
Politecnico di Milano
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e
Bioingegneria

An Online Framework for
User-Based Analysis of Maps in

First Person Shooters

Supervisor: Professor Daniele LOIACONO

Final thesis by:

Marco BALLABIO Matr. 857169

Academic year 2016/2017

Thanks

Firstly, I would like to thank Professor Daniele Loiacono for his precious
help during the months that led to the completion of this work.

I would also like to thank my parents, who gave me the opportunity to
focus on my studies, my grandmother, who constantly supported me, and my
aunt, uncle and cousins from Milan, who often hosted me after a long day of
lectures.

Finally, I would like to thank my colleague and friend Luca, essential
companion in this journey, and all the other friends with whom I shared
these intense years.

Marco Ballabio

iii

Abstract

Level design plays a key role in the development of a video game, since it
allows to transform the game design in the actual gameplay that the final
user is going to experience. Nevertheless, we are still far from a scientific
approach to the subject, with a complete lack of a shared terminology and
almost no experimental validation for the most used techniques. Even if the
video game industry does not acknowledge this problem, in the last years
the academic environments have shown an increasing interest towards this
subject.
We analyzed the main breakthroughs made in level design research applied
to the genre of First Person Shooters, devoting particular attention to the
ones that try to assist the design process by employing Procedural Content
Generation. To support this kind of research, we developed an open-source
framework that employs procedural algorithms to generate maps with dif-
ferent topologies, both single-level and multi-level, but that also allows to
import maps generated in previous works, thanks to a broad support to the
most common export formats used in the literature. The framework was also
designed for providing an easy way to define and deploy browser-playable
online experiments, that allow to analyze how real users react to different
contents.
We also explored a novel approach for the analysis of First Person Shooter
levels, that uses Graph Theory to extract information about the layout of a
map. We used this information to define an approach that uses heuristics to
place game elements considering the layout of the map and the features of
each element.

v

Sintesi

Il level design gioca un ruolo chiave nello sviluppo di un videogioco, dal mo-
mento che permette di trasformare il game design nell’effettiva esperienza di
gameplay che verrà sperimentata dall’utente finale. Nonostante ciò, siamo
ancora lontani da un approccio scientifico verso la materia, a causa della
completa mancanza di un vocabolario condiviso e della quasi totale assenza
di validazione sperimentale per le tecniche più comuni. Anche se l’industria
tende ad ignorare questo problema, negli ultimi anni gli ambienti accademici
hanno mostrato un crescente interesse verso questo campo.
Abbiamo analizzato le principali scoperte fatte nel campo del level design ap-
plicato al genere dei First Person Shooter, riservando particolare attenzione
ai casi in cui si usa la Generazione Procedurali di Contenuti per assistere il
processo di design. Per agevolare questo tipo di ricerca, abbiamo sviluppato
un framework open-source che si avvale di algoritmi procedurali per generare
mappe con topologie differenti, con uno o più piani, ma che permette anche
di importare le mappe generate nei lavori precedenti, grazie ad un vasto sup-
porto per i formati di esportazione più diffusi in questo campo. Il framework
è stato anche progettato per consentire la facile creazione di esperimenti on-
line giocabili da browser, che permettono di analizzare come degli utenti reali
reagiscono a differenti tipi di contenuto.
Abbiamo anche esplorato un nuovo approccio per l’analisi dei livelli per First
Person Shooter, che si avvale della Teoria dei Grafi per estrarre informazioni
riguardanti il layout di una mappa. Utilizzando queste informazioni, abbi-
amo definito un approccio basato su euristiche per disporre gli elementi di
gioco tenendo conto del layout della mappa e delle caratteristiche di ciascun
elemento.

vii

Contents

Thanks iii

Abstract v

Sintesi vii

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Motivations and purpose . 1
1.2 Synopsis . 2

2 State of the art 5
2.1 Level Design Theory . 5
2.2 Procedural Content Generation 7
2.3 Procedural Content Generation for FPS maps 9
2.4 History of Level Design in FPS 12

2.4.1 Level Design evolution in FPS 12
2.5 Graph Theory in video games 15
2.6 Summary . 16

3 Map design and generation framework 17
3.1 Description of the framework 17
3.2 Map representation . 18

3.2.1 Text representation . 18
3.2.2 All-Black representation 18

3.3 Framework structure . 20
3.3.1 The Game Manager . 20
3.3.2 The Map Manager . 21

3.3.2.1 Single-Level Map Manager 21

ix

Contents

3.3.2.2 Multi-Level Map Manager 21
3.3.2.3 All-Black Multi-Level Map Manager 21

3.3.3 The Map Generator . 22
3.3.3.1 Cellular Generator 24
3.3.3.2 Divisive Generator 25
3.3.3.3 Digger Generator 26
3.3.3.4 All-Black Generator 26

3.3.4 The Stairs Generator 26
3.3.5 The Map Assembler 32

3.3.5.1 Mesh Assembler 32
3.3.5.2 Prefab Assembler 32
3.3.5.3 Multi-Level Prefab Assembler 32

3.3.6 The Spawn Point Manager 32
3.3.7 The Object Displacer 32
3.3.8 The Experiment Manager 35

3.4 Entities . 37
3.5 Weapons . 38
3.6 Objects . 41
3.7 Game modes . 41

3.7.1 Duel . 41
3.7.2 Target Rush . 42
3.7.3 Target Hunt . 43

3.8 Summary . 43

4 Graph-based map analysis 45
4.1 Overview . 45
4.2 Analysis of the map . 45

4.2.1 Outlines graph . 46
4.2.2 Reachability graphs . 46

4.2.2.1 Tiles graph 46
4.2.2.2 Rooms graph 46
4.2.2.3 Rooms and game elements graph 47

4.2.3 Visibility graph . 47
4.2.4 Interesting metrics . 47

4.3 Placement of game elements on the map 49
4.3.1 Rules for the placement of game elements 50
4.3.2 Placement process . 51

4.3.2.1 Room selection 51
4.3.2.2 Tile selection 52

4.3.3 Heuristics for the placement of game elements 53
4.3.3.1 Spawn points 53

x

Contents

4.3.3.2 Health packs 55
4.3.3.3 Ammunition 56

4.3.4 Weapon placement . 57
4.4 Summary . 58

5 A case study: spawn points placement 59
5.1 Goals . 59
5.2 Experimental design . 60
5.3 Results . 63
5.4 Summary . 67

6 Conclusions 71
6.1 Known issues and possible criticism 72
6.2 Future developments . 72

Bibliography 75

xi

List of Figures

2.1 Visual representation of Ølsted et al.[1] generative process. . . 11

2.2 One of the maps evolved by Cachia’s et al.[2] algorithm. . . . 12

2.3 A common pathfinding process. 16

3.1 Two simple maps with their All-Black representation. 19

3.2 Two multilevel maps. 22

3.3 Six maps generated by the Cellular Generator using “ANot-
SoRandomSeed” as seed, but different settings. 28

3.4 Six maps generated by the Divisive Generator using “AMod-
eratelyRandomSeed” as seed, but different settings. 30

3.5 Four maps generated by the Digger Generator using “AFair-
lyRandomSeed” as seed, but different settings. 31

3.6 Some prefabs and the masks they are associated to. 33

3.7 Some possible combinations of generators and assemblers. . . . 34

3.8 Different ready-to-use target entities provided by the framework. 38

3.9 The weapons that the player can use. 40

3.10 Targets equipped with laser guns in the final wave of a Target
Rush match. 42

4.1 A map and all the graphs that can be generated from it. . . . 48

4.2 How the degree heuristic defined for spawn points varies de-
pending on the room node degree. 54

4.3 How the visibility heuristic defined for spawn points varies
depending on the tile node degree. 54

4.4 The values assumed by dint with [0.3, 0.5] set as interval of
desired values. 56

4.5 How the visibility heuristic defined for health packs varies de-
pending on the tile node degree. 56

5.1 “Arena” map used in the experiment. 62

5.2 “Corridors” map used in the experiment. 62

xiii

List of Figures

5.3 “Intense” map used in the experiment. 62
5.4 Experiment outcomes by metrics. 65
5.5 Heat maps of the player position for the three maps used in

the experiment. 68
5.6 Comparison between the effective and the perceived difficulty. 69

xiv

List of Tables

3.1 Parametric configuration of the four weapons available to the
player. 40

5.1 The information retrieved from the dataset. 63

xv

Chapter 1

Introduction

Video games are really complex products, but it is rather simple to point
out three elements that mainly influence their commercial success: visuals,
gameplay1 and narrative. If in the past visual improvements were impres-
sively fast, with games looking more and more realistic from year to year,
lately this progress consistently slowed down, leaving narrative and game-
play as the main selling points. Since video games are interactive products,
the latter is the one that influences user experience the most. Gameplay is
defined by a set of rules commonly referred as game design. To the player,
game design is presented in a tangible way via level design, which consists
in the creation of the worlds where the game takes place. This is a critical
component, since an inadequate level design can easily compromise the whole
experience.

One of the most successful video game genre is the one of First Person
Shooters, that thanks to its first player perspective allows the user to exper-
iment a complete immersion in the game world. From the very beginning,
this has required a close attention to level design, that underwent a constant
evolution, up to the stable situation of the recent years. Furthermore, the
ever-increasing success of competitive multiplayer added a new level of com-
plexity to the creation of maps, that need to support different game modes,
play styles and interactions, allowing a fun and challenging gameplay to arise
naturally.

1.1 Motivations and purpose

Despite the importance of level design for the FPS genre, the video game in-
dustry has never attempted a scientific approach to this field. Consequently,

1The specific way in which players interact with the game.

1

Chapter 1. Introduction

game design is a rather abstract discipline, with no common vocabulary or
well-defined standards, but rather based on the experience of who is working
in this field from many years. This affects also the related literature, that is
confined to listing the most used patterns and conventions, without focusing
on why they work.

In the last years, instead, academic environments started to address this
discipline with increasing interest. The researches performed in this field
revolve around the identification and definition of design patterns and design
techniques, with a deep analysis of how and why they work, and the creation
of novel approaches to level design. Some of these techniques try to automate
the design process by employing procedural generation, often combined with
evolutionary algorithms.

A problem peculiar to this kind of research is how difficult it is to obtain
information from real users, since this requires them to either download a
specific game or to take part in play-test sessions and both option discourage
participation.

The aim of this thesis is to solve this problem and to attempt a novel
approach to map analysis and game element placement. The former was
addressed by designing an open-source framework capable of generating and
importing single-level and multi-level maps and of deploying online experi-
ments to collect data from real users via a browser-playable FPS game. The
latter, instead, was achieved by using Graph Theory to compute topological
metrics from multiple graph representation of the maps, each one highlight-
ing different features, and by using the information provided by these metrics
to strategically place game elements, paying attention to the gameplay dy-
namics associated with each one of them.

1.2 Synopsis

The contents of the thesis are the followings:

In the second chapter we describe the state of the art of First Person
Shooters, both in academic research and in commercial games, paying at-
tention on how level design practices and procedural content generation are
applied in this genre. We also list some examples of how Graph Theory is
employed in video games.

In the third chapter we present the framework that we have developed,
analyzing its features and its overall structure.

2

1.2. Synopsis

In the fourth chapter we present an approach that uses Graph Theory
to place game elements in procedurally generated levels, with an overview of
the theory and the assumptions behind it.

In the fifth chapter we describe an experiment performed with our frame-
work for validating the heuristics that we have defined for the placement of
spawn points.

In the concluding chapter we evaluate the obtained results and we analyze
the potential future developments of this work.

3

Chapter 2

State of the art

In this chapter we analyze the current state of Level Design and of its common
practices, both in academic and in professional environments, with attention
to the genre of First Person Shooters (or FPS).

We then talk about Procedural Content Generation (or PCG), focusing
on how it allows to enrich and ease the design process.

After that, we give an overview of the First Person Shooter genre, ana-
lyzing its features, history and evolution, devoting special attention to the
games that mostly contributed to the definition of this genre.

Finally, we analyze how Graph Theory has been in used in Video Games
during the years.

2.1 Level Design Theory

Level Design is a game development discipline focused on the creation of
video game levels.

Today, the level designer is a well-defined and fundamental figure in the
development of a game, but it was not always so. In the early days of the
video game industry, it was a widespread practice to assign the development
of levels to members of the team with other roles, usually programmers.
Apart from the limited number of team members and the low budget, this
was because there were no tools such as level editors1, that allowed the level
designer to work on a level without being involved with code.

The level designer has a really significant role in the development of a
good game, since he is responsible for the creation of the world and for how
the player interacts with it. The level designer takes an idea and makes it

1A level editor is a software used to design levels, maps and virtual worlds for a video
game.

5

Chapter 2. State of the art

tangible. Despite the importance of this process, after all this years it has
not been established a common ground or a set of standards and level design
is still considered as a form of art, based on heuristics, observation, previous
solutions and personal sensibility.

In addition to gameplay, the game designer must consider the visual ap-
pearance of the level and the technological limitations of the game engine2,
combining all this elements in a harmonic way.

One of the core components of level design is the “level flow”. For single
player games it translates into the series of actions and movements that the
player needs to perform to complete a level. A proficient level design practice
is to guide the player in a transparent way, by directing his attention towards
the path he needs to follow. This can be achieved in diverse ways. Power
ups and items can be used as breadcrumbs to suggest the right direction in a
one-way fashion, since they disappear once picked up. Lighting, illumination
and distinctly colored objects are another common approach to this problem.
A brilliant example of this is Mirror’s Edge3, which uses a really clear color
code, with red interactive objects in an otherwise white world, to guide the
player through its fast-paced levels. There are also even more inventive
solutions, like the dynamic flock of birds in Half Life 2 4, used to catch the
player attention or to warn him of incoming dangers[3]. Finally, sounds and
architectures are other elements that can be used to guide the player. In the
academic environment, a lot of researchers have analyzed the effectiveness
of this kind of solutions: Alotto[4] considers how architecture influences the
decisions of the player, whereas Hoeg[5] also considers the effect of sounds,
objects and illumination, with the last being the focus of Brownmiller’s[6]
work.

In multiplayer games the level flow is defined by how the players interact
with each other and with the environment. Because of this, the control of the
level designer is less direct and is exercised almost exclusively by modeling
the map. Considering FPS, the level flow changes depending on how much an
area is attractive for a player. The more an area is easy to navigate or offers
tactical advantage, such as covers, resources or high ground, the more players
will be comfortable moving in it. This doesn’t mean that all areas need to
be designed like this, since zones with a “bad” flow but an attractive reward,
such as a powerful weapon, force the player to evaluate risks and benefits,
making the gameplay more engaging. The conformation of the map and the
positioning of interesting resources are used to obtain what Güttler et al.[7]

2A game engine is a software framework designed for the creation and development of
video games.

3Digital Illusions CE, 2008.
4Valve, 2004.

6

2.2. Procedural Content Generation

define as “points of collisions”, i.e. zones of the map were the majority of
the fights are bound to happen.

Moving back to academic research, Güttler et al. have also noticed how
aesthetic design loses importance in a multiplayer context. Other researches
are instead focused on finding patterns in the design of multiplayer maps:
Larsen[8] analyzes three really different multiplayer games, Unreal Tourna-
ment 2004 5, Day of Defeat: Source6 and Battlefield 1942 7, identifying shared
patterns and measuring their effect on gameplay, suggesting some guidelines
on how to use them, whereas Hullet and Whitehead identify some patterns
for single player games[9], many of whom are compatible with a multiplayer
setting, with Hullett also proving cause-effect relationships for some of this
patterns by confronting hypothesized results with the ones observed on a
sample of real players[10]. Despite these experimental results contributing
to a formalization of level design, we are still far from a structured scientific
approach to the subject.

2.2 Procedural Content Generation

Procedural Content Generation refers to a family of algorithms used to cre-
ate data and content in an automatic fashion. In game development it is
commonly used to generate weapons, objects, maps and levels, but it is also
employed for producing textures, models, animations, music and dialogues.

The first popular game to use this technique was Rogue8, an ASCII dun-
geon exploration game released in 1980, where the rooms, hallways, monsters,
and treasures the player was going to find were generated in a pseudo-random
fashion at each playthrough. Besides providing a huge replay value to a game,
PCG allowed to overcome the strict memory limitations of the early comput-
ers. Many games used pseudo-random generators with predefined seed values
to create very large game worlds that appeared to be premade. For instance,
the space exploration and trading game Elite9 contained only eight galaxies,
each one with 256 solar systems, of the possible 282 trillion the code was able
to generate, since the publisher was afraid that such an high number could
cause disbelief in the players. Another example is the open world action
role-playing game The Elder Scrolls II: Daggerfall10, which game world has

5Epic Games, 2004.
6Valve, 2005.
7DICE, 2002.
8Michael Toy, Glenn Wichman, 1980.
9David Braben, Ian Bell, 1984.
10Bethesda Softworks, 1996.

7

Chapter 2. State of the art

the same size of Great Britain.
As computer hardware advanced and the size of the memory increased,

procedural generation of game worlds was generally put aside, since it could
not compete with the level of detail that hand-crafted worlds were able to
achieve.

However, in the last years, with the players’ expectations and the pro-
duction value of video games constantly increasing, procedural generation
made a comeback as a way to automate the development process and reduce
costs. Many middleware tools, such as SpeedTree11 and World Machine12, are
used to produce various kind of content, like terrain and natural or artificial
environments.

Many modern AAA13 games use procedural generation: in Borderlands14

a procedural algorithm is responsible for the generation of guns and other
pieces of equipment, with over a million unique combinations; in Left 4
Dead15 an artificial intelligence is used to constantly make the players feel
under threat, by dynamically changing the music, spawning waves of ene-
mies and changing the accessible paths of the level; in Spore16 procedural
animation is employed to determine how the creatures created by the player
move.

Nowadays, PCG is widely used by independent developers, that, lacking
the high budgets of AAA games, try to obtain engaging and unusual game-
play using unconventional means. The most famous example is Minecraft17,
a sandbox survival game which worlds, composed exclusively by cubes, are
generated automatically. Currently, the most extreme form of procedural
generation is the one found in No Man’s Sky18, a space exploration game
where space stations, star-ships, planets, trees, resources, buildings, animals,
weapons and even missions are generated procedurally. Following in the foot-
step of their forefather, many roguelike games still use PCG, like The Binding
of Isaac19.

All the algorithms used by these games and middleware are designed to
be as fast as possible, since they need to generate the content in real time. In
the last years researchers have nevertheless tried to explore new paradigms,

11IDV, Inc.
12World Machine Software, LLC.
13Video games produced and distributed by a major publisher, typically having high de-

velopment and marketing budgets.
14Gearbox Software, 2009.
15Valve, 2008.
16Maxis, 2008.
17Mojang, 2011.
18Hello Games, 2016.
19Edmund McMillen, 2011.

8

2.3. Procedural Content Generation for FPS maps

creating more complex procedural generation techniques, that allow for a
tighter control on the output. Being one of the problems of PCG the lack
of an assured minimum quality on the produced content, the academic en-
vironment has focused not only on more advanced generation algorithms,
but also on techniques to evaluate the output itself in an automatic fash-
ion. In this field, Togelius et al.[11] defined Search-Based Procedural Content
Generation, a particular kind of Generate-And-Test20 algorithm, where the
generated content, instead of being just accepted or discarded, is evaluated
assigning a suitability score obtained from a fitness function, used to select
the best candidates for the next iterations.

2.3 Procedural Content Generation for FPS

maps

We have really few examples of commercial FPS that use PCG to generate
their maps: with the exception of Soldier of Fortune II: Double Helix 21, that
employs these techniques to generate whole missions, the few other cases we
have are all roguelikes with a FPS gameplay, like STRAFE 22.

Despite the total lack of FPS using procedural generation to obtain mul-
tiplayer maps, researchers have proved that search-based procedural content
generation can be an useful tool in this field. In a seminal work, Cardamone
et al.[12] tried to understand which kind of deathmatch23 maps created the
most enjoyable gameplay possible. To achieve this, the authors generated
maps for Cube 2: Sauerbraten24 by maximizing a fitness function computed
on fight time data collected from simulations25, with the fight time being the
time between the start of a fight and the death of one of the two contenders.
The choice of this fitness function is based on the consideration that a long
fight is correlated with the presence of interesting features in the map, such
as escape or flanking routes, hideouts and well positioned resources.

20Algorithms with both a generation and an evaluation component, that depending on
some criterion, decide to keep the current result or to generate a new one.

21Raven Software, 2002.
22Pixel Titans, 2017.
23A widely used multiplayer game mode where the goal of each player is to kill as many

other players as possible until a certain end condition is reached, commonly being a kill
limit or a time limit.

24Wouter van Oortmerssen, 2004
25In the field of search-based procedural generation, fitness function based on simulation

are computed on the data collected from a match between artificial agents in the map
at issue. They differ from direct and interactive functions, that evaluate, respectively,
the generated content and the interaction with a real player.

9

Chapter 2. State of the art

Stucchi et al.[13], yet remaining in the same field, attempted a completely
different use of procedural generation, by producing balanced maps for player
with different weapons or different levels of skill. For doing so, they generated
procedural maps via evolutionary algorithms, evaluating them with a fitness
function based on simulation that computes the entropy of kills. Starting
from a situation where one of the two players has a significant advantage,
they proved that changes in the map structure allow to achieve a significant
balance increase.

Arnaboldi[14] combined these two approaches, creating a framework that
automatically produces maps using a genetic process like the one of Car-
damone. In Arnaboldi’s work, however, the fitness function is way more
complex, since it considers a high number of gameplay metrics, and the AI
of the employed bots26 is closer to the one of a human player, thanks to a
series of adjustments made to the stock Cube 2 one. These improvements
significantly increase the flexibility of the framework and the overall quality
of the output, allowing to identify and analyze some recurring patterns and
their relationship with the statistics gathered during the simulations.

Ølsted et al.[1] moved the focus of their research from deathmacth to
squad game modes with specific objectives, sustaining not only that the maps
generated by Cardamone et al. are not suitable for this kind of gameplay, but
also that they do not conform to what they define as The Good Engagement
(or TGE) rules, i.e. a set of rules that a FPS should satisfy to support
and encourage interesting player choices, from which an engaging gameplay
should emerge naturally. By analyzing the Search & Destroy27 mode of games
like Counter Strike28 and Call of Duty29, they defined a process to generate
suitable maps: starting from a grid, some nodes are selected and connected
among them, the result is then optimized to satisfy the TGE rules and finally
rooms, resources, objects and spawn points are added, as can be seen in figure
2.1. Opting for an interactive approach, the fitness function used to guide
the evolution of these maps is computed on the binary appreciation feedback
expressed by real users, since the authors consider bot behavior too different
form the one of real users.

A completely different approach from the ones listed above is the one of
Anand and Wong[15], who employed search-based procedural generation to
create online, automatically and rapidly multiplayer maps for the Capture

26The artificial players of a video game.
27A multiplayer game mode where players, divided in two teams, have to eliminate the

enemy team or detonate a bomb in their base.
28Valve Software, 2000
29Infinity Ward, 2003

10

2.3. Procedural Content Generation for FPS maps

Figure 2.1: Visual representation of Ølsted et al.[1] generative process.

and Hold30 game mode, without compromising the quality of the final output.
To achieve this, they employ a genetic approach, which fitness function is
evaluated directly on the topology of the map, considering four different
factors: the connectivity between regions, the number of points of collision,
the balancing in the positioning of control points and spawn points. With
no need to simulate matches, this process can be completed in a matter
of seconds. The algorithm starts by generating three maps, that are then
evolved by mutation. To obtain the initial maps, Anand and Wong populate
a grid with random tiles, they clean it of undesired artifacts and they identify
regions within it, that are then populated with strategic points, resources,
spawn points and covers. Despite its good results, this approach heavily
relies on the validity of the selected topological metrics and, as we have seen,
it is still not clear which the good elements of a level are.

Finally, Cachia et al.[2] extended search-based procedural generation to
multi-level maps, generating the ground floor with one of the methods defined
by Cardamone and employing a random digger for the first floor. The final
result can be seen in figure 2.2. Their algorithm also positions spawn points
and resources through a topological fitness function, which entails the same
problems described for Anand and Wong’s approach.

30A multiplayer game mode where players, divided in two teams, fight for the control of
some strategic areas. The score of each team increases over time proportionally to the
number of controlled points until one of the two teams reaches a given limit, winning
the game.

11

Chapter 2. State of the art

Figure 2.2: One of the maps evolved by Cachia’s et al.[2] algorithm.

2.4 History of Level Design in FPS

First Person Shooter are a video game genre which main features are the
first-person player perspective and a weapon-based combat gameplay. Dur-
ing the years this genre has been consonantly evolving, as new elements
started to emerge from the very aggressive and fast-paced gameplay of the
first games of this kind, like Doom31. Games like Half-Life32 highlighted the
importance of the story and of the setting, games like Deus Ex 33 introduced
role-play and stealth mechanics and games like Quake III: Arena34 and Un-
real Tournament35 moved the focus from single player to multiplayer. Finally,
Modern Military Shooters introduced a slower and more realistic gameplay
and radically changed the setting from fictional conflicts to contemporary
ones.

2.4.1 Level Design evolution in FPS

The evolution of the mechanics of this genre was supported by a constant
refinement of level design and of the used tools.

31ID Software, 1993.
32Valve Software, 1998.
33Ion Storm, 2000.
34id Software, 1999.
35Epic Games, 1999.

12

2.4. History of Level Design in FPS

Before 1992: The first FPS

The origin of the FPS genre goes back to the beginning of video games
themselves. In 1973, Steve Colley developed Maze War, a simple black-and-
white multiplayer game set in a tile-based maze, where players would search
for other players’ avatars, killing them to earn points. Around the same time,
Jim Bowery created Spasim, a simple first-person space flight simulator. Both
games were never released, instead, we must wait the beginning of the 80’s to
see the first products available to the public. Heavily inspired by Colley and
Bowerey’s work, these games had almost no level design, but during the years
they started to become a little more complex, with tangled sci-fi structures
taking over mazes.

1992: Wolfenstein 3D defines a new genre

When Wolfenstein 3D36 was released in 1992, it changed the genre forever,
thanks to its fast gameplay and its light game engine, that allowed to target
an audience as wide as possible. Wolfenstein 3D took up the exploitative
approach of the period, with its levels full of items, weapons and secret
rooms. The level design was still simple, because the technical limitations
of the engine and of its tile-based37 top-down38 level editor allowed to create
only flat levels, with no real floor or ceiling and walls always placed at a right
angle.

1993 - 1995: Doom and its legacy

A year later, id Software released Doom, a milestone in the history of the
genre. The game engine of Doom was capable of many innovations: sec-
tions with floor and ceiling with variable height, elevators, non-orthogonal
walls, interactive elements, lightning, even dynamic, textures for horizon-
tal surfaces and even a simple skybox 39, all of this without losing the speed
that characterized Wolfenstein. The developers took advantage as much as
possible of the capabilities of the engine, achieving a level design way more
complex than what had been seen before. In addition, Doom was designed to
be easily modifiable by the users and featured cooperative and competitive

36id Software, 1992.
37The map consists in a grid composed by squared cells, or tiles, of equal size.
38In top-down games and editors, the game world is seen from above.
39A method of creating backgrounds that represent scenery in the distance, making the

game world look bigger than it really is.

13

Chapter 2. State of the art

multiplayer, via LAN or dial-in connections, that rapidly gathered a massive
user base.

The impact of Doom on the genre was so strong that in the following years
the market was flooded with its clones. All these games, as well as Doom,
had still some technical limits, in their engines, that were not completely
3D, in their level editors, that were still top-down and did not allow for the
design of more complex levels, and in their gameplay, that still faced limited
movements.

1996 - 2000: A constant evolution

In the next years, many games continued what Doom started, bringing con-
stant improvements to the genre. Duke Nukem 3D40 set aside the sci-fi
settings of its predecessors, switching to real locations, inspired by the ones
of Los Angeles. This was possible thanks to its 2.5D41 engine Build42, that
provided a What You See Is What You Get43 level editor. Furthermore,
Build allowed to apply scripts to certain elements of the map, resulting in a
more interactive environment.

Released in 1996, Quake44 was one of the first and most successful FPS
with a real 3D engine, that allowed an incredible jump forward in terms
of realism, level design and interactivity. Quake had also a rich multiplayer,
with a lot of maps, game modes and special features, like clans and modding.
Two years later, Unreal45 brought a new improvement in terms of realism
and level design, thanks to its engine capable of displaying huge outdoors
settings.

In those years many new sub-genres started to spawn, obtained by em-
phasizing certain features of the previous games or by borrowing mechanics
from other genres. Quake III Arena46 and Unreal Tournament47 were some
of the first and most successful multiplayer games ever released, that re-

403D Realms, 1996.
41A 2.5D engine renders a world with a two dimensional geometry in a way that looks

three-dimensional. An additional height component can be introduced, allowing to ren-
der different ceiling and floor height. This rendering technique limits the movements of
the camera only to the horizontal plane. Doom and many similar games employed this
technology.

42Developed by Ken Silverman in 1995.
43In computer science, What You See Is What You Get denotes a particular kind of editors

where there is no difference form what you see during editing and the final output.
44id Software, 1996.
45Epic Games, 1998.
46id Software, 1999.
47Epic Games, 1999.

14

2.5. Graph Theory in video games

quired a new approach to level design, completely focused on the creation
of competitive maps. Games like Deus Ex introduced tactical and RPG ele-
ments, with the possibility of reaching an objective in multiple ways, thanks
to a level design that exalted the freedom left to player. Finally, Half-Life
changed forever the approach of this genre to storytelling and to level design:
the game puts great emphasis on the story, that is narrated from the eyes
of the player, without cut-scenes, and introduces the possibility of moving
freely between areas, with no interruption. The game also set new standards
with its challenging enemy AI, capable of taking advantage of the terrain and
coordinating flanking maneuvers.

2001: The rise of console shooters

In 2001, Halo: Combat Evolved48 revolutionized the genre, introducing some
of the mechanics on which modern FPS are based, as the limited amount
of weapons that the player can carry and the regeneration of health over
time. This slower and more strategic approach to gameplay matched per-
fectly with consoles and their twin-stick-controllers, that were not suitable
for the extremely fast paced action of the past. Over time, this new approach
to gameplay overshadowed almost completely all the others, thanks to the
diffusion of consoles and to the increase of production costs, that made PC
exclusives economically disadvantageous. From the standpoint of level de-
sign, this change required to increase the complexity of the levels and the
addition of strategically placed covers.

Today: A time of stagnation

Starting from its origins, level design undergone a radical evolution, but in
the last years it has shown no significant improvements. This could be due
to the considerable risk associated with modern projects or to the lack of
suitable instruments.

2.5 Graph Theory in video games

Graph Theory has always been used in video games, usually as a useful tool
to perform pathfinding for artificial agents. These techniques revolve around
the creation of a navigation mesh, i.e. a representation of the walkable areas
of a level using non-overlapping polygons obtained by removing the shapes

48Bungie, 2001.

15

Chapter 2. State of the art

Figure 2.3: A common pathfinding process.

of obstacles from the considered surface. The result is then used to generate
a graph, selecting as nodes the vertices or the centers or the centers of edges
of the obtained polygons, depending on the kind of movement that must be
achieved. This graph can be pre-generated or computed at run-time, if the
technique is applied to dynamic environments. Finally, an algorithm like A*
is employed to find the shortest path between two points. This process can
be seen in figure 2.3

Graphs are also used in procedural generation, as an effective tool to
model landmasses and roads.

2.6 Summary

In this chapter we analyzed the current state of level design for First Person
Shooters and how this field has been explored in academic research. We
then introduced Procedural Content Generation and we observed how some
studies have proved that it is a suitable method to produce maps for FPS
games. We also took a brief look at the history of First Person Shooters,
analyzing how level design evolved over time. Finally, we depicted some of
the most common uses of Graph Theory in video games.

16

Chapter 3

Map design and generation
framework

In this chapter we describe the framework that we have developed to study
the design and generation of maps for multiplayer Firsts Person Shooters.
After a quick overview, we present the map formats that the framework
supports and we extensively analyze its structure, its components and its
features.

3.1 Description of the framework

We designed our framework with the objective of providing a valid alterna-
tive to the games currently employed in this research field. All the available
options, like Cube 2: Sauerbraten, are powerful tools to perform studies in-
volving artificial agents, but they are not suitable for user-based studies. A
data-collection campaign based on these games requires either downloading
the game or taking part in real-life play-test sessions, but these options dis-
courage potential participants because they are significantly time-consuming.
For this reason, we decided to develop a Unity1 framework that is as light as
possible, with a WebGL build weighting less than 10MB that can be played
using any browser.

Since the purpose of this tool is to be used in research, we decided to
support most map representation formats used in previous works and we
designed our framework to be as modular, expansible and configurable as
possible.

1Unity Technologies, 2005. Unity is a game development environment that includes a
game editor and a game engine. Currently, it is the most used game development tool.

17

Chapter 3. Map design and generation framework

3.2 Map representation

Maps are structured as grids of orthogonal tiles and are internally repre-
sented by matrices of characters, where each cell corresponds to a specific
tile. Depending on the character it contains, a cell can represent a wall, a
floor or an object on the floor. If a cell corresponds to a wall tile we say it
is filled, if it corresponds to a floor tile we say it is empty. The framework
supports multi-level maps, which are represented by lists of matrices, with
each matrix corresponding to a level.

The framework allows to represent maps in two more formats, that are
converted to the internal one when provided as input.

3.2.1 Text representation

The text representation allows to encode the map as a text, of which each line
corresponds to a row of the internal matrix representation and each character
corresponds to a cell. For multi-level maps, the format is the same, with the
exception of blank lines used to separate the floors, that are encoded from
the lower one to the higher one.

3.2.2 All-Black representation

Our All-Black representation is an extended version of the one defined by
Cardamone et al.[12], to which we have added the support for objects and
multi-level maps. In their work, the All-Black representation encodes the
empty areas of an otherwise filled map, consisting in square rooms and cor-
ridors of fixed width. Rooms are defined by 〈x, y, s〉 triplets, where x and
y define the coordinates of the center of the room and s defines its width.
Corridors are rectangular areas with a fixed width of 3 cells and are defined
by 〈x, y, l〉 triplets, where x and y define the point in which the corridor
starts and l defines its length. l also provides the direction of the corridor: if
l is positive the corridor extends along the x-axis, otherwise it extends along
the y-axis. With respect to this representation, we changed the encoding
of the rooms by considering x and y as the coordinates of the corner closer
to the origin; this change allows to remove any ambiguity deriving from the
position of the center of a room of even width.

For allowing the encoding of objects, we added a third kind of triplet,
〈x, y, o〉, that uses x and y to denote the coordinates of the tile that hosts
the objects and o to denote the object itself, encoded as a character. In our
representation, first we store the triplets representing the rooms, then the
triplets representing the corridors and finally the triplets representing the

18

3.2. Map representation

(a) Map represented by 〈5, 5, 9〉 〈10,
10, 7〉 〈15, 25, 3〉 | 〈5, 15, 15〉 〈11,
15, −7〉 | 〈5, 5, s〉 〈7, 7, d〉.

(b) Map represented by 〈1, 2, 5〉 〈4,
6, 8〉 | 〈5, 6, −10〉 〈10, 15, −6〉 | 〈3,
7, s〉 〈1, 1, d〉.

Figure 3.1: Two simple maps with their All-Black representation.

objects. These groups are separated by the special character “|” and can
have any number of elements, with the exception of the one denoting the
rooms, that must have at least one triplet.

We extended the All-Black representation by also including the one de-
fined by Cachia et al.[2], that allows to encode maps generated with a random
digger algorithm, i.e. an algorithm that randomly moves in a filled map emp-
tying all the cells it crosses (for more details see subsubsection 3.3.3.2). The
map is encoded by a quintuple 〈f, l, r, v, s〉, where f encodes the probabil-
ity of moving forwards, l encodes the probability of turning left, r encodes
the probability of turning right, v encodes the probability of jumping to a
visited cell and s encodes the probability of placing a flight of stairs, if in a
multi-level setting. With respect to the representation defined by Cachia et
al., we added the possibility of encoding objects, which group of triplets is
separated by the digger quintuple by the special character “|”.

Multi-level maps are represented by encoding the floors from the lower
one to the higher one using one of the two single-level All-Black formats that
we have defined. The encoding of different floors are separated using the
double special characters “||”.

Figure 3.1 shows two maps with their All-Black representation.

19

Chapter 3. Map design and generation framework

3.3 Framework structure

The framework collects data by assigning to the users matches to play. A
match is defined by the game mode and by the map type, which in turn is
defined by the map topology and by the map appearance. The map topology
defines how the map is going to be and depends on the algorithm used to
generate it, whereas the map appearance defines how the map is going to
look and depends on how the map is assembled. This implies that the map
type defines a whole array of procedurally generated maps that share the
same topology and appearance. Therefore, when referring to a match we are
considering a specific game-mode played in a procedurally generated map. If
needed, it is possible to use a pre-generated map instead of generating a new
one, by providing it as input using one of the supported formats. In this case
the map topology defines how to interpret the input, that is then displayed
considering the map appearance.

A match is defined by combining different modules, called Managers, each
of which controls a different aspect of the match.

3.3.1 The Game Manager

The Game Manager is the module responsible for the overall behavior of a
match. Each game mode consists in a different version of the Game Manager.
It leans on the Map Manager for the generation and the assembly of the
map and on the Spawn Point Manager for the spawn of entities. The Game
Manager controls the life-cycle of the match, that can be divided in the
following phases:

• Setup: all the modules are initialized.

• Generation: the Map Manager generates or imports the map and as-
sembles it.

• Ready : the Game Manager displays a countdown announcing the start
of the game.

• Play : the Game Manager handles the game while the Experiment Man-
ager logs the actions of the player, if needed. This phase continues until
an end condition is satisfied.

• Score: the Game Manager stops the game and displays the final score.

20

3.3. Framework structure

3.3.2 The Map Manager

The Map Manager controls the generation, the import and the assembly
of the map and the displacement of objects inside it. It leans on the Map
Generator for the generation, on the Map Assembler for the assembly2 and
on the Object Displacer for the displacement3, whereas it performs the import
itself. If the map is provided in input as a text file, the Map Generator is
not called, whereas it is used to perform decoding if the map is provided in
All-Black format.

The framework provides three different versions of the Map Manager.

3.3.2.1 Single-Level Map Manager

The Single-Level Map Manager is used for any kind of single level map. It
can generate maps, import them from file or decode them from All-Black
format.

3.3.2.2 Multi-Level Map Manager

The Multi-Level Map Manager is used for any kind of map that has more than
one floor. It can generate multi-level maps or import them from file, but it
cannot perform All-Black decoding. In addition to the standard modules, it
employs a Stairs Generator to position flight of stairs to connect the different
floors.

Multi-level maps are obtained by using at least one generator to produce
the desired number of floors. Since this allows to combine different kind
of generators, we were able to obtain maps similar to the ones evolved by
Cachia et al.[2] (see figure 3.2a), as well as maps with a more complex and
interesting layout than the ones obtained by previous works (see figure 3.2b).

3.3.2.3 All-Black Multi-Level Map Manager

The All-Black Multi-Level Map Manager is used to decode multi-level maps
saved in All-Black format. If no stairs are found among the objects, it em-
ploys the Stairs Generator to position them.

2With assembly we mean the operation of creating a 3D model of the map starting from
its matrix representation.

3With displacement we mean the operation of placing the 3D models of the objects in
the assembled map, according to their position defined by the Map Generator trough a
positioning algorithm.

21

Chapter 3. Map design and generation framework

(a) Multilevel map which floors have
different topologies.

(b) Multilevel map which floors share
the same topology.

Figure 3.2: Two multilevel maps.

3.3.3 The Map Generator

The Map Generator controls the generation of the map. Each version of
the Map Generator defines a different map topology depending on the used
generation algorithm and on how its parametric settings are tuned. Some
of these settings are shared by all the versions, whereas some of them are
version-specific.

The shared settings are used to define the size of the map and its encoding,
to define the objects and to impose some constraints on their positioning:

• Width: the number of rows of the matrix that represents the map.

• Height : the number of columns of the matrix that represents the map.

• ObjectToObjectDistance: the minimum number of cells that must sep-
arate two objects.

• ObjectToWallDistance: the minimum number of cells that must sepa-
rate an object and a wall.

• BorderSize: the width of the border placed all around the map once it
has been generated, expressed in number of cells.

• RoomChar : the character used to represent a clear cell where the player
can walk.

22

3.3. Framework structure

• WallChar : the character used to represent a filled cell where the player
cannot walk.

• MapObjects : a list of the objects that must be placed in the map.

The objects contained in MapObjects can represent spawn points, resources
or decoration. They have the following properties:

• ObjectChar : the character used to represent the object.

• NumObjPerMap: the number of objects of that kind that must be
placed in the map.

• PlaceAnywhere: if this value is set to true, the restriction on the dis-
tance from the walls is ignored.

• PositioningMode: the algorithm used to position the object in the map.

The framework provides three different algorithms to position the objects
inside the map:

• Rain: positions the objects selecting random cells from the ones that
are empty and satisfy the ObjectToWallDistance constraint.

• Rain Shared : positions the objects selecting random cells from the ones
that are empty and satisfy the ObjectToWallDistance constraint and
the ObjectToObjectDistance constraint on the objects that have been
placed using Rain Shared.

• Rain Distanced : positions the objects selecting random cells from the
ones that are empty and satisfy the ObjectToWallDistance constraint
and the ObjectToObjectDistance constraint on the objects with the
same ObjectChar.

All of the following versions of the Map Generator are deterministic, since
they require a seed value as input that constrains the output to a specific
map.

23

Chapter 3. Map design and generation framework

3.3.3.1 Cellular Generator

The Cellular Generator employs a parametric cellular automaton4 to gener-
ate a natural looking map.

The algorithm starts by filling some tiles of the map selected at random,
then it applies the cellular automaton for a certain number of generations
and finally it performs some refinements (for more details, see algorithm 1).
The resulting topology depends on the following parameters:

• RandomFillPercent : the percentage of tiles that are randomly filled
during the initialization of the algorithm. High values promote narrow
spaces, small values promote wide areas.

• SmoothingInteration: the number of generations the cellular automaton
is ran for. High values penalize small features and make the walls
smoother.

• NeighbourTileLimitLow : the maximum number of neighbors a cell must
have to became empty. Its value must be lesser or equal than the one
of NeighbourTileLimitHigh. The map becomes noisier the more they
diverge.

• NeighbourTileLimitHigh: the minimum number of neighbors a cell
must have to became filled.

• WallThresholdSize: the minimum number of cells that an isolated filled
region must include to not be deleted. High values penalize small filled
regions.

• RoomThresholdSize: the minimum number of cells that an isolated
void region must include to not be deleted. High values penalize small
empty regions.

• PassageWidth: the width of a passage connecting two different areas,
expressed in number of cells.

Figure 3.3 shows how these parameters influence the topology of a map.
The Cellular Generator can perform import and export using the text

representation.

4A cellular automaton consists of a grid of cells, each in one of a finite number of states,
such as on and off. For each cell, a set of cells called its neighborhood is defined, usually
composed by the ones that share at least one vertex with it (referred as 8-neighbors).
Given the current state of the grid, a new generation is created, according to some fixed
rule that determines the new state of each cell depending on the current state of the cell
and of its neighbors.

24

3.3. Framework structure

3.3.3.2 Divisive Generator

The Divisive Generator employs a binary space partitioning algorithm to
generate a man-made looking map.

The algorithm starts by obtaining partitions of the map by recursively
dividing it in two sides of random size along one of the axes, then it selects
some of these partitions as rooms and finally it connects them with corridors
(for more details, see algorithm 2). The resulting topology depends on the
following parameters:

• RoomDivideProbability : probability of a partition being divided again.
High values promote small rooms.

• MapRoomPercentage: minimum percentage of tiles of the map that
must be empty. High values promote close rooms separated by walls,
low values promote distant rooms connected by corridors.

• DivideLowerBound : minimum division point expressed as percentage
of the dimension of the room.

• DivideUpperBound : maximum division point expressed as percentage
of the dimension of the room.

• MinimumRoomDimension: minimum width expressed in number of
cells that a partition must have to be divided again. High values pro-
mote large rooms.

• MinimumDepth: the minimum number of recursive divisions that each
partition must have experienced.

• PassageWidth: the width expressed in number of cells of the corridors
connecting the rooms.

• MaxRandomPassages : the number of additional corridors to place, if
possible, once that all the rooms are connected.

Figure 3.4 shows how these parameters influence the topology of a map.

The Divisive Generator can perform both import and export using the
text representation, whereas the All-Black format is used only for export.
The latter matches perfectly with this generator, since both are based on the
concept of rooms and corridors.

25

Chapter 3. Map design and generation framework

3.3.3.3 Digger Generator

The Digger Generator employs a simple algorithm to generate a man-made
looking map.

The algorithm is iterative and its state is defined by the current cell
and by the current direction, that together with a randomly selected action
determine the next cell that the algorithm is going to visit. Starting from the
central cell of a filled map, at each iteration the algorithm empties the current
cell and randomly decides if moving forward, turning left, turning right,
jumping to a random visited cell or placing a flight of stairs, if controlled
by a Multi-Level Generator. The algorithm stops when a certain percentage
of cells has been emptied. The resulting topology depends on the following
parameters:

• ForwardProbability : probability of moving forward in the next itera-
tion. High values promote long corridors.

• LeftProbability : probability of moving leftward in the next iteration.
High values promote wide areas.

• RightProbability : probability of moving rightward in the next iteration.
High values promote wide areas.

• VisitedProbability : probability of jumping to a visited cell in the next
iteration. High values promote a more complex topology.

• StairProbability : probability of placing a flight of stairs.

• RoomPercentage: percentage of tiles of the map that must be empty.

Figure 3.5 shows how these parameters influence the topology of a map.
The Digger Generator can perform both import and export using the text

representation, whereas its own All-Black format is used only for import.

3.3.3.4 All-Black Generator

This simple generator parses inputs expressed in All-Black format, extracting
rooms and corridors. If no objects are specified, it adds them to the map.

3.3.4 The Stairs Generator

The Stairs Generator places stairs in the map after having analyzed it to
find possible positions, but if stairs have already been placed by the Map
Generator (this happens with the Digger Generator), it just validates them.

26

3.3. Framework structure

Algorithm 1: Cellular generation algorithm.

for every cell in the map do
empty the current cell;

end
while percentage of filled cells < RandomFillPercent do

select a random cell;
fill the selected cell;

end
for generation from 0 to SmoothingIterations do

for every cell in the map do
count the 8-neighbors of the cell;
if 8-neighbors count > NeighbourTileLimitLow then

mark the current cell as filled for the next generation;
end
if 8-neighbors count < NeighbourTileLimitHigh then

mark the current cell as empty for the next generation;
end

end
update the map to the next generation;

end
for every isolated region of empty cells do

if #cells in the region < RoomThresholdSize then
fill all the cells in the region;

end

end
for every isolated region of filled cells do

if #cells in the region < WallThresholdSize then
empty all the cells in the region;

end

end
connect all the regions composed by empty cells;
place the objects;

This algorithm is a modified version of the one proposed by Sebastian Lague[16].

27

Chapter 3. Map design and generation framework

(a) Cellular map gener-
ated with the default set-
tings.

(b) Cellular map gener-
ated with RandomFill-
Percent = 40%.

(c) Cellular map gener-
ated with RandomFill-
Percent = 50%.

(d) Cellular map gener-
ated with SmoothingIt-
erations = 0.

(e) Cellular map gener-
ated with SmoothingIt-
erations = 3.

(f) Cellular map gener-
ated with WallThresh-
oldSize = 5.

Figure 3.3: Six maps generated by the Cellular Generator using “ANotSo-
RandomSeed” as seed, but different settings. By default, the Cellular Gener-
ator has RandomFillPercent set to 45%, SmoothingIterations set to 2, Neigh-
bourTileLimitHigh set to 4, NeighbourTileLimitLow set to 4, WallThreshold-
Size set to 40 and RoomThresholdSize set to 100.

28

3.3. Framework structure

Algorithm 2: Divisive generation algorithm.

for every cell in the map do
fill the current cell;

end
initialize the partitions list;
DivideRoom(map, 0);
while percentage of empty tiles < MapRoomPercentage do

extract a partition from the partitions list at random;
make the partition a room;
empty the tiles in the room;

end
connect the rooms;
while all the rooms are not directly connected and #placed
additional corridors < MaxRandomPassages do

add an additional corridor between two rooms selected at
random;

end
place the objects;

Function DivideRoom(section, depth) is
if (true with probability roomDivideProbability and partition
width > minimumDividableRoomDimension and partition
heigth > minimumDividableRoomDimension) or depth <
minimumDepth then

if previous division was horizontal then
perform a random vertical division between
divideLowerBound and divideUpperBound ;

else
perform a random horizontal division between
divideLowerBound and divideUpperBound ;

end
DivdeRoom(first sub-section, depth + 1);
DivdeRoom(second sub-section, depth + 1);

else
add the partition to the partitions list;

end

end

29

Chapter 3. Map design and generation framework

(a) Divisive map gener-
ated with the default set-
tings.

(b) Divisive map gener-
ated with RoomDivide-
Probability = 20%.

(c) Divisive map gen-
erated with Minimum-
Depth = 1.

(d) Divisive map gen-
erated with Minimum-
Depth = 8.

(e) Divisive map gen-
erated with Minimum-
RoomDimension = 1.

(f) Divisive map gen-
erated with Minimum-
RoomDimension = 7.

Figure 3.4: Six maps generated by the Divisive Generator using “AModer-
atelyRandomSeed” as seed, but different settings. By default, the Cellular
Generator has RoomDivideProbability set to 80%, MapRoomPercentage set
to 90%, DivideLowerBound set to 10%, DivideUpperBound set to 90%, Min-
imumRoomDimension set to 3, MinimumDepth set to 4, PassageWidth set
to 3 and MaxRandomPassages set to 12.

30

3.3. Framework structure

(a) Digger map generated with the de-
fault settings.

(b) Digger map generated with Room-
Percentage = 20%.

(c) Digger map generated with For-
wardProbability = 60%, RightProba-
bility = 19% and LeftwardProbabili-
ty = 19%.

(d) Digger map generated with For-
wardProbability = 96%, RightProba-
bility = 1% and LeftwardProbabili-
ty = 1%.

Figure 3.5: Four maps generated by the Digger Generator using “AFairlyRan-
domSeed” as seed, but different settings. By default, the Digger Generator
has ForwardProbability set to 90%, LeftProbability set to 4%, RightProbabil-
ity set to 4%, VisitedProbability set to 2%, StairProbability set to 0% and
RoomPercentage set to 50%.

31

Chapter 3. Map design and generation framework

3.3.5 The Map Assembler

The Map Assembler controls the assembly of the map. Each version of the
Map Assembler corresponds to a different map appearance.

3.3.5.1 Mesh Assembler

The Mesh Assembler produces a 3D model of the map using an implemen-
tation of the marching squares algorithm5 to generate three meshes: one for
the floor, one for the walls and one for the ceiling. As it can be seen in figure
3.7a, the result is a natural-looking environment.

3.3.5.2 Prefab Assembler

The Prefab Assembler produces a 3D model of the map by associating to
each tile a specific 3D model, or prefab, depending on the value of the tile
and of its 8-neighbors (see figure 3.6). Figure 3.7c shows a map assembled
with this algorithm.

3.3.5.3 Multi-Level Prefab Assembler

Like the Prefab Assembler, the Multi-Level Prefab Assembler produces a 3D
model of the map by combining prefabs, but it employs additional logic to
manage the overlap of multiple floors. Figure 3.7d shows a map assembled
with this algorithm.

3.3.6 The Spawn Point Manager

The Spawn Point Manager contains a list of all the spawn points displaced
in the map, that is populated at the end of the generation phase by the
Game Manager. When the Game Manager needs to spawn an entity, the
Spawn Point Manager provides a random spawn point from the ones that
have not been used in a certain amount of time. If no spawn point meets
this condition, the extraction is performed from the complete pool.

3.3.7 The Object Displacer

The Object Displacer associates a character that represents neither a wall
or a clear cell to the corresponding object, displacing it at the coordinates
defined by its position in the map matrix. During this process, it populates

5Marching squares is a computer graphics algorithm that generates contours for a two-
dimensional scalar field, i.e. a rectangular array of individual numerical values.

32

3.3. Framework structure

Figure 3.6: Some prefabs and the masks they are associated to. Each model
refers to the central cell of the corresponding mask. Green denotes empty
cells, red denotes filled cell, half-green and half-red denotes cells that are
ignored by the mask. The masks can be rotated to obtain all the possible
configurations.

33

Chapter 3. Map design and generation framework

(a) Map generated with the Cellu-
lar Generator and assembled with the
Mesh Assembler

(b) Map generated with the Digger
Generator and assembled with the
Mesh Assembler

(c) Map generated with the Divisive
Generator and assembled with the Pre-
fab Assembler

(d) Multi-level map assembled with the
Prefab Assembler

Figure 3.7: Some possible combinations of generators and assemblers.

34

3.3. Framework structure

a dictionary containing all the objects in the map divided by category, that
is used by the Game Manager to populate the list of spawn points used by
the Spawn Point Manager.

3.3.8 The Experiment Manager

The Experiment Manager is a stand alone module that allows to create and
manage the experiments used to perform user-based validation. Once that an
experiment has been defined, the Experiment Manager automatically assigns
to the users the matches to play and collects the desired information.

Experiment definition

An experiment is defined by a tutorial, a list of studies and a survey.
The tutorial is optional and consists in a match with a simple objective

used to explain the commands to the user.
The studies are not optional and each one of them consists in a list of

cases. Each case contains a pool of maps and a single game mode, that is
used to play the maps in the pool. The maps in the pool are the object of
validation, whereas the game mode is the employed validation method.

The survey is optional and consists in a list of multiple-choice questions
that are presented to the player at the end of the experiment.

All these elements can be easily customized, as well as the number of
test cases that an user has to play in a single experiment session, defined
by the parameter CasesPerUsers. The Experiment Manager also allows to
diagonally flip the maps, which is an useful method to avoid the rise of a bias
due to memorization when the player is presented with different versions of
the same map.

Experiment management

Once that the experiment has been defined, it is ready to be played by the
users.

Each time that a user participates in the experiment, the Experiment
Manager selects the least played case of the least played study, in a round-
robin fashion. This allows to have equally distributed data for each study
and is possible thanks to the completion tracking provided by the Experiment
Manager itself. Then, for each case that the user is going to play, a pre-
generated map is extracted from the pool and presented to the player as a
match of the game mode specified by the case. In a complete experiment, the

35

Chapter 3. Map design and generation framework

player will consecutively play the tutorial, one ore more matches and finally
answer the survey.

The experiment can be performed offline or online. In the former, the
computed data and the experiment completion are stored locally, whereas
in the latter, they are stored on a server. If the experiment is provided via
an executable, then it is possible to configure it as offline, online or both,
with the completion that is stored on a server and the computed data that
is stored both locally and remotely. If the experiment is provided via a web
build playable via browser, the only supported configuration is the online
one.

Logging

By default, the Experiment Manager produces a complete log of each match,
saving the following information:

• MapInfo: this field contains general information about the map fea-
tured in the match, as its name, its dimension, the size of its tiles and
if it has been flipped.

• GameInfo: this field contains general information about the match, as
the experiment name, the game mode and the duration.

• SpawnLogs : this field contains a list of all the spawn events. Each entry
contains a timestamp, the coordinates of the spawn point and the name
of the spawned entity.

• PositionLogs : this field contains a discretized list of the positions occu-
pied by the player during the match, acquired with a given frequency.
Each entry contains a timestamp, the coordinates of the player and the
direction he is facing expressed in degrees.

• ShotLogs : this field contains a list of all the shots fired by the player.
Each entry contains the same fields of the PositionLogs, plus the iden-
tifier of the firing weapon, the number of projectiles in its magazine
and its total available ammunition.

• ReloadLogs : this field contains a list of all the reloadings performed
by the player. Each entry contains a timestamp, the identifier of the
weapon that is being reloaded, the number of projectiles in its magazine
and its total available ammunition, both before the reloading.

36

3.4. Entities

• HitLogs : this field contains a list of all the shots that hitted an entity.
Each entry contains a timestamp, the coordinates of the hitted entity,
the name of the hitted entity, the name of the hitter entity and the
caused damage.

• KillLogs : this field contains a list of all the killings. Each entry contains
a timestamp, the coordinates of the killed entity, the name of the killed
entity and the name of the killer entity.

It is possible to customize the Experiment Manager to have it compute
and save specific metrics in a different log. Moreover, if the experiment
includes a survey, the answers of the user are saved in a dedicated log.

Data retrieval

The framework provides a simple interface for downloading the logs stored
on the server. Since it is possible to set a limit on the dimension of logs
which causes them to be split in multiple parts, the framework automatically
performs merging and signals incomplete logs.

3.4 Entities

The entities are the agents that take part in a match. All the entities share
the following common features:

• TotalHealth: the maximum number of health points of the entity, i.e.
the quantity of damage the entity can receive before being destroyed.

• Guns : the guns associated to the entity.

The framework includes three different kind of agents:

• Player : the entity that is controlled by the user. It can walk, jump,
aim, deal and receive damage and pick resources.

• Opponent : this entity is similar to the one of the Player, but in the
current version of the framework it has no active logic, beside the one
that controls its health.

• Target : this simple entity rotates in place. Besides receiving damage,
it can harm the player thanks to the laser gun it can be equipped it.
Figure 3.10 shows different kind of targets.

37

Chapter 3. Map design and generation framework

Figure 3.8: Different ready-to-use target entities provided by the framework.
From the first to the third are simple targets, from the fourth to the sixth
are targets equipped with two opposing laser guns, from the seventh to the
ninth are“core” targets equipped with an increasing number of radial laser
guns. The size of each target is proportional to its TotalHealth.

3.5 Weapons

The framework allows to easily define any kind of fire arm starting from a
common parametric structure that characterizes the basic behavior of a gun
with the following variables:

• Damage: the damage inflicted by a single projectile.

• Dispersion: the aperture of the cone-shaped projectile spread expressed
in degree.

• ProjectilePerShot : the number of projectile emitted with one shot.

• InfiniteAmmo: tells if the gun has infinite ammunition.

• ChargerSize: the capacity of the gun magazine.

• MaximumAmmo: the maximum quantity of ammunition that can be
carried for a specific gun.

• ReloadTime: the amount of time needed to reload the gun.

• CooldownTime: the amount of time needed after a shot to fire again.

• AimEnabled : tells if the gun allows the player to aim.

• Zoom: the zoom provided by the scope when aiming.

This parametric approach allows to use the framework as a tool for user-
based validation of procedurally generated weapons, that is another research
field that has been explored in recent years [17].

The framework comes with three different categories of weapons already
implemented.

38

3.5. Weapons

Raycast guns

Raycast guns are weapons which projectiles have no time of flight, but in-
stantly hit the target once shot. The only additional parameter that this
category introduces is Range, which can be used to limit the reach of the
weapon.

There are three weapons of this category that the player can use:

• Assault Rifle: a medium range weapon with a high fire rate, a capa-
cious magazine and no dispersion which shots single medium damage
projectiles. Figure 3.9a shows its model and table 3.1 shows its param-
eters.

• Shotgun: a short range weapon with a slow fire rate, a small maga-
zine and high dispersion which shots multiple low damage projectiles.
Figure 3.9b shows its model and table 3.1 shows its parameters.

• Sniper Rifle: a long range weapon with a slow fire rate, a small mag-
azine and no dispersion which shots single high damage projectiles. It
is equipped with a scope. Figure 3.9d shows its model and table 3.1
shows its parameters.

Projectile guns

Projectile guns are weapons that shoot projectiles with a limited flight speed.
This category introduces two additional parameters:

• ProjectileLifetime: if the projectile does not hit anything after this
amount of time, it is destroyed.

• ProjectileSpeed : the speed of the projectile.

The only weapon of this category that the player can use is the Rocket
Launcher, a long range weapon with a slow fire rate, a small magazine and no
dispersion which shots explosive projectiles. The projectiles of this weapon
are slow and explode on impact, dealing an high damage that decreases
radially from the center of the explosion. Figure 3.9c shows its model and
table 3.1 shows its parameters.

39

Chapter 3. Map design and generation framework

(a) The Assault Rifle. (b) The Shotgun.

(c) The Rocket Launcher. (d) The Sniper Rifle.

Figure 3.9: The weapons that the player can use.

Assault
Rifle

Shotgun Rocket
Launcher

Sniper
Rifle

Damage 15 20 120 75

Dispersion 0 7.5 0 0

ProjectilesPerShot 1 5 1 1

InfiniteAmmo false false false false

ChargerSize 32 3 2 5

MaximumAmmo 120 24 16 30

ReloadTime 1 1 1 1

CooldownTime 0.1 0.75 0.75 0.5

AimEnabled false false false true

Zoom 1 1 1 3

LimitRange false true - false

Range - 100 - -

ProjectileLifeTime - - 10 -

ProjectileSpeed - - 50 -

Table 3.1: Parametric configuration of the four weapons available to the
player.

40

3.6. Objects

Laser guns

Laser guns are not based on the same structure of the previous categories.
Laser guns emit a continuous ray that deals damage over time to everything
it touches. Their only configurable parameter is DPS (damage per second),
i.e. the damage that the gun deals in a second when continuously hitting a
target.

3.6 Objects

Beyond decorations, that are simple 3D models with no logic used to graph-
ically enrich the map, the framework provides spawners, i.e. objects that
spawn a resource that can be collected by the entities. Once that the resource
is collected, it disappears for an interval of time defined by the parameter
Cooldown. The framework comes with two different spawners :

• Health pack Spawner : it spawns health packs, that partially restore
the health of the entity. The healed amount of health is defined by
RestoredHealth.

• Ammunition Spawner : it spawns ammunition crates, that supply the
entity with ammunition. SuppliedGuns defines which guns the crates
can supply, whereas AmmoAmounts defines how many ammunition are
provided to the entity for each supplied weapon.

3.7 Game modes

The framework comes with three different game modes, that have been de-
signed to highlight specific aspects of a multiplayer FPS. Each game mode
is defined by a different version of the Game Manager.

3.7.1 Duel

The Duel game mode is a classic deathmatch redistricted to two entities,
with one of the two being the player. Each time that an entity eliminates
the other one, it scores one point, whereas it loses one if it destroys itself
by accident. When an entity has been eliminated, it respawns6 at a random

6In video games, respawn denotes the reappearing in a specific location, called spawn point,
of an entity which has been eliminated.

41

Chapter 3. Map design and generation framework

Figure 3.10: Targets equipped with laser guns in the final wave of a Target
Rush match.

spawn point. At the end of the match, which is marked by a time limit, the
winner is the contender who has scored the highest number of points.

Of the game modes that the framework provides, this one is the most
complete, because it contains all the dynamics that characterize a multiplayer
FPS match, and the most important, since it is the one that is usually used
to perform validation in this research field.

3.7.2 Target Rush

In the Target Rush game mode the player faces increasingly difficult waves
of enemies, trying to obtain a score as high as possible before the end of the
game, that is triggered by the player death or by the countdown hitting zero.
The player earns points and additional time when he destroys an enemy or he
completes a wave. The number of waves is parametric, as well as the content
of each one. By default, this mode has twenty waves and uses targets as
enemies, that start as harmless but became more and more numerous and
dangerous with each wave (see figure 3.10).

This game mode has been designed to force the player to explore the map,
through the research of enemies, health packs and ammunition, that quickly
become indispensable as the match progresses.

42

3.8. Summary

3.7.3 Target Hunt

In the Target Hunt game mode the player needs to find and eliminate a series
of enemies in a given amount of time. The enemies that the player is going
to face are stored in a parametric list that is read circularly and are spawned
one at a time, as soon as the previous one has been eliminated. To each
enemy is assigned a score.

This game mode has been designed to force the player to search a specific
objective in the map.

3.8 Summary

In this chapter we analyzed the framework that we have developed to per-
form user-based validation, focusing on its structure, its components and its
parametric nature.

43

Chapter 4

Graph-based map analysis

In this chapter we describe the approach that we have developed to perform
analysis and populating of pre-generated maps using Graph Theory. After a
quick overview, we introduce the analysis capabilities of this approach and
then we present how we employed it to strategically place game elements in
pre-generated maps.

4.1 Overview

Our approach consists of generating different kind of graphs, starting from
the text and the All-Black representation of a map, that are used to perform
various analysis and manipulation operations.

The use of All-Black format is convenient, because it provides by default
a logical division of the map in different areas and it allows our approach to
be applied by other researchers, since as we have seen the All-Black format
is widely used in the literature. In this thesis we focused on positioning
objects in pre-generated maps, but, for instance, the same approach could
be used to address the identification and definition of design patterns from
an unfamiliar perspective or for direct evaluation in Search Based PCG.

4.2 Analysis of the map

The analysis is performed by generating different kind of undirected graphs,
each one used to highlight a different feature of the map in question, using a
Python tool based on NetworkX 1 that we developed.

1A solid graph theory library (https://networkx.github.io/).

45

Chapter 4. Graph-based map analysis

4.2.1 Outlines graph

The outlines graph is generated starting from the All-Black representation
of a map and is obtained by associating a node to every vertex of every
room and corridor and by connecting the non-adjacent ones that belong to
the same outline. This graph has a single kind of node (vertex node) that
contains the coordinates of the tile it represents, which are used to position
the node when the graph is visualized. Figure 4.1b shows an example of this
graph. This graph can be used to visualize the rooms which compose the
map.

4.2.2 Reachability graphs

Our tool can generate various kinds of reachability graphs that represent
various ways in which it is possible to navigate the map. In these graphs a
node represents a reachable position, whereas an edge indicates a viable path
from a position to another.

4.2.2.1 Tiles graph

The tiles graph is generated starting from the text representation of a map
and is obtained by associating a node to each empty tile and by connecting
each node to its 8-neighbors. The horizontal and vertical edges have cost 1,
whereas the diagonal ones have cost

√
2. This graph has a single kind of node

(tile node) that contains the coordinates of the tile it represents, which are
used to position the node when the graph is visualized. Figure 4.1c shows an
example of this graph. This graph can be used to find the minimum distance
that separates two cells, along with the shortest path that connects them.

4.2.2.2 Rooms graph

The rooms graph is generated starting from the All-Black representation of
a map and is obtained by associating a node to each room and corridor and
by connecting nodes which corresponding rooms or corridors overlap, using
as weight the Euclidean distance of their central tile. This graph has a single
kind of node (room node), used to represent both rooms and corridors that
contains the coordinates of the closest and furthest vertex of the room from
the origin. When visualized, each node is positioned on the coordinates of
the central tile of the room it represents. Figure 4.1d shows an example of
this graph. This graph can be used to analyze the topology of a map, in
order to find loops, choke points, central areas and other kind of structures.

46

4.2. Analysis of the map

4.2.2.3 Rooms and game elements graph

The rooms and game elements graph is an extension of the rooms graph,
which also includes game elements as nodes, that are connected to the nodes
corresponding to the rooms and corridors which contain them. In addition
to the room node inherited form the rooms graph, this graph has a node
to represent game elements (element node) that contains the coordinates of
the game element, which are used to visualize the node, and the character
associated to it. Figure 4.1e shows an example of this graph.

4.2.3 Visibility graph

The visibility graph is generated starting from the text representation of
a map and is obtained by associating a node to each empty tile and by
connecting each node to all the tiles that are visible from that node. For
two tiles to be respectively visible, it must be possible to connect them with
a line without crossing any filled tile. This graph has a single kind of node
(visibility node) that contains the coordinates of the tile it represents, which
are used to position the node when the graph is visualized, and its visibility,
which is computed as the degree centrality, i.e. the number of edges incident
to that node. A tile with high visibility allows to control a wide portion of a
map, but at the same time an entity standing on it is easy to spot. To make
this graph easier to read by the user, the tool associates a color to the nodes,
which ranges from blue, for the ones with the minimum visibility, to red, for
the ones with the maximum visibility. This can be seen in figure 4.1f. This
graph can be used to analyze which areas of the map are more exposed and
which ones are more repaired.

4.2.4 Interesting metrics

Considering the graphs, in particular the ones with room nodes, the following
metrics defined by Graph Theory provide interesting information about the
layout of a map:

• Degree centrality : defined for a node, it is the number of edges that
the node has. If the node represents a room, it measures how many
entrance or exits the room has.

• Closeness centrality : defined for a node, it measures its centrality in
the graph, computed as the sum of the lengths of the shortest paths be-
tween the node and all other nodes in the graph. If the node represents
a room, it measures how central the room is.

47

Chapter 4. Graph-based map analysis

(a) The map. (b) The outlines graph of the map.

(c) The tiles graph of the map. (d) The rooms graph of the map.

(e) The rooms and game elements
graph of the map.

(f) The visibility graph of the map.

Figure 4.1: A map and all the graphs that can be generated from it.

48

4.3. Placement of game elements on the map

• Betweenness centrality : defined for a node, it measures its centrality in
the graph, computed as the number of shortest paths connecting the
nodes that pass through the node. If the node represents a room, it
measures how central the room is.

• Connectivity : defined for a graph, it is the minimum number of el-
ements (nodes or edges) that need to be removed to disconnect the
remaining nodes from each other. If the graph represents a map, it
measures the existence of isolated areas.

• Eccentricity : defined for a node, it is the maximum distance from the
node to all other nodes in the graph. If the node represents a room, it
measured how isolated the room is.

• Diameter : defined for a graph, it is the maximum eccentricity of its
nodes. If the graph represents a map, it measures the size of the map.

• Radius : defined for a graph, it is the minimum eccentricity of its nodes.
If the graph represents a map, it measures how distanced the rooms
are from each other.

• Periphery : defined for a graph, it is the set of nodes with eccentricity
equal to the diameter. If the graph represents a map, it defines its
peripheral areas.

• Center : defined for a graph, it is the set of nodes with eccentricity
equal to the radius. If the graph represents a map, it defines its central
areas.

• Density : defined for a graph, it ranges from 0 to 1, going from a graph
without edges to a complete graph. If the graph represents a map, it
measures how complex it is.

4.3 Placement of game elements on the map

We have defined multiple heuristics to populate a map with game elements
using the metrics that can be extracted from a graph. These heuristic are a
mathematical transposition of rules and patterns concerning game elements
placement that we have extracted from the work of Tim Schäfer[18], who has
performed an in depth analysis of multiplayer 1vs1 maps for Quake 2 2.

2Id Software, 1997

49

Chapter 4. Graph-based map analysis

4.3.1 Rules for the placement of game elements

The balance of a deathmatch game radically changes each time that a player
is killed. If the game has more than two players, the player who won the fight
does not gain any strategic advantage, since he still has the other players to
face, whereas the defeated player is put at considerable disadvantage, because
on death he loses all the weapons and ammunition that he has collected. In
a 1vs1 match, a kill has an even stronger influence, since the surviving player
has more weapons and ammunition and gains the complete control of the
map, that comes with the chance of scoring another easy kill, as soon as
the other player respawns, or of searching for additional equipment. Schäfer
refers to the surviving player as up-player and to the defeated one as down-
player.

To design a multiplayer map that is interesting and fun to play, it is im-
portant to consider the up-player vs down-player dynamic both when defining
the map layout and when positioning game elements.

The spawn points, i.e. the locations where the down-player reappears,
should be positioned in areas that are of low interest for the up-player and
that are easy to leave. Obviously, central hubs and dead ends are a bad
choice, whereas rooms with 2 or 3 exits are usually the best option.

For what concerns the resources, they must be placed considering both
the up-player vs down-player dynamic and the characteristics of the resource
itself. It is important to place the right amount of resources on the map,
because too many would eliminate the need for exploration, whereas too few
would disadvantage the down player. It is also important not to place too
many powerful items in the same area or in boring spots, since the risk to
obtain them should always be proportional to the strategical advantage they
allow to achieve. It is important to consider that a powerful resource is inter-
esting for both players, so it often acts as a point of collision. The resources
usually are of five kinds: health packs, armors, power-ups, ammunition and
weapons.

The health packs are placed in zones that are safe or not too dangerous.
They have no use for the down-player, that respawns with full health, but
they can be useful for the up-player, if he has been damaged during the fight,
whereas they always come in handy during a fight or after that one of the
contenders disengages.

Armors, which supply a second health that is consumed before the main
one, are usually placed in spots that are aimed both at the down-player and
at the up-player: objects that provide a small quantity of armor should be
easy to achieve, whereas the ones that provide full armor should be placed
in dangerous areas.

50

4.3. Placement of game elements on the map

Power-ups grant temporary advantages to the player who collects them,
like invisibility or increased damage, and are placed in locations difficult to
reach and contextual to their effect.

The position of a weapon and of its ammunition depends on the weapon
itself. We can divide the weapons in three categories: weak, medium and
strong. Weak weapons are of a certain interest for the down-player, if he
has not collected any other weapon yet, and of no interest for the up-player,
so they are placed near spawn-points or in gaps where no other weapon is
available, together with their ammunition. Medium weapons are of high
interest for the down-player, since he needs to get one of them as soon as
possible if he wants to face the up-player, so they are placed in areas that are
easy to reach and the same goes for their ammunition. Finally, the strong
weapons should be placed in areas that are strategically disadvantageous, like
dead ends or vertically dominated areas, or difficult to reach. If a weapon is
very contextual, i.e. it is useful in very few situations, it is usually placed in
an area that allows to take advantage of its features, whereas a weapon that
is strong in almost any situation is usually placed in an area where it cannot
be used optimally (e.g. a rocket launcher in a small room).

4.3.2 Placement process

Starting from these considerations, we defined a process that allows to po-
sition any kind of game element in two steps: the selection of a room and
the selection of a tile inside the room. This process can be repeated as many
time as needed, after having updated the graphs with the newly added game
element.

4.3.2.1 Room selection

The selection of a room can be heuristic-based, uniform or random.

Heuristic-based room selection This method selects rooms considering
three suitability criteria:

• Degree heuristic: defined by the function D(r), where r is a room node,
it measures how much the degree centrality of the node matches the
desired one.

• Game element closeness heuristic: defined by the functionHe(r), where
r is a room node, it measures how much the closeness of the node to
the already placed element nodes matches the desired one.

51

Chapter 4. Graph-based map analysis

Given the rooms and game elements graph of a map (Grr) and the subset
of room nodes (R ⊆ Grr), the room node which is selected is the one which
maximizes the following weighted sum of functions:

r∗ = arg max
r∈R

(wD ×D(r) + wHe ×He(r)) (4.1)

The weights wD and wHe allow to define how much each one of the two
heuristics influences the selection of a room. Both functions should be defined
to output a value in the range [0, 1], in order to have the same influence for
equal weight.

Uniform room selection This method selects rooms that are uniformly
distributed in the map. The first room is selected at random, then, given
the rooms and corridors graph (Grr), the subset of room nodes (R ⊆ Grr)
and the subset of element nodes (S ⊂ Grr), the remaining rooms are selected
with the following heuristic:

r∗ = arg max
r∈R

(min
s∈S

(dsp(r, s))) (4.2)

where dsp(n,m) denotes the length of the shortest path that connects the
two nodes n and m, found using Dijkstra’s algorithm.

Random room selection This method simply selects rooms at random.

4.3.2.2 Tile selection

The selection of a tile can be heuristic-based, uniform or random.

Heuristic-based tile selection This method selects tiles considering three
suitability criteria:

• Visibility heuristic: defined by the function v(t), where t is a tile node,
it measures how much the visibility of the corresponding tile matches
the desired one.

• Wall closeness heuristic: defined by the function Hw(t), where t is a
tile node, it measures how much the proximity of the corresponding
tile to the walls matches the desired one.

• Game element closeness heuristic: defined by the function He(t), where
t is a tile node, it measures how much the proximity of the node with
already placed element nodes matches the desired one.

52

4.3. Placement of game elements on the map

Given Gv the visibility graph and T ⊂ Gv the subset of tiles contained
by the selected room, the tile which is selected is the one which maximizes
the following weighted sum of functions:

t∗ = arg max
t∈T

(wv × v(t) + whw × hw(t) + whe × he(t)) (4.3)

The weights wv, whw and whe allow to define how much each one of the
three heuristics influences the selection of a tile. All three functions should
be defined to output a value in the range [0, 1], in order to have the same
influence for equal weight.

Uniform tile selection This method selects tiles that are uniformly dis-
tributed in the room. If no game element has been placed, the central tile is
selected, otherwise it is picked out the one that maximizes the distance from
the already positioned game elements but is not too close to the walls.

Random tile selection This method simply selects tiles from the room
at random.

4.3.3 Heuristics for the placement of game elements

Depending on how a game element needs to be placed inside the map, we
have defined different heuristics to perform heuristic-based selection of rooms
and tiles.

4.3.3.1 Spawn points

For spawn points, the heuristic-based approaches for rooms and tiles respec-
tively select rooms that have a small number of connections, are not dead
ends and are distant from each other and tiles that offer the best balance
between low visibility and distance from the walls. In this way spawn points
are placed in passageways that are sheltered and easy to leave.

Room selection Considering equation 4.1 and given the rooms and game
elements graph of the map (Grr), the subset of room nodes (R ⊆ Grr) and
the subset of element nodes (S ⊂ Grr), the most suitable room for containing
a spawn point is selected using the following heuristics:

D(r) =

0 if deg(r) = 1

1−
deg(r)−minr′∈R deg(r′)

maxr′∈R deg(r′)−minr′∈R deg(r′)
if deg(r) 6= 1

(4.4)

53

Chapter 4. Graph-based map analysis

Figure 4.2: How the degree heuris-
tic defined for spawn points varies
depending on the room node degree,
with the degree ranging in [0, 15].

Figure 4.3: How the visibility heuris-
tic defined for spawn points varies de-
pending on the tile node degree, with
the degree ranging in [0, 15].

He(r) = min
n∈Grr

1 if n /∈ S

dsp(r, n)

diam(Grr)
if n ∈ S

(4.5)

where deg(n) denotes the connectivity degree of the node n and diam(G) the
diameter of the graph G. Equation 4.4 promotes rooms with few passages
but that are not dead ends (see figure 4.2), whereas equation 4.5 promotes
rooms that are distant from the already placed game elements. Both are
normalized in the range [0, 1]. We empirically set the weighs to wD = 1 and
wHe = 0.5.

Tile selection Considering equation 4.2 and given the visibility graph of
the map (Gv), the subset of tile nodes that belong to the room (T ⊂ Gv),
the subset of tile nodes of the room which contain a game element (H ⊂ T)
and the length of the diagonal of the room (ld), the most suitable tile for
containing a spawn point is selected using the following heuristics:

v(t) = 1−
deg(t)−mint′∈Gv deg(t′)

maxt′∈Gv deg(t′)−mint′∈Gv deg(t′)
(4.6)

hw(t) =
dwall(t, r

∗)

maxt′∈T dwall(t′, r∗)
(4.7)

54

4.3. Placement of game elements on the map

he(t) =

 0 if |H| = 0

minh∈H
d(t, h)

ld
if |H| > 0

(4.8)

where dwall(n, r) is the distance of the coordinates associated to the node n
from the walls of the room r, computed as the sum of the minimum distances
from the horizontal and vertical walls, and d(n,m) is the distance of the
coordinates associated to the nodes n and m. Equation 4.6 promotes tiles
with low visibility (see figure 4.3), equation 4.7 promotes tiles that are distant
from the walls, whereas equation 4.8 promotes tiles that are distant from the
already placed game elements inside the room. All three are normalized in
the range [0, 1]. We empirically set the weights as wv = 1, whw = 0.5 and
whe = 0.5.

4.3.3.2 Health packs

For heath packs, the heuristic-based approaches for rooms and tiles respec-
tively select rooms that have a low-medium number of connections and are
distant from each other and tiles that offer the best balance between medium
visibility and distance from the walls. In this way the heath packs are placed
in areas that are easy to reach and are not too exposed.

Room selection Considering equation 4.1 and given the rooms and cor-
ridors graph of the map (Grr), the subset of room nodes (R ⊆ Grr) and the
subset of element nodes (S ⊂ Grr), the most suitable room for containing a
health pack is selected using the following heuristic:

D(r) = 1−
fdeg(r)−minr′∈R fdeg(r

′)

maxr′∈R fdeg(r′)−minr′∈R fdeg(r′)
(4.9)

with

fdeg(r) = dint(deg(r), 0.3, 0.5) (4.10)

dint(v, vmin, vmax) =

vmin − v if v < vmin

0 if vmin ≤ v ≤ vmax

v − vmax if v > vmax

(4.11)

where dint is a function that measures the distance of a value from an interval
of desired ones (see figure 4.4). Equation 4.5 is used for He. Equation 4.9
promotes rooms with a low-medium number of passages. Both are normalized
in the range [0, 1]. We empirically set the weights as wD = 1 and wHe = 0.5.

55

Chapter 4. Graph-based map analysis

Figure 4.4: The values assumed by
dint with [0.3, 0.5] set as interval of
desired values.

Figure 4.5: How the visibility heuris-
tic defined for health packs varies de-
pending on the tile node degree, with
the degree ranging in [0, 15].

Tile selection Considering equation 4.2 and given the visibility graph of
the map Gv, the subset of tile nodes that belong to the room (T ⊂ Gv)
and the subset of tile nodes of the room which contain a game element
(H ⊂ T), the most suitable tile for containing a health pack is selected using
the following heuristic:

v(t) = 1−

∣∣∣∣∣0.5− deg(t)−mint′∈Gv deg(t′)

maxt′∈Gv deg(t′)−mint′∈Gv deg(t′)

∣∣∣∣∣ (4.12)

that promotes tiles with medium visibility (see figure 4.5). Equations 4.7
and 4.8 are used for hw(t) and he(t), respectively. All three are normalized
in the range [0, 1]. We empirically set the weighs to wv = 1, whw = 0.25 and
whe = 0.5.

4.3.3.3 Ammunition

For ammunition, the heuristic-based approaches for rooms and tiles respec-
tively select rooms that have either a low-medium or a high number of con-
nections and are distant from each other and tiles that offer the best balance
between high visibility and distance from the walls. In this way ammunition
is placed in areas that are either easy or difficult to reach and easy to spot.

Room selection Considering equation 4.1 and given the rooms and cor-
ridors graph of the map (Grr), the subset of room nodes (R ⊆ Grr) and the

56

4.3. Placement of game elements on the map

subset of element nodes (S ⊂ Grr), the most suitable room for containing
ammunition is selected using equations 4.5 and 4.9, with

fdeg(r) = dint(deg(r), 0.2, 0.4) (4.13)

for obtaining rooms with a low-medium number of connections and

fdeg(r) = dint(deg(r), 0.8, 0.9) (4.14)

for obtaining rooms with a high number of connections. We empirically set
the weighs to wD = 1 and wHe = 0.25.

Tile selection Considering equation 4.2 and given the visibility graph
(Gv), the subset of tile nodes that belong to the room (T ⊂ Gv) and the
subset of tile nodes of the room which contain a game element (H ⊂ T), the
most suitable tile for containing ammunition is selected using the following
heuristic:

v(t) =
deg(t)−mint′∈T deg(t′)

maxt′∈T deg(t′)−mint′∈T deg(t′)
(4.15)

that promotes tiles with high visibility. Equations 4.7 and 4.8 are used for
hw(t) and he(t), respectively. All three are normalized in the range [0, 1]. We
empirically set the weights as wv = 1, whw = 0.25 and whe = 0.5.

4.3.4 Weapon placement

For what concerns the weapons provided by the framework we have not
defined any specific heuristic, but, beside the assault rifle which is always
available to the player, they could be placed as follows:

• Shotgun: since it is a medium damage weapon it could be positioned
in a room that has a medium number of connections and is relatively
close to a spawn point.

• Rocket launcher : since it is a high damage weapon it could be posi-
tioned in a room that has a high number of connections, creating an
interesting collision point, or in a dead end, where its utility is limited.

• Sniper rifle: since it is a high damage weapon it could be positioned in
a room that has a high number of connections, creating an interesting
collision point.

57

Chapter 4. Graph-based map analysis

4.4 Summary

In this chapter we analyzed the approach that we have defined to perform
map analysis and placement of game elements using Graph Theory. After
an overview of the graphs and metrics that allow to highlight interesting
information about a map, we listed the rules and patterns commonly used
to position game elements in deathmatch maps and we described how we
converted them into heuristics.

58

Chapter 5

A case study: spawn points
placement

In this chapter we discuss a case study we designed to test the effectiveness
of our framework. We performed an experiment with real users to validate
the placement heuristics for spawn points and, at the same time, to test the
data-collection capabilities of our framework, that was used to setup and
manage the experiment.

5.1 Goals

We designed this experiment to analyze how our methods for the placement
of spawn points influence the up-player vs down-player dynamic and to prove
their effectiveness. We tried to recreate the situation where the up-player,
once killed his opponent, tries to find him as soon as possible, just after his
respawn, to score another easy kill. As we have seen, a well-designed map
should slow down this operation by having its spawn points in areas that
are not central, are easy to leave and covered. In this experiment we com-
pared two approaches: the uniform one, that selects rooms with the uniform
method (see subsubsection 4.3.2.1) and tiles with the heuristic defined for
spawn points, and the heuristic one, that selects both rooms and tiles with
the heuristics defined for spawn points (see subsubsection 4.3.3.1) and should
allow to obtain a placement of spawn point coherent with the one described
above. These two approaches use the same method to select tiles in order
to focus on the effects of room selection, since the ones of tile selection are
rather obvious (an object on a tile with a low visibility is difficult to find).

To highlight this gameplay dynamic, we designed a game mode where the
user, which represents the up-player, must find and destroy a static target,

59

Chapter 5. A case study: spawn points placement

which represents the down-player, as many times as possible before times
runs out. Each time that the user destroys a target, it respawns at a random
spawn point. The user cannot die and has infinite ammunition, so he does
not have to look for resources.

5.2 Experimental design

For this experiment, we setup the Experiment Manager to propose in each
play session a quick tutorial, two matches and a survey. The experiment
was composed by three studies, corresponding to three different maps, each
one composed by two cases, one corresponding to the map populated with
the heuristic approach and one corresponding to a pool of five versions of
the map populated with the uniform approach1. In a play session, the user
played the same map twice, once with the heuristic distribution and once
with the uniform distribution, in a random order and with the map flipped
in one of the two matches. We used the survey to profile each user according
to their skill and familiarity with video games and FPS and to get a feedback
about the match in which they found it harder to locate the targets. The
experiment was deployed online and played by the users via browser on their
own computers.

As game mode, we used Target Hunt, with the game duration set to three
minutes, the list of spawnable entities composed of just one target and an
assault rifle with infinite ammunition as the only weapon available to the
player. The maps were stored as text files and displayed with the Prefab
Assembler.

For each match, a complete game log was saved, along with the following
performance metrics, saved in a separate log:

• TargetLogs : this field contains a list of all the targets that the user
managed to destroy. Each entry contains a timestamp, the coordinates
of the destroyed target, the coordinates of the user, the distance covered
by the user and the time passed during the lifespan of the target.

• Shots : the total number of projectiles shot by the user.

• Hits : the number of projectiles that hit a target.

• Accuracy : the percentage of projectiles that hit a target.

• Kills : the total number of targets destroyed by the user.

1When selecting rooms with the uniform method the first one is chosen at random. This
allows to obtain multiple versions of the same map.

60

5.2. Experimental design

• Distance: the total distance covered by the user during the match, con-
sidering his complete trajectory and cells of unitary width as reference
unit.

• AvgKillTime: the average time needed for the user to find a target,
computed as the duration of the match divided by the number of kills.

• AvgKillDistance: the average distance covered by the user to find a
target, computed as Distance divided by the number of kills.

The performance of the player is measured by AvgKillTime and AvgKillDis-
tance, that are also indicators of how difficult it is to find targets in the map.
The answers to the survey were saved as well.

The three maps that we have selected for this experiment have very dif-
ferent layouts:

• Arena: this map presents a wide arena, two sides of which are adjacent
to parallel corridors with many openings. As the visibility heatmap
in figure 5.1a shows, the central arena allows to control most of the
map, whereas the corridors offer some repair and perfect spots to place
spawn points. Figure 5.1b shows the spawn points positioned using the
heuristic approach, whereas figure 5.1c shows one of the five configura-
tion produced with the uniform approach.

• Corridors : this map presents many small rooms connected by long
corridors. As it can be seen in figure 5.2a, there is no area that allows
to control the others and the only points with high visibility are the
ones where corridors intersect. Figure 5.2b shows the spawn points
positioned using the heuristic approach, whereas figure 5.2c shows one
of the five configuration produced using the uniform approach.

• Intense: compared to the previous two, this map presents an interme-
diate layout, since it has both open areas and small rooms connected
by corridors. As it can be seen in figure 5.3a, this reflects also on
the visibility, that is high in the open areas and low in the remaining
sections of the map. Figure 5.3b shows the spawn points positioned
using the heuristic approach, whereas figure 5.3c shows one of the five
configuration produced using the uniform approach.

As we have said, the heuristic and the uniform approaches select rooms
with two different criteria, but they employ the same logic when selecting
tiles. This means that the two heuristics select tiles which have similar
visibility conditions, so the player’s performance depends exclusively on how

61

Chapter 5. A case study: spawn points placement

(a) Heatmap showing
the visibility of the level.

(b) Spawn points (in
red) placed using the
heuristic approach.

(c) Spawn points (in red)
placed using the uniform
approach.

Figure 5.1: “Arena” map used in the experiment.

(a) Heatmap showing
the visibility of the level.

(b) Spawn points (in
red) placed using the
heuristic approach.

(c) Spawn points (in red)
placed using the uniform
approach.

Figure 5.2: “Corridors” map used in the experiment.

(a) Heatmap showing
the visibility of the level.

(b) Spawn points (in
red) placed using the
heuristic approach.

(c) Spawn points (in red)
placed using the uniform
approach.

Figure 5.3: “Intense” map used in the experiment.

62

5.3. Results

Total Arena Corridors Intense

Number of samples 27 10 9 8

µ(Shots)
Heuristic 104.04 114.89 101.00 94.88

Uniform 117.44 131.33 100.25 119.00

µ(Hits)
Heuristic 42.68 48.44 43.50 35.38

Uniform 50.12 54.22 44.50 51.13

µ(Accuracy)
Heuristic 0.45 0.43 0.51 0.40

Uniform 0.48 0.45 0.52 0.48

µ(Kills)
Heuristic 10.06 10.75 10.44 8.75

Uniform 11.88 12.27 10.67 12.75

µ(Distance)
Heuristic 675.22 633.56 675.43 716.68

Uniform 680.79 649.62 688.34 704.42

µ(AvgKillTime)
Heuristic 20.24 21.09 18.25 21.40

Uniform 16.06 15.50 17.46 15.18

µ(AvgKillDistance)
Heuristic 73.34 64.21 70.90 84.90

Uniform 60.70 55.24 68.13 58.72

Mo(Difficulty)
Effective heuristic heuristic uniform heuristic

Percived heuristic heuristic equal heuristic

Table 5.1: The information retrieved from the dataset. µ denotes the mean
value and Mo denotes the modal value.

the rooms have been selected. This is observable in figures 5.1, 5.2 and 5.3:
when the uniform approach happens to select a room that has been selected
also by the heuristic one, the spawn point is placed exactly on the same tile.

5.3 Results

The data collected with this experiment consisted of 27 samples. As table 5.1
shows, of these 27 samples, 10 are pairs of matches played in map “Arena”,
9 are pairs of matches played in map “Corridors” and 8 are pairs of matches
played in map “Intense”. The table also shows the values of the metrics that
we have defined classified by map and placement method.

As we have seen, the performance of the player is measured with AvgKill-
Time and AvgKillDistance and by computing their mean values we observed
that the users performed better in the matches associated to the uniform
approach with respect to the ones associated to heuristic approach. For

63

Chapter 5. A case study: spawn points placement

the former the mean value of AvgKillTime is 16.06 seconds and the one
of AvgKillDistance is 60.7 cells, whereas for the latter the mean value of
AvgKillTime is 20.24 seconds and the one of AvgKillDistance is 73.34 cells.
The respective increase of 26% and 21% on the average time and distance
needed to find a target confirms that spawn points placed with the heuristic
approach are more difficult to find than the ones placed with the uniform
approach.

To test the statistical significance of this result, we performed the Wilcoxon
statistical test2 by Pratt3, using as matched samples the values assumed by
the metric at issue when using heuristic placement and when using uniform
placement. Both AvgKillTime and AvgKillDistance passed the test, the for-
mer with α = 0.00203 < 0.005, one-tiled, and the latter with α = 0.01243 <
0.05, one-tiled.

The effect of the two approaches on the metrics can also be analyzed by
plotting their values, assigning to the horizontal axis the value of the metric
in maps with heuristic placement and to the vertical axis the value of the
metric in maps with uniform placement. Each point of such graph represents
the outcome of a test whose coordinates are the values of the metric in the
two matches. By tracing the bisector, it is easy to see for which of the two
approaches a metric is higher. If the points are scattered under the bisector it
means that the metric tends to be higher for the heuristic approach, whereas
if they are scattered above the bisector it means that the metric tends to
be higher for the uniform approach. Figure 5.4 shows such graphic for each
metric:

• Kills : as figure 5.4a shows, the number of kills tends to be higher
with the uniform placement (11.88 > 10.06, considering the mean val-
ues). This result is rather obvious, since, as we have seen analyzing
AvgKillTime and AvgKillDistance, targets are more difficult to find
with the heuristic placement. The Wilcoxon test, which is passed with
α = 0.00347 < 0.005, one-tiled, confirms this outcome.

• Distance: as figure 5.4b shows, the total distance covered by users is
not influenced by the employed placement method (680.79 ≈ 675.22,
considering the mean values). This is due to the fact that users are
constantly moving and the agility with which they navigate the map

2The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test used to
compare two matched samples to assess whether their population mean ranks differ.

3With respect to the standard Wilcoxon test, the one by Pratt considers also the obser-
vations for which the difference of the elements in the pair is zero. We opted for this
approach since some samples happen to have metrics with the same value for the two
placements.

64

5.3. Results

(a) Kills. (b) Distance.

(c) Shots. (d) Accuracy.

Figure 5.4: Experiment outcomes by metrics. The outcome associated to
the heuristic approach is on the horizontal axis, the one associated to the
uniform approach is on the vertical axis.

65

Chapter 5. A case study: spawn points placement

depends exclusively on their familiarity with FPS games and on the
layout of the map. The Wilcoxon test, which is not passed with α =
0.294 > 0.05, one-tiled, confirms this outcome.

• Shots : as figure 5.4c shows, the number of shots tends to be higher
with the uniform placement (117.44 > 104.04, considering the mean
values). This result is coherent with what we have observed for Kills,
to which Shots is expected to be directly proportional. The Wilcoxon
test, which is passed with α = 0.0336 < 0.05, one-tiled, confirms this
outcome.

• Accuracy : as figure 5.4d shows, the accuracy is not significantly in-
fluenced by the used placement method (45% ≈ 48%, considering the
mean values). This is due to the fact that the accuracy depends almost
exclusively on the aiming skills of the user. The Wilcoxon test, which
is not passed with α = 0.294 > 0.05, one-tiled, confirms this outcome.

We also observed that the effects of the placement were considerably
different depending on the layout of the map. With the heuristic placement,
map “Arena” had a mean number of kills of 10.75, map “Corridors” of 10.44
and map “Intense” of 8.75. We expected the one of “Arena” to be the highest,
because of its central area that dominates the rest of the map, but we did not
expect the ones of “Corridors” to be almost as high, since its structure is more
difficult to navigate. Moreover, we expected an intermediate number of kills
in “Intense”, since it merges the features of the two other maps, but it proved
to be the map where targets were harder to find. This could be explained by
the fact that “Corridors”, even if more complex than “Arena”, has a rather
regular structure and its long corridors allow to easily spot a target. Instead,
for what concerns “Intense”, its structure is rather complex and difficult to
navigate and since the central open area does not allow to control all of the
map the tactical advantage it provides is not so strong. With the uniform
placement the mean number of kills of “Arena” increased to 11.88, the one
of “Corridors” remained almost the same (10.67) and the one of “Intense”
increased dramatically to 12.75. The reasons for such different reactions lies
in the layout of each map. The central area of “Arena” allows to control all
of the surroundings, so the placement of spawn points in areas that are less
visible has a relevant effect. “Corridors”, instead, has a regular structure
and the number of intersections between its corridors is almost always the
same, so it is not relevant where spawn points are placed, since all the rooms
have the same features. Finally, the tangled structure of “Intense” offers to
the heuristic approach a lot of interesting spots where to place spawn points
and the presence of an area that allows a partial control of the map makes

66

5.4. Summary

this choice even more meaningful. This shows that the effects of the heuristic
approach are more pronounced in maps which layout is not uniform.

The position of spawn points also influenced the way in which users moved
across the maps. Figure 5.5 shows, for each map and for each placement
method, the heat maps of the sections that where crossed more frequently
by the users. It is possible to notice that users, once understood the topology
of the map, started to follow well defined farming routes4. These routes tend
to be circular and to skirt the perimeter of the maps, with deviations that
are influenced by the position of spawn points. The overall circularity is
remarked by the heat maps associated to the uniform positioning, that being
obtained by a set of five different uniform placements5, represent an average
route with respect to the possible position of spawn points.

It is also interesting to notice how the difficulty in finding the targets was
perceived by the users. As it can be seen in figure 5.6, in the survey the ma-
jority of the users classified as more difficult the match where they performed
worst, but some of them answered with the one where they performed better.

Finally, the intuition of flipping one of the two maps was correct, since
many users believed to have played two completely different maps.

5.4 Summary

In this chapter we analyzed the experiment that we setup and its results, that
proved the effectiveness of our heuristics and of our framework. We observed
that the heuristic placement makes the targets harder to find, whereas the to-
tal distance covered by the user and the shooting accuracy are not influenced
by the employed placement method. We also discovered that our heuristics
work better with maps that do not have an uniform topology and we ob-
served that users tend to define and follow specific routes when performing
a research.

4In video games, farming routes are regular closed paths defined to maximize the collection
of certain resources in a specific map.

5The uniform study has five cases, whereas the heuristic study has just one.

67

Chapter 5. A case study: spawn points placement

(a) Map “Arena” with heuristic
placement.

(b) Map “Arena” with uniform
placement.

(c) Map “Corridors” with
heuristic placement.

(d) Map “Corridors” with uni-
form placement.

(e) Map “Intense” with heuris-
tic placement.

(f) Map “Intense” with uniform
placement.

Figure 5.5: Heat maps of the player positions for the three maps used in the
experiment. The red circles represent spawn points.

68

5.4. Summary

Figure 5.6: Comparison between the effective and the perceived difficulty.
Each square contains the number of samples where the user performed worst
in the match with placement Effective and evaluated as more difficult the
match with placement Percived. The match where a user performed worst is
the one with the highest AvgKillTime.

69

Chapter 6

Conclusions

The purpose of this thesis was to create a framework to perform research in
Procedural Content Generation for First Person Shooters and to attempt a
new approach to level design analysis and game element placement.

Past works have employed open source games, like Cube 2, that allow to
perform validation via artificial agents but present many limitations when it
is needed to collect information from real users. There was therefore the need
of a way to collect data online, in an easy and quick way, and we answered
to it by designing a framework to deploy browser playable experiments, that
once defined collect data automatically. Being aimed at research, we wanted
our framework to be as versatile as possible, so we opted for a modular and
parametric design that is easy to customize and we included many generation
algorithms and map representation formats, both single-level and multi-level,
that have been used in previous works. We included the All Black format,
defined by Cardamone et al.[12], that is a standard in the literature, but we
extended it to be more complete and flexible, introducing variable genome
size, game elements codification and multi-level support.

We explored how Graph Theory can be applied to level design, with re-
gard to both map analysis and placement of game elements. For the former,
we defined various graphs that can be generated from the All-Black represen-
tation of a map, each one highligthing different features such as the visibility
or the reachability of tiles and rooms, and we selected some indicators from
Graph Theory that allow to obtain topological information about the map
at issue. For the latter, we defined an approach that uses heuristics to place
game elements, taking into account their specific features and the indicators
that we have selected. To define these heuristic, we analyzed how game ele-
ments influence the up-player vs down-player dynamic and how they should
be positioned to create an engaging and balanced gameplay. This new ap-
proach to the subject proved to be very interesting, since it allows to analyze

71

Chapter 6. Conclusions

level design from a new perspective and to easily define topological rules.

Finally, we tested our framework by performing an experiment to analyze
how the placement of spawn points influences the up-player vs down-player
dynamic. With this experiment we were able to validate the placement
heuristics that we have defined and we managed to observe how the map
layout influences the disposition of game elements. In this way, we proved
our graph-based approach to be useful both for map analysis and for the
contextual positioning of game elements.

6.1 Known issues and possible criticism

The main issue with the framework is that it does not have neither artificial
agents nor the support for online multiplayer and this limits its possible
applications.

For what concerns graph analysis, the rules that we have defined for plac-
ing game elements could be criticized for a lack of a strong theoretical basis,
since as we have seen there is still no common ground for what concerns level
design. Moreover, we assigned the weights used in the placement heuristics
empirically, making various attempts and choosing the weights that produced
the disposition of game elements most coherent with the rules we defined.
Despite this, the experiment proved both the rules and the weight assignment
to be effective.

6.2 Future developments

Two major features that should be implemented in the framework are an
artificial intelligence for agents and the support for online multiplayer, since
they would allow to significantly increase the possible applications of our
work. Moreover, to make the framework more complete and allow to directly
generate well designed maps, it would be a great improvement to implement
the map analysis and the game element placement directly in the framework,
instead of performing them using an external tool.

In subsection 4.2.4 we listed many metrics that can give interesting in-
formation about the layout of a map, but we have used only some of them
to define the placement heuristics. An interesting development would be to
include more of them, in particular the ones that allow to define areas of the
map, like Periphery and Center. As we have highlighted, weapons require
a specific treatment when positioned, since their overall damage, strengths
and weakness should influence their place in the map, and such metrics can

72

6.2. Future developments

be employed to define the areas that better suit each weapon. These new
heuristics, as well as the already defined ones, would benefit of an exper-
imental analysis similar to the one used to validate the heuristics for the
placement of spawn points. Another improvement would be the extension of
the analysis performed via graph to multi-level maps. Moreover, as we have
already highlighted in the thesis, the graphs we have defined could be used
for the individuation and analysis of design patterns.

Finally, it would be interesting to design an evolutionary process that
generates maps and places resources using a fitness function addressed to
the up-player vs down-player dynamic.

73

Bibliography

[1] P. T. Ølsted, B. Ma, and S. Risi, “Interactive evolution of levels for a
competitive multiplayer FPS”, in 2015 IEEE Congress on Evolutionary
Computation (CEC), May 2015, pp. 1527–1534.

[2] William Cachia, Antonios Liapis, and Georgios N. Yannakakis, “Multi-
level evolution of shooter levels”, in AIIDE, 2015.

[3] Matthew Gallant, “Guiding the player’s eye”, http://gangles.ca/

2009/05/26/guiding-the-eye/, 2009.

[4] Brandi Alotto, “How level designers affect player pathing decisions:
Player manipulation through level design”, Master’s thesis, Southern
Methodist University, 2007.

[5] Thomas Hoeg, “The invisible hand: Using level design elements to ma-
nipulate player choice”, Master’s thesis, Southern Methodist University,
Dec 2008.

[6] Joy Brownmiller, “In-game lighting and its effect on player behavior
and decision-making”, Master’s thesis, Southern Methodist University,
2012.

[7] Christian Güttler and Troels Deg Johansson, “Spatial principles of level-
design in multi-player First Person Shooters”, in Proceedings of the 2Nd
Workshop on Network and System Support for Games, New York, NY,
USA, 2003, NetGames ’03, pp. 158–170, ACM.

[8] Simon Larsen, “Level design patterns”, http://simonlundlarsen.

com/wpcontent/uploads/2015/06/Level-design-patterns.pdf/,
2006.

[9] Kenneth Hullett and Jim Whitehead, “Design patterns in FPS levels”,
in Proceedings of the Fifth International Conference on the Foundations
of Digital Games, New York, NY, USA, 2010, FDG ’10, pp. 78–85, ACM.

75

Bibliography

[10] Kenneth M. Hullett, “The science of level design: Design patterns and
analysis of player behavior in First Person Shooters levels”, 2012.

[11] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and
Cameron Browne, “Search-based procedural content generation”, in
Applications of Evolutionary Computation, Cecilia Di Chio, Stefano
Cagnoni, Carlos Cotta, Marc Ebner, Anikó Ekárt, Anna I. Esparcia-
Alcazar, Chi-Keong Goh, Juan J. Merelo, Ferrante Neri, Mike Preuß,
Julian Togelius, and Georgios N. Yannakakis, Eds., Berlin, Heidelberg,
2010, pp. 141–150, Springer Berlin Heidelberg.

[12] Luigi Cardamone, Georgios N. Yannakakis, Julian Togelius, and
Pier Luca Lanzi, “Evolving interesting maps for a First Person Shooter”,
in Proceedings of the 2011 International Conference on Applications of
Evolutionary Computation - Volume Part I, Berlin, Heidelberg, 2011,
EvoApplications’11, pp. 63–72, Springer-Verlag.

[13] P. L. Lanzi, D. Loiacono, and R. Stucchi, “Evolving maps for match
balancing in First Person Shooters”, in 2014 IEEE Conference on Com-
putational Intelligence and Games, Aug 2014, pp. 1–8.

[14] Luca Arnaboldi, “Sviluppo di un framework per la progettazione e
l’analisi di mappe per First Person Shooters”, Master’s thesis, Politec-
nico di Milano, 2015.

[15] Anand Bhojan and Hong Wei Wong, “Arena - dynamic run-time map
generation for multiplayer shooters”, in Entertainment Computing –
ICEC 2014, Yusuf Pisan, Nikitas M. Sgouros, and Tim Marsh, Eds.,
Berlin, Heidelberg, 2014, pp. 149–158, Springer Berlin Heidelberg.

[16] Sebastian Lague, “Cellular automata”, https://unity3d.com/learn/
tutorials/projects/procedural-cave-generation-tutorial/

cellular-automata/, 2015.

[17] D. Gravina and D. Loiacono, “Procedural weapons generation for Unreal
Tournament III”, in 2015 IEEE Games Entertainment Media Confer-
ence (GEM), Oct 2015, pp. 1–8.

[18] Tim Schäfer, “Designing great 1vs1 FPS maps”,
https://dfspspirit.wordpress.com/2015/03/26/

designing-great-1vs1-fps-maps-part-1/, 2015.

76

