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Chapter 1

Introduction

Credit risk measurement and credit derivatives pricing is today one of the
most intensely studied areas in quantitative finance. The fame of credit
derivatives arises from the fact that they allow investors to buy protection
against opposed credit event.
Correctly modelling multiple defaults became crucially important after 2008
crisis. In 2008 we saw that even without defaults the deterioration of credit
quality is enough to cause potential fatal losses. During the crisis of 2008, the
downward trend of financial markets was accompanied by extensive credit
deterioration of financial institutions. Following the bankruptcy of Lehman
Brothers, massive financial institutions all came close to bankruptcy and
had to be rescued.
With the 2008 crisis we lost the “too big to fail” mentality in favour to the
idea that even large banks can default. A key concern around the default
of a large institution is the systematic risk arising from a cascade of events
that could lead to a major crisis. This is strictly connect with the interbank
network connection.
In modern financial system the main role of banks is to hold deposit as can
be seen in their balance sheet, where deposit are predominant voice. In this
situation depositors become unsecured creditors of the banks. Regulators
required a liquid capital cushions to the bank in order to avoid unpaid debt
in case of default. These requirements lead to a bank network closely linked.
To show that we make a simple example of how banks system works. Let’s
assume that there are bank A, bank B and a borrower. Suppose now that
the borrower asks a loan to, let’s say bank A. In order to issue the loan, bank
A gives part of his cash to the borrower. Suppose now that the borrower
deposits the loan to the bank B. Now bank B has more cash than required,
while bank A is seeking for cash. Bank B borrows his excess to bank A. In
this way the two bank are now linked through the loan. A default of bank
A can lead a default or a credit deterioration of bank B. This is a far too
simple example of how bank system works, but although its simplicity can
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describe the situation very accurately.
In [8] the author showed that the financial network has changed from an
enough simple and diversified network to a complex interconnected and no
diversified network. This kind of network is robust to typical shocks but
very fragile when the shocks hit a dominant entities. Since the crisis a lot a
literature is now available on these subjects, with special focus given to the
estimation on counterparty risk.

1.1 General Setting

We use a structural approach inspired to [2]. This family of models has
indeed much details and can be used in order to better modelling the aspects
of corporate defaults rather than reduce-form models. We map the capital
structure of a bank in a stochastic process for equity and debt, we then
model default as hitting time problem. We must be careful in the choice
of the stochastic process: it’s well known that pure diffusion models are
incapable of a good description of credit events in case of short time-scales.

1.2 Brief description of the work

Starting from [13] we model the asset dynamics using a Lévy jump-diffusion
process. We first analyse the simpler case of one dimensional case in order
to well understand the model characteristic. Then we analyse the two di-
mensional case which allow us to introduce interesting feature like mutual
liabilities and correlation between assets. Since there is not an available
closed formula we focus on the numerical computation of survival proba-
bilities and credit derivative products. Following [14] we develop a finite
difference method for the partial integro-differential equation. In order to
efficiently compute the integral part we developed a recursive algorithm
exploiting some features of the jump process. Finally we propose several
methods to improve the convergence and efficiency of the numerical meth-
ods.

1.3 Thesis structure

This thesis is organized as follows.
In Chapter 2 we recall some of the basic notions and results of stochastic
calculus with jumps.
In Chapter 3 we present the one dimensional case. We introduce the sim-
plified model in case of a single bank. Then, we discuss how to compute the
principal credit products in our framework. We present a numerical scheme
for solving the PIDE with explicit treatment of jump operator, and finally
we conclude with the numerical results.
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In Chapter 4 we follow the construction of Chapter 3 to describe the two
dimensional case that is a simplification of the model presented in [16].
We identify and model the difference with the one dimensional case. Fur-
thermore we present the general pricing problem through partial integro-
differential equation, and similar to the one dimensional case we present
how to compute the main credit derivatives products.
In Chapter 5, following [14], we first propose an alternative time discretiza-
tion that guarantees second order convergence in both space and time, and
we prove its stability and consistency. We also propose an averaging method
to smooth the discontinuous solution.
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Chapter 2

Preliminary Results

In this chapter we briefly describe the mathematical concepts which are
necessary for our analysis. We recall the main results of stochastic calculus
in the jump diffusion framework following [4]. We introduce a simple jump
process and then we consider a more interesting extension of this simple
process. Then we introduce the Itô formula in jump diffusion framework.

2.1 Stopping time

One important concept in finance is the notion of stopping time. The stop-
ping time is a specific type of “random time ”. Then we can model it as
random variable whose value is interpreted as the time at which a given
stochastic process exhibits a certain behaviour.

Definition 1. Let (Ω,Ft,P) be a probability space. A random variable τ :
Ω→ [0,+∞] is a stopping time if for any t

(τ < t) ∈ Ft.

One important feature of stopping time is that the minimum of two stopping
time is still a stopping time, i.e.

Proposition 1. Suppose the filtration Ft satisfied standard condition and
let τ and σ be two stopping times. Then also λ = min(τ, σ) is a stopping
time.

In our setting the stopping time describe the random time in which the asset
process crosses the default boundaries. So we are interested in the so called
“exit time”

Proposition 2. Let Xt be a cadlag process such that Xt = 0 and a < 0.
The exit time from the interval (a,+∞) given by

τ = inf{s ≥ t|Xs < a},

is a stopping time.
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Empirically this is simple to understand because for any time t it is enough
to know the past value of Xt in order to establish whether the boundaries
are crossed or not.

2.2 Counting process

The fundamental example of stochastic process with discontinuous trajec-
tories is given by the counting process. The counting process Xt ∈ R+ is
a stochastic process that counts the number of random times {Tn, n ≥ 1}
occurring until time t. Therefore one possible definition is given by

Xt =
∑
n≥1

1{t≥Tn}.

where in order to guarantees that the process Xt is well defined we assume
that P(Tn → +∞) = 1. The counting process (Xt)t≥0 is a cadlag process
because at each time Tn the paths of the process experience a jump of size
+1, as shown in Figure 2.1.

Figure 2.1: Sample of a counting process

Poisson process as counting process

Definition 2 ([4] Definition 2.17). Let (τi)i≥1 be a sequence of independent
exponential random variables with parameter λ and Tn =

∑n
i=1 τi. The

process (Nt)t≥0 defined by

Nt =
∑
n≥1

1{t≥Tn},

is called Poisson process with intensity λ.

Therefore the Poisson process (Nt)t ∈ R+ is a counting process with special
distribution of random times, i.e. taking the interarrival random times τi
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distributed as exponential random variables. In our application we consider
the random times as times in which jumps occur. Doing so the Poisson
process counts the number of jumps until t. The choice of exponential
distribution gives to the Poisson process the following important proprieties:
1. Independence of increments: for all 0 ≤ t0 < t1 < · · · < tn and n ≥ 1 the
increments

Nt1 −Nt0 , · · · , Ntn −Ntn−1 ,

are independent random variables.
2. Stationarity of increments : Nt+h − Ns+h has the same distribution as
Nt −Ns for all h > 0 and 0 ≤ s ≤ t.
The stationary condition means that the distribution of Nt+h −Ns+h does
not depend of the increment h.
3. For any t > 0, Nt follows a Poisson distribution with parameter λt, i.e.

∀n ∈ N, P(Nt = n) = e−λt
(λt)n

n!
.

From the propriety 3 follows at least other two important proprieties. First
of all knowing the distribution let us to give and expression of the moments
of that distribution. We have that if Nt ∼ Poisson(λt) then

E[Nt] = λt, V ar[Nt] = λt.

Second, the following two propositions hold true.

Proposition 3. If N1
t and N2

t are independent Poisson processes with in-
tensity λ1 and λ2, then the process (N1

t +N2
t )t≥0 is a Poisson process with

intensity λ1 + λ2.

Proposition 4. Define the filtration Ft generated by the Poisson process
(Nt)t≥0, i.e.

Ft := σ(Ns : s ∈ [0, t]).

The compensated Poisson process

(Nt − λt)t≥0,

is a martingale with respect to (Ft)t≥0.

2.3 Compound Poisson Processes

The Poisson process appears to be too limited to developed realistic price
model as its jumps are of constant size. Therefore we add a random variable
describing the jump size. Let (Zk)k≥1 be an independent and identically
distributed (i.i.d) sequence of square integrable random variables distributed
with probability function ν.
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Definition 3. The process

Yt =

Nt∑
k=1

Zk,

is called compound Poisson process.

We show a sample path of the compound Poisson process in Figure 2.2.

Figure 2.2: Sample of a compound Poisson process

Proposition 5. For any t ∈ [0, T ] we have

E[exp(α(YT − Yt)))] = exp(λ(T − t)
∫ +∞

−∞
(eαy − 1)ν(dy)).

From this proposition follows that the compound Poisson process at time t
is a random variable with expected value and variance given by

E[Yt] = λtE[Z] V ar[Yt] = λtE[|Z|2]

Another important result states the following:

Proposition 6. The compound Poisson process

Yt =

Nt∑
k=1

Zk,

has independent increments, i.e. for any finite sequence of times t0 < t1 <
· · · < tn the increments

Yt1 − Yt0 , Yt2 − Yt1 , · · · , Ytn − Ytn−1

are mutually independent variables.

Finally as in the case of Poisson process we have:

Proposition 7. The compensated compound Poisson process

Mt = Yt − λtE[Z],

is a martingale.
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2.4 Itô formula

Theorem 1 (Itô formula with jumps). Let X be a jump diffusion process
with evolution given by Xt = X0 +

∫ t
0 usdWs +

∫ t
0 vsds +

∑Nt
i=1 ∆Xi, where

us is the volatility term, vs is the drift term and ∆Xi corresponds to jump i
in the process. Define Yt = f(Xt) where f(x) is a regular enough function.
Then it holds

dYt = vtf
′(Xt)dt+utf

′(Xt)dWt+
1

2
f ′′(Xt)u

2
tdt+f(Xs−+∆Xt)−f(Xs−).

2.5 Optional stopping theorem

This is one of the most important result presented here since it is a funda-
mental tool of mathematical finance in the asset pricing theorem.

Theorem 2. Let σ ≤ τ be bounded stopping times. For any cadlag mar-
tingale X, the random variables Xσ, Xτ are integrable an the following is
satisfied

Xσ = E[Xτ |Fσ].

In our application we use this theorem with simpler setting taking σ = 0.
Since all our process start from the value 0 this theorem stated that the
stopped stochastic integral is martingale and therefore the expected value
of the integral is 0.
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Chapter 3

One Dimensional Model

In this chapter we propose a structural default model following [16]. Struc-
tural default model was first introduced by Merton in [20]. It was a simple
model with strong and not practical assumptions. Black and Cox later ex-
tend it to more general case in [2].
The family of structural default models better described the dynamics of
banks assets rather than the reduced models. Indeed structural models map
the banks assets in stochastic processes. Therefore these kind of models are
rich of information and can be easily manipulate in order to model differ-
ent custom features like correlation or external influences. In these models
default occurs when the banks assets touch a barrier. Starting from [2] the
authors of [16] extend the model in case of jump diffusion process. The
reason why the model needs to add jump processes derives from the inad-
equacy of diffusive models in the pricing of credit products for relatively
short time-scales. In this chapter we propose the same model of [16], but we
limit our analysis to the one dimensional case. In our framework we only
have one bank so there are not mutual liabilities.

3.1 Dynamics of asset and liabilities

Assume that the bank has external assets and liabilities, A and L. We
assume that the asset’s bank dynamic is given by

dA

A
= (µ− κλ)dt+ σdW (t) + (eJ − 1)dN(t), (3.1)

where µ is the deterministic growth rate, not necessary risk neutral, σ is the
lognormal volatility, W (t) is a Wiener process, N is Poisson process indepen-
dent of W , λ is the intensity of jump arrivals and J is the random negative
exponentially distributed jump sizes with probability density function

ω̃(s) =

{
0, s > 0,

θeθs, s ≤ 0,
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Figure 3.1: Negative exponential distribution for different intensity λ

with parameters θ > 0, and κ is the jump compensator

κ = E[eJ − 1] = − 1

θ + 1
.

An example of negative exponential distribution is given in Figure 3.1. For
liabilities we assume deterministic behaviour through the following dynamics

dL

L
= µdt,

where µ is the same of (3.1). For pricing purposes, under the risk-neutral
measure, we consider µ as a risk-free short rate. For better focus on the
impact of jumps we take µ = 0 in the following. The following analysis
holds true also for µ 6= 0 and the extension can be obtained easily.

3.2 Default boundaries

Following [16] we consider time dependent default boundaries Λ(t). Bank
defaults if its asset value process crosses the default boundaries. Then it is
natural to introduce a stopping time to describe the time in which the bank
defaults.

τ = inf{t|A(t) ≤ Λ(t)},
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i.e. τ is the first time in which the bank assets lie below the default boundary
Λ(t). We assume that before maturity T creditors believe that the bank has
a chance to recover from its debt, i.e. creditors believe that although at
time t the bank is not able to fully pay his debt, the bank has a chance to
recover before maturity. This believe is quantified considering the default
boundaries as a fraction R of total debt. Obviously once the bank asset falls
below this value the creditors don’t believe anymore that the bank could
recover from its debt and they consider it defaulted.
At maturity there is no more time to recover and the default boundaries are
considered as the full debt. From modelling point of view we assume that
R is constant. With this assumption in T default boundaries experience a
jump, i.e. we consider that in last day the recovery rate rapidly tends to 1.
The default boundaries can therefore be modelled as

Λ =

{
RL ≡ Λ<, t < T,

L ≡ Λ=, t = T,
(3.2)

where 0 ≤ R ≤ 1 is the constant recovery rate.

3.3 Formulation of backward Kolmogorov equa-
tion

For convenience, we introduce lognormal normalized variable

Xt = ln
( At

Λ<

)
,

and denote

ξ = −
(
σ2

2
+ κλ

)
.

Applying Itô’s formula to Xt, we find its dynamics (see Appendix B for
details)

dXt = ξdt+ σdW (t) + JdN(t).

Substituting from (3.2) we obtain the default boundaries for the new variable
Xt

µ =

µ
< = 0, t < T,

µ= = ln

(
Λ=(t)
Λ<(t)

)
, t = T.

With this change of variable we restrict the problem domain to the first
quadrant. Given the lognormal asset dynamics we are able to price credit
products. From non arbitrage theory we have that the price V (x, t) of
contract is given by the expected value under risk neutral measure of the
future cash flows. Consider a contract with terminal payoff ψ(XT ), payment
χ(s, x) at intermediate time t ≤ s ≤ T (for example, coupon payment), and
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payoff in case of intermediate default of the bank φ0(t). Then, the value
function is given by

V (x, t) = E
[
ψ(XT ) · 1{τ≥T} −

∫ T

t

χ(s,Xs) · 1{τ>s}ds+ φ0(τ) · 1{τ<T}|X(t) = x

]
,

According to the Feynman-Kac formula, the corresponding pricing equation
is the Kolmogorov backward equation:

∂V

∂t
+ LV = χ(t, x), (3.3)

V (t, 0) = φ0(t), V (t, x1) −−−−−→
x1→+∞

φ∞(t), (3.4)

V (T, x) = ψ(x), (3.5)

where

Lf =
σ2

2
fxx + ξfx + λJ f − λf = Df + λJ f − λf, (3.6)

J f(x) = θ

∫ x

0
f(x− u)e−θudu, (3.7)

and φ0 is a given function depending on the kind of contract. The derivation
of the jump operator is considered in Appendix A.

3.4 Pricing Problem

Through the equations (3.3)-(3.5) we rewrite a probabilistic problem as a de-
terministic partial-integro differential equation. In this section we formulate
the Kolmogorov backward equation for specific quantities.

3.4.1 Survival Probability

We formulate the problem with general domain because it will be useful in
the two dimensional case. Let µ< be the default boundaries, then the PIDE
domain is given by D = [µ<,∞] × [t, T ] and the default time is given by
τ = inf{t|X(t) ≤ µ<}. Defining ϑ(t, x) the survival probability of the bank,
it’s easy to see that ϑ(t, x) = E

[
1{τ≥T,X(T )>µ=}

∣∣X(t) = x]. It’s important
to notice that

• 1{τ≥T} controls that the bank doesn’t default before maturity,

• 1{X(T )>µ=} controls that the bank does not default at maturity T ,
where the boundary changes from µ< to µ=,

From equations (3.3)-(3.5), taking ψ(x) = 1{x>µ=} and χ(x, t) = 0, we
obtain

∂

∂t
ϑ(t, x) + Lϑ(t, x) = 0,
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with Lf defined in (3.6).
The final condition and the boundary condition at x = µ< become

ϑ(T, x) = 1{x≥µ=},

ϑ(t, µ<) = 0.

Since we are dealing with a semi infinite domain, the problem does not define
any border condition. In order to solve the PIDE we must give an artificial
border condition. Since for large value of the bank asset x the probability
of default vanishes, it seems natural to impose that at x→ +∞ the solution
tends to 1. Then the problem becomes

∂

∂t
ϑ(t, x) + Lϑ(t, x) = 0,

ϑ(t, µ<) = 0, ϑ(t, x) −−−−→
x→+∞

1,

ϑ(t, x) = 1{x>µ<}.

3.4.2 Credit Default Swap

A credit default swap is a contract designed to eliminate credit risk over
a Reference Name (RN). Protection Buyer (PB) buys a CDS over RN to
a Protection Seller (PS). PB pays periodic coupon payments c to PS until
default of RN or maturity T . In exchange PS pays to PB the loss given RN’s
default. Consider C(t, x) the value of a CDS written on the bank (RN) with
coupon c. Assume that the coupon is paid continuously. According to [1]
the value becomes

C(t, x) = E
[
(1−R)1{µ<≤X(T )≤µ=,τ≥T}−

∫ T

t

c1{τ>s}ds+(1−R)1{τ<T}

∣∣∣∣X(t) = x

]
.

At maturity T the default boundaries moves from µ< to µ=, so the CDS
value is 0 if the bank survives and 1−R otherwise because, in this case, the
RN defaults and the loss given default is paid.
The integral term accounts for the payments of coupon c until maturity T
or default.
Finally if the bank defaults before maturity, i.e. τ < T the value of the CDS
becomes 1−R. The border condition when x→ +∞ is obtained considering
the CDS as a risk-free annuity. Then the problem can be formulate as

∂

∂t
C(t, x) + LC(t, x) = c,

C(t, µ<) = 1−R, C(t, x) −−−−→
x→+∞

−c(T − t),

C(T, x) = (1−R)1{µ<≤x≤µ=}.
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3.5 Numerical scheme

We formulate all the pricing problem as the solution of a PIDE. Unfortu-
nately, unlike in the case without jumps, no analytical solution is available
so far. Finite difference methods have firmly established themselves as the
most versatile and powerful methods for solving such problems. However the
finite difference schemes suffer the dimensionality of the problem, and their
efficiency rapidly deteriorate. Since we are dealing with only one dimension
in this Section we propose a way to solve (3.3)-(3.5) using finite difference
scheme. First of all the PIDE domain needs to be approximate by a finite
grid so that the solution can be approximate in each node of the grid. For
simplicity we use the same grid for both jump and differential operator.

3.5.1 Grid discretization

It’s well known that the choice of the grid in the finite difference scheme
takes a central role in the accuracy of the solution. It’s also be shown that
non uniform grid can lead to better approximations rather than uniform
grid. Indeed this kind of grid allows to have more points lying near the
critical zones, and less points in area with minor financial interest. There
are two main methods to create a non uniform grid:

• Refine an uniform grid,

• Redistribution of uniform grid.

We choice the latter one since it keeps constant the number of nodes and so
it’s easy to analyse the algorithm’s complexity since the number of points
doesn’t change. In credit risk framework the relevant areas are the one close
to the default boundary µ where the credit events may happen. For the
construction of non uniform grid through grid transformation we follow [11]
and [23].

The grid

From equation (3.3) follows that the computational domain D = [0,∞) is
semi infinite, so it’s approximated by D̃ = [0, xmax]. Let N + 1 be the
number of points used to approximate the domain. Then the grid G is given
by

G = {0 = x0 < x1 < · · · < xN = xmax},

where the values of xi are given transforming an uniform grid ξ through S,
i.e.

xi = S(ξ), i = 0, . . . , N.
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Transformation

Given a uniformly distributed grid ξ ∈ [0, 1] we must find the right grid
transformation S = S(ξ), indeed wrong transformation can add an error as
show in [23]. A lot of transformations are available. In the following we
present a simple transformation based on the studies of the Jacobian.

Single Critical Point

In case of single barrier we have explicit formula for the transformation.
Given a transformation S = S(ξ) we know that the variation of the grid is
given by ∆S(ξ) = J(ξ)∆ξ, where J is the Jacobian of the transformation. A

good transformation can be obtained with J(ξ) = (α2+(S(ξ)−B)2)
1
2 , where

α is a custom parameter and B is the barrier. In this way if |S − B| >> α
the grid step is proportional to S, then grid is almost exponential , while
if |S − B| << α the grid step is proportional to α, then the grid is almost
uniform. With this choice the problem reduces to solve an ODE

dS(ξ)

dξ
= (α2 + (S(ξ)−B)2)

1
2 .

It’s simple to verify that the solution of the ODE is

S(ξ) = B + α sinh(c2ξ + c1(1− ξ)).

The constant c1 and c2 can be found imposing that S(0) = Smin and S(1) =
Smax. Thus:

• c1 = sinh−1(Smin−B)
α ,

• c2 = sinh−1(Smax−B)
α .

Such grid maps the interval 0 ≤ ξ ≤ 1 into the interval Smin ≤ S ≤ Smax.
It’s also possible to compute the value ξB relative to the barrier B. This
value is given by ξB = −c1

c2−c1 . The parameter α controls levels of uniformity
of the grid. Taking α � Smax − Smin yields very non uniform grid, while
α� Smax − Smin yields almost uniform grid.

3.5.2 Differential Operator

Since we use a non uniform grid, we don’t perform the standard finite differ-
ence discretization but we follow [15] in order to obtain the best discretiza-
tion possible. For completeness we present backward, central and forward
schemes:

∂V

∂x
(xi) ≈ αi,−2V (xi−2) + αi,−1V (xi−1) + αi,0V (xi), (3.8)

∂V

∂x
(xi) ≈ βi,−1V (xi−1) + βi,0V (xi) + βi,1V (xi+1), (3.9)

∂V

∂x
(xi) ≈ γi,0V (xi) + γi,1V (xi+1) + γi,2V (xi+2), (3.10)
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with coefficients

αi,−2 =
∆xi

∆xi−1(∆xi−1 + ∆xi)
, αi,−1 =

−∆xi−1 −∆xi

∆xi∆xi−1
, αi,0 =

∆xi−1 + 2∆xi

∆xi(∆xi + ∆xi−1)
,

βi,−1 =
−∆xi+1

∆xi(∆xi + ∆xi+1)
, βi,0 =

∆xi+1 −∆xi

∆xi∆xi+1
, βi,1 =

∆xi

∆xi+1(∆xi + ∆xi+1)
,

γi,0 =
∆xi+2 − 2∆xi+1

∆xi+1(∆xi+1 + ∆xi+2)
, γi,1 =

−∆xi+1 −∆xi+2

∆xi+1∆xi+2
, γi,2 =

−∆xi+1

∆xi+1(∆xi+1 + ∆xi+2)
.

where ∆xi = xi − xi−1.
To approximate the second derivative we use the central scheme

∂2V

∂x2
(xi) ≈ δi,−1V (xi−1) + δi,0V (xi) + δi,1V (xi+1), (3.11)

with coefficients

δi,−1 =
2

∆xi(∆xi + ∆xi+1)
, δi,0 =

−2

∆xi∆xi+1
, δi,1 =

2

∆xi+1(∆xi + ∆xi+1)
.

Equations (3.8)-(3.10) and (3.11) are classical approximations of derivative
in case of non uniform mesh. In the case of uniform mesh they become
standard finite difference scheme. The scheme in (3.8)-(3.10) and (3.11)
has a second order truncation error for meshes that are either uniform or
a smooth transformation of such meshes. With the above scheme we can
approximate the diffusion operator D using the matrix D ∈ R(N+1)×(N+1).
Thus, D is a tridiagonal matrix given by

D =



0 0 0 0 . . . 0
∆1,−1 ∆1,0 ∆1,1 0 . . . 0

0 ∆2,−1 ∆2,0 ∆2,1 0
...

. . .
. . .

. . .
...

0 . . . 0 ∆1
N−1,−1 ∆N−1,0 ∆N−1,1

0 . . . 0 0 0 0


where :

• ∆i,j = ξβi,j + σ2

2 δi,j .

3.5.3 Jump Operator

We developed two different discretizations of the jump operator. In the first
discretization we approach the integral directly.
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First method

Introducing auxiliary function ϕl(x) = J V (tl, x) and recalling the definition
of the jump operator, we have

ϕl(x) = θ

∫ 0

−x
V (t, x+ j)eθjdj,

ϕl(x+ h) = θ

∫ 0

−x−h
V (t, x+ j + h)eθjdj, (3.12)

by changing variable in equation (3.12), with z = h+ j, we get

ϕl(x+ h) = θe−θh
(∫ 0

−x
V (tl, x+ z)eθzdz +

∫ h

0
V (tl, x+ z)eθzdz

)
.

The first term is by definition ϕl(x), the second term can be solved using
first a Taylor expansion to the second order and then approximating the
derivative term with central difference. Finally we obtain

ϕl(x+ h) = e−θhϕl(x) + ω0(θ, h)V (tl, x) + ω1(θ, h)V (tl, x+ h) +O(h3),

ϕl(0) = 0,

where

ω0(θ, h) =
1− (1 + θh)e−θh

θh
, ω1(θ, h) =

−1 + θh+ e−θh

θh
. (3.13)

Then rewriting the recursive formula for the jump operator we get

J V (t, x+ h) = e−θhJ V (t, x) + ω0(θ, h)V (t, x) + ω1(θ, h)V (t, x+ h) +O(h3).

where the coefficient ω0, ω1 are defined in (3.13).
Given the grid in Section 3.5.1 we denote with J i the approximation of
J V (t, xi) on the grid. Then we have :

J i+1 = e−θh
i+1
J i + ω0(θ, hi+1)V (t, xi) + ω1(θ, hi+1)V (t, xi+1), (3.14)

J0 = 0,

where increments are given by hi+1 = xi+1 − xi.

Second method

For an alternative discretization we rewrite the jump operator in (3.7) as
differential equation

∂

∂x

(
J V (x)eθx

)
= θV (x)eθx.
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To solve these differential equation we apply Adam-Moulton method of sec-
ond order which gives us third order of accuracy locally as shown in [3].
Then

J i+1 = e−θhi+1J i +
1

2
θhi+1e

−θhi+1V (xi) +
1

2
θhi+1V (xi+1).

We obtain a scheme that is equivalent to the trapezoidal rule. In order to
have coherent notation by defining

ω0(θ, h) =
1

2
θhe−θh, ω1(θ, h) =

1

2
θh.

we obtain the same formula of (3.14). Both approximation give the same
results with the same efficiency as shown in Figures 3.2-3.3. In Figure 3.4 we
plot the difference of the jump operator in the two methods. The difference
is coherent with the behaviour of the ω0 and ω1 in function of the increment
h shown in Figures 3.5-3.6. With this explicit recursive formula the jump
operator J V can be computed on each node of the grid with a complexity
of O(N). From a computation perspective in the case of N = 100 the
recursive formula allows to compute the J contribution in 0.041 seconds
respect to the 0.617 seconds needed using numerical integration. Notice
that the efficiency of the algorithm lies on the kind of jump size distribution.
Only for exponential jump size the jump operator can be expressed in such
a way.
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3.5.4 Time discretization

We make a change of time variable in order to deal with forward-in-time
equation. Define τ = T − t, the problem becomes

∂V

∂τ
= LV − χ(τ, x), (3.15)

V (τ, 0) = φ1,0(τ), V (τ, x1) −−−−−→
x1→+∞

φ1,∞(τ), (3.16)

V (0, x) = ψ(x). (3.17)

With the result in Section 3.5.2 and 3.5.3, we can approximated the opera-
tor LV in each point of the grid using the matrix LV = DV + λJV − λV .
After the discretization the PIDE (3.15) reduces to solve a system of ordi-
nary linear differential equations. In order to solve the system of ODE we
introduce the vector U(t) ∈ RN+1×1 whose i-th component represents the
solution V (t, xi). Then, we get

U ′(t) = AU(t) + λJ(Un) + b(t),

U(0) = U0.

where A = D−λI, and b(t) takes into account for both boundary conditions
and non homogeneous term of the PIDE. To solve this problem we can use
well known Crank-Nicolson scheme with θ = 1

2 which, under mild assump-
tion, guarantees second order convergence in time. Treating the jump part
explicitly we get

Un+1 − Un

∆t
=

1

2

[
AUn+1 +AUn

]
+ λJ(Un).

Solving respect to Un+1 we get the linear system(
I − 1

2
∆tA

)
Un+1 =

(
I +

1

2
∆tA

)
Un + ∆tλJ(Un) + b(tn+1).

We then correct the first and last row of A, the first and last element of both
Un and J(Un) to zero in order to strongly impose the border condition. The
matrix A is tridiagonal so there are a lot of efficiently algorithms to solve
the linear system.

3.6 Results

In this section we analyse the model characteristic computing different credit
products. We consider the parameters in Table 3.2 for the model without
jump.
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L1,0 L2,0 R1 R2 T σ1 σ2

60 70 0.4 0.45 1 0.4 0.3

Table 3.1: Model parameters.

In case of model with jump we consider the parameters in both Tables 3.2-
3.1.

θ1 θ2 λ1 λ2

1 1 0.095 0.055

Table 3.2: Jump parameters.

All test are made using a grid with 100 nodes and using 100 time steps. The
grid is built concentrating points in µ̃ and taking parameter α proportional
to xmax − µ̃ by a factor of 1/10. From a computation perspective, using
such grid the computation time of both model (with and without jumps) is
of the order of 0.06 seconds for each payoff.

Survival Probability

We consider the survival probability of the first bank. In Figures 3.8-3.7
we plot the survival probability in function of both time and bank asset
for model without and with jump respectively. In these plots we consider
the default boundaries at µ̃<. As expected we find a decreasing function of
time. In Figure 3.9 we plot the difference between model with and without
jump and we notice that the jumps mostly impact the area near default
boundaries. Here the probability is quite lower than the case without jump.
This is what we expected since our model considers only negative jumps.

23



0
10

0.2

0.4

1

0.6

q
1
(t

,x
1
)

0.8

0.8

Survival probability

x
1

5

1

0.6

t

1.2

0.4
0.2

0 0

Figure 3.7: Survival probability for
model without jump

0
10

0.2

0.4

1

0.6

q
1
(t

,x
1
)

0.8

0.8

Survival probability

x
1

5

1

0.6

t

1.2

0.4
0.2

0 0

Figure 3.8: Survival probability for
model with jump

-0.05
10

-0.04

-0.03

1

-0.02

∆
 q

1
(t

,x
1
) 

di
ff -0.01

0.8

Survival probability

x
1

5

0

0.6

t

0.01

0.4
0.2

0 0

Figure 3.9: Difference of survival probability between model with and without jump

Credit default swap

We consider the value of a credit default swap on the first bank (RN). In
Figures 3.10-3.11 we plot the credit default swap price in function of time
and bank’s assets for both models. In Figure 3.12 we plot the difference
between this models. We notice that again the jump strongly impacts the
area near default boundaries. This time the difference is positive because
when considering jumps the survival probability of the bank decreases, then
the value of a CDS can only increase.
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jump

As mentioned in Section 5.2 Crank-Nicholson method has first order conver-
gence in case of discontinuous payoffs. Following the smoothing approach
of Section 5.2 we are able to restore second order convergence even with
discontinuous payoff.
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The observed convergence is shown in Figure 3.13. As expected, the con-
vergence is of order one without smoothing and of order two in case of
smoothing.
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Chapter 4

Two Dimensional Model

In this chapter we follow the structure of the one dimensional model with
some important different features. The main important feature is the pres-
ence of mutual liabilities. This is a key point in order to well describe the
banking network as a whole. In such a way adverse shock movements to
a bank can be rapidly transmitted to the whole banking system in case of
large mutual liabilities. In the presence of large mutual liabilities, a bank
which, if considered singularly appears to be stable and apparently without
imminent default risk, may actually shows itself in a bad shape if considered
in a system of banks.
In 2014, the authors of [5] show that the interbank loans in the Europe
area was the 12% of the total liabilities. So the mutual liabilities have a
significant contribution in the behaviour of a bank. Therefore, following
[16] we assume that the banks have external assets and liabilities, Ai and
Li respectively, for i = 1, 2. In order to model interlinked bank’s network
we introduce mutual liabilities L12 and L21 between each bank, where Lij is
the amount that the i-th bank owes to the j-th bank. So we can write the
total asset and liabilities as

Ã1 = A1 + L21, L̃1 = L1 + L12,

Ã2 = A2 + L12, L̃2 = L2 + L21.

4.1 Dynamics of asset and liabilities

As in Chapter 3 we assume that the assets banks dynamics are given by

dAi
Ai

= (µi − κiλi)dt+ σidWi(t) + (eJi − 1)dNi(t), i = 1, 2, (4.1)

where µi, σi, λi, κi and ω̃i(s) are equal to the parameters of one dimen-
sional dynamics. The jump size are therefore distributed with probability
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distribution given by

ω̃i(s) =

{
0, s > 0,

θie
θis, s ≤ 0,

(4.2)

with parameters θi > 0, and κi are jump compensator

κi = E[eJi − 1] = − 1

θi + 1
.

To deal with interbank network risk we need to model the correlated dy-
namics of banks. To do so we take Wi ρ-correlated Wiener process, i.e.

dW1(t)dW2(t) = ρdt,

We also take correlated jump processes. Correlation of jump processes is
a way to model the systematic source of jumps. Indeed dealing with jump
terms positive correlated guarantees that if one asset jumps, also the other
asset jump with probability proportional to the correlation. The correlation
is make as in [19].
Consider independent Poisson processes N{1}(t), N{2}(t) and N{12}(t) with
the corresponding intensities λ{1}, λ{2}, λ{12}. The correlated Poisson pro-
cesses N1(t) and N2(t) are obtain as

Ni(t) = N{i}(t) +N{12}(t), i = 1, 2,

λi = λ{i} + λ{12}.

i.e., we consider both systematic and idiosyncratic sources of jumps. The
Poisson process Ni(t) is capable of producing independent jumps through
λ{i}, and simultaneous jump through λ{12}. This is not the only way to cor-
related jump processes. The advantage of this method is that the marginal
distributions do not change. It’s well known fact that the summation of
independent Poisson distributions of intensity λi is a Poisson distribution
with intensity λ =

∑
i λi.

For liabilities we assume deterministic behaviour through the following dy-
namics

dLi
Li

= µidt,
dLij
Lij

= µidt,

where µi is the same of Equation (4.1). For pricing purposes, under the
risk-neutral measure, we consider µi as a risk-free short rate. For simplicity
we take µi = 0 for i = 1, 2 in the following.

4.2 Default boundaries

Following [16] we consider time dependent default boundaries Λi(t). We as-
sume that the default event of bank i happens when its asset value process
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crosses the default boundaries. We assume that the bank assets are moni-
tored at all times 0 < t ≤ T , and that the default event can occur at any
time between the current time t and the maturity T . Then it is natural to
introduce a stopping time to describe the time in which bank i-th defaults.
Since we are dealing with non continuous processes we cannot model the
default time as a hitting time, but we model it as the time of crossing of a
barrier, i.e.,

τi = inf{t|Ai(t) ≤ Λi(t)}, i = 1, 2,

Therefore τi is the time in which bank i defaults. Then we define τ =
min(τ1, τ2) the time of first default.
Considering a system of several banks, in this case 2, the default boundaries
are no longer constant but depend on whether the other bank defaults or
not. Before any of the banks i = 1, 2 default, i.e t < τ both banks are able
to pay their debts. The default boundaries are

Λi =

{
Ri(Li + Līi)− Līi ≡ Λ<i , t < T,

Li + Līi − Līi ≡ Λ=
i , t = T,

(4.3)

where 0 ≤ Ri ≤ 1 is the recovery rate and ī = 3 − i. Before maturity
creditors believe that bank i is still able to recover its debt, therefore they
consider the default boundaries as a fraction Ri of total liabilities (Li+Līi).
Bank i also cashes in the liabilities of the other bank Līi. Instead at maturity
T there is no more time to recover part of liabilities, so the debts must be
fully paid.
If the i-th bank defaults at intermediate time t, then for the surviving bank
ī = 3− i the default boundary changes to Λī(t+) = Λ̃ī(t), where

Λ̃ī =

{
Rī(Lī + Līi −RiLīi) ≡ Λ̃<

ī
, t < T,

Lī + Līi −RiLīi ≡ Λ̃=
ī
, t = T.

Again if, for example, bank i defaults before maturity, the bank ī cashes in
only a fraction of the debt that bank i owns to bank ī, i.e RiLīi, that is
considered like a “liabilities ”. It is clear that for ∆Λī(t) = Λī(t+) − Λī(t)
we have

∆Λī = Λ̃ī − Λī =

{
(1−RīRi)Līi, t < T,

(1−Ri)Līi, t = T.

Thus, ∆Λk̄ > 0 and the corresponding default boundaries move to the right.
This is an important feature of the model. We empathize this with an
example. If the bank i defualts in t the default boundaries of bank ī moves
to the right. In doing so, it may happen that in t the bank ī is able to repay
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its debts but in t+, with the new boundaries, defaults. This mechanism can
therefore trigger cascades of defaults as shown in the Figure 4.1.

Figure 4.1: Default boundaries for t < T .

If there are no defaults the domain is given by the area which lies above the
line 1-4-6. If bank 1 defaults the domain becomes the area above the line
2-3-4-6. Finally if bank 2 defaults the domain is given by the area to the
right of line 1-4-5-7.

4.3 Terminal condition

We need to specify the settlement process at time t = T . We shall do this in
the spirit of [6]. As said before at time T banks don’t have time to recover.
Therefore they can pay to their obligors the current amount of money in
hand. When bank i defaults in T , the total bank asset is a fraction ωi of its
total liabilities. Then, trivially, ωi = 1 when bank i pays all liabilities (both
external and interbank) and survives. On the other hand, if 0 < ωi < 1,
bank i defaults, and pays only a fraction of its liabilities. Thus, we can
describe the terminal condition as a system of equations

min{Ai(T ) + ωīLīi, Li + Līi} = ωi(Li + Līi). (4.4)

There is a unique vector ω = (ω1, ω2)T such that the condition (4.4) is satis-
fied. See [6] for details. Equation (4.4) well described the linked bank’s net-
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work. In order to see it we manipulate the equation. Using the non dimen-
sional variables L̃i(T ) = (Li + Līi), ai = Ai(T )/L̃i(T ) and l̄ii = Līi/L̃i(T ),
the problem in (4.4) becomes

min{ai + ωī l̄ii, 1} = ωi.

Then it is clear that ωi = 1 when ai + ωī l̄ii > 1. This suggests that bank’s
default can happen through owns debts when

Ai(T ) < λ=
i (T ),

but also through contagion when,

Li + Līi − ωīLīi > Ai(T ) ≥ λ=
i (T ).

This suggests that we need to change our definition of the boundaries in T
to λ̃i,T = Li + Līi − R̃ī(ωi)Līi, where

R̃ī = min

(
1,
Aī + ωiLīi
Lī + ωiLīi

)
, ī = 1, 2.

Then the default boundary of bank i in T depends on the asset of the other
bank. When the asset of bank ī grows from λ<

ī
to λ=

ī
, the default boundary

λ̃i,T moves from λ̃=
i to λ=

i .
Furthermore we define the domain in which banks survive. Let D1 be the
domain in which only bank 1 survives. Similarly we define D2 the domain
in which only bank 2 survives. Finally we define with D12 the domain in
which both banks survive. Defining the whole domain as D, we eventually
use the notation D̂ = D\(D1 ∪D2 ∪D12) for the domain in which all banks
default. For better understanding we show the domain in Figure 4.2.
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Figure 4.2: Default boundaries for t = T .

So the D12 is the area which lies above the line 2-4-5, D1 is the area at
the bottom-right of the line 5-4-7-8 and D2 is the area top-left of the line
1-3-4-2.
In case of two banks the problem (4.4) reduces to solving a linear system
for each domain.
In D1 only bank 1 survives, i.e. it is able to pay his liabilities and therefore
A1 +ω2L21 > (L1 +L12) while for the second bank A2 +ω1L12 ≤ A2 +L12 <
ω2(L2 + L21). The linear system (4.4) becomes{

(L1 + L12) = ω1(L1 + L12),

A2 + ω1L12 = ω2(L2 + L21).

From which the solution is given by

ω1 = 1,

ω2 =
A2 + L12

L2 + L12
.

Similar consideration holds for D2 and the solution is given by ω1 = A1+L12
L2+L12

In D12 the solution is trivially given by ω1 = 1 and ω2 = 1 because neither
bank 1 nor bank 2 default.
More interesting is the case of D̂. Here both bank 1 and bank 2 default, so
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the system becomes {
A1 + ω2L21 = ω1(L1 + L12),

A2 + ω1L12 = ω2(L2 + L21).

Thus, after simple algebra, the solution is :

ωi =
LīAi + Līi(Ai +Aī)

L1L2 + L12L2 + L1L21
i = 1, 2. (4.5)

4.4 Formulation of backward Kolmogorov equa-
tion

For convenience, we introduce lognormal variables

Xi = ln
( Ai

Λ<i

)
.

Let us denote also

ξi = −
(
σ2
i

2
+ κiλi

)
.

Applying Itô’s formula to Xi, we find its dynamics

dXi = ξidt+ σidWi(t) + JidNi(t).

For details see Appendix B.
Substituting from equation (4.3) we obtain the default boundaries for the
new variable Xi

µi =

µ
<
i = 0, t < T,

µ=
i = ln

(
Λ=
i (t)

Λ<i (t)

)
, t = T.

(4.6)

Once we obtain the new default boundaries we can focus in pricing credit
products.
Consider now a contract with terminal payoff ψ(XT ), payment χ(s, x) at
intermediate time t ≤ s ≤ T . Consider also payoffs φ1,0(t,X2(t)) and
φ2,0(t,X1(t)) in case of prior default of bank 1 and bank 2 respectively.
Then we can formulate the problem as

V (x, t) = E
[
ψ(XT ) · 1{τ≥T} −

∫ T

t

χ(s,Xs) · 1{τ>s}ds

+ φ1,0(τ1, X2(τ1)) · 1{τ1<T} + φ2,0(τ2, X1(τ2)) · 1{τ2<T}|X(t) = x

]
,

Thanks to Feynman-Kac formula we can move from a stochastic formula-
tion of the problem to a deterministic formulation through a partial-integro
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differential equation. The corresponding pricing equation is given by the
following Kolmogorov backward equation: (for details see appendix C)

∂V

∂t
+ LV = χ(t, x), x := (x1, x2) ∈ R+ × R+, (4.7)

V (t, 0, x2) = φ2,0(t, x2), V (t, x1, x2) −−−−−→
x1→+∞

φ2,∞(t, x2), (4.8)

V (t, x1, 0) = φ1,0(t, x1), V (t, x1, x2) −−−−−→
x2→+∞

φ1,∞(t, x1), (4.9)

V (T, x) = ψ(x). (4.10)

where

Lf =
σ2

1

2
fx1x1 + ρσ1σ2fx1x2 +

σ2
2

2
fx2x2 + ξ1fx1 + ξ2fx2

+ λ1J1f + λ2J2f + λ12J12f − (λ1 + λ2 + λ12)f, (4.11)

J1f(x) = θ1

∫ x1

0
f(x1 − u, x2)e−θ1udu, (4.12)

J2f(x) = θ2

∫ x2

0
f(x1, x2 − u)e−θ2udu, (4.13)

J12f(x) = θ1θ2

∫ x1

0

∫ x2

0
f(x1 − u, x2 − υ)e−θ1u−θ2υdυ, (4.14)

and φi,0, φi,∞ are given functions. The derivation of equations (4.12)-(4.14)
is given in Appendix A. In the following, we formulate the Kolmogorov
backward equation for specific quantities.

4.5 Pricing problem

In this section we formulate the problem for multiple credit products. Unlike
the one dimensional case, adding an additional bank allows us to investigate
the impact of the behaviour of the counterparty making the pricing problem
much more interesting.

4.5.1 Marginal Survival Probability

In this section we compute the survival probability of bank i. Let’s refer to
the other bank with j = 3− i. Although we are talking about marginal sur-
vival probability it’s important to understand why it’s a problem in both xi
and xj . The two banks are indeed linked by the mutual liabilities. The sur-
vival probability of the i-th bank is directly linked to the j-th bank through
the default boundaries. If bank j defaults then the default boundaries of
bank i move to the right, and its probability of default increases.
Let’s qi(t, x) = qi(t, xi, xj) be the survival probability of the i-th bank.
The bank i survives when:
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• There are no defaults before T .

• In T bank i does not default.

• The bank i survives also when bank j defaults.

The first event is described by 1{τ≥T}.
As said before, in T the boundaries change. Therefore the stopping time τ
is not able to describe any events in T . So we introduce 1{XT∈Di∪D12} to
correctly describe the second event using the boundaries in T . Notice that
here we are taking into account both the cases of no default and default of
bank j. Indeed Di is the region where bank i survives, but bank j defaults.
For the third event, consider the case where bank j defaults before T , then
bank i deals with the modified boundaries µ̃1. This new probability of
survival is given by Ξ(τj , Xi(τ2))1{τj<T}. It’s important to notice that like
in the one dimensional case here we are not describing what happen in T .
Infact it would be an error since the event “bank i survives in T , while bank
j does not” is already considered in the second case. Finally the problem
becomes

qi(t, x) = E
[
1{τ≥T,XT∈Di∪D12} + Ξ(τj , Xi(τj))1{τj<T}

∣∣X(t) = x].

From equations (4.7)-(4.10) taking ϕ(x) = 1{x∈Di∪D12} and χ(x, t) = 0 we
obtain

∂

∂t
qi(t, x) + Lqi(t, x) = 0,

qi(t, 0, xj) = 0,

qi(t, xi, 0) = Ξ(t, xi),

V (T, x) = 1{XT∈Di∪D12}.

with L defined in (4.11). The domain is once again semi infinite so it has
no border conditions for xi,j → +∞ . In order to solve the PIDE we must
formulate an artificial conditions. It seems natural to impose that for xi →
+∞ the solution tends to 1. For xj → +∞, bank j can be considered
not defaultable, then it’s natural to consider that the solution tends to the
survival marginal probability of bank i.
Therefore the problem becomes

∂

∂t
qi(t, x) + Lqi(t, x) = 0, x := (xi, xj) ∈ R+ × R+,

qi(t, 0, xj) = 0, qi(t, xi, xj) −−−−−→
xi→+∞

1,

qi(t, xi, 0) = Ξ(t, xi), qi(t, xi, xj) −−−−−→
xj→+∞

χi,∞(t, xi),

qi(T, x) = 1{x∈Di∪D12}.
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As said before Ξ(t, xi) is the probability of survival of bank i when bank j
defaults, i.e consider the modified boundaries µ̃

Ξ(t, xi) =

{
χi,0(t, xi), xi ≥ µ̃<i ,
0, xi < µ̃<i .

It’s easy to see that χi,0(t, xi) solves the problem described in Section 3.4.1
with modified boundaries µ̃. While χi,∞(t, xi), since is the probability when
bank j can be considered not defaultable, solves the problem described in
Section 3.4.1 with unmodified boundaries µ.

4.5.2 Joint Survival Probability

The joint survival probability Q(t, x) is the probability that both banks
survive. Then the problem is straightforward

Q(t, x) = E
[
1{τ≥T,X1(T )≥µ=1 ,X2(T )≥µ=2 }, |X(t) = x].

From equations (4.7)-(4.10), taking ϕ(x) = 1{x1≥µ=1 ,x2≥µ=2 } and χ(x, t) = 0
the problem becomes

∂

∂t
Q(t, x) + LQ(t, x) = 0,

with L defined in equation (4.11). The boundary conditions are given by

Q(t, 0, x2) = 0,

Q(t, x1, 0) = 0,

Q(T, x) = 1{x1≥µ=1 ,x2≥µ=2 }.

Once again we don’t have border conditions for x1, x2 → +∞. For x1 →
+∞, it seems natural to consider the first bank not defaultable so the joint
survival probability reduces to the marginal probability of bank 2. Similar
consideration holds for x2 → +∞.
Then the problem becomes

∂

∂t
Q(t, x) + LQ(t, x) = 0, x := (x1, x2) ∈ R+ × R+,

Q(t, 0, x2) = 0, Q(t, x1, x2) −−−−−→
x1→+∞

χ2,∞(t, x2),

Q(t, x1, 0) = 0, Q(t, x1, x2) −−−−−→
x2→+∞

χ1,∞(t, x1),

Q(T, x) = 1{x1≥µ=1 ,x2≥µ=2 }.

where χk,∞(t, xk) with k = 1, 2 is the one dimensional survival probability of
bank k considering the other bank not defaultable. Both solve the problem
described in Section 3.4.1 with unmodified default boundaries µk.
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4.5.3 Credit Default Swap

A Credit Default Swap (CDS) is a contract designed to eliminate credit risk
over a Reference Name (RN). Protection Buyer (PB) buys a CDS over RN to
a Protection Seller (PS). PB pays periodic coupon payments c until default
of RN or maturity T . In exchange PS pays to PB the loss given RN’s
default. Consider C1(t, x) the value, from the PB perspective, of a CDS
written on the first bank (RN) with coupon c. Assume that the coupon is
paid continuously. According to [1] the value becomes

C1(t, x) = E
[
φ(XT )1{τ≥T}−

∫ T

t
c1{τ>s}ds+ Ξ(τ2, X1(τ2))1{τ2<T}|Xt = x

]
,

where:

φ(x) =

{
1−min(R1, R̃1(1)), (x1, x2) ∈ D2,

1−min(R1, R̃1(ω2)), (x1, x2) ∈ D\(D1 ∪D2 ∪D12).

R̃1(ω2) = min

[
1,
A1(T ) + ω2L21(T )

L1(T ) + ω2L12(T )

]
.

Ξ(t, x1) =

{
c1,0(t, x1), x1 ≥ µ̃<1 ,
1−R1, x1 < µ̃<1 .

R̃1(ω2) represents the percentage of asset respect to the total liabilities of
the first bank in function of the fraction ω2 of debt that bank 2 is able to
pay at maturity. If bank 1 defaults then we have R̃1(ω2) < 1 otherwise
R̃1(ω2) = 1.
Let’s better analyse each term. At maturity T we have three main scenarios
described by φ(x):

• Bank 1 survives: the value of CDS is 0 since no default occurs.

• Bank 1 defaults, bank 2 survives: In this case bank 2 pays all
its debt and so ω2 = 1. Then since bank 1 defaults we have that
R̃1(1) < 1. This quantity represents the percentage that bank 1 is able
to pay back to creditors. It may happen that the bank can recover
even less than R1. Then the value of CDS becomes 1−min(R1, R̃1(1)).

• Both banks default: In this case bank 2 pays only a fraction of
his debt and so ω2 < 1. Then since bank 1 defaults we have that
R̃1(ω2) < 1. This quantity represents the percentage that bank 1 is
able to pay back to creditors given the fraction of debt that bank 2 is
able to pay. Then the value of CDS becomes 1−min(R1, R̃1(ω2)).
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The term −
∫ T
t c1{τ>s}ds takes into account the payments of coupon c until

default or maturity T .
Finally Ξ(τ2, X1(τ2))1{τ2<T} describes what is the value of the CDS in case
of bank 2 default. Since there are mutual liabilities the default of bank 2
can lead to bank 1 default and therefore activate the insurance of the CDS.
The function Ξ(τ2, X1(τ2))1{τ2<T} accounts for both the following events:

• Bank 1 survives despite bank 2 defaults: due to the default of
bank 2 the default boundaries of bank 1 move from µ to µ̃. Despite
the new boundaries bank 1 survives, so the insurance is not activated
and the CDS value is then a function of only the bank 1 assets. There-
fore the CDS value is given by the 1-dimensional CDS c1,0(t, x1) with
modified boundaries µ̃.

• Bank 1 defaults due to default of bank 2: the RN defaults so
the insurance is activated and the value of the CDS becomes 1−R1.

From equations (4.7)-(4.10), taking ϕ(x) = φ(x) and χ(x, t) = c the problem
becomes

∂

∂t
C1(t, x) + LC1(t, x) = c,

C1(t, 0, x2) = 1−R1,

C1(t, x1, 0) = Ξ(t, x1) =

{
c1,0(t, x1), x1 ≥ µ̃<1 ,
1−R1, x1 < µ̃<1 ,

C1(T, x) = φ(x).

For the condition at xi → +∞ we formulate suitable condition.
If x1 → +∞ the CDS can be considered as a risk-free annuity because
the probability that RN defaults tends to zero. If x2 → +∞ the CDS is
given by c1,∞(t, x1). Both c1,0(t, x1), c1,∞(t, x1) are the solutions of the
one dimensional problem. Since c1,0(t, x1) is the value of the CDS when
bank 2 defaults, it solves the problem in Section 3.4.2 with modified default
boundaries µ̃. Similarly, c1,∞(t, x1) solves the problem with unmodified
default boundaries µ.
Putting all together the final problem becomes

∂

∂t
C1(t, x) + LC1(t, x) = c, x := (x1, x2) ∈ R+ × R+,

C1(t, 0, x2) = 1−R1, C1(t, x1, x2) −−−−−→
x1→+∞

−c(T − t),

C1(t, x1, 0) = Ξ(t, x1) =

{
c1,0(t, x1), x1 ≥ µ̃<1 ,
1−R1, x1 < µ̃<1 ,

C1(t, x1, x2) −−−−−→
x2→+∞

c1,∞(t, x1),

C1(T, x) = φ(x).

4.5.4 First-To-Default swap

A First-To-Default swap (FTD) is a contract designed to eliminate credit
risk of first default over a basket of Reference Names(RNs). Protection
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Buyer(PB) buys a FTD over RNs to a Protection Seller(PS). PB pays pe-
riodic coupon payments c to PS up to the first default of any of the RNs
in the basket or maturity T . In exchange PS pays to PB the loss given
the first default. Consider F (t, x) the price of a FTD written on the basket
of the two banks (RNs) with coupon c. Assume that the coupon is paid
continuously. According to [13] the value becomes

F (t, x) = E
[
φ(XT )1{τ>T}−

∫ T

t

c1{τ>s}ds+(1−R1)1{τ1<T}+(1−R2)1{τ2<T}|Xt = x

]
,

(4.15)

where

φ(x) = β01{x∈D\(D1∪D2∪D12)} + β11{x∈D1} + β21{x∈D2},

β0 = 1−min
[

min(R1, R̃1(ω2)),min(R2, R̃2(ω1))],

β1 = 1−min(R2, R̃2(1)) β2 = 1−min(R1, R̃1(1)),

and

R̃1(ω2) = min

[
1,
A1(T ) + ω2L21(T )

L1(T ) + ω2L12(T )

]
, R̃2(ω1) = min

[
1,
A2(T ) + ω1L12(T )

L2(T ) + ω1L21(T )

]
.

Let’s better analyse each term. At maturity T we have three main scenarios
described by φ(x):

• Bank 1 survives, bank 2 defaults: similar to the CDS, the value of
FTD is 1−min(R2, R̃2(1)) since bank 1 is able to fully pays its debts.

• Bank 1 defaults, bank 2 survives: the value of FTD is given by
1−min(R1, R̃1(1)) since bank 2 is able to fully pays its debts.

• Both banks default: Both banks default simultaneously therefore
the definition of “first default ”is ambiguous. For convention we as-
sume that in case of simultaneous defaults the first bank that defaults
is the one with less percentage of recovery. Since both banks default,
both pay only a fraction ω1 and ω2 of their debts, therefore ω1 < 1
and ω2 < 1. Similar to the case of CDS it may happen that the banks
can even recover less than the recovery rate, then the value of FTD
becomes 1−min(min(R1, R̃1(ω2)),min(R2, R̃2(ω1))).

The term −
∫ T
t c1{τ>s}ds takes into account the payments of coupon c until

first default or maturity T .
The last two term of equation (4.15) represent the value of FTD in case of
prior defaults. If bank 1 (bank 2) defaults before maturity the FTD value
would be 1−R1 (1−R2).
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From equations (4.7)-(4.10), taking ϕ(x) = φ(x) and χ(x, t) = c the problem
becomes

∂

∂t
F (t, x) + LF (t, x) = c,

F (t, 0, x2) = 1−R1,

F (t, x1, 0) = 1−R2,

F (T, x) = β01{x∈D\(D1∪D2∪D12)} + β11{x∈D1} + β21{x∈D2}.

For the condition at xi → +∞ we assume suitable condition. If x1 → +∞
the FTD can be considered as a CDS written on the second bank with value
f2,∞(t, x2). If x2 → +∞ the FTD can be considered as a CDS written on
the first bank with value f1,∞(t, x1). So fi,∞(t, xi) is the solution of the
one dimensional problem in Section 3.4.2 where, since bank 3 − i does not
default, we consider the unmodified default boundaries µ.
Putting all together we obtain that the price of FTD solves

∂

∂t
F (t, x) + LF (t, x) = c, x := (x1, x2) ∈ R+ × R+,

F (t, 0, x2) = 1−R1, F (t, x1, x2) −−−−−→
x1→+∞

f2,∞(t, x2),

F (t, x1, 0) = 1−R2, F (t, x1, x2) −−−−−→
x2→+∞

f1,∞(t, x1),

F (T, x) = β01{x∈D\(D1∪D2∪D12)} + β11{x∈D1} + β21{x∈D2}.

4.5.5 Credit and Debt Value Adjustments for CDS

Credit Value Adjustment (CVA) and Debt Value Adjustment (DVA) are
measure that take into account the probability of default of a counterparty.
There exists both unilateral and bilateral adjustments. We only focus on
the unilateral case.
Unilateral CVA and DVA Consider the case of a CDS written on one
bank RN. Consider also that the Protection Seller is the other bank. In this
way both RN and PS can default, while the Protection Buyer is considered
not defaultable. Then we need to take into account the risk that PB can
have in case of default of PS. Following [13], the CVA can be defined as

V CV A = (1−RPS)E
[
1{τPS<min(T,τRN )}(V

CDS
τPS )+|Ft

]
,

where RPS is the recovery rate of PS, τPS and τRN are the default time of
PS and RN, respectively. V CDS

t is the price of a CDS without counterparty
credit risk. From the definition is clear that the CVA is an adjustment to
the CDS value. Let’s analyse each scenario.

• τRN < τPS : in this case the RN entity defaults before the PS, so at
time τRN the PS is able to honour the payment, so the correction is 0.
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• τPS < τRN : in this case the PS defaults before RN , therefore is not
able to pay the PB, but PB can recover part of the CDS value, if any.
So the PB recovers RPS(V CDS

τPS
)+. Therefore in case of default of PS,

we must consider that PB has a loss of (1−RPS)(V CDS
τPS

)+.

We associate x1 with RN and x2 with PS. Then the CVA can be given by
the solution of equations (4.7)-(4.10) with χ(t, x) = 0 and φ(x) = 0. Thus,

∂

∂t
V CV A + LV CV A = 0, x := (x1, x2) ∈ R+ × R+,

V CV A(t, 0, x2) = 0, V CV A(t, x1, x2) −−−−−→
x1→+∞

0,

V CV A(t, x1, 0) = (1−RPS)V CDS(t, x1)+, V CV A(t, x1, x2) −−−−−→
x2→+∞

0,

V CV A(T, x) = 0.

The condition at xi → +∞ is obtained considering the following. In case
of x1 → +∞ the RN entity can be considered not defaultable and therefore
no correction is needed. Similarly in the case of x2 → +∞ the PB can
be considered not defaultable, therefore it always be able to honour the
payments. Then, once again, the correction is 0. The DVA is specular to
the CVA. Now we consider the case of a CDS written on one bank RN and
we consider the other bank as Protection Buyer(PB). We also consider both
banks defaultable, while the Protection Seller is considered not defaultable.
Then we need to take into account the additional risk that PS can have in
case of default of PB. Then the DVA can be defined as

V DV A = (1−RPB)E
[
1{τPB<min(T,τRN )}(V

CDS
τPB )−|Ft

]
,

where RPB is the recovery rate of PB, τPB and τRN are the default time
of PB and RN, respectively. We associate x1 with PB and x2 with RN.
Then the DVA can be given by the solution of equations (4.7)-(4.10) with
χ(t, x) = 0 and φ(x) = 0. Thus,

∂

∂t
V DV A + LV DV A = 0, x := (x1, x2) ∈ R+ × R+,

V CV A(t, 0, x2) = (1−RPB)V CDS(t, x2)−, V DV A(t, x1, x2) −−−−−→
x1→+∞

0,

V DV A(t, x1, 0) = 0, V DV A(t, x1, x2) −−−−−→
x2→+∞

0,

V DV A(T, x) = 0.

.

4.6 Numerical scheme

In this section following the step of Section 3.5 we provide numerical method
for solving the problem stated in equations (4.7)-(4.10).
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4.6.1 Grid discretization

Following the one dimensional case the grid is created by redistribution of
uniform grid. Since the two space variables are independent we can use the
same transformation for both dimensions x1, x2.

The grid

The domain of the PIDE is given by D = [0,∞) × [0,∞). First of all we
approximate the unbounded domain D with finite domain D̃ = [0, xmax1 ] ×
[0, xmax2 ]. We use N1 + 1 points for x1 and N2 + 1 points for x2. Then the
grid becomes

0 = x0
1 < x1

1 < · · · < xN1
1 ,

0 = x0
2 < x1

2 < · · · < xN2
2 ,

From the numerical perspective is better to deal with vectors rather than
matrices. So we enumerates the points like in Figures 4.3.

Figure 4.3: Grid enumeration

Then we consider a vector of points

(x0
1, x

0
2), (x0

1, x
1
2), . . . , (x1

1, x
N2
2 ), (x1

1, x
0
2), . . . , (x1

1, x
N2
2 ), . . . (xN1

1 , xN2
2 ).

In such a way the solution is a vector U ∈ R(N1+1)(N2+1)×1 whose component

i is the solution at the point (x1 = x
b(i−1)/(N2+1)c
1 , x2 = x

i(mod(N2+1)
2 ).

In two dimensional case we have two interesting default boundaries, i.e. µ
and µ̃, so one can be interested in a transformation with multiple critical
barriers.

Multiple Critical Points

In the case of multiple critical points there is not explicit formula for the
transformation. Like the case of single critical point we focus on the Jaco-
bian. We define a global Jacobian that combines individual Jacobians for
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each critical point. We choose to combine each individual Jacobian with
harmonic squared average that guarantees smooth transformation

Jk(ξ) = (α2
k + (S(ξ)−Bk)2)

1
2 ,

and

J(ξ) =

[ k=n∑
k=1

Jk(ξ)
−2

]− 1
2

.

Near each critical point the global Jacobian J(ξ) is dominated by the be-
haviour of the local Jk(ξ), but the influence of nearby critical points en-
sures that the transition between them are smooth. As said before there
is not closed formula and the global Jacobian must be integrated numeri-
cally. The integration can be computed with standard ODE integrator like
Runge-Kutta.

4.6.2 Differential Operator

For completeness we report the discretization of differential operator also in
the two dimensional case. This is a trivial extension of the one dimensional
case, except for the case of mixed derivatives. We use the following scheme
for derivative over x1:

∂V

∂x1
(xi1, x

j
2) ≈ α1

i,−2V (xi−2
1 , xj2) + α1

i,−1V (xi−1
1 , xj2) + α1

i,0V (xi1, x
j
2), (4.16)

∂V

∂x1
(xi1, x

j
2) ≈ β1

i,−1V (xi−1
1 , xj2) + β1

i,0V (xi1, x
j
2) + β1

i,1V (xi+1
1 , xj2), (4.17)

∂V

∂x1
(xi1, x

j
2) ≈ γ1

i,0V (xi1, x
j
2) + γ1

i,1V (xi+1
1 , xj2) + γ1

i,2V (xi+2
1 , xj2), (4.18)

while for derivative over x2 we consider

∂V

∂x2
(xi1, x

j
2) ≈ α2

j,−2V (xi1, x
j−2
2 ) + α2

j,−1V (xi1, x
j−1
2 ) + α2

j,0V (xi1, x
j
2), (4.19)

∂V

∂x2
(xi1, x

j
2) ≈ β2

j,−1V (xi1, x
j−1
2 ) + β2

j,0V (xi1, x
j
2) + β2

j,1V (xi1, x
j+1
2 ), (4.20)

∂V

∂x2
(xi1, x

j
2) ≈ γ2

j,0V (xi1, x
j
2) + γ2

j,1V (xi1, x
j+1
2 ) + γ2

j,2V (xi1, x
j+2
2 ), (4.21)

with coefficients

αki,−2 =
∆xki

∆xi−1
k (∆xi−1

k + ∆xik)
, αki,−1 =

−∆xki−1 −∆xik
∆xik∆xi−1

k

, αki,0 =
∆xi−1

k + 2∆xik

∆xik(∆xik + ∆xi−1
k )

,

βki,−1 =
−∆xi+1

k

∆xik(∆xik + ∆xi+1
k )

, βki,0 =
∆xi+1

k −∆xik

∆xik∆xi+1
k

, βki,1 =
∆xik

∆xi+1
k (∆xik + ∆xi+1

k )
,

γki,0 =
∆xi+2

k − 2∆xi+1
k

∆xi+1
k (∆xi+1

k + ∆xi+2
k )

, γki,1 =
−∆xi+1

k −∆xi+2
k

∆xi+1
k ∆xi+2

k

, γki,2 =
−∆xi+1

k

∆xi+1
k (∆xi+1

k + ∆xi+2
k )

.
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where ∆xik = xik − x
i−1
k k = 1, 2.

To approximate the second derivative we use the central scheme

∂2V

∂x2
1

(xi1, x
j
2) ≈ δ1

i,−1V (xi−1
1 , xj2) + δ1

i,0V (xi1, x
j
2) + δ1

i,1V (xi+1
1 , xj2), (4.22)

∂2V

∂x2
2

(xi1, x
j
2) ≈ δ2

j,−1V (xi1, x
j−1
2 ) + δ2

j,0V (xi1, x
j
2) + δ2

j,1V (xi1, x
j+1
2 ), (4.23)

with coefficients

δki,−1 =
2

∆xik(∆xik + ∆xi+1
k )

, δki,0 =
−2

∆xik∆xi+1
k

, δki,1 =
2

∆xi+1
k (∆xik + ∆xi+1

k )
.

Respect to the one dimensional case we must deal with mixed derivative
term. We will use standard 9-point stencil scheme for non uniform grid, i.e.

∂2V

∂x1∂x2
(xi1, x

j
2) ≈

1∑
k,l=−1

β1
i,kβ

2
j,lV (xi+k1 , xj+l2 ).

As a result the differential operator DV can be approximated by

DV = D1V +D2V +D12V.

where D1V contains the discretization of the derivatives over x1, D2V con-
tains the discretization of the derivatives over x2 and D12V contains the
discretization of the mixed derivative. We emphasize this dimensional split-
ting of the operator because it is needed in the time discretization of Chapter
5. Similar to the one dimensional case the scheme have a second order trun-
cation error for meshes that are either uniform or a smooth transformation
of such meshes.

Numerical

We consider a grid with N1 + 1 points for x1 and N2 + 1 points for x2. Then
the matrix D2 ∈ R(N1+1)(N2+1)×(N1+1)(N2+1) is a block diagonal matrix

D2 =


0 0 0 . . . 0
0 D2 0 . . . 0
0 0 D2 0
...

...
. . .

...
0 0 0 0 0

 ,

where 0 ∈ R(N2+1)×(N2+1) is the matrix full of zeros andD2 ∈ R(N2+1)×(N2+1)

is given by
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D2 =



0 0 0 0 . . . 0
∆2

1,−1 ∆2
1,0 ∆2

1,1 0 . . . 0

0 ∆2
2,−1 ∆2

2,0 ∆2
2,1 0

...
. . .

. . .
. . .

...
0 . . . 0 ∆2

N2−1,−1 ∆2
N2−1,0 ∆2

N2−1,1

0 . . . 0 0 0 0


,

where :

• ∆2
i,j = ξ2β

2
i,j +

σ2
2
2 δ

2
i,j .

The matrix D1 ∈ R(N1+1)(N2+1)×(N1+1)(N2+1) is a tridiagonal matrix

D1 =



0 0 0 . . . 0
L1 C1 U1 0 . . . 0

0 L2 C2 U2
...

...
. . .

. . .
. . . 0

0 . . . 0 LN1−1 CN1−1 UN1−1

0 . . . 0 0 0 0


,

where :

• 0 ∈ R(N2+1)×(N2+1) is the zero matrix.

• Li =


0 0 . . . 0
0 ∆1

i,−1 . . . 0
...

. . .
...

0 . . . 0 ∆1
i,−1 0

0 . . . 0 0

 ∈ R(N2+1)×(N2+1).

• Ci =


0 0 . . . 0
0 ∆1

i,0 . . . 0
...

. . .
...

0 . . . ∆1
i,0 0

0 . . . 0 0

 ∈ R(N2+1)×(N2+1).

• Ui =


0 0 . . . 0
0 ∆1

i,1 . . . 0
...

. . .
...

0 . . . ∆1
i,1 0

0 . . . 0 0

 ∈ R(N2+1)×(N2+1).
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and ∆1
i,j = ξ1β

i,j
1 +

σ2
1
2 δ

1
i,j .

The matrix D12 ∈ R(N1+1)(N2+1)×(N1+1)(N2+1) is a nine-diagonal matrix

D12 =



0 0 0 . . . 0
L1 C1 U1 0 . . . 0

0 L2 C2 U2
...

...
. . .

. . .
. . . 0

0 . . . 0 LN1−1 CN1−1 UN1−1

0 . . . 0 0 0 0


,

where :

• 0 ∈ R(N2+1)×(N2+1) is the zero matrix.

• Ci =



0 0 0 . . . 0

Bi,01,−1 Bi,01,0 Bi,01,1 . . . 0

0 Bi,02,−1 Bi,02,0 Bi,02,1 0
...

. . .
. . .

. . .
...

0 Bi,0N2−1,−1 Bi,0N2−1,0 Bi,0N2−1,1
0 0 0 . . . 0 0


∈ R(N2+1)×(N2+1).

• Ui =



0 0 0 . . . 0

Bi,11,−1 Bi,11,0 Bi,11,1 . . . 0

0 Bi,12,−1 Bi,12,0 Bi,12,1 0
...

. . .
. . .

. . .
...

0 Bi,1N2−1,−1 Bi,1N2−1,0 Bi,1N2−1,1
0 0 0 . . . 0 0


∈ R(N2+1)×(N2+1).

• Li =



0 0 0 . . . 0

Bi,−11,−1 Bi,−11,0 Bi,−11,1 . . . 0

0 Bi,−12,−1 Bi,−12,0 Bi,−12,1 0
...

. . .
. . .

. . .
...

0 Bi,−1N2−1,−1 Bi,−1N2−1,0 Bi,−1N2−1,1
0 0 0 . . . 0 0


∈ R(N2+1)×(N2+1).

and Bi,k
j,l = ρσ1σ2β

1
i,kβ

2
j,l.

Notice that the zeros of the matrices in the rows relative to boundaries need
to deal for Dirichlet boundary condition when discretizing over time. We
analyse this aspect in Section 4.6.4 and Section 5.1.

4.6.3 Jump Discretization

The jump discretization is the same as in the one dimensional case for the
jump over x1 and x2. We now also consider contribution of systemic jump.
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First method

As shown in Section 3.5.3 using the first approach the integral can be ap-
proximated as

J1V (x1 + h, x2) = e−θ1hJ1V (x1, x2) + ω0(θ1, h)V (x1, x2) + ω1(θ1, h)V (x1 + h, x2) +O(h3),

J2V (x1, x2 + h) = e−θ2hJ2V (x1, x2) + ω0(θ2, h)V (x1, x2) + ω1(θ2, h)V (x1, x2 + h) +O(h3),

where

ω0(θi, hi) =
1− (1 + θihi)e

−θihi

θihi
, ω1(θi, hi) =

−1 + θhi + e−θihi

θihi
, i = 1, 2,

with the increments h1
i+1 = xi+1

1 − xi1, h2
j+1 = xj+1

2 − xj2.

Given the grid as in Section 4.6.1 we denote with J i,j1 , J i,j2 , J i,j12 the approx-

imation of J1V (xi1, x
j
2), J2V (xi1, x

j
2), J12V (xi1, x

j
2) on the grid. Then

J i+1,j
1 = e−θ1h

1
i+1J i,j1 + ω0(θ1, h

1
i+1)V (xi1, x

j
2) + ω1(θ1, h

1
i+1)V (xi+1

1 , xj2),

J i,j+1
2 = e−θ2h

2
j+1J i,j2 + ω0(θ2, h

2
j+1)V (xi1, x

j
2) + ω1(θ2, h

2
j+1)V (xi1, x

j+1
2 ),

where J0,j
1 = 0 ∀j, J i,02 = 0 ∀i.

In order to approximate J12 = J1J2V we apply above approximations for
J1 and J2 consecutively. Then the two-step procedure becomes

Ii+1,j
12 = e−θ1h

1
i+1Ii,j12 +

1

2
θ1h

1
i+1e

−θ1h1i+1V (xi1, x
j
2) +

1

2
θ1h

1
i+1V (xi+1

1 , xj2),

and

J i,j+1
12 = e−θ2h

2
j+1J i,j12 +

1

2
θ2h

2
j+1e

−θ2h2j+1Ii,j12 +
1

2
θ2h

2
j+1I

i,j+1
12 .

Second Method

For the second method we rewrite the jump operator in equations (4.12)-
(4.14) as differential equations

∂

∂x1

(
J1V (x1, x2)eθ1x1

)
= θ1V (x1, x2)eθ1x1 ,

∂

∂x2

(
J2V (x1, x2)eθ2x2

)
= θ2V (x1, x2)eθ2x2 ,

∂2

∂x1∂x2

(
J12V (x1, x2)eθ1x1+θ2x2

)
= θ1θ2V (x1, x2)eθ1x1+θ2x2 .

To solve these differential equation we apply Adam-Moulton method of sec-
ond order which gives us third order of accuracy locally as shown in [3].

47



Then

J i+1,j
1 = e−θ1h

1
i+1J i,j1 +

1

2
θ1h

1
i+1e

−θ1h1
i+1V (xi1, x

j
2) +

1

2
θ1h

1
i+1V (xi+1

1 , xj2),

J i,j+1
2 = e−θ2h

2
j+1J i,j2 +

1

2
θ2h

2
j+1e

−θ2h2
j+1V (xi1, x

j
2) +

1

2
θ2h

2
j+1V (xi1, x

j+1
2 ),

Ii+1,j
12 = e−θ1h

1
i+1Ii,j12 +

1

2
θ1h

1
i+1e

−θ1h1
i+1V (xi1, x

j
2) +

1

2
θ1h

1
i+1V (xi+1

1 , xj2),

J i,j+1
12 = e−θ2h

2
j+1J i,j12 +

1

2
θ2h

2
j+1e

−θ2h2
j+1Ii,j12 +

1

2
θ2h

2
j+1I

i,j+1
12 .

This scheme is equivalent to the trapezoidal rule.
Defining

ω0(θi, hi) =
1

2
θihie

−θihi , ω1(θi, hi) =
1

2
θihi, i = 1, 2,

we find the same formulas of the first method.
With these recursive formulas the jump operator can be discretized in all
the node of the grid with a complexity of O(N1N2). Once again notice that
the efficiency of these recursive formulas are given by the special feature of
the exponential distribution.
Finally the total jump operator can be approximated as J = λ1J1 + λ2J2 +
λ12J12.

4.6.4 Time discretization

Like in the one dimensional case we compute a change of time variable to
deal with forward-in-time problem.
Defining τ = T − t, the problem becomes

∂V

∂τ
= LV − χ(τ, x), (4.24)

V (τ, 0, x2) = φ2,0(τ, x2), V (τ, x1, x2) −−−−−→
x1→+∞

φ2,∞(τ, x2), (4.25)

V (τ, x1, 0) = φ1,0(τ, x1), V (τ, x1, x2) −−−−−→
x2→+∞

φ1,∞(τ, x1), (4.26)

V (0, x) = ψ(x). (4.27)

From the result of previous Section we can approximate LV with LV =
DV + λJV − λV . With this discretization the problem becomes once
again a system of ordinary linear differential equations. Define the vec-
tor U(t) ∈ R(N1+1)(N2+1)×1 whose i-th component represents the solution
V (t, xi, xj) with the convention of Section 4.6.1 for the enumeration of nodes.
Furthermore, from Section 4.6.3 we can recursive compute the jump operator
and so we treat it explicitly. Then the problem reduces to

U ′(t) = AU(t) + J(U(t)) + b(t),

U(0) = U0.
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where A = D−λI, J(U(t)) is the jump operator computed with the current
value of the solution and b(t) takes into account for both boundary conditions
and non homogeneous term of the PIDE. As in the one dimensional case our
intention is to solve this problem with Crank-Nicolson scheme. Therefore

Un+1 − Un

∆t
=

1

2

[
AUn+1 +AUn

]
+ J(U(n)).

Solving respect to Un+1 we get the linear system(
I − 1

2
∆tA

)
Un+1 =

(
I +

1

2
∆tA

)
Un + ∆tJ(Un) + b(tn+1). (4.28)

In order to strongly impose the border condition we take the value of matrix
A for the rows relative to border nodes. Let denote with K the set of indices
relative to border nodes. For each index k ∈ K, the k-th row of matrix A is
replaced by a row of zeros. Moreover at the beginning of each time iteration
n + 1, for all k ∈ K, we also correct to 0 the values of the k-th component
of the previous solution Un. Same correction is made to the jump vector.
In such a way for boundary nodes we are imposing the boundary condition.
For example, let k ∈ K be the index of a border node. After the correction
the k-th equation of the system given by (4.28) becomes

Un+1
k = Unk + J(Un)k + b(tn+1)k = b(tn+1)k,

where the subscript k indicates the k-th component of the vector.

4.7 Results

In this section we analyse the impact of both jumps and mutual liabilities.
In order to properly compare the result with the one dimensional case we
take the same marginal parameters. We therefore consider the parameters
in Table 4.1.

L1,0 L2,0 L12,0 L21,0 R1 R2 T σ1 σ2 ρ

60 70 10 15 0.4 0.45 1 0.4 0.3 0.51

Table 4.1: Model parameters

For the model with jump we also consider the parameters in Table 4.2.

θ1 θ2 λ1 λ2 λ12

1 1 0.095 0.055 0.012

Table 4.2: Jump parameters
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All the test are computed using a spacial grid with 100 points for both x1

and x2 and 100 time steps grid. For the spacial domain we truncate it at
almost one order of magnitude more than the default boundaries. With
parameters as in Table 4.1 the default boundaries are given by µ̃<1 = 0.6659,
µ̃<2 = 0.2548, µ=

1 = 1.4424, µ=
2 = 0.9764, µ̃=

1 = 1.5821, µ̃=
2 = 1.0534. Since

the default boundaries are all close to one we fix the spacial domain limit
to XMax

1 = XMax
2 = 10. Like in the one dimensional case the grid is built

concentrating points in µ̃ and taking parameter α proportional to xmax − µ̃
by a factor of 1/10 for both dimensions. The grid is shown in Figure 4.4.
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x 2

Grid

Figure 4.4: Two dimensional grid

In the following we show the results for different payoffs. From a compu-
tation the computation time is of order of 6 seconds for the model without
jumps and almost 20 for the model with jumps. The main difference be-
tween the two times is due to the many numerical integration necessary to
compute the correction of the jump operator.

Marginal Survival Probability

We consider the survival probability of the first bank. As mention is Section
4.5.1 the marginal survival probability is a function of both x1 and x2 as we
can see in Figures 4.6-4.5. In Figure 4.7 we plot the difference between the
model with and without jumps at t = 0. The jump mainly impacts the area
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near default boundaries. As expected, here the probability is quite lower
than the case without jump since our model considers only negative jumps.
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Figure 4.5: Survival probability for
model without jump
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Figure 4.6: Survival probability for
model with jump
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Figure 4.7: Difference of survival probability between model with and without jump

Joint Survival Probability

In Figures 4.8-4.9 we plot the value of joint survival probability at time t = 0
for the model without jump and with jump respectively. In Figure 4.10 we
plot the difference between the two models. We can observe that the jump
impacts the area near default boundaries for both banks. This is reasonable
as adding negative shocks primarily influences close to the default barriers
where a default cascade is most likely to trigger.
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Figure 4.8: Joint survival probability for
model without jump
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Figure 4.9: Joint survival probability for
model with jump
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Figure 4.10: Difference of joint survival probability between model with and without
jump

Credit Default Swap

Here we plot the value of a Credit Default Swap written on the first bank(RN).
As shown in Section 4.5.3 also the second bank influences the CDS value.
In Figures 4.11-4.12 we plot the value of CDS at time t = 0 for the model
without jump and with jump respectively. In Figure 4.13 we can observe
that the jumps impact the area near default boundaries of the RN entities.
This time the difference is positive because the jumps decrease the survival
probability of the banks and so the CDS value increases.
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Figure 4.11: Credit default swap price
for model without jump
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Figure 4.12: Credit default swap price
for model with jump
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Figure 4.13: Difference of credit default swap price between model with and without
jump

Credit Value Adjustments of CDS

As in Section 4.5.5, consider a CDS written on the first bank(RN) and
assume the second bank as a Protection Seller(PS). In Figures 4.14-4.15 we
plot the adjustments in case of a defaultable counterparty at time t = 0
for the model without jump and with jump respectively. We notice that
the biggest adjustments are when the PS defaults, accordingly with the
definition of CVA. In Figure 4.16 we can observe that the jumps mainly
impact the area near default boundaries of the RN entities. The jumps also
impact the area near the PS default boundaries. Once again the difference
is positive because the jumps increase the default probability of the banks
and so the adjustments can only increase.
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Figure 4.14: CVA of CDS for model
without jump
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Figure 4.15: CVA of CDS for model
with jump
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Figure 4.16: Difference of credit value adjustments between model with and without
jump

First To Default

As in Section 4.5.4, consider a basket of entities given by first and second
bank. In Figures 4.17-4.18 we plot the FTD price at time t = 0 for the
model without jump and with jump respectively. In Figure 4.19 we can
observe that the jump mainly impacts the area near default boundaries of
both banks. The difference is positive because the jumps increase the default
probability of the banks and so the FTD value can only increase.
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Figure 4.19: Difference of first to default price between model with and without jump
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Chapter 5

Improvements

In this section we propose different technical measures in order to improve
both efficiency and convergence of the scheme.

5.1 Time discretization

It’s well known fact that Crank-Nicholson scheme suffers the dimensionality
of the problem (see [7] for details). The reason is that in the one dimensional
case the diffusion matrix is typically tridiagonal. When the dimensionality
of the problem grows, the diffusion matrix loses its tridiagonal shape and
assumes a bad bandwidth structure. In order to solve this problem one idea
is to split the problem by dimension. In order to better understand the
methodology we first analyse the simpler case with zero boundaries. After
spacial discretization of the equations (4.7), the problem is given by

U ′(t) = AU(t) + b(t), (5.1)

U(0) = U0.

where A is the approximation of the L defined in (4.11), and b(t) is 0 for
simplicity. In order to split the problem by dimension we consider A =
A0 +A1 +A2, with

A0 = D12 + λ1J1 + λ2J2 + λ12J12,

A1 = D1 −
(
λ1 +

λ12

2

)
I,

A2 = D2 −
(
λ2 +

λ12

2

)
I,

where the matrixD12, D1, D2 are defined in Section 4.6.2. Then we apply the
Crank-Nicolson scheme. Since both the jump operator and mixed derivative
term have bad bandwidth shape we treat them explicitly. Then we get

(I − θ∆tA1 − θ∆tA2)Un+1 = (I + (1− θ)∆tA1 + (1− θ)∆tA2 + ∆tA0)Un.
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Noticing thatA1A2 ∼ o(∆t2) and Un+1−Un ∼ o(∆t), we can add θA1A2U
n+1

to both terms. Thus after some simplification, we get

(I − θ∆tA1)(I − θ∆tA2)Un+1 = (I + ∆tA0 + (1− θ)∆tA1 + ∆tA2 + ∆tA0)Un,

− (I − θA1)θA2U
n. (5.2)

We start splitting by dimension by firstly taking care of the explicit term.
Introducing

Y0 = Un + ∆t(A0 +A1 +A2)Un,

we can rewrite the equation (5.2) as

(I − θ∆tA1)(I − θ∆tA2)Un+1 = Y0 − θ∆tA1U
n − (I − θA1)θA2U

n,

The we can finally split the problem over both dimensions introducing Y1 =
(I − θA2)Un+1 − θA2u

n, Y2 = Un+1.

(I − θ∆tA1)Y1 = Y0 − θA1U
n,

(I − θ∆tA2)Y2 = Y1 − θA2U
n.

Summing up the ADI scheme solves the problem in (5.1) solving at each
time step n the system

Y0 = Un + ∆t(A0 +A1 +A2)Un,

(I − θ∆tA1)Y1 = Y0 − θA1U
n,

(I − θ∆tA2)Y2 = Y1 − θA2U
n,

Un+1 = Y2.

With this method we need to invert only matrices A1 and A2 that are
tridiagonal. In order to solve our original problem we propose a modification
of the previous scheme. More precisely we will use a Hundsdorfer-Verwer
scheme :

Y0 = Un−1 + ∆t
(
(A0 +A1 +A2)Un−1 + b0(tn−1) + b1(tn−1) + b2(tn−1)

)
,

(5.3)

Y1 = Y0 + θ∆t(A1Y1 + b1(tn)−A1Un−1 − b1(tn−1)), (5.4)

Y2 = Y1 + θ∆t(A2Y2 + b2(tn)−A2Un−1 − b2(tn−1)), (5.5)

Ỹ0 = Y0 + σ∆t
(
(A0 +A1 +A2)Y2 − (A0 +A1 +A2)Un−1 +B

)
, (5.6)

Ỹ1 = Ỹ0 + θ∆t(A1Ỹ1 −A1Y2), (5.7)

Ỹ2 = Ỹ1 + θ∆t(A2Ỹ2 −A2Y2), (5.8)

Un = Ỹ2, (5.9)

where B = b0(tn) + b1(tn) + b2(tn)− b0(tn−1)− b1(tn−1)− b2(tn−1).
The main idea of this scheme is the same of the basic ADI scheme. In the
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first step both jumps and mixed derivatives are treated explicitly. In second
step the problem is solved in x1 direction considering the second variable x2

as a constant. In this way the problem can be efficiently solved thanks to
the band width shape of matrix A1. In the third step the problem is solved
in x2 direction. Finally the procedure is repeated in order to stabilize the
scheme.

Border Condition

In order to impose the border condition we solve the step backward in order
to find the value of Y0 such that the solution on the boundaries matches the
border condition. Imposing border condition we get:

Ỹ b
2 = U bn.

So from (5.8) we obtain

Ỹ b
1 = Ỹ b

2 − θ∆t(A2Ỹ
b

2 −A2Y
b

2 ),

but from (5.7) we have

Ỹ b
1 = Ỹ b

0 + θ∆t(A1Ỹ
b

1 −A1Y
b

2 ).

Solving respect to Ỹ b
0 we find Ỹ b

0 = f(Y b
2 ) then we can impose (5.5) on the

border and find Y b
2 . Repeating this procedure we are able to find the Y b

0

such that the border conditions are satisfied.

5.1.1 Stability analysis

In this section, following [14] we prove that the Hundsdorfer-Verwer scheme
is von Neumann stable. For simplicity we consider (4.24) without default
boundaries. We also consider a uniform grid. So taking Fj(t, x) = Ãjx the
HV scheme becomes

Y0 = Un−1 + ∆tÃUn−1,

Yj = Yj−1 + θ∆t(ÃjYj − ÃjUn−1), j = 1, 2,

Ỹ0 = Y0 + σ∆t
(
ÃY2 − ÃUn−1

)
,

Ỹj = Ỹj−1 + θ∆t(Ãj Ỹj − ÃjY2), j = 1, 2,

Un = Ỹ2.

(5.10)

For convenience we denote the above scheme as an application of F, in this
way we have Un = FUn−1. We also assume that diffusion and jump opera-
tors are discretized on an infinite uniform mesh {(j1h1, j2h2), (j1, j2) ∈ Z2}
and so described by infinite matrix. In order to prove stability we will prove
that all the eigenvalues of the operator F have module bounded by 1 plus an
O(∆t) where the corresponding eigenfunctions are given by eiφ1j1eiφ2j2 with

58



φ1,φ2 the wave numbers and j1,j2 the grid coordinates. We start from [10]
and we extend the theory to the case with jumps. Following the notation
of [10] we start defining variables for diffusive case A = A0 + A1 + A2 with
A0 = D12, A1 = D1, A2 = D2 and µ0, µ1, µ2 the corresponding eigenval-
ues of the corresponding matrices. Then we define the scaled eigenvalues
z0 = µ0∆t, z1 = µ1∆t, z2 = µ2∆t. For the jump case we introduce the ∼ -
variables. We define

Ã0 = D12 + λ1J1 + λ2J2 + λ12J12,

Ã1 = D1 −
(
λ1 +

λ12

2

)
I,

Ã2 = D2 −
(
λ2 +

λ12

2

)
I.

Then the eigenvalues µ̃j of Ãj are given by

µ̃0 = µ0 + λ1ω1 + λ2ω2 + λ12ω12, (5.11)

µ̃1 = µ1 −
(
λ1 +

λ12

2

)
, (5.12)

µ̃2 = µ2 −
(
λ2 +

λ12

2

)
, (5.13)

where ω1 = ω1(ς1, h1), ω2 = ω2(ς2, h2), ω12 = ω1ω2 are the eigenvalues of
J1, J2, J12. We then define scaled eigenvalues for the jump part s1 = ω1∆t,
s2 = ω2∆t, s12 = ω12∆t and s0 = λ1s1 + λ2s2 + λ12s12. Multiplying (5.11)-
(5.13) by ∆t we obtain

z̃0 = z0 + s0,

z̃1 = z1 −
(
λ1 +

λ12

2

)
∆t,

z̃2 = z2 −
(
λ2 +

λ12

2

)
∆t,

We are finally ready to show some results.

Theorem 3 ([10], Theorem 3.2). . Assume <(z1) ≤ 0, <(z2) ≤ 0, |z0| ≤
2
√
<(z1)<(z2), where z0,z1 and z2 are the eigenvalues of A0, A1 and A2,

and
1

2
≤ σ ≤

(
1 +

√
2

2

)
θ.

Then, for the eigenvalues T (z0, z1, z2) of F holds true

|T (z0, z1, z2)| ≤ 1,

and the Hundsdorfer-Verwer scheme 5.10 is stable.
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Lemma 4 ([14], Lemma 1). . The scaled eigenvalues of A0, A1, A2, J1, J2,
J12 can be expressed as

z0 = −ρb(sin(φ1) sin(φ2)),

z1 = −a1(1− cos(φ1)) + iξ1q1 sin(φ1),

z2 = −a2(1− cos(φ2)) + iξ2q2 sin(φ2),

s1 = ∆tθ1h1

(
1

2
+

exp−h1θ1 + iφ1

1− exp−h1θ1 + iφ1

)
,

s2 = ∆tθ2h2

(
1

2
+

exp−h2θ2 + iφ2

1− exp−h2θ2 + iφ2

)
,

s12 =
s1s2

∆t
,

where

q1 =
∆t

h1
, q2 =

∆t

h2
, a1 =

∆t

h2
1

, a2 =
∆t

h2
2

, b =
∆t

h1h2
,

and φj ∈ [0, 2π] for j = 1, 2. Moreover,

|z0| ≤ 2
√
<(z1)<(z2).

Theorem 5 ([14], Theorem 2). Consider 1
2 ≤ σ ≤

(
1 +

√
2

2 θ
)
. Then exist

c > 0, independent of ∆t ≤ 1, h1 and h2, such that
1.

|T (z̃0, z̃1, z̃2)| ≤ 1 + c∆t, ∀φ1, φ2 ∈ [0, 2π],

i.e., the scheme is von Neumann stable;
2.

|Un|2 ≤ ecn∆t|U0|2, ∀n ≥ 0,

for |Un|2 = h1h2

(∑∞
j1,j2=−∞ |Un(j1, j2)|2

) 1
2

, i.e., the scheme is l2 stable.

Proof. From [10] we have that in the diffusive case

|T (z0, z̃1, z̃2)| =
∣∣∣∣1 + 2

z0 + z̃

p
− z0 + z̃

p2
+ σ

(z0 + z̃)2

p2

∣∣∣∣ ≤ 1,

where p = (1−θz̃1)(1−θz̃2) and z̃ = z̃1+z̃2. Since λ1, λ2, λ12 are positive we
have that <(z̃1) ≤ <(z1) ≤ 0 and the same holds for z2. Then the theorem
still holds since

|z0| ≤ 2
√
<(z1)<(z2) ≤ 2

√
<(z̃1)<(z̃2).

Notice that for z̃0 such estimation is not longer available. Then with simple
substitution we obtain that

T (z̃0, z̃1, z̃2) = T (z0, z̃1, z̃2) + 2
s0

p
− s2

0

p2
+ σ

2s0(z0 + z̃)2 + s2
0

p2
.
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Observe that |s0| ≤ c0∆t for a constant c0 independent of ∆t, h1, h2, φ1,
φ2, for example c0 = 2λ1+2λ2+4λ12 works. Notice also that since |p| ≥ 1,
|z0+z̃|
|p| ≤ c1, for c1 constant. Finally we have the following estimation∣∣∣∣2s0

p
− s2

0

p2
+ σ

2s0(z0 + z̃)2 + s2
0

p2

∣∣∣∣ ≤ c∆t,
for any c ≥ (3 + 2σc1 + c0σ)c0. The first statement is proved. In order to
prove the second statement we define the Fourier transform Û of U . Then
by Parceval identity

|Un|22 =
1

4π
|Ûn|22

=
1

4π

1

h2
1h

2
2

∫ π

−π
|Ûn(φ1, φ2)|2dφ1dφ2

≤ 1

4π

1

h2
1h

2
2

∫ π

−π
(1 + c∆t)2n|Û0(φ1, φ2)|2dφ1dφ2

≤ e2cn∆t 1

4π

1

h2
1h

2
2

∫ π

−π
|Û0(φ1, φ2)|2dφ1dφ2

= e2cn∆t|U0|2.

This theorem proves that the scheme is von Neumann stable and l2 stable. l2
stability and second order consistency implies l2-convergence of second order
for all solution which are sufficiently smooth that the truncation error is
defined and bounded. In our problem we have discontinuous initial condition
so the results are no true anymore. Since our discontinuous function is
the step function who lies in l2-closure of smooth functions, convergence is
guaranteed, but not of second order. We will show how to restore second
order convergence in the next section.

5.2 Convergence Analysis

Authors of [21] show that using central finite difference scheme with discon-
tinuous initial condition reduces the order to converge to one. In order to
restore the order of converge we then smooth the initial condition by method
of local averaging. This method, instead of directly taking the solution, take
the approximation

φ(xi1, x
j
2) ≈ 1

h1h2

∫ xj2+h2/2

xj2−h2/2

∫ xi1+h1/2

xi1−h1/2
φ(ξ1, ξ2)dξ1dξ2.
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This method uses as value in (xi1, x
j
2) the average solution in the symmetric

neighbour Ii,j of size h1 × h2 centred in (xi1, x
j
2). In our case, since we have

only step functions, this method attaches to each node the fraction of area
where the payoff is 1 in the neighbour Ii,j . In order to compute the rate of
convergence of a method of order p ≥ 1 we estimate the error as

|qnX1 (x1, x2)− q1(x1, x2)|2 ≈
1

2p − 1
|qnX1 (x1, x2)− qnX/21 (x1, x− 2)|2,

where q1 is the exact solution and qnX1 is the solution with nX spacial
points. All test are made with the same parameters of Tables 4.1-4.2. We
also consider 1000 time steps. We show the improvements of convergence
in the case of survival marginal probability on the first bank in Figure 5.1.
Clearly without smoothing procedure the convergence is of order one, while
smoothing the data we restore convergence of order two.

101 102 103

nX

10-5

10-4

10-3

10-2

10-1

l 2
 n

or
m

No space smoothing
Space smoothing

c x-1

c x-2

Figure 5.1: Rate of convergence

From a computation perspective the time discretization of Section 5.1 allows
us to solve the problem in about for 3 seconds for each payoff respect to the
11 seconds in the case of Crank-Nicholson.
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Chapter 6

Conclusion

In this thesis we present a jump diffusion model which combines both for
mutual liabilities and correlated processes.
We discuss how these liabilities affect joint and marginal survival probabil-
ity and by inheritance all the credit products. This allows us to model the
propagation of default by contagion. To make the analysis tractable we use
a dynamics driven by Lévy processes in which each driving Poisson process
has a jump variable associated with it. This allows greater freedom to model
correlation as we can vary both the jump intensity for the common jump
and the jump mean and variance.
However this model does not allow an explicit option pricing formula. There-
fore we develop a efficient numerical scheme by splitting into dimensions and
jumps simultaneously. Then we price the main credit products and study
the effect of both jumps and mutual liabilities on the credit products.
Pricing of the credit option requires inputting five extra jump parameters
respect to the model without jumps. These parameters would have to be
estimated in practice before the model could be used to price any options
and there may be a number of choices of parameters that could arguably
model the assets equally well. This may be a downside to the model and
the reason why the Black-Scholes model is favoured by practitioners due the
small number of input parameters needed to gain an accurate option price.
However to correctly modelling the effects of mutual liabilities Black-Scholes
model are not enough and therefore we need to consider more complex model
like this one.
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Appendix A

Jump Operator

In this appendix we will show that the integral operator can be computed
as in (4.12)-(4.14).
Our problem is stated to the domain R2

+ × [t, T ], i.e,{
Vt(t, x) + LV (t, x) = χ(t, x), x ∈ R2

+,

V (t, x) = z(t, x), x /∈ R2
+.

where L = D + J and the jump operator is defined as J = λ1J1 + λ2J2 +
λ12J12 with

J1V (x1, x2) =

∫ 0

−∞
V (x1 + j, x2)ω̃(j)dj,

J2V (x1, x2) =

∫ 0

−∞
V (x1, x2 + j)ω̃(j)dj,

J12V (x1, x2) =

∫ 0

−∞

∫ 0

−∞
V (x1 + j, x2 + k)ω̃(j)ω̃(k)djdk,

and ω̃(j) is the probability density given by (4.2).
We focus only on the operator J1, the others can be obtain in similar way.
Substituting (4.2) we get∫ 0

−∞
V (x1 + j, x2)ω̃(j)dj =

∫ 0

−x1

V (x1 + j, x2)ω̃(j)dj +

∫ −x1

−∞
z−,+(x1 + j, x2)ω̃(j)dj

=

∫ 0

−x1

V (x1 + j, x2)θ1e
θ1jdj +

∫ −x1

−∞
z−,+(x1 + j, x2)θ1e

θ1jdj

=

∫ x1

0

V (x1 − u, x2)θ1e
−θ1udu+

∫ +∞

x1

z−,+(x1 − u, x2)θ1e
−θ1udu.

Thus the jump operator can be seen as

J1V (x1, x2) = Ĵ1V (x1, x2) + Z−,+(x1, x2).
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Similar consideration hold for both J2 and J12. With the same computations
we obtain

J2V (x1, x2) =

∫ x2

0
V (x1, x2 − u)θ2e

−θ2udu+

∫ +∞

x2

z+,−(x1, x2 − u)θ2e
−θ2udu

= Ĵ2V (x1, x2) + Z+,−(x1, x2),

and, paying attention to handling the double integral of J12, we get

J12V (x1, x2) =

∫ x1

0

∫ x2

0
V (x1 − v, x2 − u)θ1e

−θ1vθ2e
−θ2ududv

+

∫ +∞

x1

∫ x2

0
z−,+(x1 − v, x2 − u)θ1e

−θ1vθ2e
−θ2ududv

+

∫ +∞

x1

∫ +∞

x2

z−,−(x1 − v, x2 − u)θ1e
−θ1vθ2e

−θ2ududv

+

∫ x1

0

∫ ∞
x2

z+,−(x1 − v, x2 − u)θ1e
−θ1vθ2e

−θ2ududv

= Ĵ12V (x1, x2) + Z−,+(x1, x2) + Z−,−(x1, x2) + Z+,−(x1, x2).

The value z−,+ is the value of the solution when the first bank log asset
value goes below under 0(-) and the second bank log asset stays above 0(+).
Thus in our framework this value is given the boundary condition Q(t, 0, x2).
Similar arguments hold for z+,−, z+,+.
The Z−,+, Z−,+, Z−,+ values are a deterministic corrections, therefore in
the resolution of the PIDE we raise them from the jump operator and we
incorporate them into the known term, i.e. with an abuse of notation we
consider

J1V (x1, x2) = Ĵ1V (x1, x2),

J2V (x1, x2) = Ĵ2V (x1, x2),

J12V (x1, x2) = Ĵ12V (x1, x2),

χ̂(t, x) = χ(t, x)− λ1Z−,+(x1, x2)− λ2Z+,−(x1, x2)

− λ12(Z−,+(x1, x2) + Z−,−(x1, x2) + Z+,−(x1, x2)).

In order to use simpler notation in the thesis we omit the ·̂ notation.



Appendix B

Asset Dynamics

We apply the Itô formula given in Theorem 1. Given the following asset’s
dynamics

dAi
Ai

= (µ− κiλi)dt+ σidWi(t) + (eJi − 1)dNi(t).

Let Xt = f(Ai(t)) = ln

(
Ai(t)

Λ<i

)
. Then the first and second derivative of f

are given by :

fA =
1

Λ<i

1
Ai
Λ<i

=
1

Ai
,

fAA = − 1

A2
i

.

Appling Itô we have, taking for simplicity µ = 0,

dXi(t) = Ai(−κiλi)fAdt+AiσifAdWi(t) +
1

2
A2
iσ

2
i fAAdt+

(
f(Xt)− f(Xt−)

)
dNi(t)

= −
(
κiλi +

1

2
σ2
i

)
dt+ σidWi(t) +

(
ln
(Ai +Ai(e

Ji − 1)

Λi

)
− ln

(Ai
Λi

))
dNi(t)

= −
(
κiλi +

1

2
σ2
i

)
dt+ σidWi(t) + JidNi(t)

= ξidt+ σidWi(t) + JidNi(t),

where ξi = −
(
κiλi + 1

2σ
2
i

)
.



Appendix C

Feynman-Kac formula

Theorem 6. Given the following PIDE with boundary conditions :

∂V

∂t
+ LV = χ(t, x),

V (t, 0, x2) = φ2,0(t, x2) V (t, x1, x2),−−−−−→
x1→+∞

φ2,∞(t, x2),

V (t, x1, 0) = φ1,0(t, x1) V (t, x1, x2),−−−−−→
x2→+∞

φ1,∞(t, x1),

V (T, x) = ψ(x).

(C.1)

where

Lf =
1

2
σ2

1fx1x1 + ρσ1σ2fx1x2 +
1

2
σ2

2fx2x2 + ξ1fx1 + ξ2fx2

+ λ1J1f + λ2J2f + λ12J12f − υf
= ∆ρf + ξ · ∇f + J f − υf,

with υ = λ1 + λ2 + λ12 and

J1f(x) = θ1

∫ x1

0
f(x1 − u, x2)e−θ1udu, (C.2)

J2f(x) = θ2

∫ x2

0
f(x1, x2 − u)e−θ2udu, (C.3)

J12f(x) = θ1θ2

∫ x1

0

∫ x2

0
f(x1 − u, x2 − υ)e−θ1ue−θ2υdυ, (C.4)

and φi,0, φi,∞ are given function.
Then, the solution V (x, t) is given by

V (x, t) = E
[
ψ(XT ) · 1{τ≥T} −

∫ T

t

χ(s,Xs) · 1{τ>s}ds+

+ φ1,0(τ1, X2(τ1)) · 1{τ1<T} + φ2,0(τ2, X1(τ2)) · 1{τ2<T}|X(t) = x

]
.

where dXi(t) = ξidt+σidWi(t)+JidNi(t) with i = 1, 2, and τi = inf{t|Xi(t) <
0}, τ = min(τ1, τ2).
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Proof. We are in case of PIDE with boundary condition. Our domain is
given by D = [0,∞]2 × [0, T ].
Inside D the following holds true.
Let’s define Y (Xs, s) = V (Xs, s), in the following we omit the arguments
when there is no misunderstanding. Using Itô lemma we have

dYs = (Vt +
1

2
∆ρV + ξ · ∇V )ds+∇V dWs

+ (V (s,X1
s , X

2
s−)− V (s,X1

s− , X
2
s−))dN{1}(s)

+ (V (s,X1
s− , X

2
s )− V (s,X1

s− , X
2
s−))dN{2}(s)

+ (V (s,X1
s , X

2
s )− V (s,X1

s− , X
2
s−))dN{12}(s),

(C.5)

where we use the fact that dN1(s) = dN{1}(s) + dN{12}(s), dN2(s) =
dN{2}(s) + dN{12}(s). Now since we want to use martingale arguments we
re-write under the compensated Poisson process. Our Poisson process are
correlated as in [19], so we use N{1}, N{2} and N{12} independent Poisson
processes of intensities λ1, λ2 and λ12 respectively. Then the compensated
Poisson process are

Ñ{1}(t) = N{1}(t)−λ1t, Ñ{2}(t) = N{2}(t)−λ2t, Ñ{12}(t) = N{12}(t)−λ12t.

Substituting in C.5 we obtain

dYs =(Vt + ∆ρV + ξ · ∇V )ds+∇V dWs

+ (V (s,X1
s , X

2
s−)− V (s,X1

s− , X
2
s−))(dÑ{1}(s) + λ1ds)

+ (V (s,X1
s− , X

2
s )− V (s,X1

s− , X
2
s−))(dÑ{2}(s) + λ2ds)

+ (V (s,X1
s , X

2
s )− V (s,X1

s− , X
2
s−))(dÑ{12}(s) + λ12ds)

=

[
Vt + ∆ρV + ξ · ∇V + λ1(V (s,X1

s , X
2
s−)− V (s,X1

s− , X
2
s−))

+ λ2(V (s,X1
s− , X

2
s )− V (s,X1

s− , X
2
s−))

+ λ12(V (s,X1
s , X

2
s )− V (s,X1

s− , X
2
s−))

]
ds+∇V dWs

+ (V (s,X1
s , X

2
s−)− V (s,X1

s− , X
2
s−))dÑ{1}(s)

+ (V (s,X1
s− , X

2
s )− V (s,X1

s− , X
2
s−))dÑ{2}(s)

+ (V (s,X1
s , X

2
s )− V (s,X1

s− , X
2
s−))dÑ{12}(s),

where V (s,X1
s− , X

2
s−) is the solution before jumps occur. Then from the

definition of J1f(x) in (C.2) we have J1V = V (s,X1
s , X

2
s−) = V (s,X1

s− +

J1, X
2
s−). Similar definitions hold for jumps over x2 and simultaneous jump
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over x1 and x2. Finally

dYs =

[
Vt + ∆ρV + ξ · ∇V − (λ1 + λ2 + λ12)V

+ λ1J1V + λ2J2V + λ12J12V
]
dt+∇V dW

+ (V (s,X1
s , X

2
s−)− V (s,X1

s− , X
2
s−))dÑ{1}(s)

+ (V (s,X1
s− , X

2
s )− V (s,X1

s− , X
2
s−))dÑ{2}(s)

+ (V (s,X1
s , X

2
s )− V (s,X1

s− , X
2
s−))dÑ{12}(s).

From the PIDE (C.1) we have Vt + LV = χ. Integrating from t to τ we
obtain

Y (τ) = V (Xτ , τ) =V (x, t) +

∫ τ

t
χ(Xs, s)ds+

∫ τ

t
∇V dWs

+

∫ τ

t
(V (s,X1

s , X
2
s−)− V (s,X1

s− , X
2
s−))dÑ{1}(s)

+

∫ τ

t
(V (s,X1

s− , X
2
s )− V (s,X1

s− , X
2
s−))dÑ{2}(s)

+

∫ τ

t
(V (s,X1

s , X
2
s )− V (s,X1

s− , X
2
s−))dÑ{12}(s).

Taking the expectation and, considering that since E[τ∧T ] <∞ by Theorem
2 all the stochastic integrals vanish, we obtain

V (t, x) = E
[
V (Xτ , τ)−

∫ τ

t
χ(Xs, s)ds

]
= E

[
V (XT , T )1{τ=T} −

∫ T

t
χ(Xs, s)1{τ>s}ds

]
= E

[
ψ(XT )1{τ=T} −

∫ T

t
χ(Xs, s)1{τ>s}ds

]
.

For the boundary, instead, it easy to see that when computing V (t, 0, x2)
we have τ1 = t since x1 = 0 and so τ = t. Then

V (t, 0, x2) = E
[
φ1,0(τ1, X2(τ1)) · 1{τ1<T}|X1(t) = 0, X2(t) = x2

]
= E

[
φ1,0(t,X2(t)) · 1{t<T}|X1(t) = 0, X2(t) = x2

]
= E

[
φ1,0(t, x2) · 1{t<T}|X1(t) = 0, X2(t) = x2

]
= φ1,0(t, x2).

Similar results are obtain for the other border condition at x2 = 0. Since
our domain is upper unbounded we have no theoretical border conditions
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for xi →∞, but in order to solve the PIDE these conditions must be given.
So we add a suitable conditions depending on the pricing problem.



Appendix D

Implementation

1 f unc t i on [ x1 , x2 ] = Grid2D (xMin , xMax , yMin , yMax , Nx, Ny, xBarr ier ,
yBar r i e r )

2 %c r e a t e s a heterogeneous 2D−g r id c o n s i d e r i n g the two v a r i a b l e s
independent .

3 % x−g r id
4 Bx=xBarr i e r ;
5 % custom parameters
6 alphax =(xMax−Bx) /10 ;
7 c1= as inh ( ( xMin−Bx) / alphax ) ;
8 c2= as inh ( (xMax−Bx) / alphax ) ;
9 p s i = l i n s p a c e (0 , 1 ,Nx+1) ;

10 x1 = Bx+alphax∗ s inh ( c2 .∗ p s i+c1 .∗(1− p s i ) ) ;
11 % y−g r id
12 By=yBarr i e r ;
13 % custom parameters
14 alphay = (yMax−By) /10 ;
15 d1= as inh ( ( yMin−By) / alphay ) ;
16 d2= as inh ( (yMax−By) / alphay ) ;
17 nu = l i n s p a c e (0 , 1 ,Ny+1) ;
18 x2 = By+alphay∗ s inh ( d2 .∗ nu+d1 .∗(1−nu) ) ;
19 end

1 f unc t i on s o l u t i o n = SmoothFunction2D ( x1 , x2 , fun )
2 % Smoothing the func t i on us ing l o c a l averag ing method .
3

4 N1= length ( x1 ) ;
5 dx1 = x1 ( 2 : end )−x1 ( 1 : end−1) ;
6 N2= length ( x2 ) ;
7 dx2 = x2 ( 2 : end )−x2 ( 1 : end−1) ;
8 s o l u t i o n = ze ro s (N1 , N2) ;
9 f o r i = 1 : N1

10 f o r j = 1 : N2
11 D i f f e r e n t = Find ingD i f f e r ence ( x1 , x2 , i , j , N1 , N2 , fun ) ;
12 i f ( D i f f e r e n t )
13 i f ( i == 1)
14 lower1 = x1 ( i ) ;
15 upper1 = x1 ( i )+dx1 ( i ) /2 ;

73



74

16 e l s e i f ( i == N1)
17 lower1 = x1 ( i )−dx1 ( i −1) /2 ;
18 upper1 = x1 ( i ) ;
19 e l s e
20 lower1 = x1 ( i )−dx1 ( i −1) /2 ;
21 upper1 = x1 ( i )+dx1 ( i ) /2 ;
22 end
23 i f ( j == 1)
24 lower2 = x2 ( j ) ;
25 upper2 = x2 ( j )+dx2 ( j ) /2 ;
26 e l s e i f ( j == N2)
27 lower2 = x2 ( j )−dx2 ( j−1) /2 ;
28 upper2 = x2 ( j ) ;
29 e l s e
30 lower2 = x2 ( j )−dx2 ( j−1) /2 ;
31 upper2 = x2 ( j )+dx2 ( j ) /2 ;
32 end
33 s o l u t i o n ( i , j ) = 1/ ( ( upper1−lower1 ) ∗( upper2−lower2 ) )

∗ i n t e g r a l 2 ( fun , lower1 , upper1 , lower2 , upper2 , ’ Method ’ , ’
i t e r a t e d ’ ) ;

34 e l s e
35 s o l u t i o n ( i , j ) = fun ( x1 ( i ) , x2 ( j ) ) ;
36 end
37 end
38 end
39 s o l u t i o n= so lu t i on ’ ;
40 s o l u t i o n = s o l u t i o n ( : ) ;
41 end

1 f unc t i on Res = Lipton2D ( par , N1 , N2 , M, x1 , x2 , BC,
TimeCondition , InterPayments , NeumannBorder )

2 % D i s c r e t i z a t i o n o f the PIDE .
3

4 % Crank Nicholson scheme
5 %D i f f e r e n t i a l d i s c r e t i z a t i o n
6 A = D i f f e r e n t i a l D i s c r e t i z a t i o n ( x1 , x2 , par ) ;
7 % Time d i s c r e t i z a t i o n
8 Res = TimeDiscret izat ion2D (N1 , N2 ,M, par .T,A, TimeCondition ,BC, par .

lambda1 , par . lambda2 , par . lambda12 , par . ps i1 , par . ps i2 , x1 , x2 ,
InterPayments , NeumannBorder ) ;

9

10 % ADI scheme
11 [ A1 , A2 , D12 ] = D i f f e r e n t i a l D i s c r e t i z a t i o n A D I ( x1 , x2 , par ) ;
12 Res =HV scheme ( par , par .HV,M, par .T, D12 , A1 , A2 , TimeCondition ,

InterPayments ,BC, x1 , x2 ) ;
13

14 end

1 f unc t i on A = D i f f e r e n t i a l D i s c r e t i z a t i o n ( x1 , x2 , par )
2 % Computes the d i s c r e t i z a t i o n o f the s p a c i a l d i f f e r e n t a l part o f

the PIDE
3

4 N1 = length ( x1 ) ;
5 N2 = length ( x2 ) ;
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6 %Boundary i n d i c e s
7 numpoints=N1∗N2 ;
8 node W=1:N2 ;
9 node E=N2∗(N1−1)+(1:N2) ;

10 node S =1:N2 : numpoints ;
11 node N=N2 : N2 : numpoints ;
12 node bound=s o r t ( unique ( [ node W node E node S node N ] ) ) ;
13 % C o e f f i c e n t s
14 dx1 = x1 ( 2 : end )−x1 ( 1 : end−1) ;
15 dx2 = x2 ( 2 : end )−x2 ( 1 : end−1) ;
16 beta 1 under1 = (−dx1 ( 2 : end ) . / ( dx1 ( 1 : end−1) . ∗ ( dx1 ( 1 : end−1)+dx1

( 2 : end ) ) ) ) ;
17 beta 1 0 = ( ( dx1 ( 2 : end )−dx1 ( 1 : end−1) ) . / ( dx1 ( 1 : end−1) .∗ dx1 ( 2 : end )

) ) ;
18 beta 1 ove r1 = ( dx1 ( 1 : end−1) . / ( dx1 ( 2 : end ) . ∗ ( dx1 ( 1 : end−1)+dx1 ( 2 :

end ) ) ) ) ;
19 d e l t a 1 0 = (−2./( dx1 ( 1 : end−1) .∗ dx1 ( 2 : end ) ) ) ;
20 de l t a 1 unde r1 = ( 2 . / ( dx1 ( 1 : end−1) . ∗ ( dx1 ( 1 : end−1)+dx1 ( 2 : end ) ) ) ) ;
21 d e l t a 1 o v e r 1 = ( 2 . / ( dx1 ( 2 : end ) . ∗ ( dx1 ( 1 : end−1)+dx1 ( 2 : end ) ) ) ) ;
22 beta 2 under1 = (−dx2 ( 2 : end ) . / ( dx2 ( 1 : end−1) . ∗ ( dx2 ( 1 : end−1)+dx2

( 2 : end ) ) ) ) ;
23 beta 2 0 = ( ( dx2 ( 2 : end )−dx2 ( 1 : end−1) ) . / ( dx2 ( 1 : end−1) .∗ dx2 ( 2 : end )

) ) ;
24 beta 2 ove r1 = ( dx2 ( 1 : end−1) . / ( dx2 ( 2 : end ) . ∗ ( dx2 ( 1 : end−1)+dx2 ( 2 :

end ) ) ) ) ;
25 d e l t a 2 0 =(−2./(dx2 ( 1 : end−1) .∗ dx2 ( 2 : end ) ) ) ;
26 de l t a 2 unde r1 = ( 2 . / ( dx2 ( 1 : end−1) . ∗ ( dx2 ( 1 : end−1)+dx2 ( 2 : end ) ) ) ) ;
27 d e l t a 2 o v e r 1 = ( 2 . / ( dx2 ( 2 : end ) . ∗ ( dx2 ( 1 : end−1)+dx2 ( 2 : end ) ) ) ) ;
28

29 %% Matrix
30 A=spar s e ( numpoints , numpoints ) ;
31 f o r i =1: numpoints
32 index1 = f i x ( ( i −1)/N2) ;
33 index2 = mod( i , N2)−1;
34 i f min ( abs ( i−node bound ) )>0 % i n t e r i o r node
35 % No d e r i v a t i v e
36 A( i , i )=−(par . lambda1+par . lambda2+par . lambda12 ) ;
37 %A( i , i ) =0;
38 % F i r s t d e r i v a t i v e ( x2 )
39 c o e f f=par . e p s i l o n 2 ;
40 A( i , i ) = A( i , i ) + c o e f f ∗ beta 2 0 ( index2 ) ;
41 A( i , i +1)=c o e f f ∗ beta 2 ove r1 ( index2 ) ;
42 A( i , i −1)=c o e f f ∗ beta 2 under1 ( index2 ) ;
43 % F i r s t d e r i v a t i v e ( x1 )
44 c o e f f=par . e p s i l o n 1 ;
45 A( i , i ) = A( i , i ) + c o e f f ∗ beta 1 0 ( index1 ) ;
46 A( i , i+N2)=c o e f f ∗ beta 1 ove r1 ( index1 ) ;
47 A( i , i−N2)=c o e f f ∗ beta 1 under1 ( index1 ) ;
48 % Second d e r i v a t i v e ( x2 )
49 c o e f f =0.5∗( par . sigma2 ) ˆ2 ;
50 A( i , i +1)=A( i , i +1)+c o e f f ∗ d e l t a 2 o v e r 1 ( index2 ) ;
51 A( i , i )=A( i , i )+c o e f f ∗ d e l t a 2 0 ( index2 ) ;
52 A( i , i −1)=A( i , i −1)+c o e f f ∗ de l t a 2 unde r1 ( index2 ) ;
53 % Second d e r i v a t i v e ( x1 )
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54 c o e f f =0.5∗( par . sigma1 ) ˆ2 ;
55 A( i , i+N2)=A( i , i+N2)+c o e f f ∗ d e l t a 1 o v e r 1 ( index1 ) ;
56 A( i , i )=A( i , i )+c o e f f ∗ d e l t a 1 0 ( index1 ) ;
57 A( i , i−N2)=A( i , i−N2)+c o e f f ∗ de l t a 1 unde r1 ( index1 ) ;
58 % Mixed d e r i v a t i v e
59 c o e f f=par . rho∗par . sigma1∗par . sigma2 ;
60 A( i , i ) = A( i , i ) + c o e f f ∗ beta 1 0 ( index1 ) ∗ beta 2 0 (

index2 ) ;
61 A( i , i +1) = A( i , i +1) + c o e f f ∗ beta 1 0 ( index1 ) ∗

beta 2 ove r1 ( index2 ) ;
62 A( i , i −1) = A( i , i −1) + c o e f f ∗ beta 1 0 ( index1 ) ∗

beta 2 under1 ( index2 ) ;
63 A( i , i+N2) = A( i , i+N2)+ c o e f f ∗ beta 1 ove r1 ( index1 ) ∗

beta 2 0 ( index2 ) ;
64 A( i , i+N2+1)= c o e f f ∗ beta 1 ove r1 ( index1 ) ∗

beta 2 ove r1 ( index2 ) ;
65 A( i , i+N2−1)= c o e f f ∗ beta 1 ove r1 ( index1 ) ∗

beta 2 under1 ( index2 ) ;
66 A( i , i−N2) = A( i , i−N2)+ c o e f f ∗ beta 1 under1 ( index1 ) ∗

beta 2 0 ( index2 ) ;
67 A( i , i−N2+1)= c o e f f ∗ beta 1 under1 ( index1 ) ∗

beta 2 ove r1 ( index2 ) ;
68 A( i , i−N2−1)= c o e f f ∗ beta 1 under1 ( index1 ) ∗

beta 2 under1 ( index2 ) ;
69 end
70 end
71 end

1 f unc t i on J = JumpVector (N1 , N2 , x1 , zeta1 , x2 , zeta2 , lambda1 , lambda2
, lambda12 ,U)

2 % Computes the jump c o n t r i b u t i o n
3 J1 = ze ro s (N1∗N2, 1 ) ;
4 J2 = ze ro s (N1∗N2, 1 ) ;
5 I12 = ze ro s (N1∗N2, 1 ) ;
6 J12 = ze ro s (N1∗N2, 1 ) ;
7

8 h1 = x1 ( 2 : end )−x1 ( 1 : end−1) ;
9 h2 = x2 ( 2 : end )−x2 ( 1 : end−1) ;

10

11 %F i r s t choose o f parameters
12 % J1omega0 = 0.5∗ h1∗ zeta1 .∗ exp(−zeta1 ∗h1 ) ;
13 % J1omega1 = 0.5∗ h1∗ zeta1 ;
14 % J2omega0 = 0.5∗ h2∗ zeta2 .∗ exp(−zeta2 ∗h2 ) ;
15 % J2omega1 = 0.5∗ h2∗ zeta2 ;
16 % %Second choose o f parameters
17 %omega0 ( zeta1 , h1 )
18 J1omega0 = (1−(1+ zeta1 ∗h1 ) .∗ exp(−zeta1 ∗h1 ) ) . / ( zeta1 ∗h1 ) ;
19 %omega1 ( zeta1 , h1 )
20 J1omega1 = (−1+zeta1 ∗h1+exp(−zeta1 ∗h1 ) ) . / ( zeta1 ∗h1 ) ;
21 %omega0 ( zeta2 , h2 )
22 J2omega0 = (1−(1+ zeta2 ∗h2 ) .∗ exp(−zeta2 ∗h2 ) ) . / ( zeta2 ∗h2 ) ;
23 %omega1 ( zeta2 , h2 )
24 J2omega1 = (−1+zeta2 ∗h2+exp(−zeta2 ∗h2 ) ) . / ( zeta2 ∗h2 ) ;
25
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26 f o r i = 1 : N1∗N2
27 index1 = f i x ( ( i −1)/(N2) ) ;
28 index2 = mod( ( i −1) ,N2) ;
29 %J1 & I12
30 i f ( i<=N2)
31 J1 ( i ) =0;
32 I12 ( i ) = 0 ;
33 e l s e
34 J1 ( i ) = exp(−zeta1 ∗h1 ( index1 ) ) ∗J1 ( i−N2)+J1omega0 ( index1 )

∗U( i−N2)+J1omega1 ( index1 ) ∗U( i ) ;
35 I12 ( i ) = exp(−zeta1 ∗h1 ( index1 ) ) ∗ I12 ( i−N2)+J1omega0 (

index1 ) ∗U( i−N2)+J1omega1 ( index1 ) ∗U( i ) ;
36 end
37 %J2 & J12
38 i f (mod( i , N2)==1)
39 J2 ( i ) = 0 ;
40 J12 ( i ) = 0 ;
41 e l s e
42 J2 ( i ) = exp(−zeta2 ∗h2 ( index2 ) ) ∗J2 ( i −1)+J2omega0 ( index2 ) ∗

U( i −1)+J2omega1 ( index2 ) ∗U( i ) ;
43 J12 ( i ) = exp(−zeta2 ∗h2 ( index2 ) ) ∗J12 ( i −1)+J2omega0 ( index2

) ∗ I12 ( i −1)+J2omega1 ( index2 ) ∗ I12 ( i ) ;
44 end
45 end
46 J = lambda1∗J1+lambda2∗J2+lambda12∗J12 ;
47 end

1 f unc t i on Correc t ion = Integra lCor rec t i on2D ( x1 , x2 ,BC, theta1 ,
theta2 , lambda1 , lambda2 , lambda12 )

2 % Correc t ion o f jump operator
3 N1 = length ( x1 ) ;
4 N2 = length ( x2 ) ;
5 M = s i z e (BC.N, 2 ) ;
6 J1Correct ion= ze ro s (N1∗N2 ,M) ;
7 J2Correct ion= ze ro s (N1∗N2 ,M) ;
8 F i r s t= ze ro s (N1∗N2 ,M) ;
9 Second= ze ro s (N1∗N2 ,M) ;

10 Third= ze ro s (N1∗N2 ,M) ;
11 IsConstantW = CheckForConstant (BC.W( : , 1 ) ) ;
12 IsConstantS = CheckForConstant (BC. S ( : , 1 ) ) ;
13 f o r t = 1 : M
14 %J1 c o r r e c t i o n
15 f o r i = 1 :N1
16 J1Correct ion ( ( i −1)∗N2+1: i ∗N2 , t ) = BC.W( : , t ) .∗ exp(− theta1

∗x1 ( i ) ) ;
17 end
18 %J2 c o r r e c t i o n
19 f o r i = 1 : N2
20 J2Correct ion ( i : N2 : N1∗N2 , t ) = BC. S ( : , t ) .∗ exp(− theta2 ∗x2 ( i

) ) ;
21 end
22 %J12 c o r r e c t i o n
23 f o r i = 1 :N1
24 f o r j = 1 :N2
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25 u1 = x1 ( 1 : i ) ’ ;
26 u2 = x2 ( 1 : j ) ’ ;
27 i f ( l ength ( u1 ) == 1)
28 Second ( j+N2∗( i −1) , t ) = 0 ;
29 i f ( l ength ( u2 ) == 1)
30 F i r s t ( j+N2∗( i −1) , t ) = 0 ;
31 e l s e
32 i f ( IsConstantW )
33 F i r s t ( j+N2∗( i −1) , t ) = BC.W(1 , t ) ∗exp(−

theta1 ∗x1 ( i ) )∗(1−exp(− theta2 ∗x2 ( j ) ) ) ;
34 e l s e
35 F i r s t ( j+N2∗( i −1) , t ) = exp(− theta1 ∗x1 ( i )

) ∗ theta2 ∗ t rapz ( u2 ,BC.W( j :−1:1 , t ) .∗ exp(− theta2 ∗u2 ) ) ;
36 end
37 end
38 Third ( j+N2∗( i −1) , t ) = BC.W(1 , t ) ∗exp(− theta2 ∗x2 (

j ) ) ∗exp(− theta1 ∗x1 ( i ) ) ;
39 e l s e
40 i f ( IsConstantS )
41 Second ( j+N2∗( i −1) , t ) = BC. S (1 , t ) ∗exp(− theta2

∗x2 ( j ) )∗(1−exp(− theta1 ∗x1 ( i ) ) ) ;
42 i f ( l ength ( u2 ) == 1)
43 F i r s t ( j+N2∗( i −1) , t ) = 0 ;
44 e l s e
45 i f ( IsConstantW )
46 F i r s t ( j+N2∗( i −1) , t ) = BC.W(1 , t ) ∗exp

(− theta1 ∗x1 ( i ) )∗(1−exp(− theta2 ∗x2 ( j ) ) ) ;
47 e l s e
48 F i r s t ( j+N2∗( i −1) , t ) = exp(− theta1 ∗

x1 ( i ) ) ∗ theta2 ∗ t rapz ( u2 ,BC.W( j :−1:1 , t ) .∗ exp(− theta2 ∗u2 ) ) ;
49 end
50 end
51 Third ( j+N2∗( i −1) , t ) = BC.W(1 , t ) ∗exp(− theta2

∗x2 ( j ) ) ∗exp(− theta1 ∗x1 ( i ) ) ;
52 e l s e
53 Second ( j+N2∗( i −1) , t ) = exp(− theta2 ∗x2 ( j ) ) ∗

theta1 ∗ t rapz ( u1 ,BC. S( i :−1:1 , t ) .∗ exp(− theta1 ∗u1 ) ) ;
54 i f ( l ength ( u2 ) == 1)
55 F i r s t ( j+N2∗( i −1) , t ) = 0 ;
56 e l s e
57 i f ( IsConstantW )
58 F i r s t ( j+N2∗( i −1) , t ) = BC.W(1 , t ) ∗exp

(− theta1 ∗x1 ( i ) )∗(1−exp(− theta2 ∗x2 ( j ) ) ) ;
59 e l s e
60 F i r s t ( j+N2∗( i −1) , t ) = exp(− theta1 ∗

x1 ( i ) ) ∗ theta2 ∗ t rapz ( u2 ,BC.W( j :−1:1 , t ) .∗ exp(− theta2 ∗u2 ) ) ;
61 end
62 end
63 Third ( j+N2∗( i −1) , t ) = BC.W(1 , t ) ∗exp(− theta2

∗x2 ( j ) ) ∗exp(− theta1 ∗x1 ( i ) ) ;
64 end
65 end
66 end
67
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68 end
69 end
70 J12Correct ion = F i r s t+Second+Third ;
71 Correc t ion = lambda1∗ J1Correct ion+lambda2∗ J2Correct ion+lambda12∗

J12Correct ion ;

1 f unc t i on Res = TimeDiscret izat ion2D (N1 , N2 ,M,T,A, I n i t i a l C o n d i t i o n
,BC, lambda1 , lambda2 , lambda12 , zeta1 , zeta2 , x1 , x2 , InterPayments ,
NeumannBorder )

2

3 dt = T/M;
4 Upre = I n i t i a l C o n d i t i o n ;
5 Res = ze ro s ( l ength ( Upre ) ,M+1) ;
6 Res ( : , 1 ) = Upre ;
7 C = speye ( s i z e ( Upre , 1 ) ) ;
8 %% Border Pre s e t t i n g & Matrix Correc t ion
9 %Finding border index

10 [ NeuIndex , DirIndex ,A, boundary ] = FindingNeuman (N1 , N2 ,A,BC, dt ,
NeumannBorder ) ;

11 boundIndex = s o r t ( unique ( [ NeuIndex DirIndex ] ) ) ;
12 B = ze ro s (N1∗N2 ,M+1) ;
13 % Computing i n t e g r a l c o r r e c t i o n
14

15 i f ( lambda1 == 0 && lambda2 == 0 && lambda12 == 0)
16 %No jump
17 Correc t ion = ze ro s (N1∗N2 ,M+1) ;
18 e l s e
19 % Jump
20 Correc t ion = Integra lCor rec t i on2D ( x1 , x2 ,BC, zeta1 , zeta2 ,

lambda1 , lambda2 , lambda12 ) ;
21 end
22 % Creat ing and c o r r e c t i o n f o r boundary c o n d i t i o n s
23 f o r i = 1 : l ength ( DirIndex )
24 % Vector o f BC
25 B( DirIndex ( i ) , : )=boundary ( i , : ) ;
26 Correc t ion ( DirIndex ( i ) , : )=ze ro s (1 , s i z e ( Correct ion , 2 ) ) ;
27 end
28 B =B −dt∗ InterPayments+dt∗Correc t ion ;
29 % Computing s o l u t i o n
30 [LA, UA] = lu ( ( speye (N1∗N2)−dt∗A) ) ;
31 h = waitbar (0 , ’ P lease wait . . . ’ ) ;
32 f o r i = 1 : M
33 %Computing Jump c o n t r i b u t i o n
34 J = JumpVector (N1 , N2 , x1 , zeta1 , x2 , zeta2 , lambda1 , lambda2 ,

lambda12 , Upre ) ;
35 %Correc t ing in order to impose border cond i t i on
36 Upre ( boundIndex ) = ze ro s ( l ength ( boundIndex ) ,1 ) ;
37 J ( boundIndex )= ze ro s ( l ength ( boundIndex ) ,1 ) ;
38 % Solv ing the problem
39 U = UA\(LA\ ( (C∗Upre+B( : , i +1)+dt∗J ) ) ) ;
40 Upre = U;
41 Res ( : , i +1) = U ;
42 waitbar ( i /M, h)
43 end
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44 c l o s e (h)
45 end

1 f unc t i on [ D1 , D2 , D12]= D i f f e r e n t i a l D i s c r e t i z a t i o n A D I ( x1 , x2 , par )
2 % Computes the d i s c r e t i z a t i o n o f the s p a c i a l d i f f e r e n t a l part o f

the PIDE
3

4 N1 = length ( x1 ) ;
5 N2 = length ( x2 ) ;
6 % Index boundary
7 numpoints=N1∗N2 ;
8 node W=1:N2 ;
9 node E=N2∗(N1−1)+(1:N2) ;

10 node S =1:N2 : numpoints ;
11 node N=N2 : N2 : numpoints ;
12 node bound=s o r t ( unique ( [ node W node E node S node N ] ) ) ;
13 % C o e f f i c e n t s
14 dx1 = x1 ( 2 : end )−x1 ( 1 : end−1) ;
15 dx2 = x2 ( 2 : end )−x2 ( 1 : end−1) ;
16 beta 1 under1 = (−dx1 ( 2 : end ) . / ( dx1 ( 1 : end−1) . ∗ ( dx1 ( 1 : end−1)+dx1

( 2 : end ) ) ) ) ;
17 beta 1 0 = ( ( dx1 ( 2 : end )−dx1 ( 1 : end−1) ) . / ( dx1 ( 1 : end−1) .∗ dx1 ( 2 : end )

) ) ;
18 beta 1 ove r1 = ( dx1 ( 1 : end−1) . / ( dx1 ( 2 : end ) . ∗ ( dx1 ( 1 : end−1)+dx1 ( 2 :

end ) ) ) ) ;
19 d e l t a 1 0 = (−2./( dx1 ( 1 : end−1) .∗ dx1 ( 2 : end ) ) ) ;
20 de l t a 1 unde r1 = ( 2 . / ( dx1 ( 1 : end−1) . ∗ ( dx1 ( 1 : end−1)+dx1 ( 2 : end ) ) ) ) ;
21 d e l t a 1 o v e r 1 = ( 2 . / ( dx1 ( 2 : end ) . ∗ ( dx1 ( 1 : end−1)+dx1 ( 2 : end ) ) ) ) ;
22 beta 2 under1 = (−dx2 ( 2 : end ) . / ( dx2 ( 1 : end−1) . ∗ ( dx2 ( 1 : end−1)+dx2

( 2 : end ) ) ) ) ;
23 beta 2 0 = ( ( dx2 ( 2 : end )−dx2 ( 1 : end−1) ) . / ( dx2 ( 1 : end−1) .∗ dx2 ( 2 : end )

) ) ;
24 beta 2 ove r1 = ( dx2 ( 1 : end−1) . / ( dx2 ( 2 : end ) . ∗ ( dx2 ( 1 : end−1)+dx2 ( 2 :

end ) ) ) ) ;
25 d e l t a 2 0 =(−2./(dx2 ( 1 : end−1) .∗ dx2 ( 2 : end ) ) ) ;
26 de l t a 2 unde r1 = ( 2 . / ( dx2 ( 1 : end−1) . ∗ ( dx2 ( 1 : end−1)+dx2 ( 2 : end ) ) ) ) ;
27 d e l t a 2 o v e r 1 = ( 2 . / ( dx2 ( 2 : end ) . ∗ ( dx2 ( 1 : end−1)+dx2 ( 2 : end ) ) ) ) ;
28 % Matrix
29 D1=spar s e ( numpoints , numpoints ) ;
30 D2=spar s e ( numpoints , numpoints ) ;
31 D12=spar s e ( numpoints , numpoints ) ;
32 f o r i =1: numpoints
33 index1 = f i x ( ( i −1)/N2) ;
34 index2 = mod( i , N2)−1;
35 i f min ( abs ( i−node bound ) )>0
36 % i n t e r i o r node
37 % No d e r i v a t i v e
38 D1( i , i )=−(par . lambda1+par . lambda12 /2) ;
39 D2( i , i )=−(par . lambda2+par . lambda12 /2) ;
40 % F i r s t d e r i v a t i v e ( x2 )
41 c o e f f=par . e p s i l o n 2 ;
42 D2( i , i ) = D2( i , i ) + c o e f f ∗ beta 2 0 ( index2 ) ;
43 D2( i , i +1)=c o e f f ∗ beta 2 ove r1 ( index2 ) ;
44 D2( i , i −1)=c o e f f ∗ beta 2 under1 ( index2 ) ;
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45 % F i r s t d e r i v a t i v e ( x1 )
46 c o e f f=par . e p s i l o n 1 ;
47 D1( i , i ) = D1( i , i ) + c o e f f ∗ beta 1 0 ( index1 ) ;
48 D1( i , i+N2)=c o e f f ∗ beta 1 ove r1 ( index1 ) ;
49 D1( i , i−N2)=c o e f f ∗ beta 1 under1 ( index1 ) ;
50 % Second d e r i v a t i v e ( x2 )
51 c o e f f =0.5∗( par . sigma2 ) ˆ2 ;
52 D2( i , i +1)=D2( i , i +1)+c o e f f ∗ d e l t a 2 o v e r 1 ( index2 ) ;
53 D2( i , i )=D2( i , i )+c o e f f ∗ d e l t a 2 0 ( index2 ) ;
54 D2( i , i −1)=D2( i , i −1)+c o e f f ∗ de l t a 2 unde r1 ( index2 ) ;
55 % Second d e r i v a t i v e ( x1 )
56 c o e f f =0.5∗( par . sigma1 ) ˆ2 ;
57 D1( i , i+N2)=D1( i , i+N2)+c o e f f ∗ d e l t a 1 o v e r 1 ( index1 ) ;
58 D1( i , i )=D1( i , i )+c o e f f ∗ d e l t a 1 0 ( index1 ) ;
59 D1( i , i−N2)=D1( i , i−N2)+c o e f f ∗ de l t a 1 unde r1 ( index1 ) ;
60 % Mixed d e r i v a t i v e
61 c o e f f=par . rho∗par . sigma1∗par . sigma2 ;
62 D12( i , i ) = D12( i , i ) + c o e f f ∗ beta 1 0 ( index1 ) ∗

beta 2 0 ( index2 ) ;
63 D12( i , i +1) = D12( i , i +1) + c o e f f ∗ beta 1 0 ( index1 ) ∗

beta 2 ove r1 ( index2 ) ;
64 D12( i , i −1) = D12( i , i −1) + c o e f f ∗ beta 1 0 ( index1 ) ∗

beta 2 under1 ( index2 ) ;
65 D12( i , i+N2) = D12( i , i+N2)+ c o e f f ∗ beta 1 ove r1 ( index1 ) ∗

beta 2 0 ( index2 ) ;
66 D12( i , i+N2+1)= c o e f f ∗ beta 1 ove r1 ( index1 ) ∗

beta 2 ove r1 ( index2 ) ;
67 D12( i , i+N2−1)= c o e f f ∗ beta 1 ove r1 ( index1 ) ∗

beta 2 under1 ( index2 ) ;
68 D12( i , i−N2) = D12( i , i−N2)+ c o e f f ∗ beta 1 under1 ( index1 ) ∗

beta 2 0 ( index2 ) ;
69 D12( i , i−N2+1)= c o e f f ∗ beta 1 under1 ( index1 ) ∗

beta 2 ove r1 ( index2 ) ;
70 D12( i , i−N2−1)= c o e f f ∗ beta 1 under1 ( index1 ) ∗

beta 2 under1 ( index2 ) ;
71 e l s e
72 %Boundary
73 D1( i , i ) = 1 ;
74 D2( i , i ) = 1 ;
75 D12( i , i ) = 1 ;
76 end
77 end

1 f unc t i on Res = HV scheme ( par ,HV,M,T, D12 , D1 , D2 , I n i t i a l C o n d i t i o n ,
InterPayments ,BC, x1 , x2 )

2 % Hundsdorfer−Verwer scheme
3

4 N1 = length ( x1 ) ;
5 N2 = length ( x2 ) ;
6 dt = T/M;
7 Upre = I n i t i a l C o n d i t i o n ;
8 Res = ze ro s ( l ength ( Upre ) ,M+1) ;
9 Res ( : , 1 ) = Upre ;

10 % Boundary index
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11 west = 1 : N2 ;
12 south = 1 : N2 : N1∗N2 ;
13 ea s t = N2∗(N1−1)+1 : N1∗N2 ;
14 north = N2 : N2 : N1∗N2 ;
15 DirIndex = s o r t ( unique ( [ west south ea s t north ] ) ) ;
16

17 %Correc t ion jump operator
18 Correc t ion = Integra lCor rec t i on2D ( x1 , x2 ,BC, par . ps i1 , par . ps i2 , par

. lambda1 , par . lambda2 , par . lambda12 ) ;
19 f o r i = 1 : l ength ( DirIndex )
20 Correc t ion ( DirIndex ( i ) , : )=ze ro s (1 , s i z e ( Correct ion , 2 ) ) ;
21 end
22 b0 = −InterPayments+ Correc t ion ;
23 b1 = ze ro s ( s i z e ( b0 ) ) ;
24 b2 = ze ro s ( s i z e ( b0 ) ) ;
25 % Computing s o l u t i o n
26 [ L1 , U1 ] = lu ( speye ( s i z e (D1) )−HV. theta ∗dt∗D1) ;
27 [ L2 , U2 ] = lu ( speye ( s i z e (D2) )−HV. theta ∗dt∗D2) ;
28 h = waitbar (0 , ’ P lease wait . . . ’ ) ;
29 f o r i = 1 : M
30 J = JumpVector (N1 , N2 , x1 , par . ps i1 , x2 , par . ps i2 , par . lambda1 , par

. lambda2 , par . lambda12 , Upre ) ;
31 Y0 = Upre + dt ∗ ( ( D12+D1+D2) ∗Upre + J + b0 ( : , i )+b1 ( : , i )+b2

( : , i ) ) ;
32 Y0( DirIndex ) = boundary (D12 , D1 , D2 , J , b0 , b1 , b2 ,BC, DirIndex ,HV,

dt , i ) ;
33 Y1 = U1\(L1\(Y0 + HV. theta ∗dt∗(−D1∗Upre + b1 ( : , i +1) − b1 ( : , i

) ) ) ) ;
34 Y2 = U2\(L2\(Y1 + HV. theta ∗dt∗(−D2∗Upre + b2 ( : , i +1) − b2 ( : , i

) ) ) ) ;
35 J over Y2 = JumpVector (N1 , N2 , x1 , par . ps i1 , x2 , par . ps i2 , par .

lambda1 , par . lambda2 , par . lambda12 , Y2) ;
36 Y0t i lde = Y0 + HV. sigma∗dt ∗ ( ( D12+D1+D2) ∗Y2+ J over Y2+ b0 ( : ,

i +1)+b1 ( : , i +1)+b2 ( : , i +1) − (D12+D1+D2) ∗Upre −J − b0 ( : , i )−b1
( : , i )−b2 ( : , i ) ) ;

37 Y1t i lde = U1\(L1\( Y0t i lde−HV. theta ∗dt∗D1∗Y2) ) ;
38 U = U2\(L2\( Y1t i lde−HV. theta ∗dt∗D2∗Y2) ) ;
39 Upre = U;
40 Res ( : , i +1) = U ;
41 waitbar ( i /M, h)
42 end
43 c l o s e (h)
44 end


