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Sommario

Questo elaborato di tesi si concentra sulla modellazione matematica del
fenomeno fisico del trasporto di massa nelle miscele, applicata alle mem-
orie a cambiamento di fase (Phase Change Memory, PCM). Fra i modelli
matematici sviluppati per questo fine, il modello di Maxwell-Stefan coniuga
due aspetti fondamentali: da un lato, fornisce tutti gli strumenti necessari
per una analisi esauriente del movimento delle specie chimiche nelle mis-
cele diluite e non diluite; dall’altro consente di includere nelle equazioni, con
relativa facilità, tutte le generiche forze che possono agire su un sistema fisico.

A causa dell’accoppiamento e della non-linearità delle equazioni che lo
compongono, la risoluzione di questo modello richiede l’utilizzo di tecniche di
iterazione funzionale quali il metodo di Newton e la mappa di Gummel. La
discretizzazione delle equazioni è stata effettuata con il metodo di Galerkin
agli elementi finiti.

Sono stati svolti numerosi test, nel caso di miscele diluite i risultati ot-
tenuti sono stati confrontati con quelli forniti da modelli validati in letter-
atura, ad esempio il modello di Fick per la diffusione e il modello di Poisson-
Nernst-Planck. Questi modelli possono essere interpretati come casi limite
per miscele diluite del più generale modello di Maxwell-Stefan.
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Abstract

This thesis focuses on the mathematical modeling of the physical phenomenon
of mass transport in mixtures, applied to phase change memories (Phase
Change Memory, PCM). Among the mathematical models developed for
this purpose, the Maxwell-Stefan model combines two fundamental aspects:
on one hand, it provides all the tools necessary for an exaustive analysis
of the movement of chemical species in diluted and undiluted mixtures; on
the other hand, it allows us to include in the equations, quite easily, all the
generic forces that can act on a physical system.

Because of the coupling and non-linearity of the equations, the resolution
of this model requires the use of functional iteration techniques such as the
Newton method and the Gummel Map. The discretization of the equations
was performed with the Galerkin Finite Element Method.

Numerous tests have been carried out, in the case of diluted mixtures
the results obtained have been compared with those provided by models
validated in the literature, for example the Fick model of diffusion and the
Poisson-Nernst-Planck model. These models can be interpreted as limit cases
for dilute mixtures of the more general Maxwell-Stefan model.
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Introduction

The need of reliable high-performance memory devices has led in recent
years several microelectronics and semiconductor companies to develop a
new generation of electronics memories, the so-called Phase Change Mem-
ories(PCM). This kind of memories exploits the properties of chalcogenide
materials to change their phase from the amorphous phase to the crystalline
phase. During the phase change, sufficiently high temperatures are reached
to cause mass transport inside these devices which may compromise the cor-
rect operation of the device. In order to improve the reliability of these
devices it is therefore essential to be able to analyze and understand the
mass transport phenomenon. For this purpose, the Maxwell-Stefan model is
introduced and analyzed.

This document is structured as follows:

Chapter 1 introduction to the mode of operation of a PCM and an overview
of the main physical phenomena to be included in the model with
regard to mass transport;

Chapter 2 presentation of the Maxwell-Stefan model starting from the
analysis of the interactions between chemical species up to the equa-
tions in their most general form. Comparison between the Maxwell-
Stefan model and the Fick model of diffusion;

Chapter 3 inclusion of the electric field and the thermal field in the Maxwell-
Stefan equations, introduction of the Poisson equation for the electric
potential. Formulation of an iterative algorithm for the solution of the
Poisson-Maxwell-Stefan model;

Chapter 4 weak formulation of the equations and analysis of a good posi-
tion of each step of the iterative algorithm;
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Chapter 5 discretization of the equations and solution through the Galerkin
Finite Element Method and details on the implementation of the code;

Chapter 6 tests on the Maxwell-Stefan model and comparison with Fick
diffusion models. Comparison between Poisson-Maxwell-Stefan and
Poisson-Nernst-Planck models.
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Chapter 1

Introduction to Phase Change
Memories

Phase Change Memories(PCM) constitute one of the most promising exam-
ple of nanotechnology in advanced non-volatile solid state devices for data
writing, reading and storage. Offering excellent performances, good scalabil-
ity and high reliability, this device represents the state of the art of memory
production.

This type of memories exploit the great difference in resistivity between
the crystalline and the amorphous phase of phase change materials. Chalco-
genide materials in amorphous phase (Figure 1.1a) have a high resistivity,
while in the cristaline phase (Figure 1.1b) they have a low resistivity.

(a) Amorphous phase (b) Cristaline phase

Figure 1.1: Comparison between the disordered amorphous phase (a) and
the ordered cristaline phase (b)
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To set the PCM cell to an amorphous state, a large current pulse is
applied which, by Joule effect, melts the affected region; the latter, quickly
quenched, remains in an amorphous state (see Figure 1.2). On the other
hand, to set the PCM cell on a crystalline phase, a medium current impulse
is applied which brings the region concerned to a temperature lower than the
melting temperature but higher than the crystallization temperature for a
sufficiently long interval time, typically between 100 ns− 1µs, to crystallize.

Figure 1.2: Qualitative time-voltage relation for the phase change

One of the most used materials in these applications is the Ge2Sb2Te5,
an alloy of Germanium, Antimony and Tellurium, which offers a good com-
promise between electrical properties and phase change velocity. This alloy
is also known as GST-225.

Modeling PCM devices, from a physical and mathematical point of view,
represents a complex challenge due to the multitude of phenomena to be
considered: drift, diffusion, thermal effects, state and phase transitions, etc.

In particular, these devices, for the whole duration of their life, are sub-
jected to high electrical and thermal stresses that cause the movement of the
atoms that make up the alloy. Phenomena of this kind, which occur above all
near the melting point where the mobility of atoms are higher, create vari-
ations in the composition of the material both in space and in time. These
variations have important consequences on the performance and reliability
of the device.

For a complete description of the device as a whole, we need a model
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Figure 1.3: Cross section of a PCM cell, c-GST and a-GST regions corre-
spond to region in the crystalline or the amorphous phase, respectively

that takes into account all the above mentioned physical phenomena that
are created and therefore includes: the Poisson equation for the electrical
potential, the heat equation for the temperature, a model for phase change,
for drift-diffusion and eventually for mass transport.

One of the most used models for mass transport is the following [15]:
∂c

∂t
+∇ ·N = 0

Ni = −D
(
∇c+

z∗q

kbT
c∇ϕ+ αc

∇T
T

) (1.1a)

(1.1b)

where c is the concentration, D is the phase and temperature dependent
diffusivity and z∗ is the effective charge. Essentially, the considered model
is an extension of the Fick model for diffusion, which is represented by the
first term in (1.1b). The second term considers the effect of the electric field
while the third term considers the effect of temperature. The electrical po-
tential and temperature functions are given respectively by the Poisson and
heat equation. The equation system (1.1) is solved using the finite element
method for each of the chemical species that constitute the alloy, three con-
sidering the GST-225, to which are added an equal number of suitable initial
conditions.

Experimental evidence shows a significant deviation of the experimental
data from the predictions of the mathematical model (1.1). In order to
provide a more accurate description of mass transport, accounting also for
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the effects of the electric field and temperature, we propose in the present
thesis the Maxwell-Stefan model. In the following chapters, we illustrate the
physical background of the formulation, we provide theoretical results of its
well-posedness and a computational algorithm for its approximate solution.
Simulation results are also discussed in detail for a validation of proposed
model and methods.
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Chapter 2

The Maxwell-Stefan Model

In this chapter we introduce the Maxwell-Stefan model for mass transport
in gaseous and liquid mixtures [11][12]. With this aim, we start from the
analysis of the interaction between the chemical species that constitute the
mixture and then we consider the most general forces that can act on the
physical system. We conclude the presentation with a comparison between
the Maxwell-Stefan model and the Fick model.

2.1 Introduction and notation

Mass transport is the transfer of mass or, on a microscopic scale, the move-
ment of atoms or molecules of a given material or substance due to the action
of different drivers, such as temperature and electric field.

In the applications of our interest in the present work, materials and sub-
stances are usually mixtures. Mixtures are a combination of chemical species
such that each species retains its own chemical identity and chemical bonds
between the species are neither broken nor formed. In particular, a binary
mixture is composed by two chemical species, whereas a multicomponent
mixture is composed by two or more chemical species. If the concentration
of a species, let us say the nth one, is much larger than the concentration
of all the other species, the mixture is called diluted. The nth species is
named solvent and the others are named solutes. In a dilute mixture, all the
interactions between solutes can be considered negligible. Diluted or undi-
luted mixtures that have thermodynamic properties analogous to those of a
mixtures of ideal gases are named ideal mixtures.
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Let us introduce the definitions of some physical quantities that will be
useful for the development and comprehension of Maxwell-Stefan’s theory:

Name Description unit of measure

n number of species in the mixture [−]
ci molar density of species i

[
mol m−3

]
ρi density of species i

[
kg m−3

]
ni number density of species i

[
m−3

]
ct total molar density

[
mol m−3

]
ρt total density

[
kg m−3

]
nt total number density

[
m−3

]
xi molar fraction of species i [−]
ωi mass fraction of species i [−]
ui velocity of species i

[
m s−1

]
u average velocity

[
m s−1

]
Ni molar flux of species i

[
mol m−2 s−1

]
Nt total molar flux

[
mol m−2 s−1

]
Ji relative molar flux of species i

[
mol m−2 s−1

]
µi molar chemical potential of species i

[
J mol−1

]
Table 2.1: Useful physical quantities

The following relations among the variables are assumed to hold:

ct =

n∑
i=1

ci

ci = xict −→ 0 ≤ xi ≤ 1

u =

n∑
i=1

xiui

Ni = ciui

Nt =

n∑
i=1

Ni =

n∑
i=1

ctxiui = ctu

Ji = ci (ui − u) = Ni − ciu
n∑
i=1

Ji = 0

(2.1a)

(2.1b)

(2.1c)

(2.1d)

(2.1e)

(2.1f)

(2.1g)
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Using equations (2.1b) and (2.1a) we obtain the following constraint for the
molar fractions

n∑
i=1

xi = 1 (2.2)

The transport regime corresponding to the condition Nt = 0, is called
equimolar diffusion. In this case, (2.1e) implies that:

u = 0

Nt =

n∑
i=1

Ni = 0

(2.3a)

(2.3b)

Let us consider a chemical species i; the number density ni and the total
number density nt are related to the molar densities ci and ct through the
relations:

ni = NAci

nt = NAct

(2.4a)
(2.4b)

whereas the density ρi and the total density ρt are related to the molar
densities ci and ct through the relations:

ρi = Mici

ρt =

n∑
i=1

ρi = ct

n∑
i=1

xiMi

ωi =
ρi
ρt

(2.5a)

(2.5b)

(2.5c)

where NA is the Avogadro constant
[
6.022e23 mol−1

]
and Mi is the molar

mass of species i (kg mol−1).

2.2 Duncan and Toor experiment

Before analyzing thoroughly the Maxwell-Stefan relations, we illustrate in
this section an experiment conducted by Duncan and Toor in 1962 [3] since
it shows important feature that can not be explained by the standard Fick’s
law of diffusion.

The experiment set-up consists in two bulb cells connectet by a capillary
tube. At time t = 0 the molar fractions of the three gases which constitute
the ideal mixture are:
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Hydrogen Nitrogen Carbon dioxide

Bulb 1 x1 = 0.00000 x2 = 0.50086 x3 = 0.49914
Bulb 2 x1 = 0.50121 x2 = 0.49879 x3 = 0.00000

In addition, the pressure and the temperature are constant in space and
time. We remark that during the experiment there is equimolar diffusion of
the species, that means no net transfer of flux out of or into the system.
For the hydrogen and the nitrogen molar fractions experiment results are
reported in Figure 2.1, whereas the molar fraction of the carbon dioxide can
be deduced by recalling that they all sum up to one.

(a) Hydrogen (b) Nitrogen

Figure 2.1: Results of Duncan-Toor experiment

In Figure 2.1 the squares and dots represent experimental data, white
for bulb 1 and black for bulb 2. The solid lines are the predictions of the
Maxwell-Stefan model.

Examining the two graphs in Figure 2.1 we find that the time trajectory
of the hydrogen molar follows the classic Fick’s diffusion moldel, mathemat-
ically represented by formula (2.6), whereas the nitrogen molar fraction does
not follow the classic Fick law.

Ji = ci (ui − u) = −ctDi∇xi Di > 0 i = 1, . . . , n (2.6)

As can be seen from the graph in Figure 2.1b, the temporal trajectories
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of the nitrogen show four different phenomena defined by Toor in [22] and
called:

Osmotic diffusion : flux in absence of molar fraction gradient (∇x2 ≈ 0),
shown at t = 0;

Reverse diffusion : flux in opposite direction of the molar fraction gradi-
ent

(
J2
−∇x2 < 0

)
, shown in 0 < t < t1;

Diffusion barrier : null flux despite a big molar fraction gradient, at t =
t1:

Standard diffusion : flux direction and the molar fraction gradient direc-
tion agree, from t > t1.

As a matter of fact Fick’s law holds under the hypothesis of binary mixture
or to describe the diffusion of a dilute species i in a multicomponent dilute
mixture. It seems obvious that if, as in the Duncan and Toor experiment,
undiluted species are treated, a more general model of diffusion is needed.
An alternative formulation is the Maxwell-Stefan model that is described in
Section 2.3.

2.3 Derivation of the Maxwell-Stefan relation

In this section we start with a two-component system, whereas we consider
a more general setting in the next sections.

2.3.1 Diffusion in binary mixtures

In this section we want to explain the origins of the Maxwell-Stefan equa-
tions, thus we can start by taking as physical example the Duncan and Toor
experiment. We consider a pipe through which atoms or molecules of two
species, called 1 and 2, flow. By Newton’s second law, the sum of the forces
acting on a system is proportional to the rate of change of the momentum
of the whole system, so we proceed by analyzing forces and momentum.

Considering the infinitesimal control volume represented in Figure 2.2,
the forces acting on the volume can be body forces, such as gravity or elec-
trical force, and surface forces, like pressure or shear stress. For simplicity
we start by considering only the pressure exerted on the two faces of the

11



Figure 2.2: Control volume

control volume, normal to the z-direction.
Let P be the pressure exerted by the molecules outside the box and pi be
the partial pressure of the species i such that

pi = Pxi

The force exerted by the molecules of type i on the left face is Ti,z = S pi,z
and the force exerted on the right face is Ti,z+dz = −S pi,z+dz. Therefore,
the total force applied in the z-direction by species i is

Ttot,i,z = Ti,z + Ti,z+dz = S(pi,z − pi,z+dz) (2.7)

Dividing equation (2.7) by the volume V = Sdz and passing to the limit for
dz −→ 0 we obtain the force density Fi,z of the species i in the z-direction.

Ftot,i,z = −∂pi
∂z

(2.8)

Considering the other two components of the force vector, the total force per
unit of volume acting for each species i is

Ftot,i = −∇pi i = 1, 2 (2.9)

Let us now investigate the mechanism of the collisions, that are assumed
to be elastic, between two atomic or molecular species. We can consider
an average molecule (i.e. an ideal molecule that represents the average of
all the molecules ) of species 1 and an average molecule of species 2, that
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have momentum m1u1 and m2u2, respectively. When the two molecules
collide the total momentum of the pair of molecules, that is m1u1 +m2u2,
is conserved. Thus, introducing the velocities u′1 and u′2 of species 1 and 2
after collision, we have that

m1u1 +m2u2 = m1u
′
1 +m2u

′
2

so we obtain the average velocity after collision of the species 1 that is [16]

u
′
1 =

m1u1 +m2u2

m1 +m2

So the momentum that a molecule of species 1 transfers to a molecule of
species 2 throught a collision is

∆M1 = m1

(
u1 − u

′
1

)
=
m1m2 (u1 − u2)

m1 +m2

The rate of change of momentum of species 1 per unit of volume is equal to
the average momentum transferred by a collision multiplied by the number
of collisions between 1 and 2 (∝ x1x2) per unit of volume and time, that is

∂M1

∂t
∝ x1x2 (u1 − u2) (2.10)

Combining (2.9) and (2.10) and introducing the proportionality coefficient
f1,2, we get

∇pi = −fi,jxixj (ui − uj)
where f1,2 must have the units

(
kg m−3s−1

)
. Defining the inverse drag

coefficient Ð1,2 = P/f1,2 (m2s−1) we can rewrite the previous equations as

di = −∇pi
P

=
xixj (ui − uj)

Ðij

where di is the driving force of the species i in an ideal mixture at constant
pressure and temperature. Thus di = ∇pi/P = ∇xi and the above equation
becomes

di = −∇xi =
xixj (ui − uj)

Ðij
(2.11)

If we consider the case of a non ideal mixture, a chemical potential gradient
arises in the thermodynamics of irreversible processes as the fundamental
driving force for diffusion, therefore

di = − xi
RT
∇T,Pµi =

xixj (ui − uj)
Ðij

(2.12)
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where ∇T,P denotes the gradient at constant temperature and pressure.
Equations (2.11) and (2.12) are the Maxwell-Stefan relations, respectively,
for ideal and non-ideal binary mixtures at constant temperature and pres-
sure.

Let γi be activity coefficient function of species i. Then, the chemical
molar potential µi is defined as:

µi := µi,0(T, P ) +RT ln
(
γi
pi
P

)
= µi,0(T, P ) +RT ln (γixi) (2.13)

In particular, since the activity coefficient is used to account for deviations
from ideal behavior, in ideal gases γi = 1.

2.3.2 Diffusion in a multicomponent mixture

In Section 2.3.1 we have obtained the Maxwell-Stefan equations for ideal
or non-ideal binary solutions at constant temperature and pressure. The
next step is to write the Maxwell-Stefan equations for a multicomponent
mixture. In this case the interactions between the species are still supposed
to be binary. In other words it is supposed that during the friction process
the momentum transferred by species i to species j is independent of the
presence of other species. Thus the momentum exchanged by species i is
given by the sum of the momenta exchanged by the species i to all others.
Mathematically we can say that the superposition priciple holds, and the
Maxwell-Stefan equations for an ideal multicomponent mixture are

−∇xi =
n∑
j=1
j 6=i

xixj (ui − uj)
Ðij

i = 1, . . . , n (2.14)

whereas in the case of a non-ideal multicomponent mixture we have

− xi
RT
∇T,Pµi =

n∑
j=1
j 6=i

xixj (ui − uj)
Ðij

i = 1, . . . , n (2.15)

Equations (2.14) and (2.15) are the generalizations in the case of multicom-
ponet mixtures of (2.11) and (2.12), respectively.

Starting from (2.15) and using the definition of chemical potential (2.13)
it is possible to deduce the following relation for a multicomponent mixture
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−di =
xi
RT
∇T,Pµi

=
xi
RT

n−1∑
j=1

∂µi
∂xj

∣∣∣∣
T,P,Σ

∇xj

= xi

n−1∑
j=1

(
∂ lnxi
∂xj

+
∂ ln γi
∂xj

∣∣∣∣
T,P,Σ

)
∇xj

=
n−1∑
j=1

(
δij + xi

∂ ln γi
∂xj

∣∣∣∣
T,P,Σ

)
∇xj

=
n−1∑
j=1

Γij∇xj

(2.16)

where

Γij = δij + xi
∂ ln γi
∂xj

∣∣∣∣
T,P,Σ

(2.17)

In equation (2.16), δij is the Kronecker delta and the subscript Σ means that
the differentiation with respect to xj must be evaluated considering constant
all the other molar fractions except the nth one, because molar fractions sum
up to one. For an ideal mixture γi = 1, thus relation (2.16) becomes

di = − xi
RT
∇T,Pµi = −∇xi (2.18)

that corresponds to (2.11) and (2.14).
Equation (2.15) can be also related to the fluxes Ni and Ji as follows

− xi
RT
∇T,Pµi =

n∑
j=1
j 6=i

xixj (ui − uj)
Ðij

=

n∑
j=1
j 6=i

xjNi − xiNj

ct Ðij

=

n∑
j=1
j 6=i

xjJi +XXXXxjxiNt − xiJj −XXXXxixjNt

ct Ðij

=

n∑
j=1
j 6=i

xjJi − xiJj
ct Ðij

(2.19)

(2.20)
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In a thermodynamical system the Gibbs-Duhem equation can be derived
starting from the Gibbs free energy G. The total differential of G in terms
of its natural variables is

dG =
∂G

∂p

∣∣∣∣
T,C

dp+
∂G

∂T

∣∣∣∣
p,C

dT +
n∑
i=1

∂G

∂Ci

∣∣∣∣
p,T,Cj 6=i

dCi

where Ci is the number of mole of component i, S the entropy, V the vol-
ume, T the temperature and p the pressure. Since the Gibbs free energy is
the Legendre transformation of the internal energy, the derivatives can be
replaced by its definitions transforming the above equation into:

dG = V dp− SdT +

n∑
i=1

µidCi (2.21)

The chemical potential is simply another name for the partial molar Gibbs
free energy. Thus it can be defined as

G =
n∑
i=1

µiCi

and its total differential reads

dG =
n∑
i=1

µidCi +
n∑
i=1

Cidµi (2.22)

Combining (2.21) and (2.22) we get

n∑
i=1

µidCi +
n∑
i=1

Cidµi = V dp− SdT +
n∑
i=1

µidCi

which simplifies to the Gibbs-Duhem relation

n∑
i=1

Cidµi = −SdT + V dp (2.23)

Summing equation (2.15) on i we have

−
n∑
i=1

ci∇T,Pµi = R T
n∑
i=1

n∑
j=1
j 6=i

xjNi − xiNj

Ðij
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Dividing (2.23) by V and remembering that T and p are constant we obtain

−R T
n∑
i=1

n∑
j=1
j 6=i

xjNi − xiNj

Ðij
= −S

V
∇T +∇p = 0 (2.24)

The above relation shows that only n− 1 of the n Maxwell-Stefan relations
are linearly independent. Moreover this result shows that the Maxwell-Stefan
approch is consistent with thermodynamics laws.

Remark : The constraints deriving from equation (2.23) are still valid even
removing the assumption of constant pressure and temperature. Therefore,
also in general cases, only n − 1 Maxwell-Stefan relations are linearly inde-
pendent.

2.4 Generalized driving force

In Section 2.3, we introduced the Maxwell-Stefan equations considering as a
driving force only the gradient of the chemical potential at constant temper-
ature and pressure. In this section, we analyze the Maxwell-Stefan relations
considering generalized driving forces and we also remove the assumption of
constant pressure while the temperature is still assumed constant.

Let Fi denote, a general molar body force acting per mole of species i.
Then the generalized driving force di reads

di = − xi
RT

(∇Tµi − Fi) (2.25)

where ∇T denotes the gradient at constant temperature. Let Vi be the
partial molar volume of species i (m3 mol−1), following relation holds

∇Tµi = ∇T,Pµi + Vi∇P (2.26)

Linear momentum balance implies

dv

dt
+∇ · τ = − 1

ρt
∇P +

n∑
i=1

ωiF̃i (2.27)

where v is the mass average velocity (m s−1), τ is the stress tensor (N m kg−1),
F̃i is the body force acting per kg of species i (N kg−1) and the other vari-
ables are defined in Table 2.1.
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In the hypothesis that mechanical equilibrium is reached faster than ther-
modynamical equilibrium we can suppose that

dv

dt
+∇ · τ ≈ 0 = − 1

ρt
∇P +

n∑
i=1

ωiF̃i (2.28)

Thus, multiplying the right hand side of (2.28) by the molar weight ρi/ci of
the species i we get

0 =
1

ci

−ρi
ρt
∇P + ρi

n∑
j=1

ωjF̃j


=

1

ci

−ωi∇P +
ρi
ρt

n∑
j=1

ρjF̃j


=

1

ci

−ωi∇P + ωi

n∑
j=1

cjFj

 (2.29)

Adding (2.29) into (2.25) and using (2.26), equation (2.25) becomes

di = − xi
RT

∇T,Pµi + Vi∇P −
ωi
ci
∇P +

ωi
ci

n∑
j=1

cjFj − Fi


= − xi

RT
∇T,Pµi −

(ciVi − ωi)
ctRT

∇P +
1

ctRT

ciFi − ωi n∑
j=1

cjFj

 (2.30)

Relation (2.30) is the expression of the generalized driving force for a non-
ideal multicomponent mixture. Let us consider the case of an idel mixture
for which the ideal gas law holds. We have that

PVt = ntRT ct =
nt
Vt

(2.31)

where Vt is the mixture molar volume (m3 mol−1). Using equation (2.31)
into (2.30) we obtain

di = −∇xi −
1

P
(ciVi − ωi)∇P +

1

P

ciFi − ωi n∑
j=1

cjFj

 (2.32)
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2.5 Thermal diffusion

In the case of electronics applications the temperature is no longer constant
in space an time. Thus, we need to include it into the treatment of Section
2.3.2.

To do that we include in the Maxwell-Stefan model the Soret effect or
thermophoresis, also known as thermomigration or thermodiffusion, which
introduces a flux production due to temperature gradient. Thus, taking in
account this phenomenon, equation (2.15) becomes

di = −
n∑
j=1
j 6=i

xixj (ui − uj)
Ðij

−
n∑
j=1
j 6=i

xixj
Ðij

(
DT
i

ρi
−
DT
j

ρj

)
∇T
T

(2.33)

where DT
i (kg m−1 s−1) is the thermal diffusion coefficient of species i.

Equation (2.33) can be more conveniently written as

di = −
n∑
j=1
j 6=i

xixj

(
uTi − uTj

)
Ðij

(2.34)

where uti is the velocity (m s−1) of the species i that includes the thermal
diffusion contribution

uTi = ui +

(
DT
i

ρi

)
∇T
T

= ui + αi
∇T
T

where αi (m2 s−1), named thermal diffusivity of the species i, is given by

αi =
DT
i

ρi
(2.35)

2.6 General Maxwell-Stefan relation

In the previous sections we have initially introduced the Maxwell-Stefan re-
lations for binary mixtures, then we have extended them to multicomponent
mixtures and we have considered general driving forces, and, finally, we have
added thermal effects. Now, combining equations (2.30) and (2.34), we are
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in a position to write the general Maxwell-Stefan relations

− xi
RT
∇T,pµi −

1

ctRT
(ciVi − ωi)∇p

+
1

ctRT

ciFi − ωi n∑
j=1

cjFj

 =
n∑
j=1
j 6=i

xixj

(
uTi − uTj

)
Ðij

(2.36)

Using the second law of thermodynamics the following results can be
proven (see [6]).

Ðij = Ðji

Ðij > 0 for an ideal mixture

(2.37)

(2.38)

2.7 A comparison between Maxwell-Stefan and Fick
model of diffusion

In this section we are interested to understand the relation (if any) between
Maxwell-Stefan and Fick model of diffusion. For simplicity, we consider only
the driving force provided by the molar fractions, neglecting other external
forces. Thus relation (2.15), using (2.20) and (2.16), becomes

n∑
j=1
j 6=i

xjJi − xiJj
ct Ðij

= −
n−1∑
j=1

Γij∇xi i = 1, . . . , n

which can be written in matrix form as

BJ = −ctΓ∇x

where matrix B is defined as

Bii =
xi
Ðin

+

n∑
j=1
j 6=i

xj
Ðij

Bij =

(
1

Ðin
− 1

Ðij

)
xi i 6= j

(2.39a)

(2.39b)
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Based on the above result, equation (2.6) can be generalized as

J = −ctD∇x (2.40)

that is called generalized Fick law, where

D = B−1Γ (2.41)

Equation (2.40) shows that the Maxwell-Stefan model and the generalized
Fick model of diffusion are mathematically equivalent. However, Maxwell-
Stefan’s approach is, in some respects, more convenient than the generalized
Fick model. The Ðij coefficients are independent of the composition of the
mixture, whereas the Fick coefficients are not because of equation (2.41);
moreover the coefficients Ðij are also independent of the driving forces. Fi-
nally, the Maxwell-Stefan model can be easily extended to other driving
forces. Unfortunately, the Ni flux is a function not only of the molar frac-
tions xj=1,...,n but also of the other fluxes Nj 6=i, this leads to considerable
difficulties in the solution of the numerical Maxwell-Stefan model.
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Chapter 3

The Poisson-Maxwell-Stefan
Model

The main aim of this thesis is to develop a mathematical model that de-
scribes the spatial and temporal evolution of the concentration profiles of the
chemical species that constitute an undiluted mixture subject to an electric
potential and a thermal field. In the present chapter we will use Maxwell-
Stefan’s relations (2.36) as the main ingredient for the construction of the
above mentioned mathematical model.

3.1 Electric potential

3.1.1 Maxwell-Stefan relations for electric potential

To apply the Maxwell-Stefan model discussed in Chapter 2 in the context
of electronics applications let us consider as a volumetric force the Electric
field produced by the application of an external bias to an electronic device.
Let ϕ be a given function denoting the electric potential and let E = −∇ϕ
be the associated electric field. The force Fi produced by the electric field
on the i-th species of the mixture is equal to

Fi = ziFE (3.1)

where F is Faraday’s constant(96500 C mol−1) and zi is the electric charge
number of the chemical species i. Note that only ionized species (zi 6= 0) are
directly affected by the presence of an external electric field.
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Assuming the action of a given thermal effect and electric field, equations
(2.36) become

n∑
j=1
j 6=i

xjNi − xiNj

ctÐij
+

n∑
j=1
j 6=i

xixj (αi − αj)
Ðij

∇T
T

= − xi
RT
∇T,pµi −

xi
RT

zi − ωi n∑
j=1

zjxj
xi

F ∇ϕ
(3.2)

It is convenient define the effective electric charge number (see Section 6.1.3)
as

zi,eff =

zi − ωi n∑
j=1

zjxj
xi

 (3.3)

so equation (3.2) becomes

n∑
j=1
j 6=i

xjNi − xiNj

ctÐij
+

n∑
j=1
j 6=i

xixj (αi − αj)
Ðij

∇T
T

= − xi
RT
∇T,pµi −

xi
RT

zi,effF ∇ϕ

(3.4)

Assuming that the electroneutral condition holds in any points on the mix-
ture (in this case the mixture is said electroneutral)

n∑
j=1

zjxj = 0 (3.5)

we have that zi,eff = zi otherwise the zi,eff can be either greater or lower,
with the same sign or not with respect to the ions charge number.

3.1.2 Poisson equation

The electric potential is a function of the external applied bias and of the
spatial distribution of the electric charges, consequently it depends directly
on the distribution of the chemical species composing the mixture. Since
the concentrations of the species are also functions of time, we deduce that
the electric potential will also have an indirect dependence on the time co-
ordinate. To clarify this issue, let us start from the Maxwell equations, the
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fundamental laws that govern electromagnetic interaction, [8]:

∇×H = J +
∂D

∂t

∇×E = −∂B
∂t

∇· D = ρ

∇· B = 0

(3.6a)

(3.6b)

(3.6c)
(3.6d)

and the related constitutive equations, with absolute (or dielectric) permit-
tivity ε and magnetic permeability µh, that characterize the properties of
the medium:

D = εE

B = µmH

(3.7a)
(3.7b)

Using (3.6) and (3.7), we obtain an equation for the electric potential as
follows. Because of the vector calculus identity ∇ · ∇ × A = 0, equation
(3.6d) is satisfied ∀A such that B = ∇ × A. Replacing this relation in
(3.6b) we get

∇×
(
E +

∂A

∂t

)
= 0

This latter relation implies that E + ∂A
∂t is irrotational and it follows that

there exists a potential ϕ such that

E +
∂A

∂t
= −∇ϕ

Introducing the quasi-static approximation ∂A
∂t = 0 we obtain

E = −∇ϕ (3.8)

Combining (3.8), (3.7a) and (3.6c) we have the Poisson equation

−∇ · (ε∇ϕ) = ρ

The charge density ρ can be splitted into two parts: the fixed charge density
and the mobile charge density.
The fixed charge density is obtained by multiplying the number density of
the fixed charge P by the electron charge q. The mobile charge density is
given by the sum on all the species of the products of the i-th species number
density ni, of the effective electric charge number zi and of the electron charge
q, so that the final form of the Poisson equation reads

−∇ · (ε∇ϕ) = q

(
n∑
i=1

zini + P

)
(3.9)
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3.2 Poisson-Maxwell-Stefan model

The n−1 Maxwell-Stefan relations and the Poisson equation (3.9) introduce
into the mathematical model n unknowns for the flows Ni, n unknowns for
the molar concentrations ci and an unknown for the electric potential ϕ. The
temperature T is assumed to be a given function on all the domain for each
time instant. The variables ni, xi and ct can be expressed as functions of
ci through the relations (2.1a), (2.1b) and (2.4a). Overall there are 2n + 1
unknowns but only n− 1 equations, therefore we introduce n homogeneous
continuity equations

∂ci
∂t

+∇ ·Ni = 0 (3.10)

The right-hand side of (3.10) is equal to zero because net production effects
due to mutual ion interaction can be safely neglected. The last two equations
necessary for closing the system are provided by equation (2.2) and by the
equimolar constraint (2.3), that is

Nt = 0

The continuity equation of the total molar density

∂ct
∂t

+∇ ·Nt = 0 (3.11)

is a linear combination of the continuity equations (3.10). Replacing the
continuity equation of the species n with (3.11) and imposing the equimolar
constraint we get that

∂ct
∂t

= 0 −→ ct = ct (x)

but, because the initial molar concentrations c0
1, . . . , c

0
n are known, we get

ct(x) =
n∑
i=1

c0
i (x)

Thus the molar concentration of the species n can be computed by post-
processing as

cn = ct −
n−1∑
i=1

ci

so that only n− 1 continuity equation are needed.

25



For simplicity, the subsequent analysis is limited to the case of ideal
mixtures. Then equation (3.4) becomes:

n∑
j=1
j 6=i

xjNi − xiNj

ctÐij
+

n∑
j=1
j 6=i

xixj (αi − αj)
Ðij

∇T
T

= −∇xi −
xi
RT

zi,effF ∇ϕ

(3.12)

Combining equations (3.12), (3.9) and (3.10) we end up with:

Model 1 (Poisson-Maxwell-Stefan)
Let Ω be a bounded domain of Rd, d=1,2,3, QT = Ω × (0, T ), and ST =
∂Ω× (0, T ), T > 0, the Poisson-Maxwell-Stefan model is given by

ct
∂xi
∂t

+∇ ·Ni = 0 in QT

n∑
j=1
j 6=i

xjNi − xiNj

ctÐij
+

n∑
j=1
j 6=i

xixj (αi − αj)
Ðij

∇T
T

= −∇xi −
xi
RT

zi,effF ∇ϕ in QT

zi,eff =

zi − ωi n∑
j=1

zjxj
xi


n∑
i=1

xi = 1

n∑
i=1

Ni = 0

−∇ · (ε∇ϕ) = q

(
n∑
i=1

zini + P

)
in QT

ci(x, 0) = c̄i(x) in Ω

ϕ = ϕ̄d on ST
Ni · ν = 0 on ST

(3.13a)

(3.13b)

(3.13c)

(3.13d)

(3.13e)

(3.13f)

(3.13g)
(3.13h)
(3.13i)

for every i = 1, . . . , n− 1.
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The homogeneous Neumann boundary conditions (3.13i) for the fluxes
are chosen as a consequence of the assumption of equimolar diffusion and
of the fact that the physical system is closed. The interest on imposing an
external electric potential difference justifies the choice of the non homoge-
neous Dirichlet boundary condition (3.13h).

The mathematical analysis and numerical sulution of the Poisson-Maxwell-
Stefan model (3.13) is a non trivial task because:

1. the Maxwell-Stefan relations are strongly coupled, both for the molar
fractions xi and for the fluxes Ni;

2. in addition, the total molar fraction ct, the effective electric charge
number zi,eff and the density fraction ωi hide further non-linearity;

3. the Poisson equation, due to the dependence of the number density ni,
through the molar concentration, is coupled with the other equations.

To overcome the difficulties related to the nonlinear and coupled nature of
system (3.13), suitable functional iterations must be used to compute an
approximate solution.

3.3 Time step

The solution of a system of time dependent equations, such as (3.13), typi-
cally proceeds through the partition of the time domain (0, T ) into Nt tem-
poral intervals,

∆ti = ti − ti−1 ∀i = 1, . . . , Nt

and then through the discretization of time derivatives using the Θ-method
(cf. Section 5.2), and finally solving the time semidiscretized equations
at each discrete time level. If the time intervals are uniform, i.e. ∆ti =
∆tj ∀i, j = 1, . . . , Nt, they are indicated with ∆t.

The time advancing procedure (see Figure 3.1) can be summarized as follows

i) Given the initial molar concentration of the n chemical species c0
1, . . . , c

0
n,

the potential at initial time ϕ0 can be computed by solving the Poisson
equation (3.9) and by computing the initial fluxes N0

1 , . . . ,N
0
n through

Maxwell-Stefan relations (3.12);
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ii) through a decoupling loop solve the equations (3.13a), (3.13b) and
(3.13f) to get ϕt and ct1, . . . , ctn at time level t ;

iii) compute fluxes N t
1, . . . ,N

t
n at time level t ;

iv) if time level t < Nt get back to point ii), else (3.13) has been solved at
each time level.

[
c0

1, . . . , c
0
n

]
in

Poisson ϕ0

Fluxes N0
i

t = t+ 1

Decoupling
algorithm

Fluxes N t
i

t < tNt

[
cT1 , . . . , c

T
n ,N

T
1 , . . . ,N

T
n , ϕ

T
]
out

ct1, . . . , c
t
n, ϕ

t

yes

no

Figure 3.1: Time advancing scheme

3.4 Iterative algorithms

After having semi-discretized in time system (3.13) with one of the methods
presented in Section 5.2, we and up with the following abstract nonlinear
problem

F (U) = 0 (3.14)
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where

U :=
[
ϕ, x1, . . . , xn

]T
F (U) :=


F1 (U)
F2 (U)

...
Fn−1 (U)

 (3.15)

having set:

F1 (U) = −∇ · (ε∇ϕ)− q

(
n∑
i=1

zini + P

)

F2 (U) =
c1

∆t
− cold1

∆t
+∇ ·N1

...
...

Fn−1 (U) =
cn−1

∆t
−
coldn−1

∆t
+∇ ·Nn−1

In the above representation we have used the Backward Euler method for
the time discretization and obtained N1, . . . ,Nn−1 by relations (3.12). The
problem we have to solve now is: given a functional space V and an operator
F : V → V , find U ∈ V such that (3.14) is satisfied. The most used iterative
algorithms to solve system (3.14) are the decoupled Gummel map and the
fully coupled Newton’s method.

3.4.1 Gummel Map

The Gummel Map was proposed for the first time in 1964 by H. K. Gum-
mel at the Bell Labs for the iterative solution of the Poisson-Drift-Diffusion
problem [5]. Despite having a linear convergence rate, it presents some char-
acteristics that make it more advisable to solve (3.14) than the Fully Coupled
Newton Method:

• it is less sensitive to the choice of the initial guess;

• it has a lower computational cost;

• experimentally it shows a superlinear convergence rate.
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[
ϕj=0, cj=0

1 , . . . , cj=0
n

]
in

=
[
ϕt−1, ct−1

1 , . . . , ct−1
n

]
in

j = j + 1

Poisson ϕj

Continuity equation
and Maxwell-Stefan
for each species

err < tollGM or
j > iterGM,max

[
ϕj , cj1, . . . , c

j
n

]
out

=
[
ϕt, ct1, . . . , c

t
n

]
out

ϕj
cj1, . . . , c

j
n

no

yes

Figure 3.2: Gummel map scheme

An adaptation of Gummel’s map to the solution of problem (3.13) is
graphically represented in Figure 3.2( which corresponds to the "Decoupling
algorithm" boxe in Figure 3.1 ), and can be divided into the following steps:

i) fix an initial guess ϕ0, c0
1, . . . , c

0
n, a tolerance tollGM > 0 and a maximum

number of iterations iterGM,max;

ii) solve the Poisson equation using Newton’s method (see Section 3.4.2);

iii) solve the n − 1 continuity equations (3.13a) and the Maxwell-Stefan
relations (3.13b);

iv) if the error between two consecutive iterations is less than tollGM or
the number of iterations is larger than iterGM,max, then the loop exits,
otherwise we start from step (ii).

The full theoretical analysis of the convergence of Gummel’s Map can be
found in [9].
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3.4.2 Newton’s method

Definition 1 (Fréchet differentiability)
Let X and Y be Banach spaces, and U ⊆ X a open subset of X. Let ‖·‖X
and ‖·‖Y be the norm of space X and Y , respectively. A function operator
F : U ⊆ X → Y is called Fréchet differentiable at x0 ∈ U if there exist an
operator L ∈ L (X,Y ) such that if h ∈ U and x0 + h ∈ U ,

lim
‖h‖→0

‖F (x0 + h)− F (x0)− L (x0)h‖Y
‖h‖X

= 0 (3.16)

L (x0) is called the Fréchet derivative of F at x0 and we write L (x0) =
F
′
(x0).

The Newton method is defined as follow:

Definition 2 (Newton’s method)
Let X and Y be Banach spaces and F : X → Y a function operator Frechèt
differentiable, given an initial datum U0 ∈ X and toll > 0, for all k ≥ 0
solve the following linear problem:

F ′
(
Uk
)
δUk = −F

(
Uk
)

Uk+1 = Uk + δUk

(3.17)

(3.18)

until
∥∥F (Uk+1

)∥∥
Y
< toll.

The application of Newton’s method has transformed the original prob-
lem (3.14), with F : V → V , into the fixed-point problem of finding U ∈ V
such that

U = TF (U)

where
TF (U) = F ′ (U)−1 (F ′ (U)U − F (U)

)
is the iteration function associated with the Newton method.

Definition 3 (Continuos linear operator)
Let X and Y be normed spaces. Then L(X,Y ) denotes the space of the
continuous linear operator from X to Y . Moreover L(X,Y ) is a normed
space with respect to the norm:

‖l‖L(X,Y ) := sup
x∈X
x 6=0

‖l (x)‖Y
‖x‖X
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Definition 4 (Ball of radius δ)
Let V be a normed space and u ∈ V . Then the open ball of radius δ > 0
centered at a point u ∈ V is defined by

B (u, δ) := {v ∈ V : ‖u− v‖V ≤ δ}

The main result about the convergence of Newton’s method is as follows
[17].

Theorem 1 (Local convergence)
Let V be a Banach space and U ∈ V be a solution of problem (3.22). Assume
that F is Lipschitz continuous in the ball B (U, δ), i.e. that there exists K > 0
such that

∥∥F ′ (v)− F ′ (z)
∥∥
L(V,V )

≤ K ‖v − z‖V ∀v, z ∈ B (U , δ) ,v 6= z

Then there exists in correspondence δ′ > 0, with δ′ ≤ δ, such that for all
U0 ∈ B (U , δ′) the sequence

{
Uk
}

generated by (3.17) converges quadrat-
ically to U , i.e. there exists C > 0 such that, for a suitable k0 ≥ 0, we
have ∥∥∥U −Uk+1

∥∥∥
V
≤ C

∥∥∥U −Uk
∥∥∥2

V
∀k ≥ k0

As previously mentioned, the use of Newton’s method on the whole sys-
tem (3.13) has numerous disadvantages, however it can be conveniently ap-
plied to the solution of the Poisson equation (3.9).
As proposed by Gummel in [5], setting the reference number density nref ,
we define the electrochemical potential ϕeci as

ϕeci = ϕ+
Vth
zi

ln

(
ni
nref

)
(3.19)

Then, inverting the equation for ni, we obtain

ni = nrefe
zi(ϕeci −ϕ)/Vth (3.20)

and replacing (3.20) in (3.9) we obtain

−∇ · (ε∇ϕ) = q

(
n∑
i=1

zinref e
zi(ϕeci −ϕ)/Vth + P

)
(3.21)
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which explicitely reveals the nonlinearity of the Poisson equation with re-
spect to ϕ.

Equation (3.21) equipped by suitable boundary conditions can be repre-
sented in abstract as form

N(ϕ) = 0 (3.22)

N (·) being a second-order semi linear differential operator. Given a tolerance
tollNLP > 0 the steps to solve the nonlinear Poisson equation (3.21) with the
Newton method are shown in Figure 3.3( which corresponds to the "Poisson"
boxe in Figure 3.1 and 3.2 ).

[
ϕk=0, ck=0

1 , . . . , ck=0
n

]
=
[
ϕj , cj1, . . . , c

j
n

]

ϕec,ji = ϕj + Vth
zi

ln

(
nji
nref

)

k = k + 1

F ′
(
ϕk
)
δϕk = −F

(
ϕk
)

ϕk+1 = ϕk + δϕk

err < tollNPL

[
ϕk
]
out

=
[
ϕj+1

]
out

ϕec,j1 , . . . , ϕec,jn

δϕk ϕk+1

no

yes

Figure 3.3: Newton scheme to solve the nonlinear Poisson equation

Some other different methods can be adopted for the solution of the Pois-
son equation (3.9), the easiest and most immediate is the direct linearization
of the equation which allows the calculation of the electric potential ϕ at the
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Gummel step j + 1 using the number density n1, . . . , nn at the step j.

−∇ ·
(
ε∇ϕj+1

)
= q

(
n∑
i=1

zin
j
i + P

)
(3.23)

This method, despite being the simplest and computationally cheapest, com-
pletely fails at incorporating the nonlinear characteristics of the Poisson
equation and does not provide an effective and convergent algorithm (see
[14]).

34



Chapter 4

Weak formulation

This chapter deals with the weak formulation of the equations of the Poisso-
Maxwell-Stefan model (3.13) and their well-posedness analysis. Theorems
regarding the existence and uniqueness of strong and weak solutions are pro-
posed for the Maxwell-Stefan relations. We refer to [19] for all the definitions
of functional spaces used in this chapter and their theoretical properties.

4.1 Nonlinear Poisson Equation

The application of the Newton method (3.17)-(3.18) to the nonlinear Pois-
son equation (3.21) leads to solving the following linearized boundary-value
problem.

∇ ·
(
−ε∇δϕk

)
+ q nref

n∑
i=1

z2
i

VTh
ezi(ϕ

ec
i −ϕk)/VThδϕk

= q nref

n∑
i=1

zi e
zi(ϕeci −ϕk)/VTh

+∇ ·
(
−ε∇ϕk

)
+ qP in Ω

δϕk = 0 on ∂Ω

ϕk+1 = ϕk + δϕk

(4.1a)

(4.1b)

(4.1c)

System (4.1) is a diffusion-reaction problem, with respect to the variable
δϕk, in Ω. Multiplying (4.1a) by a test function ψ ∈ H1

0 (Ω) and integrating
over the domain Ω, we can state the weak formulation for the system (4.1).
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To simplify the notation, we set:

bk = +q nref

n∑
i=1

z2
i

VTh
ezi(ϕ

ec
i −ϕk)/VTh

and

fk = ∇ ·
(
−ε∇ϕk

)
+ qnref

n∑
i=1

zi expzi(ϕ
ec
i −ϕk)/VTh +qP

Weak formulation 1 (Nonlinear Poisson equation)
Find δϕk ∈ H1

0 (Ω) such that

∫
Ω
ε ∇δϕk ∇ψ dΩ +

∫
Ω
bkδϕkψ dΩ =

∫
Ω
fkψ dΩ ∀ψ ∈ H1

0 (Ω) (4.2)

In order to prove the existence and uniqueness of the solution of (4.2),
we resort to the Lax-Milgram theorem [19].

We define the bilinear form:

a : H1
0 (Ω)×H1

0 (Ω)→ R, a(ϕ,ψ) =

∫
Ω
ε∇ϕ∇ψ dΩ +

∫
Ω
bkϕψ dΩ

(4.3)

and the linear functional

F : H1
0 (Ω)→ R, F (ψ) =

∫
Ω
fkψ dΩ (4.4)

We set:
εM = max

Ω
(ε) bkM = max

Ω

(
bk
)

εm = min
Ω

(ε) bkm = min
Ω

(
bk
)

and we have:

• Continuity of the bilinear form a (·, ·)∫
Ω
ε∇φ ∇ψ dΩ +

∫
Ω
bkϕψ dΩ ≤ εM ‖∇ϕ‖L2 ‖∇ψ‖L2 + bkM ‖ϕ‖L2 ‖ψ‖L2

≤ max
(
εM , b

k
M

)
‖ϕ‖H1

0
‖ψ‖H1

0

≤ C ‖ϕ‖H1
0
‖ψ‖H1

0
∀ϕ,ψ ∈ H1

0 (Ω)
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• Coercivity of the bilinear form a (·, ·)∫
Ω
ε (∇ϕ)2 dΩ +

∫
Ω
bkϕ2 dΩ ≥ εm ‖∇ϕ‖2L2 + bkm ‖ϕ‖

2
L2

≥ εm ‖∇ϕ‖2L2

= εm ‖ϕ‖2H1
0

∀ϕ ∈ H1
0 (Ω)

• Continuity of the linear functional F (·)∫
Ω
fkψ dΩ ≤

∥∥∥fk∥∥∥
L2
‖ψ‖L2

≤
∥∥∥fk∥∥∥

L2
‖ψ‖H1

0
∀ψ ∈ H1

0 (Ω)

Thus ∀k ≥ 0 there exists a unique weak solution of the linearized boundary
value problem (4.1).

4.2 Continuity equations and Maxwell-Stefan rela-
tions

As anticipated in chapter 3, the analysis and solution of the equation systems
(3.13a) and (3.13b) is not an easy task. However, some important results
exist in literature[1][10]; some of them are shown below to provide a complete
picture of the topic.

Theorem 2 (Existence and uniqueness, locally in time, of a strong solution)
Let Ω ∈ RN , with N ≥ 1, be open bounded with smooth ∂Ω. Let p ≥ N+2

2

and u0 ∈ W 2−2/p
p (Ω;E) such that c0

i ≥ 0 in Ω̄ and c0
t is constant in Ω. Let

the diffusion matrix D (u) given by

D (u) = X
1
2

(
AS|Ê

)−1
X

1
2G
′′

(x) with ctxi = ui + c0
t /n

where G : (0,+∞)n → R is smooth and strongly convex. Then there exists -
locally in time - a unique strong solution (in the Lp sense) of

∂tu+∇ · (−D (u)∇u) = 0

∂νu |∂Ω = 0

u |t=0 = u0

This solution is in fact classical.
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Theorem 3 (Existence of a weak solution)
Let:

• Ω ⊂ Rd, d ≤ 3, be a bounded domain with ∂Ω ∈ C1,1;

• c0
1, . . . , cn−1 (n ≥ 3) be nonnegative functions such that

c0
n = 1−

n−1∑
i=1

c0
i and

n−1∑
i=1

c0
i ≤ 1

• Ð ∈ Rn×n a symmetric matrix with elements Ðij > 0 for i 6= j;

• ri ∈ C0 ([0, 1]n ;R), for i = 1, . . . , n satisfying

n∑
i=1

ri (c)

n∑
i=1

ri (c) log ci ≤ 0 ∀0 < c1, . . . , cn <≤ 1

Then there exists a weak solution (c1, . . . , cn) to

∂tci +∇ ·Ni = ri (c)

∇xi = −
n∑
j=1
j 6=i

xjNi − xiNj

ct Ðij

∇ci · ν = 0 on ∂Ω

ci (·, 0) = c0
i in Ω

(4.5a)

(4.5b)

(4.5c)

(4.5d)

such that ci ∈ L2
loc

(
0,∞;H1 (Ω)

)
and ∂tci ∈ L2

loc

(
0,∞;V ′ (Ω)

)
satisfying

0 ≤ ci ≤ 1 i = 1, . . . , n− 1 cn = 1−
n−1∑
i=1

ci ≥ 0 in Ω, t > 0

where V ′ is the dual space of V =
{
u ∈ H2 (Ω) : ∇u · ν = 0 on ∂Ω

}
.

For system (4.5) with r = (r1, . . . , rn)T = 0, the following result holds:

Theorem 4 (Exponential decay)
Let the assumptions of Theorem 3 hold. We suppose r = 0 and min

i=1,...,n

∥∥c0
i

∥∥
L1(Ω)

>

0. Let (c1, . . . , cn) be the weak solution constructed in Theorem 3 and define
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c0 =
(
c0

1, . . . , c
0
n

)T . Then there exist two constants C > 0, depending only on
Ω, and λ > 0, depending only on Ω and Ð, such that∥∥ci (·, t)− c̄0

i

∥∥
L1(Ω)

≤ Ce−λt
√
H (c0) i = 1, . . . , n

where

H (c) =

n∑
i=1

∫
Ω
ci log

ci
c̄0
i

dΩ

and
c̄0
i = |Ω|−1

∫
Ω
c0
i dΩ

Furthermore
(
c̄0

1, . . . , c̄
0
n

)T is a homogeneous steady state of (4.5).

For further results, see also [2],[4] and [7].

In order to solve equations (3.13a) and (3.13b) using the Gummel Map
as in the scheme of Figure 3.2, we proceed with their linearization. Let xji
and N j

i be the molar fractions and the molar fluxes computed at the j − th
step of the Gummel Map, then xj+1

i and N j+1
i are obtained by solving:

ct
∂xj+1

i

∂t
+∇ ·N j+1

i = 0 in QT

n∑
k=1
j 6=i

xjkN
j
i − x

j+1
i N j

k

ctÐi,k
+

n∑
k=1
k 6=i

xj+1
i xjk (αi − αk)

Ði,k

∇T
T

= −∇xj+1
i −

zji,effF
RT

xj+1
i ∇ϕj+1 in QT

x0
i (·, 0) = x̄i(·) in Ω

N j+1
i · ν = 0 on ST

(4.6a)

(4.6b)

(4.6c)

(4.6d)

Let us introduce µji and a
j
i (see Section 5.3.3) such that

N j+1
i = −µji∇x

j+1
i + ajix

j+1
i (4.7)

where µji = µji

(
xji

)
and aji = aji

(
xji ,N

j
i , ϕ

j
)
.
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System (4.6) is a set of n− 1 advection-diffusion equations, with respect to
the variables xi for i = 1, . . . , n − 1, in QT . Including (4.7) in (4.6a) and
multiplying it by a test function ψ ∈ H1 (Ω) and integrating over all the
domain Ω, we can state the weak formulation for system (4.6).

Weak formulation 2 (Continuity and Maxwell-Stefan equations)
Find xj+1

i ∈ L2
(
0, T ;H1

)
such that ẋj+1

i ∈ L2
(
0, T ;

(
H1
)∗) and

1. ∀ψ ∈ H1 (Ω), a.e. in t ∈ [0, T ]∫
Ω
ct
∂xj+1

i

∂t
ψ dΩ +

∫
Ω
µji∇x

j+1
i ∇ψ dΩ−

∫
Ω
ajix

j+1
i ∇ψ dΩ = 0 (4.8)

2.
c0
i (·, 0) = c̄i(·) in Ω

where
(
H1
)∗ is the dual space of H1.

We define the bilinear form:

a : H1 (Ω)×H1 (Ω)→ R, a(ϕ,ψ) =

∫
Ω
µ∇ϕ∇ψ dΩ−

∫
Ω
aϕ∇ψ dΩ (4.9)

Since Ðij > 0 for an ideal mixture, given c̄1,...,n ∈ L∞ (Ω), it is possible to
prove (see Section 5.3.3) that µji > 0 and µji ∈ L∞ (Ω) for all i and j. More-
over we assume that also aji ∈ L∞ (Ω) for all i and j. In order to prove the
existence and uniqueness of the solution of (4.8), we resort to the analogous
of the Lax-Milgram theorem for parabolic equations [19].

We set:
µM = max

Ω
(µ) aM = max

Ω
(|a|)

µm = min
Ω

(µ) am = min
Ω

(|a|)

The existence and uniqueness of the weak solution is guaranteed by the
following steps:

• Continuity of the bilinear form a (·, ·)∫
Ω
µ∇φ ∇ψ dΩ−

∫
Ω
a ϕ∇ψ dΩ ≤ µM ‖∇ϕ‖L2 ‖∇ψ‖L2 + aM ‖ϕ‖L2 ‖∇ψ‖L2

≤ max (µM , aM ) ‖ϕ‖H1 ‖∇ψ‖L2

≤ C ‖ϕ‖H1 ‖ψ‖H1 ∀ϕ,ψ ∈ H1 (Ω)
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• Weak-coercivity of the bilinear form a (·, ·)
Let us consider separately the two integrals in the bilinear form a (·, ·).∫

Ω
µ (∇ϕ)2 dΩ ≥ µm ‖∇ϕ‖2L2∫

Ω
a ϕ ∇ϕ dΩ ≤ aM ‖∇ϕ‖L2 ‖ϕ‖L2

(4.10)

(4.11)

Then, using the well-known inequality

2ab ≤ ε a2 +
1

ε
b2 ∀ a, b,∈ R, ε > 0

and choosing ε = µm
aM

, inequality (4.11) becomes

−
∫

Ω
a ϕ ∇ϕ dΩ ≥ − aM ‖∇ϕ‖L2 ‖ϕ‖L2

≥ −aM
2

(
µm
aM
‖∇ϕ‖2L2 +

aM
µm
‖ϕ‖2L2

) (4.12)

Combining the results in (4.10) and (4.12) we obtain

a (ϕ,ϕ) + λ ‖ϕ‖2L2 ≥
µm
2
‖∇ϕ‖2L2 −

a2
M

2µm
‖ϕ‖2L2 + λ ‖ϕ‖2L2 ∀ λ > 0

Then, choosing λ =
a2M
µm

, we get the weak coercivity of the bilinear form
a (·, ·)

a (ϕ,ϕ) + λ ‖ϕ‖2L2 ≥ min

(
µm
2
,
λ

2

)
‖ϕ‖2H1 ∀ϕ ∈ H1
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Chapter 5

Galerkin Finite Element
Approximation

In this chapter we discuss the numerical approximation of equations (4.2)
and (4.8) according to the Galerkin method, and then we proceed with the
discretization of the resulting problem through the Finite Element Method
(FEM).

5.1 Galerkin method

The weak formulation of the Poisson equation (4.2) can be represented in
compact form as:

Find u ∈ V such that

a (u, v) = F (v) ∀v ∈ V (5.1)

In Section 4.1, we considered V = H1 (Ω).
Let Vh be a finite-dimentional subspace of V , depending on h > 0, such that

dim (Vh) <∞ and Vh ⊂ V ∀h > 0

The Galerkin formulation of (5.1) reads:

Find uh ∈ Vh such that

a (uh, vh) = F (vh) ∀vh ∈ Vh (5.2)

42



The well-posedness of problem (5.2) is a direct consequence of the analysis
carried out in Section 4.1.

Defining the Hilbert triplet (V,H, V ∗), the weak formulation of (4.8) can
be represented in compact form as:

Given g ∈ H, find u ∈ L2 (0, T ;V ) such that u̇ ∈ L2 (0, T ;V ∗) and that :

(u̇ (t) , v)V + a (u (t) , v; t) = 0 ∀v ∈ V
u (0) = g

(5.3)

In Section 4.2, we consider V = H1 (Ω), H = L2 (Ω) and V ∗ =
(
H1
)∗

(Ω).
Let Vh,Hh,V ∗h , depending on h > 0, be a triplet of finite-dimentional sub-
spaces of V ,H,V ∗ such that:

dim (Vh) <∞ and Vh ⊂ V ∀h > 0

dim (Hh) <∞ and Hh ⊂ H ∀h > 0

dim (V ∗h ) <∞ and V ∗h ⊂ V ∗ ∀h > 0

The Galerkin formulation of (5.3) reads:

Given gh ∈ Hh, find uh ∈ L2 (0, T ;Vh) such that u̇h ∈ L2 (0, T ;V ∗h ) and
that :

(u̇h (t) , vh)Vh + a (uh (t) , vh; t) = 0 ∀vh ∈ Vh
uh (0) = gh

(5.4)

The well-posedness of problem (5.4) is a direct consequence of the analysis
carried out in Section 4.2.

5.2 The Finite Element Method

In this section we introduce the Finite Element Method (FEM) for its ap-
plication to formulations (5.2) and (5.4).
Let Th be a partition of Ω and K an element of Th such that Th = ∪K.
Let r ≥ 1 a given integer and Vh = Xr

h be the finite element space of the
elementwise polynomial functions, defined as:
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Xr
h (Ω) :=

{
vh ∈ C0

(
Ω̄
)

: vh |K ∈ Pr (K) , ∀K ∈ Th
}

(5.5)

We denote by {ψj}Nhj=1 a Lagrangian basis of the space Xr
h so that every

function uh ∈ Vh can be espressed as a linear combination of ψj=1,...,Nh :

uh(x) =

Nh∑
j=1

ujψj(x) (5.6)

Therefore the discrete version of problem of (5.2) becomes:
Find [u1, . . . , uNh ]T ∈ RNh such that

Nh∑
j=1

uj a (ψj , ψi) = F (ψi) ∀i = 1, . . . , Nh (5.7)

Defining the matrix A,

A ∈ RNh×Nh , Aij = a (ψj , ψi)

the vector b
b ∈ RNh , bi = F (ψi)

and the vector u
u = [u1, . . . , uNh ]T

system (5.7) can be written in matrix form as:

Au = b (5.8)

With a similar procedure, we obtain that every function uh ∈ Vh is a linear
combination of the Lagrangian basis ψj=1,...,Nh

uh(x, t) =

Nh∑
j=1

uj(t)ψj(x) (5.9)

and the coefficients uj=1,...,Nh are time dependent functions.

The semi-discrete formulation of (5.4) reads:
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Find [u1 (t) , . . . , uNh (t)]T ∈ RNh such that

Nh∑
j=1

u̇j (t)

∫
Ω
ψjψi dΩ +

Nh∑
j=1

uj (t) a (ψj , ψi) = 0 ∀i = 1, . . . , Nh (5.10)

Defining the matrix A,

A ∈ RNh×Nh , Aij = a (ψj , ψi)

the matrix M
M ∈ RNh×Nh , Mij =

∫
Ω
ψjψi dΩ

and the vector u
u = [u1 (t) , . . . , uNh (t)]T

system (5.10) can be written in matrix form as:

Mu̇ (t) +Au (t) = 0 (5.11)

The time discretization of (5.11) can be performed using the ϑ-method.

M
uk+1 − uk

∆t
+A

[
θuk+1 + (1− θ)uk

]
= 0 (5.12)

where ϑ ∈ [0, 1] is a parameter.
The most relevant cases are:

• θ = 0 yielding the forward Euler method

M
uk+1 − uk

∆t
+Auk = 0 (5.13)

that is a first-order accurate method with respect to ∆t;

• θ = 1 yielding the backward Euler method

M
uk+1 − uk

∆t
+Auk+1 = 0 (5.14)

that is a first-order accurate method;

• θ = 1
2 yielding the Crank-Nicolson method

M
uk+1 − uk

∆t
+

1

2
A
(
uk+1 + uk

)
= 0 (5.15)

that is a second-order accurate method;
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5.3 Implementation

This section discusses the solution of problems (5.2) and (5.4), set in a one-
dimensional domain, using the finite element method. Let Ω = (a, b) ⊂ R be
a one-dimentional domain and Th a partition of Ω composed of Nξ intervals
of size ∆ξi

∆ξi = ξi − ξi−1 ∀i = 1, . . . , Nξ

If the grid intervals are uniform, i.e. ∆ξi = ∆ξj ∀i, j = 1, . . . , Nξ, they are
indicated with ∆ξ. Moreover, let us choose Vh = X1

h (Ω) and its Lagrangian
basis {ψk}

Nξ
k=1.

ψk =



x− xi−1

xi − xi−1
for xi−1 ≤ x ≤ xi

xi+1 − x
xi+1 − xi

for xi ≤ x ≤ xi+1

0 otherwise

(5.16)

ψk (xj) = δk,j k, j = 0, . . . , Nξ

Following the theory of Section 5.2, the discretization of the initial data
ci(ξ, 0) in (3.13g) on the X1

h space reads

ch,i(ξ, 0) =

Nξ∑
j=1

ci(ξj , 0)ψj(ξ)

where ci(ξj , 0) are the evaluations of the functions ci at time t = 0 at the
temporal grid nodes ξj . By (2.1a) and the equimolar constraint it follows
that

ch,t(ξ) =

Nξ∑
j=1

ct(ξj)ψj(ξ) =

Nξ∑
j=1

n∑
i=1

ci(ξj , 0)ψj(ξ)

where ct(ξj , 0) are the evaluations of the function ct at the temporal grid
nodes ξj .
The discretization of the molar fraction xi reads

xi(ξ) =

Nξ∑
j=1

xi(ξj)ψj(ξ) =

Nξ∑
j=1

ci(ξj , 0)

ct(ξj)
ψj(ξ)
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5.3.1 Linearzation of the NLP equation

Following the solution scheme described in Figure 3.1, the electric potential
is evaluated by applying the Newton method applied to the to the Nonlinear
Poisson equation (for details see Section 3.4.2 and Figure 3.3). Let us focus
on some interesting aspects of the linearization procedure.

The bilinear form (4.3)

a (ψj , ψi) =

∫
Ω
ε ∇ψj ∇ψi dΩ +

∫
Ω
bkψjψi dΩ

is composed of two integrals. The first one refers to the diffusive contribution
and generates the so-called stiffness matrix, while the second is concerned to
the reaction term and generates the mass matrix.

The permittivity ε is a characteristic medium quantity; since the mixture
changes its composition locally according to the n − 1 continuity-Maxwell-
Stefan equations it is reasonable to suppose that ε is a function of the molar
fractions xi. However, for simplicity, we consider ε as a piecewise constant
function on Th, thus the computation of the first integral in (4.3) is extremely
simple.

On the other side the function bk can not be considered piecewise constant, so
it is necessary to resort to numerical integration techniques. The choice of the
discrete space X1

h imposes a first order convergence rate in ‖·‖1 with respect
to h. This implies that the trapezoidal rule is enough accurate and higher
order quadrature rule than the first order is not needed. Using trapeziodal
quadrature rule the mass-matrix becomes diagonal. This technique is known
as lumping procedure.

The algebraic formulation of the Linearized Nonlinear Poisson equation (4.2)
at each Newton iteration reads:{

Akδϕk = bk

ϕk+1 = ϕk + δϕk
(5.17)

5.3.2 Fluxes

The next step in the solution scheme described in Figure 3.1 is the compu-
tation of fluxes. Assuming the electric potential ϕ to be a known function,
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the molar fractions xi and the n − 1 fluxes Ni can be obtained from the
Maxwell-Stefan equations as follows. Let us consider the n − 1 equations
(3.13b). Imposing constraints (3.13d) and (3.13e) we obtain

−∇xi =

n−1∑
j=1
j 6=i

1

ctÐij
xj +

1−
n−1∑
j=1
j 6=i

xj


Ni +

n−1∑
j=1
j 6=i

(
1

ctÐin
− 1

ctÐij

)
xiNj

+
n−1∑
j=1
j 6=i

1

Ðij
xixj (αi − αj)

∇T
T

+
1

Ðin
xi

1−
n−1∑
j=1

xj

 (αi − αn)
∇T
T

+
zi,effF
R T

xi∇ϕ

that after some algebra can be rewritten as

n−1∑
j=1
j 6=i

(
1

Ðin
− 1

Ðij

)
xiNj +

 1

Ðin
+
n−1∑
j=1
j 6=i

(
1

Ðij
− 1

Ðin

)
xj

Ni

= ct

− n−1∑
j=1
j 6=i

xixj
Ðij

(αi − αj)
∇T
T

− xi
Ðin

1−
n−1∑
j=1

xj

 (αi − αn)
∇T
T

−
zi,effF
R T

xi∇ϕ−∇xi



(5.18)

or, alternatively, introducing the matrix A (x), the vector of the unknowns
n and the vector of the known terms b (x, ϕ), can be formulated as

A (x)n = b (x, ϕ) (5.19)
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where

Ai,j (x) =
1

Ðin
+
n−1∑
j=1
j 6=i

(
1

Ðij
− 1

Ðin

)
xj i = j

Ai,j (x) =

(
1

Ðin
− 1

Ðij

)
xi otherwise

and n = [N1, . . . ,Nn−1]T and bi (x, ϕ) is the right hand side of (5.18) for
every i. Since Ω is a 1D domain, the Ni fluxes are reduced to the scalar
functions Ni. Let us define every discrete flux function Nh,i (ξ, 0) as a linear
combination of the basis functions (5.16)

Nh,i(ξ, 0) =

Nξ∑
j=1

Ni(ξj , 0)ψj(ξ)

Then, the Ni(ξj , 0) coefficients are obtained by solving system (5.19) evalu-
ated at each mesh node and setting xi = x0

i and ϕ = ϕ0. The discrete flux
function Nh,n(ξ, 0) is computed using the equimolar constraint (3.13e).

5.3.3 Continuity Maxwell-Stefan equation

Proceeding along the solution scheme in Figure 3.1 we arrive at the time
steps, and inside them, to the Gummel map in Figure 3.2. The Linearized
Nonlinear Poisson equation has already been discussed in Section 5.3.1, so
that we now turn to the analysis of the Maxwell-Stefan continuity equations
(4.8).

In Section 4.7 we have introduced µi and ai such that each flux function Ni

may be written as
Ni = −µi∇xi + aixi

From equation (5.18), leaving only Ni to the lhs, it is easy to see that

µi = ct

 1

Ðin
+
n−1∑
j=1
j 6=i

(
1

Ðij
− 1

Ðin

)
xj


−1

(5.20)
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and

ai =

 n−1∑
j=1
j 6=i

(
1

Ðij
− 1

Ðin

)
Nj

−
n−1∑
j=1
j 6=i

1

Ðij
xj (αi − αj)

∇T
T

− 1

Ðin

1−
n−1∑
j=1

xj

 (αi − αn)
∇T
T

−
zi,effF
R T

∇ϕ


 1

Ðin
+
n−1∑
j=1
j 6=i

(
1

Ðij
− 1

Ðin

)
xj


−1

(5.21)

If the molar concentrations ci(·, 0) ∈ L∞ (Ω) ∀i = 1, . . . , n, then ct ∈
L∞ (Ω) since it is a finite sum of L∞ (Ω) functions. Furthermore, since the
following inequalities hold:

1

Ðin
+
n−1∑
j=1
j 6=i

(
1

Ðij
− 1

Ðin

)
xj =

(xi + xn)

Ðin
+
n−1∑
j=1
j 6=i

xj
Ðij
≤ max

j 6=i

(
1

Ðij

)
(5.22a)

and
1

Ðin
+

n−1∑
j=1
j 6=i

(
1

Ðij
− 1

Ðin

)
xj ≥ min

i 6=j

(
1

Ðij

)
> 0 (5.22b)

we have that µi ∈ L∞ (Ω) for all the Gummel Map iterations and at each
time level.

Let us give some details on the calculation of the zi,eff exploiting the defi-
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nition of ωi (2.5c)

zi,eff = zi − ωi
n∑
j=1

zjxj
xi

= zi −
ρi
ρt

n∑
j=1

zjxj
xi

= zi −
ctxiMi∑n
j=1 ctxjMj

n∑
j=1

zjxj
xi

= zi −
Mi∑n

j=1 xjMj

n∑
j=1

zjxj (5.23)

Using the Backward Euler method (5.14) for the temporal discretization
of the n− 1 continuity Maxwell-Stefan equations, the algebraic formulation
of (4.8) for each step of the Gummel Map reads

ct
∆t

Muj+1 +Auj+1 =
ct
∆t
Muj (5.24)

At each iteration of the Gummel Map, µi and ai are computed using the
evaluation of xi and ϕ at the previous Gummel iteration and of Ni at the
previous time level.
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Chapter 6

Simulation Tests and
Comparison between
Poisson-Maxwell-Stefan and
Poisson-Nernst-Planck Models

The purpose of this chapter is to compare the Maxwell-Stefan model with
Fick’s model of diffusion (2.6) and the Poisson-Maxwell-Stefan model with
the Poisson-Nernst-Planck model. Through these comparisons, we will try
to identify the advantages and limitations of these models. In particular, the
chapter will be divided into the following sections:

• Section 6.1: tests on the Maxwell-Stefan model with non-constant tem-
perature and electrical potential and with several intial conditions;

• Section 6.2: comparison between the Maxwell-Stefan and Fick models;

• Section 6.3: comparison between the Poisson-Maxwell-Stefan and Poisson-
Nernst-Planck models .

In this chapter all tests are performed on ternary mixtures, composed of
the chemical species S1, S2 and S3 which have the characteristics presented
in Table 6.1 (or clearly indicated in the test) and whose matrix of the diffusion
coefficients of Maxwell-Stefan is Ð.

Ð =

 0 0.033293 0.026117
0.033293 0 0.036936
0.026117 0.036936 0

 (6.1)
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S1 S2 S3

zi 0.7 1 1 −

Mi 1.2061e− 25 2.1189e− 25 2.019e− 25 kg mol−1

DT
i 3.1269e− 25 0.2783e− 25 1.9525e− 25 kg m−1s−1

Table 6.1: Species data

6.1 Test on the Maxwell-Stefan model

The Maxwell-Stefan model can be derived from sytem (3.13) assuming the
electrostatic potential as a given function. So it is possible to neglect the
Poisson equation obtaining system (6.2).

Model 2 (Maxwell-Stefan)
Let Ω be a bounded domain of Rd, d=1,2,3, QT = Ω × (0, T ), and ST =
∂Ω× (0, T ), T > 0, the Maxwell-Stefan model is given by

ct
∂xi
∂t

+∇ ·Ni = 0 in QT
n∑
j=1
j 6=i

xjNi − xiNj

ctÐij
+

n∑
j=1
j 6=i

xixj (αi − αj)
Ðij

∇T
T

= −∇xi −
xi
RT

zi,effF ∇ϕ in QT

zi,eff =

zi − ωi n∑
j=1

zjxj
xi


n∑
i=1

xi = 1

n∑
i=1

Ni = 0

ci(x, 0) = c̄i(x) in Ω

Ni · ν = 0 on ST

(6.2a)

(6.2b)

(6.2c)

(6.2d)

(6.2e)

(6.2f)
(6.2g)

for every i = 1, . . . , n− 1.
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In the following sections we carry out the analysis of the Maxwell-Stefan
model considering initially the effect of diffusion and subsequently including
the contributions of temperature and electrical potential.

The one-dimensional mesh and temporal discretization are carried out in all
the tests in this section with the data in Table 6.2.

ξ0 ∆ξ ξNξ t0 ∆t tNt

0 0.001 1 0 0.01 0.2

Table 6.2: Mesh and temporal discretization data

6.1.1 The Maxwell-Stefan model: diffusion

We begin the analysis of the Maxwell-Stefan model (6.2) setting the temper-
ature at T = 300K and the electric potential equal to a constant. System
(6.2) becomes:

ct
∂xi
∂t

+∇Ni = 0 in QT
3∑
j=1
j 6=i

xjNi − xiNj

ctÐij
= −∇xi in QT

3∑
i=1

xi = 1 in QT

3∑
i=1

Ni = 0 in QT

ci(x, 0) = c̄i(x) in Ω

Ni · ν = 0 on ST

(6.3a)

(6.3b)

(6.3c)

(6.3d)

(6.3e)
(6.3f)

Below are the tests of (6.3) carried out with three different profiles of initial
concentrations c0

i=1,2,3.
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Test 1: Constant molar concentrations

cS1(·, 0) cS2(·, 0) cS3(·, 0)

1e5 mol/m3 2e5 mol/m3 7e5 mol/m3

Table 6.3: Test 1, concentrations ci at time t = 0.

Starting from the constant initial concentrations of Table 6.3 we get the
results displayed in Figure 6.1. It can be clearly seen that, with the exception
of numerical noise, the molar concentrations ci (left column) remain constant
and equal to the initial data and the molar flows Ni (right column) are null.
In particular, these results agree with the predictions of the Fick model.

(a) cS1 (b) cS2

(c) cS3

Figure 6.1: Test 1: molar concentrations and molar fluxes
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Test 2: Constant molar fractions

Repeating the previous test with the initial concentrations as in Figure 6.2
we get the results shown in Figure 6.3.

Figure 6.2: Test 2: molar concentrations ci
at time t = 0.

We immediately notice that the molar concentrations remain constant
over time and equal to the initial data. These results may seem unexpected,
but it should not be forgotten that both for the Maxwell-Stefan model and
for the Fick model the driving force is generated by the gradient of the molar
fraction and not by the gradient of the molar concentrations. Thus, in this
test, although the latter are not null, the gradients of the molar fractions are
zero. Let cS = cS1 (ξ, 0) = cS2 (ξ, 0) = cS3 (ξ, 0) be the molar concentrations
in Figure 6.2 of the three chemical species S1, S2 and S3. We have that

xi =
ci
ct

=
CS

3 ∗ CS
= const −→ ∇xi = 0 (6.4)

Then in the absence of driving forces the concentrations remain constant
over time.
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(a) cS1 (b) NS1

(c) cS2 (d) NS2

(e) cS3 (f) NS3

Figure 6.3: Test 2: molar concentrations and molar fluxes
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Test 3: General molar concentrations

We consider the concentration profiles shown in Figure 6.2 as the initial data
for molar concentrations ci.

(a) cS1 (b) cS2

(c) cS3

Figure 6.4: Test 3: initial molar concentrations

In this test we can observe the implications of the equimolar assumption.
In fact, while the species S2 diffuses from the concentration peak, the other
two species S1 and S3 have an inverse diffusion and form concentration peaks,
which are higher as the first one goes down. This phenomenon is caused by
the equimolarity assumption, which imposes locally null total flux. It follows
that species S1 and S3 in order to balance the outgoing flux of species S2

from the peak, must have incoming fluxes that form concentration peaks.
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(a) cS1 (b) NS1

(c) cS2 (d) NS2

(e) cS3 (f) NS3

Figure 6.5: Test 3: molar concentration and molar fluxes
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6.1.2 The Maxwell-Stefan model: diffusion and thermal gra-
dient

We continue the analysis of the model (6.2) introducing a non-constant tem-
perature profile. System (6.2) becomes:

ct
∂xi
∂t

+∇Ni = 0 in QT
3∑
j=1
j 6=i

xjNi − xiNj

ctÐij
+

3∑
j=1
j 6=i

xixj (αi − αj)
Ðij

∇T
T

= −∇xi in QT

3∑
i=1

xi = 1 in QT

3∑
i=1

Ni = 0 in QT

ci(ξ, 0) = c̄i(ξ) in Ω

Ni · ν = 0 on ST

(6.5a)

(6.5b)

(6.5c)

(6.5d)

(6.5e)
(6.5f)

Test 4: Linear temperature profile

Test 4 is carried out with the initial constant concentrations ci used in Test
1 (Table 6.3), the thermal diffusion coefficients in Table 6.4, multiplied by
105 to accentuate the effects of thermal diffusion, and the temperature dis-
tribution illustrated in Figure 6.6 .

DT
S1

DT
S2

DT
S3

0.31e− 20 0.27e− 20 1.95e− 20 kg m−1s−1

Table 6.4: Test 4, thermal diffusion coefficients

Observing the results in Figure 6.7 we notice that the chemical species
S2 moves in a direction consistent with the temperature gradient. Following
a standard diffusion model we would expect a shift of the chemical species
in the direction opposite to the temperature gradient. For convenience, let
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Figure 6.6: Test 4: linear temperature.

us define αi,eff as follows:

αi,eff =
3∑
j=1
j 6=i

xj (αi − αj)
Ðij

=
3∑
j=1
j 6=i

xj
Ðij

(
DT
i

ρi
−
DT
j

ρj

)
(6.6)

αi,eff is the weighted average of the thermal diffusivities differences (αi−αj)
multiplied by the inverse of the Maxwell-Stefan diffusion coefficients Ðij .
Within the phenomenon of binary interactions among the species that is
described by the equations of Maxwell-Stefan, αi,eff is nothing but the ther-
mal diffusivity that the species i exhibits averaging its diffusivity with the
diffusivity of the species with which it interacts.

Let’s try an easy example to understand the meaning of αi,eff . Suppose
we have two different chemical species. Considered individually, if they are
subjected to a temperature gradient, they move in the gradient opposite di-
rection. Considered together, instead, these species interact, we could say
that collide (see Section 2.3), and both try to go in the same direction. A
"competition" is established between the species, only the faster species is
able to move in the opposite direction to the temperature gradient, i.e. the
one with the highest thermal diffusivity coefficient αi. The other species is
pushed in a direction consistent with the gradient. The difference αi − αj
is then divided by the Maxwell-Stefan diffusion coefficient Ðij , that weight
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the obtained result on the interaction between the two species. If Ðij is high
then the interaction between species i and j is low. So it is not very ad-
vantageous to "win" on the other species. Since the Maxwell-Stefan model
is based on binary interactions, in the case of multicomponent mixture a
medium operation is required. Moreover we remember that the thermal dif-
fusivity coefficients αi are function of the mass density ρi, thus they change
locally.

The αi,eff in the Figure 6.7 can be ordered, for each point of the mesh,
as follows:

αS2,eff < 0 < αS3,eff < αS1,eff

Observing the corresponding molar concentrations we have that the species
S1, that has the greater αi,eff , moves in the opposite direction to the gradient
by concentrating on the left boundary layer. Instead, species S2, that has
the lowest thermal diffusivity coefficient, moves and accumulates toward the
right boundary layer. At the end, the species S3, whose αi,eff is positive
and included between the other two, moves in the opposite direction to the
thermal gradient. However, it has a concentration peak to the right of the
left boundary layer, since the latter is occupied by the concentration peak
of the species S1.
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(a) cS1 (b) αS1,eff

(c) cS2 (d) αS2,eff

(e) cS3 (f) αS3,eff

Figure 6.7: Test 4: molar concentrations and molar fluxes
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6.1.3 The Maxwell-Stefan model: diffusion and electric po-
tential

In this section we neglect the temperature effects by considering a constant
temperature T = 300K and we set a non-constant electric potential, as in
Figure 6.8.

System (6.2) reads:

ct
∂xi
∂t

+∇ ·Ni = 0 in QT
3∑
j=1
j 6=i

xjNi − xiNj

ctÐij
= −∇xi −

xi
RT

zi,effF ∇ϕ in QT

zi,eff =

zi − ωi 3∑
j=1

zjxj
xi

 in QT

3∑
i=1

xi = 1 in QT

3∑
i=1

Ni = 0 in QT

ci(ξ, 0) = c̄i(ξ) in Ω

Ni · ν = 0 on ST

(6.7a)

(6.7b)

(6.7c)

(6.7d)

(6.7e)

(6.7f)
(6.7g)

Test 5: Linear electric potential

Given the initial constant concentrations ci used in Table 6.5 and the ionic
charges in Table 6.1, we get the results illustrated in Figure 6.9.

cS1(·, 0) cS2(·, 0) cS3(·, 0)

2e5 mol/m3 4e5 mol/m3 4e5 mol/m3

Table 6.5: Test 5, concentrations ci at time t = 0.

64



Figure 6.8: Test 5: electrostatic potential ϕ

Results in Figure 6.9 show that, despite the three ionic species are positive
charged zi > 0, they respond differently to the presence of the electric field
(i.e the gradient of the electric potential). The positive ionic charge flows in
the opposite direction to the electric potential gradient, however, the species
S2 shows opposite behavior. This phenomenon is due to the interaction
between the ionic species. The charge they are affected by is not the ion
charge zi but the effective charge zi,eff . Considering the latter instead of zi
the concentration profiles obtained are easily understandable.

zi,eff = zi −
Mi∑n

j=1 xjMj

n∑
j=1

zjxj

We can say that zi,eff is the actual charge of which a species is affected if
it is subjected to interaction with other species. It is necessary to provide
a physical interpretation of the effective charge zi,eff . Mathematically it is
defined as the difference between the ionic charge zi and the average charge
(
∑n

j=1 zjxj) multiplied by the ratio between the molar weight Mi of the
species i and the total molar weight of the mixture

∑n
j=1 xjMj .

Let us onsider the example of the previous Section 6.1.2. In this case
the two species tend to move in the direction imposed by the gradient of the
potential according with the sign of their charge. In the case of electroneu-
trality positive and negative charge are equal, so the charge flux (a current
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(a) cS1 (b) ZS1,eff

(c) cS2 (d) ZS2,eff

(e) cS3 (f) ZS3,eff

Figure 6.9: Test 5: molar concentrations and zi,eff

density ) that moves in one direction is equal and oppostite to that of the

66



other flux. Otherwise an excess of charge, we suppose positive charge, is
formed. The accumulation of positive charges increases the interaction be-
tween the positive ionic species which decreases the effect of the potential on
the positive ionic charge, in this case |zi,eff | < |zi|, whereas it increases the
effect of the potential on the negative charged species |zi,eff | > |zi|. Since
the average charge

∑n
j=1 zjxj and total molar weight

∑n
j=1 xjMj are equal

for all zi,eff , the molar weight of Mi is particularly relevant for the sign of
zi,eff .
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6.2 Fick and Maxwell-Stefan models in the dilute
mixture approximation

In this section we compare the Fick model and the Maxwell-Stefan model
through the solutions provided by the two approaches for diluted and undi-
luted mixtures.

Model 3 (Fick’s model)
Let Ω be a bounded domain of Rd, d=1,2,3, QT = Ω × (0, T ), and ST =
∂Ω× (0, T ), T > 0, the Poisson-Maxwell-Stefan model is given by



∂ci
∂t

+∇ ·Ni = 0 in QT

Ni = −Dict

(
∇xi +

ziq

kbT
xi∇ϕ+ αixi

∇T
T

)
in QT

ci(ξ, 0) = c̄i(ξ) in Ω

Ni · ν = 0 on ST

(6.8a)

(6.8b)

(6.8c)
(6.8d)

for every i = 1, . . . , n− 1.

Fick’s model assumes that the mixtures are diluted. Mathematically, this
condition is expressed as follows

ci(ξ, t)� cn(ξ, t) i = 1, . . . , n− 1 (6.9)

Equation (6.9) implies that

xi =
ci(ξ, t)

ct(ξ, t)
u
ci(ξ, t)

cn(ξ, t)
−→ 0 i = 1, . . . , n− 1

xn = 1−
n∑
i=1

xi −→ 1

(6.10a)

(6.10b)

Let us impose conditions (6.10) on the n−1 Maxwell-Stefan relations (6.2b).
System (6.2) becomes:



ct
∂xi
∂t

+∇ ·Ni = 0 in QT

Ni = −Ðinct

(
∇xi +

xiαi
Ðin

∇T
T

+
q zi,eff
kbT

xi∇ϕ
)

in QT

ci(ξ, 0) = c̄i(ξ) in Ω

Ni · ν = 0 on ST

(6.11a)

(6.11b)

(6.11c)
(6.11d)
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In particular we have that:

xixj (αi − αj) = xixj

(
DT
i

ρi
−
DT
j

ρj

)

= xixj

(
DT
i

ctxiMi
−

DT
j

ctxjMj

)
=
DT
i xjMj −DT

j xiMi

ctMiMj

thus
3∑
j=1
j 6=i

xixj (αi − αj)
Ðij

∇T
T

=

3∑
j=1
j 6=i

1

Ðij

DT
i xjZZMj −XXXXXDT

j xiMi

ctMiZZMj

∇T
T
−→ xi

Ðin

DT
i

ρi

∇T
T

By equation (5.23) we get also

zi,eff = zi −
Mi

Mn
zn

Let us define αi,F ick, zi,F ick and Di as:

αi,F ick =
αi
Ðin

zi,F ick =

(
zi −

Mi

Mn
zn

)
Di = Ðin

(6.12)

(6.13)

(6.14)

Then, we obtain that, assuming diluted mixtures, the Maxwell-Stefan model
(6.2) and the Fick model (6.8) are equivalent.

Relation (6.14) between the Maxwell-Stefan coefficients Ðin and the Fick
diffusion coefficients Di can be obtained by imposing conditions (6.10) into
equation (2.41) and (2.39). Because the off-diagonal elements (2.39b) of the
matrix B are all null

B =


1

Ð1,n
0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 1

Ðn−1,n

 (6.15)

and the Γ matrix (2.17) is the identity matrix, by assumption of ideal mix-
ture, the Fick diffusion coefficient matrix D is
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D =


Ð1,n 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 Ðn−1,n

 (6.16)

that is the matrix version of the condition (6.14).

cS1(·, 0) cS2(·, 0) ct(·, 0)

diluted 1e2 mol/m3 2e2 mol/m3 1e6 mol/m3

↓ 1e4 mol/m3 2e4 mol/m3 1e6 mol/m3

↓ 1e5 mol/m3 2e5 mol/m3 1e6 mol/m3

undiluted 2e5 mol/m3 4e5 mol/m3 1e6 mol/m3

Table 6.6: Initial concentration for Maxwell-Stefan and Fick comparison.

6.2.1 Maxwell-Stefan and Fick models: diffusion

In this section we compare the models (6.8) and (6.2) considering constant
temperature T = 300K and constant electric potential.

Let

ci(ξ, t) =
Q

2
√
πDit

exp

(
− ξ2

4Dit

)
i = 1, 2

where

Q =

∫ +∞

−∞
ci(ξ, 0) dξ

be the analytical solution of the problem (6.8) with initial condition, for
Q = 1, c0

i = δ (where δ is Dirac delta) [19].

Computationally the initial molar concentrations c0
i are triangles of base

length 0.002, centered in 0.5, and heights in Table 6.6. As can be seen from
Figure 6.10, the two models are always equivalent whatever the height of the
Dirac delta. This can be easily justified by the fact that delta concentrations
are always diluted in a mixture composed with data in Table 6.6.
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(a) c1 = 1e2 c2 = 2e2 (b) c1 = 1e2 c2 = 2e2 log scale

(c) c1 = 1e4 c2 = 2e4 (d) c1 = 1e4 c2 = 2e4 log scale

(e) c1 = 1e5 c2 = 2e5 (f) c1 = 1e5 c2 = 2e5 log scale

Figure 6.10: Comparison between Maxwell-Stefan and Fick models: the
purely diffusive case
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6.2.2 Maxwell-Stefan and Fick models: diffusion and ther-
mal gradient

It is now assumed that the temperature T = T (ξ) follows the linear profile
shown in Figure 6.11 and that the electric potential is still constant.

(a) c1 = 1e2 c2 = 2e2 (b) c1 = 1e4 c2 = 2e4

(c) c1 = 1e5 c2 = 2e5 (d) c1 = 2e5 c2 = 4e5

Figure 6.11: Comparison between Maxwell-Stefan and Fick models: linear
temperature profile

Let
ci (ξ) = −αi,F ick ln (T (x)) +K i = 1, 2
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where

K = c̄i +
αi,F ick
ξNξ − ξ0

(
T (ξNξ)

T ′
ln
(
T (ξNξ)

)
− T (ξ0)

T ′
ln (T (ξ0))− ξNξ + ξ0

)
c̄i = const

be an analytical solution of the steady state of the problem (6.8) (ϕ = const).

Graphs in Figure 6.11 show that, in the case of diluted mixtures, the
Fick model of diffusion at the steady-state provides results that agree with
the Maxwell-Stefan model, while, in the case of undiluted mixtures, the two
models provide quite different results.

6.2.3 Maxwell-Stefan and Fick models: diffusion and electric
potential

In this test we compare models (6.2) and (6.8) assuming a constant temper-
ature profile T = 300K and a linear electric potential function, as in Figure
6.8. Under these assumptions, equation (6.8b) is called Nernst-Planck equa-
tion.

Let
ϕ (ξ) = ϕ′ξ + ϕ (ξ0)

be a potenzial profile with constant electric field. Then

ci (ξ0) = −
ci (ξ, 0)λ

(
ξNξ − ξ0

)
e
−λξNξ − e−λξ0

e−λξ (6.17)

where
λ =

zi,F ick q ϕ
′

kbT

is a steady state solution of (6.8) for a constant temperature profile.

The comparison between the analytical steady-state solution (6.17) of the
Fick model and the solution of the Maxwell-Stefan model, for t large enough,
shows (see Figure 6.12 ) that in diluted mixture assumption the models are
equivalent, whereas for undiluted mixure they produce different results.
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(a) c1 = 1e2 c2 = 2e2 (b) c1 = 1e4 c2 = 2e4

(c) c1 = 1e5 c2 = 2e5 (d) c2 = 1e5 c2 = 4e5

Figure 6.12: Comparison between Maxwell-Stefan and Fick models: constant
electric field
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6.3 Poisson-Nernst-Planck model

The aim of this section is to compare the Poisson-Maxwell-Stefan model
(3.13) with the well-known Poisson-Nernst-Planck model. To this purpose
let us introduce

Model 4 (Poisson-Nernst-Planck)
Let Ω be a bounded domain of Rd, d=1,2,3, QT = Ω × (0, T ), and ST =
∂Ω× (0, T ), T > 0, the Poisson-Nernst-Planck model is given by

∂ci
∂t

+∇ ·Ni = 0 in QT

Ni = −ctÐin

(
∇xi +

F
R T

zixi∇ϕ
)

in QT

−∇ · (ε∇ϕ) = q

(
n∑
i=1

zini + P

)
in QT

ci(x, 0) = c̄i(x) in Ω

ϕ = ϕ̄d on ST
Ni · ν = 0 on ST

(6.18a)

(6.18b)

(6.18c)

(6.18d)
(6.18e)
(6.18f)

for every i = 1, . . . , n− 1.

Equation (6.18b) is the so called Nernst-Planck equation, that is the
equivalent of equation (6.8b) for a costant temperature function. Combining
the Nernst-Planck equation (6.18b) with continuity equation (6.18a) we get a
conservation of mass equation that describes the motion of a diluted charged
chemical species in a medium. It can be seen as an extention of the Fick’s
law of diffusion (2.6) for charged species that are moved by the presence of
a non-constant electric potential, governed by the Poisson equation (6.18c).
Moreover, we assume that the electroneutrality condition (3.5) holds only at
the boundary where the electric potential is imposed.

Following the same procedure that it is used in Section 6.2 we can verify
that, by defining zi,NP as in (6.13), the Nernst-Planck equation (6.18b) is
only a limiting case of the generalized Maxwell-Stefan equation (3.13).

We are interested in a comparison between the Poisson-Maxwell-Stefan
model (3.13) and the Poisson-Nernst-Planck model (6.18) starting by diluted
mixtures up to undiluted mixtures. to this purpose we carry out the tests
using the data in Tables 6.2, 6.1 and 6.6.
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(a) c1 = 1e2 c2 = 2e2 (b) c1 = 1e4 c2 = 2e4

(c) c1 = 1e5 c2 = 2e5

Figure 6.13: Comparison between Poisson-Maxwell-Stefan and Poisson-
Nernst-Planck models

Imposing an electric potential difference of 1 V at the boundary, Poisson-
Maxwell-Stefan model and Poisson-Nernst-Plack model provide the results
shown in Figure 6.13 Comparing these results we notice that in diluted mix-
ture assumption the models are equivalent, whereas for undiluted mixure
they produce quite different results.
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Conclusions and future
perspectives

In this work we focused on the Poisson-Maxwell-Stefan model with the aim of
providing a detailed model for the description of mass transport. This model,
discretized with the Galerkin Finite Element Method, is a system of non-
linear and coupled equations, therefore it requires a massive use of iterative
algorithms for the decoupling and the solution of the linearized equations.
In particular, the nonlinear Poisson equation is solved by Newton’s method,
whereas the system of continuity and Maxwell-Stefan equations exploits the
potential of the Gummel Map. This resolutive framework has been imple-
mented both for the Poisson-Maxwell-Stefan coupled problem and for the
Maxwell-Stefan problem only, in the one-dimensional case using the Matlab
programming language. In order to guarantee the existence and the unique-
ness of the solution, a careful analysis of each step of the iterative process
was carried out.

This code was tested with similar models and validated in the case of
diluted mixtures, e.g. Fick’s model of diffusion or Poisson-Nernst-Planck,
providing good results. In particular, in contrast to the models mentioned
above, the Posson-Maxwell-Stefan holds also for undiluted mixtures.

In conclusion we mention some possible directions for future works:

• extension of the code to 2D or 3D;

• implementation of non-standard stabilization techniques;

• include the dependence of the coefficients from physical quantities of
the system;

• complete the integration with other physical forces;

77



• add the heat equation to the model;

• use c++ to speed up solution time.
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Summary of physical relevant
quantities

Name Description unit of measure

ci molar density of species i
[
mol m−3

]
ct total molar density

[
mol m−3

]
F Faraday constant

[
C mol−1

]
Fi a general body force

[
N mol−1

]
Ji relative molar flux of species i

[
mol m−2s−1

]
Mi molar mass of species i

[
kg mol−1

]
NA Avogadro constant

[
mol−1

]
Ni molar flux of species i

[
mol m−2s−1

]
Nt total molar flux

[
mol m−2s−1

]
n number of species in the mixture [−]
ni number density of species i

[
m−3

]
nt total number density

[
m−3

]
pi partial pressure of species i

[
N m−2

]
P total pressure

[
N m−2

]
q electron charge [C]
T temperature [K]
ui velocity of species i

[
m s−1

]
u average velocity

[
m s−1

]
xi molar fraction of species i [−]
zi charge number of species i [−]
ε dielectric constant

[
F m−1

]
µi molar chemical potential of species i

[
J mol−1

]
ρi species i density

[
kg m−3

]
ρt total density

[
kg m−3

]
ϕ electric potential [V ]
ωi density fraction of species i [−]
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