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Sommario

Negli ultimi anni le applicazioni robotiche sono diventate parte integrante

delle nostre vite. Piattaforme mobili e manipolatori vengono sempre più

utilizzati nella nostra società per eseguire azioni ripetitive, alienanti o peri-

colose per un essere umano. I robot, fianco a fianco con i lavoratori, sono

utilizzati in ogni settore industriale, dalla meccanica, chimica al settore man-

ifatturiero, per il trasporto di materiali e persone, per le consegne e per l’

E-commerce. Grazie alla loro flessibilità, personalizzabilità e vasta gamma

di scelta nel mercato globale, questo genere di prodotto è in grado di sod-

disfare ogni tipo di richiesta e bisogno del cliente. Per questo motivo le

aziende che si affidano ad applicazioni robotiche necessitano strumenti di

programmazione sempre aggiornati in modo da poter gestire le loro richi-

este e bisogni.

Gli sviluppatori di software hanno il compito di garantire strumenti

flessibili e riusabili in modo da compiere ogni necessità del consumatore. Il

progetto Co4robots [38] all’interno del quale questa tesi è stata sviluppata,

ha l’obiettivo di fornire strumenti che agevolano la programmazione nel con-

testo di applicationi multi-robot. Co4robots mira ad introdurre nel campo

della robotica principi e tecniche caratteristiche dell’ingegneria del software

per fornire un approccio ingegneristico alla programmazione di applicazioni

robotiche. Il progetto analizza principalmente applicazioni multi-robot nelle

quali un team di robot collabora al fine di raggiungere il soddisfacimento

di una data missione, che risulterebbe non eseguibile da un singolo robot.

Per esempio, una missione potrebbe richiedere al team di robot di caricare

e muovere oggetti o rifornimenti in un determinato ambiente, dagli uffici,

alberghi agli ospedali e sale operatorie. L’ obiettivo finale assegnato al team

di robot è descritto e assegnato come una missione definita da un linguaggio

di alto livello.

Co4robots progetta di elaborare un approccio sistematico per lo sviluppo

di applicazioni robotiche. Questo approccio include tecniche che riguardano

diversi aspetti tra cui (i) la possibilità di lavorare con agenti eterogenei,
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tra cui lavoratori e supervisori, (ii) lo sviluppo di algoritmi per la com-

putazione delle azioni che i vari agenti devono eseguire per raggiungere la

missione assegnata, (iii) un controllo decentralizzato che permette ai robot

di interagire con l’ambiente circostante attraverso l’utilizzo di sensori e la co-

municazione tra i componenti del team, (iv) facile integrazione con i diversi

sistemi presenti sul mercato, (v) l’utilizzo di un linguaggio di alto livello per

la definizione delle missioni, in modo da non richiedere all’utente particolari

nozioni di robotica.

Questa tesi tratta uno dei vari aspetti considerati all’interno del progetto

Co4robot: il planning. Il planning è un elemento fondamentale di ogni sis-

tema robotico. Ha l’obiettivo di calcolare l’insieme di azioni e movimenti che

il robot deve eseguire in modo da raggiungere l’obiettivo assegnato. Questo

aspetto della robotica è già stato affrontato in letteratura, ma riteniamo che

alcuni aspetti possano tuttavia essere approfonditi ed integrati. In parti-

colare gli odierni strumenti per la pianificazione della traiettoria richiedono

l’integrazione delle seguenti caratteristiche: (i) capacità di analizzare mis-

sioni che considerano aspetti temporali espliciti, per esempio missioni con

vincoli espressi in secondi o minuti, (ii) abilità di gestire un team di robot

composto da più agenti, (iii) considerare durante la pianificazione la possi-

bilità di eseguire azioni collaborative che richiedono la sincronizzazione dei

robot durante lo svolgimento della missione, (iv) considerare mappe realis-

tiche che descrivono edifici ed ambienti reali. Al momento, in letteratura

non è presente uno strumento che integra tutti questi aspetti in grado di

supportare in modo efficace lo sviluppatore.

Questo lavoro propone un approccio che mira a risolvere i problemi de-

scritti. Viene presentato uno strumento per la pianificazione della traiettoria

che, per calcolare i comandi da assegnare ai robot, analizza (i) la mappa, in

formato di immagine, dell’ambiente in cui gli agenti andranno a lavorare, (ii)

il modello dei robot che descrive le relative caratteristiche di movimento e

azione, (iii) la missione che i robot hanno il compito di eseguire considerando

aspetti temporali espliciti. Queste informazioni sono utilizzati per generare

un modello del sistema che verrà utilizzato nella fase di planning. Il modello

del sistema è composto dal modello dell’ambiente e dai modelli dei robot che

compongono il team, e viene descritto mediante l’utilizzo di Automi Tem-

porizzati. La missione assegnata al team di robot viene invece specificata

come una formula espressa in linguaggio TCTL (Timed Computational Tree

Logic) che è in grado di gestire aspetti temporali espliciti.

Il modello descritto mediante gli Automi Temporizzati (che viene gener-

ato automaticamente) e la specifica TCTL vengono processate da Uppaal,

un software che, analizzando tali input, è in grado di verificare l’esistenza



di una sequenza di stati e transizioni in grado di soddisfare la missione. In

caso di risposta affermativa la traccia viene analizzata e le azioni vengono

assegnate ed eseguite dai vari robot nel team.

La tesi è stata valutata sotto vari fronti. Abbiamo valutato il compor-

tamento del planner considerando scenari realistici. Nei test eseguiti sono

stati presi in considerazione 3 edifici, in particolare: “Jupiter Building”,

Chalmers University, Goteborg, Svezia, “Edificio20” ed “Edificio22”, Po-

litecnico di Milano. I piani di questi edifici sono state mappate utilizzando

due diversi encoding e diverse tipologie di missioni sono state valuate. Per

ogni tipologia abbiamo considerato vari bound temporali, il cui valore rap-

presentava il tempo massimo ento il quale la missione doveva essere soddis-

fatta. L’algoritmo è risultato capace di computare un insieme di azioni e

movimenti rappresentati per mezzo di una traccia che, se eseguite dai robot,

garantiscono il soddisfacimento della missione di interesse.

Per mostrare l’applicabilità dell’approccio in scenari realistici abbiamo

prima di tutto valutato le tracce generati dal planner per mezzo del Chore-

graph simulator. Il simulatore ha dimostrato la possibilità di eseguire le

tracce su robot reali, e in particolare sul NaoRobot. Abbiamo quindi valu-

tato l’utilizzo dell’approccio su delle applicazioni realistiche. Abbiamo con-

siderato il Turtlebot, una robot mobile in grado di muoversi in spazi brevi e

stretti, e considerato tre diverse missioni nel quale il robot ha dovuto ritirare

e consegnare il caffè, monitorare l’ingresso di personale non autorizzato ed

eseguire il delivery di della merce. In tutti i casi l’approccio è risultato ca-

pace di (i) computare un piano per il robot partendo dalla mappa e da una

specifica contenente vincoli temporale (ii) eseguire un forwarding corretto

delle azioni e dei movimenti al robot. Abbiamo quindi valutato l’utilizzo

dell’approccio all’interno di Pal Robotics [1], uno dei partner del progetto.

Abbiamo considerato il TIAGO Robot, una piattaforma mobile di 145cm

con un braccio robotico, e varie missioni provenienti da casi di studio reali.

L’approccio è risultato efficace anche nel corso di questi esperimenti.





Abstract

In the last decades robotic applications pervaded human life. Mobile plat-

forms, static manipulators, and mobile manipulators are increasingly used

in our society to perform repetitive tasks. Robots side by side with human

workers are deployed in every industrial field, from mechanic, chemical and

manufacturing industries, to transports of goods and people, to smart deliv-

ery systems and E-commerce. Thanks to their high flexibility, customizabil-

ity and the possibility to find on the market different products that are able

to satisfy every customer’s needs and requests, robots are selected for several

purposes and employed in any possible working environment. For these rea-

sons companies that rely on robotic applications for the fulfilment of their

tasks need programming tools that must handle their demand. For this mo-

tivation software programmers should guarantee programmable, reusable,

flexible tools in order to cover all the aspects of all the possible ideas and

needs of the customers which absolutely is not a trivial responsibility.

The Co4robots project [38], within which this thesis has been developed,

tries to overcome this issue. It aims at introducing software engineering prin-

ciples and techniques within the robotic domain. The final goal is shifting

towards well-defined engineering approaches which stimulate components

reuse and have a final impact on the robotic market-places. Co4robots as-

sumes a robotic application composed by a set of robots (i.e., a team) that

aim at performing a set of missions in a collaborative way. A mission is

an high level goal that a robotic application must achieve. For example, a

mission may require a team of robots to bring medical supplies to a surgery

room in the hospital environment. Those missions are typically defined in

terms of a high-level complex mission - a formal description of the goals that

robots shall achieve.

Rather than developing the components of the system from scratch

each time a new robotic application is designed, or missions are changed,

Co4robots tries to develop systematic software engineering techniques for

the development of robotic applications. These techniques include among
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others (i) new techniques that allow heterogeneous agents (including hu-

mans) to collaborate in manipulating and moving objects; (ii) decentralized

real-time planning algorithms that allows synthesising the actions the robots

in the team must perform; (iii) decentralized real-time perception to allow

robots perceiving their environment either by using its own sensors or by

exchanging sensory information with other nearby agents to accomplish spe-

cific tasks; (iv) a software integration platform to enable easy deployment of

robots which includes configuration facilities. The platform aims at integrat-

ing the software produced within the project and drives the instantiation of

the outcomes of research made into the project according to actual needs

and (v) a user-friendly specification language that enables users (e.g., human

users that utilize the robotic system in hand) without expertise in robotics

and information technology (such as the personnel of a hotel or a hospital)

to specify missions to be accomplished by the robots.

Path planning is a key point in robotic industry, planning aims to com-

pute a set of actions and movements that a robot or a team composed by

several robots are supposed to perform in order to fulfill a desired mission.

Motion planning has already been studied and analysed in literature. How-

ever, we believe that some of the needs of current robotic are still to be

handled. In particular current robotics intrinsically ask for planner tools

that possess the following features: (i) analyze missions which contain ex-

plicit time concerns; (ii) manage teams of robots; (iii) consider during the

planning procedure how robots are able to perform actions and synchronize

among each other; and (iv) work on realistic maps. At the moment, in lit-

erature contributions a planner presenting all this features integrated in one

single tool is missing.

This work proposes an approach that tries to solve all the problems

described above. We present a motion planner that, in order to compute

the commands to give to every agent of the team takes as inputs (i) the

map of the environment in which the robots are deployed (in the format of

images), (ii) the models of the robots that describe their possible movements,

the actions they can perform, and how they synchronize, and (iii) a mission

specification containing explicit time concerns. The approach takes as input

a map describing the layout in which the robots will operate. A set of

timed automata that describe the behavior of the robots. The mission the

robot should achieve. The map of the environment is used to automatically

generate a Timed Automaton (TA) that represents how robots can move

within their environment. This TA is composed with other TAs that model

how the robots behave. An high level mission describing the desired goal

of the system (including explicit time concerns) is provided by the user as



a Timed Computational Tree logic formula (TCTL). The Timed Automata

model and the TCTL specification are given to the program Uppaal Model

Checker which creates a trace (a plan) that if performed by the robots

ensures the satisfaction of the mission of interest.

This thesis has been evaluated under different aspects. We evaluated

the proposing planning technique on realistic environments. In the tests

performed we considered three real buildings, in particular: “Jupiter Build-

ing” of Chalmers University, Gothenburg, Sweden, “Edificio20” and “Ed-

ificio22” of Politecnico di Milano. The maps of this buildings have been

transformed using two different encodings into a Timed Automata that de-

scribe the environment in which the robots are deployed. The two encodings

have been evaluated considering several different missions. Each mission has

been evaluated on different time intervals, which represent the maximum

time available to execute the action.

We test the reliability of the approach both on the simulator and on

real scenarios. Regarding the simulated experiments we evaluated the gen-

erated traces by the planner on Choregraph software simulator. The sim-

ulator showed positive results regarding the applicability on real case sce-

narios. The real experiments were conducted in the ‘Jupiter Building” of

Chalmers University and in the Pal Robotics Company (one of the part-

ners of the project). In the experiments conducted in the ‘Jupiter Building”

of Chalmers University, we considered the TurtleBot robot, a mobile plat-

form able to move in narrow environments. We ask the TurtleBot robot

to perform different missions: bring the coffee to the offices, perform secu-

rity surveillance during the night and delivery objects in the building. In

all the cases the approach successfully achieved its missions, (i) compute a

plan from the map and the specification, (ii) deploy the right sequence of

commands to the robot. In the experiments conducted in the Pal Robotics

Company, we deployed our planner on the TIAGO Robot, a mobile platform

of 145cm with a robotic arm. We considered different missions and a set of

real case scenarios. The approach succeeded in all the experimental tests

performed.
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Chapter 1

Introduction

This chapter provides an overview on this thesis. Section 1.1 describes the

research context. Section 1.2 presents the research problem addressed by

this thesis. Section 1.3 provides a detailed description of the contribution.

Finally, Section 1.4 describes the structure of the thesis.

1.1 Research Context

Robotic applications pervade human life. Mobile platforms, static manip-

ulators, and mobile manipulators are increasingly used in our society to

perform repetitive tasks. This occurs for example inside airports, where

baggage management and delivery are mostly automatized by using appro-

priate robots, inside hospitals, where robots assist doctors during surgeries,

and inside people houses, where autonomous vacuum cleaner are increas-

ingly used to clean houses. Robots side by side with human workers are

deployed in every industrial field, from mechanic, chemical and manufactur-

ing industries, to transports of goods and people, to smart delivery systems

and E-commerce. Thanks to new technologies and the growth of robotic

and automation engineering this field has experienced a huge development

on the global market. Future previews also show an increasing trend of de-

velopment for this industrial sector. This spread of robotic applications has

also been confirmed by the world Robotics Survey [2], which evidenced a

boom on the use of service robots for professional use, and indoor logistics

as a major robotic market. For example, sales of professional service robots

had registered a growth of 28% in 2014 within the logistics segment. This

resulted in an increase of USD 2.2 billion in the value of sales.

Alongside the adoption of robotic applications for industrial purposes

and large scale production, the robotic world is slowly becoming an integral



and significant part of our everyday life. In our life we are starting to ex-

perience an increasing collaboration between human workers and robots in

order to fulfil and ease daily tasks. Automated and programmed machines

perfectly adapt to tasks and actions that for a human might result dan-

gerous, difficult, repetitive, tedious and alienating. Adopting these kind of

solutions, our working conditions and the quality of the product and service

will significantly improve.

There exist several types of robots that differ one from the other for

hardware components, structure, design, possibilities of movements, track-

laying robots or with steering wheel, machines with completely different

volume, from robots that measure few centimetres, to humanoid robots as

tall as a person to even bigger robots. The most used types of robots in

the industry nowadays are mobile platforms and static or mobile manipula-

tors. Nevertheless all these differences they share the same characteristic of

programmability and autonomous actions. Indeed, they are designed to per-

form actions under the supervision of a human worker and help and interact

with him during the work.

Thanks to their high flexibility, customizability and the possibility to find

on the market different products that are able to satisfy every customer’s

needs and requests, robots are selected for several purposes and employed in

any possible working environment. For these reasons companies that rely on

robotic applications for the fulfilment of their tasks need programming tools

that must handle their demand. For this motivation software programmers

should guarantee programmable, reusable, flexible tools in order to cover

all the aspects and needs of the customers which is absolutely not a trivial

responsibility.

Robotics developers are putting great effort in providing solutions that

support effective robotic software development and the deployment of the

produced software on real robots. These solutions try to expand the ser-

vices that the robots could provide to the user, their ability of autonomous

movements, path planning and actions in a determined environment, and to

improve the collaboration and interaction with human workers. For these

reasons the work of the programmers has a fundamental role in the devel-

opment process, hence the software tools at their disposal must perfectly

satisfy all their needs and requests.

Even if robotic developers are putting great effort in providing support

to program robots, the production of software for robotic systems is still

usually based on ad hoc solutions rather than being based on consolidated

development processes and frameworks that support software development.

This problem has also been evidenced by the H2020 Multi-Annual Robotics
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Roadmap ICT-2016 [2] which states that usually, there are no consolidated

system development processes for robotic applications. This is also high-

lighted by a lack of overall architectural models and methods.

The Co4robots project [38], within which this thesis has been developed,

tries to overcome this issue. It aims at introducing software engineering prin-

ciples and techniques within the robotic domain. The final goal is shifting

towards well-defined engineering approaches which stimulate components

reuse and have a final impact on the robotic market-places. Co4robots as-

sumes a robotic application composed by a set of robots (i.e., a team) that

aim at performing a set of missions in a collaborative way. A mission is an

high level goal a robotic application must achieve. For example, a mission

may require a team of robots to bring medical supplies to a surgery room in

the hospital environment. Those missions are typically defined in terms of

a high-level complex mission - a formal description of the goals that robots

shall achieve. The capabilities (e.g., perception, manipulation, and actua-

tion) of the robots with the team must be coordinated and supervised to

ensure that the robotic application achieves the desired mission. For exam-

ple, two robots can be employed to bring medical supplies to a surgery room

in the hospital environment, i.e., a carrier that is able to bring the medical

supplies to the surgery room and a manipulator which has the ability to

load the medical supplies on the carrier. Planners for robotic applications

are software components designed for this purpose, i.e., they synthesize ac-

tions that (a team of) robots must perform to achieve a given mission. For

example, in order to ensure the satisfaction of the mission “bring medical

supplies to a surgery room in the hospital environment” a planner may syn-

thesize the actions “reach the hospital storage”, “wait for medical supplies

to be loaded” and “reach the surgery room” for the carrier and “wait for the

carrier” and “load the carrier” for the manipulator. The actions computed

by the planner are then forward on the running robots, which execute them.

Rather than developing the components of the system from scratch each

time a new robotic application is designed, or when missions are changed,

Co4robots tries to develop systematic software engineering techniques for

the development of robotic applications. These techniques include among

others (i) new techniques that allow heterogeneous agents (including hu-

mans) to collaborate in manipulating and moving objects; (ii) decentralized

real-time planning algorithms that synthesize the actions the robots in the

team must perform; (iii) decentralized real-time perception to allow robots to

perceive their environment either by using its own sensors or by exchanging

sensory information with other nearby agents to accomplish specific tasks;

(iv) a software integration platform to enable easy deployment of robots

5



which includes configuration facilities. The platform aims at integrating the

software produced within the project and drives the instantiation of the out-

comes of research made into the project according to actual needs and (v)

a user-friendly specification language that enables users (i.e., human users

that utilize the robotic system in hand) without expertise in robotics and

information technology (such as the personnel of a hotel or a hospital) to

specify missions to be accomplished by the robots.

1.2 Research Problem

Within the context of the Co4robots project, one of the problems to address

is to support developers in the creation of robotic applications. This is the

general problem that is addressed by this thesis, by tackling the following

sub-problems.

Problem 1. Developers of robotic applications are usually interested in

missions that are specified in high-level logics that contain explicit time con-

cerns, such as “a team of robots has to bring medical supplies to a surgery

room in the hospital environment within 2 minutes”. Explicit time concerns

allow the specification of constraints in missions that not only predicate on

the order in which events must occurs, but only on time aspects related with

the mission execution, i.e., “within 2 minutes”. Temporal logics have been

largely used in the robotic domain to express robot missions. Linear Tempo-

ral Logic (LTL) has been extensively used to express missions [12], [14], [22].

However, LTL does not allow the specification of bounds on the delay be-

tween events, and therefore, a number of contributions have recently consid-

ered Metric Temporal Logic (MTL) [23] as specification language or Timed

Computation Tree Logic (TCTL) [24]. Several works [14], [15], [23] in lit-

erature developed planners that considered missions specified using these

logics considering the analysis of the movements over a bi-dimensional area,

however, these planners are usually simple prototype planners that are only

evaluated considering small matrices of cells that abstract small environ-

mental maps. Scalability of the algorithms on real environments is rarely

evaluated, as well as how the algorithms are able to address teams of robots

when the size of the team increases. Furthermore, no automatic procedure

is provided to generate the abstraction of the matrices that abstract the

environment. Abstractions are usually created manually with the purpose

of showing the applicability of the algorithm on simple scenarios. We be-

lieve that these limitations discourage the usage of such a planners in real

applications. The developers are rather interested on using planners that

work on real maps, and that can be used as off-the-self components.
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Problem 2. Developers of robotic applications are usually interested

in developing solutions that are able to manage teams of robots. Indeed,

the majority of the robotic applications does not consider one single robot

that performs a set of repetitive actions without any interaction with other

robots. Even if planners for multiple robots exist, they usually do not com-

pute the set of actions the robot must perform starting from a mission ex-

pressed in a logic language that allows the specification of explicit temporal

concerns. Considering the planners proposed in literature that possess this

feature, they usually not consider how robots can perform actions and syn-

chronize among each other. They rather usually only take into account the

collision avoidance constraints on small and simplified maps that abstract

the environment without considering real cases or complex scenarios which

is a fundamental requirement for the usage of the developed approaches in

real scenarios.

Problem 3. Developers of robotic applications are usually interested in

developing solutions that consider not only how robots move within an envi-

ronment, but also which actions they can perform and how they synchronize

within each others. By the term of synchronization we mean that two or

more robots should be and remain in a determined position, usually one

next to each other for an interval of time, where they are able to perform an

action such as loading or unloading. A general purpose solution that allow

considering movement, actions and synchronizations when missions contain

explicit time concerns is still missing. Most of the existing solutions support

LTL for the specification of the property of interest. The one that consider

missions expressed in logics able to capture explicit time concerns do not

usually consider teams of robots or are only evaluated on small and simpli-

fied maps that do not allow evaluating the applicability of the approaches

in real case scenarios.

1.3 Contributions of the Thesis

The goal of this work is to develop an approach called MEMO (Map BasEd

planner for TCTL MissiOns), supported by a tool, that helps the developers

in the design of a robotic application. We focus on the planning problem.

Specifically, we aim at computing the movements, actions and synchroniza-

tions the robots within a team must perform to achieve the satisfaction of a

mission that contains explicit-time concerns. The proposed approach is com-

prehensive, meaning that it handles the problems identified in Section 1.2

from different perspectives and provides the following major features.
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• F1: MEMO allows the user to express the desired mission in an high-

level logic formula which may contain explicit time temporal con-

straints. For example, the user may express missions such as “The

robot should perform a determined action in a desired location within

60 seconds”.

• F2: MEMO allows the management of teams of robots. For example,

in order to ensure the satisfaction of the mission “bring medical sup-

plies to a surgery room in the hospital environment within 60 sec” a

planner may synthesize the actions “reach the hospital storage”, “wait

for medical supplies to be loaded” and “reach the surgery room” for

the carrier and “wait for the carrier” and “load the carrier” for the

manipulator and ensure that the execution of the computed plan does

not require more than 60 secs.

• F3: MEMO allows considering not only how robots move, but also

how robots can perform actions in the different locations together

with the time required for executing actions. In the previous example,

the action “load the carrier” performed by a manipulator may require

2 sec.

• F4: MEMO allows considering synchronization among robots. By the

term of synchronization we mean that two or more robots should be

and remain in a determined position, usually one next to each other

for an interval of time, where they are able to perform an action such

as loading or unloading. In the proposed example, the two agents

must synchronize in the same location of the map and synchronously

perform the actions “load the carrier” and “wait for medical supplies

to be loaded”.

• F5: MEMO works on real maps. The tool takes as input an image

describing the layout of a building and a scale parameter and is able

to compute plans based on the provided layouts. This feature makes

MEMO simple to use in real case scenarios, even for non expert users.

Our solution, MEMO allows providing the features previously described

as follows.

• MEMO takes as input an image describing the layout of a building

(F5) and generates a timed automata that encodes this layout and

show how a robot can move within its environment. We implemented

two possible encodings to describe the environment and its relative
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spacial constraints. The first one is more graphical while the second

one relies on logic formulas to describe the ambient. The generation of

the timed automata is based on a sampling step that specifies how the

state space of the building must be discretized. The user is supposed

to set few parameters as input in order to specify the level of details

reported on the Timed Automata model from the map on the image.

One of these parameter is called “sampling span” given by the user

in meters. This value represents the distance between two consecutive

considered points in the environment. The algorithm that manages

the creation of the model from the image creates a matrix that follows

the proportions of the map and organizes the elements at a distance

specified in the inputs. The points of the matrix are defined with an

identifier, and thanks to this identifier combined with the “sampling

span” it is possible to create a direct connection between the points

of the matrix with the real points of the environment. In order to de-

scribe the obstacles present in the environment, the algorithm parses

all the pairs of consecutive states, considered in all directions and ori-

entation, and checks if between the correspondent points in the real

environment there is an obstacle or the path between them is clear.

Then the procedure reports these information in a model expressed us-

ing a Timed Automaton that encodes all the relevant characteristics of

the environment, including the walls, rooms, doors and the corridors.

• MEMO models the behavior of the robots by means of a Timed Au-

tomaton. Nowadays in the world of robotics there exist a large variety

of robot models, each one with its own properties of movements and

different behaviors, in order to fulfill his missions the user selects the

best one relative to his goal. In order to deliver a tool capable of cov-

ering a large number of situations and robot configurations MEMO

allows the user to customize and personalize the Timed Automaton

model of the robot. This feature guarantees a good description of the

real robot selected by the user. In our simulations and verifications

we selected a general robot able to move in the space in four different

directions perpendicular to the vertical and horizontal axis of the map

and able to perform one or more actions in a determined point of the

map. The model is divided in two parts, the first one describing how

the robot moves in the environment while the second one manages the

actions and the task that the robot is able to perform in the space.

In the considered scenario the first part of our model is composed by

five states, four of them representing the direction of movements “up”,
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“down”, “left”, “right” and the fifth one representing the configuration

in which the robot is stationary. The way in which these states are

linked together defines different configurations of robots and different

ways of movements. Each transition is labelled with the action that

represents, which is the name of the target state of the transition.

For example, if we are in the configuration “stay” and the machine

performs the action “right”, after a defined amount of time we will end

up in the state “right”. The transitions are fundamental to manage to

time necessary to achieve a mission, indeed considering a local clock

on the robot, which is reset to zero after the execution of every action,

the algorithm sets constraints on the time interval before enabling the

following action. This time bound depends on the velocity of the robot

and the distance that the robot should travel.

The second part of the robot model describes and programs the exe-

cution of actions through an additional set of states. The transitions

leading to these states constraint the position of the robot in the envi-

ronment, i.e., they specify that certain actions can only be performed

in specific positions. Additional constraints are also added when se-

quences of actions must be performed in order.

• MEMO allows dealing with explicit time temporal specifications and

concerns. We considered Timed Computational Tree Logic (TCTL)

for the specification of the mission of interest. Using this logic, MEMO

is capable of answering requests such as “Is the robot able to deliver

within 2 minutes?” or “Is the robot able to visit three different rooms

in a specific order within 10 minutes?”.

• MEMO relies on UPPAAL Model Checker. UPPAAL is an integrated

tool for creating models, validation and verification of real-time sys-

tems implemented as networks of timed automata, extended with data

types. UPPAAL supports the verification of specifications written in

TCTL language, which allows the user to describe the behaviours that

a robot may perform. In MEMO, UPPAAL is used to analyze the

model of the system, obtained by combining the model of the robots

and their environment, and the TCTL mission, and is used to produce

the plans that the robots must perform. A key point of exploiting

UPPAAL program is the opportunity to extract traces after the verifi-

cations that represent the motion plan of a robot. The program taking

as input the explicit time dependent specification expressing the mis-

sion that the robot should accomplish, analyses the Timed Automata
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model and, if the proposed structure is able to achieve the mission, the

outcome of the tool will be a trace representing the organized sequence

of all the states of the model from the initial to the final configura-

tion. From this sequence of states we manage to extract the practical

motion plan. Using UPPAAL allows us to go beyond the limit of the

proof-of-concepts solutions.

MEMO has been evaluated on different perspectives. Specifically,

• We evaluated the planner considering maps coming from real case sce-

narios. Our maps represent layouts of real buildings. We selected the

maps of the Jupiter Building of “Chalmers University”, Gothenburg,

Sweden, Edificio20 - DEIB of “Politecnico di Milano”, Edificio22 of

“Politecnico di Milano”. These maps represent examples of reason-

able size real environments. The approach and the planner framework

have been validated with different experiments, considering decreasing

values for the sampling, different types of robots and different values

for the secondary parameters. We also considered different missions

and we verified them with different time boundaries.

• We considered both a single robot moving in the space and perform-

ing tasks and a team of robots composed by two interacting agents

programmed for performing a global common mission.

• We evaluated the planners on a simulated environment. We performed

some experiments on the robotic simulator Choregraph which is a plat-

form for the Nao Robot [3]. Nao is an autonomous, programmable

humanoid robot developed by Aldebaran Robotics. Thanks to this

simulator we were able to simulate the Nao robot performing different

missions.

• We evaluated the planner with an experimental evaluation. We de-

ployed our tool on real robots in real environments. We performed the

experiment on the Tiago robot which was provided by Pal Robotics,

one of the partners of the Co4robots project. The Tiago robot is a

mobile manipulator 1.45 meters tall, with 7 degrees of freedom able to

move in complex environments and perform actions. We used MEMO

to compute a plan that satisfy a given mission and to forward the gen-

erated plans to the Tiago robot that executes it. We also performed

experiments with a smaller moving platform called TurtleBot. We

considered missions in which the robot had to reach a set of points
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of interest within a real environment, and perform a set of actions in

these points.

1.4 Structure of the Thesis

This thesis is organised as follows:

Chapter 2 - State of Art.

It analyses the related work. We considered contributions that handled

models based on Timed Automata. We studied works that handled explicit

time concerns, looking for work capable, as the one proposed in this thesis, to

deal with time bounds expressed in second, minutes or hours. We evaluated

the logic languages supported by planners proposed in literature. We also

considered the capability of the tools to manage a team of robots moving

and performing actions.

Chapter 3 - Background.

It describes background concepts and notation necessary to understand this

work. We describe Timed Automata (TA) and Temporal Computational

Tree Logic: the languages adopted in this work to describe the model of

the system (robots and their environment) and the missions of interest.

We briefly introduce the UPPAAL Model Checker, explaining the support

provided by this tool to generate of a TA model, to simulate its behavior, and

to verify the properties of interest. Finally we introduce the material used for

the practical experimentation: the software exploited for the simulation, and

the robots used for the experimental evaluation (Tiago Robot of PalRobotics

Company and the TurtleBot).

Chapter 4 - Contribution.

It presents the contribution of this thesis. We describe the proposed tool:

MEMO a Map basEd planner for TCTL MissiOns. MEMO is a planner

framework able to compute the motion plan of a robot or a team of robot

taking as input an image of the environment and a mission specified in a

specific time dependent logic. We present the work flow of the tool and

its main characteristics. We describe two encodings used to transform a

map of the environment into an equivalent timed automaton. We show how

robots are modelled using timed automata and how these models are used

to compute the actions that that the agents must perform.

Chapter 5 - Implementation.

We describe how MEMO works in practice. We discuss how the Automata

system is created and saved. We describe the algorithms implemented in

MEMO, how TA are extracted from an image. We explain the scripts and
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the functions to make use of our tool. We present how we performed the

translation from the UPPAAL traces to the commands given to the robots.

Chapter 6 - Evaluation.

We report on the experiments performed to evaluate MEMO and on the

analysis of the results of the experiments. We describe how we generate

the different inputs considered in the evaluation procedure: the maps, the

robots in the robotic application, and the missions they have to perform. We

evaluate the time required by MEMO to compute plans in each experiment.

We evaluate the results and used MEMO in different real scenarios.

Chapter 7 - Conclusions.

We draw conclusions and present future works.
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Chapter 2

State of Art

Section 2.1 analyses the contributions present in literature related to our the-

sis. Section 2.2 classifies the related work considering the problems addressed

in this thesis, to detect if and how these problems have been addressed in

literature.

2.1 Related work

We analysed contributions presented in literature regarding the topic of path

planning for robotic applications, when the mission of interest was specified

through an high level logical language. We considered both the single and

the multiple robots cases, whether the approaches support synchronization

and collaboration of robots for the mission achievement, and whether real

environments were considered.

Andersen et al. [8] present a solution to the motion planning problem

for multiple mobile robots. They described how a network of interacting

timed automata could be used to define a model, analyse and verify the

motion planning problems for systems with multiple robots system that

perform displacement within the same environment. Fundamental to multi-

robot problems is the need to control and plan the motion such that the

robots do not collide with each other or obstacles. This paper focuses on

the motion planning problem for a group of unicycle type robots. It provides

a framework for establishing plans based on synchronized timed automata.

The proposed model takes into account a team of robots moving in a small

planar grid in which the motion of each agent is limited by the layout of the

workspace. The timed automata model describing the system represents an

abstraction of the possible motion and of the planar grid representing the

environment. Considering this abstraction, the paper present a procedure



that allows composition and formal symbolic reasoning about plans. The

contributions relies on UPPAAL program in order to check the specifications

and perform verifications on questions such as:

• “Will the robots collide?”

• “Are the robots able to to reach their goals?”

In this way it is possible to check and verify safety and liveness ques-

tions. Dealing with the software UPPAAL the specification requirements

are formulated in computational tree logic (CTL). The output of this ap-

proach are plans that are subsequently used as a high level motion plan and

transferred to the to the robots’ control system. The presented approach

has been evaluated on three different tests:

• Deadlock test

• Motion planning test - ability to find a feasible path

• Motion planning test - ability to report an error

The results carried out by this paper show an expensive computational

cost even if abstraction and approximation have been introduced in the

model and considering the scalability of the approach it will imply an expo-

nential growth of the complexity.

Chen et al. [10] present an algorithmic framework in order to manage

a team of agents considering a task specification given as an LTL formula

concerning a set of properties. Taking into account agents able to satisfy

the desired missions and cooperate with the other agents, this work pro-

poses individual control and communication strategies in order to achieve

a global behaviour of the system that satisfies the given specification. This

contribution considers a purely discrete scenario, in which the behaviour of

the agents is described as a finite transition system and finally applies the

method to automatically deploy a team of miniature cars in an urban-like

environment as a practical experiment.

This approach deals with the challenge of constructing a finite mod-

els that accurately capture behaviours of dynamical system. This paper

addresses a discrete problem in which the agent is modelled as a finite tran-

sition system.

The method proposed takes as inputs three main elements:

• Set of properties to be satisfied
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• Team of agents capable of dealing with the desired missions, cooperate

with each other.

• Task specification in the form of LTL formula explaining the temporal

and logic constraints of the mission.

The proposed approach aims at finding out individual and control and

communication strategies for each agent such that the task is accomplished.

Considering this goal, the main contributions of this paper might be analysed

under three different aspects:

• Development of a computational framework to synthesize individual

control and communication strategies from global specifications given

as LTL formulas over a set of interesting properties.

• Extension of the approach of checking closure properties of temporal

logic specifications in order to generate distributed control strategies

for a team of agents considering their dynamics.

• Practical experimentation on a set-up composed by robotic cars auto-

matically deployed from specifications given as LTL formulas.

In a successive work, Chen et al. [11] develop a technique able to au-

tomatically generate a control policy for a single robot moving in an envi-

ronment that presents some elements with partially unknown or changing

behaviour. The agent was supposed to achieve an optimal surveillance mis-

sion, in which the request defined by the user need to be executed and

repeated several times while the expected time in between consecutive ser-

vices is minimized. The main idea of this work is to define a fragment of

Linear Temporal logic (LTL) to describe the desired mission and analyse

the problem as a temporal logic game. The two main aspects treated in the

contributions are:

• Extension of the results in automata learning to detects patterns of

partially unknown behaviour

• Employment of an automata-theoretic method in order to generate the

control policy.

This paper considered Linear Temporal logic (LTL) and aimed at bringing

together automata learning methods from the fields of theoretical linguistics

and techniques from temporal logic games in order to develop a control strat-

egy for an agent that moves in an environment that might present unknown

dynamics. The main contributions of this paper might be summarised in

two points:

17



• Specification of a fragment of LTL to describe the tasks that the agent

is supposed to perform.

• Show that under some assumptions the environment dynamics could

be seen as a subclass of w-regular languages called strictly k-local

languages.

Fainekos et al. [12] present an automatic framework for the solution of

temporal logic motion planning problem for dynamic mobile robots. The

presented approach is based on hierarchical control the notion of approxi-

mate simulation relations and a new definition of robustness for temporal

logic formulas. As output of analysis and implementing this procedure two

main results have been obtained:

• Presentation of an automatic framework for the solution of the tem-

poral logic motion planning problem for kinematic models.

• Construction of a robust solution accounting for bounded errors in the

trajectories of the system.

This work also deals with with the problem that arises in path planner

unable to manage a number of goals or actions that must be executed in a

particular order or without considering temporal extended missions.

Guo et al. [14] present a reconfiguration method for the motion planning

of multi-agent systems under unfeasible local LTL specifications. This work

shows algorithms in order to compute optimal plan candidates classified de-

pending on the implementation costs and their distance from the specifica-

tion. The main idea is based on the relaxation of not feasible specification.

The main contribution is the introduction of a metric within the atomic

proposition domain, and the relative weighting between the implementation

cost of a motion plan and its distance from the original specification.

In successive works Guo et al. [15] present a systematic way to synthesize

a hybrid control strategy for motion and action planning of an autonomous

robot under LTL task specifications. It proposes a new framework that

combines model-checking-based robot motion planning that deals with ac-

tion using action description languages by means of Linear Temporal Logic

(LTL) formulas. An optimal planner is then designed in order to generate a

sequence of motion-and-action plan able to achieve the desired mission spec-

ified by the user in the requested temporal logic. This contributions deals

with the problem of those approaches that carry out the motion planning

and action planning independently since the actions and the plan are closely
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related. It follows the idea that the specifications of “where to go” is strictly

correlated by the specification of “what to do” both in current and future

instants. Therefore the final goal is to incorporate the action description

formalism with the motion planning. Summarising the main contribution of

this paper, it proposes generic framework to derive the complete description

of the robot’s functionalities within a certain workspace, such that any LTL

task specification in terms of desired motions and actions can be treated.

Furthermore, an optimal sequence of robot’s motion and action that satisfies

the given task specification.

Guo et al. [17] also propose a distributed motion and task control frame-

work for multi-agent systems under complex local LTL tasks and connectiv-

ity constraints. Thanks to this planning, the team of robots is supposed to

achieve all the individual and collaborative tasks while at the same time con-

nectivity constraints are satisfied. One of the main points presented is the

fact that each local LTL task specification captures both the requirements

on the respective agents behaviour and the requests for the other agents col-

laborations needed to accomplish the task. The presented solution shows a

decentralized coordination between the robots concerning a leader-following

scheme, that combined with a systematic leader change, ensures that all the

task will be accomplished. Going a bit more into details, this paper focuses

on planning under complex tasks assigned to the agents such as periodic

surveillance, sequencing or request-response. Agents are considered as a

team modelled as a dynamical system with an assigned local task specifi-

cation expressed in Linear Temporal Logic (LTL). The aim of the work is

to find a suitable decentralized solution while taking into account the con-

straints that the agents can exchange messages only if they are close enough.

The contribution of this work might be summarised in three main points:

• the continuous controller is distributed and integrated with the leader

election scheme;

• the distributed leader election algorithm only requires local commu-

nications and guarantees sequential progresses towards individual de-

sired tasks

• the proposed coordination scheme operates in real-time, upon the run

of the system as opposed to off-line solutions that require fully syn-

chronized motions of all agents.

Guo et al. [18] present a distributed hybrid control strategy for multi-

agent systems where each agent of the team has a local task specified as a

Linear Temporal Logic (LTL) formula and at the same time is subject
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Kloetzer et al. [22] present a computational procedure that enables the

automatic synthesis of decentralised communication control strategies for a

robotic team from global specifications, where these specifications are as-

signed as temporal and logic statements and deal with the missions of vis-

iting determined regions of interests in a partitioned environment. On this

work simulations and experiments have been done. This paper is motivated

by the idea of develop a path planner able to specify motion task in a rich,

high level language and then have this specification automatically converted

into a set of low level primitives, such as feedback controllers and communi-

cation protocols, in order to accomplish the desired task. This contributions

tries to find a solution for two main problems in current motion planning in

robotic applications.

• In most of the cases the path planning is limited to answer questions

such as “go from the initial point A to the final point B while avoiding

collisions with obstacles and other robots” which is nor rich enough to

describe large and complete missions which on the other hand a robot

or a team of robots are able to perform.

• The second aspect deals with the unanswered question ”Is a robotic

application able to automatically generate provably correct local com-

munication and control strategies from global missions specified by the

user in a rich, complete and natural language over regions of interest

considering a real environment?”

This work considers a discrete problem, in which a team of agents can move

through the vertices of a graph representing the environment. The robot

communication constraints are implemented as a graph while the motion

system is modelled as a transitions system over the graph. The control

strategies are automatically generated from task specifications given as a

Linear Temporal Logic (LTL) formula. Analysing the results,the approach

proposed showed five main disadvantages:

• Very high computational cost and the possibility to work only with

very limited environments and with teams composed by a small num-

ber of agents.

• The solution is not completely decentralized, the solution is found in

a “centralized” manner and executed in a distributed manner.

• The approach is conservative or incomplete, it might fail or might be

unable to find an existing solution.

20



• It cannot deal with changes in the environments or external events.

• The method captures no measurements and control uncertainty.

John Koo et al. [23] propose a framework for the coordination of a net-

work of robots with respect to formal requirement specifications expressed in

temporal logics. A regular tessellation is used to partition the space of inter-

est into a union of disjoint regular and equal cells with finite facets, and each

cell can only be occupied by a robot or an obstacle. Each robot is assumed to

be equipped with a finite collection of continuous-time non-linear closed-loop

dynamics to be operated in. The robot is then modelled as an automaton

for capturing the modes of operation for either staying within the current

cell or reaching an adjacent cell through the corresponding facet. By taking

the motion capabilities into account, a bi-similar discrete abstraction of the

hybrid automaton can be constructed. Having the two systems bi-similar,

all properties that are expressible in temporal logics such as Linear-time

Temporal Logic, Computation Tree Logic can be preserved. Motion plan-

ning can then be performed at a discrete level by considering the parallel

composition of discrete abstractions of the robots with a requirement speci-

fication given in a suitable temporal logic. The bi-similarity ensures that the

discrete planning solutions are executable by the robots. For demonstration

purpose, a finite automaton is used as the abstraction and the requirement

specification is expressed in Computation Tree Logic.

Koymans et al. [24] aim to present a formal specification method for real-

time systems concerning the main role of quantitative temporal properties.

This work characterises real-time systems by giving a classification of such

quantitative temporal properties, then it extends the usual models for tem-

poral logic by including a distance function to measure time and analyses

what conditions should be applied on such function. The introduction of

appropriate temporal operators turns qualitative aspects into quantitative

ones.

Nikou et al. [33] present a systematic method for multi-agent controller

synthesis which aims to compute cooperative plans under high-level specifi-

cations given in MITL formulas. The proposed solution involves a sequence

of algorithmic automata in order to compute the desired mission. The goal

of this work is to introduce some specific time bounds into complex tasks,

such as:

• Periodically survey of a region

• Avoiding a particular location in the space
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• Keeping the interval between the execution of two consecutive actions

smaller that a certain value of time instants.

• Visiting some location with a determined interval of time.

The structure of the contribution in order to address the problems is:

• The robot dynamics are abstracted into a finite discrete transition

system using cell decomposition.

• A discrete plan that meets the high level mission is synthesised.

• The discrete plan is translated into a sequence of continuous controllers

for the original system.

This work aims at designing an automated planning procedure for a team of

agents. The user gives individual, independent timed temporal specification

to each robot and also global team specifications. The considered logic is

Metric Interval Temporal Logic (MITL) in order to specify explicit time con-

straints. The solution proposed is decentralised in handling the individual

missions and centralized only when dealing the global team specifications.

Quottrup et al. [35] present how a network of interacting timed automata

could be exploited to model, analyse and verify the motion planning of a

team of multiple robots able to move in a determined environment. The

proposed method relies on on an infra-structure of agents with feed-back

controllers that presents constraints on the movements defined by a planar

grid. The automata language allows the composition and formal symbolic

reasoning about coordinates solutions even if the environment considered is

just an abstraction of a real ambient. The mission given to the agents are

specified in Computational Tree Logic (CTL), and relying on the software

UPPAAL, it is possible to verify these properties. In this way it is possible

to algorithmically analyse all feasible trajectories that satisfy the desired

missions.

Rabiah et al. [36] focus of navigation algorithms and path planners,

which are two fundamental features of autonomous robots, aiming to pro-

duce some improvements. The goal of this work is to capture concrete

specifications by transforming a hing-level specification into an equivalent

executable program. This paper uses Z specification method in order to

define the motion that an agent is supposed to perform.

Smith et al. [37] present a method for the automatic generation of opti-

mal path for a moving robot, able to satisfy specifications defined in an high

level language. The environment and the motion of the robot is represented
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as a general transition system characterised by transitions. The desired be-

haviour of the robot is specified as a linear temporal logic formula, thanks

to LTL language. This work also focuses on the optimization of a propo-

sition which must be repeatedly satisfied. The cost function that should

be minimised is the time between instances of the optimizing proposition.

A trajectory is computed for every formula, and this trajectory minimises

the function. This method utilises Buchi automata to produce an automa-

ton, structured as a graph, able to satisfy the properties representing the

missions.

Work on cyber-physical spaces [46, 43, 34] has targeted modelling and

obtaining automata structures for cyber-physical spaces in an automatic

fashion supporting their verification. Moreover, planning –over different

runtime assumptions– has been considered for adaptive security, targetting

explicitly the interplay between computational and physical aspects [45]. We

note that analyzable models of the physical space where robots operate may

be automatically obtained [42, 44] and model-driven engineering principles

and standards can integrate them in our approach [19].

2.2 Classification of related work

The goal of a motion planner is to compute a set of actions, a plan, that a

robot or a team of robot should perform in order to achieve a predetermined

mission or task specified by the user. In this thesis we present MEMO, a

motion planner, which aims to become an useful tool in the development of a

robotic application. As presented in the previous section, the topic of motion

planning has been studied and considered in different works in literature, we

believe that some aspects and needs of current robotic applications are still

to be handled, improved or integrated in order to reach a user-friendly and

complete approach, which is one of the goals proposed by this work. For

this reason we classified work in literature considering four different aspects:

• the ability of the proposed planning framework to support missions

that contain explicit time concerns;

• the ability of the proposed planning framework in managing teams of

robots;

• the ability of the proposed planning frameowrk in managing actions

and synchronization among robots;

• the ability of the proposed framework in supporting realistic environ-

ments.
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F1 F2 F3 F4

Paper Log Tp Teams Act Sync Mp Exp Tool

[35] TCTL 3 3 7 7 7 7 UPPAAL

[8] TCTL 7 3 7 7 7 3 UPPAAL

[23] CTL 7 3 7 7 7 3 C-SMV

[41] LTL 7 7 7 7 7 3 7

[37] LTL 7 7 3 7 7 3 7

[17] LTL 7 3 3 3 7 7 Matlab

[20] LTL 7 3 7 7 7 3 7

[10] LTL 7 3 3 3 7 3 7

[21] LTL 7 3 3 3 7 7 7

[22] LTL 7 3 3 3 3 3 7

[12] LTL 7 3 3 3 3 7 Matlab

[40] LTL 7 3 3 3 7 7 Matlab

[11] LTL 7 7 3 7 7 7 Matlab

[39] LTL 7 3 7 7 7 7 7

[16] LTL 7 7 7 7 7 7 7

[14] LTL 7 3 3 3 7 7 Matlab

[15] LTL 7 7 3 7 7 7 Matlab

[18] LTL 7 3 3 3 7 7 7

[33] MITL 3 3 3 3 7 3 7

[47] MITL 3 7 3 3 7 7 CPLEX

[32] MITL 3 3 3 3 7 7 Matlab

Table 2.1: Analysis of related work on planning.

Table 2.1 presents the obtained results, where

• Log: reports the logic language that has been used to specify missions;

• Tp: we show which works deal with explicit temporal concerns;

• Team: in this column we analyse if the planner presented in the relative

work could manage more than two robots moving at the same time in

the same environment;

• Act: shows if the procedure under study may be able to allow the user

to program and personalize the system with different robot actions

with relative different time bounds;

• Synch: shows whether synchronization has been considered;
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• Mp: reports the works that take into account a map of a real and

complex environment, such as an entire floor of a building, not only

considering an abstraction or simplification of the space;

• Exp: in this column we list the contributions that performed real

experiments and deployed their algorithms on a real robot;

• Tool: in the last columns we describe with which software tool each

work has been developed.

Note that, when dealing with multiple robots, with the term synchronization

we mean their ability to perform collaborative actions, in order to achieve

this the robots must be able to meet in the same location at the same time

and perform an action together, for example a collaborative grasping.

In the following we discuss the limitations of the work presented in Ta-

ble 2.1, and the absence of a generic framework that handles all the aspects

previously described.

2.2.1 Expressing explicit time concerns in robotic missions

In literature the logic language that has extensively been used to express

missions is the Linear Temporal Logic (LTL). It is a modal temporal logic

with modalities referring to time. In LTL, one can encode formulae about

the future of paths, e.g. a condition will eventually be true, a condition will

be true until another fact becomes true. It is a fragment of the more complex

CTL, which additionally allows branching time and quantifiers. This type of

logic turns out to be enough expressive to specify a rich variety of possible

behaviours of the robots [12], [14], [22], different missions and combina-

tions of actions and also benefits from a consolidated knowledge containing

algorithms for verifications, model-checking and synthesis of controllers.

However, this kind of logic applied to a robotic applications shows some

drawbacks, in fact the lack of metrics on time does not allow the user to

define specifications of bounds on the delay between events. In LTL the

programmer could express constraints on the order in which events should

occur for example it is possible to request that an event B follows an event A

but the user is not able to express limitations on the time interval between

the two events by imposing for instance a delay smaller than 20 time units.

For this reason, in recent works, some contributions [24], [8], [23], tried to

take into account a different logic language which considers more detailed

time constraints, the introduced language are Metric Temporal Logic (MTL)

or Timed Computational Tree Logic (TCTL). Even if these works adopt this

kind of temporal logic, the majority of them are mostly theoretical, some
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of them do not explicit consider how the robots synchronize one with the

other and there is not the possibility to program the actions of the robots,

while in our work all this feature are integrated in the framework. Another

huge difference between the tool presented in this thesis and the previous

ones adopting the same temporal logic is that they are not validated on real

maps as they consider small abstractions of the environments. Considering

this aspect we propose a more complete and exhaustive approach.

In the second column we list the works that consider explicit time con-

cerns for mission definition, the ones that are able to deal with specifications

such as “Is the robot able to perform action A within 60 seconds starting

from the initial configuration?”. As shown in the table most of the contri-

butions do not deal with with timing specifications, and in some cases (such

as [24]) the missions are specified without taking into account explicit time

constraints even if the logic language adopted for the work supports it. In

[33], for example the language used do not allow the user to define specific

time limitations, the tool simply runs an algorithm that computes the plan

with shortest path.

2.2.2 Managing Team of robots

In modern robotics the majority of the automated work are performed by

the collaboration of robots, working together they are capable of achieving

difficult and complex tasks. For this reason, in a motion planner software

it is fundamental to give the opportunity to the user to manage a team of

robots. The analysis of the behaviour of a team of robots and the synthesis

of the motion plans that regulate their movements over a bi-dimensional

area have been studied in several works in the last few years [14, 36, 23, 32].

In modern robotics studying this kind of features means considering

two or more heterogeneous agents that may be have different structure or

hardware but share the same properties of programmability and ability to

read specifications given as input in order to perform collaborative actions.

Even if these consideration have been taken into account in several works in

most cases the explicit temporal constraints on which we are highly focus

are not considered.

Concerning the problem of managing multiple robots in the same en-

vironment, another improvement of our work with respect to the previous

contributions is the support of the Collision Avoidance algorithm also on

large maps. This aspect is a fundamental feature, it is not possible to work

with a planner that do not consider the possible conflict of two robots in

the same position. Unlike the analysed works we are able to deal with a
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multiple robots system also in a extended environment.

2.2.3 Handling Actions and Synchronization

In Table 2.1, columns Act and Synch describe works that consider how

robots can perform actions and synchronize among each others, respectively.

As shown in the table not all the works include this feature. The one that

possess this feature, generally do not consider explicit time concerns. We

think that this aspect is rather foundamental and must be considered in our

approach.

2.2.4 Considering realistic Environments

Most of the planners studied in literature are not suitable for a practical use

since they cannot support simulations, verifications and path planning on

extended and real case scenarios. The majority of the contributions listed

in the Table 2.1 consider just an abstraction of real environments. They

do represent the space through grid cells, usually with very limited size.

In these works the environment took in consideration is composed by one

room or one ambient where few obstacles are introduced directly by the

user just considering an ad-hoc solution. With this kind of procedure would

be impossible to model larger ambient with a greater number of obstacles,

doors or corridors normally present in the environments where robots are

deployed.

For these reasons it is difficult to evaluate how the algorithms proposed

scale when the size and the complexity of the maps grow, for example in

the case of applying the planner to real buildings. Moreover, most of the

planners are developed by means of a particular and specific solutions rather

than built on pre-existing solutions of proved effectiveness. Our tool presents

a solution to this problem as it supports large maps as input and thanks to

the developed algorithms we are able to create a model of a great variety of

ambient and real buildings.

The use of consolidated tools has many advantages. In many cases the

implemented procedure is stable and efficient as the tools include optimiza-

tions that work at the engine level. Moreover, consolidated tools might offer

different options to the user for the analysis of the system, such as, for in-

stance, the state space exploration policy (either breadth first or depth first).

As as consequence, the user can experiment the most appropriate means to

carry out the analysis by choosing different available options without the

need of implementing specific solutions on every considered system.
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Over all the past contributions analysed on the grid, only two of them

[24], [8], rely on UPPAAL, which is a well known model checker for time de-

pendent systems. However these works do not allow the user to define com-

plex mission specifications concerning actions and synchronization among

robots which are considered a crucial feature of every motion planner frame-

work. Further to this these works carry out an evaluation on a synthesized

spaces of small size without the application to a real scenario.

Finally the last columns of the table shows if a contributions has been

validated and implemented on a real robot moving in a real scenario. With

the exception of [24], [8], the remaining works have only been evaluated

through simulations which sometimes does not perfectly reproduce all the

characteristic of the real world. For this reason after the verification, simu-

lation and evaluation of our tool on a software simulator we have also tested

its validity performing real experiments on actual robots.
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Chapter 3

Background

This chapter describes the concepts and formalisms necessary to fully un-

derstand the contribution of this thesis. Section 3.1 provides an overview

over the notation of Timed Automata and of the temporal logic language

adopted in this work. Section 3.2 presents the UPPAAL Model Checker:

the main software on which our planning procedure is based. Section 3.3

shows the tools that will be used during the evaluation.

3.1 Modeling Formalisms

Section 3.1.1 presents Timed Automata. Section 3.1.2 presents the Timed

Computational Tree Logic, i.e., the logic that will be used in the specification

of the missions of interest.

3.1.1 Timed Automata

A finite-state machine is a mathematical model of computation. It is an

abstract machine that is located in just one of the finite number of states that

represent the system, at any given time. Considering and receiving external

inputs the described system changes from one state to another, this change

is made possible by transitions that put in relation a pair of states, enabling

the system to modify its configuration. A finite-state machine is defined by

the list of the states composing the system, the initial configuration and the

conditions applied on the transitions in order to enable or disable the change

of configuration.

The behaviour of state machines can be observed in many devices in

modern society that perform a predetermined sequence of actions depending

on a sequence of events with which they are presented.



In theory a Timed Automata [7] is a finite automaton extended with a

finite set of real-valued clocks. During the development of the behaviour

of the system and the continuous changes of the configurations clock values

increase all with the same speed. Considering the transition between one

state and another, clock values could be compared to integers. This feature

allows the definition of conditions on the transitions concerning the values of

the clocks, which are able to enable or disable the change of configuration.

Furthermore, in order to give flexibility to the program these clock could be

reset to zero in order to restart the count of the time.

Let X be a finite set of clocks with real values, Y be a finite set of

variables with integer values and Act be a set of actions. Let Γ(X) be the

set of clock constraints defined as η := x ∼ c | ¬η | η ∧ η, where ∼∈ {<,=},
x ∈ X and c is a natural number; and let Γ(Y ) be the set of variable

constraints ζ defined as ζ := y ∼ d | y ∼ y′ | ¬ζ | ζ ∧ ζ, where y and y′

are variables in Y and d is an integer number. Let assign(Y ) be the set of

assignments of the form y := exp, where y ∈ Y and exp is an arithmetic

expression over the variables in Y and the integers.

Definition 3.1.1. Given a set of atomic propositions AP , a timed automa-

ton is a tuple 〈Q, q0, v0, I, L, T 〉, where: Q is a finite set of locations, q0 ∈ Q is

the initial location, v0 is a function assigning each variable in Y with an inte-

ger value, I : Q→ Γ(X) is an invariant assignment function, L : Q→ ℘(AP )

is the labeling function and T ⊆ Q × Q × Γ(X) × Γ(Y ) × Sync × ℘(X) ×
℘(assign(Y )) is a finite set of transitions such that Sync = Act× {!, ?}.

The semantics of a TA is given in terms of configurations, i.e., pairs (q, v)

defining the current location of the automaton and the value of all clocks

and variables, where q ∈ Q and v is a function over X ∪ Y assigning every

clock with a real and every variable with an integer. A configuration change

from (q, v) to (q′, v′) can happen because either a transition in T is taken or

because time elapses.

3.1.2 Timed Computational Tree Logic

UPPAAL properties allow for specifying missions through a BNF-grammar

based on the CTL logic, which also contains “time related” constraints

(TCTL). Let e be a boolean combination of formulae on variables and clocks

such as, for instance, x ≤ 10 ∧ c1.Done indicating that clock x is less than

or equal to 10 and that component c1 is in location Done. TCTL allows the

specification of properties in the form

• A�e (“for all path globally e holds”);
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• A♦e (“for all paths finally e holds”);

• E�e (“exists a path in which always e holds”) and

• E♦e (“exists a path in which finally e holds”).

3.2 UPPAAL Model Checker

UPPAAL [25] is a tool box for modeling, simulation and verification of real-

time systems, based on constraint-solving and on-the-fly techniques, devel-

oped jointly by Uppsala University and Aalborg University. It is appropriate

for systems that can be modelled as a collection of non-deterministic pro-

cesses with finite control structure and real-valued clocks, communicating

through channels and shared variables. A general interface of the program

is presented in Figure 3.1

The structure of this program might be divided in three main sections:

description language, simulator and model checker. The description lan-

guage is a non-deterministic guarded command with data types which helps

the user in the phases of modelling and design to describe the behaviour

of the system as a network of timed automata. The section of simulation

and verification are programmed in order to guarantee an automated anal-

ysis of the system by the manipulation and the solution of the constraints

of the state-space. The simulator enables the analysis of the dynamics of

the system during the early modeling stages and provides a mean of fault

detection.

• The modeling framework. In order to model the system UPPAAL

gives to the user both graphical and textual formats for the language

used to describe the system. The user has the opportunity to design

the system with the Autograph-based graphical interface which might

result an easy and immediate way to get used to the program or to deal

with simple schemes. When dealing with complex systems described

by a large number of element could be useful to work with the textual

format. The textual language provides a basic programming language

for timed automata.

• The model-checker. The model-checker is designed to check invari-

ant and reachability properties, in particular if certain combinations

of states and constraints on clocks and integer variables are reach-

able from an initial configuration. Other properties such as bounded

liveness properties can be checked by reasoning about the system in
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Figure 3.1: Interface of the software Uppaal Model Checker.

the context of testing automata or simply decorating the system de-

scription with debugging information and then checking reachability

properties.

• The simulator. The simulator allows the user to examine in an

interactive and graphical fashion the dynamic behaviour of a system.

In contrast to the model-checker which explores the whole reachable

state-space of a system - examining all the behaviour of the system,

the simulator explores only a particular execution trace i.e., a sequence

of states of the system. This will in early stages of modelling (or

design) provide an inexpensive mean of fault detection. In comparison

the model-checker is obviously more expensive as it amounts to an

exhaustive simulation covering all behaviour of the system. Another

useful application of the simulator is to visualize a diagnostic trace

generated by the model-checker; thus the user can in an interactive

and graphical fashion examine the execution trace that may result in

a system error.
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3.3 Experimentation

This section presents a set of tools and robots used in the evaluation of the

proposed approach. Section 3.3.1 presents the Nao Robot one of the robots

used within our evaluation. Section 3.3.2 a simulation tools that allows

evaluating the behavior of the Nao Robot. Section 3.3.3 and 3.3.4 presents

the TurtleBot and the Tiago Robot, two additional robots considered during

the evaluation.

3.3.1 Nao Robot

Nao [3] is an autonomous, programmable humanoid robot (Figure 3.2) de-

veloped by Aldebaran Robotics, a French robotics company headquartered

in Paris, which was acquired by SoftBank Group in 2015 and rebranded

as SoftBank Robotics. The robot’s development began with the launch of

Project Nao in 2004. On 15 August 2007, Nao replaced Sony’s robot dog

Aibo as the robot used in the RoboCup Standard Platform League (SPL),

an international robot soccer competition. The Nao was used in RoboCup

2008 and 2009, and the NaoV3R was chosen as the platform for the SPL at

RoboCup 2010.

The Nao Academics Edition was developed for universities and labora-

tories for research and education purposes. It was released to institutions

in 2008, and was made publicly available by 2011. Various upgrades to the

Nao platform have since been released, including the 2011 Nao Next Gen

and the 2014 Nao Evolution.

The various versions of the Nao robotics platform feature either 14, 21

or 25 degrees of freedom. All Nao Academics versions feature an inertial

measurement unit with accelerometer, gyrometer and four ultrasonic sen-

sors that provide Nao with stability and positioning within space. The

legged versions included eight force-sensing resistors and two bumpers. The

most recent version of the robot, the 2014 Nao Evolution, features stronger

metallic joints, improved grip and an enhanced sound source location sys-

tem that utilises four directional microphones. The OS powers the robot’s

multimedia system, which includes four microphones (for voice recognition

and sound localization), two speakers (for multilingual text-to-speech syn-

thesis) and two HD cameras (for computer vision, including facial and shape

recognition).

The main specifications are summarised in the following list:

• Hight: 58 cm

• Weight: 4.3 kilograms
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Figure 3.2: Nao Robot.

• Autonomy: 90 minutes

• Degrees of Freedom: 25

• Compatible with: Windows, Mac OS, Linux

• Programming Languages: C++, Python, Java, MATLAB, Urbi, C,

.Net

• Sensors: Two HD cameras, four microphones, sonar range finder, two

infra-red emitters and receivers, inertial board, nine tactile sensors,

eight pressure sensors

• Connectivity: Ethernet, Wi-fi

3.3.2 Choregraph

Choregraph is a multi-platform desktop applications, allowing you to:

• Create animations, behaviours and dialogues.

• Perform tests on a simulated robot or directly control a real one.

• Monitor, program and control your robot

• Enrich Choregraph behaviours with your own Python code.
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Figure 3.3: Interface of the software simulator Choregraph.

This program enables the user to perform simulations of the expected and

programmed robot, it shows in details all the movements executed by the

robot in a fictitious environment which can be modelled as the real environ-

ment under consideration thanks to a 3D graphical tool. An example of the

interface of Choregraph is showed in 3.3

3.3.3 TurtleBot

Figure 3.4: TurtleBot.
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TurtleBot [4], presented in Figure 3.4, is a personal robot kit with open

source software. TurtleBot was created and developed at Willow Garage by

Melonee Wise and Yully Foote in November 2010. With TurtleBot, the user

is able to build a robot capable of driving in the environment, see in 3D and

have enough power and skills to preform different actions and create various

types of applications.

The TurtleBot kit is composed by a mobile base, 2D/3D distance sensor,

laptop computer and the TurtleBot mounting hardware kit. In addition to

the TurtleBot kit, users can download the TurtleBot SDK from the ROS

wiki. TurtleBot is designed to be easy to buy, build, and assemble, using

off the shelf consumer products and parts that easily can be created from

standard materials. As an entry level mobile robotics platform, TurtleBot

has many of the same capabilities of the company’s larger robotics platforms,

like PR2.

3.3.4 Tiago Robot

Figure 3.5: Tiago Robot.

TIAGO [5], presented in Fugure 3.5 is a moving platform developed by Pal

Robotics company. It is a service robot designed to work in indoor environ-

ments. TIAGO’s features make it the ideal machine for research, especially

on ambient assisted or light industry. It combines mobility, perception, ma-
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nipulation and human-robot interaction capabilities for one specific goal: to

be able to assist in research.

The robot is able to map indoor environments, recognise people and

obstacles and perform tasks such as movements and objects grasping thanks

to its seven degrees of freedom robotic arm.
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Chapter 4

Contribution

This chapter presents the contribution of the thesis. Section 4.1 presents the

MEMO framework. Section 4.2 describes how maps containing the building

layouts are used to generate Timed Automata (TA) that specify how robots

can move. Section 4.3 presents how robots are modeled within MEMO.

Section 4.4 describes how missions containing explicit time concerns are

specified. Section 4.5 describes how the tool UPPAAL is used to generate

plans for the robots. Section 4.6 specifies how MEMO can be used with

multiple robots.

4.1 MEMO

MEMO (Map basEd planner for TCTL MissiOns) is a high level planner

for robotic applications. An overview of MEMO is provided in Figure 4.1.

MEMO takes as inputs an image that describes the environment in which

the robots will be deployed, such as the layout of a building, and the models

that describe the behaviours of the robots, which may be provided by robotic

companies. These elements are used, together with the mission specified by

the user, to compute a set of plans (provided as outputs) that ensures the

mission achievement and that will be executed by the robots.

Tool Inputs. MEMO takes the following inputs:

• Image 1©. It contains the layout of the environment. The layout

contains a map of the building of interest which represent he floor

where the robots will move and operate. Examples of these maps are

fire control plans or design documents of buildings. These maps are

broadly available in real contexts.

• Models of the robots 2©. They contain the description of the



Figure 4.1: A high level overview of the MEMO framework.

possible behaviours of the robot. These models encode freedom degrees

of the robots, possible movements and actions. The fact that robot

models are provided as inputs to MEMO makes the tool suitable for

a large number of different situations where different robot models

are considered. The user is enabled to configure the properties and

behaviour of his own robot, to program the actions and the sequence

of tasks to perform in order to achieve the determined mission. The

user has to change parameters such as the diameter of the footprint

and the displacement velocity of the models of the robots based on

the physical characteristics of the robots that will be deployed in the

robotic application. These two values are essential for the creation of

the complete model of the system. The first one prevents undesired

collision with the walls and any kind of obstacles. The second one,

combined with the displacement covered, will keep track of the time

necessary for the tasks.

• Mission of interest 3©. The user, analysing the map or the im-

age of the environment, depending on the the desired mission, should

select the initial location of the robots. The user has also to select

some “Points of Interest”. These points represent the locations where

the robots are programmed to perform actions, points that the robot

should visit or simply the final configuration at the end of the mis-

sion. These information are given to the tool as coordinates (x, y) ex-

pressed in pixels, which are easily derived from the image. The mission
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the robots must perform is provided by the user as a TCTL formula.

Thanks to this logic language the user is able to define specifications

that perfectly describes the robot actions and sequences of task and

in addition to this he is enabled to specify detailed time constraints

using explicit time intervals such as seconds, minutes and hours.

• Additional parameters 4©. In addition to the main inputs previ-

ously described, the user is supposed to provide some other secondary

parameters to the tool. In order to create a correlation between the

real distances in meters of the environment and the measures of the

map, is necessary to set the value of the scale parameter. Another

important input to be given to the tool for the creation of the mod-

els is the distance with which we will sample and discretize the map.

The user insert this parameter in meters and it represents the distance

between two consecutive positions in the real building. Since MEMO

uses this parameter to discretize the map, it should be selected very

carefully. As this parameter decreases the level of details implemented

in the map increases; at the same time it reduces the performances

in the generation of the discretized map. Another aspect to take in

consideration when selection this input is the type of building where

the robot is moving. If the user wants to perform simulations and

verification on a large warehouse with few obstacles a large sampling

factor can be chosen. Vice versa, if the building of interest has tens

of rooms, offices, doors and corridors, a small value of the sampling

factor allows the model to describe important details that are neces-

sary for a correct planning. How to find a good value for the sampling

factor, and providing automated procedure for its selection, is out of

the scope of this thesis.

MEMO in Action. MEMO uses the inputs previously described to

compute plans that ensure the satisfaction of the desired mission. These

plans are then performed by the running robots. Specifically, MEMO works

as follows:

• Encoding the image into an equivalent TA 5©. Our tool takes

the image of the map of the environment and, thanks to the developed

algorithms, converts it in the equivalent Timed Automaton model of

the system environment. While performing this operation the algo-

rithm evaluates the secondary parameters given as inputs by the user.

• Creation of the model of the system 6©. The Timed Automaton

describing the environment and the models of the robots are combined
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to obtain a model of the system. Thus, the obtained model of the

system contains both the model of the environment and the models of

the running robots.

• Plan creation 7©. The model of the system together with the mis-

sion specified by the user is given as input to UPPAAL Model Checker.

With this program is possible to perform both simulation and verifi-

cation. The user is able to select the possible actions to the robot e

simulate its behaviour and its movements. UPPAAL analyses them

and automatically verifies if the robot is able to achieve the mission in

the given time interval. If the specified mission is feasible according to

the environment and to the time constraint, the model checker gives

as output a trace representing the sequence of the states and transi-

tions followed by the robot from the initial to the final configuration

in order to fulfil the task.

• Deployment of robot commands from the plan 8©. The trace

produced in step 7© contains the trace to be followed by the robots

to accomplish the mission. The trace contains the sequence of states

that define the points on the real map with respect to the global frame

of the building. MEMO analyzes the trace, parses it and compute the

actions that the robots should perform. The computed actions are

forwarded to a simulator or to the running robots.

4.2 Encoding the Environment

One of the main advantages of MEMO compared with planner proposed in

state of the art, is that it is able to compute plans from real maps that

simply contains images of the building where the robots will be deployed.

These maps may contain layout of building, such as offices, warehouses or

hospitals. Maps are used to create a model that takes into account all

the physical obstacles as walls, corridors and doors. An example of map

layout representing the Jupiter Building of the University of Gothenburg is

presented in Figure 4.2.

4.2.1 Preliminaries

MEMO creates a model from a continuous space by discretizing the image

in a predetermined amount of points from which it is possible to describe

the fundamental characteristics of the map.
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Figure 4.2: An example of map layout. It represents the map of the Jupiter Building

of the University of Gothenburg.

The span parameter. The distance between points is defined through

the span parameter. The span parameter is provided by the user and defines

the level of details with which we create the model. The lower is the value

of this parameter, the higher is the resolution of the sampling. Choosing

the right value for the span parameter is not always easy, since on one hand

we would like to have a fast generation of the TA and thus to have a high

span value, on the other hand we would like to have precise results, and thus

keep the value of the span parameter low. How to select a good value for

the span parameter is out of the scope of this thesis and will be addressed

in future work. However, to ensure correctness, the span must ensure the

property 4.1, i.e., the span must be smaller then the difference between the

door width and the diameter of the robot divided by two. This relation

ensures that doors of the plan are not neglected and thus rooms will not

result to be unreachable.

span < (doorwidth− robotdiameter)/2 (4.1)

Discretizing the map. MEMO discretizes the map into a large rect-
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angular matrix that preserves the proportion of the image. The measures

of the width (W ) and the heigh (H) of the environment and the span pa-

rameter (expressed in meters), define the size of the matrix to be generated.

Considering the width (W ) of the environment on the X axis and the heigh

(H) along the Y axis, to represent the positions on the map we define the

sets X and Y as specified in equations 4.2 and 4.3

X = {x ∈ N | 0 ≤ x ≤W − span, (x % span) = 0} (4.2)

Y = {y ∈ N | 0 ≤ y ≤ H − span, (y % span) = 0} (4.3)

The sets X and Y contain all the possible X and Y coordinates within

the considered map. Then, every discrete position in the map is identified by

a point (x, y) where x ∈ X and y ∈ Y . The values of these two sets will be

fundamental for the algorithms when defining the constraints representing

the walls and obstacles in the environment. Indeed during all the procedure

the algorithm always keeps a direct association between the discretized point

just computed and the relative points on the map on the figure.

Let us consider the set of actions Act = {u, d, l, r, s}, representing pos-

sible movements an agent (i.e., the robot) can perform in the environment,

where actions u, d, l, r represent the fact that an agent can move up, down,

left and right, respectively. For every a ∈ Act , let Block(a) be the set of

positions (x, y), with x ∈ X, y ∈ Y , where the robot cannot take action

a when its current position is (x, y) due to the detection of an obstacle or

wall between the source and target point. For instance, Block(u) are those

positions (x, y) from which the robot cannot move to reach (x, y − span).

The two encodings. MEMO consider two encoding to represent the

considered map as a Timed Automaton. The general idea behind the two

algorithms is similar. The algorithms checks whether it is possible to reach

one point from another by checking for the presence of obstacles, i.e., walls

and doors. If it is possible to go from one point to another a transition

is added between the two points. From a usage perspective, the models

generated from the two encodings are equivalent. The two encodings are

presented in the following.

4.2.2 Encoding 1

MEMO encodes the points of the environment through a set of Timed Au-

tomaton states. The Timed Automaton encoding the environment is defined

as follows:

• Each state s of the Timed Automaton represents a point (x, y) of the

map.
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Figure 4.3: Timed Automata model of the considered region of the Jupiter building.

• Consider two state s1 and s2 representing two points (x1, y1), (x2, y2)

such that |x1 − x2| = span and |y1 − y2| = 0 or |x1 − x2| = 0 and

|y1 − y2| = span, transitions encodes whether it is possible to move

from (x1, y1) to (x2, y2). A transition from s1 to s2 is in the timed

automaton if it there is no obstacle (e.g., no wall) between state s1
and state s2. A self-loop transition is also added on each state of the

environment, meaning that the robot can remain its current location.

• To enable synchronization between the model of the robots and the en-

vironment in which they are deployed transitions are labelled. Specif-

ically, that depending on the direction would be labelled as “u?” (up),

“d?” (down), “l?” (left) and “r?” right. The self-loop on each state is

labelled with the character “s?” (stay).

For example, the TA generated from the portion of the layout of the

Jupiter building indicated in Figure 4.2 with the symbol A, is presented

in Figure 4.3. As evidenced in the figure, states represent locations of the

environment, transitions specify how it is possible to move from one state

to another.

In the following we formally describe how the Timed Automaton (TA)

that describes the environment is defined. Specifically, a Timed Automaton
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(TA) E = 〈Q, qx0,y0 , v
0, I, L, T 〉 that describes the environment is defined as

follows:

• Q = {(x, y) | x ∈ X, y ∈ Y } represent the possible positions of the

robot on the map;

• (x0, y0) = qx0,y0 , such that qx0,y0 ∈ Q is the initial position of the

robot;

• T is a set of transitions such that each transition t ∈ T satisfies one of

the following rules:

– (q(x,y), q(x,y−span), ∅, ∅, (u, ?), ∅, ∅) ∈ T if and only if (x, y) 6∈ Block(u);

– (q(x,y), q(x,y+span), ∅, ∅, (d, ?), ∅, ∅) ∈ T if and only if (x, y) 6∈ Block(d);

– (q(x,y), q(x−span,y), ∅, ∅, (l, ?), ∅, ∅) ∈ T if and only if (x, y) 6∈ Block(l);

– (q(x,y), q(x+span,y), ∅, ∅, (r, ?), ∅, ∅) ∈ T if and only if (x, y) 6∈ Block(r);

– (q(x,y), q(x,y), ∅, ∅, (s, ?), ∅, ∅) ∈ T for every position x, y.

Intuitively, a robot can go up, down, left and right if and only if the cur-

rent state (x, y) is not in the set Block(u), Block(d), Block(l), and Block(r),

respectively, meaning that the path that moves to position (x, y−span),(x, y+

span), (x− span, y) and (x+ span, y) is not blocked.

For example, the TA generated from the portion of the layout of the

Jupiter building indicated in Figure 4.2 with the letter B, is presented in

Figure 4.4. As evidenced in the figure, it is possible to reach the set of states

framed by a box marked with symbol 1© from the states framed by a box

marked with symbol 2© only by crossing states that encode points located

in correspondence with a door.

4.2.3 Encoding 2

MEMO encodes the points of the environment through a single Timed Au-

tomaton state and a set of transition. The main idea behind the second

encoding of the environment is the following.

• The points of the environment are modelled through two integer vari-

ables xrob and yrob, with 0 ≤ xrob ≤ w−span and 0 ≤ yrob ≤ h−span.

• Transitions specify how agents can move within the environment by

changing the values of variables xrob and yrob.
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Figure 4.4: Detail of a door represented in the Timed automata model.

The fact that a single state is used to represent the environment makes

the encoding more compact with respect to the number of states.

In the following we formally describe how the Timed Automaton (TA)

that describes the environment is defined. For every a ∈ Act , let γa be the

formula
∧

(x,y)∈Block(a)

¬ (x = xrob ∧ y = yrob). Hence, γa is true when the cur-

rent position of the robot is not a position in s. Then, a Timed Automaton

(TA) E = 〈Q, qx0,y0 , v
0, I, L, T 〉 that describes how an agent can move within

its environment is defined as follows:

• Q = {q} contains a single state that encodes all the locations of the

environment;

• q0 = q the only state of the environment is also the initial state of the

automaton;

• T is a set of transitions such that each transition t ∈ T satisfies one of

the following rules: Transitions are defined as follows, for any (x, y) ∈
X × Y :

– (q, q, γu, ∅, (u, ?), ∅, yrob = yrob − span) ∈ T

– (q, q, γd, ∅, (d, ?), ∅, yrob = yrob + span) ∈ T

– (q, q, γl, ∅, (l, ?), ∅, xrob = xrob − span) ∈ T
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Figure 4.5: Portion of the model of the environment represented with Encoding 2.

– (q, q, γr, ∅, (r, ?), ∅, xrob = xrob + span) ∈ T

– (q, q, ∅, ∅, (s, ?), ∅, ∅) ∈ T

The proposed encoding has a single state and one transition for each

direction of the motion. Intuitively, the possible movements of an agent

within its environment are encoded through five transitions that specify

when the agent can go up, down, left and right and the transition stay.

Every transition is labelled with

• a guard specifying the condition that enables the robot to move in a

given direction. More precisely, the guard list all the coordinates for

which is possible to execute an action. For example, the transition

labelled with u contains all the points of the environment that are not

in the set Block(u).

• the update of the coordinate that is going to change because of the

move. When going up, down, left and right the current position of

the agent is updated as follows yrob = yrob− span, yrob = yrob + span,

xrob = xrob − span and xrob = xrob + span). When performing the

action stay is performed, the variables xrob and yrob encoding current

position of the agent are not updated.

For example, in Figure 4.5 is represented a portion of the TA obtained

from the layout of the Jupiter Building.

As evidenced in figure, since the states with x ≥ 0 and x < 500 and

y = 22, and x ≥ 580 and x < 800 and y = 22 are not in Block(u), a self-loop

transition is present that increments the value of the variable y.

Comparison with encoding 1. Encoding 2 is equivalent with respect

to Encoding 1 in terms of usage. In encoding 2, variables xrob and yrob are

used to all the states of the TA of encoding 1. Even if encoding 2 has less

state and transitions, the guards of the transitions are labelled with large
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arithmetical formulae which must be evaluate to check when transitions

between states can be fired. In contrast, encoding 1 has more states and

transitions. However, transitions are not labelled with guards, that is guards

are handled by changing the current automaton state. However, in terms of

usage, the logic that triggers synchronization among labels “u?”, “d?”, “l?”,

“r?” is exactly the same, and so the two encodings are interchangeable.

4.3 Encoding the robot

MEMO assumes that the robot is modelled through a TA. In an ideal sce-

nario, the TA can be provided by robots vendors, or template models can be

downloaded as off-the-shelf models and then customized by the final user.

Independently on how this model is created, the TA model of the robot must

model two aspects of the robots that are of interest for the plan computation:

• robot movements concerns. It tries to describe how a robot can move

in its environment. It describes how a robot can move in the different

directions based on its kinematics aspects. For example, it contains

the maximum velocity of the robot.

• task execution. It refers to the ability of the robot in performing tasks

in different points of the environment. Tasks represent actions a robot

can perform, such as “clean the floor”. With respect to action execu-

tion, the model should also describe the time required for the execution

of every action.

Encoding robot movements concerns. Two aspects of movement

are encoded within the model of the robot: how a robot can move and time

related aspects of its movement.

• Movement. Depending on the type of the robot, different models of

robot movement can be provided. Consider for example the model

presented in Figure 4.6. Movement concerns are represented through

five locations labeled with s, u, d, l and r representing the different

movement directions of a robot. When the robot decides to move in

one direction the current location changes and one of the four states is

entered depending on the direction the robot wants to follow. Every

transition is labelled with an event that is used to synchronize the

model of the robot and the one of its environment. If the robot decides

to go up, it has to fire a transition labeled with the event “u!”. This

transition can be fired only if a transition labeled with the event “u?”
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Figure 4.6: An example of TA robot model able to move in four different directions

and perform two different actions.

is enabled in the environment. This procedure synchronizes the model

of the robot and its environment.

• Time related aspects. We describe how time related concerns are en-

coded in the model of the robot. The TA describing the behaviour

of the robot is defined over the set of clocks C = {t}, which is used

to model how the time passes when robot perform movements and

action. Let speed be the maximum speed of the robot and recall that

span is the value used to create the discrete map of the environment.

Then, the time tmove needed to perform a movement is computed as

specified in equation 4.4. In other words, tmove is the minimum time

required to cover a distance of length span.

tmove =
span

speed
(4.4)

The value tmove is used in the labelling of the transitions to encode

how time passes when actions are performed. Specifically, the value

tmove is used in the guards t ≥ tmove to set the duration of each

transition labelled with action u, d, l and r, meaning that it takes to

the robot at least tmove to move up, down, left and right, respectively.

When a transition is performed, in order to manage the time delay of

every action during all the motion, the clock t is reset to zero and the
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robot is forced to wait in the current configuration until when, with

the increase of the clock value another transition is enabled again.

The value tstay represents the time the robot needs to stop, and must

be set by the user depending on the characteristics of the robot. For

this reason, the transitions leading to the location “stay” are labelled

with the guard t ≥ tstay .

The synchronization among the environment and the robot ensures that

if the robot wanted to perform an action that would lead to collide an obsta-

cle (e.g., the wall), it can not perform such transition since the environment

does not sync with the robot. Consider for example the case in which a

robot wants to go up, i.e., it wants to perform a transition labelled with

u!. A transition of the environment labelled with u? must be synchronously

fired. However, to have a transition of the environment labelled with u?

enabled, an obstacle should not be present on the trajectory of the robot.

Encoding robot actions. The model of the robots may also describe

arbitrary actions the robot can perform. Actions may encode different ac-

tivities, such as “load-unload an object”, “change or charge the batteries”,

“open a door”. We now present how actions are encoded in the model of

the robot.

• Encoding actions. To execute an action, a robot must move in an ap-

propriate state in which the action is actually performed. For example,

state a in Figure 4.6 is a state in which an action is performed. We

assume that before performing an action, a robot must be stopped.

For this reason, state a is only connected to state s.

• Time related aspects. Time related aspects associated with the exe-

cution of an action are modelled by acting on the guards of the tran-

sitions. Specifically, consider the state a in Figure 4.6 in which the

robot is performing the action. The Timed Automata model is forced

to remain in state a, until the condition t ≥ tactionO holds, i.e., an

amount of time greater than or equal to tactionO should pass before

the robot goes back to the idle state.

4.4 Encoding the missions

Missions specify what the final goal a robot application should achieve.

Since, we assume the usage of UPPAAL as a software component in charge

of computing plans, missions are specifies as reachability properties. This

kind of property concerns:
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• The execution of actions. For example, the user could request that an

action must be finally performed by the robot.

• The existence of a path on the map that from the initial configuration

leads to specific locations programmed by the user. For example, a

robot should finally reach a location, possibly within a given time limit.

To be able to specify properties that contains explicit time concerns, we

define a global clock c in the Timed Automata network that contains the

model of the robot and its environment. Unlike the clock that manages the

time constraints on the transitions that is reset to zero every time an action

is executed, this clock is never reset. The task of the global clock is to keep

track of the global time during the entire development of the mission and

it is necessary to have a reference for the time constraints expressed in the

mission the team of robots must achieve.

Handling actions. Since the mission of interest predicates on the oc-

currence of specific actions or events that encode that a robot reached a

location, the model of the robots and its environment are slightly change

based on the considered mission. In order to register the fact that an action

has been performed we define a boolean variable flaga , showed in Figure 4.7,

initially set to zero for any action a ∈ Act .

Our algorithm is able to identify during the development of the mission

when an agent is located in one of the Points of Interest and it is ready

to perform the correspondent action, in this configuration in the model of

the robot the transition leading to the action location are enabled and after

waiting the necessary amount of time, the relative boolean variable flaga is

set to one.

The previous step is very important in for defining the robotic mission.

After performing the described changes in the Timed automata, in order to

request the achievement of a determined action is enough to ask that flaga
to be True.

Handling location reachability. To deal with reachability of points

on the map, the model of the environment presented in previous section

must be modified according to the inputs of the user before the creation

of the environment of the model. In the first encoding, all the transitions

that enter the state that represents location (x, y) set variable l(x,y) to true.

In the second encoding, when the variables xrob and yrob are set to values

(x, y), the variable l(x,y) is set to true.

• Performing an action or reaching a location in a time bound. Intro-

ducing now the time bounds in the specifications and combining them
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Figure 4.7: Boolean variables implemented on the transition of the robot in order to

specify the behaviour of the robot.

with the boolean variable introduced above, we now describe how to

express that an action a must be achieved within a time bound tbound.

The specification is expressed as shown in 4.5:

E♦(flaga ∧ c < tbound )equation (4.5)

• Reaching a location within a time bound. Another possible specifica-

tion is the one that verifies if the robot is able to reach a determined

location (x, y) within a determined interval of time tbound. Let l(x,y)
be a boolean variable that the algorithm sets to one when the robot

enters the location (x, y). The formula 4.6

E♦(l(x,y) ∧ c < tbound) (4.6)

expresses that the robot is supposed to visit the location (x, y) earlier

than tbound from the beginning of the motion, clock c keeps track of

the real time during the simulation.
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• Performing a set of actions or reaching a set of locations in a time

bound. Sometimes the mission may require a robot to perform a set

of actions {a, b, c} within a specific time bound. Hence, the property

can be expressed by the formula 4.7

E♦(
∧
i

flagi ∧ c < tbound), with i ∈ {a, b, c}. (4.7)

• Ordered sequence of actions. In this section we present how it is pos-

sible to define more complex specifications concerning several actions

that must be executed by the robot in a well defined order. This fea-

ture represents a general case of a robot behaviour which it it easily

scalable to several real scenarios in which the robot is programmed to

perform a set of ordered actions in order to achieve a complex task. It

is possible to implement this characteristic with little modifications in

the robot model, where the user is supposed to set the desired sequence

of actions and the right order. Considering actions a, b, c that must

be performed in this order. In the Timed Automata model this three

actions are implemented as three new locations, in order to express

the constraints of the order for each state we define a boolean variable

flaga, flagb and flagc initially set to zero and updated to one after the

execution of the correspondent action. In this way it is possible to set

logic conditions on the transitions leading to the actions, in which an

action cannot be executed before the previous one. The property that

expresses this specifications is showed in 4.8:

E♦(missionAchieved and c < tbound) (4.8)

where missionAchieved is another boolean variable set to one after the

execution of the last action. Programming in this way the robot model

and analysing the specification described above, in order to be verified

the simulation is forced to perform all the actions in the right order

before the time expires.

4.5 Using UPPAAL to generate and simulate plans

In this section we show how UPPAAL is used by MEMO to compute, analyse

and simulate robotic plans. Specifically, we will discuss how UPPAAL can

be used to compute plans, and simulate the execution of a given set of plans.

• Computing plans. The UPPAAL model checker can be executed by

providing as input a network of TA describing the model of the robot
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Figure 4.8: Plan computed by MEMO represented on the TA model of the environment.

and its environment, and a mission to be achieved to generate a plan

that ensures the satisfaction of the mission of interest. The trace

(counterexample) produced by UPPAAL describes a plan that ensure

the mission satisfaction. The plan contains the locations and actions

that the robots have to perform in order to achieve the desired mission.

MEMO exploits UPPAAL to automatically compute the commands

that the robots must execute. This approach guarantees fast and au-

tomatic results without any need of any user corrections or operations

during the process. MEMO automatically delivers the trace created

from the input specifications to the robots.

In Figure 4.8 we represent the trace computed by our tool, considering

a general mission of reaching the location 2 starting from an office de-

fined as location 1. The trace is composed by the sequence of the states

visited along the path connecting the starting and final locations.

• Simulation. UPPAAL also allows the user to simulate the behaviour

of the robots when a plan is performed. In this case the user after

selecting the desired parameters and after the creation of the complete

Timed Automata model, is enable to open the system through the

graphical interface of UPPAAL and manually simulate the execution

of a plan. Following this approach the user can select the next action

a robot can perform and manually compute a trace that achieves the
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Figure 4.9: Uppaal interface for the simulation of the of the robot behaviour.

satisfaction of mission of interest. Despite a great customizability and

freedom of choice, this approach is not automatic.

Figure 4.9 presents a perspective of the UPPAAL tool that enables the

user to manually simulate the behaviour of the robot. At each time

instant it shows the enabled transitions that the robot can perform in

the current configuration. At each execution of a transition the list of

enabled transitions is updated concerning the new constraints of the

model. While simulating the development of the mission UPPAAL

keeps track of all the variables of the system and an execution trace is

generated.

In the following we provide some additional remarks related with the

automatic computation of plans performed by using the UPPAAL model

checker.

• The fact that none of the locations have an invariant and that tran-

sitions are labelled with guards that only require that t ≥ tstay and
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Figure 4.10: Portion of a robot model that belongs to the team.

t ≥ tmove, allows a robot to move from a position to another one

with an infinite amount of time because transitions leading to a loca-

tion labelled with a motion action. However, the goal of the mission,

that is expressed in the planning properties verified through the solver,

includes timing constraints that limit the duration of the entire oper-

ation.

• A plan can also be not present. The maximum speed of the robot

and the time duration of the action execution may make the desired

mission is unfasible for the designed robot. In this case, the UPPAAL

model checker returns a value that indicates that no plan is available.

• In this work we are not trying to find the best path or the one that

requires less time, we are just searching for a plan that ensure the

satisfaction of the mission of interest.

4.6 Handling multiple robots

The main characteristic of a team of robots is the ability to collaborate and

help each other in order to achieve complex missions and tasks that would

be impossible to achieve for a single robot working alone. Our tool proposes

a solution to the creation of a plan that includes more than one robot.
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Figure 4.11: Portion of a robot model that belongs to the team.

Encoding multiple robots. The main idea is that each robot of the

team is associated to TA modelling the robot and a TA modelling its envi-

ronment. The models of the robots are strongly interconnected, since they

synchronize among each others when collaboration is needed for action exe-

cution. The complete model could be seen as the iteration on n single robot

models, where n is the number of robots present in the team. As in the

single robot scenario the guards on the transitions of the robots constrain

the values of local clocks to manage the time needed to perform movements

and actions. A global clock, common to all the agents of the team which

keeps track of the overall time for the specifications.

For example, Figures 4.10 and 4.11 represent a team of two robots pro-

grammed to perform a collaborative action. Collaboration is achieved by

synchronously executing the transitions labeled with start loading? and

start loading! and end loading? and end loading!.

The models of the robot are very similar to the ones described in the

previous case, while the model of the environment, since is unique in the

system is completely different. On the single state of the environment for

each of the n robots of the team we implement the five actions needed to

describe the robot behaviours each one associated to the relative subscript

going from 1 to n, “un”, “dn”, “ln”, “rn”,and“sn”.

Regarding the encoding of the environments the following changes have

been applied
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• Encoding 1. Since we have an environment model for each robot, in

order to let them communicate, for each robot we implement a pair of

global variables that represent the spacial coordinates of each robot.

These variables are used to keep track of the movements of the agents

at every time instant. These variables are exploited in the conditions

that guarantee the collision avoidance between the robots. In order

to do avoid interference between the different models of the environ-

ment, the transition of each sub-system are labelled with respect to

the relative robot.

• Encoding 2. This encoding adopts a completely different strategy with

respect to Encoding 1 in order to deal with a team of robots. Since in

the single robot model the variables representing the spacial coordi-

nates are already implemented, it is possible to rely on only one model

per robot for the environment.

Encoding synchronization among robots. When dealing with two

or more robots that are supposed to work on the same environment and

collaborate, we must consider the conditions and the commands that address

synchronization among robots. Consider for example a condition in which we

want a robot to load another robot. To ensure synchronization when actions

are executed, in each of the models of the robots location named “load” is

created and linked with the “stay” location by means of two transition. In

one robot, that could be seen as the “master”, we add the action load!

on the transition that reaches the state load. On the second robot, that

could be seen as the “slave”, we add the action load? on the transition that

reaches the state load. This mechanism ensures that the transitions must

be synchronously fired among the two automata.

As showed in 4.12 the two robots start from two different locations 1 and

2 and following the instructions given by the plan computed by MEMO, they

perform the trajectories a and b, they synchronise in the location 3 and they

perform a collaborative action.

Check for collisions. To check for collisions it is necessary that the two

robots do not reach the same location of the environment at the same time.

Thus, the mechanism to detect collisions strongly depends on the encoding

used for the environment. We discuss how to implement a procedure to

check collision avoidance for the Encoding 2, but a similar approach can be

used for Encoding 1.

As previously discussed, each model of the environment of the robot n

has two integer variables (xrobn, yrobn) that identify in which state the robot

n is located at the current time instant. At this point the main idea of
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Figure 4.12: A team of two robots performing a collaborative and synchronised action.

the implemented feature of collision avoidance is to limit the movements

of the robot, if the agent is going to perform a displacement towards a

determined position the algorithm verifies in real time if the target location

is occupied by another robot. If the location is not occupied the transition

is enabled, otherwise the tool behaves as if there were an obstacle on the

path. Note that UPPAAL fires one transition at the time. Execution of

multiple transitions during the same time instant is obtained by considering

zero time transitions.

Considering a general case in which the robot 1 aims to perform the

action “right” avoiding any kind of collision with robot 2. Implemented

in the “right” transition of the first agent the constraints to enable the

displacement is described by 4.9:

(xrob1 + 1 6= xrob2 and yrob2 6= yrob2) (4.9)

This procedure checks if the target location of the first robot, which is

obtained incrementing the x coordinates, does not coincide with the current

one of the second robot. This method is applied to all the transitions of

60



Figure 4.13: Plan computed by MEMO for a team of two robot represented on the TA

model of the environment.

the robot except the action “stay”, which does not require any limitations.

The constraints applied to each robot regards their target location with

respect to the others current location, this combinations cover all the cases

of multiple robots moving in the same environment. The same procedure

can be applied with teams containing more than two robots are considered.

Mission specification. As explained in the previous chapter, the logic

behind how a robot organises its movements, sequences of ordered actions

and synchronization is managed by the conditions applied to the transitions

of the model of the robot. In the case of multiple robots scenario the transi-

tions manage also the synchronisation between the agents. We implemented

a boolean variable (e.g. Loaded), initially set to zero, that keeps track of the

collaborative actions performed. If two robots, after meeting at the same

location at the same time, fulfil a common action, this variable is set to one.

Defining a specification such 4.10, in order to fulfil the mission, the

system is forced to satisfy all the conditions and configuration that lead to

set the variable Loaded to one, and therefore achieve the desired goal.

E♦(Loaded = 1 and c < tbound) (4.10)

Uppaal Verification, Simulation and Path Creation Given the

models of the robots within the team and their environments, and the de-

sired mission expressed in a temporal logic, MEMO gives as output the plan

that includes the actions that each robot is supposed to perform synchro-

nized with the other team-mates paying particular attention to the temporal

aspects and specifications. MEMO parses the generated plans and sends the
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actions to the robots that then execute them. To ensure mission satisfaction

under strict temporal constraints, the robots of the team may have to move

together through the map without collide among them.

Figure 4.13 shows our tool dealing with a team of two robots, for each

agent the tool computes a trajectory, in this case a and b, that each robot is

supposed to follow in order to achieve the common mission. The commands

of the two robots consider explicit time concerns in order to synchronize and

meet in the same position at the same time.
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Chapter 5

Implementation

In this chapter we analyse in details how our tool is implemented, Section

5.1 presents the scripts used in the automated process of the creation of

the model. Section 5.2 shows the structure of the xml file in which the

complete model of the system (robots and environment) is saved. Section

5.3 describes the main ideas behind the algorithms used to translate the

environment into an equivalent Timed Automaton. Section 5.4 presents the

procedure that enables the implementation of the results of the planner on

the software simulator and the real robots.

5.1 Script General Description

In this section we will describe the different modules containing the algo-

rithms upon which MEMO is based. We will focus on the creation of the

XML file describing the behavior of the system (robots and environment).

Specifically, MEMO is build upon the following scripts:

• System2xml.py: it provides the declarations and organization of xml

file, it calls the function that creates the environment and then the one

the creates the robots, if we have more than one robot in the space,

this script simply calls the function different times. Specifically, the

System2xml.py uses the Environment2xmlEncodingX.py and CreateR-

obot.py scripts.

• Environment2xmlEncodingX.py: parameter X specifies which one

of the two encodings must be used. Taking as inputs the map, the geo-

metrical properties of the building and the sample parameters creates

the matrix that represent the map. It calls the function that extracts



from the figure.png the pixel coordinates of the walls, rooms and cor-

ridors, i.e., it calls the script Figure2wall.py

• Figure2wall.py: this function exclusively takes as input the im-

age.png of the map and finds all the coordinates in pixel of the ob-

stacles. The output is saved in a long bidimentional array which will

be analysed by another script in order to organize these points in an

efficient way.

• CreateRobot.py: this script is the most customizable of the system,

it creates the model of the robot, the actions are synchronized with the

ones of the model of the environment. The user has the possibility to

choose between different standard models and also to modify it with

his own ideas and specifications.

5.2 XML structure of a Timed Automata System

These algorithms are implemented in order to automatize the process of cre-

ation of the timed automata of the complete model of the system. The main

element of the file.xml that describe the complete model are: declarations,

template, locations, initial location, transition, system. In the following we

explain the main characteristics of each single attribute.

<declaration>

chan r,l,u,d,s;

int t=0; int tmove=0;

...

</declaration>

<template>

<name>Room</name>

<location id="id0-0" x="0" y="0"></location>

<init ref="id5-5" />

<transition>

<source ref="id0-1" />

<target ref="id0-2" />

<label kind="synchronisation">r?</label>

</transition>

</template>

<template>

64



<name>Robot</name>

<location id="10" x="100" y="0" />

<init ref="11" />

<transition>

<source ref="11" />

<target ref="10" />

<label kind="synchronisation">u!</label>

<label kind="assignment">t=t+tmove</label>

</transition>

</template>

<system>

Room1=Room();

Robot1=Robot();

system Robot1, Room1;

</system>

• DECLARATIONS: At the beginning of every model we are sup-

posed to define some parameters that we are going to use in the sys-

tem. We must define all the names associated with the transitions and

with the synchronizations, to define theme we use the term “Chan”.

It is also mandatory to define all the variables utilized, in our work we

mainly deal with integer or boolean variables. It is possible to define

global or internal variables. Global variables first are defined at the

beginning and they are visible in all the system. Internal variables are

defined in the sub-system of the system. For example, if an integer

variable is defined inside the environment declarations it can only be

seen and modified by actions and assignments of the relative sub-part

of the model.

Another type of parameters that are defined here are the clocks. A

clock is responsible of keeping track of the time during the evolution

of the system. In our work we define one global clock in order to be

aware at what time each action or movement is performed and then

we also define an internal clock for every robot in the environment,

this is very useful to set the programmed duration of each activity of

the robot. We need this additional clock because at each action we

must set it to zero in order to keep the synchronization between the

models.

• TEMPLATE: In our work we have two different types of template
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describing the environment and the robot. The complete model of

the system is composed by the combination of these two templates.

For the environment, as previously explained, we implemented two

kind of sub-template, namely encoding 1 and encoding 2, while for

the robot we have several customizable models depending on their

properties. Thanks to this modularity the user has the opportunity

to create different combinations of elements and choose the one that

best fits his specifications. Each template has a label in which is

mandatory to define the name, in this work we selected “Environment”

and “Robot”, the names are really important for the final declaration

of the complete system. A template consists in a set of states and

transitions and successively we will explain in details how they are

expressed in the file.xml .

• LOCATION: For each of these elements it is generated a state in

the timed automata system. Each of them is characterized by an

identifier, usually it is a sequential number or the subscripts of the

element of relative matrix. These identifiers are really important for

the specifications of the transitions. Another characteristic of this

label is a pair of variables that represent the spacial coordinates of

the state created in the UPPAAL environment of simulation. Setting

these two variables is not mandatory, but by using them we are able

to organise the states and and have proper graphical representation

of the map during the simulation and it greatly simplifies the work of

verification of the algorithm.

• INITIAL LOCATION: For each template it is mandatory to define

from which state the execution of the actions starts. We set the initial

point just writing one of the identifier of the states. Without this

information we are not able to perform any simulation on the system.

In our case, usually working on a system with two template, we must

set an initial location for each template, paying particular attention to

the synchronization between them, indeed performing actions, we will

move from one state to another, so the starting configuration must be

carefully chosen.

• TRANSITION: It creates a connection between two states, and it

has a specified direction. Performing an action, the current properties

of the system change. In order to express all the characteristics of

a transition in a file.xml we must define five different labels: source,

target, guard, assignment, synchronization.
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Source and target must be defined for each transition, while the oth-

ers are optional, they are defined to represent particular behaviours of

the system. Transitions are a key point of a timed automata model,

they describe and characterize the different options and evolutions of

the model. For these reasons, while developing our algorithm that

automatically creates states and transitions we must pay particular

attention to this kind of element, an error in the definition of a tran-

sition could totally change the expected behaviour of the system and

after that, find the mistake through tests and verifications might result

very difficult and complicated. In UPPAAL Model Checker a transi-

tion is represented by an arrow that connects two states, in order to

define it in file.xml we utilize the labels “source” and “target”. To

each label we assign a state identifier, and the simply represent the

initial and final points of the arrow. We now describe the optional

labels of the transitions.

The element “guard” indicates a condition “if” on the transition, if

the condition is verified the transition is enabled and it is possible

to reach the state define as a “target”, otherwise if the condition is

not verified the transition is cut and it is removed from the list of

the possible actions that could be performed in that moment with

that configuration of the system. We express these conditions as logic

formula using the normal logic operators as “and”, “or”, “not” to

formulate the desired relationships between the global and internal

variables of the selected templates. In the templates of the robots

we will make a great usage of these “guards” to express the duration

(in real time) of the movements and actions performed by the robot.

It works with the internal clock of the robot but, as a consequence

of the synchronization between robot and environment it also works

as a timer for the transition on the map. On the other hand we

implement this label also in the xml model of the environment, in the

“logic model”, indeed with long strings of conditions we define all the

physical constraints of the map, each transition is enabled if and only

if between the source and target configuration there is not an obstacle.

Later on we will explain in details how to automatically extrapolate

all these conditions from the map.

The second xml label of the transition element is the “assignment”,

its function is to update or increment variables of the system after

performing the relative transition. In our algorithms we generally use

this function to reset a clock after a transition, to update the spacial
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coordinates after a displacement or to set a boolean variable to one

after the accomplishment of a sequence of actions.

Finally, the last label is the “synchronization”, it is possible to name

the transitions in two different ways, one adding an exclamation point

or a question mark at the end of the name. This functions allows

the programmer to put in relation transitions of different templates,

when an action with the exclamation point is performed it follows the

execution of the correspondent action in another template defined with

the question mark. For example, when the robot realizes a movement,

we witness also a change in the automata model of the map.

With these five xml labels is possible to completely define a timed

automata transition, in our algorithms we will use these properties in

order to automatically create a model that describe the real case in the

best way possible, according to the user’s requests and specifications.

• SYSTEM: The last part of the file.xml consists in the declarations

of the templates selected, here we must specify which kind of model

of the environment we are taking into account and also the type of

robot. In this section we create the desired combination of the com-

plete environment with the selected templates.

5.3 Algorithms

This section describes the main ideas used in the algorithms that are used

to encode the environment into a TA. Sections 5.3.1 and 5.3.2 describes the

algorithm used in encoding 1 and 2, respectively.

5.3.1 Encoding 1

The inputs and outputs of the Encoding 1 algorithm are described in the

following:

• Input: Image.png of the map, array with the points of interest, real

measure of the building, sampling parameter, diameter of the robot.

• Output: Xml file describing the Timed automata model of the envi-

ronment.

With the encoding1 algorithm, the main idea is to create a direct and graph-

ical correspondence between the map and the Timed Automata. According

to the sampling parameter we perform a discretization of the map, we con-

sider only some points of the image. We aim to describe the environment
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through large matrix of automata states linked together in a proper way in

order to describe the constraints on the movements defined by the walls.

The steps describing the adopted algorithm are:

1. Detecting the locations of walls. The object “figure2wall”, thanks

to the libraries “cv2” and “numpy”, calls the function cv2.imread(),

cv2.cvtColor(), cv2.findCountours() and cv2.contourArea(). Given the

image of the map we obtain as output a bidimentional array where all

the coordinates of the wall are saved. These coordinates express the

position (x, y) of every pixel of a wall on the map. The maximum

values for x and y are determined by the pixel quality of the image,

the origin is established in the upper left corner, the x axis goes from

the origin to the right while the y axis goes towards the lower bound-

ary of the image. Calling this function we extract the information of

the wall from the map, basically our map is now described by this

array. Despite the length of the array, the algorithm does not show

any problem while working with walls described in this way.

2. Moving from pixels to states. In the second part of the algo-

rithm we define all the parameters that depend on the primary inputs

and can be calculated combining them. Using the map we only have

measures in pixels, and it results impossible to combine the velocity

of then robot with the displacements in the environment in order to

compute the explicit time necessary to complete the task. To solve

this problem initially we analyse the dimension of the image of the

map, then we consider the input parameter xmetersize that repre-

sents the real measure in meters of the building. Dividing the length

of the picture in pixel by the measure in meter we obtain a scale factor

(5.1)[pixel/meter] that allows us to relate the image of the map with

the real case of study.

imagedimension

xmetersize
= scale (5.1)

We compute the equivalent values in pixels of the sampling parameter

and of the diameter of the robot the were given in meter. All the

coordinates of the points of interest were already set in pixel. We are

supposed to define the specifications for the discretization of the map,

as explained before we will represent the map as a large matrix. The

ratio between the two sides of the matrix must be the same of the one

between the two sides of the building, this is a key point of our work.
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Using the scale parameter, from the measures in pixel of the map we

compute the length in meter of the two sides of the building, then di-

viding these two values by the sampling parameter, which is expressed

in meters, we obtain the total number of rows (5.3) and columns 5.2

where we will perform the discretiation, maintaining the ratio of the

real measures.

horizontallenght

sampling
= columns (5.2)

verticallenght

sampling
= rows (5.3)

3. Creating states of the TA. In order to simplify the model we assume

as hypothesis that our robot is programmed to move and perform

actions inside of the building, for this reason, we would like to consider

and discretize only the points inside the plan. In order to implement

this simplification we colour in black the external part of the map, we

could consider it as “the garden” of the building, and we take into

account only the non-black pixels of the image. This modification will

not cause any problem to the extraction of the coordinates of the walls.

Generally this kind of robots work in an indoor environment, for this

reason we consider this hypothesis to simplify our model, in the event

that the programmer is also interested in the outdoor part of the map

the algorithm will perfectly work creating a larger model.

With two “for” cycles, the external one considering the number of

the rows of the matrix and the internal one considering the columns,

we aim to create the timed automata states matrix. Each state has

an identifier that represents the two coordinates (row, column) of the

element of the matrix. In order to match each of these states with

a point in pixel on the map (5.5), we multiply the coordinates of the

identifier (that respectively goes from 0 to rows and from 0 to columns)

for the sampling parameter expressed in pixel called factor (5.4)

sampling × scale = factor (5.4)

identifier × factor = pixelcoordinate (5.5)

By doing this we create an association between each point of the states

automata matrix and a point of the map expressed in pixel. With this
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procedure we perform a sort of discretization of the image and now on

we will consider only these sampled points. Following this algorithm

multiplying the last element of the matrix for the factor parameter we

will obtain the last point of the image in the lower right corner.

For each element of this cycle, if the correspondent discretized element

on the image is not black we create a timed automata state, defining its

location and name on the file.xml as shown in the previous paragraph.

If we opened the file.xml with UPPAAL program we would obtain

a set of circles/states organized in rows and columns, each one with

its own identifier, with the external shape of the building took into

account.

Figure 5.1: Initial state of the Timed Automata model.

4. Initial state. A mandatory characteristic to set in every timed au-

tomata model is the initial state, showed in Figure 5.1. The user is

able to establish the initial location of the robot in the environment,

in our work we though it could be a good idea to set the initial loca-

tion in a room that will represent the “robot storage closet”, where the

machine stays during standby moments and where it could also charge

its batteries. The user selects this location using pixel coordinates on

the map. In this part of the algorithm we must find the correspondent

state associated with the selected point on the map. Since the states

are organized as matrix elements, usually a randomly chosen point is

located inside the square defined by four states. In order to find the
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closest state to the point we parse all the discritized point of the map.

If the coordinate of the initial point is inside the square centred in

the point-state, with side equal to the factor parameter (sampling pa-

rameter expressed in pixel), it means that the state is the closest one

and we set the considered state as initial position. In order to set the

initial location in the timed automata model we place the identifier of

the found state into the relative label.

5. Creating transitions. Transitions are created to link the states of

the timed automata model. In the algorithm by linking states with

transitions we describe the characteristics of the map such as walls,

rooms and corridors. We analyse all the combinations of consecutive

states. Considering an example of two consecutive states, thanks to an

implemented function we are able to check if between the correspon-

dent discretized points on the map there is or there is not an obstacle

that does not allow the robot to directly drive from the first point to

the second. If there is not an obstacle along the direct path between

the two point on the map, by writing the correct label on the file.xml,

we create the transition in the timed automata model. For each pair

of consecutive states linked by a transition we are supposed to create

an element on the file.xml properly specifying two sub-labels. The

first one called “source” is the point where the displacement starts

while the “target” is the final point. We set these two labels writing

the identifier of the two correspondent states. In this algorithm, in

the case of the creation of the transition we must set other two labels

of the file.xml, one the controls the synchronization with the actions

of the robot and the other one that manages the assignments of the

variables when the robot reaches or leaves a point of interest. In this

algorithm it is not necessary to set guards or other constraints on the

transitions. Indeed, in order to describe the the characteristics of the

map we entirely rely on the presence or absence of the link between

two consecutive states.

The main idea of the algorithm is to parse all the descritized points

on the map that we are going to consider depending on the sampling

parameter, then for each of these elements we take into account possi-

ble 5 transition that express the directions of the possible movements

of the robot. In this thesis for the sake of simplicity we work under

the hypothesis that the robot is able to move in directions “perpendic-

ular” to the walls, so the considered possible actions are Right, Left,

Up, Down and Stay. These actions represent the directions with re-
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spect to the absolute reference system of the room, they are not the

relative actions of the robot. They could be seen as cardinal points,

where for example the actions Right describe a displacement towards

“Est” or Up towards “Nord”. These method could be easily used also

with diagonal transitions incrementing the complexity of the model.

This kind of notation will greatly simplify the algorithm and the syn-

chronization with the model of the robot. Considering each element

of the matrix in two “for” cycle, we check the four states around the

point and we call the implemented function able to detect the presence

of obstacles.

6. Checking for the presence of walls. The function called “isThere-

Wall” takes as input the long array that describe the walls of the map,

the current state that we are considering, called source point and the

consecutive state that we would like to connect with a transition, called

target point. For each state we call this function once, in the func-

tion we implemented 4 parts, one for every direction of movements.

The part of the algorithm that creates the action Stay does not need

the call of this function, it just define a self-loop on the current state.

Initially we set a boolean array with for elements, every element is

set to zero and they respectively represent the 4 actions Right, Left,

Down, Up. The function checks the presence of obstacles along the

direction (as showed in Figure 5.2) and if the movement is not allowed

in the map it sets to 1 the correspondent element and return the entire

array. By looking to the elements set to one we are able to find the

presence of walls. After the call of this function, for each elements we

link the source point only with targets with the relative element equal

to zero. For example, given a random point with a wall at its right,

the returned array will be [1 0 0 0].

In order to parse all the elements all the matrix we use two “for”

cycles on rows, represented by the parameter “a” and on columns,

represented by parameter “b”. Then as in the the procedure of the

creation of the states described above, we multiply a and b for the

parameter factor and we obtain the correspondent coordinates in pixels

of the point. The function isTherewall works with coordinates in pixel

while the identifier of the states are expressed by the subscript of

the matrix. This notation results very convenient in order to express

source and target elements. Indeed, considering the two states linked

by the transition Right, the target is identified by the pair (a,b) while

to express the identifier of the target we simply increase the parameter

73



Figure 5.2: Transition creation strategy through a door of the building.

b, and the result is (a, b + 1). After this it is easy to map these two

elements on the map with pixels coordinates and call the function.

Considering another example with the action Up, the two identifiers

will be (a, b) for the source and (a− 1, b) for the target. Analysing all

the elements of the matrix, the source is always the current state and

increasing or decreasing the coordinates of the source we consider the

elements around.

During the conversion from the identifier of the elements of the matrix

and the coordinates in pixel we must pay attention to a little difference

of the two systems of reference. In fact, the first one, as elements

of a matrix (a, b) the first parameter a represents the row while the

second one represents the columns. On the other hand in the image

of the maps the convention to describe the position of a pixel is with

spacial coordinate (x, y), where the x axis corresponds to the horizontal

direction and y axis the vertical one. For this reason we map the

a parameter of the rows with the element y and analogously the b

parameter of the columns with element x.

“How does the function isThereWall detect the presence of an obsta-

cle along the direct path between two consecutive states?” In order

to explain this we consider as example the transition Right and two

random points:

• Source (a, b)

• Target (a, b+ 1)
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The main idea is to check if in the area occupied by the robot during

the complete movements and in the final configuration there is a wall.

This is the reason why we must include in the algorithm of the en-

vironment parameters of the robot such the diameter from which we

derive the radius. The area of the map in question is a rectangle, the

apexes of the rectangle have the coordinates:

• (xcoordinateofthesource)

• (xcoordinateofthethetarget) + radius

• (ycoordinateofthesource) + radius

• (ycoordinateofthesource)− radius

in this particular case the horizontal side goes from the (x coordinate

of the source) to the (x coordinate of the the target) + the radius of

the robot while the vertical side of the rectangle has the same measure

of the diameter and it is centered in the y coordinate of the source.

The area showed in Figure 5.3 covers the space occupied by the robot

during the motion and also the space taken after the stop. It is very

important to make the last consideration in order to avoid any kind of

collision with the walls. We do not take into account the area occupied

by the robot before the movement because it has been check in the

previous iteration of the algorithm. We apply the same procedure for

all the other directions, of course the rectangle into account will have

a different position and in the case of actions Up and Down also a

different orientation but the measures and the total area will be the

same.

7. Handling synchronization with the model of the robot. Af-

ter the analysis of the obstacles and after the decision of creating a

transition we are supposed to set two other parameters, described by

two different labels of the timed automata model which are the “syn-

chronization” and the “assignment”. The first one is used to create a

connection between the model of the environment and the model of

the machine, indeed we have a similar label also in the timed automata

of the robot. Since the robot decides where to go and which actions

wants to perform there is a dependency between the two models, the

robot stands in an higher level with respect to environment. In or-

der to express this behaviour of the complete model we use the same

names of the action for both of the models with a little difference. The

actions of the robot are followed by an exclamation point, while the
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Figure 5.3: Area where the algorithm checks if there is an obstacles before creating a

RIGHT transition.

same action in the environment is followed by a question mark. For

example, if the robot decides to perform the action “r!”, therefore the

environment modifies its configuration performing action “r?”. In our

algorithm we implement this property to each transition created, in

order to assign the correct label to the relative transition we use as be-

fore the parameters source and target. Depending on the coordinates

of the target with respect to the source we set the synchronization

label. For example, if the source is placed in coordinates (a, b) and

the target in (a + 1, b), the written label in the environment will be

“u?” synchronized with the “u!” action of the robot. Analogously with

coordinates (a, b − 1) of the target the proper label will be “l?” syn-

chronized with “l!”. If we are in the case of the Stay action, where

source and target are the same (a, b) we set the label “s?”.

8. Handling the points of interests. Programming the second pa-

rameter of each transition results a bit more complicated. In order to

simulate the behaviour of the robot that performs sequences of action

in determined places of the environment, the user is supposed to choose

these points on the map and give them as an input to the algorithm

in the form of pixels coordinates (x, y). For each of these points the

script associates a boolean variable set to zero, called Pn, where n is

an integer number that goes from one to the number of selected points.

P1 is the point where the robot is placed in the initial configuration

of the system. To each of these points is associated a different action

and the behaviour of the robot and the description of the sequences

are described in the robot model, which will be described later. The
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goal of this part of the algorithm is to identify the transitions that

reach these points of interests and program the relative label to assign

to right variable P to one in the case of reaching the point, and reset

it to zero when leaving the point. It is very important to reset the

variable to zero when we leave to point of interest because the robot

is programmed to perform some actions as load and unload an object

only if it is in the predetermined position. With the same procedure

that we adopted for the initial point, we execute the conversion from

the pixel coordinates to the correspondent state of the matrix in the

timed automata model. We parse every discretized point on the map

and we consider the closest state to the point of interest and then we

are able to find the relative state to take into account expressed with

(a, b) coordinates in the matrix. For each transition that we call an

implemented function called “getPoi”.

The function getPoi takes as input the list of the point of interests

and the coordinates of the target and gives as output an integer from

-1 to the number of the points of interest. In this function with a for

cycle on the list we check if one of the poi has the same coordinates

of the target of the transition just created, if this is verified it returns

the position of the found element that we call k, if not it returns -1.

Going back to the main script, in the “assignment” label we set the

variable Pk to one if we have found a match, or to zero otherwise.

With this procedure, from an image, given the parameters of the envi-

ronment and some parameters of the robot we are able to create the timed

automata of different buildings. The simplicity of the inputs of this algo-

rithm makes it a user friendly tool for programmers and applicable to a large

scale of locations.

The proposed algorithm analyses every pair of consecutive states along

the considered directions and check if between them there is an obstacles

that could not allow a safe movement of the robot from the initial to the

final configuration. If along this path no possible collisions are detected the

tool automatically creates a directional arch that links the two states and

labels it depending on the direction of the displacement.

5.3.2 Encoding 2

The two encoding share the same inputs but they produce a different output,

which is however equivalent in terms of usage within the MEMO framework.

The Encoding 2 relies on four main steps: (i) execution of the function
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“figure wall”; (ii) definition of the secondary parameters; (iii) creation of

the TA states and; (iv) creation of the TA transitions. The first two steps

will not be described in the following since they are based on the same

functions presented for Encoding 1.

• Single state. Differently fro Encoding 1, the second model is de-

scribed by one single state, which is also set as the initial state. The

tool keeps track of the position of the robot using two variables de-

scribing the spatial coordinates.

• Logic constraints on the transitions. Differently from Encoding 1,

the information about the environment is not described by the states

of the model; it is rather described in the logical conditions specified

on the transitions of the TA. For each direction the algorithm creates

a self-loop programmed to update the relative coordinate when the

action is executed. The critical point of the definition of the transition

is the implementation of the guards. For each movement direction,

the algorithm considers all the points of the environment, and saves

the coordinates of the points in which the robot cannot do a step in

the considered direction since a wall is present. For each movement

direction a self-loop is added to the single state of the automaton.

Each self-loop has a guard that forbids the transition to be executed

when a robot cannot do a step in the considered direction.

The features of synchronization, finding the points of interests and all

the minor aspects describing the model are performed as in Encoding 1.

5.4 Choregraph Simulation and TurtleBot Com-

mands

To convert the trace obtained from the UPPAAL model checker into the

sequence of actions that must be executed by the robots, an appropriate

procedure was executed. The trace encodes the points of interest as spatial

coordinates (x, y) in the global reference of the system, which has the origin

in the upper left corner of the environment and the two axis along the

horizontal and vertical directions. However, the map of the robots had a

different reference system. For this reason, regarding point reachability, the

spatial coordinates were translated by means of a translation of the reference

system into the coordinates of the robots. The trace encoded the actions

that the robot had to perform. However, it was necessary to design an actual
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mapping between the actions present in the model of the system (robots and

their environments) and the functions that force the robot to execute specific

actions. The designed mapping allowed calling specific functions that allow

the execution of the desired action on the actual robot, when specific strings

were parsed from the traces.
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Chapter 6

Evaluation

This chapter evaluates MEMO. In Section 6.1 we evaluate the behavior

of MEMO by considering different environments and robotic applications

made by single and multiple robots. In Section 6.2 we evaluate the gener-

ated plans by using the Choregraph simulator. In Section 6.3 we show how

the generated plans can be used in settings obtained by considering real

environments.

6.1 Evaluating the planner

In this section we evaluate the ability of MEMO to support plan synthesis in

real case scenarios. Our goal is to understand if MEMO is able to work by

considering real maps. To evaluate how MEMO supports synthesis in real

case scenarios we consider different maps, teams of robots, and missions,

and we check how MEMO allows computing plans. We first considered a

team of a single robot (R1) and then we evaluate how MEMO behaves with

multiple robots (R2).

6.1.1 Team of a single robot

We analyze how MEMO behaves by considering different maps, missions

and the two encodings described in Chapter 4.

• Maps. We consider three different buildings coming from real world

scenarios:

– the “Jupiter Building” of Chalmers University, Gothenburg, Swe-

den (Figure 6.1), which has approximately sizes of 80m×90m and

in our experiments is described by the identifier E1.



– the “Edificio 22” of Politecnico di Milano (Figure 6.2), described

by the identifier E2 with size of 120m× 50m.

– the “Edificio 20” of Politecnico di Milano (Figure 6.3), described

by the identifier E3 with size of 70m× 50m.

Figure 6.1: Jupiter Building, Chalmers University.

Figure 6.2: Edificio22, Politecnico di Milano.
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Figure 6.3: Edificio20, Politecnico di Milano.

In the phase of creating the Timed Automata model of the environ-

ment, for each map we discretize the space with four sampling param-

eters (ST ): 50cm, 75cm, 100cm and 125cm.

• Missions. We considered three different missions with increasing com-

plexity. The considered missions were based on the patterns for robotic

missions presented in [31].

– M1: this mission specifies the reachability of a point on the map.

It checks if the robot, starting from the initial configuration of the

system is able or not to reach the point selected by the user within

the programmed time interval and according to the constraints

described by the environment. For example, the mission “reach

the coffee machine within 1 minute” is an example of mission M1.

– M2: this mission takes into account the ability of the robot to

move in the environment and perform actions. We verify the

ability of the robot in performing a sequence of ordered actions.

The specification consists of a sequence of two actions that should

be performed in two points of the environment. Starting from the

initial configuration the robot reaches the first point of interest

and performs the first action, after waiting the amount of time

needed for this task, the agent drives towards the second point of

interest specified by the user where it is supposed to execute the

second action. The characteristic of M2 is that these two points

are defined in locations near the point where the robot starts the
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M1 M2 M3

E1 150s 500s 800s

E2 160s 300s 600s

E3 160s 300s 600s

Table 6.1: Values of T1, T2 and T3 for missions M1,M2 and M3.

movements. For example, the mission “reach the coffee machine,

load the coffee and brings the coffee into the office 001 within 1

minute” is an example of mission M2.

– M3: this mission requires the robot to perform a sequence of

two actions in two different locations. However, differently from

M2 in M3 the selected points are in non-trivial locations with

respect to the initial location of the robot. For example, the

considered points may be at the opposite side of the building or

in a room particularly difficult to reach. This specification aims

to test also those cases in which finding a plan that satisfies the

desired mission is not possible.

We considered each one of these missions over three different time

interval T1, T2 and T3. The values of T1, T2 and T3 are different for

each map, since the maps have different measures. The time intervals

selected for the environments, considering the missions M1,M2 and

M3 are presented in Table 6.1.

• We considered both the Encoding 1 and the Encoding 2, indicated in

the Table 6.2 as C1 and C2, respectively.

Experimental setup. The models are generated considering different

maps, different values for the sampling and different missions. We consider

the team made by a single robot and we evaluated the three maps describing

the environment E1, E2 and E3 previously described. This means that dur-

ing the evaluation, for each map we create four environment models, each

one obtained by considering a different value for the sampling parameter ST .

This allows considering a different level of representation of the details. For

every environment model created we perform the evaluation of the model

considering the missions M1,M2 and M3. For each combination of envi-

ronment, sampling parameter and mission we considered both the Encoding

1 (identified in the following as C1) and the Encoding 2 (identified in the

following as C2). This leads to 216 different configurations summarized in

Table 6.2.
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For each configuration we checked whether MEMO was able to produce a

plan that ensured the mission satisfaction. If a plan was available we checked

the correctness of the generated plan. In order to evaluate the usage of the

procedure in real case scenarios, we recorded the time need to compute the

plans.

Results. The time (in seconds) needed to compute plans is reported in

the cells of Table 6.2. MEMO always succeeds in finding the right answer for

the considered mission (plan available or not available). We noticed that the

computational cost increased as the sampling value decreased, considering

a given building. When the distance between points decreases, the number

of points encoded in the TA increases. This aspect impacts on the time

required from the planner. For encoding C1 the planning time required

was at most 101.2 seconds, while for Encoding 2 is 124 seconds. These are

reasonable times for a practical usage of the planner in real cases scenarios.

In average, the time required for computing a plan and saving the trace was

in the order of few seconds. In most of the cases Encoding 2 outperformed

Encoding 1, and thus must be preferred for usage in real applications.

6.1.2 Team of two robots

We considered in details the behaviour of the planner while managing a

team of two robots are moving and collaborating in the same environment.

• Map. We took into account the model of the environment E1 dis-

cretized every 100cm. We sampled the space with this value because

it is a good compromise between the level of details described and

computational cost required while dealing with two robots.

• Missions. We considered two missions the team of robots must achieve,

which are based on the patterns for robotic missions presented in [31].

– M4. Two robots start from two different initial locations, per-

form a path in order to meet at the same point of interest (one

close to the other, without violating the constraints of collision

avoidance) at the same time. Then, they synchronously execute

a collaborative action. Finally, after performing the collabora-

tive action the two robots are programmed to reach a destination

point. This mission may for example be used for requiring “a

robot to load an object on another robot in a particular loca-

tion”.

– M5. It corresponds to mission M4, but the points where the
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two robots are supposed to meet are in a non-trivial point with

respect to the their initial positions.

We evaluated the mission considering two different time bounds and

three meeting points P1, P2, and P3 with increasing distances w.r.t.

to the initial positions of the robots.

Experimental setup. We considered the team made by a two robots,

the map previously described and missions M4 and M5. We considered

different time bounds. For each test we checked whether MEMO was able to

produce a plan that ensured the mission satisfaction. If a plan was available

we checked the correctness of the generated plan. In order to evaluate the

usage of the procedure in real case scenarios, we recorded the time need

to compute the plans. Since the computational cost of this experiment is

elevated we set a time-out for the plan computation of 30 minutes.

Results. The approach succeeded in finding a plan for the team of two

robots for mission M4 and M5 when points P1 and P2 were considered.

When point P 3 was analysed the timeout was exceeded. The experiments

show that the planning approach succeeds in considering a single robot even

considering real maps. However, the approach does not scale when multiple

robots must be handled due to state explosion problems. In this case, the

usage of more complex planning procedures (maybe based on abstraction

refinement) must be analysed.

6.2 Evaluating the plans on the Simulator

To check how the plans computed by MEMO can be used in practice, we first

evaluated the produced plans by using the Choregraph simulator. We per-

formed the following scenario. We considered environment E1, the Jupiter

Building, and a team made by a single Nao robot. We assume that the robot

had to perform the following missions, which are based on the patterns for

robotic missions presented in [31]:

• M6: start from its initial location, reach a given position, get a set of

items from a table that is present in the reached position, return to

its initial location.

• M7: start from its initial location, reach a given position, say a sen-

tence or a warning, return to its initial location

• M8: in its initial position the robot is loaded with an object by the

user, reach a given position, unload the object, return to its initial

position.

87



Figure 6.4: Nao robot, simulated in the Choregraph environment, lifting and object

from a table after performing the plan compute by MEMO.

We have taken the plan generated by MEMO and send the actions to

the Choregraph simulator. An overview of the simulator while performing

the mission M6 can be seen in Figure 6.4.

We checked whether the actions where correctly performed by the robot.

The plans were successfully executed by the robot. We concluded that

the approach proposed could be successfully integrated within real world

robotic applications.

6.3 Experimental Evaluation

In order to check how MEMO can be used in practice, we use it in real

case scenarios. We send the actions that were contained in the plans com-

puted using MEMO to real robots and check that the robots behave as

expected. We perform our experiments using the Turtlebot robot and the

TIAGO robot. The experiments are conducted in the Jupiter Building of

the Chalmers University and in the Pal Robotics Company.
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Figure 6.5: TurtleBot delivering a cup of coffee to an office.

6.3.1 Experiment 1

We test the effectiveness of MEMO within the Jupiter Building of the

Chalmers University. We consider three different scenarios in which the

Turtlebot robot (Figure 6.5) has to achieve different missions.

Scenario 1. We assume that the Turtlebot is used as an indoor robot

that is used to deliver coffees to the employee of the university. We assume

the presence of a user at the coffee machine that is able to load a coffee cup

on the Turtlebot. We considered the following mission.

Starting from the office (1), reach the coffee machine (2), say that the

user has 10 seconds to load the coffee cup on the robot, bring the coffee back

to office (1). This mission must be accomplished within 2 minutes.

We provide a map of the Jupiter Building of the Chalmers University

obtained from the emergency fire plans of the building. We also provided

a TA model of the Turtlebot. We gives these as inputs to MEMO. MEMO

uses the map of the Jupiter Building to compute a TA that encoded the

environment where the robot was deployed. MEMO uses the TA encoding
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Figure 6.6: Mission 1: The robot delivers an hot cup of coffee in the office.

the robot and the TA of the environment to generate a plan that the robot

has to follow. The plan is forwarded to the robot that successfully executes

it. The plan is graphically described in Figure 6.6.

The robot starts from the office indicated in Figure 6.6 as (1) and follows

the path indicated in Figure 6.6 as (a). The path allows the robot to reach

the coffee machine (2). The robot then performs an action: it tells the user

that he has 10 seconds to load the coffee and waits 10 seconds. Then it

follows the path indicated in Figure 6.6 as (b) and finally reaches the office

marked with symbol (1).

Scenario 2. We use the TurtleBot to perform a security mission. The

robot has to detect the presence of an intruder in the building during the

night. The robot while calling the surveillance reaches the point of the

intrusion in order to record in details about the intrusion or to warn or

detect the possible intruder.

Starting from the office (1), reach the point where the intrusion has been

detected (2) within 2 minutes, record and check the situation, and finally go

back to (1).

The robot starts from the office indicated in Figure 6.7 as (1) and follows

the path indicated in Figure 6.7 as (a). The path allows the robot to reach
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Figure 6.7: The robot detects and warns an intruder in the building.

the intrusion point (2). The robot then performs an action: record. Then it

follows the path indicated in Figure 6.7 as (b) and finally reaches the office

marked with symbol (1).

Scenario 3. The TurtleBot is exploited to automatically deliver a box

or some documents from an office to another.

Starting from the office (1) where the user loads the robot, reach the

delivery point (2) within 2 minutes, wait the unloading, and finally go back

to (1).

The robot starts from the office indicated in Figure 6.8 as (1) and fol-

lows the path indicated in Figure 6.8 as (a). The path allows the robot to

reach the delivery point (2). The robot then performs an action: wait the

unloading. Then it follows the path indicated in Figure 6.8 as (b) and finally

reaches the office marked with symbol (1).
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Figure 6.8: The robot delivers a box or a document from an office to another.

6.3.2 Experiment 2

We verify the effectiveness of MEMO in the offices of Pal robotics. We

consider a simple scenario in which the TIAGO robot has to achieve a simple

mission. We assume that the TIAGO robot has to reach a set of locations.

Specifically, the following mission is considered.

Starting from location (1), reach location (2), and then reach location

(3), go back to location (1) within 3 minutes.

Since in this case the the maps of the buildings are not available, we man-

ually design a Timed Automata and estimate the distances among locations

(1), (2) and (3). We manually design a TA that encoded the behaviour

92



Figure 6.9: Scheme of the mission performed at Pal Robotics Company by TIAGO.

of the TIAGO robot. Then, we used MEMO to compute plans. MEMO

successfully finds the desired plan. The plan is forwarded to the robot that

successfully execute it. The plan is graphically described in Figure 6.9 and

6.10.

The robot starts from the room indicated in Figure 6.9 as (1) and follows

the path indicated in Figure 6.9 as (a). The path allows the robot to reach

the the point (2). Following the trajectory indicated in Figure 6.9 as (b) the

robot reaches the point 3. Finally along the path (c) the robot goes back to

the initial position.

6.3.3 Discussion

This section had evaluated MEMO considering three main aspects: (i) usage

of the tool in different environments, with different teams of robots; (ii) usage

of the plan in a simulated environment; and (iii) usage of MEMO in real

world applications.

• The results showed that MEMO can be successfully used in different

environments with a team composed by a single robot. When mul-

tiple robots are considered, the approach does not scale due to state
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Figure 6.10: TIAGO Robot driving towards the desired location.

explosion problems. In this case, the usage of more complex planning

procedures (maybe based on abstraction refinement) must be analyzed;

• The evaluation performed using the simulator showed that the plans

can be successfully used in real world applications. That paved the

way for a real world experimentation;

• The usage of MEMO in real world applications, showed that the com-

puted plans can be successfully used in real cases. However, we still

believe that there are some minor issues that still have to be addressed.

In the following, we discuss the main ones

– mismatch between the considered map and the real map of the

building. Even if the considered maps were really good approxi-

mations of the environments in which the robots were deployed,

the approach is still not fully automatic. There is still some man-

ual tuning involved, which include: (i) the setting of the initial

position of the robot, (ii) the alignment of the TA representing

the map obtained from the figure and the one that is “learned”

by the robot (e.g., the one learned using rviz [6]).

– mismatch between the model of the robot and the actual behavior

of the robot. We experience some problem regarding the behavior
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of the robot. In some cases, the model of the robot was not

perfectly accurate. For example, in some circumstances, to turn

90 degrees right the robot was actually do a complete circle to

localize itself and then it was performing a 90 degrees turn.

We believe that the approach succeeded in providing good initial results on

the usage of MEMO in real world applications. The problems described may

be addressed in future works, where the analysis will not be a preliminary

analysis of the overall framework (as the one described in this Chapter), but

will be more focused on the actual support provided to the developers.
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Chapter 7

Conclusions and future work

This thesis aimed at extending the support provided to developers in the

creation of robotic applications. The analysis of the literature showed the ab-

sence of a general framework able to address the needs of the Co4robots [38]

project, within which this thesis as been developed. Specifically, the analysis

of the state of the art showed the absence of an approach able to address

the planning problem when: (i) the missions of interest contain explicit time

concerns; (ii) the team was composed by multiple robots; (iii) actions and

synchronization among robots must be managed; (iv) the framework must

work in realistic environments. This thesis developed a comprehensive ap-

proach (called MEMO) that supports developers in the creation of plans for

the robots within a robotic application. Specifically, the contribution of this

thesis can be summarized as follows:

• MEMO takes as inputs an image containing the map of the environ-

ment in which the robots will be deployed. For example, MEMO

is able to process maps used in buildings to indicate fire emergency

plans. The map of the buildings, together with some additional inputs

provided by the user (i.e., the scale and the sampling parameters), are

used by MEMO to detect geometrical measures and the general layout

of the environment in which the robots will be deployed. Specifically,

MEMO converts this map into a Timed Automaton (TA) that indi-

cates how a robot can move within its environment, i.e., it encodes all

the limitations of robot movements due to obstacles, walls, corridors

and rooms. The creation of the TA model of the environment is based

on the discretization of the space. We proposed two different ways

to encode a map in a corresponding TA, indicated as Encoding 1 and

Encoding 2.



• MEMO assumes that a TA model of each robot in the robotic team is

provided as input. Since in the robotic world there exist several types

of robots, with different abilities of movements, of performing actions

and also different characteristics of the hardware, MEMO leaves to the

user and robot manufacturers the possibility to customize and create

new models for the robots of interest. This provides flexibility to the

MEMO framework, and allows the usage of off-the-shelf models for the

considered robots.

• MEMO is able to process missions containing explicit time concerns.

Specifically, the mission is described using a Timed Computational

Tree Logic (TCTL) specification. For example, MEMO is able to

process missions such as ”the robot should reach the coffee machine,

load the coffee and bring the coffee back within a time interval of 2

minutes”.

• MEMO combines the model on the environment, the one of the robot

and the TCTL mission to compute plans that the robot should per-

form in order to achieve the satisfaction of the desired mission. MEMO

relies on the UPPAAL Model Checker, a tool box for modeling, simula-

tion and verification of real-time systems, based on constraint-solving

and on-the-fly techniques. UPPAAL guarantees the possibility to deal

with explicit time constraints, and is able to compute a trace that

satisfies the TCTL mission of interest.

• the output trace produced by UPPAAL contains the points that the

robot should visit in order to achieve the desired mission and the ac-

tions it should perform. We created and forwarded commands that

were asking robots to reach locations and perform actions to the run-

ning robots.

• We evaluated MEMO considering three different aspects:

1. we evaluated the behavior of MEMO by considering different

environments and robotic applications considered by single and

multiple robots. We combined different environments, inputs,

parameters and types of missions1 in order to check how MEMO

supports developers in different situations. The results show that

MEMO can be successfully used in different environments with

a team composed by a single robot. When multiple robots are

1The considered missions were based on the patterns for robotic missions presented

in [31].
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considered, the approach due to state explosion problems. We

also compare the efficiency of Encoding 1 and Encoding 2. The

results showed that Encoding 2 must be preferred for usage in

real robotic applications since in terms of computational cost it

outperformed Encoding 1 in most of the cases.

2. we evaluated the generated plans by using the Choregraph sim-

ulator. The evaluation performed using the simulator showed

that the plans can be successfully used in real world applications.

That paved the way for a real world experimentation;

3. we show how the generated plans can be used in settings obtained

by considering real environments. The real experiments were con-

ducted in the “Jupiter Building” of Chalmers University and in

the Pal Robotics Company (one of the partners of the project). In

the experiments conducted in the “Jupiter Building” of Chalmers

University, we considered the TurtleBot robot, a mobile platform

able to move in narrow environments. We ask the TurtleBot

robot to perform different missions: bring the coffee to the of-

fices, perform security surveillance during the night and delivery

objects in the building. In all the cases the approach successfully

achieved its missions, (i) compute a plan from the map and the

specification, (ii) deploy the right sequence of commands to the

robot. In the experiments conducted in the Pal Robotics Com-

pany, we deployed our planner on the TIAGO Robot, a mobile

platform of 145cm with a robotic arm. We considered different

missions and a set of real case scenarios. The approach succeeded

in all the experimental tests performed.

This work opens several directions of future work:

• improving the implementation of MEMO. At the moment, MEMO is

still in a prototype version. We aim at providing a more stable im-

plementation, that allows final users to use MEMO as off-the-shelf

component. This includes fixing minor problems detected during the

final experimentation in real world. During the experimentation, we

had to perform some calibration of the tooling. This calibration mainly

refer to mismatches between the considered map and the real map of

the building. Even if the considered maps were really good approxi-

mations of the environments in which the robots were deployed, the

approach is still not fully automatic. There is still some manual tun-

ing involved, which include: (i) the setting of the initial position of
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the robot, (ii) the alignment of the TA representing the map obtained

from the figure and the one that is “learned” by the robot (e.g., the

one learned using rviz [6]). We also aim to integrate MEMO within

the Co4robots architecture [13].

• improving the ability of the model to describe the real scenarios. We

worked under the hypothesis that the movements of the robot were

limited to perpendicular directions. However, during the experimen-

tation we observed mismatches between the model of the robot and

its actual behavior. For example, in some circumstances, to turn 90

degrees right the robot was actually do a complete circle to localize

itself and then perform a 90 degrees turn. More complex models may

consider these behaviors and also allow modeling diagonal movement

directions or considering particular kinds of points interpolation.

• improving performances when teams of robots are considered. As dis-

cussed in the evaluation performance issues were present when mul-

tiple robots were considered. These issues were caused by the well

known state explosion problems. To solve these issues, the usage of

more complex planning procedures (maybe based on abstraction re-

finement) must be investigated. For example, abstracting some infor-

mation of the complete model of the environment would provide more

compact TA models for the environment and provide benefits in the

computational costs of the planning.

• considering more complex models that allow the description of dif-

ferent aspects of the robotic application within the planning proce-

dure. These aspects may include modeling the robotic application

using more reacher models, such as the one that support “Game The-

ory” reasoning techniques. In this case, the planning problem may

be considered as a two player game where the two players are the

robotic team of robots and their environment. Other aspects may

include uncertainty about the models of the robotic application. Un-

certainty has been deeply considered using multi-valued logics in the

software engineering and formal methods communities (see for exam-

ple [26, 28, 29, 30, 9]), but has mainly been addressed by using prob-

abilistic models in the robotic field. The usage of multi-valued logics

to encode uncertainty in the models of the robots is an intriguing re-

search direction. A preliminary discussion about this topic can be

found in [27].
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[18] M. Guo, J. Tůmová, and D. V. Dimarogonas. Hybrid control of

multi-agent systems under local temporal tasks and relative-distance

constraints. In 2015 54th IEEE Conference on Decision and Control

(CDC), pages 1701–1706, Dec 2015.

[19] T. Kehrer, C. Tsigkanos, and C. Ghezzi. An emof-compliant abstract

syntax for bigraphs. In Proceedings Second Graphs as Models Workshop,

GaM@ETAPS 2016, Eindhoven, The Netherlands, April 2-3, 2016.,

pages 16–30, 2016.

[20] M. Kloetzer and C. Belta. Ltl planning for groups of robots. In 2006

IEEE International Conference on Networking, Sensing and Control,

pages 578–583, 2006.

[21] M. Kloetzer and C. Belta. Control of multi-robot teams based on ltl

specifications. IFAC Proceedings Volumes, 40(18):103 – 108, 2007. 4th

102



IFAC Conference on Management and Control of Production and Lo-

gistics.

[22] M. Kloetzer and C. Belta. Automatic deployment of distributed teams

of robots from temporal logic motion specifications. IEEE Transactions

on Robotics, 26(1):48–61, Feb 2010.

[23] T. John Koo, RongQing Li, Michael M. Quottrup, Charles A. Clifton,

Roozbeh Izadi-Zamanabadi, and Thomas Bak. A framework for multi-

robot motion planning from temporal logic specifications. Science

China Information Sciences, 55(7):1675–1692, Jul 2012.

[24] Ron Koymans. Specifying real-time properties with metric temporal

logic. Real-Time Systems, 2(4):255–299, Nov 1990.

[25] Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. In-

ternational journal on software tools for technology transfer, 1(1-2):134–

152, 1997.

[26] C. Menghi. Verifying incomplete and evolving specifications. In Com-

panion Proceedings of the 36th International Conference on Software

Engineering, pages 670–673. ACM, 2014.

[27] C. Menghi, S. Garcia, P. Pelliccione, and J. Tumova. Poster: Towards

multi-robot applications planning under uncertainty. In Companion

Proceedings of the 40th International Conference on Software Engineer-

ing, ICSE Companion 2018.

[28] C. Menghi, P. Spoletini, and C. Ghezzi. Dealing with incomplete-

ness in automata-based model checking. In FM 2016: Formal Meth-

ods - 21st International Symposium, Limassol, Cyprus, November 9-11,

2016, Proceedings, volume 9995, pages 531–550. Springer, 2016.

[29] C. Menghi, P. Spoletini, and C. Ghezzi. Cover: Change-based goal

verifier and reasoner. In REFSQ Workshops, 2017.

[30] C. Menghi, P. Spoletini, and C. Ghezzi. Integrating goal model analysis

with iterative design. In International Working Conference on Require-

ments Engineering: Foundation for Software Quality, pages 112–128.

Springer, Cham, 2017.

[31] C. Menghi, C. Tsigkanos, T. Berger, P. Pelliccione, and C. Ghezzi.

Poster: Property specification patterns for robotic missions. In Com-

panion Proceedings of the 40th International Conference on Software

Engineering, ICSE Companion 2018.

103
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