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Abstract

Purpose: A service discipline chooses the order in which the customers are served
at each station. Examples of service disciplines are the first in first out (FIFO) and
last in first out (LIFO), they are the most popular and probably the most intuitive
disciplines. Jobs among all classes are ranked according to the arrival time at the queue.
When we are dealing with several classes with different arrival rates the whole procedure
could become very hard. For this reason static buffer priority disciplines are sometimes
preferred. All the classes at each station have a fixed ranking, the higher the ranking the
higher the priority. The cµ rule is one of these disciplines, it ranks the classes according to
the holding cost and the service rate. The goal of this thesis is to determine the reasons
why the cµ rule is not always able to predict the optimal policy that minimizes the total
cost when the arrival rates are dependent on the job in service. We started to address
the simplest system with only two classes of products/clients, then we moved to a more
general n-class problem. We wanted to determine a new formula able to predict the right
scheduling sequence with the new set of parameters (dependent arrival rates were added).
We applied then the new rule to a real case to test its effectiveness.
Knowledge background: The cµ rule was introduced for the first time in 1961 in the
paper "Queues" written by D.R. Cox and Walker Smith [1]. The cµ rule defines the optimal
scheduling sequence for different classes in the system. The priority level is determined
by taking the product of the service rate and the holding cost rate for a given class. The
larger the product the higher the priority level. In the following years there were several
papers and studies on this topic with different assumptions and parameters used in the
model. So far nobody considered the case where the arrival rates were dependent on the
product class in service.
Research Questions: Raaijmakers [2] showed that for some sets of parameters the cµ
rule is not able to predict the optimal policy so to minimize the total costs. We moved
from this point looking for an explanation of the strange behavior and possibly a solution.
Design/Methodology/Approach: The thesis is divided in two main parts, the first
one is purely theoretical while the second one is the application to a real case of the
theoretical results. In the theoretical part we run the the fluid model optimization problem
several times changing the parameters. The results obtained with the fluid model were
compared with the Markov decision process formulation of the problem. Both the methods
showed the same conclusions. After the definition of a new relationship for the optimal
scheduling thanks to the fluid model and the MDP, we proved it analytically. In the real
case application we run a big number of simulations (fixed time increment type) to see
the goodness of the new rule applied to the hospital emergency room process.
Main Finding: The main result achieved is the proposal of a new rule able to minimize
the total holding cost when scheduling the production of several product/client classes
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having different priority level. The rule was defined firstly for a simple two-class system
and later it was extended to the general n-class system.
Pratical Implementations: It is possible to apply the new rule to systems/processes
in which the arrival rates are dependent on the product/class in service such as hospital
emergency rooms and postal offices.
Limitations and future developments: The main limitations of the new rule are the
followings: the arrival rates of products/clients depend on what is in service at that time.
We considered only the holding cost and we neglect other type of cost such as set up cost
and penalties due to non completion of the jobs. We did not consider all the possible
parameters, it could be interesting to include the abandon rate in the model. After a
certain time spent in the queue the client can decided to abandon the system. For these
reasons could be interesting to analyze the effects of these parameters on the rule we
obtained and possibly to define even a more general one.
Keywords: Markov Decision Process; Fluid Model; Queuing networks; Scheduling; Op-
timal policy.
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Sommario

Obiettivo: La disciplina di servizio determina l’ordine con cui i prodotti sono proces-
sati ad ogni stazione. Alcuni esempi di discipline sono dati da first in first out (FIFO)
e last in first out (LIFO), esse sono probabilmente le più conosciute. I prodotti di tutte
le classi sono classificati in base all’istante temporale in cui sono entrati nella rispettiva
coda. Quando il sistema è caratterizzato da molte classi con diversi tassi di arrivo il pro-
cesso di classificazione può diventare molto complesso. Per questa ragione a volte vengono
preferite politiche di static buffer priority. Tutti i prodotti di una singola classe sono
descritti da un rango costante, più il rango è alto più il livello di priorità è elevato. La cµ
rule rientra in questa categoria di politiche e ordina le classi basandosi sul costo di attesa
in coda e il tasso di processamento. Lo scopo di questo studio è di determinare le ragioni
per cui la cµ rule non è sempre in grado di suggerire la politica ottimale per minimizzare
il costo totale del sistema quando i tassi di arrivo dipendono dalla classe sotto processo al
momento dell’arrivo in coda. Abbiamo iniziato affrontando il caso più semplice con sole
due classi di prodotti/clienti diversi, da qui siamo poi passati al caso generale con n classi
diverse. Un ulteriore obiettivo è la definizione di una nuova relazione che permetta di
determinare la politica ottimale con i nuovi parametri aggiunti. Infine abbiamo l’obiettivo
di applicare questa nuova regola a un caso reale per testarne la sua bontà.
Background letterario:La cµ rule è stata introdotta per la prima volta nel 1961 nell’articolo
scientifico, poi diventato libro, "Queues" da D.R. Cox e Walter Smith [1]. La cµ rule
definisce la sequenza di schedulazione ottimale per diverse classi di prodotto all’interno
di un sistema. Il livello di priorità è definito come il prodotto tra il tasso di processa-
mento e il costo di attesa in coda di una classe di prodotti. Più il risultato è grande più
il livello di priorità è elevato. Negli anni successivi sono stati condotti diversi studi su
questo argomento introducendo diversi parametri e ipotesi nel sistema sotto esame. Ad
oggi nessuno ha mai considerato il caso in cui i tassi di arrivo dipendono dalla classe in
servizio al momento dell’arrivo in coda.
Domande di ricerca: Raaijmakers [2] ha mostrato che per alcune combinazioni di
parametri la cµ rule non è in grado di suggerire la politica ottimale per minimizzare i
costi. Queste osservazioni sono il punto di partenza del nostro studio.
Design/Metodologia/Approccio:Lo studio è diviso in due parti distinte. La prima
parte è prettamente teorica mentre la seconda consiste nell’applicazione au un reale caso
reale pratico dei risultati teorici ottenuti. Nella parte teorica abbiamo eseguito svari-
ate volte il problema di ottimizzazione basato sull’approssimazione Fluid model del sis-
tema cambiando di volta in volta i parametri in ingresso. I risultati ottenuti sono stati
confrontati con la formulazione del Markov Decision Process del problema. Entrambi i
metodi hanno restituito risultati concordanti. Da questi risultati abbiamo ricavato una
nuova relazione per lo scheduling ottimo e infine abbiamo dimostrato analiticamente la sua
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validità. Il caso reale trattato è la gestione dei differenti codici di gravità e il loro smis-
tamento all’interno di un Pronto Soccorso. Abbiamo simulato le dinamiche del Pronto
Soccorso attraverso una simulazione a tempi fissi, l’obiettivo era di testare la bontà della
regola formulata.
Risultati Principali: Il principale risultato di questa tesi è la definizione di una nuova
regola per la valutazione dei livelli di priorità per diverse classi di prodotti/clienti. La
regola è stata definita inizialmente per il solo caso semplice con due classi e successivamente
è stata estesa al caso generale con n classi.
Implicazioni Pratiche:E’ possibile applicare i risultati di questo studio a numerosi casi
pratici in cui i tassi di arrivo dipendono dalla classe/prodotto in servizio come nel caso di
uffici postali o Pronto soccorsi.
Limitazioni e sviluppi futuri: Le principali limitazioni di questa nuova regola sono
le seguenti: è necessario che il tasso di arrivo dei prodotti/clienti dipenda dal tipo di
prodotto-cliente sotto processo al momento dell’arrivo in coda. Il modello inoltre considera
solamente il costo di permanenza in coda del singolo prodotto, abbiamo trascurato altri
tipi di costo come il costo di set up e penalties dovute al mancato completamento del
prodotto. Non abbiamo considerato tutti i possibili parametri, può essere utile infatti
includere nel modello la possibilità da parte del cliente di abbandonare il sistema dopo un
certo lasso di tempo passato in coda. Per queste ragioni sarebbe interessante studiare gli
effetti che questi parametri hanno sulla regola da noi ricavata e possibilmente, in futuro,
determinarne una di carattere ancor più generale.
Parole chiave: Markov Decision Process; Fluid Model; Queuing networks; Scheduling;
Optimal policy.
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Chapter 1

Introduction

The cµ rule is an important rule in the scheduling field. It was introduced for the first
time in 1961 by D.R. Cox and Walter Smith [1]. It predicts the optimal job allocation that
minimizes the total cost when only the holding cost is considered. According to this rule
we can define the scheduling priority between two or more classes of products/clients by
considering the product of the service rate and the holding cost of each class. The higher
the value obtained the greater is the priority for a given class. The main advantage of
this rule is the ease in computing the different levels of priority even with a huge number
of product/clients. However the cµ rule is not always the optimal scheduling rule, it
depends on the particular system considered. In a real system also other parameters can
affect the outcome of the optimization process. In the following years several studies were
made in order to improve, and possibly extend, its validity. In this work we investigate
the effects on the optimal scheduling policy of arrival rates dependent on the product
in service. We started from the work of Raaijmakers [2] that noticed that the cµ rule
was not always suggesting the true optimal policy for all the sets of parameters. He was
not able to fully disclose the reasons why the cµ rule was not always optimal, but he
came up with a practical "rule of thumb" to describe the occurrence of these exceptions.
It was formulated by running several times the optimization problem and changing the
key parameters. The work is divided in two different parts, one theoretical where we
derive structural results, and one practical, where we test the new rule in a real case.
We studied a system composed by a single versatile server and two different classes of
products with their own queue. The arrival rates depend on the type of product that
is currently in service. The decision maker has to know which job class produce first
in order to minimize the total holding cost. For the sake of simplicity we started to
address the two-class system keeping the costs equal. The simplest system allowed us
to understand its basic behavior and the stability conditions required. Once the main
concepts were fully understood we added also the cost effects. We used the fluid model
optimization for its ease of computation and helpful insights to determine the formula
of the new rule. Then we formulated the problem as a Markov decision process looking
for confirmations of the obtained results. The Markov decision process is characterized
by a bigger computational burden but it is able to give more complete results about the
whole state space. The MDP has been solved with a simple linear program (dual simplex
solver). The results however are not satisfactory due to the low accuracy of the solver
and the strong boundary effects. We decided then to solve the problem also with another
approach: the modified policy iteration method. The results in this case are very close to
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the fluid model ones, the boundary effects however are still an issue. After the matching
of results coming from different methods we decided to prove analytically the validity
and the optimality of the new relationship. Once the optimality was proven we followed
the same procedure to generalize the results to a n-class system. We applied the rule to
the problem of optimizing the service prioritization in an hospital Emergency room. We
simulated the behavior of the system by comparing different type of policies looking for
the optimal one. We wanted to see if the scheduling optimality could be achieved by using
the new rule. Dependent arrival rates do affect the selection of the optimal class, the more
one class rates change, the bigger its effect on the overall optimality with respect to the
usual cµ rule. We determined with our work a generalization for the previous cµ rule in
order also to account for the effects of the dependent arrival rates. The results obtained
are for the general n-class system. We applied then the theoretical results to an italian
emergency room process. The classes represent the different severity codes used to group
the patients upon arrival. The goal is to improve the whole scheduling process, depending
on the codes, in order to minimize the possibility of losing human lives.

14



Chapter 2

State of the art

The cµ rule is a static priority rule that depends on few parameters, service rates and
holding cost rates. Service rates are considered constant while the costs are considered
linear. It is very simple to implement due to its simplicity. The cµ rule optimality was
first addressed by Smith [3] for a single stage production system and a deterministic,
static environment where no dynamic arrivals were considered. Very soon Cox and Smith
[1] proved its optimality also for a stochastic, dynamic environment with arbitrary time
horizon and a general multi-class M/G/1 system. Moving from those studies a lot of
extensions were formulated. Klimov [4] extended the cµ rule validity to a multi-class
M/G/1 system with feedback. Harrison [5] proved its optimality for a discounted problem
in a M/G/1 system. The objective is to maximize the expected net present value of
service rewards received minus holding costs incurred over an infinite planning horizon.
Tcha and Pliska [6] combined both the extensions together, they studied the scheduling
problem for a single server system with feedback of the customers so as to maximize the
expected discounted reward over an infinite planning horizon. Buyukkoc et al. [7] showed
that the cµ applies with arbitrary arrival processes (G/M/1 queues) while Hirayama et
al. [8] extended the previous results to a more general G/G/1 queue, moreover they
considered the G/DFR/1 system characterized by a decreasing failure rate service time.
Rami et al. [9] included in the model the customer abandonment rate θ, they showed
that a routing policy that assigns priority to classes according to their index ciµi/θi is
asymptotically optimal for minimizing the overall long run average holding cost. Sisbot
and Hasenbein [10] showed that the cµ rule is still optimal when scheduling and routing at
the same time a multi-class single-server system. Van Mieghem [11] considered a single-
server multi-class queuing system that incurs a delay cost for each class residing in the
queue for a given amount of time. He considered non linear cost functions and showed that
with nondecreasing convex delay costs the cµ rule is asymptotically optimal if the system
operates in heavy traffic regime. Raaijmakers [2] included the possibility to have arrival
rates dependent on the class in service, he noticed that the cµ was not able to predict
always the optimal policy. He was not able however to fully disclose the reasons behind
these anomalies. Moving from these observations, the goal of this thesis is to determine an
extension of the original cµ able to account for the arrival rates effects and better predict
the optimal scheduling policy.
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Chapter 3

Model description

In this chapter we present the network studied. The system is characterized by n
different job classes labelled with the subscript s. Each job class has its own queue Qs.
Jobs arrive to the system following a Poisson process with rate λij . The arrival rates
depend on the job class in service, so the general expression for the arrival rate is λij
that indicates the arrival rate of job class i when job class j is currently in service. The
jobs are processed by a single flexible server. It can process only one single job at a time,
processing times are assumed independent and identically distributed exponential random
variables with rate µs where the subscripts s is related to the job class. A class s incurs a
holding cost rate cs (cost per single job per unit time); the goal is to minimize the average
total cost rate. The main parameters of the system are then the arrival rates λij , the
service rates µs and the holding cost rates cs:

Λ =

λ11 · · · λ1n
... . . . ...
λn1 · · · λnn

 µ =

µ1
...
µn

 c =

c1
...
cn

 .
The system is considered non-idling, i.e., the server works at full rate whenever there

are jobs in the system. When both the queues are empty there is a virtual product under
service. For this reason we define extra arrival rates λs0:

λs0 = max{λs1, . . . , λsn},

the arrival rates in case of empty system are equal to maximum rate possible for a given job
class. Throughout all the work presented all the sets of parameters are chosen in a way to
meet the stability conditions defined by Ernst et al. [12]. We use unstable parameters only
to define the stability region in the two-class system. The simplest system characterized
by n = 2 is depicted in Figure 3.1.
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Figure 3.1: Two-class queuing network model.
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Chapter 4

Two-class system

In this chapter we present the simplest case of the more general model where only two
classes are considered. This allows to reduce the complexity of the problem and obtain
easily readable graphs and results. The set of parameters reduces to:

Λ =
[
λ11 λ12
λ21 λ22

]
µ =

[
µ1
µ2

]
c =

[
c1
c2

]
.

4.1 Stability
Before starting to address the main problem about the optimality of the cµ rule, we

want to asses the stability of the system. Remembering that for a single-class and single-
server system the stability condition is ρ = λ

µ ≤ 1. For a multi-class and single-server
system it is necessary to compute the eigenvalues of the matrix [12]:[

λ11 λ12
λ21 λ22

] [ 1
µ1

0
0 1

µ2

]
=
[
λ11
µ1

λ12
µ2

λ21
µ1

λ22
µ2

]
.

The eigenvalues are obtained by putting the determinant equal to 0:

det

[
eig − λ11

µ1
λ12
µ2

λ21
µ1

eig − λ22
µ2

]
= eig2 − eig

(
λ11
µ1

+ λ22
µ2

)
+ λ11λ22 − λ12λ21

µ1µ2
= 0.

The solutions of the quadratic equation are, indeed, the eigenvalues.

eig1,2 = λ11
2µ1

+ λ22
2µ2
±

√
1
4

(
λ11
µ1

+ λ22
µ2

)2
−
(
λ11λ22 − λ12λ21

µ1µ2

)

= λ11
2µ1

+ λ22
2µ2
±

√
1
4

(
λ11
µ1
− λ22
µ2

)2
+ λ12λ21

µ1µ2
.

(4.1)

Numerical results indicate that the maximum eigenvalue is always equal to 1 when the
following conditions are satisfied:

µ1 = λ11 + λ21

µ2 = λ22 + λ12.
(4.2)
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We now apply the conditions (4.2) to (4.1):

eig1,2 = 1
2

(
µ1 − λ21

µ1

)
+ 1

2

(
µ2 − λ12

µ2

)
±

√
1
4

(
µ1 − λ21

µ1
− µ2 − λ12

µ2

)2
+ λ21λ12

µ1µ2

= 1
2 −

λ21
2µ1

+ 1
2 −

λ12
2µ2
±

√
1
4

(
1− λ21

µ1
− 1 + λ12

µ2

)2
+ λ21λ12

µ1µ2

= 1− λ21
2µ1
− λ12

2µ2
±

√
1
4

(
λ12
µ2
− λ21
µ1

)2
+ λ21λ12

µ1µ2

= 1− λ21
2µ1
− λ12

2µ2
±

√
1
4

(
λ12
µ2

+ λ21
µ1

)2

= 1− λ21
2µ1
− λ12

2µ2
± 1

2

(
λ12
µ2

+ λ21
µ1

)
.

The two eigenvalues are then:

eig1+ = 1

eig2− = 1− λ21
µ1
− λ12
µ2

< 1.

Thanks to (4.2) we know with certainty one point laying on the contour of the stability
region. This point is also easily obtainable from the system parameters. Starting from this
point we want to determine the whole stability region; to do so we need to test different
sets of parameters (λs are fixed) and compute their eigenvalues.

19



10 15 20 25 30 35 40 45 50 55

µ
1

10

15

20

25

30

35

40

45

50

55

µ
2

Stability region

ρ<1

ρ>1

ρ=1

Figure 4.1: Experimental points to determine the stability region, the parameters used are:
λ11 = 10, λ12 = 7, λ21 = 6, λ22 = 8.

The points in Figure 4.1 show a pattern that looks like an equilateral hyperbola. Our
first guess is that the asymptotes will likely be the diagonal λs. When the service rate of
one class is much bigger than the other one, the problem reduces to a simple one class
system. The slower service rate then needs only to guarantee at least the relative diagonal
λ (the extra diagonal λ basically disappears). We have then one known point from (4.2)
and two asymptotes, which is enough to fully determine the hyperbola equation:

µ2 = aµ1 + b

cµ1 + d
. (4.3)

The parameters a, b, c, d are defined by using the available data:

asymµ2 = λ22 = a

c
→ a = λ22, c = 1

asymµ1 = λ11 = −d
c
→ d = −λ11, c = 1.

Using then (4.2):

λ22 + λ12 = λ22 (λ11 + λ21) + b

λ21
→ b = λ21λ12 − λ11λ22.

All the parameters are now determined and we replace them in (4.3):

µ2 = λ22µ1 + λ21λ12 − λ11λ22
µ1 − λ11

. (4.4)
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We compare the hyperbola equation and the previous points. (4.4) does describe exactly
the behavior of the stability region (see Figure 4.2).
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Figure 4.2: Analytical stability hyperbola obtained from the experimental points, the param-
eters used are: λ11 = 10, λ12 = 7, λ21 = 6, λ22 = 8.

4.2 Fluid approximation
The queueing network is approximated by describing it as a fluid model. The fluid

model is the deterministic equivalent of the queuing network under study. Interarrival and
service times are no longer exponentially distributed and they are replaced by deterministic
parameters λ and µ respectively. The different queues are seen as buckets filled with
different fluids, where only one bucket at the time can be drained. The choice about what
bucket drain is up to the decision maker. This model is very helpful and useful in case of
processes with a very large queue size (computational burden is much lower with respect
to other methods), and can provide useful insights about the real behavior of the system.

4.2.1 Fluid dynamics

We define the main quantities of the model: the subscript s represents the job class
considered, in this case s = {1, 2}, As(t) is the amount of fluid of type s that arrives in
the time span [0, t], Ts(t) is the cumulative time spent by server to process job class s in
[0, t], Ds(t) is the number of jobs completed belonging to class s in [0, t], Qs(t) is the queue
size of class s in [0, t] and finally Us(t) represents the scheduling control vector. The fluid
model evolves according to:
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Qs(t) = Qs(0) +As(t)−Ds(t)

As(t) =
[
λ11 λ12
λ21 λ22

] [
T1(t)
T2(t)

]

Ds(t) = µsTs(t)

T (t) = T1(t) + T2(t) = t.

(4.5)

Since we are interested in the rate of change of the fluid level, (4.5) are rewritten in terms
of derivatives as follows:

d

dt
Q1(t) = λ11u

1(t) + λ12u
2(t)− µ1u

1(t)

d

dt
Q2(t) = λ21u

1(t) + λ22u
2(t)− µ2u

2(t).

(4.6)

4.2.2 Optimization problem setup

The goal is to minimize the total holding cost subject to the fluid dynamics constraints
in (4.6). The decision making can be modeled as an optimization problem. The exact
problem has a quadratic form but by discretizing the total time span in small intervals,
it can be transformed into a linear program. As the time interval shrinks the results are
closer to the original problem. The problem is then described as:

find: x = [u1
0, u

1
1, . . . , u

1
N , u

2
0, u

2
1, . . . , u

2
N

Q1
1, Q

2
1, . . . , Q

N−1
1 , Q1

2, Q
2
2, . . . , Q

N−1
2 ]

minimize: ∆t
N−1∑
n=1

cn1Q
n
1 + cn2Q

n
2

subject to: Qn+1
1 = Qn1 + (λ11 − µ1)u1

n∆t+ λ12u
2
n∆t n = 0, 1, . . . , N

Qn+1
2 = Qn2 + (λ22 − µ2)u2

n∆t+ λ21u
2
n∆t n = 0, 1, . . . , N

u1
n + u2

n ≤ 1 n = 0, 1, . . . , N
u1
n ≥ 0 n = 0, 1, . . . , N
u2
n ≥ 0 n = 0, 1, . . . , N
Q0

1 ≥ 0 n = 0, 1, . . . , N
Q0

2 ≥ 0 n = 0, 1, . . . , N .

We define some boundary conditions: Q0
1,Q0

2 are the non null initial fluid levels and
QN1 ,QN2 are the final fluid levels that must be set to zero. The total time T should be
chosen large enough to ensure the draining of the queues. The number of time increments
N should be chosen according to the total time T in order to have time intervals enough
small to well approximate the fluid model (∆t = T

N ). The number of equations depends
on the discretization level chosen; more time increments lead to more constraints.
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4.2.3 Equal costs

When the arrival rates are independent the cµ rule is the optimal scheduling policy.
If the costs are equal it reduces to a simple priority rule. The two optimal regions are
separated by the first quadrant angle bisector, as shown in Figure 4.3.

Figure 4.3: Class optimality regions predicted by the cµ rule, the parameters used are: λ11 =
10, λ12 = 10, λ21 = 8, λ22 = 8.

If we select a point above the bisector, the fluid model cost minimization chooses class
2 as the optimal one to be served (Figure 4.4).
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Figure 4.4: Fluid model results when Class 2 is optimal.

Otherwise if the point is below the bisector class 1 is chosen as the optimal one to be
served (Figure 4.5).
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Figure 4.5: Fluid model results when Class 1 is optimal.

Is the cµ rule still optimal when the arrival rates are dependent on the class in service?
The answer is apparently no. In Figure 4.6 we depict an example in which the cµ rule
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does not hold.
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Figure 4.6: Fluid model results when Class 2 is optimal even if cµ rule predicts Class 1.

As we did to determine the stability region, we test several sets of parameters (λs are
fixed) to identify the new equi− priority line. The results shown in Figure 4.7 are quite
interesting.
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Figure 4.7: Experimental points to define the new dividing line, the parameters used are:
λ11 = 10, λ12 = 7, λ21 = 6, λ22 = 8.

All the points equi − priority in Figure 4.7 belong to the same straight line which
happens to be parallel to the first quadrant angle bisector (Figure 4.8).

Figure 4.8: New dividing line obtained from the experimental points, the parameters used
are: λ11 = 10, λ12 = 7, λ21 = 6, λ22 = 8.

26



Repeating the same experiment also for different sets of λs the results are always the same,
the new separating line is parallel to the bisector. The next step is to understand how
the new line is affected by the arrival rates. The quantity of which the new line moves is
given by the difference between the summation of terms in the same column:

∆s = (λ11 + λ21)− (λ12 + λ22).

The dividing line, instead of being µ2 = µ1, is:

µ2 = µ1 − (λ11 + λ21) + (λ12 + λ22). (4.7)

Three different scenarios can take place:

• ∆s=0: the dividing line is still the bisector; independent arrival rates belong to this
category.

Figure 4.9: Optimality regions when ∆s = 0, the parameters used are: λ11 = 10, λ12 =
8, λ21 = 6, λ22 = 8.

• ∆s>0: the dividing line moves down i.e., class 2 region increases while class 1 region
decreases. The new region between the former line and the new one is characterized
by points prioritizing class 1 according to cµ, however the fluid model chooses class
2 as optimal. We call this zone Reverse 2.
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Figure 4.10: Optimality regions when ∆s > 0, the parameters used are: λ11 = 10, λ12 =
7, λ21 = 6, λ22 = 8.

• ∆s<0: the dividing line moves up, class 1 region increases while class 2 region
decreases. The new region between the former line and the new one is characterized
by points prioritizing class 2 according to cµ. However the fluid model chooses class
1 as optimal, we call this zone Reverse 1.
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Figure 4.11: Optimality regions when ∆s < 0, the parameters used are: λ11 = 10, λ12 =
9, λ21 = 6, λ22 = 8.

4.2.4 Cost effects

In this section we add the cost effects. We pass from a µ2 − µ1 based graph to a new
representation:

c1µ1 = c2µ2 →
c1
c2

= µ2
µ1
.

The dividing line is still the first quadrant angle bisector. The optimal class regions
separation is depicted in Figure 4.12.
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Figure 4.12: Optimality regions predicted by the cµ rule with cost effects, the parameters are:
λ11 = 10, λ12 = 10, λ21 = 8, λ22 = 8.

As always we need to determine the new separating line. The procedure adopted is the
same used for stability and equal costs case: the λs and µs parameters are kept fixed while
c1
c2

is increased until the change of optimal policy is met, then the procedure is repeated
for different values of µ2

µ1
.
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Figure 4.13: Experimental points to determine the new separating line with cost effects, the
parameters used are: λ11 = 10, λ12 = 9, λ21 = 6, λ22 = 8, µ1 = 19.5.

For any set of parameters there is a particular point that lays on both the former
bisector and the new dividing line, we call it the break even point, and its coordinates
are:

c1
c2

= µ2
µ1

= λ22 − λ21
λ11 − λ12

. (4.8)

Figure 4.13 shows that the possible new separation line could be a straight line as
well with a different slope with respect to the starting bisector. (4.8) and (4.7), from the
equal costs case, represent two points belonging to the new line. We can then derive the
equation of the straight line using these points. The slope m of the line is:

m = yeq.c − ybep
xeq.c − xbep

. (4.9)
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We use (4.7) and (4.8) in (4.9):

m =
1− λ22−λ21

λ11−λ12
µ1−(λ11+λ21−λ22−λ12)

µ1
− λ22−λ21

λ11−λ12

=
λ11−λ12−λ22+λ21

λ11−λ12
µ1−(λ11+λ21−λ22−λ12)

µ1
− λ22−λ21

λ11−λ12

=
λ11−λ12−λ22+λ21

λ11−λ12
[µ1−(λ11+λ21−λ22−λ12)](λ11−λ12)−µ1(λ22−λ21)

µ1(λ11−λ12)

= µ1[(λ11 − λ12)− (λ22 − λ21)]
µ1(λ11 − λ12)− (λ11 − λ12)[(λ11 − λ12)− (λ22 − λ21)]− µ1(λ22 − λ21) .

(4.10)

We define:

∆1 = λ11 − λ12

∆2 = λ22 − λ21.

Then we replace them in (4.10):

m = µ1 − (∆1 −∆2)
µ1∆1 −∆1(∆1 −∆2)− µ1∆2

= µ1(∆1 −∆2)
−∆2

1 + ∆1(∆2 − µ1)− µ1∆2
.

The denominator is a quadratic equation in ∆1 and can be decomposed in −(∆1−µ1)(∆1−
∆2). (4.10) finally becomes:

m = µ1(∆1 −∆2)
−(∆1 − µ1)(∆1 −∆2) = µ1

µ1 − λ11 + λ12
.

(4.11)

The intercept q is obtained from y = mx+ q using (4.7):

q = c1
c2
−mµ2

µ1

= 1−m
(
µ1 − [(λ11 + λ21)− (λ12 + λ22)]

µ1

)
.

(4.12)
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Combining (4.11) and (4.12) together we define the new line equation:

c1
c2

= m
µ2
µ1

+ q

= m
µ2
µ1

+ 1−m
(
µ1 − [(λ11 + λ21)− (λ12 + λ22)]

µ1

)

= mµ2 + µ1 −mµ1 +m(λ11 + λ21 − λ12 − λ22)
µ1

= m(µ2 − µ1) + µ1 +m(λ11 + λ21 − λ12 − λ22)
µ1

=
µ1

µ1−(λ11−λ12)(µ2 − µ1) + µ1 + µ1
µ1−(λ11−λ12)(λ11 + λ21 − λ12 − λ22)
µ1

= µ1
µ1 − (λ11 − λ12)

(µ2 − µ1)
µ1

+ µ1
µ1

+ µ1(λ11 + λ21 − λ12 − λ22)
µ1(µ1 − λ11 + λ12)

= µ2 − µ1
µ1 − (λ11 − λ12) + 1 + (λ11 + λ21 − λ12 − λ22)

µ1 − λ11 + λ12

= µ2 − µ1 + µ1 − λ11 + λ12 + λ11 + λ21 − λ12 − λ22
µ1 − λ11 + λ12

= µ2 + λ21 − λ22
µ1 − λ11 + λ12

.

Eventually we obtain:

c1[µ1 − (λ11 − λ12)] = c2[µ2 − (λ22 − λ21)]. (4.13)

The results obtained in (4.13) are depicted in Figure 4.14.
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Figure 4.14: New dividing line obtained from the experimental points with cost effects, the
parameters used are: λ11 = 10, λ12 = 9, λ21 = 6, λ22 = 8, µ1 = 19.5.

(4.13) is an extension of the usual cµ rule, when the arrival rates are dependent on the
product in service. Their variation affects the choice the optimal scheduling rule. Different
scenarios are possible.

• (λ11 − λ12) = 0 and (λ22 − λ21) = 0: (4.13) reduces to the simple cµ rule. Its
representation is given in Figure 4.12.

• (λ11−λ12) 6= 0 and (λ22−λ21) 6= 0: Both classes have dependent arrival rates Figure
4.15.
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Figure 4.15: Optimality regions when (λ11 − λ12) 6= 0 and (λ22 − λ21) 6= 0 with cost effects,
the parameters used are: λ11 = 10, λ12 = 9, λ21 = 6, λ22 = 8, µ1 = 19.5.

• (λ11 − λ12) 6= 0 and (λ22 − λ21) = 0: Class 2 has independent arrival rates, then the
break even point coincides with the origin.

Figure 4.16: Optimality regions when (λ11 − λ12) 6= 0 and (λ22 − λ21) = 0 with cost effects,
the parameters used are: λ11 = 10, λ12 = 8, λ21 = 8, λ22 = 8, µ1 = 19.5.
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• (λ11 − λ12) = 0 and (λ22 − λ21) 6= 0: Class 1 has independent arrival rates, then the
break even point tends to infinity.

Figure 4.17: Optimality regions when (λ11 − λ12) = 0 and (λ22 − λ21) 6= 0 with cost effects,
the parameters used are: λ11 = 10, λ12 = 10, λ21 = 6, λ22 = 8, µ1 = 19.5.

4.3 Numerical Markov decision process
The problem can be formulated as a Continuous Time Markov Decision Process (CT-

MDP), the reason is that the transition probabilities between different states are affected
by the product under process and thus by the decision maker’s choice. The MDP method
under certain conditions allow us to find an optimal policy (set of decision rules for each
state and for each time period). More generally it provides the decision maker with a com-
plete set of information about each state, while with the fluid model only some states are
described depending on how the problem evolves. The objective is still the minimization
of the total holding cost over an infinite time horizon, and it is described as:

lim sup
t→∞

1
t
E(Q1

0,Q
2
0)

[∫ t

0
(c1Q

π
1 (s) + c2Q

π
2 (s))ds

]
. (4.14)

The decision maker, starting from the initial state Q1
0,Q2

0, selects a set of action to be
taken when the actual state changes. This mapping from states to actions characterizes a
policy π. Since the subsequent states depend on the decisions taken they are represented
as Qπs (t).

4.3.1 Discretized Markov decision process

The initial problem is converted into a corresponding Discrete Time Markov Decision
Process (DTMDP). In the original formulation the time intervals are not the same. To
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be able to use numerical methods obtain results constant and discrete times are needed.
The total amount of states is given by the combinations of Q1 and Q2 and it is infinite if
the problem is unbounded. Since the computational burden quickly increases as the size
of one single queue increases (the curse of dimensionality) it is necessary to truncate the
state space (example in Figure 4.18).

Figure 4.18: Truncated state space representation.

The system is described by its states and its state transitions. We assume that both
the states and the control remain constant between different state transitions. Transitions
from state to state are described by probabilities, for example the probability pij to go
from state i to state j when control u is applied is:

pij(u) = P (xk+1 = j|xk = i, uk = u) i, j ∈ S.Space, u ∈ U(s). (4.15)

The subscript k represents state x and control u at time k. Transition probabilities are
computed starting from the transition rates of each state. The probability to go from state
i to state j is given by the ratio between the same transition rate and the summation of
all the possible transition rates belonging to state i. Transition rates are shown in Figure
4.19.
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Figure 4.19: Transition rates when control u1 is applied.

The transition rates are not constant because they depend on the states and the control,
as already said before we need to make them uniform. This is possible thanks to a simple
procedure called uniformization (Bertsekas [13]): the new transition rate ν is set so to be
the largest one possible.

ν = max{λ11 + λ21 + µ1, λ22 + λ12 + µ2}. (4.16)

All the probabilities in (4.15) are scaled by the ratio between the former total transition
rate νi(u) and the new transition rate in (4.16):

p̄ij(u) =
{
νi(u)
ν pij i 6= j

νi(u)
ν pii + 1− νi(u)

ν i = j.

The conversion creates the possibility to have a fictitious transition from a state to
itself. Leaving state i at rate νi(u) in the original process is statistically equivalent to
leaving state i at the faster rate ν with a going back rate ν − νi(u). The new transition
rates arrangement is depicted in Figure 4.20.
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Figure 4.20: Transition rates after unformization when control u1 is applied.

Along with the probabilities also the cost function should be scaled in order to obtain
a cost rate per unit time:

ḡ(i) = 1
ν

(c1Q1(i) + c2Q2(i)) .

The last step of the discretization process is the discretization of the objective function:

Jπ(x0) = lim sup
N→∞

1
N
E

[
N−1∑
k=0

1
ν

(
c1Q

π,k
1 + c2Q

π,k
2

)]
.

Qπ,ks represents the queue length of job class s under policy π and after k transitions. The
objective is then to find the optimal policy that minimizes the average holding cost. It is
convenient if the optimal average cost is the same for all the initial states and the optimal
policy is stationary. In this way it is easier to find an optimal policy using numerical
methods. A policy is said to be stationary if the same control function is always applied.
This happens if the Weak Accessibility (WA) condition holds for the system (Bertsekas
[13]). The MDP problem is solved using both linear programming and modified policy
iteration algorithm.
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4.3.2 Linear programming

The MDP problem can be solved through its linear programming formulation as fol-
lows:

minimize:
n∑
i=1

∑
u∈U(i)

y(i, u)g(i, u)

subject to: ∑
u∈U(i)

y(j, u)−
n∑
i=1

∑
u∈U(i)

y(i, u)pij(u) = 0 j = 1, . . . , n

∑n
i=1

∑
u∈U(i)

y(i, u) = 1

y(i, u) ≥ 0 i = 1, . . . , n u ∈ U(s).

y(i, u) is the long run fraction of time in which the system is in state i and control u is
applied (Bello and Riano [14]). They represent basically the steady-state probabilities and
then they are independent of the initial state. All the y(i, u) are then normalized:

f(i, u) = y(i, u)∑
u∈U(i)

y(i, u) i = 1, . . . , n u ∈ U(s).

There exists only one optimal solution, for each state then only one control u can be
applied and thus its value is equal to 1 after normalization; the other control must be
equal to 0. The set of f(i, u) for all states forms the optimal stationary policy π.

Results

We want to check if the results of the linear programming match what was obtained
with the fluid model. The four different zones are analyzed.

• The Class 1 zone is where both cµ rule and (4.13) choose class 1 as optimal. The
results obtained with the dual simplex algorithm are depicted in Figure 4.21. Where
feasible, the results overlap with the fluid model (and in general with the cµ rule).
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Figure 4.21: Linear programming results for Class 1 zone, the parameters used are: λ11 =
23, λ12 = 12, λ21 = 6, λ22 = 13, µ1 = 100, µ2 = 147, c1 = 1.6, c2 = 1, N = 40.

• The Class 2 zone is where both cµ rule and (4.13) choose class 2 as optimal, the
results obtained with the dual simplex algorithm are depicted in Figure 4.22. Most
of the available states follow what is predicted by the fluid model, however some
points are not behaving as predicted.
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Figure 4.22: Linear programming results for Class 2 zone, the parameters used are: λ11 =
23, λ12 = 12, λ21 = 6, λ22 = 13, µ1 = 100, µ2 = 147, c1 = 1.4, c2 = 1, N = 40.

• The Reverse 2 zone results show in Figure 4.23 a small region where the states
prioritize class 2 instead of class 1, however the results are inconclusive since class 1
presence is not negligible.
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Figure 4.23: Linear programming results for Reverse 2 zone, the parameters used are:
λ11 = 23, λ12 = 12, λ21 = 6, λ22 = 13, µ1 = 100, µ2 = 147, c1 = 1.53, c2 = 1, N = 40.

• The Reverse 1 zone results show an improvement with respect to the other results
but still not enough to be considered reasonable and comparable to the fluid model
results (see Figure 4.24).
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Figure 4.24: Linear programming results for Reverse 1 zone, the parameters used are:
λ11 = 23, λ12 = 12, λ21 = 6, λ22 = 13, µ1 = 100, µ2 = 28, c1 = 0.25, c2 = 1, N = 40.

In all the zones most of the state space is characterized by NaN points, this happens
if y(i, u), ∀ui of a state is null, this leads to a division by zero during the normalization
to compute f(i, u), causing an error. We know that if the Markov chain is irreducible
all the probabilities are different from zero, but they can be very small, even smaller
than the default tolerance of the software, and this is our case. Some probabilities are
then considered null because they exceed the tolerances. Truncation is another major
contribution to the non-reliability of the results, the state space should be unbounded
but, for obvious practical reasons, it is truncated. This causes the results to be affected
by strong boundary effects.

4.3.3 Policy Iteration

Policy iteration is a very useful method that can solve problems with a large number
of states quickly. Starting from an initial guess (starting policy), at every iteration it
computes a new stationary policy that improves the objective function. When two con-
secutive policies are equal the algorithm stops and the optimal policy is achieved. Usually
the convergence happens in very few iterations (Bertsekas [13]).

Optimality

The objective is to minimize the total average cost rate. It can be found using a value
iteration algorithm, that chooses the best control over all controls based on the one step
costs and all expected future costs. There exist an optimal value that is a fixed point of
the procedure. The optimality satisfies the following relationship:

44



Ω + h(i) = min
u∈U(i)

g(i) +
n∑
j=1

pij(u)hk(j)

 i = 1, . . . , n. (4.17)

The optimality relationship is known as Bellman’s equation, where h(i) is the minimum
cost among all the possible policies to reach state n from state h(i) and Ω is the optimal
cost per stage. (4.17) states that the left hand side remains the same if for all the state i
the control u minimizing the right hand side is applied.

Step 1: Initialization

First stationary policy π0 has to be guessed, usually it is called greedy policy because
it does not account for the future. In our case we choose the standard cµ rule and the
non-empty product policy when one of the queues is empty, the second policy is added to
meet the Weak Accessibility requirements.

Step 2: New policy

For each iteration step k the cost function corresponding to the stationary policy πk
is evaluated. The cost function is divided in the average cost per stage Ωk and differential
cost hk(i) (or cost to go). The costs should satisfy the Bellman’s equation:

Ωk + hk(i) = g(i) +
n∑
j=1

pij(πk(i))hk(j) i = 1, . . . , n. (4.18)

(4.18) represents a linear system with n equations and n+1 unknowns (hk(1), . . . , hk(n),Ωk),
to solve it we assigned a value to an arbitrary degree of freedom, for example hk(1) = 0.

Step 3: Policy improvement

A new stationary policy is computed that should satisfy:

g(i) +
n∑
j=1

pij(πk+1(i))hk(j) = min
u∈U(i)

g(i) +
n∑
j=1

pij(u)hk(j)

 i = 1, . . . , n.

If πk+1 is equal to πk the optimal policy is achieved and the algorithm stops, otherwise
step 2 is computed again updating the current policy. As already said the method is
known to converge very quickly (few iterations).

Value iteration approximation

When the state space is very large the computation in step 2 is very time consuming,
since at each step a linear system with state space dimension is solved. In these cases
instead of solving the entire system is convenient to approximate the procedure iteratively
by using a different method called Relative value iteration. We define a new set of iterations
l for the approximation of h:

hl+1(i) = g(i) +
n∑
j=1

pij(πk(i))hl(j) i = 1, . . . , n.
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As l → ∞ hl converges to hk, however in most of the cases just few iterations are
required for the convergence.

Results

We now compare the results of MPI algorithm with the ones obtained with the simple
linear program. The parameters chosen are the same.

• TheClass 1 zone is depicted in Figure 4.25, class 1 is always chosen as optimal in
accordance with what both the rules predict. On the right side there is a small zone
characterized by class 2 priority, the results in these state can be reasonably affected
by boundary effects due to truncation.

Figure 4.25: Policy iteration results for Class 1 zone, the parameters used are: λ11 =
23, λ12 = 12, λ21 = 6, λ22 = 13, µ1 = 100, µ2 = 147, c1 = 1.6, c2 = 1, N = 40.

• TheClass 2 zone is represented in Figure 4.26, the same considerations made for
Class1 zone hold in this case, even if with this set of parameters boundary effects
are not so apparent.
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Figure 4.26: Policy iteration results for Class 2 zone, the parameters used are: λ11 =
23, λ12 = 12, λ21 = 6, λ22 = 13, µ1 = 100, µ2 = 147, c1 = 1.4, c2 = 1, N = 40.

• TheReverse 2 zone is depicted in Figure 4.27, the results confirm that class 2 is
the optimal one, even if cµ rule states the opposite. Boundary effects are almost
negligible.
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Figure 4.27: Policy iteration results for Reverse 2 zone, the parameters used are: λ11 =
23, λ12 = 12, λ21 = 6, λ22 = 13, µ1 = 100, µ2 = 147, c1 = 1.53, c2 = 1, N = 40.

• TheReverse 1 zone is depicted in Figure 4.28, this is the hardest zone to predict.
Class 1 and class 2 have more or less the same occurrence so it is difficult to un-
derstand which one should be the correct one. Our first guess is that the boundary
effects are strongly affecting the final results because of the strange pattern of the
states which do not make sense.
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Figure 4.28: Policy iteration results for Reverse 1 zone, the parameters used are: λ11 =
23, λ12 = 12, λ21 = 6, λ22 = 13, µ1 = 100, µ2 = 28, c1 = 0.25, c2 = 1, N = 40.

We want to focus on Reverse 1 zone to understand what is the right behavior we
should expect. We presente few cases with different parameters.

Figure 4.29: Focus on Reverse 1 zone for different sets of parameters, the parameters used
are: λ11 = 11, λ12 = 5, λ21 = 3, λ22 = 4, µ1 = 70, µ2 = 8.4, c1 = 0.118, c2 = 1, N = 40.
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Figure 4.30: Focus on Reverse 1 zone for different sets of parameters, the parameters used
are: λ11 = 10, λ12 = 6, λ21 = 3, λ22 = 14, µ1 = 18, µ2 = 24, c1 = 1.1, c2 = 1, N = 40.

Figure 4.31: Focus on Reverse 1 zone for different sets of parameters, the parameters used
are: λ11 = 21, λ12 = 10, λ21 = 7, λ22 = 24, µ1 = 30, µ2 = 37, c1 = 1.2, c2 = 1, N = 40.

In Figure 4.29 is still not clear enough because it shows a similar behavior to Figure
4.28. Figure 4.30 and Figure 4.31 instead show a strong class 1 presence while class 2 is
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probably due to boundary effects. We now change the state space truncation to see if the
results improve, the reference case is shown in Figure 4.31.

• Truncation at N = 20

0 2 4 6 8 10 12 14 16 18 20

Q
1

0

2

4

6

8

10

12

14

16

18

20

Q
2

Optimal Policy

Class 1

Class 2

Figure 4.32: Boundary effects investigation for N = 20, the parameters used are: λ11 =
11, λ12 = 5, λ21 = 3, λ22 = 4, µ1 = 70, µ2 = 8.4, c1 = 0.118, c2 = 1, N = 20.

• Truncation at N = 30
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Figure 4.33: Boundary effects investigation for N = 30, the parameters used are: λ11 =
11, λ12 = 5, λ21 = 3, λ22 = 4, µ1 = 70, µ2 = 8.4, c1 = 0.118, c2 = 1, N = 30.

• Truncation at N = 50

Figure 4.34: Boundary effects investigation for N = 50, the parameters used are: λ11 =
11, λ12 = 5, λ21 = 3, λ22 = 4, µ1 = 70, µ2 = 8.4, c1 = 0.118, c2 = 1, N = 50.

As the level of truncation increases the region of class 2 moves to the right, so some
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states that with a low level of truncation were showing class 2 as optimal, with a higher
level of truncation prioritize class 1. We can then reasonably assume that the presence of
class 2 is due to boundary effects because the true optimal policy is independent of the
truncation level. One final remark that could confirm our assumption is that Reverse 1
zone is very close to the stability line (ρ = 1), the system then is more likely to be in the
limit states of the state space leading to very strong boundary effects.

4.4 Analytical Markov decision process
In this section we want to prove analytically the optimality of the policy characterized

by (4.13) obtained thanks to approximated methods. The model is still the Markov
decision process defined in section 4.3. The goal is to minimize the total average cost
rate (4.14). However for structural results purposes we consider the discounted cost case:

lim sup
t→∞

1
t
E(i,j,u)

[∫ t

0
e−βs(c1Q

π
1 (s) + c2Q

π
2 (s))ds

]
,

where β is a positive discount factor.

4.4.1 Mapping

As usual starting from the continuous time Markov decision process we derive the
corresponding discrete Markov decision process. Since the problem is characterized by
transition rates dependent on the state and the control it is necessary to define also a
uniform transition rate ν = µmax+λmax (uniformization process). We define a real valued
function f representing the value of each state (f(i, j, u, t) is the value of state i, j given
the control u at time instant t). We also define the mapping H of the function as follows
(time index t is dropped)(Sisbot and Hasenbein [10]):
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Hδf(i, j, u) = δmin

{
λ11f(i+ 1, j, u1) + (λmax − λ11)f(i, j, u1)
λ11f(i+ 1, j, u2) + (λmax − λ11)f(i, j, u1)

+ δmin

{
λ21f(i, j + 1, u1) + (λmax − λ21)f(i, j, u1)
λ21f(i, j + 1, u2) + (λmax − λ21)f(i, j, u1)

+ δmin

{
µ1f(i− 1, j, u1) + (µmax − µ1)f(i, j, u1)
µ1f(i− 1, j, u2) + (µmax − µ1)f(i, j, u1) if u = u1

= δmin

{
λ22f(i, j + 1, u1) + (λmax − λ22)f(i, j, u2)
λ22f(i, j + 1, u2) + (λmax − λ22)f(i, j, u2)

+ δmin

{
λ12f(i+ 1, j, u1) + (λmax − λ12)f(i, j, u2)
λ12f(i+ 1, j, u2) + (λmax − λ12)f(i, j, u2)

+ δmin

{
µ2f(i, j − 1, u1) + (µmax − µ2)f(i, j, u2)
µ2f(i, j − 1, u2) + (µmax − µ2)f(i, j, u2) if u = u2,

(4.19)

where δ = ν
ν+β is the effective discount factor after the uniformization.

4.4.2 Results

We show results for the discounted cost finite horizon problem, then using standard
techniques it is possible to prove the same for the infinite horizon average cost case. If
there exists an optimal scheduling policy for every single state then Bellman’s equation
should be satisfied for every single state. In the discounted cost finite horizon problem
(4.17) is formulated as follows:

fn+1
δ (i, j, u) = c1i+ c2j +Hδf

n
δ (i, j, u). (4.20)

The important result is that (4.13) is the optimal scheduling policy, so if it holds it is
always optimal to serve class 1 rather than class 2 (if class 1 queue is not empty),

[µ1 − (λ11 − λ12)]c1 ≥ [µ2 − (λ22 − λ21)]c2.

The proof is carried out by induction: we prove the relationships for n = 0 and then
assuming that the relationships hold for n we prove they hold also for n + 1. Since we
want to prove class 1 is optimal we assume:

fnδ (i, j, u1) ≤ fnδ (i, j, u2). (4.21)
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Lemma 4.4.1. fnδ (i + 1, j, u1) − fnδ (i, j, u1) ≥ 0 for each fixed j (fnδ (i, j + 1, u1) −
fnδ (i, j, u1) ≥ 0 for each fixed i), ∀i ≥ 1, ∀j ≥ 1.

Proof :

• n = 0:

c1(i+ 1) + c2j − c1i− c2j ≥ 0
c1 ≥ 0. X

• n+ 1: According to (4.20) and (4.19) we expand the terms, using (4.21) we simplify
the minima, then we drop the δ terms:

λ11f(i+ 2, j, u1) + (λmax − λ11)f(i+ 1, j, u1) + λ21f(i+ 1, j + 1, u1)

+(λmax − λ21)f(i+ 1, j, u1) + µ1f(i, j, u1) + (µmax − µ1)f(i+ 1, j, u1)

+c1(i+ 1) + c2j

−λ11f(i+ 1, j, u1)− (λmax − λ11)f(i, j, u1)− λ21f(i, j + 1, u1)

−(λmax − λ21)f(i, j, u1)− µ1f(i− 1, j, u1)− (µmax − µ1)f(i, j, u1)

−c1i− c2j ≥ 0.

Simplifying and collecting the same terms we obtain:

λ11[f(i+ 2, j, u1)− f(i+ 1, j, u1)] + (λmax − λ11)[f(i+ 1, j, u1)− f(i, j, u1)]

+λ21[f(i+ 1, j + 1, u1)− f(i, j + 1, u1)] + (λmax − λ21)[f(i+ 1, j, u1)− f(i, j, u1)]

+µ1[f(i, j, u1)− f(i− 1, j, u1)] + (µmax − µ1)[f(i+ 1, j, u1)− f(i, j, u1)] + c1 ≥ 0. X

Each difference inside the brackets is actually what we assumed for n, so the rela-
tionship is then proven.

Lemma 4.4.2. fnδ (i+ 1, j, u1)− fnδ (i, j, u1) = fnδ (i, j, u1)− fnδ (i− 1, j, u1) for each fixed
j (the same applies for j for each fixed i), ∀i ≥ 1, ∀j ≥ 1.

Proof :

• n = 0:

c1(i+ 1) + c2j − c1i− c2j = c1i+ c2j − c1(i− 1)− c2j

c1 = c1. X
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• n+ 1: According to (4.20) and (4.19) we expand the terms, using (4.21) we simplify
the minima, then we drop the δ terms:

λ11f
n
δ (i+ 2, j, u1) + (λmax − λ11)fnδ (i+ 1, j, u1) + λ21f

n
δ (i+ 1, j + 1, u1)

+(λmax − λ21)fnδ (i+ 1, j, u1) + µ1f
n
δ (i, j, u1) + (µmax − µ1)fnδ (i+ 1, j, u1)

−λ11f
n
δ (i+ 1, j, u1)− (λmax − λ11)fnδ (i, j, u1)− λ21f

n
δ (i, j + 1, u1)

−(λmax − λ21)fnδ (i, j, u1)− µ1f
n
δ (i− 1, j, u1)− (µmax − µ1)fnδ (i, j, u1)

+c1(i+ 1) + c2j − c1i− c2j =

λ11f
n
δ (i+ 1, j, u1) + (λmax − λ11)fnδ (i, j, u1) + λ21f

n
δ (i, j + 1, u1)

+(λmax − λ21)fnδ (i, j, u1) + µ1f
n
δ (i− 1, j, u1) + (µmax − µ1)fnδ (i, j, u1)

−λ11f
n
δ (i, j, u1)− (λmax − λ11)fnδ (i− 1, j, u1)− λ21f

n
δ (i− 1, j + 1, u1)

−(λmax − λ21)fnδ (i− 1, j, u1)− µ1f
n
δ (i− 2, j, u1)− (µmax − µ1)fnδ (i− 2, j, u1)

+c1i+ c2j − c1(i− 1)− c2j.

Simplifying and collecting the same terms we obtain:

λ11[fnδ (i+ 2, j, u1)− fnδ (i+ 1, j, u1)− fnδ (i+ 1, j, u1) + fnδ (i, j, u1)]

+(λmax − λ11)[fnδ (i+ 1, j, u1)− fnδ (i, j, u1)− fnδ (i, j, u1) + fnδ (i− 1, j, u1)]

+λ21[fnδ (i+ 1, j + 1, u1)− fnδ (i, j + 1, u1)− fnδ (i, j + 1, u1) + fnδ (i− 1, j + 1, u1)]

+(λmax − λ21)[fnδ (i+ 1, j, u1)− fnδ (i, j, u1)− fnδ (i, j, u1) + fnδ (i− 1, j, u1)]

+µ1[fnδ (i, j, u1)− fnδ (i− 1, j, u1)− fnδ (i− 1, j, u1) + fnδ (i− 2, j, u1)]

+(µmax − µ1)[fnδ (i+ 1, j, u1)− fnδ (i, j, u1)− fnδ (i, j, u1) + fnδ (i− 1, j, u1)] = 0.

X

Each difference inside the brackets is actually what we assumed for n, so the rela-
tionship is then proven.

For each j fixed, the difference of fnδ (i, j, u1) induced by two adjacent states of i is constant
(the same applies for j when i is fixed).
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Lemma 4.4.3. fnδ (i + 1, j + 1, u1) − fnδ (i, j + 1, u1) = fnδ (i + 1, j, u1) − fnδ (i, j, u1) for
each fixed difference in i and for each fixed j, in the same side of the equivalence(the same
applies for j when its difference is fixed), ∀i ≥ 1,∀j ≥ 1.

Proof :

• n = 0:

c1(i+ 1) + c2(j + 1)− c1i− c2(j + 1) = c1(i+ 1) + c2j − c1i− c2j

c1 = c1. X

• n+ 1: According to (4.20) and (4.19) we expand the terms, using (4.21) we simplify
the minima, then we drop the δ terms:

λ11f
n
δ (i+ 2, j + 1, u1) + (λmax − λ11)fnδ (i+ 1, j + 1, u1) + λ21f

n
δ (i+ 1, j + 2, u1)

+(λmax − λ21)fnδ (i+ 1, j + 1, u1) + µ1f
n
δ (i, j + 1, u1) + (µmax − µ1)fnδ (i+ 1, j + 1, u1)

−λ11f
n
δ (i+ 1, j + 1, u1)− (λmax − λ11)fnδ (i, j + 1, u1)− λ21f

n
δ (i, j + 2, u1)

−(λmax − λ21)fnδ (i, j + 1, u1)− µ1f
n
δ (i− 1, j + 1, u1)− (µmax − µ1)fnδ (i, j + 1, u1)

+c1(i+ 1) + c2(j + 1)− c1i− c2(j + 1) =

λ11f
n
δ (i+ 2, j, u1) + (λmax − λ11)fnδ (i+ 1, j, u1) + λ21f

n
δ (i+ 1, j + 1, u1)

+(λmax − λ21)fnδ (i+ 1, j, u1) + µ1f
n
δ (i, j, u1) + (µmax − µ1)fnδ (i+ 1, j, u1)

−λ11f
n
δ (i+ 1, j, u1)− (λmax − λ11)fnδ (i, j, u1)− λ21f

n
δ (i, j + 1, u1)

−(λmax − λ21)fnδ (i, j, u1)− µ1f
n
δ (i− 1, j, u1)− (µmax − µ1)fnδ (i, j, u1)

+c1(i+ 1) + c2j − c1i− c2j.
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Simplifying and collecting the same terms we obtain:

λ11[fnδ (i+ 2, j + 1, u1)− fnδ (i+ 1, j + 1, u1)− fnδ (i+ 2, j, u1) + fnδ (i+ 1, j, u1)]

+(λmax − λ11)[fnδ (i+ 1, j + 1, u1)− fnδ (i, j + 1, u1)− fnδ (i+ 1, j, u1) + fnδ (i, j, u1)]

+λ21[fnδ (i+ 1, j + 2, u1)− fnδ (i, j + 2, u1)− fnδ (i+ 1, j + 1, u1) + fnδ (i, j + 1, u1)]

+(λmax − λ21)[fnδ (i+ 1, j + 1, u1)− fnδ (i, j + 1, u1)− fnδ (i+ 1, j, u1) + fnδ (i, j, u1)]

+µ1[fnδ (i, j + 1, u1)− fnδ (i− 1, j + 1, u1)− fnδ (i, j, u1) + fnδ (i− 1, j, u1)]

+(µmax − µ1)[fnδ (i+ 1, j + 1, u1)− fnδ (i, j + 1, u1)− fnδ (i+ 1, j, u1) + fnδ (i, j, u1)] = 0.

X

Each difference inside the brackets is actually what we assumed for n, so the rela-
tionship is then proven.

Lemma 4.4.3 is a kind of step forward with respect to Lemma 4.4.2. The difference of
fnδ (i, j, u1) induced by two adjacent states of i is constant even in the case of j is not fixed,
j however must be equal in the two adjacent states (the same applies for adjacent states
of j).

Lemma 4.4.4. fnδ (i,j+1,u1)−fnδ (i,j,u1)
fn
δ

(i+1,j,u1)−fn
δ

(i,j,u1) = c2
c1
, ∀i ≥ 1,∀j ≥ 1.

Proof :

• n = 0:
c1i+ c2(j + 1)− c1 − c2j

c1(i+ 1) + c2j − c1i− c2j
= c2
c1

c2
c1

= c2
c1
. X

• n+ 1: According to (4.20) and (4.19) we expand the terms, using (4.21) we simplify
the minima, then we drop the δ terms. For the sake of clarity and ease we divide
the relationship in numerator and denominator:

N = λ11f
n
δ (i+ 1, j + 1, u1) + (λmax − λ11)fnδ (i, j + 1, u1) + λ21f

n
δ (i, j + 2, u1)

+ (λmax − λ21)fnδ (i, j + 1, u1) + µ1f
n
δ (i− 1, j + 1, u1) + (µmax − µ1)fnδ (i, j + 1, u1)

− λ11f
n
δ (i+ 1, j, u1)− (λmax − λ11)fnδ (i, j, u1)− λ21f

n
δ (i, j + 1, u1)

− (λmax − λ21)fnδ (i, j, u1)− µ1f
n
δ (i− 1, j, u1)− (µmax − µ1)fnδ (i, j, u1)

+ c1i+ c2(j + 1)− c1i− c2j.
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Simplifying and collecting the same terms we obtain:

N = λ11[fnδ (i+ 1, j + 1, u1)− fnδ (i+ 1, j, u1)] + (λmax − λ11)[fnδ (i, j + 1, u1)− fnδ (i, j, u1)]

+ λ21[fnδ (i, j + 2, u1)− fnδ (i, j + 1, u1)] + (λmax − λ21)[fnδ (i, j + 1, u1)− fnδ (i, j, u1)]

+ µ1[fnδ (i− 1, j + 1, u1)− fnδ (i− 1, j, u1)]

+(µmax − µ1)[fnδ (i, j + 1, u1)− fnδ (i, j, u1)] + c2.

Thanks to Lemma 4.4.2 and Lemma 4.4.3 all the differences inside the brackets are
equal and thus can be collected together. N then becomes:

N = (2λmax + µmax)[fnδ (i, j + 1, u1)− fnδ (i, j, u1)] + c2.

We adopt the same procedure for the denominator:

D = λ11f
n
δ (i+ 2, j, u1) + (λmax − λ11)fnδ (i+ 1, j, u1) + λ21f

n
δ (i+ 1, j + 1, u1)

+ (λmax − λ21)fnδ (i+ 1, j, u1) + µ1f
n
δ (i, j, u1) + (µmax − µ1)fnδ (i+ 1, j, u1)

− λ11f
n
δ (i+ 1, j, u1)− (λmax − λ11)fnδ (i, j, u1)− λ21f

n
δ (i, j + 1, u1)

− (λmax − λ21)fnδ (i, j, u1)− µ1f
n
δ (i− 1, j, u1)− (µmax − µ1)fnδ (i, j, u1)

+ c1(i+ 1) + c2j − c1i− c2j.

Simplifying and collecting the same terms we obtain:

D = λ11[fnδ (i+ 2, j, u1)− fnδ (i+ 1, j, u1)] + (λmax − λ11)[fnδ (i+ 1, j, u1)− fnδ (i, j, u1)]

+ λ21[fnδ (i+ 1, j + 1, u1)− fnδ (i, j + 1, u1)] + (λmax − λ21)[fnδ (i+ 1, j, u1)− fnδ (i, j, u1)]

+ µ1[fnδ (i, j, u1)− fnδ (i− 1, j, u1)] + (µmax − µ1)[fnδ (i+ 1, j, u1)− fnδ (i, j, u1)] + c1.

Thanks to Lemma 4.4.2 and Lemma 4.4.3 all the differences inside the brackets are
equal and thus can be collected together. D then becomes:

D = (2λmax + µmax)[fnδ (i+ 1, j, u1)− fnδ (i, j, u1)] + c1.
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Now we put back together numerator N and denominator D and we simplify the
relationship:

(2λmax + µmax)[fnδ (i, j + 1, u1)− fnδ (i, j, u1)] + c2
(2λmax + µmax)[fnδ (i+ 1, j, u1)− fnδ (i, j, u1)] + c1

= c2
c1

(2λmax + µmax)[fnδ (i, j + 1, u1)− fnδ (i, j, u1)]c1 + c2c1 =

(2λmax + µmax)[fnδ (i+ 1, j, u1)− fnδ (i, j, u1)]c2 + c1c2

(2λmax + µmax)[fnδ (i, j + 1, u1)− fnδ (i, j, u1)]c1 =

(2λmax + µmax)[fnδ (i+ 1, j, u1)− fnδ (i, j, u1)]c2

(2λmax + µmax)[fnδ (i, j + 1, u1)− fnδ (i, j, u1)]
(2λmax + µmax)[fnδ (i+ 1, j, u1)− fnδ (i, j, u1)] = c2

c1

fnδ (i, j + 1, u1)− fnδ (i, j, u1)
fnδ (i+ 1, j, u1)− fnδ (i, j, u1) = c2

c1
. X

The outcome of n+ 1 is what we assumed for n, the relationship is the proven.

The ratio between the differences of fnδ (i, j, u1) induced by two adjacent states of j and
two adjacent states of i is constant and equal to the ratio of the one-step costs.

Theorem 4.4.1. If (4.13) holds true then fnδ (i, j, u1) ≤ fnδ (i, j, u2), ∀i ≥ 1,∀j ≥ 1.

Proof :

• n = 0:
c1i+ c2j ≤ c1i+ c2j. X

• n+ 1: According to (4.20) and (4.19) we expand the terms, using (4.21) we simplify
the minima, then we drop the δ terms:

λ11f
n
δ (i+ 1, j, u1) + (λmax − λ11)fnδ (i, j, u1) + λ21f

n
δ (i, j + 1, u1) + (λmax − λ21)fnδ (i, j, u1)

+µ1f
n
δ (i− 1, j, u1) + (µmax − µ1)fnδ (i, j, u1) + c1i+ c2j ≤

λ22f
n
δ (i, j + 1, u1) + (λmax − λ22)fnδ (i, j, u2) + λ12f

n
δ (i+ 1, j, u1) + (λmax − λ12)fnδ (i, j, u2)

+µ2f
n
δ (i, j − 1, u1) + (µmax − µ2)fnδ (i, j, u2) + c1i+ c2j.

60



Simplifying and collecting the same terms we obtain:

(λ11 − λ12)fnδ (i+ 1, j, u1) + (λmax − λ11 + λmax − λ21)fnδ (i, j, u1) + µ1f
n
δ (i− 1, j, u1)

+(µmax − µ1)fnδ (i, j, u1) ≤

(λ22 − λ21)fnδ (i, j + 1, u1) + (λmax − λ22 + λmax − λ12)fnδ (i, j, u2) + µ2f
n
δ (i, j − 1, u1)

+(µmax − µ2)fnδ (i, j, u2).

We now replace fnδ (i, j, u2) with fnδ (i, j, u1) using (4.21). By assumption it is a
smaller quantity so if we prove the inequality after the replacement it is then also
proven for the former inequality. After substitution we can further collect:

(λ11 − λ12)fnδ (i+ 1, j, u1)− (λ11 − λ12)fnδ (i, j, u1)− µ1[fnδ (i, j, u1)− fnδ (i− 1, j, u1)] ≤

(λ22 − λ21)fnδ (i, j + 1, u1)− (λ22 − λ21)fnδ (i, j, u1)− µ2[fnδ (i, j, u1)− fnδ (i, j − 1, u1)].

We collect then the λ terms inside the brackets:

(λ11 − λ12) [fnδ (i+ 1, j, u1)− fnδ (i, j, u1)]︸ ︷︷ ︸
(1)

−µ1 [fnδ (i, j, u1)− fnδ (i− 1, j, u1)]︸ ︷︷ ︸
(2)

≤

(λ22 − λ21) [fnδ (i, j + 1, u1)− fnδ (i, j, u1)]︸ ︷︷ ︸
(3)

−µ2 [fnδ (i, j, u1)− fnδ (i, j − 1, u1)]︸ ︷︷ ︸
(4)

.

Terms (1) and (2) are equal thanks to Lemma 4.4.2. The same applies for terms (3)
and (4):

[µ1 − (λ11 − λ12)][fnδ (i+ 1, j, u1)− fnδ (i, j, u1)] ≥

[µ2 − (λ22 − λ21)][fnδ (i, j + 1, u1)− fnδ (i, j, u1)].

Now using Lemma 4.4.4 we can write:

[µ1 − (λ11 − λ12)]c1 ≥ [µ2 − (λ22 − λ21)]c2. X

We have proven that (4.13) represents the optimal scheduling policy when the arrival rates
λs depend on the class under process.
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Chapter 5

Three-class to n-class system

In this chapter we take one step further. We try to generalize what was obtained for the
two-class system in chapter 3. The new analysis follows the same steps. The three-class
system is characterized by the parameters:

Λ =

λ11 λ12 λ13
λ21 λ22 λ23
λ31 λ32 λ33

 µ =

µ1
µ2
µ3

 c =

c1
c2
c3

 .
The complete n-class system has instead the following set of parameters:

Λ =

λ11 · · · λ1n
... . . . ...
λn1 · · · λnn

 µ =

µ1
...
µn

 c =

c1
...
cn

 .

5.1 Stability
What was derived in the two-class system is a simpler version of the general stability

assessment procedure. While in the two-class system it was possible to find a formula for
the stability region, in this case it is harder to compute an explicit formula for three classes
or more. For stability, the system is said to be stable if the conditions on the eigenvalues
are met (Ernst et al. [12]).

5.2 Fluid approximation
The system can be still approximated by formulating the fluid model and then trans-

forming it into a linear program. The problem has the same form but since the number
of classes increases also the number of unknowns and constraints increases.

5.2.1 Equal costs

As a first approximation we keep the costs equal and we study only the effects of µs and
the λs. The first step is to try to extend the previous results, obtained for the two-class
model, in a simple way as follows:
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µ1 − (λ11 − λ12 − λ13)
µ2 − (λ22 − λ21 − λ23)
µ3 − (λ33 − λ31 − λ32).

The main idea is to sort all the values from the biggest one to the smallest one and then to
prioritize the classes in accordance with the ranking (the highest value class is the first one
served and so on). Figure 5.1 shows how fluid model results do not match our assumption,
meaning that the previous relationships need to be modified (parameters were chosen in
order to have 2-1-3 class sequence).
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Figure 5.1: Three-class fluid model results, the parameters used are: λ11 = 10, λ12 = 6, λ13 =
5, λ21 = 4, λ22 = 8, λ23 = 6, λ31 = 3, λ32 = 5, λ33 = 6, µ1 = 24, µ2 = 24, µ3 = 21, c1 = 1, c2 =
1, c3 = 1.

Since this easy path cannot be pursued we take one step back and try to follow the
same procedure used for the two classes problem. Two classes have the same priority when
the difference of service rates is equal to the difference of the total arrival rate when one
class is served (as in the two-class problem):

µi − µj = (λii + λji + λki)− (λjj + λij + λkj). (5.1)

From (5.1) we can write down all the possible relationships between the classes:

µ1 − µ2 = (λ11 + λ21 + λ31)− (λ22 + λ12 + λ32)
µ2 − µ3 = (λ22 + λ12 + λ32)− (λ33 + λ13 + λ23)
µ1 − µ3 = (λ11 + λ21 + λ31)− (λ33 + λ13 + λ23).

(5.2)
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We look for a condition where all the classes have same priority, this takes place when
two out of three relationships in (5.2), arbitrarily chosen, hold at the same time (see Figure
5.2). As a matter of fact the procedure is equivalent to defining a straight line in a IR3

space (µ1µ2µ3). Only two equations are required to describe the line.
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Figure 5.2: Three-class fluid model results, equi-priority condition, the parameters used are:
λ11 = 10, λ12 = 6, λ13 = 5, λ21 = 4, λ22 = 8, λ23 = 6, λ31 = 4, λ32 = 5, λ33 = 6, µ1 = 24, µ2 =
25, µ3 = 23, c1 = 1, c2 = 1, c3 = 1.

As already said the relationships should hold at the same time, but they are not equal
to one another. This means that it is not possible to account for all the classes at the
same time and it is not possible to generate an absolute ranking once and for all. The
only way to rank the classes is then by using pairwise comparisons among all the possible
combinations available. We now rewrite (5.2) in a more suitable way:

µ1 − (λ11 − λ12)− λ31 = µ2 − (λ22 − λ21)− λ32

µ2 − (λ22 − λ21)− λ12 = µ3 − (λ33 − λ31)− λ13

µ1 − (λ11 − λ12)− λ21 = µ3 − (λ33 − λ31)− λ23.

(5.3)

(5.3) are basically the two-class relationships. What is new are the extra terms λ
outside the brackets. The third class not considered in the pairwise comparison does
influence the decision making with its arrival rates (the ones dependent on the classes
considered).

5.2.2 Cost effects

The next step is to include in (5.3) the cost effects in order to have a more complete
understanding of the non-reduced model:
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[µ1 − (λ11 − λ12)]c1 − λ31c3 = [µ2 − (λ22 − λ21)]c2 − λ32c3

[µ2 − (λ22 − λ21)]c2 − λ12c1 = [µ3 − (λ33 − λ31)]c3 − λ13c1

[µ1 − (λ11 − λ12)]c1 − λ21c2 = [µ3 − (λ33 − λ31)]c3 − λ23c2.

(5.4)

Now we want to extend the obtained results to a more general case, the n class sys-
tem. The overall pairwise comparisons work remains the same. Each relationship slightly
changes to account for the other classes:

[µi − (λii − λij)]ci −
n∑
k=1
k 6=i,j

λkick = [µj − (λjj − λji)]cj −
n∑
k=1
k 6=i,j

λkjck. (5.5)

The number of (5.5) (PWrel) relationships depends on n:

PWrel =
(
n

2

)
= n!

(n− 2)!2! .

and only n − 1 are meaningful to establish the ranking of priority among the classes (as
stated for (4.4)). One final remark needs to be made regarding how the priority ranking
evolves during the scheduling selection. The ranking in fact can be considered dynamic
rather than static.
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Figure 5.3: Three-class fluid model results, the parameters used are: λ11 = 10, λ12 = 6, λ13 =
5, λ21 = 4, λ22 = 8, λ23 = 6, λ31 = 4, λ32 = 5, λ33 = 6, µ1 = 25, µ2 = 26, µ3 = 23, c1 = 1, c2 =
1, c3 = 1.
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Figure 5.4: Three-class fluid model results, the parameters used are: λ11 = 10, λ12 = 6, λ13 =
5, λ21 = 4, λ22 = 8, λ23 = 6, λ31 = 4, λ32 = 5, λ33 = 6, µ1 = 25, µ2 = 26, µ3 = 25, c1 = 1, c2 =
1, c3 = 1.

In Figure 5.3 class 1 and class 2 have the same priority level while class 3 has the
lowest priority. Now we increase the value of µ3 so as to make class 3 the highest priority.
In Figure 5.4 we have the new ranking due to the different value of µ3. It is important
to notice in this case that class 1 and class 2 no longer have same priority level. The
relationship between class 1 and class 2 in (4.4) does not depend on µ3, so how is such a
change possible?

Once class 3 is selected to be the first one to be processed its extra λ terms in the
class 1- class 2 relationship vanish, because it no longer affects the decision between the
other classes. As a general rule all the linearly independent relationships should be run.
Once one class is selected to be processed it is also discharged from the set of the available
classes, meaning that all its extra terms λ in the relationships should be discharged. So
every time a class is selected all the relationships are updated. The number of comparisons
PWtot required to fully rank all the classes is given by:

PWtot = (n− 1)n
2 .

5.2.3 Transitivity property

We show that for a three-class model the transitivity property applies. As a conse-
quence the following condition can not happen:
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[µ1 − (λ11 − λ12)]c1 − λ31c3 ≥ [µ2 − (λ22 − λ21)]c2 − λ32c3

[µ2 − (λ22 − λ23)]c2 − λ12c1 ≥ [µ3 − (λ33 − λ32)]c3 − λ13c1

[µ1 − (λ11 − λ13)]c1 − λ21c2 ≤ [µ3 − (λ33 − λ31)]c3 − λ23c2.

The proof is carried out by reduction ad absurdum by adding three new parameters ε, δ, γ
as follows: 

[µ1 − (λ11 − λ12)]c1 − λ31c3 = [µ2 − (λ22 − λ21)]c2 − λ32c3 + ε

[µ2 − (λ22 − λ23)]c2 − λ12c1 = [µ3 − (λ33 − λ32)]c3 − λ13c1 + δ

[µ1 − (λ11 − λ13)]c1 − λ21c2 = [µ3 − (λ33 − λ31)]c3 − λ23c2 − γ

ε ≥ 0

δ ≥ 0

γ ≥ 0.

(5.6)

For the sake of simplicity we define:

∆11 = [µ1 − (λ11 − λ12)]
∆21 = [µ2 − (λ22 − λ21)]
∆23 = [µ2 − (λ22 − λ23)]
∆32 = [µ3 − (λ33 − λ32)]
∆13 = [µ1 − (λ11 − λ13)]
∆31 = [µ3 − (λ33 − λ31)],

and we replace them in (5.6) obtaining:

∆12c1 − λ31c3 = ∆21c2 − λ32c3 + ε

∆23c2 − λ12c1 = ∆32c3 − λ13c1 + δ

∆13c1 − λ21c2 = ∆31c3 − λ23c2 − γ.

(5.7)

From the first equation in (5.7) we determine c1:

c1 = ∆21c2 + (λ31 − λ32)c3 + ε

∆12
, (5.8)

and we substitute it in the second equation in (5.7) to obtain c2:
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∆23c2 = ∆32c3 + [λ12 − λ13][∆21c2 + (λ31 − λ32)c3 + ε]
∆12

+ δ

∆23c2 = ∆32c3 + [λ12 − λ13][∆21c2 + (λ31 − λ32)c3 + ε]
∆12

+ δ

[
∆23 − (λ12 − λ13)(λ31 − λ32)∆21

∆12

]
c2 = c3

[
∆32 + (λ12 − λ13)(λ31 − λ32)

∆12

]
+ (λ12 − λ13)ε

∆12
+ δ

c2 =

[
∆32 + (λ12−λ13)(λ31−λ32)

∆12

]
c3 + (λ12−λ13)

∆12
ε+ δ

[∆23 − (λ12 − λ13)] ∆21
∆12

.

(5.9)

We now replace (5.8) and (5.9) in the third equation in (5.7):

{[ ∆13∆21
∆12

+ (λ23 − λ21)
[∆23 − (λ12 − λ13)] ∆21

∆12

] [
∆32 + (λ12 − λ13)(λ31 − λ32)

∆12

]
+ ∆13(λ31 − λ32)

∆12
−∆31

}
c3

+
{[ ∆13∆21

∆12
+ (λ23 − λ21)

[∆23 − (λ12 − λ13)] ∆21
∆12

]
(λ12 − λ13)

∆12
+ ∆13

∆12

}
ε+

{ ∆13∆21
∆12

+ (λ23 − λ21)
[∆23 − (λ12 − λ13)] ∆21

∆12

}
δ + γ = 0.

(5.10)

We prove that the coefficient of δ in (5.10) is equal to 1:

∆13∆21
∆12

+ (λ23 − λ21)
[∆23 − (λ12 − λ13)] ∆21

∆12

= 1

(µ1−λ11+λ13)(µ2−λ22+λ21)
µ1−λ11+λ12

+ (λ23 − λ21)
(µ2 − λ22 + λ23)− (λ12 − λ13)µ2−λ22+λ21

µ1−λ11+λ12

= 1

(µ1 − λ11 + λ13)(µ2 − λ22 + λ21) + (λ23 − λ21)(µ1 − λ11 + λ12)
µ1 − λ11 + λ12

=

(µ2 − λ22 + λ23)− (λ12 − λ13)µ2 − λ22 + λ21
µ1 − λ11 + λ12

µ1µ2 − µ1λ22 + µ1λ21 − µ2λ11 + λ11λ22 − λ11λ21 + µ2λ13 − λ13λ22 + λ13λ21

+µ1λ23 − λ12λ23 + λ12λ23 − µ1λ21 + λ11λ21 − λ12λ21 =
µ1µ2 − µ2λ11 + µ2λ12 − µ2λ22 + λ11λ22 − λ12λ22 + µ1λ23 − λ11λ23 + λ12λ23

−µ2λ12 + λ12λ22 − λ12λ21 + µ2λ13 − λ13λ22 + λ13λ21. X
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Part of the coefficient of ε is equal to the coefficient of δ. It is equal to 1 and it allows
us to simplify (5.10). We prove then the coefficient of ε in (5.10) is equal to 1:

(λ12 − λ13)
∆12

+ ∆13
∆12

= 1

λ12 − λ13 + µ1 − λ11 + λ13 = µ1 − λ11 + λ12. X

We now prove that the coefficient of c3 in (5.10) is equal to 0:

[
∆32 + (λ12 − λ13)(λ31 − λ32)

∆12

]
+ ∆13(λ31 − λ32)

∆12
−∆31 = 0

(µ3 − λ33 + λ32)(µ1 − λ11 + λ12) + (λ12 − λ13)(λ31 − λ32) =
−(µ1 − λ11 + λ13)(λ31 − λ32)(µ3 − λ33 + λ31)(µ1 − λ11 + λ12)

µ1µ3 − µ3λ11 + µ3λ12 − µ1λ33 + λ11λ33 − λ12λ33 + µ1λ32 − λ11λ32 + λ12λ32 + λ12λ31

−λ12λ32 − λ13λ31 + λ13λ32 + µ1λ31 − µ1λ32 − λ11λ31 + λ11λ32 + λ13λ31 − λ13λ32

−µ1µ3 + λ11µ3 − µ3λ12 + µ1λ33 − λ11λ33 + λ12λ33 − µ1λ31 + λ11λ31 − λ12λ31 = 0. X

(5.10) reduces to the simpler:

ε+ δ + γ = 0,

which is true if and only if all the three parameters ε, δ, γ are equal to 0. The equivalences
in (5.6) are met only when the new parameters are null at the same time. This means
that the transitivity property applies.

5.2.4 Scheduling algorithm

We want to give an example of how the whole scheduling procedure works, the system
is characterized by a single flexible server and four different job classes. For sake of
completeness we compute all the (4.4) pairwise comparisons (even if it is not needed).

Λ =


λ11 λ12 λ13 λ14
λ21 λ22 λ23 λ24
λ31 λ32 λ33 λ34
λ41 λ42 λ43 λ44

 =


10 6 5 7
7 8 6 7
4 5 6 5
7 8 6 9



µ =


µ1
µ2
µ3
µ4

 =


41
44
25
30

 c =


c1
c2
c3
c4

 =


1.1
1

1.3
1.4
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• Step 1:
[µ1 − (λ11 − λ12)]c1 − λ31C3 − λ41c4 = [µ2 − (λ22 − λ21)]c2 − λ32C3 − λ42c4

[µ1 − (λ11 − λ13)]c1 − λ21C2 − λ41c4 = [µ3 − (λ33 − λ31)]c3 − λ23C2 − λ43c4

[µ1 − (λ11 − λ14)]c1 − λ21C2 − λ31c3 = [µ4 − (λ44 − λ41)]c4 − λ24C2 − λ34c3

[µ2 − (λ22 − λ23)]c2 − λ12C1 − λ42c4 = [µ3 − (λ33 − λ32)]c3 − λ13C1 − λ43c4

[µ2 − (λ22 − λ24)]c2 − λ12C1 − λ32c3 = [µ4 − (λ44 − λ42)]c4 − λ14C1 − λ34c3

[µ3 − (λ33 − λ34)]c3 − λ13C1 − λ23c2 = [µ4 − (λ44 − λ43)]c4 − λ14C1 − λ24c2.

(5.11)

(5.11) represents the set of all the possible combinations with four classes. Now we
replace the values inside the relationships and we rank the classes accordingly.

25.7 > 25.3 1 > 2
22.8 > 15.5 1 > 3
29.6 > 25.7 1 > 4
24.2 > 17.3 2 > 3
29.9 > 26.4 2 > 4
19.7 < 23.1 3 < 4

The resulting order is 1 > 2 > 4 > 3 (to be noticed: it is not the final order), class
1 is then chosen to be served as first.

• Step 2: Class 1 has been selected, so it is discharged from the set of available classes
and (5.11) are then updated:

[µ2 − (λ22 − λ23)]c2 − λ42c4 = [µ3 − (λ33 − λ32)]c3 − λ43c4

[µ2 − (λ22 − λ24)]c2 − λ32c3 = [µ4 − (λ44 − λ42)]c4 − λ34c3

[µ3 − (λ33 − λ34)]c3 − λ23c2 = [µ4 − (λ44 − λ43)]c4 − λ24c2.

(5.12)

We substitute the values of the parameters inside (5.12) and we create a new ranking.

30.8 > 22.8 2 > 3
36.5 > 34.1 2 > 4
25.2 < 30.8 3 < 4

The resulting order is 2 > 4 > 3 and class 2 is then chosen to be served as second.
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• Step 3: Class 2 has been selected, so it is discharged from the set of available classes
and (5.12) are then updated:

[µ3 − (λ33 − λ34)]c3 = [µ4 − (λ44 − λ43)]c4. (5.13)

We substitute the values of the parameters inside (5.13) and we create a new ranking.

31.2 < 37.8 3 < 4
The resulting order is 4 > 3 and class 4 is then chosen to be served as third and
class 3 as fourth.

The fluid model shows the same results in Figure 5.5. It is a general procedure suitable
for all the values assumed by n. As n increases also the number of steps increases.
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Figure 5.5: Fluid model results of the scheduling example, the parameters used are given at
the beginning of the section.

5.3 Numerical Markov decision process
While in the two-class model section the numerical Markov decision process was a useful

tool to check the results of the fluid model, here in this section we neglect it because we
know that the fluid model gives us reliable results. We decided then to address directly
the analytical proof following the steps of the simpler system.

5.4 Analytical Markov decision process
We want to prove once again analytically the results given by the fluid model. One

major challenge is to account for different relationships at the same time. We saw in the
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fluid model section that when the classes are more than two it is not possible to sort them
in an absolute ranking but it is necessary to perform several pairwise comparisons.

5.4.1 Mapping

The problem setup is identical to the two classes model, we derive the discrete Markov
decision process and then we uniformize the transition rates. The mapping H is expanded
to account for the new class and its parameters (Sisbot and Hasenbein [10]):

Hδf(i, j, k, u) = δmin


λ11f(i+ 1, j, k, u1) + (λmax − λ11)f(i, j, k, u1)
λ11f(i+ 1, j, k, u2) + (λmax − λ11)f(i, j, k, u1)
λ11f(i+ 1, j, k, u3) + (λmax − λ11)f(i, j, k, u1)

+ δmin


λ21f(i, j + 1, k, u1) + (λmax − λ21)f(i, j, k, u1)
λ21f(i, j + 1, k, u2) + (λmax − λ21)f(i, j, k, u1)
λ21f(i, j + 1, k, u3) + (λmax − λ21)f(i, j, k, u1)

+ δmin


λ31f(i, j, k + 1, u1) + (λmax − λ31)f(i, j, k, u1)
λ31f(i, j, k + 1, u2) + (λmax − λ31)f(i, j, k, u1)
λ31f(i, j, k + 1, u3) + (λmax − λ31)f(i, j, k, u1)

+ δmin


µ1f(i− 1, j, k, u1) + (µmax − µ1)f(i, j, k, u1)
µ1f(i− 1, j, k, u2) + (µmax − µ1)f(i, j, k, u1)
µ1f(i− 1, j, k, u3) + (µmax − µ1)f(i, j, k, u1) if u = u1

(5.14)

72



Hδf(i, j, k, u) = δmin


λ22f(i, j + 1, k, u1) + (λmax − λ22)f(i, j, k, u2)
λ22f(i, j + 1, k, u2) + (λmax − λ22)f(i, j, k, u2)
λ22f(i, j + 1, k, u3) + (λmax − λ22)f(i, j, k, u2)

+ δmin


λ12f(i+ 1, j, k, u1) + (λmax − λ12)f(i, j, k, u2)
λ12f(i+ 1, j, k, u2) + (λmax − λ12)f(i, j, k, u2)
λ12f(i+ 1, j, k, u3) + (λmax − λ12)f(i, j, k, u2)

+ δmin


λ32f(i, j, k + 1, u1) + (λmax − λ32)f(i, j, k, u2)
λ32f(i, j, k + 1, u2) + (λmax − λ32)f(i, j, k, u2)
λ32f(i, j, k + 1, u3) + (λmax − λ32)f(i, j, k, u2)

+ δmin


µ2f(i, j − 1, k, u1) + (µmax − µ2)f(i, j, k, u2)
µ2f(i, j − 1, k, u2) + (µmax − µ2)f(i, j, k, u2)
µ2f(i, j − 1, k, u3) + (µmax − µ2)f(i, j, k, u2) if u = u2

Hδf(i, j, k, u) = δmin


λ33f(i, j, k + 1, u1) + (λmax − λ33)f(i, j, k, u3)
λ33f(i, j, k + 1, u2) + (λmax − λ33)f(i, j, k, u3)
λ33f(i, j, k + 1, u3) + (λmax − λ33)f(i, j, k, u3)

+ δmin


λ13f(i+ 1, j, k, u1) + (λmax − λ13)f(i, j, k, u3)
λ13f(i+ 1, j, k, u2) + (λmax − λ13)f(i, j, k, u3)
λ13f(i+ 1, j, k, u3) + (λmax − λ13)f(i, j, k, u3)

+ δmin


λ23f(i, j + 1, k, u1) + (λmax − λ23)f(i, j, k, u3)
λ23f(i, j + 1, k, u2) + (λmax − λ23)f(i, j, k, u3)
λ23f(i, j + 1, k, u3) + (λmax − λ23)f(i, j, k, u3)

+ δmin


µ3f(i, j, k − 1, u1) + (µmax − µ3)f(i, j, k, u3)
µ3f(i, j, k − 1, u2) + (µmax − µ3)f(i, j, k, u3)
µ3f(i, j, k − 1, u3) + (µmax − µ3)f(i, j, k, u3) if u = u3.

5.4.2 Results

The results are for the discounted cost finite horizon problem. It is then possible
to generalize the proof for the infinite horizon average cost case. (5.15) is the optimal
scheduling policy, so if both the conditions are met it is always optimal to serve class 1
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rather than class 2 and 3 (if class 1 queue is not empty):

[µ1 − (λ11 − λ12)]c1 − λ31c3 ≥ [µ2 − (λ22 − λ21)]c2 − λ32c3

[µ1 − (λ11 − λ13)]c1 − λ21c2 ≥ [µ3 − (λ33 − λ23)]c3 − λ23c2.

(5.15)

Similarly to (4.20) the discounted cost finite horizon problem is formulated as follows:

fn+1
δ (i, j, k, u) = c1i+ c2j + c3k +Hδf

n
δ (i, j, k, u). (5.16)

Once again the proof is carried out by induction, since we want to prove class 1 is
optimal we assume:

fnδ (i, j, k, u1) ≤ fnδ (i, j, k, u2)

fnδ (i, j, k, u1) ≤ fnδ (i, j, k, u3).
(5.17)

Lemma 5.4.1. fnδ (i+ 1, j, k, u1)− fnδ (i, j, k, u1) ≥ 0 for each fixed j, k (the same applies
for j and k respectively), ∀i ≥ 1,∀j ≥ 1,∀k ≥ 1.

Proof : The proof is carried out by following the same exact procedure as in Lemma
4.4.1. More terms are present but eventually the results are the same.

Lemma 5.4.2. fnδ (i + 1, j, k, u1) − fnδ (i, j, k, u1) = fnδ (i, j, k, u1) − fnδ (i − 1, j, k, u1) for
each fixed j, k (the same applies for j and k respectively), ∀i ≥ 1,∀j ≥ 1,∀k ≥ 1.

Proof : The proof is carried out by following the same exact procedure as in Lemma
4.4.2. More terms are present but eventually the results are the same.

Lemma 5.4.3. fnδ (i + 1, j + 1, k + 1, u1) − fnδ (i, j + 1, k + 1, u1) = fnδ (i + 1, j, k, u1) −
fnδ (i, j, k, u1) for each fixed difference in i and for each fixed j, k in the same side of the
equivalence (the same applies for j and k respectively), ∀i ≥ 1,∀j ≥ 1,∀k ≥ 1.

Proof : The proof is carried out by following the same exact procedure as in Lemma
4.4.3. More terms are present but eventually the results are the same.

So far Lemma 5.4.1 to Lemma 5.4.3 slightly change from the two classes model by adding
just the parameter k to account for the third class. Lemma 5.4.4 instead presents major
modifications with respect to the one shown for the two classes model.

Lemma 5.4.4.

fnδ (i, j + 1, k, u1)− fnδ (i, j, k, u1)
fnδ (i+ 1, j, k, u1)− fnδ (i, j, k, u1) = c2

c1

fnδ (i, j, k + 1, u1)− fnδ (i, j, k, u1)
fnδ (i+ 1, j, k, u1)− fnδ (i, j, k, u1) = c3

c1
∀i ≥ 1,∀j ≥ 1,∀k ≥ 1.
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Proof : The proof is carried out by following the same exact procedure as in Lemma
4.4.4, however it is necessary to prove all the relationships in parallel, the steps are
the same while the indexes change.

Theorem 5.4.1. If (5.15) holds true then fnδ (i, j, k, u1) ≤ fnδ (i, j, k, u2) and fnδ (i, j, k, u1) ≤
fnδ (i, j, k, u3), ∀i ≥ 1,∀j ≥ 1,∀k ≥ 1.

Proof : The proof for both the inequalities evolves in parallel following the same
steps. For the sake of compactness we only show one of them.

• n = 0:
c1i+ c2j + c3k ≤ c1i+ c2j + c3k. X

• n+ 1: According to (5.16) and (5.14) we expand the terms, using (5.17) we simplify
the minima, then we drop the δ terms:

λ11f
n
δ (i+ 1, j, k, u1) + (λmax − λ11)fnδ (i, j, k, u1) + λ21f

n
δ (i, j + 1, k, u1)

+(λmax − λ21)fnδ (i, j, k, u1) + λ31f(i, j, k + 1, u1) + (λmax − λ31)f(i, j, k, u1)

+µ1f
n
δ (i− 1, j, k, u1) + (µmax − µ1)fnδ (i, j, k, u1) + c1i+ c2j + c3k ≤

λ22f
n
δ (i, j + 1, k, u1) + (λmax − λ22)fnδ (i, j, k, u2) + λ12f

n
δ (i+ 1, j, k, u1)

+(λmax − λ12)fnδ (i, j, k, u2) + λ32f(i, j, k + 1, u1) + (λmax − λ32)f(i, j, k, u2)

+µ2f
n
δ (i, j − 1, k, u1) + (µmax − µ2)fnδ (i, j, k, u2) + c1i+ c2j + c3k.

Simplifying and collecting the same terms we obtain:

(λ11 − λ12)fnδ (i+ 1, j, k, u1) + (λmax − λ11 + λmax − λ21 + λmax − λ31)fnδ (i, j, k, u1)

+λ31f(i, j, k + 1, u1) + µ1f
n
δ (i− 1, j, k, u1) + (µmax − µ1)fnδ (i, j, k, u1) ≤

(λ22 − λ21)fnδ (i, j + 1, k, u1) + (λmax − λ22 + λmax − λ12 + λmax − λ32)fnδ (i, j, k, u2)

+λ32f(i, j, k + 1, u1) + µ2f
n
δ (i, j − 1, k, u1) + (µmax − µ2)fnδ (i, j, k, u2).

We now replace fnδ (i, j, k, u2) with fnδ (i, j, k, u1) using (5.17). For assumption it is
a smaller quantity so if we prove the inequality after the replacement it is then also
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proven the former inequality. After substitution we can further collect:

(λ11 − λ12)fnδ (i+ 1, j, k, u1)− (λ11 − λ12)fnδ (i, j, k, u1)

+λ31[fnδ (i, j, k + 1, u1)− fnδ (i, j, k, u1)]− µ1[fnδ (i, j, k, u1)− fnδ (i− 1, j, k, u1)] ≤

(λ22 − λ21)fnδ (i, j + 1, k, u1)− (λ22 − λ21)fnδ (i, j, k, u1)

+λ32[fnδ (i, j, k + 1, u1)− fnδ (i, j, k, u1)]− µ2[fnδ (i, j, k, u1)− fnδ (i, j − 1, k, u1)].

We collect then the λ terms inside the brackets:

(λ11 − λ12) [fnδ (i+ 1, j, k, u1)− fnδ (i, j, k, u1)]︸ ︷︷ ︸
(5)

−µ1 [fnδ (i, j, k, u1)− fnδ (i− 1, j, k, u1)]︸ ︷︷ ︸
(6)

+λ31[fnδ (i, j, k + 1, u1)− fnδ (i, j, k, u1)] ≤

(λ22 − λ21) [fnδ (i, j + 1, k, u1)− fnδ (i, j, k, u1)]︸ ︷︷ ︸
(7)

−µ2 [fnδ (i, j, k, u1)− fnδ (i, j − 1, k, u1)]︸ ︷︷ ︸
(8)

+λ32[fnδ (i, j, k + 1, u1)− fnδ (i, j, k, u1)].

Terms (5) and (6) are equal thanks to Lemma 5.4.2. The same applies for terms (7)
and (8):

[µ1 − (λ11 − λ12)][fnδ (i+ 1, j, k, u1)− fnδ (i, j, k, u1)]

−λ31[fnδ (i, j, k + 1, u1)− fnδ (i, j, k, u1)] ≥

[µ2 − (λ22 − λ21)][fnδ (i, j + 1, k, u1)− fnδ (i, j, k, u1)]

−λ32[fnδ (i, j, k + 1, u1)− fnδ (i, j, k, u1)].

Now using Lemma 5.4.4 we can write:

[µ1 − (λ11 − λ12)]c1 − λ31c3 ≥ [µ2 − (λ22 − λ21)]c2 − λ32c3. X

As already said the proof for fnδ (i, j, k, u1) < fnδ (i, j, k, u3) follows the same steps,
eventually the last step will show the second inequality of (5.17) instead of the first
one.

We have proven that (5.15) represents the optimal scheduling policy when the arrival rates
λs depend on the class under process.
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5.4.3 Generalization to n-class system

Once proven the optimality for a three-class system it is easy to extend the results to
a general n-class system. The general mapping H is defined in a compact way as follows:

Hδf(i, j, . . . , n, u) = δmin


λiif(i+ 1, j, . . . , n, ui) + (λmax − λii)f(i, j, . . . , n, ui)

...
λiif(i+ 1, j, . . . , n, un) + (λmax − λii)f(i, j, . . . , n, ui)

...

+ δmin


λnif(i, j, . . . , n+ 1, ui) + (λmax − λni)f(i, j, . . . , n, ui)

...
λnif(i, j, . . . , n+ 1, un) + (λmax − λni)f(i, j, . . . , n, ui)

+ δmin


µif(i− 1, j, . . . , n, ui) + (µmax − µi)f(i, j, . . . , n, ui)

...
µif(i− 1, j, . . . , n, un) + (µmax − µi)f(i, j, . . . , n, ui) if u = ui.

The relationships representing in a compact way the optimal scheduling are:

[µi − (λii − λij)]ci −
n∑
k=1
k 6=i,j

λkick ≥ [µj − (λjj − λji)]cj −
n∑
k=1
k 6=i,j

λkjck. (5.18)

To prove class 1 is optimal we assume as usual:

fnδ (i, j, . . . , n, u1) ≤ fnδ (i, j, . . . , n, u2)
...

fnδ (i, j, . . . , n, u1) ≤ fnδ (i, j, . . . , n, un).
(5.19)

Also the Lemmas and the Theorem can be rewritten in a more compact way to describe
the general case with n job classes.

Lemma 5.4.5. fnδ (i+ 1, j, . . . , n, u1)−fnδ (i, j, . . . , n, u1) ≥ 0 for each fixed j, k, . . . , n (the
same applies for j, . . . , n respectively); ∀i ≥ 1, ∀j ≥ 1, . . . ,∀n ≥ 1.

Lemma 5.4.6. fnδ (i + 1, j, . . . , n, u1) − fnδ (i, j, . . . , n, u1) = fnδ (i, j, . . . , n, u1) − fnδ (i −
1, j, . . . , n, u1) for each fixed j, . . . , n (the same applies for j, . . . , n respectively); ∀i ≥
1,∀j ≥ 1, . . . ,∀n ≥ 1.

Lemma 5.4.7. fnδ (i + 1, j + 1, . . . , n + 1, u1) − fnδ (i, j + 1, . . . , n + 1, u1) = fnδ (i +
1, j, . . . , n, u1)− fnδ (i, j, . . . , n, u1) for each fixed difference in i and for each fixed j, . . . , n
in the same side of the equivalence (the same applies for j, . . . , n respectively), ∀i ≥ 1,∀j ≥
1, . . . ,∀n ≥ 1.
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Lemma 5.4.8.

fnδ (i, j + 1, . . . , n, u1)− fnδ (i, j, . . . , n, u1)
fnδ (i+ 1, j, . . . , n, u1)− fnδ (i, j, . . . , n, u1) = cj

ci
...

fnδ (i, j, . . . , n+ 1, u1)− fnδ (i, j, . . . , n, u1)
fnδ (i+ 1, j, . . . , n, u1)− fnδ (i, j, . . . , n, u1) = cn

ci
∀i ≥ 1, ∀j ≥ 1, . . . ,∀n ≥ 1.

Theorem 5.4.2. If (5.18) holds true then (5.19) is also true, ∀i ≥ 1,∀j ≥ 1, · · · ,∀n ≥ 1.

Proof : The proof for evolves in parallel following the same steps for each relationship
in (5.18), eventually the last step of the proof will show each one of the (5.17) used.
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Chapter 6

Practical case

We analyzed the emergency room scheduling process, in particular we considered a
medium size emergency room in Lombardy, Italy. The patients in an emergency room are
grouped into different classes depending on the severity of their conditions. The severity
class is assessed upon arrival. The class is characterized by a color. There are four different
colors (see Figure 6.1):

• Red: the patient is in critical conditions and needs to be treated immediately,

• Y ellow: the patient is in potential critical conditions and it needs to be visited
within 15 minutes after its arrival,

• Green: the patient is not in critical condition, it is visited when is possible,

• White: the patient is in normal-life conditions, it is the lowest priority code and it
is served only after the other codes.

Figure 6.1: Severity codes description.

The severity code can change during all the process, after a careful examination the
patient life conditions can be judged equal/better/worse than the initial ones. For the sake
of simplicity we considered the codes as static, i.e., they are defined once and for all upon
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patient arrival. As a matter of fact expert data analysts considered this possibility small
enough to be neglected. We didn’t consider the white code and we included it in the green
code class. For a medium size emergency room the percentage of white code arrivals is
considered to be 2− 3% and thus negligible. The arrivals are assumed to follow a Poisson
distribution with rate λ. For a medium size emergency room is generally impossible to
have only one patient "in service" at a time. For this reason it is very hard to determine
accurately dependent arrival rates for each code. To handle this problem we analyzed the
order of the arrivals looking at the entry time-exit time of each patient.For example we saw
that it is unlikely to have two or more red codes in a row; this means that when a red code
is "in service" its arrival is lower with respect to the case when other codes are "in service".
The service times are exponentially distributed with rate µ. We determined reasonable
rates using the data coming from the data analysts and general rules of practice. Generally
an emergency room is considered to be in critical conditions when the number of patients
is equal to the 91% of the historical data for the same period. Even when an emergency
room is saturated the red codes must always be treated immediately. The holding costs
cs represent the cost of non treating the patient in terms of human life. Going from green
code to red code the cost increases because the severity increases too. The values given
to the holding costs are:

c =

 1
50

1000

 .
The first row is referred to the arrival of a green code, the second row is a yellow

code arrival and the last one is the red code. The columns indicates what code is "in
service": the first column represents the green code "in service" and so on. The arrival
rates [patients/h] used are:

Λ =

3.454 2.01 0.269
1.715 1.65 0.065
0.11 0.08 0.033

 .
The service rate vector is:

µ =

7
5
2

 .
There are three severity codes and six possible policies depending on how the classes

are sorted:

• Policy 1: Red, Yellow, Green,

• Policy 2: Yellow, Red, Green,

• Policy 3: Green, Red, Yellow,

• Policy 4: Green, Yellow, Red,

• Policy 5: Yellow, Green, Red,

• Policy 6: Red, Green, Yellow.
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We simulated the behavior of the emergency room system using a fixed time increment
simulation. The state of the system is described at each time increment. The simulation
length is 1000 hours and it is repeated ten times in order to derive meaningful statistical
parameters and to account for randomness. The simulations use random seeds and are
therefore completely independent of each other. The results are shown in Table 6.1.

Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 Policy 6
35.763 44.095 241.957 253.334 305.812 83.94
31.948 41.216 246.138 256.119 309.815 75.761
30.981 45.387 235.289 260.731 311.764 85.895
29.995 48.753 240.783 267.543 299.918 88.771
33.356 42.561 238.613 268.154 310.958 81.454
38.786 48.564 239.78 255.517 308.756 84.018
32.781 50.811 240.118 256.366 305.801 89.598
33.654 51.756 245.761 250.134 303.774 78.854
37.128 48.431 239.118 257.654 301.781 82.123
35.342 45.442 236.541 261.352 303.718 81.915

Mean Mean Mean Mean Mean Mean
33.973 46.702 240.41 258.69 306.21 83.233

Table 6.1: Simulation results for the different policies.

Policy 1 seems to be the best policy available. However before drawing conclusions,
to make sure that the simulation results are statistically significant a hypothesis test was
carried out. We used the Tukey’s test for means multiple comparisons. The hypothesis is
defined as follows:

H0 : All the policies are equally convenient.
H1 : All the policies are not equally convenient.

The null hypothesis was rejected confirming what we assumed at the beginning. Policy
1 is the optimal policy that minimizes the total holding cost (see Figure 6.2 and Figure
6.3).
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Figure 6.2: Tukey’s test for means multiple comparisons.

Figure 6.3: Tukey’s test for means multiple comparisons.
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Chapter 7

Conclusions

We now summarize the major contributions obtained for theory and practice, also we
mention the possible future developments starting from the results we achieved.

7.1 Contributions to theory
We obtained very important results for the advancement of queuing theory. In fact we

formulated a generalized cµ rule able to predict the optimal scheduling policy when all
the assumptions and requirements are met. We obtained results for a two-class products/-
clients problem, then moving from the this simpler case we extended the validity to a more
general case with n-class. The results are obtained via cost minimization using different
methods (such as fluid model and modified policy iteration). They were then analytically
proven by formulating the Markov decision process of the problem. We discovered that
the previous rule was not enough accurate when the arrival rates are dependent on the job
in service because it did not account for their effects. Moreover we defined the stability
region and how the optimality regions evolves with different parameters. All of these as-
pects bring in a big step forward for the knowledge of the cµ since disclose the root causes
of the limitations suffered by the cµ rule as the optimal scheduling policy, as well as none
proposed a better alternative policy.

7.2 Contributions to practice
The general rule we formulated could represent an important scheduling policy in

the emergency room process. The results obtained so far are quite interesting. This
thesis could be a starting point towards more accurate studies regarding the scheduling
optimization in this field.

7.3 Further developments
Given the novelty of the topic studied there are several directions in which it is possible

to direct future research. Arrival rates effects were not accounted before, it is then possible
to extend the results obtained to more general cases with the inclusion of other parameters.
One direction is to consider the abandonment rate of the jobs once they are waiting in the
queue, it is a reasonable assumption when considering a post office or a general service
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where the abandonment of the clients is a plausible option. Another possibility is to
consider more servers and add different kind of costs such as setup costs and delays costs
in order to better approximate a real manufacturing system. The data analysts that
provided us with the data showed some interest regarding the application of the rule
on other aspects of the complex emergency room process. One possible direction is the
optimization of the decision whether to transfer the patient to another hospital or to
move it to another department. In the last years in the hospital emergency rooms rose
the necessity to divide the patients belonging to the same color code in different sub-
groups characterized by similar health conditions. For example if two yellow codes are
waiting in the queue how can we decide which one should be treated first? To do so it
is required a precise medical assessment on the severity and a general awareness about
the time required to process the patient. With the general rule we formulated it could be
possible to go beyond the simple code classification treating each injury as a standalone
class. In this way we could even further optimize the whole process in order to achieve
better performances.
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Appendix

Two-class system fluid model

%% TWO -CLASS SYSTEM , FLUID MODEL LINEAR PROGRAMMING %%

close all
clear
clc

%% DATA DECLARATION %%

T=10;N =1500; dt=T/N;
c1 =1; c2 =1; C=[c1;c2]; %cost array

lam11 =10; lam12 =8; lam21 =6; lam22 =8;
LAM =[ lam11 ,lam12;lam21 ,lam22 ]; % arrival rates

mu1 =24; mu2 =25; MU=[ mu1;mu2 ]; % service rates

Qin1 =15; Qin2 =15; Qfin1 =0; Qfin2 =0; % Queues length

CMU =[c1*mu1;c2*mu2 ];

%% STABILITY %%

M=LAM /( diag(MU));
EIG=abs(eig(M)); % matrix eigenvalues
L=max(EIG) % maximum eigenvalue
if max(EIG) >=1

msg='The set of parameters is not stable ';
error(msg)

end

%% Aeq & beq %%

Aeq=zeros (2*N ,2*(2*N -1));
beq=zeros (2*N ,1);

86



%n=0:
Aeq (1 ,1)=-(lam11 -mu1)*dt;
Aeq (1,N+1)=-lam12*dt;
Aeq (1 ,2*N+1) =1;

Aeq(N+1 ,1)=-lam21*dt;
Aeq(N+1,N+1) =-(lam22 -mu2)*dt;
Aeq(N+1 ,3*N)=1;

beq (1)=Qin1;
beq(N+1)=Qin2;

%n=N;
Aeq(N,N)=( lam11 -mu1)*dt;
Aeq(N ,2*N)=lam12*dt;
Aeq(N ,3*N -1) =1;

Aeq (2*N,N)=lam21*dt;
Aeq (2*N ,2*N)=( lam22 -mu2)*dt;
Aeq (2*N ,2*(2*N -1))=1;

%n=1:N-1
for i=2:(N -1)

Aeq(i,i)=-(lam11 -mu1)*dt;
Aeq(i,N+i)=-lam12*dt;
Aeq(i ,2*N+i)=1;
Aeq(i ,2*N+i -1) =-1;

end
for k=2:(N -1)

Aeq(N+k,k)=-lam21*dt;
Aeq(N+k,N+k)=-(lam22 -mu2)*dt;
Aeq(N+k ,3*N -1+k)=1;
Aeq(N+k ,3*N -2+k)=-1;

end

%% A & b %%

A=zeros(N ,2*(2*N -1));
b=ones(N ,1);

for j=1:N
A(j,j)=1;
A(j,N+j)=1;

end

%% UPPER AND LOWER BOUNDS %%
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ub =[];
lb=zeros (2*(2*N -1) ,1);

%% OBJECTIVE FUNCTION %%

f=zeros (2*(2*N -1) ,1);
f((2*N+1) :(3*N -1))=C(1)*dt;
f(3*N:end)=C(2)*dt;

%% SOLUTION %%

[x,fval ]= linprog (f,A,b,Aeq ,beq ,lb ,ub);

%% PLOT RESULTS %%

TimeQ =0: dt:T; %time discretization for Q
TimeU =0: dt:T-dt; %time discretization for u

figure ()
subplot (2 ,1 ,1) %queue Q evolution
plot(TimeQ ,[ Qin1;x(2*N+1:3*N -1);Qfin1],'b',...

TimeQ ,[ Qin2;x(3*N:end);Qfin2],'r','linewidth ' ,1);
legend ('Q_1 ','Q_2 ');
title('Draining evolution ');
xlabel ('Time [h]','fontweight ','bold ');
ylabel ('Q(t)','fontweight ','bold ');
grid on

subplot (2 ,1 ,2) % control u evolution
plot(TimeU ,x(1:N),'b',TimeU ,x(N+1:2*N),'r','linewidth ' ,1);
legend ('u_1 ','u_2 ');
title('Policy evolution ')
xlabel ('Time [h]','fontweight ','bold ');
ylabel ('u(t)','fontweight ','bold ');
ylim ([0 ,1.1]);
grid on

%% EQUAL COSTS PLOT %%

MU1=lam11+lam21; MU2=lam12+lam22;
N1 =2000;
lim =2* max(mu1 ,mu2);
x= linspace (lam11 ,lim ,N1);

Bis =@(x) x;
a=lam22;
c=1;
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d=-lam11;
b=MU2 *(c*MU1+d)-a*MU1;
Par =@(x) (a.*x+b)./(c.*x+d); % stability hyperbola equation
Nbis =@(x) x-(MU1 -MU2);
Pfitt =(b-d*lim)/(lim -a); % fictitious point for the plot

xPar= linspace (Pfitt ,lim ,N1);
x1= linspace (MU1 ,lim ,N1);
x2= linspace (Pfitt ,MU1 ,N1);

figure (2)
plot(x,Bis(x),'k--');
hold on;
xlabel ('\mu_1 ','fontweight ','bold ');
ylabel ('\mu_2 ','fontweight ','bold ');
title('Equal Costs ');
xlim ([ lam11 lim ]);
ylim ([ lam22 lim ]);
patch ([ lam11 ,lam11 ,xPar ,lim ],[lam22 ,lim ,Par(xPar),lam22],...

[0,0, zeros (1, length (xPar)) ,0],'facecolor ','k','
FaceAlpha ' ,.4); % unstable zone

patch ([x1 ,x1(end : -1:1) ],[ Nbis(x1),Par(x1(end : -1:1))],...
[zeros (1, length (x1)),zeros (1, length (x1))],'facecolor ','

b','FaceAlpha ' ,.4); %class 1 zone
patch ([x1 ,lim ,x2],[ Nbis(x1),lim ,Par(x2)],[ zeros (1, length (x1))

,0,zeros (1, length (x2))],...
'facecolor ','r','FaceAlpha ' ,.4); % class 2 zone

grid on
text(lim -15,lim -25, 'Class 1','Color ','b','Fontsize ' ,18,'

FontAngle ','italic ');
text(lim -25,lim -10, 'Class 2','Color ','r','Fontsize ' ,18,'

FontAngle ','italic ');

%% COST EFFECT PLOT %%

N2 =1000;
lim2=mu2/mu1 *5;
rapp= linspace (0,7, lim);
MU11=lam11 -lam12; MU22=lam22 -lam21;
rappc=MU22/MU11;
P2=(mu1 -(MU1 -MU2))/mu1;

m=(1 - rappc)/(P2 -rappc);
q=1-m*P2;
Rev =@(x) m.*x+q;

stab=Par(mu1)/mu1;
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Pfitt2 =(lim2 -q)/m;

figure (3)
plot(rapp ,Bis(rapp),'k--');
hold on;
xlabel ('\mu_2 /\ mu_1 ','fontweight ','bold ');
ylabel ('c_1/c_2 ','fontweight ','bold ');
title('Costs Effect ');
xlim ([0 3.25]) ;
ylim ([0 3.25]) ;
grid on;
plot(rapp ,Rev(rapp),'k-')

patch ([0,stab ,stab ,0] ,[0 ,0 , lim2 ,lim2 ],[0,0,0,0],...
'facecolor ','k','FaceAlpha ' ,.4); % unstable region

if isnan(rappc)&& isnan(m) % lambda21 = lambda22 case
patch ([stab ,lim2 ,lim2 ,stab ],[stab ,lim2 ,0 ,0] ,[0 ,0 ,0 ,0] ,...

'facecolor ','r','FaceAlpha ' ,.4);
patch ([stab ,lim2 ,stab ],[stab ,lim2 ,lim2 ],[0,0,0],...

'facecolor ','b','FaceAlpha ' ,.4);
text(stab +1,lim2 -1.3 , 'Class 1','Color ','b','Fontsize ' ,18,'

FontAngle ','italic ');
text(lim2 -2 ,1.5 , 'Class 2','Color ','r','Fontsize ' ,18,'

FontAngle ','italic ');

elseif isnan(m) % dependent case and lambda11 = lambda12 case
m=1;
q=1-P2;
plot(rapp ,rapp+q,'k-');
patch ([stab ,lim2 ,lim2 ,stab ],[ stab+q,lim2+q

,0 ,0] ,[0 ,0 ,0 ,0] ,...
'facecolor ','r','FaceAlpha ' ,.4);

patch ([stab ,lim2 ,stab ],[ stab+q,lim2+q,lim2 ],[0,0,0],...
'facecolor ','b','FaceAlpha ' ,.4);

text (1 ,2.2 , 'Class 1','Color ','b','Fontsize ' ,18,'FontAngle
','italic ');

text (2.2 ,1 , 'Class 2','Color ','r','Fontsize ' ,18,'FontAngle
','italic ')

else % lambda11 \ neqlambda12 and lambda21 \ neqlambda22 case
patch ([stab ,Pfitt2 ,lim2 ,lim2 ,stab ],[ Rev(stab),lim2 ,lim2

,0 ,0] ,[0 ,0 ,0 ,0 ,0] ,...
'facecolor ','r','FaceAlpha ' ,.4);

patch ([stab ,Pfitt2 ,stab ],[ Rev(stab),lim2 ,lim2 ],[0,0,0],...
'facecolor ','b','FaceAlpha ' ,.4);

text (1 ,2.2 , 'Class 1','Color ','b','Fontsize ' ,18,'FontAngle ','
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italic ');
text (2.2 ,1 , 'Class 2','Color ','r','Fontsize ' ,18,'FontAngle ','

italic ');
end
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Three-class system fluid model

%% THREE -CLASS SYSTEM , FLUID MODEL LINEAR PROGRAMMING %%

close all
clear
clc

%% DATA DECLARATION %%

T=5;N =1000; dt=T/N;
c1 =1; c2 =1; c3 =1;C=[c1;c2;c3]; %cost array

lam11 =10; lam12 =6; lam13 =5; lam21 =4; lam22 =8; lam23 =6;
lam31 =4; lam32 =5; lam33 =6;
LAM =[ lam11 ,lam12 ,lam13;lam21 ,lam22 ,lam23;

lam31 ,lam32 ,lam33 ]; % arrival rates

mu1 =25; mu2 =26; mu3 =25; MU=[ mu1;mu2;mu3 ]; % service rates

Qin1 =10; Qin2 =10; Qin3 =10; Qfin1 =0; Qfin2 =0; Qfin3 =0; % Queues
length

CMU =[c1*mu1;c2*mu2;c3*mu3 ];

%% STABILITY %%

M=LAM /( diag(MU));
EIG=abs(eig(M)); % matrix eigenvalues
L=max(EIG) % maximum eigenvalue
if max(EIG) >=1

msg='The set of parameters is not stable ';
error(msg)

end

%% Aeq & beq %%

Aeq=zeros (3*N ,3*(2*N -1));
beq=zeros (3*N ,1);

%n=0:
Aeq (1 ,1)=-(lam11 -mu1)*dt;
Aeq (1,N+1)=-lam12*dt;
Aeq (1 ,2*N+1)=-lam13*dt;
Aeq (1 ,3*N+1) =1;

Aeq(N+1 ,1)=-lam21*dt;
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Aeq(N+1,N+1) =-(lam22 -mu2)*dt;
Aeq(N+1 ,2*N+1)=-lam23*dt;
Aeq(N+1 ,4*N)=1;

Aeq (2*N+1 ,1)=-lam31*dt;
Aeq (2*N+1,N+1)=-lam32*dt;
Aeq (2*N+1 ,2*N+1) =-(lam33 -mu3)*dt;
Aeq (2*N+1 ,5*N -1) =1;

beq (1)=Qin1;
beq(N+1)=Qin2;
beq (2*N+1)=Qin3;

%n=N;
Aeq(N,N)=( lam11 -mu1)*dt;
Aeq(N ,2*N)=lam12*dt;
Aeq(N ,3*N)=lam13*dt;
Aeq(N ,4*N -1) =1;

Aeq (2*N,N)=lam21*dt;
Aeq (2*N ,2*N)=( lam22 -mu2)*dt;
Aeq (2*N ,3*N)=lam23*dt;
Aeq (2*N ,5*N -2) =1;

Aeq (3*N,N)=lam31*dt;
Aeq (3*N ,2*N)=lam32*dt;
Aeq (3*N ,3*N)=( lam33 -mu3)*dt;
Aeq (3*N ,6*N -3) =1;

%n=1:N-1
for i=2:(N -1)

Aeq(i,i)=-(lam11 -mu1)*dt;
Aeq(i,N+i)=-lam12*dt;
Aeq(i ,2*N+i)=-lam13*dt;
Aeq(i ,3*N+i)=1;
Aeq(i ,3*N+i -1) =-1;

end
for k=2:(N -1)

Aeq(N+k,k)=-lam21*dt;
Aeq(N+k,N+k)=-(lam22 -mu2)*dt;
Aeq(N+k ,2*N+k)=-lam23*dt;
Aeq(N+k ,4*N -1+k)=1;
Aeq(N+k ,4*N -2+k)=-1;

end

for j=2:(N -1)
Aeq (2*N+j,j)=-lam31*dt;
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Aeq (2*N+j,N+j)=-lam32*dt;
Aeq (2*N+j ,2*N+j)=-(lam33 -mu3)*dt;
Aeq (2*N+j ,5*N -2+j)=1;
Aeq (2*N+j ,5*N -3+j)=-1;

end

%% A & b %%

A=zeros(N ,3*(2*N -1));
b=ones(N ,1);

for l=1:N
A(l,l)=1;
A(l,N+l)=1;
A(l ,2*N+l)=1;

end

%% UPPER AND LOWER BOUNDS %%

ub =[];
lb=zeros (3*(2*N -1) ,1);

%% OBJECTIVE FUNCTION %%

f=zeros (3*(2*N -1) ,1);
f((3*N+1) :(4*N -1))=C(1)*dt;
f((4*N):(5*N -2))=C(2)*dt;
f((5*N -1):end)=C(3)*dt;

%% SOLUTION %%

[x,fval ]= linprog (f,A,b,Aeq ,beq ,lb ,ub);

%% PLOT RESULTS %%

TimeQ =0: dt:T; %time discretization for Q
TimeU =0: dt:T-dt; %time discretization for u

figure ()
subplot (2 ,1 ,1) %queue Q evolution
plot(TimeQ ,[ Qin1;x(3*N+1:4*N -1);Qfin1],'b',TimeQ ,[ Qin2;x(4*N

:5*N -2);Qfin2],'r',...
TimeQ ,[ Qin3;x(5*N -1: end);Qfin3],'g','linewidth ' ,1);

legend ('Q_1 ','Q_2 ','Q_3 ');
title('Draining Evolution ');
xlabel ('Time [h]','fontweight ','bold ');
ylabel ('Q(t)','fontweight ','bold ');
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grid on

subplot (2 ,1 ,2) % control u evolution
plot(TimeU ,x(1:N),'b',TimeU ,x(N+1:2*N),'r',TimeU ,x(2*N+1:3*N)

,'g','linewidth ' ,1);
legend ('u_1 ','u_2 ','u_3 ');
title('Policy Evolution ')
xlabel ('Time [h]','fontweight ','bold ');
ylabel ('u(t)','fontweight ','bold ');
ylim ([0 ,1.1]);
grid on
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Linear programming Markov decision process

%% SETUP MARKOV DECISION PROBLEM %%

function [ prob_discr_u1 , prob_discr_u2 ,g_d ,g] =
MDP_problem_setup_SIMO (N, Lambda0 , Lambda ,Mu ,C)

N_states = (N +1) ^2; % Number of states of system
pos_a = (N +1)*N; % n.o. possible arrivals --------------forse

va +1

% DEFINE TRANSTION RATES

% Define ( continous ) transition times
v_u1 = zeros( N_states ,1) ; % Column to store transition

rates
v_u2 = zeros( N_states ,1) ; % Column to store transition

rates

% control : u = 1
v_u1 (: ,1) = Lambda (1 ,1)+ Lambda (2 ,1)+Mu (1) ; % state

matrix where the roows are Q2 and columns Q1
% starting from (0 ,0) in left part

for i = 1:N+1: N_states % positions 1 -6 -11 -16 (N=4)
v_u1(i ,1)= v_u1(i ,1) -Mu (1);

end
v_u1(N_states -N ,1)= v_u1(N_states -N ,1) -Lambda (2 ,1); %

position 21 (N=4)
for i = N+1:N+1: N_states

v_u1(i ,1)= v_u1(i ,1) -Lambda (1 ,1);% positions 5 -10 -15 -20 (
N=4)

end
v_u1(N_states ,1) = v_u1(N_states ,1) -Lambda (2 ,1);% position 25

(N=4)
for i = 1:N-1

v_u1(N_states -N+i ,1) = v_u1(N_states -N+i ,1) - Lambda (2 ,1);
% positions 22 -23 -24 (N=4)

end

% control : u = 2
v_u2 (: ,1) = Lambda (2 ,2)+ Lambda (1 ,2)+Mu (2) ;
for i = 1:N

v_u2(i ,1)= v_u2(i ,1) -Mu (2); % positions 1-2-3-4 (N=4)
end
v_u2(N+1 ,1) = v_u2(N+1 ,1) - Lambda (1 ,2) - Mu (2); % position 5

(N=4)
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passo = N+1;
for i = (N+1) *2: passo: N_states

v_u2(i ,1)= v_u2(i ,1) -Lambda (1 ,2);% positions 10 -15 -20 (N
=4)

end
v_u2( N_states ) = v_u2(N_states ,1) -Lambda (2 ,2);% position 25 (

N=4)
for i = 1:N

v_u2(N_states -N -1+i ,1) = v_u2(N_states -N+i ,1) - Lambda
(2 ,2); % positions 21 -22 -23 -24 (N=4)

end
v_u2(N_states -1) = v_u2(N_states -1)+ Lambda (2 ,2)+ Lambda (1 ,2);
% Correct for state (0 ,0)
v_u1 (1 ,1) = Lambda0 (1) + Lambda0 (2) ;
v_u2 (1 ,1) = Lambda0 (1) + Lambda0 (2) ;
% Define the largest possible transition time
v = max( max( v_u1 ),max( v_u2 ));

% DEFINE CTMDP PROBABILITIES
trans_u1 = zeros( N_states , N_states ); % Empty transition

matrix u1
trans_u2 = zeros( N_states , N_states ); % Empty transition

matrix u2
prob_u1 = zeros( N_states , N_states ); % Empty probability

matrix u1
prob_u2 = zeros( N_states , N_states ); % Empty probability

matrix u2

% TRANSITION MATRIX FOR U1
% Starting from (0 ,0)
trans_u1 (1 ,2) = Lambda0 (1);
trans_u1 (1,N+1+1) = Lambda0 (2);

%I put the values for Mu_1
for i = 1:N

trans_u1 (i+1,i) = Mu (1); % from 2,1 to
5,4 (N=4)

for j = 1:N
trans_u1 (j*(N+1)+i+1,j*(N+1)+i) = Mu (1); % from 7,6 to

10,9 from 12 ,11 to 15 ,14 from 17 ,16 to 20 ,19 (N=4)
end

end

% Values Lambda (1 ,1)
for i = 1:N-1

trans_u1 (i+1,i+2) = Lambda (1 ,1); % from 2,3 to 4,5 (N=4)
end
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for j = 1:N
for i = 1:N
trans_u1 (j*(N+1)+i,j*(N+1)+i+1) = Lambda (1 ,1); % from

6,7-9,10 11 ,12 -14 ,15 -16 ,17 -19 ,20 -21 ,22 -24 ,25
end

end

% Values Lambda (2 ,1)
trans_u1 (1,N+2) = Lambda0 (2);
for i = 2:(N+1)*N-1

trans_u1 (i,i+(N+1)) = Lambda (2 ,1);
end

% TRANSITION MATRIX FOR U2

% Values Lambda (1 ,2)
V_L_12 = Lambda (1 ,2)*ones(N_states -1 ,1);
for i = 1:N

V_L_12 (i*N+i) = 0;
end
trans_u2 = diag(V_L_12 ,1);

for i = 1:(N+1)*N
trans_u2 (N+1+i,i) = Mu (2); % Mu2

end
% Values Lambda (2 ,2)
V_L_22 = Lambda (2 ,2)*ones(N_states -N -1 ,1);
m22 = diag(V_L_22 ,N+1);
trans_u2 = trans_u2 + m22;

% values Lambda 0
trans_u2 (1 ,2) = Lambda0 (1);
trans_u2 (1,N+1+1) = Lambda0 (2);

% Convert arrival / competion matrices to probability
matrices .

for i = 1: N_states
prob_u1 (i ,:) = trans_u1 (i ,:) ./ v_u1(i);
prob_u2 (i ,:) = trans_u2 (i ,:) ./ v_u2(i);
end
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% CTDMP COST FUNCTION

g = zeros( N_states ,1) ; % Matrix to store costs
Q1 = zeros(N_states ,1);
Q2 = zeros(N_states ,1);
r = [];
for i = 0:N

r(i+1)= i;
end
ve = r ';
for j = 0:N

for i = 1:N+1
Q1(j*(N+1)+i) = ve(i);
end

end
for j = 0:N

for i = 1:N+1
Q2(j*(N+1)+i) = j;
end

end

g = [C(1)*Q1+C(2)*Q2 ,C(1)*Q1+C(2)*Q2];

% APPLY UNIFORIMZATION TO CREATE DTMDP

% Cost function
g_d = g./v;

% Transition probabilities
prob_discr_u1 = zeros(size( prob_u1 ));
prob_discr_u2 = zeros(size( prob_u2 ));
for i = 1: N_states
for j = 1: N_states
if i == j
prob_discr_u1 (i,j) = ( v_u1(i)./v) * prob_u1 (i,i) + 1 - (

v_u1(i)./v);
prob_discr_u2 (i,j) = ( v_u2(i)./v) * prob_u2 (i,i) + 1 - (

v_u2(i)./v);
else
prob_discr_u1 (i,j) = ( v_u1(i)./v) * prob_u1 (i,j);
prob_discr_u2 (i,j) = ( v_u2(i)./v) * prob_u2 (i,j);
end
end
end
end

% CHOOSE THE PARAMETERS
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% Maximal buffer size ( state space truncation )
N = 40;
% System parameters
% Dependent arrival rates [ lots / hour ]
Lambda = [23 12;
6 13];

% Arrival rates when server is off
Lambda0 (1) = max( Lambda (1 ,1) ,Lambda (1 ,2));
Lambda0 (2) = max( Lambda (2 ,1) ,Lambda (2 ,2));

% Processing rates [ lots / hour ]
Mu (1) = 100;
Mu (2) = 147;

% Holding costs [ dollars / lot / hour ]
C(1) = 1.6;
C(2) = 1;

% CHECK THE STABILITY OF SYSTEM (abs( Lambda /Mu) < 1)
rho = Lambda * inv(diag(Mu));
EIG = abs(eig(rho));
if max(EIG) < 1

disp('the system is stable ')
else

disp('the system is unstable please change parameters ')
end

% Print theoretical results
max_EIG = max(EIG );
disp ([ 'The traffic intensity , or spectral density of the

system is: ' ...
num2str ( max_EIG )])
fprintf ('\n')

% CHECK THE CU RULE SUGGESTION
CU =[C(1)*Mu (1) C(2)*Mu (2)] ;
a = max(CU);
dim = size(CU);
n = 0;
for i= 1: dim (2)

n= n+1;
if CU(i) == a

break
end

end

100



disp ([ 'the product that must be served for first in according
to CU rule would be ',num2str (n)])

%% CREATE MODEL STRUCTURE

N_states = (N +1) ^2; % Number of states ( queue length
combinations )

pos_a = (N +1) *N; % n.o. possible arrivals

% Call to problem setup function
[ prob_discr_u1 , prob_discr_u2 ,g_d ,g] =

MDP_problem_setup_SIMO (N, Lambda0 , Lambda ,Mu ,C);

%% FORMULATE LINEAR PROGRAM

% Parameters
% g_d = discrete time cost function
% prob_discr_u1 = discrete time probability matrix u1
% prob_discr_u2 = discrete time probability matrix u2

% OBJECTIVE FUNCTION

OB = [ g_d (: ,1)' g_d (: ,2) '];

% EQUALITY CONSTRAINTS
Aeq = zeros ( N_states -1 ,2* N_states ); % Empty matrix ,

except for last constraint
% Everything on the right of equals sign ( probabilities )
for i = 1: N_states
for j = 1: N_states
Aeq (i,j) = -prob_discr_u1 (j,i);
Aeq (i,j+ N_states ) = -prob_discr_u2 (j,i);
end
Aeq (i,i) = Aeq (i,i) +1;
Aeq (i,i+ N_states ) = Aeq (i,i+ N_states ) +1;
end
beq = zeros ( N_states ,1) ;

% Add final equality constraint
Aeq_f = zeros (1, N_states *2) ;
for i = 1: N_states
Aeq_f (1,i) = 1;
Aeq_f (1,i+ N_states ) = 1;
end
beq_f = 1;
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Aeq = [ Aeq ; Aeq_f ];
beq = [ beq ; beq_f ];

% INEQUALITY CONSTRAINTS
A = [];
b = [];

% UPPER AND LOWER BOUNDS
% All larger than zero
lb = zeros (1, N_states *2) ;
ub = [];

% Optimization problem
[q,fval , exitflag , output ] = linprog (OB ,A,b,Aeq ,beq ,lb

,ub);

% Write results to usuable c_frac format % y_class
would be y(i,u) divided between class 1 and 2

y_class = zeros ( N_states ,2) ;
y_class (: ,1) = q(1: N_states ); % vector for class 1
y_class (: ,2) = q( N_states +1:2* N_states ); % vector for

class 2

%% ANALYZING RESUTLS

% Stationary Distribution
PI = zeros ( N_states ,1) ;
for i = 1: N_states
PI(i) = y_class (i ,1) + y_class (i ,2) ;
end

% Deterministic rule
% Can be used because our MDP is irreducible1____________It

is f(i,u)
effe = zeros ( N_states ,2) ;
for i = 1: N_states
effe(i ,1) = y_class (i ,1) /PI(i);
effe(i ,2) = y_class (i ,2) /PI(i);
end
% Generate control matrix in queue form
F1 = zeros (N+1,N +1) ;
F2 = zeros (N+1,N +1) ;
Y1_frac = zeros (N+1,N +1);
Y2_frac = zeros (N+1,N +1);
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PI = zeros (N+1,N +1) ;
g_dist = zeros (N+1,N +1) ;

for i = 1:N+1
% Optimal control
F1(i ,:) = effe (1+(i -1) *(N +1) :i*(N +1) ,1); % for class 1
F2(i ,:) = effe (1+(i -1) *(N +1) :i*(N +1) ,2); % for class 2
% Fractions
Y1_frac (i ,:) = y_class (1+(i -1) *(N +1) :i*(N +1) ,1);
Y2_frac (i ,:) = y_class (1+(i -1) *(N +1) :i*(N +1) ,2);
% Deterministic Distribution
PI(i ,:) = PI (1+(i -1) *(N+1) :i*(N+1) );
% Holding cost distribution
g_dist (i ,:) = g(1+(i -1) *(N+1) :i*(N+1) ,1);
end

%% PLOTTING RESULTS

% Control routing rule
figure ()
axis ([0 N+1 0 N+1]) ;
xlabel ('Queue 1');
ylabel ('Queue 2');
hold on
grid on
% Control 1
for i = 1:N+1
for j = 1:N+1
if F1(i,j) >= 0.99
plot (j,i,'sb ')
elseif isnan (F1(i,j)) % Error value due to truncation
plot (j,i,'sy ')
legend ('product 1')
end
end
end
% Control 2
for i = 1:N+1
for j = 1:N+1
if F2(i,j) >= 0.99
plot (j,i,'sr ')
elseif isnan (F2(i,j))
plot (j,i,'sy ')
end
end
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end

figure ()
x = [1:1: N_states ];
f1 =[];
f2 =[];
for i = 1: N_states

f1(i) = effe(i ,1);
f2(i) = effe(i ,2);

end
for i = 1: N_states

if f1(i) > 1
f1(i) =1;

end
if f2(i) < 0

f2(i) = 1;
end

end

%% LINEAR PROGRAMMING %%

close all
clear all
clc

% CHOOSE THE PARAMETERS

% Maximal buffer size ( state space truncation )
N = 40;
% System parameters
% Dependent arrival rates [ lots / hour ]
Lambda = [23 12;
6 13];

% Arrival rates when server is off
Lambda0 (1) = max( Lambda (1 ,1) ,Lambda (1 ,2));
Lambda0 (2) = max( Lambda (2 ,1) ,Lambda (2 ,2));

% Processing rates [ lots / hour ]
Mu (1) = 100;
Mu (2) = 147;

% Holding costs [ dollars / lot / hour ]
C(1) = 1.6;
C(2) = 1;

% CHECK THE STABILITY OF SYSTEM (abs( Lambda /Mu) < 1)
rho = Lambda * inv(diag(Mu));

104



EIG = abs(eig(rho));
if max(EIG) < 1

disp('the system is stable ')
else

disp('the system is unstable please change parameters ')
end

% Print theoretical results
max_EIG = max(EIG );
disp ([ 'The traffic intensity , or spectral density of the

system is: ' ...
num2str ( max_EIG )])
fprintf ('\n')

% CHECK THE CU RULE SUGGESTION
CU =[C(1)*Mu (1) C(2)*Mu (2)] ;
a = max(CU);
dim = size(CU);
n = 0;
for i= 1: dim (2)

n= n+1;
if CU(i) == a

break
end

end
disp ([ 'the product that must be served for first in according

to CU rule would be ',num2str (n)])

%% CREATE MODEL STRUCTURE

N_states = (N +1) ^2; % Number of states ( queue length
combinations )

pos_a = (N +1) *N; % n.o. possible arrivals

% Call to problem setup function
[ prob_discr_u1 , prob_discr_u2 ,g_d ,g] =

MDP_problem_setup_SIMO (N, Lambda0 , Lambda ,Mu ,C);

%% FORMULATE LINEAR PROGRAM

% Parameters
% g_d = discrete time cost function
% prob_discr_u1 = discrete time probability matrix u1
% prob_discr_u2 = discrete time probability matrix u2

% OBJECTIVE FUNCTION
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OB = [ g_d (: ,1)' g_d (: ,2) '];

% EQUALITY CONSTRAINTS
Aeq = zeros ( N_states -1 ,2* N_states ); % Empty matrix ,

except for last constraint
% Everything on the right of equals sign ( probabilities )
for i = 1: N_states
for j = 1: N_states
Aeq (i,j) = -prob_discr_u1 (j,i);
Aeq (i,j+ N_states ) = -prob_discr_u2 (j,i);
end
Aeq (i,i) = Aeq (i,i) +1;
Aeq (i,i+ N_states ) = Aeq (i,i+ N_states ) +1;
end
beq = zeros ( N_states ,1) ;

% Add final equality constraint
Aeq_f = zeros (1, N_states *2) ;
for i = 1: N_states
Aeq_f (1,i) = 1;
Aeq_f (1,i+ N_states ) = 1;
end
beq_f = 1;

Aeq = [ Aeq ; Aeq_f ];
beq = [ beq ; beq_f ];

% INEQUALITY CONSTRAINTS
A = [];
b = [];

% UPPER AND LOWER BOUNDS
% All larger than zero
lb = zeros (1, N_states *2) ;
ub = [];

% Optimization problem
[q,fval , exitflag , output ] = linprog (OB ,A,b,Aeq ,beq ,lb

,ub);

% Write results to usuable c_frac format % y_class
would be y(i,u) divided between class 1 and 2

y_class = zeros ( N_states ,2) ;
y_class (: ,1) = q(1: N_states ); % vector for class 1
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y_class (: ,2) = q( N_states +1:2* N_states ); % vector for
class 2

%% ANALYZING RESUTLS

% Stationary Distribution
PI = zeros ( N_states ,1) ;
for i = 1: N_states
PI(i) = y_class (i ,1) + y_class (i ,2) ;
end

% Deterministic rule
% Can be used because our MDP is irreducible1____________It

is f(i,u)
effe = zeros ( N_states ,2) ;
for i = 1: N_states
effe(i ,1) = y_class (i ,1) /PI(i);
effe(i ,2) = y_class (i ,2) /PI(i);
end
% Generate control matrix in queue form
F1 = zeros (N+1,N +1) ;
F2 = zeros (N+1,N +1) ;
Y1_frac = zeros (N+1,N +1);
Y2_frac = zeros (N+1,N +1);
PI = zeros (N+1,N +1) ;
g_dist = zeros (N+1,N +1) ;

for i = 1:N+1
% Optimal control
F1(i ,:) = effe (1+(i -1) *(N +1) :i*(N +1) ,1); % for class 1
F2(i ,:) = effe (1+(i -1) *(N +1) :i*(N +1) ,2); % for class 2
% Fractions
Y1_frac (i ,:) = y_class (1+(i -1) *(N +1) :i*(N +1) ,1);
Y2_frac (i ,:) = y_class (1+(i -1) *(N +1) :i*(N +1) ,2);
% Deterministic Distribution
PI(i ,:) = PI (1+(i -1) *(N+1) :i*(N+1) );
% Holding cost distribution
g_dist (i ,:) = g(1+(i -1) *(N+1) :i*(N+1) ,1);
end

%% PLOTTING RESULTS

% Control routing rule
figure ()
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axis ([0 N+1 0 N+1]) ;
xlabel ('Queue 1');
ylabel ('Queue 2');
hold on
grid on
% Control 1
for i = 1:N+1
for j = 1:N+1
if F1(i,j) >= 0.99
plot (j,i,'sb ')
elseif isnan (F1(i,j)) % Error value due to truncation
plot (j,i,'sy ')
legend ('product 1')
end
end
end
% Control 2
for i = 1:N+1
for j = 1:N+1
if F2(i,j) >= 0.99
plot (j,i,'sr ')
elseif isnan (F2(i,j))
plot (j,i,'sy ')
end
end
end

figure ()
x = [1:1: N_states ];
f1 =[];
f2 =[];
for i = 1: N_states

f1(i) = effe(i ,1);
f2(i) = effe(i ,2);

end
for i = 1: N_states

if f1(i) > 1
f1(i) =1;

end
if f2(i) < 0

f2(i) = 1;
end

end
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Modified policy iteration Markov decision process

%% MARKOV DECISION PROCESS , MODIFIED POLICY ITERATION %%

close all
clear all
clc

%% DATA DECLARATION %%

N=50; % truncation
LAM =[21 ,10; 7 ,24]; % arrival rates
mu1 =30; % service rates
mu2 =37;
C=[1.2 ,1]; %cost array

Stati =(N+1) ^2; %total states number

%% TOTAL TRANSITION RATE PER STATE %%

% control 1
MAT1 =( LAM (1 ,1)+LAM (2 ,1)+mu1)*ones(N+1,N+1);
MAT1 (: ,1)=LAM (1 ,1)+LAM (2 ,1);
MAT1 (:,N+1)=LAM (2 ,1)+mu1;
MAT1(N+1 ,:)=LAM (1 ,1)+mu1;
MAT1(N+1 ,1)=LAM (1 ,1);
MAT1(N+1,N+1)=mu1;

trate1 =[];
for i=1:N+1

trate1 =[ trate1 ,MAT1(i ,:) ];
end
trate1 =trate1 ';

% control 2
MAT2 =( LAM (1 ,2)+LAM (2 ,2)+mu2)*ones(N+1,N+1);
MAT2 (1 ,:)=LAM (1 ,2)+LAM (2 ,2);
MAT2(N+1 ,:)=LAM (1 ,2)+mu2;
MAT2 (:,N+1)=LAM (2 ,2)+mu2;
MAT2 (1,N+1)=LAM (2 ,2);
MAT2(N+1,N+1)=mu2;

trate2 =[];
for i=1:N+1

trate2 =[ trate2 ,MAT2(i ,:) ];
end
trate2 =trate2 ';
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trate=max(max( trate1 ),max( trate2 ));

%% TRANSITION RATE MATRIX %%

U1=zeros(Stati ,Stati);
U2=zeros(Stati ,Stati);
P1=zeros(Stati ,Stati);
P2=zeros(Stati ,Stati);

% control 1
for i=1: Stati -(N+1)

U1(i,i+(N+1))=LAM (2 ,1);
end

for j=1: Stati -1
if(mod(j,N+1) ==0)

U1(j,j+1) =0;
U1(j+1,j)=0;

else
U1(j,j+1)=LAM (1 ,1);
U1(j+1,j)=mu1;

end
end

% control 2
for i=1: Stati -(N+1)

U2(i,i+(N+1))=LAM (2 ,2);
U2(i+(N+1) ,i)=mu2;

end

for j=1: Stati -1
if(mod(j,N+1) ==0)

U2(j,j+1) =0;
else

U2(j,j+1)=LAM (1 ,2);
end

end

%% PROBABILITIES TRANSITION MATRIX %%

for i=1: Stati
P1(i ,:)=U1(i ,:)/ trate1 (i);
P2(i ,:)=U2(i ,:)/ trate2 (i);

end

%% COST FUNCTION %%
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CFunc=zeros(Stati ,2);

a={0:N ,0:N};
comb= allcomb (a{:});
CFunc (: ,1)=C(1)*comb (: ,2)+C(2)*comb (: ,1);
CFunc (: ,2)=CFunc (: ,1); %Costi degli stati indipendenti dalla

scelta

%% DISCRETIZZATION %%

Cfunc_d =CFunc ./ trate;

P1_d=U1/trate;
P2_d=U2/trate;
for i=1: Stati

P1_d(i,i)=1- trate1 (i)/trate;
P2_d(i,i)=1- trate2 (i)/trate;

end

%% MODIFIED POLICY

CMU =[C(1)*mu1 C(2)*mu2]
CMUnew =[C(1) *(mu1 -( LAM (1 ,1) -LAM (1 ,2))),C(2) *(mu2 -( LAM (2 ,2) -

LAM (2 ,1)))]

maxiter = 20; % maximum number of iterations
maxiterVI = 1500; % maximum relative value iterations to find

h_mu
toll = 1e -15; % tolerance for stopping value iterations to

find h_mu

[~,mx]= max(CMU);
psi0=mx*ones(Stati ,1); % greedy policy , cmu policy
psi0 (2:N+1) =1; %Q2 empty , class 1 optimal
psi0(N+2:N+1: end)=2; %Q1 empty , class 2 optimal
psi=psi0 ';

hv0=ones(Stati ,1) '; %step 0 initialization
hv0 (1) =0;
e=ones(Stati ,1);
hv=hv0;

% Modified policy iteration with value iteration
k=0;

111



while true
for l=1: maxiterVI

%Bellman 's equations
for i=1: Stati

sum1 =0;
sum2 =0;
for j=1: Stati

sum1=sum1+P1_d(i,j).*hv(j);
sum2=sum2+P2_d(i,j).*hv(j);

end
Th(i ,1)= Cfunc_d (i ,1)+sum1;
Th(i ,2)= Cfunc_d (i ,2)+sum2;

% minimization over the controls
[val ,id]= min(Th(i ,:));
Thmin(i)=val;

end
hv1=Thmin -( Thmin (1)*e ');

if abs(max(hv1 -hv))<toll
break

else
hv=hv1;

end
end %end step of value iteration

h=hv1;

% Policy ymprovement

for i=1: Stati
sum1 =0;
sum2 =0;
for j=1: Stati

sum1=sum1+P1_d(i,j).*h(j);
sum2=sum2+P2_d(i,j).*h(j);

end
THimp(i ,1)= Cfunc_d (i ,1)+sum1;
THimp(i ,2)= Cfunc_d (i ,2)+sum2;

% minimization over the controls
[VAL ,ID]= min(THimp(i ,:));
psi1(i)=ID;

end
if psi1 == psi %the new policy is equal to the previous

one
break
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else
psi=psi1;
end
if k== maxiter

break
else

k=k+1 ;
end

end

%% RESULTS %%

GRID=zeros(N+1,N+1);
for i=1:N+1

GRID (:,i)=psi1(i:N+1: end);
end

figure (1)
plot (5,0,'bo ');
hold on;
plot (0,5,'ro ');
legend ('Class 1','Class 2');
grid on;
axis ([0 N 0 N]);
for i=1:N+1

for j=1:N+1
if GRID(i,j)==1;

plot(j-1,i-1,'bo');
elseif GRID(i,j)==2;

plot(j-1,i-1,'ro');
else isnan(GRID(i,j))

plot(j-1,i-1,'yo'),
end

end
end
xlabel ('Q_1 ','fontweight ','bold ');
ylabel ('Q_2 ','fontweight ','bold ');
title ({'Optimal Policy ',''})
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Fixed time increment simulation

%% FIXED TIME INCREMENT SIMULATION %%

% Simulates arrivals according to Poisson process and
exponential service

% times . Simultanously runs three paralles simulations , for
a system

% following the cmu policy and a system following the
reversed cmu policy and another reversed .

% The systems use the same exponential arrivals and service
times .

% pol1 = cmu policy
% pol2 = reversed cmu policy
% pol3 = reversed reversed

clear all ;
clc ;
close all

disp ('Running the simulation .');
fprintf ('\n')

%% PARAMETERS

% Simulation
simrep = 5; % Times to repeat simulation
samp = 0.01; % Simulation time sample length [ hour ]
simlen = 1000; % Simulation length [ hours ]
time = 0: samp : simlen ; % Time vector
tlen = simlen / samp +1; % Time vector length

% System parameters
% Initial queue lengths
Q_0 (1) = 0; % Product 1
Q_0 (2) = 0; % Product 2
Q_0 (3) = 0; % Product 3
% Dependent arrival rates [ lots / hour ]
Lambda = [3.454 2.01 0.269;
1.715 1.65 0.065;
0.11 0.08 0.033];

% Arrival rates when server is off
Lambda0 (1) = max( Lambda (1 ,:));
Lambda0 (2) = max( Lambda (2 ,:));
Lambda0 (3) = max( Lambda (3 ,:));
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% Processing rates [ lots / hour ]
Mu (1) = 7;
Mu (2) = 5;
Mu (3) = 2;

% Holding costs [ dollars / lot / hour ]
C(1) = 1;
C(2) = 50;
C(3) = 1000;

% Stability check
m = inv ( diag(Mu));
M = Lambda *m;
EIG = abs(eig(M));
if max(EIG) >= 1
msg = ['This choice of parameters does not guarantee

stability ,'...
' please choose different parameters .'];
error( msg );
end

% Checking theoretical results
A_1 = C(1) *(Mu (1) -( Lambda (1 ,1) -Lambda (1 ,2)))-C(3)* Lambda (3 ,1)

;
A_2 = C(2) *(Mu (2) -( Lambda (2 ,2) -Lambda (2 ,1)))-C(3)* Lambda (3 ,2)

;
A_3 = C(2) *(Mu (2) -( Lambda (2 ,2) -Lambda (2 ,3)))-C(1)* Lambda (1 ,2)

;
A_4 = C(3) *(Mu (3) -( Lambda (3 ,3) -Lambda (3 ,2)))-C(1)* Lambda (1 ,3)

;
A_5 = C(1) *(Mu (1) -( Lambda (1 ,1) -Lambda (1 ,3)))-C(2)* Lambda (2 ,1)

;
A_6 = C(3) *(Mu (3) -( Lambda (3 ,3) -Lambda (3 ,1)))-C(2)* Lambda (2 ,3)

;
% in case 1 wins
if A_1 >= A_2 && A_5 >= A_6

cmu = 1;
if (C(2) *(Mu (2) -( Lambda (2 ,2) -Lambda (2 ,3)))) > (C(3) *(Mu

(3) -( Lambda (3 ,3) -Lambda (3 ,2))))
rev = 2;
revve = 3;
To = [1;2;3];
disp(' in accordance with cmu rule the order of

priority will be 1 2 3')
else

rev = 3;
revve = 2;
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To = [1;3;2];
disp(' in accordance with cmu rule the order of

priority will be 1 3 2')
end
% 2 wins

elseif A_2 > A_1 && A_3 > A_4
cmu = 2;
if (C(1) *(Mu (1) -( Lambda (1 ,1) -Lambda (1 ,3)))) > (C(3) *(Mu

(3) -( Lambda (3 ,3) -Lambda (3 ,1))))
rev = 1;
revve = 3;
To = [2;1;3];
disp(' in accordance with cmu rule the order of

priority will be 2 1 3')
else

rev = 3;
revve = 1;
To = [2;3;1];
disp(' in accordance with cmu rule the order of

priority will be 2 3 1')
end
% 3 wins

elseif A_4 > A_3 && A_6 > A_5
cmu = 3;

if (C(2) *(Mu (2) -( Lambda (2 ,2) -Lambda (2 ,1)))) > (C(1) *(Mu (1) -(
Lambda (1 ,1) -Lambda (1 ,2))))
rev = 2;
revve = 1;
To = [3;2;1];
disp(' in accordance with cmu rule the order of priority

will be 3 2 1')
else

rev = 1;
revve = 2;
To = [3;1;2];
disp(' in accordance with cmu rule the order of priority

will be 3 1 2')
end
end

%% SIMULATION

L = Lambda .* samp ; % Scale lambda to simulation parameters
L0 = Lambda0 * samp ;
Mu_inv = 1./ Mu; % Inverse of Mu

arr = zeros (3, tlen ); % Matrix to store arrivals
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Q_pol1 = zeros (3, tlen ); % Matrix representing queue length
for policy 1 (new cmu rule)

Q_pol2 = zeros (3, tlen ); % Matrix representing queue length
for policy 2

Q_pol3 = zeros (3, tlen); % Matrix representing queue length
for policy 3

Q_pol4 = zeros (3, tlen); % Matrix representing queue length
for policy 4

Q_pol5 = zeros (3, tlen); % Matrix representing queue length
for policy 5

Q_pol6 = zeros (3, tlen); % Matrix representing queue length
for policy 6

Q_pol1 (: ,1) = Q_0 (:) ; % Initialize intial queue lengths
Q_pol2 (: ,1) = Q_0 (:) ; % Initialize intial queue lengths
Q_pol3 (: ,1) = Q_0 (:); % Initialize intial queue lengths
Q_pol4 (: ,1) = Q_0 (:); % Initialize intial queue lengths
Q_pol5 (: ,1) = Q_0 (:); % Initialize intial queue lengths
Q_pol6 (: ,1) = Q_0 (:); % Initialize intial queue lengths

Q_pol1_arr = zeros (3, tlen );
Q_pol2_arr = zeros (3, tlen );
Q_pol3_arr = zeros (3, tlen);
Q_pol4_arr = zeros (3, tlen);
Q_pol5_arr = zeros (3, tlen);
Q_pol6_arr = zeros (3, tlen);
Q_pol1_proc_times = [];
Q_pol2_proc_times = [];
Q_pol3_proc_times = [];
Q_pol4_proc_times = [];
Q_pol5_proc_times = [];
Q_pol6_proc_times = [];

% Product server statusses
server_pol1 = 4; % 1 = product #1, 2 = product #2, 3 =

product #3 , 4 = idle
server_pol2 = 4; % 1 = product #1, 2 = product #2, 3 =

product #3 , 4 = idle
server_pol3 = 4; % 1 = product #1, 2 = product #2, 3 =

product #3 , 4 = idle
server_pol4 = 4; % 1 = product #1, 2 = product #2, 3 =

product #3 , 4 = idle
server_pol5 = 4; % 1 = product #1, 2 = product #2, 3 =

product #3 , 4 = idle
server_pol6 = 4; % 1 = product #1, 2 = product #2, 3 =

product #3 , 4 = idle
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TC_pol1 = zeros (1, simrep ); % Creation Total cost vector for
policy 1

TC_pol2 = zeros (1, simrep ); % Creation Total cost vector for
policy 2

TC_pol3 = zeros (1, simrep ); % Creation Total cost vector for
policy 3

TC_pol4 = zeros (1, simrep ); % Creation Total cost vector for
policy 4

TC_pol5 = zeros (1, simrep ); % Creation Total cost vector for
policy 5

TC_pol6 = zeros (1, simrep ); % Creation Total cost vector for
policy 6

AC_pol1 = zeros (1, simrep ); % Creation Average cost vector
for policy 1

AC_pol2 = zeros (1, simrep ); % Creation Average cost vector
for policy 2

AC_pol3 = zeros (1, simrep ); % Creation Average cost vector
for policy 3

AC_pol4 = zeros (1, simrep ); % Creation Average cost vector
for policy 4

AC_pol5 = zeros (1, simrep ); % Creation Average cost vector
for policy 5

AC_pol6 = zeros (1, simrep ); % Creation Average cost vector
for policy 6

cmu = To (1); % Priority product
rev = To (2); % Non Priority products
revve = To (3); % Non Priority products
disp ('Simulating ... ')
fprintf ('\n')
for r = 1: simrep

fprintf ('Simulation repetition number %d ... \n',r)

c = 2; % Counter
serv_t_pol1 = 0; % Current production time remaining pol1

simulation
serv_t_pol2 = 0; % Current production time remaining pol2

simulation
serv_t_pol3 = 0; % Current production time remaining pol3

simulation
serv_t_pol4 = 0; % Current production time remaining pol4

simulation
serv_t_pol5 = 0; % Current production time remaining pol5

simulation
serv_t_pol6 = 0; % Current production time remaining pol6
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simulation

% Start simulation
for t = 0: samp : simlen - samp

if serv_t_pol1 <= 0 % No product being serviced in pol1 sim
server_pol1 = 4;
serv_t_pol1 = 0;
end

if serv_t_pol2 <= 0 % No product being serviced in pol2 sim
server_pol2 = 4;
serv_t_pol2 = 0;
end

if serv_t_pol3 <= 0 % No product being serviced in pol3 sim
server_pol3 = 4;
serv_t_pol3 = 0;

end

if serv_t_pol4 <= 0 % No product being serviced in pol4 sim
server_pol4 = 4;
serv_t_pol4 = 0;

end

if serv_t_pol5 <= 0 % No product being serviced in pol5 sim
server_pol5 = 4;
serv_t_pol5 = 0;

end

if serv_t_pol6 <= 0 % No product being serviced in pol6 sim
server_pol6 = 4;
serv_t_pol6 = 0;

end

% Simulate queue lengths pol1 simulation queue
if server_pol1 == 1
Q_pol1 (1,c) = Q_pol1 (1,c -1) + poissrnd (L(1 ,1));
Q_pol1 (2,c) = Q_pol1 (2,c -1) + poissrnd (L(2 ,1));
Q_pol1 (3,c) = Q_pol1 (3,c -1) + poissrnd (L(3 ,1));
elseif server_pol1 == 2
Q_pol1 (1,c) = Q_pol1 (1,c -1) + poissrnd (L(1 ,2));
Q_pol1 (2,c) = Q_pol1 (2,c -1) + poissrnd (L(2 ,2));
Q_pol1 (3,c) = Q_pol1 (3,c -1) + poissrnd (L(3 ,2));
elseif server_pol1 == 3
Q_pol1 (1,c) = Q_pol1 (1,c -1) + poissrnd (L(1 ,3));
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Q_pol1 (2,c) = Q_pol1 (2,c -1) + poissrnd (L(2 ,3));
Q_pol1 (3,c) = Q_pol1 (3,c -1) + poissrnd (L(3 ,3));
else % server_cmu == 0
Q_pol1 (1,c) = Q_pol1 (1,c -1) + poissrnd (L0 (1));
Q_pol1 (2,c) = Q_pol1 (2,c -1) + poissrnd (L0 (2));
Q_pol1 (3,c) = Q_pol1 (3,c -1) + poissrnd (L0 (3));
end
Q_pol1_arr (:,c) = Q_pol1 (:,c) - Q_pol1 (:,c -1) ;

% Simulate queue lengths pol2 simulation queue
if server_pol2 == 1
Q_pol2 (1,c) = Q_pol2 (1,c -1) + poissrnd (L(1 ,1));
Q_pol2 (2,c) = Q_pol2 (2,c -1) + poissrnd (L(2 ,1));
Q_pol2 (3,c) = Q_pol2 (3,c -1) + poissrnd (L(3 ,1));
elseif server_pol2 == 2
Q_pol2 (1,c) = Q_pol2 (1,c -1) + poissrnd (L(1 ,2));
Q_pol2 (2,c) = Q_pol2 (2,c -1) + poissrnd (L(2 ,2));
Q_pol2 (3,c) = Q_pol2 (3,c -1) + poissrnd (L(3 ,2));
elseif server_pol2 == 3
Q_pol2 (1,c) = Q_pol2 (1,c -1) + poissrnd (L(1 ,3));
Q_pol2 (2,c) = Q_pol2 (2,c -1) + poissrnd (L(2 ,3));
Q_pol2 (3,c) = Q_pol2 (3,c -1) + poissrnd (L(3 ,3));
else % server_rev == 0
Q_pol2 (1,c) = Q_pol2 (1,c -1) + poissrnd (L0 (1));
Q_pol2 (2,c) = Q_pol2 (2,c -1) + poissrnd (L0 (2));
Q_pol2 (3,c) = Q_pol2 (3,c -1) + poissrnd (L0 (3));
end
Q_pol2_arr (:,c) = Q_pol2 (:,c) - Q_pol2 (:,c -1) ;

% Simulate queue lengths pol3 simulation queue
if server_pol3 == 1
Q_pol3 (1,c) = Q_pol3 (1,c -1) + poissrnd (L(1 ,1));
Q_pol3 (2,c) = Q_pol3 (2,c -1) + poissrnd (L(2 ,1));
Q_pol3 (3,c) = Q_pol3 (3,c -1) + poissrnd (L(3 ,1));
elseif server_pol2 == 2
Q_pol3 (1,c) = Q_pol3 (1,c -1) + poissrnd (L(1 ,2));
Q_pol3 (2,c) = Q_pol3 (2,c -1) + poissrnd (L(2 ,2));
Q_pol3 (3,c) = Q_pol3 (3,c -1) + poissrnd (L(3 ,2));
elseif server_pol2 == 3
Q_pol3 (1,c) = Q_pol3 (1,c -1) + poissrnd (L(1 ,3));
Q_pol3 (2,c) = Q_pol3 (2,c -1) + poissrnd (L(2 ,3));
Q_pol3 (3,c) = Q_pol3 (3,c -1) + poissrnd (L(3 ,3));
else % server_rev == 0
Q_pol3 (1,c) = Q_pol3 (1,c -1) + poissrnd (L0 (1));
Q_pol3 (2,c) = Q_pol3 (2,c -1) + poissrnd (L0 (2));
Q_pol3 (3,c) = Q_pol3 (3,c -1) + poissrnd (L0 (3));
end
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Q_pol3_arr (:,c) = Q_pol3 (:,c) - Q_pol3 (:,c -1) ;

% Simulate queue lengths pol4 simulation queue
if server_pol4 == 1
Q_pol4 (1,c) = Q_pol4 (1,c -1) + poissrnd (L(1 ,1));
Q_pol4 (2,c) = Q_pol4 (2,c -1) + poissrnd (L(2 ,1));
Q_pol4 (3,c) = Q_pol4 (3,c -1) + poissrnd (L(3 ,1));
elseif server_pol4 == 2
Q_pol4 (1,c) = Q_pol4 (1,c -1) + poissrnd (L(1 ,2));
Q_pol4 (2,c) = Q_pol4 (2,c -1) + poissrnd (L(2 ,2));
Q_pol4 (3,c) = Q_pol4 (3,c -1) + poissrnd (L(3 ,2));
elseif server_pol4 == 3
Q_pol4 (1,c) = Q_pol4 (1,c -1) + poissrnd (L(1 ,3));
Q_pol4 (2,c) = Q_pol4 (2,c -1) + poissrnd (L(2 ,3));
Q_pol4 (3,c) = Q_pol4 (3,c -1) + poissrnd (L(3 ,3));
else % server_rev == 0
Q_pol4 (1,c) = Q_pol4 (1,c -1) + poissrnd (L0 (1));
Q_pol4 (2,c) = Q_pol4 (2,c -1) + poissrnd (L0 (2));
Q_pol4 (3,c) = Q_pol4 (3,c -1) + poissrnd (L0 (3));
end
Q_pol4_arr (:,c) = Q_pol4 (:,c) - Q_pol4 (:,c -1) ;

% Simulate queue lengths pol5 simulation queue
if server_pol5 == 1
Q_pol5 (1,c) = Q_pol5 (1,c -1) + poissrnd (L(1 ,1));
Q_pol5 (2,c) = Q_pol5 (2,c -1) + poissrnd (L(2 ,1));
Q_pol5 (3,c) = Q_pol5 (3,c -1) + poissrnd (L(3 ,1));
elseif server_pol5 == 2
Q_pol5 (1,c) = Q_pol5 (1,c -1) + poissrnd (L(1 ,2));
Q_pol5 (2,c) = Q_pol5 (2,c -1) + poissrnd (L(2 ,2));
Q_pol5 (3,c) = Q_pol5 (3,c -1) + poissrnd (L(3 ,2));
elseif server_pol2 == 3
Q_pol5 (1,c) = Q_pol5 (1,c -1) + poissrnd (L(1 ,3));
Q_pol5 (2,c) = Q_pol5 (2,c -1) + poissrnd (L(2 ,3));
Q_pol5 (3,c) = Q_pol5 (3,c -1) + poissrnd (L(3 ,3));
else % server_rev == 0
Q_pol5 (1,c) = Q_pol5 (1,c -1) + poissrnd (L0 (1));
Q_pol5 (2,c) = Q_pol5 (2,c -1) + poissrnd (L0 (2));
Q_pol5 (3,c) = Q_pol5 (3,c -1) + poissrnd (L0 (3));
end
Q_pol5_arr (:,c) = Q_pol5 (:,c) - Q_pol5 (:,c -1) ;

% Simulate queue lengths pol6 simulation queue
if server_pol6 == 1
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Q_pol6 (1,c) = Q_pol6 (1,c -1) + poissrnd (L(1 ,1));
Q_pol6 (2,c) = Q_pol6 (2,c -1) + poissrnd (L(2 ,1));
Q_pol6 (3,c) = Q_pol6 (3,c -1) + poissrnd (L(3 ,1));
elseif server_pol6 == 2
Q_pol6 (1,c) = Q_pol6 (1,c -1) + poissrnd (L(1 ,2));
Q_pol6 (2,c) = Q_pol6 (2,c -1) + poissrnd (L(2 ,2));
Q_pol6 (3,c) = Q_pol6 (3,c -1) + poissrnd (L(3 ,2));
elseif server_pol6 == 3
Q_pol6 (1,c) = Q_pol6 (1,c -1) + poissrnd (L(1 ,3));
Q_pol6 (2,c) = Q_pol6 (2,c -1) + poissrnd (L(2 ,3));
Q_pol6 (3,c) = Q_pol6 (3,c -1) + poissrnd (L(3 ,3));
else % server_rev == 0
Q_pol6 (1,c) = Q_pol6 (1,c -1) + poissrnd (L0 (1));
Q_pol6 (2,c) = Q_pol6 (2,c -1) + poissrnd (L0 (2));
Q_pol6 (3,c) = Q_pol6 (3,c -1) + poissrnd (L0 (3));
end
Q_pol6_arr (:,c) = Q_pol6 (:,c) - Q_pol6 (:,c -1) ;

% Production process for pol1 simulation
if server_pol1 == 4 % Server is idle
num1 = size( Q_pol1_proc_times ,2) ; % N.o. products so far
if Q_pol1 (cmu ,c) >= 1 % If queue of cmu product is non -

empty
% Simulate processing time cmu prod and adapt server time
serv_t_pol1 = exprnd ( Mu_inv (cmu ));
Q_pol1_proc_times (cmu , num1 +1) = serv_t_pol1 ;
% Decrease qeueu length for cmu product
Q_pol1 (cmu ,c) = Q_pol1 (cmu ,c) -1;
% Set server status to cmu producttype in service
server_pol1 = cmu ;
elseif Q_pol1 (rev ,c) >= 1 % Otherwise , non - preffered

product
% Simulate processing time rev prod and adapt server time
serv_t_pol1 = exprnd ( Mu_inv (rev ));
Q_pol1_proc_times (rev , num1 +1) = serv_t_pol1 ;
% Decrease qeueu length for rev product
Q_pol1 (rev ,c) = Q_pol1 (rev ,c) -1;
% Set server status to rev producttype in service
server_pol1 = rev ;
elseif Q_pol1 (revve ,c) >= 1

serv_t_pol1 = exprnd ( Mu_inv (revve));
Q_pol1_proc_times (revve ,num1 +1) = serv_t_pol1 ;
Q_pol1 (revve ,c) = Q_pol1 (revve ,c) -1;
server_pol1 = revve;
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end
else % Server is busy
serv_t_pol1 = serv_t_pol1 - samp ;
end

% Production process for pol2 simulation
if server_pol2 == 4 % Server is idle
num2 = size( Q_pol2_proc_times ,2) ;
if Q_pol2 (rev ,c) >= 1 % If queue of rev product is non -

empty
% Simulate processing time cmu prod and adapt server time
serv_t_pol2 = exprnd ( Mu_inv (rev ));
Q_pol2_proc_times (rev , num2 +1) = serv_t_pol2 ;
% Decrease qeueu length for rev product
Q_pol2 (rev ,c) = Q_pol2 (rev ,c) -1;
% Set server status to rev producttype in service
server_pol2 = rev ;
elseif Q_pol2 (cmu ,c) >= 1 % Otherwise , non - preffered

product
% Simulate processing time cmu prod and adapt server time
serv_t_pol2 = exprnd ( Mu_inv (cmu ));
Q_pol2_proc_times (cmu , num2 +1) = serv_t_pol2 ;
% Decrease qeueu length for cmu product
Q_pol2 (cmu ,c) = Q_pol2 (cmu ,c) -1;
% Set server status to cmu producttype in service
server_pol2 = cmu ;
elseif Q_pol2 (revve ,c) >= 1 % Otherwise , non - preffered

product
% Simulate processing time cmu prod and adapt server time
serv_t_pol2 = exprnd ( Mu_inv (revve ));
Q_pol2_proc_times (revve , num2 +1) = serv_t_pol2 ;
% Decrease qeueu length for cmu product
Q_pol2 (revve ,c) = Q_pol2 (revve ,c) -1;
% Set server status to cmu producttype in service
server_pol2 = revve ;

end
else % Server is busy
serv_t_pol2 = serv_t_pol2 - samp ;
end

% Production process for pol3 simulation
if server_pol3 == 4 % Server is idle
num3 = size( Q_pol3_proc_times ,2) ;
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if Q_pol3 (revve ,c) >= 1 % If queue of rev product is non -
empty

% Simulate processing time cmu prod and adapt server time
serv_t_pol3 = exprnd ( Mu_inv (revve ));
Q_pol3_proc_times (revve , num3 +1) = serv_t_pol3 ;
% Decrease qeueu length for rev product
Q_pol3 (revve ,c) = Q_pol3 (revve ,c) -1;
% Set server status to rev producttype in service
server_pol3 = revve ;
elseif Q_pol3 (cmu ,c) >= 1 % Otherwise , non - preffered

product
% Simulate processing time cmu prod and adapt server time
serv_t_pol3 = exprnd ( Mu_inv (cmu ));
Q_pol3_proc_times (cmu , num3 +1) = serv_t_pol3 ;
% Decrease qeueu length for cmu product
Q_pol3 (cmu ,c) = Q_pol3 (cmu ,c) -1;
% Set server status to cmu producttype in service
server_pol3 = cmu ;
elseif Q_pol3 (rev ,c) >= 1 % Otherwise , non - preffered

product
% Simulate processing time cmu prod and adapt server time
serv_t_pol3 = exprnd ( Mu_inv (rev ));
Q_pol3_proc_times (rev , num3 +1) = serv_t_pol3 ;
% Decrease qeueu length for cmu product
Q_pol3 (rev ,c) = Q_pol3 (rev ,c) -1;
% Set server status to cmu producttype in service
server_pol3 = rev ;

end
else % Server is busy
serv_t_pol3 = serv_t_pol3 - samp ;
end

% Production process for pol4 simulation
if server_pol4 == 4 % Server is idle
num4 = size( Q_pol4_proc_times ,2) ;
if Q_pol4 (revve ,c) >= 1 % If queue of rev product is non -

empty
% Simulate processing time cmu prod and adapt server time
serv_t_pol4 = exprnd ( Mu_inv (revve ));
Q_pol4_proc_times (revve , num4 +1) = serv_t_pol4 ;
% Decrease qeueu length for rev product
Q_pol4 (revve ,c) = Q_pol4 (revve ,c) -1;
% Set server status to rev producttype in service
server_pol4 = revve ;
elseif Q_pol4 (rev ,c) >= 1 % Otherwise , non - preffered
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product
% Simulate processing time cmu prod and adapt server time
serv_t_pol4 = exprnd ( Mu_inv (rev ));
Q_pol4_proc_times (rev , num4 +1) = serv_t_pol4 ;
% Decrease qeueu length for cmu product
Q_pol4 (rev ,c) = Q_pol4 (rev ,c) -1;
% Set server status to cmu producttype in service
server_pol4 = rev ;
elseif Q_pol4 (cmu ,c) >= 1 % Otherwise , non - preffered

product
% Simulate processing time cmu prod and adapt server time
serv_t_pol4 = exprnd ( Mu_inv (cmu ));
Q_pol4_proc_times (cmu , num4 +1) = serv_t_pol4 ;
% Decrease qeueu length for cmu product
Q_pol4 (cmu ,c) = Q_pol4 (cmu ,c) -1;
% Set server status to cmu producttype in service
server_pol4 = cmu ;

end
else % Server is busy
serv_t_pol4 = serv_t_pol4 - samp ;
end

% Production process for pol5 simulation
if server_pol5 == 4 % Server is idle
num5 = size( Q_pol5_proc_times ,2) ;
if Q_pol5 (rev ,c) >= 1 % If queue of rev product is non -

empty
% Simulate processing time cmu prod and adapt server time
serv_t_pol5 = exprnd ( Mu_inv (rev ));
Q_pol5_proc_times (rev , num5 +1) = serv_t_pol5 ;
% Decrease qeueu length for rev product
Q_pol5 (rev ,c) = Q_pol5 (rev ,c) -1;
% Set server status to rev producttype in service
server_pol5 = rev ;
elseif Q_pol5 (revve ,c) >= 1 % Otherwise , non - preffered

product
% Simulate processing time cmu prod and adapt server time
serv_t_pol5 = exprnd ( Mu_inv (revve ));
Q_pol5_proc_times (revve , num5 +1) = serv_t_pol5 ;
% Decrease qeueu length for cmu product
Q_pol5 (revve ,c) = Q_pol5 (revve ,c) -1;
% Set server status to cmu producttype in service
server_pol5 = revve ;
elseif Q_pol5 (cmu ,c) >= 1 % Otherwise , non - preffered

product
% Simulate processing time cmu prod and adapt server time
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serv_t_pol5 = exprnd ( Mu_inv (cmu ));
Q_pol5_proc_times (cmu , num5 +1) = serv_t_pol5 ;
% Decrease qeueu length for cmu product
Q_pol5 (cmu ,c) = Q_pol5 (cmu ,c) -1;
% Set server status to cmu producttype in service
server_pol5 = cmu ;

end
else % Server is busy
serv_t_pol5 = serv_t_pol5 - samp ;
end

% Production process for pol6 simulation
if server_pol6 == 4 % Server is idle
num6 = size( Q_pol6_proc_times ,2) ;
if Q_pol6 (cmu ,c) >= 1 % If queue of rev product is non -

empty
% Simulate processing time cmu prod and adapt server time
serv_t_pol6 = exprnd ( Mu_inv (cmu ));
Q_pol6_proc_times (cmu , num6 +1) = serv_t_pol6 ;
% Decrease qeueu length for rev product
Q_pol6 (cmu ,c) = Q_pol6 (cmu ,c) -1;
% Set server status to rev producttype in service
server_pol6 = cmu ;
elseif Q_pol6 (revve ,c) >= 1 % Otherwise , non - preffered

product
% Simulate processing time cmu prod and adapt server time
serv_t_pol6 = exprnd ( Mu_inv (revve ));
Q_pol6_proc_times (revve , num6 +1) = serv_t_pol6 ;
% Decrease qeueu length for cmu product
Q_pol6 (revve ,c) = Q_pol6 (revve ,c) -1;
% Set server status to cmu producttype in service
server_pol6 = revve ;
elseif Q_pol6 (rev ,c) >= 1 % Otherwise , non - preffered

product
% Simulate processing time cmu prod and adapt server time
serv_t_pol6 = exprnd ( Mu_inv (rev ));
Q_pol6_proc_times (rev , num6 +1) = serv_t_pol6 ;
% Decrease qeueu length for cmu product
Q_pol6 (rev ,c) = Q_pol6 (rev ,c) -1;
% Set server status to cmu producttype in service
server_pol6 = rev ;

end
else % Server is busy
serv_t_pol6 = serv_t_pol6 - samp ;
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end

c = c +1;
end

% Compensate for potential warmup effects
wa = 0.1* simlen / samp ; % Warmup part
Q_pol1 (: ,1: wa) = []; % Remove data
Q_pol2 (: ,1: wa) = []; % Remove data
Q_pol3 (: ,1: wa) = []; % Remove data
Q_pol4 (: ,1: wa) = []; % Remove data
Q_pol5 (: ,1: wa) = []; % Remove data
Q_pol6 (: ,1: wa) = []; % Remove data
% Compute total costs
TC_pol1 (r) = sum( Q_pol1 (1 ,:))*(C(1) * samp )+sum( Q_pol1 (2

,:))*(C(2) * samp) + sum( Q_pol1 (3 ,:))*(C(3)*samp);
TC_pol2 (r) = sum( Q_pol2 (1 ,:))*(C(1) * samp )+sum( Q_pol2 (2

,:))*(C(2) * samp) + sum( Q_pol2 (3 ,:))*(C(3)*samp);
TC_pol3 (r) = sum( Q_pol3 (1 ,:))*(C(1) * samp )+sum( Q_pol3 (2

,:))*(C(2) * samp) + sum( Q_pol3 (3 ,:))*(C(3)*samp);
TC_pol4 (r) = sum( Q_pol4 (1 ,:))*(C(1) * samp )+sum( Q_pol4 (2

,:))*(C(2) * samp) + sum( Q_pol4 (3 ,:))*(C(3)*samp);
TC_pol5 (r) = sum( Q_pol5 (1 ,:))*(C(1) * samp )+sum( Q_pol5 (2

,:))*(C(2) * samp) + sum( Q_pol5 (3 ,:))*(C(3)*samp);
TC_pol6 (r) = sum( Q_pol6 (1 ,:))*(C(1) * samp )+sum( Q_pol6 (2

,:))*(C(2) * samp) + sum( Q_pol6 (3 ,:))*(C(3)*samp);
% Compute average costs ( with warmup compsensation )
AC_pol1 (r) = TC_pol1 (r) / ( simlen *0.9) ;
AC_pol2 (r) = TC_pol2 (r) / ( simlen *0.9) ;
AC_pol3 (r) = TC_pol3 (r) / ( simlen *0.9) ;
AC_pol4 (r) = TC_pol4 (r) / ( simlen *0.9) ;
AC_pol5 (r) = TC_pol5 (r) / ( simlen *0.9) ;
AC_pol6 (r) = TC_pol6 (r) / ( simlen *0.9) ;

AC_pol1 (r);
AC_pol2 (r);
AC_pol3 (r);
AC_pol4 (r);
AC_pol5 (r);
AC_pol6 (r);

end
%% ANALYSING RESULTS
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TC_pol1_tot = mean( TC_pol1 );
TC_pol2_tot = mean( TC_pol2 );
TC_pol3_tot = mean( TC_pol3 );
TC_pol4_tot = mean( TC_pol4 );
TC_pol5_tot = mean( TC_pol5 );
TC_pol6_tot = mean( TC_pol6 );

AC_pol1_tot = mean( AC_pol1 )
AC_pol2_tot = mean( AC_pol2 )
AC_pol3_tot = mean( AC_pol3 )
AC_pol4_tot = mean( AC_pol4 )
AC_pol5_tot = mean( AC_pol5 )
AC_pol6_tot = mean( AC_pol6 )

disp ('Simulation finished .')
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