8 e Figura 1.9) rappresentano la tecnologia di combustione più consolidata e, pertanto, quella più diffusamente impiegata nel trattamento termico dei rifiuti e in particolare per quelli urbani. I fornì a griglia si presentano affidabili, idonei al trattamento di rifiuti di diversa pezzatura, non richiedono...
pretrattamento degli stessi e consentono buoni livelli di recupero energetico. Tuttavia, non sono particolarmente indicati per trattare rifiuti ad alto PCI (>20 MJ/kg) e con modesto contenuto di ceneri (inferiore al 15-20%). Questo si deve all’eventuale possibilità di sviluppo di fenomeni di usura della griglia legati a surriscaldamento e conseguenti fenomeni di stress termico.

Il funzionamento di questi forni prevede l’utilizzo di una griglia (fissa o mobile), a cui è affidato il compito di far avanzare e mescolare il letto di rifiuti costituito generalmente da uno strato di alcune decine di centimetri. I rifiuti sono avviati ai forni attraverso una tramoggia di carico e vengono poi immessi sulla griglia, normalmente caratterizzata da una pendenza tra i 10-20°.

All’uscita della camera di combustione i fumi che si generano dall’ossidazione termica dei rifiuti entrano in una caldaia a recupero per la generazione di vapore surriscaldato in pressione.

Le componenti dei rifiuti non combustibili vengono raccolte in una vasca di accumulo (con presenza o meno di un bagno d’acqua) posta a valle della sezione di griglia, che provvede anche al loro raffreddamento.

Si evidenzia che per garantire una completa combustione dei rifiuti è necessario l’utilizzo di un certo eccesso d’aria. L’aria di combustione viene iniettata sia sotto la griglia (aria primaria) sia nelle parti laterali della camera di combustione (aria secondaria); quest’ultima viene utilizzata anche per il controllo della temperatura.

Il tempo di permanenza del rifiuto sulla griglia deve essere tale da garantire il completamento delle diverse fasi del processo di combustione ed è in genere compreso tra 30 e 60 minuti. I tempi di residenza dei gas nella camera di combustione che può presentare differenti geometrie (Figura 1.10) sono compresi tra 2 e 5 secondi.

Il parametro che evidenzia le migliori prestazioni della griglia è il carico termico ovvero la quantità di calore sviluppata dalla combustione del rifiuto nell’unità di tempo, dato dal prodotto tra la massa di rifiuto alimentata e il PCI del rifiuto stesso.

Figura 1.8 – Esempio di griglia a rulli con caldaia verticale. (Grosso, 2013).
L’evoluzione delle caratteristiche dei rifiuti che vengono alimentati al forno (in particolare l’aumento del potere calorifico e la diminuzione del contenuto di ceneri), derivante sia dalle variazioni merceologiche che dai processi di pretrattamento dei rifiuti, implica maggiori possibilità di resa in termini di recupero, ma comporta inevitabilmente anche un aumento della criticità delle condizioni di esercizio del forno e dell’aggressività sui materiali di costruzione nell’ambiente della camera di combustione. In particolare, per fronteggiare questo tipo di problematiche, sono state introdotte griglie raffreddate ad acqua, in grado di trattare rifiuti caratterizzati da elevato potere calorifico (anche superiore a 20 MJ/kg). Attualmente si tende inoltre a diminuire l’inclinazione della griglia per avere un miglior controllo dell’avanzamento del materiale, a suddividere per comparti la distribuzione dell’aria sotto la griglia ed a modificarne la lunghezza tenendo conto della maggiore facilità di combustione dei rifiuti.

In base alla tipologia di tecnologia adottata, il sistema presenta uno specifico campo di applicazione che è rappresentabile attraverso il cosiddetto “diagramma di griglia”, come riportato in Figura 1.11.
Sull’asse delle ordinate è presente il carico termico (dato dal prodotto del PCI del rifiuto per la massa del rifiuto alimentata alla griglia nell’unità di tempo), mentre sull’asse delle ascisse è presente la portata di rifiuto introdotta nel forno.

Il “diagramma di griglia” mostra il luogo dei punti per il quale viene garantito un funzionamento ottimale dell’impianto. Noto il PCI del rifiuto che viene alimentato alla griglia, tramite il “diagramma di griglia” è possibile identificarne il quantitativo da trattare nelle condizioni operative evitando l’impiego di combustibili secondari.

I combustori a letto fluido

Il combustore a letto fluido (Figura 1.12) è costituito da una camera cilindrica verticale all’interno della quale è presente un materiale inerte, in genere sabbia (silicea o quarzifera), che, grazie ad una corrente ascensionale di aria sottostante, viene a costituire una sorta di letto in sospensione composto da particelle in continua agitazione. Tali condizioni garantiscono un buon contatto tra comburente e combustibile oltre che una notevole uniformità di temperatura all’interno della camera cilindrica determinando una combustione costante e completa. Questa tecnologia si presta a trattare rifiuti piuttosto omogenei e di pezzatura ridotta quali appunto il combustibile solido secondario o comunque rifiuti che abbiano subito un pretrattamento quale triturazione e vagliatura. Le caratteristiche di funzionamento che rendono interessante l’impiego di tali combustori sono:

- Elevata efficienza di combustione dovuta alla notevole turbolenza ed ai tempi di permanenza dell’ordine di 5-6 secondi;
- Possibilità di operare con bassi eccessi d’aria che determinano un maggior rendimento energetico e un minore volume dei sistemi di abbattimento dei fumi;
• Riduzione delle emissioni di ossidi di zolfo (SOx), riduzione degli ossidi di azoto (NOx) operando a temperature di 800°C e basso contenuto di incombusti nelle scorie (0,2-0,3%);
• Possibilità di operare in maniera discontinua in considerazione dei ridotti tempi di avviamento;
• Ridotto numero di parti meccaniche in movimento e unità operative più compatte rispetto ai forni convenzionali.

I combustori a tamburo rotante sono sistemi di combustione semplici ed affidabili dotati di ampia flessibilità che li rende idonei ad operare con differenti condizioni di alimentazione. In particolare, consentono il trattamento di rifiuti che si presentano nello stato fisico sia solido che liquido o pastoso. Inoltre, presentano scarsa sensibilità al variare della composizione, dell’umidità e della pezzatura dei rifiuti.

I forni a tamburo rotante (Figura 1.13) sono costituiti da una camera cilindrica orizzontale, ruotante attorno al proprio asse, leggermente inclinata (in genere 1-3%) per l’avanzamento del materiale dalla zona di alimentazione a quella di scarico delle scorie. Dal punto di vista operativo le difficoltà di contatto tra combustibile e comburente richiedono l’utilizzo di eccessi d’aria di norma compresi nell’intervallo 1-1,5. Nella maggior parte delle applicazioni la temperatura del mantello metallico esterno del cilindro può raggiungere valori compresi tra i 200°C e i 300°C, comportando dispersioni di calore verso l’esterno non trascurabili.

I forni a tamburo rotante possono operare sia in equicorrente che in controcorrente, a seconda che il flusso dei
gas e del letto di rifiuti avvenga nella stessa direzione o nella direzione opposta. Nella maggior parte dei casi, ed in particolare nelle applicazioni relative al trattamento di rifiuti, il processo è condotto in equicorrente.

Figura 1.13 – Esempio di forno a tamburo rotante con camera di post combustione. (Grosso, 2013).

1.2.2 Emissioni e tecnologie di abbattimento

La norma quadro in materia di controllo dell’inquinamento atmosferico è rappresentata dal Decreto Legislativo n. 155/2010 (attuazione della direttiva 2008/50/CE relativa alla qualità dell’aria ambiente e per un’aria più pulita in Europa) che ha abrogato il Decreto Legislativo n.351/99.

Il Decreto Legislativo n.155/2010 contiene le definizioni di valore limite, valore obiettivo, soglia di informazione e di allarme, livelli critici, obiettivi a lungo termine e valori obiettivo. Il Decreto individua l’elenco degli inquinanti per i quali è obbligatorio il monitoraggio (NO$_2$, NOx, SO$_2$, CO, O$_3$, PM$_{10}$, PM$_{2.5}$, Benzene, Benzo(a)pirene, Piombo, Arsenico, Cadmio, Nichel, Mercurio e precursori dell'ozono) e stabilisce le modalità della trasmissione e i contenuti delle informazioni sullo stato della qualità dell’aria, da inviare al Ministero dell’Ambiente.

L’allegato VI del decreto contiene i metodi di riferimento per la determinazione degli inquinanti. Gli allegati VII e XI, XII, XIII e XIV riportano i valori limite, i livelli critici, gli obiettivi a lungo termine e i valori obiettivo rispetto ai quali effettuare la valutazione dello stato della qualità dell’aria.

- L’introduzione di nuovi valori limite per ammoniaca e PCB (polichlorobifenili);
• Limiti differenti per monossido e biossido di azoto sulla base della capacità nominale impiantistica. La capacità nominale, di norma espressa in t/g, è data dalla somma delle singole capacità delle linee che costituiscono l’intero impianto (essa è riferita alle condizioni di progetto, che non sempre coincidono con quelle di esercizio);
• Variazioni sui periodi minimi di campionamento per i microinquinanti organici e variazioni sulla frequenza di campionamento per i metalli pesanti.

Il complesso delle emissioni atmosferiche generate da attività di termodistruzione di rifiuti urbani e prodotti derivati pone generalmente due ordini di problemi:
• I macroinquinanti, presenti in concentrazioni rilevanti (g/m³ o mg/m³);
• I microinquinanti, presenti in livelli molto più modesti (μg/m³ o ng/m³), ma in grado di costituire comunque un elevato rischio ambientale a causa della loro tossicità e persistenza.

Alla prima categoria di composti appartengono gli inquinanti tradizionali dei processi di combustione, derivanti da talune macrocomponenti del rifiuto (essenzialmente ceneri, Cl, S ed N), da reazioni secondarie non desiderate e dall’ossidazione incompleta del carbonio organico. I microinquinanti inorganici (costituiti essenzialmente da alcuni metalli pesanti) sono riconducibili anch’essi alla presenza nel rifiuto in ingresso, mentre per quelli di natura organica giocano un ruolo determinante le complesse reazioni di sintesi e distruzione che si verificano durante la combustione ed il successivo raffreddamento dei fumi.

Una delle prime misure possibili per il controllo delle emissioni è quella di ridurre preventivamente il verificarsi stesso di tali emissioni. Questi interventi prevedono una serie di accorgimenti impiantistici e/o operativi che consentano di ridurre al minimo la formazione di prodotti indesiderati.
Queste metodologie d’intervento possono essere sinteticamente annoverate come segue:
• Garantire la completezza della combustione in ogni condizione di funzionamento (controllando sia il tenore di ossigeno combustore che le cosiddette “3 T”; ovvero “Temperatura, Turbolenza e Tempo di residenza”);
• Limitare il verificarsi di fenomeni di formazione e riformazione secondari, denominati di “sintesi de-novo”, di microinquinanti clorurati come diossine e furani. Queste reazioni si sviluppano sia a partire da precursori correlati chimicamente (come clorofenoli, clorobenzeni ecc), sia da specie chimiche non correlate (idrocarburi alifatici alogenati e non, ecc.). Il complesso di reazioni presenta condizioni ottimali tra i 300°C ed i 350°C, ponendo come zone a maggior rischio le sezioni più fredde del recupero energetico nella caldaia e la zona di depolverazione a secco dei fumi. Un ruolo di particolare rilievo nella loro formazione viene svolto dai composti in grado di cedere cloro (HCl, NaCl, ecc). Per minimizzare questo tipo di fenomeno normalmente si attuano differenti misure, come una adeguata progettazione e manutenzione (pulizia) della caldaia, una gestione corretta delle temperature nella caldaia e nelle apparecchiature di depolverazione ed una rimozione dei composti clorurati dalla fase gassosa tramite dosaggio di sorbenti alcalini.
Attuate le misure preventive, il controllo delle emissioni da incenerimento presuppone in ogni caso l’adozione di processi di depurazione attraverso un sistema (più o meno articolato) di trattamento che consenta il rispetto dei limiti emissivi.

Controllo delle polveri

Le polveri sono particelle solide trascinate dai fumi costituite da frazioni derivanti dalla combustione. A queste si aggiungono le polveri provenienti da reagenti utilizzati per l’abbattimento degli inquinanti nei fumi (calce, bicarbonato di sodio, carboni attivi). Per la loro rimozione possono essere impiegate le seguenti tecnologie:

- **Cicloni** - Sfruttano l’effetto di esclusione dimensionale ad opera di forze centrifughe. Possono essere impiegati in configurazioni singole o multicicloniche. Generalmente non sono in grado di garantire le efficienze di depolverazione richieste dalle normative e per questo motivo sono spesso applicati come pretrattamento. Presentano elevata solidità strutturale e sono in grado di operare ad un vasto intervallo di temperature;

- **Elettrofiltri (o ESP dall’inglese “Electro Static Precipitator”)** - Sfruttano processi di ionizzazione e successiva captazione per differenza di carica. L’efficienza è influenzata in maniera rilevante dalla resistività elettrica della polvere, dipendente dalla composizione del rifiuto (la presenza di zolfo riduce la resistività). Operano tipicamente tra i 160°C ed i 260°C (temperature superiori sono evitate per scongiurare processi di formazione di diossine). Nel caso in cui la rimozione della polvere catturata avvenga tramite acqua si parla di ESP ad umido;

- **Depolveratori ad umido** - Sfruttano in modo combinato l’atomizzazione di acqua nel flusso gassoso e l’effetto Venturi. Se nel gas sono presenti anche inquinanti con apprezzabile solubilità essi potranno subire una rimozione per trasferimento di massa nella fase liquida. I meccanismi di cattura sono quelli di impatto inerziale, intercettazione diretta oppure diffusione per le granulometrie più fini;

- **Filttri a maniche** - Sfruttano l’effetto di esclusione dimensionale operata da dispositivi filtranti a tessuto. La compatibilità delle caratteristiche del mezzo filtrante con il flusso gassoso e la temperatura di processo, rappresentano parametri di notevole rilevanza per il conseguimento di elevate efficienze. Col trascorrere del tempo si manifesta la formazione di uno strato di polvere sulla superficie del mezzo filtrante (detto “cake”) che contribuisce alla rimozione degli inquinanti ma allo stesso tempo determina necessità di pulizie periodiche.

Le esigenze del rispetto dei limiti impongono rimozioni spesso superiori al 99% (Grosso, 2013). Normalmente le dimensioni delle particelle oggetto di rimozione sono dell’ordine di qualche micrometro.
Controllo dei gas acidi

I principali gas acidi che si formano nel processo di combustione sono essenzialmente l’anidride solforosa (SO₂), l’acido cloridrico (HCl) e l’acido fluoridrico (HF). Per la neutralizzazione dei gas acidi è possibile impiegare singolarmente (oppure in sistemi “multistadio” di trattamento in serie) i seguenti processi:

- **Sistemi ad umido** - Sfruttano il trasferimento in fase liquida dell’inquinante, ponendo in contatto il gas da trattare con opportuni liquidi assorbenti: si può verificare una rimozione secondo meccanismo fisico (nel momento in cui l’inquinante viene rimosso esclusivamente grazie a proprietà solventi del liquido dosato) oppure secondo meccanismo chimico (qualora il reagente dosato presenti reattività chimiche nei confronti dell’inquinante). Reattori dedicati a questo tipo di applicazioni sono i cosiddetti “wet scrubber” (come ad esempio le torri a spruzzo). I composti alogenidrici (HCl, HF, HBr) sono fortemente idrofili e la loro rimozione avviene generalmente tramite acqua. Nel caso di SO₂, H₂S, cloro ed acidi organici, si utilizzano invece soluzioni alcaline (di calce, magnesio, soda, ecc.), vista la loro scarsa solubilità in acqua;

- **Sistemi a semisecco** - Sfruttano il dosaggio di un reagente neutralizzante sotto forma di sospensione liquida concentrata: la componente liquida evapora una volta avvenuto il dosaggio e la rimozione vera e propria avviene mediante il contatto tra l’inquinante ed il sorbente in forma secca di polvere fine. Questi reagenti sono dosati in appositi reattori di neutralizzazione (generalmente costituiti da un sistema Venturi), seguiti da un sistema di abbattimento dei sali di reazione e delle polveri trascinate (normalmente un filtro a maniche) dove avviene il completamento delle reazioni. Sistemi di questo tipo sono in grado di garantire un buon utilizzo del sorbente, anche se le efficienze possono essere influenzate negativamente da problematiche relative al dosaggio omogeneo di una soluzione ed al rischio di occlusione degli ugelli;

- **Sistemi a secco** - Sfruttano l’iniezione diretta (in camera di combustione, all’altezza degli economizzatori, oppure direttamente nei condotti fumi) di reagenti solidi sotto forma di polveri fini. Anche in questo caso, il flusso gassoso che contiene sia i prodotti di reazione sia il reagente che non è stato utilizzato, viene inviato ad un sistema di abbattimento (normalmente un filtro a maniche). Contrariamente alle altre tecnologie precedentemente annoverate, i sistemi a secco presentano il vantaggio di non impiegare soluzioni acquose ed essere prodotti finali da smaltire che si presentano già in forma secca.

I reagenti più comunemente utilizzati per l’abbattimento dei gas acidi sono la calce ed il bicarbonato di sodio. La calce viene generalmente utilizzata per i sistemi ad umido o a semisecco, ma può essere anche additivata nel caso di rimozione a secco. Il bicarbonato di sodio è invece tipicamente utilizzato nei sistemi a secco.

Nel caso di sistemi a secco o a semisecco, qualora venga iniettato in aggiunta a un reagente neutralizzante anche carbone attivo è possibile agire contestualmente tanto sull’assorbimento degli inquinanti acidi che sull’adsorbimento di mercurio, dioxine e furani.

I residui di processo per i sistemi ad umido sono costituiti da soluzioni esauste che richiedono trattamenti di
neutralizzazione e di precipitazione, mentre per i sistemi a secco si tratta di residui solidi. In quest’ultimo caso, le minori produzioni di residui da avviare allo smaltimento sono generalmente in grado di compensare il maggior costo del reattivo, determinando condizioni economiche favorevoli alla sua utilizzazione (a patto di mantenersi nella finestra di temperatura che garantisca le più elevate efficienze dei reagenti alcalini: tra i 130°C ed i 160°C nel caso della calce, e per temperature maggiori dei 160°C nel caso del bicarbonato di sodio). In Figura 1.14 è riportata la distribuzione percentuale dei reagenti maggiormente utilizzati in Italia.

![Figura 1.14 – Distribuzione dei reagenti impiegati nei sistemi a secco per numero di linee. (ISPRA-Federambiente, 2014).](image)

Le funzioni principali dei reagenti, qualora essi siano dosati direttamente nella zona forno-caldaia sono le seguenti:

- Effettuano una pre-neutralizzazione delle componenti acide dei gas fin dal momento della loro iniezione, sollevando in parte il compito della linea fumi tradizionale di effettuare l’intero trattamento e riducendo il consumo di reagenti basici a valle;
- Attenuano i problemi di corrosione acida dei banchi evaporatori, sursaldatori ed evaporatori;
- Innalzano il punto di fusione delle ceneri leggere, variandone l’aspetto da dure e tenaci ed eventualmente appiccicose, a fragili e friabili. In questo modo ne è favorito il distacco dalle pareti e da fasci tubieri con i normali sistemi di pulizia installati sugli impianti (martelli, soffiatori ad aria o a vapore) ed in generale attenuando i fenomeni di sporcamiento.

È bene considerare che non è ragionevole l’utilizzo di sorbenti a base di sodio ad alta temperatura per via delle problematiche che verrebbero a causarsi in caldaia a seguito del processo di vetrificazione del sorbente stesso. D’altra parte, prima dell’avvento di sorbenti dolomitici, l’abbattimento a secco a bassa temperatura si configurava come l’unica tecnologia applicata nel controllo dei composti acidi negli impianti di incenerimento dei rifiuti dotati di forno a griglia. L’utilizzo di sorbenti a base di calcio e calcio/magnesio ad alta temperatura era principalmente confinata ad applicazioni a letto fluido (dove però si utilizzavano principalmente prodotti “crudi”, come il calcare e la dolomite).
Controllo degli ossidi di azoto

Gli ossidi di azoto prodotti dai processi di combustione sono il monossido (NO) ed il biossido di azoto (NO₂) indicati complessivamente come NOx. Il controllo delle emissioni di NOx può avvenire attraverso:

- Tecnologie di riduzione non catalitica - SNCR “Selective Non Catalytic Reduction”; in questo caso gli NOx sono trasformati in azoto ammoniacale tramite dosaggi ad alta temperatura (tra i 900°C e 1000°C circa) di ammoniaca, urea o composti ammidici additivati direttamente in camera di combustione;
- Tecnologie di riduzione catalitica - SCR “Selective Catalytic Reduction”; in questo caso gli NOx sono convertiti a temperature inferiori (tra i 220°C ed i 350°C) sfruttando reattori catalitici dedicati, generalmente a base di ossidi di vanadio e tungsteno.

Il dispositivo SCR può essere posto in punti differenti dell’impianto: a monte dei depolveratori e subito a valle della caldaia (configurazione “high dust”) oppure a valle del sistema di abbattimento polveri (configurazione “low dust”). Nei sistemi “high dust”, date le più elevate temperature, si evita di dovere riscaldare il flusso gassoso a valori di temperatura idonei alle condizioni ottimali di esercizio del sistema, ma per contro si ha la necessità di una maggiore manutenzione del catalizzatore a causa del deposito di polveri sullo stesso. In quelli “low dust” si determina la necessità di riscaldare il gas comportando una maggiore complessità della linea di processo. Possibili problematiche sono rappresentate da eventuali fughe di ammoniaca (presenti soprattutto in assenza di un attento controllo delle condizioni operative o con eccessivi dosaggi del reagente) e la potenziale presenza di N₂O nei gas trattati (con conseguenti implicazioni nei fenomeni di cambiamento climatico globale). La Tabella 1.1 riporta sinteticamente vantaggi e svantaggi delle due tecnologie. Ulteriori problematiche sono legate ai cosiddetti fenomeni di “avvelenamento” del catalizzatore dovuti, per esempio, a elevate presenze di zolfo.

Tabella 1.1 – Caratteristiche operative di riduzione di SNCR e SCR applicati all’attività di termodistruzione dei rifiuti. (Grosso, 2013).

<table>
<thead>
<tr>
<th>Parametro</th>
<th>SNCR</th>
<th>SCR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intervalli di esercizio</td>
<td>Intervalli di esercizio</td>
</tr>
<tr>
<td>Temperatura [°C]</td>
<td>850-950</td>
<td>180-350</td>
</tr>
<tr>
<td>NOₓ ingresso [mg/Nm³]</td>
<td>250-600</td>
<td>250-600</td>
</tr>
<tr>
<td>NOₓ uscita [mg/Nm³]</td>
<td>75-150</td>
<td>5-40</td>
</tr>
<tr>
<td>Rendimento conversione NOₓ [%]</td>
<td>60-70</td>
<td>80-99</td>
</tr>
<tr>
<td>Fughe NH₃ [mg/Nm³]</td>
<td>5-15</td>
<td>0,7-4</td>
</tr>
<tr>
<td>Emissioni N₂O [mg/Nm³]</td>
<td>10-30</td>
<td>< 5</td>
</tr>
</tbody>
</table>
Controllo dei microinquinanti

La presenza dei microinquinanti nelle emissioni è generalmente associata al particolato di granulometria più fine ed alla fase gassosa. Il primo veicola gran parte degli elementi tossici di interesse (metalli pesanti come Cd e Pb in particolare) e degli organici clorurati di maggior peso molecolare, siccome essi tendono a condensare sulle superfici delle particelle di polvere; mentre la quasi totalità del mercurio e consistenti frazioni dei composti organo-clorurati a basso peso molecolare vengono di norma rilevate in fase di vapore. I processi di controllo sono normalmente riassumibili nel seguente modo:

- Elevate efficienze di cattura del particolato fine;
- Tecniche in grado di favorire gli effetti di condensazione;
- Utilizzo di additivi adsorbenti;
- Tecniche di conversione catalitica di componenti presenti in fase vapore.

L’applicazione di additivi adsorbenti costituisce l’alternativa di maggior efficacia ed utilizzo, in particolare per il controllo di mercurio nonché di dossine e furani. Per quanto concerne le dossine ed i furani, si tratta di composti aromatici clorurati costituiti da due anelli benzenici, che si distinguono in tossicità sulla base della posizione e del numero degli atomi di cloro presenti negli anelli stessi, il cui processo di formazione (per il quale è necessaria la presenza di un materiale organico, una fonte di cloro e, in caso di basse temperature, un catalizzatore metallico) è favorito da basse temperature di combustione (e lunghi tempi di residenza a temperature intorno ai 340°C), un eccesso di ossigeno e dalla presenza di rame, sodio e potassio nelle ceneri volanti. Grazie all’ampio spettro di azione ed alla notevole capacità adsorbente che caratterizza, il carbone attivo costituisce l’additivo di più diffusa applicazione. In Tabella 1.2 sono riportate le elaborazioni riguardanti il contesto italiano effettuate da ISPRA e Federambiente (2014) circa le più diffuse configurazioni impiantistiche dei sistemi di depurazione.

Tabella 1.2 – Le configurazioni dei sistemi di depurazione dei fumi più adottate. (Elaborazioni ISPRA, 2014). (EP = Elettrofiltro; FF = Filtro a maniche; CY = Ciclone; DA = Reattore a secco; SD = reattore a semisecco; WS = Lavaggio ad umido; SNCR = Riduzione selettiva NOx non catalitica; SCR = Riduzione selettiva NOx catalitica).

<table>
<thead>
<tr>
<th>N°</th>
<th>Numero di Linee</th>
<th>DeNOx</th>
<th>Depolverazione</th>
<th>Rimozione gas acidi</th>
<th>Rimozione gas acidi</th>
<th>DeNOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.2.3 Il recupero energetico

Generalmente gli impianti di termovalorizzazione possiedono un sistema di raffreddamento dei fumi attraverso uno scambiatore di calore. Questo garantisce sia l’abbattimento della temperatura dei fumi uscenti dalla camera di combustione (in modo tale che sia compatibile con l’utilizzo delle tecnologie depurative a valle), sia, soprattutto, il recupero di energia dai fumi caldi stessi. Il recupero energetico è stato indicato come necessario dalla normativa europea (Direttiva 2008/98/CE), ai fini dell’attuazione di un sistema sostenibile di gestione dei rifiuti, in quanto consente il risparmio di combustibili fossili e riduce il quantitativo di rifiuti da avviare in discarica. La gestione integrata dei rifiuti, infatti, prevede il ricorso alla discarica solo come forma residuale di smaltimento, per quei rifiuti per i quali non sia più possibile una ulteriore valorizzazione.

Normalmente per il recupero energetico viene sfruttata acqua (contenuta in fasci tubieri collocati nel corpo caldaia) che viene riscaldata a vapore, successivamente utilizzato per la produzione di energia elettrica ed eventualmente teleriscaldamento.

Il sistema di recupero è articolabile in tre diverse sezioni:

- L’evaporatore: nel quale l’acqua di alimento si trasforma in vapore saturo;
- Il surriscaldatore: dove il vapore saturo viene surriscaldato;
- L’economizzatore: dove avviene il recupero di parte di energia ancora presente nei fumi.

Il processo di recupero energetico è condizionato dalla presenza nei fumi sia di ceneri, sia dei composti acidi che provocono fenomeni di corrosione e di erosione dei tubi. Per evitare l’insorgenza della corrosione (generalmente si parla di corrosione acida ad opera di HCl, HF, SO_2 e SO_3), ad alta e bassa temperatura, si rende necessario assicurare una temperatura dei fumi in uscita dalla camera di combustione intorno ai 1000°C e in entrata all’economizzatore di 200-250°C. Per limitare gli effetti dell’erosione bisogna, invece, operare con velocità dei fumi tra i 4-6 m/s e provvedere ad una periodica pulizia delle superfici degli scambiatori per rimuovere i depositi (ISPRA-Federambiente, 2014). La disposizione delle tre sezioni del sistema di recupero ha lo scopo di ridurre la problematica di corrosione ad alte temperature delle componenti operanti lo scambio energetico, in particolare per quanto riguarda il surriscaldatore. La disposizione effettiva riesce a minimizzare l’impatto dei fenomeni corrosivi, ma al tempo stesso comporta un minor recupero energetico complessivo rispetto alla disposizione ottimale (Figura 1.15).

Figura 1.15 – Schema della disposizione delle tre sezioni di recupero energetico.
Il layout della caldaia può essere sviluppato in differenti modalità a seconda delle specifiche necessità impiantistiche, come illustrato in Figura 1.16.

![Figura 1.16 – Differenti layout del corpo caldaia. Da sinistra a destra: orizzontale, misto e verticale. (Grosso, 2013).](image)

Il vapore surriscaldato può essere impiegato sia per la produzione di energia elettrica, sia per la contestuale produzione di energia termica (calore) generalmente asservita al teleriscaldamento e produzione di energia elettrica (cogenerazione). A seconda dei due casi, possono essere utilizzate:

- **Turbine a condensazione**, per la sola produzione di energia elettrica. In questo caso viene utilizzato un ciclo a vapore di tipo Rankine. Il vapore prodotto in caldaia viene inviato alla turbina dove subisce una espansione. La turbina è accoppiata ad un generatore elettrico che trasforma l’energia meccanica in energia elettrica. Il vapore uscente attraversa quindi un condensatore e l’acqua viene inviata nuovamente al sistema di scambio con i fumi, riprendendo il ciclo. Generalmente i rendimenti ottenibili con questo ciclo sono dell’ordine del 17-30%;

- **Turbine a contropressione**, per la cogenerazione. In questo caso il vapore surriscaldato viene inviato alla turbina, ma si espande solo parzialmente a pressione e temperatura tali da soddisfare una certa utenza termica civile (teleriscaldamento) o industriale (acqua calda di processo o vapore). Il vapore è quindi inviato direttamente alla rete delle utenze termiche oppure ad uno scambiatore che serve a trasferire il calore ad un altro fluido che circola presso le utenze. Questa cessione di calore comporta la condensazione del vapore ad acqua, che può essere nuovamente pompata alla caldaia. La principale problematica di questa configurazione è la scarsa adattabilità alla produzione di energia nelle due forme qualora le richieste dell’utenza siano variabili;

- **Turbine a derivazione e condensazione**, per la cogenerazione. In questo caso solo una parte del vapore prodotto viene inviato nella rete delle utenze termiche. Questa quota di vapore viene estratta dalla turbina, mentre la rimanente parte viene utilizzata per produrre energia elettrica. È possibile variare entro ampi limiti la quantità di vapore estratta per utilizzo termico, adattando il funzionamento dell’impianto alle richieste energetiche dell’utenza.

La Figura 1.17 riporta schematicamente le differenze tra un assetto di recupero energetico elettrico e di recupero cogenerativo.
La produzione di energia elettrica, nonostante le limitazioni in termini di efficienza, garantisce una più semplice distribuzione grazie alla rete nazionale e presenta una domanda pressoché costante durante tutto l’anno. La produzione di calore garantisce invece una efficienza di conversione più elevata, seppure siano marcate le difficoltà in termini di distribuzione alle utenze e la domanda sia molto variabile annualmente. Considerati questi aspetti, l’assetto cogenerativo risulta quindi essere sicuramente una soluzione di compromesso ottimale. Questo tipo di approccio alla produzione energetica garantisce buone prestazioni complessive e soprattutto maggiore flessibilità al sistema.
2.1 Inquadramento territoriale

La provincia di Torino ha una superficie di 6.830 km², pari a più di un quarto dell’intera Regione Piemonte. La popolazione complessiva della Provincia di Torino risulta essere di 2.277.857 abitanti al 31/12/2016. Gli abitanti sono ripartiti su un numero di Comuni pari a 315.

Nell’ambito territoriale ottimale della provincia di Torino, il sistema integrato di gestione dei rifiuti urbani è caratterizzato da una peculiare organizzazione dettata dalla normativa regionale (L.R. 24 ottobre 2002 n. 24). Questa prevede la separazione delle attività di raccolta, trasporto e conferimento agli impianti (servizi di bacino), dalle attività di realizzazione e gestione degli impianti tecnologici di smaltimento dei rifiuti, compreso il relativo servizio di smaltimento (servizi di ambito).

In virtù di tale separazione, l’organizzazione del sistema avviene su base territoriale e su un doppio livello: nei bacini di gestione dei rifiuti sono organizzati i servizi di bacino; i bacini sono poi raggruppati nell’ambito territoriale ottimale (ATO) nel quale sono organizzati i servizi di ambito.

Come riportato in Figura 2.1 nei bacini e nell’ATO le funzioni di governo sono svolte rispettivamente dai Consorzi obbligatori di bacino e dall’Associazione d’ambito (ATO-R), mentre le attività di gestione operativa dei servizi sono affidate alle società di gestione secondo le modalità previste dalle normative di settore.

Figura 2.1 – Schema riassuntivo del sistema integrato di gestione rifiuti nella provincia di Torino.

L’immagine riportata in Figura 2.2 mette in evidenza i bacini di gestione dei rifiuti e Consorzi dell’ATO Provincia di Torino.

Figura 2.2 – Bacini di gestione dei rifiuti e consorzi dell’ATO.

Figura 2.3 – Il termovalorizzatore del Gerbido.
2.2 Descrizione dell’impianto

Il termovalorizzatore del Gerbido ha una estensione superficiale di 104.000 m² ed è situato in un’area sostanzialmente pianeggiante collocandosi tra la conca torinese della Val Sangone e della Val di Susa, ambito territoriale costituito per la maggior parte da attività industriali, ma anche da urbanizzazione residenziale. Il termovalorizzatore è strutturato su 3 linee e tratta un carico annuo di rifiuti pari a 421.000 t/anno.

Le tre linee di incenerimento, tra loro uguali ed indipendenti, hanno una propria sezione di combustione, recupero energetico e depurazione fumi, mentre sono uniche e comuni alle tre linee le sezioni di stoccaggio dei rifiuti, il ciclo di potenza e lo stoccaggio dei residui.

L’impianto è autorizzato a trattare le seguenti categorie di rifiuti non pericolosi:

- Rifiuti urbani residui dopo la raccolta differenziata (RUR);
- Rifiuti speciali assimilabili agli urbani (RSAU), compresi i residui sopravaglio degli impianti di recupero rifiuti urbani e valorizzazione della raccolta differenziata.

Da analisi merceologiche condotte sui rifiuti (AMIAT S.p.A, 2017) è possibile osservare la principale composizione merceologica del rifiuto trattato (Appendice A2). Per l’analisi, si è proceduto a prelevare dalla fossa, dopo opportuno rimescolamento una quantità di rifiuto pari a circa 5 tonnellate, che è stata successivamente caricata su automezzo e scaricata nell’area di analisi. Grazie ad un automezzo dotato di gru oleodinamica e polipo si è provveduto al rimescolamento del materiale e al prelievo di porzioni dello stesso da 3 distinto punti del cumulo creando così il campione da analizzare. Al termine dell’analisi merceologica, tutte le frazioni separate durante l’analisi sono state triturate ad una pezzatura inferiore ai 20 mm. Un’aliquota di circa 5 kg è stata prelevata e portata in laboratorio per sottoporla ad analisi per la verifica di alcuni parametri utili al processo di termodistruzione (Tabella A2.3 riportata in Appendice A2).

L’energia presente nel rifiuto (indicata dal potere calorifico inferiore PCI) è una grandezza variabile in funzione della composizione merceologica del rifiuto stesso, nonché del suo contenuto di umidità, ed è quindi fortemente dipendente dalla percentuale di raccolta differenziata raggiunta sul territorio. Il campo di variazione del PCI dei rifiuti per cui è stato progettato l’impianto varia da un minimo di 6000 kJ/kg ad un massimo di 16000 kJ/kg. Nel triennio 2014-2106 il PCI medio si è assestato su di un valore pari a circa 9800 kJ/kg.

La capacità nominale dell’impianto è pari a 67,5 t/h di rifiuti (22,5 t/h per ciascuna delle 3 linee), mentre il carico termico nominale è pari a 206,25 MWt (68,75 MWt per ciascuna delle 3 linee).

Le soluzioni tecniche specifiche adottate sono riportate nelle tabelle seguenti (Tabella 2.1 e Tabella 2.2).
Tabella 2.1 – Dati progettuali relativi all’impianto di Torino.

<table>
<thead>
<tr>
<th>Dati di progetto</th>
<th>3 linee di trattamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carico rifiuti totale</td>
<td>[t/anno] 421000</td>
</tr>
<tr>
<td>PCI nominale</td>
<td>[MJ/kg] 11</td>
</tr>
<tr>
<td>Carico termico nominale totale</td>
<td>[MWth] 206</td>
</tr>
<tr>
<td>Capacità nominale totale</td>
<td>[t/h] 67</td>
</tr>
<tr>
<td>Produzione vapore totale</td>
<td>[t/h] 220</td>
</tr>
<tr>
<td>Pressione vapore</td>
<td>[bar] 60</td>
</tr>
<tr>
<td>Temperatura vapore</td>
<td>[°C] 420</td>
</tr>
</tbody>
</table>

Tabella 2.2 – Soluzioni tecniche adottate per il ciclo completo di termovalorizzazione.

<table>
<thead>
<tr>
<th>Soluzione tecnica adottata</th>
<th>Ferrovia e gomma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conferimento rifiuti</td>
<td></td>
</tr>
<tr>
<td>Tipo di tecnologia</td>
<td>Forni a griglia mobile</td>
</tr>
<tr>
<td>Sistema di triturazione ingombranti</td>
<td>Tranciatrice a ghigliottina</td>
</tr>
<tr>
<td>Tipo di griglia</td>
<td>Griglia raffreddata ad aria/acqua con ricircolo fumi</td>
</tr>
<tr>
<td>Caldaia</td>
<td>Caldaia con canale convettivo orizzontale</td>
</tr>
<tr>
<td>Trattamento fumi</td>
<td>Elettrofiltro – iniezione reagenti (bicarbonato di sodio e carbone attivo)</td>
</tr>
<tr>
<td></td>
<td>Filtro a maniche</td>
</tr>
<tr>
<td></td>
<td>DeNOx, catalitico (SCR)</td>
</tr>
<tr>
<td>Trattamento residui solidi</td>
<td>Trattamenti meccanici delle scorie (recupero metalli)</td>
</tr>
<tr>
<td></td>
<td>Conferimenti ad impianti dedicati per inertizzazione ceneri volanti</td>
</tr>
<tr>
<td>Ciclo termodinamico</td>
<td>Temperatura vapore < 420°C</td>
</tr>
<tr>
<td></td>
<td>Pressione vapore < 60 bar</td>
</tr>
<tr>
<td>Tipo di turbina</td>
<td>A condensazione con spillamenti regolati</td>
</tr>
<tr>
<td>Sistema di condensazione</td>
<td>Condensazione a circuito d’acqua e torri di raffreddamento tipo “wet dry”</td>
</tr>
</tbody>
</table>

Per conferire i propri rifiuti in impianto, tutti i camion devono passare in primo luogo attraverso un portale di controllo della radioattività. Successivamente i mezzi giungono al locale pesa per la verifica dei documenti e la pesatura. Superati tali controlli, i mezzi di conferimento entrano in avanzamento e scaricano i rifiuti in fossa tramite 10 bocche di scarico. La fossa ha una capacità utile di 18000 m³ ed è dimensionata per accumulare rifiuti per circa 5 giorni ad impianto spento. Attraverso l’aspirazione di aria dalla fossa rifiuti (inviatà poi sotto la griglia a costituire l’aria primaria), viene creata una leggera depressione in modo tale da evitare la fuoriuscita di cattivi odori.

Le benne a polipo provvedono alla miscelazione e all’alimentazione dei rifiuti (fino a 7 t per volta) alle tramogge e quindi ai sottostanti canali di carico verso le griglie.

La combustione dei rifiuti avviene alla temperatura di circa 1000-1200°C su 3 griglie mobili a spinta inversa (griglie Martin), ciascuna delle quali ha una superficie di 76,5 m² ed è costituita da 4 treni paralleli suddivisi in 5 zone trasversali. Per quanto concerne la capacità della griglia dell’impianto, il PCI di progetto è pari a 11 MJ/kg, mentre, come detto, il campo di variazione del PCI è compreso tra 6-16 MJ/kg. In aggiunta alle griglie
sono presenti quattro bruciatori a gas naturale, per ciascuna linea dell’impianto: i due di maggiore taglia sono di supporto alla combustione, qualora la temperatura in camera di post-combustione scenda al di sotto degli 850°C, mentre gli altri sono di supporto in fase di avviamento o di arresto del forno. La Figura 2.4 riporta il diagramma della capacità di griglia del termovalorizzatore di Torino.

Figura 2.4 – Diagramma della capacità di griglia del termovalorizzatore di Torino. (Fasone, 2015).

Il tempo di permanenza dei rifiuti durante il processo di combustione sulla griglia è approssimativamente pari ad 1 ora: oltre all’aria primaria insufflata sotto alla griglia, vengono anche fornite in camera di combustione aria secondaria e fumi di ricircolo, per garantire il completamento dell’ossidazione.

Al di sopra di ciascuna griglia è collocata una caldaia, costituita da tre canali radianti verticali e da una sezione convettiva orizzontale ove sono collocati banchi di scambiatori verticali. All’interno di questi banchi circola acqua demineralizzata in pressione che, riscaldandosi a vapore, alimenta una turbina a vapore.

L’impianto può lavorare in assetto solo elettrico (in questo caso il vapore è inviato ad una turbina che trasforma l’energia termica in energia elettrica attraverso un generatore), oppure in assetto di cogenerazione (in questo caso una parte del vapore prodotto in caldaia viene spillato a metà della turbina e cede il proprio calore ad uno scambiatore per produrre acqua calda da inviare alla rete di teleriscaldamento). Il vapore d’acqua così generato, si immette alla temperatura di 420°C e alla pressione di 60 bar, nella turbina a vapore che è accoppiata ad un generatore elettrico di potenza nominale pari a 80 MVA e produce in assetto elettrico una potenza elettrica lorda ai morsetti dell’alternatore di 65 MW.

Il vapore elaborato dalle turbine viene poi ricondensato in uno scambiatore a fascio tubiero, utilizzando acqua di raffreddamento. L’acqua utilizzata per la condensazione del vapore deve a sua volta essere raffreddata: questo viene effettuato entro 6 torri di raffreddamento per contatto diretto con aria atmosferica.

L’acqua di raffreddamento si raccoglie poi in apposite vasche poste sotto le torri e, dopo essere stata reintegrata
della frazione dispersa in atmosfera, è pompata nuovamente nel circuito di raffreddamento. L’impianto di termovalorizzazione è collegato alla Rete Elettrica di Trasmissione Nazionale 220 kV mediante una sottostazione elettrica, munita di due trasformatori di potenza pari a 80 MVA ciascuno. Una visione sintetica del sistema forno a griglia/caldaia a recupero è riportata in Figura 2.5.

Figura 2.5 – Schema di dettaglio del sistema griglia/caldaia. (L’Inconel 625 è una lega di nichel resistente alle alte temperature ed alla corrosione). (Fasone, 2015).

2.2.1 Trattamento fumi

Per quanto concerne la linea fumi, a valle della caldaia a recupero, è possibile evidenziare le seguenti unità operative poste in serie (Figura 2.6):

- Elettrofiltro - Caratterizzato da tre stadi indipendenti. Le ceneri vengono raccolte in tramogge sottostanti per mezzo di un sistema di martellamento meccanico delle piastre;
- Sistema ricircolo fumi ed economizzatore esterno - Dopo l’elettrofiltro è installato un ventilatore di ricircolo fumi che consente di ridurre le emissioni di inquinanti (NOx in particolare) inviando nuovamente in caldaia circa il 14% della portata dei fumi. A valle di tale sistema di ricircolo è collocato un economizzatore a fascio tubiero che ha lo scopo di regolare la temperatura dei fumi utilizzando l’acqua del ciclo termico come mezzo di raffreddamento (Fasone, 2015);
- Reattore a secco - In questo reattore avviene l’iniezione controllata di carbone attivo e bicarbonato di sodio. Il carbone attivo adsorbe i microinquinanti inorganici (Pb, Hg, Cd, ecc.) ed organici (diossine, furani, idrocarburi policiclici aromatici, policlorobifenili ecc.). Il bicarbonato di sodio, a seguito di una
prima fase di decomposizione termica che (attraverso la liberazione di CO$_2$ e H$_2$O gassosi) porta alla formazione di carbonato di sodio ad elevata superficie specifica responsabile dell’azione di neutralizzazione, reagisce chimicamente con gli ossidi di zolfo e i gas acidi quali l’acido cloridrico e l’acido fluoridrico;

- **Filtro a maniche** - Questi sistemi di filtraggio sono realizzati in materiale filtrante microporoso Gore-Tex®. Consente il trattamento dei sali sodici derivanti delle razioni di neutralizzazione e abbattimento dei gas acidi e (NaCl, NaF, Na$_2$SO$_4$, normalmente indicati come prodotti sodici residui o PSR) e delle polveri, incluso il particolato avente dimensioni particellari inferiori a 2,5 micrometri (PM$_{2.5}$). Tramite periodici impulsi d’aria compressa le maniche sono scosse ed i PSR cadono in apposite tramogge sottostanti;

- **Reattore catalitico SCR** - Ha lo scopo di abbattere gli NO$_X$ si utilizzano vapori ammoniacali. Questi sono prodotti a partire da una soluzione acquosa al 45% di urea stoccata in due serbatoi di capienza pari a 80 m3 ciascuno. L’urea viene dissociata in NH$_3$ attraverso un reattore termico alimentato dal calore di due bruciatori a metano. Il reattore catalitico è suddiviso in una “zona di miscelazione” dove i fumi sono additivati con iniezione di gas contenenti ammoniaca e una “zona di trattamento” dove l’ammoniaca abbatte gli NO$_X$ reagendo con essi grazie a delle sostante catalizzatrici;

- **Scambiatore fumi** - In questa sezione i fumi che si trovano a circa 180°C cedono parte del loro calore (60°C circa) alla condensa del ciclo termico diretta al degasatore. Lo scopo è quindi quello di recuperare calore inviando a camino fumi a circa 120°C;

- **Ventilatore di tiraggio** - È lo strumento che mantiene in depressione l’intera linea e conduce i fumi al camino avente un’altezza di 120 metri.

Figura 2.6 – Schema di principio complessivo del termovalorizzatore di Torino. (Fasone, 2015).

2.2.2 Residui del termovalorizzatore

I residui solidi derivanti dal processo di combustione e dalla depurazione sono di quattro differenti tipi, come osservabile dalla Figura 2.7, e sono allontanati con cadenza giornaliera o settimanale a seconda delle tipologie. Le scorie del processo di combustione (pari quantitativamente a circa il 21% in peso dei rifiuti in ingresso) vengono raffreddate in “culle di raffreddamento” ad acqua e successivamente caricate su nastri trasportatori, dopo essere state separate dai residui ferrosi tramite elettrocalamite, fino allo stoccaggio in fosse dedicate. Le scorie e ceneri pesanti (codice CER 190112) vengono depositate in una fossa dedicata ed avente volume di 1320 m³, ubicata in un capannone chiuso. I metalli ferrosi estratti da ceneri pesanti (codice CER 190102) sono invece depositati in un’area dedicata della fossa scorie avente volume pari a 300 m³. Le scorie così separate che possiedono proprietà pozzolaniche vengono riutilizzate (in particolare, per quanto concerne il Termovalorizzatore di Torino sono trattate presso gli impianti della RMB S.p.A. di Polpenazze del Garda (BS) e della Officina dell’Ambiente S.p.A. di Lomello (PV) per la produzione di aggregati che saranno successivamente destinati ai settori delle infrastrutture, delle costruzioni civili e della produzione di conglomerati cementizi e bituminosi).

![Figura 2.7 – I residui del Termovalorizzatore di Torino. (Fasone, 2015).](image-url)
Le ceneri leggere derivanti dall’attività dell’elettrofiltro (codice CER 190113*), pari in peso circa al 2% dei rifiuti iniziali, ed i Prodotti Sodici Residui (PSR) (codice CER 190107*), pari in peso a circa l’1,5% dei rifiuti iniziali, sono movimentati pneumaticamente e stoccati all’interno di appositi sili in una specifica area dell’impianto (denominata appunto “Edificio Sili”) da cui sono poi trasferiti ad impianti di trattamento.

In aggiunta a queste tipologie di residui, sono prodotti sul sito rifiuti occasionali derivanti da manutenzioni, attività ausiliarie ecc. Tra tali rifiuti, prevalentemente caratterizzati da entità non significative, la voce di maggiore rilevanza è quella relativa alle acque di scarto del ciclo termico e di pulizia (codice CER 161002).

Per quanto concerne gli spurghi delle torri evaporative, essi vengono inviati direttamente in fognatura (e costituiscono il flusso di reflui principale dell’impianto), mentre gli ulteriori spurghi continui e discontinui (scarichi di processo) vengono raccolti in una vasca acque reflue industriali (denominata attraverso la sigla VAI), avente capacità di 350 m3. Le acque di prima pioggia, ricadenti su strade e piazzali sono raccolte in due vasche denominate VPP1 e VPP2, ciascuna con volume di 150 m3 e successivamente immesse in fogna nera, previa disoleazione e previo passaggio nella vasca acque nere (VAN), avente volume di 100 m3, in cui vengono raccolti anche i reflui civili.

2.2.3 Sistemi di supporto al processo

Oltre ai sistemi precedentemente annoverati, sono presenti una serie di sistemi ausiliari che consentono il corretto svolgimento del processo:

- **Sistema di produzione di acqua demineralizzata** - Ha lo scopo di fornire acqua dalle adeguate caratteristiche chimico-fisiche per il reintegro del ciclo termico, a partire dall’acqua industriale approvvigionata dalla rete della zona. I consumi di acqua industriale presso il sito riguardano non solo l’acqua necessaria alla produzione di acqua demineralizzata, ma anche quella necessaria al reintegro dalle torri evaporative, l’acqua necessaria ad eventuali usi antincendio e l’acqua necessaria ai servizi tecnologici (lavaggio pavimenti, lavaggio caldaie, ecc.);

- **Sistema di produzione e distribuzione di aria compressa** - Fornisce aria compressa, filtrata ed essiccata sia per la strumentazione pneumatica (sistema aria strumenti), sia per la pulizia dei filtri a maniche, dei reattori SCR e per altri utilizzi d’impianto (sistema aria servizi);

- **Sistema di raffreddamento in circuito chiuso** - Ha lo scopo di raffreddare alcuni strumenti che necessitano di elevata protezione dalle impurità utilizzando acqua demineralizzata (compressori dei sistemi aria strumenti ed aria servizi, generatore elettrico, pompe alimento caldaie, ecc.);

- **Sistema antincendio** - Utilizza acqua proveniente dalla rete di acqua industriale stoccandola in un serbatoio specifico. È coordinato al sistema di ventilazione per garantire una azione coordinata in caso di allarme;

- **Sistema di distribuzione del gas naturale** - Prevede il trattamento del gas prelevato dalla rete attraverso un filtro, un preriscaldatare ad acqua calda, una stazione di riduzione della pressione e due stazioni di
misura fiscale. Il gas naturale viene consumato per l’avviamento ed il sostegno delle caldaie, per la decomposizione dell’urea e per il sostegno e la rigenerazione dei reattori SCR;

- Sistema di condizionamento HVAC (“Heating, Ventilation, and Air Conditioning”) - Prevede al condizionamento invernale ed estivo dei locali dell’impianto, eccetto quelli esclusivamente tecnologici;
- Gruppo elettrogeno a diesel (generatore di emergenza) - Ha lo scopo di garantire, nel caso di mancanza di tensione di rete, la produzione dell’energia elettrica necessaria ad alimentare la strumentazione d’impianto.

2.2.4 Monitoraggio dell’impianto

Tabella 2.3 – Elenco dei punti emissivi in atmosfera del termovalorizzatore di Torino (Dichiarazione ambientale dell’impianto di termovalorizzazione del Gerbido). (TRM S.p.A., 2017a).

<table>
<thead>
<tr>
<th>Denominazione punto di emissione</th>
<th>Impianto – Fase di provenienza</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1-1; E1-2; E1-3</td>
<td>Caldaia di combustione rifiuti – Linea 1 – Linea 2 – Linea 3</td>
</tr>
<tr>
<td>E3</td>
<td>Caldaia impianto di decompressione gas naturale</td>
</tr>
<tr>
<td>E4-1; E4-2; E4-3</td>
<td>Sfiato silos ceneri giornaliero – Linea 1 – Linea 2 – Linea 3</td>
</tr>
<tr>
<td>E5-1; E5-2; E5-3</td>
<td>Polmonazione silos 1-2-3 bicarbonato di sodio</td>
</tr>
<tr>
<td>E5-4</td>
<td>Polmonazione silos carbone attivo</td>
</tr>
<tr>
<td>E6-1; E6-2</td>
<td>Sfiato silos 1-2 ceneri</td>
</tr>
<tr>
<td>E6-3; E6-4</td>
<td>Sfiato silos 1-2 PSR</td>
</tr>
<tr>
<td>E6-5; E6-6</td>
<td>Polmonazione serbatoio 1-2 urea</td>
</tr>
<tr>
<td>E7</td>
<td>Aspirazione fossa RSU</td>
</tr>
<tr>
<td>E8</td>
<td>Sistema pulizia centralizzata</td>
</tr>
<tr>
<td>E9</td>
<td>Generatore diesel di emergenza</td>
</tr>
<tr>
<td>E10</td>
<td>Caldaia di avviamento</td>
</tr>
<tr>
<td>E11-1</td>
<td>Polmonazione serbatoio acido solforico – circuito torri</td>
</tr>
<tr>
<td>E11-2</td>
<td>Polmonazione serbatoio ipoclorito di sodio – circuito torri</td>
</tr>
<tr>
<td>E11-3</td>
<td>Polmonazione serbatoio disperdente – circuito torri</td>
</tr>
<tr>
<td>E11-4</td>
<td>Polmonazione serbatoio anticorrosivo – circuito torri</td>
</tr>
</tbody>
</table>

L’Autorizzazione Integrata Ambientale (AIA) disciplina “la prevenzione e la riduzione integrate dell’inquinamento” (IPPC – “Integrated Pollution Prevention and Control”) e rappresenta la prima applicazione, rispetto al processo produttivo, di un nuovo approccio integrato al controllo e alla prevenzione dell’inquinamento causato dai grandi impianti industriali. Ha lo scopo di autorizzare e regolare lo svolgimento di una attività che può causare un impatto ambientale significativo (secondo D.lgs. 152/2006) ed ha una validità di cinque anni. L’ARPA è l’ente di controllo che ha il compito di monitorare le emissioni dell’impianto e possiede un collegamento costante al sistema di monitoraggio delle emissioni (SME) in tempo reale.
Il flusso gassoso è monitorato in 3 differenti zone:

- In caldaia;
- A monte del sistema di trattamento fumi;
- A camino.

Nelle prime due zone la funzione è quella di regolazione di controllo del dosaggio dei reagenti, mentre nell’ultima zona la funzione è di verifica del rispetto dei limiti di legge. Prima del rilascio in atmosfera i fumi opportunamente depurati sono monitorati dallo SME al fine di verificare il rispetto dei limiti previsti dal provvedimento AIA, riportati nella tabella seguente (Tabella 2.4).

Tabella 2.4 – Limiti emissivi AIA per i punti di emissione denominati E1-1, E1-2 ed E1-3. (Dichiarazione ambientale Impianto di Termovalorizzazione del Gerbido, 2017).

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Limite fase iniziale [mg/m³]</th>
<th>Limite fase regime [mg/m³]</th>
<th>Su 30 minuti [mg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametri misurati in continuo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polveri totali</td>
<td>10 (giornaliero)</td>
<td>5 (giornaliero)</td>
<td>30</td>
</tr>
<tr>
<td>TOC</td>
<td>10 (giornaliero)</td>
<td>10 (giornaliero)</td>
<td>20</td>
</tr>
<tr>
<td>HCl</td>
<td>10 (giornaliero)</td>
<td>5 (giornaliero)</td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>1 (giornaliero)</td>
<td>0,5 (giornaliero)</td>
<td>4</td>
</tr>
<tr>
<td>SO₂</td>
<td>50 (giornaliero)</td>
<td>10 (giornaliero)</td>
<td>200</td>
</tr>
<tr>
<td>NO₂</td>
<td>200 (giornaliero)</td>
<td>70 (giornaliero)</td>
<td>400</td>
</tr>
<tr>
<td>NH₃</td>
<td>5 (giornaliero)</td>
<td>5 (giornaliero)</td>
<td>15</td>
</tr>
<tr>
<td>CO</td>
<td>50 (giornaliero)</td>
<td>50 (giornaliero)</td>
<td>100</td>
</tr>
<tr>
<td>Parametri campionati in modo discontinuo su base quadrimestrale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd+Ti</td>
<td>0,05 (campionamento di 1 ora)</td>
<td>0,03 (campionamento di 1 ora)</td>
<td>-</td>
</tr>
<tr>
<td>Hg</td>
<td>0,05 (campionamento di 1 ora)</td>
<td>0,05 (campionamento di 1 ora)</td>
<td>-</td>
</tr>
<tr>
<td>Zn</td>
<td>0,05 (campionamento di 1 ora)</td>
<td>0,5 (campionamento di 1 ora)</td>
<td>-</td>
</tr>
<tr>
<td>Sb+As+Pb+Cr+Co+Cu+Mn+Ni+V+Sn</td>
<td>0,05 (campionamento di 1 ora)</td>
<td>0,3 (campionamento di 1 ora)</td>
<td>-</td>
</tr>
<tr>
<td>Diossine – PCDD+PCDF</td>
<td>0,1 [ng/m³] (campionamento di 8 ore)</td>
<td>0,05 [ng/m³] (campionamento di 8 ore)</td>
<td>-</td>
</tr>
<tr>
<td>IPA</td>
<td>0,01 (campionamento di 8 ore)</td>
<td>0,005 (campionamento di 8 ore)</td>
<td>-</td>
</tr>
<tr>
<td>PCB</td>
<td>-</td>
<td>0,1 [ng/m³] (campionamento di 8 ore)</td>
<td>-</td>
</tr>
</tbody>
</table>

Per ciascuna linea il provvedimento AIA prevede:

- Il monitoraggio in continuo dei seguenti parametri: polveri totali, TOC, HCl, HF, SO₂, NO₂, NH₃, CO, oltre che del tenore volumetrico di ossigeno, della temperatura, della pressione, del tenore di vapore acqueo e della portata volumetrica dei fumi;
Un monitoraggio di tipo discontinuo attraverso dei prelievi periodici quadrimestrali di diossine, furani, IPA ed una serie di metalli pesanti (dal 2016 è richiesto anche il monitoraggio di PCB).

L’AIA prescrive inoltre un prelievo in continuo con analisi periodiche (attraverso un sistema di campionamento chiamato DECS che utilizza fiale di accumulo attraverso cui fluiscono i fumi), di diossine, furani e IPA. Ciascuna linea in aggiunta dispone di analizzatori in continuo del mercurio.

2.3 Anomalie emissive di mercurio

A partire dal giorno 13/10/2016 e fino al giorno 17/01/2017 si è manifestata in modo frequente la presenza di mercurio nelle emissioni che ha fortemente limitato la completa operatività delle linee. Al raggiungimento del limite orario di 50 µg/Nm³ il sistema di supervisione è programmato per interrompere l’alimentazione dei rifiuti sulla linea interessata, con conseguente aumento delle quantità stoccate in fossa. La capacità di smaltimento giornaliera ordinaria è variabile tra le 1400-1600 t/giorno; dal giorno 14/10/2016, l’operatività dell’impianto si è ridotta a valori compresi tra 500 ed 800 t/giorno. In conseguenza di quanto sopra descritto, nell’anno 2016, rispetto ai programmi di produzione, si è rilevata una minor produzione di energia elettrica (riduzione del 10,4%) ed una minore quantità di rifiuti inceneriti (riduzione del 9%). La situazione anzi detta ha significativamente condizionato i risultati economici attesi per l’esercizio 2016. Quanto determinatosi è da imputarsi a conferimenti indebiti di rifiuti contenenti tracce di mercurio come riportato nella relazione sulla gestione dell’impianto relativa all’anno 2016 (TRM S.p.A., 2017b).

Sono state avviate le attività di ricerca della fonte di contaminazione attraverso:

- L’analisi delle realtà produttive presenti sul territorio (esempio: verniciature industriali);
- Il campionamento dei rifiuti in ingresso esteso al maggior numero possibile di carichi.

Sono state inoltre messe in atto alcune azioni (tecniche, di coordinamento, di controllo, di comunicazione ed informazione, ecc.) che hanno consentito di ripristinare già dal mese di gennaio 2017 la normale funzionalità dell’impianto. Per quanto riguarda le tre linee dell’impianto, la situazione complessiva può essere riassunta nel seguente modo:

- Linea 1: da fine novembre 2016 non ha più avuto rallentamenti significativi della produzione, ad eccezione della prima decade di gennaio 2017;
- Linea 2: da fine dicembre 2016 non ha più subito rallentamenti significativi della produzione;
- Linea 3: a dicembre 2016 (dal giorno 12 al giorno 23) ha subito la sostituzione del catalizzatore. A seguito della sostituzione non si sono più verificate anomalie emissive relative al mercurio.

Al fine di sottolineare eventuali collegamenti tra i rifiuti trattati e le emissioni di mercurio, è riportata (Appendice A2) l’analisi merceologica relativa a parte del periodo (dicembre 2016) in cui si sono manifestati i picchi emissivi di mercurio stesso. Siccome nel periodo in cui sono state effettuate le analisi riportate in Appendice A2 (luglio 2017) non si sono manifestati in impianto problemi relativi al mercurio, può essere utile...
confrontare i risultati delle due analisi merceologiche. La Tabella 2.5 mostra quei parametri che hanno fornito valori percentuali maggiori nel periodo 2016 rispetto al 2017 e che potrebbero pertanto rappresentare eventuali cause di emissioni indesiderate di mercurio.

<table>
<thead>
<tr>
<th>Frazione</th>
<th>Dato 2016 (%)</th>
<th>Dato 2017 (%)</th>
<th>Scarto 2016-2017 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sottovaglio < 20 mm (1)</td>
<td>9,20</td>
<td>6,10</td>
<td>3,10</td>
</tr>
<tr>
<td>Putrescibile da giardino (2)</td>
<td>20,50</td>
<td>0,53</td>
<td>19,97</td>
</tr>
<tr>
<td>Totale putrescibile (4)</td>
<td>33,60</td>
<td>32,60</td>
<td>1,00</td>
</tr>
<tr>
<td>Cartoncino teso (4)</td>
<td>3,50</td>
<td>3,37</td>
<td>0,13</td>
</tr>
<tr>
<td>Tracciati in film (5)</td>
<td>0,86</td>
<td>0,57</td>
<td>0,29</td>
</tr>
<tr>
<td>CPL fino a 5 l in volume (6)</td>
<td>3,37</td>
<td>3,36</td>
<td>0,01</td>
</tr>
<tr>
<td>Imballaggi poliaccoppiati prevalenza carta (7)</td>
<td>1,17</td>
<td>0,47</td>
<td>0,70</td>
</tr>
<tr>
<td>Imballaggi poliaccoppiati non prevalenza carta</td>
<td>0,78</td>
<td>0,51</td>
<td>0,27</td>
</tr>
<tr>
<td>Tessili naturali e sintetici (8)</td>
<td>11,20</td>
<td>7,00</td>
<td>4,20</td>
</tr>
<tr>
<td>Legno non imballaggio (9)</td>
<td>1,47</td>
<td>0,48</td>
<td>0,99</td>
</tr>
<tr>
<td>Metalli ferrosi imballaggio (10)</td>
<td>0,90</td>
<td>0,88</td>
<td>0,02</td>
</tr>
<tr>
<td>Metalli ferrosi non imballaggio (11)</td>
<td>3,88</td>
<td>0,40</td>
<td>3,48</td>
</tr>
<tr>
<td>Totale materiali metallici (12)</td>
<td>5,40</td>
<td>2,86</td>
<td>2,54</td>
</tr>
<tr>
<td>Vetro imballaggio (13)</td>
<td>2,56</td>
<td>0,41</td>
<td>2,15</td>
</tr>
<tr>
<td>Inerti (14)</td>
<td>0,14</td>
<td>0,02</td>
<td>0,12</td>
</tr>
<tr>
<td>Totale materiali inerti (15)</td>
<td>5,50</td>
<td>2,49</td>
<td>3,01</td>
</tr>
</tbody>
</table>

Note:
(1) – Materiale passante vaglio da 20 mm a luce quadrata. Per l’analisi dell’RSU viene suddivisa al 70% nella frazione putrescibile e per il 30% negli inerti. Per l’analisi dell’organico è invece conteggiata per intero nella frazione putrescibile;
(2) – Foglie, erba e residui di potatura;
(3) – Ci si riferisce al contributo complessivo dato da: “Putrescibile da cucina” (alimenti cotti e crudi), “Putrescibile da giardino”, “Bioplastica” (sacchetti e oggetti in plastica biodegradabile derivanti da materie prime vegetali), “Altro organico” (organico di diversa origine, come carta da cucina, fazzoletti da naso e simili) ed il 70% della frazione “Sottovaglio < 20 mm”; (4) – Scatole di cartoncino per prodotti alimentari e non alimentari;
(5) – Tracciati di imballaggi alimentari e non alimentari in film derivanti da utenze non domestiche;
(6) – Il caprolattame (CPL) è il lattame dell’acido 6-aminoesanoico o aminocaproico. È la materia prima per la produzione del nylon 6, che ne è il polimero;
(7) – Imballaggi costituiti da più materiali;
(8) – Abiti in cotone e lana, lino e materiali sintetici, collant, borse in stoffa;
(9) – Legno di arredi vari, bastoni e vassoi;
(10) – Lattine in acciaio in banda stagnata;
(11) – Utensili, oggetti vari come viti o tubi;
(12) – Ci si riferisce al contributo complessivo dato da: “Materiali ferrosi imballaggio”, “Materiali ferrosi non imballaggio”, “Alluminio imballaggio” (lattine per bevande e barattoli), “Alluminio non imballaggio” (fogli di alluminio, vaschette per alimenti) e “Materiali non ferrosi non alluminio” (oggetti di rame, ottone e piombo, come tubi o particolari di biciclette);
(13) – Bottiglie per liquidi;
(14) – Pietre e porcellane;
(15) – Ci si riferisce al contributo complessivo dato da: “Vetro imballaggio”, “Altro vetro” (vetro piatto, pirex e retinato), “Inerti” ed il 30% della frazione “Sottovaglio < 20 mm”.

33
CAPITOLO 3
UTILIZZO DI SORBENTI A SECCO AD ALTA TEMPERATURA

La rimozione dei gas acidi ad alta temperatura consiste nell’iniezione di un reagente alcalino direttamente in camera di combustione, immediatamente nella zona di combustione o in quella di post-combustione. La tecnologia di abbattimento dei gas acidi a bassa temperatura prevede invece il dosaggio di reagenti neutralizzanti direttamente lungo la linea fumi o in reattori dedicati collocati a valle della sezione d’impianto costituita dal forno e dalla caldaia a recupero. Queste differenti tecnologie sono state ampiamente studiate soprattutto in applicazioni per centrali termoelettriche alimentate ad olio combustibile o a carbone, ma possono essere attualmente considerate tecnologie consolidate anche nel caso della termovalorizzazione dei rifiuti. Per quanto riguarda l’utilizzo di sorbenti ad alta temperatura, i reagenti sono generalmente iniettati come polvere secca micronizzata. Una volta iniettati ad alta temperatura questi manifestano:

- Una prima fase di attivazione termica del reagente. Questa fase è differente da reagente a reagente e comporta la formazione di composti estremamente reattivi (come ad esempio CaO e CaO·MgO). Normalmente questo processo avviene con estrema rapidità (frazioni di secondo) e conferisce ai materiali attivati le proprietà più idonee per la rimozione degli inquinanti acidi;
- Una seconda fase di assorbimento effettivo dell’inquinante o degli inquinanti.

3.1 Sorbenti a base di calce

3.1.1 La calce: descrizione e reazioni caratteristiche

Tra i sorbenti di maggiore utilizzo nelle applicazioni industriali nel campo della rimozione dei gas acidi a bassa temperatura, oltre a quelli sodici, figurano senza dubbio quelli a base di calcio. Questi ultimi trovano altresì impiego nei processi di neutralizzazione ad alta temperatura.

Con la voce “calce” si annoverano in modo generico tutte le forme chimiche e fisiche con le quali si identificano i diversi ossidi e/o idrossidi di calcio e di calcio e magnesio derivanti da processi di lavorazione di rocce carbonatiche di tipo sedimentario, calcari e dolomie, costituite rispettivamente da calcite (carbonato di calcio \(\text{CaCO}_3 \)) e da dolomite (carbonato doppio di calcio e di magnesio \(\text{CaCO}_3 \cdot \text{MgCO}_3 \)).

La conoscenza relativa alla produzione di calce risale ad almeno circa 4000 anni fa: si hanno testimonianze del suo uso tanto nell'antico Egitto che in Mesopotamia, così come è largamente documentato l’utilizzo, già nella cultura greca e romana, oltreché nell’ambito prevalente delle costruzioni (templi, strade, acquedotti, ecc.) e dell’arte (affreschi murali, decorazioni, ecc.) anche in applicazioni differenti quali, per esempio, l’agricoltura, la concia delle pelli, la farmacopea, ecc. (Oates, 1998). L’uso estensivo in ambito industriale della calce è assai più recente e, in particolare, l’utilizzo nei trattamenti degli effluenti gassosi, sviluppato nei primi anni del 1900 con l’evolversi delle ricerche sulle tecnologie di desolfurazione cominciate già nel 1850 in Inghilterra a seguito
del sempre più largo impiego del carbone come fonte energetica, fu implementato su larga scala a partire dagli anni ’60 del secolo scorso (Biondo e Martin 1977; Kroll e Williamson, 1986).
La materia prima per la produzione della calce è, come sopra menzionato, rappresentata dal calcare e dalla dolomia, che, al netto di possibili percentuali di impurezze minerali (silice, ossidi di ferro, ossidi di alluminio, ecc.), possono essere suddivisi in:

- “Calcari puri o calcici” - caratterizzati da contenuti di CaCO$_3$ superiori al 97%;
- “Calcari magnesiaci” - caratterizzati, oltre al CaCO$_3$, da un contenuto di MgCO$_3$ al massimo pari al 35%;
- “Calcari dolomitici” - caratterizzati, oltre al CaCO$_3$, da un contenuto di MgCO$_3$ superiore al 35% ed al massimo pari al 40%;
- “Dolomie” - caratterizzate, oltre al CaCO$_3$, da un contenuto di MgCO$_3$ superiore al 40% e al massimo pari al 46%.

Il materiale roccioso estratto in specifici giacimenti è frantumato grossolanamente, lavato e ulteriormente ridotto in pezzatura opportuna (frammenti di dimensione massima dell’ordine di alcuni centimetri) per essere introdotto in appositi forni dove viene riscaldato gradualmente fino a raggiungere valori di temperatura di 900-1200°C. Alla temperatura di almeno 900°C la pietra calcarea si trasforma, dando luogo alla decomposizione termica della roccia carbonatica (reazione endotermica di calcinazione $\Delta H^0 = +178,3$ kJ/mol) in ossido di calcio (o in ossido di calcio e magnesio) e anidride carbonica:

$$\text{CaCO}_3(s) \leftrightarrow \text{CaO}(s) + \text{CO}_2(g) \quad (3.1)$$

Nel caso in cui il prodotto derivante dal processo di decomposizione termica della roccia carbonatica, comunemente denominato “calce viva”, sia costituito essenzialmente da ossido di calcio prende il nome di “calce viva calcica” (contenuto di MgO massimo pari a 2,5%). Nel caso invece in cui esso sia costituito da ossido di calcio e ossido di magnesio (CaO·MgO) si parla di “calce viva magnesiacca” (contenuto medio di MgO compreso tra il 7% ed il 30%) o “calce viva dolomitica” (contenuto di MgO superiore al 30%). Il prodotto di calcinazione della roccia carbonatica, CaO, pesa indicativamente per il 56% della roccia carbonatica originaria ed assume una struttura porosa (Stanmore e Gilot, 2005). L’evoluzione del processo di calcinazione è complicata dalla presenza di CO$_2$ che evolvendo gradualmente dalla materia carbonatica comporta un incremento della pressione parziale nell’atmosfera di reazione (tendenza al rallentamento della reazione), dalla dimensione dei frammenti (per dimensioni via via crescenti possono dare luogo a limitazioni per quanto riguarda il trasferimento del calore nonché il trasferimento di massa) e dall’eventuale inibizione causata dalla presenza di talune impurità. Per quanto concerne la dipendenza dalla temperatura, Stanmore e Gilot (2005), combinando informazioni disponibili in letteratura, mostrano un generale andamento lineare d’incremento della cinetica di reazione al crescere della temperatura.
Dalla calce viva è infine possibile ottenere la calce idrata (o calce spenta), attraverso la cosiddetta reazione di idratazione (o di spegnimento), in modo da convertire gli ossidi nei rispettivi idrossidi (reazione esotermica di idratazione $\Delta H^0 = -65.17 \text{ kJ/mol}$):

$$\text{CaO}(s) + \text{H}_2\text{O}(l) \leftrightarrow \text{Ca(OH)}_2(s) \quad (3.2)$$

Nel caso in cui la calce idrata sia composta principalmente da Ca(OH)_2 si parla di “calce idrata calcica”. D’altra parte, si può ottenere la formazione di un idrossido di calcio e ossido di magnesio ($\text{Ca(OH)}_2\cdot\text{MgO}$) oppure la formazione di un idrossido di calcio ed un idrossido di magnesio ($\text{Ca(OH)}_2\cdot\text{Mg(OH)}_2$) in relazione alle differenti modalità di idratazione (in condizioni atmosferiche o in pressione) che possono portare ad avere la parziale (massimo grado di idratazione dell’MgO intorno a 25% e mediamente compreso tra 8-15%) o completa idratazione (tasso di idratazione dell’MgO pari al 100%) del magnesio nel prodotto finito.

In ogni caso, a prescindere dal fatto che il magnesio sia prevalentemente presente come ossido o idrossido, analogamente a quanto visto per la calce viva, si può parlare di “calce idrata magnesiaca” oppure “calce idrata dolomitica” in funzione del tenore di magnesio nella roccia carbonatica originaria ovvero nella calce viva di partenza.

In base ai quantitativi di acqua utilizzati e alle modalità di spegnimento, la calce idrata può presentarsi sotto forma di polvere secca, soluzione diluita insatura o satura in equilibrio (“acqua di calce”), sospensione fluida con un contenuto massimo del 40% di solidi (“latte di calce”) o dispersione densa con un contenuto di solidi fino al 70% (“pasta di calce” o “grasse llo di calce”). Si deve considerare che la modalità di spegnimento influenza e determina la forma fisica della calce spenta, ma anche e soprattutto la qualità dei prodotti finali. La calce idrata in forma polverulenta secca è un prodotto “metastabile” soggetto a fenomeni di deterioramento. Questi fenomeni sono dovuti alla ricarbonatazione per assorbimento dell’anidride carbonica presente nell’aria la cui umidità relativa genera, tra l’altro, un effetto accelerante sulle cinetiche di reazione tanto più marcato tanto più la pressione parziale dell’acqua aumenta; a contatto con l’anidride carbonica inizia un lento processo che la trasforma in calcare, il composto originario dal quale è stata prodotta (reazione esotermica di ricarbonatazione $\Delta H^0 = -113.13 \text{ kJ/mol}$):

$$\text{Ca(OH)}_2(s) + \text{CO}_2(g) \leftrightarrow \text{CaCO}_3(s) + \text{H}_2\text{O}(l) \quad (3.3)$$

Anche se la (3.3) è corretta dal punto di vista formale, la reazione reale è in realtà assai più complessa. Osservando la (3.3) infatti, il processo sembrerebbe avvenire tra un solido Ca(OH)_2 e un gas CO$_2$, mentre in realtà la reazione avviene in presenza di una fase acquosa (per esempio in applicazioni legate all’edilizia, la ricarbonatazione è accelerata dalla presenza della fase acquosa dovuta all’acqua di impasto della calce) e si esplica secondo tre meccanismi di reazione sequenziali che tuttavia durante il progredire della reazione vanno parzialmente a sovrapporsi:

- Adsorbimento fisico della quantità d’acqua contenuta nella massa d’aria atmosferica sulle particelle di Ca(OH)_2;

36
- Dissoluzione di Ca(OH)$_2$ in ioni Ca$^{2+}$ e OH$^-$ e sviluppo di un ambiente fortemente alcalino (pH superiore a 10,33) che promuove il passaggio in soluzione acquosa della CO$_2$ atmosferica e la produzione di ioni carbonato CO$_3^{2-}$;

- Cristallizzazione di CaCO$_3$.

La ricarbonatazione risulta favorita da condizioni termometriche minime in quanto l’abbassamento delle temperature produce un aumento della solubilità della CO$_2$, nonché dell’idrossido di calcio. Il problema principale di questo fenomeno è l’eventuale utilizzo indesiderato di materiale attivo per la neutralizzazione dei gas acidi. In generale tuttavia, il processo di solfatazione (reazione con lo zolfo, si veda il Capitolo 3.1.3) è cineticamente favorito rispetto al processo di ricarbonatazione; mentre per quanto concerne la clorurazione, per temperature superiori agli 850°C, la presenza di CO$_2$ non ha influenze negative sull’abbattimento (Partanen et al., 2005a); l’affinità dell’idrossido di calcio nei confronti degli acidi è massima per l’SO$_3$ e minima per la CO$_2$ (in particolare: SO$_3$ > HF > HCl > SO$_2$ > CO$_2$). In conclusione dunque, negli impianti di termovalorizzazione, la tecnologia di assorbimento dei gas acidi ad alta temperatura non è influenzata negativamente (o lo è in maniera comunque trascurabile) dalla presenza dell’anidride carbonica.

Assieme alla temperatura, un ruolo rilevante per quanto concerne l’efficacia nella neutralizzazione dei gas acidi viene attribuito alle caratteristiche fisiche del sorbente e in particolare alla superficie specifica e al volume e alla distribuzione dei pori (mesopori e macropori) all’interno dei quali possa continuare a svilupparsi il processo (formazione di cristalli) con l’evolversi della reazione (Stanmore e Gilot, 2005).

Un fenomeno che si verifica usualmente nell’applicazione ad alta temperatura dei sorbenti per la rimozione dei gas acidi è la sinterizzazione, che causa una riduzione nella porosità e nella superficie specifica con conseguenti modifiche sulle efficienze ottenibili. Questo processo è favorito sia dalle alte temperature e dal tempo di residenza alle alte temperature, sia dalla presenza di CO$_2$ ed H$_2$O o impurezze (come Fe$_2$O$_3$ o Al$_2$O$_3$). Durante la sinterizzazione, tendono a svilupparsi collegamenti tra grani adiacenti. Tali collegamenti crescono con il passare del tempo e vanno a colmare le distanze tra i grani stessi, producendo l’effetto di diminuire sia i vuoti presenti, sia la superficie specifica. La superficie specifica può arrivare a valori prossimi allo zero se il processo di sinterizzazione prosegue continuativamente a temperature di circa 1050°C (Stanmore e Gilot, 2005). Ad esempio, l’impiego di calce idrata per temperature comprese tra 400°C e 500°C è favorito poiché in questo intervallo si inizia a manifestare, in relazione a tempi di contatto più o meno prolungati, un certo livello di decomposizione per deidratazione in grado di aumentare la superficie specifica del sorbente. Per temperature maggiori possono inoltre avere luogo indesiderati fenomeni di sinterizzazione.

Il rateo di sinterizzazione dipende dall’origine del CaO coinvolto nell’effettiva rimozione degli acidi. Borgwardt (1989) ha dimostrato come il rateo di sinterizzazione del CaO generato da carbonato di calcio ultrapuro di grado chimico, calcare o calce idrata di natura commerciale, presenti valori differenti: in particolare si è osservato che il CaO derivante dall’idrossido di calcio presenta una maggiore tendenza alla sinterizzazione rispetto a quello derivante dalla matrice carbonatica. In generale le ragioni di tali differenze sono da attribuire alla presenza di impurità nelle rocce carbonatiche originarie che favoriscono il processo,
oppure alla bassa porosità che garantisce una più semplice formazione dei collegamenti tra i grani. In generale è possibile affermare che la riduzione della superficie specifica nel trattamento di gas di combustione, si assesta nell’intervallo 50-100 m² g⁻¹ s⁻¹ (Stanmore e Gilot, 2005).

Nel caso di reagenti dolomitici, la sinterizzazione è più veloce e marcatamente sulla quota parte della componente magnesica rispetto alla componente calcica: questo aspetto attenua i fenomeni di collasso della struttura complessiva del reagente in quanto l’ossido di magnesio è in grado di conferire alla particella di sorbente dolomitico una struttura a maggiore resistenza rispetto ad una particella di sorbente prettamente calcico.

3.1.2 Tecniche di abbattimento a secco ad alta temperatura dei gas acidi

Nell’ambito della rimozione dei gas acidi con sorbenti alcalini a base di calcio o di calcio e magnesio, si possono dosare carbonato di calcio (CaCO₃), dolomite (CaCO₃·MgCO₃), ossido di calcio (CaO) o idrossido di calcio (Ca(OH)₂), ossidi ed idrossidi di calcio magnesiaca nonché dolomiti (CaO·MgCO₃, Ca(OH)₂·MgO, Ca(OH)₂·Mg(OH)₂).

I gas acidi prevalentemente prodotti da un impianto di termovalorizzatore sono quelli che derivano dalla trasformazione di sostanze a base di zolfo (tipicamente SO₂ ed eventualmente anche H₂S qualora, localmente, si abbiano regioni riducenti), cloro (HCl) e fluoro (HF). Su questi composti è possibile agire a valle del processo di combustione mediante misure chimico-fisiche che presuppongono la loro rimozione attraverso sistemi ad umido, a secco o a semisecco.

Tuttavia l’abbattimento degli inquinanti prodotti dalla combustione può essere effettuato già a partire dalla sezione di alta temperatura dell’impianto mediante l’applicazione di specifici trattamenti depurativi a secco. In questo modo è possibile garantire alcuni vantaggi: una notevole semplicità impiantistica, una protezione da corrosione acida della caldaia, l’assenza di complicazioni legate alla gestione idrica tipica nel caso di utilizzo di sistemi ad umido o a semisecco ed infine i minori costi di esercizio. I sorbenti che hanno trovato maggiore impiego in questa tecnica sono quelli a base di calcio e magnesio, particolarmente efficaci nei confronti di HCl, SO₂ e HF. Va tenuto presente che, prima dell’avvento di sorbenti di ultima generazione (come il prodotto Depurcal®MG), l’utilizzo di sorbenti a base di calcio e magnesio ad alta temperatura era pressoché limitato agli impianti a letto fluido dove, in ogni caso, veniva preferito il dosaggio di prodotti “crudi” quali calcare e dolomite in qualità di costituenti del letto stesso.

Per quanto concerne la rimozione a secco, sono riportate di seguito le varie tipologie di iniezione del sorbente:

- Iniezione diretta in camera di combustione - Rappresenta la tecnologia di più semplice implementazione. Il reagente è dosato pneumaticamente al di sopra della camera di combustione dove reagisce anche a temperature superiori ai 1000°C. I sorbenti tipicamente utilizzati sono calcare o calce idrata che possono essere accoppiati a composti magnesiaci. È bene considerare che tipicamente il dosaggio di calcare direttamente in camera di combustione per impianti caratterizzati dalla presenza di fornì a griglia, non garantisce adeguate efficienze stanti i modesti tempi di contatto con i fumi.
Differente è invece il discorso di dosaggio nel caso di impianti a letto fluido, dove il calcare costituisce assieme alla sabbia, il letto stesso. I gas reagiscono con i sorbenti attivati (CaO, MgO) formando prodotti di reazione solidi (CaSO$_4$, CaCl$_2$, CaF$_2$, ecc.) e liberando H$_2$O e CO$_2$. Al fine di ottenere una corretta reazione e buone efficienze è fondamentale che il sorbente sia distribuito nel modo più omogeneo possibile all’interno del flusso gassoso. I prodotti solidi formatisi vengono successivamente rimossi attraverso un filtro a maniche in tessuto o un filtro elettrostatico a valle. Il sorbente utilizzato incide sulla capacità di abbattimento degli inquinanti, sia da un punto di vista fisico (legato quindi alle dimensioni delle particelle, al loro peso specifico, alla loro porosità e alla loro struttura cristallina), che da un punto di vista chimico (reattività, cinetica e termodinamica);

- Iniezione all’altezza dell’economizzatore - I sorbenti sono in questo caso introdotti nella zona della caldaia dove sono ubicati gli economizzatori e le temperature si trovano nella finestra attorno ai 550°C (Muzio e Offen, 1987). Questo tipo di dosaggio presenta buona efficacia solo nel caso di utilizzo di sorbenti idrati (come Ca(OH)$_2$): sorbenti di questo tipo garantiscono un alto tasso di utilizzazione sulla base della loro porosità, anche in virtù del fatto che il dosaggio avviene in sezioni di passaggio più ridotte dove il gas è più denso e presenta elevate velocità. È bene considerare che alcune proprietà del sorbente (come un’elevata superficie specifica, un’elevata porosità ed una ridotta dimensione delle particelle) sono in grado di ridurre mitigare l’instaurarsi di eventuali fenomeni di interazione con l’abbondante CO$_2$ presente nei fumi (a dare carbonato di calcio). Seppure l’affinità nei confronti degli acidi è superiore rispetto a quella per il biossido di carbonio, reazioni indesiderate con l’anidride carbonica sono infatti in grado di produrre il duplice effetto di consumare il reagente e bloccare l’accesso delle molecole da adsorbire alla superficie attiva del sorbente.

Oltre al punto di iniezione previsto, esistono numerose altre proprietà che influenzano l’efficacia della rimozione ad alta temperatura dei gas acidi dal flusso gassoso.

Tra queste si possono elencare:

- Caratteristiche fisiche e chimiche del sorbente;
- Quantità del sorbente;
- Temperatura d’iniezione;
- Concentrazione dell’inquinante, e rapporto relativo tra la concentrazione dell’inquinante e del sorbente dosato;
- Composizione della corrente gassosa (ossigeno, umidità, anidride carbonica, ecc.);
- Tempo di contatto.

In particolare, maggiore è la superficie specifica del sorbente e migliore risulta essere la sua azione nella rimozione dei gas acidi. Allo stesso modo, per superfici specifiche e porosità del reagente elevate corrispondono dimensioni particellari ridotte e quindi maggiore risulta la rimozione dei gas. Inoltre è bene considerare che più è stabile la composizione del sorbente, più stabili saranno le sue efficienze di cattura. Per quanto concerne questo aspetto, infatti, i reagenti dolomitic sono preferibili rispetto a quelli calcici dal
momento che possiedono una minore facilità di sinterizzazione ed una struttura porosa più resistente: la presenza di MgO permette di aumentare la porosità durante la fase di attivazione termica e quindi offrire un maggior numero di siti attivi agli acidi gassosi.

Come detto, la rimozione dei gas acidi avviene a seguito o in contemporanea all’attivazione termica del sorbente. Per attivazione termica si intende la reazione chimica endotermica che porta alla formazione di ossido di calcio (CaO), di ossido di magnesio (MgO) o di ossido di calcio e ossido di magnesio (CaO-MgO) nel caso in cui oltre alla frazione calcica sia presente anche la componente magnesiaca. Questa reazione è variabile sulla base del composto dosato. Ad esempio, si parla di reazioni di decarbonatazione (reazioni (3.4), (3.5), (3.6)) oppure di reazioni di deidratazione (reazioni (3.7), (3.8)) (Muzio e Offen, 1987):

\[
\begin{align*}
\text{CaCO}_3(s) & \leftrightarrow \text{CaO}(s) + \text{CO}_2(g) \\
\text{MgCO}_3(s) & \leftrightarrow \text{MgO}(s) + \text{CO}_2(g) \\
\text{CaCO}_3(s) \cdot \text{MgCO}_3(s) & \leftrightarrow \text{CaO} \cdot \text{MgO}(s) + 2\text{CO}_2(g) \\
\text{Ca(OH)}_2(s) & \leftrightarrow \text{CaO}(s) + \text{H}_2\text{O}(g) \\
\text{Ca(OH)}_2 \cdot \text{Mg(OH)}_2(s) & \leftrightarrow \text{CaO} \cdot \text{MgO}(s) + 2\text{H}_2\text{O}
\end{align*}
\]

L’idrossido di magnesio (Mg(OH)_2), l’idrossido di calcio (Ca(OH)_2), la dolomite (CaCO_3·MgCO_3) e la calcite (CaCO_3) si decompongono nei rispettivi ossidi rispettivamente alle temperature di 350°C, 580°C, 760°C e 896°C (Blythe, 2004). Il dosaggio di materiali crudi (reazioni (3.4), (3.5), (3.6)) richiede più tempo nella fase di attivazione, poiché le reazioni necessitano di un maggior quantitativo di energia (e temperature più elevate). Il dosaggio di idrossidi (reazioni (3.7), (3.8)) invece comporta una più rapida attivazione, siccome l’energia richiesta è inferiore. Sia nel caso delle reazioni (3.4), (3.5), (3.6), che nel caso delle reazioni (3.7), (3.8), vi è una forte dipendenza dalla temperatura, dal tenore di CO_2 e dell’umidità. Elevati tenori di CO_2 possono generare indesiderati fenomeni di ricarbonatazione più marcati nel caso di sorbenti calcici (nei materiali dolomitici solo la componente calcica è soggetta al fenomeno di ricarbonatazione). È bene notare che le reazioni sono reversibili (↔) e quindi parte dei composti attivati può subire la reazione inversa (che, ad esempio nel caso dei reagenti che subiscono decarbonatazione, prende il nome di ricarbonatazione). Le successive reazioni di effettivo assorbimento dell’inquinante sono complesse e basate sui meccanismi di reazione chimica che agiscono alla superficie dell’adsorbente. Per quanto concerne la rimozione dei principali gas acidi dal flusso gassoso, Dahlin et al. (1993) evidenziano come il CaO derivante dalla deidratazione della calce idrata presenti una struttura porosa ed una superficie specifica migliori rispetto al CaO ottenuto dalla calcinazione del calcare con riflessi positivi. Tali proprietà sono imputabili a una maggiore reattività non solo a livello superficiale ma anche internamente alla struttura. Ad ogni modo, più le particelle di sorbente sono piccole e caratterizzate da basse velocità di sinterizzazione ed elevata porosità, tanto più il sorbente è efficace. Per questa ragione, tutti i sorbenti alcalini devono essere iniettati sotto forma di particelle fini di dimensioni micrometriche per garantire elevate rese, anche se questo ha lo svantaggio di rendere più difficile una loro successiva asportazione dai fumi di combustione.
3.1.3 Rimozione dell’anidride solforosa

Lo zolfo è presente in molti rifiuti (pneumatici, pannelli murari, gesso, ecc.) e la sua combustione genera anidride solforosa. A bassa temperatura si ha la possibilità che SO$_2$ possa in parte ossidarsi ad anidride solforica (SO$_3$) grazie all’azione catalitica del particolato: normalmente tale conversione non supera il 10% (circa il 90% degli SO$_x$ è costituito da SO$_2$). Il tenore in zolfo in uscita dalla sezione di combustione è normalmente compreso tra 50 mg/Nm3 e 250 mg/Nm3 (Benassi, 2000). Una serie di differenti reazioni si riferiscono al processo di desolforazione degli effluenti gassosi con contestuale solfatazione della calce. Si tratta di reazioni esotermiche per le quali, a prescindere dalla specifica interazione chimica, si ottiene come prodotto finale CaSO$_4$.

\[
\begin{align*}
\text{CaO}(s) + \text{SO}_2(g) & \leftrightarrow \text{CaSO}_3(s) \quad (3.9) \\
\text{CaSO}_3(s) + \frac{1}{2}\text{O}_2(g) & \leftrightarrow \text{CaSO}_4(s) \quad (3.10) \\
\text{CaO}(s) + \text{SO}_2(g) + \frac{1}{2}\text{O}_2(g) & \leftrightarrow \text{CaSO}_4(s) \quad (3.11) \\
\text{SO}_2(g) + \frac{1}{2}\text{O}_2(g) & \leftrightarrow \text{SO}_3(s) \quad (3.12) \\
\text{CaO}(s) + \text{SO}_3(g) & \leftrightarrow \text{CaSO}_4(s) \quad (3.13) \\
4\text{CaO}(s) + 4\text{SO}_2(g) & \leftrightarrow 4\text{CaS}(s) + 3\text{CaSO}_4(s) \quad (3.14) \\
4\text{CaSO}_3(s) & \leftrightarrow 4\text{CaS}(s) + 3\text{CaSO}_4(s) \quad (3.15) \\
\text{CaS}(s) + 2\text{O}_2(g) & \leftrightarrow \text{CaSO}_4(s) \quad (3.16)
\end{align*}
\]

Il processo di solfatazione è molto complesso. La reazione diretta tra CaO e SO$_2$ produce solfito di calcio (CaSO$_3$) che, in presenza di ossigeno genera solfato di calcio (CaSO$_4$) secondo i meccanismi riportati nella reazione (3.9), nella reazione (3.10) e nella reazione (3.11). Il CaSO$_4$ può essere altresì generato dalla reazione dell’SO$_3$, derivante dall’ossidazione di SO$_2$, con il CaO (reazioni (3.12) e (3.13)). È peraltro possibile che il solfito di calcio (CaSO$_3$) subisca un processo di decomposizione dando luogo a solfato di calcio (CaSO$_4$) e a solfuro di calcio (CaS) e che quest’ultimo, in condizioni ossidanti, a sua volta formi nuovamente solfato di calcio (reazioni (3.15) e (3.16)). Le reazioni (3.9) e (3.10) assumono importanza per bassi valori di temperatura dove il composto CaSO$_3$ è più stabile, mentre le reazioni (3.11) e (3.12) acquistano rilevanza per temperature superiori a 850°C: ciò è imputabile al fatto che, alle alte temperature, il solfito di calcio non è più una specie termodinamicamente stabile. Il carbonato di calcio può reagire e generare solfuri e solfati di calcio (3.17) mentre l’idrossido di calcio può formare solfito di calcio (3.18).

\[
\begin{align*}
\text{CaCO}_3(s) + \text{SO}_2(g) + \frac{1}{2}\text{O}_2(g) & \leftrightarrow \text{CaSO}_4(s) + \text{CO}_2(g) \quad (3.17) \\
\text{Ca(OH)}_2(s) + \text{SO}_2(g) & \leftrightarrow \text{CaSO}_3(s) + \text{H}_2\text{O}(g) \quad (3.18)
\end{align*}
\]

Nel caso di dosaggio di sorbenti dolomitici, le reazioni risultano invece essere le seguenti.

\[
\begin{align*}
\text{MgO}(s) + \text{SO}_2(g) + \frac{1}{2}\text{O}_2(g) & \leftrightarrow \text{MgSO}_4(s) \quad (3.19) \\
\text{CaO} \cdot \text{MgO}(s) + \text{SO}_2(g) + \frac{1}{2}\text{O}_2(g) & \leftrightarrow \text{CaSO}_4(s) + \text{MgO}(s) \quad (3.20)
\end{align*}
\]

La stechiometria della reazione di solfatazione indica come essa sia di primo ordine rispetto all’SO$_2$ e di mezzo
ordine rispetto all’O\textsubscript{2}. Inoltre è bene considerare che la presenza all’equilibrio di SO\textsubscript{3} è generalmente di un ordine di grandezza inferiore rispetto all’SO\textsubscript{2}.

Una delle caratteristiche principali del processo è la formazione graduale di depositi di CaSO\textsubscript{4}. Tali depositi, nelle prime fasi della reazione sono nella forma di cristalli o di nuclei isolati e solo successivamente formano un vero e proprio strato di solfato caratterizzato da una elevata fragilità (Stanmore e Gilot, 2005). I limiti inferiori di temperatura affinché il processo avvenga dipendono infatti non solo da una serie di complesse interazioni tra la cinetica e la sinterizzazione, ma anche dalla formazione dello strato di CaSO\textsubscript{4} sulla superficie reattiva del CaO: normalmente si ritiene che tale limite sia attorno a 870-900°C (Muzio e Offen, 1987). Col progredire della reazione, lo strato di CaSO\textsubscript{4} tende ad accrescere sulla superficie esterna del sorbente implicando il fatto che l’S\textsubscript{O}2 debba diffondere attraverso tale strato prima di raggiungere il CaO non reagito. La formazione di questo composto costituisce quindi un limite intrinseco all’efficienza di neutralizzazione ad alta temperatura dell’S\textsubscript{O}2.

Questo è dovuto ai meccanismi dell’assorbimento chimico dell’S\textsubscript{O}2 che presuppongono trasferimento di massa esterno alla particella, processi diffusionali intra-particellari all’interno dei pori e processi di diffusione in fase solida attraverso i prodotti di reazione nonché reazioni chimiche in fase eterogenea alla superficie della particella stessa. La limitazione del sorbente verso l’S\textsubscript{O}2 dipende più che altro da barriere al trasferimento di massa generate per effetto della formazione di CaSO\textsubscript{4} che, avendo un volume molare maggiore del CaO, promuove l’occlusione dei pori impedendo il contatto tra il gas e il sorbente con la formazione di un nucleo non reagito. Sostanzialmente, sebbene all’interno del sorbente sia ancora presente materiale attivo (sotto forma di CaO), l’ostruzione dei pori causata dalle prime reazioni di solfatazione, impedisce all’S\textsubscript{O}2 di penetrare ulteriormente all’interno e venire in contatto col materiale sorbente ancora disponibile e non reagito (Figura 3.1).

\begin{center}
\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{solfatazione.png}
\caption{Schema del processo di solfatazione di una particella calcica. (Anthony e Granatstein, 2001).}
\end{figure}
\end{center}

Teoricamente, una mole di CaO o di CaCO\textsubscript{3} è sufficiente per garantire la rimozione di una mole di SO\textsubscript{2} (rateo stechiometrico pari ad 1). Tuttavia, nella pratica, è solitamente necessario dosare un quantitativo maggiore rispetto allo stechiometrico: questo è dovuto alle limitazioni dettate dalla formazione dello strato di CaSO\textsubscript{4} che impedisce la reazione completa di tutto il reagente dosato. D’altra parte, nel caso in cui il sorbente venga additivato in notevole eccesso, si verificano problematiche opposte, come un incremento dei volumi e delle produzioni di residui di trattamento (Wang et al., 2005).
L’efficienza di rimozione è anche influenzata dalla presenza a livello locale di zone riducenti all’interno del combustore. Questo fa sì che nei prodotti di reazione possano essere presenti sia CaSO₄, sia modeste quantità di CaS (che appunto si forma in condizioni riducenti). Analisi sperimentali di laboratorio compiute da Makarytchev et al. (1995), hanno dimostrato come l’alternarsi di zone riducenti ed ossidanti sia in grado di produrre un effetto positivo circa il grado di utilizzazione del sorbente. Nelle regioni ossidanti viene in ogni caso generato lo strato di CaSO₄ esterno, ma per effetto delle regioni riducenti il CaO non reagito all’interno del nucleo del sorbente è sostituito in parte della generazione di CaS.

Le reazioni di solfatazione sono influenzate da numerosi fattori operativi (come il tempo di residenza, la temperatura, il rapporto Ca/S, ecc.), senza contare che sorbenti di differente genesi, anche a parità di elementi chimici caratteristici, presentano diverse efficienze di rimozione. Il rapporto Ca/S (quantità di sorbente dosato, rispetto alla quantità iniziale di zolfo) è indice della qualità del sorbente, rappresentando come esso sia utilizzato durante il processo di rimozione. La Figura 3.2 e la Tabella 3.1 riportano rispettivamente l’effetto della tipologia di sorbente e le varie efficienze di rimozione ottenibili per un rapporto Ca/S pari a 2.

![Figura 3.2 – Effetto della tipologia di sorbente sulla rimozione di SO₂. (Muzio e Offen, 1987).](image)

Al crescere del rapporto stoechiometrico Ca/S e passando dai carbonati agli ossidi, meglio se di natura dolomitica, l’efficienza di rimozione nei confronti dell’SΟ₂ aumenta.

Nonostante il magnesio sia una sostanza prevalentemente inerte nei confronti dei composti acidi, si evidenzia come i materiali dolomitici siano più reattivi rispetto a quelli eminentemente calcici.

Tabella 3.1 – Efficienze di rimozione per varie tipologie di sorbente. (Muzio e Offen, 1987).

<table>
<thead>
<tr>
<th>Sorbente</th>
<th>Efficienza di rimozione dell’SΟ₂ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcare</td>
<td>30-45%</td>
</tr>
<tr>
<td>Dolomite</td>
<td>40-60%</td>
</tr>
<tr>
<td>Calce idrata calcica</td>
<td>40-60%</td>
</tr>
<tr>
<td>Calce idrata dolomitica</td>
<td>50-65%</td>
</tr>
</tbody>
</table>

Nel caso di dosaggio di calce idrata dolomitica l’influenza della temperatura risulta essere maggiormente marcatà, mentre i calcari mostrano un comportamento di minore sensibilità. La reazione di assorbimento dell’anidride solforosa da parte della calce viva avviene a partire dai 300°C e diventa sempre più veloce all’aumentare della temperatura, in particolare al di sopra dei 400°C (Muzio e Offen, 1987). I picchi di
rimozione per i materiali idrati si assestano intorno ai 1000-1050°C, facendo attenzione a mantenere temperature inferiori ai 1200°C per limitare la sinterizzazione (il prodotto di solfatazione CaSO₄ è instabile a temperature superiori ai 1200°C ed il limite inferiore per la sua formazione si assesta a circa 870-900°C) (Muzio e Offen, 1987; Cheng et al., 2003). Ciascun sorbente dosato reagisce inoltre in maniera differente: Muzio e Offen (1987) riportano come la superficie specifica si evolva in modo differente a seconda del reagente utilizzato, con processi che variano al variare della temperatura. Ad esempio, il calcare subisce dapprima un aumento e successivamente una riduzione della propria superficie specifica al decrescere della temperatura. D’altra parte, la calce idrata calcia manifesta esclusivamente una riduzione della superficie specifica stessa.

L’intervallo di temperatura all’interno del quale si sviluppano i processi di desolforazione svolge un ruolo molto importante: il superamento di valori di temperatura di 1250°C comporta la sinterizzazione della superficie del sorbente, mentre temperature inferiori a 750°C fanno sì che la reazione tenda a cessare. Un esempio dell’effetto della temperatura sulla capacità di cattura dell’anidride solforosa è riportato in Figura 3.3.

![Figura 3.3 – Effetto della temperatura sulla capacità di rimozione di SO2 dei sorbenti. (Muzio e Offen, 1987).](image)

A seconda delle caratteristiche specifiche del reagente utilizzato, è possibile raggiungere un’efficienza di rimozione dell’S0₂ che va dal 30% ad un massimo del 75% con un rapporto Ca/S pari a 2 (Muzio e Offen, 1987).

Per quanto concerne la dimensione delle particelle del sorbente, sempre Muzio e Offen (1987) riportano come la rimozione di SO₂ aumenti al diminuire delle dimensioni granulometriche. Tuttavia è bene considerare l’aspetto economico che riguarda la frammentazione a dimensioni notevolmente ridotte del sorbente dosato, che potrebbe comportare minori benefici complessivi. É ritenuto che una efficienza di rimozione pari al 50% possa essere ottenuta utilizzando sorbente nella dimensione tra i 5 µm ed i 100 µm. Valori minori garantiscono rimozioni maggiormente elevate, anche se fenomeni di resistenza diffusiva riducono il beneficio per dimensioni inferiori a 1-2 µm (Cheng et al., 2003).

Anche la distribuzione delle porosità del sorbente svolge un importante ruolo nella rimozione dell’inquinante: per dimensioni del sorbente superiori ai 2 µm sono considerati ragionevoli grandezze dei pori tra 5 e 30 nm:
in questo modo la superficie specifica è sufficiente per garantire la reazione di solfatazione ed evitare una rapida occlusione dei pori (Cheng et al., 2003).

Il livello iniziale di concentrazione dell’SO₂ nel flusso gassoso figura come ulteriore parametro in grado di influire sulla capacità di rimozione: è possibile evidenziare una dipendenza lineare con coefficiente angolare pari a 0,25. Concentrazioni elevate di SO₂ comportano un aumento dell’efficienza di abbattimento dovuta dall’aumento dell’utilizzo di materiale reattivo indotto dal miglior contatto tra gas e solido (Figura 3.4). Per concentrazioni iniziali di zolfo elevate, i processi che limitano la solfatazione sono l’iniziale occlusione dei pori più piccoli e la diffusione dell’SO₂ attraverso lo strato di CaSO₄ formatosi sulle particelle. D’altra parte, per valori di zolfo più bassi, un ruolo di maggiore rilevanza viene svolto dalla resistenza diffusiva dell’SO₂ dal gas alla superficie della particella.

![Figura 3.4 – Effetto della concentrazione di SO2 sulla rimozione dell'SO2 utilizzando calce idrata dolomitica. (Muzio e Offen, 1987).](image)

É possibile affermare che circa il 45% della rimozione si verifica nei primi 0,3 secondi di reazione, e successivamente si verifica una marcata riduzione del rateo di reazione stesso. Tuttavia, già per tempi di residenza dell’ordine dei 2 secondi, è possibile garantire ragionevoli tassi di rimozione di SO₂ (Cheng et al., 2003). L’iniezione di sorbenti ad alta temperatura ha anche l’effetto di alterare le proprietà del particolato del gas da trattare. In particolare modo vengono modificate le caratteristiche di distribuzione dimensionale che tende ad essere spostata verso classi dimensionali minori, ed in maniera marcatamente inferiore si possono registrare effetti, generalmente trascurabili, sulla coesione (tende a crescere) ed in secondo luogo sulla resistività elettrica (Paragrafo 3.2.3).

In conclusione, per quanto riguarda l’iniezione di sorbenti per la rimozione di anidride solforosa:

- Il limite inferiore di temperatura affinché il processo di desolforazione avvenga correttamente si aggira attorno ai 900°C (temperature superiori ai 1250°C comportano sinterizzazione, mentre temperature inferiori ai 750°C comportano un sostanziale rallentamento delle reazioni);
- Lo strato di CaSO₄, la cui velocità di formazione è massima per valori di temperatura compresi tra 870-900°C; costituisce un limite al raggiungimento del completo utilizzo del sorbente e determina la conseguente necessità di operare dosaggi sovra-stechiometrici;
- L’alternarsi di zone riducenti ed ossidanti è in grado di produrre un effetto positivo circa il grado di utilizzerazione del sorbente;
- I reagenti caratterizzati dalla presenza della componente magnesiaca sono tipicamente più reattivi rispetto a quelli in cui tale componente è assente;
- Dimensioni ottimali del sorbente (anche considerando i costi/benefici) si aggirano tra i 5-10 μm;
- Un corretto tempo di contatto per garantire ragionevoli tassi di rimozione si aggira attorno ai 2 secondi.

3.1.4 Rimozione dell’acido cloridrico
Per quanto concerne l’incenerimento dei rifiuti, la presenza di cloro nei fumi è da attribuire ai rifiuti plastici (come ad esempio il PVC, PVDC) che vengono introdotti in camera di combustione. Alle condizioni di temperatura alle quali si sviluppa la combustione si verifica la pressoché completa trasformazione del cloro organico delle plastiche in acido cloridrico (HCl). Oltre ad essere dannoso per la salute umana, l’HCl è in grado di arrecare danni alle superfici a contatto con il flusso gassoso a causa di effetti di corrosione acida. Normalmente i tenori di acido cloridrico in uscita dalla sezione di combustione sono compresi tra 600 mg/Nm³ e 2000 mg/Nm³, ripartiti per il 70% nei fumi, per il 10% come scorie nel forno e per il 20% trattenuti dalle ceneri volanti (Benassi, 2000).

Le reazioni coinvolte nella rimozione dell’HCl sono le seguenti:

\[
\begin{align*}
\text{CaCO}_3(s) + 2\text{HCl}(g) & \leftrightarrow \text{CaCl}_2(s) + \text{H}_2\text{O}(g) + \text{CO}_2(g) \\
\text{CaO}(s) + 2\text{HCl}(g) & \leftrightarrow \text{CaCl}_2(s) + \text{H}_2\text{O}(g) \\
\text{MgO}(s) + 2\text{HCl}(g) & \leftrightarrow \text{MgCl}_2(s) + \text{H}_2\text{O}(g) \\
\text{Ca(OH)}_2(s) + 2\text{HCl}(g) & \leftrightarrow \text{CaCl}_2(s) + \text{H}_2\text{O}(g)
\end{align*}
\]

(3.21) (3.22) (3.23) (3.24)

In aggiunta al cloruro di calcio, i numerosi prodotti che possono scaturire dal contatto tra l’ossido di calcio e l’acido cloridrico e le loro reazioni intermedie sono riportati nella figura seguente (Figura 3.5).

![Figura 3.5 – Schema delle reazioni tra i composti del calcio e del cloro. (Partanen et al., 2005b).](image-url)
La reazione di rimozione dell’HCl ad opera del CaO è stato dimostrato essere di primo ordine rispetto alla concentrazione di HCl (Partanen et al., 2005a; Dou et al., 2001). L’efficienza di rimozione dell’HCl cresce con l’aumentare della concentrazione dello stesso nella miscela gassosa. Infatti, un’elevata concentrazione di acido cloridrico favorisce il contatto tra il gas e la superficie del materiale solido reagente, favorendone la diffusione ed accelerandone la reazione.

Il quantitativo di CaCl$_2$ che è possibile ottenere dipende (Partanen et al., 2005a):

- Dalle caratteristiche tipiche del sorbente: come la sua dimensione e la sua composizione chimica;
- Dal tempo di contatto solido-gas e dal profilo di temperatura che è presente in camera di combustione;
- Dalla concentrazione dell’HCl nell’efflusso gassoso;
- Dalla concentrazione di vapor d’acqua ed anidride carbonica nel flusso gassoso.

Il rateo di reazione e la completezza della reazione stessa sono influenzati dalla specifica tipologia di sorbente adottata, considerando anche il fatto che una dimensione ridotta dimensione particellare del reagente garantisce una migliore cattura. Più le particelle di sorbente sono di dimensioni ridotte infatti, maggiore è la reattività e la capacità di rimozione dell’HCl, come osservabile dalla Figura 3.6.

In aggiunta alla migliore capacità di conversione globale, un sorbente caratterizzato da una più piccola distribuzione granulometrica garantisce anche ratei di conversione più elevati durante le prime fasi di reazione. La scelta ottimale delle dimensioni granulometriche delle particelle dovrebbe in ogni caso essere dipendente dalla velocità del flusso gassoso e dalle caratteristiche operative del sistema di combustione, al fine di garantire un sufficiente tempo di residenza del sorbente nel reattore.

Partanen et al. (2005a) hanno inoltre confrontato a scala di laboratorio le efficienze di differenti tipologie di sorbenti utilizzati per trattare i medesimi flussi gassosi in condizioni controllate (2000 ppm di HCl, 5% di O$_2$ e 10% di CO$_2$ in atmosfera di N$_2$): dalle analisi emerge come le migliori prestazioni sono garantite dai sorbenti dolomitici. La ragione per la quale questo tipo di sorbenti hanno mostrato migliori efficienze è probabilmente da attribuire alla presenza di MgO. L’ossido di magnesio potrebbe essere alla base di una differente struttura porosa del sorbente ed inoltre facilitare l’accesso di HCl negli strati più interni ove è presente CaO non reagito. Inoltre
l’ossido di magnesio rappresenta una componente in grado di innalzare la temperatura di sinterizzazione e quindi salvaguardare la struttura del reagente.

Allo stesso modo di quanto osservato nel caso dell’SO₂, anche per l’HCl le temperature svolgono un ruolo rilevante nei confronti dell’efficacia di rimozione del sorbente. Per temperature di 850°C l’effetto dimensionale subisce una interferenza dettata dalla generazione di una fase liquida di CaCl₂ saturata con CaO. Il prodotto di reazione CaCl₂ ha un basso punto di fusione (775°C) e la presenza di un suo strato liquido rende il sorbente appiccicoso e causa la formazione di agglomerati eventualmente dannosi per le superfici a contatto con il flusso gassoso trattato (Partanen et al., 2005a). Il rateo di reazione è controllato nelle prime fasi da reazioni chimiche e/o dalla diffusione nei pori, mentre nelle fasi successive è controllato dalla diffusione attraverso lo strato di prodotti che viene a generarsi.

Weinell et al. (1992) hanno osservato in laboratorio come la reazione di clorurazione sia migliore nella finestra di temperatura compresa tra i 500°C ed i 600°C, mentre per temperature superiori ai 750°C si verifichi la formazione della fase liquida di CaCl₂. Tuttavia, le reazioni di clorurazione subiscono una inversione per temperature superiori ai 500°C e l’effetto di riduzione di cattura a temperature superiori ai 750°C è con ogni probabilità da accreditare non tanto alla formazione di una fase liquida, ma piuttosto alla reversibilità delle reazioni stesse.

Alle temperature ottimali, è possibile ottenere una completa conversione della calce in cloruro di calcio, in funzione delle dimensioni e della superficie specifica delle particelle del sorbente. Anche nel caso della rimozione dell’HCl, così come si era analizzato nel caso dell’SO₂, la cinetica di reazione è vincolata dalla diffusione dell’inquinante tra la fase gassosa e la fase solida (Weinell et al.,1992) ed è ancora più legata alla reversibilità delle reazioni di assorbimento dell’HCl ad alta temperatura.

Durante le fasi iniziali della reazione di clorurazione è possibile osservare anche la formazione dell’idrossicloruro di calcio CaClOH (Figura 3.5). Questo composto presenta particolare rilevanza giacché si tratta del primo prodotto che si viene a formare quando l’HCl è assorbito dalle particelle di reagente solido. A temperature di circa 500°C questo composto richiede sufficienti quantitativi di vapor d’acqua per essere stabile, quantitativi che risultano essere crescenti al crescere della temperatura (per esempio, una concentrazione di vapor d’acqua pari al 10% è sufficiente a garantire la stabilità del CaClOH a 500°C) (Partanen et al., 2005b). D’altra parte l’idrossicloruro di calcio è termodinamicamente instabile al di sopra dei 700°C e, per concentrazioni elevate di HCl, non risulta essere il prodotto di reazione stabile: il CaClOH che si forma negli stadi iniziali della reazione è infatti convertito a CaCl₂ al proseguire del processo di clorurazione (Weinell et al.,1992, Gullet et al., 1992).

Dou et al. (2001) hanno dimostrato attraverso un apparato sperimentale come al crescere della concentrazione di HCl nel gas da trattare segua una crescita sia del rateo di reazione sia della produzione di CaCl₂. Questo va quindi a confermare che, come precedentemente affermato, la reazione tra il sorbente e l’HCl risulta essere di primo ordine rispetto alla concentrazione dell’HCl stesso. La presenza di umidità nel flusso gassoso da trattare influenza fortemente la capacità di rimozione del sorbente (Figura 3.7): nonostante questo, alcune quantità di CaCl₂ vengono ugualmente prodotte anche in condizioni di umidità relativa pari al 14%, seppure in quantità
marcatamente inferiori (Partanen et al., 2005a). Ad ogni modo, elevati tenori di umidità e temperature superiori a quelle ottimali causano riduzioni nell’efficienza siccome il processo è termodinamicamente limitato in queste condizioni.

![Diagram](image1)

Figura 3.7 – Effetto della presenza di vapor d’acqua sulla conversione a CaCl2 ad una temperatura di 850°C utilizzando calcare pre-calcinato. La composizione del gas trattato è la seguente: 2000 ppm HCl, 5% O2 e y% di H2O in N2. (Partanen et al., 2005a).

La presenza di CO2 ha invece effetti trascurabili per temperature attorno agli 850°C. D’altra parte, nel caso in cui sia presente anidride carbonica a temperature inferiori (dell’ordine dei 650°C), la carbonatazione (che ha luogo contemporaneamente alla clorurazione) garantisce una maggiore capacità di conversione del sorbente rispetto a flussi gassosi nei quali la CO2 non è presente (Partanen et al., 2005a). La spiegazione di questo fenomeno è dovuta al fatto che la carbonatazione è rapida nelle condizioni atmosferiche esaminate. Questo significa che, nel caso di carbonatazione e clorurazione concorrenti, l’adsorbimento dell’HCl inizialmente agisce seguendo la reazione (3.22), ma successivamente la reazione (3.21) diventa la più rilevante. La reazione (3.21) evidenzia come due prodotti gassosi (H2O e CO2) tendano a lasciare la particella di sorbente: in questo modo si verificherebbe la formazione di larghi vuoti nella struttura del sorbente, tali da garantire un miglioramento nella reazione di rimozione dell’HCl. In aggiunta, la formazione dello strato liquido di CaCl2 per temperature superiori ai 700°C potrebbe causare variazioni strutturali nel sorbente in grado di migliorarne l’efficienza. In Figura 3.8 è possibile osservare l’effetto della CO2 sulla conversione a CaCl2 di calcare pre-calcinato.

![Diagram](image2)

Figura 3.8 – Effetto della presenza di CO2 sulla conversione a CaCl2 ad una temperatura di 650°C utilizzando calcare pre-calcinato. La composizione del gas trattato è la seguente: 2000 ppm HCl, 5% O2 e x% di CO2 in N2. (Partanen et al., 2005a).
In conclusione, per quanto riguarda l’iniezione di sorbenti per la rimozione di acido cloridrico:

- Una dimensione ridotta del reagente garantisce una migliore cattura e ratei di reazione più elevati nelle prime fasi;
- La presenza di MgO garantisce anche in questo caso migliori prestazioni di rimozione dei sorbenti dolomitici rispetto a quelli prettamente calcici;
- Per temperature di 850°C l’effetto dimensionale subisce una interferenza dettata dalla generazione di una fase liquida di CaCl₂ saturata con CaO avente marcate caratteristiche di adesività oltre ad essere potenzialmente dannosa per le superfici a contatto con il flusso gassoso trattato. La presenza di detta fase liquida potrebbe sia costituire un limite al raggiungimento di efficienze elevate (costituendo un “ostacolo”), sia essere promotrice di variazioni strutturali favorevoli (liberando pori del sorbente altrimenti non accessibili);
- La fase liquida di CaCl₂ si manifesta in maniera più marcata per temperature superiori ai 750°C, mentre la reazione di clorurazione risulta essere ottimale nella finestra di temperatura tra i 500°C ed i 600°C (probabilmente dovuta al rilascio di H₂O gassosa dal sorbente in grado di liberare pori interni);
- La reazione tra il sorbente e l’HCl si presenta come di primo ordine rispetto alla concentrazione dell’HCl stesso;
- La presenza di umidità influenza negativamente la reazione, mentre la presenza di CO₂ è ininfluente per temperature superiori agli 850°C e favorevole alla rimozione per temperature intorno ai 650°C.

3.1.5 Rimozione dell’acido fluoridrico

L’acido fluoridrico è estremamente tossico sia per inalazione della forma gassosa e l’ingestione risulta spesso essere mortale. L’HF è un agente corrosivo estremamente potente, in grado di corroedere il vetro e diversi metalli. Il fluoro, presente per lo più nei materiali inerti (bottiglie, alluminio, materie plastiche come imballaggi medici, nei tessuti sintetici, nei residui di pesticidi, ecc.), determina emissioni di HF in proporzione al contenuto dell’alogeno nei rifiuti e presenta tenori in uscita dalla sezione di combustione compresi tra 0,5 mg/Nm³ e 20 mg/Nm³. Si ripartisce per il 35% nelle scorie, per il 40% nelle ceneri volanti e per il restante 25% in forma gassosa nei fumi (Benassi, 2000).

La reazione di fluorurazione tra CaO e CaCO₃ con HF è espressa attraverso le seguenti (Qi et al., 2008a):

\[
\begin{align*}
\text{CaO(s)} + 2\text{HF(g)} & \rightleftharpoons \text{CaF}_2(s) + \text{H}_2\text{O(g)} \quad (3.25) \\
\text{CaCO}_3(s) + 2\text{HF(g)} & \rightleftharpoons \text{CaF}_2(s) + \text{H}_2\text{O(g)} + \text{CO}_2(g) \quad (3.26) \\
\text{MgO(s)} + 2\text{HF(g)} & \rightleftharpoons \text{MgF}_2(s) + \text{H}_2\text{O(g)} \quad (3.27) \\
\text{MgCO}_3(s) + 2\text{HF(g)} & \rightleftharpoons \text{MgF}_2(s) + \text{H}_2\text{O(g)} + \text{CO}_2(g) \quad (3.28)
\end{align*}
\]

Qi et al. (2008a) hanno condotto, mediante l’utilizzo di un forno tubolare a letto fisso, una serie di esperimenti alla scala di laboratorio al fine di indagare l’influenza della temperatura di combustione e del tempo di residenza al variare dei quantitativi di additivazione di sorbenti a base di calce circa l’assorbimento del fluoro.
derivante dalla combustione del carbone. In particolare lo studio che ha preso in considerazione diverse tipologie di carbone, ha evidenziato come vi sia la possibilità di utilizzare sorbenti calcici per la rimozione dell’HF, analizzando l’efficacia del CaO. Le potenzialità di rimozione sono fortemente dipendenti dalla temperatura (Figura 3.9), con efficienze via via crescenti fino a 900°C e con progressiva diminuzione oltre detto valore di temperatura. Quando la temperatura supera 900°C, si instaura una competizione per quanto conserne la reazione diretta e quella inversa, per le reazioni (3.25) e (3.26), che porta alla diminuzione dell’efficienza di rimozione dell’HF per effetto della parziale riformazione di HF gassoso al posto del prodotto di reazione CaF₂ (reazione idrolitica di CaF₂ a formare HF).

![Immagine 1](image1.png)

Figura 3.9 – Effetto della temperatura sulla cattura dell’HF. (Qi Qing-jie et al., 2008a).

Lo studio ha messo in evidenza che il CaO, miscelato direttamente al carbone, è in grado di garantire le ragionevoli efficienze di rimozione (circa 65%) per tempi di residenza ottimali, valutati in relazione alle specifiche modalità secondo cui è stata condotta la ricerca, dell’ordine di 5-10 minuti (Figura 3.10). L’efficienza di rimozione cala gradualmente per ulteriori incrementi del tempo di residenza (la reazione (3.25) e la reazione (3.26) procedono nella direzione indesiderata). Lo studio ha messo in luce che il processo di dissoluzione del CaF₂ tende comunque a stabilizzarsi raggiungendo una condizione di equilibrio per tempi di reazione superiori ai 30 minuti: a questo punto gli effetti del tempo di residenza sono ridotti sul tasso di rimozione.

![Immagine 2](image2.png)

Figura 3.10 – Effetto del tempo di residenza sulla cattura dell’HF. (Qi et al., 2008a).
Come illustrato in Figura 3.11, il rapporto in peso Ca/F (w(Ca)/w(F)) risulta essere di notevole rilevanza per la ritenzione del fluoro: l’ottimo si assegna per valori del rapporto Ca/F compresi tra 60-75, mentre i primi risultati sperimentali di un certo rilievo si osservano per valori superiori a 20. Questo si deve alla presenza di meccanismi di rimozione competitivi alla ritenzione dell’HF, che tuttavia rimangono ancora sconosciuti nel dettaglio (Qi et al., 2008a). Ad ogni modo, i risultati mostrano che il tasso di rimozione aumenta all’aumentare del quantitativo di sorbente dosato.

Figura 3.11 – Effetto del rapporto in peso Ca/F sulla cattura dell’HF. (Qi et al., 2008a).

Un altro effetto osservato è la dipendenza dalla dimensione granulometrica del sorbente sulla capacità di assorbimento dell’HF: il tasso di rimozione aumenta ed è favorito per dimensioni particellari ridotte e quindi per superfici specifiche elevate. D’altra parte, dimensioni ridotte possono anche essere indice di migliori microstrutture in grado di ridurre le resistenze diffusive. I risultati riportati in Tabella 3.2 confermano quanto affermato in precedenza (condizioni di reazione: 1000°C, tempo di reazione pari a 10 minuti, Ca/F = 60 e Ca/S = 2,5).

Tabella 3.2 – Effetto della dimensione del sorbente sulla capacità di cattura dell’HF. (Qi et al., 2008a).

<table>
<thead>
<tr>
<th>Calcari testati</th>
<th>Dimensione equivalente (μm)</th>
<th>98</th>
<th>55</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tasso di cattura dell’HF (%)</td>
<td>62,95</td>
<td>72,30</td>
<td>75,38</td>
<td></td>
</tr>
</tbody>
</table>

In conclusione, per quanto riguarda l’iniezione di sorbenti per la rimozione di acido fluoridrico:

- L’efficienza di rimozione ad opera di CaO è crescente fino a valore di temperatura di circa 900°C;
- Un ottimale tempo di residenza influenza positivamente la rimozione. Nel caso delle sperimentazioni di laboratorio (le cui indicazioni, pur delineando una tendenza, hanno carattere puramente teorico), a seguito della miscelazione di additivi a base calce con carbone, i valori di efficienza maggiori sono stati riscontrati per tempi di residenza compresi tra i 5-10 minuti. Successivamente l’influenza è negativa (reazione idrolitica di CaF₂ a formare HF) ed infine oltre i 30 minuti l’influenza non è più significativamente rilevante. Inoltre, dimensioni ridotte del sorbente consentono le migliori efficienze;
- Il rapporto Ca/F ottimale si verifica per valori di 60-75.

52
3.1.6 Rimozioni contemporanee ed effetti su altri inquinanti nel flusso gassoso

Una interessante analisi può essere compiuta per quanto riguarda le rimozioni contestuali di inquinanti gassosi. Oltre alle reazioni di rimozione dei singoli inquinanti si sviluppano le seguenti:

\[
\begin{align*}
4\text{HCl} + \text{O}_2 & \leftrightarrow 2\text{H}_2\text{O} + 2\text{Cl}_2 \\
\text{Cl}_2 + \text{SO}_2 + \text{H}_2\text{O} & \leftrightarrow 2\text{HCl} + \text{SO}_3 \\
\text{CaO} + \text{SO}_3 & \leftrightarrow \text{CaSO}_4 \\
\text{CaO} + \text{SO}_2 + \frac{1}{2} \text{O}_2 & \leftrightarrow \text{CaSO}_4
\end{align*}
\]

In particolare, nel caso di cattura sia di HCl sia di SO\(_2\), numerosi studi sperimentali (tra i quali quelli di Matsukata et al. 1996 e Partanen et al. 2005c) hanno dimostrato che la presenza di acido cloridrico promuove la cattura dell’anidride solforosa alle alte temperature, incrementando la conversione a CaSO\(_4\). Matsukata et al. (1996) hanno suggerito come possibile spiegazione il fatto che la formazione della fase liquida di CaCl\(_2\) e CaSO\(_4\) possa essere in grado di migliorare l’efficienza complessiva di reazione, oppure come tale miglioramento sia da accreditare alla formazione di vuoti nella struttura del sorbente in grado di consentire agli inquinanti di penetrare in maggiore profondità. Partanen et al. (2005c) hanno condotto studi a livello di laboratorio circa la cattura contestuale attraverso esperimenti di trattamento di flussi gassosi contenenti HCl e SO\(_2\) per temperature comprese tra i 650°C e gli 850°C utilizzando sorbenti calcinati. Gli esperimenti mostrano come i due prodotti di reazione (CaCl\(_2\) e CaSO\(_4\)) si formino in concomitanza nel caso di adsorbimenti simultanei. Come si può osservare dalla Figura 3.12, il comportamento nel caso di rimozione di HCl manifesta notevoli differenze qualora vi sia presenza contestuale di SO\(_2\): in quest’ultimo caso infatti, la conversione a CaCl\(_2\) presenta valori decisamente ridotti ed anzi tende col trascorrere del tempo allo zero.

![Conversione di CaO a CaCl2 ad una temperatura di 850°C: adsorbimento simultaneo all'SO2 ed adsorbimento indipendente. Composizione del gas: x ppm SO2, y ppm HCl e 5% O2 in N2. (Partanen et al., 2005c).](image)
D’altra parte invece, come si può osservare dalla Figura 3.13, un importante miglioramento è stato osservato nel caso di solfatazione in presenza di HCl: a parità del tempo di reazione (150 minuti), nel caso della contestuale rimozione di SO₂ e di HCl, il più alto grado di conversione dell’SO₂ a CaSO₄ ottenibile è risultato essere pari al 75%, mentre nel caso della sola rimozione dell’SO₂ il massimo livello di conversione a CaSO₄ è stato pari al 27%. Analoghi risultati sono stati ottenuti nel caso di esperimenti condotti a 650°C.

Anche nel caso di presenza di CO₂ nel flusso gassoso la formazione a 650°C di CaCl₂ è inibita seppure presenti valori maggiori rispetto a quanto si verifica, alla temperatura di 850°C, in condizioni di simultanea presenza di SO₂ e di HCl e in assenza di CO₂ (Figura 3.14). Per quanto concerne la formazione di CaSO₄, la presenza contestuale di HCl anche in atmosfera con presenza di anidride carbonica garantisce conversioni migliori (Figura 3.15).

![Figura 3.13 – Conversione di CaO a CaSO₄ ad una temperatura di 850°C: adsorbimento simultaneo all’HCl ed adsorbimento indipendente. Composizione del gas: x ppm SO₂, y ppm HCl e 5% O₂ in N₂. (Partanen et al., 2005c).](image1)

![Figura 3.14 – Conversione di CaO a CaCl₂ ad una temperatura di 650°C in presenza di CO₂: adsorbimento simultaneo all’S0₂ ed adsorbimento indipendente. Composizione del gas: x ppm SO₂, y ppm HCl, 5% O₂ e 10% CO₂ in N₂. (Partanen et al., 2005c).](image2)
La formazione di una fase liquida può essere quindi annoverata come possibile giustificazione del miglioramento del grado di solfatazione, siccome la sua generazione potrebbe essere alla base di modifiche strutturali in grado di liberare un maggior numero di vie atte alla diffusione dell’inquinante all’interno della matrice solida del sorbente. D’altra parte questo meccanismo non è in grado di spiegare la riduzione nel processo di clorurazione. La più plausibile spiegazione è che il CaCl$_2$ generato sia successivamente consumato da reazioni con l’S$_2$O avendo come conseguenza sia il miglioramento del grado di solfatazione, sia il peggioramento del grado di clorurazione.

Dagli esperimenti condotti da Matsukata et al. (1996) emerge inoltre come la presenza di HCl garantisca una minore occlusione dei pori e favorisca, in maniera sempre più evidente al crescere del tempo di reazione, l’accelerazione del processo di solfatazione. Questo miglioramento è in grado di condurre ad un utilizzo del sorbente pari al 100%.

In conclusione, per quanto riguarda il comportamento di sorbenti in caso di rimozioni contestuali (S$_2$O e HCl):

- Numerosi studi sperimentali hanno dimostrato che la presenza di acido cloridrico promuove la cattura dell’anidride solforosa alle alte temperature, incrementando la conversione a CaSO$_4$. D’altra parte si manifesta una conversione a CaCl$_2$ decisamente ridotta;
- Nel caso di presenza di CO$_2$ nel flusso gassoso la formazione di CaCl$_2$ è inibita mentre è favorita quella di CaSO$_4$;
- Un possibile spiegazione del miglioramento del grado di conversione a CaSO$_4$ potrebbe essere la formazione di una fase fusa liquida di CaCl$_2$ e CaSO$_4$. Inoltre è possibile che il CaCl$_2$ sia consumato da reazioni con SO$_2$.

Chen et al. (1999) hanno analizzato a scala di laboratorio l’effetto di sorbenti calcici sulla rimozione di metalli pesanti comunemente presenti nei processi di incenerimento rifiuti (Cr, Cu, Pb e Cd), utilizzando un inceneritore a letto fluido operante a 700°C; in particolare è stato indagato il comportamento all’assorbimento...
dinamico dei metalli ad opera del calce aggiunto alla sabbia silicea costituente il letto fluido e l’effetto di alcuni additivi clorurati (organici e inorganici) sulle efficienze di adsorbimento. Al crescere della temperatura si ha una più rapida volatilizzazione dei metalli con una conseguente riduzione della capacità di cattura da parte dei sorbenti. Inoltre, la formazione di cloruri metallici inibisce fortemente l’efficacia di rimozione dei sorbenti stessi, anche se la presenza di alcuni additivi (PVC e NaCl) è in grado di migliorarne la cattura. Nello specifico la gerarchia delle rimozioni alle varie condizioni testate risulta essere la seguente: Pb>Cu>Cr>Cd senza alcun additivo; Cr>Pb>Cu>Cd con PVC come additivo e Cu>Cr>Pb>Cd con NaCl come additivo. I risultati indicano in primo luogo come la presenza di NaCl garantisca in generale migliori capacità di rimozione rispetto al PVC, e come il cadmio sia un metallo estremamente difficile da rimuovere a prescindere dalla condizione testata.

Oltre alla presenza di cloro, anche la presenza di zolfo è in grado di migliorare la capacità di rimozione di alcuni metalli: in particolare notevoli miglioramenti sono ottenibili per quanto riguarda la cattura del cromo e del piombo. Inoltre, additivare una miscela di differenti sorbenti (calce, bauxite e zeolite) potrebbe essere in grado di garantire una capacità di cattura superiore per il 30% a quella ottenibile dall’uso di ciascuno dei singoli composti, anche se già singolarmente i calcari calcinati sono in grado di agire sia sui metalli che su SO₂ ed HCl in maniera contemporanea (Ho et al., 2001).

Studi condotti da Shemwell et al. (2001) hanno analizzato la rimozione contestuale di SO₂, HCl ed NOx grazie al dosaggio di alcuni sali carbossilici (CF - formiato di calcio Ca(COOH)₂, CMA - acetato di calcio e magnesio CaMg₂(CH₂COOH)₆, CP - propionato di calcio Ca(CH₂CH₂COOH)₂) e dell’ossido di calcio CaO. L’utilizzo di sali carbossilici ha suscitato recente interesse viste le caratteristiche del materiale che consentono maggiori resistenze a modifiche strutturali durante il riscaldamento e vista la struttura porosa ad elevata superficie specifica che si viene a generare. I risultati sperimentali mostrano buone efficienze nella rimozione di HCl (intorno all’80%), SO₂ (variabile tra il 30% ed il 70%) e discrete nei confronti degli NOx (tra il 30% ed il 60%).

La cattura dell’HCl e la conseguente riduzione nel flusso gassoso della concentrazione di Cl₂, che si può formare a seguito dell’ossidazione catalizzata dai metalli di transizione (su tutti il rame) secondo la reazione di Deacon (4HCl + O₂ ↔ 2H₂O + 2Cl₂), può giocare un ruolo nel controllo della formazione dei microinquinanti in quanto limitante la formazione di diossine e furani da precursori (Naikwadi e Karasek 1989; Liu et al., 2005).
3.2 Deposti, corrosione ed effetti del dosaggio dei sorbenti ad alta temperatura

Il rifiuto urbano è caratterizzato da elevate concentrazioni di numerosi composti inorganici (zolfo, cloro, metalli alcalini, metalli pesanti, ecc.) che sono trasportati nella corrente dei fumi insieme al materiale particolato che si genera dal processo di combustione.

3.2.1 Formazione di deposite e sporcamento

La presenza di ceneri volanti e di composti gassosi condensabili è alla base dei fenomeni di sporcamento cui sono soggette le caldaie dei termovalorizzatori a seguito della formazione di deposite sulle superfici di scambio termico. Tali depositi possono formarsi all’interno della camera di combustione, ma le sezioni maggiormente interessate sono ubicate nella zona convettiva della caldaia (evaporatori, surriscaldatori ed economizzatori) (Frandsen et al., 2009; Reichelt et al., 2013).

L’accumulo di depositi tende a diminuire l’efficienza del sistema di scambio termico e ad aumentarne il costo di esercizio e di manutenzione: infatti, oltre a comportare una riduzione dell’efficienza del ciclo termodinamico dell’impianto (resistenza termica tra i gas caldi e il fluido termovettore), la presenza di depositi può determinare problemi di intasamento oltre ad avere un impatto negativo sulla corrosione acida ad alta temperatura di parti della caldaia (Lee et al., 2007; Lindberg et al., 2010).

I problemi dovuti ai depositi sono in genere suddivisi in due ampie categorie: incrostazioni di tipo “slagging” e di tipo “fouling”. Lo “slagging” fa riferimento a depositi generalmente formati da particelle di cenere fuse o semi-fuse che si attaccano sulle parti della caldaia esposte principalmente a irraggiamento, come le pareti della camera di combustione e i canali radianti; si tratta prevalentemente di un fenomeno a rapida evoluzione. Il “fouling” è un fenomeno ad evoluzione più lenta del precedente che si caratterizza per i depositi che si formano nei passaggi convettivi della caldaia laddove le temperature sono ancora relativamente elevate ma inferiori alla temperatura di fusione delle ceneri; in questo caso, i depositi sono formati da vapori inorganici (tipicamente Na, K, P e Cl) che condensano sulle superfici relativamente fredde dei fasci tubieri degli scambiatori di calore (Bojer et al., 2008).

In generale la composizione chimica e le caratteristiche fisiche dei depositi variano lungo le diverse zone della sezione d’impianto forno-caldaia per effetto delle temperature quivi presenti (Kostakis, 2011; Phongphiphat et al., 2011): sebbene i meccanismi di formazione di “fouling” e “slagging” non siano i medesimi, entrambi sono strettamente connessi alla tendenza delle componenti della materia minerale contenuta nei rifiuti a liberarsi in forma particellare e quindi fondere oppure a vaporizzare e condensare. Tutti i composti caratterizzati da una temperatura di fusione inferiore o di condensazione superiore a quella della zona di caldaia interessata dal fenomeno, sono presenti in forma liquida o pastosa e manifestano buona aderenza alle superfici. Agglomerandosi con il materiale particolato (ceneri e altri incombusti) presente nei fumi di combustione, possono raggiungere in poco tempo spessori anche considerevoli. Con il passare del tempo, aumentando quindi i depositi, a seguito dell’instaurarsi di fenomeni di sinterizzazione possono venire a formarsi delle vere e
proprie incrostazioni: alla diminuzione della porosità segue un incremento della densità e della tenacia oltre all’aumento della dimensione dei granuli che fondono insieme.

Oltre alle problematiche citate, la formazione di depositi di qualsiasi natura presenta anche un significativo impatto in termini di costi per la loro rimozione nonché in termini di una riduzione degli intervalli di tempo intercorrenti tra due successive operazioni di manutenzione per il ripristino delle condizioni ottimali di funzionamento della caldaia.

I materiali che si depositano negli impianti di termovalorizzazione sono generalmente sali aventi natura acida e punti di fusione relativamente bassi. Si tratta di solfati ricchi di calcio, potassio, sodio e piombo (come ad esempio: PbSO₄, K₃Pb(SO₄)₂/K₂Zn(SO₄)₂, CaSO₄, KNaSO₄, K₂Ca(SO₄)₄, Na₂SO₄, K₂Ca₂(SO₄)₂, K₂Na(SO₄)₂, Ca(Na,K)₂(SO₄)₃, Na₂Ca(SO₄)₂); e in concentrazioni minori silicati e ossidi nonché piccole quantità di fosfati e cloruri (Pfrang-Stotz et al., 2007). Questi composti agiscono da collante e legano tra loro le particelle di cenere.

In Figura 3.16 è schematicamente riportata la struttura e la composizione mineralogica di un deposito formatosi su un tubo di caldaia (Reichelt et al., 2013).

![Figura 3.16 – Struttura e composizione chimica dei depositi di caldaia. (Reichelt et al., 2013).](image)

In un primo momento a contatto con il tubo stesso si forma rapidamente, per reazioni tra le ceneri ed il metallo, un deposito contenente alte concentrazioni di cloruri e di solfati. In virtù del loro basso punto di fusione tali composti agiscono da leganti per gli strati successivi. Questi ultimi sono composti da una matrice di CaSO₄ che ingloba silicati, ossidi e cloruri generati dal processo di combustione. All’interno dei depositi si possono manifestare reazioni tra i cloruri, i solfati ed i gas di combustione in grado di generare composti eutettici (sostanza il cui punto di fusione è più basso di quello delle singole sostanze che la compongono), duri ed altamente corrosivi.

Analisi condotte da Pfrang-Stotz et al. (2008) in un impianto di incenerimento alla scala reale equipaggiato con forno a tamburo rotante, hanno consentito di evidenziare le principali criticità relative alla formazione dei depositi. Anzitutto, la composizione mineralogica e chimica, la genesi e la velocità di formazione dei depositi stessi dipende da numerosi fattori quali la geometria della superficie interessata, le modalità operative
dell’impianto, la composizione del rifiuto e la temperatura del flusso gassoso. Sulla base di questi parametri si possono osservare depositi con differenti proprietà, sia in termini di spessore che di durezza. In generale, lungo la direzione del flusso gassoso, è tipica in regioni ad alta temperatura (680-500°C) la presenza di depositi composti da CaSO₄ di difficile rimozione. La composizione dei solfati presenti varia al variare della temperatura ed i risultati delle analisi mostrano un arricchimento con K e Na per temperature non particolarmente elevate (320-500°C). Particelle ricche di cloro possono invece essere presenti all’interno di sali condensati verso la parte terminale della caldaia laddove le temperature sono ancora più basse (320-210°C).

Come detto, lungo la direzione del flusso gassoso si possono osservare tipicamente dei depositi multistrato di differente composizione mineralogica: la velocità della loro formazione e la loro durezza rappresentano i parametri chiave in grado di limitare lo scambio di calore. Le particelle in grado di formare depositi possono essere trasportate sulle superfici sia ad opera di fenomeni di diffusione (per particelle di dimensioni submicroniche), sia ad opera di trasporti inerziali (per particelle di dimensione di qualche micrometro). Le proprietà adesive sono funzione non solo del tipo di particella, ma anche del tipo di depositi già presenti: in particolare, la capacità di aderire tende ad aumentare fortemente nel caso in cui siano presenti fusioni locali dei depositi sulla superficie del materiale aggredito. Tuttavia, anche in assenza di tali fenomeni, uno strato di incrostazioni è comunque generalmente in grado di formarsi: le capacità adesive di quest’ultimo sono dipendenti dalle caratteristiche della polvere rispetto a quelle della superficie. Per le particelle submicroniche veicolate da fenomeni diffusivi e termoforetici la possibilità di adesione è notevole, mentre per quelle veicolate da fenomeni di tipo inerziale è più probabile un effetto di urto elastico in grado di farle ritornare nel flusso gassoso senza possibilità di arresto. Le caratteristiche delle incrostazioni variano fortemente nel caso in cui esse si trovino sulla superficie del surriscaldatore o dell’economizzatore (Figura 3.17).

Figura 3.17 – Differenze nei depositi tra surriscaldatore (a sinistra) ed economizzatore (a destra). (Van Beek et al., 2001).

Nel primo caso (surriscaldatore), si può osservare la presenza di un deposito spesso e sinterizzato, mentre nel secondo caso (economizzatore) si può identificare uno strato di deposito sottile e poroso. Van Beek et al. (2001) hanno evidenziato perdite di efficienza di trasferimento del calore pari al 27%: in particolare la condizione più critica è rappresentata dalla presenza di depositi a struttura fine e porosa (siccome, contrariamente a quelli tipici delle superfici del surriscaldatore caratterizzati da fusioni locali, questi ultimi possiedono una ridotta conducibilità termica). Va inoltre sempre tenuto presente che la deposizione di materiale particolato è il risultato dell’effetto combinato di trasporto e di adesione. In generale Van Beek et al. (2001) hanno evidenziato come la velocità
di deposizione sulle superfici dell’economizzatore sia di circa un ordine di grandezza inferiore a quella del surriscaldatore. Questa disomogeneità si deve non tanto a caratteristiche diseguali delle particelle che causano il fenomeno di incrostazione, quanto alle differenze in termini di gradiente di temperatura tra il flusso gassoso e le superfici interessate dal fenomeno stesso.

Per quanto concerne lo sporcamento dei fasci tubieri della sezione convettiva della caldaia, l’accumulo di depositi può comportare anche il restringimento dei canali di passaggio e quindi influenzare negativamente le condizioni fluidodinamiche d’impianto. Per quanto attiene allo sporcamento delle superfici della camera di combustione e dei canali radianti della caldaia, man mano che lo spessore del deposito aumenta, nel momento in cui la temperatura superficiale raggiunge la temperatura di rammollimento delle ceneri, si entra nel cosiddetto “regime plastico” e l’accrescimento del deposito stesso diviene molto rapido. A seguito di questo fenomeno, si possono verificare distacchi per gravità così come fratture per stress termici dei materiali depositati che, cadendo sul fondo ove è presente la griglia o nelle tramogge, possono determinare problemi alla combustione e rotture meccaniche. Questi fenomeni possono essere attenuati mediante l’iniezione di specifici sorbenti dolomitici e grazie alla loro interazione con le polveri e i composti volatili e condensabili del flusso gassoso. È inoltre nota l’efficacia di reagenti a base di magnesio in sospensione acquosa o sotto forma di dispersione in gasolio o kerosene, il cui impiego è esteso soprattutto negli impianti di generazione di potenza alimentati a carbone o a olio combustibile, tramite atomizzazione nella sezione di combustione o, nel caso di combustibili liquidi, tramite additivazione al combustibile stesso (Smyrniotis e Rivera, 2004).

Nel caso del dosaggio di sorbenti dolomitici nella sezione forno-caldia dei termovalorizzatori, i residui derivanti dalla combustione generalmente manifestano, a seguito di tale additivazione, una maggiore friabilità e minori capacità adesive rispetto alle ceneri volanti derivanti da processi privi di trattamenti specifici. Questa caratteristica consente di potere attuare cicli di pulizia delle superfici con minore difficoltà e frequenza, a seguito del fatto che la componente dolomitica del sorbente garantisce l’innalzamento del punto di fusione delle ceneri. A differenza dei sorbenti dolomitici precedentemente menzionati, i reagenti calcici mostrano una più elevata reattività con l’anidride carbonica con conseguente maggiore probabilità di formazione di aggregati duri e tenaci. In tal caso anche l’aggiunta artificiale di magnesio a sorbenti calcici non garantisce lo stesso effetto di riduzione dei fenomeni di “slagging” e “fouling”, che è invece garantito con il materiale dolomitico naturale: infatti, una tale aggiunta artificiale non è in grado di ricreare adeguatamente la presenza di magnesio nella struttura cristallina delle particelle del reagente, trattandosi in questo caso di una miscela piuttosto che di una sostanza. Per queste ragioni l’iniezione di reagenti calcici puri (CaCO₃, CaO e Ca(OH)₂), potrebbe essere alla base di eventuali peggioramenti in termini di formazione di incrostazioni e di depositi (Unicalce S.p.A, 2015).

Le tecniche di pulizia normalmente adottate per la rimozione dei depositi sono basate su soffiatori (di tipo fisso o retrattile) ad aria o a vapore, martelli, getti di acqua pressurizzata oppure esplosioni controllate tramite microcariche esplosive (per le quali è richiesto l’intervento di tecnici esterni specializzati e il fermo per qualche ora dell’impianto). Questi metodi sono efficaci nella rimozione dei depositi ma possono anche essere alla base di fenomeni di erosione delle superfici metalliche. Tuttavia, quando lo spessore delle incrostazioni
compromette eccessivamente la capacità di scambio termico, la soluzione è quella di fermare l’impianto e rimuovere tramite sabbiatura le superfici con conseguente perdita di ore di esercizio.

3.2.2 Fenomeni di corrosione

A seguito delle interazioni chimiche tra i componenti costituenti i depositi, i gas e le pareti delle superfici dell’impianto, possono instaurarsi fenomeni di corrosione acida ad alta temperatura. Questi si verificano principalmente lungo le pareti laterali della caldaia limitrofe al focolare, le pareti nude laterali e la parte superiore della caldaia stessa (“cielo caldaia”), la parte superiore dei primi canali radianti ed infine i banchi del surriscaldatore. I principali fattori in grado di influenzarne lo sviluppo in impianti di incenerimento sono i seguenti:

- Concentrazione di zolfo e cloro nei rifiuti. In particolare, l’acido cloridrico è il principale composto responsabile del deterioramento delle tubature di scambio termico in caldaia, soprattutto nelle zone caratterizzate da condizioni riducenti;
- Temperatura di operatività della camera di combustione ed eventuali fluttuazioni di temperatura. In particolare, di notevole rilevanza è la differenza di temperatura tra la parete del tubo scambiatore calore e quella dei fumi caldi che lo lambiscono;
- Design strutturale dell’impianto.

Un’alta temperatura delle superfici metalliche, in particolare per quanto riguarda i tubi dei surriscaldatori, maggiore di 400-450°C ed una temperatura dei fumi superiore a 650°C favoriscono la formazione di fenomeni corrosivi ad opera dei depositi condensati sulle tubazioni contenenti solfati e cloruri alcalini; si parla in questo caso di corrosione causata da depositi di solfatazione e da sali fusi. La temperatura del flusso gassoso è la principale causa di modifiche al tasso di decomposizione ed alla velocità di corrosione: in particolare, il gradiente di temperatura tra il gas e la superficie metallica risulta essere la principale causa della condensazione di specie vaporizzate (come cloruri metallici) sulle superfici soggette alla corrosione. Inoltre, numerosi studi hanno dimostrato come le fluttuazioni di temperatura di processo siano alla base di un maggiore sviluppo di fenomeni di danneggiamento per corrosione delle superfici metalliche (Lee et al., 2007).

Un altro meccanismo in grado di manifestarsi per temperature superiori ai 450°C è la possibile formazione di cloruri metallici imputabili alle reazioni del cloro con gli ossidi metallici (quali ad esempio Fe₂O₃, eventualmente derivante da punti di attacco ossidativo a carico delle superfici metalliche) e la loro successiva reazione con le tubazioni (si parla in questo caso di ossidazione attiva).

La presenza contemporanea di metalli pesanti nel flusso gassoso quali piombo e zinco, di cloruri e di zolfo può inoltre dare vita ad un abbassamento della temperatura di fusione (fino a meno di 350°C) dei depositi e quindi consentire lo svilupparsi di fenomeni di corrosione ad opera di fasi fuse anche a temperature minori di quelle attese che generalmente si assestano attorno ai 450°C (Kinnunen et al., 2017).

La struttura dei depositi sulle superfici aggregite tende inoltre ad essere caratterizzata da una serie di strati sovrapposti: questo fenomeno è dovuto alla formazione e successivo raffreddamento e solidificazione di fasi
di materiale fuso, che si aggiungono leune alle altre col trascorrere del tempo (Van Beek et al., 2001).
 Una serie di misure possono essere adottate per ridurre i fenomeni di corrosione:

- Maggior controllo dei parametri di processo, in particolare relativamente alle fluttuazioni di temperatura del gas;
- Modifiche nel design (introduzione di ricircoli del flusso gassoso per garantirne un miglior mescolamento e dunque un minor numero di condizioni locali indesiderate; modifiche strutturali al sistema caldaia; ecc.). In particolare è stato dimostrato come strutture del corpo caldaia di tipo verticale siano soggette a maggiori fenomeni critici di corrosione rispetto a quelle orizzontali. Queste ultime tuttavia hanno lo svantaggio di occupare una maggiore superficie (Lee et al., 2007);
- Applicazione di materiali resistenti alla corrosione. In questo caso è possibile sia utilizzare per la costruzione delle componenti del corpo caldaia materiali maggiormente adeguati (come leghe di cromo, silicio e nichel), oppure utilizzare sistemi di rivestimento (anche in questo caso si tratta di leghe metalliche generalmente di nichel, cromo e silicio);
- Alterazioni delle caratteristiche dei depositi tramite dosaggio di reagenti specifici. Un esempio può essere l’impiego di additivi che legandosi alle ceneri di caldaia ne innalzano il punto di fusione. Tra questi additivi si possono annoverare l’ossido e l’idrossido di magnesio (MgO e Mg(OH)\textsubscript{2}), la dolomite (\text{CaCO}_3\cdot\text{MgCO}_3) e l’idrossido di calcio dolomitico (\text{Ca(OH)}_2 \cdot \text{Mg(OH)}_2). Una continua additivazione di questi composti consente di formare un sottile rivestimento sulla superficie del tubo per evitare l’accumulo di depositi nonché, a seguito dell’innalzamento del punto di fusione, di indebolire i legami esistenti tra le superfici dei tubi e i depositi, così come tra le particelle all’interno del deposito in maniera tale da fragilizzare la struttura del deposito stesso, facilitandone la rimozione.

3.2.3 Potenziali effetti sul precipitatore elettrostatico

Qualsiasi tipo di dosaggio comporta la necessità di gestire correttamente le successive sezioni della linea fumi. In particolar modo nel caso di impianti che prevedono una fase di filtrazione elettrostatica è bene verificare il corretto funzionamento dell’elettrofiltro garantendo l’intervallo di resistività ottimale delle polveri, che si attesta tra 103 Ω·cm e 1010 Ω·cm (Lonati, 2014; Foo et al., 2016). Per valori di resistività al di sotto di 103 Ω·cm, le particelle depositate sull’elettrodo di raccolta acquistano facilmente dall’elettrodo una carica dello stesso segno ed un’elevata possibilità di essere ritrascinate nel flusso gassoso. Resistività superiori a 1010 Ω·cm determinano invece, per l’elevata differenza di potenziale che si viene a creare tra le due facce dello strato di polvere trattenuto sull’elettrodo di raccolta, scariche elettriche che provocano gravi perturbazioni al voltaggio operativo dell’elettrofiltro e sensibile decadimento delle efficienze di rimozione (effetto detto di “back-corona”).

Al fine di limitare le problematiche di funzionamento al precipitatore è possibile ricorrere ad alcuni accorgimenti:

- Mantenere gli elettrodi sempre puliti;
● Migliorare il rifornimento d’energia agli elettrodi dell’ESP attraverso la tecnica del “voltaggio pulsante” e garantendo una elevata sezionalizzazione del sistema;

● Condizionare il gas tramite l’aggiunta di piccola quantità di agenti chimici (SO_3, NH_3, Na_2CO_3, ecc.);

● Controllare opportunamente temperatura e umidità del flusso gassoso; a temperature crescenti la resistività diminuisce esponenzialmente mentre a temperature decrescenti invece dell’atteso incremento si osserva una diminuzione dovuta a sostanze conduttrici (principalmente acqua ed SO_3 per i gas di combustione) adsorbite con maggior efficienza dalle particelle di polveri. Nel caso di raffreddamento operato tramite iniezione d’acqua grazie ad ugelli, risulta fondamentale l’omogeneizzazione del getto oltre che il rilascio di gocce d’acqua di dimensioni minime possibili, tipicamente minori di 60 μm (Offen et al., 1997).

Il dosaggio dei sorbenti potrebbe essere causa di una alterazione delle caratteristiche del flusso gassoso in termini di resistività. Questo effetto era inizialmente considerato rilevante, ma studi recenti dimostrano come le variazioni su questo parametro dovute al dosaggio di reagenti a secco sono assolutamente trascurabili e non comportano variazioni sensibili alle prestazioni di funzionamento degli ESP (Foo et al., 2016, www.astm.org; Mastropietro, 2012).

Per quanto riguarda eventuali variazioni dimensionali nel particolato, la dimensione media delle particelle può ridursi anche di circa 10 μm. Va inoltre considerato che anche in termini di massa la distribuzione delle particelle tende a spostarsi verso quelle di ridotte dimensioni. Questo effetto è meno marcato nel caso di dosaggio di dolomite rispetto al dosaggio di idrossido di calcio dolomitico, dal momento che tipicamente quest’ultimo sorbente è caratterizzato da una distribuzione granulometrica inferiore (Dahlin et al., 1993). Ad ogni modo, qualora questo genere di effetti dovesse verificarsi, si tratterebbe comunque di fenomeni di entità ridotta, dato che i quantitativi di polveri generati dalla combustione dei rifiuti sono elevati e il dosaggio di sorbenti ad alta temperatura comporta una polverosità aggiuntiva alquanto trascurabile (Cavalli, 2014).
La rimozione a secco dei gas acidi a bassa temperatura prevede il dosaggio di sorbenti alcalini (tipicamente calce idrata o bicarbonato di sodio) lungo la linea fumi, in reattori dedicati a valle della caldaia o direttamente all’interno del condotto fumi. Si tratta di tecnologie ampiamente studiate in applicazioni per centrali ad olio combustibile o a carbone così come sono tecnologie consolidate anche nel caso della termovalorizzazione dei rifiuti. Per quanto riguarda l’utilizzo di sorbenti a bassa temperatura, i reagenti sono generalmente iniettati (direttamente nel condotto della linea fumi o in reattori dedicati) sotto forma di polvere secca micronizzata. Tipicamente il dosaggio avviene contestualmente a specifici adsorbenti, come il carbone attivo, per la rimozione dei microinquinanti organici e dei metalli pesanti.

La corrente gassosa, che al suo interno contiene il reagente non utilizzato e i prodotti della reazione di neutralizzazione, viene successivamente inviata a un sistema di depolverazione per la separazione della frazione solida (tipicamente un filtro a maniche). L’efficienza dei sistemi di neutralizzazione a secco dipende dalle caratteristiche chimiche nonché fisiche (granulometria, superficie specifica e volume dei pori) del sorbente utilizzato così come dalle condizioni proprie di utilizzo (fattore stechiometrico di dosaggio) e dalle condizioni del flusso gassoso da trattare (concentrazione di inquinante, temperatura e umidità dei fumi).

4.1 Sorbenti a base di calcio

L’idrossido di calcio (Ca(OH)$_2$), costituente principale della calce idrata, è una base forte bivalente che esercita una considerevole azione neutralizzante sulla maggior parte degli acidi con formazione dei corrispondenti sali; l’assorbimento di HCl, HF e SO$_2$ avviene tramite reazioni acido-base irreversibili (Currò Dossi e Valenti, 1997; Chisholm e Rochelle, 1999) riportate nelle relazioni (4.1), (4.2) e (4.3):

\[
\begin{align*}
\text{Ca(OH)}_2 + 2\text{HCl} & \rightarrow \text{CaCl}_2 + 2\text{H}_2\text{O} \\
\text{Ca(OH)}_2 + 2\text{HF} & \rightarrow \text{CaF}_2 + 2\text{H}_2\text{O} \\
\text{Ca(OH)}_2 + \text{SO}_2 + \frac{1}{2}\text{O}_2 & \rightarrow \text{CaSO}_4 + \text{H}_2\text{O}
\end{align*}
\]

Le efficienze delle reazioni di neutralizzazione sono fortemente influenzate dalle caratteristiche chimico-fisiche della calce idrata (titolo, distribuzione granulometrica, superficie specifica e porosità), dalle concentrazioni dei composti acidi presenti nell’effluente gassoso e quindi dal fattore stechiometrico di dosaggio del sorbente, nonché dai parametri di esercizio dell’impianto come la temperatura e l’umidità assoluta e relativa dei fumi per effetto del ruolo che essi esercitano sui fenomeni di chemiassorbimento degli inquinanti gassosi sulle particelle solide. La calce idrata presenta rese ottimali nell’intervallo di temperatura compreso tra 120-160°C con eccessi stechiometrici che possono variare dal 30% fino anche al 150%: in particolare mediante
il controllo della temperatura e dell’umidità dei fumi entro valori ottimali (temperatura dell’ordine di 130-150°C e umidità relativa intorno a 5,5-6% nell’intervallo di umidità assoluta pari a 10-20%) è possibile, operando con un fattore stechiometrico contenuto nell’ordine di 1,3-1,6, conseguire le migliori rese di neutralizzazione e massimizzare il grado di utilizzo della calce idrata (Löschau e Karpf, 2015). Generalmente mediante l’utilizzo della calce idrata, in linea con la scala di reattività dell’idrossido di calcio nei confronti dei composti acidi (HF > HCl > SO₂), è agevole potere conseguire efficienze di neutralizzazione dell’ordine di 95-98% per l’HCl, 88-90% per l’SO₂ e superiori al 99% per l’HF. Le reazioni chimiche di neutralizzazione sopra riportate (relazioni (4.1), (4.2) e (4.3)) indicano che i prodotti di reazione sono formati prevalentemente da cloruri, fluoruri e solfati di calcio (CaCl₂, CaF₂, CaSO₄). In realtà diversi studi (Karlsson et al., 1981; Jozewicz e Gullett, 1995; Allal et al., 1997; Bodénan e Deniard, 2003; Bausach et al., 2005) hanno evidenziato la formazione di sali differente natura per la presenza di possibili molecole di acqua di cristallizzazione nella struttura degli stessi come (per esempio CaCl₂·2H₂O e CaSO₄·2H₂O), nonché la presenza di reazioni incomplete tra l’idrossido di calcio e l’acido cloridrico che comportano la neutralizzazione da parte di un solo gruppo idrossido con formazione di idrossicloruro di calcio (CaClOH) che appare più favorevole dal punto di vista termodinamico per quanto concerne le interazioni solido-gas tipiche dei processi a secco. Appena l’idrossido di calcio viene iniettato nella corrente gassosa, la reazione di neutralizzazione si sviluppa rapidamente essendo del primo ordine rispetto alla concentrazione di HCl e la reazione, non risultando essere particolarmente influenzata dalla presenza di umidità nei fumi, è controllata dalla diffusione dell’HCl gassoso nella fase solida di idrossido di calcio. Al progredire della reazione, sulla superficie del sorbente si deposita uno strato salino costituito dai prodotti di reazione fortemente igroscopico, per cui da questo punto in avanti la cinetica della reazione risulta maggiormente favorita dalla presenza di umidità dei fumi essendo regolata dai fenomeni diffusivi attraverso lo strato formatosi (Gullett et al., 1992; Weinell et al., 1992; Fonseca et al., 1998; Yan et al., 2003). Poiché l’idrossido di calcio manifesta minore affinità nei confronti dell’SO₂ rispetto all’HCl, il ruolo giocato dall’umidità risulta essere, nel caso dell’SO₂, di fondamentale importanza, come evidenziato da numerosi lavori scientifici (Damle et al., 1986, Weinell et al., 1992, Chisholm e Rochelle, 1999). Tali studi ne hanno indicato, in funzione dei meccanismi di reazione proposti, l’influenza più o meno marcata. Yoon at al. (1987) hanno osservato che sussiste una correlazione lineare tra la quantità di acqua assorbita dal sorbente e la rimozione dell’SO₂. Il contributo giocato dall’umidità a questa reazione si esplica attraverso la formazione di un film semi-liquido sulla superficie del sorbente che favorisce fenomeni di dissoluzione del sorbente stesso e di idratazione dell’SO₂ all’interno di esso. La capacità di assorbimento capillare dell’acqua da parte dell’idrossido di calcio è correlata alle caratteristiche fisiche del sorbente ed è quindi principalmente funzione della superficie specifica e della porosità. Chisholm e Rochelle (1999) hanno verificato che la rimozione dell’SO₂ è favorita dalla presenza contestuale di HCl nei fumi di combustione. Gli autori hanno ipotizzato che tale comportamento sia dovuto all’elevata igroscopicità del cloruro di calcio, che assorbendo l’umidità favorisce la diffusione dell’SO₂ all’interno delle particelle di idrossido di calcio. Tale comportamento appare peraltro attenuarsi per elevati valori di
concentrazione di HCl (>1600 mg/Nm³), in corrispondenza dei quali l’assorbimento dell’acido cloridrico diviene molto più favorito termodinamicamente. Viceversa, la presenza di SO₂ ha un effetto molto ridotto sull’assorbimento di HCl, la cui reattività non viene alterata significativamente anche dalla competizione con altri gas acidi. Va segnalato, però, che quando sia HCl sia SO₂ sono presenti nei gas, la quantità totale di calce che reagisce non varia ma aumenta la frazione di calce che neutralizza la SO₂ all’aumentare del rapporto SO₂/HCl, per cui l’effetto complessivo sulla rimozione dell’HCl risulta essere diminuito.

4.2 Sorbenti a base di sodio

Il bicarbonato di sodio (NaHCO₃) è un sale alcalino (pH pari a circa 8,5) di sodio dell’acido carbonico, che a temperatura ambiente si presenta come una polvere cristallina bianca. Il bicarbonato di sodio naturale viene ricavato principalmente da un minerale denominato “trona” (Na₃(CO₃)(HCO₃)·2(H₂O)). È il reagente sodico di maggiore utilizzo nel campo del trattamento dei gas acidi da incenerimento, generalmente additivato attraverso sistemi di dosaggio a secco. Industrialmente viene prodotto attraverso il cosiddetto Processo Solvay sviluppato dal chimico belga Ernest Solvay nel 1861. Questo processo porta alla sintesi del bicarbonato di sodio a partire da NaCl e CaCO₃, il quale può essere successivamente convertito in carbonato di sodio attraverso riscaldamento, come riportato nella relazione (4.4):

\[2\text{NaHCO}_3 \rightarrow \text{Na}_2\text{CO}_3 + \text{CO}_2 + \text{H}_2\text{O} \] (4.4)

La reazione di decomposizione termica del bicarbonato di sodio a carbonato di sodio rappresenta un passaggio fondamentale legato all’utilizzo di tale sorbente. Questa reazione risulta essere molto rapida al di sopra dei 140°C portando tuttavia alla formazione di una miscela di NaHCO₃ e Na₂CO₃ che arriva a completa conversione oltre i 190°C (Fellows e Pilat, 1990). Il carbonato di sodio presenta una elevata superficie specifica, una notevole affinità coi composti acidi e la sua formazione, causando una marcata riduzione in peso del reagente (fino a circa il 37%), comporta di conseguenza una minore produzione di residui dato che consente di contenere l’eccesso stecchiometrico e mantenere fattori stecchiometrici compresi tra 1,1-1,4 (Löschau e Karpf, 2015).

Le reazioni di neutralizzazione dei gas acidi portano alla formazione di solfato di sodio (Na₂SO₄), di cloruro di sodio (NaCl) e di fluoruro di sodio (NaF) secondo le relazioni (4.5), (4.6) e (4.7):

\[\text{Na}_2\text{CO}_3 + \text{SO}_2 + \frac{1}{2}\text{O}_2 \leftrightarrow \text{Na}_2\text{SO}_4 + \text{CO}_2 \] (4.5)
\[\text{Na}_2\text{CO}_3 + 2\text{HCl} \leftrightarrow 2\text{NaCl} + \text{CO}_2 + \text{H}_2\text{O} \] (4.6)
\[\text{Na}_2\text{CO}_3 + 2\text{HF} \leftrightarrow 2\text{NaF} + \text{CO}_2 + \text{H}_2\text{O} \] (4.7)

Le reazioni di neutralizzazione manifestano aumenti dell’efficienza di rimozione con la temperatura fino a circa 230°C, superati i quali non si riscontrano ulteriori miglioramenti al crescere della temperatura stessa (Fellows e Pilat, 1990). La temperatura ottimale di esercizio si aggira intorno ai 180-190°C in modo da garantire la completa decomposizione del bicarbonato di sodio e le migliori condizioni cinetiche per
l’assorbimento dei composti acidi.
Löschau e Karpf (2015) identificano come composto di più semplice rimozione l’HCl, seguito dall’SO$_2$ ed infine dall’HF. In particolare, secondo Kong e Davidson (2010), sono da attendersi rimozioni superiori al 99% per l’acido cloridrico e superiori al 90% per l’anidride solforosa.
Deve essere considerato inoltre che le migliori efficienze di abbattimento dei composti acidi sono garantite da dosaggi di bicarbonato di sodio di ridotte dimensioni granulometriche dell’ordine della decina di micrometri (Löschau e Karpf, 2015): data la natura igroscopica del reagente, questo necessita di un’apposita fase di macinazione appena prima dell’iniezione nella linea fumi. Fellows e Pilat, (1990) hanno osservato in laboratorio riduzioni del 10% dell’efficienza di rimozione dell’HCl (ad una temperatura di 135°C) per concentrazioni di HCl stesso decrescenti da 760 ppm a 428 ppm per valori di temperatura di 135°C. Per valori di temperatura di 235°C non si sono osservate variazioni sull’efficienza di cattura dell’HCl a seguito di una diminuzione di concentrazione da 760 ppm a 402 ppm. Una possibile spiegazione a questo fenomeno potrebbe essere dovuta al fatto che, nel caso di temperatura pari a 235°C, l’NaHCO$_3$ può essere considerato completamente decomposto a Na$_2$CO$_3$ e quindi non presentare ulteriore rilascio di H$_2$O e CO$_2$ nel momento in cui il trattamento di rimozione dell’HCl ha inizio. In molti casi, in aggiunta all’NaHCO$_3$, viene dosato carbone attivo in modo da ottenere una contestuale rimozione dei metalli presenti e assicurare l’adsorbimento dei microinquinanti organici in particolare diossine e furani. Al fine di garantire corrette efficienze di rimozione ed evitare indesiderati fenomeni di desorbimento, il carbone attivo deve operare tra i 140°C ed i 180°C (Löschau e Karpf, 2015). Nel caso di dosaggio contemporaneo con carbone attivo, risulta quindi essere di fondamentale importanza una corretta gestione della temperatura di processo, che sia comunque in grado di garantire parallelamente l’ottimale decomposizione termica del bicarbonato di sodio. I residui del processo di assorbimento a secco con bicarbonato di sodio sono generalmente designati col nome di PSR (Prodotti Sodici Residui) e sono costituiti principalmente dai sali formatisi durante le reazioni di neutralizzazione (NaCl, NaF e Na$_2$SO$_4$), dall’eccesso di reagente dosato e dalle ceneri volanti separate dal flusso gassoso.

4.3 Tecniche di abbattimento a confronto
L’abbattimento degli inquinanti prodotti dalla combustione tramite dosaggio di sorbenti a secco a bassa temperatura viene, come detto, tipicamente effettuato in reattori dedicati posti nella linea fumi a valle della caldaia. In questo modo è possibile garantire alcuni vantaggi come un maggiore controllo sui parametri operativi e l’assenza di complicazioni legate alla gestione idrica tipica nel caso di utilizzo di sistemi ad umido o a semisecco. In aggiunta a questa tecnica di trattamento, sono possibili altre soluzioni:

- Iniezione diretta nel condotto fumi senza reattore dedicato - È un sistema d’iniezione del sorbente (a base di calcio, ad esempio nel caso di utilizzo di Ca(OH)$_2$, o a base di sodio nel caso di utilizzo di NaHCO$_3$) che avviene nel condotto fumi a valle dei preriscaldatori, dove la temperatura si attesta sui 150°C ed il sorbente può essere distribuito in maniera molto omogenea (www.iea-coal.org.uk). I prodotti vengono rimossi da opportuni filtri, raggiungendo livelli d’efficienza anche maggiori rispetto
al caso d’iniezione in caldaia. Siccome il processo si verifica a temperature ridotte, una modifica nelle proprietà del sorbente (come ad esempio variazioni della sua superficie specifica o l’aggiunta di cloruri come CaCl\(_2\) o NaCl), una corretta gestione del tempo di contatto e dell’umidità relativa dei fumi, rappresentano parametri fondamentali per garantire rese elevate. Poiché la reazione richiede del tempo per avvenire potrebbe essere richiesta una camera di reazione dedicata, con il conseguente aumento dei costi d’investimento;

- Iniezione ibrida - si tratta di una combinazione dell’iniezione in caldaia (assorbimento a secco ad alta temperatura) con quella a valle dello scambio termico (a bassa temperatura, tipicamente prevedendo dosaggio di calce idrata o di bicarbonato di sodio). Lo scopo complessivo è quello di garantire uno stadio iniziale che riduca il carico di inquinante ai sistemi a bassa temperatura operando una pre-neutralizzazione e smorzando i picchi degli inquinanti. Inoltre, è possibile in questo modo garantire migliori flessibilità ed un minore utilizzo di sorbente additivato alle basse temperature. La scelta sulla tecnologia o di una combinazione di tecnologie si basa su una serie di considerazioni sito-specifiche che non riguardano esclusivamente la rimozione del composto inquinante, ma anche, tra le altre, la gestione dei rifiuti prodotti ed il costo del sorbente.

In Figura 4.1 sono riportate le possibili tecnologie di depurazione a secco degli inquinanti acidi sia per quanto concerne i trattamenti ad alta temperatura che quelli a bassa temperatura.

![Diagramma della Figura 4.1](image-url)

Figura 4.1 – Possibili zone d’iniezione a secco (si evidenziano sia le zone di abbattimento ad alta temperatura sia le zone di abbattimento a bassa temperatura). (Muzio e Offen, 1987).

La Tabella 4.1 (Benassi, 2000) consente di riassumere sinteticamente i principali vantaggi e svantaggi nel dosaggio di reagenti a secco a bassa temperatura, completando l’analisi (in aggiunta alle considerazioni precedentemente riportate) anche considerando aspetti gestionali ed impiantistici.

Nei processi di neutralizzazione dei gas acidi a bassa temperatura i sorbenti a base sodio sono dal punto di vista termodinamico più efficienti di quelli a base calcio (Verdone e De Filippis, 2004): generalmente da un punto di vista pratico ciò si traduce nella possibilità di ottenere le rimozioni richieste operando con eccessi di reagente più contenuti limitando la produzione di residui solidi che nel caso dei sali sodici possono essere recuperati, mentre nel caso dei sali calcici sono da avviare allo smaltimento.
Questo divario tecnologico può tuttavia essere attenuato mediante l’attuazione di eventuali accorgimenti operativi durante le fasi di utilizzo dei sorbenti a base calcio. Oltre a un controllo spinto della temperatura e dell’umidità mediante il condizionamento dei fumi, un’altra tecnica finalizzata a ottimizzare le prestazioni dei sorbenti a base di calcio può essere quella di prevedere di alimentare assieme al reagente fresco anche una quota parte di ricircolo dei prodotti di reazione dell’assorbimento, che in taluni casi possono contenere anche considerevoli frazioni di sorbente non reagito, al fine di aumentare il tempo di contatto tra il reagente e i gas acidi e incrementare il tasso di utilizzo.

Tabella 4.1 – Sintesi di confronto tra calce e bicarbonato. (Benassi, 2000).

<table>
<thead>
<tr>
<th>Vantaggi</th>
<th>Svantaggi</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALCE</td>
<td></td>
</tr>
<tr>
<td>Realizzazione impiantistica semplice</td>
<td>Gestione poco flessibile: operazione di iniezione calce delicata; regolazione difficile; basso margine di variazione della temperatura</td>
</tr>
<tr>
<td>Basso costo di investimento</td>
<td>Alto eccesso stechiometrico (nell’ordine di 3)</td>
</tr>
<tr>
<td>Assenza di effluenti liquidi</td>
<td>Bassa reattività per singolo passaggio: necessità di effettuare ricicoli</td>
</tr>
<tr>
<td>Manodopera ridotta</td>
<td>In caso di regolamentazioni più severe, non offre margini di evoluzione</td>
</tr>
<tr>
<td>Facilità di inertizzazione dei Prodotti Calcici Residui (P.C.R.)</td>
<td>Importante produzione di residui solidi da conferire in discarica (previa inertizzazione)</td>
</tr>
<tr>
<td>BICARBONATO DI SODIO</td>
<td></td>
</tr>
<tr>
<td>Realizzazione impiantistica e gestione dell’impianto semplici</td>
<td>Apprezzabile consumo massico del reattivo (anche se si utilizza un debole eccesso in confronto allo stechiometrico; (k=1,2))</td>
</tr>
<tr>
<td>Costi di investimento e gestione ridotti</td>
<td>Costo del reattivo elevato (anche se l’insieme delle voci del costo di gestione risulta ridotto)</td>
</tr>
<tr>
<td>Manodopera ridotta</td>
<td>Aspirazione fossa RSU</td>
</tr>
</tbody>
</table>

Oltre a quanto sopra riportato, negli ultimi anni come valida alternativa all’uso del bicarbonato di sodio si è andato affermando l’utilizzo di prodotti a base di idrossido di calcio fisicamente migliorati, cosiddetti “ad alta superficie specifica” (Nethe e Uwe, 2008), che, rispetto alla calce idrata “standard”, caratterizzata da valori di superficie specifica dell’ordine di 14-18 m\(^2\)/g e del volume dei pori attorno a 0,06-0,08 cm\(^3\)/g, presentano valori di detti parametri rispettivamente anche maggiori di 45 m\(^2\)/g e superiori a 0,12 cm\(^3\)/g. Mediante l’utilizzo di tali tipologie di calce idrata è possibile conseguire efficienze assolutamente simili a quelle ottenibili col bicarbonato di sodio anche alle medesime temperature di esercizio (Bazzoni, 2014).

Riguardo alle temperature di esercizio, va comunque tenuto presente che operare a temperature troppo elevate costituisce una inefficienza energetica con minore calore recuperabile dai fumi e può altresì comportare problematiche relative al calo dell’efficienza di adsorbimento del mercurio da parte del carbone attivo che viene di norma dosato contestualmente ai sorbenti alcalini.
Il mercurio è un metallo di transizione annoverato tra i cosiddetti “metalli pesanti” (categoria di elementi aventi densità superiore a 5 g/cm3 che oltre a elementi propriamente metallici a elevato peso atomico -quali l’argento, il bario, il cadmio, il cobalto, il cromo, il rame, il ferro, il mercurio, il manganese, il molibdeno, il nichel, il piombo, lo stagno, il tallio, il titano, il vanadio e lo zinco- comprende anche alcuni metalloidi con proprietà simili a quelle dei metalli pesanti come l’arsenico, l’antimonio e il bismuto e un non-metallo come il selenio).

Il mercurio presenta un punto di ebollizione superiore ai 365°C e un punto di fusione intorno ai -38,83°C in grado di conferire una forma liquida a temperatura ambiente.

In confronto ad altri metalli, presenta un’elevata volatilità, è un cattivo conduttore di calore ma un buon conduttore di elettricità.

A causa della sua configurazione elettronica unica, il mercurio tende a comportarsi come un gas nobile formando legami deboli e fondendo a temperature basse. Inoltre, a conferma della somiglianza con i gas nobili, si presenta come gas monoatomico in seguito a processi di evaporazione. La presenza in ambiente è legata a processi naturali e antropici tra cui combustione di rifiuti urbani residui (RUR) e di carbone. Il mercurio può presentarsi in tre differenti stati di ossidazione:

- Il mercurio elementare (Hg^0): è la forma metallica del mercurio e non è solubile in acqua;
- Lo ione mercuroso (Hg^+): è instabile e viene rapidamente ossidato o ridotto;
- Lo ione mercurico (Hg^{2+}): è la forma ossidata del mercurio ed è solubile in acqua.

Il mercurio è un elemento raro come metallo nativo, tuttavia i minerali che lo contengono ne sono particolarmente ricchi a causa della sua relativa inerzia nel combinarsi con altri elementi chimici della crosta terrestre. I minerali più comuni che presentano il maggior contenuto di mercurio sono il cinabro (minerale appartenente alla classe dei solfuri altresì noto come solfuro di mercurio, HgS) e la livingstonite (minerale appartenente alla classe dei solfuri altresì noto come solfuro di mercurio e antimonio, HgSb$_4$S$_8$).

Il mercurio è fortemente tossico, può introdursi nell’organismo tramite ingestione, inalazione dei vapori o semplice contatto dermico, essendo in grado di attraversare la pelle e di bio-accumularsi.

Le interazioni con l’organismo sono più o meno accentuate a seconda dello stato fisico del mercurio.

Per quanto concerne il problema della tossicità del mercurio, esso è stato regolato nel tempo con l’introduzione di misure di contenimento. L’Unione Europea nel 2005 ha fissato un programma (“EU mercury strategy”) in cui vengono indicati una serie di provvedimenti volti a diminuire l’uso del mercurio in ogni sua forma; inoltre nel 2013 con la Convenzione di Minamata (UNEP, 2013b) è stato sancito un accordo internazionale firmato da più di cento paesi in cui è prevista la messa al bando progressiva entro il 2020 di prodotti contenenti mercurio in grado di compromettere la salute umana e lo stato ambientale.
5.1 Fonti emissive naturali ed antropiche

Il mercurio presente nella crosta terrestre può essere emesso nei diversi comparti ambientali (aria, acqua e suolo) attraverso fenomeni naturali come l’erosione di rocce contenenti mercurio ed eruzioni vulcaniche che liberano mercurio, sotto forma di mercurio elementare Hg_0, durante le eruzioni. Un altro aspetto da considerare è la possibilità di rilascio di mercurio da parte delle acque, che può manifestarsi a causa di differenti gradienti di concentrazione oppure ad opera dell’attività solare in grado di agire sul mercurio ossidato situato negli strati più superficiali. Secondo recenti stime (UNEP, 2013a) il 10% del mercurio totale emesso in atmosfera è da accreditare a fonti emissive naturali (il mercurio complessivamente emesso è pari approssimativamente a 5500-8900 t/anno). D’altra parte, le fonti antropiche costituiscono da sole circa il 30% del Hg immesso nell’atmosfera ogni anno (Tabella 5.1).

Fenomeni relativi a rimobilitazione o re-immissione del mercurio costituiscono invece il restante 60% delle emissioni di mercurio a livello globale. Si tratta di fenomeni che liberano nuovamente il mercurio già immobilizzato a livello del terreno, della vegetazione ecc.

Il mercurio può rientrare in circolo ad opera di azioni naturali oppure antropiche (come ad esempio attraverso incendi di foreste). Tuttavia, una volta che il mercurio subisce una rimobilitazione, è estremamente difficile classificarlo come emissione antropica o naturale in quanto la sua origine rimane di complessa individuazione. Anche negli ambienti acquatici può verificarsi una re-immissione del mercurio (ad esempio quando fenomeni come tsunami o maree sollevano i sedimenti del fondale). Sulla base di queste considerazioni è possibile affermare che la continua emissione di mercurio può causare effetti notevoli anche nel lungo periodo, dal momento che la re-immissione è sempre possibile anche dopo il deposito di un precedente rilascio. Un approfondimento sul comportamento del mercurio in atmosfera e negli ambienti acquatici è riportato in Appendice A3.

Le principali attività umane in grado di liberare mercurio sono le seguenti:

- Combustione di carbone e uso di altri combustibili fossili - Il carbone non è un composto particolarmente ricco di mercurio, tuttavia i grandi quantitativi utilizzati in tutto il mondo fanno sì che dalla sua combustione vengano liberate ingenti quantità di Hg;

- Attività minerarie di estrazione, attività di fusione e di produzione di metalli non ferrosi - Anche in questo caso, gli enormi volumi di minerali estratti ed utilizzati in queste applicazioni comportano il rilascio di mercurio in grandi quantitativi. Nei processi di estrazione e di trattamento dei metalli, la maggior parte del mercurio viene stoccata all’interno dei prodotti finali causando successivi rilasci non intenzionali;

- Produzione di cemento - In questo caso l’emissione è dovuta principalmente al tipo di combustibile utilizzato durante il processo. Considerando il fatto che sempre un maggior numero di diversi combustibili (potenzialmente più o meno ricchi di mercurio) possono essere adottati per la produzione di cemento, il contributo relativo di questa fonte emissiva ha subito un forte incremento negli ultimi anni;
• Raffinerie di petrolio - Costituiscono una fonte di rilascio di mercurio poiché il petrolio contiene Hg, seppur spesso in ridotte concentrazioni. La maggior parte del mercurio derivante da questo processo è associato ai depositi solidi che vengono gestiti in discariche, anche se alcune emissioni si possono manifestare durante le fasi di lavorazione vere e proprie;
• Estrazione d’oro a livello più o meno artigianale - Questo tipo di tecniche contribuisce per dei quantitativi piuttosto difficili da quantificare, perché si tratta spesso di emissioni diffuse che possono anche essere non regolamentate o illegali. Si annoverano in questa categoria tutti quei processi che sfruttano mercurio per separare l’oro da altri materiali;
• Rifiuti trattati in discariche o inceneritori - Si tratta di tutti quei prodotti contenti mercurio che sono inviati a processi di smaltimento e possono essere emessi in ambiente una volta giunti a queste destinazioni;
• Amalgami dentali - Il rilascio del mercurio avviene una volta che i corpi vengono cremati qualora in essi fossero presenti amalgami dentali contenenti mercurio;
• Rilasci da operazioni di riciclaggio e recupero di metalli - Generalmente questo contributo è considerato inferiore a quello della produzione primaria del materiale ferroso stesso in questione;
• Rilasci dovuti alla combustione di biomasse - Conseguente dalla presenza di mercurio nella vegetazione. Oltre ad operazioni industriali che fanno uso di tali biomasse, questo rilascio è rilevante soprattutto in quelle regioni molto aride dove sono possibili e frequenti incendi naturali;
• Rilasci da attività industriali specifiche come l’industria di cloro-alcali e del cloruro di vinile;
• Rilasci dovuti alle fonti mobili, quali i veicoli a benzina o diesel. Le concentrazioni di mercurio in queste due miscele sono fortemente differenti e dipendenti dalla qualità delle stesse e quindi dai processi di raffinazione che le hanno generate.

Per quanto riguarda i rifiuti conferiti in discariche o inceneritori è bene considerare che il quantitativo di mercurio potenzialmente rilasciato dipende dal contenuto dello stesso nel rifiuto. Nel caso delle discariche non correttamente coperte il rilascio può avvenire in atmosfera, oppure possono manifestarsi problematiche di bioaccumulo in organismi degradatori sotto forma di metilmercurio. Analizzando l’emissione di Hg da termovalorizzazione di RUR, è possibile osservare un forte decremento negli ultimi anni (Svoboda et al., 2016). Tale andamento è da accreditare non solo ad una serie di azioni di riduzione del contenuto di mercurio nei prodotti che diventano rifiuti, ma anche allo sviluppo tecnologico dei sistemi di trattamento dei fumi. Gli scarti di processo da incenerimento di RUR sono spesso riutilizzati per la costruzione di strade e in altre attività in grado di sfruttarne le proprietà pozzolaniche: questi prodotti tuttavia risultano essere spesso ricchi di mercurio e passibili di lisciviazioni indesiderate. In aggiunta ai rifiuti di origine urbana, vanno anche considerati i rifiuti derivanti da processi industriali e i rifiuti ospedalieri, classificati come pericolosi. Generalmente si rileva una quantità di mercurio maggiore in questa tipologia di rifiuti rispetto quella contenuta nei rifiuti urbani; ne consegue una concentrazione di mercurio più rilevante nell’emissione prodotta dall’incenerimento.
Table 5.1 – Fonti emissive di mercurio rilasciate annualmente nell’ambiente. (Pirrone et al., 2010).

<table>
<thead>
<tr>
<th>Rilasci a causa della mobilizzazione di impurità di mercurio</th>
<th>Rilasci a causa di estrazioni intenzionali o usi del mercurio</th>
<th>Rilasci a causa dei trattamenti dei rifiuti, cremazioni, ecc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impianti di produzione elettrica e di calore alimentati a carbone</td>
<td>Estrazioni di mercurio</td>
<td>Inceneritori di rifiuti</td>
</tr>
<tr>
<td>Impianti di produzione di energia alimentati con altri combustibili</td>
<td>Estrazioni minerarie d’oro a livello artigianale</td>
<td>Discariche</td>
</tr>
<tr>
<td>Produzione del cemento</td>
<td>Produzione di soda caustica</td>
<td>Forni crematori o cimiteri</td>
</tr>
<tr>
<td>Attività minerarie o altre attività metallurgiche</td>
<td>Utilizzo di lampade fluorescenti, riempimenti degli amalgami dentali</td>
<td></td>
</tr>
<tr>
<td>Attività dovute al traffico (Benzina, Diesel, Cherosene, Biocombustibili)</td>
<td>Attività manifatturiere di prodotti contenenti mercurio</td>
<td></td>
</tr>
</tbody>
</table>

5.1.1 Emissioni a livello globale ed europeo

I risultati riportati nel documento “Global Mercury Assessment. Sources, Emissions, Releases and Environmental Transport” redatto dall’UNEP (2013a) consentono di valutare le principali emissioni a livello globale di mercurio (Figura 5.1).

Figura 5.1 – Contributo relativo alle emissioni di mercurio stimate in aria da fonti antropogene. (UNEP, 2013a).
Dallo studio emerge come la combustione di carbone rappresenti ancora una delle più rilevanti fonti di rilascio dell’inquinante, responsabile di circa 474 t\textsubscript{Hg}/anno. Uno degli altri contributi maggiormente rilevanti risulta senza dubbio essere rappresentato dalle attività di estrazione dell’oro a livello più o meno artigianale (727 t\textsubscript{Hg}/anno), settore che ha un visto un notevole incremento a partire dal 2005 soprattutto con un contributo significativo da parte dei paesi come la Cina. È comunque opportuno considerare che l’estrazione dell’oro può essere in ogni caso effettuata in maniera sostenibile senza l’utilizzo di mercurio o altri composti chimici.

Per quanto riguarda il contributo al rilascio relativo allo smaltimento dei rifiuti (70-90 t\textsubscript{Hg}/anno), il grado di incertezza risulta essere ancora notevole a livello globale essendo soprattutto influzionato dalla forte eterogeneità dei rifiuti stessi e dall’eventuale gestione o incenerimento di rifiuti pericolosi.

Negli ultimi decenni una serie di ricerche sono state messe in atto al fine di analizzare al meglio la situazione globale legata alla problematica del Hg. La Cina contribuisce da sola al 50% delle emissioni globali di mercurio, com’è apprezzabile dalla Figura 5.2 e Figura 5.3.

Figura 5.2 – Distribuzione globale delle emissioni antropogeniche di mercurio. (UNEP, 2013a).

È interessante notare come negli ultimi anni l’andamento delle emissioni di mercurio nei paesi americani ed europei sia risultato essere opposto rispetto a quello dei paesi asiatici. Gli andamenti emissivi opposti dei paesi precedentemente citati danno vita ad una condizione complessiva relativamente stabile, sebbene le difficoltà nel valutare scenari a livello globale siano rilevanti e molteplici (le incertezze sono associate alla correttezza dei dati relativi alle attività, alle assunzioni e alle validità riguardanti i fattori di emissione, l’efficacia e l’utilizzo di corrette tecniche, ecc.).
Per quanto riguarda l’Europa, dati registrati per l’anno 2000 (Tabella 5.2) evidenziano come contributo principale all’emissione del mercurio la combustione di carbone e fonti fossili, mentre lo smaltimento dei rifiuti determina solo circa il 5% dell’emissione totale annua (Pirrone et al., 2010).

Tabella 5.2 – Emissioni antropogeniche di mercurio in Europa nell’anno 2000. (Pirrone et al., 2010).

<table>
<thead>
<tr>
<th>Categoria della fonte di emissione</th>
<th>Hg [mg/anno]</th>
<th>Percentuale [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustione di carbone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impianti di produzione elettrica</td>
<td>63,5</td>
<td>26,5</td>
</tr>
<tr>
<td>Produzione di calore per teleriscaldamento</td>
<td>48,7</td>
<td>20,3</td>
</tr>
<tr>
<td>Combustione di oli combustibili</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produzione del cemento</td>
<td>30,2</td>
<td>12,6</td>
</tr>
<tr>
<td>Piombo</td>
<td>7,6</td>
<td>3,2</td>
</tr>
<tr>
<td>Zinco</td>
<td>7,8</td>
<td>3,3</td>
</tr>
<tr>
<td>Sottoprodotti industria del ferro</td>
<td>12,5</td>
<td>5,2</td>
</tr>
<tr>
<td>Produzione soda caustica</td>
<td>40,4</td>
<td>16,9</td>
</tr>
<tr>
<td>Smaltimento dei rifiuti</td>
<td>11,6</td>
<td>4,9</td>
</tr>
<tr>
<td>Altro</td>
<td>15,3</td>
<td>6,4</td>
</tr>
<tr>
<td>Totale</td>
<td>239,3</td>
<td>100,0</td>
</tr>
</tbody>
</table>

A livello del bacino del Mar Mediterraneo, stime relative al 1995 consentono di individuare come principali fonti emissive di mercurio la produzione di cemento, le centrali termoelettriche e gli impianti di incenerimento (Pirrone et al., 2010). In particolare, l’incenerimento di rifiuti urbani contribuisce a circa il 26% del mercurio emesso annualmente, ma ovviamente le percentuali possono essere fortemente differenti da paese a paese a seconda della specifica gestione dei rifiuti. Il contributo relativo all’emissione totale di mercurio (Hg\text{TOT}) dato dalla somma delle tre principali specie di mercurio che possono essere presenti in un effluente gassoso (vapori di mercurio nella forma metallica Hg^0 o nella forma ossidata Hg^{2+} nonché il mercurio associato al particolato
Hg\(^{P}\)) è riportato in Tabella 5.3 e Tabella 5.4. L’industria relativa alla produzione del cemento contribuisce a circa il 40% dell’Hg\(^{0}\) emesso, mentre gli inceneritori di rifiuti solidi contribuiscono al 46% del Hg\(^{2+}\) rilasciato annualmente nel bacino del Mar Mediterraneo.

Tabella 5.3 – Speciazione di mercurio antropogenico (t/anno) nel bacino del Mar Mediterraneo per ciascuna categoria emissiva. Stime relative al 1995. (Pirrone et al., 2010).

<table>
<thead>
<tr>
<th>Categoria della fonte di emissione</th>
<th>Hg(^{TOT})</th>
<th>Hg(^{0})</th>
<th>Hg(^{2+})</th>
<th>Hg(^{P})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustione di carbone</td>
<td>19,8</td>
<td>9,9</td>
<td>7,9</td>
<td>2,0</td>
</tr>
<tr>
<td>Combustione di oli combustibili</td>
<td>10,1</td>
<td>5,0</td>
<td>4,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Impianti di incenerimento rifiuti urbani</td>
<td>27,8</td>
<td>5,5</td>
<td>16,6</td>
<td>5,5</td>
</tr>
<tr>
<td>Produzione di cemento</td>
<td>28,8</td>
<td>23,1</td>
<td>4,3</td>
<td>1,4</td>
</tr>
<tr>
<td>Fusione di materiali non ferrosi</td>
<td>4,8</td>
<td>3,9</td>
<td>0,7</td>
<td>0,2</td>
</tr>
<tr>
<td>Produzione di ferro e acciaio</td>
<td>4,8</td>
<td>3,9</td>
<td>0,7</td>
<td>0,2</td>
</tr>
<tr>
<td>Altre attività</td>
<td>9,6</td>
<td>7,7</td>
<td>1,4</td>
<td>0,5</td>
</tr>
<tr>
<td>Totale</td>
<td>105,7</td>
<td>59,0</td>
<td>35,8</td>
<td>10,9</td>
</tr>
</tbody>
</table>

Tabella 5.4 – Speciazione di mercurio antropogenico (t/anno) nel bacino del Mar Mediterraneo per paese. Stime relative al 1995. (Pirrone et al., 2010).

<table>
<thead>
<tr>
<th>Paese</th>
<th>Hg(^{TOT})</th>
<th>Hg(^{0})</th>
<th>Hg(^{2+})</th>
<th>Hg(^{P})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td>0,26</td>
<td>0,1</td>
<td>0,1</td>
<td>< 0,1</td>
</tr>
<tr>
<td>Algeria</td>
<td>2,0</td>
<td>0,6</td>
<td>1,0</td>
<td>0,3</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>6,8</td>
<td>4,6</td>
<td>1,7</td>
<td>0,5</td>
</tr>
<tr>
<td>Cipro</td>
<td>0,9</td>
<td>0,6</td>
<td>0,2</td>
<td>0,1</td>
</tr>
<tr>
<td>Francia</td>
<td>22,8</td>
<td>9,9</td>
<td>9,6</td>
<td>3,1</td>
</tr>
<tr>
<td>Israele</td>
<td>0,8</td>
<td>0,5</td>
<td>0,3</td>
<td>0,1</td>
</tr>
<tr>
<td>Grecia</td>
<td>2,5</td>
<td>1,8</td>
<td>0,7</td>
<td>0,2</td>
</tr>
<tr>
<td>Italia</td>
<td>11,4</td>
<td>7,2</td>
<td>3,2</td>
<td>1,0</td>
</tr>
<tr>
<td>Giordania</td>
<td>1,4</td>
<td>1,1</td>
<td>0,4</td>
<td>0,1</td>
</tr>
<tr>
<td>Libano</td>
<td>1,5</td>
<td>0,9</td>
<td>0,5</td>
<td>0,1</td>
</tr>
<tr>
<td>Libia</td>
<td>3,0</td>
<td>2,1</td>
<td>0,6</td>
<td>0,2</td>
</tr>
<tr>
<td>Marocco</td>
<td>6,7</td>
<td>4,5</td>
<td>1,8</td>
<td>0,6</td>
</tr>
<tr>
<td>Spagna</td>
<td>9,0</td>
<td>5,5</td>
<td>2,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Siria</td>
<td>3,5</td>
<td>2,3</td>
<td>1,0</td>
<td>0,3</td>
</tr>
<tr>
<td>Tunisia</td>
<td>2,9</td>
<td>1,9</td>
<td>0,7</td>
<td>0,2</td>
</tr>
<tr>
<td>Turchia</td>
<td>16,2</td>
<td>8,5</td>
<td>5,9</td>
<td>1,7</td>
</tr>
<tr>
<td>Egitto</td>
<td>6,1</td>
<td>2,8</td>
<td>2,5</td>
<td>0,8</td>
</tr>
<tr>
<td>Jugoslavia</td>
<td>7,7</td>
<td>4,3</td>
<td>2,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Totale</td>
<td>105,7</td>
<td>59,0</td>
<td>35,8</td>
<td>10,9</td>
</tr>
</tbody>
</table>
5.2 Il mercurio nei rifiuti

Il mercurio è un elemento tradizionalmente impiegato nelle industrie elettroniche ed elettriche, nel settore farmaceutico ed in quello degli inchiostri (Cheng e Hu, 2012). La quantità contenuta nel rifiuto è principalmente dovuta alla presenza di batterie (sebbene da un decennio tale presenza nel rifiuto si sia molto ridotta), termometri, lampade a fluorescenza ed elementi elettrici contenuti nei rifiuti urbani (Mukherjee et al., 2004). Va anche considerata la sua possibile presenza in alcune tipologie di rifiuti speciali come i residui dello smaltimento degli autoveicoli (“car-fluff”) e i rifiuti ospedalieri. Il mercurio è presente inoltre in rifiuti da giardinaggio poiché è contenuto nei pesticidi (Hasselriis e Licata, 1996); tuttavia è bene segnalare come negli ultimi anni si sia notevolmente ridotto l’utilizzo di queste sostanze.

Si osserva un contenuto di mercurio nel rifiuto pari a 1,55 mg/kg (1,25 mg/kg se si escludono i due valori più elevati, rispettivamente pari a 5 mg/kg riportati da Chandler et al. (1997) e di 7 mg/kg secondo Evans e Williams, (2000)), con valori che si situano preferenzialmente tra 0,3 mg/kg e 3,2 mg/kg.

Una variazione del contenuto di mercurio nei rifiuti urbani a livello di differenti riferimenti geografici e nelle frazioni merceologiche del RUR è riportata rispettivamente in Tabella 5.5 e in Tabella 5.6.

<table>
<thead>
<tr>
<th>Riferimento bibliografico</th>
<th>Riferimento geografico</th>
<th>Hg [mg/kg secco]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinksjerg (1994)</td>
<td>Danimarca</td>
<td>1,2-1,8</td>
</tr>
<tr>
<td>Schamacher-Mayer et al. (1995)</td>
<td>Austria</td>
<td>1,3-1,8</td>
</tr>
<tr>
<td>Chandler et al. (1997)</td>
<td>-</td>
<td>0,5-5</td>
</tr>
<tr>
<td>Hasselriis e Licata (1996)</td>
<td>Canada</td>
<td>0,68</td>
</tr>
<tr>
<td>Olajire e Ayodele (1998)</td>
<td>Nigeria</td>
<td>0,4-1,4</td>
</tr>
<tr>
<td>Belevi (1998)</td>
<td>Svizzera</td>
<td>2,9-4,2</td>
</tr>
<tr>
<td>Evand e Williams (2000)</td>
<td>-</td>
<td>2-7</td>
</tr>
<tr>
<td>Bergfeldt et al. (2004)</td>
<td>Danimarca</td>
<td>1,05-2,5 (1)</td>
</tr>
<tr>
<td>Marras e Silvestrini (2004)</td>
<td>Italia</td>
<td>0,9-1,46</td>
</tr>
<tr>
<td>Riber et al. (2005)</td>
<td>Danimarca (1999-2001)</td>
<td>0-1 (0,6) (2)</td>
</tr>
<tr>
<td>Grosso et al. (2005)</td>
<td>Italia</td>
<td>0,4-1,6 (1,08) (2)</td>
</tr>
<tr>
<td>Corno et al. (2005)</td>
<td>Italia</td>
<td>0,39</td>
</tr>
<tr>
<td>Morleo (2005)</td>
<td>Italia</td>
<td>1,4-2,2</td>
</tr>
<tr>
<td>Huang et al. (2008)</td>
<td>Cina</td>
<td>0,07-0,11 (1)</td>
</tr>
<tr>
<td>Zhang et al. (2008)</td>
<td>Cina</td>
<td>0,1-2,3</td>
</tr>
<tr>
<td>Cernuschi et al. (2009)</td>
<td>Italia</td>
<td>0,95-3,10 (1,32) (2)</td>
</tr>
<tr>
<td>Giugliano et al. (2010)</td>
<td>Impianto FEA FRULLO</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Media</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>1,55</td>
<td>0,00</td>
<td>7,00</td>
</tr>
</tbody>
</table>

Note:
(1) – Calcolati a partire dai valori sul secco ipotizzando un contenuto di umidità del 25%;
(2) – (Media).
Tabella 5.6 – Presenza di mercurio nelle frazioni merceologiche del RUR. (DIIAR-Politecnico di Milano, 2011).

<table>
<thead>
<tr>
<th>Frazione merceologica [mg/kg_frazione]</th>
<th>Riferimento bibliografico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carta</td>
<td></td>
</tr>
<tr>
<td>Fibre</td>
<td>0,006</td>
</tr>
<tr>
<td>Libri</td>
<td>0,000</td>
</tr>
<tr>
<td>Riviste</td>
<td>0,006</td>
</tr>
<tr>
<td>Laminati</td>
<td>0,002</td>
</tr>
<tr>
<td>Quotidiani</td>
<td>0,052</td>
</tr>
<tr>
<td>Marroni</td>
<td>0,038</td>
</tr>
<tr>
<td>Carta mista</td>
<td>0,027</td>
</tr>
<tr>
<td>Totale carta</td>
<td>0,131</td>
</tr>
<tr>
<td>Plastica</td>
<td></td>
</tr>
<tr>
<td>Film</td>
<td>0,019</td>
</tr>
<tr>
<td>Imballaggio alimenti</td>
<td>0,003</td>
</tr>
<tr>
<td>Beni domestici</td>
<td>0,003</td>
</tr>
<tr>
<td>Giocattoli</td>
<td>0,000</td>
</tr>
<tr>
<td>Cassette video</td>
<td>0,000</td>
</tr>
<tr>
<td>Totale plastica</td>
<td>0,025</td>
</tr>
<tr>
<td>Organico</td>
<td></td>
</tr>
<tr>
<td>Giardinaggio</td>
<td>0,162</td>
</tr>
<tr>
<td>Alimentare</td>
<td>0,010</td>
</tr>
<tr>
<td>Totale organico</td>
<td>0,172</td>
</tr>
<tr>
<td>Legno</td>
<td>0,031</td>
</tr>
<tr>
<td>Tessili</td>
<td></td>
</tr>
<tr>
<td>Tessili</td>
<td>0,048</td>
</tr>
<tr>
<td>Scarpe</td>
<td>0,001</td>
</tr>
<tr>
<td>Totale tessili</td>
<td>0,049</td>
</tr>
<tr>
<td>Metalli</td>
<td></td>
</tr>
<tr>
<td>Imballaggi alimenti (in acciaio)</td>
<td>0,080</td>
</tr>
<tr>
<td>Imballaggi alimenti (in alluminio)</td>
<td>0,001</td>
</tr>
<tr>
<td>Banda stagnata</td>
<td>0,000</td>
</tr>
<tr>
<td>Foglio in alluminio</td>
<td>0,003</td>
</tr>
<tr>
<td>Manifattura (in metalli non ferrosi)</td>
<td>0,003</td>
</tr>
<tr>
<td>Totale metalli</td>
<td>0,087</td>
</tr>
<tr>
<td>Vetro</td>
<td></td>
</tr>
<tr>
<td>Chiaro</td>
<td>0,003</td>
</tr>
<tr>
<td>Verde</td>
<td>0,000</td>
</tr>
<tr>
<td>Marrone</td>
<td>0,001</td>
</tr>
<tr>
<td>Totale vetro</td>
<td>0,004</td>
</tr>
<tr>
<td>Materiali da costruzione leggeri</td>
<td></td>
</tr>
<tr>
<td>Sporco, terra</td>
<td>0,002</td>
</tr>
<tr>
<td>Cartongesso</td>
<td>0,000</td>
</tr>
<tr>
<td>Fibra di vetro</td>
<td>1,100</td>
</tr>
<tr>
<td>Totale costruzione</td>
<td>1,102</td>
</tr>
<tr>
<td>Batterie</td>
<td></td>
</tr>
<tr>
<td>Carbon</td>
<td>0,002</td>
</tr>
<tr>
<td>Ni-Cd</td>
<td>0,000</td>
</tr>
<tr>
<td>Alcaline</td>
<td>0,029</td>
</tr>
<tr>
<td>Totale batterie</td>
<td>0,031</td>
</tr>
<tr>
<td>Piccoli elettrodomestici di plastica</td>
<td>0,000</td>
</tr>
<tr>
<td>Sottovaglio</td>
<td>0,106</td>
</tr>
</tbody>
</table>
Tra le frazioni merceologiche che compongono il RUR, quelle che presentano le maggiori concentrazioni di mercurio sono la carta (imballaggi, inchiostro), i tessili e l’organico (sfalci e relativi diserbanti e fungicidi), nonché i residui da demolizione che eventualmente possono essere presenti nel rifiuto domestico. Le batterie e le apparecchiature elettriche ed elettroniche sono generalmente raccolte per via differenziata e per questo motivo il loro contributo alla tossicità del rifiuto dovrebbe essere di piccola entità nonostante contengano quantità elevate di mercurio. Pertanto possono essere sufficienti piccoli quantitativi di tali materiali nel RUR per innalzare anche in maniera cospicua la concentrazione di mercurio. Si prevede un progressivo aumento del mercurio nel RUR per i prossimi anni dovuto a una sempre più crescente sostituzione, con la possibilità di incremento di casi di smaltimento improprio, delle sopracitate apparecchiature obsolete con apparecchiature a basso tenore di mercurio.

Per quanto riguarda i rifiuti speciali, il relativo processo di caratterizzazione risulta molto complesso per via della elevata eterogeneità di tale categoria di rifiuto. Questa classe comprende infatti “car-fluff” e rifiuti sanitari (ROT). Il car-fluff è costituito da frazioni plastiche e tessili di autovetture frantumate, frazioni metalliche e componenti elettriche. La presenza media di Hg è dell’ordine di 1 mg/kg-car-fluff, una quantità simile a quella che caratterizza il RUR. Negli ultimi anni il contenuto di mercurio nelle auto si è ridotto. Per quanto riguarda invece il ROT, il mercurio risulta presente in aghi, siringhe, termometri, amalgami dentali, con una concentrazione media di 8,1 mg/kg-ROT (Cernuschi et al., 2002). Dopo l’anno 2000 non sono più state rilevate concentrazioni di mercurio nel RUR superiori ai 3 mg/kgRUR e la concentrazione media si è ridotta da 2 mg/ kgRUR nel periodo 1994-2000 a 1,05 mg/ kgRUR nel periodo 2001-2008, fino a raggiungere valori di 0,5 mg/kgRUR nel 2009. Tra le motivazioni può essere sicuramente citata la Direttiva 98/101/CE del 1998 che ha vietato la vendita, a partire dal primo gennaio del 2000, delle batterie contenenti più dello 0,0005% di mercurio in peso (2% nel caso di pile a bottone).

Tabella 5.7 – Requisiti per pulizia del gas in processi di incenerimento e confronto con concentrazioni di inquinanti nei fumi grezzi. (Richers, 2010).

<table>
<thead>
<tr>
<th>Categoria di inquinanti</th>
<th>Conc. in gas grezzo (mg/m³)</th>
<th>Valore medio emissione permesso al giorno (mg/m³)</th>
<th>Eff. di abbattimento (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polveri</td>
<td>2000-10000</td>
<td>10</td>
<td>99-99,9</td>
</tr>
<tr>
<td>HCl</td>
<td>300-1500</td>
<td>10</td>
<td>98-99</td>
</tr>
<tr>
<td>HF</td>
<td>2-20</td>
<td>1</td>
<td>95</td>
</tr>
<tr>
<td>SO₂</td>
<td>200-800</td>
<td>50</td>
<td>85-95</td>
</tr>
<tr>
<td>NOₓ come NO₂</td>
<td>200-400</td>
<td>200</td>
<td>50-70</td>
</tr>
<tr>
<td>Hg</td>
<td>0,2-0,7</td>
<td>0,03</td>
<td>85-95</td>
</tr>
<tr>
<td>Σ(comp. con Cd e Tl)</td>
<td>1-10</td>
<td>0,05</td>
<td>95-99</td>
</tr>
<tr>
<td>Σ(comp. con As, Co, Cr, Cu, Mn, Ni, Pb, Sb, V, Zn)</td>
<td>10-80</td>
<td>0,5</td>
<td>>95</td>
</tr>
<tr>
<td>Σ(comp. con As, Cd, Co, Cr + Benzo(a)pireni)</td>
<td>2-20</td>
<td>0,05</td>
<td>>95</td>
</tr>
<tr>
<td>Σ(PCDD/PCDF)</td>
<td>1-4 ng/m³</td>
<td>0,1 ngTEQ/m³</td>
<td>>90</td>
</tr>
</tbody>
</table>
Il mercurio ha acquisito con gli anni sempre più importanza ed il suo studio è diventato sempre più rilevante al pari di altri inquinanti come NO\textsubscript{x}, SO\textsubscript{2}, HCl, comuni in impianti caratterizzati da una combustione stazionaria, a causa della crescente applicazione dei sistemi di incenerimento e della pericolosità legata all’interazione con gli organismi viventi e l’ambiente. Come indicato nella Tabella 5.7, le efficienze da raggiungere nei processi di pulizia del gas sono molto alte.

5.3 Il comportamento del mercurio nei processi di combustione dei rifiuti

Le reazioni che coinvolgono il mercurio lungo la linea fumi di un termovalorizzatore sono molteplici e determinate da una serie di fattori come il tipo di combustibile utilizzato (si può trattare di rifiuti oppure carbone usato come combustibile ausiliario), la configurazione della filiera di trattamento, le condizioni operative del processo e i composti presenti nei gas di scarico.

I principali inquinanti inorganici presenti nei fumi prodotti dall’incenerimento dei rifiuti sono: gas acidi come diossido di zolfo (SO\textsubscript{2}), acido cloridrico (HCl), acido fluoridrico (HF), ossidi di azoto (NO\textsubscript{x}), metalli pesanti (Pb, Cd, Hg, ecc.) e polveri legate a sostanze incombuste o prodotti dosati per il trattamento dei fumi (Richers, 2010; Waldner et al., 2013). Oltre alla categoria degli inquinanti inorganici, il processo di termovalorizzazione dei rifiuti comporta la generazione in misura minore di composti inquinanti organici quali dossine (PCDD), furani (PCDF), policlorobifenili (PCB) e idrocarburi policiclici aromatici (IPA).

Per quanto concerne il mercurio contenuto nei rifiuti avviati ad incenerimento (o nel combustibile ausiliario alimentato) esso vaporizza alle elevate temperature rilevabili in camera di combustione (800-1000°C) ed è presente nei fumi come mercurio gassoso elementare Hg\textsubscript{0} o nella forma divalente Hg2+ come composto chimico ossidato, allo stato gassoso e particolato.

Il mercurio elementare viene progressivamente ossidato lungo la linea fumi: l’ossidazione di Hg\textsubscript{0} a mercurio divalente (Hg2+) è promossa dalla diminuzione della temperatura del gas esausto da oltre 800°C a 300°C, con una parte di Hg2+ che viene adsorbita sulla cenere formando un legame con essa e generando mercurio in forma particolata. D’altra parte per temperature inferiori a 200-250°C, in presenza di ossigeno e in assenza di specie riducenti, i vapori di mercurio sono parzialmente ossidati a HgO.

Analisi condotte su gas esauriti di impianti di incenerimento di rifiuti urbani confermano come il mercurio sia presente principalmente nella sua forma ossidata e solo in parte nella sua forma elementare, come Hg\textsubscript{0}. Le quantità di mercurio in forma ossidata ed in forma elementare risultano essere rispettivamente pari al 70-90% ed al 10-30% (Chang et al, 2000, Yan et al., 2003).

Le percentuali variano molto a seconda del paese e del tipo di rifiuto trattato. Ad esempio in Europa e negli Stati Uniti, si riporta che tra il 10% ed il 20% del mercurio rilasciato associato al rifiuto municipale è mercurio elementare, mentre il mercurio ossidato figura in percentuali comprese tra il 75% e l’85%. Queste ripartizioni
percentuali potrebbero essere spiegate dalla presenza di un’alta concentrazione di HCl nel flusso gassoso (Carpi, 1997). Questi valori risultano confermati dalle misurazioni effettuate in Corea dove si registra una percentuale di Hg2+ negli inceneritori di rifiuti solidi urbani compresa tra il 78% e l’89%. Negli inceneritori per rifiuti industriali contrariamente, tale percentuale è anche più in alta e varia tra 96,3% e 98,7% (Park et al., 2008).

È stato osservato che la presenza di gas acidi favorisce l’ossidazione del mercurio elementare a Hg2+, specialmente in presenza di ceneri volanti che catalizzano le reazioni (Carey et al., 1998).

A seconda dei rapporti molari HCl/H\textsubscript{G\textsc{TOT}} e SO\textsubscript{2}/HCl si ottengono diverse distribuzioni dei composti nei fumi: ad esempio per un alto rapporto HCl/H\textsubscript{G\textsc{TOT}} e un basso rapporto SO\textsubscript{2}/HCl (corrispondente a un alto tenore di HCl nei fumi) la maggior parte del mercurio (70-90%) si trova nella forma HgCl\textsubscript{2} mentre una quantità minore è presente come vapori di mercurio ad alte temperature (Stantec Consulting Ltd., 2011).

5.3.1 Interazione tra mercurio e acido cloridrico

Generalmente l’acido cloridrico è uno dei componenti principali dei fumi prodotti da incenerimento e ciò comporta una notevole influenza sulla conversione da Hg0 a Hg2+; ne consegue che oltre l’80% del mercurio si presenta in forma gassosa come HgCl\textsubscript{2}. Due reazioni (5.1 e 5.2) giocano un ruolo significativo nella formazione e distruzione dell’acido cloridrico: l’ossidazione dell’acido cloridrico che porta alla formazione di cloro e acqua, e la riduzione del cloro grazie al diossido di zolfo.

\begin{align*}
4\text{HCl} + \text{O}_2 & \rightarrow 2\text{Cl}_2 + 2\text{H}_2\text{O} & \text{(5.1)} \\
\text{SO}_2 + 2\text{H}_2\text{O} + \text{Cl}_2 & \rightarrow \text{H}_2\text{SO}_4 + 2\text{HCl} & \text{(5.2)}
\end{align*}

In base alla concentrazione con cui l’acido cloridrico è presente nel flusso gassoso è quindi possibile valutare come varia la presenza di HgCl\textsubscript{2}.

Nello studio di Nishitani et al. (1999) è stata analizzata la variazione di HgCl\textsubscript{2} per valori di HCl superiori o inferiori a 1000 ppm (corrispondenti a 1,62 g\textsubscript{HCl}/m3). Si è osservato (Figura 5.4) come all’aumentare della concentrazione di HCl presente nei fumi aumenti anche il rapporto HgCl\textsubscript{2}/H\textsubscript{G\textsc{TOT}} e conseguentemente la concentrazione di HgCl\textsubscript{2}. Questo legame è ben descritto da un andamento asintotico: la percentuale di HgCl\textsubscript{2} aumenta rapidamente all’aumentare della concentrazione di HCl fino al valore di 1000 ppm di quest’ultima. Superata tale soglia, l’aumento prosegue in modo meno marcato sino ad un valore di assestamento. Per concentrazioni di HCl superiori a 1000 ppm si avranno percentuali stabili di HgCl\textsubscript{2} nel gas comprese tra il 90% e il 97%, mentre per concentrazioni di HCl inferiori a 1000 ppm, l’intervallo di variazione è molto più ampio, con percentuali di HgCl\textsubscript{2} che aumentano all’aumentare della concentrazione di acido cloridrico fino all’80%.
La relazione che intercorre tra la percentuale di HgCl₂ e la concentrazione di HCl nel flusso gassoso è valutata attraverso equilibri termodinamici.

Altri composti che reagiscono con i vapori di mercurio sono l’ossigeno, vapori di zolfo, acido solforico (a formare H₂SO₄), polisolfuri alcalini e cloruri di metalli di transizione (Fe, Cu) (Svoboda et al., 2016).

Nello specifico l’ossigeno riveste un ruolo molto importante in due reazioni ((5.3) e (5.4)) che coinvolgono il mercurio e portano alla formazione di HgO e HgCl₂:

\[
\begin{align*}
\text{Hg} + 2\text{HCl} + \frac{1}{2}\text{O}_2 & \rightarrow \text{HgCl}_2 + \text{H}_2\text{O} \\
\text{Hg} + \frac{1}{2}\text{O}_2 & \rightarrow \text{HgO}
\end{align*}
\]

(5.3)

(5.4)

La Figura 5.5 mostra come varia il tasso di conversione di Hg⁰ a HgCl₂ o a HgO in funzione della temperatura con concentrazioni iniziali di Hg, HCl e H₂O prefissate.
Più la temperatura è bassa e maggiore è la conversione a HgCl\(_2\) anziché a HgO. All’aumentare della temperatura, al contrario, Hg\(^0\) manifesta la tendenza a convertirsi maggiormente in HgO piuttosto che in HgCl\(_2\). Si osservano gli stessi andamenti anche per una concentrazione minore di HCl: Hg mantiene comunque gli stessi tassi di conversione. Nella Figura 5.6 viene rielaborato il grafico visto in precedenza, riportando sulle ascisse la concentrazione di HCl (ppm) e rappresentando le curve in funzione della temperatura. Si osserva che all’aumentare della concentrazione di HCl, aumenta anche HgCl\(_2\); tale aumento è tanto più evidente quanto più la temperatura è bassa ed infatti a 600°C si ha un aumento maggiore rispetto a quanto avviene a 800°C. La curva in funzione del valore di temperatura di 600°C mostra analogie con la curva di Figura 5.4, confermando l’andamento reale.

![Grafico HgCl\(_2\) in funzione della temperatura](image1)

Figura 5.6 – Percentuale di HgCl\(_2\) al variare della concentrazione di HCl in funzione della temperatura con Hg = 0,2 mg/m\(^3\), O\(_2\) = 10%, H\(_2\)O = 20%. (Nishitani et al., 1999).

È stata analizzata successivamente la variazione di HgCl\(_2\) a 600°C al variare del contenuto di O\(_2\) e H\(_2\)O nel gas, per un valore di Hg iniziale prefissato pari a 0,2 mg/m\(^3\). Dalla Figura 5.7 si nota come HgCl\(_2\) diminuisce se la concentrazione di O\(_2\) diminuisce e se la concentrazione di H\(_2\)O aumenta.

![Grafico HgCl\(_2\) in funzione della concentrazione di HCl](image2)

Figura 5.7 – Percentuale di HgCl\(_2\) al variare della concentrazione di HCl, per diversi valori di O\(_2\) e H\(_2\)O. (Nishitani et al., 1999).
L’influenza sulla quantità di HgCl₂ nel gas è tanto maggiore per un valore di concentrazione di HCl basso, mentre è più attenuata per concentrazioni di HCl maggiori (sopra 1000 ppm). È bene segnalare che i test eseguiti da Nishitani et al. (1999) sono stati condotti a temperature costanti e basse, con un ridotto intervallo di variabilità (tra i 600°C e gli 800°C). Tuttavia in caldaia gli intervalli di temperatura sono ben più alti: si spazia dai 900°C in camera di combustione ai 300°C in uscita caldaia. La formazione di HgCl₂ si verifica in camera di combustione quando la temperatura manifesta abbassamenti. Raramente le reazioni ((5.1) e (5.2)) sono complete, perché la velocità di reazione cala per via dei tempi di residenza ridotti e per il fatto che la temperatura difficilmente resta fissa a 600°C, ma diminuisce. Anche nel caso di tempi di residenza rilevanti, il calo delle temperature influenza maggiormente sulla formazione di HgCl₂ (Hall et al., 1991).

5.3.2 Interazione tra mercurio e altre specie chimiche

Alcuni studi (Vosteen et al., 2008; Zheng et al., 2012) evidenziano un marcato effetto di alogenazione del mercurio anche ad opera del bromo. Questo si deve sia alla presenza di reazioni di dissociazione di HBr (reazione di tipo Deacon (5.5)), sia alla presenza di reazioni competitive di consumo di cloro molecolare ad opera dell’SO₂ (reazione di tipo Griffith (5.6)):

\[
\begin{align*}
4\text{HBr} + \text{O}_2 & \leftrightarrow 2\text{Br}_2 + 2\text{H}_2\text{O} \quad (5.5) \\
\text{SO}_2 + \text{Cl}_2 + \text{H}_2\text{O} & \rightarrow \text{SO}_2 + 2\text{HCl} \quad (5.6)
\end{align*}
\]

Tuttavia, è sempre bene considerare le concentrazioni relative dei due alogeni nel flusso gassoso al fine di discriminare la maggiore o minore influenza sul mercurio. Sono state inoltre proposte iniezioni dirette di bromo o utilizzi di carboni attivi impregnati con questa specie per abbattere il mercurio, anche se eventuali problemi di rilasci a valle e le forti caratteristiche acide del bromo scoraggiano tali applicazioni (Vosteen et al., 2008).

La Tabella 5.8 illustra i dati termodinamici delle reazioni che riguardano le principali forme in cui si trova il mercurio nei gas esausti (Hg⁰, HgCl₂, HgSO₄, HgO), valutati riferendosi alla temperatura di 500K (227°C) in termini di energia libera di Gibbs \(\Delta G_R \). I valori di \(\Delta G_R \) sono valutati attraverso una differenza tra due contributi, pari rispettivamente alla somma dei valori di \(\Delta G_R \) dei prodotti e dei reagenti.

Si suppone che i vapori di zolfo, normalmente presenti a 227°C e costituiti da molecole formate rispettivamente da 4, 6 e 8 atomi di zolfo (S₄, S₆, S₈), siano presenti solo nella forma S₆.

Dalla Tabella 5.8 si può evincere come le reazioni di Hg⁰ con HCl, FeCl₃, CuCl₂ e H₂SO₄ siano termodinamicamente più favorevoli rispetto alle reazioni con zolfo e polisolfuro di sodio (Na₂S₄). La reazione tra Na₂S₄ e HgCl₂ è termodinamicamente più favorevole rispetto a quella con Hg⁰; tuttavia tale reazione porta alla produzione di zolfo elementare in forma di vapore o come piccole gocce di diametro inferiore al micrometro che reagiscono a loro volta con Hg⁰ in fase gas o dopo essere adsorbito su superfici solide.
Tabella 5.8 – ΔG_R delle reazioni di rimozione di Hg^0 e HgCl_2 nei fumi alla temperatura di 227°C. (Barin, 1995).

<table>
<thead>
<tr>
<th>Reazioni</th>
<th>ΔG_R (kJ/mol)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}\text{S}_6(g) + \text{Hg}^0(g) \rightarrow \text{HgS}(s)$</td>
<td>-56,46</td>
<td>S_6 in forma di S_6</td>
</tr>
<tr>
<td>$\text{Na}_2\text{S}_4(s) + \text{Hg}^0(g) \rightarrow \text{Na}_2\text{S}_3(s) + \text{HgS}(s)$</td>
<td>-57,08</td>
<td>Na_2S_x in forma (s)</td>
</tr>
<tr>
<td>$2\text{HCl} + 0,5\text{O}_2 + \text{Hg}^0(g) \rightarrow \text{HgCl}_2(g) + \text{H}_2\text{O}(g)$</td>
<td>-181,08</td>
<td>HgCl_2 come vapore</td>
</tr>
<tr>
<td>$2\text{FeCl}_3(s) + \text{Hg}^0(g) \rightarrow \text{HgCl}_2(g) + 2\text{FeCl}_2(s)$</td>
<td>-127,54</td>
<td></td>
</tr>
<tr>
<td>$\text{H}_2\text{SO}_4(g) + \text{Hg}^0(g) + 0,5\text{O}_2 \rightarrow \text{HgSO}_4(s) + \text{H}_2\text{O}(g)$</td>
<td>-141,82</td>
<td></td>
</tr>
<tr>
<td>$\text{H}_2\text{SO}_4(g) + \text{Hg}^0(g) + 0,5\text{O}_2 \rightarrow \text{HgSO}_4(s) + \text{H}_2\text{O}(g)$</td>
<td>-152,97</td>
<td></td>
</tr>
<tr>
<td>$2\text{CuCl}_2(s) + \text{Hg}^0(g) \rightarrow \text{HgCl}_2(g) + 2\text{CuCl}_2(s)$</td>
<td>-132,02</td>
<td></td>
</tr>
<tr>
<td>$\text{Na}_2\text{S}_4(s) + \text{HgCl}_2(g) \rightarrow 2\text{NaCl}(s) + \text{HgS}(s) + \frac{3}{2}\text{S}_6(g)$</td>
<td>-237,65</td>
<td>S_6 in forma di S_6</td>
</tr>
<tr>
<td>$\text{CaS}(s) + \text{HgCl}_2(g) \rightarrow \text{CaCl}_2(s) + \text{HgS}(s)$</td>
<td>-148,35</td>
<td></td>
</tr>
</tbody>
</table>

A livello termodinamico il mercurio elementare in forma gassosa risulta stabile nell’intervallo di temperatura tra 300°C e 600°C, mentre per temperature inferiori è più stabile la specie ossidata (Yan et al., 2003). La distribuzione reale delle specie di mercurio osservate sperimentalmente può, tuttavia, differire dai risultati dei calcoli termodinamici, a causa delle limitazioni cinetiche. Le proprietà che riguardano alcune delle sostanze principali riguardanti il mercurio sono riportate in Tabella 5.9 e Tabella 5.10.

Tabella 5.9 – Caratteristiche delle principali specie chimiche del mercurio. (Zheng et al., 2012).

<table>
<thead>
<tr>
<th>Specie</th>
<th>Peso molecolare (g/mol)</th>
<th>T fusione (°C)</th>
<th>T ebollizione (°C)</th>
<th>Densità (g/cm3)</th>
<th>Solubilità in acqua a 25°C (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hg^0</td>
<td>200,59</td>
<td>-38,8</td>
<td>356,7</td>
<td>13,54</td>
<td>5,6 x 10$^{-7}$</td>
</tr>
<tr>
<td>Hg_2Cl_2</td>
<td>472,09</td>
<td>525</td>
<td>302</td>
<td>7,15</td>
<td>0,002</td>
</tr>
<tr>
<td>HgCl_2</td>
<td>271,50</td>
<td>277</td>
<td>302</td>
<td>5,43</td>
<td>28,6</td>
</tr>
<tr>
<td>Hg_2SO_4</td>
<td>497,24</td>
<td></td>
<td>356,7</td>
<td>13,54</td>
<td>5,6 x 10$^{-7}$</td>
</tr>
<tr>
<td>HgSO_4</td>
<td>296,66</td>
<td></td>
<td>356,7</td>
<td>13,54</td>
<td>5,6 x 10$^{-7}$</td>
</tr>
</tbody>
</table>
Tabella 5.10 – Punto di fusione, punto di ebollizione e comportamento delle principali specie chimiche che interagiscono con il mercurio. (Svoboda et al., 2016).

<table>
<thead>
<tr>
<th>Specie</th>
<th>T fusione (°C)</th>
<th>T ebollizione (°C)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>115,2</td>
<td>444,6</td>
<td>Auto-innesco: 230-245 °C</td>
</tr>
<tr>
<td>Na₂S₂</td>
<td>275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>10,3</td>
<td>337</td>
<td>>300°C decomposizione parziale</td>
</tr>
<tr>
<td>FeCl₃</td>
<td>306</td>
<td>315</td>
<td>>280°C decomposizione</td>
</tr>
<tr>
<td>FeCl₂</td>
<td>677</td>
<td>1023</td>
<td></td>
</tr>
<tr>
<td>CuCl₂</td>
<td>498</td>
<td>993</td>
<td>>800°C decomposizione parziale</td>
</tr>
<tr>
<td>AsCl₃</td>
<td>-16</td>
<td>130</td>
<td>Volatile, vapore nel flusso gassoso</td>
</tr>
<tr>
<td>CdCl₂</td>
<td>564</td>
<td>960</td>
<td></td>
</tr>
<tr>
<td>PbCl₂</td>
<td>501</td>
<td>951</td>
<td></td>
</tr>
<tr>
<td>ZnCl₂</td>
<td>292</td>
<td>732-756</td>
<td></td>
</tr>
</tbody>
</table>

5.3.3 Il mercurio nei principali processi di combustione

I processi più indagati per quanto concerne la speciazione, il comportamento e l’abbattimento del mercurio sono la combustione di carbone in centrali termoelettriche per la produzione di energia elettrica e l’incenerimento di rifiuti. In particolare, per quanto riguarda l’incenerimento di rifiuti solidi urbani, l’efficienza di rimozione del mercurio complessiva della linea di trattamento dei fumi (“Air Pollution Control Devices”, sinteticamente espressa con la sigla APCDs) varia dal 60% ad oltre il 99% (Zhang et al., 2008). La speciazione del mercurio è un fattore fondamentale per una stima corretta dell’emissione di mercurio e per garantire una buona efficienza nella rimozione dello stesso.

Studi di Park et al. (2008) consentono di analizzare questo tipo di problematica, focalizzando la propria attenzione sul livello di speciazione e sulle emissioni di mercurio in diverse centrali termoelettriche a carbone e inceneritori di rifiuti urbani e industriali in Corea. Nello studio sono riportate le emissioni di mercurio totale (HgTOT) per i diversi tipi di impianti analizzati. Le valutazioni sono state effettuate all’ingresso della linea di trattamento fumi (APCDs) e all’emissione a camino, in modo da comprendere l’impatto della configurazione della linea di trattamento fumi e del tipo di impianto sulle emissioni di mercurio. Le centrali che bruciano olio combustibile forniscono il minor valore in termini di concentrazione all’ingresso della linea di trattamento fumi ed anche il minor valore di emissione a camino. Per le centrali a carbone invece, il tipo di carbone e la configurazione della linea di trattamento dei fumi sono i fattori che influenzano maggiormente il livello di concentrazione di mercurio all’emissione. È interessante poi notare come l’antracite sia in grado di comportare un livello emissivo di mercurio più alto rispetto al carbone bituminoso.
Tabella 5.11 – Risultati medi di impianti che usano tecnologia a griglia, a letto fluido e centrali
termoelettriche a carbone. (Park et al., 2008).

<table>
<thead>
<tr>
<th>Sorgente di combustione</th>
<th>Tipo combustibile</th>
<th>Concentrazione Hg_{TOT} (µg/Sm³)</th>
<th>All’ingresso di APCDs</th>
<th>A camino</th>
<th>Tipo APCDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inceneritore rifiuti industriali n.1</td>
<td>Rifiuti industriali pericolosi</td>
<td>619,23-1318,14</td>
<td>40,72-325,65</td>
<td>Camere di raffreddamento + Cicloni + Torri a spruzzo + ESP ad umido</td>
<td></td>
</tr>
<tr>
<td>Inceneritore rifiuti industriali n.2</td>
<td>Rifiuti industriali pericolosi</td>
<td>56,27-59,26</td>
<td>23,69-58,76</td>
<td>Lavaggio a secco + Filtro a maniche</td>
<td></td>
</tr>
<tr>
<td>Inceneritore rifiuti industriali n.3</td>
<td>Rifiuti industriali pericolosi</td>
<td>14,27-34,77</td>
<td>17,80-24,71</td>
<td>Lavaggio a semisecco + Filtro a maniche</td>
<td></td>
</tr>
<tr>
<td>Inceneritore rifiuti urbani n.1</td>
<td>Rifiuto municipale</td>
<td>27,40-44,26</td>
<td>3,71-4,59</td>
<td>Assorbimento spray + Filtro a maniche</td>
<td></td>
</tr>
<tr>
<td>Inceneritore rifiuti urbani n.2</td>
<td>Rifiuto municipale</td>
<td>56,80-75,97</td>
<td>7,24-10,82</td>
<td>Assorbimento spray a secco + Filtro a maniche + SCR</td>
<td></td>
</tr>
<tr>
<td>Centrale termoelettrica a olio</td>
<td>Olio combustibile</td>
<td>0,24-1,45</td>
<td>0,20-0,21</td>
<td>ESP</td>
<td></td>
</tr>
<tr>
<td>Centrale termoelettrica a carbone n.1</td>
<td>Antracite</td>
<td>10,44-37,77</td>
<td>3,39-31,99</td>
<td>ESP</td>
<td></td>
</tr>
<tr>
<td>Centrale termoelettrica a carbone n.2</td>
<td>Carbone bituminoso</td>
<td>1,30-5,41</td>
<td>2,03-4,39</td>
<td>ESP + FGD</td>
<td></td>
</tr>
<tr>
<td>Centrale termoelettrica a carbone n3</td>
<td>Carbone bituminoso</td>
<td>1,01-5,41</td>
<td>2,11-2,41</td>
<td>ESP + FGD</td>
<td></td>
</tr>
</tbody>
</table>

Note:

Come si nota, le emissioni registrate sono molto dipendenti alle caratteristiche del combustibile, dalla configurazione degli APCDs scelta, dalla composizione del gas esausto ed alla temperatura di esercizio.

A seconda della temperatura vengono infatti promosse una serie di reazioni differenti, tra cui ossidazione di Hg⁰ a Hg^{2+}, riduzione di Hg^{2+} a Hg⁰ e processi di adsorbimento e desorbimento di entrambe le forme su e da ceneri volanti. Il carbone utilizzato in questi impianti contiene mercurio in quantità variabili in base al tipo di carbone stesso utilizzato (da 0,01 mg/kg fino a 0,48 mg/kg). L’emissione vera e propria di mercurio si manifesta nel momento in cui questo vaporizza dalla sostanza in cui è contenuto durante la combustione, come riportato in precedenza.

Sono stati registrati valori maggiori per le emissioni da inceneritori di rifiuto industriale a causa della rilevante quantità di mercurio contenuta nel rifiuto. Inoltre tale rifiuto è eterogeneo e ciò comporta fluttuazioni notevoli delle concentrazioni di mercurio stesso.
Eseguendo un confronto tra efficienze di rimozione del mercurio valutate sui valori medi delle concentrazioni registrate all’ingresso della linea fumi e a camino dei diversi impianti riportati in Tabella 5.11, è possibile notare come le efficienze di abbattimento del mercurio raggiunte nell’inceneritore di rifiuti industriali n.1, n.2 e n.3 sono rispettivamente pari a 81%, 29% e 13%. Per quanto riguarda gli inceneritori di rifiuti municipali n.1 e n.2 è stata ottenuta un’efficienza media rispettivamente pari a 88% e 86%. Meno efficienti risultano sicuramente le centrali termoelettriche a carbone n.1, n.2, n.3 con efficienze valutate rispettivamente pari a 27%, 4% e 30% e la centrale termoelettrica a olio con un’efficienza pari a 76%.

La Tabella 5.12 mostra come è ripartita la speciazione del mercurio a camino osservata in alcuni degli impianti analizzati.

Tabella 5.12 – Risultati medi di impianti che usano tecnologia a griglia e a letto fluido e centrali termoelettriche. (Park et al., 2008).

<table>
<thead>
<tr>
<th>Specie di combustione</th>
<th>All’ingresso di APCD<sub>3</sub></th>
<th>A camino</th>
<th>Tipo APCD<sub>3</sub></th>
<th>Elementare</th>
<th>Ossidato</th>
<th>HCl</th>
<th>SO<sub>2</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrale termoelettrica a carbone n.3</td>
<td>1,01-5,41</td>
<td>2,11-2,41</td>
<td>ESP + FGD</td>
<td>84,40-85,50</td>
<td>15,60-14,50</td>
<td>8,6</td>
<td>32,8</td>
</tr>
<tr>
<td>Inceneritore rifiuti industriali n.2</td>
<td>56,27-59,26</td>
<td>23,69-58,76</td>
<td>Lavaggio a secco + Filtri a manica</td>
<td>1,30-3,70</td>
<td>96,30-98,70</td>
<td>40,6</td>
<td>68,5</td>
</tr>
<tr>
<td>Inceneritore rifiuti municipali n.1</td>
<td>27,40-44,26</td>
<td>3,71-4,59</td>
<td>Assorbimento spray + Filtri a manica</td>
<td>17,71-22,05</td>
<td>77,95-82,29</td>
<td>-</td>
<td>19,3</td>
</tr>
<tr>
<td>Inceneritore rifiuti municipali n.2</td>
<td>56,80-75,97</td>
<td>7,24-10,82</td>
<td>Assorbimento spray a secco + Filtri a manica + SCR</td>
<td>11,39-18,86</td>
<td>81,14-88,61</td>
<td>-</td>
<td>8</td>
</tr>
</tbody>
</table>

Il mercurio ossidato (ad opera di forti ossidanti come HCl e SO₂) risulta essere predominante nel flusso gassoso generato da processi di incenerimento, mentre il mercurio elementare risulta essere predominante nel flusso gassoso a camino da centrali a carbone. Questo fenomeno potrebbe essere spiegato considerando il fatto che il mercurio ossidato viene generalmente rimosso dall’unità di FGD a umido della linea di trattamento fumi nel caso di centrali termoelettriche, in quanto le forme di mercurio ossidate manifestano notevole solubilità in soluzioni acide, come appunto quelle riscontrabili nei sistemi di lavaggio ad umido (Park et al., 2008).

Park et al. (2008) hanno inoltre esaminato attraverso un bilancio di massa del mercurio (calcolato a partire dai risultati di analisi su di un campione prelevato da un impianto di incenerimento selezionato) la distribuzione in massa del mercurio stesso nei residui di processo (Figura 5.8). I valori di input di mercurio del bilancio sono legati al carbone o al rifiuto in alimentazione all’impianto, alla calce additivata ed all’acqua di processo. I valori di output di mercurio del bilancio sono valutati in base alle ceneri volanti prodotte, alle scorie stimate.
e ad altri effluenti derivanti dal processo FGD a umido. È opportuno considerare che per ottenere una buona stima del bilancio di massa sono richieste analisi sul lungo periodo. I campioni prelevati dall’impianto di incenerimento selezionato hanno consentito di ottenere la seguente distribuzione media.

La maggior parte del mercurio è rilevata nelle ceneri volanti raccolte in tramogge (94,36%), mentre poche percentuali rimangono nelle scorie (2,17%) e sono rilasciate in atmosfera attraverso il camino (3,47%). Una ridotta quantità di mercurio è emessa a camino anche grazie alla configurazione di APCDs prevista dallo specifico impianto.

Generalmente per un impianto di incenerimento di RUR circa il 2-7% del mercurio si trova al camino, il 52-97% si concentra nei residui della depurazione dei fumi (ceneri volanti contenenti i prodotti sodici residui o i prodotti calcici residui), mentre solo lo 0,001-0,3% si ritrova nelle ceneri di caldaia e lo 0,4-1,5% nelle scorie (Belevi e Moench, 2000).

Studi sperimentali sul comportamento del mercurio in camera di combustione hanno tuttavia dimostrato che quote anche rilevanti (talvolta superiori al 19%) possono rimanere nelle scorie associate ai residui carboniosi incombusti (Sorum et al., 2003). In generale il processo di volatilizzazione dei metalli può raggiungere le condizioni di equilibrio in camera di combustione se la concentrazione nei solidi è maggiore di quella evaporabile alla temperatura di processo e ciò spiega le concentrazioni non trascurabili di elementi volatili che vengono talvolta rilevate nelle scorie (Cozzi, 1999).

La configurazione impiantistica di un inceneritore influenza notevolmente la speciazione del mercurio: ad esempio in un forno a letto fluido si può generare fino al 65% in più di mercurio particolato rispetto a quanto avviene in un forno a griglia a causa dei più elevati tempi di contatto tra la fase gassosa del mercurio e le ceneri volanti prodotte in caldaia (Zhang et al., 2013).

Studi condotti da Chen et al. (2013) hanno indagato come varia la speciazione del mercurio nelle emissioni da inceneritori di rifiuti solidi urbani nella regione Pearl River Delta nel sud della Cina in funzione delle diverse tecnologie di rimozione degli inquinanti adottate. Sono state valutate le concentrazioni medie in riferimento a

![Figura 5.8 – Risultati della distribuzione del mercurio in un inceneritore di rifiuti urbani. (Park et al., 2008).](image)
8 impianti, di cui 6 dotati di combustore a griglia e 2 equipaggiati con la tecnologia a letto fluido. Gli impianti analizzati presentano le seguenti linee trattamento: sistema di lavaggio a semisecco (con “slurry” di calce) o a secco (con polvere di calce) per rimuovere i gas acidi, sistema di iniezione di carboni attivi per la rimozione di diossine e metalli pesanti, seguito da filtri a maniche a valle. La capacità di trattamento di questi impianti varia da 600 a 1400 t/giorno di rifiuti. Gli effluenti gassosi generati dalla combustione sono stati campionati subito a valle delle fasi di trattamento o direttamente a camino ed i risultati hanno mostrato come la concentrazione di mercurio in impianti a letto fluido sia generalmente minore rispetto quella di impianti utilizzanti i sistemi a griglia.

Lo studio condotto mostra risultati basati sul calcolo di un fattore di emissione del mercurio \(E_f \left[\frac{mgHg}{tRifiuti} \right] \).

Quest’ultimo dipende dalla concentrazione di mercurio nel flusso gassoso, dall’entità del flusso gassoso stesso e dalla quantità di rifiuto bruciato nel tempo. Per valutare il fattore di emissione è usata la relazione (5.7):

\[
E_f = C_e \cdot \frac{V_e}{M(t)}
\]
(5.7)

dove:
\(E_f \left[\frac{mgHg}{tRifiuti} \right] \) rappresenta il fattore di emissione del mercurio;
\(C_e \left[\frac{mgHg}{mN} \right] \) rappresenta la concentrazione del mercurio nel flusso gassoso;
\(V_e \left[m^3 \text{anno} \right] \) rappresenta il valore del flusso gassoso totale in un anno (330 giorni lavorativi sull’arco di 24 ore giornaliere);
\(M(t) \left[\frac{tRifiuti}{anno} \right] \) rappresenta la quantità di rifiuto inviato a incenerimento in un anno (tRifiuti/anno).

Il fattore di emissione medio del mercurio totale per gli 8 inceneritori è risultato essere dell’ordine di 208±130 mgHg/tRifiuti, mentre nello specifico per impianti a griglia e a letto fluido si sono riscontrati rispettivamente valori pari a 217±158 mgHg/tRifiuti e 188±177 mgHg/tRifiuti. Non si è registrata una differenza significativa tra i fattori di emissione per tecnologie a griglia e a letto fluido, suggerendo quindi che l’efficienza di rimozione del mercurio dipenda dalla filiera di trattamento fumi adottata.

La Tabella 5.13 riporta altri risultati interessanti ottenuti dalle sperimentazioni condotte da Chen et al. (2013). Si osserva come per impianti a griglia la distribuzione delle specie di mercurio sia relativamente stabile lungo l’inceneritore ed inoltre come il mercurio ossidato sia la principale specie emessa da impianti di incenerimento. La concentrazione di mercurio totale nei gas esausti usando una tecnologia a letto fluido risulta comunque essere minore rispetto a quella a griglia. È possibile inoltre notare la presenza di una maggiore concentrazione di mercurio ossidato Hg\(^{2+}\) rispetto al mercurio elementare Hg\(^0\) e al mercurio associato al particolato Hg\(^p\) in entrambe le tecnologie, ma la percentuale di mercurio elementare nelle tecnologie a letto fluido è molto maggiore rispetto al caso di forno a griglia.
Il mercurio ossidato risulta essere quindi, secondo lo studio in esame, la forma maggiormente emessa da impianti di incenerimento: per via della sua elevata reattività e solubilità in acqua (in grado di favorire fenomeni di deposito secco o umido) tale forma emissiva di mercurio rappresenta una problematica rilevante a scala locale e regionale.

In letteratura sono presenti diverse informazioni riguardo i profili di speciazione del mercurio rispetto al passato e ciò è dovuto all’evoluzione tecnologica del settore ed a studi di dettaglio. Sono però necessarie ulteriori ricerche sia per migliorare le informazioni in possesso riguardo la speciazione del mercurio stesso, sia per comprendere meglio il meccanismo di ossidazione dello stesso e le interazioni con i vari composti nei gas di scarico. In questo modo è possibile ottenere profili di speciazione accurati e conseguire benefici per i controlli delle emissioni di mercurio mitigando l’impatto delle emissioni sull’ambiente.

In conclusione:

- Sono numerose le componenti che influiscono sulla speciazione del mercurio nei gas esausti, tra cui soprattutto il tipo di rifiuto trattato, la configurazione del forno e della linea di trattamento fumi, la composizione dei gas esausti e i profili di temperatura, essendo l’ossidazione del mercurio favorita a temperature minori;
- Il mercurio si presenta principalmente come mercurio ossidato (Hg$^{2+}$) e in parte come mercurio elementare (Hg0), in forma gassosa o adsorbito sulle ceneri;
- Gas acidi come HCl e SO$_2$ influiscono in modo diretto sull’ossidazione di mercurio, generando un composto più gestibile lungo la linea di trattamento;
- La maggior parte del mercurio dopo la fase di combustione è individuata nelle ceneri volanti raccolte dalle tramogge, mentre percentuali minori sono rilevate nelle scorie e nelle emissioni a camino.

5.3.4 Il mercurio nelle ceneri volanti

Come precedentemente affermato, la speciazione di Hg negli impianti di termovalorizzazione è varia e dipende dalla tipologia di inceneritore, dalle condizioni operative e dal sistema di trattamento dei fumi. Il mercurio può essere presente anche in forma particellare (quindi in forma solida) in percentuali di circa il 5% sul mercurio totale presente nel flusso gassoso (Li e Hwang, 1997). La formazione primaria di aerosol submicrometrici nel gas avviene per nucleazione dei vapori di mercurio che si vengono a trovare in condizioni di
sovrasaturazione man mano che la temperatura decresce a valle della camera di combustione, favorendo fenomeni di condensazione e coagulazione che possono portare all’adsorbimento del mercurio in forma ossidata (principalmente come HgCl\(_2\), HgSO\(_4\) e HgO) e in forma di vapori di mercurio sulle superfici delle ceneri volanti prodotte dalla combustione, oltre che sulle superfici delle particelle solide generate dai processi previsti nel trattamento dei fumi, come i processi a secco o le polveri depositate sui filtri, e del carbone attivo (dosato in linea), e alla conseguente formazione di mercurio particolato. Le ceneri volanti svolgono da un lato un’azione catalitica nell’ossidazione del mercurio e, dall’altro, sono caratterizzate da proprietà adsorbenti rilevanti. Inoltre la forma ossidata rappresenta la forma di mercurio meno volatile e perciò è più facilmente trattenuta dalle ceneri depositate sui banchi della caldaia. Tuttavia, la capacità di rimuovere Hg dipende anche dalla composizione del flusso gassoso e dal contenuto di carbonio nelle ceneri volanti.

L’adsorbimento è promosso anche da processi che coinvolgono alogeni. Inoltre questo processo è correlato positivamente alla superficie specifica. (Bhardwaj et al., 2009).

L’inquinamento prodotto dal mercurio associato alle ceneri volanti sta acquisendo sempre più interesse e per questo motivo devono essere svolti pretrattamenti per controllare frazioni di Hg fortemente complessate ed evitare che finiscano in ambiente.

Sono state svolte analisi più specifiche utilizzando un metodo sviluppato e validato da Bloom et al. (2003) basato su tecniche di estrazione selettiva sequenziale (SSE) in fase solida. Questo metodo è in grado di distinguere i composti del mercurio sulla base del loro comportamento chimico, piuttosto sulla base della loro speciazione specifica. È stata inoltre indagata la lisciviazione del mercurio nelle ceneri volanti.

Il mercurio estratto ad ogni passaggio viene sinteticamente classificato tramite alcune sigle:

- Mercurio solubile in acqua (“F1”);
- Mercurio acido solubile (“F2”);
- Mercurio organo-chelato (“F3”);
- Mercurio fortemente complessato (“F4”);
- Mercurio-solfuro (“F5”).

Generalmente, le frazioni “F1” e “F2” sono definite assieme come mercurio facilmente solubile in soluzione acquosa. La frazione “F3” rappresenta il mercurio legato alla materia organica ed anche la frazione relativa al Hg\(_2\)Cl\(_2\) (quest’ultima tende a prevalere nella frazione “F3” qualora nelle ceneri volanti vi sia ridotta presenza di materia organica). La frazione “F4” comprende Hg(I) e Hg(II) associati agli ossidi di Fe, Hg(II) legato allo zolfo organico amorfo, Hg\(_0\) e amalgami di Hg con Ag. Nel caso di campioni di ceneri volanti raccolti dopo la combustione (e quindi dopo essere entrati in contatto con O\(_2\)) si manifesta l’assenza di Hg\(_0\) e degli amalgami di Hg-Ag, viste le condizioni di alta temperatura e la presenza di una atmosfera ossidativa. Inoltre, considerata
la presenza in queste condizioni di ossido di ferro nelle ceneri volanti, la frazione “F4” figura come rappresentativa del mercurio legato all’ossido di ferro stesso.

La Figura 5.9 mostra le percentuali dei cinque tipi di mercurio (identificati come “F1”, “F2”, “F3”, “F4” e “F5”) nei campioni (“FA1”, “FA2”, … , “FA15”) prelevati dai 15 impianti (“A1”, “A2”, … , “A15”). La concentrazione della frazione “F4” è risultata essere tra il 65% ed il 94% di Hg_TOT. La frazione “F5” ammonta a circa il 5-13% del Hg_TOT e presenta una bassa mobilità. La frazione “F3”, corrispondente a 0-4% di Hg_TOT, presenta invece una mobilità moderata. Le frazioni di Hg identificate come “F1” e “F2” figurano per lo 0-27% di Hg_TOT e presentano un maggior rischio dato che manifestano una grande capacità di lisciviere in ambiente. I risultati mostrano come l’Hg presente nelle ceneri volanti sia meno mobile poiché la maggior parte del mercurio è presente in forma fortemente complessata e non risulta pertanto semplice convertire da “F1” a “F2”. Il mercurio nei campioni si presenta principalmente come “F4”, quindi come “F5” ed infine come “F3”.

Figura 5.9 – Percentuali delle frazioni di mercurio nei 15 impianti. (Zhou et al., 2015).

Per monitorare la concentrazione di mercurio nelle ceneri volanti sono raccolti campioni sequenziali negli impianti 8 ed 11 tra i 15 impianti analizzati. I campionamenti, effettuati nell’anno 2012, sono svolti ogni 3 giorni da giugno ad agosto e intervallati di una settimana da settembre a dicembre. I campioni raccolti sono stati 40.

La concentrazione media dell’impianto 8 è risultata pari a 14 mg/kg (variabilità compresa tra 5-27 mg/kg) mentre la concentrazione media dell’impianto 11 è risultata pari a 15 mg/kg (intervallo di concentrazione pari a 4-27 mg/kg) come riportato graficamente in Figura 5.10 (sinistra).

Come mostrato nella Figura 5.10 (destra), il mercurio fortemente complessato è la principale speciazione in ceneri volanti, in quantità rispettivamente di 26-79% e 30-82% di Hg_TOT per impianto 8 ed 11.

Attraverso il test US EPA TCLP (Bloom et al., 2003) è stato possibile prevedere potenziali liscivazioni di Hg in ambiente.

La Figura 5.11 mostra la concentrazione di mercurio nella lisciviazione da ceneri volanti dei diversi campioni. I risultati dei test di lisciviazione del mercurio effettuati sui campioni raccolti e valutati tramite analisi delle componenti principali (PCA) hanno mostrato un livello di concentrazione di mercurio nella lisciviazione
inferiore al limite di 0,2 mg/l (limite della normativa U.S. EPA): questo suggerisce che il mercurio fortemente complessato dominante in Hg_{TOT} non manifesta fenomeni di lisciviazione.

Nello specifico il contenuto di mercurio legato alla lisciviazione varia da 0 μg/l a 170 μg/l. Questo indica che la bassa concentrazione di lisciviazione del mercurio nella maggior parte dei casi è dovuta all’alta percentuale di contenuto di “F4”.

Figura 5.10 (sinistra) – Concentrazioni (mg/kg) di Hg_{TOT} negli impianti 8 e 11. (Zhou et al., 2015).
Figura 5.10 (destra) – Percentuali delle specie di mercurio negli impianti. (Zhou et al., 2015).

Nel campione numero “FA4” sono apprezzabili alte concentrazioni di mercurio nel lisciviato; questo fatto è dovuto probabilmente alla bassa percentuale di “F4” nel campione stesso. Concentrazioni alte sono presenti anche nei campioni “FA7” e “FA12”: in questi casi è presente una ridotta quantità di Hg_{TOT}, anche se tuttavia è rilevante il contenuto di calcio nelle ceneri volanti. La presenza di calcio comporta un innalzamento del pH che ha come conseguenza la conversione del mercurio classificabile come “F4” in mercurio classificabile come “F1” o “F2”.
In questo studio si è dimostrato come un’alta frazione della componente “F4” nelle ceneri volanti comporta basse concentrazioni di Hg lisciviato. Ciò indica che l’applicazione di trattamenti in grado di convertire le frazioni “F1” e “F2” (frazioni mobili di Hg) in “F4” e “F5”, come ad esempio un’eventuale aggiunta di agenti chimici a base di ferro e zolfo durante i trattamenti di stabilizzazione/solidificazione di ceneri volanti, dovrebbe essere una soluzione promettente per ridurre il comportamento a lisciviazione del mercurio.

Numerosi studi sono stati avviati con lo scopo di indagare il comportamento del mercurio contenuto nelle ceneri volanti in termini di concentrazione, speciazione e lisciviazione.

Sinteticamente è possibile concludere che:

- L’HCl si riduce a Cl₂ o Cl tramite una reazione di tipo Deacon (nella quale HCl è ossidato a dare Cl₂ ed H₂O) in presenza di un catalizzatore a più di 300°C;
- È possibile la formazione di aerosol sub-micrometrici nel gas tramite condensazione e coagulazione di vapori di mercurio che portano all’adsorbimento del mercurio in forma ossidata sulla superficie di ceneri volanti;
- Tali fenomeni sono favoriti dalla diminuzione della temperatura del gas lungo la linea di trattamento dei fumi;
- Un’elevata frazione di mercurio fortemente complessato nelle ceneri volati comporta basse concentrazioni di mercurio nel lisciviato.

5.4 Tecniche di abbattimento del mercurio

La rimozione del mercurio dagli effluenti gassosi rappresenta una criticità in un impianto di incenerimento dal momento che da un lato devono essere considerati lo stato, la speciazione e la concentrazione con cui il mercurio è presente nel flusso, determinati dall’interazione con le altre specie chimiche generate dal processo di combustione e dalle reazioni lungo la linea di trattamento dei fumi, e dall’altro i processi adottati e le unità scelte per il trattamento dei fumi.
Generalmente i processi di rimozione di gas acidi (suddivisi in processi a secco, semisecco e a umido), i processi di riduzione selettiva degli ossidi di azoto (DeNOx SCR) e i processi di depolverizzazione previsti nella linea fumi contribuiscono a rimuovere mercurio, prevalentemente nella sua forma elementare (Hg^0) per quanto concerne i sistemi catalitici e nella sua forma ossidata (Hg^{2+}) per gli altri sistemi citati, con efficienze più o meno rilevanti. Tale efficienza può essere ulteriormente incrementata grazie all’ausilio di ulteriori fattori come l’iniezione di carbone attivo o il contributo di specifiche specie chimiche contenute nei fumi.

5.4.1 Processi di desolforazione e rimozione dei gas acidi

Sistemi a secco e a semisecco

Il processo a secco è uno dei processi maggiormente utilizzati per il trattamento dei fumi, in virtù del basso costo operativo e della semplicità di gestione. Questo processo permette di rimuovere composti acidi come HCl, SO₂ e HF tramite fenomeni di assorbimento mediante il dosaggio, in linea o in specifici reattori di contatto, di reagenti alcalini secchi (in polvere) quali calce idrata (Ca(OH)₂) o bicarbonato di sodio (NaHCO₃). Il solo dosaggio di reagenti alcalini può contribuire anche a una rimozione simultanea di metalli volatili, come mercurio, e microinquinanti organici, come PCDD/Fs, per la rimozione dei quali è specificatamente utilizzato il carbone attivo che ne promuove l’adsorbimento.

Una situazione ricorrente osservata durante i trattamenti di neutralizzazione a secco dei gas acidi a bassa temperatura a monte di un sistema di filtrazione, dove avviene un dosaggio di reagenti alcalini come Ca(OH)₂ o NaHCO₃, mostra una coincidenza tra picchi positivi di concentrazione del mercurio nei fumi e picchi negativi di Cl₂ (Vosteen et al., 2008). L’idrossido di calcio (o il bicarbonato di sodio) reagisce con il Cl₂ e l’HCl e, sebbene da un lato presenti un certo potere adsorbente nei confronti del mercurio e ne favorisca una parziale rimozione dai fumi, dall’altro, riducendo la presenza di cloro, può determinare uno spostamento della ripartizione del mercurio verso la forma elementare e perciò una riduzione dell’efficienza depurativa della fase di adsorbimento con carbone attivo.

Durante questi trattamenti il rendimento di rimozione è profondamente influenzato dalla temperatura, soprattutto per temperature superiori ai 170°C. La temperatura minima richiesta per il processo di assorbimento a secco di gas acidi come HCl e SO₂ è circa 130°C, mentre la temperatura massima accettabile è 340°C (sebbene già oltre i 300°C il processo risulti poco efficace). Studi condotti da Wang et al. (2008) riportano le differenti capacità di rimozione per tre differenti sorbenti (Ca(OH)₂, Ca(OH)₂ impregnata con MnO₂ e Ca(OH)₂ impregnata con Ag) dosati in un reattore alla scala di laboratorio a 80°C. Nel caso di Ca(OH)₂ (per la quale l’effetto di rimozione avviene principalmente per via fisica), la contestuale presenza di SO₂ ed HCl è in grado di promuovere la cattura di Hg⁰ (con effetti più marcati ad opera dell’HCl). Per via della presenza di fenomeni di chemisorbimento, la Ca(OH)₂ impregnata con MnO₂
ha manifestato rimozioni di più del 50% dell’Hg iniziale. Tuttavia l’utilizzo di Ca(OH)$_2$ impregnata con Ag ha garantito le rimozioni più efficienti: questo è probabilmente dovuto alla formazione di una lega metallica a base di argento in grado di incentivare la cattura del mercurio. Analogamente, attraverso i risultati degli esperimenti di Liu et al. (2012) è possibile apprezzare l’effetto della presenza o meno di SO$_2$ sulle capacità di rimozione di mercurio ad opera di calce idrata (Figura 5.12).

La presenza di SO$_2$ nel flusso gassoso è in grado di incrementare la cattura di Hg0 dal 9% circa al 14% circa. Una possibile spiegazione di questo fenomeno è accreditata al fatto che l’S0$_2$ è in grado di reagire con la Ca(OH)$_2$ generando nuovi siti attivi dove l’Hg0 può essere ossidato. Ma la formazione dei composti CaSO$_3$ e CaSO$_4$ (per azione di rimozione del gas acido ad opera della calce idrata) causa una occlusione dei micropori del sorbente dosato, impedendo uno sviluppo favorevole del processo nel tempo.

Per rimuovere il mercurio è possibile dosare anche solfuro di sodio (Na$_2$S o Na$_2$S$_4$), contribuendo a formare HgS particolato che può anch’esso essere rimosso attraverso processi di filtrazione su filtri a maniche. Utilizzando i solfuri, Liu et al. (2007) hanno ottenuto tassi di conversione del mercurio elementare e del cloruro di mercurio in solfuro di mercurio rispettivamente pari all’88% e all’80%. Le reazioni tra lo zolfo ed il mercurio continuano sulla superficie del filtro dove il reagente in eccesso tende ad accumularsi, raggiungendo efficienze complessive superiori al 90%.

Per garantire elevate efficienze di rimozione di composti come mercurio o microinquinanti organici è solitamente integrato al sistema a secco un ulteriore dosaggio di additivi adsorbenti come carbone attivo, carbone attivo impregnato o adsorbenti inorganici minerali, in grado di promuovere l’adsorbimento di mercurio e microinquinanti. La scelta del tipo di adsorbente stesso dipende dalla forma del mercurio nei fumi e dalle temperature di processo. Si è registrata un’efficienza di rimozione di mercurio totale compresa tra il 30-50% ottenuta durante i tradizionali processi di assorbimento a secco per la rimozione dei gas acidi (Felsvang et al., 1994), con particolare effetto sulle specie ossidate.

Tale efficienza può essere incrementata fino a più del 90% se si addiziona carbone attivo, qualora il contatto tra i fumi e l’adsorbente utilizzato avvenga alle corrette temperature e con tempi di residenza adeguati.

Figura 5.12 – Effetto della presenza di SO2 sulla rimozione di Hg ad opera di Ca(OH)$_2$. (Liu et al., 2012).
L’utilizzo contestuale di calce idrata e carbone attivo premiscelati ha il vantaggio di favorire la dispersione del carbone attivo e aumentare l’affinità sia chimica che fisica tra il mercurio e le sostanze assorbenti. L’efficacia di questa soluzione è tuttavia influenzata significativamente dalla temperatura: Karatza et al. (1996) hanno osservato che, dosando calce idrata e carbone attivo premiscelati, l’incremento della temperatura da 70°C a 250°C sfavoreisce l’azione del carbone attivo, mentre è favorita l’azione della calce.

Nel caso dei processi a semisecce invece l’assorbimento è condotto tramite l’utilizzo del reagente alcalino in forma di soluzione o di sospensione acquosa concentrata. L’acqua introdotta è completamente vaporizzata e provoca l’abbassamento della temperatura dei fumi fino a valori ottimali per lo sviluppo della reazione. I prodotti di reazione sono estratti secchi dal sistema grazie alla fase di depolverizzazione.

I trattamenti a secco e a semisecce generalmente prevedono una sezione di filtrazione a valle per rimuovere dalla corrente gassosa i residui solidi che si vengono a generare dalle reazioni tra le specie coinvolte. La presenza di un filtro a maniche a valle del dosaggio di assorbenti è positiva poiché aumenta il tempo di contatto.

L’utilizzo di sostanze assorbenti come Ca(OH)$_2$ o NaHCO$_3$ nei processi di trattamento di gas acidi contribuisce a rimuovere anche specie di mercurio ossidate. Lo studio di queste sostanze ha portato a diverse conclusioni, tra cui:

- L’HCl si riduce a Cl$_2$ o Cl tramite una reazione di tipo Deacon in presenza di un catalizzatore metallico (tipicamente il rame) a più di 300°C;
- L’efficienza con cui le specie di mercurio ossidate sono rimosse aumenta laddove si aggiungono carbone attivo o per mezzo di sostanze assorbenti impregnate con MnO$_2$ e Ag;
- La composizione del flusso gassoso risulta essere anch’essa un importante fattore per la rimozione del mercurio;
- Composti chimici come SO$_2$ possono reagire con le sostanze assorbenti, generando nuove specie più inclini all’assorbimento di mercurio ossidato;
- Un contributo importante nel processo è dato dalla temperatura, che può favorire l’attività di Ca(OH)$_2$ e sfavoreire l’attività di altre sostanze utilizzate come Na$_2$S o Na$_2$S$_4$.

Nel caso di trattamenti a secco ad alta temperatura, Jang et al. (2014) riportano sinteticamente gli effetti derivanti dal dosaggio di calcare sulla ripartizione del mercurio nei prodotti derivanti dalla combustione (Figura 5.13) e sulla ripartizione delle specie nel flusso gassoso (Tabella 5.14) attraverso test condotti in una fornace a carbone alla scala di laboratorio (900°C). Come si evince dalla Figura 5.13 attraverso il dosaggio di calcare il mercurio è maggiormente presente nelle ceneri volanti, indicando un effetto di cattura da parte del reagente.
Tabella 5.14 – Ripartizione percentuale dell’emissione atmosferica di mercurio (µg/Sm³). Con la dicitura Sm³ si intende “Standard cubic meter” ($T = 20^\circ C; p = 1$ bar), contrariamente alla dicitura Nm³ con la quale si intende “Nomal cubic meter” ($T = 0^\circ C; p = 1$ bar). (Jang et al., 2014).

<table>
<thead>
<tr>
<th>Speciazione mercurio</th>
<th>Combustione con ossigeno</th>
<th>Combustione con aria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Senza calcare</td>
<td>Con calcare</td>
</tr>
<tr>
<td>Hg⁰</td>
<td>0,864 (51,51%)</td>
<td>0,109 (16,02%)</td>
</tr>
<tr>
<td>Hg²</td>
<td>0,778 (46,38%)</td>
<td>0,553 (81,62%)</td>
</tr>
<tr>
<td>Hg²⁺</td>
<td>0,036 (2,12%)</td>
<td>0,016 (2,36%)</td>
</tr>
<tr>
<td>HgTOT</td>
<td>1,677 (100%)</td>
<td>0,678 (100%)</td>
</tr>
</tbody>
</table>

Figura 5.13 – Distribuzione in massa del mercurio (% in massa) considerando combustione utilizzando aria (“air”) e combustione utilizzando ossigeno (“oxy”) in assenza ed in presenza di calce. (Jang et al., 2014).

Sistemi a umido

I sistemi a umido sono costituiti da una struttura dedita al lavaggio dei fumi che comporta la solubilizzazione e il conseguente trasferimento in fase liquida degli inquinanti, normalmente posta a valle di una unità di filtrazione specificatamente deputata alla rimozione del particolato. Infatti, a differenza dei trattamenti a secco, i trattamenti a umido raramente sono seguiti da una fase di filtrazione finale con filtri a manica. Questo perché potrebbero formarsi delle condense sui filtri che, rendendo appiccicose le polveri, potrebbero dare luogo a seri problemi di impaccamento e conseguente riduzione della superficie filtrante con notevole scadimento prestazionale per l’intero processo di filtrazione. Le colonne a umido sono sempre poste al termine della linea di depurazione dei fumi a causa della bassa temperatura e la saturazione di umidità che inducono nei fumi trattati.
Il controllo dei composti acidi presenti nei fumi di combustione è reso possibile mettendo in contatto il gas con opportune soluzioni assorbenti all’interno di colonne di lavaggio. Tali strutture, definite torri o colonne di lavaggio oppure scrubber, si suddividono in due stadi, uno acido e uno basico. Nel primo stadio avviene l’assorbimento di acidi alogenidrici quali HCl e HF tramite il dosaggio di acqua sfruttando l’alta solubilità di questi gas. Tale processo è realizzato in condizioni di pH acido (circa pari a 1). Nel secondo stadio avviene l’assorbimento di SO\(_2\) e di HCl e HF residui tramite il dosaggio di una soluzione alcalina (NaOH o soda caustica) a pH leggermente alcalino (compreso tra 7,5 e 8,5).

Le efficienze di abbattimento sono elevate, con valori superiori al 99% per HCl e HF e al 95% per l’SO\(_2\). I fumi si trovano in condizioni di umidità e temperatura corrispondenti alla saturazione (60-70°C); questa condizione determina una buona efficienza di rimozione di microinquinanti volatili, come mercurio, e di particolato, permettendo di rimuovere tali sostanze dal sistema nei fanghi (“slurry”) derivati dalla depurazione degli spurghi liquidi delle colonne di lavaggio.

Le specie chimiche che contengono Hg\(^{2+}\) (HgCl\(_2\), HgO) sono facilmente rimosse con efficienze maggiori al 95% attraverso sistemi a umido a causa delle loro buone caratteristiche idrofille mentre Hg\(^0\) risulta essere difficile da controllare in quanto molto volatile e scarsamente solubile, registrando efficienze inferiori al 10% (Van Velzen et al., 2002). Generalmente l’efficienza di rimozione di Hg\(^{TOT}\) durante il processo a umido si situa in un intervallo compreso tra il 56% e l’88% (Chen et al., 2007; Wang et al., 2010a). Complessivamente quello che si osserva è che negli impianti dotati di un trattamento a secco dei fumi, il rapporto Hg\(^{2+}/Hg\(^{0}\) tende ad aumentare lungo la linea di depurazione, mentre negli impianti dotati di trattamento ad umido tale rapporto tende a diminuire (Chang et al., 2000).

Chang e Ghorishi (2003) hanno osservato lo svilupparsi di reazioni di riduzione del mercurio nell’ambiente alcalino della colonna di lavaggio ad opera dell’SO\(_2\) e ad opera di composti che quest’ultimo forma con le sostanze dosate (solfato di sodio Na\(_2\)SO\(_4\), solfito di sodio Na\(_2\)SO\(_3\) e bisolfito di sodio NaHSO\(_3\)). In fase acquosa tali composti possono agire da agenti riducenti. L’SO\(_2\) infatti si può dissolvere in acqua e formare lo ione SO\(_3^{2-}\). Questo ione rappresenta un agente riducente per Hg\(^{2+}\), causando una bassa cattura dell’Hg\(^{2+}\) stesso all’interno dei sistemi di desolforazione a umido. Tale riduzione può essere evitata, o quantomeno minimizzata, adottando diverse soluzioni: mediante il dosaggio nella colonna di lavaggio di opportuni additivi (per esempio soluzioni acquose di un solfuro organico quale la trimercapto-s-triazina sale trisodica) che facilitino la precipitazione del mercurio ossidato, sottraendolo all’azione riducente dell’SO\(_2\) e al conseguente rischio di rilascio di mercurio elementare nei fumi, oppure sostanze ossidanti (come acqua ossigenata (H\(_2\)O\(_2\)) e ipoclorito di sodio (NaClO)) che convertono il mercurio elementare nella forma ossidata e favoriscono l’assorbimento. Ciò si traduce in un aumento della proporzione di Hg\(^{2+}\) nel flusso gassoso con un conseguente miglioramento dell’efficienza totale di cattura nei confronti del mercurio. Ulteriori miglioramenti si ottengono utilizzando sostanze chelanti e cloruro di rame (CuCl\(_2\)) che favoriscono la reazione del mercurio con ipoclorito di sodio a formare HgCl\(_2\) solubile (Brna, 1991).
Una eventuale riduzione chimica di Hg^{2+} disciolto è in grado di ridurre l’efficienza di cattura di Hg_{TOT} nel processo di desolforazione a causa della ri-volatilizzazione di Hg^0 (Ochoa-González et al., 2012). Tale reazione è anche influenzata dal pH e dalla temperatura a cui avviene il processo.

Per quanto concerne invece l’Hg^0, esso è insolubile e passa attraverso i sistemi di desolforazione a umido senza essere catturato; per questo si può ritrovare in uscita una quantità maggiore del Hg^0 in ingresso a causa dei fenomeni sopra citati, andando a costituire la maggior parte di Hg_{TOT} non rimosso.

5.4.2 Tecnologie di riduzione catalitica - SCR

I sistemi SCR operano a valori di temperatura compresi tra 200-400°C e consentono di ridurre le emissioni di NO_X tramite aggiunta di ammoniaca (NH$_3$). I catalizzatori generalmente composti in V$_2$O$_5$, WO$_3$, Fe$_2$O$_3$, TiO$_2$ e CuO promuovono in maniera significativa i processi ossidanti di Hg^0 aumentando il livello di composti ossidati quali HgO e HgCl$_2$.

Quando il mercurio elementare Hg^0 contenuto nei fumi raggiunge il catalizzatore viene adsorbito sulla superficie dello stesso nella forma ossidata HgO_{ads}, e rimane sulla superficie del catalizzatore finché non reagisce con il cloro sfuggito dallo stadio di neutralizzazione, che ne favorisce il rilascio nella forma di HgCl$_2$ (Straube et al., 2008).

L’ossidazione del mercurio elementare Hg^0 contribuisce a rimuovere in modo più efficace il mercurio dai fumi qualora a valle del sistema SCR sia presente una colonna di lavaggio fumi. Tale colonna sarebbe infatti in grado di rimuovere l’eventuale frazione di mercurio ossidato elementare presente nei fumi, accumulata sul catalizzatore e rilasciata in forma ossidata (per esempio a seguito di incrementi di concentrazioni di HCl nella corrente gassosa, oppure per via della presenza di O$_2$). Nel caso invece di configurazioni SCR di tipo “tail end”, essendo tale tecnologia di norma l’ultima unità di trattamento della linea fumi, verrebbe meno la garanzia di presidio da parte di un sistema a valle come la colonna di lavaggio in grado di agire su possibili rilasci di mercurio.

Essendo la specie HgO_{ads} quella più frequentemente adsorbita sui catalizzatori di tipo SCR, incrementi della presenza di O$_2$ nel flusso gassoso hanno l’effetto di comportare aumenti di mercurio adsorbito. La capacità di adsorbimento dell’Hg^0 sul catalizzatore dipende dal tipo di catalizzatore stesso, dalla temperatura e dalle caratteristiche del flusso gassoso (Zhang et al., 2013). Le seguenti tre reazioni si manifestano come le più rilevanti per la chimica del mercurio in presenza di reattori SCR (Madsen, 2011):

\[
2\text{HCl}(g) + \text{Hg}^0(g) + \frac{1}{2}\text{O}_2(g) \leftrightarrow \text{HgCl}_2(g) + \text{H}_2\text{O}(g) \quad (5.8)
\]

\[
2\text{NH}_3(g) + 3\text{HgCl}_2(g) \leftrightarrow \text{N}_2(g) + 3\text{Hg}^0(g) + 6\text{HCl}(g) \quad (5.9)
\]

\[
2\text{NO}(g) + 2\text{NH}_3(g) + \frac{1}{2}\text{O}_2(g) \leftrightarrow 2\text{N}_2(g) + 3\text{H}_2\text{O}(g) \quad (5.10)
\]

La reazione (5.8) rappresenta l’ossidazione di Hg^0 ad opera dell’HCl; la reazione (5.9) rappresenta la riduzione dell’HgCl_2 ad opera dell’NH$_3$ ed infine la reazione (5.10) è la reazione DeNOx. L’importanza di ciascuna reazione sul livello di ossidazione di Hg^0 raggiungibile ad opera dell’SCR dipende dalla temperatura.
d’esercizio. In particolare, per temperature maggiori di 325°C si registra una riduzione di HgCl₂ in presenza di NH₃ (5.9). Il livello complessivo dell’Hg⁰ riflette il tasso relativo di ossidazione (reazione (5.8)) e di riduzione dell’HgCl₂ (reazione (5.9)). Per temperature tra i 250°C ed i 325°C la reazione DeNOx è in grado di inibire la cinetica della reazione (5.8).

Nei sistemi SCR posti a valle della linea di trattamento degli effluenti gassosi (configurazione “tail-end”) la concentrazione di HCl è piuttosto bassa e tale da permettere l’adsorbimento del mercurio elementare sulla superficie del catalizzatore. Se l’efficienza dello stadio di adsorbimento con carbone attivo è limitata e il mercurio si trova ripartito preferenzialmente nella forma elementare, può succedere che in corrispondenza di picchi di mercurio nel rifiuto il catalizzatore ne trattienga sulla sua superficie una quantità elevata. Quando la concentrazione di HCl nei fumi che raggiungono il catalizzatore si innalza, il mercurio adsorbito viene ossidato a HgCl₂, desorbito dalla superficie del catalizzatore e di conseguenza rilasciato al camino (DIIAR-Politecnico di Milano, 2011) (Figura 5.14).

![Figura 5.14 – Effetto della concentrazione di HCl sull’ossidazione di Hg⁰. (Zhao et al., 2015).](image)

Nota – Condizioni sperimentali: temperatura di reazione 350°C; 0-12,5 mg HCl/m³; 827 mg SO₂/m³; 5% O₂ e presenza di N₂ gas. Velocità spaziale oraria del gas: 20000 h⁻¹.

Questo spiega perché a valle del catalizzatore si possano osservare picchi di concentrazione di mercurio più ridotti e temporalmente differenti rispetto a quelli a quelli eventualmente riscontrabili nei fumi in ingresso allo stadio di riduzione selettiva degli NOx (Vosteen et al., 2008), nonché caratterizzati da un’elevata durata. L’adsorbimento del mercurio elementare sul catalizzatore sembra essere facilitato dalle basse temperature e dalla presenza di ossido di vanadio come componente del catalizzatore. In esperimenti di laboratorio condotti da Hocquel et al. (2004), il composto V₂O₅ è risultato essere in grado di ossidare l’Hg⁰ per temperature maggiori di 170°C, mentre i composti WO₃ e TiO₂ sono risultati invece non in grado di avere effetti significativi sull’ossidazione dell’Hg⁰ per temperature comprese tra i 200-350°C. Analogamente, Kamata et al. (2008) hanno dimostrato a scala di laboratorio come il TiO₂ possa essere complessivamente considerato inattivato per l’ossidazione dell’Hg⁰ a 150°C. I reattori SCR a bassa temperatura potrebbero perciò essere più soggetti a questi fenomeni di adsorbimento.
È possibile notare una duplice relazione tra la concentrazione di acido cloridrico e quella di mercurio. Basse concentrazioni di HCl nei gas grezzi ne favoriscono la ripartizione nella forma elementare, riducendone così l’efficienza di rimozione da parte del carbone attivo. Il mercurio in forma elementare può facilmente essere trattenuto dal catalizzatore “tail-end” attraverso fenomeni di adsorbimento sulla sua superficie; tali fenomeni possono però essere altrettanto facilmente invertiti, in quanto concentrazioni relativamente più elevate di HCl nei gas puliti ne favoriscono il desorbimento dal catalizzatore nella forma di HgCl₂ ed il suo rilascio al camino (DIIAR-Politecnico di Milano, 2011). Tali considerazioni sono supportate dagli esperimenti condotti da Hocquel et al. (2004), i quali hanno osservato il rapido rilascio di mercurio ossidato da diversi reattori SCR per incrementi di concentrazione di HCl. Questo fenomeno sembra spiegare la durata consistente dei picchi di concentrazione al camino, tipici, più che di un “effetto memoria”, di una ridistribuzione dei picchi in ingresso su tempi più lunghi.

Anche Straube et al. (2008) hanno osservato questo tipo di comportamento analizzando diversi reattori SCR a scala di laboratorio e concludendo come sia ragionevole attendersi da configurazioni SCR di tipo “tail-end” una ossidazione solo parziale dell’Hg⁰, per via dell’effetto combinato dell’acido cloridrico, della temperatura ed anche della presenza di NH₃. L’adsorbimento del mercurio risulta essere infatti sfavorito da un elevato dosaggio di ammoniaca e dalla presenza di NO (Straube et al., 2008), attraverso un effetto negativo che provoca una riduzione a Hg⁰. La combinazione di NO e NH₃ svolge un ruolo di inibizione sinergica per temperature comprese tra i 250°C ed i 375°C, mentre al di sopra di queste temperature l’effetto è annullato a causa della prevalenza della reazione (5.8) (Madsen, 2011). Uno studio di Machalek et al. (2003) ha evidenziato come la presenza di NH₃ svolga una azione inibente sull’ossidazione di Hg⁰ a HgCl₂ all’interno di un sistema SCR. L’NH₃ infatti compete con il Cl atomico sui siti attivi del catalizzatore. La reazione di riduzione dell’HgCl₂ ad opera dell’NH₃ è la (5.9) ed ha influenza maggiore per temperature superiori ai 325°C (Madsen, 2011). L’effetto di riduzione dell’HgCl₂ può essere attenuato incrementando la concentrazione di vanadio nel catalizzatore, riducendo la temperatura di funzionamento oppure incrementando la concentrazione di HCl nel flusso gassoso (Madsen, 2011).

La concentrazione di NO, SO₂ e mercurio totale ed il tipo di catalizzatore possono influenzare il processo interno di ossidazione eterogenea (Zhang et al., 2013). Le specie HgO e HgCl₂ possono essere convertite in particelle di solfuro di mercurio (HgS) reagendo con gocce o aerosol di poli-solfuro presente come soluzione o solido nel gas. HgS rappresenta il composto di mercurio più stabile tra quelli catturati in quanto non solo è una forma stabile in aria ma è anche insolubile in acqua, garantendo quindi sicurezza in fase smaltimento. Studi di laboratorio condotti da Rallo et al. (2012) hanno mostrato gli effetti della presenza di gas acidi sull’ossidazione di Hg in sistemi SCR (di composizione non precisata) a nido d’ape, per combustione di carbone. I risultati mostrano come per temperature superiori ai 320 -325°C l’ossidazione del mercurio tende a diminuire fino a raggiungere valori prossimi allo zero intorno ai 420°C. D’altra parte, la reazione di riduzione di NOₓ ad opera di NH₃ e la formazione di SO₃ ad opera dell’ossidazione di SO₂ sono fortemente favorite al crescere della temperatura. L’effetto di inibizione all’ossidazione dell’Hg ad opera dell’NH₃ tende a prevalere.
per temperature tra i 320°C ed i 380°C. L’aggiunta di SO₂ al flusso gassoso artificiale manifesta invece l’effetto di aumentare leggermente il tasso di ossidazione del mercurio come conseguenza di un incremento del numero di siti attivi acidi del catalizzatore. Questi ultimi possono operare sia a favore dell’ossidazione stessa del mercurio, sia come siti di adsorbimento per l’NH₃. Una temperatura di circa 350°C viene indicata dagli autori come possibile compromesso ottimale tra l’efficacia della reazione (5.10), bassi livelli di ossidazione di SO₂ e ragionevoli livelli di ossidazione del mercurio.

Studi sperimentali condotti da Zhang et al. (2015) riportano un possibile effetto migliorativo nel caso di impregnazione del SCR con CaCl₂ o nel caso di dosaggio di polvere di CaCl₂ su di un SCR tradizionale. Nei due casi precedenti, la presenza di vapor d’acqua ed ossigeno sono in grado di innalzare l’efficienza di cattura dell’Hg⁰ per via dello sviluppo di reazioni idrolitiche con CaCl₂. Complessivamente, l’effetto positivo riscontrabile dall’aggiunta di CaCl₂ è da attribuire alla formazione di HCl da processo idrolitico e da altre specie a base di Cl attive sul mercurio generate dal cloruro di calcio stesso. Zhao et al. (2015) hanno mostrato attraverso uno studio alla scala di laboratorio un notevole miglioramento nel caso di utilizzo di SCR modificato con aggiunta di Cerio (nella forma CeO₂) rispetto al caso tradizionale.

Le analisi condotte hanno mostrato tuttavia la presenza di una condizione ottimale oltre la quale l’aggiunta di materiali dopanti (come appunto CeO₂) non manifesta benefici sensibili, a causa della comparsa di cristalli sulla superficie del catalizzatore. In particolare, per un catalizzatore dopato al 9% con CeO₂ si manifesta una ossidazione di Hg⁰ superiore del 40% rispetto ad un SCR tradizionale non modificato (Figura 5.15). Questa ossidazione comporta la formazione di una specie chimica incline all’adsorbimento sulla superficie del catalizzatore, a differenza della specie HgCl₂ che tende a essere rilasciata.
Il processo di ossidazione del mercurio elementare è regolato da:

- La concentrazione di vanadio;
- La concentrazione di HCl nel flusso gassoso;
- La temperatura operativa dell’SCR.

Per condizioni operative a temperature inferiori ai 325°C la complessiva ossidazione di Hg⁰ è governata dal trasporto di massa per concentrazioni di HCl pari o superiori a 4 ppm. Al fine di massimizzare l’ossidazione del mercurio elementare è bene:

- Aggiungere uno strato extra di catalizzatore che sia in grado di garantire un volume catalizzante nel quale la concentrazione di NH₃ rimanga bassa e la reazione di riduzione di HgCl₂ non sia rilevante;
- Aumentare la velocità lineare del gas.

In generale, per quanto concerne l’effetto del reattore SCR sull’adsorbimento del mercurio (Straube et al., 2008) si può affermare che:

- L’adsorbimento diminuisce al crescere della temperatura;
- L’adsorbimento aumenta in maniera approssimativamente lineare al crescere della concentrazione di mercurio nel flusso gassoso;
- L’adsorbimento è fortemente inibito dalla presenza di HCl;
- L’adsorbimento è leggermente ridotto per aumenti di NH₃ e SO₂;
- L’adsorbimento è dipendente dalla concentrazione di V₂O₅ nel reattore SCR;
- L’adsorbimento si manifesta attraverso fenomeni di chemisorbimento con formazione di legami Hg-O sulla superficie del catalizzatore;
- Eventuali modifiche del catalizzatore (ad esempio attraverso l’aggiunta di CaCl₂ o CeO₂) potrebbero garantire compromessi interessanti in termini di contestuale funzionamento corretto del reattore SCR e cattura del mercurio.

5.4.3 Tecnologie di depolverazione

Filtri a maniche

Una buona rimozione (efficienza compresa tra il 9% ed il 92%, con una media del 67%) del mercurio in forma particolata (Hg⁰), è possibile attraverso l’utilizzo di filtri a maniche. Oltre all’Hg⁰ i filtri a maniche, sono anche in grado di rimuovere oltre il 50% di Hg²⁺. Durante la filtrazione, il contatto tra i gas di scarico e le particelle solide depositate sullo strato di “cake” presente sul filtro stesso, promuove l’adsorbimento di Hg²⁺ sulla cenere volante (Zhang, 2013). Lo strato di “cake” sul filtro promuove inoltre l’ossidazione di Hg⁰ a HgCl₂ (Wang et al., 2016).

Tale ossidazione è catalizzata dalla presenza di ceneri volanti (Liu et al., 2007). Oltre all’ossidazione, Nishitani et al. (1999) hanno osservato diminuzioni della concentrazione totale di mercurio (Hgₜₒᵗ) fino al 20%, valore

Una valida alternativa ai classici processi di filtrazione è rappresentata dalla filtrazione catalitica, che potrebbe rivelarsi più vantaggiosa dell’iniezione di carboni attivi poiché il contenuto di diossine e furani è minore nei residui. Il processo richiede però temperature superiori ai 200°C.

Le condizioni di processo per l’abbattimento del mercurio dipendono anche dai limiti imposti alle emissioni e dai costi del processo.

Studi condotti da Zheng et al. (2012) hanno testato l’efficacia di differenti tipologie di tessuti per filtri posti a valle dell’iniezione di carbone attivo, con lo scopo di valutare eventuali variazioni sull’efficienza di cattura del mercurio. Sono state testate tre differenti tipologie di materiali filtranti: un tessuto in poliparafenilensolfuro (PPS), uno in membrana ed uno in membrana in vetroresina. È interessante notare come solamente quest’ultimo sia risultato in grado di rispondere adeguatamente a temperature superiori ai 250°C. Inoltre, a prescindere dal tipo di tessuto, si è manifestato un netto miglioramento in termini di efficienza all’aumentare della velocità di filtrazione, effetto probabilmente dovuto ad un più rapido accumulo di carboni sulla superficie filtrante.

Precipitatori elettrostatici

L’utilizzo di ESP permette di rimuovere l’Hg adsorbito sulle ceneri con un’efficienza di cattura anche superiore al 99% (Wang et al., 2010). Impianti dotati di configurazioni con presenza di ESP associati a sistemi di desolforazione a umido registrano emissioni con concentrazioni di Hg relativamente ridotte. Una notevole quantità di Hg⁰ è infatti rimossa con gli ESP, mentre una ridotta quantità di Hg⁰ è convertito a Hg²⁺. Circa il 34% della concentrazione di HgTOT è abbattuta attraverso gli ESP e ciò è dovuto alla rimozione dal flusso gassoso di ceneri volanti su cui è stato adsorbito mercurio. L’efficienza di rimozione di un sistema che prevede utilizzo di ESP seguito da un sistema di desolforazione a umido è circa 33-40% (Park et al., 2008). Nel caso di centrali a carbone, l’efficienza di cattura del mercurio in forma Hg²⁺ è determinata dal carbonio incombusto presente nelle ceneri volanti. Oltre a questo parametro, anche le proprietà della superficie, la dimensione, la struttura porosa e la composizione delle polveri possono influenzare la cattura del mercurio con i precipitatori elettrostatici. In generale, tale cattura varia tra il 20% e il 40% per un contenuto di carbonio incombusto pari al 5%. Maggiore è la percentuale di carbonio incombusto e la conseguente produzione di polveri, tanto maggiore è l’efficienza di rimozione tramite ESP.

Un precipitatore elettrostatico installato dopo un forno a letto fluido può ottenere una rimozione media di mercurio del 74% a causa dell’alta quantità di particelle presenti nel gas (Zhang et al., 2013).
Uno studio di Nishitani et al. (1999) ha permesso di indagare il contributo che ESP e filtri a manica forniscono circa la rimozione di Hg e quali effetti manifestano riguardo la speciazione dello stesso.

È stato effettuato un campionamento su impianti pilota che prevedeva l’utilizzo delle tecnologie citate, quindi sono stati analizzati i campioni per valutare la presenza di HCl e la speciazione dell’Hg. Il campionamento è stato effettuato rispettivamente a monte e a valle delle unità di depolverazione. Il gas campionato è stato prelevato e trattato, separando la polvere residua con lana di vetro. Quindi è stato fatto passare attraverso 2 bottiglie adsorbenti contenenti permanganato di potassio (KMnO₄) e acqua distillata in modo da distinguere tra le forme di Hg insolubile e solubile.

L’Hg solubile è considerato essere HgCl₂ (adsorbito in acqua), mentre l’Hg insolubile è considerato essere Hg⁰ (adsorbito in soluzione KMnO₄).

In aggiunta, dato che il mercurio potrebbe legarsi alla polvere è stata altresì raccolta la polvere all’ingresso e all’uscita delle unità di depolverazione.

A seconda delle unità di depolverazione scelte, varia la concentrazione e la speciazione di Hg. Non è stata riscontrata una variazione rilevante tra la concentrazione in ingresso e quella in uscita al precipitatore elettrostatico, né tantomeno a livello di speciazione.

Per quanto riguarda invece l’utilizzo di filtri a manica, si è riscontrata una diminuzione del valor medio di concentrazione di mercurio nel gas effluente del 20%. A livello di speciazione, è evidente la riduzione di Hg⁰ in uscita (Figura 5.16) mentre nel caso del filtro elettrostatico le concentrazioni di Hg⁰ rimangono più o meno uguali. Questo miglioramento è dovuto all’azione dello strato di polvere accumulato sul filtro (“cake”) che favorisce l’ossidazione di Hg⁰ a HgCl₂ quando passa in forma gassosa attraverso il cake del filtro a manica. Lo spessore del “cake” sul filtro, pulito a intervalli regolari, influenza inoltre l’efficienza di rimozione del mercurio legato alla cenere volante aumentando l’effetto filtrante del filtro stesso.

Figura 5.16 (sinistra) - Confronto tra concentrazione di mercurio in ingresso e in uscita da unità di depolverazione (ESP). (Nishitani et al., 1999).

Figura 5.16 (destra) - Confronto tra concentrazione di mercurio in ingresso e in uscita da unità di depolverazione (FF). (Nishitani et al., 1999).
Il mercurio legato alla polvere, che rappresenta circa il 20% dell’Hg$_{\text{TOT}}$ nel flusso gassoso in ingresso, è rimosso attraverso le unità di filtrazione fino ad una concentrazione residua pari a 0,0002 mg/m3, che risulta poi essere il valore riscontrabile in uscita.

Filtrì a maniche e precipitatori elettrostatici permettono una rimozione efficace di mercurio particolato.

- Per quanto riguarda i filtri a manica, è importante sottolineare il tipo di materiale di cui è costituito il mezzo filtrante, in grado di resistere alle diverse temperature del gas trattato, e l’azione del cake presente sul filtro, che promuove l’ossidazione da Hg0 a Hg$^{2+}$, favorendo l’adsorbimento del mercurio su superfici solide e garantendo una rimozione più efficace;
- Per quanto riguardo i filtri elettrostatici, la dimensione, la struttura porosa e la composizione delle polveri possono influenzare la cattura del mercurio. Inoltre maggiore è la percentuale di carbonio incombusto, che rappresenta la superficie su cui viene adsorbito il mercurio, maggiore è l’efficienza di rimozione tramite ESP;
- Tra le due tipologie di filtri, il filtro a manica garantisce una rimozione più efficiente del mercurio per via dell’azione del “cake” accumulato sulle maniche.

In funzione delle caratteristiche del mercurio nei flussi, in termini di speciazione e concentrazione, della composizione del flusso stesso e dei processi applicati lungo la linea di trattamento dei fumi si registrano diverse efficienze di rimozione del mercurio. Parallelamente a questa scelta è opportuno sviluppare una metodologia per gestire nel modo più adeguato i residui ottenuti dai processi applicati in impianto. Tali residui sono caratterizzati da un contenuto non trascurabile di mercurio, metalli pesanti, diossine e furani, e pertanto devono essere trattati attraverso opportuni processi per potere essere smaltiti in totale sicurezza evitando il rilascio di composti dannosi. I residui solidi con una bassa solubilità in acqua o addirittura insolubili, e stabili nell’intervallo di pH compreso tra 4 e 10 sono più vantaggiosi da gestire. Ben più complessi da trattare sono i residui contenuti nei fanghi di spurgo dalle colonne di lavaggio. In questo caso la rimozione del mercurio dal fango di spurgo è possibile attraverso un processo di precipitazione seguita da sedimentazione o filtrazione. Altre sostanze contenute all’interno del fango (principalmente NaCl, Na$_2$SO$_4$, CaCl$_2$) possono essere riciclate o smaltite tramite operazioni di solidificazione o stabilizzazione, complesse e costose.

In generale si può concludere che:

- I processi di rimozione dei gas acidi possono giocare un ruolo rilevante nell’ambito della rimozione del mercurio. Il processo a secco, che avviene per temperature comprese tra 130°C e 340°C, risulta il metodo più indicato per via del basso costo e della semplicità delle operazioni, basate su dosaggi di prodotti alcalini o carboni attivi a seconda del tipo di speciazione del mercurio. Il processo a umido risulta più critico sia per via della gestione dei residui, più complessa rispetto al processo a secco, sia a causa della riduzione di Hg$^{2+}$ a Hg0 dovuta allo ione SO$_3^{2-}$ che si forma in seguito alla solubilizzazione di SO$_2$. Ciò può causare una fuga di Hg0 e una maggiore concentrazione dello stesso in uscita;
Al fine di impedire la fuga di mercurio elementare è necessario stabilizzare Hg\(^{2+}\) nei residui di processo; Un’ulteriore soluzione prevede l’applicazione contestuale di carbone impregnato con cloro, l’applicazione di SCR e l’aggiunta di alogen, aumentando così la quantità di Hg\(^{2+}\) nel flusso gassoso. L’efficienza di rimozione del mercurio dipende quindi da una serie di fattori tra cui:

- La composizione del rifiuto, specialmente la quantità e le caratteristiche delle ceneri e il contenuto di cloro;
- Le tecnologie di depurazione adottate;
- Le proprietà dei fumi tra cui la loro temperatura e la loro composizione;
- La speciazione del mercurio, ossia le percentuali di presenza in forma particolata o gassosa e, in quest’ultimo caso, in forma ossidata o elementare;
- Le caratteristiche e proprietà adsorbenti delle ceneri volanti.

La Tabella 5.15 mostra le principali efficienze di rimozione del mercurio ad opera delle tradizionali tecnologie adottate nella linea fumi di impianti di incenerimento.

Tabella 5.15 - Efficienze di depurazione del mercurio per le principali tecnologie utilizzate nella linea fumi degli impianti di incenerimento. (Van Velzen et al., 2002).

<table>
<thead>
<tr>
<th>APCD</th>
<th>Temperatura (°C)</th>
<th>Efficienza su HgCl(_2) (%)</th>
<th>Efficienza su Hg (%)</th>
<th>Efficienza TOT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESP</td>
<td>180</td>
<td>0-10</td>
<td>0-4</td>
<td>0-8</td>
</tr>
<tr>
<td>Colonna di lavaggio</td>
<td>65-70</td>
<td>70-80</td>
<td>0-10</td>
<td>55-65</td>
</tr>
<tr>
<td>Colonna di lavaggio con agenti condizionanti</td>
<td>65-70</td>
<td>90-95</td>
<td>20-30</td>
<td>76-82</td>
</tr>
<tr>
<td>Assorbimento a secco con filtro a maniche (calce)</td>
<td>130</td>
<td>50-60</td>
<td>30-35</td>
<td>44-52</td>
</tr>
<tr>
<td>Assorbimento a secco con filtro a maniche (speciali adsorbenti)</td>
<td>130</td>
<td>90-95</td>
<td>80-90</td>
<td>87-94</td>
</tr>
<tr>
<td>Adsorbimento con filtri a maniche (carbone attivo in polvere)</td>
<td>130</td>
<td>90-95</td>
<td>80-90</td>
<td>87-94</td>
</tr>
<tr>
<td>Letto fluido di adsorbimento con filtri a maniche</td>
<td>130</td>
<td>90-95</td>
<td>80-95</td>
<td>87-98</td>
</tr>
</tbody>
</table>

5.4.4 Utilizzo di sostanze adsorbenti

Carbone attivo

L’adsorbimento tramite iniezione di adsorbenti organici e inorganici è la tecnica più usata per la rimozione del mercurio da impianti di incenerimento. Molto spesso questo processo è seguito da una sezione di
depolverazione costituita da filtri a manica o filtri elettrostatici in grado di separare le particelle di adsorbente su cui è stato adsorbito il mercurio.

Il processo maggiormente applicato consiste nell’adsorbimento tramite carboni attivi realizzato con iniezione dell’adsorbente nel flusso gassoso prima del filtro. La configurazione è pensata per aumentare il tempo di contatto tra il mercurio e l’adsorbente senza causare perdite di carico troppo elevate che si avrebbero con un letto fisso.

Questa configurazione rappresenta attualmente la tecnologia migliore utilizzata e pertanto viene classificata come “Best Available Technique” (BAT).

Il mercurio può essere trattenuto sulla superficie del carbone attivo sia a livello fisico (fisisorbimento) che chimico (chemisorbimento) a seconda delle caratteristiche del carbone attivo utilizzato.

Le efficienze di abbattimento registrate dipendono da molti fattori tra cui:

- Le caratteristiche del carbone attivo e il tipo di un’eventuale impregnazione;
- La concentrazione e il profilo di speciazione di mercurio in ingresso al sistema di trattamento;
- La composizione del gas;
- La temperatura dei fumi;
- La quantità di dosaggio di carbone attivo stesso.

Si è osservato che il carbone attivo trattiene meglio il mercurio ossidato rispetto a quello in forma elementare e che l’adsorbimento di Hg⁰ è limitato dalla cinetica di adsorbimento mentre quello di Hg²⁺ è limitato dalle collisioni con le particelle di carbone attivo stesso (Krishnan et al., 1994).

Il tempo di residenza è fondamentale in questo processo, soprattutto se il carbone attivo viene iniettato in linea anziché in letti di filtrazione. Per temperature di circa 150°C, Yan et al. (2003) suggeriscono tempi di residenza nell’intorno di 0,5-1 secondi.

Il dosaggio di carbone attivo influenza direttamente l’efficienza di rimozione raggiunta. Secondo il Rapporto sul Mercurio redatto dall’Agenzia per la Protezione dell’Ambiente degli Stati Uniti (U.S. EPA, 1997) un dosaggio di 286-457 gCA/gHg in ingresso, ad una temperatura compresa tra 107°C e 121°C, permette di raggiungere un’efficienza media del 29% (14-47%). Se il dosaggio viene incrementato fino a valori di 2843-4361 gCA/gHg l’efficienza media raggiunge l’82% (69-91%).

Sono registrate efficienze minime dell’80% negli impianti dotati di filtro elettrostatico ed efficienze minime del 90% per quelli dotati di filtro a maniche (Srivastava et al., 2001).

I composti che contengono mercurio nella forma ossidata Hg²⁺ (HgCl₂, HgO) sono rimossi con un’efficienza dell’80% per temperature minori di 170°C, mentre Hg⁰ in forma gassosa è debolmente adsorbito attraverso processi fisici a temperature oltre 150°C. La rimozione di Hg⁰ è pertanto più difficile rispetto a quella di Hg²⁺ e richiede adsorbenti impregnati con cloro e zolfo per ottenere efficienze di rimozione maggiori (oltre 90%). I residui generati dalla rimozione di mercurio nella forma HgCl₂ richiedono un trattamento di solidificazione e stabilizzazione prima dello smaltimento finale onde prevenire eventuali lisciviazioni in ambiente (Zhou et al., 2015).
Come detto, la capacità di adsorbimento cambia in funzione del carbone attivo utilizzato e in generale minore è la temperatura, maggiore risulta essere la capacità di adsorbimento.

Il consumo di carbone attivo aumenta anche con l’aumentare dei rapporti SO$_2$/HCl e Hg0/Hg$^{2+}$e per una temperatura operativa più alta (Svoboda et al., 2016).

Alcuni studi propongono inoltre di modificare la struttura dei carboni attivi per modificare la capacità di adsorbimento: maggiore è la superficie specifica, tanto maggiore è la capacità di adsorbimento (Yan et al., 2004, Karatza et al., 2011).

Il meccanismo dettagliato di interazione delle principali componenti del flusso gassoso, del mercurio e del carbone attivo è riportato in Figura 5.17.

![Figura 5.17 – Modello eterogeneo proposto per la cattura di mercurio ad opera di carbone attivo. Viene visualizzato l’effetto della presenza di gas acidi su tale rimozione. (Zheng et al., 2012).](image)

In presenza di NO$_2$, Hg0 è ossidato cataliticamente sulla superficie del carbone attivo formando una struttura mercurio-carboniosa ad esso legata. La cattura prosegue fino a che sono disponibili siti attivi. In presenza di SO$_2$, alcuni siti catalitici sono convertiti in forme solfate in grado di legarsi con il mercurio ossidato. Il mercurio continua ad essere ossidato sulla superficie e l’NO$_2$ agisce da agente ossidante, tuttavia il prodotto di formazione è un solfato di mercurio Hg(SO$_4$)$_2$. Quest’ultimo composto reagisce con l’NO$_2$ a dare una forma volatile di mercurio (quale Hg(NO$_3$)$_2$ oppure Hg(NO$_3$)$_2$·H$_2$O. Questa conversione in forme volatili qualora vi sia presenza contestuale di NO$_2$ e SO$_2$ è alla base di eventuali fenomeni di lento rilascio da parte del carbone attivo.

Musmarra et al. (2013) hanno effettuato una serie di prove utilizzando un carbone attivo commercialmente disponibile (Norit Darco FGD). Tali test hanno avuto l’obiettivo di analizzare l’andamento di Hg$^{2+}$ studiando il fenomeno di adsorbimento e valutare l’efficienza di adsorbimento su tale carbone per differenti temperature e diverse composizioni dei flussi gassosi. Lo studio in esame si focalizza sull’adsorbimento di vapori di HgCl$_2$ su carbone solido e ha permesso di ottenere risultati incoraggianti in quanto l’efficienza del carbone attivo raggiunge valori dell’80%. L’impianto pilota utilizzato permette investigare il fenomeno variando i seguenti
parametri: la temperatura del reattore (120 -135°C), la concentrazione iniziale di mercurio Hg\(^0\) (1-2 mg/m\(^3\)) e il flusso di gas (27.8-62,3 m\(^3\)/h). La portata di carbone attivo è stata mantenuta costante e pari a 6 g/h.

Il diametro medio delle particelle di carbone attivo utilizzato è di 8.2 micrometri. Si è osservato che la saturazione del carbone usato a 100°C è molto rapida, garantendo un’efficienza di cattura del 50% dopo 1-2 minuti e del 20% dopo 5-10 minuti di operazione.

Lo studio in esame mostra la concentrazione di mercurio elementare nel gas in uscita dal reattore in funzione del tempo. La concentrazione di mercurio nel gas uscente è stata determinata adsorbendo il gas tramite delle bottiglie di lavaggio del gas stesso per circa un minuto. Per questo processo è stata usata una soluzione acquosa di KMnO\(_4\) acidificata con H\(_2\)SO\(_4\). I campioni sono stati quindi analizzati secondo il processo CVAA (“Cold Vapor Atomic Absorption”), usando NaBH\(_4\) come agente riducente. Questa procedura è stata valutata come accurata poiché non è stato trovato mercurio nei gas uscenti dalla bottiglia di lavaggio quando un’altra bottiglia è posta in serie alla prima. La variazione del contenuto di mercurio nel test varia come espresso dalla Figura 5.18 in riferimento al valore iniziale e a due differenti concentrazioni di mercurio.

![Figura 5.18 – Variazione nel tempo del rapporto tra la concentrazione di Hg uscente e la concentrazione di mercurio entrante in funzione di due concentrazioni iniziali di mercurio. (Musmarra et al., 2013).](image)

Nota - Le valutazioni sono state effettuate per una temperatura di 130°C, un flusso di carbone di 6 g/ora, un flusso gassoso pari a 62,3 m\(^3\)/h, una concentrazione del carbone pari a 0,10 g/m\(^3\) e per due differenti concentrazioni di mercurio in ingresso (1 mg/m\(^3\) e 2 mg/m\(^3\)).

In particolare, nella Figura 5.18 sono riportati sull’asse delle ordinate il rapporto tra la concentrazione di mercurio uscente e la concentrazione di mercurio entrante. Si può osservare come si raggiunga uno stato stazionario dopo un tempo di 15 minuti, per cui si ottiene un valore di mercurio uscente costante. L’efficienza del processo (\(\eta\ [%]\)) è valutata come la differenza tra la concentrazione di mercurio entrante (\(c_{Hg}^{in} \frac{mg}{m^3}\)) e quella uscente (\(c_{Hg}^{out} \frac{mg}{m^3}\)) diviso la concentrazione entrante, attraverso la seguente relazione:

\[
\eta = \frac{c_{Hg}^{in} - c_{Hg}^{out}}{c_{Hg}^{in}} \cdot 100
\]

(5.11)

La Figura 5.19 mostra l’efficienza di rimozione in funzione della concentrazione di carbone alla temperatura di 130°C per due diverse concentrazioni iniziali di mercurio.
Figura 5.19 – Efficienza di rimozione in funzione della concentrazione di carbone ad una temperatura di 130°C per due diverse concentrazioni iniziali di mercurio. (Musmarra et al., 2013).

Si osserva come per una temperatura e una concentrazione di mercurio iniziale fissate l’efficienza di rimozione aumenta con l’aumentare della concentrazione di carbone attivo, passando da 0,10 g/m³ a 0,22 g/m³. Inoltre si osserva che per una fissata concentrazione di carbone attivo quando la concentrazione di mercurio iniziale raddoppia l’efficienza cresce ma meno del 10%.

La Figura 5.20 mostra invece come varia l’efficienza di rimozione in funzione della temperatura per una fissata concentrazione di carbone (ossia caso opposto al precedente, dove era la temperatura ad essere fissata). Si osserva che per una concentrazione di mercurio iniziale fissata l’efficienza di rimozione del carbone diminuisce all’aumentare della temperatura indicando che l’adsorbimento di mercurio è promosso a temperature basse e confermando che si tratta di un adsorbimento principalmente fisico. Una volta ancora l’effetto di un aumento della concentrazione iniziale di mercurio migliora l’efficienza di rimozione ma non in modo così evidente. I risultati ottenuti, anche in questo caso, mostrano che l’adsorbimento è influenzato dalla temperatura ed in particolare aumenta al diminuire della stessa; ciò conferma che il meccanismo di rimozione sia di tipo prettamente fisico e che efficienze di cattura del mercurio fino all’80% sono ottenute per carichi di carbone nel gas nell’intervallo tra 0,10 g/m³ e 0,22 g/m³.

Figura 5.20 – Efficienza di rimozione in funzione della temperatura per una fissata concentrazione di carbone. (Musmarra et al., 2013).
Negli ultimi anni la necessità di sviluppare tecnologie sempre più performanti per il controllo del mercurio ha portato allo studio dettagliato della cinetica e della capacità di adsorbimento e alla scoperta di numerosi adsorbenti solidi, tra cui adsorbenti inorganici e carboni attivi impregnati con zolfo.

Alla luce di quanto detto:
- Il carbone attivo rappresenta l’adsorbente maggiormente impiegato per la rimozione di mercurio;
- È possibile ottenere un migliore adsorbimento chimico di Hg0 insieme a una maggiore resa dell’adsorbente con adsorbenti inorganici minerali (impregnati e non) o carboni attivi impregnati con zolfo, iodio, polisolfuri alcalini (come Na$_2$S$_4$), cloruro ferrico (FeCl$_3$) e cloruro rameico (CuCl$_2$) ossido di cobalto (Co$_3$O$_4$), diossido di manganese (MnO$_2$) e ossido di rame e cobalto (CuCoO$_4$) (Cheng e Hu, 2012; Hsi et al., 2013);
- L’efficienza di adsorbimento dipende da molti fattori tra cui le caratteristiche del carbone attivo, il tipo di impregnazione, il dosaggio, la composizione del gas e la temperatura dei fumi, il tempo di residenza;
- Il carbone attivo opera in un intervallo di temperatura tra 70-150°C e rimuove più facilmente le specie di mercurio ossidate rispetto il mercurio elementare. Generalmente, all’aumentare della temperatura diminuisce l’efficienza di adsorbimento.

Carboni attivi impregnati

I carboni attivi più efficienti sono quelli contenenti zolfo (Vidic e Siler, 2001) in quanto presentano una affinità incrementata tra il mercurio e il carbone, soprattutto da un punto di vista chimico, e favoriscono la stabilità del mercurio adsorbito (Liu et al., 2000). La loro efficienza, tuttavia, si riduce molto al crescere delle temperature. L’efficienza di rimozione del mercurio conseguita è maggiore di quella ottenuta con carboni attivi convenzionali, tuttavia i costi sono più elevati. Nel caso di carbone attivo vergine l’adsorbimento è principalmente fisico, mentre con il carbone attivo impregnato di zolfo l’adsorbimento chimico è agevolato dalla formazione di HgS. Il processo di impregnazione aumenta l’efficienza di rimozione modificando l’area superficiale e la distribuzione della dimensione dei pori.

Nello studio di Jurng et al. (2002) sono stati testati quattro diversi materiali adsorbenti (zeolite, bentonite, “wood char” (carbone di legna) -un prodotto della gassificazione dei residui di legno- e carbone attivo disponibile in commercio) utilizzando il flusso gassoso proveniente da un inceneritore alla scala pilota in Germania e un gas di scarico prodotto artificialmente in laboratorio in Corea. Sono quindi state ricavate le corrispondenti efficienze. Si mostra anche come si comportano questi adsorbenti sotto l’effetto di impregnazione con zolfo. Nella Tabella 5.16 vengono riportate le proprietà fisiche degli adsorbenti utilizzati. Durante i test riportati nello studio la temperatura di adsorbimento è stata mantenuta pari a 110°C e il tempo di contatto totale pari a 1 secondo.
Tabella 5.16 – Proprietà fisiche dei vari materiali adsorbenti testati. (Jurng et al., 2002).

<table>
<thead>
<tr>
<th>Tipo di sorbente</th>
<th>Superficie specifica [m²/g]</th>
<th>Area micro-pori [m²/g]</th>
<th>Volume micro-pori [cm³/g]</th>
<th>Diametro medio pori [nm]</th>
<th>Densità apparente [g/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeolite</td>
<td>24,5</td>
<td>11,3</td>
<td>0,0057</td>
<td>10,6</td>
<td>720</td>
</tr>
<tr>
<td>Bentonite</td>
<td>24,8</td>
<td>5,8</td>
<td>0,0029</td>
<td>9,6</td>
<td>922</td>
</tr>
<tr>
<td>Wood char</td>
<td>327,4</td>
<td>215,7</td>
<td>0,1088</td>
<td>2,9</td>
<td>167</td>
</tr>
<tr>
<td>Carbone attivo (Norit® Co.)</td>
<td>~ 1000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>468</td>
</tr>
<tr>
<td>Carbone attivo impregnato con iodio (Roth Co.)</td>
<td>~ 1000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>444</td>
</tr>
<tr>
<td>Carboni attivi impregnati con zolfo (Norit® Co.)</td>
<td>~ 1000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>566</td>
</tr>
</tbody>
</table>

L’impregnazione dell’adsorbente avviene mettendolo in contatto il carbone attivo con una soluzione di solfuro di carbonio (CS₂) contenente l’1% in peso di zolfo. Tramite l’utilizzo di carbone di legna è possibile raggiungere efficienze di rimozione del mercurio fino al 95% (simili a quelle ottenute con carboni attivi e maggiore di quelle verificatesi nel caso di inorganici pari al 7%-). Anche il tasso di rimozione applicando carbone di legna risulta essere simile a quello del carbone attivo: è possibile infatti ottenere valori fino a 0,6 mg Hg/g woodchar. Quindi il wood char (Figura 5.21) può essere considerato una possibile alternativa ai carboni attivi, soprattutto tenendo presente il suo ridotto costo rispetto ai carboni attivi stessi tradizionalmente impiegati (Jurng et al., 2002).

Figura 5.21 – Tipiche scaglie di legno utilizzate nella produzione del “wood char” attraverso pirolisi.

Attraverso uno studio condotto presso l’impianto pilota di incenerimento TAMARA (forno a combustione a griglia dotato di una caldaia, un filtro in tessuto e un sistema di lavaggio a due stadi) situato presso il Forschungszentrum di Karlsruhe in Germania, Jurng et al. (2002) mostrano come gli adsorbenti organici garantiscono capacità di adsorbimento del mercurio molto alte. Ancora una volta, l’applicazione di carbone di legna mostra elevate capacità di adsorbimento: si ricavano valori di mercurio adsorbito pari a 588 µg/g nel caso di applicazione di carbone di legna e pari 210 µg/g nel caso di applicazione di carbone attivo grezzo. I risultati appaiono incoraggianti anche considerando che l’area superficiale del carbone di legna è circa 1/3 di quella del carbone attivo. Tuttavia è bene considerare che l’area superficiale non è direttamente collegata all’adsorbimento di mercurio a causa della diversa morfologia dei wood char utilizzati, in termini di
dimensione dei pori. La Figura 5.22 mostra l’efficienza cumulativa di rimozione del mercurio per strato di letto adsorbente applicato, valutata come il rapporto tra il mercurio adsorbito rispetto al mercurio introdotto.

![Figura 5.22 – Efficienza cumulativa di rimozione del mercurio per strati di vari adsorbenti testati. (Jurng et al., 2002).](image)

L’efficienza cumulativa di rimozione del mercurio nel caso di carbone di legna è oltre l’80% per il primo strato e raggiunge il 99% attraverso il quarto strato. I carboni attivi forniscono risultati analoghi.

Il mercurio è adsorbito su più strati in quantità maggiore o minore, in base ai tipi di adsorbenti usati, come riportato nella Figura 5.23.

![Figura 5.23 – Quantità totale di mercurio adsorbita su ciascuno strato di letto adsorbente di vari adsorbenti testati. (Jurng et al., 2002).](image)

Per quanto riguarda gli adsorbenti inorganici, la rimozione di mercurio risulta essere molto inferiore. Il mercurio adsorbito da zeolite e bentonite è rispettivamente pari a 9,2 µg Hg/g e 7,4 µg Hg/g. Osservando la Figura 5.23 si nota come l’efficienza per gli adsorbenti inorganici sia inferiore al 10% per il primo strato e raggiunga il 50% attraverso gli altri strati. Questo è dovuto probabilmente alla mancanza di affinità chimica verso il mercurio o ad un’affinità chimica maggiore verso altre sostanze costituenti il flusso gassoso. È possibile concludere quindi che le efficienze degli organici (carbone attivo e “wood char”) sono risultate maggiori di quelle degli inorganici (zeolite, bentonite).
Jurng et al. (2002) hanno altresì condotto uno studio di laboratorio in cui è stato utilizzato un flusso gassoso “artificiale” composto da azoto e mercurio. Le efficienze per vari tipi di adsorbenti utilizzati nella ricerca (zeolite, zeolite impregnata con zolfo, “wood char”, “wood char” impregnato con zolfo e carbone attivo impregnato con zolfo) sono mostrate in Figura 5.24.

Figura 5.24 – Curve di breakthrough per ciascuno dei materiali adsorbenti testati. (Jurng et al., 2002).

Il rapporto tra la concentrazione di mercurio in uscita e in ingresso cambia col tempo. Minore è questo valore e maggiore è la capacità di adsorbimento. Il carbone attivo utilizzato per lo studio alla scala di laboratorio è stato acquistato già impregnato mentre quello usato presso l’impianto pilota TAMARA in Germania è stato preventivamente impregnato in laboratorio prima dell’utilizzo. Come si evince dalla Figura 5.24, il migliore adsorbente è risultato il carbone attivo impregnato, il peggiore la zeolite. Il carbone di legna impregnato presenta una efficienza migliore rispetto a quello vergine, il che conferma l’ipotesi che con l’impregnazione avvenga un adsorbimento chimico del mercurio a formare HgS.

Rispetto al test condotto presso l’impianto pilota TAMARA in Germania, lo studio di laboratorio ha evidenziato che l’uso del carbone di legna impregnato garantisce un’efficienza minore rispetto ai carboni attivi, il che può essere spiegato dalla specifica composizione del gas di sintesi utilizzato nello svolgimento delle prove: il mercurio in esso contenuto è in forma elementare (forma metallica), estremamente volatile, mentre in un flusso gassoso reale, a causa dell’alta concentrazione di cloro, la maggior parte del mercurio è in forma ossidata.

Quindi durante il processo di adsorbimento, la differenza nella dimensione molecolare della forma del mercurio può influenzare l’efficienza di rimozione dello stesso a parità di adsorbente utilizzato.

In secondo luogo, nel processo di adsorbimento fisico il carbone attivo può catturare sia mercurio in forma elementare sia in forma ossidata con un alto tasso di adsorbimento, poiché il loro meccanismo di adsorbimento è principalmente fisico. Poiché come riportato in precedenza, il meccanismo di adsorbimento del carbone di legna che si manifesta in questo caso è prettamente chimico, ne consegue un grado minore di cattura per le due forme di mercurio.
Sempre Jurng et al. (2002) hanno evidenziato la presenza di un cosiddetto “punto di saturazione” oltre cui nessun ulteriore trattenimento di Hg è possibile: tale punto è stato raggiunto dopo 15-20 h per i sorbenti inorganici (zeolite e bentonite) mentre ci sono volute 25-30 h per saturare completamente adsorbenti a base di carbonio (“wood char” e carbone attivo). Per basse temperature di adsorbimento non si raggiunge saturazione del carbone attivo anche superate le 30 h.

In generale, i risultati mostrano che gli adsorbenti a base di carbonio hanno una capacità di adsorbimento del mercurio molto alta. Le efficienze di rimozione di carbone attivo e carbone di legna sono vicine al 100% con un tempo di contatto di circa 0,5 secondi.

Il carbone di legna in particolare ha mostrato quasi lo stesso livello di capacità di adsorbimento del carbone attivo.

Il “wood char” presenta un’affinità chimica molto alta verso il mercurio e quindi il suo meccanismo di adsorbimento non può essere descritto solo tramite un approccio fisico. Considerando un costo molto inferiore di preparazione dell’adsorbente (rispetto al carbone attivo), è possibile considerare come molto promettente l’utilizzo di carbone di legna per il controllo delle emissioni di mercurio. Variazioni nelle proprietà fisiche e chimiche del carbone di legna possono migliorare ulteriormente l’efficienza di rimozione del mercurio e richiedono ulteriori indagini.

A differenza di adsorbenti a base di carbonio, le rimozioni di mercurio con zeolite e bentonite si presentano come molto ridotte, anche se tali adsorbenti subiscono un’impregnazione con zolfo.

I risultati relativi a zeolite e bentonite mostrano come l’adsorbimento fisico non sia sufficiente per catturare vapori di mercurio altamente volatili. Come mostrato nella Figura 5.25, quando grandi quantità di adsorbenti sono usate a una temperatura di adsorbimento bassa, è ragionevole attendersi un’efficienza di cattura del mercurio maggiore.

![Figura 5.25 – Effetto della quantità di adsorbente usato e temperatura del letto sull’efficienza di rimozione del mercurio. (Jurng et al., 2002).](image)

A differenza di adsorbenti a base di carbonio, le rimozioni di mercurio con zeolite e bentonite si presentano come molto ridotte, anche se tali adsorbenti subiscono un’impregnazione con zolfo.

I risultati relativi a zeolite e bentonite mostrano come l’adsorbimento fisico non sia sufficiente per catturare vapori di mercurio altamente volatili. Come mostrato nella Figura 5.25, quando grandi quantità di adsorbenti sono usate a una temperatura di adsorbimento bassa, è ragionevole attendersi un’efficienza di cattura del mercurio maggiore.

Variando la quantità di carbone attivo usato e la temperatura si nota come dopo quattro ore a 80°C l’efficienza di rimozione raggiunga il 75-80%, mentre raggiunga il 25% a 120°C.
L’efficienza aumenta dosando un maggior quantitativo di carbone, passando da 3 g a 15 g, a 80°C dopo 4 ore. L’utilizzo di carboni attivi impregnati ai solfuri non è consigliabile come applicazione per gli impianti di incenerimento poiché, sebbene molto efficaci nei confronti nel mercurio, non garantiscono una sufficiente efficienza di rimozione dei microinquinanti organici in quanto i solfuri riducono i siti attivi di adsorbimento. Sono d’altra parte consigliati carboni impregnati al cloro o al bromo che, oltre a favorire la cinetica di adsorbimento del mercurio, non interferiscono con le diossine. Quest’ultima tipologia di carbone attivo è in grado di trattenere anche il mercurio allo stato elementare, ideale per tutte le situazioni caratterizzate da un trattamento di neutralizzazione molto spinto a monte del dosaggio di carbone attivo (DIIAR-Politecnico di Milano, 2011).

Recenti studi condotti da Takaoka et al. (2017) sembrano invece mostrare effetti positivi nel caso di impregnazione con zolfo e/o con cloro. Delle impregnazioni con solo Cl e con solo S, hanno mostrato capacità di adsorbimento del mercurio superiori rispettivamente di 80 e 50 volte rispetto al carbone attivo vergine. Invece, nel caso di impregnazione sia di cloro che di zolfo (Figura 5.26), i risultati sono stati ancora più promettenti con efficienze fino a 200 volte superiori rispetto a carboni attivi grezzi. In generale si tratta di adsorbimenti di tipo chimico piuttosto che fisico.

La migliore capacità di rimozione si è manifestata nel caso di impregnazione con K₂S e CaCl₂. Prestazioni ottimali sono state raggiunte ponendo come strato direttamente a contatto con il mercurio quello più esterno a base di cloro e lasciando quello a base di zolfo più internamente. Tuttavia è bene tenere presente che gli esperimenti condotti si riferiscono al trattamento di flussi gassosi contenenti esclusivamente mercurio: è quindi necessaria una analisi del comportamento di questi materiali anche in presenza degli elementi tipici dei flussi gassosi coi quali saranno effettivamente in contatto alla scala reale. Ulteriori impregnazioni in via di sviluppo prevedono l’impiego di iodio, cloruro ferrico e cloruro rameico.

Si è potuto constatare che:

- L’efficienza di rimozione conseguita dai carboni attivi impregnati è maggiore sia di quella degli adsorbenti inorganici sia dei carboni attivi vergini, ma i costi sono molto elevati;
- Una valida alternativa ai carboni impregnati è rappresentata dall’utilizzo di wood char;

![Figura 5.26 – Struttura superficiale del carbone attivo co-impregnato testato. (Takaoka et al., 2017).]
Così come per il carbone attivo vergine, anche per carboni attivi impregnati l’efficienza aumenta col diminuire della temperatura;

L’impregnazione gioca un ruolo fondamentale nella scelta del carbone attivo da utilizzare: ad esempio carboni attivi impregnati con cloro e bromo sono da preferire a carboni attivi impregnati con solfuri in impianti di incenerimento in quanto non interferiscono con le diossine e permettono di trattenere anche il mercurio allo stato elementare.

Adsorbenti inorganici minerali

I principali adsorbenti inorganici minerali studiati nell’ambito della rimozione di mercurio sono le zeoliti e la bentonite. Nel primo caso si tratta di una famiglia di minerali caratterizzata da una struttura cristallina, regolare e microporosa di alluminosilicati idrati. La bentonite invece si presenta come un minerale argilloso composto per lo più da calcio o sódio. L’uso di adsorbenti di mercurio minerali inorganici senza impregnazione è più adatto per temperature inferiori a 180°C. Temperature oltre 190°C per questo tipo di adsorbenti non risultano essere conveniente a causa dello scarso adsorbimento del mercurio.

Si è inoltre riscontrata una rimozione superiore all’85% di Hg⁰ utilizzando adsorbenti inorganici (come rocce minerali porose) con una simile impregnazione chimica (Ding et al., 2012; Sindram e Walter, 2005). Gli adsorbenti inorganici impregnati con FeCl₃ possono essere sfruttati fino a una temperatura massima di 280°C; oltre questa temperatura si incorre nella fusione e nella conseguente decomposizione di FeCl₃.

Sopra i 280°C sono adatti solo gli adsorbenti inorganici impregnati con CuCl₂. Tuttavia la loro applicazione è attualmente oggetto di studio a causa dell’effetto catalitico che questi composti a base di rame esercitano nella formazione di diossine e furani sotto certe condizioni (Jokiluoma, 2013). Anche i composti a base di bromo potrebbero contribuire alla formazione di questi composti.

Per questo motivo è difficile effettuare un processo di adsorbimento a secco volto a rimuovere mercurio a temperature superiori a 280°C. Come riportato nello studio di Lee et al. (2001), ulteriori soluzioni prevedono l’utilizzo di TiO₂, SiO₂ e CaO sotto radiazione UV e non. TiO₂ sotto radiazione UV mostra una eccellente capacità di rimozione del mercurio (> 98%) e costi minori rispetto al carbone attivo.

5.4.5 Influenza delle componenti del flusso gassoso

L’influenza delle componenti del flusso gassoso, dell’iniezione di carbone attivo e delle ceneri volanti sulla rimozione di mercurio dalle emissioni di un impianto di incenerimento di rifiuti urbani è stata indagata attraverso gli studi di Li et al. (2017) su un impianto in Cina, nella provincia di Fujian. La configurazione della linea di trattamento fumi dell’impianto analizzato prevede un processo a secco o a semisecco per la rimozione dei gas acidi, seguito dall’iniezione di carboni attivi per la cattura di diossine e metalli e da una fase di depolverazione finale su filtro a maniche.
Lo studio si propone di indagare come cambia la concentrazione di mercurio nel flusso gassoso in funzione della concentrazione dei gas acidi e osservare sia il comportamento delle ceneri volanti usate come adsorbente sia il comportamento del carbone attivo, vergine e impregnato nel processo di rimozione di mercurio.

Inizialmente è stato eseguito un test per verificare la prestazione di adsorbimento di Hg da parte dei vari adsorbenti.

I risultati dell’analisi mostrano valori di concentrazione di mercurio prima dei trattamenti attorno ai 90 µg/m3 che viene a ridursi a valori attorno ai 30 µg/m3 dopo i trattamenti (in particolare 91,28±47,98 µg/m3 e 25,67±18,13 µg/m3). L’efficienza media di rimozione conseguita è risultata essere pari al 71,9%. Le percentuali di Hg0, Hg$^{2+}$ e HgP passano (tra la fase precedente e successiva al trattamento dei fumi) rispettivamente dal 61,9% al 25,9%, dal 19,6% al 73,8%, dal 18,47% allo 0,17%. Il mercurio adsorbito sulle ceneri volanti (HgP) è rimosso quasi completamente dal filtro a maniche, mostrando come una possibile soluzione per la rimozione del mercurio sia quella di favorirne il passaggio da Hg0 a Hg$^{2+}$ e successivamente a HgP. L’Hg0 è più difficile da catturare rispetto all’Hg$^{2+}$ a causa della sua alta volatilità.

All’interno dell’esperimento condotto è stato quindi osservato come l’Hg0 reagisca con differenti adsorbenti per verificare sia la fattibilità in termini applicativi sia l’affidabilità.

In Figura 5.27 viene illustrato l’effetto delle componenti del flusso gassoso sulla capacità di rimozione di Hg da parte dei differenti adsorbenti. Per ogni esperimento il rapporto tra adsorbente usato e gas da trattare è stato dell’ordine di 400 mg/l.

La Figura 5.28-A si riferisce alle ceneri volanti calde usate come adsorbente. La presenza di ceneri volanti calde (“Fly Ash Hot” – FAH) è in grado di ridurre la concentrazione di Hg da 50 µg/m3 a 39 µg/m3. Tale diminuzione tuttavia è temporanea. Un’aggiunta di 5% di O$_2$ consente la riduzione del mercurio a 40,4 µg/m3, mentre la presenza di 1000 ppm di SO$_2$ causa un abbassamento ulteriore a 38,7 µg/m3, mostrando come sia SO$_2$ che O$_2$ siano in grado di promuovere l’ossidazione e l’adsorbimento del mercurio. Anche un’aggiunta di
NO è in grado di far diminuire la concentrazione di mercurio a 15,7 µg/m³ a partire dai 50 µg/m³ iniziali. L’effetto di rimozione del mercurio tende tuttavia a ridursi nel tempo.

Quando si considera invece l’aggiunta contemporanea di O₂, SO₂, HCl e NO si verifica un aumento notevole nella concentrazione di Hg²⁺. La contestuale presenza di SO₂ e HCl fa sì che essi concorrono ai siti attivi del carbone attivo e quindi l’Hg²⁺ adsorbito è conseguentemente rilasciato e si ritrova in fase gas.

La Figura 5.28-B è basata sull’iniezione di carbone attivo. In questo caso la FAH è miscelata col 2,5% (in peso) di carbone attivo e tale operazione è effettuata per valutare la performance di rimozione del mercurio in funzione dei vari componenti presenti nel flusso gassoso. Il risultato indica che un’aggiunta del 2,5% in massa di carbone attivo non è sufficiente a promuovere la rimozione di mercurio. Se si aumentasse il carbone attivo dosato fino al 25% si otterrebbe una riduzione della concentrazione di mercurio da 50 µg/m³ a 34 µg/m³.

La contemporanea presenza di O₂, SO₂ e HCl, in condizioni di dosaggio di FAH unitamente all’iniezione del 25% di carbone attivo, promuove l’abbattimento del mercurio e la diminuzione della concentrazione. L’aggiunta di NO è in grado di far diminuire la concentrazione di mercurio fino a 9.8 µg/m³, dimostrando come l’NO risulti essere la specie chimica più influente tra quelle che compongono il flusso gassoso.

Figura 5.28 (A, B, C, D) – Influenza dei vari componenti del flusso gassoso sulla capacità di rimozione del mercurio di adsorbenti differenti. (Li et al., 2017).
I risultati ottenuti confermano come un aumento di dosaggio di carbone attivo sia in grado di migliorare la rimozione del mercurio. Chiaramente per un dosaggio maggiore aumentano i costi operativi.

La Figura 5.28-C mostra la variazione nella rimozione in funzione dell’aggiunta di NO. Nel caso di 100 ppm di NO è possibile osservare una riduzione nella concentrazione di Hg a 24,8 µg/m³, mentre 200 ppm di NO è possibile osservare una riduzione nella concentrazione di Hg fino a 24,8 µg/m³, mentre 200 ppm di NO garantiscono riduzioni fino a 14,3 µg/m³ e 300 ppm di NO permettono infine di raggiungere un valore di 13,7 µg/m³. Questo significa che l’influenza legata all’aggiunta di NO è positiva sebbene caratterizzata dal raggiungimento di un certo limite, oltre il quale non si ha più un beneficio rilevante.

La Figura 5.28-D mostra gli effetti di FAH miscelate con il 2,5% in peso di una sostanza adsorbente chiamata ACNCl5 consistente in un carbone attivo impregnato col 5% di NH₄Cl. Sebbene l’impregnazione con NH₄Cl riduca le dimensioni dei pori, è tuttavia in grado di aumentare le performance circa la rimozione del mercurio. La concentrazione del mercurio in presenza di questo specifico adsorbente diminuisce rapidamente fino a 5,0 µg/m³. L’effetto positivo di O₂ e SO₂ non è così evidente come in Figura 5.28-A e in Figura 5.28-B e questo significa che il meccanismo di rimozione di questo nuovo adsorbente è differente rispetto a quelli analizzati in precedenza. Con questo adsorbente un’ulteriore aggiunta di HCl porta la concentrazione di Hg a 0 µg/m³. Questo risultato implica che con un dosaggio di appena il 2,5% di ACNCl5 sarebbe possibile rispettare il limite di emissione del mercurio: questo adsorbente, dimostratosi assolutamente efficace, non richiederebbe ulteriori miglioramenti al sistema di iniezione già presente o dispositivi extra per il controllo degli inquinanti.

La rimozione del mercurio è favorita dai gas acidi presenti nel flusso (HCl, SO₂ e NOₓ) che permettono di ossidare Hg⁰ a Hg²⁺. Anche l’ossigeno svolge un ruolo importante, in quanto porta il mercurio ad ossidarsi e ad essere adsorbito su adsorbenti specifici o sulle ceneri volanti. La presenza di HCl è in grado di promuovere la rimozione di Hg secondo due differenti modalità:

- L’HCl si riduce a Cl₂ o Cl tramite una reazione di tipo Deacon (4HCl + O₂ ↔ 2H₂O + 2Cl₂) in presenza di un catalizzatore metallico (per esempio il rame) a valori di temperatura superiori a 300°C;
- In un secondo momento, il Cl reagisce con atomi di C a formare gruppi C-Cl che fungono da siti di adsorbimento per Hg.

Quindi l’elevata concentrazione di Cl₂ e HCl determina l’ossidazione dell’Hg⁰ a HgCl₂ e di conseguenza incrementa l’efficacia dello stadio di adsorbimento sul carbone attivo. Quando il cloro è presente in basse concentrazioni, la ripartizione del mercurio è invece più spostata verso la forma elementare che, essendo scarsamente adsorbibile, permane nei fumi a valle del trattamento con carbone attivo.

Composti come NO e SO₂ presentano una buona abilità nel promuovere la rimozione del mercurio e di conseguenza è importante analizzarne i meccanismi di reazione. L’aggiunta di SO₂ è in grado di promuovere
la rimozione di Hg. L’SO\textsubscript{2} reagisce con l’ossigeno chimicamente adsorbito, formando SO\textsubscript{3}. Successivamente, il mercurio elementare è ossidato a HgO attraverso l’ossigeno precedentemente adsorbito. Quindi l’HgO è ossidato in presenza di SO\textsubscript{3} a formare HgSO\textsubscript{4}, composto caratterizzato da un’elevata mobilità. L’NO è il gas acido in grado di manifestare la migliore capacità di rimozione nei confronti dell’Hg. L’NO reagisce con l’ossigeno adsorbito chimicamente o con un ossido metallico (Al\textsubscript{2}O\textsubscript{3}, Fe\textsubscript{2}O\textsubscript{3}) a formare NO\textsubscript{2}. L’NO\textsubscript{2} presenta una ossidabilità maggiore rispetto all’NO e quindi manifesta una affinità maggiore per il mercurio, formando HgO e nitrato di mercurio (Hg(NO\textsubscript{3})\textsubscript{2}) in presenza di O\textsubscript{2}. Con l’avanzare del tempo sono osservabili picchi di nitrato che contribuiscono all’accumulo di prodotti di reazione tra siti attivi di NO\textsubscript{2} e dell’Hg. Si formano tramite ossidazione di Hg0 sia Hg(NO\textsubscript{3})\textsubscript{2} che HgO.

Studiando il meccanismo di adsorbimento nel flusso gassoso, si nota come la curva di desorbimento delle ceneri volanti contenga 3 picchi (Figura 5.29):

- Un picco a 284°C, associato a Hg(NO\textsubscript{3})\textsubscript{2};
- Un picco a 314°C, associato a HgO;
- Un picco a 530°C, associato a HgSO\textsubscript{4}.

Le percentuali dei 3 composti sopra riportati sono pari nell’ordine al 43,69%, al 47,85% ed al 8,46%.

![Figura 5.29 – Picchi caratteristici di desorbimento delle ceneri volanti. (Li et al., 2017).](image)

Attraverso l’analisi elementare si è ricavato che gli elementi principali del carbone attivo sono C e O, mentre il contenuto di C, H, O della cenere volante è relativamente basso. Al contrario, il contenuto di N e S della cenere volante è relativamente alto, cosa probabilmente da attribuire alla presenza di nitrati e solfati. Inoltre, le componenti chimiche delle ceneri volanti sono state analizzate ed è stato possibile dedurre come CaO, SiO\textsubscript{2}, Al\textsubscript{2}O\textsubscript{3} e Fe\textsubscript{2}O\textsubscript{3} siano i principali ossidi presenti nelle ceneri volanti e siano considerabili come composti attivi per l’ossidazione del mercurio. È bene considerare che SO\textsubscript{3} e Cl nella cenere volante calda diminuiscono a causa della volatilizzazione di solfati e composti organici volatili ad alte temperature.

Nello studio di Li et al. (2017) la temperatura è mantenuta a 180°C e dunque la reazione Deacon non può avvenire. Il contenuto di carbonio nella cenere volante è basso (1,22%) e quello di cui è caratterizzata la FAH può essere ulteriormente minore dopo trattamento. È quindi difficile che l’HCl sia in grado di formare gruppi
C-Cl sulla superficie delle FAH, e questo si traduce nella perdita di efficienza ipotizzata dall’aggiunta di HCl per quanto concerne la rimozione di Hg. Nonostante questo, il contenuto di Cl nella FAH è molto maggiore (5,4%) rispetto a quello delle ceneri volanti prodotte dalla combustione del carbone: questo significa che le FAH contengono composti a base Cl e dunque un minor numero di siti di adsorbimento. Dunque, complessivamente per questo caso di studio è possibile notare come l’HCl influisca poco sulla rimozione e non contribuisce a formare siti adsorbimento per la rimozione dell’Hg.

L’utilizzo dell’adsorbente ACNCl5 (AC (carbone attivo) + NH4Cl) ha mostrato eccellenti proprietà di rimozione dell’Hg. Il rapporto di Cl ed il picco C-Cl aumenta da 0,31 a 1,20, indicando che i gruppi C-Cl passano a forma Cl’. Questo significa che i gruppi C-Cl sono in grado di svolgere la funzione di siti di adsorbimento e favoriscono la trasformazione dell’Hg in HgCl2.

In Tabella 5.17 sono riportati i vari metodi esposti per la rimozione di mercurio come da studio di Li et al. (2017), confrontati in base all’effetto, al costo ed all’influenza sui dispositivi e sui parametri. L’aggiunta di gas acidi può risultare efficace ma è possibile incorrere nella corrosione e in problemi circa la rimozione/controllo degli stessi. Inoltre, una apposita aggiunta di gas acidi (con iniezione del 25% in peso di carbone attivo) non porta ad una riduzione delle concentrazioni di mercurio a livelli ottimali per il rispetto dei limiti. Applicando un’iniezione di carbone attivo si otterrebbe un miglioramento in termini di rimozione di Hg, con le conseguenze inevitabili di un incremento parallelo dei costi e di problemi di “fouling” a carico dei filtri a manica utilizzati.

Sulla base dell’effetto eccellente e del basso costo la scelta ottimale risulta essere quella di adottare un adsorbente modificato con cloro: tale scelta manifesta infatti una buona rimozione del mercurio ed è indipendente dalla composizione del flusso gassoso da trattare, cosa che permette di non variare le condizioni operative.

Inoltre, l’impregnazione con solo il 5% di NH4Cl non presenta una rilevante influenza sui dispositivi e pertanto i parametri operativi rimangono inalterati.

Tabella 5.17 – Confronto tra vari metodi per la rimozione di mercurio. (Li et al., 2017).

<table>
<thead>
<tr>
<th>Metodo</th>
<th>Effetto</th>
<th>Costo</th>
<th>Influenza sulla strumentazione</th>
<th>Parametri operativi</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td>Peggiorativo</td>
<td>Modesto</td>
<td>Si</td>
<td>Alterati</td>
</tr>
<tr>
<td>SO2</td>
<td>Migliorativo</td>
<td>Modesto</td>
<td>Si</td>
<td>Alterati</td>
</tr>
<tr>
<td>NO</td>
<td>Migliorativo</td>
<td>Modesto</td>
<td>Si</td>
<td>Alterati</td>
</tr>
<tr>
<td>Incremento Carbone Attivo</td>
<td>Migliorativo</td>
<td>Elevato</td>
<td>No</td>
<td>Alterati</td>
</tr>
<tr>
<td>ACNCIS</td>
<td>Eccellente</td>
<td>Ridotto</td>
<td>No</td>
<td>Inalterati</td>
</tr>
</tbody>
</table>

Uno studio condotto sugli impianti di termovalorizzazione di Modena e Ferrara dal DIIAR-Politecnico di Milano nel 2011 ha inteso, tra le altre cose, valutare eventuali correlazioni delle emissioni di mercurio con il monossido di carbonio; in particolare è stato analizzato l’andamento della concentrazione di mercurio e di monossido di carbonio al camino dell’impianto di termovalorizzazione di Modena durante il periodo 11-15
aprile 2010. È stato osservato come, nel corso della stessa giornata, si siano verificati episodi in cui sembra essere presente una certa relazione tra la concentrazione di mercurio e quella di monossido di carbonio ed altri in cui non sembra sussistere alcuna relazione. Si osserva inoltre come la concentrazione di mercurio permanga elevata per intere giornate dopo i fenomeni di picco senza raggiungere mai concentrazioni pressoché nulle come ci si aspetterebbe in condizioni di alimentazione di un rifiuto sostanzialmente privo di mercurio. A tale proposito, si riporta il grafico relativo all’evento registrato il giorno 1 febbraio 2010 presso l’impianto di termovalorizzazione di Ferrara in condizioni di marcia dell’impianto senza alimentazione di rifiuto (Figura 5.30). Si osserva che, benché l’alimentazione del rifiuto sia stata interrotta a seguito di un picco di mercurio e quindi non vi sia un suo ingresso nel sistema, la concentrazione permane elevata per più di 11 ore senza mai raggiungere valori inferiori a 5 µg/m³. La contestuale elevata concentrazione di CO fa presupporre l’esistenza di un fenomeno di accumulo di mercurio lungo la linea fumi, nella forma ossidata meno volatile, con successivo rilascio a seguito della sua riduzione nella forma elementare, più volatile, da parte del CO.

![Figura 5.30 – Concentrazione di Hg e CO nei fumi a camino dell’impianto di termovalorizzazione di Ferrara il 1 febbraio 2010 in condizioni di mancata alimentazione del rifiuto. (DIIAR-Politecnico di Milano, 2011).](image)

Bisogna inoltre considerare che la presenza di un’elevata concentrazione di CO è sintomo di cattiva combustione e quindi di ambiente scarsamente ossidante. Ciò può determinare lo spostamento della ripartizione del mercurio verso la sua forma ridotta, più difficilmente adsorbibile sul carbone attivo. Le analisi statistiche confermano l’esistenza di un legame tra mercurio e CO. Si osserva una correlazione positiva, ossia la presenza di CO favorisce la speciazione del mercurio nella forma elementare anziché in quella ossidata e quindi ne aumenta la presenza al camino, in quanto più difficilmente trattenibile dal carbone attivo.

Lo studio di Li et al. (2017) rappresenta sicuramente uno dei contributi più significativi nello studio dell’influenza delle componenti del flusso gassoso, dell’iniezione di carbone attivo e delle ceneri volanti sulla rimozione di mercurio dalle emissioni a camino degli impianti di incenerimento di rifiuti.
Attraverso questo studio si è potuto rilevare che:

- Variando i composti contenuti nei gas esausti è possibile ottenere rimozioni più o meno significative del mercurio. Un’aggiunta contestuale di O\textsubscript{2}, SO\textsubscript{2}, NO, HCl contribuisce a rimuovere Hg2+ dal gas di scarico, seppur in maniera temporanea. Questo è dovuto al fatto che composti come SO\textsubscript{2} e HCl concorrono ai siti attivi del carbone attivo, impedendo al mercurio di essere adsorbito;

- È stato dimostrato che anche la cenere volante calda derivante dal processo di combustione riesce ad adsorbire mercurio. Questo è dovuto al fatto che, tramite un’analisi elementare, si è riscontrato come i principali costituenti delle ceneri siano N e S che favoriscono l’ossidazione del mercurio. Per temperature superiori ai 300°C non si sono riscontrate diminuzioni di mercurio sebbene si fosse in presenza di gas acidi. Ciò è dovuto al fatto che per temperature molto alte composti a base di zolfo e azoto volatilizzano dalle ceneri volanti, negando il contributo apportato dalle stesse nella rimozione del mercurio. Inoltre le reazioni Deacon, che coinvolgono HCl e portano alla formazione di gruppi C-Cl in grado di adsorbire mercurio sulla superficie di ceneri volanti, non avvengono;

- Un ruolo fondamentale nel processo di adsorbimento è giocato non solo dalle componenti del flusso gassoso ma anche dai dosaggi del carbone attivo;

- Gli effetti di rimozione più rilevanti sono stati osservati in corrispondenza del dosaggio di una sostanza adsorbente chiamata ACNCI\textsubscript{5}, ottenendo concentrazioni di mercurio pari a 5,0 µg/m3, di gran lunga inferiori a quelle ottenute con gli esperimenti precedenti. L’eventuale presenza di gas acidi (HCl, SO\textsubscript{2} e NO\textsubscript{X}) permette di ossidare l’Hg0 presente, favorendo l’adsorbimento e diminuendo ulteriormente la concentrazione.

5.4.6 Tecniche innovative per incrementare la rimozione del mercurio

Per quanto concerne gli impianti di termovalorizzazione, un metodo economico di “retrofit” largamente sviluppato negli Stati Uniti è il sistema TOXECON II™. Questa soluzione viene applicata in impianti caratterizzati da basse concentrazioni di mercurio e bassi valori del rapporto HCl/SO\textsubscript{2} e permette di ottenere un’efficienza totale di rimozione del mercurio compresa tra il 60% e l’80% (Chang et al., 2010).
Tale tecnologia utilizza carbone attivo per la rimozione del mercurio con applicazioni a basso impatto in termini di costo. Nello specifico è previsto il dosaggio di carbone adsorbente non in testa ma verso la parte conclusiva del precipitatore elettrostatico (ad esempio all’altezza del penultimo banco) in modo che vengano generati due differenti tipologie di ceneri raccolte dallo stesso ESP. Così facendo è infatti possibile separare i volumi di ceneri contaminate con mercurio dai volumi complessivi di ceneri raccolte (Figura 5.31).

Inoltre, tale metodo permette una ridotta contaminazione dei residui da processo, garantendo una migliore gestione degli stessi.

![Diagram](image.png)

Figura 5.31 – Schema di funzionamento del metodo di retrofit TOXECON II™. (Starns et al., 2004).

In generale il sistema TOXECON II™ è sicuramente una tecnologia di notevole interesse grazie ai ridotti costi d’investimento, alla maggiore possibilità di recupero del sorbente alla migliore gestione dei residui da processo.

Un’altra soluzione per rimuovere mercurio tramite adsorbimento è resa possibile grazie ai moduli realizzati con polimeri compositi offerti da Gore™ (www.gore.com).

Il sistema di polimeri di Gore™ rappresenta un sistema in grado di catturare i metalli e mercurio ossidato emessi da impianti di incenerimento (rimozioni dichiarate superiori al 90%); in aggiunta sono registrate rimozioni di SOx e di polveri fini come PM$_{2.5}$. Alla base di queste peculiarità vi è l’utilizzo di un innovativo materiale a carboni attivi fluoro-polimerici in grado di adsorbire sia il mercurio elementare che ossidato attraverso meccanismi di adsorbimento chimico. L’acido solforico generato tende a migrare automaticamente verso gli strati più esterni e superficiali del materiale (per via di forze capillari) ed è quindi espulso come liquido e rimosso per forza di gravità: questo fa sì che non sia necessario un processo rigenerativo e la cattura di Hg possa proseguire a lungo. Siccome non è previsto alcun dosaggio di materiale polverulento, sono assenti le problematiche relative alla produzione di residui contaminati. I moduli Gore™ si presentano come un insieme di moduli installabili a valle del sistema di trattamento fumi. Tali moduli sono pensati in modo da avere una struttura a canali unica ed in grado di garantire minime perdite di carico e quindi assicurarne un funzionamento senza necessità di aggiuntivi sistemi di tiraggio (Figura 5.32).
L’operatività di questa tecnologia è garantita per molti anni (oltre 10 anni) senza bisogno di modifiche o rigenerazioni (www.gore.com); al termine della vita utile del prodotto, ciascun singolo modulo può essere rimosso dalla propria struttura di contenimento (realizzata in leghe resistenti alla corrosione) e rimpiazzato. Il materiale può essere in realtà modellato in modo tale che possa essere applicato sotto forma di moduli cubici, cilindrici, ecc. a seconda delle specifiche esigenze impiantistiche. Il modulo esausto può essere smaltito come rifiuto pericoloso in impianti specializzati, con il vantaggio di ridurre di alcuni ordini di grandezza la produzione di rifiuti rispetto ai sistemi tradizionali che prevedono l’iniezione di carboni attivi in polvere (oltre ad indubbi benefici in termini di costi) (www.gore.com). Questo sistema garantisce un’efficienza di rimozione del mercurio compresa tra il 60% e il 90% (Kolde et al., 2013).

In generale, i vantaggi di questo tipo di applicazione sono il semplice funzionamento unito alla pratica installazione in qualsiasi punto di impianti già attivi, l’assenza di dosaggi di sorbenti specifici e la drastica riduzione in termini di residui pericolosi prodotti.

Entrambe le metodologie sopra riportate, TOXECON II™ e Gore™, sono relativamente semplici e promettenti per ottenere concentrazioni basse di mercurio nei fumi (inferiori a 5 µg/Nm3).

Efficienze maggiori del 99% potrebbero essere ottenute con “retrofit” basati su letti fissi di adsorbenti di carbone attivo con o senza rigenerazione di adsorbente, iniezioni aggiuntive di carboni attivi impregnati associati a filtri a manica, adsorbenti inorganici. Queste soluzioni sono applicate in particolare per concentrazioni di mercurio in ingresso inferiori a 200 µg /m³ e alti rapporti Hg⁰/HgCl₂; tuttavia applicazioni di questo tipo risultano essere spesso molto costose (U.S. EPA, 1997; Looney et al., 2009).

La Tabella A.4.1 in Appendice A.4 riassume i retrofit e relativi costi per linee di trattamento fumi esistenti in grado di assicurare i migliori rendimenti di rimozione del mercurio.
Il presente capitolo ha lo scopo di analizzare le prestazioni ambientali del reagente dolomitico Depurcal® MG durante il periodo di prova presso il termovalorizzatore di Torino. L’analisi è stata effettuata confrontando la situazione di funzionamento ordinario dell’impianto in assenza di dosaggio del sorbente dolomitico con quella che, a parità di tutte le altre condizioni, ne prevede invece il dosaggio. Obiettivo principale è quello di valutare le variazioni di carichi e concentrazioni dei gas acidi (HCl e SO₂) presenti nei fumi in uscita dalla caldaia e quindi determinare l’efficienza di abbattimento conseguita grazie all’utilizzo del sorbente. Inoltre sono stati investigati eventuali effetti del reagente sul mercurio, che presso l’impianto di Torino manifesta talvolta picchi di emissione difficilmente interpretabili.

6.1 Materiali e metodi

6.1.1 Il prodotto Depurcal® MG

Unicalce S.p.A. è il principale produttore italiano di calce aerea calcica, magnesiaca, dolomitica e prodotti derivati con 12 stabilimenti su tutto il territorio nazionale. Tra i prodotti del Gruppo Unicalce di recente sviluppo per la depurazione di effluenti gassosi figura il reagente Depurcal® MG.

Dal punto di vista chimico si tratta di un idrossido di calcio dolomitico (Ca(OH)₂·xMg(OH)₂·yMgO), ovvero una sostanza comprendente idrossido di calcio, idrossido di magnesio e ossido di magnesio con alto rapporto magnesio/calcio. Il reagente nasce in particolare per rispondere alle esigenze dei termovalorizzatori, ai quali è richiesta sempre più flessibilità nonché ridondanza nel processo di depurazione degli inquinanti, e risulta essere particolarmente idoneo per l’assorbimento di gas acidi a secco ad alta temperatura mediante iniezione diretta nella sezione di combustione e recupero energetico.

La produzione del sorbente basico Depurcal® MG avviene a partire da un minerale carbonatico (carbonato doppio di calcio e magnesio, CaCO₃·MgCO₃) localizzato in un giacimento di dolomia (“Dolomia principale”) di notevole purezza (CaCO₃+MgCO₃ > 98%), che presenta un elevato rapporto magnesio/calcio (Mg/Ca > 0,58) e assai ridotti quantitativi di impurezze fisse (silice, ferro, allumina) e di altri elementi in traccia (zolfo, sodio, manganese, potassio, ecc.). La materia prima subisce un opportuno processo di calcinazione (6.1) in fornì verticali rigenerativi a flusso parallelo (tipologia “PFR kiln - Maerz®”) alimentati a gas naturale.

\[
\text{CaCO}_3 \cdot \text{MgCO}_3(s) + \text{calore (T } \approx 1000^\circ\text{C}) \rightarrow \text{CaO} \cdot \text{MgO}(s) + 2\text{CO}_2(g) \quad (6.1)
\]

Allo scarico dai fornì il materiale calcinato prodotto è selezionato al fine di ottenere un ossido di calcio dolomitico con precise caratteristiche qualitative (reattività, superficie specifica, porosità, ecc.), che viene successivamente inviato a una fase di idratazione (6.2) dedicata.
\[
\text{CaO} \cdot \text{MgO}_{(s)} + 2\text{H}_2\text{O} \rightarrow \text{Ca(OH)}_2 \cdot x\text{Mg(OH)}_2 \cdot y\text{MgO}_{(s)}
\] (6.2)

L’idrossido di calcio dolomitico finale presenta una distribuzione granulometrica caratterizzata da un diametro mediano \(d_{50}\) compreso tra gli 8 µm ed i 12 µm (gli altri diametri caratteristici sono rispettivamente dell’ordine di: \(d_{10} = 0.5-2\) µm; \(d_{90} = 60-90\) µm), mentre il diametro medio delle particelle è compreso tra i 25 µm ed i 45 µm. Il sorbente possiede inoltre un’elevata superficie specifica \(S_p > 18\) m\(^2\)/g, valutata tramite adsorbimento fisico multistrato di un gas inerte, in genere azoto, sulla superficie secondo il metodo BET a sei punti di rilevazione ed un elevato volume dei pori \(V_{pori} > 0.07\) cm\(^3\)/g, misurato per desorbimento di azoto e calcolato nell’ipotesi di pori a geometria cilindrica secondo il metodo BJH. Il prodotto finale è un sorbente pronto all’uso che non necessita di ulteriori trattamenti precedentemente alla sua iniezione in caldaia. Il reagente è pronto all’uso ed il dosaggio avviene nelle sezioni di impianto ad alta temperatura, quali la camera di combustione o la caldaia di recupero termico. La Figura 6.1 riporta sinteticamente lo schema di processo di produzione del prodotto Depurcal®MG.

Figura 6.1 – Schema del processo di produzione del sorbente dolomitico Depurcal®MG. (Moreschi, 2011).

Le principali caratteristiche chimiche e fisiche del prodotto Depurcal®MG sono elencate in Tabella 6.1.

<table>
<thead>
<tr>
<th>Caratteristica</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massa volumica apparente</td>
<td>550-650 kg/m³</td>
</tr>
<tr>
<td>Solubilità in acqua</td>
<td>1,85 g/l</td>
</tr>
<tr>
<td>pH della soluzione satura</td>
<td>11,7</td>
</tr>
<tr>
<td>Residuo a secco su setaccio da 0,200 mm</td>
<td>≤ 1,0%</td>
</tr>
<tr>
<td>Residuo a secco su setaccio da 0,090 mm</td>
<td>≤ 10,0%</td>
</tr>
<tr>
<td>CaO+MgO totali (1)</td>
<td>≥ 96%</td>
</tr>
<tr>
<td>MgO in CaO+MgO (1)</td>
<td>≥ 38%</td>
</tr>
<tr>
<td>CO₂ residua</td>
<td>≤ 3,0%</td>
</tr>
<tr>
<td>SO₃ totale combinato</td>
<td>≤ 0,1%</td>
</tr>
<tr>
<td>(SiO₂ + Al₂O₃ + Fe₂O₃) totali combinati</td>
<td>≤ 0,5%</td>
</tr>
<tr>
<td>Acqua libera (umidità)</td>
<td>≤ 0,8%</td>
</tr>
<tr>
<td>Superficie specifica BET</td>
<td>> 18 m²/g</td>
</tr>
</tbody>
</table>

Note:
(1) – Al netto dell’acqua libera e dell’acqua combinata chimicamente.

Una volta iniettato nella corrente gassosa dei fumi di combustione in corrispondenza della sezione forno-caldaia del termovalorizzatore, per effetto delle elevate temperature presenti (dell’ordine di 800-1000°C), il sorbente Depurcal®MG si attiva termicamente in maniera pressoché istantanea perdendo l’acqua legata chimicamente (riduzione della massa del 15-25%, tipicamente nell’intervallo compreso tra 18-22%) ed acquisendo elevate capacità di assorbimento degli inquinanti acidi (Figura 6.2).

L’attivazione termica del sorbente, che ha inizio per temperature superiori ai 600°C e ha il suo ottimo per valori di temperatura superiori a 800°C, a seguito di una riorganizzazione della struttura interna delle particelle, porta alla formazione di una struttura altamente porosa in grado di accelerare notevolmente le reazioni di neutralizzazione: il prodotto attivato presenta valori di superficie specifica Sₚ superiori ai 30 m²/g e valori di Vₚₘₚ superiori ai 0,10 cm³/g con particolare incremento di mesopori e macropori (Figura 6.3).
Figura 6.3 – SEM (“Scanning Electron Microscopy”) del prodotto Depurcal®MG prima (a sinistra) e dopo (a destra) della sua attivazione termica a 1000°C. (Biganzoli et al., 2015).

Nelle reazioni di neutralizzazione è prevalentemente la componente calcica (ossido di calcio) a reagire con le specie acide presenti nei fumi di combustione, mentre la componente dolomitica (ossido di magnesio), che reagisce in misura assai minore con gli acidi, agisce sostanzialmente da strutturante particellare prevenendo il collasso della porosità (per esempio a causa di fenomeni di sinterizzazione indesiderati durante l’utilizzo) e favorendo la diffusione degli inquinanti all’interno delle particelle del sorbente nonché la conseguente formazione dei prodotti di reazione. L’azione della componente dolomitica del Depurcal®MG, che partecipa attivamente alla formazione delle ceneri in quanto inglobato nella struttura microcristallina delle stesse, si esplica principalmente attraverso reazioni con i composti chimici che costituiscono le ceneri leggere: l’ossido di magnesio reagisce con gli elementi chimici caratterizzati da basso punto di fusione (quali, per esempio, Na, K, Li, B, V, P, ecc.) formando composti con punto di fusione più elevato. L’interazione del sorbente dolomitico con la struttura delle ceneri di combustione comporta la modificazione della loro composizione chimica nonché delle caratteristiche fisiche e reologiche che le rende scarsamente agglomeranti, estremamente friabili e poco adesive. Queste variazioni danno vita a strati di deposito sulle superfici di scambio termico di spessore ridotto, secchi e con tendenza a ridursi in forma polverulenta. Questi depositi sono facilmente asportabili dall’effluente gassoso medesimo oppure con l’aiuto dei normali sistemi di pulizia di cui sono dotati gli impianti. Trascinato dalla corrente gassosa dei fumi di combustione, il sorbente dolomitico esplica pertanto una triplice azione:

- Pre-neutralizzazione delle componenti acide dei gas di combustione (principalmente HCl, HF, SO₂), con conseguente alleggerimento del carico di lavoro della linea fumi; si assiste alla riduzione complessiva del carico inquinante acido in uscita caldaia, insieme all’attenuazione della variabilità e delle concentrazioni di picco dello stesso;
- Variazione della reologia delle ceneri leggere di caldaia per innalzamento del loro punto di fusione; le ceneri risultano quindi più friabili e più facilmente asportabili dalle superfici di scambio termico, garantendo una maggiore pulizia delle stesse;
- Il contestuale abbattimento di composti acidi nell’effluente gassoso e la modificazione chimico-fisica delle ceneri, oltre alla riduzione dei fenomeni di sporcamento, contribuisce ad attenuare i problemi di
corrosione acida ad alta temperatura a carico degli apparati di scambio termico (preriscaldatori, surriscaldatori, economizzatori, ecc.).

Effetti del prodotto

La Tabella 6.2 mostra l’effetto di abbattimento delle componenti acide del gas di combustione operata dal Depurcal® MG su quattro impianti differenti in Italia, ed il conseguente risparmio del reagente alcalino nella linea fumi tradizionale (bicarbonato di sodio).

Tabella 6.2 – Prestazioni ambientali del reagente Depurcal®MG su quattro termovalorizzatori in Italia.

<table>
<thead>
<tr>
<th>Impianto</th>
<th>Dosaggio Depurcal®MG kg/h</th>
<th>Rimozione HCl %</th>
<th>Rimozione SO₂ %</th>
<th>Rimozione HF %</th>
<th>Risparmio bicarbonato di sodio kg/t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60-150</td>
<td>12-35%</td>
<td>36-95%</td>
<td>n.a.</td>
<td>14-50%</td>
</tr>
<tr>
<td>2</td>
<td>51-55</td>
<td>31-34%</td>
<td>82-88%</td>
<td>77-80%</td>
<td>38-42%</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td>44%</td>
<td>60%</td>
<td>n.a.</td>
<td>13%</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>23-35%</td>
<td>61-80%</td>
<td>40-56%</td>
<td>19-23%</td>
</tr>
<tr>
<td>Media</td>
<td>-</td>
<td>24%</td>
<td>71%</td>
<td>63%</td>
<td>30%</td>
</tr>
</tbody>
</table>

Nella Figura 6.4 si evidenzia invece un esempio dell’effetto del prodotto Depurcal® MG sui picchi di inquinanti acidi che possono verificarsi come conseguenza dell’eterogeneità del rifiuto trattato.

Figura 6.4 – Esempio di efficacia del Depurcal®MG sui picchi di acido cloridrico. (Grosso et al., 2014).

In particolare in Figura 6.4 è riportato l’andamento delle concentrazioni di HCl e SO₂ nei fumi di combustione di un impianto strutturato su 2 linee di incenerimento con una unica fossa rifiuti (stessa composizione del rifiuto) nel quale una linea disponeva di dosaggio di Depurcal® MG (tratto discontinuo) e l’altra ne era priva (tratto continuo). È immediato notare la differenza tra le due linee: nel caso di dosaggio di Depurcal® MG il picco di HCl è ridotto del 47%, mentre il consumo di bicarbonato di sodio è ridotto del 66%.
In Tabella 6.3 è riportato l’effetto che il dosaggio di Depurcal®MG manifesta circa la variazione delle caratteristiche composizionali e reologiche delle ceneri generate dal processo di incenerimento dei rifiuti.

<table>
<thead>
<tr>
<th>Composizione chimica percentuale [% in massa]</th>
<th>Campione ceneri</th>
<th>Scenario 0 – Senza additivo</th>
<th>Scenario 1 – Con additivo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Campione 0.1</td>
<td>Campione 0.2</td>
<td>Campione 1.1</td>
</tr>
<tr>
<td>SiO₂</td>
<td>16,3</td>
<td>10,5</td>
<td>11,9</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>9,3</td>
<td>3,8</td>
<td>5,3</td>
</tr>
<tr>
<td>Na₂O</td>
<td>4,7</td>
<td>8,2</td>
<td>3,2</td>
</tr>
<tr>
<td>K₂O</td>
<td>4,5</td>
<td>6,9</td>
<td>3,0</td>
</tr>
<tr>
<td>CaO</td>
<td>24,4</td>
<td>15,0</td>
<td>27,8</td>
</tr>
<tr>
<td>MgO</td>
<td>2,4</td>
<td>1,4</td>
<td>9,6</td>
</tr>
<tr>
<td>SO₃</td>
<td>20,4</td>
<td>17,5</td>
<td>20,3</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3,5</td>
<td>2,0</td>
<td>2,5</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1,0</td>
<td>1,1</td>
<td>1,4</td>
</tr>
<tr>
<td>ZnO</td>
<td>2,5</td>
<td>4,7</td>
<td>1,4</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>2,0</td>
<td>1,6</td>
<td>1,7</td>
</tr>
<tr>
<td>F</td>
<td>0,1</td>
<td>0,3</td>
<td>0,1</td>
</tr>
<tr>
<td>Cl</td>
<td>1,2</td>
<td>4,0</td>
<td>4,5</td>
</tr>
<tr>
<td>LOI</td>
<td>6,4</td>
<td>21,5</td>
<td>6,9</td>
</tr>
<tr>
<td>Trammollimento [°C]</td>
<td>1250</td>
<td>1260</td>
<td>1320</td>
</tr>
</tbody>
</table>

In dettaglio, sono state comparate le caratteristiche chimico-fisiche prelevando campioni di ceneri in assenza ed in presenza di additivo (il punto di rammollimento rappresenta un particolare stato termodinamico, rappresentato da specifiche condizioni di temperatura e di pressione, in corrispondenza del quale un materiale, che non abbia un punto di fusione definito, inizia a modificare il proprio stato di aggregazione passando da solido a fluido). La Tabella 6.3 mostra come la composizione chimica delle ceneri non vari in maniera sostanziale, fatta eccezione per le componenti che manifestano l’effettiva azione del sorbente (come la presenza di magnesio e cloruri) che invece mostrano variazioni degne di nota. L’incremento più significativo è quello del punto di rammollimento che subisce un innalzamento dell’ordine di 40-70°C; da ciò deriva un diverso aspetto finale delle ceneri che risultano essere più fragili, più friabili e di granulometria più fine rispetto al caso di assenza di dosaggio del sorbente. Queste variazioni migliorano anche l’azione delle tradizionali tecnologie di pulizia (come soffiatrici di tipo fisso o retrattile, ad aria o a vapore ad alta pressione, sistemi di pulizia di tipo meccanico, a vibrazione o a percussione) degli elementi del corpo caldaia maggiormente soggetti a sporcamento, in quanto ceneri di questo tipo (fragili e friabili) sono più semplici da rimuovere rispetto alle ceneri che si depositano fino a fusione sulle superfici dei banchi e a seguito dell’aumento dello spessore dello strato tendono progressivamente ad indurire al punto da non essere più rimuovibili dai sistemi tradizionali in dotazione all’impianto.

In varie prove di lunga durata condotte su diversi impianti termovalorizzazione alla scala reale (Biganzoli et al., 2015), a fronte di un dosaggio medio di Depurcal®MG pari a 5 kg per tonnellata di rifiuti trattata, le rese
di abbattimento osservate sono state in media pari al 23% per l’HCl, al 71% per l’SO₂, al 63% per l’HF mentre il risparmio di bicarbonato di sodio conseguente è risultato essere mediamente pari a 31%.

Impianto di dosaggio

Il Gruppo Unicalce ha a disposizione un impianto pilota (Figura 6.5) per condurre test di additivazione e monitorare l’effetto del dosaggio del sorbente Depurcal®MG in processi di termovalorizzazione dei rifiuti alla scala reale.

![Illustrazione dell’impianto pilota per prove di dosaggio del prodotto Depurcal®MG.](image)

L’impianto pilota è costituito da un silo di stoccaggio scarrabile di capacità volumetrica circa pari a 22 m³ dotato di opportuno sistema di fluidificazione nella sezione di scarico, di una coclea estrattrice del prodotto per il caricamento dello stesso entro una tramoggia polmone pesata e di un sistema di adduzione al circuito pneumatico di trasporto integrato e quindi fino al punto di iniezione nella sezione forno-caldaia della linea di termovalorizzazione. Due rotocelle, la prima di estrazione e dosaggio e la seconda di trasporto, posizionate alla bocca di scarico della tramoggia polmone, hanno il compito di convogliare il prodotto alla tubazione di trasporto che si interfaccia con la linea di termovalorizzazione (ulteriori dettagli circa l’impianto di dosaggio sono riportati in Appendice A5).

6.1.2 Dosaggio di Depurcal®MG presso il termovalorizzatore di Torino

La prova condotta presso il termovalorizzatore TRM S.p.A. di Torino ha previsto che il dosaggio del reagente dolomitico in camera di combustione fosse effettuato esclusivamente nella Linea 3, andando a considerare il
funzionamento della stessa Linea 3 relativamente a un periodo antecedente alla prova (Periodo 0) nonché in comparazione verso le altre due linee (Linea 1 e Linea 2) durante la prova medesima (Periodo 1). Il Periodo 1 durante il quale si è svolta la prova è stato caratterizzato dal susseguirsi di tre differenti fasi:

- Step 1 - durante questa fase il set-point di dosaggio del reagente è stato impostato pari a 60 kg/h. Questa prima fase si è sviluppata dal 26/09/2017 ore 12:00 (inizio della prova), fino al 09/10/2017 ore 15:00;
- Step 2 - durante questa fase il set-point di dosaggio del reagente è stato impostato pari a 90 kg/h. Questa seconda fase si è sviluppata dal 09/10/2017 ore 16:00, fino al 06/11/2017 ore 17:00;
- Step 3 - durante questa fase il set-point di dosaggio del reagente è stato impostato pari a 120 kg/h. Questa terza fase si è sviluppata dal 06/11/2017 ore 18:00, fino al 31/01/2018 ore 23:00 (termine della prova).

Come si può apprezzare dalla seguente Figura 6.6 (Paragrafo 6.1.3), il punto di iniezione è all’altezza dei bruciatori ausiliari, sul lato destro della camera di combustione. La Tabella 6.4 riporta le statistiche descrittive relative al dosaggio del sorbente dolomitico in riferimento all’intero periodo di svolgimento della prova (Periodo 1) e alle varie fasi di conduzione della stessa (Step 1, Step 2, Step 3).

<table>
<thead>
<tr>
<th>Tabella 6.4 – Statistiche descrittive del dosaggio di Depurcal®MG.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>L3 - Periodo 1</td>
</tr>
<tr>
<td>(intero periodo)</td>
</tr>
<tr>
<td>L3 - Periodo 1</td>
</tr>
<tr>
<td>(Step 1:</td>
</tr>
<tr>
<td>Depurcal\text{®}MG 60 kg/h)</td>
</tr>
<tr>
<td>L3 - Periodo 1</td>
</tr>
<tr>
<td>(Step 2:</td>
</tr>
<tr>
<td>Depurcal\text{®}MG 90 kg/h)</td>
</tr>
<tr>
<td>L3 - Periodo 1</td>
</tr>
<tr>
<td>(Step 3:</td>
</tr>
<tr>
<td>Depurcal\text{®}MG 120 kg/h)</td>
</tr>
</tbody>
</table>

Gestione dei dati di dosaggio

Per quanto riguarda i dati relativi al dosaggio di Depurcal®MG è stata effettuata una pulizia considerando ed eliminando tutte quelle situazioni di dosaggio nullo o reputate eccessivamente ridotte (soglia limite inferiore fissata pari a 3 kg/h) che si sono potute verificare durante la prova a causa di malfunzionamenti dell’impianto pilota o come conseguenza dell’esaurimento del prodotto nel silo prima del riempimento successivo data la limitata capacità di stoccaggio di quest’ultimo (22 m³).
D’altra parte, qualsiasi altro dosaggio differente dal set-point (60 kg/h, 90 kg/h o 120 kg/h) dello specifico step (Step 1, Step 2 o Step 3 rispettivamente) ma superiore alla soglia selezionata, è stato invece mantenuto nelle analisi. Questi valori infatti, pur rappresentando una condizione anomala rispetto al periodo relativo, si configurano anche come condizioni peggiorative (e dunque di sicurezza) circa i risultati ottenibili in termini di efficienza di abbattimento degli inquinanti e risparmio di bicarbonato di sodio.

6.1.3 Scenari e parametri analizzati

I dati utilizzati nel presente elaborato sono caratterizzati da una risoluzione oraria: i valori sono ottenuti riportando la media oraria dei dati istantanei rilevati dai diversi strumenti di misura a corredo del termovalorizzatore. I dati delle tre linee di trattamento possono essere suddivisi in due differenti periodi principali:

- **Periodo 0** - si tratta della serie storica di dati analizzata nel presente elaborato (a partire dal 01/01/2017 ore 00:00, fino al 26/09/2017 ore 11:00) relativa al periodo precedente il dosaggio di Depurcal®MG;
- **Periodo 1** - si tratta della serie di dati ottenuti durante il periodo di dosaggio del reagente Depurcal®MG (a partire dal 26/09/2017 ore 12:00, fino al 31/01/2018 ore 23:00).

Al fine di analizzare nel migliore dei modi i dati a disposizione, garantendo un adeguato livello di dettaglio, si è proceduto ad una loro valutazione suddividendoli per mese ed in base ai tre step di dosaggio del sorbente Depurcal®MG. Inoltre, per maggiore completezza informativa e di una più immediata visualizzazione, sono state calcolate le medie giornaliere per ciascun mese. La valutazione delle prestazioni ambientali ha riguardato l’analisi delle concentrazioni degli inquinanti acidi, in particolare HCl e SO₂. L’eventuale effetto sull’HF non è stato investigato dettagliatamente dal momento che l’unico dato disponibile per quanto concerne questo inquinante è registrato a camino (Figura 6.6).

In aggiunta è stata considerata anche la concentrazione di mercurio totale, che è registrato in impianto sia a camino che in uscita caldaia, al fine di valutare eventuali effetti del reagente Depurcal®MG. Il dato di concentrazione di mercurio totale registrato in caldaia ha richiesto una correzione per consentire il passaggio dalle condizioni “tal quali” (riferite alla temperatura, all’umidità ed all’ossigeno dei fumi in uscita caldaia) a quelle “corrette” (temperatura pari a 273 K, umidità pari a allo 0% -fumi secchi-, ed ossigene pari all’11%), in modo da renderlo confrontabile con tutti gli altri parametri di concentrazione coinvolti nel presente studio, i quali sono tutti riferiti alle condizioni corrette. La formula applicata in modo da ottenere il valore di HgTOT orario in caldaia alle condizioni corrette \(C_{Hg_{TOT}} \left[\frac{\mu g}{Nm^3} \right] \) risulta essere la seguente:

\[
C_{Hg_{TOT}} = Hg_{corretto,totale} \left[\frac{\mu g}{Nm^3} \right] = Hg_{eq} \left[\frac{\mu g}{Nm^3} \right] \cdot \frac{1}{1 - U \left[\% \right]} \cdot \frac{O_{2,aria} \left[\% \right] - O_{2,rif} \left[\% \right]}{O_{2,aria} \left[\% \right] - O_{2,secco,caldaia} \left[\% \right]} \cdot \frac{273 + T_{ECO} \left[^\circ C \right]}{273} \tag{6.3}
\]
dove:

\[
Hg_{tq}\left[\frac{\mu g}{Nm^3}\right] \text{ rappresenta il valore di concentrazione di mercurio totale in caldaia alle condizioni tal quali;}
\]

\[
U\left[\%\right] \text{ rappresenta il valore percentuale di umidità nei fumi in caldaia (\% vol);}
\]

\[
O_{2,\text{aria}}\left[\%\right] \text{ rappresenta il valore percentuale (in volume) di ossigeno in aria, pari al 21%;}
\]

\[
O_{2,\text{rif}}\left[\%\right] \text{ rappresenta il valore percentuale (in volume) di ossigeno al quale ci si vuole riportare (in questo caso pari all’11%);}
\]

\[
T_{\text{ECO}}\left[{^\circ}\text{C}\right] \text{ rappresenta il valore di temperatura del gas registrato all’altezza dell’economizzatore esterno;}
\]

\[
O_{2,\text{secco,caldaia}}\left[\%\right] \text{ rappresenta il valore percentuale (in volume) di ossigeno in condizioni secche in caldaia, ed è calcolato, ora per ora, tramite la seguente relazione:}
\]

\[
O_{2,\text{secco,caldaia}}\left[\%
ight] = O_{2,c}\left[\%
ight] \cdot \frac{1}{1 - U\left[\%\right]} \quad (6.4)
\]

nella quale, il valore \(O_{2,c}\left[\%\right]\) rappresenta il valore percentuale di ossigeno nei fumi in caldaia in condizioni tal quali (\%vol).

Siccome i valori di concentrazione (in termini di massa per unità di volume) riferiti alla voce “caldaia” sono registrati all’altezza dell’economizzatore esterno, è stata utilizzata la temperatura registrata in quel punto per effettuare la correzione (Figura 6.6). Nel momento in cui non fosse registrato un valore di \(U\left[\%\right]\), di \(O_{2,c}\left[\%\right]\) o di \(Hg_{tq}\left[\frac{\mu g}{Nm^3}\right]\) il calcolo per ottenere la concentrazione \(C_{Hg_{TOT}}\left[\frac{\mu g}{Nm^3}\right]\) non è stato effettuato. In particolare, il dato di \(Hg_{TOT}\) viene registrato tramite un analizzatore di mercurio totale (modello HM-1400TRX, Durag\(^\circ\)) sulla base di un fotometro in grado di misurare l’indebolimento dell’intensità luminosa di un raggio UV causato dall’assorbimento del raggio stesso da parte degli atomi di mercurio. Si tenga in considerazione che, per quanto concerne i dati relativi alle tre linee di incenerimento per il Periodo 0, l’analizzatore di mercurio totale in caldaia è stato installato ed è entrato in funzione in tempi differenti per la Linea 1 (19/07/2017) e per la Linea 2 (24/03/2017). Per i periodi precedenti all’installazione dell’analizzatore in queste due linee, non sono stati considerati dunque dati relativi al mercurio totale in caldaia. Per quanto concerne invece la Linea 3 la strumentazione è stata presente sin dal 01/01/2017. Relativamente al Periodo 1, gli analizzatori sono invece presenti in tutte le linee a partire dall’inizio della prova con Depurcal\(^\circ\)MG.

È bene inoltre precisare che il dato di media oraria relativo al dosaggio di carbone attivo viene riportato come riferito alla percentuale di velocità della coclea di dosaggio del carbone attivo stesso (\(CA_{90}\left[\%\text{ coclea}\right]\)). Per ottenere la portata di dosaggio reale (\(Q_{CA}\left[\frac{kg}{h}\right]\)), considerato il fatto che il 40\% della velocità della coclea corrisponde a 16 kg/h e il 100\% della velocità della coclea corrisponde a 40 kg/h, è stata applicata la seguente proporzione per ciascuno dei dati orari a disposizione:

\[
Q_{CA} = CA_{\text{portata}}\left[\frac{kg}{h}\right] = CA_{90}\left[\%\text{ coclea}\right] \cdot \frac{16}{40} \quad (6.5)
\]
Figura 6.6 – Schema di una delle tre identiche linee in parallelo dell’impianto di termovalorizzazione di Torino, in particolare la Linea 3 è quella dove è avvenuto il dosaggio del reagente. Si possono apprezzare:

☑ il punto di iniezione del reagente Depurcal® MG;

☑ il punto di lettura (relativamente alla voce “caldaia”) dei parametri di interesse per il presente elaborato;

♢ il punto di lettura (relativamente alla voce “camino”) dei parametri di interesse per il presente elaborato.
In aggiunta alle analisi effettuate in termini di concentrazione (massa per unità di volume), le valutazioni sono state condotte anche relativamente alle produzioni specifiche di inquinanti o ai consumi specifici di reagenti (cioè in riferimento alla torellata di rifiuti trattati) valutati per ciascun dato orario. In questo modo è possibile osservare eventuali variazioni negli andamenti rispetto ai risultati ottenuti in termini di concentrazione. Inoltre, considerando i valori specifici è possibile ottenere risultati che consentano un potenziale confronto tra impianti diversi e di slegarsi dalle caratteristiche condizioni impiantistiche del flusso gassoso (le portate in termini volumetrici sono infatti molto variabili essendo dipendenti dalle peculiarietà del rifiuto oggetto del processo di combustione e dalle modalità della combustione stessa). Per ottenere i valori di produzione specifica \((\text{PS}_i \left[\frac{\text{kg inquinante}}{\text{ton di rifiuti}} \right]) \) dei parametri relativi alla voce “caldaia”, la formula utilizzata per ciascun dato orario rilevato è la seguente:

\[
\text{PS}_i = \text{Produzione specifica inquinante}_i \left[\frac{\text{kg inquinante}}{\text{ton di rifiuti}} \right] = \frac{C_i \left[\frac{\text{mg}}{\text{Nm}^3} \right] \cdot 10^{-6} \cdot Q_{f,\text{caldaia}} \left[\frac{\text{Nm}^3}{\text{h}} \right]}{Q_r \left[\frac{\text{ton di rifiuti}}{\text{h}} \right]} \tag{6.6}
\]

dove:
- \(C_i \left[\frac{\text{mg}}{\text{Nm}^3} \right] \) rappresenta il valore di concentrazione in condizioni corrette dell’inquinante i-esimo;
- \(Q_r \left[\frac{\text{ton di rifiuti}}{\text{h}} \right] \) rappresenta il valore di portata oraria di rifiuti alimentata alla linea di incenerimento;
- \(Q_{f,\text{caldaia}} \left[\frac{\text{Nm}^3}{\text{h}} \right] \) rappresenta il valore di portata di fumi in caldaia in condizioni corrette. Questa portata coincide con quella a camino \(Q_{f,\text{camino}} \left[\frac{\text{Nm}^3}{\text{h}} \right] \) essendo anch’essa in condizioni corrette. Per questa ragione, anche per ottenere i valori di produzione specifica \((\text{PS}_i \left[\frac{\text{kg inquinante}}{\text{ton di rifiuti}} \right]) \) dei parametri relativi alla voce “camino”, viene applicata la relazione (6.6).

Per ottenere invece i valori di consumo specifico dei reagenti \((\text{CS}_i \left[\frac{\text{kg reagente}}{\text{ton di rifiuti}} \right]) \), si è adottata per ciascun dato orario la seguente relazione:

\[
\text{CS}_i = \text{Consumo specifico reagente}_i \left[\frac{\text{kg reagente}}{\text{ton di rifiuti}} \right] = \frac{M_i \left[\frac{\text{kg}}{\text{h}} \right]}{Q_r \left[\frac{\text{ton di rifiuti}}{\text{h}} \right]} \tag{6.7}
\]

dove:
- \(M_i \left[\frac{\text{kg}}{\text{h}} \right] \) rappresenta il valore di portata oraria del reagente i-esimo dosata;
- \(Q_r \left[\frac{\text{ton di rifiuti}}{\text{h}} \right] \) rappresenta il valore di portata oraria di rifiuti alimentata alla linea di incenerimento.

Una prima fase di elaborazione e di visualizzazione dei dati ha consentito di effettuare dei confronti (in termini di dati mensili e di medie giornaliere) tra le tre linee per quanto concerne il Periodo 0 ed il Periodo 1.
In particolare questo tipo di analisi, relativamente al Periodo 0, ha dato modo di indirizzare l’identificazione quale linea, tra la Linea 1 e la Linea 2, risultò essere dal punto di vista di funzionamento più simile alla Linea 3 (dove avviene il dosaggio del sorbente dolomitico). Così facendo è stato dunque possibile selezionare una linea di riferimento adeguata ad effettuare valutazioni comparative (come riportato negli scenari sottostanti) pur essendo le tre linee dell’impianto costruttivamente identiche. Al fine di cogliere la similitudine più marcata tra le linee è stato analizzato nel dettaglio l’andamento dei principali parametri coinvolti nell’analisi ambientale, quali l’HCl, l’S02, l’HgTOT in caldaia ed il dosaggio di NaHCO3. La generazione di grafici di confronto dello stesso parametro relativamente alle tre linee per il Periodo 0, può fornire una indicazione visiva circa un maggiore o minore grado di similitudine, anche se spesso difficilmente interpretabile.

Quindi, per cogliere con maggiore precisione quale tra la Linea 1 e la Linea 2 sia più simile alla Linea 3, si è ritenuto necessario proseguire anche come segue:

- Anzitutto sono state valutate le medie giornaliere per i mesi del Periodo 0, relative ai quattro parametri precedentemente riportati (HCl in caldaia [mg/Nm³], SO2 in caldaia [mg/Nm³], HgTOT in caldaia [µg/Nm³] ed il dosaggio di NaHCO3 [kg/h]) per tutte e tre le linee;
- A questo punto è stato valutato, per ogni mese e per ogni parametro, lo scarto tra le medie giornaliere della Linea 1 (L1) e della Linea 2 (L2) rispetto alla Linea 3 (L3). Il calcolo è stato eseguito in termini assoluti, come riportato nelle relazioni (6.8):

\[
\text{Scarto L3} - L_1 \text{giorno},\text{parametro}_j = |\text{Media L3 giorno},\text{parametro}_j - \text{Media L1 giorno},\text{parametro}_j| \\
\text{Scarto L3} - L_2 \text{giorno},\text{parametro}_j = |\text{Media L3 giorno},\text{parametro}_j - \text{Media L2 giorno},\text{parametro}_j| \quad (6.8)
\]

Tali scarti sono stati considerati solamente nel momento in cui fosse effettivamente presente un dato medio giornaliero per entrambe le linee nello specifico mese preso in esame: sono stati trascurati i periodi di spegnimento delle linee, oppure i periodi in cui il dato relativo ad un parametro non sia stato registrato, come nel caso del mercurio totale in caldaia a causa del differente periodo di installazione del rilevatore HM-1400TRX, Durag®,

- Ad uno scarto minore corrisponde minore differenza tra le medie orarie e dunque una maggiore similitudine tra le linee. Sulla base di questo ragionamento è possibile quindi scegliere la linea che si è mantenuta più simile alla Linea 3, sommando le occorrenze a favore della Linea 1 o della Linea 2 per il singolo parametro per tutto il Periodo 0.

I risultati dell’analisi del Periodo 0 consentono di selezionare la Linea 2 come riferimento per successivi confronti con la Linea 3 dove si verifica il dosaggio di Depurcal®MG (Tabella 6.5).
Tabella 6.5 – Scelta della linea (Linea 1, Linea 2) più simile alla Linea 3 mediante il confronto dello scarto delle medie giornaliere per i parametri HCl, SO$_2$, Hg$_{TOT}$ e NaHCO$_3$.

<table>
<thead>
<tr>
<th></th>
<th>Gennaio</th>
<th>Febbraio</th>
<th>Marzo</th>
<th>Aprile</th>
<th>Maggio</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl [mg/Nm3]</td>
<td>L1 2</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>L2 18</td>
<td>20</td>
<td>13</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>SO$_2$ [mg/Nm3]</td>
<td>L1 1</td>
<td>8</td>
<td>9</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>L2 12</td>
<td>16</td>
<td>12</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>Hg$_{TOT}$ [µg/Nm3]</td>
<td>L1 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L2 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NaHCO$_3$ [kg/h]</td>
<td>L1 7</td>
<td>12</td>
<td>4</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>L2 13</td>
<td>13</td>
<td>10</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Giugno</th>
<th>Luglio</th>
<th>Agosto</th>
<th>Settembre</th>
<th>Scelta</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl [mg/Nm3]</td>
<td>L1 12</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>L2 9</td>
<td>15</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>SO$_2$ [mg/Nm3]</td>
<td>L1 14</td>
<td>16</td>
<td>8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L2 7</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Hg$_{TOT}$ [µg/Nm3]</td>
<td>L1 0</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L2 0</td>
<td>13</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NaHCO$_3$ [kg/h]</td>
<td>L1 10</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L2 11</td>
<td>12</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

L’analisi degli effetti del reagente dolomitico è stata quindi poi condotta sulla base dei seguenti scenari:

- Scenario A - confronto tra la Linea 3 durante il Periodo 0 e la Linea 3 durante il Periodo 1. Le analisi sono state svolte confrontando la Linea 3 – Periodo 1 (considerando i dati acquisiti per tutta la durata del Periodo 1 ed i dati suddivisi sulla base dei 3 step di dosaggio di Depurcal®MG) con l’intera serie di dati a disposizione per la Linea 3 – Periodo 0;
- Scenario B - confronto tra la Linea 3 e la Linea 2 (adottata come condizione di riferimento) entrambe durante il Periodo 1. In questo caso, nota la scelta precedentemente giustificata della Linea 2 come più simile alla Linea 3, è possibile effettuare un confronto diretto delle due linee lungo tutto il Periodo 1 e relativamente ai tre step di dosaggio del reagente;
- Scenario C - confronto tra la sola Linea 3 durante il Periodo 1, e mira a confrontare l’andamento dei parametri per le ore in cui è avvenuto il dosaggio di Depurcal®MG e quelle in cui invece tale dosaggio non è avvenuto (periodi di ferma dell’impianto di dosaggio pilota).

Lo scopo di procedere attraverso la valutazione dello Scenario A è quello di poter confrontare la medesima linea in due periodi temporali differenti (Periodo 0 e Periodo 1). In questo modo è possibile investigare gli effetti indotti dal dosaggio del reagente confrontando l’andamento della Linea 3 direttamente con la serie pregressa di informazioni disponibili sulla stessa linea. Attraverso questo approccio si è in grado di evitare il problema delle potenziali variazioni in atto su due linee diverse che, anche se costruttivamente identiche, potrebbero invece fornire risposte differenti a parità di carico di inquinante e di rifiuti trattati. Lo Scenario B consente di superare la problematica dell’incertezza relativa alla differenza del rifiuto trattato.
in periodi diversi e di garantire dunque un confronto lungo il medesimo arco temporale. Pur tenendo presente l’intrinseca eterogeneità del rifiuto stesso, la possibile variabilità circa la sua composizione merceologica e le sue caratteristiche energetiche vengono ridotte considerando due linee diverse nello stesso periodo (Periodo 1) ed assumendo una corretta miscelazione del rifiuto in fossa da parte degli operatori. Inoltre, lo Scenario B determina la possibilità di utilizzare una linea (in questo caso la Linea 2) come “condizione di riferimento” sulla base della verificata similitudine con la Linea 3 ove avviene il dosaggio di Depurcal®MG. In questo modo è possibile confrontare direttamente le due linee ed apprezzare eventuali effetti rilevanti del sorbente.

L’analisi delle risposte per i tre step di dosaggio Depurcal®MG consente di evidenziare un eventuale effetto differente al variare della portata oraria del sorbente. È comunque bene tenere in considerazione che lo step di dosaggio pari a 120 kg/h risulta essere senza dubbio il più significativo in termini dei risultati che è possibile ottenere. Gli step di dosaggio pari a 60 kg/h e 90 kg/h infatti, oltre che essere di durata sensibilmente inferiore allo step di dosaggio pari a 120 kg/h, costituiscono di fatto delle fasi propedeutiche di avvicinamento al dosaggio definitivo pari a 120 kg/h.

Infine, lo Scenario C consente di confrontare direttamente l’andamento dei parametri oggetto delle analisi del presente studio lungo la Linea 3 dove è avvenuto il dosaggio di Depurcal®MG. Operando attraverso questo tipo di scenario si può evidenziare l’efficacia del sorbente dolomitico in un contesto che riduca al minimo la variabilità delle risposte ottenute (e cioè considerando la stessa linea nello stesso periodo temporale).

Come riportato precedentemente, per tutti e tre gli scenari considerati (Scenario A, Scenario B e Scenario C) le analisi sono state svolte parallelamente in termini di valori di concentrazione ed in termini di valori specifici. La valutazione dell’efficienza di abbattimento degli inquinanti \(\eta_i [%] \) è stata ottenuta dalla seguente relazione:

\[
\eta_i = \frac{Efficienza\ rimozione_{inquinante_i}}{PS_{i,0}} \cdot 100 \quad (6.9)
\]

dove, nel caso dello Scenario A:

\(PS_{i,0} \) rappresenta il valore di produzione specifica dell’inquinante i-esimo, valutata come riportato nella relazione (6.6, Paragrafo 6.1.3), relativamente alla Linea 3 (per il Periodo 0, in cui non è stato effettuato alcun dosaggio del sorbente Depurcal®MG in Linea 3);

\(PS_{i,1} \) rappresenta il valore di produzione specifica dell’inquinante i-esimo, valutata come riportato nella relazione (6.6, Paragrafo 6.1.3), relativamente alla Linea 3 (per il Periodo 1, in corrispondenza dei tre step di dosaggio del reagente Depurcal®MG in Linea 3, pari a 60 kg/h, 90 kg/h e 120 kg/h).

Invece, nel caso dello Scenario B (relazione (6.9)):

\(PS_{i,0} \) rappresenta il valore di produzione specifica dell’inquinante i-esimo, valutata come riportato nella relazione (6.6, Paragrafo 6.1.3), relativamente alla Linea 2 (per il Periodo 1, in corrispondenza dei tre step di dosaggio del reagente Depurcal®MG in Linea 3, pari a 60 kg/h, 90 kg/h e 120 kg/h);
$PS_{i,1} \left(\frac{kg_{inquinante_i}}{t_{rifùt}} \right)$ rappresenta il valore di produzione specifica dell’inquinante i-esimo, valutata come riportato nella relazione (6.6, Paragrafo 6.1.3), relativamente alla Linea 3 (per il Periodo 1, in corrispondenza dei tre step di dosaggio del reagente Depurcal®MG in Linea 3, pari a 60 kg/h, 90 kg/h e 120 kg/h).

Infine, nel caso dello Scenario C, si è valuta la variazione percentuale ($V_i [%]$) dei vari parametri tra le ore di avvenuto dosaggio di Depurcal®MG e le ore di assenza di dosaggio:

$$V_i = Variazione_{inquinante_i} [%] = \frac{(PS_{i,1} - PS_{i,0}) \left(\frac{kg_{inquinante_i}}{t_{rifùt}} \right)}{PS_{i,0} \left(\frac{kg_{inquinante_i}}{t_{rifùt}} \right)} \cdot 100 \quad (6.10)$$

dove:

$PS_{i,0} \left(\frac{kg_{inquinante_i}}{t_{rifùt}} \right)$ rappresenta il valore di produzione specifica media dell’inquinante i-esimo, valutata come riportato nella relazione (6.6, Paragrafo 6.1.3), relativamente alla Linea 3 per le ore di mancato dosaggio di Depurcal®MG (per il Periodo 1, in corrispondenza dei tre step di dosaggio del reagente Depurcal®MG in Linea 3, pari a 60 kg/h, 90 kg/h e 120 kg/h);

$PS_{i,1} \left(\frac{kg_{inquinante_i}}{t_{rifùt}} \right)$ rappresenta il valore di produzione specifica media dell’inquinante i-esimo, valutata come riportato nella relazione (6.6, Paragrafo 6.1.3), relativamente alla Linea 3 per le ore di avvenuto dosaggio di Depurcal®MG (per il Periodo 1, in corrispondenza dei tre step di dosaggio del reagente Depurcal®MG in Linea 3, pari a 60 kg/h, 90 kg/h e 120 kg/h).

A corredo delle valutazioni sopra descritte, a partire dai dati di HCl e SO$_2$ a disposizione per il Periodo 0 e per il Periodo 1, è stato inoltre possibile calcolare il tasso di utilizzo del reagente Depurcal®MG. Una volta iniettato in camera di combustione, per temperature superiori agli 800°C, a seguito di un pressoché istantaneo (pochi millisecondi) processo di attivazione termica, da 1 kg di sorbente dolomitico per liberazione dell’acqua legata chimicamente si generano 0,46 kg CaO/kg Depurcal®MG e 0,32 kg MgO/kg Depurcal®MG che sono dunque disponibili per le reazioni di pre-neutralizzazione dei gas acidi (Biganzoli et al., 2015).

Al fine di neutralizzare 1 kg HCl sono necessari 0,848 kg Depurcal®MG, mentre per neutralizzare 1 kg SO$_2$ sono necessari 0,965 kg Depurcal®MG (Biganzoli et al. 2015). Detti rapporti stechiometrici sono stati ottenuti sulla base delle seguenti reazioni:

$$CaO + 2HCl \rightarrow CaCl_2 + H_2O \quad (6.11)$$
$$MgO + 2HCl \rightarrow MgCl_2 + H_2O$$
$$CaO + SO_2 + \frac{1}{2}O_2 \rightarrow CaSO_4$$
$$MgO + SO_2 + \frac{1}{2}O_2 \rightarrow MgSO_4 \quad (6.12)$$

Sulla base di queste considerazioni, è possibile valutare il dosaggio stechiometrico di Depurcal®MG ($D_{Depurcal®MG,z} \left(\frac{kg_{Depurcal®MG}}{t_{rifùt}} \right)$) grazie alla seguente relazione:
\[
D_{Depurcal^{\text{\tiny MG},S}} = \text{Dosaggio stechiometrico}_{Depurcal^{\text{\tiny MG}}} \frac{kg_{Depurcal^{\text{\tiny MG}}}}{t_{rifìuti}}
\]
\[
= \left(PS_{HCl} \frac{kg_{HCl}}{t_{rifìuti}} \cdot 0,848 + PS_{SO_2} \frac{kg_{SO_2}}{t_{rifìuti}} \cdot 0,965 \right)
\]

dove, nel caso dello Scenario A e dello Scenario B:

\[
PS_{HCl} \frac{kg_{HCl}}{t_{rifìuti}} \text{ e } PS_{SO_2} \frac{kg_{SO_2}}{t_{rifìuti}} \]

rappresentano rispettivamente i valori orari di produzione specifica di HCl e SO\textsubscript{2} in caldaia per la Linea 2 nel Periodo 1. Vengono utilizzati i valori relativi alla Linea 2 in modo da poter valutare un quantitativo stechiometrico su dati che non risentano del dosaggio di Depurcal\tiny MG ma comunque riferiti al Periodo 1.

\[
0,848 \left[\frac{kg_{Depurcal^{\text{\tiny MG}}}}{kg_{HCl}} \right] \text{ e } 0,965 \left[\frac{kg_{Depurcal^{\text{\tiny MG}}}}{kg_{SO_2}} \right]
\]

rappresentano rispettivamente i quantitativi di Depurcal\tiny MG necessari alla neutralizzazione di 1 kg\textsubscript{HCl} e di 1 kg\textsubscript{SO\textsubscript{2}}.

Il quantitativo di Depurcal\tiny MG che reagisce effettivamente (\(Depurcal^{\text{\tiny MG}}_{R} \frac{kg_{Depurcal^{\text{\tiny MG}}}}{t_{rifìuti}}\)) si calcola grazie alla seguente relazione:

\[
Depurcal^{\text{\tiny MG}}_{R} = \text{Depurcal^{\text{\tiny MG}}}_{Reagito} \frac{kg_{Depurcal^{\text{\tiny MG}}}}{t_{rifìuti}}
\]
\[
= \left(\Delta PS_{HCl} \frac{kg_{HCl}}{t_{rifìuti}} \cdot 0,848 + \Delta PS_{SO_2} \frac{kg_{SO_2}}{t_{rifìuti}} \cdot 0,965 \right)
\]

dove:

\[
\Delta PS_{HCl} \frac{kg_{HCl}}{t_{rifìuti}} \text{ e } \Delta PS_{SO_2} \frac{kg_{SO_2}}{t_{rifìuti}}
\]

rappresentano rispettivamente la differenza tra i valori orari di produzione specifica di HCl e di SO\textsubscript{2}. Questi parametri sono stati ottenuti come riportato di seguito:

- Per lo Scenario A, considerando la differenza tra la media dei valori della Linea 3 per il Periodo 0 e la media dei valori della Linea 3 per il Periodo 1 (separatamente per i tre step di dosaggio di Depurcal\tiny MG);
- Per lo Scenario B, considerando la differenza tra la media dei valori della Linea 2 per il Periodo 1 (separatamente per i tre step di dosaggio di Depurcal\tiny MG) e la media dei valori della Linea 3 per il Periodo 1 (separatamente per i tre step di dosaggio di Depurcal\tiny MG).

Dal rapporto tra il valore di \(Depurcal^{\text{\tiny MG}}_{R} \frac{kg_{Depurcal^{\text{\tiny MG}}}}{t_{rifìuti}}\) ed il dosaggio stechiometrico

\[D_{Depurcal^{\text{\tiny MG},S}} \frac{kg_{Depurcal^{\text{\tiny MG}}}}{t_{rifìuti}}\]

si ricava la percentuale di utilizzo del reagente (\(Depurcal^{\text{\tiny MG}}_{\%} \%\)) per i differenti scenari oggetto dell’analisi:
\[Depurcal^® MG_{\%} = \text{Utilizzo Depurcal}^® MG_{\%} = \left(\frac{k g_{Depurcal^® MG} \left[\frac{t_{rifiuti}}{t_{rifiuti}} \right]}{\left[D_{Depurcal^® MG, s} \right]} \right) \] (6.15)

6.1.4 Pulizia dei dati

La pulizia dei dati riveste un ruolo fondamentale per ottenere dei risultati che non siano affetti dalla presenza di valori anomali o statisticamente non significativi.

In primo luogo è stato analizzato il set di dati a disposizione (Periodo 0 e Periodo 1), e sono state identificate tutte le letture negative dei parametri che sono state corrette e poste pari a zero e, come riportato in seguito nel presente paragrafo, successivamente eliminate.

Si è proceduto quindi all’analisi del funzionamento dell’impianto osservando i valori relativi alla portata di rifiuti alimentati, sia per il Periodo 0 che per il Periodo 1. Nei casi in cui l’alimentazione dei rifiuti abbia mostrato valori inferiori ad una soglia selezionata (pari a 0,5 t/h), si è proceduto ad eliminare tutti i dati registrati per quella specifica ora dal set di dati. Situazioni di questo tipo sono dovute ad eventuali spegnimenti della specifica linea per necessità di manutenzione, ad interruzioni per brevi periodi dell’alimentazione (in risposta ad esempio a fenomeni improvvisi di picchi di inquinante) oppure a quantitativi di rifiuto immessi anomali rispetto ai valori medi tipici (generalmente tra le 10 t/h e le 25 t/h). Per il Periodo 1 nella Linea 3 sono stati quindi selezionati i dati orari in modo da mantenere solo i valori in corrispondenza delle ore di effettivo dosaggio del sorbente Depurcal® MG. In questo modo è possibile isolare una condizione di regime in presenza di Depurcal® MG adeguata per le analisi del presente elaborato.

A questo punto, al fine di ottenere dei risultati che possano ritenersi significativi, i dati sono stati depurati dai valori ritenuti statisticamente anomali. Per le analisi statistiche svolte nel presente elaborato è stato utilizzato il software statistico R. Disponibile per differenti sistemi operativi, il software R è sviluppato per l’analisi statistica e grafica dei dati e presenta funzionalità ampliabili tramite installazione secondo necessità di librerie o pacchetti specifici (packages). Essendo uno strumento open-source, R infatti accoglie contributi di migliaia di differenti utenti i quali sviluppano continuamente metodi statistici e computazionali adatti all’analisi dei dati, mettendoli poi a disposizione della comunità attraverso opportuni pacchetti. L’ambiente statistico R è quindi a tutti gli effetti un linguaggio di programmazione di alto livello, adatto al calcolo scientifico e alla statistica esplorativa, inferenziale e computazionale. I punti di forza del software R sono la sua semplicità di utilizzo, la versatilità, e la vasta rete di sviluppatori ed utilizzatori, che lo rende uno dei principali strumenti per la statistica applicata. Al fine di ottenere un’intuitiva rappresentazione del campione di dati a disposizione, sono stati generati una serie di grafici box-plot (noti anche come “diagramma a scatola e baffi” o “box and whiskers plot”). Questo tipo di grafici è ottenuto a partire da alcuni parametri di sintesi che descrivono le caratteristiche salienti della distribuzione analizzata. Questi parametri definiscono anche la scatola ed i baffi del grafico stesso, in particolare:
Il primo ed il terzo quartile (rispettivamente Q_1 e Q_3), che sono valutati e definiscono i lati inferiore e superiore della scatola. L’interno della scatola raccoglie dunque il 50% delle osservazioni;
La mediana, che viene identificata e rappresentata all’interno della scatola tramite una linea;
La media, che viene identificata e rappresentata all’interno della scatola con il simbolo “x”;
Il minimo ed il massimo del campione esaminato, che determinano i baffi tracciati a partire dalla scatola stessa. L’intervallo interquartilico (“interquartile range” o IQR) è calcolato tramite la differenza tra Q_3 e Q_1. Generalmente, il punto inferiore si estende fino ad un punto pari a Q_1–1,5·IQR, mentre quello superiore si estende fino ad un punto pari a Q_3+1,5·IQR.

Il box-plot è uno strumento che consente di comprendere la forma e la simmetria/asimmetria dei dati a disposizione: in particolare, ad esempio, al crescere di IQR si ottiene una rappresentazione con una scatola più allungata che indica una maggiore dispersione dei dati. Inoltre, i baffi consentono di mettere in evidenza la presenza di eventuali “outliers”, anche detti valori estremi. Questi valori vanno considerati con attenzione dal momento che rappresentano misurazioni non statisticamente significative, in grado di alterare anche sensibilmente le considerazioni che è possibile trarre analizzando il set di dati a disposizione. Per questa ragione, i dati identificati come outliers vanno eliminati dal campione. Tuttavia, al fine di non perdere osservazioni potenzialmente utili ai fini delle analisi del presente elaborato (come ad esempio picchi di inquinanti) si è optato per l’eliminazione dei valori anomali situati a più di 3 differenze interquartiliche sopra Q_3 o sotto Q_1. Selezionata quindi questa metodologia operativa, si è proceduto, tramite il software R, ad eliminare i valori anomali ed i valori nulli dei principali parametri oggetto dell’analisi ambientale: concentrazione di HCl in caldaia (C_{HCl,caldaia} [mg\text{Nm}^{-3}]); concentrazione di SO_2 in caldaia (C_{SO_2,caldaia} [mg\text{Nm}^{-3}]); concentrazione di Hg_{TOT} in caldaia (C_{Hg_{TOT,caldaia}} [mg\text{Nm}^{-3}]); dosaggio di NaHCO_3 (M_{NaHCO_3} [kg/h]); dosaggio di carbone attivo (M_{CA} [kg/h]). L’individuazione di un valore anomalo o nullo per uno dei parametri esaminati è stato considerato come sufficiente ad escludere l’intera riga di rilevazioni orarie, poiché si è considerato ragionevole che qualora un dato orario presenti una anomalia anche le altre variabili possono essere altrettanto affette da tale anomalia; inoltre, nell’impianto è presente un unico strumento di misura per la raccolta dei dati dei principali parametri oggetto dell’analisi ambientale, come riportato nel documento di Autorizzazione Integrata Ambientale n.309-557341 del 21/12/2016 del termovalorizzatore di Torino (TRM S.p.A., 2017a). Al fine di operare una pulizia che fosse coerente con le fasi di esercizio dell’impianto relativamente alla prova di dosaggio del Depurcal®MG si è proceduto alla pulizia suddividendoli in periodi ritenuti omogenei in termini di funzionamento:

- Tutti i dati relativi alle tre linee per il Periodo 0 sono stati considerati assieme e depurati dai valori anomali;
- Tutti i dati relativi alle tre linee per il Periodo 1 sono stati suddivisi in relazione agli step di dosaggio del reagente Depurcal®MG e quindi depurati separatamente per ciascuno dei tre step (60 kg/h, 90 kg/h e 120 kg/h).
Come precedentemente affermato, si ricorda in questo paragrafo che anche per i dati di relativi al dosaggio di Depurcal® MG, è stata effettuata una pulizia considerando ed eliminando tutte le situazioni di dosaggio nullo o inferiore ad una soglia fissata pari ai 3kg/h. Infine, per quanto concerne i valori di produzione specifica e di dosaggio specifico, questi sono stati calcolati direttamente sui dati ripuliti e dunque non sono stati oggetto a loro volta di pulizia.

6.2 Valutazione delle prestazioni ambientali – Risultati e discussione

6.2.1 Analisi dello Scenario A

Scopo principale delle analisi riportate in questo paragrafo è quello di cogliere nel dettaglio l’andamento della Linea 3 per il Periodo 0 ed il Periodo 1, al fine di evidenziare eventuali differenze riconducibili al dosaggio del reagente Depurcal® MG. In primo luogo, sono stati generati dei grafici di confronto dei parametri principali in termini orari e di medie giornaliere, per ciascun mese dei due periodi per apprezzare l’andamento delle grandezze da un punto di vista qualitativo. In Figura 6.7 si riporta l’andamento di tali grandezze per la Linea 3 – Periodo 1.

Una procedura necessaria a confermare statisticamente l’efficacia del prodotto dolomitico è lo svolgimento di un test di significatività sulla differenza tra medie (in particolare test per campioni indipendenti numerosi con varianze incognite).

Un test statistico coinvolge una ipotesi nulla (H\textsubscript{0}) che si vuole rifiutare, ed una ipotesi alternativa (H\textsubscript{1}) che si vuole accettare. Il test di significatività ha quindi lo scopo di suggerire in termini di probabilità una scelta tra l’ipotesi H\textsubscript{0} e l’ipotesi H\textsubscript{1}, confrontando il risultato del test statistico con una specifica soglia critica tabulata. Il “livello di significatività” (\(\alpha\)) di un test statistico è la probabilità che l’ipotesi nulla possa essere respinta quando è invece vera, se ripetessimo tante volte il test su campioni diversi. La probabilità di compiere questo errore (detto “errore di primo tipo”) è quindi data dal livello di significatività \(\alpha\) prescelto. Alla fine del test, se le evidenze saranno a favore dell’ipotesi alternativa (H\textsubscript{1}), si potrà accettare tale ipotesi e sarà noto che la probabilità di aver compiuto un errore del primo tipo sarebbe molto bassa e pari appunto ad \(\alpha\).

D’altra parte, l’errore che si compie accettando un’ipotesi nulla falsa si chiama “errore di secondo tipo”. È possibile ridurre l’errore di secondo tipo innalzando il livello di significatività \(\alpha\) (anche se questa scelta espone a maggiori rischi di incorrere in errori del primo tipo). Il valore \(\alpha\) può quindi essere selezionato a piacere, ma generalmente un valore tipico è pari al 5%.

Una ipotesi nulla può essere accettata o rifiutata anche in base ad un valore di probabilità detto “p-value”, che è quindi variabile tra 0 e 1. Questo valore viene calcolato sulla base dello specifico test statistico in esame e viene confrontato con \(\alpha\). In particolare, un valore basso del p-value inferiore al valore di \(\alpha\) indica forte evidenza a favore dell’ipotesi nulla e quindi a favore di quella alternativa. Lo scopo dell’applicazione del test è quindi quella di concludere il rifiuto dell’ipotesi H\textsubscript{0} a favore dell’ipotesi H\textsubscript{1} sulla base di un valore di p-value basso.
Il test condotto nel caso del presente paragrafo, ha come scopo quello di accettare l’ipotesi alternativa \(H_1 \) secondo la quale la media di ciascun parametro esaminato per la Linea 3 (nel Periodo 0) sia maggiore rispetto alla media per la Linea 3 (nel Periodo 1) relativamente ai tre step di dosaggio del reagente.

![Figura 6.7 – Andamento dei principali parametri per lo Scenario A, Linea 3 – Periodo 1, relativamente ai tre step di dosaggio di Depurcal®MG.](image)

A questo punto si è proceduto con il calcolo dell’efficienza di abbattimento degli inquinanti \(\eta_i \) [%], mediante la relazione (6.9) – Paragrafo 6.1.3. Sono dunque riportati in forma tabellare i risultati espressi in termini di efficienza depurativa con i relativi valori del p-value, per i differenti periodi attraverso i quali si è articolata
l’analisi dello Scenario A. Come si può apprezzare dalla Tabella 6.6, al crescere del quantitativo di Depurcal®MG dosato, aumentano anche sensibilmente le efficienze di abbattimento degli inquinanti gassosi. La capacità di abbattimento dell’anidride solforosa risulta essere generalmente maggiore rispetto a quella dell’acido cloridrico, comportamento in linea con l’affinità del prodotto riguardo alla neutralizzazione dei vari composti acidi (Tabella 6.2 – Paragrafo 6.1.1).

Tabella 6.6 – Risultati delle prestazioni ambientali: efficienza di abbattimento in caldaia – Scenario A.

<table>
<thead>
<tr>
<th>Scenario A</th>
<th>HCl [kg/t Rifiuti]</th>
<th>SO₂ [kg/t Rifiuti]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3 - Periodo 0 vs L3 - Periodo 1 (Intero periodo)</td>
<td>η [%]</td>
<td>p-value</td>
</tr>
<tr>
<td>34,75</td>
<td>6,5x10⁻²⁹⁹</td>
<td>72,68</td>
</tr>
<tr>
<td>L3 - Periodo 0 vs L3 - Periodo 1 (Step 1: Depurcal®MG 60 kg/h)</td>
<td>17,38</td>
<td>3,49x10⁻¹⁶</td>
</tr>
<tr>
<td>L3 - Periodo 0 vs L3 - Periodo 1 (Step 2: Depurcal®MG 90 kg/h)</td>
<td>28,71</td>
<td>1,191x10⁻⁷⁵</td>
</tr>
<tr>
<td>L3 - Periodo 0 vs L3 - Periodo 1 (Step 3: Depurcal®MG 120 kg/h)</td>
<td>42,00</td>
<td>1,47x10⁻²⁹³</td>
</tr>
</tbody>
</table>

Per i valori di concentrazione e di produzione specifica di HCl e SO₂ in uscita caldaia relativi allo Scenario A, si rimanda alla Tabella A6.1 e Tabella A6.2 riportate in Appendice A6.

I risultati riportati si dimostrano inoltre comparabili con quelli ottenuti in precedenti studi riguardanti gli effetti del dosaggio del sorbente Depurcal®MG svolti su diversi impianti alla scala reale: Tornaghi (2012) per l’impianto di Valmadrera (LC), Racanella (2013) per il termovalorizzatore di Como e Cavalli (2014) per l’impianto di Dalmine (BG). Lo studio condotto da Biganzoli et al. (2015), riassumendo ed aggiornando i risultati ottenuti in diversi impianti italiani di termovalorizzazione circa il sorbente Depurcal®MG, riporta intervalli di abbattimento del 7-37% e del 34-95% rispettivamente per HCl e SO₂ (per step di dosaggio variabili tra i 50 kg/h ed i 150 kg/h). I valori ottenuti presso il termovalorizzatore di Torino e riportati in Tabella 6.6, si allineano dunque con questi intervalli originati da analisi effettuate su differenti impianti ed evidenziano come una massimizzazione della rimozione sia possibile a fronte di un maggiore dosaggio del reagente iniettato ad alta temperatura.

È importante notare che tutti i p-value risultano ampiamente inferiori alla soglia α pari a 0,05.

Al fine di ottenere una più rapida visualizzazione dell’andamento dei valori specifici e di concentrazione in risposta all’aumento del dosaggio di Depurcal®MG, si è proceduto a generare dei box-plot per i vari step di dosaggio analizzati, così da evidenziare visivamente l’efficienza di abbattimento (Figura 6.8 e Figura 6.9). Anche in questo caso l’effetto dell’incremento del sorbente dolomitico additivato manifesta effetti sensibili sulla pre-neutralizzazione delle componenti acide del flusso gassoso.
Figura 6.8 – Box-plot relativi alla variazione della concentrazione (in alto) e della produzione specifica (in basso) di HCl – Scenario A.
Figura 6.9 – Box-plot relativi alla variazione della concentrazione (in alto) e della produzione specifica (in basso) di SO2 – Scenario A.
Per quanto riguarda il tasso di utilizzazione del reagente Depurcal®MG (relazione (6.15) – Paragrafo 6.1.3), i risultati ottenuti sono sinteticamente riportati nella Tabella 6.7.

Tabella 6.7 – Risultati delle prestazioni ambientali: utilizzo del sorbente Depurcal®MG – Scenario A.

<table>
<thead>
<tr>
<th>Scenario A</th>
<th>Dosaggio effettivo Depurcal®MG [kg/t Rifiuti]</th>
<th>Dosaggio stechiom. Depurcal®MG $D_{Depurcal®MG,s}$ [kg/t Rifiuti]</th>
<th>Depurcal®MG reagito $D_{Depurcal®MG,R}$ [kg/t Rifiuti]</th>
<th>Utilizzo Depurcal®MG $%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3 - Periodo 0 vs L3 - Periodo 1 (Intero periodo)</td>
<td>4,82</td>
<td>3,85</td>
<td>1,77</td>
<td>45,97</td>
</tr>
<tr>
<td>L3 - Periodo 0 vs L3 - Periodo 1 (Step 1: Depurcal®MG 60 kg/h)</td>
<td>2,95</td>
<td>4,36</td>
<td>0,90</td>
<td>23,38</td>
</tr>
<tr>
<td>L3 - Periodo 0 vs L3 - Periodo 1 (Step 2: Depurcal®MG 90 kg/h)</td>
<td>3,87</td>
<td>4,19</td>
<td>1,47</td>
<td>38,18</td>
</tr>
<tr>
<td>L3 - Periodo 0 vs L3 - Periodo 1 (Step 3: Depurcal®MG 120 kg/h)</td>
<td>5,68</td>
<td>3,69</td>
<td>2,15</td>
<td>55,84</td>
</tr>
</tbody>
</table>

Lo studio condotto da Biganzoli et al. (2015) riporta un intervallo della percentuale di utilizzo di Depurcal®MG inferiore al 100% (compreso tra 11% e 42%), il quale risulta essere in linea con i risultati ottenuti in Tabella 6.7. Questo si deve al fatto che il sorbente reagisce tipicamente durante la fase di volo e quindi opera con bassi tempi di contatto dettati dai tempi di permanenza dei fumi nella sezione forno-caldaia (tipicamente dell’ordine di 6-10 secondi). Dalla Tabella 6.7 è possibile notare come nel caso in esame si ottenga un valore superiore (56%) all’intervallo precedentemente riportato, durante lo step di dosaggio di Depurcal®MG pari a 120 kg/h. Va ad ogni modo precisato che non tutta la percentuale rimanente di sorbente è da considerarsi come eccesso non reagito, in quanto una parte (non quantificabile dal momento che non sono presenti per il caso in esame delle misure del valore di HF in caldaia) reagisce con l’HF ed in misura minore con altre componenti del flusso gassoso. Nonostante il valore di Depurcal®MG effettivamente dosato presso l’impianto sia risultato generalmente maggiore rispetto al valore stechiometrico, solamente una parte del sorbente reagisce con i gas acidi. Va inoltre ricordato come la presenza della componente magnesiaca nel sorbente Depurcal®MG, pur non reagendo direttamente con i gas acidi presenti nel flusso gassoso da trattare, comporta benefici in termini di tasso di utilizzo della componente calcica del reagente. La componente magnesiaca è infatti in grado di agire come struttura di supporto e favorire la diffusione degli inquinanti all’interno della particella incrementando il tasso di utilizzo del CaO, seppure sia da tenere presente l’esistenza di un valore limite intrinseco circa il tasso di utilizzo del sorbente dolomitico (Partanen et al., 2005a, Partanen et al., 2005b, Shemwell et al. 2001, Muzzio e Offen, 1987).
6.2.2 Analisi dello Scenario B

Scopo principale delle analisi riportate in questo paragrafo è quello di consentire un confronto tra la Linea 3 ed una linea selezionata come riferimento (Linea 2) relativamente al Periodo 1, al fine di apprezzare gli effetti del sorbente Depurcal®MG per lo stesso periodo di funzionamento dell’impianto. Anzitutto sono stati generati dei grafici di confronto tra le due linee per i parametri principali dell’analisi ambientale in termini di dati orari, medie giornaliere e valori specifici. Questi grafici sono stati realizzati in maniera isolata relativamente ai tre step dosaggio di Depurcal®MG, in modo da consentire una visione d’insieme e di dettaglio delle fasi di conduzione della prova (Figura 6.10, e Figura 6.11).

In generale risulta evidente l’effetto del sorbente circa l’andamento della concentrazione di HCl e SO\(_2\) nei fumi grezzi della Linea 3 che viene a ridursi rispetto a quella della Linea 2: tale differenza risulta particolarmente marcata per l’anidride solforosa. Si può prestare particolare attenzione inoltre all’abbattimento degli inquinanti di interesse in corrispondenza di eventuali picchi di concentrazione (evidenziati in maniera qualitativa in Figura 6.10 e in Figura 6.11), tale effetto è particolarmente marcato nel caso dello step di dosaggio di Depurcal®MG pari a 120 kg/h. Analogamente allo Scenario A, si è proceduto, mediante la relazione (6.9) – Paragrafo 6.1.3, con il calcolo dell’efficienza di abbattimento (\(\eta\) [%]), ottenendo i risultati riportati in Tabella 6.8.

Il test condotto nel caso della presente valutazione ha come scopo quello di accettare l’ipotesi alternativa (H\(_1\)) secondo cui la media di ciascun parametro esaminato per la Linea 2 (Periodo 0) in corrispondenza dei tre step di dosaggio del reagente Depurcal®MG, sia maggiore rispetto alla media per la Linea 3 (Periodo 1) relativamente ai tre step di dosaggio del reagente Depurcal®MG.

Anche in questo caso, come per lo Scenario A, i risultati riportati si dimostrano comparabili con quelli ottenuti da precedenti studi (Tornaghi, 2012; Racanella, 2013; Cavalli, 2014) e ricadenti all’interno degli intervalli (7-37% per l’HCl e del 34-95% per l’SO\(_2\)) riportati nello studio condotto da Biganzoli et al. (2015).

Tutti i p-value risultano inferiori alla soglia \(\alpha\) pari a 0,05.

Tabella 6.8 – Risultati delle prestazioni ambientali: efficienza di abbattimento in caldaia – Scenario B.

<table>
<thead>
<tr>
<th>Scenario B</th>
<th>HCl [kg/t(_{\text{riflett}})]</th>
<th>p-value</th>
<th>SO(2) [kg/t({\text{riflett}})]</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2 - Periodo 1 vs L3 - Periodo 1 (Intero periodo)</td>
<td>(\eta) [%]</td>
<td>19,91</td>
<td>(\eta) [%]</td>
<td>63,51</td>
</tr>
<tr>
<td>L2 - Periodo 1 vs L3 - Periodo 1 (Step 1: Depurcal’MG 60 kg/h)</td>
<td>9,99</td>
<td>1,21\times10^{-3}</td>
<td>35,70</td>
<td>3,81\times10^{-21}</td>
</tr>
<tr>
<td>L2 - Periodo 1 vs L3 - Periodo 1 (Step 2: Depurcal’MG 90 kg/h)</td>
<td>18,07</td>
<td>1,50\times10^{-15}</td>
<td>64,85</td>
<td>6,62\times10^{-80}</td>
</tr>
<tr>
<td>L2 - Periodo 1 vs L3 - Periodo 1 (Step 3: Depurcal’MG 120 kg/h)</td>
<td>26,34</td>
<td>3,06\times10^{-83}</td>
<td>83,73</td>
<td>1,16\times10^{-305}</td>
</tr>
</tbody>
</table>

Per i valori di concentrazione e di produzione specifica di HCl e SO\(_2\) in uscita caldaia relativi allo Scenario B, si rimanda alla Tabella A6.3 e alla Tabella A6.4 riportate in Appendice A6. Al fine di ottenere una più rapida visualizzazione si è proceduto a generare dei box-plot per le varie condizioni analizzate, così da evidenziare visivamente l’efficienza di abbattimento nei confronti delle componenti acide del flusso gassoso (Figura 6.12 e Figura 6.13).
Figura 6.10 – Andamenti di confronto tra la Linea 2 e la Linea 3 per l’acido cloridrico, relativamente ai tre step di dosaggio di Depurcal® MG (Scenario B – Periodo 1).

Abbattimenti di particolare rilevanza in presenza di picchi di concentrazione.
Figura 6.11 – Andamenti di confronto tra la Linea 2 e la Linea 3 per l’anidride solforosa, relativamente ai tre step di dosaggio di Depurcal® MG (Scenario B – Periodo 1).

ABB Attimenti di particolare rilevanza in presenza di picchi di concentrazione.
Figura 6.12 – Box-plot relativi alla variazione della concentrazione (in alto) e della produzione specifica (in basso) di HCl – Scenario B.
Figura 6.13 – Box-plot relativi alla variazione della concentrazione (in alto) e della produzione specifica (in basso) di SO2 – Scenario B.
Anche in questo caso l’effetto dell’incremento del sorbente dolomitico additivato si configura come decisivo nell’ottenere abbattimenti sensibili per i due gas acidi investigati, e conferma una spiccat efficacia nei confronti dell’anidride solforosa.

Per quanto riguarda il tasso di utilizzo del reagente Depurcal®MG (relazione (6.15) – Paragrafo 6.1.3), i risultati ottenuti sono sinteticamente riportati nella Tabella 6.9.

Tabella 6.9 – Risultati delle prestazioni ambientali: utilizzo del sorbente Depurcal®MG – Scenario B.

<table>
<thead>
<tr>
<th>Scenario B</th>
<th>Dosaggio effettivo Depurcal®MG $D_{Depurcal®MG}$ [kg/tRifiuti]</th>
<th>Dosaggio stecchiom. Depurcal®MG $D_{Depurcal®MG,s}$ [kg/tRifiuti]</th>
<th>Depurcal®MG reagito $D_{Depurcal®MG,R}$ [kg/tRifiuti]</th>
<th>Utilizzo Depurcal®MG $D_{Depurcal®MG,%}$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2 - Periodo 1 vs L3 - Periodo 1 (Intero periodo)</td>
<td>4,82</td>
<td>3,85</td>
<td>0,97</td>
<td>25,19</td>
</tr>
<tr>
<td>L2 - Periodo 1 vs L3 - Periodo 1 (Step 1: Depurcal®MG 60 kg/h)</td>
<td>2,95</td>
<td>4,36</td>
<td>0,52</td>
<td>11,93</td>
</tr>
<tr>
<td>L2 - Periodo 1 vs L3 - Periodo 1 (Step 2: Depurcal®MG 90 kg/h)</td>
<td>3,87</td>
<td>4,19</td>
<td>0,94</td>
<td>22,43</td>
</tr>
<tr>
<td>L2 - Periodo 1 vs L3 - Periodo 1 (Step 3: Depurcal®MG 120 kg/h)</td>
<td>5,68</td>
<td>3,69</td>
<td>1,11</td>
<td>30,08</td>
</tr>
</tbody>
</table>

I valori ottenuti sono in accordo con quelli ottenuti in precedenti studi (Biganzoli et al., 2015) sul Depurcal®MG, fatta eccezione per quello relativo allo step di dosaggio di 60 kg/h (certamente di minore rappresentatività rispetto agli step di 90 kg/h e soprattutto di 120 kg/h). In generale i risultati scaturiti per lo Scenario B mostrano valori inferiori rispetto a quelli conseguiti per lo Scenario A, ma anche in questo caso emerge l’incremento nella percentuale di utilizzo del sorbente al crescere della portata di dosaggio, confermando il beneficio in termini di prestazioni ambientali ottenibile massimizzando la portata del sorbente dolomitico.
6.2.3 Analisi dello Scenario C

Scopo principale delle analisi condotte in questo paragrafo è quello di cogliere nel dettaglio l’andamento della Linea 3, al fine di evidenziare eventuali differenze dettate dalla presenza o assenza di dosaggio del reagente Depurcal®MG.

Come precedentemente affermato, questo tipo di analisi garantisce di confrontare direttamente le variazioni dei parametri sulla stessa linea dove è stato effettuato il dosaggio, slegandosi da eventuali problematiche legate al confronto con periodi o linee differenti.

Il calcolo della variazione V_i [%] (relazione (6.10) – Paragrafo 6.1.3) consente di valutare percentualmente la differenza tra i dati registrati durante il mancato dosaggio di Depurcal®MG ed i dati registrati in presenza del sorbente dolomitico. I risultati sono riassunti in Tabella 6.10. Il test condotto nel caso del presente capitolo ha come scopo quello di accettare l’ipotesi alternativa (H_1), secondo la quale la media di ciascun parametro esaminato per la Linea 3 (Periodo 1) in presenza di Depurcal®MG, sia inferiore rispetto alla media di ciascun parametro esaminato per la Linea 3 (Periodo 1) in assenza di Depurcal®MG.

Tabella 6.10 – Risultati delle prestazioni ambientali: variazione percentuale dei gas acidi in caldaia – Scenario C.

<table>
<thead>
<tr>
<th>Scenario C</th>
<th>HCl [kg/tRifiuti]</th>
<th>SO₂ [kg/tRifiuti]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3 No Depurcal®MG - Periodo 1 vs L3 Sì Depurcal®MG - Periodo 1 (Intero Periodo 1)</td>
<td>-22,88</td>
<td>6,21x10⁶⁵</td>
</tr>
<tr>
<td>L3 No Depurcal®MG - Periodo 1 vs L3 Sì Depurcal®MG - Periodo 1 (Step 1: Depurcal®MG 60 kg/h)</td>
<td>-15,07</td>
<td>8,86x10⁻³</td>
</tr>
<tr>
<td>L3 No Depurcal®MG - Periodo 1 vs L3 Sì Depurcal®MG - Periodo 1 (Step 2: Depurcal®MG 90 kg/h)</td>
<td>-22,63</td>
<td>9,38x10⁻¹⁸</td>
</tr>
<tr>
<td>L3 No Depurcal®MG - Periodo 1 vs L3 Sì Depurcal®MG - Periodo 1 (Step 3: Depurcal®MG 120 kg/h)</td>
<td>-29,29</td>
<td>1,91x10⁷⁵</td>
</tr>
</tbody>
</table>

Al fine di ottenere una più rapida visualizzazione si è proceduto a generare dei box-plot per le diverse condizioni esaminate, così da evidenziare visivamente la variazione percentuale delle concentrazioni nei casi di assenza o presenza del sorbente Depurcal®MG, relativamente ai tre step di dosaggio (Figura 6.14 e Figura 6.15).
Figura 6.14 – Andamenti di confronto tra la Linea 3 (con dosaggio di Depurcal®MG) e la Linea 3 (senza dosaggio di Depurcal®MG) per l’acido cloridrico, relativamente ai tre step di dosaggio di Depurcal®MG (Scenario C – Periodo 1).
Figura 6.15 – Andamenti di confronto tra la Linea 3 (con dosaggio di Depurcal® MG) e la Linea 3 (senza dosaggio di Depurcal® MG) per l’anidride solforosa, relativamente ai tre step di dosaggio di Depurcal® MG (Scenario C – Periodo 1).
Dalla Tabella 6.10 emerge numericamente il deciso effetto del prodotto dolomitico sugli inquinanti acidi. Questo effetto risulta estremamente marcato ad esempio osservando l’anidride solforosa, con valori di concentrazione che raggiungono anche il 78% in meno nelle ore di presenza di dosaggio del sorbente dolomitico (Step 3: Depurcal®MG 120 kg/h) rispetto alle ore di mancato dosaggio. Maggiori dettagli circa i valori di concentrazione dell’HCl e dell’SO\textsubscript{2} per lo Scenario C sono riportati in Tabella A6.5 in Appendice A6.

Dalla Figura 6.14 e dalla Figura 6.15 emergono visivamente i risultati riportati nella Tabella 6.10, mostrando gli effetti sugli acidi al variare degli step di dosaggio del sorbente. Anche in questo caso, per l’anidride solforosa si possono facilmente notare i valori drasticamente inferiori di concentrazione durante le ore di dosaggio e la rapida risalita nelle ore di assenza di dosaggio del sorbente Depurcal®MG. Il repentino decremento dei valori di concentrazione tra quando è assente o è presente il Depurcal®MG, testimonia la capacità di rapida azione del reagente sulle componenti acide degli effluenti gassosi.
6.2.4 Analisi delle correlazioni tra i parametri

Uno strumento basilare per affrontare lo studio delle eventuali relazioni tra due variabili è costituito dallo “scatter-plot” (anche detto “grafico a dispersione”). Questo tipo di rappresentazione consente di visualizzare in uno spazio bidimensionale dei punti ottenuti dalle coppie di dati delle variabili in esame. Le proprietà statistiche della distribuzione (posizione, dispersione, correlazione, ecc.) si deducono dalle peculiarità della nuvola di punti stessa, come ad esempio la sua posizione, la sua coesione interna, il suo orientamento e la presenza di punti isolati.

Questo strumento grafico è dunque in grado di suggerire eventuali correlazioni (positive, negative o nulle) tra le variabili dipendente (generalmente posizionata sulle ascisse) ed indipendente (generalmente posizionata sulle ordinate).

In particolare, al fine di valutare in maniera affidabile la relazione lineare eventualmente presente tra le coppie di variabili si è selezionata l’intera serie di dati (depurata dai valori anomali, come riportato al Paragrafo 6.1.4) relativa al Periodo 1 per la Linea 3 dove è effettuato il dosaggio di Depurcal®MG. Ciascun punto presente nei grafici si origina da coppie di dati registrati alla medesima ora.

Nel caso di studio trattato nel presente elaborato, sono dunque stati prodotti una serie di scatter-plot per differenti coppie di variabili significative al fine di visualizzarne ed identificarne eventuali correlazioni in maniera simultanea (Figura 6.16). Attraverso questo tipo di rappresentazione è possibile quindi apprezzare quale relazione lineare sia presente tra le varie coppie di parametri, consentendo di osservarle contemporaneamente per righe o colonne. Ciascun singolo scatter-plot si origina dall’incrocio dei parametri riportati nella diagonale della matrice, mentre i valori delle ascisse ed ordinate sono riportati in maniera comune per tutte le righe e le colonne sulla parte esterna della figura.

È possibile immediatamente notare la forte dipendenza tra il prodotto Depurcal®MG e gli inquinanti acidi presenti nel flusso gassoso in caldaia (HCl e SO₂), a conferma dei risultati riportati nei tre scenari precedentemente analizzati (Scenario A, Scenario B e Scenario C). La riduzione della quantità di bicarbonato di sodio, additivato per il controllo dei gas acidi lungo la linea fumi prima dell’immissione in atmosfera, al crescere del dosaggio del sorbente dolomitico Depurcal®MG risulta essere presente anche se non particolarmente marcata (si fa riferimento in merito, alle analisi svolte nel Capitolo 7). Come verrà approfonditamente analizzato nel Paragrafo 6.2.5 è apprezzabile anche un effetto del prodotto Depurcal®MG sul mercurio totale registrato in caldaia. La correlazione tra bicarbonato di sodio e carbone attivo rispettivamente con i gas acidi in caldaia (HCl e SO₂) e con il mercurio totale in caldaia evidenzia il funzionamento della sezione di trattamento a secco dei fumi gassosi posta a valle dell’elettrofiltro e dell’economizzatore esterno, che (in prima approssimazione) prevede un incremento dei dosaggi all’aumentare delle concentrazioni registrate.

Per cogliere in maniera intuitiva i valori di correlazione originati dalla matrice di correlazione (Tabella 6.11), si fa riferimento alla Figura 6.17 nelle quale sono sfruttate differenti tonalità di colore a simboleggiare una correlazione positiva/negativa più o meno marcata.
Figura 6.16 – Rappresentazione degli scatter-plot tra i parametri di maggiore interesse, relativamente alla sola Linea 3 lungo tutto il Periodo 1.

Hg_{tot} in caldaia [µg/Nm3]; HCl in caldaia [mg/Nm3]; SO2 in caldaia [mg/Nm3]; Carbone attivo (CA) [kg/h]; Bicarbonato di sodio [kg/h]; Depurcal®MG [kg/h].

Sulla diagonale vengono riportate le frequenze assolute.
Figura 6.17 – Rappresentazione della matrice di correlazione dei parametri di maggiore interesse, relativamente alla sola Linea 3 lungo tutto il Periodo 1.
Hg_{TOT} in caldaia [µg/Nm^3]; HCl in caldaia [mg/Nm^3]; SO2 in caldaia [mg/Nm^3]; Carbone attivo (CA) [kg/h]; Bicarbonato di sodio [kg/h]; Depurcal® MG [kg/h].
Tabella 6.11 – Matrice di correlazione tra i principali parametri in caldaia di interesse, relativamente alla sola Linea 3 lungo tutto il Periodo 1.

<table>
<thead>
<tr>
<th></th>
<th>Hg_{TOT} caldaia [mg/Nm³]</th>
<th>HCl caldaia [mg/Nm³]</th>
<th>SO₂ caldaia [mg/Nm³]</th>
<th>CA [kg/h]</th>
<th>Bicarbonato di sodio [kg/h]</th>
<th>Rifiuti [kg/h]</th>
<th>Depurcal® MG [kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hg_{TOT} caldaia</td>
<td>1,000</td>
<td>0,188</td>
<td>0,194</td>
<td>0,233</td>
<td>0,096</td>
<td>-0,032</td>
<td>-0,193</td>
</tr>
<tr>
<td>HCl caldaia</td>
<td>0,188</td>
<td>1,000</td>
<td>0,787</td>
<td>-0,213</td>
<td>0,482</td>
<td>0,029</td>
<td>-0,711</td>
</tr>
<tr>
<td>SO₂ caldaia</td>
<td>0,194</td>
<td>0,787</td>
<td>1,000</td>
<td>-0,168</td>
<td>0,354</td>
<td>0,006</td>
<td>-0,849</td>
</tr>
<tr>
<td>CA [kg/h]</td>
<td>0,233</td>
<td>-0,213</td>
<td>-0,168</td>
<td>1,000</td>
<td>0,047</td>
<td>0,020</td>
<td>0,212</td>
</tr>
<tr>
<td>Bicarbonato [kg/h]</td>
<td>0,096</td>
<td>0,482</td>
<td>0,354</td>
<td>0,047</td>
<td>1,000</td>
<td>0,030</td>
<td>-0,297</td>
</tr>
<tr>
<td>Rifiuti [kg/h]</td>
<td>-0,032</td>
<td>0,029</td>
<td>0,006</td>
<td>0,020</td>
<td>0,030</td>
<td>1,000</td>
<td>0,005</td>
</tr>
<tr>
<td>Depurcal® MG [kg/h]</td>
<td>-0,193</td>
<td>-0,711</td>
<td>-0,849</td>
<td>0,212</td>
<td>-0,297</td>
<td>0,005</td>
<td>1,000</td>
</tr>
</tbody>
</table>

È stato condotto inoltre un test sulla correlazione per alcune coppie parametri, al fine di valutare la significatività della correlazione attraverso il software R.

Il test è stato applicato utilizzando il coefficiente di correlazione di Pearson (6.16):

\[\rho_{X,Y} = \frac{cov(X, Y)}{\sigma_X \cdot \sigma_Y} \]

(6.16)

dove:
- \(cov(X, Y) \) rappresenta la covarianza di due variabili, X e Y, prese in esame;
- \(\sigma_X \) e \(\sigma_Y \) rappresentano rispettivamente la deviazione standard della variabile X e della variabile Y.

In particolare l’ipotesi alternativa (H₁) che si vuole accettare attraverso l’applicazione del test sulla correlazione è che \(\rho_{X,Y} \neq 0 \) (correlazione non nulla tra la coppia di variabili X e Y testate); valori inferiori ad \(\alpha \) (pari al 5%) del p-value consentono di accettare H₁ e di rifiutare H₀.

Tabella 6.12 – Risultati del test di correlazione tra i gas acidi di interesse per la valutazione delle prestazioni ambientali ed il sorbente Depurcal®MG, relativamente alla sola Linea 3 lungo tutto il Periodo 1.

<table>
<thead>
<tr>
<th>Ipotesi alternativa testata</th>
<th>X = D_{Depurcal®MG} [kg/h]</th>
<th>Y = C_{HCl} [µg/Nm³]</th>
<th>X = D_{Depurcal®MG} [kg/h]</th>
<th>Y = C_{SO2} [µg/Nm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario - Sola L3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3 - Periodo 1 (Intero periodo)</td>
<td>2,02x10^{-10}</td>
<td>8,09x10^{-188}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlazione</td>
<td>-0,71</td>
<td>-0,85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 6.18 – Correlazione tra i gas acidi HCl ed SO2 ed il sorbente Depurcal®MG, relativamente alla sola Linea 3 lungo tutto il Periodo 1.
6.2.5 Effetti del Depurcal®MG sul mercurio e analisi dei dosaggi di carbone attivo

Effetti del reagente Depurcal®MG sul mercurio

Anzitutto va considerato che le analisi presentate in questo paragrafo sono state svolte relativamente al mercurio totale (Hg\text{TOT}), dal momento che la speciazione del mercurio (ripartizione tra mercurio elementare Hg\text{0}, mercurio ossidato Hg\text{2+} e mercurio particolato Hg\text{P}) non è rilevata presso l’impianto di Torino. Questo aspetto impedisce di approfondire eventuali fenomeni specificatamente legati alla speciazione del mercurio.

Si è proceduto in primo luogo ad investigare eventuali effetti del reagente Depurcal®MG sulla concentrazione di mercurio totale in uscita caldaia, operando secondo i seguenti criteri:

- In primo luogo è stato confrontato statisticamente il comportamento della Linea 2 e quello della Linea 3 per il Periodo 1 (periodo di dosaggio di Depurcal®MG);
- In secondo luogo si è valutato quale tipo di correlazione fosse presente tra il dosaggio del reagente ed il mercurio totale in caldaia, analizzando nello specifico la Linea 3 sempre per il Periodo 1.

Le analisi riportate in questo paragrafo sono state ottenute tramite l’utilizzo del software R.

I valori della portata di Depurcal®MG non si mantengono sempre alle condizioni di regime relative al set-point specifico (60 kg/h, 90 kg/h e 120 kg/h) durante i periodi di dosaggio, ma si verificano alcune fasi di transitorio in seguito ad accensioni/spegnimenti. Per gli scopi dell’analisi condotta in questo paragrafo tali fasi transitorie costituiscono un elemento di “disturbo” relativamente al fenomeno che si vuole osservare. Per questa ragione sono stati osservati i dati relativi ai tre step di dosaggio e sono stati mantenuti esclusivamente i seguenti valori di portata di Depurcal®MG:

- Per lo step di 60 kg/h sono stati mantenuti solamente i valori di dosaggio ≥ 50 kg/h e < 75 kg/h;
- Per lo step di 90 kg/h sono stati mantenuti solamente i valori di dosaggio ≥ 75 kg/h e < 100 kg/h;
- Per lo step di 120 kg/h sono stati mantenuti solamente i valori di dosaggio ≥ 100 kg/h e < 130 kg/h.

L’analisi di confronto tra la Linea 2 e la Linea 3 è stata effettuata solamente sui dati orari registrati in concomitanza di un effettivo dosaggio di Depurcal®MG considerando le tre soglie sopra riportate. I dati così selezionati sono stati oggetto di pulizia tramite il software R in maniera analoga a quanto riportato al Paragrafo 6.1.4.

La Linea 2 e la Linea 3 sono costruttivamente identiche e nella presente analisi sono prese in considerazione per il medesimo intervallo temporale. Al fine di valutare come possa essere influenzato il mercurio totale in uscita caldaia dal dosaggio del sorbente Depurcal®MG è possibile prendere in considerazione la camera di
combustione dal punto di immissione dei rifiuti, fino al punto in cui sono registrati i parametri relativi alla voce “caldaia” dopo l’economizzatore esterno. Assumendo efficace la miscelazione del rifiuto conferito in fossa per il medesimo periodo e dunque alimentato nelle due linee, la differenza sensibile tra le due linee stesse risulta essere proprio la presenza del dosaggio di Depurcal®MG (effettuato sulla Linea 3).

Per via di queste ragioni, e considerando che il punto effettivo di dosaggio del reagente Depurcal®MG è collocato direttamente in camera di combustione, eventuali effetti del sorbente dolomitico sul mercurio totale possono essere eventualmente riscontrati a livello del valore di mercurio registrato in caldaia.

Considerando il fatto che, in prima analisi, il valore di mercurio totale registrato in uscita caldaia è associato alla combustione di rifiuto contenente tale metallo, si è proceduto alla scrittura di una relazione, tramite il software R, che legasse (sia per la Linea 2 che per la Linea 3, relazioni (6.17), (6.18)) il valore di concentrazione di mercurio totale in uscita caldaia in condizioni corrette ($H_{G_{corretto, totale}}$ $[mg_Nm^{-3}]$) con il quantitativo di rifiuto immesso nella linea (Q_{R_1} $[t/h]$).

\[H_{L2} = \beta_{0,L2} + \beta_{1,L2} \cdot (R_{L2} - R_{0,L2}) + \varepsilon_{L2} \]
\[H_{L3} = \beta_{0,L3} + \beta_{1,L3} \cdot (R_{L3} - R_{0,L3}) + \varepsilon_{L3} \]

dove:

- H_{L2} e H_{L3} rappresentano i valori orari di concentrazione di mercurio totale in uscita caldaia in condizioni corrette, rispettivamente per la Linea 2 e per la Linea 3;
- $\beta_{0,L2}$ e $\beta_{0,L3}$ rappresentano i valori dell’intercetta del modello, rispettivamente per la Linea 2 e per la Linea 3;
- $\beta_{1,L2}$ e $\beta_{1,L3}$ rappresentano i valori del coefficiente angolare associati al valore $R_{Li} - R_{0, Li}$ presente nel modello, rispettivamente per la Linea 2 e per la Linea 3;
- R_{L2} e R_{L3} rappresentano i valori orari di rifiuto alimentato, rispettivamente per la Linea 2 e per la Linea 3;
- $R_{0,L2}$ e $R_{0,L3}$ rappresentano i valori medi dei dati di portata orari di rifiuto alimentato, rispettivamente per la Linea 2 e per la Linea 3;
- ε_{L2} e ε_{L3} rappresentano i valori dei residui del modello, rispettivamente per la Linea 2 e per la Linea 3.

A partire dalle precedenti relazioni ((6.17) e (6.18)) è possibile ottenere le seguenti:

\[H'_{L2} = H_{L2} - \beta_{1,L2} \cdot (R_{L2} - R_{0,L2}) = \beta_{0,L2} + \varepsilon_{L2} \]
\[H'_{L3} = H_{L3} - \beta_{1,L3} \cdot (R_{L3} - R_{0,L3}) = \beta_{0,L3} + \varepsilon_{L3} \]
È bene precisare alcuni aspetti relativi alle precedenti relazioni ((6.17), (6.18), (6.19) e (6.20)):

- I valori H'_{Li} raccolgono l’informazione contenuta nei residui dei modelli, e cioè tutta la variabilità del valore di concentrazione di mercurio totale in uscita caldaia che non è stato possibile spiegare attraverso il valore di rifiuto immesso per la specifica linea. Il valore dell’intercetta stimata dal modello $(\beta_{0,\text{Li}})$ è contenuto in H'_{Li} al fine di rendere il modello stesso ((6.19) e (6.20)) maggiormente interpretabile. In via del tutto generale è sconsigliabile rimuovere l’intercetta da un modello, siccome questo comporta “forzare” il passaggio della retta di regressione dall’origine degli assi, alterando la significatività dell’analisi (ad esempio variando il valore della statistica R^2). In generale i valori di H'_{Li} per le relazioni (6.19) e (6.20) rappresentano il valore di H_{Li} che si avrebbe nel momento in cui $R_{Li} = R_{0,\text{Li}}$.

- Eventuali variazioni del quantitativo di rifiuti alimentati sono in grado di incrementare o ridurre i valori di H_{Li}, introducendo un effetto indesiderato. Dal momento che lo scopo della presente analisi è quello di identificare un eventuale effetto del reagente Depurcal®MG sulle variazioni del mercurio totale in caldaia, è bene rimuovere tale effetto introducendo il termine $R_{0,\text{Li}}$. Inoltre, attraverso questo passaggio è possibile garantire un significato ai modelli maggiormente aderente al caso fisico in esame. L’intercetta può essere infatti definita come il valore atteso della risposta quando tutti i predittori sono posti pari a 0. Osservando le relazioni (6.19) e (6.20), introducendo il termine $R_{0,\text{Li}}$, l’intercetta $\beta_{0,\text{Li}}$ risulta essere pari al valore atteso di H'_{Li} quando $R_{Li} = R_{0,\text{Li}}$. Potrebbe infatti verificarsi il caso in cui, interpolando una nuvola di dati attraverso una regressione lineare, l’intercetta risulti essere negativa e dunque vada ad alterare anche il significato della risposta che si vuole osservare. Introducendo il termine $R_{0,\text{Li}}$ è possibile evitare questa problematica e consentire al modello, come affermato in precedenza, di aderire maggiormente al significato fisico del fenomeno (nel caso in esame, non sono ragionevoli valori negativi di mercurio totale in caldaia). Infine, traslare i valori di R_{Li} di una costante non comporta alcun effetto sulla pendenza stimata dal modello $(\beta_{1,\text{Li}})$.

- Il valore ϵ_{Li} costituisce infine il residuo del modello (anche definito come “rumore”) ed ha per costruzione un valore medio pari a 0. (Da questo si deduce quanto riportato al punto precedente circa l’intercetta del modello, infatti: $E[H'_{Li}] = E[\beta_{0,\text{Li}} + \epsilon_{Li}] = E[\beta_{0,\text{Li}}] = \beta_{0,\text{Li}}$ che si verifica, per le (6.19) e (6.20), quando $R_{Li} = R_{0,\text{Li}}$). Infine, il termine ϵ_{Li} racchiude tutta l’informazione residua della risposta che non è stato possibile spiegare attraverso il predittore selezionato.

A questo punto è stata confrontata l’informazione contenuta in H'_{L2} ed in H'_{L3}.

Sulla base delle assunzioni riportate ad inizio paragrafo (linee costruttivamente identiche ed analizzate nell’arco dello stesso periodo, il Periodo 1), una eventuale differenza tra questi due termini (H'_{L2} ed H'_{L3}) potrebbe essere imputata all’unica differenza sussistente tra le due linee, ovvero il dosaggio del reagente Depurcal®MG sulla Linea 3.

Per verificare tale ipotesi è stato condotto, tramite il software statistico R, un test di significatività sulla differenza tra le medie di H'_{L2} ed H'_{L3} (in particolare test per campioni indipendenti numerosi con varianze
incognite).

In particolare, nel caso del presente paragrafo, l’ipotesi alternativa è che la media del campione di dati contenuti in H_{L3}' (dati relativi alla Linea 3) sia diversa dalla media del campione di dati contenuti in H_{L2}' (dati relativi alla Linea 2).

I risultati del test condotto sono riportati nella seguente Tabella 6.13.

<table>
<thead>
<tr>
<th>Scenari</th>
<th>Ipotesi alternativa testata $E[H_{L3}'] \neq E[H_{L2}']$</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2 - Periodo 1 vs L3 - Periodo 1 (Intero periodo)</td>
<td></td>
<td>$1,77 \times 10^{-69}$</td>
</tr>
<tr>
<td>L2 - Periodo 1 vs L3 - Periodo 1 (Step 1: Depurcal® MG 60 kg/h)</td>
<td></td>
<td>$1,57 \times 10^{-35}$</td>
</tr>
<tr>
<td>L2 - Periodo 1 vs L3 - Periodo 1 (Step 2: Depurcal® MG 90 kg/h)</td>
<td></td>
<td>$1,58 \times 10^{-51}$</td>
</tr>
<tr>
<td>L2 - Periodo 1 vs L3 - Periodo 1 (Step 3: Depurcal® MG 120 kg/h)</td>
<td></td>
<td>$1,08 \times 10^{-8}$</td>
</tr>
</tbody>
</table>

Come si può osservare, il p-value del test risulta essere estremamente basso ed inferiore al livello di significatività α (pari al 5%). Si può dunque accettare l’ipotesi alternativa H_1. È possibile quindi affermare che il reagente Depurcal® MG presenta un effetto statisticamente significativo sul mercurio totale in uscita caldaia misurato in Linea 3.

Tuttavia questo tipo di approccio non consente da solo di identificare il tipo di relazione (positiva o negativa) che lega il mercurio totale in caldaia con il sorbente dolomitico. Al fine quindi di investigare più dettagliatamente gli effetti del reagente Depurcal® MG sul mercurio in caldaia sono state eseguite ulteriori analisi relativamente alla sola Linea 3:

- In primo luogo è stata valutata l’eventuale correlazione del mercurio totale in caldaia con il dosaggio di Depurcal® MG per il Periodo 1;
- In secondo luogo è stato condotto un test sulla correlazione tra due parametri al fine di valutare la significatività della correlazione della coppia $H_{TOT,caldaia}$ e Depurcal® MG (il test è stato applicato utilizzando il coefficiente di correlazione di Pearson);
- Infine, è stata valutata la risposta in termini di efficienza ($\eta [%]$) e di variazione percentuale ($V_i [%]$) come effettuato per lo Scenari A, lo Scenario B e lo Scenario C, al fine di apprezzare nel dettaglio l’effetto dei vati step di dosaggio del reagente Depurcal® MG.

La Figura 6.19 consente di apprezzare la correlazione presente tra il sorbente Depurcal® MG e la concentrazione di mercurio totale in caldaia.

![Image](image.png)

Figura 6.19 – Andamento del mercurio totale in caldaia ed il sorbente Depurcal®MG, relativamente alla sola Linea 3 lungo tutto il Periodo 1.

Tabella 6.14 – Risultati del test di correlazione tra il mercurio totale in caldaia ed il sorbente Depurcal®MG, relativamente alla sola Linea 3 – Periodo 1.

<table>
<thead>
<tr>
<th>Ipotesi alternativa testata</th>
<th>$\rho_{XY} \neq 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X = D_{\text{Depurcal®MG}}$ [kg/h]</td>
<td>$Y = C_{\text{HgTOT}}$ [µg/Nm3]</td>
</tr>
</tbody>
</table>

Scenario - Sola L3

<table>
<thead>
<tr>
<th>L3 - Periodo 1 (Intero periodo)</th>
<th>p-value</th>
<th>Correlazione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$4,49 \times 10^{-7}$</td>
<td>-0,19</td>
</tr>
</tbody>
</table>

Dai valori riportati è possibile concludere che il reagente Depurcal®MG consente un abbattimento del valore di mercurio totale in uscita caldaia. Questo risultato conferma alcune evidenze disponibili in letteratura circa un possibile effetto di abbattimento del mercurio ad opera di dosaggi di sorbenti per la rimozione di inquinanti acidi a secco. In particolare si riportano simili risultati ottenuti a scala di laboratorio da Jang et al. (2014) con calcare additivato ad alta temperatura (900°C) per combustione di carbone, ed i risultati ottenuti a scala di
laboratorio da Wang et al. (2008) con calce idrata impregnata e non, in questo caso additivata ad una più bassa temperatura (80°C) per un flusso gassoso simulato. Con lo scopo di apprezzare l’effetto dei vari step di dosaggio di Depurcal®MG sul valore di Hg\textsubscript{TOT} in caldaia, è stata valutata la capacità di abbattimento del mercurio espresso in termini di efficienza di rimozione di Hg\textsubscript{TOT}, al pari di quanto effettuato per lo Scenario A, lo Scenario B e lo Scenario C, tramite le relazioni (6.9) e (6.10) riportate al Paragrafo 6.1.3. È importante sottolineare che la Linea 3 ha manifestato sistematicamente valori di concentrazione di mercurio maggiori rispetto alle altre linee (Tabella 6.15), sia considerando la serie di dati del Periodo 0 precedente alla sperimentazione di dosaggio del sorbente dolomitico, sia considerando quelli del Periodo 1 relativo al periodo di test industriali a seguito del dosaggio del Depurcal®MG nella Linea 3. Le ragioni di questo tipo di problematica sono difficilmente interpretabili e difficilmente attribuibili con certezza ad una specifica causa. È tuttavia probabile che tali variazioni siano dovute al conferimento ricorrente di rifiuto in Linea 3 con elevata presenza di mercurio.

Tabella 6.15 – Statistiche descrittive del mercurio totale in caldaia.

<table>
<thead>
<tr>
<th></th>
<th>Hg\textsubscript{TOT} [µg/Nm3]</th>
<th>Hg\textsubscript{TOT} [g/t\textsubscript{Rifiuti}]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>L1 - Periodo 0</td>
<td>0,07</td>
<td>121,29</td>
</tr>
<tr>
<td>L2 - Periodo 0</td>
<td>0,34</td>
<td>212,18</td>
</tr>
<tr>
<td>L3 - Periodo 0</td>
<td>0,38</td>
<td>367,08</td>
</tr>
<tr>
<td>L1 - Periodo 1</td>
<td>1,95</td>
<td>114,81</td>
</tr>
<tr>
<td>L2 - Periodo 1</td>
<td>0,40</td>
<td>233,82</td>
</tr>
<tr>
<td>L3 - Periodo 1</td>
<td>0,86</td>
<td>584,92</td>
</tr>
<tr>
<td>L3 - Periodo 1 (Step 1: Depurcal®MG 60 kg/h)</td>
<td>44,23</td>
<td>374,67</td>
</tr>
<tr>
<td>L3 - Periodo 1 (Step 2: Depurcal®MG 90 kg/h)</td>
<td>35,82</td>
<td>351,44</td>
</tr>
<tr>
<td>L3 - Periodo 1 (Step 3: Depurcal®MG 120 kg/h)</td>
<td>0,86</td>
<td>584,92</td>
</tr>
</tbody>
</table>

Alla luce di quanto appena riportato, i valori di efficienza calcolati tramite la relazione (6.9) risultano essere negativi (Tabella 6.16). Tuttavia, è certamente interessante osservare una conferma dell’effetto del sorbente Depurcal®MG sul mercurio totale in uscita caldaia. Al crescere del dosaggio del reagente, si apprezza infatti una variazione delle efficienze (le quali si riducono in valore assoluto), fatto che testimonia una riduzione del valore di mercurio in Linea 3 con l’incremento del dosaggio del reagente Depurcal®MG, nonostante la concentrazione di mercurio totale si mantenga comunque più elevata rispetto alle altre due linee. Per lo
Scenario C (Tabella 6.16), è invece possibile apprezzare una riduzione percentualmente non trascurabile della concentrazione di mercurio totale in caldaia durante le ore di presenza di Depurcal® MG, rispetto alle ore in cui il sorbente non è stato dosato. Va tuttavia sottolineata l’informazione ottenuta relativamente allo step di 90 kg/h per quanto concerne questo scenario, dove invece il risultato appare contrastante con una riduzione della concentrazione di mercurio totale nelle ore di non avvenuto dosaggio. Ad ogni modo è bene notare come i risultati più rilevanti si siano registrati durante lo step di dosaggio pari a 120 kg/h, che rappresenta il periodo di dosaggio di maggiore durata temporale e quindi maggiormente significativo. Come riportato in precedenza, è comunque fondamentale considerare che la Linea 3, rispetto alle altre due linee, presenta il comportamento maggiormente problematico in termini di mercurio totale.

Tabella 6.16 – Sintesi di efficienze e variazione percentuale del mercurio totale in caldaia.

<table>
<thead>
<tr>
<th>Scenario A</th>
<th>(\eta) [%]</th>
<th>Scenario B</th>
<th>(\eta) [%]</th>
<th>Scenario C</th>
<th>(V_i) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3 - Periodo 0 vs L3 - Periodo 1 (Intero periodo)</td>
<td>-33,18</td>
<td>L2 - Periodo 1 vs L3 - Periodo 1 (Intero periodo)</td>
<td>-76,82</td>
<td>L3 - No Depurcal® MG vs L3 - Si Depurcal® MG (Intero Periodo 1)</td>
<td>-7,33</td>
</tr>
<tr>
<td>L3 - Periodo 0 vs L3 - Periodo 1 (Step 1: Depurcal® MG 60 kg/h)</td>
<td>-68,49</td>
<td>L2 - Periodo 1 vs L3 - Periodo 1 (Step 1: Depurcal® MG 60 kg/h)</td>
<td>-94,19</td>
<td>L3 - No Depurcal® MG vs L3 - Si Depurcal® MG (Step 1: Depurcal® MG 60 kg/h)</td>
<td>-2,55</td>
</tr>
<tr>
<td>L3 - Periodo 0 vs L3 - Periodo 1 (Step 2: Depurcal® MG 90 kg/h)</td>
<td>-49,66</td>
<td>L2 - Periodo 1 vs L3 - Periodo 1 (Step 2: Depurcal® MG 90 kg/h)</td>
<td>-99,90</td>
<td>L3 - No Depurcal® MG vs L3 - Si Depurcal® MG (Step 2: Depurcal® MG 90 kg/h)</td>
<td>9,10</td>
</tr>
<tr>
<td>L3 - Periodo 0 vs L3 - Periodo 1 (Step 3: Depurcal® MG 120 kg/h)</td>
<td>-16,87</td>
<td>L2 - Periodo 1 vs L3 - Periodo 1 (Step 3: Depurcal® MG 120 kg/h)</td>
<td>-58,13</td>
<td>L3 - No Depurcal® MG vs L3 - Si Depurcal® MG (Step 3: Depurcal® MG 120 kg/h)</td>
<td>-19,00</td>
</tr>
</tbody>
</table>
Variazioni del dosaggio di carbone attivo

Tabella 6.17 – Statistiche descrittive del dosaggio di carbone attivo.

<table>
<thead>
<tr>
<th></th>
<th>D<sub>CA</sub> [kg/h]</th>
<th>C<sub>SCA</sub> [kg/t<sub>Rifiuti</sub>]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>L1 - Periodo 0</td>
<td>4,87</td>
<td>39,90</td>
</tr>
<tr>
<td>L2 - Periodo 0</td>
<td>6,02</td>
<td>30,26</td>
</tr>
<tr>
<td>L3 - Periodo 0</td>
<td>1,09</td>
<td>39,80</td>
</tr>
<tr>
<td>L1 - Periodo 1</td>
<td>15,89</td>
<td>15,95</td>
</tr>
<tr>
<td>L2 - Periodo 1</td>
<td>11,36</td>
<td>24,75</td>
</tr>
<tr>
<td>L3 - Periodo 1</td>
<td>3,41</td>
<td>39,81</td>
</tr>
<tr>
<td>L3 - Periodo 1</td>
<td>7,46</td>
<td>34,55</td>
</tr>
<tr>
<td>L3 - Periodo 1</td>
<td>11,69</td>
<td>33,17</td>
</tr>
<tr>
<td>L3 - Periodo 1</td>
<td>3,41</td>
<td>39,81</td>
</tr>
<tr>
<td></td>
<td>(Step 1:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depurcal®MG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 kg/h)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Step 2:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depurcal®MG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90 kg/h)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Step 3:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depurcal®MG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120 kg/h)</td>
<td></td>
</tr>
</tbody>
</table>

Si osserva come, in riferimento alla Linea 3, il dosaggio di carbone attivo sia maggiore nel Periodo 0 rispetto al Periodo 1. Questo fatto è in linea con le osservazioni ricavate dalla Tabella 6.15 grazie alla quale è possibile notare l’aumento del mercurio totale nella suddetta linea tra i due periodi.

Dal momento che si è osservato come il sorbente dolomitico abbia un effetto sul mercurio totale in caldaia, si è proceduto quindi ad analizzare come il dosaggio di carbone attivo sia influenzato dalla presenza o assenza di Depurcal®MG (Tabella 6.18). Come si può osservare da Tabella 6.18, si nota come nelle ore di dosaggio del reagente Depurcal®MG, il quantitativo di carbone attivo additivato risulta essere inferiore rispetto alle ore in cui non è presente il sorbente dolomitico. Questi risultati sono quindi in accordo con le osservazioni riportate in precedenza per le quali è stato possibile apprezzare l’effetto del Depurcal®MG sul mercurio totale, e soprattutto evidenti nel caso di dosaggio pari a 120 kg/h.

È inoltre interessante notare come i dosaggi di carbone attivo risultino notevolmente inferiori rispetto a quelli riportati come riferimento nel documento riguardo le BREF per l’incenerimento (European Commission, 2006) nel quale è riportato come riferimento un valore pari a 3 kg_{CA}/t_{Rifiuti} nel caso di impianti di termovalorizzazione di rifiuti solidi urbani, al contrario dei valori riportati in Tabella 6.17.
6.2.6 Analisi dell’effetto dell’unità SCR

Come riportato nei capitoli precedenti, l’impianto di Torino dispone della sola misura del mercurio totale (Hg\textsubscript{TOT}) e non rileva la sua speciazione (mercurio elementare Hg\textsubscript{0}, mercurio ossidato Hg2+ e mercurio particolato Hg0).

Uno dei fenomeni maggiormente investigati in letteratura circa la problematica del mercurio in impianti di termovalorizzazione, è rappresentato dalla sua interazione con il materiale catalitico del reattore SCR (Capitolo 5 – Paragrafo 5.4.2).

Il termovalorizzatore di Torino presenta, come ultima unità operativa di trattamento del flusso gassoso prima del camino, un reattore di tipo SCR (configurazione “tail-end”) a base di TiO\textsubscript{2}/V\textsubscript{2}O\textsubscript{5}/WO\textsubscript{3}, attraverso il quale avviene il trattamento degli ossidi di azoto.

In generale, il mercurio Hg\textsubscript{0}, che è adsorbito con maggiore difficoltà rispetto al mercurio Hg2+ dai carboni attivi dosati a monte dell’unità di filtrazione che precede il reattore SCR, può essere adsorbito sulla superficie catalizzante tipicamente come mercurio ossidato nella forma HgO. Quando la concentrazione di HCl nei fumi che raggiungono il catalizzatore si innalza, il mercurio viene convertito a HgCl\textsubscript{2} con tendenza a essere desorbito dalla superficie del catalizzatore e di conseguenza rilasciato nell’emissione al camino (DIIAR-Politecnico di Milano, 2011). L’adsorbimento del mercurio elementare sul catalizzatore sembra essere facilitato dalle basse temperature e dalla presenza di ossido di vanadio come componente del catalizzatore (Hocquel et al., 2004; Kamata et al., 2004).

Al fine di valutare eventuali effetti di rilascio di mercurio presenti presso l’impianto di termovalorizzazione di Torino, si è proceduto analizzando nel dettaglio tutte le 3 linee dell’impianto, per il Periodo 0 e per il Periodo 1. Per l’analisi condotta si è fatto riferimento al dato relativo all’Hg\textsubscript{TOT}, considerando che eventuali rilasci (e cioè valori di Hg\textsubscript{TOT} in caldaia inferiori a quelli di Hg\textsubscript{TOT} a camino per la medesima ora) sarebbero rilevabili.
anche a livello di mercurio totale, sebbene non possa essere condotta una analisi di dettaglio per la valutazione della ripartizione tra le differenti specie.

Sulla base dei dati di mercurio totale registrati in uscita caldaia e a camino, è possibile valutare il valore di efficienza di abbattimento del mercurio totale (η_{Hg} [%]) ad opera del carbone attivo (CA) lungo ciascuna linea fumi per ciascuna ora:

$$\eta_{Hg} = \text{Efficienza rimozione}_{Hg_{TOT}} [%] = \frac{\left(PS_{Hg_{TOT,caldaia,ij}} - PS_{Hg_{TOT,camino,ij}}\right)}{PS_{Hg_{TOT,caldaia,ij} \frac{k_{Hg_{TOT,caldaia}}}{t_{rifusati}}} - PS_{Hg_{TOT,camino,ij} \frac{k_{Hg_{TOT,camino}}}{t_{rifusati}}}} \cdot 100$$

(6.21)

dove:

$PS_{Hg_{TOT,caldaia,ij} \frac{k_{Hg_{TOT,caldaia}}}{t_{rifusati}}}$ e $PS_{Hg_{TOT,camino,ij} \frac{k_{Hg_{TOT,camino}}}{t_{rifusati}}}$ rappresentano rispettivamente i valori orari di produzione specifica di mercurio totale in caldaia e a camino per la i-esima linea di incenerimento relazione (6.6), Paragrafo 6.1.3).

Va comunque precisato che un potenziale episodio di rilascio potrebbe anche verificarsi con un certo ritardo rispetto ad un valore elevato registrato in uscita caldaia. Tuttavia, è possibile affermare che a ciascun dato orario di mercurio totale in caldaia dovrebbe necessariamente corrispondere un valore di mercurio totale a camino inferiore, in conseguenza del dosaggio di carbone attivo. Inoltre, visualizzando graficamente l’andamento del mercurio totale in caldaia e a camino per le varie linee, non è apprezzabile una marcata discrepanza temporale tra fenomeni di picco in caldaia e fenomeni di picco a camino. Viene riportato a scopo illustrativo l’andamento della concentrazione di mercurio totale in caldaia e a camino per la Linea 3 (Figura 6.20).

![Figura 6.20 – Andamenti di confronto tra il mercurio totale in caldaia ed a camino per la Linea 3 relativamente allo step di dosaggio del Depurcal® MG pari a 120 kg/h.](image)

☐ Periodi di ipotetico rilascio di mercurio.
Osservando la Figura 6.20 si possono apprezzare sia una discreta coincidenza tra gli andamenti a camino ed a caldaia, sia i periodi nei quali si è potenzialmente verificato un fenomeno di rilascio di mercurio.

Un valore di mercurio totale a camino superiore rispetto al corrispondente valore in uscita caldaia potrebbe essere quindi imputabile, sulla base delle informazioni disponibili in letteratura (Madsen, 2011; Hocquel et al., 2004; Straube et al., 2008; DIIAR-Politecnico di Milano, 2011), ad un rilascio da parte del catalizzatore presente nell’unità SCR. Sulla base di queste considerazioni si è proceduto al calcolo delle varie efficienze di rimozione del mercurio orarie per ciascuna linea. Nel caso in cui il valore di efficienza risultasse negativo (mercurio totale in caldaia inferiore rispetto a quello a camino), lo si potrebbe dunque attribuire ad un potenziale effetto di rilascio causato dal catalizzatore dell’unità SCR ed interpretare il valore di \(\eta_{Hg} \) [%] come una intensità del fenomeno stesso.

Per confermare tale ipotesi è stato verificato che, durante le ore caratterizzate da valori negativi di efficienza \(\eta_{Hg} \) [%], sia stato effettivamente dosato carbone attivo in linea e la percentuale di volte in cui si è verificato il dosaggio durante il potenziale episodio di rilascio. Una sintesi dei risultati ottenuti è riportata nella Tabella 6.19.

Tabella 6.19 – Tabella riassuntiva delle analisi sui possibili fenomeni di rilascio di mercurio. Sono confrontati una serie di parametri tra le ore di funzionamento corretto e le ore di ipotetico rilascio.

<table>
<thead>
<tr>
<th>Scenari considerati</th>
<th>Efficienza media rimozione Hg – ore funzion. corretto (\eta_{Hg}) [%]</th>
<th>Efficienza media rimozione Hg – ore ipotetico rilascio (\eta_{Hg}) [%]</th>
<th>Dosaggio medio CA – ore funzion. corretto (D_{CA}) [kg/h]</th>
<th>Dosaggio medio CA – ore ipotetico rilascio (D_{CA}) [kg/h]</th>
<th>Freq. dosaggio CA – ore ipotetico rilascio [%]</th>
<th>Rilasci sul totale dei dati orari [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 – Periodo 0</td>
<td>74,17</td>
<td>-320,30</td>
<td>16,02</td>
<td>15,94</td>
<td>100</td>
<td>1,47</td>
</tr>
<tr>
<td>L2 – Periodo 0</td>
<td>81,19</td>
<td>-187,74</td>
<td>17,67</td>
<td>16,79</td>
<td>100</td>
<td>0,76</td>
</tr>
<tr>
<td>L3 – Periodo 0</td>
<td>88,96</td>
<td>-214,96</td>
<td>17,34</td>
<td>17,76</td>
<td>100</td>
<td>4,65</td>
</tr>
<tr>
<td>L1 – Periodo 1</td>
<td>78,27</td>
<td>-58,36</td>
<td>15,92</td>
<td>15,92</td>
<td>100</td>
<td>2,51</td>
</tr>
<tr>
<td>L2 – Periodo 1</td>
<td>82,44</td>
<td>-313,23</td>
<td>16,76</td>
<td>15,99</td>
<td>100</td>
<td>0,46</td>
</tr>
<tr>
<td>L3 – Periodo 1</td>
<td>90,05</td>
<td>-497,87</td>
<td>19,63</td>
<td>26,05</td>
<td>100</td>
<td>14,37</td>
</tr>
</tbody>
</table>

I risultati confermano la possibile presenza di fenomeni di rilascio, che sulla base delle informazioni disponibili in letteratura potrebbero essere attribuibili alla presenza del catalizzatore al vanadio. Infatti durante le ore di rilascio di mercurio il carbone attivo viene sempre dosato (con frequenza pari al 100% dei casi) e con valori di dosaggio tendenzialmente comparabili con il funzionamento durante le ore che hanno manifestato efficienza di abbattimento del mercurio positiva. La frequenza di tali episodi risulta inoltre essere estremamente variabile tra le linee, ma notevolmente superiore per la Linea 3 rispetto alle altre; questo è vero durante il Periodo 0 ma soprattutto durante il Periodo 1 (sia in termini di intensità del fenomeno che di frequenza). Anche la Tabella 6.19 conferma quindi la rilevanza della problematica associata al mercurio per quanto concerne la Linea 3 rispetto alle altre linee, come già riportato al Paragrafo 6.2.5. Inoltre, si può osservare come ad una frequenza
di episodi maggiore passando dal Periodo 0 al Periodo 1, non necessariamente corrisponde una intensità del fenomeno maggiore (si osservi la Linea 1 per i due periodi, Tabella 6.19); questa casistica corrisponde a situazioni di rilasci meno intensi ma più frequenti. D’altra parte invece, si osservi la Linea 2 per i due periodi (Tabella 6.19), a conferma della notevole variabilità e complessità del fenomeno si possono anche verificare situazioni di rilasci meno frequenti ma più intensi.

Effetto del reagente Depurcal®MG sui rilasci di mercurio

Con lo scopo di investigare se il sorbente Depurcal®MG possa o meno avere un effetto sugli episodi potenzialmente attribuibili al rilascio da parte del catalizzatore, sono stati selezionati specifici intervalli di dati per quanto concerne la Linea 3 durante il Periodo 1. I valori di efficienza ($\eta_{\text{Hg}} \%$) e di dosaggio orari per la Linea 3 sono stati filtrati in modo da suddividerli tra le ore in cui si è verificato il dosaggio di reagente Depurcal®MG e le ore in cui il dosaggio non è stato effettuato. I principali risultati sono riportati nella seguente Tabella 6.20.

È possibile osservare come, durante le ore di dosaggio di Depurcal®MG, l’intensità dei fenomeni di rilascio ($\eta_{\text{Hg}} \%$) sia mediamente inferiore rispetto alle ore in cui il reagente non è stato additivato, e questo nonostante un dosaggio medio di carbone attivo superiore per le ore in cui il sorbente Depurcal®MG è assente. D’altra parte, la frequenza percentuale dei fenomeni manifesta una certa similitudine tra i due casi, con la frequenza relativa alle ore in cui si ha dosaggio di Depurcal®MG di circa quattro punti percentuali superiore rispetto alle ore di assenza del sorbente.

Tabella 6.20 – Tabella riassuntiva dei possibili effetti di Depurcal®MG sui fenomeni di rilascio di mercurio.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Efficienza media rimozione Hg $\eta_{\text{Hg}} %$</th>
<th>Dosaggio medio CA D_{CA} [kg/h]</th>
<th>Consumo specifico medio CA C_{CA} [kg/tRifiuti]</th>
<th>Dosaggio medio Depurcal®MG $D_{\text{Depurcal®MG}}$ [kg/h]</th>
<th>Consumo specifico medio Depurcal®MG $C_{\text{Depurcal®MG}}$ [kg/tRifiuti]</th>
<th>Rilasci orari rispetto alle ore di dosaggio Depurcal®MG [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3 – Periodo 1</td>
<td>-461,19</td>
<td>19,33</td>
<td>0,93</td>
<td>115,35</td>
<td>5,09</td>
<td>15,98</td>
</tr>
<tr>
<td>L3 – Periodo 1</td>
<td>-571,75</td>
<td>29,48</td>
<td>1,38</td>
<td>Assente</td>
<td>Assente</td>
<td>12,00</td>
</tr>
</tbody>
</table>
Una situazione ricorrente osservata durante i trattamenti di neutralizzazione a secco dei gas acidi a bassa temperatura con dosaggio di reagenti come calce idrata (o bicarbonato di sodio) è quella in cui risulta evidente una coincidenza tra picchi positivi di concentrazione del mercurio nei fumi e picchi negativi di Cl\textsubscript{2}. L’idrossido di calcio reagisce con il Cl\textsubscript{2} e l’HCl e, sebbene da un lato presenti un certo potere adsorbente nei confronti del mercurio e ne favorisca una parziale rimozione dai fumi, dall’altro, riducendo la presenza di cloro, determina uno spostamento della ripartizione del mercurio verso la forma elementare con possibili ripercussioni sull’efficienza depurativa delle successive fasi di adsorbimento. (Vosteen et al., 2008). Complessivamente si osserva come il rapporto Hg2+/Hg0 tende ad aumentare lungo la linea di depurazione, negli impianti dotati di trattamenti a secco (Chang et al., 2000). D’altra parte, come riportato in precedenza, sebbene il mercurio Hg0 sia adsorbito con difficoltà dal carbone attivo, tale forma può essere adsorbita sulla superficie del catalizzatore tipicamente come mercurio ossidato nella forma HgO\textsubscript{ads}, che potrebbe essere rilasciato come HgCl\textsubscript{2} qualora la concentrazione di HCl all’altezza dell’unità SCR dovesse aumentare. Per quanto concerne le analisi condotte presso il termovalorizzatore di Torino, data la mancanza di misurazioni relative alla speciazione del mercurio, non è possibile trarre conclusioni certe in merito a questi effetti citati in letteratura. È comunque possibile osservare (Tabella 6.20) come la presenza di Depurcal®MG non comporti un effetto peggiorativo circa l’intensità del fenomeno di rilascio, pur a fronte di un leggero aumento per quanto concerne la frequenza del fenomeno.

Tabella 6.21 – Tabella riassuntiva dei possibili effetti di Depurcal®MG sulla presenza di HCl a camino.

<table>
<thead>
<tr>
<th>Scenario analizzato</th>
<th>Concentrazione media HCl a camino C\textsubscript{HCl} [mg/Nm3]</th>
<th>Produzione specifica media HCl a camino PS\textsubscript{HCl} [kg/t\textsubscript{rifus}</th>
<th>Dosaggio medio Bicarbonato D\textsubscript{NaHCO3} [kg/h]</th>
<th>Consumo specifico medio Bicarbonato C\textsubscript{NaHCO3} [kg/t\textsubscript{rifus}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3 – Periodo 1</td>
<td>1,05</td>
<td>0,0057</td>
<td>392,67</td>
<td>17,38</td>
</tr>
<tr>
<td>Depurcal®MG – Ore di dosaggio non effettuato (1222 ore)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scenario analizzato</td>
<td>Concentrazione media HCl a camino C\textsubscript{HCl} [mg/Nm3]</td>
<td>Produzione specifica media HCl a camino PS\textsubscript{HCl} [kg/t\textsubscript{rifus}]</td>
<td>Dosaggio medio Bicarbonato D\textsubscript{NaHCO3} [kg/h]</td>
<td>Consumo specifico medio Bicarbonato C\textsubscript{NaHCO3} [kg/t\textsubscript{rifus}]</td>
</tr>
<tr>
<td>L3 – Periodo 1</td>
<td>1,31</td>
<td>0,0076</td>
<td>405,10</td>
<td>18,80</td>
</tr>
</tbody>
</table>

Durante le ore di rilascio di mercurio (ed in particolare nelle ore di assenza di dosaggio di Depurcal®MG), la portata di bicarbonato di sodio additivata in impianto viene manualmente innalzata con lo scopo di ridurre sensibilmente la concentrazione di acido cloridrico all’altezza del catalizzatore. Dalla Tabella 6.21 è possibile osservare come nelle ore di assenza di Depurcal®MG sia tuttavia presente a camino un valore di concentrazione di HCl superiore rispetto alle ore di dosaggio del sorbente dolomitico, pur a fronte di una portata di bicarbonato superiore. Complessivamente dunque, a fronte degli effetti di abbattimento della concentrazione di mercurio
totale in uscita dalla caldaia garantiti dalla presenza del sorbente dolomitico, è altresì importante garantire in ogni condizione operativa la massima neutralizzazione dell’acido cloridrico in uscita dal filtro a maniche per evitare che elevate concentrazioni di cloro raggiungano il catalizzatore (Tabella 6.20). Tale effetto trova conferma osservando i dati riportati in Tabella 6.19 dove è possibile apprezzare, relativamente alla serie di dati in assenza del sorbente dolomitico (Periodo 0 – Linea 3), una frequenza ed una intensità del fenomeno inferiori.

È bene comunque rimarcare il fatto che le presenti analisi qualitative hanno avuto come oggetto il dato di mercurio totale. Infatti, al fine di ottenere risultati più certi e dettagliati circa eventuali effetti sinergici o antisinergici che coinvolgano il sorbente dolomitico Depurcal®MG, gli inquinanti acidi ed il mercurio, è fondamentale un’ulteriore e più approfondita indagine per esaminare nel dettaglio tutte le specie principali del mercurio stesso e la loro ripartizione lungo la linea fumi.
CAPITOLO 7
ANALISI DELLE PRESTAZIONI GESTIONALI DEL PRODOTTO DEPURCAL® MG

Il presente capitolo ha lo scopo di analizzare gli effetti del dosaggio del reagente Depurcal®MG sulla produzione dei residui (scorie, ceneri leggere e prodotti sodici residui) e sulla variazione dei dosaggi del bicarbonato di sodio utilizzato nelle linee fumi per il trattamento di neutralizzazione dei gas acidi.

Nello specifico verrà confrontato il dosaggio effettivo di bicarbonato di sodio con quello teorico richiesto dal processo di neutralizzazione degli acidi in assenza e in presenza del dosaggio di Depurcal®MG: in particolare verrà analizzato il comportamento della Linea 3, in cui è stata effettuata la prova industriale di dosaggio del Depurcal®MG, nei transitori di dosaggio forzato di bicarbonato di sodio per contenere il più possibile le concentrazioni di inquinanti acidi nei fumi in uscita dal filtro a maniche e limitare quindi, eventuali fenomeni di rilascio di mercurio accumulatosi sulle superfici del catalizzatore SCR.

Nel processo di incenerimento di rifiuti si generano diversi residui, solidi o liquidi, classificabili in tre differenti categorie:

- Scorie (umide o secche): rappresentano i residui solidi del processo di combustione che sono scaricati e raccolti alla fine della griglia (Figura 7.1) e sono spinti in appositi estrattori a bagno d’acqua (“guardia idraulica”). Dagli estrattori vengono quindi inviate allo stoccaggio in una fossa di accumulo chiusa dedicata tramite nastri trasportatori. Al di sopra della zona finale dei trasportatori sono posizionati due magneti che separano i materiali ferrosi e li scaricano nella fossa dedicata. Le scorie sono tipicamente composte dalle sostanze inerti originariamente presenti nel rifiuto, da residui metallici minerali e da un limitato contenuto di organici incombusti. Generalmente per inceneritori dotati di forno a griglia la produzione di scorie si aggira tra il 15% e il 25% in peso del rifiuto totale alimentato;

- Ceneri volanti o leggere: questa parte dei residui solidi, derivante dalle ceneri che si sviluppano durante la combustione, lascia la camera di combustione assieme ai fumi e viene abbattuta dai successivi dispositivi di depolverazione posizionati lungo la linea fumi quali elettrofilteri o filtri a maniche. Le ceneri volanti sono costituite da particelle di piccole dimensioni formate quasi esclusivamente dai residui inorganici del processo di combustione come sali dei metalli condensati e particelle fini di incombusti che si depositano sulle pareti della caldaia o dei sistemi di recupero dell’energia. Esse rappresentano quantitativamente tra l’1% e il 3% in peso del rifiuto totale alimentato. Generalmente questa tipologia di residui è prodotta in una quantità variabile tra 30-60 kg/t Rifiuti. Tali composti sono classificati come rifiuti pericolosi e vengono generalmente smaltiti in discarica, previa inertizzazione;

- Residui derivanti dai sistemi di controllo degli effluenti gassosi: dipendono dalla tipologia di trattamento depurativo adottato nell’impianto e, nel caso della rimozione dei gas acidi, dal tipo di reagente alcalino impiegato. In particolare laddove si applicasse un processo a secco o semisecco per
la neutralizzazione dei gas acidi (come nel caso dell’impianto analizzato in questo lavoro) i residui sarebbero principalmente costituiti da sali prodotti dalle reazioni di neutralizzazione, dagli eccessi del reagente utilizzato e dalle ceneri volanti captate nel sistema di depolverazione collocato a valle. Generalmente i residui costituiscono tra il 2% e il 5% in peso del rifiuto alimentato.

Nel caso in cui il reagente alcalino utilizzato per la neutralizzazione dei gas acidi sia il bicarbonato di sodio, i conseguenti residui, definiti come prodotti sodici residui (PSR) e principalmente costituiti dai sali di sodio (cloruro di sodio, solfato di sodio, fluoruro di sodio, carbonato di sodio), possono essere recuperati. I PSR sono generati dalle reazioni di neutralizzazione degli inquinanti acidi con il carbonato di sodio che si forma a seguito dell’attivazione termica del bicarbonato di sodio:

\[
\begin{align*}
2\text{HCl} + \text{Na}_2\text{CO}_3 & \rightarrow 2\text{NaCl} + \text{CO}_2 + \text{H}_2\text{O} & (7.1) \\
\text{SO}_2 + \text{Na}_2\text{CO}_3 + \frac{1}{2}\text{O}_2 & \rightarrow \text{Na}_2\text{SO}_4 + \text{CO}_2 & (7.2) \\
\text{NaHCO}_3 + \text{HF} & \rightarrow \text{NaF} + \text{H}_2\text{O} + \text{CO}_2 & (7.3)
\end{align*}
\]

Le tre classi di residui descritte sono raccolti e stoccati in diversi punti dell’impianto mostrati in Figura 7.1.
Figura 7.1 – Schema di una delle tre linee gemelle dell’impianto di termovalorizzazione di Torino. Si possono apprezzare:

- il punto di raccolta delle scorie da combustione;
- i punti di raccolta delle ceneri leggere da combustione;
- il punto di dosaggio di bicarbonato di sodio e carbone attivo;
- il punto di raccolta dei Prodotti Sodici Residui (PSR) derivanti dalla depurazione dei fumi.
7.1 Materiali e metodi

7.1.1 Scenari analizzati e gestione dei dati per l’analisi dei residui

Prima di procedere con l’analisi riguardante la variazione della produzione dei residui (scorie, ceneri e PSR) è stato necessario provvedere ad una adeguata gestione dei dati forniti dall’impianto. I dati relativi alla portata di rifiuti trattati dall’impianto stesso sono stati depurati dai valori anomali secondo i criteri riportati nel Paragrafo 6.1.4 – Capitolo 6.

Un approccio differente è stato utilizzato per i dati relativi alle scorie, alle ceneri e ai residui: il valore della produzione dei residui è misurato come differenza tra la pesata del camion pieno in uscita dall’impianto e la pesata del camion vuoto in ingresso all’impianto durante la giornata. Il numero di pesate effettuate quotidianamente è differente per le diverse classi di residui e varia di giorno in giorno in funzione dei viaggi dei mezzi di raccolta. Ciò significa che non si dispone dello stesso numero di misurazioni giornaliere per le tre classi di residui, né tantomeno viene effettuato lo stesso numero di pesate ogni giorno per una singola classe.

Per questo motivo è stato necessario considerare i valori cumulati, sommando tra loro i valori orari registrati durante la giornata.

È bene notare che utilizzando questo approccio non si considera lo stoccaggio in impianto; ne consegue che non viene fornita un’informazione precisa sulla produzione giornaliera. Infatti osservando solo i mezzi in uscita sembrerebbe che in alcuni giorni non si producano residui nonostante l’impianto risulti regolarmente in funzione.

A complicare l’analisi si aggiunge il fatto che scorie, ceneri e PSR non sono mantenute separate per le 3 linee e non risulta quindi possibile associare alla singola linea la corrispondente produzione di residui.

Per poter quindi associare la produzione di residui ai rifiuti trattati è necessario riferirsi alla portata totale di rifiuti alimentata in impianto, sommando tra loro le portate alimentate alle singole linee.

Dal momento che non è possibile distinguere la produzione di residui associata alla singola linea risulta impossibile effettuare un confronto diretto tra linee per uno stesso periodo temporale. Inoltre, vista la mancata corrispondenza oraria tra la produzione dei residui e il dosaggio del reagente risulta impossibile verificare l’effetto immediato del reagente medesimo sulla produzione dei residui riferita alla linea di termovalorizzazione (Linea 3) in cui viene dosato.

Seppur non venga effettuato lo stesso numero di pesate ogni giorno, tale operazione è ripetuta per tutto l’anno. Risulta quindi possibile dividere questo intervallo temporale in due diversi periodi su cui è stata valutata la variazione nella produzione di scorie, ceneri e PSR:

- Periodo 0 - si tratta della serie storica di dati misurati (a partire dal 01/01/2017 ore 00:00, fino al 26/09/2017 ore 11:00) relativa al periodo precedente al dosaggio Depurcal®MG;
- Periodo 1 - si tratta della serie di dati successivi al dosaggio del reagente Depurcal®MG (a partire dal 26/09//2017 ore 12:00, fino al 31/01/2018 ore 23:00) suddivisi riferendosi sia all’intero periodo di dosaggio sia in funzione dei 3 step di dosaggio del reagente, rispettivamente pari a 60 kg/h, 90 kg/h e 120 kg/h.
Considerando questa suddivisione temporale e cumulando i valori orari di dosaggio di reagente riferiti alla stessa giornata si riesce a risolvere, almeno in parte, il problema della corrispondenza tra dosaggio di Depurcal®MG e produzione di residui.

Non disponendo di analisi merceologiche recenti risulterebbe impossibile anche solo ipotizzare una differenza della composizione del rifiuto alimentato sulle tre diverse linee. Per questa analisi si suppone che la composizione del rifiuto alimentato in impianto rimanga costante per tutte e tre le linee durante il periodo analizzato. Pertanto, in virtù di queste ipotesi, la variazione nella produzione risulta unicamente imputabile al sorbente dolomitico. Non è da escludere tuttavia che i risultati ottenuti possano dipendere anche dall’eterogeneità della composizione merceologica dei rifiuti trattati.

7.1.2 Gestione dei dati e scenari analizzati per il bicarbonato di sodio

Le analisi riguardanti il bicarbonato di sodio sono state effettuate su dati depurati dai valori anomali e dagli spegnimenti seguendo il metodo illustrato nel Paragrafo 6.1.4 – Capitolo 6. Gli scenari considerati per questa analisi sono gli stessi utilizzati nell’ambito dell’analisi ambientale. I dati delle tre linee sono quindi suddivisi in due differenti periodi principali:

- **Periodo 0** - si tratta della serie storica di dati analizzata nel presente elaborato (a partire dal 01/01/2017 ore 00:00, fino al 26/09/2017 ore 11:00) relativa al periodo precedente al dosaggio Depurcal®MG;
- **Periodo 1** - si tratta della serie di dati ottenuti durante il periodo di dosaggio del reagente Depurcal®MG (a partire dal 26/09/2017 ore 12:00, fino al 31/01/2018 ore 23:00).

L’analisi è stata quindi poi condotta seguendo i seguenti scenari:

- **Scenario A** - confronto della sola Linea 3 durante il Periodo 0 ed il Periodo 1 (quest’ultimo suddiviso in base agli step di dosaggio del reagente Depurcal®MG);
- **Scenario B** - confronto tra la Linea 3 e la Linea 2 (adottata come condizione di riferimento) entrambe durante il Periodo 1 relativamente all’intero periodo e ai tre step di dosaggio del reagente Depurcal®MG;
- **Scenario C** - confronto riferito alla sola Linea 3 tra le ore in cui è avvenuto il dosaggio di Depurcal®MG e quelle in cui invece tale dosaggio non ha avuto luogo durante il Periodo 1.

La quantità stechiometrica di bicarbonato di sodio utilizzata per la neutralizzazione dei gas acidi in impianto è valutata in funzione della differenza tra la concentrazione in caldaia e la concentrazione a camino dei gas acidi in esame, della portata fumi in condizioni normali e di un rapporto stechiometrico specifico per il gas ogni singolo inquinante acido.

Dal momento che non sono registrati dall’impianto i valori di HF in caldaia, il dosaggio di bicarbonato di sodio viene valutato unicamente in funzione delle concentrazioni di HCl e di SO₂ registrate in caldaia e a camino.

Il rapporto stechiometrico, rispettivamente pari a $2,307 \text{ kg}_{\text{NaHCO}_3}/\text{kg}_{\text{HCl}}$ e $2,623 \text{ kg}_{\text{NaHCO}_3}/\text{kg}_{\text{SO}_2}$, è ottenuto sulla base delle reazioni (7.4), (7.5) e (7.6) di seguito riportate. Nello specifico la reazione (7.4) descrive il processo di attivazione termica del reagente, innescato attorno ai 160-180°C, in cui 2 moli di bicarbonato di sodio
Il dosaggio effettivo di bicarbonato di sodio è calcolato in automatico dal sistema di dosaggio sulla base della massa acida totale nei fumi grezzi, della relativa massa stechiometrica di bicarbonato di sodio necessaria per neutralizzarla e di un eccesso, impostato pari al 30%, rispetto al quantitativo stechiometrico. Tale algoritmo di calcolo presuppone un’ulteriore correzione, mediante retroazione, sui dati al camino finalizzata al raggiungimento dei valori di concentrazione di HCl e SO₂ nei gas in emissione rispettivamente pari a 2 mg/Nm³ e 6 mg/Nm³. Più i valori in emissione si discostano dai valori di set-point impostati, maggiore è la variazione sovrastechiometrica di bicarbonato di sodio avendo comunque impostato un fattore stechiometrico massimo pari a 1,30.

Attraverso la relazione (7.7) si valuta direttamente la portata teorica totale di bicarbonato di sodio \(Q_{NaHCO₃} \) (kg/h) necessaria per il completamento delle reazioni di neutralizzazione. La formula riportata tiene conto dell’eccesso di reagente (impostato pari al 30%) applicato alla portata stechiometrica totale, data dalla somma delle portate stechiometriche degli inquinanti acidi in funzione della differenza tra le rispettive concentrazioni in caldaia e a camino. Noto il valore di \(Q_{NaHCO₃} \) è possibile calcolarne il consumo specifico teorico \(CS_{NaHCO₃} \) (kg/μg Rifiuti) dividendo il valore ottenuto per la corrispondente portata di rifiuti oraria in ingresso alla linea.

\[
Q_{NaHCO₃} \left[\frac{kg}{h} \right] = \sum \left(\Delta C_{in,q,i} \left[\frac{mg}{Nm^3} \right] \cdot Q_{fumi,caldaia} \left[\frac{Nm^3}{h} \right] \cdot 10^{-6} \left[\frac{kg}{mg} \right] \cdot r.s.m. \left[- \right] \cdot f.c. \left[- \right] \right) \cdot f.s. \left[- \right] \cdot 0.98 \tag{7.7}
\]

dove:
\(\Delta C_{in,q,i} \left[\frac{mg}{Nm^3} \right] \) rappresenta la differenza tra la concentrazione misurata in caldaia e la concentrazione a camino rispettivamente di HCl e SO₂, riferita al gas secco e per un tenore di ossigeno pari a 11%;

\(Q_{fumi,caldaia} \left[\frac{Nm^3}{h} \right] \) rappresenta la portata dei fumi in uscita dalla sezione di combustione riferita al gas secco e avente un tenore di ossigeno pari a 11%;

\(r.s.m. \left[- \right] \) rappresenta il rapporto stechiometrico molare misurato in base alle equazioni (7.4), (7.5) e (7.6) precedentemente riportate;

\(f.c. \left[- \right] \) rappresenta il fattore correttivo applicato dall’algoritmo al fine di ottenere una concentrazione a camino inferiore a 2 mg/Nm³ per l’HCl e inferiore a 6 mg/Nm³ per l’SO₂;
f. s. [−] rappresenta il fattore stechiometrico che tiene conto dell’eccesso teorico con cui dovrebbe essere dosato il bicarbonato in impianto, pari a 1,30;

0,98 indica il grado di purezza del bicarbonato di sodio dosato.

7.2 Valutazione delle prestazioni gestionali – Risultati e discussione

7.2.1 Analisi della produzione dei residui

L’andamento della produzione di scorie, ceneri e PSR è stato inizialmente analizzato su intervalli settimanali in modo da fornire una chiara visione d’insieme e una descrizione qualitativa che tenesse conto dello stoccaggio in impianto, del periodo del dosaggio del reagente Depurcal®MG e delle fluttuazioni dei rifiuti alimentati (Figura 7.2). I dati relativi ai residui (Paragrafo 7.1.1) sono stati così cumulati su intervalli settimanali (Tabella A8.1, consultabile in Appendice A8).

Dall’andamento mostrato in Figura 7.2 si può notare come in seguito al dosaggio di Depurcal®MG iniziato il 26 settembre, la produzione di PSR diminuisca, indicando un risparmio di bicarbonato di sodio, mentre la produzione di ceneri aumenti, a causa del dosaggio del reagente dolomitico in camera di combustione.

Figura 7.2 – Andamenti di rifiuti, scorie, ceneri e PSR in impianto.
Al fine di indagare gli andamenti ottenuti con un grado di dettaglio maggiore è stata eseguita una analisi tenendo conto dei valori non più suddivisi su base settimanale bensì su base giornaliera in riferimento ai periodi temporali (Periodo 0 e Periodo 1) presi in considerazione nel presente studio.

Tale analisi è basata sui valori specifici, ottenuti riferendo i valori massici cumulati giornalmente alla portata totale di rifiuti trattata giornalmente dall’impianto. Si ricorda che non è possibile distinguere la produzione di scorie per ciascuna linea di incenerimento e di conseguenza è impossibile rapportare tale produzione al rifiuto trattato dalla linea corrispondente. Pertanto, i valori massici dei residui sono normalizzati con riferimento alla portata totale di rifiuti trattati globalmente dall’impianto data dalla somma delle portate con cui vengono alimentate giornalmente le tre linee. La variazione della produzione dei residui in termini specifici è valutata secondo la relazione 7.8 sulla base delle medie dei valori specifici in funzione dei periodi temporali considerati.

\[
\text{Variazione [%]} = \frac{\text{Residuo}_{i,\text{Periodo 1}x} \left[\frac{kg \text{Residuo}}{t \text{Rifiuti}} \right] - \text{Residuo}_{i,\text{Periodo 0}} \left[\frac{kg \text{Residuo}}{t \text{Rifiuti}} \right]}{\text{Residuo}_{i,\text{Periodo 0}} \left[\frac{kg \text{Residuo}}{t \text{Rifiuti}} \right]} \cdot 100 \quad (7.8)
\]

dove:

\(\text{Residuo}_{i,\text{Periodo 0}} \left[\frac{kg \text{Residuo}}{t \text{Rifiuti}} \right] \) rappresenta il quantitativo specifico del residuo i-esimo in esame (scorie, ceneri o PSR) registrato nel Periodo 0 prima del dosaggio di Depurcal®MG;

\(\text{Residuo}_{i,\text{Periodo 1}x} \left[\frac{kg \text{Residuo}}{t \text{Rifiuti}} \right] \) rappresenta il quantitativo specifico del residuo i-esimo in esame (scorie, ceneri o PSR) nel Periodo 1 in funzione dello step di dosaggio (pedice “x”) di Depurcal®MG (60 kg/h, 90 kg/h o 120 kg/h).

I risultati ottenuti sono riportati nella Tabella 7.1.

Tabella 7.1 – Variazione (\(\Delta_i[/%]\)) della prodzione di scorie, PSR e ceneri in funzione del dosaggio di Depurcal®MG.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Rifiuti [t/d]</th>
<th>(\Delta_i[/%])</th>
<th>Scorie [kg/t Rifiuti]</th>
<th>(\Delta_i[/%])</th>
<th>Ceneri [kg/t Rifiuti]</th>
<th>(\Delta_i[/%])</th>
<th>PSR [kg/t Rifiuti]</th>
<th>(\Delta_i[/%])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodo 0 (Intero)</td>
<td>1400,94</td>
<td>-</td>
<td>260,54</td>
<td>-</td>
<td>28,09</td>
<td>-</td>
<td>24,23</td>
<td>-</td>
</tr>
<tr>
<td>Periodo 1 (Intero)</td>
<td>1497,89</td>
<td>6,92</td>
<td>290,79</td>
<td>11,61</td>
<td>28,80</td>
<td>2,53</td>
<td>22,89</td>
<td>-5,53</td>
</tr>
<tr>
<td>Periodo 1 - Step</td>
<td>1671,41</td>
<td>19,31</td>
<td>288,08</td>
<td>10,57</td>
<td>25,01</td>
<td>-10,96</td>
<td>18,32</td>
<td>-24,39</td>
</tr>
<tr>
<td>Depurcal®MG</td>
<td>60 kg/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periodo 1 - Step</td>
<td>1538,37</td>
<td>9,81</td>
<td>290,23</td>
<td>11,40</td>
<td>22,74</td>
<td>-19,05</td>
<td>22,62</td>
<td>-6,64</td>
</tr>
<tr>
<td>Depurcal®MG</td>
<td>90 kg/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periodo 1 - Step</td>
<td>1458,02</td>
<td>4,07</td>
<td>291,41</td>
<td>11,85</td>
<td>31,56</td>
<td>12,35</td>
<td>23,77</td>
<td>-1,90</td>
</tr>
<tr>
<td>Depurcal®MG</td>
<td>120 kg/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Per quanto concerne le scorie prodotte dalle tre linee dell’impianto si osserva come esse siano caratterizzate da un aumento nel periodo interessato dal dosaggio del sorbente dolomitico benché questo fenomeno sia più che altro attribuibile alla variazione della quantità totale di rifiuti trattati, che aumentano complessivamente del 6,92% durante l’intero Periodo 1 rispetto al Periodo 0. L’aumento nella produzione delle scorie aumenta in modo proporzionale all’aumento di rifiuti alimentati in impianto e non è influenzata dal dosaggio del reagente, in linea con quanto affermato negli studi precedenti (Tornaghi, 2012; Racanella, 2013).

Le ceneri invece registrano un aumento nel Periodo 1 pari al 2,53%. Nello specifico durante l’ultimo step di dosaggio del reagente Depurcal®MG (120 kg/h) si registra un aumento del 12,35% seppure negli step precedenti (60 e 90 kg/h) si fossero registrati diminuzioni pari a 10,96% e 19,06%. Queste diminuzioni risultano difficili da spiegare dal momento che dosando Depurcal®MG in camera di combustione ci si aspetterebbe un aumento di ceneri raccolte a valle. È altresì vero che i valori ottenuti non sono riferiti alla sola linea in cui viene dosato il reagente bensì alla totalità delle linee e pertanto non è da escludere una produzione ridotta di ceneri sulle linee non interessate dal dosaggio di reagente a causa della eterogeneità del rifiuto trattato dalle stesse.

Analizzando i risultati relativi ai PSR si nota una diminuzione complessiva del 5,53%, con valori fino a 24,39% nel primo step di dosaggio del sorbente dolomitico (60 kg/h). Questi risultati confermano quanto ci si aspetta dall’utilizzo del sorbente Depurcal®MG per l’assorbimento dei gas acidi ad alta temperatura. Infatti all’aumentare del dosaggio del reagente si registra un risparmio di bicarbonato di sodio (Paragrafo 7.2.2) con conseguente minore produzione di PSR. Ciò comporterebbe un vantaggio in termini economici derivante dal risparmio di reagente sodico, compensato tuttavia dall’aumento di scorie e ceneri prodotte durante il periodo di prova e dai conseguenti costi di smaltimento.

Durante il periodo di dosaggio pari a 120 kg/h si registrano deboli diminuzioni di PSR (-1,90%) a fronte di più consistenti aumenti delle ceneri (+12,35%). La debole riduzione registrata è con tutta probabilità imputabile ai sovradosaggi di bicarbonato di sodio che avvengono in impianto (Paragrafo 7.2.2). Senza tali sovradosaggi l’aumento delle ceneri sarebbe stato compensato da riduzioni più rilevanti di PSR, in linea con quanto mostrato nelle sperimentazioni precedenti (Tornaghi (2012), Racanella (2013)).

È bene notare come tali risultati dipendano dalla quantità (che aumenta durante il periodo di dosaggio del reagente, Tabella 7.1) e dalla natura intrinseca del rifiuto alimentato nelle tre diverse linee e siano influenzati dalle modalità con cui sono stati registrati i valori dei residui prodotti in impianto.

Si ricorda infatti che le misure relative ai residui non tengono conto dello stoccaggio in impianto e pertanto non vi è una diretta corrispondenza tra la portata di rifiuti trattata e la produzione di residui. A questo si aggiunge il fatto che la produzione dei residui non può essere ripartita sulle tre diverse linee di termovalorizzazione. Ciò significa che la linea in cui viene dosato il reagente Depurcal®MG non può essere isolata e quindi non è osservabile direttamente l’effetto del reagente sulla produzione di scorie, ceneri e PSR.
di tale linea. Viene così osservato un andamento generale della produzione di residui nell’impianto. I risultati ottenuti perciò sono influenzati anche da fattori esterni alla linea in esame, come la produzione dei residui propria delle altre linee in cui non è dosato il reagente dipendente dal tipo di rifiuto trattato e dalla sua natura. Le caratteristiche del rifiuto alimentato nelle altre linee potrebbero causare una diversa produzione di scorie, PSR e ceneri influenzando così i risultati ottenuti.

La variazione della produzione di PSR è altresì influenzata sia dal dosaggio di bicarbonato di sodio che si verifica nelle linee in cui non viene dosato il sorbente dolomitico sia dai sovradosaggi che si registrano in tutte le tre linee.

Dal momento che in Linea 1 e in Linea 2 non viene dosato Depurcal® MG, si registrano concentrazioni di gas acidi maggiori rispetto le concentrazioni in Linea 3. Ciò richiede consumi maggiori di reagente sodico in quanto i carichi acidi non sono pre-neutralizzati come nel caso della Linea 3, con il risultato di generare maggiori produzioni di PSR. Ne consegue che il risparmio di bicarbonato di sodio ottenibile in Linea 3 a seguito del dosaggio del sorbente dolomitico, a cui corrisponde una riduzione di PSR sulla linea stessa, imparterà poco sul totale di PSR prodotti nell’impianto.

Per quanto riguarda i sovradosaggi, questi si verificano anche sulla Linea 3, dove invece stando alla diminuita acidità in uscita caldaia si necessiterebbe di dosaggi di NaHCO₃ ancora inferiori.

Disponendo di dati orari relativi alla produzione di residui associati alle diverse linee si sarebbe potuto indagare in maniera più approfondita la variazione rilevata.

7.2.2 Analisi degli effetti sul bicarbonato di sodio

La seguente analisi si propone di indagare le modalità di dosaggio del bicarbonato di sodio in impianto e il risparmio del reagente sodico a seguito del dosaggio di Depurcal® MG sulla Linea 3. Anzitutto è stata valutata la portata teorica di bicarbonato di sodio considerando la portata stechiometrica incrementata di un eccesso del 30%, come riportato dalla relazione 7.7 nel Paragrafo 7.1.2.

Confrontando il dosaggio teorico col dosaggio che realmente avviene in impianto si è potuto stabilire anzitutto se il dosaggio reale è correttamente tarato sulla base dei dosaggi stechiometrici e se vi sia o meno un risparmio di reagente alcalino. Nelle successive Tabella 7.2 e Tabella 7.3 sono riportati, relativamente alle sole Linea 2 e Linea 3, i confronti tra valori teorici e reali del dosaggio specifico (in riferimento alla tonnellata di rifiuti trattati) e del dosaggio medio orario di bicarbonato di sodio.
<table>
<thead>
<tr>
<th>Linea</th>
<th>Periodo</th>
<th>Teorico</th>
<th></th>
<th>Reale</th>
<th></th>
<th>Differenza [kg/t rifiuti]</th>
<th>Variazione [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Media</td>
<td>Deviazione standard</td>
<td>Media</td>
<td>Deviazione standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>Periodo 0 (Intero periodo)</td>
<td>17,09</td>
<td>8,91</td>
<td>19,18</td>
<td>11,00</td>
<td>2,08</td>
<td>12,19</td>
</tr>
<tr>
<td></td>
<td>Periodo 1 (Intero periodo)</td>
<td>10,66</td>
<td>6,30</td>
<td>17,39</td>
<td>11,58</td>
<td>6,73</td>
<td>63,13</td>
</tr>
<tr>
<td></td>
<td>Periodo 1 (Step 1: Depurcal® MG 60 kg/h)</td>
<td>13,87</td>
<td>7,21</td>
<td>20,53</td>
<td>14,31</td>
<td>6,66</td>
<td>47,99</td>
</tr>
<tr>
<td></td>
<td>Periodo 1 (Step 2: Depurcal® MG 90 kg/h)</td>
<td>11,77</td>
<td>6,60</td>
<td>15,85</td>
<td>9,18</td>
<td>4,08</td>
<td>34,68</td>
</tr>
<tr>
<td></td>
<td>Periodo 1 (Step 3: Depurcal® MG 120 kg/h)</td>
<td>9,32</td>
<td>5,40</td>
<td>17,19</td>
<td>11,53</td>
<td>7,87</td>
<td>84,41</td>
</tr>
<tr>
<td>L2</td>
<td>Periodo 0 (Intero periodo)</td>
<td>15,94</td>
<td>8,60</td>
<td>22,80</td>
<td>15,35</td>
<td>6,85</td>
<td>42,99</td>
</tr>
<tr>
<td></td>
<td>Periodo 1 (Intero periodo)</td>
<td>15,94</td>
<td>8,60</td>
<td>22,80</td>
<td>15,35</td>
<td>7,18</td>
<td>51,83</td>
</tr>
<tr>
<td></td>
<td>Periodo 1 (Step 1: Depurcal® MG 60 kg/h)</td>
<td>13,84</td>
<td>7,36</td>
<td>21,02</td>
<td>14,42</td>
<td>15,32</td>
<td>97,31</td>
</tr>
<tr>
<td></td>
<td>Periodo 1 (Step 2: Depurcal® MG 90 kg/h)</td>
<td>15,74</td>
<td>8,60</td>
<td>31,07</td>
<td>21,50</td>
<td>1,25</td>
<td>8,27</td>
</tr>
<tr>
<td></td>
<td>Periodo 1 (Step 3; Depurcal® MG 120 kg/h)</td>
<td>15,08</td>
<td>8,43</td>
<td>16,32</td>
<td>6,44</td>
<td>7,50</td>
<td>56,41</td>
</tr>
</tbody>
</table>
Tabella 7.3 – Dosaggio stechiometrico e dosaggio reale di bicarbonato di sodio.

<table>
<thead>
<tr>
<th>Linea</th>
<th>Periodo</th>
<th>Dosaggio (\text{NaHCO}_3) [kg/h]</th>
<th>Teorico</th>
<th>Reale</th>
<th>Differenza [kg/h]</th>
<th>Variazione [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Media</td>
<td>Media</td>
<td>Deviazione standard</td>
<td>Deviazione standard</td>
</tr>
<tr>
<td>L3</td>
<td>Periodo 0 (Intero periodo)</td>
<td>344,62</td>
<td>151,66</td>
<td>385,88</td>
<td>167,12</td>
<td>41,26</td>
</tr>
<tr>
<td></td>
<td>Periodo 1 (Intero periodo)</td>
<td>226,77</td>
<td>119,53</td>
<td>383,61</td>
<td>200,29</td>
<td>156,84</td>
</tr>
<tr>
<td></td>
<td>Periodo 1 (Step 1: Depurcal® MG 60 kg/h)</td>
<td>290,71</td>
<td>119,27</td>
<td>434,81</td>
<td>225,59</td>
<td>144,09</td>
</tr>
<tr>
<td></td>
<td>Periodo 1 (Step 2: Depurcal® MG 90 kg/h)</td>
<td>253,50</td>
<td>127,94</td>
<td>350,60</td>
<td>155,76</td>
<td>97,10</td>
</tr>
<tr>
<td></td>
<td>Periodo 1 (Step 3: Depurcal® MG 120 kg/h)</td>
<td>198,24</td>
<td>101,89</td>
<td>386,78</td>
<td>207,79</td>
<td>188,54</td>
</tr>
<tr>
<td>L2</td>
<td>Periodo 0 (Intero periodo)</td>
<td>317,34</td>
<td>146,08</td>
<td>448,39</td>
<td>223,50</td>
<td>131,04</td>
</tr>
<tr>
<td></td>
<td>Periodo 1 (Intero periodo)</td>
<td>298,33</td>
<td>137,23</td>
<td>445,74</td>
<td>226,33</td>
<td>147,41</td>
</tr>
<tr>
<td></td>
<td>Periodo 1 (Step 1: Depurcal® MG 60 kg/h)</td>
<td>332,91</td>
<td>155,76</td>
<td>635,78</td>
<td>302,94</td>
<td>302,87</td>
</tr>
<tr>
<td></td>
<td>Periodo 1 (Step 2: Depurcal® MG 90 kg/h)</td>
<td>315,66</td>
<td>158,60</td>
<td>340,95</td>
<td>74,91</td>
<td>25,29</td>
</tr>
<tr>
<td></td>
<td>Periodo 1 (Step 3: Depurcal® MG 120 kg/h)</td>
<td>289,46</td>
<td>124,29</td>
<td>445,02</td>
<td>221,90</td>
<td>155,57</td>
</tr>
</tbody>
</table>
Come si nota dalla Tabella 7.2 e dalla Tabella 7.3, le variazioni tra i valori reali e quelli teorici sono sempre positive, evidenziando come il dosaggio reale risulti sempre maggiore del dosaggio teoricamente necessario. È interessante notare come in seguito al dosaggio di Depurcal®MG la portata stoechiometrica tende a diminuire in modo più che proporzionale in funzione degli step di dosaggio del reagente, mentre al contrario la portata realmente dosata in impianto è caratterizzata da un andamento anomalo. Lo stesso andamento si nota riferendosi ai consumi specifici. Nelle normali condizioni operative l’algoritmo di dosaggio calcola la massa acida totale data da HCl e SO$_2$ quindi calcola la quantità stoechiometrica di bicarbonato di sodio necessaria alla sua neutralizzazione a cui applica un eccesso pari al 30%; l’algoritmo viene ulteriormente corretto utilizzando dei parametri che aumentano ulteriormente il dosaggio con lo scopo di mantenere le emissioni a camino prossime a 2 mg/Nm3 per HCl e a 6 mg/Nm3 per SO$_2$. La differenza tra la portata di dosaggio reale e quella teorica prevista dall’algoritmo è imputabile ai dosaggi in modalità manuale effettuati dagli operatori. È stato valutato quindi con che frequenza l’impianto ricorra a un sovradosaggio attraverso il rapporto tra il numero di volte in cui è avvenuto un dosaggio superiore a quello teorico e il numero di dosaggi totali effettuati ogni ora nel periodo esaminato, rispettivamente dal giorno 1 gennaio 2017 alle ore 0:00 fino al 31 gennaio 2018 alle ore 23:00. Come si evince dalla Tabella 7.4 la linea maggiormente caratterizzata da sovradosaggi è la Linea 1.

Tabella 7.4 – Sovradosaggi di bicarbonato di sodio sulle 3 linee dell’impianto.

<table>
<thead>
<tr>
<th>#sovradosaggi Periodo 0</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4548</td>
<td>3119</td>
<td>2056</td>
</tr>
<tr>
<td>#sovradosaggi Periodo 1</td>
<td>1943</td>
<td>1680</td>
<td>1864</td>
</tr>
<tr>
<td>TOT dosaggi</td>
<td>7325</td>
<td>7147</td>
<td>7785</td>
</tr>
<tr>
<td>% volte sovradosaggio</td>
<td>88,61</td>
<td>67,15</td>
<td>50,35</td>
</tr>
</tbody>
</table>

Il bicarbonato di sodio non ha un effetto diretto sul mercurio bensì sulle concentrazioni di gas acidi che possono inibire l’adsorbimento di mercurio nella forma elementare (Hg0) sulla superficie del catalizzatore come discusso nel Paragrafo 5.4.2. I fenomeni di adsorbimento infatti possono essere invertiti quando la concentrazione di HCl nei fumi che raggiungono il catalizzatore si innalza. Per concentrazioni relativamente più elevate di HCl è favorito il desorbimento del mercurio dalla superficie del catalizzatore nella forma di HgCl$_2$ ed il suo rilascio al camino, causando così i picchi osservati. La logica con cui avviene un sovradosaggio è imputabile quindi ai picchi di mercurio registrati a camino e si verifica quando il dosaggio del bicarbonato di sodio viene forzato in manuale dagli operatori dell’impianto. È ragionevole affermare infatti che se il dosaggio di NaHCO$_3$ seguisse l’algoritmo di dosaggio non si avrebbero dei sovradosaggi rispetto alla quantità di bicarbonato di sodio da utilizzarsi per il controllo degli acidi. I sovradosaggi derivano dalla gestione in manuale da parte degli operatori del sistema di iniezione del bicarbonato di sodio con quantitativi, rispetto alla reale acidità presente, assai maggiori di quelli necessari per abbatterla.
Nello specifico si è indagato il legame tra il dosaggio di bicarbonato di sodio e il mercurio rilevato a camino in funzione dei periodi considerati (Periodo 0 e Periodo 1).

Qualora il dosaggio effettivo abbia superato il dosaggio teorico corrispondente, si è verificato se tale sovradosaggio fosse associato a un picco di mercurio registrato a camino. Tale verifica è stata effettuata imponendo una soglia di mercurio a camino pari a 25 µg/Nm³, pari alla metà del limite emissivo.

Se la soglia impostà viene superata il sovradosaggio è giustificato, altrimenti se non viene superata la soglia ma si verifica sovradosaggio è imputabile ad altre cause.

Quindi si è contato il numero di volte in cui avviene un sovradosaggio di bicarbonato in corrispondenza del superamento della soglia di mercurio a camino imposta nell’effettuazione dell’analisi (25 µg/Nm³) e se ne è valutata la frequenza rispetto ai sovradosaggi totali effettuati in impianto.

La soglia impostà è la stessa soglia di sicurezza presumibilmente adottata dagli operatori dell’impianto i quali, durante il periodo di studio considerato in questo elaborato, dosavano il bicarbonato di sodio in modalità “forzata” manuale laddove si registrasse un superamento. A tal proposito è opportuno tenere in considerazione come ogni operatore possieda una diversa sensibilità nel dosare il reagente sodico in funzione dei picchi registrati a camino e questo potrebbe portare a sovradosaggi difficilmente spiegabili da un punto di vista tecnico. Un ulteriore fattore da tenere presente circa i sovradosaggi registrati riguarda il momento della giornata in cui si verifica il superamento della soglia: dovendo rispettare un limite emissivo giornaliero di mercurio, il dosaggio di reagente sodico varierà a seconda che il picco si verifichi per esempio alle 2:00 di mattina, dove si dispone di tutto l’arco della giornata per mediare il valore registrato in maniera tale da garantire comunque il rispetto del limite di emissione giornaliero, o alle ore 22:00, quando non ci si può permettere di superare il valore limite e viene dosato molto bicarbonato di sodio per rientrare nei vincoli previsti.

In Tabella 7.5 sono riportati i valori relativi al numero di sovradosaggi imputabili al superamento della soglia di concentrazione di mercurio considerata nell’analisi e la percentuale del verificarsi degli stessi.

Tabella 7.5 – Analisi dei sovradosaggi di bicarbonato di sodio in corrispondenza dei superamenti della soglia prefissata.

<table>
<thead>
<tr>
<th>Linea</th>
<th>Scenari</th>
<th>#sovradosaggi</th>
<th>#sovradosaggi dovuti a superamento soglia</th>
<th>% volte sovradosaggio dovuto a superamento soglia</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Periodo 0</td>
<td>4548</td>
<td>653</td>
<td>14,36</td>
</tr>
<tr>
<td></td>
<td>Periodo 1</td>
<td>1943</td>
<td>124</td>
<td>6,38</td>
</tr>
<tr>
<td>L2</td>
<td>Periodo 0</td>
<td>3119</td>
<td>440</td>
<td>14,11</td>
</tr>
<tr>
<td></td>
<td>Periodo 1</td>
<td>1680</td>
<td>264</td>
<td>15,71</td>
</tr>
<tr>
<td>L3</td>
<td>Periodo 0</td>
<td>2056</td>
<td>196</td>
<td>9,53</td>
</tr>
<tr>
<td></td>
<td>Periodo 1</td>
<td>1864</td>
<td>264</td>
<td>14,16</td>
</tr>
</tbody>
</table>

È possibile notare dai risultati riportati (Tabella 7.5) come esista un legame tra i sovradosaggi e il superamento della soglia impostà. Tali risultati non giustificano completamente la natura del sovradosaggio ma forniscono
una valida delucidazione sulla metodologia seguita dagli operatori in impianto per tutelarsi da valori di concentrazione di mercurio a camino eccessivamente alti.

Il secondo aspetto verificato prevede di indagare qualora si registri un dosaggio reale inferiore al dosaggio teorico se tale condizione possa contribuire al superamento della soglia imposta da parte dei valori di mercurio. Questo potrebbe essere dovuto al mancato controllo sulla concentrazione di HCl in caldaia che va a interagire con il processo di adsorbimento del mercurio sulla superficie del catalizzatore.

Si è così contato il numero di volte per cui in corrispondenza di un sottodosaggio si registra il superamento della soglia imposta e si è valutata la frequenza con cui si verifica tale fenomeno rispetto ai sottodosaggi totali riscontrati in impianto. Osservando i risultati riportati in Tabella 7.6 si nota come i sottodosaggi contribuiscono in modo non marcato al superamento della soglia imposta. Si può dedurre che la presenza di valori di mercurio a camino superiori a 25 µg/Nm³ non sia attribuibile a un dosaggio deficitario di bicarbonato di sodio.

Tabella 7.6 – Analisi dei sottodosaggi di bicarbonato di sodio in corrispondenza della soglia prefissata.

<table>
<thead>
<tr>
<th>Linea</th>
<th>Scenari</th>
<th>#sottodosaggio</th>
<th>#superamenti della soglia dovuti a sottodosaggio</th>
<th>% volte superamento dovuto di sottodosaggio</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Periodo 0</td>
<td>588</td>
<td>26</td>
<td>4,42</td>
</tr>
<tr>
<td></td>
<td>Periodo 1</td>
<td>246</td>
<td>4</td>
<td>1,63</td>
</tr>
<tr>
<td>L2</td>
<td>Periodo 0</td>
<td>1752</td>
<td>30</td>
<td>1,71</td>
</tr>
<tr>
<td></td>
<td>Periodo 1</td>
<td>596</td>
<td>18</td>
<td>3,02</td>
</tr>
<tr>
<td>L3</td>
<td>Periodo 0</td>
<td>3030</td>
<td>34</td>
<td>1,12</td>
</tr>
<tr>
<td></td>
<td>Periodo 1</td>
<td>835</td>
<td>10</td>
<td>1,20</td>
</tr>
</tbody>
</table>

Dosando Depurcal®MG vengono quindi ridotte le concentrazioni di gas acidi (HCl e SO₂) in uscita dalla caldaia su cui si basa l’algoritmo di dosaggio del bicarbonato di sodio. Ne consegue che al diminuire delle concentrazioni di gas acidi diminuisce il dosaggio di bicarbonato di sodio necessario al contenimento delle concentrazioni in emissione entro i valori limite imposti. Ciò è statisticamente dimostrato tramite l’applicazione del test di correlazione di Pearson (Paragrafo 6.2.4) riportato in Tabella 7.7, e tramite la Figura 7.3 che mostra chiaramente come all’aumentare del dosaggio del reagente Depurcal®MG diminuisca il dosaggio di bicarbonato di sodio.

Tabella 7.7 – Risultati del test di correlazione di Pearson.

<table>
<thead>
<tr>
<th>Scenario - Sola L3</th>
<th>Ipotesi alternativa testata</th>
<th>Correlazione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\rho_{XY} \neq 0)</td>
<td>-0,297</td>
</tr>
<tr>
<td>(X = D_{Depurcal^\text{MG}}) [kg/h]</td>
<td>(Y = D_{NaHCO_3}) [kg/h]</td>
<td></td>
</tr>
<tr>
<td>L3 - Periodo 1 (Intero periodo)</td>
<td>(p\text{-value} = 4,28 \cdot 10^{-15})</td>
<td>-0,297</td>
</tr>
</tbody>
</table>
Figura 7.3 – Correlazione tra il dosaggio di Depurcal® MG e il dosaggio di bicarbonato di sodio.

Per valutare il risparmio di bicarbonato di sodio sono stati confrontati i valori di consumo specifico del reagente sodico in funzione dei diversi scenari di confronto riportati nel Paragrafo 7.1.1.

Per valutare il risparmio di bicarbonato R_{NaHCO_3} [%] viene applicata la seguente relazione (7.9):

$$R_{NaHCO_3} = \text{Risparmio}_{NaHCO_3} [\%] = \frac{(CS_{NaHCO_3,0} - CS_{NaHCO_3,1}) \cdot \frac{k g_{NaHCO_3}}{t_{rifiuti}}}{CS_{NaHCO_3,0} \cdot \frac{k g_{NaHCO_3}}{t_{rifiuti}}} \cdot 100$$ \hspace{1cm} (7.9)

dove per lo Scenario A (confronto dell’andamento della Linea 3 durante il Periodo 0 e il Periodo 1):

$CS_{NaHCO_3,0} \cdot \frac{k g_{NaHCO_3}}{t_{rifiuti}}$ rappresenta il valore di consumo specifico di bicarbonato di sodio, relativamente alla Linea 3 nel Periodo 0;

$CS_{NaHCO_3,1} \cdot \frac{k g_{NaHCO_3}}{t_{rifiuti}}$ rappresenta il valore di consumo specifico di bicarbonato di sodio, relativamente alla Linea 3 riferita all’intero Periodo 1 e agli step di dosaggio del reagente Depurcal® MG.

Per lo Scenario B (confronto tra la Linea 3 e la Linea 2, adottata come condizione di riferimento, durante il Periodo 1 relativamente all’intero periodo e ai tre step di dosaggio del reagente Depurcal® MG) si ha invece:

$CS_{NaHCO_3,0} \cdot \frac{k g_{NaHCO_3}}{t_{rifiuti}}$ rappresenta il valore di consumo specifico di bicarbonato di sodio, relativamente alla Linea 2 riferita all’intero Periodo 1 e agli step di dosaggio del reagente Depurcal® MG;
CS\textsubscript{\textit{NaHCO}}\textsubscript{3,1} \left[\frac{kg\textit{NaHCO}}{t\text{rifiuti}}\right] rappresenta il valore di consumo specifico di bicarbonato di sodio, relativamente alla Linea 3 riferita all’intero Periodo 1 e agli step di dosaggio del reagente Depurcal® MG.

Si ricorda come sia stata scelta la Linea 2 come linea di confronto con la Linea 3 per i motivi illustrati nel Paragrafo 6.1.3.

Un ragionamento diverso è stato applicato per quanto riguarda lo Scenario C (confronto in riferimento alla sola Linea 3 tra le ore in cui è avvenuto il dosaggio di Depurcal® MG e quelle in cui invece tale dosaggio non è avvenuto durante il Periodo 1). In questo caso è stato valutato quanto reagente sodico viene dosato in meno quando è dosato Depurcal® MG rispetto alle ore in cui il sorbente dolomitico non viene dosato. Per valutare questa variazione è stato necessario applicare la relazione 7.10:

\[V_t = \text{Variazione [\%]} = \left(\frac{CS_{\textit{NaHCO}}\textsubscript{3,1} - CS_{\textit{NaHCO}}\textsubscript{3,0}}{CS_{\textit{NaHCO}}\textsubscript{3,0}}\right) \cdot 100 \]

(7.10)

dove:

CS\textsubscript{\textit{NaHCO}}\textsubscript{3,1} \left[\frac{kg\textit{NaHCO}}{t\text{rifiuti}}\right] rappresenta il valore di consumo specifico di bicarbonato di sodio, relativamente alla Linea 3 riferito alle ore in cui avviene il dosaggio del reagente Depurcal® MG durante il Periodo 1;

CS\textsubscript{\textit{NaHCO}}\textsubscript{3,0} \left[\frac{kg\textit{NaHCO}}{t\text{rifiuti}}\right] rappresenta il valore di consumo specifico di bicarbonato di sodio, relativamente alla Linea 3 riferito alle ore in cui non avviene il dosaggio del reagente Depurcal® MG durante il Periodo 1.

I valori ottenuti nei 3 diversi scenari considerati (Scenario A, Scenario B e Scenario C) sono riportati rispettivamente in Tabella 7.8, Tabella 7.9 e Tabella 7.10. Per i valori di bicarbonato di sodio registrati in impianto relativi allo Scenario A si rimanda alla Tabella A7.1 in Appendice A7.

\textit{Tabella 7.8 – Risultati dei risparmi di bicarbonato riferiti allo Scenario A.}

<table>
<thead>
<tr>
<th>Scenario A</th>
<th>\textit{R}_{\text{Teorico}} [%]</th>
<th>\textit{R}_{\text{Reale}} [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3 - Periodo 0 vs L3 - Periodo 1 (Intero periodo)</td>
<td>37,64</td>
<td>9,33</td>
</tr>
<tr>
<td>L3 - Periodo 0 vs L3 - Periodo 1 (Step 1: Depurcal® MG 60 kg/h)</td>
<td>18,86</td>
<td>-7,03</td>
</tr>
<tr>
<td>L3 - Periodo 0 vs L3 - Periodo 1 (Step 2: Depurcal® MG 90 kg/h)</td>
<td>31,14</td>
<td>17,33</td>
</tr>
<tr>
<td>L3 - Periodo 0 vs L3 - Periodo 1 (Step 3: Depurcal® MG 120 kg/h)</td>
<td>45,46</td>
<td>10,34</td>
</tr>
</tbody>
</table>
I valori di risparmio riportati in Tabella 7.8 indicano il risparmio di reagente sodico ottenuto sulla Linea 3 nel Periodo 1 rispetto al Periodo 0 riferendosi sia al consumo specifico medio teorico (R_{teorico} [%]), valutato in funzione della portata teorica (relazione 7.7, Paragrafo 7.1.2) su cui si basa l’algoritmo di dosaggio in impianto, sia al consumo specifico medio reale (R_{reale} [%]), basato sul dosaggio reale che avviene in impianto affetto da sovradosaggi.

In seguito al dosaggio di Depurcal®MG sulla Linea 3 è stato registrato un risparmio di bicarbonato di sodio. Tale risparmio risulta maggiore nel caso teorico (Tabella 7.8).

Nello specifico analizzando il risparmio reale si nota che sebbene per un dosaggio pari a 60 kg/h si registri un mancato risparmio di bicarbonato di sodio (-7,03%), per gli scenari di dosaggio successivi (90 kg/h e 120 kg/h) si registra un risparmio rispettivamente del 17,33% e del 10,34%, che sono tuttavia inferiori a quanto si sarebbe potuto risparmiare se il dosaggio fosse avvenuto secondo i quantitativi derivati dall’algoritmo di calcolo e in assenza di condizioni di sovradosaggio in modalità “forzata” manuale (31,14% e 45,46%). Sembrerebbe quindi che l’aumento di Depurcal®MG non comporti una diminuzione proporzionale di reagente sodico, fenomeno che al contrario si registrerebbe qualora venisse effettuato un dosaggio teorico di bicarbonato di sodio continuativamente in modalità automatica sulla base di un fattore stechiometrico fissato. Tale condizione potrebbe essere imputabile alla natura eterogenea ed estremamente variabile dei rifiuti trattati dalla linea in esame sui diversi periodi temporali scelti e alla già citata presenza di picchi di mercurio in emissione con i conseguenti sovradosaggi di bicarbonato di sodio in modalità forzata in manuale.

<table>
<thead>
<tr>
<th>Scenario B</th>
<th>R_{teorico} [%]</th>
<th>R_{reale} [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2 - Periodo 1 vs L3 - Periodo 1 (Intero Periodo 1)</td>
<td>23,01</td>
<td>17,28</td>
</tr>
<tr>
<td>L2 - Periodo 1 vs L3 - Periodo 1 (Step 1: Depurcal®MG 60 kg/h)</td>
<td>11,91</td>
<td>33,93</td>
</tr>
<tr>
<td>L2 - Periodo 1 vs L3 - Periodo 1 (Step 2: Depurcal®MG 90 kg/h)</td>
<td>21,93</td>
<td>2,88</td>
</tr>
<tr>
<td>L2 - Periodo 1 vs L3 - Periodo 1 (Step 3: Depurcal®MG 120 kg/h)</td>
<td>29,86</td>
<td>17,30</td>
</tr>
</tbody>
</table>

I valori di risparmio riportati in Tabella 7.9 indicano il risparmio di reagente sodico ottenuto sulla Linea 3 rispetto alla Linea 2 durante il periodo di dosaggio del reagente Depurcal®MG (Periodo 1) riferendosi sia al consumo specifico medio teorico, valutato su entrambe le linee in funzione delle portate teoriche calcolate in precedenza su cui si basa l’algoritmo di dosaggio in impianto, sia al consumo specifico medio reale, basato sul dosaggio reale che avviene in entrambe le linee affetto da sovradosaggi.
I risultati ottenuti mostrano come per i dosaggi di Depurcal®MG pari a 60 kg/h, 90 kg/h e 120 kg/h si ottengano risparmi di bicarbonato di sodio sulla Linea 3 rispetto la Linea 2 pari rispettivamente a 33,93%, 2,88% e 17,30%. La natura di tali risultati è influenzata dall’eterogeneità intrinseca dei rifiuti alimentati sulle due linee dal momento che, sebbene le linee vengano confrontate sugli stessi periodi, è ragionevole supporre che per quanto simili le composizioni dei rifiuti trattati nel periodo in esame dalle due linee non saranno esattamente uguali tra loro. Si potrebbero tuttavia ottenere risparmi maggiori qualora avvenisse un dosaggio teorico di bicarbonato di sodio in impianto: all’aumentare del dosaggio di Depurcal®MG aumenta il risparmio di bicarbonato di sodio sulla Linea 3 in maniera proporzionale, registrando valori rispettivamente pari a 11,91%, 21,93% e 29,86% per i tre livelli di dosaggio. In Figura 7.4 è mostrato un andamento qualitativo riguardo la variazione del dosaggio del reagente sodico sulle due linee esaminate nello scenario considerato (Scenario B). In Figura 7.6 e in Figura 7.7 sono riportati i “box-plot” riferiti al dosaggio e al consumo specifico di bicarbonato in relazione ai due diversi scenari analizzati (Scenario A e Scenario B).

Infine è stato analizzato lo Scenario C. Nella Tabella 7.10 viene valutato durante il Periodo 1 quanto bicarbonato di sodio viene dosato in meno negli intervalli temporali in cui si dosa Depurcal®MG rispetto agli intervalli in cui tale reagente non viene dosato. Anche in questo caso le analisi sono condotte in riferimento sia al consumo specifico reale sia al consumo specifico teorico. Per i valori di bicarbonato di sodio registrati in impianto relativi allo Scenario C si rimanda alla Tabella A7.3 in Appendice A7.

Tabella 7.10 – Risparmio di bicarbonato di sodio – Scenario C.

<table>
<thead>
<tr>
<th>Scenario C</th>
<th>Variazione Teorica V_t [%]</th>
<th>Variazione Reale V_r [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3 Sì Depurcal®MG - Periodo 1 vs L3 No Depurcal®MG - Periodo 1 (Intero periodo)</td>
<td>-24,01</td>
<td>-10,57</td>
</tr>
<tr>
<td>L3 Sì Depurcal®MG - Periodo 1 vs L3 No Depurcal®MG - Periodo 1 (Step 1: Depurcal®MG 60 kg/h)</td>
<td>-16,65</td>
<td>-11,38</td>
</tr>
<tr>
<td>L3 Sì Depurcal®MG - Periodo 1 vs L3 No Depurcal®MG - Periodo 1 (Step 2: Depurcal®MG 90 kg/h)</td>
<td>-24,30</td>
<td>-8,04</td>
</tr>
<tr>
<td>L3 Sì Depurcal®MG - Periodo 1 vs L3 No Depurcal®MG - Periodo 1 (Step 3: Depurcal®MG 120 kg/h)</td>
<td>-30,97</td>
<td>-13,46</td>
</tr>
</tbody>
</table>

I risultati mostrano delle variazioni negative, sintomo di un dosaggio minore di bicarbonato durante i periodi in cui viene dosato Depurcal®MG. Questo è dovuto al fatto che il reagente dolomitico abbatte la concentrazione di gas acidi in caldaia, su cui si basa l’algoritmo di dosaggio del bicarbonato di sodio, determinando per
l’appunto un dosaggio minore nei periodi in cui avviene la pre-neutralizzazione dei gas acidi ad alta temperatura.

La variazione maggiore è ottenuta durante lo step di dosaggio pari a 120 kg/h del sorbente dolomitico dove, nelle ore in cui avviene dosaggio, si registra un minore consumo di bicarbonato di sodio (-13,46%). Tale valore sarebbe pari al -30,97% se ci si riferisse alle condizioni teoriche.

In Figura 7.5 è mostrato un andamento qualitativo riguardo la variazione del bicarbonato di sodio in funzione delle ore in cui è stato dosato o non è stato dosato il reagente Depurcal®MG.

![Andamento dosaggio bicarbonato](image-url)

Figura 7.4 – Andamento del dosaggio di bicarbonato di sodio - Scenario B.
Figura 7.5 – Andamento del dosaggio di bicarbonato di sodio - Scenario C.
Figura 7.6 – Box-plot relativi allo Scenario A: confronto tra dosaggio (in alto) e consumo specifico (in basso) di bicarbonato di sodio sulla Linea 3 durante il Periodo 0 e durante il Periodo 1, relativamente ai tre step di dosaggio di Depurcal® MG.
Figura 7.7 – Box-plot relativi allo Scenario B: confronto tra dosaggio (in alto) e consumo specifico (in basso) di bicarbonato di sodio tra la Linea 2 e la Linea 3 durante il Periodo 1, relativamente ai tre step di dosaggio di Depurcal® MG.
Il presente capitolo ha lo scopo di analizzare le prestazioni energetiche del termovalorizzatore di Torino sulla base del dosaggio del reagente Depurcal®MG valutando eventuali variazioni dei principali parametri registrati e relativi all’aspetto energetico dell’impianto, al fine di identificare possibili effetti positivi derivanti dall’utilizzo del sorbente dolomitico.

8.1 Materiali e metodi

8.1.1 Pulizia e gestione dei dati

Le analisi condotte nel presente capitolo sono svolte su dati depurati da eventuali transitori in grado di alterare e falsare la valutazione globale del fenomeno. In particolare, ad esempio, valori dovuti a eventuali fermate delle linee di incenerimento o valori dovuti a dati registrati di rifiuto alimentato durante il normale esercizio dell’impianto inferiori alla soglia di 5 t/h presa come riferimento. Successivamente tali dati sono stati suddivisi in funzione degli step di dosaggio del reagente Depurcal®MG, tenendo inoltre conto dei periodi d’esecuzione delle operazioni di pulizia della caldaia tramite microesplosioni (“micro-cariche”). Oltre agli apparati di pulizia fissi installati nei canali radianti (sistemi a doccia di getti d’acqua pressurizzata) e convettivi (sistema di percussione a martelli), esistono infatti ulteriori operazioni di pulizia della caldaia che vengono effettuate quando le consuete procedure non sono più sufficienti a garantire un buon livello di pulizia e un efficiente scambio termico. Tali operazioni, svolte da personale specializzato, sono per l’appunto effettuate facendo ricorso a microesplosioni che vengono innescate lungo tutta la lunghezza della sezione convettiva, interessando quindi la zona costituita da evaporatore, surriscaldatore ed economizzatore. In Tabella A9.1 (Appendice A9) sono riportati i giorni in cui è stata effettuata la suddetta operazione nei due periodi considerati (Periodo 0 antecedente alla sperimentazione; Periodo 1 in cui è stata effettuata la sperimentazione sulla Linea 3). Nel Periodo 1, caratterizzato dalla presenza del sorbente dolomitico Depurcal®MG, sono stati quindi individuati per ogni step di dosaggio del reagente 7 intervalli temporali (identificati con la lettera “M” e il numero progressivo da 1 a 7) su cui poter effettuare delle valutazioni (Tabella 8.1 e Tabella 8.2). Detti intervalli temporali sono stati definiti per ciascuno scenario analizzato, dal momento in cui l’operazione di pulizia con micro-cariche ha avuto termine con il ripristino della normale operatività della linea fino all’inizio della successiva operazione.
Tabella 8.1 – Giorni in cui sono innescate le micro-cariche per la Linea 3.

<table>
<thead>
<tr>
<th>Step</th>
<th>Sigla</th>
<th>Da: Inizio</th>
<th>Ore</th>
<th>Fine</th>
<th>A: Ore</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 kg/h</td>
<td>M1</td>
<td>26/09/2017</td>
<td>12:00</td>
<td>09/10/2017</td>
<td>14:00</td>
</tr>
<tr>
<td>90 kg/h</td>
<td>M2</td>
<td>13/10/2017</td>
<td>18:00</td>
<td>31/10/2017</td>
<td>9:00</td>
</tr>
<tr>
<td>120 kg/h</td>
<td>M3</td>
<td>28/11/2017</td>
<td>18:00</td>
<td>12/12/2017</td>
<td>9:00</td>
</tr>
<tr>
<td></td>
<td>M4</td>
<td>12/12/2017</td>
<td>18:00</td>
<td>21/12/2017</td>
<td>9:00</td>
</tr>
<tr>
<td></td>
<td>M5</td>
<td>21/12/2017</td>
<td>18:00</td>
<td>05/01/2018</td>
<td>9:00</td>
</tr>
<tr>
<td></td>
<td>M6</td>
<td>05/01/2018</td>
<td>18:00</td>
<td>16/01/2018</td>
<td>9:00</td>
</tr>
<tr>
<td></td>
<td>M7</td>
<td>24/01/2018</td>
<td>18:00</td>
<td>31/01/2018</td>
<td>9:00</td>
</tr>
</tbody>
</table>

L’attenta selezione di periodi temporali relativi ad avvenuta pulizia della caldaia consente di operare in maniera ottimale per quanto concerne le analisi del presente capitolo. Considerando questi periodi infatti si è in grado di effettuare un confronto tra i parametri energetici che sia il più possibile significativo, limitando i possibili effetti di una fase di sporcoamento più avanzata di una linea rispetto alle altre.

Tabella 8.2 – Periodi considerati per il confronto tra la Linea 2 e la Linea 3.

<table>
<thead>
<tr>
<th>Step</th>
<th>Sigla</th>
<th>Da: Inizio</th>
<th>Ore</th>
<th>Fine</th>
<th>A: Ore</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 kg/h</td>
<td>M1</td>
<td>26/09/2017</td>
<td>18:00</td>
<td>09/10/2017</td>
<td>14:00</td>
</tr>
<tr>
<td>90 kg/h</td>
<td>M2</td>
<td>13/10/2017</td>
<td>18:00</td>
<td>19/10/2017</td>
<td>9:00</td>
</tr>
<tr>
<td>120 kg/h</td>
<td>M3</td>
<td>29/11/2017</td>
<td>18:00</td>
<td>12/12/2017</td>
<td>9:00</td>
</tr>
<tr>
<td></td>
<td>M4</td>
<td>13/12/2017</td>
<td>18:00</td>
<td>21/12/2017</td>
<td>9:00</td>
</tr>
<tr>
<td></td>
<td>M5</td>
<td>22/12/2017</td>
<td>18:00</td>
<td>04/01/2018</td>
<td>9:00</td>
</tr>
<tr>
<td></td>
<td>M6</td>
<td>05/01/2018</td>
<td>18:00</td>
<td>16/01/2018</td>
<td>9:00</td>
</tr>
<tr>
<td></td>
<td>M7</td>
<td>24/01/2018</td>
<td>18:00</td>
<td>31/01/2018</td>
<td>9:00</td>
</tr>
</tbody>
</table>

8.1.2 Scenari considerati e parametri utilizzati

Per poter svolgere lo studio comparativo dei possibili effetti derivanti dal dosaggio del sorbente dolomitico, sono stati prelevati da ciascuna delle tre linee di termovalorizzazione dei campioni di ceneri relative al tratto iniziale e finale della sezione convettiva della caldaia e al filtro elettrostatico.

In primo luogo, grazie ad una serie di immagini fotografiche dei campioni di ceneri, è stato possibile apprezzare in maniera qualitativa il differente aspetto strutturale e morfologico delle polveri della Linea 3 (affette dalla presenza di Depurcal® MG) rispetto a quelle delle altre linee (Linea 1 e Linea 2): tali differenze sono state successivamente approfondite sulla base delle analisi chimiche e granulometriche ottenute sui medesimi campioni, effettuate presso il Laboratorio Centrale del Gruppo Unicalce S.p.A.

Sui campioni prelevati per le tre linee all’altezza del tratto iniziale della sezione convettiva della caldaia sono state inoltre eseguite, presso il Laboratorio Biomasse dell’Università Politecnica delle Marche, delle specifiche analisi per valutare la tendenza alla fusibilità delle ceneri. Queste analisi hanno lo scopo di identificare se il reagente Depurcal® MG additivato in Linea 3 possa o meno modificare le caratteristiche delle ceneri stesse ed il loro comportamento alle alte temperature in caldaia.
È stata quindi investigata l’evoluzione delle temperature registrate in diverse sezioni della caldaia monitorando il loro andamento ed eventuali variazioni. Lo scopo di questa indagine è quello di esaminare le alterazioni delle proprietà delle ceneri che potrebbero essere la causa della formazione di depositi più fragili e friabili, quindi più facilmente asportabili con i sistemi di pulizia fissi installati nei vari tratti di caldaia. Questo si traduce in un generale miglioramento nella trasmissione del calore.

Le successive analisi sono state svolte in riferimento alle sole ore in cui avviene il dosaggio del reagente Depurcal®MG e riguardano la valutazione di eventuali differenze di temperatura tra il lato destro ed il lato sinistro in diversi punti della caldaia (Tabella 8.3). Questa analisi è stata svolta in modo da poter verificare, possibili comportamenti differenti tra il lato destro e il lato sinistro della caldaia a causa di una poco efficace dispersione nei fumi del sorbente Depurcal®MG, potenzialmente dovuta alla presenza di setti separatori nel secondo e terzo canale radiante.

In primo luogo è stata considerata la sola Linea 3 durante il Periodo 1 (relativamente ai tre step di dosaggio di Depurcal®MG, in riferimento a quanto riportato al Paragrafo 8.1.1 circa le fasi di pulizia della caldaia). Si ricorda che il dosaggio del reagente Depurcal®MG avviene sul lato destro della caldaia (Capitolo 6, Figura 6.6). Attraverso il confronto tra le temperature sui due lati della caldaia e tra la temperatura media tra il lato sinistro e destro, si può comprendere se il dosaggio del sorbente dolomitico sia affetto da fenomeni di limitata dispersione nel flusso gassoso. Tale ipotesi sarebbe confermata qualora si rilevasse una temperatura dei fumi sul lato destro minore di quella sul lato sinistro al termine delle operazioni di pulizia con micro-cariche.

Tabella 8.3 – Temperature selezionate per le analisi.

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Sigla</th>
<th>Unità di misura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura fumi cielo caldaia</td>
<td>(T_{\text{cielo}})</td>
<td>°C</td>
</tr>
<tr>
<td>Temperatura uscita secondo giro fumi</td>
<td>(T_{2^\text{°giro}})</td>
<td>°C</td>
</tr>
<tr>
<td>Temperatura uscita terzo giro fumi</td>
<td>(T_{3^\text{°giro}})</td>
<td>°C</td>
</tr>
<tr>
<td>Temperatura fumi uscita EVA (1)</td>
<td>(T_{\text{EVA}})</td>
<td>°C</td>
</tr>
<tr>
<td>Temperatura fumi uscita SHT (2)</td>
<td>(T_{\text{SHT}})</td>
<td>°C</td>
</tr>
<tr>
<td>Temperatura fumi uscita SMT (3)</td>
<td>(T_{\text{SMT}})</td>
<td>°C</td>
</tr>
<tr>
<td>Temperatura fumi uscita SBT2 (4)</td>
<td>(T_{\text{SBT2}})</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note:

(1) – Con la sigla EVA ci si riferisce al vaporizzatore;
(2) – Con la sigla SHT ci si riferisce al surriscaldatore ad alta temperatura;
(3) – Con la sigla SMT ci si riferisce al surriscaldatore a media temperatura;
(4) – Con la sigla SBT2 ci si riferisce al surriscaldatore a bassa temperatura. Sono presenti in impianto due banchi distinti di surriscaldatori a bassa temperatura, indicati con SBT1 e SBT2.

In secondo luogo sono state confrontate le eventuali differenze di temperatura tra il lato destro, il lato sinistro e la media tra il lato sinistro e destro della caldaia per quanto concerne la Linea 3 durante il Periodo 1 e la Linea 2 durante il Periodo 1 (relativamente ai tre step di dosaggio di Depurcal®MG, e considerando quanto riportato al
8.1.1 circa le fasi di pulizia della caldaia).

Le analisi sono state ripetute avendo come oggetto il confronto tra le ore in cui è avvenuto il dosaggio del sorbente dolomitico e le ore in cui tale dosaggio non ha avuto luogo sulla Linea 3 durante il Periodo 1.

Infine è stato analizzato l’andamento dei profili di temperatura media del lato fumi registrati a seguito delle operazioni di pulizia effettuate con micro-cariche, confrontando gli andamenti della Linea 3 e della Linea 2. Questa valutazione è stata effettuata con lo scopo di osservare se tali operazioni risultassero più o meno efficaci in virtù delle differenti caratteristiche delle ceneri in seguito al dosaggio del sorbente Depurcal®MG.

8.2 Valutazione delle prestazioni energetiche – Risultati e discussione

8.2.1 Analisi delle caratteristiche delle ceneri

La modificazione delle caratteristiche strutturali e morfologiche delle ceneri di combustione a seguito dell’interazione del sorbente dolomitico Depurcal®MG può riflettersi in un’alterazione della reologia e della tendenza a fondere delle ceneri leggere di caldaia per innalzamento del loro punto di fusione. Questa alterazione rende tali ceneri più friabili e più facilmente asportabili dalle superfici di scambio termico, tramite l’azione dell’effluente gassoso stesso oppure attraverso le ordinarie operazioni di pulizia. Questo tipo di caratteristiche sono apprezzabili osservando la Capitolo 6, Tabella 6.3, nella quale è riportato l’effetto che il dosaggio di Depurcal®MG manifesta circa la variazione delle caratteristiche delle ceneri generate dal processo di incenerimento dei rifiuti.

Presso il termovalorizzatore di Torino sono stati prelevati in data 12/01/2018 (con dosaggio di Depurcal®MG pari a 120 kg/h) una serie di campioni di ceneri volanti al fine di apprezzare qualitativamente una eventuale variazione delle proprietà delle ceneri confrontando le tre linee. I campioni sono stati prelevati (Figura 8.1):

- Dalla tramoggia relativa al tratto iniziale della sezione di scambio convettivo della caldaia;
- Dalla tramoggia relativa al tratto finale della sezione di scambio convettivo della caldaia;
- Dalla tramoggia relativa al precipitatore elettrostatico.
Figura 8.1 – Dettaglio della sezione della camera di combustione e della linea. Si possono apprezzare:

◊ il punto di prelievo delle ceneri relativo al tratto iniziale della sezione di scambio convettivo della caldaia;

◊ il punto di prelievo delle ceneri relativo al tratto finale della sezione di scambio convettivo della caldaia;

◊ il punto di prelievo delle ceneri relativo al precipitatore elettrostatico.

Dalle immagini riportate in Figura 8.2, Figura 8.3 e Figura 8.4 è possibile apprezzare in modo qualitativo le differenti caratteristiche presentate dalle ceneri raccolte nelle tramogge delle tre linee di termovalorizzazione.

È facilmente apprezzabile la minore granulometria delle ceneri raccolte lungo la Linea 3 (ove avviene il dosaggio di Depurcal®MG): da una prima analisi visiva dei campioni prelevati è possibile osservare come il dosaggio del prodotto sia in grado di rendere le ceneri leggere complessivamente più polverulente e fini. In assenza del sorbente dolomitico, invece, le ceneri manifestano un aspetto granuloso e sono caratterizzate da un maggiore grado di disuniformità.

Da tali immagini si denota inoltre la presenza di piccole scaglie o agglomerati di media taglia per quanto concerne i campioni prelevati lungo la Linea 1 e la Linea 2 (apprezzabile in tutte e tre le figure, ma in maniera più marcata per la Figura 8.3 – Linea 1). È quindi possibile notare l’assenza di tali agglomerati e la maggiore polverosità presentata dalle ceneri provenienti dai prelievi relativi alla Linea 3 dove avviene il dosaggio di Depurcal®MG. In virtù della presenza della componente dolomitica e alla proprietà dell’elemento magnesio di originare composti con punto di fusione più elevato, il sorbente è in grado di rendere i depositi più fragili, friabili e quindi più facilmente rimuovibili dalle superfici.

Sono state successivamente effettuate, presso il Laboratorio Centrale del Gruppo Unicalce S.p.A., le analisi chimica e granulometrica (tramite setacciatura a scuotimento e diffrazione laser) sui campioni prelevati (Tabella 8.4, Tabella 8.5 e Tabella 8.6). I risultati dell’analisi chimica mostrano come la componente magnesica, introdotta in Linea 3 dal dosaggio di Depurcal®MG, presenti percentuali superiori rispetto alla Linea 2 ed alla Linea 1. Tali percentuali si mantengono maggiori a quelle rilevate nelle altre linee fino
all’altezza del precipitatore elettrostatico, a testimonianza di come il sorbente venga veicolato dal flusso
gassoso lungo tutta la caldaia fino ad arrivare all’elettrofiltro. L’effetto sulla frazione relativa al calcio è molto
meno apprezzabile dal momento che tale componente risulta essere normalmente presente in percentuali non
trascurabili nelle ceneri derivanti dalla combustione di rifiuti urbani (Hielmar, 1996; Belevi e Moench, 2000).

Un aspetto particolarmente rilevante è osservabile dall’analisi granulometrica effettuata mediante setacciatura
a vibrazione, con una serie di setacci impilati a dimensioni di maglia decrescenti. I dati riportati in Tabella 8.4,
in Tabella 8.5 e in Tabella 8.6 mostrano in maniera evidente come le frazioni percentuali di particelle passanti
per le differenti dimensioni di maglia dei setacci (e in particolare per il setaccio con luce pari a 90 µm) siano
sensibilmente superiori nella Linea 3 rispetto alle altre due linee. Tale risultato conferma come il campione
analizzato laddove avvenga dosaggio di Depurcal®MG sia caratterizzato da polveri più fini, con un effetto
particolarmente evidente nel tratto iniziale della sezione convettiva della caldaia. Risultati meno marcati si
registrano all’altezza del tratto finale della sezione convettiva e del filtro elettrostatico.

Per completezza d’indagine si è provveduto all’effettuazione di un’ulteriore analisi granulometrica per
diffrazione laser sulla frazione di particelle con dimensione inferiore a 90 µm. In Tabella 8.7 vengono riportati
i diametri caratteristici della distribuzione granulometrica della frazione fine delle ceneri. Anche in questo caso
è possibile osservare come il diametro medio particellare sia inferiore per quanto concerne la Linea 3 rispetto
tutte le altre linee, con l’unica eccezione della Linea 2 per il campione prelevato nel tratto iniziale della sezione
convettiva della caldaia. I risultati sintetizzano la distribuzione granulometrica, sia in termini di diametro
medio delle particelle sia in termini di diametri caratteristici (d10, d50 e d90, da intendersi come percentili della
curva cumulativa di distribuzione granulometrica).

Le curve di distribuzione granulometrica cumulata sono riportate in Figura 8.5 assieme ai valori riguardanti la
distribuzione di frequenza relativa per le varie classi dimensionali del campione. Complessivamente, i risultati
confermano una serie di evidenze disponibili in letteratura relative al beneficio impiantistico indotto
dall’utilizzo di composti a base di magnesio in termini di un’azione di miglioramento delle caratteristiche delle
ceneri generate dalla combustione (friabilità, fragilità e facilità di asportazione). In particolare, per quanto
concerne il reagente Depurcal®MG, una serie di studi precedenti si allineano a tali evidenze: Tornaghi (2012)
per l’impianto di Valmadrera (LC), Vergani (2012) relativamente al termovalorizzatore Silla 2 di Milano,
Racanella (2013) per il termovalorizzatore di Como e Cavalli (2014) per l’impianto di Dalmine (BG).
Figura 8.3 – Dettaglio delle ceneri prelevate lungo le tre linee all’altezza del tratto finale della sezione convettiva.
Figura 8.4 – Dettaglio delle ceneri prelevate lungo le tre linee all’altezza del precipitatore elettrostatico.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>DATA</td>
<td>DATA</td>
</tr>
<tr>
<td>12 gennaio 2018</td>
<td>12 gennaio 2018</td>
<td>12 gennaio 2018</td>
</tr>
<tr>
<td>CAMPIONE</td>
<td>CAMPIONE</td>
<td>CAMPIONE</td>
</tr>
<tr>
<td>Ceneri volanti</td>
<td>Ceneri volanti</td>
<td>Ceneri volanti</td>
</tr>
<tr>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>L1_1</td>
<td>L2_1</td>
<td>L3_1</td>
</tr>
<tr>
<td>Codice</td>
<td>Codice</td>
<td>Codice</td>
</tr>
<tr>
<td>3008/18</td>
<td>3011/18</td>
<td>3014/18</td>
</tr>
<tr>
<td>LINEA</td>
<td>LINEA</td>
<td>LINEA</td>
</tr>
<tr>
<td>LINEA 1 (NO Depurcal®MG)</td>
<td>LINEA 2 (NO Depurcal®MG)</td>
<td>LINEA 3 (SI Depurcal®MG)</td>
</tr>
<tr>
<td>CALDAIA (tratto iniziale sezione convettiva)</td>
<td>CALDAIA (tratto iniziale sezione convettiva)</td>
<td>CALDAIA (tratto iniziale sezione convettiva)</td>
</tr>
<tr>
<td>PUNTO CAMPIONAMENTO</td>
<td>PUNTO CAMPIONAMENTO</td>
<td>PUNTO CAMPIONAMENTO</td>
</tr>
<tr>
<td>Analisi Chimica</td>
<td>Analisi Chimica</td>
<td>Analisi Chimica</td>
</tr>
<tr>
<td>CaO [%]</td>
<td>CaO [%]</td>
<td>CaO [%]</td>
</tr>
<tr>
<td>33,67 ± 0,50</td>
<td>29,06 ± f.c.v.*</td>
<td>32,21 ± 0,48</td>
</tr>
<tr>
<td>MgO [%]</td>
<td>MgO [%]</td>
<td>MgO [%]</td>
</tr>
<tr>
<td>7,77 ± 0,58</td>
<td>5,36 ± 0,67</td>
<td>10,17 ± 0,52</td>
</tr>
<tr>
<td>Analisi granulometrica (setacciatura a scuotimento)</td>
<td>Analisi granulometrica (setacciatura a scuotimento)</td>
<td>Analisi granulometrica (setacciatura a scuotimento)</td>
</tr>
<tr>
<td>Setacci ISO 3310-1</td>
<td>Setacci ISO 3310-1</td>
<td>Setacci ISO 3310-1</td>
</tr>
<tr>
<td>Residuo [%]</td>
<td>Passante [%]</td>
<td>Residuo [%]</td>
</tr>
<tr>
<td>5,6 mm</td>
<td>0,00</td>
<td>5,6 mm</td>
</tr>
<tr>
<td>4,0 mm</td>
<td>2,89</td>
<td>4,0 mm</td>
</tr>
<tr>
<td>2,0 mm</td>
<td>5,48</td>
<td>2,0 mm</td>
</tr>
<tr>
<td>1,0 mm</td>
<td>8,98</td>
<td>1,0 mm</td>
</tr>
<tr>
<td>0,5 mm</td>
<td>18,42</td>
<td>0,5 mm</td>
</tr>
<tr>
<td>0,200 mm</td>
<td>43,13</td>
<td>0,200 mm</td>
</tr>
<tr>
<td>0,090 mm</td>
<td>71,79</td>
<td>0,090 mm</td>
</tr>
<tr>
<td>Passante [%]</td>
<td>100,00</td>
<td>100,00</td>
</tr>
<tr>
<td>97,11</td>
<td>1,00</td>
<td>99,00</td>
</tr>
<tr>
<td>94,52</td>
<td>2,56</td>
<td>97,44</td>
</tr>
<tr>
<td>91,02</td>
<td>8,33</td>
<td>91,67</td>
</tr>
<tr>
<td>81,58</td>
<td>30,53</td>
<td>69,47</td>
</tr>
<tr>
<td>56,87</td>
<td>68,62</td>
<td>31,38</td>
</tr>
<tr>
<td>28,21</td>
<td>83,50</td>
<td>16,50</td>
</tr>
<tr>
<td>43,13</td>
<td>10,57</td>
<td>89,43</td>
</tr>
<tr>
<td>71,79</td>
<td>41,60</td>
<td>58,40</td>
</tr>
</tbody>
</table>

f.c.v.: fuori dal campo di valutazione dell’incertezza estesa associata alla misura con un livello di fiducia del 95% e fattore di copertura k calcolato in base ai gradi di libertà effettivi.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>DATA</td>
<td>DATA</td>
</tr>
<tr>
<td>12 gennaio 2018</td>
<td>12 gennaio 2018</td>
<td>12 gennaio 2018</td>
</tr>
<tr>
<td>CAMPIONE</td>
<td>CAMPIONE</td>
<td>CAMPIONE</td>
</tr>
<tr>
<td>Ceneri volanti</td>
<td>Ceneri volanti</td>
<td>Ceneri volanti</td>
</tr>
<tr>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>L1_1</td>
<td>L2_1</td>
<td>L3_1</td>
</tr>
<tr>
<td>Codice</td>
<td>Codice</td>
<td>Codice</td>
</tr>
<tr>
<td>3008/18</td>
<td>3011/18</td>
<td>3014/18</td>
</tr>
<tr>
<td>LINEA</td>
<td>LINEA</td>
<td>LINEA</td>
</tr>
<tr>
<td>LINEA 1 (NO Depurcal®MG)</td>
<td>LINEA 2 (NO Depurcal®MG)</td>
<td>LINEA 3 (SI Depurcal®MG)</td>
</tr>
<tr>
<td>CALDAIA (tratto finale sezione convettiva)</td>
<td>CALDAIA (tratto finale sezione convettiva)</td>
<td>CALDAIA (tratto finale sezione convettiva)</td>
</tr>
<tr>
<td>PUNTO CAMPIONAMENTO</td>
<td>PUNTO CAMPIONAMENTO</td>
<td>PUNTO CAMPIONAMENTO</td>
</tr>
<tr>
<td>CAMPIONAMENTO</td>
<td>CAMPIONAMENTO</td>
<td>CAMPIONAMENTO</td>
</tr>
<tr>
<td>CALDAIA (tratto finale sezione convettiva)</td>
<td>CALDAIA (tratto finale sezione convettiva)</td>
<td>CALDAIA (tratto finale sezione convettiva)</td>
</tr>
<tr>
<td>Analisi Chimica</td>
<td>Analisi Chimica</td>
<td>Analisi Chimica</td>
</tr>
<tr>
<td>CaO [%]</td>
<td>CaO [%]</td>
<td>CaO [%]</td>
</tr>
<tr>
<td>32,23 ± 0,48</td>
<td>30,15 ± f.c.v. *</td>
<td>22,86 ± f.c.v. *</td>
</tr>
<tr>
<td>MgO [%]</td>
<td>MgO [%]</td>
<td>MgO [%]</td>
</tr>
<tr>
<td>4,97 ± 0,69</td>
<td>5,45 ± 0,67</td>
<td>6,38 ± 0,63</td>
</tr>
<tr>
<td>Analisi granulometrica (setacciatura a scuotimento)</td>
<td>Analisi granulometrica (setacciatura a scuotimento)</td>
<td>Analisi granulometrica (setacciatura a scuotimento)</td>
</tr>
<tr>
<td>Setacci ISO 3310-1</td>
<td>Setacci ISO 3310-1</td>
<td>Setacci ISO 3310-1</td>
</tr>
<tr>
<td>Residuo [%]</td>
<td>Passante [%]</td>
<td>Residuo [%]</td>
</tr>
<tr>
<td>5,6 mm</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>100,00</td>
<td>100,00</td>
</tr>
<tr>
<td>4,0 mm</td>
<td>3,66</td>
<td>4,0 mm</td>
</tr>
<tr>
<td></td>
<td>96,34</td>
<td>0,00</td>
</tr>
<tr>
<td>2,0 mm</td>
<td>8,74</td>
<td>2,0 mm</td>
</tr>
<tr>
<td></td>
<td>91,26</td>
<td>0,22</td>
</tr>
<tr>
<td>1,0 mm</td>
<td>12,20</td>
<td>1,0 mm</td>
</tr>
<tr>
<td></td>
<td>87,80</td>
<td>1,03</td>
</tr>
<tr>
<td>0,5 mm</td>
<td>17,89</td>
<td>0,5 mm</td>
</tr>
<tr>
<td></td>
<td>82,11</td>
<td>8,22</td>
</tr>
<tr>
<td>0,200 mm</td>
<td>40,24</td>
<td>0,200 mm</td>
</tr>
<tr>
<td></td>
<td>59,76</td>
<td>45,74</td>
</tr>
<tr>
<td>0,090 mm</td>
<td>60,77</td>
<td>0,090 mm</td>
</tr>
<tr>
<td></td>
<td>39,23</td>
<td>84,21</td>
</tr>
</tbody>
</table>
| **f.c.v.:** fuori dal campo di valutazione dell’incertezza estesa associata alla misura con un livello di fiducia del 95% e fattore di copertura k calcolato in base ai gradi di libertà effettivi.**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>DATA</td>
<td>DATA</td>
</tr>
<tr>
<td>12 gennaio 2018</td>
<td>12 gennaio 2018</td>
<td>12 gennaio 2018</td>
</tr>
<tr>
<td>CAMPIONE</td>
<td>CAMPIONE</td>
<td>CAMPIONE</td>
</tr>
<tr>
<td>Ceneri volanti</td>
<td>Ceneri volanti</td>
<td>Ceneri volanti</td>
</tr>
<tr>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>L1_1</td>
<td>L2_1</td>
<td>L3_1</td>
</tr>
<tr>
<td>Codice</td>
<td>Codice</td>
<td>Codice</td>
</tr>
<tr>
<td>3008/18</td>
<td>3011/18</td>
<td>3014/18</td>
</tr>
<tr>
<td>LINEA</td>
<td>LINEA</td>
<td>LINEA</td>
</tr>
<tr>
<td>LINEA 1 (NO Depurcal®MG)</td>
<td>LINEA 2 (NO Depurcal®MG)</td>
<td>LINEA 3 (SI Depurcal®MG)</td>
</tr>
<tr>
<td>PUNTO CAMPIONAMENTO</td>
<td>PUNTO CAMPIONAMENTO</td>
<td>PUNTO CAMPIONAMENTO</td>
</tr>
<tr>
<td>FILTRO ELETTROSTATICO</td>
<td>FILTRO ELETTROSTATICO</td>
<td>FILTRO ELETTROSTATICO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analisi Chimica</th>
<th>Analisi Chimica</th>
<th>Analisi Chimica</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaO [%]</td>
<td>15,53 ± f.c.v.*</td>
<td>CaO [%]</td>
</tr>
<tr>
<td>MgO [%]</td>
<td>3,28 ± 0,77</td>
<td>MgO [%]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analisi granulometrica (setacciatura a scuotimento)</th>
<th>Analisi granulometrica (setacciatura a scuotimento)</th>
<th>Analisi granulometrica (setacciatura a scuotimento)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setacci ISO 3310-1</td>
<td>Residuo [%]</td>
<td>Passante [%]</td>
</tr>
<tr>
<td>5,6 mm</td>
<td>0,00</td>
<td>100,00</td>
</tr>
<tr>
<td>4,0 mm</td>
<td>0,00</td>
<td>100,00</td>
</tr>
<tr>
<td>2,0 mm</td>
<td>0,00</td>
<td>100,00</td>
</tr>
<tr>
<td>1,0 mm</td>
<td>1,09</td>
<td>98,91</td>
</tr>
<tr>
<td>0,5 mm</td>
<td>3,08</td>
<td>96,92</td>
</tr>
<tr>
<td>0,200 mm</td>
<td>26,99</td>
<td>73,01</td>
</tr>
<tr>
<td>0,090 mm</td>
<td>91,39</td>
<td>8,61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setacci ISO 3310-1</td>
<td>Residuo [%]</td>
<td>Passante [%]</td>
</tr>
<tr>
<td>5,6 mm</td>
<td>0,00</td>
<td>100,00</td>
</tr>
<tr>
<td>4,0 mm</td>
<td>0,00</td>
<td>100,00</td>
</tr>
<tr>
<td>2,0 mm</td>
<td>0,00</td>
<td>100,00</td>
</tr>
<tr>
<td>1,0 mm</td>
<td>1,09</td>
<td>98,91</td>
</tr>
<tr>
<td>0,5 mm</td>
<td>3,08</td>
<td>96,92</td>
</tr>
<tr>
<td>0,200 mm</td>
<td>26,99</td>
<td>73,01</td>
</tr>
<tr>
<td>0,090 mm</td>
<td>91,39</td>
<td>8,61</td>
</tr>
</tbody>
</table>

*f.c.v.: fuori dal campo di valutazione dell’incertezza estesa associata alla misura con un livello di fiducia del 95% e fattore di copertura k calcolato in base ai gradi di libertà effettivi.
Tabella 8.7 – Dettaglio delle ceneri prelevate ($d_{p} < 0,090$ mm) lungo le tre linee all’altezza dei tre punti di campionamento. Analisi granulometrica (diffrazione laser). (Laboratorio centrale Unicalce S.p.A., 2018).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LINEA</td>
<td>LINEA</td>
<td>LINEA</td>
</tr>
<tr>
<td>Analisi granulometrica</td>
<td>Analisi granulometrica</td>
<td>Analisi granulometrica</td>
</tr>
<tr>
<td>(diffrazione laser)</td>
<td>(diffrazione laser)</td>
<td>(diffrazione laser)</td>
</tr>
<tr>
<td>[$d_{p} < 0,090$ mm]</td>
<td>[$d_{p} < 0,090$ mm]</td>
<td>[$d_{p} < 0,090$ mm]</td>
</tr>
<tr>
<td>PUNTO CAMPIONAM.</td>
<td>PUNTO CAMPIONAM.</td>
<td>PUNTO CAMPIONAM.</td>
</tr>
<tr>
<td>CALDAIA</td>
<td>CALDAIA</td>
<td>CALDAIA</td>
</tr>
<tr>
<td>(tratto iniziale sezione convettiva)</td>
<td>(tratto iniziale sezione convettiva)</td>
<td>(tratto iniziale sezione convettiva)</td>
</tr>
<tr>
<td>Diametri caratteristici</td>
<td>Diametri caratteristici</td>
<td>Diametri caratteristici</td>
</tr>
<tr>
<td>(percentili distribuzione)</td>
<td>(percentili distribuzione)</td>
<td>(percentili distribuzione)</td>
</tr>
<tr>
<td>Dimensione particelle [µm]</td>
<td>Dimensione particelle [µm]</td>
<td>Dimensione particelle [µm]</td>
</tr>
<tr>
<td>d_{10}</td>
<td>d_{10}</td>
<td>d_{10}</td>
</tr>
<tr>
<td>11,160</td>
<td>10,736</td>
<td>12,874</td>
</tr>
<tr>
<td>d_{50}</td>
<td>d_{50}</td>
<td>d_{50}</td>
</tr>
<tr>
<td>36,912</td>
<td>33,334</td>
<td>37,389</td>
</tr>
<tr>
<td>d_{90}</td>
<td>d_{90}</td>
<td>d_{90}</td>
</tr>
<tr>
<td>76,543</td>
<td>73,209</td>
<td>73,998</td>
</tr>
<tr>
<td>$d_{p,medio}$</td>
<td>$d_{p,medio}$</td>
<td>$d_{p,medio}$</td>
</tr>
<tr>
<td>41,747</td>
<td>38,185</td>
<td>40,849</td>
</tr>
<tr>
<td>PUNTO CAMPIONAM.</td>
<td>PUNTO CAMPIONAM.</td>
<td>PUNTO CAMPIONAM.</td>
</tr>
<tr>
<td>CALDAIA</td>
<td>CALDAIA</td>
<td>CALDAIA</td>
</tr>
<tr>
<td>(tratto finale sezione convettiva)</td>
<td>(tratto finale sezione convettiva)</td>
<td>(tratto finale sezione convettiva)</td>
</tr>
<tr>
<td>Diametri caratteristici</td>
<td>Diametri caratteristici</td>
<td>Diametri caratteristici</td>
</tr>
<tr>
<td>(percentili distribuzione)</td>
<td>(percentili distribuzione)</td>
<td>(percentili distribuzione)</td>
</tr>
<tr>
<td>Dimensione particelle [µm]</td>
<td>Dimensione particelle [µm]</td>
<td>Dimensione particelle [µm]</td>
</tr>
<tr>
<td>d_{10}</td>
<td>d_{10}</td>
<td>d_{10}</td>
</tr>
<tr>
<td>7,809</td>
<td>10,679</td>
<td>12,874</td>
</tr>
<tr>
<td>d_{50}</td>
<td>d_{50}</td>
<td>d_{50}</td>
</tr>
<tr>
<td>32,265</td>
<td>35,904</td>
<td>37,389</td>
</tr>
<tr>
<td>d_{90}</td>
<td>d_{90}</td>
<td>d_{90}</td>
</tr>
<tr>
<td>71,253</td>
<td>74,881</td>
<td>73,998</td>
</tr>
<tr>
<td>$d_{p,medio}$</td>
<td>$d_{p,medio}$</td>
<td>$d_{p,medio}$</td>
</tr>
<tr>
<td>36,634</td>
<td>39,734</td>
<td>40,849</td>
</tr>
<tr>
<td>PUNTO CAMPIONAM.</td>
<td>PUNTO CAMPIONAM.</td>
<td>PUNTO CAMPIONAM.</td>
</tr>
<tr>
<td>FILTRO ELETTROSTATICO</td>
<td>FILTRO ELETTROSTATICO</td>
<td>FILTRO ELETTROSTATICO</td>
</tr>
<tr>
<td>Diametri caratteristici</td>
<td>Diametri caratteristici</td>
<td>Diametri caratteristici</td>
</tr>
<tr>
<td>(percentili distribuzione)</td>
<td>(percentili distribuzione)</td>
<td>(percentili distribuzione)</td>
</tr>
<tr>
<td>Dimensione particelle [µm]</td>
<td>Dimensione particelle [µm]</td>
<td>Dimensione particelle [µm]</td>
</tr>
<tr>
<td>d_{10}</td>
<td>d_{10}</td>
<td>d_{10}</td>
</tr>
<tr>
<td>2,353</td>
<td>2,490</td>
<td>2,236</td>
</tr>
<tr>
<td>d_{50}</td>
<td>d_{50}</td>
<td>d_{50}</td>
</tr>
<tr>
<td>18,430</td>
<td>18,901</td>
<td>19,234</td>
</tr>
<tr>
<td>d_{90}</td>
<td>d_{90}</td>
<td>d_{90}</td>
</tr>
<tr>
<td>52,243</td>
<td>52,470</td>
<td>45,703</td>
</tr>
<tr>
<td>$d_{p,medio}$</td>
<td>$d_{p,medio}$</td>
<td>$d_{p,medio}$</td>
</tr>
<tr>
<td>23,422</td>
<td>23,879</td>
<td>21,869</td>
</tr>
</tbody>
</table>
Figura 8.5 – Distribuzioni di frequenza cumulata e relativa per le ceneri ($d_p < 0,090$ mm) prelevate lungo le tre linee all'altezza dei tre punti di campionamento. Analisi granulometrica (diffrazione laser). (Laboratorio centrale Unicalce S.p.A., 2018).
8.2.2 Analisi dei risultati delle prove di fusibilità delle ceneri

Il presente paragrafo riporta i risultati delle analisi di fusibilità delle ceneri prelevate in data 12/01/2018 all’altezza del tratto iniziale della sezione convettiva per ciascuna delle tre linee dell’impianto. Le prove sono state eseguite presso il Laboratorio Biomasse dell’Università Politecnica delle Marche. Il metodo di determinazione diretta delle caratteristiche di fusibilità delle ceneri mediante prove di laboratorio si basa sulla valutazione della temperatura di fusione attraverso la rilevazione delle variazioni dello stato fisico di un campione di cenere per mezzo di tecniche di analisi d’immagine. Tale campione, appositamente modellato a formare un provino di forma cilindrica e dimensioni standardizzate (altezza compresa tra 3-5 mm e diametro uguale all’altezza), viene messo sopra una piastra di supporto all’interno del forno da laboratorio e quindi sottoposto a riscaldamento incrementale in riferimento a quanto previsto dalla norma tecnica UNI CEN/TS 15370-1:2006 (“Biocombustibili solidi - Metodo per la determinazione della fusibilità delle ceneri - Parte 1: Metodo delle temperature caratteristiche”).

La determinazione della fusibilità delle ceneri è stata ottenuta tramite un analizzatore di fusibilità (modello SYLAB IF2000-Ash Fusion) all’interno del quale il campione di cenere è stato sottoposto a incremento di temperatura controllata (9°C/minuto) in atmosfera ossidante (aria) fino alla temperatura di 1500°C e le sue modificazioni di forma sono state costantemente monitorate all’aumentare del gradiente termico da una telecamera ad alta definizione collegata ad un sistema computerizzato di gestione delle immagini. Per quanto riguarda l’esecuzione della prova, all’aumentare della temperatura il provino cilindrico varia la propria dimensione e forma a causa di fenomeni di alterazione termica delle ceneri. Sono così identificate alcune temperature, definite dal metodo di prova e dal sistema computerizzato dell’apparato di misura, che sono da considerarsi caratteristiche del processo di fusione (Figura 8.6):

- Temperatura di contrazione iniziale (“Starting Shrinkage Temperature” - SST): è la temperatura alla quale il pezzo di prova inizia a restringersi, a causa del rilascio di materiali inorganici volatili o a seguito di fenomeni di sinteizzazione. Al raggiungimento di detta temperatura si ha la diminuzione di volume del campione, ma non si registrano modifiche di forma;
- Temperatura di deformazione (“Deformation Temperature” - DT): è la temperatura alla quale le sporgenze del pezzo di prova mostrano i primi segni di arrotondamento a causa dell’inizio del processo di fusione;
- Temperatura emisferica (“Hemisphere Temperature” - HT): è la temperatura alla quale il campione di prova è sufficientemente fuso (rammollito) da assumere una forma emisferica (l’altezza del provino diventa uguale alla metà del diametro di base);
- Temperatura di fusione (“Flow Temperature” - FT): è la temperatura alla quale il campione si è completamente fuso e si spande (fluidifica) dunque sulla piastrella di supporto (l’altezza del provino è la metà dell’altezza del pezzo di prova nelle condizioni di raggiungimento della temperatura emisferica).
È stato possibile comparare le diverse temperature proprie del processo di fusione a cui sono sottoposti i campioni di ceneri prelevati in assenza (Linea 1 e Linea 2) e in presenza (Linea 3) del sorbente dolomitico.

I risultati riportati in Tabella 8.8, Tabella 8.9 e Tabella 8.10 mostrano come le ceneri raccolte dalla linea interessata dal dosaggio del sorbente dolomitico (Linea 3) presentino un incremento significativo delle temperature caratteristiche allo sviluppo del processo di fusione. In particolare dall’inizio del processo fino ad arrivare alla completa fusione delle ceneri, si è osservato un aumento dei valori di temperatura dell’ordine di 130-160°C rispetto alla Linea 2 e di 50-70°C rispetto alla Linea 1.

Figura 8.6 – Fasi del processo di fusione delle ceneri secondo la norma tecnica europea UNI CEN/TS 15370-1:2006.

Tabella 8.8 – Rapporto di prova e risultati delle analisi di laboratorio della prova di fusibilità delle ceneri.

Campione prelevato dalla Linea 1. (Laboratorio Biomasse-Università Politecnica delle Marche, 2018).

<table>
<thead>
<tr>
<th>Rapporto di prova</th>
</tr>
</thead>
<tbody>
<tr>
<td>Committente</td>
</tr>
<tr>
<td>Codice campione</td>
</tr>
<tr>
<td>Data ricevimento campione</td>
</tr>
<tr>
<td>Identificativo campione</td>
</tr>
<tr>
<td>Data emissione report</td>
</tr>
<tr>
<td>Materiale</td>
</tr>
</tbody>
</table>

Risultati delle analisi di laboratorio

Analisi di fusibilità delle ceneri

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Unità di misura</th>
<th>Risultato</th>
<th>Metodologia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura di contrazione</td>
<td>°C</td>
<td>1330</td>
<td>UNI CEN/TS 15370-1: 2006</td>
</tr>
<tr>
<td>Temperatura di deformazione</td>
<td>°C</td>
<td>1340</td>
<td>UNI CEN/TS 15370-1: 2006</td>
</tr>
<tr>
<td>Temperatura emissferica</td>
<td>°C</td>
<td>1350</td>
<td>UNI CEN/TS 15370-1: 2006</td>
</tr>
<tr>
<td>Temperatura di fusione</td>
<td>°C</td>
<td>1370</td>
<td>UNI CEN/TS 15370-1: 2006</td>
</tr>
</tbody>
</table>
Tabella 8.9 – Rapporto di prova e risultati delle analisi di laboratorio della prova di fusibilità delle ceneri.
Campione prelevato dalla Linea 2. (Laboratorio Biomasse-Università Politecnica delle Marche, 2018).

<table>
<thead>
<tr>
<th>Rapporto di prova</th>
</tr>
</thead>
<tbody>
<tr>
<td>Committente</td>
</tr>
<tr>
<td>Codice campione</td>
</tr>
<tr>
<td>Data ricevimento campione</td>
</tr>
<tr>
<td>Identificativo campione</td>
</tr>
<tr>
<td>Materiale</td>
</tr>
<tr>
<td>Quantitativo</td>
</tr>
</tbody>
</table>

Risultati delle analisi di laboratorio

Analisi di fusibilità delle ceneri

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Unità di misura</th>
<th>Risultato</th>
<th>Metodologia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura di contrazione</td>
<td>°C</td>
<td>1250</td>
<td>UNI CEN/TS 15370-1: 2006</td>
</tr>
<tr>
<td>Temperatura di deformazione</td>
<td>°C</td>
<td>1260</td>
<td>UNI CEN/TS 15370-1: 2006</td>
</tr>
<tr>
<td>Temperatura emisferica</td>
<td>°C</td>
<td>1270</td>
<td>UNI CEN/TS 15370-1: 2006</td>
</tr>
<tr>
<td>Temperatura di fusione</td>
<td>°C</td>
<td>1280</td>
<td>UNI CEN/TS 15370-1: 2006</td>
</tr>
</tbody>
</table>

Tabella 8.10 – Rapporto di prova e risultati delle analisi di laboratorio della prova di fusibilità delle ceneri.

<table>
<thead>
<tr>
<th>Rapporto di prova</th>
</tr>
</thead>
<tbody>
<tr>
<td>Committente</td>
</tr>
<tr>
<td>Codice campione</td>
</tr>
<tr>
<td>Data ricevimento campione</td>
</tr>
<tr>
<td>Identificativo campione</td>
</tr>
<tr>
<td>Materiale</td>
</tr>
<tr>
<td>Quantitativo</td>
</tr>
</tbody>
</table>

Risultati delle analisi di laboratorio

Analisi di fusibilità delle ceneri

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Unità di misura</th>
<th>Risultato</th>
<th>Metodologia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura di contrazione</td>
<td>°C</td>
<td>1350</td>
<td>UNI CEN/TS 15370-1: 2006</td>
</tr>
<tr>
<td>Temperatura di deformazione</td>
<td>°C</td>
<td>1390</td>
<td>UNI CEN/TS 15370-1: 2006</td>
</tr>
<tr>
<td>Temperatura emisferica</td>
<td>°C</td>
<td>1410</td>
<td>UNI CEN/TS 15370-1: 2006</td>
</tr>
<tr>
<td>Temperatura di fusione</td>
<td>°C</td>
<td>1440</td>
<td>UNI CEN/TS 15370-1: 2006</td>
</tr>
</tbody>
</table>

Dai risultati della prova di fusibilità appare evidente l’effetto del reagente dolomitico Depurcal®MG nel modificare le caratteristiche delle ceneri di caldaia (come osservato in precedenza al Paragrafo 8.2.1). Il campione prelevato in Linea 3 presenta infatti una tendenza a deformare la propria struttura per temperature superiori rispetto a quelle registrate per i campioni prelevati dalle altre due linee dell’impianto di Torino. L’ossido di magnesio reagisce con gli elementi chimici caratterizzati da basso punto di fusione (quali, per

8.2.3 Analisi del profilo di temperatura dei fumi in caldaia

In questo paragrafo vengono analizzate le differenze di temperatura in caldaia tra lato destro e il lato sinistro potenzialmente riconducibili al dosaggio di Depurcal® MG, con lo scopo di investigare la presenza di una possibile temperatura fumi inferiore sul lato destro rispetto al lato sinistro.

Tali analisi sono state svolte considerando gli scenari citati nel precedente paragrafo (Paragrafo 8.1.2), i cui risultati sono mostrati di seguito attraverso le seguenti figure e tabelle: Tabella 8.11 e Figura 8.7, Tabella 8.12 e Figura 8.8, Tabella 8.13 e Figura 8.9.

Le figure si riferiscono ai periodi identificati M1 e M2 (Tabella 8.1 e Tabella 8.2, Paragrafo 8.1.1) rispettivamente per gli step di dosaggio di Depurcal® MG pari a 60 kg/h e 90 kg/h; mentre per lo step di dosaggio di Depurcal® MG pari a 120 kg/h sono stati selezionati i periodi denominati M3 e M5 (Tabella 8.1 e Tabella 8.2, Paragrafo 8.1.1) dal momento che rappresentano gli intervalli di durata temporale maggiore.

Le analisi tengono conto di diversi periodi di pulizia a seconda delle analisi effettuate. Nel caso del confronto tra il lato destro ed il lato sinistro della caldaia in corrispondenza della sola Linea 3, sono stati considerati i periodi in cui la caldaia è risultata pulita (vale a dire dalla fine di una sessione di pulizia fino all’innescio della micro-cariche in una successiva sessione di pulizia).

Invece, nel caso del confronto delle temperature tra la Linea 3 e la Linea 2, sono stati selezionati dei periodi (Tabella 8.2) in grado di garantire che i confronti possano essere effettuati a partire da una condizione il più possibile analoga in termini di sporcamiento delle superfici.

Come si può osservare dalla Figura 8.7 e dalla Tabella 8.11, il lato destro ed il lato sinistro della caldaia, per le sue varie sezioni, manifestano temperature sostanzialmente comparabili. In alcuni casi, la temperatura del lato sinistro risulta essere superiore a quella del lato destro, come per esempio nei periodi M2, M4 ed M7 (Tabella 8.1) in relazione al dato di temperatura registrato all’uscita del terzo giro fumi. In questo caso si riscontrano rispettivamente una temperatura maggiore del 5,09%, 0,18% e 1,05% per il lato sinistro rispetto a quello destro, indice di un possibile maggiore scambio termico. Nella maggior parte dei casi tuttavia si evidenziano valori leggermente superiori per quanto riguarda il lato destro rispetto al lato sinistro, pur mantenendosi all’interno di intervalli di variazione molto discreti. Questo potrebbe dimostrare quindi l’efficiente miscelazione con il flusso gassoso del reagente Depurcal® MG, dal momento che quest’ultimo è iniettato in un punto ad elevata turbolenza (sul lato destro della caldaia in prossimità della zona di post-combustione) e la configurazione della caldaia prevede che i fumi compiano una prima inversione di 180° all’altezza del “cielo caldaia”.

226
Figura 8.7 – Andamento della temperatura fumi del lato destro e del sinistro della Linea 3 per i periodi di pulizia con micro-cariche M1, M2, M3 e M5 (Tabella 8.1).
Tabella 8.11 – Variazione di temperatura fumi del lato destro rispetto il lato sinistro della Linea 3, considerando i periodi di pulizia della caldaia con micro-cariche (Tabella 8.1).

<table>
<thead>
<tr>
<th>Scenari analizzati</th>
<th>T_{cieo}</th>
<th>$T_{2{°}giro}$</th>
<th>$T_{3{°}giro}$</th>
<th>T_{EVA}</th>
<th>T_{SHT}</th>
<th>T_{SMT}</th>
<th>T_{SBT2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3 DX vs L3 SX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periodo 1 (Step 1: Depurcal® MG 60 kg/h) – M1</td>
<td>-</td>
<td>0,39</td>
<td>0,35</td>
<td>2,29</td>
<td>0,67</td>
<td>1,07</td>
<td>1,16</td>
</tr>
<tr>
<td>L3 DX vs L3 SX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periodo 1 (Step 2: Depurcal® MG 90 kg/h) – M2</td>
<td>-</td>
<td>1,22</td>
<td>-5,09</td>
<td>2,50</td>
<td>1,85</td>
<td>1,52</td>
<td>1,46</td>
</tr>
<tr>
<td>L3 DX vs L3 SX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periodo 1 (Step 3: Depurcal® MG 120 kg/h) – M3</td>
<td>-</td>
<td>24,92</td>
<td>1,50</td>
<td>3,23</td>
<td>2,55</td>
<td>2,99</td>
<td>2,02</td>
</tr>
<tr>
<td>L3 DX vs L3 SX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periodo 1 (Step 3: Depurcal® MG 120 kg/h) – M4</td>
<td>-</td>
<td>25,23</td>
<td>-0,18</td>
<td>1,70</td>
<td>1,69</td>
<td>2,08</td>
<td>1,22</td>
</tr>
<tr>
<td>L3 DX vs L3 SX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periodo 1 (Step 3: Depurcal® MG 120 kg/h) – M5</td>
<td>-</td>
<td>9,99</td>
<td>5,54</td>
<td>1,00</td>
<td>1,50</td>
<td>1,36</td>
<td>0,76</td>
</tr>
<tr>
<td>L3 DX vs L3 SX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periodo 1 (Step 3: Depurcal® MG 120 kg/h) – M6</td>
<td>-</td>
<td>1,52</td>
<td>1,35</td>
<td>-17,50</td>
<td>0,61</td>
<td>-0,29</td>
<td>-0,88</td>
</tr>
<tr>
<td>L3 DX vs L3 SX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periodo 1 (Step 3: Depurcal® MG 120 kg/h) – M7</td>
<td>-</td>
<td>1,34</td>
<td>-1,05</td>
<td>1,77</td>
<td>5,94</td>
<td>8,63</td>
<td>5,89</td>
</tr>
</tbody>
</table>

Una seconda fase di analisi ha avuto lo scopo di confrontare i profili di temperatura tra le differenti sezioni della caldaia per la Linea 2 e per la Linea 3. Attraverso questo confronto è possibile osservare se tali temperature siano inferiori o meno per la Linea 3 dove avviene il dosaggio del reagente Depurcal® MG. Si possono osservare andamenti tendenzialmente comparabili tra le due linee nei periodi confrontati (Figura 8.8), ma generalmente maggiori per la Linea 2 (Tabella 8.12). Si notano tuttavia alcune marcate variazioni di temperatura in precisi punti della caldaia. Ad esempio per quanto concerne la temperatura dell’ evaporatore nel periodo M2 e la temperatura del 2° giro fumi nel periodo M5, dove si registrano temperature molto inferiori per la Linea 3. Inoltre si può osservare come nel periodo M7, la Linea 3 risulti sempre mediamente “più fredda” ad indicare un possibile scambio di calore più efficiente in questa linea rispetto alla Linea 2.

Tuttavia è chiaro che a fronte dei risultati ottenuti non sia possibile concludere in maniera certa l’effetto del sorbente dolomitico per quanto riguarda le prestazioni energetiche della Linea 3 esaminata.

Per quanto riguarda il terzo scenario esaminato (Tabella 8.13 e Figura 8.9) si osservano anche in questo caso andamenti contrastanti per i vari periodi di pulizia considerati. I periodi M1, M2 ed M4 manifestano variazioni che sembrerebbero certificare come il dosaggio di sorbente Depurcal® MG possa determinare uno scambio di calore più efficiente, come si evidenzia dalle variazioni riportate in Tabella 8.13 (Δ). Si ricorda infatti che in questo scenario, ad una variazione negativa corrisponde una temperatura dei fumi inferiore in Linea 3 ottenuta durante le ore di dosaggio di Depurcal® MG. Nei periodi rimanenti esaminati (M3, M5, M6 e M7), si osserva invece una situazione per la quale è presente una temperatura dei fumi è superiore nelle ore di dosaggio rispetto alle ore di mancato dosaggio.
Tabella 8.12 – Variazione di temperatura fumi (Δ) del lato destro (DX), del lato sinistro (SX) e variazione dei valori medi tra i due lati (Δµ_{DX-SX}), della Linea 3 rispetto la Linea 2, considerando i periodi di pulizia della caldaia con micro-cariche (Tabella 8.2).

<table>
<thead>
<tr>
<th>Scenario analizzato</th>
<th>(T_{\text{cielo}})</th>
<th>(T_{2^\text{a} , \text{giro}})</th>
<th>(T_{3^\text{a} , \text{giro}})</th>
<th>(T_{\text{EVA}})</th>
<th>(T_{\text{SHT}})</th>
<th>(T_{\text{SMT}})</th>
<th>(T_{\text{SBT2}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step Depurcal® MG</td>
<td></td>
<td>Lato</td>
<td>Lato</td>
<td>Lato</td>
<td>Lato</td>
<td>Lato</td>
<td>Lato</td>
</tr>
<tr>
<td>60 kg/h M1</td>
<td>1,23</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>4,31 5,96</td>
<td>4,93 7,32</td>
<td>2,20 -0,26</td>
<td>0,45 3,85</td>
<td>0,41 2,40</td>
<td>1,48 1,86</td>
<td></td>
</tr>
<tr>
<td>(\Delta \mu_{DX-SX})</td>
<td>5,14 6,13</td>
<td>0,97 2,15</td>
<td>1,41 1,67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 kg/h M2</td>
<td>4,88</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>2,13 2,67</td>
<td>0,59 38,95</td>
<td>-38,77 -3,49</td>
<td>-1,59 -5,44</td>
<td>-1,58 -4,12</td>
<td>0,48 -2,03</td>
<td></td>
</tr>
<tr>
<td>(\Delta \mu_{DX-SX})</td>
<td>2,40 19,77</td>
<td>-21,13 -3,52</td>
<td>-2,85 -0,78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 kg/h M3</td>
<td>0,17</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>5,24 -12,65</td>
<td>5,85 2,79</td>
<td>5,57 0,95</td>
<td>7,50 6,55</td>
<td>7,42 5,92</td>
<td>5,50 4,13</td>
<td></td>
</tr>
<tr>
<td>(\Delta \mu_{DX-SX})</td>
<td>-3,71 4,32</td>
<td>3,26 7,03</td>
<td>6,67 4,82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 kg/h M4</td>
<td>0,57</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>3,11 -0,02</td>
<td>5,38 4,75</td>
<td>6,35 4,42</td>
<td>8,90 6,11</td>
<td>6,66 4,03</td>
<td>4,90 3,12</td>
<td></td>
</tr>
<tr>
<td>(\Delta \mu_{DX-SX})</td>
<td>1,55 5,07</td>
<td>5,39 7,51</td>
<td>5,35 4,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 kg/h M5</td>
<td>-0,18</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>-32,43 -39,73</td>
<td>4,70 3,68</td>
<td>4,60 2,27</td>
<td>7,19 7,26</td>
<td>4,42 3,91</td>
<td>3,82 3,46</td>
<td></td>
</tr>
<tr>
<td>(\Delta \mu_{DX-SX})</td>
<td>-36,08 4,19</td>
<td>3,44 7,23</td>
<td>4,17 3,64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 kg/h M6</td>
<td>-2,83</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>2,87 3,79</td>
<td>0,22 -1,45</td>
<td>0,46 20,67</td>
<td>3,91 5,22</td>
<td>1,47 2,24</td>
<td>0,66 1,69</td>
<td></td>
</tr>
<tr>
<td>(\Delta \mu_{DX-SX})</td>
<td>3,33 -0,62</td>
<td>10,57 4,57</td>
<td>1,86 1,18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 kg/h M7</td>
<td>-3,86</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
<td>DX SX</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>-1,79 -2,05</td>
<td>-5,65 -6,08</td>
<td>-2,64 -7,31</td>
<td>2,93 -3,41</td>
<td>2,47 -6,78</td>
<td>1,18 -4,62</td>
<td></td>
</tr>
<tr>
<td>(\Delta \mu_{DX-SX})</td>
<td>-1,92 -5,87</td>
<td>-4,98 -0,24</td>
<td>-2,16 -1,72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figura 8.8 – Andamento della temperatura fumi del lato destro (DX), del lato sinistro (SX) e della media tra i due lati della Linea 3 rispetto la Linea 2, per i periodi di pulizia con micro-cariche M1, M2, M3 e M5 (Tabella 8.2).
Tabella 8.13 – Variazione di temperatura fumi (Δ) del lato destro (DX), del lato sinistro (SX) e variazione dei valori medi tra i due lati ($\Delta \mu_{DX-SX}$), della Linea 3 in corrispondenza di dosaggio e di assenza di dosaggio di Depurcal® MG, considerando i periodi di pulizia della caldaia con micro-cariche (Tabella 8.1).

<table>
<thead>
<tr>
<th>Step Depurcal® MG</th>
<th>T_{cielo}</th>
<th>T_{Zgiro}</th>
<th>T_{3^giro}</th>
<th>T_{EVA}</th>
<th>T_{SHT}</th>
<th>T_{SMT}</th>
<th>T_{SBT2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3 (SI Depurcal®MG) Vs L3 (NO Depurcal®MG)</td>
<td>-</td>
<td>Lato</td>
<td>Lato</td>
<td>Lato</td>
<td>Lato</td>
<td>Lato</td>
<td>Lato</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DX</td>
<td>SX</td>
<td>DX</td>
<td>SX</td>
<td>DX</td>
<td>SX</td>
</tr>
<tr>
<td>60 kg/h M1</td>
<td>0,75</td>
<td>Δ</td>
<td>-0,12</td>
<td>0,17</td>
<td>-2,05</td>
<td>-2,65</td>
<td>-1,03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Delta \mu_{DX-SX}$</td>
<td>0,03</td>
<td>-2,35</td>
<td>-1,38</td>
<td>-1,12</td>
<td>-1,18</td>
</tr>
<tr>
<td>90 kg/h M2</td>
<td>-0,97</td>
<td>Δ</td>
<td>-0,46</td>
<td>-0,85</td>
<td>1,97</td>
<td>7,97</td>
<td>-1,03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Delta \mu_{DX-SX}$</td>
<td>-0,66</td>
<td>4,97</td>
<td>-1,65</td>
<td>-1,02</td>
<td>-0,88</td>
</tr>
<tr>
<td>120 kg/h M3</td>
<td>0,67</td>
<td>Δ</td>
<td>1,82</td>
<td>-3,36</td>
<td>3,78</td>
<td>3,55</td>
<td>4,11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Delta \mu_{DX-SX}$</td>
<td>-0,77</td>
<td>3,67</td>
<td>3,76</td>
<td>3,59</td>
<td>3,44</td>
</tr>
<tr>
<td>120 kg/h M4</td>
<td>2,42</td>
<td>Δ</td>
<td>-13,08</td>
<td>-14,27</td>
<td>-3,27</td>
<td>-3,37</td>
<td>-2,52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Delta \mu_{DX-SX}$</td>
<td>-13,68</td>
<td>-3,32</td>
<td>-3,15</td>
<td>-3,33</td>
<td>-2,85</td>
</tr>
<tr>
<td>120 kg/h M5</td>
<td>0,38</td>
<td>Δ</td>
<td>1,42</td>
<td>5,84</td>
<td>4,88</td>
<td>-2,49</td>
<td>5,28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Delta \mu_{DX-SX}$</td>
<td>3,63</td>
<td>1,20</td>
<td>5,35</td>
<td>5,06</td>
<td>4,00</td>
</tr>
<tr>
<td>120 kg/h M6</td>
<td>0,66</td>
<td>Δ</td>
<td>3,16</td>
<td>2,85</td>
<td>5,23</td>
<td>-0,79</td>
<td>18,78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Delta \mu_{DX-SX}$</td>
<td>3,01</td>
<td>2,22</td>
<td>4,08</td>
<td>7,22</td>
<td>6,04</td>
</tr>
<tr>
<td>120 kg/h M7</td>
<td>-0,12</td>
<td>Δ</td>
<td>3,48</td>
<td>2,57</td>
<td>5,42</td>
<td>45,59</td>
<td>6,56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Delta \mu_{DX-SX}$</td>
<td>3,03</td>
<td>25,51</td>
<td>6,94</td>
<td>4,43</td>
<td>4,52</td>
</tr>
</tbody>
</table>
Figura 8.9 – Andamento della temperatura fumi del lato destro (DX), del lato sinistro (SX) e della media tra i due lati della Linea 3 in corrispondenza di dosaggio ed in assenza di dosaggio di Depurcal® MG, per i periodi di pulizia con micro-cariche M1, M2, M3 e M5 (Tabella 8.1).
8.2.4 Effetti sulle operazioni di pulizia effettuate con micro-cariche

L’utilizzo di micro-cariche innescate lungo la sezione convettiva della caldaia ha lo scopo di rimuovere incrostazioni o depositi accumulati sui tubi degli scambiatori in modo da ripristinare lo stato di pulizia della caldaia stessa e garantire uno scambio termico efficace tra il lato fumi e il lato vapore.

In seguito al dosaggio del reagente Depurcal®MG si è notato come la granulometria delle ceneri raccolte risulti più fine sulla linea interessata dal dosaggio rispetto le altre due linee e questo potrebbe comportare un aumento di efficacia delle operazioni di pulizia con micro-cariche. Tale aspetto trova anche alcune conferme in studi precedenti riguardanti l’effetto del sorbente Depurcal®MG (Cavalli, 2014).

La Figura 8.10 e la Figura 8.11 riportano un confronto tra l’andamento della temperatura lato fumi della caldaia relativamente alla Linea 2 e alla Linea 3 per i differenti periodi temporali indicati nella Tabella 8.2 riportata al Paragrafo 8.1.1. I grafici sono stati generati in modo da consentire una visualizzazione simultanea dell’evoluzione della temperatura a seguito delle operazioni di pulizia, consentendo un confronto diretto tra i rispettivi giorni di innesco delle micro-cariche nelle due linee. È stata considerata la temperatura media tra il lato sinistro ed il lato destro in virtù delle considerazioni riportate al Paragrafo 8.2.3 sulla presenza di una buona miscelazione in caldaia.

Osservando le temperature registrate durante le ore in cui è stata effettuata la pulizia con le micro-cariche (quindi tra le ore 9:00 e le ore 17:00, come riportato al Paragrafo 8.1.1) si nota come non vi sia un rapporto sempre costante tra la temperatura all’inizio delle operazioni, la temperatura alla fine delle operazioni e i tempi per raggiungere quest’ultima. Tali variazioni potrebbero essere frutto di una sensibile dipendenza dalla modalità con la quale viene effettuata l’operazione di pulizia stessa. Nell’arco di una giornata, l’orario di pulizia si estende nominalmente dalle ore 9:00 alle ore 17:00; tuttavia tale orario risulta essere piuttosto variabile sia per quanto riguarda l’inizio sia per quanto riguarda la fine della fase di pulizia stessa. Infatti l’attività del personale addetto alla pulizia viene tipicamente guidata dalla quantità di ceneri che viene prodotta per distacco al momento dell’innesco della carica e termina quando sono rispettati alcuni parametri definitivi (come, per esempio, qualora non sia più osservata la discesa di ceneri, qualora la caldaia sia stata pulita completamente oppure qualora la caldaia sia ancora sporca ma non è possibile ottenere una ulteriore pulita grazie alle microesplosioni stesse -in quest’ultimo caso è solitamente necessario un intervento di pulizia più profondo tramite sabbiatura-). Tale considerazione rende quindi evidente come l’operazione non sia regolata dall’evolversi delle temperature osservate in sala controllo dai gestori dell’impianto, che vengono invece attentamente osservate solo al termine dell’attività al fine di cogliere quale sia stato l’effetto migliorativo della pulizia sulle prestazioni termiche della caldaia.
Le analisi riportate in Figura 8.10 e in Figura 8.11 si riferiscono al tratto iniziale della zona convettiva e interessano l’evaporatore (EVA) ed il surriscaldatore ad alta temperatura (SHT), sezioni alle quali si registrano tipicamente i problemi più rilevanti di sporcamento per gli impianti di termovalorizzazione dei rifiuti.

Osservando gli andamenti di Figura 8.10 e di Figura 8.11 si può notare come non sempre l’orario di innesco della micro-carica coincida esattamente con l’abbassamento delle temperature conseguente alla pulizia (superfici pulite consentono uno scambio di calore più efficiente e dunque garantiscono temperature dei fumi inferiori), e questo è dovuto alla flessibilità per quanto concerne l’inizio e la fine delle operazioni di pulizia stessa, come precedentemente riportato.

Un aspetto che è possibile osservare è come, a seguito della pulizia con micro-cariche l’abbassamento delle temperature sia generalmente più rapido per quanto concerne la Linea 3 dove è avvenuto il dosaggio di Depurcal®MG rispetto alla Linea 2 (come ad esempio in Figura 8.11 per le operazioni di pulizia dei giorni 05/01/2018 per la Linea 3 e 04/01/2018 per la Linea 2). Una possibile spiegazione a questo fenomeno è imputabile alla migliore pulizia ottenibile in Linea 3 sui fasci tubieri in seguito all’innesco delle micro-cariche, siccome le ceneri generate in presenza di Depurcal®MG (Paragrafo 8.2.2) consentono di raggiungere un migliore grado di pulizia che si traduce in uno scambio termico più efficiente tra i fumi ed i fasci tubieri stessi. Questo scambio si manifesta con una cessione di calore più rilevante da parte dei fumi che comporta una diminuzione di temperatura dei fumi più evidente in Linea 3. In alcuni casi (come ad esempio in Figura 8.11 per le operazioni di pulizia dei giorni 12/12/2017 per la Linea 3 e 13/12/2017 per la Linea 2), non è tuttavia immediatamente verificabile questo beneficio. È bene infatti precisare che tale processo di scambio risulta essere molto complesso e non unicamente dipendente dalla cenere depositata sui fasci tubieri. Difatti esistono altri parametri in grado di agire su questo processo, come la tipologia e la variabilità del rifiuto incenerito, la conformazione della caldaia e dei fasci tubieri, la variabilità dei parametri operativi e le tecniche delle operazioni di pulizia.

Inoltre, bisogna considerare che la caldaia industriale dell’impianto di Torino possiede una rilevante inerzia termica, ed è ipotizzabile pensare che eventuali benefici a seguito delle operazioni di pulizia con micro-cariche, possano risultare non immediatamente evidenti.
Figura 8.10 – Andamento della temperatura fumi media lato sinistro e lato destro all’altezza dell’evaporatore (EVA) e del surriscaldatore ad alta temperatura (SHT) in presenza delle operazioni di pulizia con micro-cariche. Confronto tra la Linea 2 e la Linea 3.

Orario di innesco delle micro-cariche.
Figura 8.11 – Andamento della temperatura fumi media lato sinistro e lato destro all’altezza dell’evaporatore (EVA) e del surriscaldatore ad alta temperatura (SHT) in presenza delle operazioni di pulizia con micro-cariche. Confronto tra la Linea 2 e la Linea 3.

Orario di innesco delle micro-cariche.
Appendice A1 – Valori di riferimento da D.lgs. 4 marzo 2014 n.46

Tabella A1.1 – Valori limite di emissione medi giornalieri in atmosfera per gli impianti di incenerimento di rifiuti (mg/Nm3). (ISPRA-Federambiente 2014).

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Polveri totali</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Sostanze organiche sotto forma di gas e vapori espresse come carbonio organico totale (TOC)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Acido cloridrico (HCl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acido fluoridrico (HF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biossido di zolfo (SO$_2$)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Monossido di azoto (NO) e biossido di azoto (NO$_2$) espressi come NO$_2$ per gli impianti di incenerimento dei rifiuti esistenti dotati di una capacità nominale superiore a 6 t/h e per i nuovi impianti di incenerimento dei rifiuti</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Monossido di azoto (NO) e biossido di azoto (NO$_2$) espressi come NO$_2$ per gli impianti di incenerimento dei rifiuti esistenti dotati di una capacità nominale inferiore a 6 t/h</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Ammoniaca (NH$_3$)</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

Tabella A1.2 – Valori limite di emissione medi su 30 minuti (mg/Nm3). (ISPRA-Federambiente 2014).

<table>
<thead>
<tr>
<th></th>
<th>(100%)</th>
<th>(97%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Polveri totali</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Sostanze organiche sotto forma di gas e vapori espresse come carbonio organico totale (TOC)</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Acido cloridrico (HCl)</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>Acido fluoridrico (HF)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Biossido di zolfo (SO$_2$)</td>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>Monossido di azoto (NO) e biossido di azoto (NO$_2$) espressi come NO$_2$ per gli impianti di incenerimento dei rifiuti esistenti dotati di una capacità nominale superiore a 6 t/h e per i nuovi impianti di incenerimento dei rifiuti</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>Ammoniaca (NH$_3$)</td>
<td>60</td>
<td>30</td>
</tr>
</tbody>
</table>

Tabella A1.3 – Valori limite di emissione medi medi orari ottenuti con periodo di campionamento minimo di 6 ore e 8 ore. (ISPRA-Federambiente 2014).

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diossine e furani (PCDD+PCDF)</td>
<td>0,1 ng/Nm3(1)</td>
</tr>
<tr>
<td>Idrocarburi policiclici aromatici (IPA)</td>
<td>0,01 mg/Nm3</td>
</tr>
<tr>
<td>PCB-DL</td>
<td>0,1 ng/Nm3(1)</td>
</tr>
</tbody>
</table>

Note:
(1) – Valore limite di emissione calcolato come concentrazione “tossica equivalente”.
Tabella A1.4 – Valori limite totali (mg/Nm3), per i forni che coiçeneriscono i rifiuti. (ISPRA-Federambiente 2014).

<table>
<thead>
<tr>
<th>Polveri totali</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td>10</td>
</tr>
<tr>
<td>HF</td>
<td>1</td>
</tr>
<tr>
<td>NO$_x$</td>
<td>500</td>
</tr>
<tr>
<td>Cd+Ti</td>
<td>0,05</td>
</tr>
<tr>
<td>Hg</td>
<td>0,05</td>
</tr>
<tr>
<td>Sb+As+Pb+Cr+Co+Cu+Mn+Ni+V</td>
<td>0,5</td>
</tr>
</tbody>
</table>
Appendice A2 – Analisi merceologiche Amiat S.p.A.

Tabella A2.1 – Analisi delle principali frazioni del rifiuto alimentato al termovalorizzatore di Torino. (AMIAT S.p.A., 2017).

<table>
<thead>
<tr>
<th>Frazione</th>
<th>Risultato</th>
<th>Incertezza [+—]</th>
<th>Data prova</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sottovaglio < 20 mm</td>
<td>6,1%</td>
<td>1,2%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Putrescibile da cucina</td>
<td>20,6%</td>
<td>4,1%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Putrescibile da giardino</td>
<td>0,53%</td>
<td>0,11%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Bioplastica</td>
<td>0,331%</td>
<td>0,066%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Altro organico</td>
<td>6,9%</td>
<td>1,4%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Totale putrescibile</td>
<td>32,6%</td>
<td>5%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Imballaggi in carta</td>
<td>1,76%</td>
<td>0,35%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Giornali ed altra carta non imballaggio</td>
<td>8,3%</td>
<td>1,7%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Cartone da imballo ondulato</td>
<td>5,6%</td>
<td>1,1%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Cartoncino teso</td>
<td>3,37%</td>
<td>0,67%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Altro cartone</td>
<td>0,053%</td>
<td>0,025%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Totale materiale cellulosico</td>
<td>19,6%</td>
<td>3,9%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Totale materiale cellulosico imballaggi</td>
<td>11,2%</td>
<td>2,2%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Plastica in film</td>
<td>9,1%</td>
<td>1,8%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Traccianti in film</td>
<td>0,57%</td>
<td>0,11%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>CPL fino a 5 l in volume</td>
<td>3,36%</td>
<td>0,67%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Contenitori in plastica rigida</td>
<td>7,9%</td>
<td>1,6%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Altre plastiche</td>
<td>4,97%</td>
<td>0,99%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Gomma naturale e sintetica</td>
<td>0,267%</td>
<td>0,053%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Totale materiali in plastica e gomma</td>
<td>26,2%</td>
<td>5%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Totale materiali in plastica imballaggi</td>
<td>20,9%</td>
<td>4,2%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Imballaggi poliaccompatti prevalenza carta</td>
<td>0,465%</td>
<td>0,093%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Imballaggi poliaccompatti non prevalenza carta</td>
<td>0,51%</td>
<td>0,1%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Tessili naturali e sintetici</td>
<td>7%</td>
<td>1,4%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Tessili sanitari</td>
<td>5,8%</td>
<td>1,2%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Legno imballaggio</td>
<td>1,46%</td>
<td>0,29%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Legno non imballaggio</td>
<td>0,481%</td>
<td>0,096%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Pelle e cuoio</td>
<td>0,46%</td>
<td>0,092%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Totale materiali combustibili</td>
<td>68,7%</td>
<td>5%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Totale materiali combustibili imballaggi</td>
<td>34,9%</td>
<td>5%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Metalli ferrosi imballaggio</td>
<td>0,88%</td>
<td>0,18%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Metalli ferrosi non imballaggio</td>
<td>0,401%</td>
<td>0,08%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Alluminio imballaggio</td>
<td>1,2%</td>
<td>0,24%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Alluminio non imballaggio</td>
<td>0,38%</td>
<td>0,076%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Metalli non ferrosi non alluminio</td>
<td><0,025%</td>
<td></td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Totale materiali metallici</td>
<td>2,86%</td>
<td>0,57%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Totale materiali metallici imballaggi</td>
<td>2,08%</td>
<td>0,42%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Vetro imballaggio</td>
<td>0,412%</td>
<td>0,082%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Altro vetro</td>
<td>0,251%</td>
<td>0,05%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Inerti</td>
<td><0,025%</td>
<td></td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Totale materiali inerti</td>
<td>2,49%</td>
<td>0,5%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Contenitori contaminati da sostanze pericolose</td>
<td><0,025%</td>
<td></td>
<td>26/06/2017</td>
</tr>
<tr>
<td>RAEE R1, R2 e R3</td>
<td><0,025%</td>
<td></td>
<td>26/06/2017</td>
</tr>
<tr>
<td>RAEE R4 e R5</td>
<td>0,55%</td>
<td>0,11%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Altri pericolosi (pile, farmaci, ...)</td>
<td><0,025%</td>
<td></td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Totale materiali pericolosi</td>
<td>0,55%</td>
<td>0,11%</td>
<td>26/06/2017</td>
</tr>
<tr>
<td>Totale materiali compostabili</td>
<td>53,7%</td>
<td>5%</td>
<td>26/06/2017</td>
</tr>
</tbody>
</table>
Totale materiali compostabili imballaggi 12,5 % 2,5 26/06/2017
Totale materiali non compostabili 46,3 % 5 01/09/2017
Totale imballaggi 35,5 % 5 26/06/2017

Nota – Il caprolattame (CPL) è il lattame dell’acido 6-amminoesanoico o aminocaproico. È la materia prima per la produzione del nylon 6, che ne è il polimero.

RAEE: “Rifiuti da Apparecchiature Elettriche ed Elettroniche”.

<table>
<thead>
<tr>
<th>Composto</th>
<th>Risultato</th>
<th>Incertezza [+−]</th>
<th>Data Prova</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimonio</td>
<td><10 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Arsenico</td>
<td><10 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Berillio</td>
<td><10 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Cadmio</td>
<td><10 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Cromo totale</td>
<td>16 mg/kg</td>
<td>3</td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Cromo esavalente</td>
<td><1 mg/kg</td>
<td></td>
<td>10/07/2017</td>
</tr>
<tr>
<td>Mercurio</td>
<td>0,68 mg/kg</td>
<td>0,14</td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Nichel</td>
<td><10 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Piombo</td>
<td><10 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Rame</td>
<td>26 mg/kg</td>
<td>5</td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Selenio</td>
<td><10 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Tallio</td>
<td><10 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Tellurio</td>
<td><10 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Zinco</td>
<td>253 mg/kg</td>
<td>51</td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Benzo(a)antracene</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Benzo(a)pirene</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Benzo(e)pirene</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Benzo(b)fluorantene</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Benzo(k)fluorantene</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Benzo(j)fluorantene</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Benzo(g,h,i)perilene</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>sommatoria Benzo(b, j, k)fluorantene</td>
<td><0,1 mg/kg</td>
<td>03/07/2017</td>
<td></td>
</tr>
<tr>
<td>Crisene</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Dibenzo(ae)pirene</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Dibenzo(al)pirene</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Dibenzo(ai)pirene</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Dibenzo(ah)pirene</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Dibenzo(a,h)antracene</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Indeno(1,2,3-c,d)pirene</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Pirene</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Sommatoria policiclici aromatici</td>
<td><0,1 mg/kg</td>
<td>03/07/2017</td>
<td></td>
</tr>
<tr>
<td>Naftalene</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Antracene</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Fluorantene</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Acenaftileni</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Acenaftene</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Fluorene</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
<tr>
<td>Fenantrene</td>
<td><0,1 mg/kg</td>
<td></td>
<td>03/07/2017</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proprietà</th>
<th>Risultato</th>
<th>Incertezza [+–]</th>
<th>Data prova</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umidità 105°C</td>
<td>37,5</td>
<td>3,8</td>
<td>29/06/2017</td>
</tr>
<tr>
<td>Sostanza secca</td>
<td>62,5</td>
<td>2,5</td>
<td>29/06/2017</td>
</tr>
<tr>
<td>Ceneri a 600°C</td>
<td>23,4</td>
<td>1,4</td>
<td>30/06/2017</td>
</tr>
<tr>
<td>pH</td>
<td>8,3</td>
<td>0,1</td>
<td>03/07/2017</td>
</tr>
<tr>
<td>PCS</td>
<td>12013</td>
<td>601</td>
<td>29/06/2017</td>
</tr>
<tr>
<td>PCI</td>
<td>9708</td>
<td>485</td>
<td>29/06/2017</td>
</tr>
<tr>
<td>PCS</td>
<td>2874</td>
<td>144</td>
<td>29/06/2017</td>
</tr>
<tr>
<td>PCI</td>
<td>2323</td>
<td>116</td>
<td>29/06/2017</td>
</tr>
</tbody>
</table>

Natura del rifiuto: granulare 26/06/2017
Riduzione della pezzatura: con mulino a lame 26/06/2017
Test di cessione su campione: tal quale 26/06/2017
Frazione > 4 mm 30/06/2017
Frazione non macinabile < 0,1 30/06/2017
Rame su eluato da test di cessione in acqua deionizzata 04/07/2017

<table>
<thead>
<tr>
<th>Frazione</th>
<th>Risultato</th>
<th>Incertezza [+–]</th>
<th>Data prova</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sottovaglio < 20 mm</td>
<td>9,2</td>
<td>1,8</td>
<td>07/12/2016</td>
</tr>
<tr>
<td>Putrescibile da cucina</td>
<td><0,025</td>
<td></td>
<td>07/12/2016</td>
</tr>
<tr>
<td>Putrescibile da giardino</td>
<td>20,5</td>
<td>4,1</td>
<td>07/12/2016</td>
</tr>
<tr>
<td>Bioplastica</td>
<td>0,248</td>
<td>0,05</td>
<td>07/12/2016</td>
</tr>
<tr>
<td>Altro organico</td>
<td>6,4</td>
<td>1,3</td>
<td>07/12/2016</td>
</tr>
<tr>
<td>Totale putrescibile</td>
<td>33,6</td>
<td>5</td>
<td>07/12/2016</td>
</tr>
<tr>
<td>Imballaggi in carta</td>
<td>0,7</td>
<td>0,14</td>
<td>07/12/2016</td>
</tr>
<tr>
<td>Giornali ed altra carta non imballaggio</td>
<td>4,28</td>
<td>0,86</td>
<td>07/12/2016</td>
</tr>
<tr>
<td>Cartone da imballo ondulato</td>
<td>5,3</td>
<td>1,1</td>
<td>07/12/2016</td>
</tr>
<tr>
<td>Cartoncino teso</td>
<td>3,5</td>
<td>0,7</td>
<td>07/12/2016</td>
</tr>
<tr>
<td>Altro cartone</td>
<td><0,025</td>
<td></td>
<td>07/12/2016</td>
</tr>
<tr>
<td>Totale materiale cellulosico</td>
<td>14,9</td>
<td>3</td>
<td>07/12/2016</td>
</tr>
<tr>
<td>Totale materiale cellulosico imballaggi</td>
<td>10,7</td>
<td>2,1</td>
<td>07/12/2016</td>
</tr>
<tr>
<td>Plastica in film</td>
<td>6,5</td>
<td>1,3</td>
<td>07/12/2016</td>
</tr>
<tr>
<td>Traccianti in film</td>
<td>0,86</td>
<td>0,17</td>
<td>07/12/2016</td>
</tr>
<tr>
<td>CPL fino a 5 l in volume</td>
<td>3,37</td>
<td>0,67</td>
<td>07/12/2016</td>
</tr>
<tr>
<td>Contenitori in plastica rigida</td>
<td>5,5</td>
<td>1,1</td>
<td>07/12/2016</td>
</tr>
<tr>
<td>Altre plastiche</td>
<td>4,09</td>
<td>0,82</td>
<td>07/12/2016</td>
</tr>
<tr>
<td>Gomma naturale e sintetica</td>
<td>0,2</td>
<td>0,04</td>
<td>07/12/2016</td>
</tr>
<tr>
<td>Totale materiali in plastica e gomma</td>
<td>20,6</td>
<td>4,1</td>
<td>07/12/2016</td>
</tr>
<tr>
<td>Totale materiali in plastica imballaggi</td>
<td>16,3</td>
<td>3,3</td>
<td>07/12/2016</td>
</tr>
<tr>
<td>Imballaggi poliaccoppiati prevalenza carta</td>
<td>1,17</td>
<td>0,23</td>
<td>07/12/2016</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Composto</th>
<th>Risultato</th>
<th>Incertezza [–]</th>
<th>Data Prova</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimonio</td>
<td><10</td>
<td>mg/kg</td>
<td>16/12/2016</td>
</tr>
<tr>
<td>Arsenico</td>
<td><10</td>
<td>mg/kg</td>
<td>16/12/2016</td>
</tr>
<tr>
<td>Berillio</td>
<td><10</td>
<td>mg/kg</td>
<td>16/12/2016</td>
</tr>
<tr>
<td>Cadmio</td>
<td><10</td>
<td>mg/kg</td>
<td>16/12/2016</td>
</tr>
<tr>
<td>Cromo totale</td>
<td>20</td>
<td>mg/kg</td>
<td>16/12/2016</td>
</tr>
<tr>
<td>Mercurio</td>
<td><1</td>
<td>mg/kg</td>
<td>16/12/2016</td>
</tr>
<tr>
<td>Nichel</td>
<td><10</td>
<td>mg/kg</td>
<td>16/12/2016</td>
</tr>
<tr>
<td>Piombo</td>
<td><10</td>
<td>mg/kg</td>
<td>16/12/2016</td>
</tr>
<tr>
<td>Rame</td>
<td>37</td>
<td>mg/kg</td>
<td>16/12/2016</td>
</tr>
<tr>
<td>Selenio</td>
<td><10</td>
<td>mg/kg</td>
<td>16/12/2016</td>
</tr>
<tr>
<td>Tallio</td>
<td><10</td>
<td>mg/kg</td>
<td>16/12/2016</td>
</tr>
<tr>
<td>Tellurio</td>
<td><10</td>
<td>mg/kg</td>
<td>16/12/2016</td>
</tr>
<tr>
<td>Zinco</td>
<td>146</td>
<td>mg/kg</td>
<td>16/12/2016</td>
</tr>
<tr>
<td>Benzo[a]antracene</td>
<td><0,1</td>
<td>mg/kg</td>
<td>19/12/2016</td>
</tr>
<tr>
<td>Benzo[a]pirene</td>
<td><0,1</td>
<td>mg/kg</td>
<td>19/12/2016</td>
</tr>
</tbody>
</table>

Nota – Il caprolattame (CPL) è il lattame dell’acido 6-amminoesanoico o aminocaproico. È la materia prima per la produzione del nylon 6, che ne è il polimero.

RAEE: “Rifiuti da Apparecchiature Elettriche ed Elettroniche”.

![Image of a document page](image)

<table>
<thead>
<tr>
<th>Proprietà</th>
<th>Risultato</th>
<th>Incertezza [+]</th>
<th>Data Prova</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umidità 105°C</td>
<td>34,2 %</td>
<td>3,4</td>
<td>14/12/2016</td>
</tr>
<tr>
<td>Sostanza secca</td>
<td>65,8 %</td>
<td>2,7</td>
<td>14/12/2016</td>
</tr>
<tr>
<td>Ceneri a 600°C</td>
<td>17,98 %</td>
<td>1,08</td>
<td>16/12/2016</td>
</tr>
<tr>
<td>pH</td>
<td>6,9</td>
<td>0,1</td>
<td>16/12/2016</td>
</tr>
<tr>
<td>PCS</td>
<td>12851 kJ/kg</td>
<td>643</td>
<td>15/12/2016</td>
</tr>
<tr>
<td>PCI</td>
<td>10624 kJ/kg</td>
<td>531</td>
<td>15/12/2016</td>
</tr>
<tr>
<td>PCS</td>
<td>3074 kcal/kg</td>
<td>154</td>
<td>15/12/2016</td>
</tr>
<tr>
<td>PCI</td>
<td>2542 kcal/kg</td>
<td>127</td>
<td>15/12/2016</td>
</tr>
</tbody>
</table>

Natura del rifiuto: granulare 14/12/2016

Riduzione della pezzatura: con mulino a lame 14/12/2016

Test di cessione su campione: tal quale 14/12/2016

Peso campione test cessione su tal quale 14/12/2016

Volume acqua test cessione su campione tal quale 14/12/2016

Frazione >4mm 14/12/2016

Frazione non macinabile <0,1 % 14/12/2016

Rame su eluato da test di cessione in acqua deionizzata 16/12/2016

Sostanze organiche alogenate espresse come cloro 19/12/2016

Cloro Tot. 0,2629 % t.q. 15/06/2017

Fluoro Tot. 0,0037 % t.q. 15/06/2017

Bromo Tot. 0,0066 % t.q. 15/06/2017

Zolfo Tot. 0,11 % t.q. 15/06/2017
Appendice A3 – Il mercurio in atmosfera e negli ambienti acquatici

Negli ultimi anni sta acquisendo sempre più importanza lo studio del mercurio presente in atmosfera a causa della sua tossicità, persistenza, e trasporto a corta o lunga distanza. Questo problema è stato regolizzato con la Convenzione di Minamata del 2013 (UNEP, 2013b). Come detto, l’emissione di mercurio in atmosfera è dovuta prevalentemente a sorgenti antropiche ma anche fenomeni naturali, come incendi ed eruzioni vulcaniche, rivestono un contributo rilevante. Il mercurio in atmosfera può essere più o meno reattivo a seconda della sua forma e delle sostanze chimiche a cui è legato. Inoltre, la reattività è fortemente influenzata dai fenomeni metereologici che determinano il trasporto, la dispersione e la deposizione al suolo, che sia secca o umida. È bene considerare che la valutazione di fenomeni di deposito secco (cioè non associato alle precipitazioni) presentano tuttavia maggiori problematiche essendo molto più complessi da quantificare.

I profili di speciazione del mercurio nei fumi derivanti da fonti di emissione differenti determinano il comportamento del mercurio in atmosfera; il profilo varia notevolmente anche per lo stesso tipo di sorgente qualora vengano utilizzati diversi tipi di combustibili o vengano applicate diverse configurazioni per il trattamento dei fumi. Diversi autori hanno valutato come varia il rapporto tra le quantità di Hg^0, Hg^{2+} e Hg^\bullet nei fumi nel caso di impianti o processi che adottano i medesimi combustibili (Tabella A3.1).

<table>
<thead>
<tr>
<th>Rapporto Hg^0:Hg^{2+}:Hg^\bullet</th>
<th>Paese</th>
<th>Autore</th>
</tr>
</thead>
<tbody>
<tr>
<td>47:35:18</td>
<td>Nord America</td>
<td>Walcek et al. (2003)</td>
</tr>
<tr>
<td>56:32:12</td>
<td>Cina</td>
<td>Streets et al. (2005)</td>
</tr>
<tr>
<td>61:32:7</td>
<td>Europa</td>
<td>Pacyna et al. (2006)</td>
</tr>
<tr>
<td>77:17:6</td>
<td>Australia</td>
<td>Nelson et al. (2012)</td>
</tr>
<tr>
<td>58:39:3</td>
<td>Cina</td>
<td>Zhang et al. (2015)</td>
</tr>
</tbody>
</table>

Con l’attuale aumento nella produzione di rifiuti solidi e la crescente applicazione delle tecnologie di incenerimento, le emissioni di mercurio dovute all’incenerimento dei rifiuti sono fonte di preoccupazione e si prospetta che il rispettivo contributo possa aumentare (Cheng e Hu, 2012).

In atmosfera è possibile trovare mercurio in tre diverse forme: gassosa elementare (identificato mediante l’acronimo GEM –“Gaseous Elemental Mercury”- o Hg0), legato a particelle solide con diametro inferiore a 2,5 μm (PBM –“Particle Bound Mercury”- o Hg$^\bullet$) ed in forma gassosa ossidata (GOM –“Gaseous Oxidized Mercury”- o Hg$^{2+}$ come, per esempio, HgO, HgCl$_2$, HgBr$_2$, HgSO$_4$, ecc.).

Le forme ossidate di mercurio sono considerate la specie dominante di mercurio emessa da impianti di termovalorizzazione (UNEP, 2013b). Il mercurio ossidato, per via della sua elevata reattività e solubilità in acqua (in grado di favorire fenomeni di deposito secco o umido) si deposita facilmente nel suolo, nell’acqua e può entrare in contatto diretto con organismi viventi. Tale forma emissiva di mercurio rappresenta una problematica rilevante sia a scala locale che regionale.
Più del 90% del mercurio immesso in atmosfera è costituito da GEM, percentuali principalmente dovute al notevole utilizzo di carbone come combustibile. Il GEM presenta tempi di residenza in atmosfera rilevanti, compresi tra 0,5-2 anni, e pertanto può essere trasportato a lunga distanza; il GOM ed il PBM hanno invece tempi di residenza in atmosfera minori (rispettivamente da ore a giorni per il primo, da giorni a settimane per il secondo), e si depositano più frequentemente a livello locale piuttosto che a scala regionale attraverso fenomeni di deposizione secca o umida (Schroeder e Munthe, 1998). Il GOM ha un’alta reattività superficiale e rilevante solubilità, peculiarità che ne favoriscono il dilavamento attraverso goccioline che sono successivamente adsorbite su superfici tramite deposizione umida e secca.

È stato valutato come la concentrazione recente di queste tre specie risulti molto alta in Cina rispetto all’Europa o agli Stati Uniti. Esiste quindi un legame tra lo sviluppo economico e l’aumento di mercurio emesso in atmosfera dovuto soprattutto al consumo di carbone per garantire il sempre più crescente fabbisogno di energia elettrica. Le forme con cui il mercurio è presente nell’ambiente dipendono dalle differenti caratteristiche fisico-chimiche e dalla diversa interazione che queste forme hanno con l’ambiente circostante.

Le principali reazioni che avvengono in atmosfera prevedono (Tabella A3.2):

- La riduzione di GOM a GEM a causa dell’azione di SO$_2$(g), SO$_3^{2-}$, emessa in atmosfera e della luce solare (Schmidt et al., 2016);
- L’ossidazione di GEM a GOM da parte di ozono (O$_3$), HCl, OH, HOCl, OCl$^-$, H$_2$O$_2$ o attraverso ossidazione fotochimica di GEM (Xu et al., 2015) e foto-riduzione o foto decomposizione di PBM (Fu et al., 2016);
- L’adsorbimento e il desorbimento di GEM e GOM su e da ceneri con la conseguente produzione di PBM.

Tabella A3.2 – Reazioni chimiche in atmosfera che coinvolgono il mercurio. (Cohen, 2006).

<table>
<thead>
<tr>
<th>Reazioni in fase gas</th>
<th>Cinetica</th>
<th>Unità di misura</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hg0 + O$_2$ → Hg$^+$</td>
<td>3×10^{-19}</td>
<td>cm3/molec-sec</td>
<td>Hall (1995)</td>
</tr>
<tr>
<td>Hg0 + HCl → HgCl$_2$</td>
<td>1×10^{-9}</td>
<td>cm3/molec-sec</td>
<td>Hall e Bloom (1993)</td>
</tr>
<tr>
<td>Hg0 + H$_2$O$_2$ → Hg$^+$</td>
<td>$8,5 \times 10^{-19}$</td>
<td>cm3/molec-sec</td>
<td>Tokos et al. (1998)</td>
</tr>
<tr>
<td>Hg0 + Cl$_2$ → HgCl$_2$</td>
<td>4×10^{-18}</td>
<td>cm3/molec-sec</td>
<td>Calhoun e Prestbo (2001)</td>
</tr>
<tr>
<td>Hg0 + OH$^-$ → Hg$^+$</td>
<td>$8,7 \times 10^{-14}$</td>
<td>cm3/molec-sec</td>
<td>Sommar et al. (2001)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reazioni in fase acquosa</th>
<th>Cinetica</th>
<th>Unità di misura</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hg0 + O$_3$ → Hg$^{2+}$</td>
<td>$4,7 \times 10^{-7}$</td>
<td>(mol-sec)$^{-1}$</td>
<td>Munthe (1992)</td>
</tr>
<tr>
<td>Hg0 + OH$^-$ → Hg$^{2+}$</td>
<td>2×10^{-9}</td>
<td>(mol-sec)$^{-1}$</td>
<td>Lin e Pehkonen (1997)</td>
</tr>
<tr>
<td>HgSO$_3$ → Hg0</td>
<td>$T \cdot e^{(31,971 \cdot T-12595,0/T)} \times 10^{-1}$</td>
<td>sec$^{-1}$</td>
<td>Van Loon et al. (2002)</td>
</tr>
<tr>
<td>Hg(II) + HO$_2$ → Hg0</td>
<td>~ 0</td>
<td>(mol-sec)$^{-1}$</td>
<td>Gardfeldt e Johnson (2003)</td>
</tr>
<tr>
<td>Hg$^{2+}$ + HOCl → Hg$^{2+}$</td>
<td>2×10^{-6}</td>
<td>(mol-sec)$^{-1}$</td>
<td>Lin e Pehkonen (1997)</td>
</tr>
<tr>
<td>Hg0 + OCl$^-$ → Hg$^{2+}$</td>
<td>2×10^{-6}</td>
<td>(mol-sec)$^{-1}$</td>
<td>Lin e Pehkonen (1997)</td>
</tr>
<tr>
<td>Hg(II) → Hg(II)$_{polvere}$</td>
<td>9×10^{-2}</td>
<td>l/g; (t = 1/\text{ora})</td>
<td>Seigneur et al. (1998)</td>
</tr>
<tr>
<td>Hg$^{2+}$ + h$^+$ → Hg0</td>
<td>6×10^{7}</td>
<td>(sec)$^{-1}$ (\text{(massimo)})</td>
<td>Xiao et al. (1994)</td>
</tr>
</tbody>
</table>

Bullock e Brehme (2002)
I modelli normalmente utilizzati per descrivere le reazioni che coinvolgono il mercurio atmosferico sono affetti da una mancanza di dati riguardo alle concentrazioni in aria delle specie di mercurio. Come accennato in precedenza, uno dei fenomeni principali che coinvolge il mercurio riguarda il fenomeno di deposizione a umido, che tuttavia è molto difficile da modellare a causa dell’errore nelle misure di emissione, trasporto, precipitazione.

Le concentrazioni delle tre specie principali di mercurio generalmente variano a seconda che ci si riferisca ai mesi invernali o ai mesi estivi, così come durante i diversi momenti della giornata. Ad esempio, la concentrazione di GEM registrata in atmosfera è maggiore nei mesi estivi rispetto ai mesi invernali; ciò può essere ascrivibile ai più alti valori di temperatura estivi che rendono maggiormente difficoltosa la condensazione (Xiao et al., 2015). Inoltre, fenomeni generati dall’attività solare, quali l’ossidazione fotochimica, la foto-riduzione o la foto-decomposizione, dovrebbero essere alla base dell’ossidazione di GEM e quindi essere in grado di comportare una maggiore concentrazione di GOM in corrispondenza dell’estate. Tuttavia, nello studio di Duan et al. (2016), effettuato nei pressi di Shangai, si è rilevato come la concentrazione di GOM fosse più alta all’inizio dell’inverno rispetto ai mesi estivi.

Molti studi riportano differenti variazioni diurne delle specie di mercurio analizzate, tuttavia senza la presenza di un andamento consistente, perché le variazioni dipendono da molti fattori tra cui la differenza tra sorgenti e le condizioni metereologiche. Le variazioni diurne delle specie di mercurio in atmosfera sono mostrate in Figura A3.1. Tali variazioni sono state registrate a Shangai nel distretto di Quinpu (Duan et al., 2016) ma variazioni simili sono state riscontrate anche nelle aree urbane di Detroit (Liu et al., 2007), Guiyang (Fu et al., 2011), Toronto (Denis et al., 2006), e in alcuni siti rurali nei pressi di New York (Lee et al., 1998) e in Quebec (Poissant et al., 2005).

Figura A3.1 – Variazioni diurne e notturne di GEM, PBM, GOM, SO$_2$, NO$_X$, O$_3$. (Duan et al., 2016).
Il mercurio elementare (GEM) varia poco durante l’intera giornata mentre il mercurio particolato e ossidato (PEM e GOM) esibiscono distinte variazioni diurne. Nello specifico, durante la notte, la presenza di GEM manifesta una ridotta variabilità mentre il PBM mostra livelli più alti rispetto alle ore diurne. D’altra parte il GOM è caratterizzato da valori maggiori durante le ore diurne ad indicare come questa specie dipenda in maniera marcata dalle reazioni fotochimiche che avvengono durante la giornata (Figura A3.1).

La concentrazione media di mercurio elementare di giorno è risultata minore rispetto quella registrata nella notte durante l’intero periodo monitorato. La ragione probabile riguarda l’ossidazione di mercurio elementare di giorno e la bassa velocità del vento di notte (Lindberg et al., 2002; Wang et al., 2016). Inoltre l’ambiente con densità elevata di abitazioni potrebbe inibire la dispersione atmosferica dell’inquinante e l’accumulo dello stesso. Le concentrazioni di SO$_2$ e NO$_X$ mostrano andamenti diurni simili al mercurio particolato (PEM) e al mercurio elementare (GEM), suggerendo quindi come la combustione che avviene negli impianti limitrofi sia una fonte importante di mercurio elementare (nonostante vi sia una debole relazione fra mercurio elementare e SO$_2$ e NO$_X$, a causa probabilmente dei differenti tempi di residenza).

Il GOM, così come altre specie diurne quali l’ozono, presenta un andamento inverso con concentrazioni relativamente alte durante il giorno e picchi che si protraggono dalla tarda mattinata al primo pomeriggio (11:00-16:00, periodo durante il quale la produzione fotochimica presenta maggiore rilevanza), portando ad avere una maggiore presenza di forme ossidate. Tale andamento è opposto a quelli riguardanti il mercurio particolato (PBM) registrati in un intervallo simile (12:00-18:00) che riportano le concentrazioni più basse.

La bassa concentrazione di GOM nelle ore notturne può essere spiegata attraverso 3 fenomeni:

- La bassa temperatura favorisce l’adsorbimento di GOM sulle particelle presenti in aria e ciò potrebbe essere un’altra causa per l’alta concentrazione di PBM di notte (Wang et al., 2016);
- L’alta umidità relativa può essere alla base di accelerazioni nella rimozione di mercurio ossidato dall’atmosfera (ciò è supportato dalla correlazione negativa tra mercurio ossidato e umidità dell’aria);
- La mancata presenza di radiazione solare in grado di ridurre il fenomeno stesso.

Il particolato atmosferico funge da supporto per l’adsorbimento o il desorbimento del mercurio, formando PBM. La correlazione tra mercurio particolato (PBM) e particolato fine (PM$_{2.5}$) dipende in particolar modo dalle condizioni meteorologiche. Da un lato tanto più sono rari i fenomeni meteorici quanto è maggiore il contenuto di polveri in aria, contribuendo ad aumentare il contenuto di PBM in atmosfera; dall’altro la direzione e l’intensità con cui soffia il vento influiscono direttamente sulla concentrazione delle polveri, distribuendole nello spazio.

Sono stati registrati valori di PBM anche nell’oceano Atlantico e Pacifico. Poiché non sono sorgenti di natura antropica, la presenza di PBM è attribuibile all’adsorbimento del mercurio ossidato, prodotto dalle reazioni fotochimiche che avvengono sopra l’oceano, sugli aerosol di sale marino (Zhang et al., 2013). Inoltre, le reazioni fotochimiche sono favorite dalla presenza di alogeni trasportati dalle correnti marine. Le emissioni relative agli ambienti acquatici presentano fenomenologie completamente differenti rispetto a
quelle riguardanti l’atmosfera. A differenza di queste ultime, in acqua il prevalente rilascio di mercurio avviene in forma di mercurio inorganico o, in misura minore, liquido. Il rilascio può essere sostanzialmente categorizzato come dovuto a fonti puntuali oppure a fonti diffuse (dove il mercurio precedentemente stoccato viene nuovamente movimentato e rilasciato), come visibile dalla Tabella A3.3. Lo studio del comportamento del mercurio nelle matrici acquatiche è di fondamentale importanza poiché in questi ambienti si può manifestare la formazione di metilmercurio, in grado di bioaccumularsi negli animali e quindi rappresentare una seria minaccia per salute umana (biomagnificazione).

Risultati modellistici suggeriscono che gli impatti di inquinamento da mercurio si manifestano maggiormente nei primi 100 metri di profondità della colonna d’acqua. Inoltre, il mercurio presente in queste regioni superficiali presenta un tempo di residenza di circa 30 anni, mentre per le regioni più profonde si parla di centinaia di anni. Per questo motivo gli oceani rappresentano uno dei maggiori depositi naturali caratterizzato da una rilevante quantità soprattutto nelle acque profonde (UNEP, 2013a). Queste considerazioni dimostrano una notevole differenza rispetto alla presenza di mercurio in atmosfera, dove il tempo di residenza sia aggira attorno all’anno.

<table>
<thead>
<tr>
<th>Settore</th>
<th>Rilasci (intervallo) [t/anno]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produzione di metalli non ferrosi</td>
<td>92,5 (19,3-268,0)</td>
</tr>
<tr>
<td>Rifiuti da prodotti</td>
<td>89,5 (22,2-308,0)</td>
</tr>
<tr>
<td>Produzione di cloro-alcali</td>
<td>2,8 (1,0-5,5)</td>
</tr>
<tr>
<td>Raffineria del petrolio</td>
<td>0,6 (0,3-1,0)</td>
</tr>
<tr>
<td>Totale</td>
<td>185,0 (42,6-582,0)</td>
</tr>
</tbody>
</table>
Appendice A4 – Metodologie di retrofit per il mercurio

I processi scelti per il trattamento del flusso gassoso proveniente dalla combustione di un rifiuto devono puntare ad essere economici ed efficienti. In quest’ottica si stanno sviluppando nuove tecnologie in grado di soddisfare le richieste, come nuovi adsorbenti di mercurio e nuovi sistemi di pulizia del gas.

Il confronto tra i costi dei vari trattamenti di pulizia in commercio è reso complicato da diversi fattori come la capacità di incenerimento delle unità, il carico di rifiuto, la composizione dello stesso, il corrispondente PCI, le tipologie di inquinanti con cui ci si deve confrontare, la variabilità dei costi nel tempo. Generalmente all’aumentare della capacità di incenerimento delle singole unità i relativi costi di pulizia del gas o di rimozione del mercurio, così come i costi riferiti a una tonnellata di rifiuto incenerito, sono più bassi.

I costi specifici di rimozione del mercurio (espressi come €/kg Hg rimesso) sono relativamente ridotti. Tuttavia, tali costi non sono stabili in quanto sono influenzati da diversi fattori come la concentrazione di mercurio entrante, la natura del rifiuto solido, la futura destinazione del mercurio oltre che dal costo dell’adsorbente usato e dalla stabilità dei composti contenenti mercurio nei residui solidi da gestire.

I costi di investimento e i costi operativi e di manutenzione sono legati alla capacità di incenerimento dell’impianto, ai MWh termici prodotti, alla quantità e al tipo di rifiuto prodotto, alla quantità di Hg rimosso e al layout dell’impianto. Spesso i costi di gestione di rifiuti pericolosi sono alquanto significativi.

Nello studio di Svoboda et al. (2016) è stato effettuato un confronto tra metodi a secco e a umido utilizzati per la depurazione degli effluenti gassosi. È bene notare come l’utilizzo di un sistema SCR ha un peso rilevante sul costo totale attribuito alla filiera di trattamento.

Il risultato di questo confronto ha portato alla conclusione che i metodi a secco sono più economici di quelli a umido, come mostrato nella Tabella A4.1.

La Tabella A4.1 (Svoboda et al., 2016) riporta i metodi a secco con SCR, SNCR e due reagenti NaHCO₃ e Ca(OH)₂. L’opzione V5 riportata considera un filtro catalitico in grado di portare alla distruzione di NOₓ e diossine. L’utilizzo di un SCR aumenta il costo per il processo di pulizia del gas ma aumenta in modo rilevante anche l’efficienza. La speciazione del mercurio e la rimozione dello stesso è influenzata a seconda della posizione dell’SCR (a seconda che sia posizionato subito dopo la caldaia o in serie a un ESP).

Anche fattori come il rapporto SO₂/HCl, la concentrazione di O₂ nel gas, il rapporto NH₃/NOₓ e i catalizzatori utilizzati nel sistema SCR sono fattori importanti che contribuiscono alla rimozione del mercurio.
Tabella A4.1 – Retrofit di linee di trattamento fumi esistenti per una rimozione di mercurio più efficiente. (Derrene et al., 2009; Chang et al., 2010; Pacyna et al., 2010; US EPA Report, 1997; Machalek e Chang, 2008; Qu et al., 2015; Ding et al., 2012; Liu et al., 2015; Li et al., 2012; Ghorishi et al., 2005; Kolde e Souder, 2012).

Note – Hg: Mercurio; ESP: Precipitatore Elettrostatico; CA: Carbone Attivo; PSR: Prodotti Sodici Residui; FM: Filtro a Maniche; SNCR: Riduzione Catalitica Non Selettiva; SCR: Riduzione Catalitica Selettiva; SPC: Polimero a Solido Composito.

<table>
<thead>
<tr>
<th>Tecnologia</th>
<th>Combinazione dei processi</th>
<th>Costo d’investimento (Mln €)</th>
<th>Costi O+M (Mln €/ anno)</th>
<th>Residui (trattamento, proprietà, smaltimento)</th>
<th>Vantaggi, co-benefici</th>
<th>Svantaggi</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1 Retrofit</td>
<td>V1 Retrofit TOXECON Rimozione di Hg tra ESP e assorbimento a secco o a umido.</td>
<td>~ 4</td>
<td>1,0-1,5</td>
<td>Rapporto CA/Hg almeno pari a 1000, CA separato con elevati quantitativi di HgCl₂ e Hg⁶ adsorbiti, parziale rigenerazione del CA.</td>
<td>Separazione ceneri volanti, PSR e CA contenenti Hg. Possibile rimozione di Hg per concentrazioni inferiori a 10 µg/m³.</td>
<td>Costa d’investimento addizionale relativamente alto.</td>
</tr>
<tr>
<td>V2 Retrofit</td>
<td>V2 Retrofit TOXECON II Iniezione di CA in ESP per rimozione Hg.</td>
<td>~ 1</td>
<td>< 1,0</td>
<td>Richiesto alto rapporto CA/Hg, residui solidi contengono ceneri volanti e CA che ha adsorbito Hg.</td>
<td>Semplice separazione parziale di ceneri volanti (>80%), investimento contenuto.</td>
<td>Efficienza di separazione del Hg tra 50-90% (dipendente dal CA e dal rapporto HCl/SO₂ nel flusso gassoso). La cenere volante contiene circa il 20% di CA.</td>
</tr>
<tr>
<td>V3 Retrofit</td>
<td>V3 Retrofit Assorbimento a secco, FM, letto fisso di CA.</td>
<td>4-6</td>
<td>~ 1,0</td>
<td>I residui solidi dalla rimozione del Hg sono separati, la categoria del rifiuto dipende dall’impregnazione del CA.</td>
<td>Rimozione di Hg efficiente, rifiuti contenenti Hg separati, possibile recupero di Hg e rigenerazione del sorbente.</td>
<td>Costa d’investimento addizionale relativamente alto, rigenerazione dei sorbenti atti a rimuovere Hg relativamente difficoltosa.</td>
</tr>
<tr>
<td>V4 Retrofit</td>
<td>V4 Retrofit ESP, catalizzatore per ossidazione di Hg, assorbimento a umido.</td>
<td>3-4</td>
<td>0,6-1,0</td>
<td>Miglioramento della rimozione del Hg nell’assorbimento, CaCl₂ e CaSO₄ sono rimosi.</td>
<td>Ridotte emissioni di NOₓ, maggiori separazioni di Hg nell’assorbimento a umido.</td>
<td>Costi addizionali.</td>
</tr>
<tr>
<td>V5 Retrofit</td>
<td>V5 Retrofit Rinfinitura finale con FM con utilizzo di CA.</td>
<td>4-5</td>
<td>~ 1,0</td>
<td>I PSR coinvolgono residui del trattamento di assorbimento e del FM.</td>
<td>Efficiente rimozione del Hg, adatta per condizioni nelle quali si abbia un rapporto Hg²/HgCl₂ > 0,6.</td>
<td>Costi addizionali sulla base della speciazione di Hg e sulla base del quantitativo di Hg presente, residui di assorbimento e del FM.</td>
</tr>
<tr>
<td>V6 Retrofit</td>
<td>V6 Retrofit Modulo SPC.</td>
<td>< 3</td>
<td>< 0,7</td>
<td>Tempo di vita del modulo SPC non superiore ai 3 anni, basse perdite di carico, rimozione parziale simultanea di SO₂.</td>
<td>Sistema modulare, temperatura operativa 60-100°C, adatta per i processi a umido e a secco.</td>
<td>Riciclo del modulo non collaudato, difficile recupero del Hg rimesso. Brevi esperienze su larga scala.</td>
</tr>
</tbody>
</table>
Appendice A5 – Impianto pilota di dosaggio del reagente Depurcal®MG

L’impianto pilota per il dosaggio del sorbente dolomitico Depurcal®MG, gestibile attraverso una propria elettronica di controllo, garantisce una notevole flessibilità ed assicura la possibilità di operare in autonomia senza alterare il normale funzionamento delle tecnologie e delle logiche di controllo dell’impianto di termovalorizzazione ove avviene il dosaggio, pur potendo essere facilmente e convenientemente interfacciato ad esse mediante i sistemi di controllo PLC del termovalorizzatore medesimo. Il dosaggio del sorbente può dunque essere impostato su un prefissato valore di portata oraria e regolato manualmente tramite potenziometro, oppure può essere variato in automatico, per esempio mediante regolatore PID (regolatore ad azione proporzionale-integrativa-derivativa), in funzione di un set-point di riferimento per quanto concerne i dati di concentrazione massima degli inquinanti acidi in uscita dalla caldaia.

Come riportato in Figura A5.1, lo schema di un impianto definitivo per il dosaggio del sorbente dolomitico Depurcal®MG all’interno della sezione combustione di un termovalorizzatore rispecchia sostanzialmente l’architettura dell’impianto pilota appena descritto. Tale impianto, nella sua configurazione fondamentale, è composto da un silo di stoccaggio di adeguata capacità (almeno 80-90 m³), dotato di tubazione di carico del prodotto sfuso dall’autocisterna, un filtro depolveratore che consenta una corretta evacuazione dell’aria di trasporto pneumatico, valvole di sicurezza a funzionamento meccanico per le sovrappressioni (tendenza all’esplosione) o le sottopressioni (tendenza all’implosione) che potrebbero ingenerarsi all’interno del serbatoio, misuratori di livello ed eventuali ausili di estrazione meccanici o pneumatici alla base del cono del silo munito di valvola di scarico del prodotto cui è connessa una coclea di estrazione del materiale, in maniera diretta o mediante frapposizione di una rotocella in qualità di pre-alimentatore al fine di prevenire eventuali fenomeni di efflusso incontrollato, una coclea di estrazione del materiale. A valle del silo di stoccaggio, prima dell’effettivo dosaggio, è opportuno che il sorbente sia temporaneamente trasferito, in relazione anche al numero di linee di trattamento rifiuti, all’interno di uno o più serbatoi secondari costituiti da una tramoggia “polmone” pesata che consenta di effettuare il dosaggio nella maniera più precisa possibile. Tramite un sistema di estrazione e dosaggio, che in soluzioni impiantistiche a più elevato grado di affidabilità può essere costituito dall’accoppiamento di estrattore rotativo e di una coclea, il reagente viene poi convogliato, attraverso un’opportuna camera di riempimento verticale costituita dalla regione di spazio circoscritta da due valvole a farfalla aventi una regolazione apertura/chiusura sfasata (il sistema apre la valvola posta superiormente, riempie la camera, chiude la valvola superiore e quindi apre la valvola inferiore), alla tubazione di trasporto pneumatico in fase diluita (promosso dall’azione di un ventilatore o di una soffiatrice) per essere iniettato all’interno della sezione forno-caldaia della linea di termovalorizzazione.
Durante la fase di esercizio, le componenti dell’impianto maggiormente soggette a eventuali problematiche sono quelle relative all’estrazione del sorbente dolomitico dal silo di stoccaggio e all’iniezione dello stesso nella linea di trasporto pneumatico.

Per quanto attiene al silo destinato allo stoccaggio del Depurcal® MG è fondamentale che questo sia a perfetta tenuta d’acqua, in modo da garantire un ambiente asciutto così da assicurare il buono stato di conservazione del materiale al suo interno nonché scongiurare seri problemi di impaccamento.

Una verniciatura chiara del silo consente di evitare il surriscaldamento solare e quindi scongiurare che cicli di riscaldamento/raffreddamento successivi possano comportare rischi di condensazione di eventuale umidità atmosferica presente all’interno del silo. Inoltre, una conformazione alta e stretta del silo (h/D>1,5) è da preferirsi rispetto ad una bassa e larga, in quanto in tale maniera si ottiene una migliore distribuzione delle pressioni che il materiale esercita sulle pareti del serbatoio. L’inclinazione del cono del serbatoio deve essere maggiore di 70° per garantire una idonea scorrevolezza del prodotto, senza contare che le pareti interne del serbatoio e del cono devono essere sufficientemente lisce per garantire la competa mobilizzazione dell’intera massa del materiale ed un suo deflusso uniforme verso il fondo limitando eventuali zone di ristagno laterali.

Per quanto riguarda invece l’iniezione del sorbente nel circuito di trasporto pneumatico, eventuali criticità possono verificarsi nel punto in cui il Depurcal® MG incontra il flusso dell’aria di trasporto a causa del verificarsi di indesideratecondizioni di accumulo di materiale solido per mancanza di corretta accelerazione impartita allo stesso che possono comportare un aumento delle perdite di carico fino a dare luogo, nei casi più

Figura A5.1 – Schema dell’impianto per l’utilizzo del prodotto Depurcal® MG. (Cassamagnaghi, 2011).
gravi, al completo intasamento della linea di adduzione. Per evitare i problemi di ostruzione, è assolutamente sconveniente adottare velocità dell’aria di trasporto inferiori a 20 m/s ed è consigliabile attestarsi su valori di velocità compresi tra 25-35 m/s. Inoltre, è altrettanto consigliato limitare l’estensione e la complessità del tracciato preferendo, pur secondo la logica della minimizzazione del numero, curve ad ampio raggio e tratti di condotta verticali a quelli orizzontali oltre a mantenere la sezione della tubazione il più possibile invariata (mediante l’impiego di flange per l’accoppiamento dei vari tratti della tubazione).

Le tubazioni più adatte per il trasporto sono costituite da condotti flessibili in poliuretano o gomma. Questi materiali riducono eventuali problematiche di accumulo di cariche elettrostatiche delle particelle e consentono di conferire alla tubazione stessa una “micro-vibrazione” che aumenta la facilità di trasporto e riduce la probabilità che si possano verificare fenomeni di adesione delle particelle sulle pareti e di occlusione della tubazione stessa (maggiore facilità di distacco di eventuali depositi dalle pareti dei condotti).

L’ingresso in caldaia non necessita di particolari ugelli, essendo il Depurcat®MG un reagente pronto all’uso che presenta una granulometria estremamente fine che viene immediatamente trascinato e miscelato omogeneamente nel flusso gassoso una volta dosato.
Appendice A6 – Statistiche descrittive dei parametri dell’analisi ambientale

Tabella A6.1 – Statistiche descrittive dell’acido cloridrico in uscita caldaia – Scenario A.

<table>
<thead>
<tr>
<th>Scenario A</th>
<th>Min</th>
<th>Max</th>
<th>Media ± Dev.std.</th>
<th>Mediana</th>
<th>Min</th>
<th>Max</th>
<th>Media ± Dev.std.</th>
<th>Mediana</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3 - Periodo 0</td>
<td>254,24</td>
<td>1565,09</td>
<td>909,22 ± 148,50</td>
<td>895,38</td>
<td>0,64</td>
<td>20,42</td>
<td>5,21 ± 1,89</td>
<td>4,80</td>
</tr>
<tr>
<td>L3 - Periodo 1</td>
<td>83,66</td>
<td>1125,42</td>
<td>590,33 ± 118,58</td>
<td>580,62</td>
<td>0,44</td>
<td>25,90</td>
<td>3,40 ± 1,44</td>
<td>3,11</td>
</tr>
<tr>
<td>L3 - Periodo 1</td>
<td>431,97</td>
<td>1056,02</td>
<td>726,85 ± 97,62</td>
<td>718,94</td>
<td>1,59</td>
<td>13,61</td>
<td>4,31 ± 1,66</td>
<td>3,89</td>
</tr>
<tr>
<td>L3 - Periodo 1</td>
<td>299,39</td>
<td>1125,42</td>
<td>648,83 ± 91,64</td>
<td>641,26</td>
<td>1,02</td>
<td>11,65</td>
<td>3,72 ± 1,30</td>
<td>3,46</td>
</tr>
<tr>
<td>L3 - Periodo 1</td>
<td>83,66</td>
<td>874,99</td>
<td>529,02 ± 86,54</td>
<td>526,04</td>
<td>0,44</td>
<td>25,90</td>
<td>3,02 ± 1,30</td>
<td>2,79</td>
</tr>
</tbody>
</table>

Tabella A6.2 – Statistiche descrittive dell’anidride solforosa in uscita caldaia – Scenario A.

<table>
<thead>
<tr>
<th>Scenario A</th>
<th>Min</th>
<th>Max</th>
<th>Media ± Dev.std.</th>
<th>Mediana</th>
<th>Min</th>
<th>Max</th>
<th>Media ± Dev.std.</th>
<th>Mediana</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3 - Periodo 0</td>
<td>3,06</td>
<td>160,31</td>
<td>59,75 ± 23,40</td>
<td>55,79</td>
<td>0,02</td>
<td>2,11</td>
<td>0,34 ± 0,17</td>
<td>0,30</td>
</tr>
<tr>
<td>L3 - Periodo 1</td>
<td>0,99</td>
<td>82,02</td>
<td>16,19 ± 15,00</td>
<td>11,13</td>
<td>0,004</td>
<td>0,70</td>
<td>0,09 ± 0,09</td>
<td>0,06</td>
</tr>
<tr>
<td>L3 - Periodo 1</td>
<td>3,98</td>
<td>82,02</td>
<td>35,79 ± 13,28</td>
<td>35,60</td>
<td>0,03</td>
<td>0,70</td>
<td>0,21 ± 0,11</td>
<td>0,20</td>
</tr>
<tr>
<td>L3 - Periodo 1</td>
<td>2,02</td>
<td>74,44</td>
<td>22,05 ± 12,12</td>
<td>19,30</td>
<td>0,01</td>
<td>0,62</td>
<td>0,13 ± 0,08</td>
<td>0,10</td>
</tr>
<tr>
<td>L3 - Periodo 1</td>
<td>0,99</td>
<td>59,35</td>
<td>6,30 ± 6,01</td>
<td>4,34</td>
<td>0,004</td>
<td>0,48</td>
<td>0,04 ± 0,04</td>
<td>0,02</td>
</tr>
</tbody>
</table>
Tabella A6.3 – Statistiche descrittive dell’acido cloridrico in uscita caldaia – Scenario B.

<table>
<thead>
<tr>
<th>Scenario B</th>
<th>HCl [mg/Nm³]</th>
<th>HCl [kg/t Rifiuti]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>L2 - Periodo 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>232,05</td>
<td>1225,30</td>
</tr>
<tr>
<td>L2 - Periodo 1 (Step 1:</td>
<td>554,40</td>
<td>1159,44</td>
</tr>
<tr>
<td>Depurcal® MG 60 kg/h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2 - Periodo 1 (Step 2:</td>
<td>264,49</td>
<td>1225,25</td>
</tr>
<tr>
<td>Depurcal® MG 90 kg/h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2 - Periodo 1 (Step 3:</td>
<td>232,05</td>
<td>1217,91</td>
</tr>
<tr>
<td>Depurcal® MG 120 kg/h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3 - Periodo 1</td>
<td>83,66</td>
<td>1125,42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3 - Periodo 1 (Step 1:</td>
<td>431,97</td>
<td>1056,02</td>
</tr>
<tr>
<td>Depurcal® MG 60 kg/h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3 - Periodo 1 (Step 2:</td>
<td>299,39</td>
<td>1125,42</td>
</tr>
<tr>
<td>Depurcal® MG 90 kg/h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3 - Periodo 1 (Step 3:</td>
<td>83,66</td>
<td>874,99</td>
</tr>
<tr>
<td>Depurcal® MG 120 kg/h)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabella A6.4 – Statistiche descrittive dell’anidride solforosa in uscita caldaia – Scenario B.

<table>
<thead>
<tr>
<th>Scenario B</th>
<th>SO₂ [mg/Nm³]</th>
<th>SO₂ [kg/t Rifiuti]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>L2 - Periodo 1</td>
<td>2,74</td>
<td>165,17</td>
</tr>
<tr>
<td>L2 - Periodo 1 (Step 1:</td>
<td>13,86</td>
<td>128,98</td>
</tr>
<tr>
<td>Depurcal® MG 60 kg/h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2 - Periodo 1 (Step 2:</td>
<td>4,89</td>
<td>144,83</td>
</tr>
<tr>
<td>Depurcal® MG 90 kg/h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2 - Periodo 1 (Step 3:</td>
<td>2,74</td>
<td>165,17</td>
</tr>
<tr>
<td>Depurcal® MG 120 kg/h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3 - Periodo 1</td>
<td>0,99</td>
<td>82,02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3 - Periodo 1 (Step 1:</td>
<td>3,98</td>
<td>82,02</td>
</tr>
<tr>
<td>Depurcal® MG 60 kg/h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3 - Periodo 1 (Step 2:</td>
<td>2,02</td>
<td>74,44</td>
</tr>
<tr>
<td>Depurcal® MG 90 kg/h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3 - Periodo 1 (Step 3:</td>
<td>0,99</td>
<td>59,35</td>
</tr>
<tr>
<td>Depurcal® MG 120 kg/h)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabella A6.5 – Sintesi delle variazioni dei gas acidi – Scenario C.

<table>
<thead>
<tr>
<th>Scenario C</th>
<th>HCl [mg/Nm³]</th>
<th>HCl [kg/tRifiuti]</th>
<th>SO₂ [mg/Nm³]</th>
<th>SO₂ [kg/tRifiuti]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3 No Depurcal'MG - Periodo 1 (Intero periodo)</td>
<td>765,61 ± 123,52</td>
<td>4,41 ± 1,47</td>
<td>28,61 ± 18,18</td>
<td>0,17 ± 0,12</td>
</tr>
<tr>
<td>L3 Si Depurcal'MG - Periodo 1 (Intero periodo)</td>
<td>590,33 ± 118,59</td>
<td>3,40 ± 1,44</td>
<td>14,15 ± 14,96</td>
<td>0,08 ± 0,09</td>
</tr>
<tr>
<td>L3 No Depurcal'MG - Periodo 1 (Step 1: Depurcal'MG 60 kg/h)</td>
<td>886,76 ± 97,18</td>
<td>5,06 ± 1,67</td>
<td>58,46 ± 15,59</td>
<td>0,33 ± 0,14</td>
</tr>
<tr>
<td>L3 Si Depurcal'MG - Periodo 1 (Step 1: Depurcal'MG 60 kg/h)</td>
<td>726,85 ± 97,62</td>
<td>4,30 ± 1,66</td>
<td>35,79 ± 13,28</td>
<td>0,21 ± 0,10</td>
</tr>
<tr>
<td>L3 No Depurcal'MG - Periodo 1 (Step 2: Depurcal'MG 90 kg/h)</td>
<td>845,11 ± 110,28</td>
<td>4,81 ± 1,52</td>
<td>45,32 ± 15,26</td>
<td>0,26 ± 0,11</td>
</tr>
<tr>
<td>L3 Si Depurcal'MG - Periodo 1 (Step 2: Depurcal'MG 90 kg/h)</td>
<td>648,83 ± 91,64</td>
<td>3,72 ± 1,30</td>
<td>22,05 ± 12,12</td>
<td>0,13 ± 0,08</td>
</tr>
<tr>
<td>L3 No Depurcal'MG - Periodo 1 (Step 3: Depurcal'MG 120 kg/h)</td>
<td>739,59 ± 115,69</td>
<td>4,27 ± 1,42</td>
<td>22,95 ± 14,74</td>
<td>0,14 ± 0,10</td>
</tr>
<tr>
<td>L3 Si Depurcal'MG - Periodo 1 (Step 3: Depurcal'MG 120 kg/h)</td>
<td>529,02 ± 86,53</td>
<td>3,02 ± 1,25</td>
<td>5,01 ± 5,83</td>
<td>0,03 ± 0,04</td>
</tr>
</tbody>
</table>
Appendice A7 – Statistiche descrittive dei parametri dell’analisi gestionale

Tabella A7.1 – Statistiche descrittive del bicarbonato di sodio – Scenario A.

<table>
<thead>
<tr>
<th>Scenario A</th>
<th>NaHCO$_3$ [kg/h]</th>
<th>NaHCO3 [kg/t${Rifiuti}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>L3 - Periodo 0</td>
<td>47,49</td>
<td>961,68</td>
</tr>
<tr>
<td>L3 - Periodo 1</td>
<td>152,47</td>
<td>1077,74</td>
</tr>
<tr>
<td>L3 - Periodo 1 (Step 1: Depurcal® MG 60 kg/h)</td>
<td>201,48</td>
<td>1043,92</td>
</tr>
<tr>
<td>L3 - Periodo 1 (Step 2: Depurcal® MG 90 kg/h)</td>
<td>200,58</td>
<td>898,34</td>
</tr>
<tr>
<td>L3 - Periodo 1 (Step 3: Depurcal® MG 120 kg/h)</td>
<td>152,47</td>
<td>1077,74</td>
</tr>
</tbody>
</table>

Tabella A7.2 – Statistiche descrittive del bicarbonato di sodio – Scenario B.

<table>
<thead>
<tr>
<th>Scenario B</th>
<th>NaHCO$_3$ [kg/h]</th>
<th>NaHCO3 [kg/t${Rifiuti}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>L2 - Periodo 1</td>
<td>200,44</td>
<td>1224,99</td>
</tr>
<tr>
<td>L2 - Periodo 1 (Step 1: Depurcal® MG 60 kg/h)</td>
<td>246,95</td>
<td>1224,99</td>
</tr>
<tr>
<td>L2 - Periodo 1 (Step 2: Depurcal® MG 90 kg/h)</td>
<td>200,45</td>
<td>606,76</td>
</tr>
<tr>
<td>L2 - Periodo 1 (Step 3: Depurcal® MG 120 kg/h)</td>
<td>200,60</td>
<td>1223,88</td>
</tr>
<tr>
<td>L3 - Periodo 1</td>
<td>152,47</td>
<td>1077,74</td>
</tr>
<tr>
<td>L3 - Periodo 1 (Step 1: Depurcal® MG 60 kg/h)</td>
<td>201,48</td>
<td>1043,92</td>
</tr>
<tr>
<td>L3 - Periodo 1 (Step 2: Depurcal® MG 90 kg/h)</td>
<td>200,58</td>
<td>898,34</td>
</tr>
<tr>
<td>L3 - Periodo 1 (Step 3: Depurcal® MG 120 kg/h)</td>
<td>152,47</td>
<td>1077,74</td>
</tr>
</tbody>
</table>
Tabella A7.3 – Sintesi delle variazioni del bicarbonato di sodio – Scenario C.

<table>
<thead>
<tr>
<th>Scenario C</th>
<th>Teorico</th>
<th>Reale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dosaggio Bicarbonato Si Depurcal® MG [kg NaHCO₃/t Rifiuti]</td>
<td>Dosaggio Bicarbonato NO Depurcal® MG [kg NaHCO₃/t Rifiuti]</td>
</tr>
<tr>
<td></td>
<td>10.66 ± 4.61</td>
<td>14.03 ± 4.78</td>
</tr>
<tr>
<td>L3 - Periodo 1 (Step 1: Depurcal® MG 60 kg/h)</td>
<td>13.86 ± 5.32</td>
<td>16.63 ± 5.53</td>
</tr>
<tr>
<td>L3 - Periodo 1 (Step 2: Depurcal® MG 90 kg/h)</td>
<td>11.78 ± 4.15</td>
<td>15.57 ± 4.98</td>
</tr>
<tr>
<td>L3 - Periodo 1 (Step 3: Depurcal® MG 120 kg/h)</td>
<td>9.33 ± 4.01</td>
<td>13.51 ± 4.57</td>
</tr>
</tbody>
</table>
Appendice A8 – Andamenti settimanali dei residui
Tabella A8.1 – Andamenti settimanali riferiti alla portata di rifiuti trattata in impianto e alla produzione di
residui.
Settimana
1/01 → 7/01
8/01 → 14/01
15/01 → 21/01
22/01 → 28/01
29/01 → 04/02
05/01 → 11/02
11/02 → 18/02
19/02 → 25/02
26/02 → 4/03
05/03 → 11/03
12/03 → 18/03
19/03 → 25/03
26/03 → 01/04
02/04 → 08/04
09/04 → 15/04
16/04 → 22/04
23/04 → 29/04
30/04 → 06/05
07/05 → 13/05
14/05 → 20/05
21/05 → 27/05
28/05 → 3/06
4/06 → 10/06
11/06 → 17/06
18/06 → 24/06
25/06 → 01/07
02/07 → 08/07
09/07 → 15/07
16/07 → 22/07
23/07 → 29/07
30/07 → 05/08
06/07 → 12/08
13/07 → 19/08
20/07 → 26/08
27/08 → 2/09
3/09 → 9/09
10/09 → 16/09
17/09 → 25/09
26/09 → 02/10
3/10 → 9/10
10/10 → 16/10
17/10 → 23/10
24/10 → 30/10
31/10 → 6/11
7/11 → 13/11

Rifiuti
[t/settimana]

Scorie
[t/settimana]

PSR
[t/settimana]

Ceneri
[t/settimana]

9706,25
9495,28
7319,66
9680,68
7995,12
10233,71
9523,87
10833,67
10638,93
10029,53
7172,44
7032,72
9945,31
11350,85
9244,05
10273,89
11001,53
11102,21
10929,59
10620,92
7714,47
7989,52
10542,47
11386,04
9954,42
10120,91
7788,91
10900,01
11262,28
11440,45
9147,01
10695,05
9806,55
10576,09
692,36
8089,30
11476,53
14735,53
11966,79
11401,26
11332,49
11423,52
8905,31
11483,96
11389,77

1984,01
2310,54
1744,50
2018,22
1812,60
2051,91
1959,93
2176,22
2197,54
2136,82
1556,06
1466,82
2175,09
2309,38
2315,37
2184,11
2331,30
2364,75
2443,60
2293,51
1609,50
1671,35
2463,90
2438,15
2165,44
2095,09
1628,73
2159,05
2573,90
2451,19
2164,96
2368,18
2204,78
2366,55
362,87
1855,15
2280,49
2632,04
3015,96
2750,80
2432,38
2965,46
2239,76
2619,05
2604,37

156,09
145,96
147,07
134,44
122,83
122,26
120,45
91,86
118,63
122,73
97,62
96,63
146,94
173,09
198,24
122,94
172,01
172,25
169,66
170,99
120,31
147,57
167,94
170,20
195,17
194,30
176,58
231,97
227,74
201,33
144,37
198,85
171,78
144,30
0,00
60,09
118,47
229,43
141,86
147,44
179,00
168,32
167,83
97,04
162,92

174,73
172,87
171,30
174,75
122,13
162,87
178,32
164,81
256,05
143,02
115,07
144,88
212,74
196,31
247,91
114,73
206,94
204,27
207,55
182,48
166,15
127,90
159,16
239,45
180,84
212,68
129,87
147,22
156,88
156,93
132,54
215,94
138,32
143,03
54,03
206,03
182,49
199,25
178,60
213,05
173,77
191,06
152,20
163,36
217,61

XXIII

Scorie
prodotte
[%]
20,44
24,33
23,83
20,85
22,67
20,05
20,58
20,09
20,66
21,31
21,69
20,86
21,87
20,35
25,05
21,26
21,19
21,30
22,36
21,59
20,86
20,92
23,37
21,41
21,75
20,70
20,91
19,81
22,85
21,43
23,67
22,14
22,48
22,38
52,41
22,93
19,87
17,86
25,20
24,13
21,46
25,96
25,15
22,81
22,87

Ceneri
prodotte
[%]
1,80
1,82
2,34
1,81
1,53
1,59
1,87
1,52
2,41
1,43
1,60
2,06
2,14
1,73
2,68
1,12
1,88
1,84
1,90
1,72
2,15
1,60
1,51
2,10
1,82
2,10
1,67
1,35
1,39
1,37
1,45
2,02
1,41
1,35
7,80
2,55
1,59
1,35
1,49
1,87
1,53
1,67
1,71
1,42
1,91

PSR
prodotti
[%]
1,61
1,54
2,01
1,39
1,54
1,19
1,26
0,85
1,12
1,22
1,36
1,37
1,48
1,52
2,14
1,20
1,56
1,55
1,55
1,61
1,56
1,85
1,59
1,49
1,96
1,92
2,27
2,13
2,02
1,76
1,58
1,86
1,75
1,36
0,00
0,74
1,03
1,56
1,19
1,29
1,58
1,47
1,88
0,85
1,43


<table>
<thead>
<tr>
<th>Date Range</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Value 5</th>
<th>Value 6</th>
<th>Value 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/11 → 20/11</td>
<td>10501,09</td>
<td>2606,81</td>
<td>171,47</td>
<td>204,79</td>
<td>24,82</td>
<td>1,95</td>
<td>1,63</td>
</tr>
<tr>
<td>21/11 → 27/11</td>
<td>9465,19</td>
<td>1960,65</td>
<td>168,41</td>
<td>159,10</td>
<td>20,71</td>
<td>1,68</td>
<td>1,78</td>
</tr>
<tr>
<td>28/11 → 04/12</td>
<td>10091,15</td>
<td>2534,68</td>
<td>165,59</td>
<td>175,84</td>
<td>25,12</td>
<td>1,74</td>
<td>1,64</td>
</tr>
<tr>
<td>05/12 → 11/12</td>
<td>9357,14</td>
<td>1702,59</td>
<td>123,06</td>
<td>163,93</td>
<td>18,20</td>
<td>1,75</td>
<td>1,32</td>
</tr>
<tr>
<td>12/12 → 18/12</td>
<td>11679,95</td>
<td>2488,90</td>
<td>143,55</td>
<td>210,60</td>
<td>21,31</td>
<td>1,80</td>
<td>1,23</td>
</tr>
<tr>
<td>19/12 → 25/12</td>
<td>7613,62</td>
<td>1580,81</td>
<td>142,34</td>
<td>191,71</td>
<td>20,76</td>
<td>2,52</td>
<td>1,87</td>
</tr>
<tr>
<td>26/12 → 01/01</td>
<td>10902,94</td>
<td>2151,18</td>
<td>68,42</td>
<td>235,82</td>
<td>19,73</td>
<td>2,16</td>
<td>0,63</td>
</tr>
<tr>
<td>02/01 → 08/01</td>
<td>10833,26</td>
<td>2606,48</td>
<td>134,45</td>
<td>252,69</td>
<td>24,06</td>
<td>2,33</td>
<td>1,24</td>
</tr>
<tr>
<td>09/01 → 15/01</td>
<td>11424,50</td>
<td>2459,32</td>
<td>144,29</td>
<td>215,54</td>
<td>21,53</td>
<td>1,89</td>
<td>1,26</td>
</tr>
<tr>
<td>16/01 → 22/01</td>
<td>5952,38</td>
<td>1916,67</td>
<td>158,32</td>
<td>226,45</td>
<td>32,20</td>
<td>3,80</td>
<td>2,66</td>
</tr>
<tr>
<td>23/01 → 31/01</td>
<td>12454,60</td>
<td>2399,14</td>
<td>168,96</td>
<td>193,98</td>
<td>19,26</td>
<td>1,56</td>
<td>1,36</td>
</tr>
</tbody>
</table>
Appendice A9 – Giorni di innesco delle micro-cariche

Tabella A9.1 – Giorni in cui sono innescate le micro-cariche per ogni linea dell’impianto.

<table>
<thead>
<tr>
<th>Mese</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gennaio</td>
<td>11/01/2017</td>
<td>04/01/2017</td>
<td>05/01/2017</td>
</tr>
<tr>
<td></td>
<td>17/01/2017</td>
<td>17/01/2017</td>
<td>23/01/2017</td>
</tr>
<tr>
<td>Febbraio</td>
<td>01/02/2017</td>
<td>02/02/2017</td>
<td>02/02/2017</td>
</tr>
<tr>
<td></td>
<td>17/02/2017</td>
<td>17/02/2017</td>
<td>16/02/2017</td>
</tr>
<tr>
<td>Marzo</td>
<td>02/03/2017</td>
<td>03/03/2017</td>
<td>17/03/2017</td>
</tr>
<tr>
<td></td>
<td>16/03/2017</td>
<td>17/03/2017</td>
<td>17/03/2017</td>
</tr>
<tr>
<td>Aprile</td>
<td>05/04/2017</td>
<td>06/04/2017</td>
<td>27/04/2017</td>
</tr>
<tr>
<td></td>
<td>21/04/2017</td>
<td>27/04/2017</td>
<td>28/04/2017</td>
</tr>
<tr>
<td>Maggio</td>
<td>18/05/2017</td>
<td>11/05/2017</td>
<td>17/05/2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16/05/2017</td>
<td></td>
</tr>
<tr>
<td>Giugno</td>
<td>08/06/2017</td>
<td>29/06/2017</td>
<td>07/06/2017</td>
</tr>
<tr>
<td></td>
<td>28/06/2017</td>
<td>20/06/2017</td>
<td>29/06/2017</td>
</tr>
<tr>
<td>Luglio</td>
<td>13/07/2017</td>
<td>13/07/2017</td>
<td>12/07/2017</td>
</tr>
<tr>
<td></td>
<td>22/07/2017</td>
<td>25/07/2017</td>
<td>21/07/2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26/07/2017</td>
</tr>
<tr>
<td>Agosto</td>
<td>10/08/2017</td>
<td>10/08/2017</td>
<td>09/08/2017</td>
</tr>
<tr>
<td></td>
<td>23/08/2017</td>
<td></td>
<td>22/08/2017</td>
</tr>
<tr>
<td></td>
<td>24/08/2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Settembre</td>
<td>13/09/2017</td>
<td>14/09/2017</td>
<td>25/09/2017</td>
</tr>
<tr>
<td></td>
<td>26/09/2017</td>
<td>26/09/2017</td>
<td></td>
</tr>
<tr>
<td>Ottobre</td>
<td>18/10/2017</td>
<td>12/10/2017</td>
<td>13/10/2017</td>
</tr>
<tr>
<td></td>
<td>30/10/2017</td>
<td>19/10/2017</td>
<td>31/10/2017</td>
</tr>
<tr>
<td>Novembre</td>
<td>27/11/2017</td>
<td></td>
<td>15/11/2017</td>
</tr>
<tr>
<td></td>
<td>29/11/2017</td>
<td>22/11/2017</td>
<td>28/11/2017</td>
</tr>
<tr>
<td>Dicembre</td>
<td>14/12/2017</td>
<td>13/12/2017</td>
<td>12/12/2017</td>
</tr>
<tr>
<td></td>
<td>22/12/2017</td>
<td>21/12/2017</td>
<td></td>
</tr>
<tr>
<td>Gennaio</td>
<td>11/01/2018</td>
<td>04/01/2018</td>
<td>05/01/2018</td>
</tr>
<tr>
<td></td>
<td>31/01/2018</td>
<td>17/01/2018</td>
<td>16/01/2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23/01/2018</td>
<td>24/01/2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31/01/2018</td>
</tr>
</tbody>
</table>
BIBLIOGRAFIA

• Chang J.C.S., Ghorishi S.B. (2003), *Simulation and evaluation of elemental mercury concentration increase on flue gas across a wet scrubber*, Environmental Science & Technology 37, 5763-5766.

- Grosso M., Biganzoli L., Giugliano M. (2014), *Improving the environmental performances of WTE plants with high temperature flue gas pre-cleaning and enhanced bottom ash recovery*, Atti del convegno “8th i-CIPEC”, Hangzhou, 15-18 ottobre 2014.

• Liu H., Konga S., Liua Y., Zenga H. (2012), Pollution control technologies of dioxins in municipal solid waste incinerator, Procedia Environmental Sciences 16, 661-668.

• Liu W., Zheng M., Zhang B., Quian Y., Ma X., Liu W. (2005), Inhibition of PCDD/Fs formation from dioxin precursors by calcium oxide, Chemosphere 60, 785-790.

• Nethe L., Uwe S. (2008), *Special lime with high reactivity for the absorption of acid gas constituents*, ZKG International 61, 1-11.

• Poissant L., Pilote M., Beauvais C., Constant P., Zhang H.H. (2005), A year of continuous measurements of three atmospheric mercury species (GEM, RGM and Hgp) in southern Québec, Canada, Atmospheric Environment 39, 1275-1287.

Richers U. (2010), Abfallverbrennung in Deutschland - Entwicklungen und Kapazitäten, Report n. KIT-SR 7560, Institut für Technikfolgenabschätzung und Systemanalyse (ITAS), Karlsruhe Institute of Technology.

Straube S., Hahn T., Koeser H. (2008), Adsorption and oxidation of mercury in tail-end SCRDeNOx plants- Bench scale investigations and speciation experiments, Applied Catalysis B: Environmental 79, 286-295.

SITOGRAFIA

• www.astm.org (ultima consultazione in data 13/10/2017)
• www.atorifutitorinese.it (ultima consultazione in data 14/10/2017)
• www.gore.com (ultima consultazione in data 26/11/2017)
• www.iea-coal.org.uk (ultima consultazione in data 6/11/2017)
• www.mtiresearch.com/aecdp/mercury (ultima consultazione in data 27/01/2018)
• www.unicalce.it (ultima consultazione in data 16/01/2018)