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Sommario

Negli ultimi anni, nel vasto ambito dell’ Intelligenza Artificiale (AI), le nuove
tecniche di Machine Learning stanno ricoprendo un ruolo centrale rivelandosi molto
potenti e versatili. Per questo si prevede che possano diventare protagoniste per
le applicazioni spaziali e sono già tema di ricerca. Grazie all’enorme disponibilità
di dati, le reti neurali sono in grado di elaborare ed estrarre informazioni utili per
predire da sequenze di dati o classificarne di nuovi. L’obiettivo primario di questa
tesi è dimostrare come sia possibile alleggerire la navigazione spaziale, sostituendo
algoritmi ingenti dal punto di vista computazionale con una rete neurale allenata
opportunamente. Questo risulta essere uno strumento molto vantaggioso per
eseguire operazioni in prossimità di un corpo celeste. Nel dettaglio, questo lavoro
si incentra sullo sviluppo di reti neurali capaci di eseguire un atterraggio lunare
basandosi su una navigazione ottica, cioè immagini del suolo della Luna. Sono
state sviluppate Recurrent Neural Networks (RNN), il cui input è lo stato della
traiettoria di discesa e l’output è l’azione di controllo corrispondente. Considerati
gli ottimi risultati conseguiti, l’analisi è stata portata avanti nello studio di
Convolutional Neural Network (CNN) i cui input sono le immagini del suolo
lunare durante la fase di atterraggio e gli output sono le rispettive azioni di
controllo. Sono state studiati due tipologie di atterragio: la prima puramente
verticale (1D) e affrontata sfruttando le sole immagini; la seconda incentrata su
un atterraggio planare (2D). In questo ultimo caso sono state usate entrambe
le tipologia di reti (RNN e CNN). I risultati sono particolarmente soddisfacenti
anche se sono emersi i limiti che l’approccio adottato in questo lavoro presenta.
Nella parte finale sono infatti proposte nuove soluzioni da considerare per sviluppi
futuri.

xi



Abstract

Over the past few years, in the huge field of Artificial Intelligence (AI), new
Machine Learning techniques are playing a central role, proving to be very powerful
and versatile. For this reason, it is expected that they could become protagonist
of space applications and they are already under study. Thanks to the large
availability of data, neural networks are able to elaborate and extract useful
information to predict from sequences of data or to classify new ones. The goal
of this work is to demonstrate how it is possible to lighten space navigation,
replacing computational heavy algorithms with a well trained neural network.
This proves to be a very useful tool in proximity operations with celestial objects.
More in detail, this research is focused on the development of neural networks
able to perform a lunar landing, exploiting an optic navigation, i.e. Moon surface
images. Recurrent Neural Networks (RNN) have been developed, in which the
descent trajectory state is the input and the relative control action is the output.
Considering the optimal achieved results, the analysis has been carried forward
with the study of Convolutional Neural Networks (CNN), where the lunar surface
images are the inputs and the relative control actions are the outputs. Two kinds
of landings have been considered: the first one is a pure vertical (1D) landing,
faced exploting only the images; the second one is a planar (2D) landing. In this
last case, both neural networks have been used (RNN and CNN). The results are
particularly satisfying even if the limits of the adopted approach emerged. In fact,
in the final part of this thesis new solutions for future developments are proposed.

xii



Chapter 1

Introduction

1.1 Work justification and purposes

The Moon has always been recognized as an important destination for space
science and exploration. In fact, various landings on the Moon were made
during the 1950s and 1960s, like the soft landings performed by the Soviet
unmanned missions, known as Luna program, the U.S. unmanned lunar mission
Ranger and Surveyor and finally the manned Apollo missions. Nowadays, it
still represents an interesting challenge for technology and software innovation.
Meanwhile, encouraged by advancements in parallel computing technologies (e.g.,
Graphic Processing Units, GPUs), availability of massive labelled data as well
as breakthrough in understanding of deep neural networks, there has been an
explosion of machine learning algorithms that can be used to solve space guidance
problems. It is expected that deep learning methods will play a critical role in
autonomous and intelligent systems. In this framework, a spacecraft able to land
on the Moon in an autonomous way, would be a significant step further in the
research of new intelligent tools for space exploration. Focusing on a Moon landing,
the goal of this work is to design a set of deep neural networks, i.e. Convolutional
Neural Networks (CNN) and Recurrent Neural Networks (RNN) which are able
to substitute navigation and guidance classical methods, by predicting the fuel-
optimal control actions, using only raw Moon surface images taken by on-board
cameras.

1.2 State of the art

During the final few minutes and several meters of a lunar landing, the approach
phase begins. Up to now this phase has been led by a guidance system loop,
shown in Fig. 1.1, whose working principles are to follow a reference trajectory

1
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defined off-line.

Figure 1.1: Guidance system loop of Apollo mission [1]

In particular, the guidance algorithm is fed by the guidance targets (landing
position, constraints) and by the current state. It computes the errors between the
reference and the present conditions, which are transformed by a PD controller
in acceleration commands. They are sent to the propulsion system and to the
digital autopilot. Then, thanks to throttable thrusters, the spacecraft dynamics is
modified accordingly and these changes are felt by sensors. Theirs measurements
are used to reconstruct and update the spacecraft state, thanks to a navigation
routine. This procedure requires a high computational cost on-board for state
estimators and a pre-selected optimal (or suboptimal) trajectory for landing, which
cannot be determined on-board since there isn’t any closed-form solution for this
kind of problem. Typically those trajectories are computed numerically on Earth.
Nowadays, the autonomous guidance systems algorithm are becoming more and
more powerful, because it is possible to avoid state estimator and the relative high
computational cost, substituting the classical procedure with Artificial Intelligence
tools.

Machine learning algorithms have already been employed in many applications,
such as image understanding, language processing and games, where it has been
proved that neural networks can substitute human actions with extraordinary
similarity [3, 4, 5]. This research wants to prove that also in space guidance
problems artificial intelligence, in particular deep neural networks, can be employed,
linking images handling to control actions. In the field of control problems, some
machine learning tools have already been developed. In [6] robotic arms have
been trained to operate several simple actions, employing many layers of CNNs
able to extract features from the images taken by cameras installed on the robot.
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The remarkable innovation in this paper is the direct link between raw images
(processed by CNN) and control actions by using deep neural networks to map
pixels into robotic arm motions. Dealing with a different field, like space navigation,
the aim of this thesis is to use image features to predict the control action for
a lander descent. Another significant literature outcome is the possibility to
avoid the complete state estimation by exploiting neural networks in controlling a
system. For example, in [7] by Sergey Levine, aerial vehicles, such as quadcopters,
were able to avoid collisions with obstacles, within a certain area, without the
complete state estimation, thanks to well trained neural networks that directly
maps sensor reading to actions. The purpose of this thesis is to demonstrate that
also in the space navigation sphere, the state estimation can be substituted by
neural networks, which is one of the most relevant aspect of their applications in
guidance problems. Finally, in the aerospace framework, deep neural networks
have been employed in a real-time control during landing procedures. In [8], it has
been unsterstood that deep neural networks can be trained to learn the optimal
state feedback in a number of continuous-time deterministic, nonlinear systems
of interest in the aerospace domain. The results showed that landings driven by
the trained networks are similar to the simulated optimal ones. The approach
followed in this thesis is different even if a similar problem is faced. In fact, the
step further is the use of images to perform a landing.

Machine learning is still far from building an autonomous agent that is able
to solve more or less complex real-world tasks. Imitation learning is one of
the possible solution that will make that agents closer to this purpose. These
techniques improve the network performances taking advantage from past mistakes.
Up to now, imitation learning have been applied to control a terrestrial vehicle on
urban streets, which requires human actions during the training phase. Dealing
with space environment, a human presence is not available on-line; therefore in
this work it has been substituted with a self-developed software tool.

The starting point has been to understand how image processing systems are
designed and how they can be trained. MNIST is a canonical and historically
significant image classification benchmark and there has been a considerable
amount of research published on MNIST image classification ([3]). It is a database
of 60000 training images and 10000 test images. Each image represents a black and
white handwritten digit with 28× 28 pixels. Each image is assigned a single truth
label digit from

[
0, 9

]
making this a supervised multi-class classification problem.

MNIST neural network is able to recognize handwritten digits. It has been very
useful to understand how to implement a CNNs in MATLAB, Python-Tensorflow
and Python-Keras, which are the software tools used in this work. In particular,
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Python and the environment Tensorflow (in which Keras is embedded) are the
most commonly exploited tools for machine learning and deep learning. The work
here presented applies many of these techniques together, in order to achieve the
best results from the process of raw images taken by on-board cameras. For this
purpose, CNNs and RNNs with Long-Short Term Memory logic are employed. In
this way, it is possible to take a step forward in understanding how deep learning
techniques can applied to space guidance problems.

1.3 Proposed approach

Deep neural networks can be employed to directly select actions without
the need of direct filters for state estimation. Indeed, the optimal guidance is
determined by processing the images only. For this purpose, Supervised Machine
Learning algorithms have been implemented. In this framework, deep networks are
trained with many example inputs and their desired outputs (labels), given by a
supervisor. During the training phase, the goal is to model the unknown functional
relationship that links the given inputs with the given outputs. Inputs and labels
come from a properly generated dataset. The images associated to each state have
been the inputs and the fuel-optimal control actions have been the labels. Here,
two possible scenarios have been considered, i.e. 1) a vertical 1D Moon landing
and 2) a planar 2D Moon landing. For both cases, fuel-optimal trajectories have
been generated by software packages such as the General Pseudospectral Optimal
Control Software (GPOPS) considering a set of initial conditions. With this
dataset a training phase has been performed. Subsequently, in order to improve
the network accuracy a Dataset Aggregation (DAgger) approach has been applied.
The net performances have been verified by a testing phase on new trajectories.
Moreover, to verify the robustness of the system a Monte Carlo analysis has been
carried out. For both test phase and Monte Carlo analysis, trajectories have been
generated by perturbing the initial conditions used for the training dataset.

1.4 Thesis structure

This work includes eight chapters. In Chapter 2, Machine Learning techniques
are addressed, paying attention to the techniques and the neural networks that
are used in this research. In particular, Supervised Learning, Recurrent Neural
Network and Convolution Neural Network. In Chapter 3, the problem of a
planar 2D Moon landing with Recurrent Neural Network is faced. The problem
is formalized by describing the equations of motions and the generation of the
dataset. The proposed architecture able to solve the problem is described and
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details about the training and test phase are given. After the description of the
DAgger approach, which has been used to improve the accuracy of the tool, some
final simulations and Monte Carlo analysis are performed. The final results are
finally shown. In Chapter 4, the Moon surface images simulator is described. The
landing site choice is explained and an algorithm, used to improve the Digital
Terrain Model resolution, is illustrated. At the end of the chapter, the simulator
working principles and the images characteristics are described. Chapter 5 and
Chapter 6 face the cases of a vertical landing and of a planar landing respectively,
trying to solve the problems with images. The structure of these chapters replicate
the one adopted for the third chapter. In Chapter 7, the conclusions of the work
are provided and in the last chapter some considerations for future work are
provided.



Chapter 2

Artificial intelligence

Through research of intelligent systems, it is possible to try to understand
how the human brain works and model or simulate it on the computer. Artificial
Intelligence (AI) involves machines that can perform tasks that are characteristic
of human intelligence such as learning, reasoning and making decisions. This
chapter explores the AI techniques focusing on the networks used in this work.

2.1 Machine Learning

Machine learning is a way of achieving AI and it is becoming very important
to solve problems related to computer vision, robotics, finance, video gaming and
space exploration because allows to construct computer programs that automati-
cally improve with the experience and are then accurate in predicting outcomes
without being explicitly programmed. Dealing with machine learning means
construct algorithms that can learn from data and can make predictions on them.
These programming algorithms are called Artificial Neural Networks which are a
mathematical model of a biological neuron. In fact, they are able to simulate how
the neurons work by transmitting information via synapses between two axons
terminal. The artificial model of the biological neuron is shown in Fig. 2.1 and it
is called also perceptron. The multiple input signals coming from the external
environment are represented by the input set {x1, x2, ..., xn}. Each input is a
numerical value that represents the electrical impulses in the biological neuron.
The synaptic junctions of the network are implemented on the artificial neuron
as a set of synaptic weights {w1, w2, ..., wn} that express the importance of the
inputs to the outputs (according to the functionality of neurons). The relevance
of the input is computed by multiplying each input by its corresponding synaptic
weight ([9], [10], [2]). The linear aggregator (

∑
) gathers all the weighted inputs

and thanks to biases the information go straight on to the output. Biases bj are

6
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Figure 2.1: Neuron model [2]

variables used to specify a proper threshold that the result, produced by the linear
aggregator, should have to generate a requested value. This is essential for the
information to go toward the neuron output. The activation function f limits the
neuron output within a reasonable range of values. Each output is practically the
result of the following expression

∑
j wjxj + bj . This is repeated for each of the

neuron crossed by the inputs. Therefore the output is equal to:

output =
∑
j

(wjxj) + bj (2.1)

A complex system of neurons could lead to solve important problems and a neural
network looks like Fig. 2.2. A set of neurons is called layer and therefore the

Figure 2.2: Neural Network model

artificial neural network can be divided in three parts :

– Input layer which is responsible for receiving information from the external.

– Hidden layers which are the net core because perform most of the internal
processing and extract the information from the inputs.
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– Output layer which produces and presents the final network outputs.

If the number of hidden layers is greater than one, the network is a deep neural
network and the learning procedure is named deep learning. Neural Network
receives a vector as input and transforms it through a series of hidden layers, each
connected to all neurons in the previous layer. Designed networks must be trained
and then, according to the several fields where the net is used, there are many types
of Machine Learning. Before entering the classes of Machine learning it is necessary
to clarify what training a network means. According to the mathematical model
of the neuron, the training process of a neural network consists of applying steps
for tuning the synaptic weights and biases of its neurons, in order to generalize
the solutions produced by its outputs. This procedure requires the presentation
of samples (training set) which express the system behavior and on which the
network performs its training. The set of training steps is called learning algorithm.
By executing the learning algorithm, the network will be able to extract features
about the system inputs. Moreover, each complete presentation of all the samples
belonging to the training set is called epoch. Depending on the type of learning
algorithm the classes of machine learning are:

• Supervised learning: The machine is trained with many example inputs
and their desired outputs (labels), given by a supervisor. The goal is to
find a rule which links the given input with the given output. A typical
supervised learning task is classification.

• Unsupervised learning: No labels are given to the learning algorithm,
therefore the system tries to learn without a teacher. In this case, the
machine tries to find structures in the inputs.

• Reinforcement learning: The learning system called agent, can observe
the environment, select and perform actions. From its action, it gets rewards
or penalties in return and improves and learn the best strategy which is called
policy. Basically, the machine interacts with the dynamic environment.

For this work Supervised Machine learning has been used.

2.2 Supervised Machine Learning

The idea behind supervised machine learning is simply learning from the
examples. The supervised learning strategy consists of having the desired outputs
available for a given set of input signals; in other words, each training sample is
composed of the input signals and their corresponding outputs (labels). The goal
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of the network is to develop a rule, a procedure that classifies the given data. This
is achieved because the learning algorithm supervises the discrepancy between
the produced outputs (label) with respect to the desired ones. The network is
considered trained when this discrepancy is within an acceptable value range. The
discrepancy is minimized by adjusting continually the synaptic weights and biases
of the network according to the definition of training. This discrepancy is defined
by a loss function; a detailed explanation is given in the following chapters. The
agents (the network) can learn using two types of sets of data, a training set and
a test set. The training set is composed of the labeled examples and the test set
with unlabeled example. The test set is available to verify the performances of
the trained network. There are many types of network and each one is peculiar in
the way the data are processed. For the purpose of this work the main ones are
presented: Recurrent Neural Network and Convolutional Neural Network.

2.3 Recurrent Neural Network

Recurrent Neural Networks (RNNs) are powerful tools that deal with data
sequences. The advantage of an RNN lies in its memory. In fact, it stores
information that have been computed few steps so far and uses them to improve
the prediction and its accuracy. Fig. 2.3 shows an RNN unrolled into a full network
to better understand how this net works. The working principle is as follows:

• xi is the input at the time step ti

• hi is the hidden state at time step ti. It represents the memory of the
network which is computed based on the previous hidden state hi−1 and the
input at the current step xi.

• yi is the output at the time step ti

Figure 2.3: Recurrent neural network

RNNs are able to use information coming from a long sequence, but experience
has shown that they are limited to looking back only a few steps. Considering
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what said before, the most commonly used RNNs are the LSTM (Long-Short-
Term-Memory). The difference is just the way in which it computes the hidden
state. The memories in LSTMs are called cells. Internally these cells learn what
to store in a long-term-state, what to erase from memory, and what to read from
it. A typical cell is shown in Fig. 2.4. Referring to Fig. 2.4 the hidden state

Figure 2.4: LSTM cell

is divided in two vector: the long-term state c(t) and the short-term state h(t).
The incoming long-term state c(t−1) goes through a forget gate, dropping some
memories and then it adds some new memories with an adding operation (the
memories to store are selected by the input gate). The result is c(t) which is
sent straight on without any other transformation [2]. The long-term state c(t) is
copied and filtered by the output gate (which applies a tanh function on the input)
and this operation produces the short-term state h(t) (note that it is equal to the
cell’s output y(t)). Let’s look how the current input vector x(t) is transformed. It
is fed with the previous short-term state h(t−1) to different fully connected layers
that have different purposes:

• The main layer is the one with g(t) as output. It analyzes the current inputs
x(t) and the previous h(t−1) with a tanh function. The output is partially
stored in the long-term state.

• The other three layers are called gate controllers and use logistic activation
function which means that the outputs are in a range from 0 to 1 and, in
particular, 0 closes the gate and 1 opens it. In particular:

– The forget gate (controlled by f(t)) controls which parts of long-term
state should be erased.
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– The input gate (controlled by i(t)) controls which parts of g(t) should
be added to the long-term state.

– The output gate (controlled by o(t)) controls which parts of the long-
term state should be read and sent to the output terms (h(t) and
y(t))

In conclusion an LSTM cell can learn to recognize an important input, learn to
store and preserve it for as long as it is needed and learn to extract information
whenever is needed.

2.4 Convolutional Neural Network

Neural networks and deep learning provide the possibility to find solutions
for many problems related to image recognition. In particular, the Convolutional
Neural Network (CNN) is used to detect what an image is or what it contains by
transforming the original image, through layers, to a class scores. The architecture
of a CNN is designed to take advantage of the 2D or 3D [width, height, depth]
structure of an input image which is processed as pixels values. The basic CNN
structure uses many types of layers which are:

• Convolutional Layer

• Pooling Layer

• Fully Connected Layer

• Output Layer (last Fully Connected Layer)

Convolutional Layer: the objective of a Convolutional layer is to extract fea-
tures from the input volume by applying filters on the image. It is the most
demanding layer in terms of computations of a Convolutional Neural Net
and the layer′s parameters consist of a set of learnable filters. Each filter is
practically a matrix spatially smaller than the image which is scanned along
width and height (2D case). In Fig. 2.5 filter convolution is shown. Referring
to the Neural Network definition, filters (or kernels) are the weights of this
layer. In fact, as the filter is sliding on the input image, it multiplies its val-
ues with the original pixel values of the image and these multiplications are
all summed up giving only one number as output. Repeating this procedure
for all the regions on which filter is applied the input volume is reduced and
transformed and then passed to the Max-pooling layers. Before going deeper
in the analysis of the Max-pooling layer, it is important to specify how filters
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Figure 2.5: Example of filter application

slide. The involved parameter is theStride. In the Fig. 2.5 it is possible to
note that the filter moves one pixel at a time. The stride in this case is, in
fact, equal to 1. This parameter determines how the input image volume
reduces and normally, it is set such that the output volume is an integer and
not a fraction. Moreover, in order to control the spatial size of the output
volumes, an additional parameter is used: the Padding parameter, which
pads with zeros the border of the input image. If the padding is not used
the information at the borders will be lost after each Conv. layer and this
will reduce both the size of the volumes and the performance of the layer.
An example of what the Padding does is shown in Fig. 2.6.

Figure 2.6: Example of padding

Resuming the hyperparameters to be set for the Convolutional layer are:

• Number of filters.

• Stride with which the filter slides.

• Padding with which the input is padded with zeros around the border.

Fig. 2.7 shows the application of the filter. Basically this operation performs
dot products between the filters and local regions of the input.
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Figure 2.7: Example of filters application on image pixels

An example of image transformed by the application of filters in a convolu-
tional layer is shown in Fig. 2.8.

Figure 2.8: Example of filters application result on a image

The spatial size of the output volume can be computed as function of input
size as:

(I − F + 2P )
S

+ 1 (2.2)

where: I is the input volume, F is the filter size of the Convolutional Layer,
S is the stride with which the filter is applied and P is the padding used on
the border (if any).

Pooling Layer: it reduces progressively the spatial size of the input volume in
order to control overfitting. The Pooling Layer operates independently on
every depth slice of the input and there are different functions to be used,
the common one is the Max-pooling. It uses the MAX operation taking only
the most important part. Also for this layer two hyperparameters have to
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be chosen: the filter window (F) and the stride (S). In Fig. 2.9 an example
of max-pooling operation is shown with 2× 2 filter window and stride equal
to 2.

Figure 2.9: Example of Max-pooling layer

Fully Connected Layer: the purpose of the Fully Connected layer is to use
the features arriving from the convolutional layers for classifying the input
image into various classes (Fig. 2.10). The last fully-connected layer uses a
softmax activation function for classification purpose.

Figure 2.10: Fully connected layer



Chapter 3

From state to control: planar
Moon landing

The first problem faced in this work is a planar Moon landing in which an
RNN is exploited to predict the control action directly from the knowledge of
the state. The network has been trained according to a supervised learning
algorithm. It is possible to see how the recurrent networks are able to achieve
very good results in this scenario, in which the input is a series of data (the states)
and each input belongs to a particular sequence (the trajectory). As already
mentiones in the previous chapters, RNNs can take advantage of their memory to
keep track of what has entered the network before and use those information to
better predict the output. At this stage Moon surface images are not considered.
After the problem formalization, in which the equations of motion are described,
the procedure to generate the dataset is illustrated. Afterwards, the proposed
network architecture is shown and the training and test phases are illustrated.
The accuracy is improved according to a DAgger approach. Finally the results of
a Monte Carlo simulations are provided.

3.1 Problem formalization

A planar 2D Moon landing has been considered, in which the variables of
state are downrange and altitude. The state is composed of five components:
the variables of state and mass. The mass of the spacecraft is coupled with the
others through the thrust. The control action will have two components as well,
one aligned with the vertical direction and one with the horizontal. As it will
be explained later, instead of two Cartesian components, the magnitude and the
two unit vector components have been used to describe the thrust vector. The

15
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equations of motion are the following:

ẋ = v

v̇ = g + T
m

ṁ = − T
Isp g0

(3.1)

If h is the altitude and d is the downrange, x = [d, h] and v = [vd, vh]. The
thrust T is T = [Td, Th] and g is the lunar gravity acceleration. Isp is the specific
impulse and g0 is the reference gravity acceleration. Fig. 3.1 shows a simple scheme
of the involved variables. These equations have been integrated to minimize the

Figure 3.1: Involved variables in the selected reference frame

following cost function: ∫ tf

0
‖T‖ dτ

where u is the control action and tf is the final time, which is not fixed. As it
can be seen, the optimality condition is achieved when the control actions are
minimized, i.e. when the depleted mass is minimum. From now on this optimality
condition will be called fuel-optimal condition. As the theory says, the solution
of such problem has a bang-bang profile, in which the thrust is alternatively
maximum or minimum, or on/off. For this reason, when the neural networks is
designed, it is possible to treat the problem like a classification one, in which
only two choices are possible: thrust at maximum or thrust at minimum. A
different strategy has been considered for what concerns the thrust components,
as explained later. Initial conditions are given as initial position r0 (downrange
and altitude) and initial velocity v0 (horizontal and vertical). The initial mass is
set equal to m0. Final conditions on each variable of state, except the mass, have
been imposed. Since the final time is not fixed, only a lower limit for the mass
value has been considered and set equal to the dry mass mdry.
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3.2 Dataset generation

Dealing with supervised learning, a dataset is needed to train the network. In
order to generate a suitable dataset, the problem just formalized had to be solved
many times, considering a set of different initial conditions. For this purpose, an
optimizer was necessary. The General Pseudospectral Optimal Control Software
(GPOPS) has been chosen. GPOPS is a MATLAB software package intended to
solve general non-linear optimal control problems, where systems are described
bydifferential or algebraic equations. GPOPS has been chosen for its simplicity in
problem implementation and for the ease in visualizing and handling states and
control actions, which have been used to create the datasets. In the followings,
the most important steps for the implementation are illustrated. To use GPOPS
the user has to define the system of equations of motion and the cost function.
This equations are written in two separate scripts, while in the main code the
user defines initial conditions, final conditions and the bound constraints. This
bounds are defined in terms of maximum and minimum values that each state and
each control action can assume during the integration and optimization. Their
value should be properly selected to avoid being too tight. General constraints
can also be imposed by defining them together with the equations of motion.
GPOPS needs a first guess solution to start the optimization. Since the problem
has been solved many times, the free-fall solution has been selected to be the
initial guess solution for only the first set of initial conditions; subsequently each
GPOPS solution has been the initial guess for the next set of initial conditions.
This helped the software to converge faster and more accurately.

As said before, many initial conditions have been considered. The initial mass
of the spacecraft has been set equal to 1300 kg. The downrange has been initialized
between 1500 and 2000 meters, while the altitude between 1000 and 1500 meters.
Fig. 3.2 shows a scheme of the initial positions in the selected reference frame.
The initial downrange velocity vd0 changes according to the downrange: when the
downrange is maximum, the velocity is maximum in modulus (−15 m/s), vice
versa when downrange is minimum, the velocity also is minimum in modulus
(−11 m/s). The same reasoning has been applied for the initial vertical velocity
vh0 , that goes from −6 to −10 m/s. Unlike the initial conditions, the final ones
have been kept constant for all trajectories. In particular, the final downrange
df has been set equal to 0, the final altitude hf equal to 50 m and finally, both
components of the final velocity (vertical and horizontal) equal to −0.5 m/s. As
it can be seen, the final condition is such that the spacecraft has not touched the
ground and has a very small downward velocity. Throttlable thrusters have been
considered, in which the magnitude of the control action is bounded following the
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Figure 3.2: Initial positions in the selected reference frame

same strategy applied in [11] and in [12]. The nominal thrust Tnom is equal to
4000 N. The maximum thrust and minimum thrust have been fixed equal to 85%
and 25% of the nominal thrust respectively (i.e., 3400 N and 1000 N respectively).
According to the above assumption, in the classification problem there will be
only two alternatives: minimum thrust, or maximum thrust. It is clear that these
values refer only to the magnitude of the control action. To understand how
the thrusters direction has been taken into account, it is useful to see how the
equations of motion have been implemented componentwise in GPOPS:

ḋ = vd

ḣ = vh

v̇d = T

m
· ud

v̇h = −g + T

m
· uh

ṁ = − T

Isp g0

(3.2)

where T is the magnitude of the control action and ud and uh are the compo-
nents of the thrust direction unit vector. It has been imposed that u2

d + u2
h = 1 at

any time. It has been useful to extract from these two components the angle that
the thruster forms with the horizontal direction, according to Eq. 3.3.

ϑ = arctan ud
uh

(3.3)

It is possible to understand now that the neural network will have to solve
a classification problem for what concerns the magnitude of the thrust and a
regression problem for the direction of the control action. In this way, 2601
trajectories have been generated within the selected two-dimensional portion of
space. The parameters of the problem are shown in Tab. 3.1a. A wrap-up of the
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initial and the final conditions is shown in Tab. 3.1b and in Tab. 3.1c.
Once the working principles of the optimizer have been described, it is important

Table 3.1: Parameters and state values for the 2D problem

(a) Problems parameters

value unit

mdry 500 kg

g −1.622 m/s2

Isp 200 s

Tnom 4.0 kN

Tmax 3.4 kN

Tmin 1.0 kN

(b) 2D initial conditions

value unit

d0
[
1.5, 2.0

]
km

h0
[
1.0, 1.5

]
km

vd0

[
−11, −15

]
m/s

vh0

[
−6,−10

]
m/s

m0 1.3 ton

(c) 2D final conditions

value unit

df 0 m

hf 50 m

vdf
−0.5 m/s

vhf
−0.5 m/s

to understand how the dataset has been generated. Each trajectory coming
from GPOPS has 61 points, so 61 states and 61 control actions. Each state
has five elements (downrange, altitude, velocities and mass); each control action
has three components (magnitude, ud and uh). As said before, the angle ϑ has
been extracted for each couple of unit vector components, so 61 angles have been
computed per each trajectory. In this way, instead of having three elements in
each control action, only two elements have been considered: the magnitude and
the angle. The final dataset has been built by associating each state to each
control action. This dataset has been divided in training-set and test-set, the first
set comprehends 2409 trajectories, the second one 192.

In Fig. 3.3 it is possible to see an example of a trajectory in the dataset. The
initial downrange is equal to 1750 meters and the initial altitude is 1250 meters. In
Fig. 3.4 it is possible to see the bang-bang profile of the thrust magnitude. Fig. 3.5
shows the behaviour of the angle ϑ, that the thrust forms with the horizontal
direction. Finally, in Fig. 3.6 all the trajectories are plotted, with the intention of
showing that they are all in the region of space above a cone of 20◦.
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Figure 3.3: 2D trajectory
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Figure 3.4: 2D thrust magnitude

3.3 Proposed network architecture

The aim of the proposed net is, as said, to exploit the states of the dynamic
system (spacecraft) and have a prediction on the control action to perform an
optimal planar landing on the Moon. Dealing with a 2D problem, the label
associated to each state is composed by two components: one associated to the
magnitude of the thrust and the second one to the angle and so to the direction
in which the thrust is applied. Since the problem has a bang-bang control action
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Figure 3.5: 2D thrust angle

Figure 3.6: All 2D trajectories

profile, the thrust can take its maximum or minimum value only. According to
this, the network should deal with a classification problem. Moreover, as shown
in Section 3.2., the thrust angle profile is smooth and continuous and therefore,
the network should perform a regression on the thrust angle value. Based on all
these considerations the proposed architecture is shown in Fig. 3.7. The input
enters the LSTM block and the output is sent to two branches, one whose intent
is the classification and the other the regression. Some fully connected layers
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link LSTM to the final output levels. The network has been implemented in

Figure 3.7: Proposed LSTM architecture

Python-Keras and the architecture is detailed in Fig. 3.8. It is useful to analyze

Figure 3.8: LSTM architecture in Python-Keras

how each component of the LSTM-net by going through the elements reported in
Fig 3.8.

• LSTM cell is composed of 100 neurons (line lstm_1 in Fig. 3.8) and is
directly connected to the input layer.

• The branch of the neural network designed to perform the classification on
the thrust value (line dense_1 and clas_output in Fig. 3.8) is composed by
a dense layer (fully connected layer) and an output layer, both of 2 neurons
because the problem has two output classes. The fully connected layer is
connected with the LSTM cell.

• For the regression on the thrust angle (line dense_2, dense_3 and regr_output

in Fig. 3.8) there are two fully connected layers (with 50 and 1 neurons)
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and the output layer. Also here the first fully connected layer is directly
linked to the LSTM cell.

This selected architecture and in particular the number of neurons lead to a
number of 47.303 trainable parameters (resulting from the weights and biases).
The next section is focused on the presentation of the inputs and training phase
for this RNN−LSTM neural network.

3.4 Training and test phase

3.4.1 Training

Much effort has been put into the network input shape. How could the LSTM
learn better from the input information? After a proper tuning, the chosen number
of inputs is 3 and this value has been fixed for all the nets developed in this work
in both the 1D and the 2D case. After several simulations, it has been understood
that three sequential states gave the best results. This means that each trajectory
(which is composed by 61 states) has been divided in sets of 3 sequential states
and this division has been developed by following two strategies.

The first idea has been to fed the net with sequential states and without
separating different trajectories as shown in Fig. 3.9. Note that in this case after
one trajectory ends the new one starts. However, another strategy has been

(a) 1st input

(b) 2nd input

(c) 3rd input

Figure 3.9: Example of inputs shape for the first strategy

adopted as it outperformed the above one. Here the idea has been to fed the
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net by separating the trajectories one with respect to the other. An example is
reported in Fig. 3.10. This second approach avoids confusion between trajectories

(a) 1st input

(b) 2nd input

(c) 3rd input

Figure 3.10: Example of inputs shape in second strategy

and in fact, the results of the net training are in this case better because the
RNN−LSTM is able to learn what is the final state of the optimal trajectory (i.e.
[0, 50,−0.5,−0.5]).

Since a supervised machine learning has been used in this work, it is important
to explain how the labels have been utilized. In each input of 3 states (the 3× 4
matrices reported in Fig. 3.9 and Fig. 3.10) the associated label corresponds to
the 3rd row. During the training phase, at time t, the net is fed with an input
composed by the state at time t, at time t− 1 and t− 2 and the control action at
time t. Based on the above considerations, the states per trajectory are 61 but,
considering how they are divided, the first 2 states enter the network only once.
Thus the input packages are 59.

Now, taking a step further, machine learning theory states that input data
can be given to the network sequentially, either individually or by small groups
called batches. The batch size is, in fact, the number of samples (inputs) that
are propagated through the network at each training epoch. It has been shown
in the literature that a multiple input (so a reasonable value of batch size) has
some advantages in the training phase even if there are no golden rules to choose
it [2]. In this work, the chosen approach is to have a batch of 59 inputs; in
this way a complete trajectory is taken. In order to go deeper in the analysis, a
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distinction needs to be made between the classification and regression part. The
main difference between them is that the classification task is predicting a discrete
class label; whereas regression predicts a continuous quantity. For this reason,
the network classification output (thrust magnitude), as well as the input labels,
have the format of a binary vector of length 2. For example, when the thrusters
are at their maximum value, the correct label is [0; 1] and when they are at their
minimum value, the label is [1; 0].

As reported in Section 2.2, the comparison of the predicted net outputs and
the correct outputs is carried out through the computation of a loss function and
the purpose of the training phase is to minimize it. In fact, weights and biases are
initialized as random values and as the training phase proceeds, they are updated
according to a minimization algorithm. The standard learning algorithm for
neural networks is backpropagation with gradient descent (or its variant stochastic
gradient descent). In this thesis, the used optimization algorithm (to minimize
the loss function) is an Adam optimizer. The name is derived from ADAptive
Moment estimation. It is well suited for problems that are large in terms of data
and parameters and it can be used instead of the classical stochastic gradient
descent procedure [13], which maintains a single learning rate (termed alpha) for
all weight updates and the learning rate does not change during training. Instead
Adam optimizer adapts the learning rate as training unfolds thanks to the decay
parameter. Note that the learning rate is a hyper-parameter that controls how
much the algorithm is adjusting the weights of the network with respect the loss
gradient. The lower the value, the slower the travel along the downward slope.
While this might be a good idea (using a low learning rate) in terms of making sure
that any local minima is missed, it could also mean that the time for convergence
will be longer. Furthermore, the decay has an expression given by Eq. 3.4

lrnew = lrold · decay

(
epoch

decaystep

)
rate (3.4)

Since the study here presented has been developed in a Python-Keras and Pyhton-
Tensorflow environment, where Adam method is already implemented and can
be directly called and used for the training phase, there was no need of a self-
made implementation of the algorithm and for this reason the pseudo code is not
presented. Moreover, Python-Keras offers an optional list of scalar coefficients
called loss_weights to weight the loss contributions of different model outputs.
The loss value that will be minimized by the model will then be the weighted sum
of all individual losses, weighted by the loss_weights coefficients. In Tab. 3.2 the
chosen hyper-parameters are resumed.

Classification predictions can be evaluated using accuracy, whereas regression
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Table 3.2: Selected hyper-parameters of the RNN−LSTM

Hyper-parameters

Batch size 59

Initial learning rate 0.0001

Decay rate 0.0001

Regression loss weight 10

Classification loss weight 60

predictions can be evaluated using root mean squared error (RMSE). Concerning
the accuracy evaluation, the loss function associated to this task has been the
Cross-entropy loss.

Cross-entropy loss: it measures the performance of a classification model whose
output is a probability value between 0 and 1. In particular it indicates
the distance between the model prediction and the true value of the output.
The cross entropy error is computed as:

ycross−entropy = −
∑
j

tj log(ysoftmaxj
) (3.5)

Softmax function: Softmax function outputs a probability distribution suitable
for probabilistic interpretation in classification tasks. This function takes a
vector of real numbers and transforms it into a vector of real numbers in range
[0; 1] which represents the probabilities and will be used for determining the
class for the given inputs. The softmax function computes the ratio between
the exponential of the input value and the sum of the exponentials of all
the input values. The analytic formula is:

ysoftmax = ezk∑J
j=1 e

zj
(3.6)

The RMSE (Eq. 3.7) for regression, on the other hand, represents the sample
standard deviation of the differences between predicted values and real values:

RMSE =

√∑I
i=1(ȳi − yi)2

n
(3.7)

where yi is the real value and ȳi the predicted one.
The results are now illustrated. The training has been run for 1500 epochs

over 2409 trajectories. In order to have a feedback during the training phase on
the net performances the training set has been split such that 5% of the dataset
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has been used for validation. Validation datasets can be used for regularization by
early stopping: the training is stopped when the error on the validation dataset
increases, as this is a sign of overfitting to the training dataset. In Fig. 3.11 it

(a) Classification loss

(b) Regression loss

Figure 3.11: Classification and regression losses evolution during the RNN−LSTM
training phase

is possible to note how the loss function has been minimized along all epochs.
The orange curve corresponds to the model validation which proves that no over
fitting of data is present and the RNN−LSTM is well trained.
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3.4.2 Test

The test phase has been applied to validate the final model after training
by estimating model properties. As already mentioned, the test set consists of
192 trajectories. To visualize the trained net performances on the classification
(accuracy) a confusion matrix has been computed. The number of correct and
incorrect predictions has been summarized by counting and breaking them by each
class: 0 is associated to minimum thrust, 1 to maximum. As shown in Fig. 3.12

Figure 3.12: Confusion matrix RNN-LSTM

the RNN-LSTM trained model has an accuracy of 99, 73%. To evaluate if the
classification accuracy is consistently high, MNIST images dataset ([3]) has been
taken as a reference, even if no images are involved in an RNN−LSTM. According
to the state of art ([16]), tests on MNIST (which is a trivial dataset) can at most
reach a precision of 99.79%. To obtain a good result in a more complex problem, a
threshold of 99% on the accuracy is chosen as minimum target. On the other hand
to evaluate the performances on regression the plot on the predicted regression
angles has been considered. The result is shown in Fig. 3.13. The results can be
considered to be very good, as the final RMSE is 0.2◦.

3.5 Accuracy improvement: DAgger approach

An approach has been investigated to obtain further improvements of the
net performances. Several algorithms have been proposed and are available in
literature. The most promising is the Imitation Learning thanks to which the
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Figure 3.13: Regression on angles predicted with the trained RNN−LSTM

learner tries to imitate an external expert action in order to achieve the best
performance. In particular in this work a DAgger (Data Aggregation) approach
has been developed. The main advantage of this type of algorithms is that an
expert teaches the learner how to recover from past mistakes. Nowadays, a classical
application of DAgger is for autonomous vehicle and it applies, mathematically
speaking, the following steps([14]):

1. Train the net (in this case a car) on a datasetDmade of human observations
and actions.

2. Run the net to get performances and then a new set of observations Dπ.

3. Ask the human expert to label the new dataset with actions.

4. Aggregate all data in a new dataset Dnew = D ∪Dπ.

5. Re-train the net.

Practically what happens with an autonomous car is that the driver corrects
online the errors done by the vehicle. Since it is not possible to exploit an human
action/correction in space, the DAgger approach developed for this work is slightly
different and it goes throught the following steps:

1. Train the net on a dataset D generated with GPOPS.

2. Run the net to get performance by using the test set Dtest.

3. Check for which trajectories the trained model error is not acceptable in
terms of classification accuracy and RMSE.
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4. Pick up the wrong trajectories in Dwrong.

5. Use Dwrong to re-train the net and to improve the performances.

As said in Section 3.4.2 the global accuracy in the test phase was 99.73% and
the global RMSE = 0.2◦. The wrong trajectories have been picked up from the
test dataset applying the criteria shown in Tab. 3.3 on each prediction. With the

Table 3.3: Criteria used to evaluate wrong predicted trajectories

Criteria

Accuracy < 99%

RMSE > 0.3◦

trained RNN-LSTM and these criteria the wrong trajectories turned out to be 38
on the 192 belonging to the test set. Then, the DAgger has been implemented
following two strategies:

• First strategy has been designed to train only on the trajectories with wrong
predictions using the trained net model (Fig. 3.14).

Figure 3.14: 1◦ strategy for the DAgger approach

• Second strategy has been conceived to enlarge the training test with the
wrong trajectories and then re-train the net model (Fig. 3.15).

Afterwards, in order to evaluate the DAgger model, a new dataset of 100 trajecto-
ries, that had never been used by the model, has been created. The results are
here reported and explained.

The net without DAgger achieves an accuracy of 99.23% and RMSE = 0.42◦

(Fig. 3.16). The model trained using the first DAgger strategy reaches an accuracy
of 97.89% and RMSE = 0.44◦ (Fig. 3.17). Finally the results for the second
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Figure 3.15: 2◦ strategy for the DAgger approach

DAgger strategy provide an accuracy of 99.25% and a RMSE = 0.40◦ (Fig. 3.18).
All the results are summarized in Tab. 3.4.

Figure 3.16: Accuracy and regression using the trained RNN−LSTM on 100 new tra-
jectories

Figure 3.17: Accuracy and regression using the trained RNN−LSTM according to first
DAgger strategy

In conclusion, it has been discovered that re-training the model only on wrong
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Figure 3.18: Accuracy and regression using trained RNN−LSTM according to second
DAgger strategy

Table 3.4: Summary of the performances of the DAgger approaches

Model Accuracy RMSE

Trained net 99,23% 0.42◦

1◦ strategy 97,89% 0.44◦

2◦ strategy 99,25% 0.40◦

predicted trajectories means that the weights and biases are updated focusing
strictly on the wrong predictions. Therefore, testing the new model on a new
dataset shows a loss of generality. Instead, re-training on the enlarged set allows
to achieve the best performance.

3.6 Performance on a dynamics simulator

As it has been shown, the RNN−LSTM is able to achieve very good results in
terms of accuracy on the classification and precision in the regression. Another
important test that has been performed is a simulation of the network performances
once it is installed on-board. The aim is, to verify if the spacecraft can be controlled
only by a well trained neural network, to perform a landing. For this purpose, a
suitable dynamics simulator has been developed, in which the trained RNN−LSTM
has been used. In the simulation the spacecraft is controlled only by the neural
network, starting from a known initial condition. In addition, the state at any
instant is supposed to be known by the spacecraft and it is fed into the network.
Since the network input is composed of three consecutive states, as described
before, three initial consecutive states have to be known to initiate the simulation.
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The network takes this first input to predict the first control action, with which
the dynamics are propagated throughout the duration of the time step, keeping
the control constant. The propagation is performed by integrating the equations of
motion with an ordinary differential equation solver, that applies a Runge-Kutta
method. Once the integration is finished, the new generated state is aggregated
with the last two states of the previous input, in order to prepare the new input
for the network. A new prediction and a new dynamics propagation follow. The
loop is repeated until the final time or until some criteria are satisfied. The first
criterion imposes the loop to stop when an altitude of 50 meters (which is the
lower limit of the training trajectories) is reached. The second criterion applies
when the spacecraft starts to rise up in altitude. In fact, it has been discovered
that, after the 50 m have been reached, the neural network tends to control the
spacecraft in such a way that it increases its altitude, moving it away from the
ground. In the followings, the results of the simulations are shown. The simulator
used to generate the followings figures has been developed in Python.

A simulation has been performed considering the initial conditions of a tra-
jectory taken from the testing set and the results are shown in the following.
In Tab 3.5 it is possible to see a comparison between the theoretical optimal
final state and the final state of a spacecraft completely controlled by the neural
network. As it is shown, they are very similar. In Fig. 3.19 the optimal trajectory
and the predicted one are shown. It is possible to see how the predicted one is
close to the optimal one. Finally, in Fig. 3.20 it is possible to see an example
of what happends when the stopping criteria are not applied. The network has
learnt to reach the lowest limit of 50 meters. It is also true that, since during
the training all the trajectories considered end at 50 meters, states with altitudes
below this limit are outside the range of the dataset. Consequently, the attention
must be focused on what happens within the range covered by the dataset: what
happens outside this range should be discarded.

Table 3.5: Comparison between optimal and predicted final state using RNN−LSTM

optimal predicted unit

downrange 0 -0.9 [m]

altitude 50 50.3 [m]

downrange velocity -0.5 -0.015 [m/s]

altitude velocity -0.5 -0.6 [m/s]

The simulations have shown that the network’s performances are very sensitive
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Figure 3.19: Comparison between optimal and predicted 2D trajectory

Figure 3.20: Predicted trajectory after the lowest altitude has been reached

to the time step extension. The time step is the only parameter that can be
modified by the user. If the time step is reduced, the network will be required
to process the input and give a control action more frequently, while if the time
step is increased, a smaller number of predictions will be requested. In the first
case, the control would be more accurate, but the network may not be trained
to provide high frequency predictions. In fact, asking the network to predict
the control actions more frequently than it was designed for, may lead to big
errors due to the fact that the inputs would be very similar one to each other.
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In the second case, the accuracy of the prediction may drop, which could cause
the generation of an inaccurate control. A good balance, in which the network
is able to give correct predictions and the control is quite accurate despite the
approximations, must be found between these two cases. For the example shown,
the time step has been set equal to 0.95 s.

3.7 Monte Carlo analysis

A Monte Carlo simulation has been performed to better characterize the errors
of the neural network, in terms of landing position and landing velocity. For
this purpose a new set of initial conditions has been generated, keeping fixed the
initial altitude at 1250 meters and perturbing the initial downrange according to a
Gaussian distribution centred at 1750 meters. In this way, a Gaussian distribution
of initial conditions, centred in the middle of the region covered by the dataset
(Tab. 3.1b), has been considered. In Fig. 3.21 the distribution of initial downrange
and their probability is shown. Note that, in so doing, it is assumed that the initial
conditions in the middle of the dataset are more probable than the peripheral
ones. These initial conditions have been propagated using the dynamics simulator,
described in the previous section. For each initial condition, the propagation, has
been stopped once the spacecraft reached 50 meters of altitude. The output of
this simulation is a series of plots, in which the final downrange, the final vertical
velocity and the final horizontal one are shown.

As said regarding the dynamics simulator, an important issue is the selection
of the time step. The first Monte Carlo simulation has been performed keeping
the time step constant for each trajectory of the set. In this way, each initial
condition has been propagated with the same number of control actions predicted
by the network. The results have proved that this is not a good way to proceed.
As it is shown in Fig. 3.22 the final state of the propagated trajectories are far
from the optimal ones. In particular the final velocities are too high (more than
−10 m/s for the horizontal component and more than −8 m/s for the vertical
one).
Thanks to these results it has been possible to understand that the time step
must be tuned for each initial condition. There is not a unique value of time step
for which the network provides good results, whatever the initial conditions are.
For this reason, a second Monte Carlo simulation has been completed trying to
find for each initial conditions the best value of the time step. This has been done
in an automatic way using a for loop in which many time steps are tried and
the one that provides the best results (in terms of final velocities and downrange
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Figure 3.21: Downrange initial conditions for the Monte Carlo simulation

(a) Final downrange velocity (b) Final vertical velocity

Figure 3.22: Results of the first Monte Carlo simulations

position) is selected. The results of this second simulation are shown in Fig. 3.23.
The mean of the final downrange velocity is −2.97 m/s, while the mean of the

final vertical one is −2.2 m/s. Finally, the mean of the final downrange is 6.23 m.
They are much lower than the results of the previous Monte Carlo simulation,
but are still quite far from the optimal ones (−0.5 m/s for both velocities and
0 meters of downrange). In Fig. 3.24 the final downrange are plotted. As it is
possible to note, most of the final points shows a final downrange around zero
(which is the target).

This result is due to the fact that the control applied during the propagation
is not very accurate, since during each integration the control is kept constant.
This problem, as mentioned in the previous section, could be solved by asking
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(a) Final downrange velocity (b) Final vertical velocity

(c) Final downrange

Figure 3.23: Monte Carlo second simulation results

Figure 3.24: Final downrange distribution

the net to process the inputs more frequently, so as to have a discrete but more
accurate control during the landing. The limit of this approach is represented by
the fact that the neural network is not trained to take inputs at high frequency,
because the trajectories within the training set do not have an adequate number
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of points. The considered trajectories, in fact, are made of only 61 states, that
means one every 0.9 seconds. One solution would be to train the neural network
on trajectories with many more points.



Chapter 4

Moon surface images simulator

According to the project requirements, the spacecraft takes pictures of the
Moon surface during the landing. This behaviour had to be simulated for both
2D and 1D cases, in order to generate a dataset of images necessary to train the
network. For this reason, an image simulator has been developed and implemented
by means of a software tool. In this chapter, after an explanation of the landing
site choice, the simulator working principles and the images characteristics are
described.

4.1 Landing site

The landing site location has been the first choice to make. Considering
previous lunar missions, Apollo 16 landing site has been selected. The altitude in
this region goes from -160 to 10 meters since some hills and craters are present;
nevertheless, this location does not show particular hazards for a hypothetical
landing. Moreover, a completely flat and smooth region would not have been a
good choice from the CNN point of view because of its poor features: the network
works by means of features detection in order to understand how to predict the
right output. Craters and hills are objects that can be easily found and identified
by the net and the selected landing site presents a suitable surface roughness
and irregularity. To generate a realistic image of the surface of a planet or of a
satellite, a Digital Terrain Model or (DTM) is needed. The DTM of the selected
region of the Moon surface has been taken from The Lunar Reconnaissance
Orbiter Camera (LROC) web site [13], where a lot of different kind of images and
information about the Moon can be found. The area covered by the DTM has a
Western-most longitude of 15.26◦ and an Eastern-most longitude of 15.42◦, while
maximum latitude is −8.71◦ and minimum latitude is −9.65◦, with a resolution
of 2 meters/pixel. In this way, more than 139 km2 of Moon surface are modelled.

39



4.1. Landing site 40

Since there was no sense in using such a large DTM, only a smaller portion of
it has been selected and used; in particular, in the 2D case 64 km2 (4000× 4000
pixel) have been considered and only 16 km2 (2049× 2049 pixel) for the 1D case.
In fact, considering the vertical 1D landing, the area seen by the on-board camera
is affected only by the variation in altitude and what is in the middle of the first
image (when the altitude is maximum), will be in the middle of each picture.
Instead in the planar case, downrange variation makes the objects seen by the
camera change during the manoeuvre and for this reason, a wider region must be
considered.

As already said, the resolution of the available DTM is 2 meters/pixel. It
is obviously not sufficient when the images are taken from the lowest altitude
considered, which is 50 meters. An example of some images generated with the
original DTM is shown in Fig. 4.1. As it can be seen, while the altitude decreases
starting from the left picture toward the right one, the quality of the images
degrades. To improve the resolution, the Diamond-Square algorithm, which is
illustrated in the following, has been applied on the DTM.

Figure 4.1: Moon surface images taken from different altitudes, generated with original
DTM.

4.1.1 Diamond-Square algorithm

The Diamond-Square algorithm is used to generate heightmaps and it has
been introduced in 1982 at the annual conference on computer graphics [15].
Its implementation is very simple and much material can be found online([14],
[15]). The algorithm performs alternately the diamond and the square steps. In
the first one, after the four corner points of the image array are set to initial
values, the midpoint of this square is set to be the average of the four corners
points plus a random value. In the square step, for each diamond in the array,
the midpoint is set to be the average of the four diamond corner plus a random
value. At each iteration, the magnitude of the random value is reduced. The
algorithm is repeated until all the array values have been set. It is clear that
no new information are added to the original image, but the output image will



4.2. Images simulation: POV-Ray 41

have much more points than the input one. Fig. 4.2 shows the steps involved in
running the diamond-square algorithm on a 5× 5 array.

Figure 4.2: Diamond-square algorithm

The portions of the original DTM has been used as inputs and the procedure
has been applied. In this way the 1D case DTM passed from a pixel dimension of
2049×2049 to a dimension of 16385×16385 and the 2D case one from 4000×4000
to 16000 × 16000. Since the portions of Moon surface modelled by the DTMs
remain the same, the resolution has been increased: there are much more points
to represents the same spatial extent. But it is important to remember that all
the added pixels are only averaged on the original ones. As it will be shown in
the next section, the images quality has been enhanced. In a similar way, the
texture has been generated by applying the diamond-square algorithm without
giving an image as input, but only repeating the procedure and adding random
values at each iteration. The number of iterations has been selected in order to
obtain a texture with a resolution equal to the DTM one.

4.2 Images simulation: POV-Ray

In order to generate a dataset of images taken during the Moon landing, a
simulator has been developed in which each image is associated to the state of the
spacecraft at each time step. It is useful to remind now that the states have been
computed by GPOPS when the fuel-optimal trajectories have been generated.
Regarding the 2D planar landing, a state is composed of downrange, altitude,
velocities and mass, while in the 1D vertical case, only altitude, vertical velocity
and mass are present. Two simulators have been developed, one for the 1D case
and one for 2D landing. In the first one, only the altitude is necessary to generate
an image, while in the second one downrange and altitude are used. The simulator
has been written in MATLAB and the software which has been used to generate
every single image is Persistence of Vision Ray Tracer or POV-Ray, which is a
ray tracing program which generates images from a text-based description of a
scene. In a MATLAB script, the trajectories coming from GPOPS are loaded
and each state is read in a for loop where POV-Ray is called to render each



4.2. Images simulation: POV-Ray 42

image. In order to render an image, POV-Ray needs three important objects:
the light source position, the camera position (and properties) and the objects
to render. The light source, in this case, is the Sun and its position with respect
to the Moon has been considered fixed during the entire simulation because the
duration of each landing is so short (about one minute) that the variation of the
Sun position is not relevant. The camera position, instead, changes at each time
step according to the current state generated by GPOPS. In POV-Ray the camera
position is expressed through a vector of three coordinates. In the 1D case, only
the out-of-plane component changes according to the altitude, while the other two
components are kept constant equal to 0. In 2D case, the out-of-plane component
is conditioned on the altitude and one of the planar components changes according
to the downrange, while the third one is kept equal to 0 (Fig. 4.3). In this way,
an image is associated to each state. Since in GPOPS, at each state corresponds
a control action, once all the images are generated it is possible to make a dataset
in which each image is correlated with the control action. Such dataset is suitable
for the training phase of the network. Datasets of more than 6000 images have
been generated for both cases under study. The objects to render are described
in a POV-Ray script in which the DTM and the texture are loaded and scaled
according to the image size and to the real altitude range. In this script, the
radiosity model and other options regarding the light and the camera properties
are implemented. A very important aspect is the size of the image. The size
in POV-Ray is expressed in pixel and both 1024 × 1024 and 256 × 256 images
have been generated. First simulations proved that the set made up of the largest
images requires excessive computational cost and allocation memory. For this
reason, smaller images have been used for the successive simulations. They are
quite small but the simulations have revealed that they are sufficiently large to
obtain good results. The images are greyscaled and not RGB: this helps a lot
during the render of each image and during the training and test phase of the
network, reducing the computational cost and the allocation memory. Moreover,
there is no need to have RGB images considering the texture of the Moon surface.
POV-Ray let the user set up some camera properties. The most important one is
the angular field of view. For the research purposes, the camera angular field of
view has been fixed at 20◦, which is a reasonable value for on-board navigational
cameras. A lower value would have involved a too narrow field of view and a too
small portion of the surface would have been seen, especially for the images taken
from lower altitudes.

It is worth stressing that this simulator works having all the trajectories
completed by the optimizer. Once the neural network has been trained, a slightly
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different version of the simulator can be employed to test the network and to
verify, in closed-loop, if the control action predicted by the CNN is able to land
the system with an acceptable amount of error, both in position and velocities.
This type of simulator will be described in the next chapter. In Fig. 4.4 some
examples of the images related to the 1D vertical landing are shown and in Fig. 4.5
related to the 2D planar landing case.

(a) Image simulator axis

(b) Image simulator procedure example

Figure 4.3: Moon image simulator scheme
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(a) Moon surface seen from 1500 m (b) Moon surface seen from 986 m

(c) Moon surface seen from 464 m (d) Moon surface seen from 140 m

Figure 4.4: Moon surface images taken from different altitudes
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(a) Moon surface seen from 922 m of alti-
tude and 1300 m of downrange

(b) Moon surface seen from 790 m of alti-
tude and 1060 m of downrange

(c) Moon surface seen from 594 m of alti-
tude and 790 m of downrange

(d) Moon surface seen from 365 m of alti-
tude and 520 m of downrange

Figure 4.5: Moon surface images taken from different positions



Chapter 5

From image to control: vertical
Moon landing

The problem faced in this chapter is a vertical Moon landing in which a CNN
is exploited to predict the control action directly from the Moon surface images.
The network has been trained according to supervised learning algorithm. In this
first application of CNN, it is possible to see how the convolutional neural network
is able to extract information directly from raw images and predict the correct
control action. A 1D vertical Moon landing has a dynamics that is simpler than
the previous 2D landing. After the problem formalization, in which the equations
of motions are described, the procedure to generate the dataset is illustrated.
Afterwards, the proposed network architecture is shown and the training and test
phase are illustrated. Finally the results coming from test simulations are given.

5.1 Problem formalization

A vertical 1D Moon landing is considered, in which the degree of freedom is the
altitude. The state is composed of three components: the altitude, its derivative
and the mass. The latter is coupled with the spacecraft dynamics only through
the thrust. The control action will have only one components as well, aligned
with the vertical direction. It is clear that this problem is only a simplification of
the problem shown in Section 3.1, in which instead of two variables, only one is
present.
The equation of motion are the following:

ḣ = vh

v̇h = −g + T

m

ṁ = − T

Isp g0

(5.1)

46



5.2. Dataset generation 47

where h is the altitude, vh is the vertical velocity and m is the mass. The thrust
is T and g is the lunar gravity acceleration. Isp is the specific impulse and g0

is the reference gravity acceleration. These equations have been integrated to
minimize the following cost function:∫ tf

0
T dτ

where u is the control action and tf is the final time, which is free. As it can be seen,
the optimality condition is achieved when the control actions are minimized, in
other words, when the depleted mass is minimum. Like before, this condition can
be called fuel-optimal condition. It is important to remember that the solution
of such problem has a bang-bang profile, in which the thrust is alternatively
maximum or minimum, or on/off. For this reason, when the neural networks is
designed, it is possible to consider the problem like a classification one, in which
only two choices are possible: maximum or minimum thrust. Initial conditions
are given as initial altitude h0 and initial vertical velocity vh0 . The initial mass is
set equal to m0. Final conditions on each variable of state, except the mass, are
imposed. Since the final time is free, only a lower limit for the mass is considered
and set equal to the dry mass mdry.

5.2 Dataset generation

A dataset is needed to train the network, dealing with supervised learning. In
order to generate a suitable dataset, GPOPS has been used as before, solving
the equations many times starting from different initial conditions. For more
information about GPOPS, see Section 3.2.

The initial mass of the spacecraft has been set equal to 1300 kg. The altitude
has been initialized between 1000 and 1500 meters. The initial vertical velocity vh0

changes according to the altitude: when h is maximum, the velocity is maximum in
modulus (−11 m/s), vice versa when h is minimum, the velocity also is minimum
in modulus (−6 m/s). Unlike the initial conditions, the final ones have been kept
constant for all trajectories. In particular, the final altitude hf is equal to 50
meters and the final velocity is equal to −0.5 m/s. As it can be seen, the final
condition is such that the spacecraft has not touched yet the ground and has a
very small velocity, directed toward the ground. Throttlable thrusters have been
considered, and modelled following the same strategy of Section 3.2. The nominal
thrust Tnom is equal to 4000 N. The maximum (allowable) thrust has been fixed
equal to the 85% (3400 N) of the nominal thrust and the minimum (allowable)
equal to 25% (1000 N). It is easy to understand that in this case, the network
will have to perform only a classification on the thrust magnitude.
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In this way, 101 trajectories have been generated within the selected range
of altitude. The parameters of the problem are shown in Tab. 5.1a. A wrap-up
of the initial conditions and one of the final ones are shown in Tab. 5.1b and in
Tab. 5.1c.

Table 5.1: Parameters and state values for 1D problem

(a) Problems parameters

value unit

mdry 500 kg

g −1.622 s2

Isp 200 s

Tnom 4.0 kN

Tmax 3.4 kN

Tmin 1.0 kN

(b) 2D initial conditions

value unit

h0
[
1.0, 1.5

]
km

vh0

[
−6,−10

]
m/s

m0 1.3 ton

(c) 2D final conditions

value unit

hf 50 m

vhf
−0.5 m/s

Each trajectory coming from GPOPS has 61 points, so 61 states and 61 control
actions. Each states has three elements, altitude, velocity and mass; each control
action has only one component, the magnitude. The final dataset has been built
by associating each state to each control action. This dataset has been divided in
training set and test set; the first one comprehends 81 trajectories, the second
one 20.
In Fig. 5.1 it is possible to see an example of a trajectory in the dataset. For
the example shown, the initial altitude was equal to 1250 meters. Fig. 5.2 shows
the plot of the thrust magnitude bang-bang profile, between the two conditions
(minimum or maximum), as the theory predicts.

5.3 Proposed network architectures

To fulfil the described vertical Moon landing, different architectures have been
tried and three main kind of CNNs have been implemented:

1. First architecture: a classical CNNs has been exploited and therefore,
both convolutional layers and max-pooling layers are present (Fig.5.3).
The hyper-parameters for each layer have been set as:

• First Convolutional layer,
[
36 filters, size 4× 4, stride 2

]
.

• Max-pooling layer,
[
size 2× 2, stride 2

]
.



5.3. Proposed network architectures 49

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400

Figure 5.1: 1D altitude profile
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Figure 5.2: 1D thrust magnitude

Figure 5.3: First CNN architecture

• Second Convolutional layer,
[
36 filters, size 4× 4, stride 4

]
.

• Max-pooling layer,
[
size 2× 2, stride 2

]
.

• Third Convolutional layer,
[
72 filters, size 2× 2, stride 1

]
.

• First Fully connected layer,
[
256 neurons

]
.

• Second Fully connected layer,
[
128 neurons

]
.
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• Output layer,
[
2 classes

]
.

2. Second architecture: in this network max-pooling layers have been re-
moved. The net looks like the one in Fig. 5.4 and its hyper-parameters have
been set as:

• First Convolutional layer,
[
36 filters, size 4× 4, stride 2

]
.

• Second Convolutional layer,
[
36 filters, size 4× 4, stride 4

]
.

• Third Convolutional layer,
[
72 filters, size 2× 2, stride 1

]
.

• First Fully connected layer,
[
256 neurons

]
.

• Second Fully connected layer,
[
128 neurons

]
.

• Output layer,
[
2 classes

]
.

Figure 5.4: Second CNN architecture

3. Third architecture: this last architecture (Fig. 5.5) is made up of 5
convolutional layers with following parameters:

• First Convolutional layer,
[
36 filters, size 3× 3, stride 2

]
.

• Second Convolutional layer,
[
36 filters, size 3× 3, stride 4

]
.

• Third Convolutional layer,
[
72 filters, size 2× 2, stride 2

]
.

• Fourth Convolutional layer,
[
72 filters, size 2× 2, stride 2

]
.

• Fifth Convolutional layer,
[
72 filters, size 2× 2, stride 1

]
.

• First Fully connected layer,
[
256 neurons

]
.

• Second Fully connected layer,
[
128 neurons

]
.

• Output layer,
[
2 classes

]
.

Figure 5.5: Third CNN architecture
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The tests have showed that better results can be achieved with network deprived
of max-pooling layers. In fact, this kind of layer eliminates many information (as
shown in Section 2.4) which instead the network needs to be properly trained
and to extract features. When the results revealed themselves promising, it has
been decided to increment the number of convolutional layers up to five. In this
way, the total amount of data is processed and gradually reduced, but no data
are directly thrown away. A rough test accuracy on these CNNs leaded to the
accuracies shown in Tab. 5.2. Training phase and more details about third CNN
results are described in following the section.

Table 5.2: Accuracy for each implemented CNN

Model Accuracy

First architecture 90%

Second architecture 95%

Third architecture 97%

5.4 Training and test phase

5.4.1 Training

Differently from the case previously treated, the neural network has been
trained to understand from raw images the correct control action to apply to
perform a fuel-optimal vertical 1D landing on the Moon. For this purpose, the
states, coming from the dataset described in Section 5.2, have been used as input
for the 1D Moon images simulator (described in Chapter 4). In this way, a new
dataset has been created associating all the images to the relative control actions.
As was done in the case of 2D landing with RNN, here too, each input is composed
of three consecutive superimposed images. This has an even more important
meaning than the previous case studied, because each image is like a static picture
of the Moon surface and with one only image it would be impossible to have any
information about the velocity of the lander. In this way instead, the net has the
possibility to keep track of velocity, improving the accuracy of the response. The
sequence of images, belonging to each trajectory (61 states), has been divided
in sets of three images following the second strategy explained in Section 3.4.1,
according to which each trajectory, is separated from the other. In fact, as it has
already been shown, this technique has proved to give better results. The input
packages are 59, because eve if images per trajectory are 61, the first two enter
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the net only once. As already said, the solution of a fuel-optimal problem has
a bang-bang profile and therefore, the control action can have only two possible
values. Moreover, in the case of a vertical landing, the control direction is always
the vertical one. For these reasons, the network has to solve only a classification
problem: from all the information that can be extracted from the inputs, the net
has to decide which is the correct thrust magnitude, between the allowed two.
Binary vectors of length two have been used to represent the two classes. When
the thrusters are at their maximum, the correct label is [0, 1] and when they are
at minimum thrust, the label is [1, 0]. Each input package of three sequential
images has been associated to only one output label. In this way, from a control
system point of view, at time t the control action is predicted taking the image
of the current state and those of state t− 1 and t− 2. The network has all the
information contained in three consecutive frames to predict the correct label.

The labels have been associated to the images following two different logics.

Figure 5.6: CNN input according to 1◦ logic

Figure 5.7: Mean of thrust vectors

According to the first technique, the idea has been to exploit all the information
available on thrust related to three input images. Therefore the labels to consider,
in this case, are three vectors. The thrust entering as label in the system for
training has been computed by applying the mean of the input thrust vectors
(Fig. 5.6). Some examples of mean procedure are described in Fig. 5.7. The
resulting thrust is then linked with the third image, this thinking about the way
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to proceed of a control system (predict the thrust of the current state by looking
the previous states). This approach has proved to be inaccurate because it is
not capable to catch the thrust change, which is not continuous. In particular,
the thrust changes are seen with delay. To better understand this consideration,
Fig. 5.8 shows how the network works using the approach explained above. In
conclusion it is not possible to achieve high accuracy because the net will always
make a mistake in the regions where jump conditions are present, even if it works
properly far from them.

Figure 5.8: Example of wrong input

According to the second approach, the network has been fed with only one
label relative to the optimal thrust associated to the third image in input, as it is
shown in Fig. 5.9. This logic has proved to be better.

Figure 5.9: CNN input according to 2◦ logic

Before entering the net, the images are normalized between 0 and 1 considering
the maximum value among all the image dataset. In this way each image is
normalized with the same logic. Each image enters the net as a square matrix
256× 256. Therefore, the input packages are three-dimensional matrices 3× 256×
256 [number of images × image size × image size]. As explained in Section 3.4.1,
it is possible to feed the net with a batch of inputs and this technique can result
in an important accuracy improvement. In order to train the network on an entire
trajectory at each iteration, a batch of 59 inputs has been considered. In this way,
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59 sequential input packages and 59 correct labels enter the net at each iteration
during the training phase.

As said in Section 2.2, the comparison of the predicted net outputs and the
right outputs is carried out through the computation of a loss function and
the purpose of the training phase is to minimize it. In Section 3.4.1, Adam
optimization algorithm, used to minimize the loss function, has already been
presented. Also in the case of a vertical Moon landing with images, it has been
exploited during the training phase. Remember that it can adapt the learning
rate as training unfolds thanks to the decay parameter (Eq. 3.4). Also the study
here presented has been developed in a Python-Keras and Pyhton-Tensorflow
environment, where Adam method is already implemented. Since the network has
to solve only a classification problem, there was no need to weight the loss function
values associated to the model outputs. In Tab. 5.3 the chosen hyper-parameters
are resumed. Classification predictions can be evaluated using accuracy and the

Table 5.3: Resuming of hyper-parameters of CNN 1D

Hyper-parameters

Batch size 59

Initial learning rate 0.001

Decay rate 0.0001

loss function associated is the Cross-entropy loss (Eq. 3.5) which indicates the
distance between the model prediction and the true value of the output and where
softmax function outputs a probability distribution (Eq. 3.6).

The results are now illustrated. The training has been performed using the
training set with 4941 images (61 state × 81 trajectories). The network has been
trained in 200 epochs, using in each one a batch of 59 inputs. In order to have
a feedback during training phase on net performances the training set has been
split, also for this network, in order to have a 5% of the dataset available for the
validation model. In Fig. 5.10a the loss trend during the training phase is shown,
while in Fig. 5.10b, it is possible to see the CNN accuracy trend. The training
phase has been performed with the help of a High Performance Computing (HPC)
systems of the University of Arizona and it has taken about 12 hours to complete
the train. Looking at the training results, it is clear that some parameters can
be changed in order to improve the minimization process of the loss function. In
fact, as it can be seen, the loss function, as well as the accuracy, are still a bit
noisy after 200 iterations. This could mean that the minima has not been already
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reached or that hyper-parameters must be properly tuned. Good results have
been anyway obtained even if some future work has to be done.

(a) Loss function trend

(b) Accuracy trend

Figure 5.10: Loss function and accuracy results during CNN 1D training phase

5.4.2 Test

As said before, the test set is made by 20 trajectories. To visualize the trained
net performances on the classification (accuracy) a confusion matrix has been
computed.

As shown in Fig. 5.11, the CNN trained model has an accuracy of 97, 63%
(remember that in the confusion matrix 0 is associated to minimum thrust, 1
to maximum) which is lower than the minimum target of 99%, as mentioned
in Section 3.4.2. In the following section, a method to improve the precision is
illustrated.
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Figure 5.11: Confusion matrix CNN 1D

5.5 Accuracy improvement: DAgger approach

In Section 3.5 the DAgger approach has already been described. After the
training and test phase of the CNN a DAgger method has been implemented to
enhance the accuracy on the predictions. It is important to remember how the
DAgger approach has been implemented in this work:

1. Train the net on a dataset D generated with GPOPS.

2. Run the net to get performances by using the test set Dtest.

3. Check for which trajectories the trained model error is not acceptable in
terms of classification accuracy and RMSE (if any).

4. Pick up the wrong trajectories in Dwrong.

5. Use Dwrong to improve net performances.

As said in Section 5.4.2 the global accuracy on test set has been 97.63%. The
trajectories predicted with an accuracy < 98% have been picked up from the test
dataset. With the trained CNN and this criteria the wrong trajectories turned
out to be 8 of the 20 belonging to the test set. Then, the DAgger has been
implemented following the second strategy explained in Section 3.5: aggregate
the training test with the wrong trajectories and then re-train the net model on
the new enlarged dataset (Fig. 5.12).
Finally the result for the applied strategy reaches an accuracy of 99.15%

(Fig. 5.13). As it is possible to see, thanks to the DAgger technique, the accuracy
of the CNN on the predictions has been significantly improved.
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Figure 5.12: Applied DAgger strategy for CNN 1D

Figure 5.13: Confusion matrix after DAgger approach for CNN 1D

5.6 Performance on a dynamics simulator

Once it has been proven that the CNN is able to achieve good results, it has
been interesting to verify if the spacecraft can be controlled only by the well
trained neural network, to perform a vertical Moon landing. For this purpose, the
dynamics simulator, described in Section 3.6, has been modified and adapted to
simulate the behaviour of a lander controlled by a CNN processing raw images.
In particular, Moon images instead of the states are the simulator’s input. For
this reason, the Moon image simulator is embedded in the dynamics simulator,
with the aim of transforming initial (and non-initial) states into images. Since
the network input is composed of three consecutive images, as described before,
three initial consecutive images have to be known to initiate the simulation. The
network takes this first input to predict the first control action, with which the
dynamics are propagated throughout the duration of the time step, maintaining
the control constant. The propagation is performed in the same way as described
in Section 3.6. Once the integration is completed, the new generated state is fed
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into the image simulator and the new rendered image is aggregated with the last
two of the previous input, in order to prepare the new one for the network. A new
prediction and a new dynamics propagation follow. The loop is repeated until
all the given time interval is covered or until the stopping criteria are satisfied.
They force the loop to stop when an altitude of 50 meters (which is the lower
limit of the training trajectories) is reached and when the spacecraft starts to rise
in altitude. In the following the results of the simulation, performed considering
the initial conditions of a trajectory taken from the testing set, are shown. The
simulator used to generate the following figures has been developed in Python.

In Fig. 5.14 the optimal altitude and the propagated one are shown. In
Fig. 5.15 the optimal vertical velocity and the propagated one are compared. The
propagated final vertical velocity is equal to −7 m/s, while the optimal one is
−0.5 m/s. In Fig. 5.16a the control actions predicted by the CNN and the correct
ones are shown. Finally, in Fig. 5.16b it is possible to see what happen when
the same CNN is used off-line (instead of on-line), starting from the same initial
conditions. It is interesting to notice that, when the network is on-board, some
wrong predictions are performed, while there are no errors when the CNN is used
off-line to process the same entire fuel-optimal trajectory.
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Figure 5.14: Comparison between optimal and predicted altitude

Many simulations like this have shown, also in this case, that the network’s
performances are very sensitive to the time step extension. A good balance, in
which the network is able to give right predictions and the control is quite accurate
despite the approximations, must be found. For the example shown, the time step
has been set equal to 0.82 s. The error made on the vertical velocity is due to the
fact that, as shown in Fig. 5.16, the network makes two wrong predictions when
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Figure 5.15: Comparison between optimal and predicted vertical velocity
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(a) Optimal and predicted thrust on-line
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(b) Optimal and predicted thrust off-line

Figure 5.16: Comparison between on-line and off-line thrust predictions using CNN 1D

it is employed on-line. This is due to the fact that during the on-line simulation,
errors on the states are propagated and brought toward the end of the landing.
Wrong states (that is wrong images) enter the net which can make some prediction
mistakes.



Chapter 6

From image to control: planar
Moon landing

The last step of this work has been to perform the planar landing exploiting the
surface images of the Moon. This has been reached by melting the RNN−LSTM
neural network with the CNN, therefore this chapter is focused on describing
the Deep RNN designed for this purpose. The approach is similar to the one
explained in Chapter 3 for the vertical landing; in fact, after the training phase
of the proposed network, a test has been carried out followed by the DAgger
approach.

6.1 Proposed network architecture

The aim of this designed network is to exploit the images made up by the
on-board cameras to have a prediction directly on the control action. Dealing with
2D problem, the label associated to each image has two components: one for the
thrust magnitude and one for the thrust angle as explained in Section 3.2. The
images dataset have been created by using the states belonging to the 2D dataset
(Section 3.2). Basically, the trajectories are the same but in the planar problem,
instead of the states as input, the net is fed with the corresponding surface images.
The architecture designed is shown in Fig. 6.1. The incoming input (package of
images) is processed in succession first by a CNN and then by a RNN−LSTM
which are linked by a fully connected layer. The processed output of RNN−LSTM
goes into two different branches: one which perfom the classification and one
aimed for regression as explained in Section 3.3. The network is implemented in
Python-Keras and it has been composed by:

• Input layer which takes, as mentioned in Section 5.4.1, three consecutive
images at a time.

60
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Figure 6.1: Proposed deep RNN for planar landing

• Convolutional neural network (Fig. 6.2). Note that, the hyper-parameters

Figure 6.2: CNN melted in deep RNN network in Pyhton-Keras

for the Conv. layers have been tuned differently from the Conv. layers in 1D
case detailed in Section 5.3. The convolutional layers have been set equal to
4 instead of 5:

– First Convolutional layer,
[
36 filters, size 4× 4, stride 2

]
.

– Second Convolutional layer,
[
36 filters, size 2× 2, stride 2

]
.

– Third Convolutional layer,
[
72 filters, size 2× 2, stride 2

]
.

– Fourth Convolutional layer,
[
72 filters, size 2× 2, stride 2

]
.

The last layer (flatten layer) allows to transform the CNN outputs in a row
in order to prepare the input for LSTM cell.

• Fully connected layer which is followed by a reshape layer as shown in line
dense_2 and line reshape_2 in Fig. 6.3 These two layers have been used to

Figure 6.3: Input reshape layer before LSTM cell in Pyhton-Keras
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reshape the input as requested for LSTM cell.

• Long-short-term-memory cell is the same as described in Section 3.3.

For the designed net the trainable parameters have been resulted 29.574.483 which
means a computationally expensive training phase.

6.2 Training and test phase

6.2.1 Training

The idea to train the deep RNN has been the same of previous sections;
therefore, the inputs have been gathered in packages of 3 images. As already
described in Section 5.4.1 this choice improves the net response because allows to
keep track of velocities during landing. The batch size has been set to 59 also for
this network, in order to fed the input layer with one trajectory at a time. The
original images (with a dimension 256 × 256) have been normalized between 0
and 1 and reshaped such that the input pack is a matrix 3× 65.536 [number of
images × pixels per image]. This because each image is transformed in a row.
The associated label (which consists of the thrust magnitude and the thrust angle)
is the one corresponding to last image of each input matrix (see Section 5.4.1).
Since the training phase is computationally demanding, the epochs have been
set to only 200 and using only 80 trajectories (4880 images). Given that the
number of trajectories for train is lower, no validation split has been done on
dataset. The simulation have been performed thanks to HPC (High Performance
Computing) systems of University of Arizona, like Extremely LarGe Advanced
TechnOlogy (El Gato), which uses specially designed hardware to achieve high
performance economically, including NVIDIA K20X GPUs and Intel Xeon Phi
5110p Coprocessors (for more details see [17]). The loss functions are the same
used for previous simulation (see Section 5.4.1), cross entropy for classification
purpose and RMSE for regression purpose (Tab. 6.1). The results of training
phase are shown in Fig. 6.4. As it is possible to note from these graphs, the
training phase in noisy enough to affirm that no convergence has been achieved.
This is due to the complex problem; in fact, the input image is transformed in a
row of normalized numbers that pass through all neurons so many times increasing
the required computations. Therefore, a better tuning of hyper-parameters is
required to mitigate this phenomenon and achieve better results. This could lead
to an increase of number of training epochs, a lower initial learning rate or a more
precise choice of loss weights. Moreover, while in the regression a final flat trend
can be highlighted, the classification is very far from convergence. Furthermore in
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Table 6.1: Resuming of hyper-parameters of Deep RNN

Hyper-parameters

Batch size 59

Initial learning rate 0.001

Decay rate 0.0001

Regression loss weight 10

Classification loss weight 60

(a) Classification loss for deep RNN during training

(b) Regression loss for deep RNN during training

Figure 6.4: Classification and regression losses evolution during training phase for deep
RNN

the graphs (Fig. 6.4) some clear peaks are present and they are due to the change
in the learning rate during the training phase. Also these peaks underline the
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considerations just made.

6.2.2 Test

According to the threshold chosen to evaluate the reached precision response
and justified in Section 3.4.2, the results are considered good. Even if the
model should be better trained, the results are very promising. A test have been
developed over 30 trajectories and the related confusion matrix is shown in Fig. 6.5
(remember that in the confusion matrix 0 is associated to minimum thrust, 1 to
maximum). The accuracy on the thrust classification reaches the 98, 51% and the
RMSE = 0.76◦ (Fig. 6.6). Unlike the results obtained for the RNN−LSTM, in
Fig. 6.6 there are some points that do not lie on the regression line.

Figure 6.5: Confusion matrix deep RNN

Figure 6.6: Regression with trained deep RNN
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6.3 Accuracy improvement: DAgger approach

The DAgger on Deep RNN has highlighted the need of a better tuning of
parameters. In fact, according to the same criteria seen before in Tab. 3.3 applied
for RNN−LSTM, the wrong predicted trajectories have been 30 over the 30
belonging to the test set (100% of the set). Performing a DAgger some conclusions
can be underlined. Looking at Fig. 6.7, it is possible to note that even if the
accuracy clearly increase and only 0, 57% of the total predictions are wrong, the
RMSE has a worse value. It passes from the 0.76◦ (using the trained model) to
1.44◦ after DAgger. This means again that the loss weights have not been properly
chosen or the epochs have not been enough to allow a complete training phase.
A longer training phase should lead to a convergence in updating the weights

Figure 6.7: Results after DAgger approach applied to Deep RNN

and biases but the training time could result too high since for 200 epochs and
employing the HPC systems, the simulation procedure has taken more than 20
hours. Many conclusions can be drawn from the proposed Deep RNN: given the
power of the tools used and proved in developing the CNN for the 1D problem
and the RNN−LSTM for the 2D problem, a better response in using Depp RNN
for a 2D landing was expected. The inaccurate results, particularly on regression,
bring out the need for more robust training phase. This means better use of
HPC system and, specifically on network training, an appropriate tuning of the
parameters (learning rate, decay rate, loss weights, number of epochs).

Despite this, the output is considered valid because the error on angle value is
limited to 1.44◦ after DAgger and the error on thrust magnitude is 0, 57%. This
shows that it is possible and convenient to exploit a neural network also with
optical navigation for proximity operations. The network in fact, is operatively
speaking an advantage because the forecast on the control action is provided in a
short time.



Chapter 7

Conclusions and future works

7.1 Conclusions

This thesis has highlighted advantages and limits for machine learning applied
to a Moon landing. Surely the great benchmark is the possibility to exploit the
Artificial Intelligence dealing with space framework and in particular with the help
of images arriving from the on-board instruments. What has been discovered is
that deep neural networks can achieve high accuracy in space guidance problems,
using full states knowledge or other sensors, like on-board cameras. In the following
table a wrap-up of the most important numerical results is shown.

Table 7.1: Results resuming

Networks Classification accuracy Regression error

CNN 1D 99.15%

RNN − LSTM 99.25% 0.4◦

Deep RNN 99.43% 1.44◦

Considering the 2D planar landing, the Recurrent neural network described
in Chapter 3, is able to determine the fuel-optimal control actions to apply,
by processing three consecutive states of the system. An accuracy of 99.43%
on the classification and a regression error of 0.4◦ are achieved during the test
phases. It has been shown how Recurrent networks are able to exploit information
computed in the past to improve the next prediction. This particular feature
has demonstrated to be very useful dealing with a guidance problem, in which
long sequences of data are considered and processed. Dealing with a vertical
Moon landing, the convolutional neural network illustrated in Chapter 4 has been
trained to process three consecutive Moon surfaces images to understand the

66
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thrust profile. Even if the problem is simpler from a dynamical point of view,
the obtained results (accuracy of 99.15%) are relavant considering the fact that
only raw images are taken as input and therefore no state estimation is necessary.
Finally, the Deep Recurrent neural network shown in Chapter 6, has been designed
linking the previous two with the aim to solve a problem more similar to reality.
The information extracted from the Moon surface raw images are exploited during
a 2D landing to control the lander, solving a classification (on thrust magnitude)
and a regression (on thrust angle) problem simultaneously. An accuracy of 99.43%
and an error of 1.44◦ on the thrust angle prediction have been achieved. This
first results show that deep neural networks can be employed to solve high-fidelity
space guidance and navigation problems.

It has been proven that the DAgger approach can enhance the predictions
accuracy even if there isn’t any human action/correction, which is the classical
procedure followed up to now for terrestrial experiments. This represents an
important evidence that imitation learning can play a significant role in the future
artificial intelligence applications.

7.2 Future work

Despite the results and the applied techniques are very promising, some
conclusions must be underlined.

As it has been demonstrated, image processing nets (CNN) need a long time
for training phase and according to the accuracy and precision requested by a
delicate environment such as the space, it cannot be satisfied with a few hundred
of epochs. For this reasons, a future development of this work could be focused
on a more accurate use of GPUs and HPC systems in order to perform a better
training phase.

Another research should be made in studying the assistance of more than
one cameras and using also sensors measurements. Particularly during the last
few steps of a landing phase, images alone could be not sufficient for an optimal
prediction on the control actions. This is the principal reason whereby the
constraint of 50 meters has been imposed. Embedding the information coming
from other kind of sensors (i.e. optical and inertial) with those coming from the
images, could lead to a performances improvement.

A remark has already been underlined describing the dynamics simulator for
both 1D and 2D case. The limits of the generated dataset and of the applied
approach have emerged from these on-line simulations. All the networks developed
in this thesis have been trained with fuel-optimal trajectories created with GPOPS,
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in which each optimal control action is associated to a state. In an on-line
simulation (i.e. like the dynamics simulations), the states coming from the
integration of the equations of motion could be affected by errors, due to integration
inaccuracy. Since the network inputs are conditioned on the states, the errors are
then propagated along the predicted trajectories. This problem is evident looking
at the result of the Monte Carlo simulation in Section 3.7. As mentioned, a
training phase performed with denser trajectories of points may partially solve the
problem, making the networks more robust against the propagated errors. In this
way, propagated errors would be less effective on the on-line predicted trajectory.
On the other hand, these conclusions open the possibility of implementing a
Reinforcement Learning algorithm instead of a Supervised one, because the need
of a dataset is overcame. In this framework, the network interacts with an
environment (i.e. the dynamics of the system) to learn a policy, with which it is
possible to apply an optimized control action, at each time step. An interesting
method is represented by the Guided Policy Search algorithm presented by Sergey
Levine and Vladlen Koltun in [16]. In this paper it is shown how trajectory
optimization can direct and guide the policy search away from poor local optima.
This different approach would make the deep neural networks more powerful and
able to overcome the limit deriving from the possible inaccuracy of the training
set.
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