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Sommario

La simulazione delle proprietà di fasci di raggi X lungo la propagazione nelle
beamline, è uno step importante per la progettazione e l’ottimizzazione di esse.
Per sistemi ottici basati sulla riflessione singoli specchi o particolari combinazioni
di specchi vengono utilizzati per la focalizzazione del fascio. Un esempio tipico
di questi sistemi è il sistema KirckPatrick-Baez (KB), molto popolare all’ESRF
per le sue molteplici qualità. Comunque, siccome la qualità dei fasci generata dal
sincrotrone dell’ESRF è molto elevate, si va sempre più alla ricerca di elementi
ottici via via migliori.
Durante il mio periodo di tirocinio all’ESRF, ho sviluppato una libreria python,
in grado di simulare la propagazione di fasci attraverso semplici specchi sferici,
e combinazioni di essi quali il sopracitato KirckPatrick-Baez e un altro sistema,
denominato Montel. Lo scopo della tesi è stato quello di studiare il sistema Montel
utilizzando la libreria generata per poi implementarla nel software OASYS.
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Abstract

The simulation of x-ray beam properties during the transport along a beamline
is important for the design, the optimization and the operation of the beamline. For
reflection optical system single mirrors or particular combination of them are used to
increase the focusing property of a beam. A typical example is the Kirkpatrick-Baez
(KB) system, very popular at the ESRF because of its many good properties and
so well studied. However, the extreme quality of the synchrotron beams that will
be available with the ESRF upgraded storage ring pushes the requirement in optics
to consider more and more perfect elements.

During my traineeship period at ESRF, I developed a python library in able to
simulate a beam propagation along simple surface conic mirrors, and combination of
them such as the already discussed KirckPatrick-Baez and another system, named
Montel. The aim of the thesis was that to study the effect of Montel system using
the built library to then implement it in OASYS.
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Introduction

The simulation of x-ray beam properties during the transport along a beamline
is important for the design, the optimization and the operation of the beamline. For
X-ray radiation both refractive and reflective elements are used. But, in this thesis,
is discussed only the reflection optics (mirrors and combination of them). The aim
of the optical system is that to propagate the radiation from the synchrotron source
to the sample. This implies some form of focusing on the Beam.
Reflective elements that can focus must be curved mirrors or combination of them.
Moreover, because of the high absorption coefficient of the X-ray radiation, a total
external reflection is needed. This means that the mirrors are used in a grazing
configuration.
The simplest curved mirror existing, spherical one, cannot be used, due to the
fact that, at grazing incidence, the image is aberrated a lot. To overcome these
aberrations other kinds of curved mirrors can be used: toroidal or conical mirrors.
Simple mirror make a good point-to-point focus. In case of an image it needs an
"imaging system" that can propagate the radiation in the correct way. System
that are able to do this are: Wolter [Wol75], Kirkpatrick-Baez [KB48] and Montel
[Mon57] system.
Wolter system are very used in astronomical field. Kirkpatrick-Baez system are
very popular at the ESRF because of many good properties. Montel system are
not used at ESRF but it is possible to find them in other synchrotron.
OASYS (OrAnge SYnchrotron Suite) [RdR17b] [dRRD+14] is an open-source graph-
ical environment for optic simulation developed by Manuel Sanchez del Rio and Luca
Rebuffi. This software is used for optical simulation, in particular for syncrotron
radiation, at ESRF and over the facilities around the world. It puts together several
packages that allow a user-friendly simulation from the ray tracing tool SHADOW.
In this software are already implemented many kinds of optical element such as
curved mirrors, KB system and others (both refractive and reflective elements).
During my traineeship I developed a python library MONWES (Montel and Wolter
of yunEs), that perform ray tracing simulation for X-ray radiation along system
consisting of one or several mirrors. It is implemented also "imaging system" such
as Kirkpatrick and Montel system. The aim of this library is to integrate the
Montel optical element in OASYS. All the optical elements implemented, apart
from Montel system, use a sequential tracing method. This method doesn’t work
for Montel so more effort was done in its tracing method. I hope that my efforts
will help the scientific community on its job.
In the last part of my traineeship I did a simulation work for the beamline ID20.
The simulation were done on a Montel used as analyser that the beamline meant

1



2 Introduzione

to buy. Comparing the information provided by the company with my simulation.
This study is reported in the thesis.
The thesis is divided in 4 Chapters with the following structure:

1. Chapter 1: review of the interaction X-ray - matter in order to explain the
importance of the mirror in a grazing configuration to focus and collimate
X-ray radiation.

2. Chapter 2: it is reported the geometrical focusing explanation of mirrors. A
study of the Kirkpatrick-Baez and Montel system. Moreover, a comparison
between them is presented.

3. Chapter 4: describes the models and algorithm implemented in MONWES.
And show examples of operation of the program.

4. Chapter 5: a first testing part against OASYS to show the correct work of
MONWES. Benchmarking against some results found in bibliography is done.
Then it is reported the calculation done with MONWES for an analyser to
be installed at the ID20 beamline.



Chapter 1

Focusing for X-rays

Image formation by an optical system usually implies some form of focusing.
Moreover, the environment in which the radiation its surrounded, such as the
material of which a certain mirror is made, controls the focusing property. In
case of the visible light the focusing elements mainly used are lenses with their
laws, well-known and studied, for the electron focusing, the optical element become
electric and magnetic fields that to curve the path of the electrons. To study the
focusing property of the X-ray radiation, it has to consider the interaction that
acts between the radiation and the matter. These phenomena are, that rule the
interaction radiation-matter are:

1. elastic scattering;

2. inelastic scattering;

3. scattering via photoelectric effect.

The first effect, where there is an exchange of energy, is constituted by: Thomson
scattering, that it is the scattering of electromagnetic radiation by a free non
relativistic charged particle [Dal16], and Rayleigh scattering, an elastic scattering
between the radiation and the strongly bounded electrons that act cooperatively
[Fit06]. Because, the elastic scattering, generated a defined phase relation between
the incident and the scattered radiation, it is the responsible for Bragg diffraction.
The second effect, inelastic scattering, or Compton scattering [Uni16], that occurs
when an electron lost by the atom interact with the radiation and absorb a small
energy from the X-ray radiation. This scattering is an incoherent effect so there isn’t
any phase relation between incident and scattered radiation, moreover the atom
pass to another quantum state due to the energy absorbed by the electron. The
last effect, absorption via photoelectric effect, occur when a bounded electron with
an atom get the necessary energy to break the bound and become free (ionization
process). This last phenomenon is the most important effect for the energies of
interest at ESRF, i.e. −keV . Figure 1.1 show the contribution for the attenuation
coefficient, of the different absorption of a light material (water Figure 1.1a), and a
heavy material (lead 1.1b) (from [SFV09].



4 Chapter 1. Focusing for X-rays

(a) H2O

(b) Pb

Figure 1.1: Attenuation coefficient for X-ray radiation of a light material (water Figure
1.1a), and a heavy material (lead 1.1b) (from [SFV09]).
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1.1 Interaction with Matter
Interaction between radiation and matter can be compressed in a coefficient

(absorption coefficient)), that rule the attenuation of an incident radiation

I = I0exp(−µx) (1.1)

where x is the thickness of the material, µ is the absorption coefficient, and I0 the
initial intensity of the beam corresponding to the intensity at x = 0. Considering
the beam as a plane wave, it is possible to express the amplitude of the
electromagnetic wave as:

A = A0exp(
−2πβx
λ

)exp(−2πi((1− δ)x− ct)
λ

) (1.2)

where x is the position of the front wave, λ correspond to the wavelength of the
wave in the vacuum, δ is a number that describe the dispersive aspect of the
wave-matter interaction, and β is the absorption coefficient that describe the
absorption aspect of the wave-matter interaction. The propagation of the radiation
depends on the complex refractive index n, that can be expressed as:

n = 1− δ − iβ (1.3)

For X-rays process, the absorption term is the leading term, this mean that the µ
coefficient can be defined as linearly dependent from the absorption coefficient,
where:

α = 4πβ
λ

(1.4)

Normally the absorption values tabulated are given are the mass absorption
coefficients µm, where

µ = µmρ (1.5)

where ρ is the density of the material. The mass absorption of a compound is
given by

µm,com =
∑
j

wjµm,j (1.6)

where µm,j is the mass absorption of a particular element, and wj is the fraction of
the j element in the material. The relation between the absorption coefficient of
the material and the mass absorption coefficient is:

αcom = µm,comρcom (1.7)

where ρcom is the density of the compound.
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Figure 1.2: X-ray ionizing process

Because of the dominant energy of the radiation with respect to the matter energies
involved in the interaction (X-rays energies spreads from 100eV, soft X-ray, to
10keV, hard X-ray, binding and molecular energies are of the order of few eV), the
ionization process, as said before, is the leading process in the absorption coefficient.
In this case the greater part of the energies involved is transferred to the kinetic
term of the ionized electrons. Electron in atom have a well-defined state of energies,
so, to be absorbed, the radiation must have at least an energy equal to an electron
state energies. For energies equal to the electron state energies, as showed in Figure
1.1, absorption edges appears. The nomenclature K,L, ,M , of those edges, that
are not important for our treatment, correspond to, as it is showed in Figure 1.2,
the energies of an electron that goes down from a greater level, for example n = 2
to a lower one n = 1 ([Aga91]). In reality, the edges, are less pronunciation as
the ones in figure, due to the finite energy width of the states, and because of the
environment effect.
To understand better the absorption of the X-ray radiation it is reported a brief
theoretical treatment of the interaction, because the result are useful for the design
of the optical element used for X-rays. The calculation start from the elastic
scattering between X-ray photon against free electron (Thomson scattering). The
electro-magnetic radiation is characterized by an electric field with amplitude A0
that accelerate a free electron (of charge e and mass me) by an amount of A0(e/m).
A charged particle that is accelerated emits radiation, this change the value of the
amplitude of the electric field equal to:

AT (Φ) = e

4πε0c2r
a sin Φ (1.8)

where r is the distance from the charge, Φ correspond to the angle between the
position vector r and acceleration vector a. Replacing a with A0(e/m):

AT (Φ) = A0
e2

4πε0c2r
sin Φ (1.9)

To treat the interaction between the bounded electron and the radiation, going
beyond the Thomson scattering, it is possible to multiply the Thomson amplitude
AT (Φ) to a complex number f = f1 + if2 named complex atomic scattering. Thus:

A(Φ, E) = At(Φ) ∗ f(E) = AT (Φ)[f1(E) + if2(E)] (1.10)
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where the two function f1 and f2, depend on the energy of the incident X-ray
radiation that, to a first approximation, are independent of the angle between the
incident and the scattered radiation ϑ. This approximation has sense because the
typical radiation length (∼ 0.1− 10nm) is much larger than the typical length of
the atomic electronic distribution (∼ 1− 50pm), the consequence of this
approximation is the possibility to consider a phase scattering of the atomic wave
function. The values of the two function f1 and f2 are calculated in the relativistic
quantum dispersion theory [CL70] and are given by:

f1(E) = Z + 4ε0mec

he2

∫ +∞

0

W 2σ(W )
E2 −W 2dW −∆rel (1.11)

and

f2(E) = 2ε0mec

h
Eσ(E) (1.12)

In Equation 1.11, the first term correspond to the Thomson scattering, where Z
correspond to the atomic number of the atom. To add the angle-dependence of the
scattering it is used the factor:

f0 =
∫ +∞

0
U(r)sinc

[
4πr
λ

sin ϑ2

]
dr (1.13)

where U(r) represent the radial charge distribution and sinc(x) is the cardinal sine
function = sinx

x
. Considering a wavelength λ of the order of nanometres, if

sin ϑ
2 ≤

λ
2 , f0 = Z, otherwise for sin ϑ

2 = λ, typically, for most element f0 ' 0.9Z.

In Equation 1.11, the second term (the anomalous dispersion integral), represent
the oscillation of the electron after the interaction with the radiation, this can be
obtained treating the semi-classically the problem. This approach neglects the
damping, so, near the absorption edges f1 is inaccurate. The second term of the
Equation 1.11, and in Equation 1.12 contain σ that is the photo ionization cross
section expressed in m2atom−1, a coefficient that is related to the mass absorption
coefficient in this way:

σ(E) = A
µ

N0
(1.14)

where A is the atomic weight and N0 the Avogadro’s number
(N0 = 6.221023particlemol−1). The value of σ(E) is theoretically obtained knowing
the atomic wave function of the atom, so, only for hydrogen it possible to have the
correct value, for all the other system, the calculation can be done with
approximation methods that give some uncertainty on σ(E), consequently on the
value of f1 and f2.

In Equation 1.11 the third term take in account the relativistic effect. This correction
is given by [CL70]:

∆rel = 5
3
|Etot|
mec2 + Z

2

(
E

mec2

)2
(1.15)
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where |Etot| is the modulus of the total energy of the atom (that is negative),
moreover, this third term is the less relevant in Equation 1.11, for X-ray energies,
so it is possible to neglect it in the calculation.
For photo absorption event by an electron bounded to an atom, far from the
absorption edges, a good approximation is to consider the solid state environment
distorted by the ionization of the electrons, because, the most affected electrons are
the outer ones. After some calculation, is possible to relate the factors f1 and f2
with the macroscopic parameters n and β:

δ = 1− n = e2~2

2ε0meE2f1 (1.16)

and

β = e2~2

2ε0meE2f2 (1.17)

where f1 and f2 are defined as follow:

f1 =
∑
j

Njf1j f2 =
∑
j

Njf2j (1.18)

and represent the average scattering factor per unit volume, Nj is the total number
of the particular j element per unit volume. Putting everything together Equation
1.16, apart near the absorption edges, can be expressed as:

δ = Ne2~2

2ε0meE2f1 = Ne2λ2

8π2ε0mec2f1 (1.19)

where N is the number of electrons per unit volume. For X-ray energies the value
of δ is small (typically ∼ 10−3) and positive, this is important because it means
that, for X-rays, the refractive index is a bit less than 1. It is possible to find the
tabulated values of f1 and f2, [?], that are the main ingredient to calculate the
curve in Figure 1.1 and these were used to generate Figure 1. This values,
according to the experimental results, allow writing, far from absorption edges, the
absorption coefficient β such as:

β ∼ Z2λ3 (1.20)

This mean that increasing the photon energy, the absorption decrease, and is it
consistent with Figure 1.1, far from the edges. Moreover, the absorption, become
bigger with the element used in the optical element, heavy elements absorb more
than light elements. This is the reason why, to use refractive lenses for x-ray
radiation, one of the used material is the Beryllium.
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Figure 1.3: Interface of two medium

1.2 Total External Reflection
For the system in Figure 3.15, there are two complex refractive indexes:

n1 = 1− δ1 − iβ1 = n1 − iβ1 (1.21)
and

n2 = 1− δ2 − iβ2 = n2 − iβ2 (1.22)

moreover δ2 > δ1. In the general case there are, as shown in Figure 3.15 a reflected
and a transmitted wave. For the theoretical treatment, initially, will be neglect the
absorption (β1 = β2 = 0), moreover the permeability coefficient it is supposed to
be similar to the permeability in the vacuum. Thus, the law of Snell, can be
expressed such as:

cosϑi
cosϑt

= 1− δ2

1− δ1
(1.23)

Using the frame system as in Figure 3.15, with the z-axis that correspond to the
normal of the interface. It is possible to write the component of the electric field of
the waves in this way

Eix = A‖ sinϑi exp−iτi , Eiy = A⊥ exp−iτi , Eiz = A‖ cosϑi exp−iτi (1.24a)
Etx = −T‖ sinϑt exp−iτt , Ety = T⊥ exp−iτt , Etz = T‖ cosϑt exp−iτt (1.24b)
Erx = R‖ sinϑr exp−iτr , Ery = R⊥ exp−iτr , Erz = R‖ cosϑr exp−iτr (1.24c)

where

τi = ω(t− r • si

v1
) = ω

[
t− (1− δ1)(x cosϑi + z sinϑi

c

]
(1.25a)

τt = ω(t− r • st

v2
) = ω

[
t− (1− δ2)(x cosϑt + z sinϑt

c

]
(1.25b)

τr = ω(t− r • sr

v1
) = ω

[
t− (1− δ1)(x cosϑr + z sinϑr

c

]
(1.25c)
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where ω is the angular frequency of the wave, and v1, v2, correspond to the
velocities of propagation that depend on the material as follows:

v1 = c

1− δ1
, v2 = c

1− δ2
(1.26)

the related magnetic field are:

Hix = −A⊥(1− δ1) sinϑi exp−iτi , Hiy = −A‖(1− δ1) exp−iτi ,
Hiz = A⊥(1− δ1) cosϑi exp−iτi

(1.27a)

Htx = −T⊥(1− δ2) sinϑt exp−iτt , Hty = −T‖(1− δ2) exp−iτt ,
Htz = T⊥(1− δ2) cosϑt exp−iτt

(1.27b)

Hrx = −R⊥(1− δ1) sinϑr exp−iτr , Hry = −R‖(1− δ1) exp−iτr ,
Hrz = R⊥(1− δ1) cosϑr exp−iτr

(1.27c)

the boundary condition impose the continuity of the fields:

Eix + Erx = Etx, Eiy + Ery = Ety (1.28)

and
Hix +Hrx = Htx, Hiy +Hry = Hty (1.29)

because of Snell’s laws ϑr = ϑt, so, from the Equation 1.28 and Equation 1.29:

(A‖ −R‖) sinϑi = T‖ sint (1.30a)

A⊥ +R⊥ = T⊥ (1.30b)

(1− δ1)(A⊥ −R⊥) sinϑi = (1− δ2)T⊥ sinϑt (1.30c)

(1− δ1)(A‖ +R‖) = (1− δ2)T‖ (1.30d)

Equations 1.30 give a set of equations where the parallel and perpendicular
component of the waves are independent. Solving that set with respect to each
parallel/perpendicular component it is obtained:

R‖
A‖

=
[

(1− δ2) sinϑi − (1− δ1) sinϑt
(1− δ2) sinϑi

+ (1− δ1) sinϑt
]

(1.31a)

R⊥
A⊥

=
[

(1− δ1) sinϑi − (1− δ2) sinϑt
(1− δ1) sinϑi

+ (1− δ2) sinϑt
]

(1.31b)

T‖
A‖

= 2(1− δ1) sinϑi
(1− δ2) sinϑi + (1− δ1) sinϑt

(1.31c)

T⊥
A⊥

= 2(1− δ1) sinϑi
(1− δ1) sinϑi + (1− δ2) sinϑt

(1.31d)

Equations 1.31 are the Fresnel formula for reflection at a plane surface.
Combining them with Equation 1.23 it is obtained:
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R‖
A‖

=
(1− δ2)2 sinϑi − (1− δ1)

√
(1− δ2)2 − (1− δ1)2 cos2 ϑi

(1− δ2)2 sinϑi + (1− δ1)
√

(1− δ2)2 − (1− δ1)2 cos2 ϑi
(1.32a)

R⊥
A⊥

=
(1− δ1)2 sinϑi −

√
(1− δ2)2 − (1− δ1)2 cos2 ϑi

(1− δ1)2 sinϑi +
√

(1− δ2)2 − (1− δ1)2 cos2 ϑi
(1.32b)

T‖
A‖

= 2(1− δ1)(1− δ2) sinϑi
(1− δ2)2 sinϑi + (1− δ2)

√
(1− δ2)2 − (1− δ1)2 cos2 ϑi

(1.32c)

T⊥
A⊥

= 2(1− δ1) sinϑi
(1− δ1) sinϑi +

√
(1− δ2)2 − (1− δ1)2 cos2 ϑi

(1.32d)

When ϑi is such that:

cosϑc = 1− δ2

1− δ1
(1.33)

that angle is named critical angle ϑc, and

R‖
A‖

= R⊥
A⊥

(1.34)

this case correspond to a wave that is totally reflected. Normally the total external
reflection take place at an interface light material(air/vacuum) and dense material,
so δ1 = 0, δ2 = δ, the equations became:

cosϑc = 1− δ for small angle ϑc '
√

2δ (1.35)

and:

R‖
A‖

=
(1− δ)2 sinϑi −

√
(1− δ)2 − cos2 ϑi

(1− δ)2 sinϑi +
√

(1− δ2)2 − cos2 ϑi
(1.36a)

R⊥
A⊥

=
sinϑi −

√
(1− δ)2 − (1− cos2 ϑi

sinϑi +
√

(1− δ)2 − cos2 ϑi
(1.36b)

T‖
A‖

= 2(1− δ) sinϑi
(1− δ)2 sinϑi +

√
(1− δ)2 − (1− cos2 ϑi

(1.36c)

T⊥
A⊥

= 2 sinϑi
sinϑi +

√
(1− δ)2 − cos2 ϑi

(1.36d)

introducing the absorbing coefficient β2 = β 6= 0:
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R‖
A‖

= n2 sinϑi −
√
n2 − cos2 ϑi

n2 sinϑi +
√
n2 − cos2 ϑi

(1.37a)

R⊥
A⊥

= sinϑi −
√
n2 − cos2 ϑi

(sinϑi +
√
n2 − cos2 ϑi

(1.37b)

T‖
A‖

= 2n sinϑi
n2 sinϑi +

√
n2 − cos2 ϑi

(1.37c)

T⊥
A⊥

= 2 sinϑi
sinϑi +

√
n2 − cos2 ϑi

(1.37d)

For interface that are curved, the Equations 1.37 are still valid if the curvature
radius is much grater that the wavelength, condition that is satisfied for the X-ray
radiation. The reflectivity are defined in this way:

Rp = R‖
A‖

(
R‖
A‖

)∗
(1.38)

and
Rp = R‖

A‖

(
R‖
A‖

)∗
(1.39)

Figure 1.4a, show the behaviour of an ideal non absorbing material (β = 0), where
the reflection maintain its initial value up to the critical angle, and after fall down,
in a way ruled by the dispersion coefficient δ which depend on the energy. In
reality β is never zero, so it is not possible to have total external reflection in the
way defined before. It is convenient to define that the total external appear when
there is a point of inflection in the reflection curve with respect to the incidence
angle ϑi, this occurs when:

β < 0.63δ (1.40)

In Figure 1.4 are plotted the reflectivity trend of three material (Si, Rh, Pb) with
respect to the incidence angle, fixing the energy of the radiation at 5000eV , on a
silicon substrate. As it is figured there is a better behaviour, in sense of critical
angle, for the light element because of them minor absorption coefficient β. This
dependant mirror reflectivity is not implemented in my python library MONWES
(but it could be done).
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(a) Reflectivity for the case of a non-absorbing mate-
rial

(b) Si

(c) Rh (d) Pb

Figure 1.4: Reflectivity plot with respect of the grazing incidence angle ϑi of different
material with a radiation of 500eV on a substrate of Si [LBN10]. It is also
plotted the behaviour of an ideal non-absorbing material 1.4a





Chapter 2

Mirrors for X-rays

As discussed in Chapter 1, to focus X-ray radiation, refraction(compound refractive
lenses) and reflection optics (curved mirrors) can be used. In this chapter the
reflection optics is discussed because it is the main effect used in my python library.
These optics are used in a grazing configuration because with small critical angle for
total external reflection for X-ray radiation. The first part of this Chapter discuss
as the focusing property of the simplest curved mirror, the spherical one, showing
that it can’t be used due to its intrinsic aberrations that are huge in a grazing
incidence configuration. Then toroidal and conical mirror will be introduced, that
cancel out some kind of aberration with respect to the spherical mirror. In the last
part the concept of imaging system is discussed. Then two configurations of conical
mirror used to focus the radiation in the synchrotron beamline are explained: the
KirckPatrick-Baez system, very popular at ESRF, and the Montel system, that is
the main object of my thesis.

2.1 Spherical surface
Mirrors that carry out any focusing must have a curved surface, is the spherical
mirror, the simplest one, that it is defined only by one parameter, the radius of
curvature. This mirror works well for normal incidence reflection, but, in a grazing
configuration, it is affected by many kinds of aberrations. Here we discussed the:

1. astigmatism

2. spherical aberration

that are the main aberration that affect the X-ray radiation.

2.1.1 Astigmatism
"Rays that propagate in two perpendicular planes have different foci". This is

the definition of astigmatism. In Figure 2.1 it is showed the image formation of
a beam with a spherical mirror of radius R, at grazing incidence ϑi. Supposing
that all the rays exiting from the source P are focused in the same point Q, and
considering only the part of the beam that hit the portion of the mirror NO, it is
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Figure 2.1: Formation image of a circular mirror for a point-wise source placed at a
distance PO from the center of the mirror. R is the curvature of the mirror,
ϑi the angle of the central ray.

possible to define β as the source divergence, γ the image divergence, u the distance
PO and v the distance OQ . The beam hit the mirror over a distance equal to
k = NO, such as k << R, that correspond to a small divergence β. The cord
NO subtends an angle α with the center of the sphere C, thus k = Rα, γ is the
convergence angle of the beam at the focal point Q. For small angle approximation,
from the triangle PNO ,

β = Rα
ϑi − α/2
u−Rα

(2.1)

and from QNO
γ = Rα

ϑi + α/2
v +Rα

(2.2)

The reflection law impose that β + γ = 2α, thus:

1− α/(2ϑi)
u−Rα

+ 1 + α/(2ϑi)
v +Rα

= 2
Rϑi

(2.3)

in case of paraxial approximation
1
u

+ 1
v

= 2
Rϑi

= 1
fm

(2.4)

where
fm = Rϑi

2 (2.5)

more generally
fm = Rsinϑi

2 (2.6)
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Figure 2.2: Image formation of a spherical mirror. The formation of a point wise source
correspond to a two rods, one in the sagittal plane, and the second one in
the meridian plane

fm is named meridian focal length.
In case of a spherical mirror, a second image is generated in the sagittal plane, as
it is showed if Figure 2.2, with a focal distance equal to:

fs = R

2 sinϑi
(2.7)

and it is named sagittal focal length. For Figure 2.2 it is possible to note that the
two image for a point wise source are lines, where the meridian line is in the plane
of the mirror and the sagittal line perpendicular to it. Equation 2.5 and Equation
2.7, are equal for incidence angle ϑi = 90◦, and correspond to have a stigmatic
image (image without astigmatism). In the case of grazing incidence the situation is
bad, for example, with a ϑi = 2◦, the sagittal focal length is 103 times the meridian
length.

2.1.2 Spherical Aberration
Another aberration that affects a spherical mirror is the one named spherical

aberration. Figure 2.1 shows that the rays are focused in different position, depend-
ing on the portion of the mirror that hit, for example the ray PN is focused in
Q, and the ray PN ′ in Q′ . This aberration can be determined relating it with the
variation of v with α:

S = ∆v sin γ ' ∆vγ (2.8)
where S is the image size that determine the spherical aberration. Moreover, from
Equation 2.3, in case of α = 0:

v0 = fmu

u− f
(2.9)

otherwise:
v = v0 + ∆v = fmu−

3uRα
4 + R2α2

2
u− 3Rα

4 − fm
(2.10)

defining a magnification such as
M = v

u
(2.11)
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combining it with Equation 2.1 and Equation 2.2

γ = 2α
M + 1 (2.12)

So
S = 3Rα2

2 (M + 1) = 3k2

2R (M + 1) (2.13)

the dependence of S with respect to k is quadratic, so all the rays are deviated to
the same side of α = 0 image point.

2.1.3 Reducing aberrations
For spherical mirror it is possible to reduce the aberrations using large grazing

angle (decrease astigmatism) and small aperture (decrease spherical aberration).
The first solution is limited by the ϑc, for the total external reflection of the order
of some milliradiant, for X-ray energies, that create a very huge astigmatism for
spherical mirror. Reducing the aperture it means to reduce k but, this, affect the
collecting power of the mirror reducing it. This is bad because the resolving power is
limited by the diffraction limit that is ' λ

2ϑ , where ϑ is the maximum semiaperture,
that, for grazing angle, correspond to ϑi.
There is another way to reduce or cancel the aberration, using mirrors with different
shape. If we want to reduce the astigmatism, toroidal mirrors are very useful, if
we want to reduce spherical aberration ellipsoidal mirrors can be used used. These
kind of aspherical mirror are reported in the following section.

2.2 Conic Surfaces
As it is said before, to go beyond the spherical mirror correcting the aberration,

aspherical surfaces can be used. They are defined with more than one parameter,
in general by an analytical formula. The easier aspherical surface is the toroidal
surface, a surface that has two radii of curvature, the meridian one Rm and the
sagittal one Rs. A particular choice of radii can be

Rs = Rm sin2 ϑi (2.14)

in such a way to have equal focal length and so no astigmatism. Other kind
of aspherical surfaces are those named ”conic surfaces” that can be defined,
approximately, as

z = cx2

1 +
√

1− (1 + k)c2x2
(2.15)

where c is the base curvature at the vertex, k is a constant that define the kind of
conical surface, and x is the radial coordinate of the point on the surface. In Table
2.1, and in Figure 2.3 is showed the relation between the k constant and the kind
of surface
A good point that have the conical surfaces is the possible elimination of spherical
aberration. As said in before, the spherical surface is affected by spherical aberration
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Conic Constant k Surface Type
0 Circle
k < −1 Hyperbola
k = −1 Parabola
−1 < k < −0 Ellipse
k > 0 Oblate Ellipse

Table 2.1: Parameter k of different conic surfaces

Figure 2.3: Different kind of surface conic, with the same c curvature value, and different
constant k.

if the configuration is away from the normal incidence. The ellipsoidal geometry
forms a point-to-point free-aberration focus where source and image are both real.
On the contrary the hyperbola work for conjugates foci on different side of it. A
parabolic surface creates a perfect image for any axial object place at infinity, this
is the reason why parabolic mirror are very used for astronomical application. For
all the shapes of surfaces, if the object is moved from its ideal position aberration
will appear: an axial movement introduce a certain amount of spherical aberration,
lateral movement introduce other types of aberration such as coma, astigmatism
and field curvature.
Figure 2.4 show a simple example of how it is possible to correct the spherical
aberration using a paraboloid mirror 2.4b instead of a spherical mirror 2.4a

(a) Spherical mir-
ror

(b) Parabolic Mir-
ror

Figure 2.4: Example of spherical aberration correction
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Figure 2.5: Sine Abbe condition for a lens

2.3 Compound Optical system
Simple mirror work well for a point-to-point optical system, but, to reproduce

correctly an object image with the same aspect ratio it needed an imaging system.
A system like this must satisfy the Sine-Abbe condition

sinu
′

sinU ′ = sinu

sinU
(2.16)

where, as it is showed in Figure 2.5, u and u′ are rays that leave the object, U and
U

′ are the angles of the same rays that reach the image plane. In other words,
the sine of the ray that leave the object must be proportional to the sine of the
angles that reach the image plane. Unfortunately, for the case of mirror, there is
no way to satisfy the Sine Abbe condition using only one mirror. To satisfy the
condition, and so obtain a better image, there are optical systems composed by
more than one mirror. One is the Wolter system, widely used in astronomy, that
use a combination of coaxial and confocal conic section. A first approximation
system that respects the sine Abbe condition are the Kirkpatrick-Baez and Montel
system. These systems are compound optical systems involving meridian focusing
at right angle planes.

2.3.1 Wolter System
In 1952 Wolter published a paper [Wol75] in which he discussed several

dispositions of two conical mirrors in order to collect light for an astronomical use.
Figure 2.6 show the different type op systems: Wolter I, Wolter II, Wolter III.Wolter
I telescope consist of a coaxial paraboloid (primary mirror) and hyperboloid (sec-
ondary mirror). The focus of the paraboloid is coincident with the rear focus of
the hyperboloid, and the reflection inside both mirrors. The Wolter II telescope
use the same kind of mirror of Wolter I paraboloid and hyperboloid. But the
focus of the paraboloid coincident with the front focus of the hyperboloid, and, the
reflection, occurs internally for the paraboloid and externally for the hyperboloid.
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(a) Wolter I (b) Wolter II

(c) Wolter III

Figure 2.6: Different kind of Wolter System [SS05]

The Wolter III telescope consist in a paraboloid and an ellipse. In this system the
first mirror is the paraboloid one, and the second is the ellipsoidal that have front
focus coincident with that of the parabola, moreover the reflection is external for
the paraboloid and internal for the ellipsoidal. The Wolter I have typical grazing
angle of less than a degree and is used for hard X-rays. The Wolter II telescope
has typical grazing angle of, approximate, 10 degree and is used for soft X rays
and extreme ultraviolet (EUV). Because of circular symmetry, astigmatism and
spherical aberration are eliminated but exhibit coma aberration. Other problem
is the difficulty of fabrication , and require a huge area to achieve a very small
collecting angle.

2.3.2 Kirkpatrick-Baez System
In 1948, Kirkpatrick and Baez proposed ([KB48]) an X-ray focusing

optical system consisting of two total reflection elliptical mirrors, which aligned
perpendicularly (Figure 2.7). This focusing optical system is very popular at the
ESRF due to its potential to remarkably improve the performance characteristics
of X-ray by enabling more efficient collecting of X-rays than in other methods.
A further advantage is that the method maintains the focusing state with the
same optical arrangement even if the wavelength of the X-rays is shifted. However,
to realize X-ray beams with an ideal focal size, high efficiency and absence of
background noise around a main peak, it is necessary to prepare elliptical mirrors
having a very high quality. Since the two mirrors are not coincident, the object
distance for the meridian reflection in the first mirror is less than that for the
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sagittal reflection in the second mirror. Thus, the magnification is different in the
two directions.

Figure 2.7: Kirkpatrick-Baez system

2.4 Montel
Another possibility to dispose mirrors creating a focalizing or colimating optical

system consist in the disposition of two orthogonal mirrors attached one to the
other as showed in Figure 2.8. This geometry is called Nested Kirkpatrick-Baez
system or Montel system [Mon57]. To go beyond current state-of-art performances,
new approaches are required that can collect more divergence than with standard
sequential Kirkpatrick-Baez (KB) X-ray mirrors. Indeed, the quality of x-ray mirrors
has now reached the diffraction limit, and simply more perfect KB mirrors cannot
decrease spot size because of different magnification in horizontal and vertical.
In this section we first describe of the Montel system with its advantages and
disadvantages with respect to the KB system. Then there is an explanation on the
optical design method.

2.4.1 Description
Because of its distinctive design, Montel system have numerous advantages

over traditional Kirkpatrick–Baez system. In contrast to KB systems where the two
reflective surfaces are arranged in-line one after the other, those in Montel optics
are mounted side by side at 90 to each other (Figure 2.8). Due to this fact, the
incident X-ray beam now undergoes reflection simultaneously from both surfaces
instead of being reflected sequentially as in the KB system. Hence, the mirror-focal
point distance is diminished and consequently the demagnification ratio increased.
The gain can be substantial especially when the focal distance is comparable with
the mirror lengths. Furthermore, the side-by-side geometry offers a more compact
design and therefore represents a convenient solution when space availabilities for
optical elements are highly restrictive. In terms of mechanical structures, KB
optics usually require two independent sets of alignment stages for each mirror. It
is possible, in the Montel system, to assemble both surfaces together with their
stages onto a common platform. Apart from providing a compact solution, this can
also help in reducing the sources of parasitic vibrations as well as any individual
misalignment between the mirrors. Lastly, since in this geometry that want to the
second mirror is positioned closer to the source than in the KB system, for the
same angular acceptance in both mirror systems, a shorter mirror is needed in the
Montel optics design. This is highly desirable as significantly better figure errors
can be achieved for smaller mirror sizes than larger ones with the overall benefit of
yielding less aberrated beams.
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Figure 2.8: Montel system

However Montel configuration, presents some draw-back with respect to the sequen-
tial KB system. The fact that the beam hit the worst part of the mirrors, the edge,
that are less polished thus contain more surface defect, decreases the quality of the
reflection.

2.4.2 Optical Design [IBK09]
The mirrors used in this Montel configuration are mirror that have a plane

shape in one direction and elliptical shape in the other direction. They are cylinders
of elliptical section. One approach to obtain the Montel system is that to use two
pre-figured elliptical mirrors and grind the cut side at 45◦ as shown in Figure ??.
Then the mirrors are placed together making a good fit with no gap requiring no
contouring of the mirror side. Another way involves dividing pre-figured elliptical
mirror into two parts that are added together, forming the Montel system. These
approaches are primary driven by the fact that in a conventionally polished mirror
the clear aperture area has the best figure and finish. As such, using two halves of
a prefigured mirror cut in the middle has several advantages- including consistency
and economy. There are major challenges however. First, the mirror surface must be
protected against damage and deformation during cutting and subsequent figuring
operations. After cutting into two, the cut sites must be treated (e.g., etched) to
remove any subsurface damages that could alter a mirror’s figure. Then the mating
side of one of the mirrors must be contoured and polished such that when it is
placed against the partner mirror, it makes a nearly perfect fit with good surface
quality all the way to the contact edge This last two-steps are crucial because if
there is a significant gap or if the mirror surfaces in the vicinity of the interface are
damaged, a significant part of the incident beam could be lost. As an example, are
developed a pair of Montel mirrors for poly-chromatic nano focusing on Sector 33
at APS. This beam line will use 40 mm long elliptical mirrors for nano-focusing a
100 µm beam to a 50 nm spot at 2000x demagnification. This concave elliptical
mirror has a maximum depression of about 6 µm at its centre. If cut flat and placed
against its mating mirror, a gap as large as 6 µm is created which loses about 10%
of the 100 µm incident beam. Similarly, if the mirror surfaces near the intersection
are damaged, then beam loss can be significant.
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Figure 2.9: Example of how a Montel system is built from two cylindrical mirrors
cutting the edge with at angle of 45◦.



Chapter 3

MONWES

Chapter 3 goes deep in the description of the python library developed by me.
MONWES (MOntel and Wolter of yunES) library is a python library that perform
ray tracing simulations for x-ray radiation along a system consisting of one or several
mirrors, using the optical element and compound optical elements introduced in
Chapter 2. The library take inspiration from OASYS ray tracing software developed
by Manuel Sanchez Del Rio of ESRF, taking the starting element already present
in OASYS environment in order to have the basic element that will be used in the
new Montel system. OASYS elements are written for a sequential tracing method,
method that doesn’t work for Montel system. Thus a great effort has been done to
generate a new tracing system that use a parallel approach.
Object oriented programming were used consisting in a programming method in
which data structures are defined with their type of operation, that are applied to
the data structure. This oriented programming is based on the concept of "objects",
it contains data in form of fields known as attributes and code in the form of
procedure known as methods [GHJV95].
The final goal of the MONWES library is that to complement the standard ray
tracing code SHADOW in OASYS with compound elements.
The library and also this Chapter, is composed by three main elements:

1. Beam object: containing the information of the beam along the beamline;

2. Optical element: that initialize the characteristic of the optical element/system
used in the beamline;

3. Tracing system: that relates the Beam characteristic with the effect of the
optical elements/systems.

3.1 Beam
Beam object is the object that contain the spatial and velocity information of a

collection of rays. The Beam object is mainly characterized by four parameters:

• Number of rays
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• Spatial profile

• Divergence profile

• Flag vector

Having a large number of rays is useful in terms of results but increase the com-
putation time, so, one has to find a compromise between the number of rays and
the computation time depending on the quality desired. By default, the number of
rays, is set 25 ∗ 103 that allow to have good results without spending lot of time.
Figure 3.1 show an initialization of Beam setting the number of ray equal to 104.

Figure 3.1: Example of Beam initialization

The Beam is initialized with its number of rays and the spatial and divergence
profile. For the spatial profile there are some possibilities that correspond to
different geometrical figure such as: rectangular profile, circular profile, Gaussian
profile, point wise profile. The default one is the point wise profile, that it is useful
for ideal testing, in this case, there is no input parameter are needed. All the other
profiles are parametrized by external input that depends on the nature of the profile.
For the Gaussian profile the parameter needed is the σx and σz that correspond the
σ of the two dimension, Figure 3.2a shows a code example to define a Gaussian spot
of a Beam having 25 ∗ 103rays with the two σ different, σx = 0.1mrad, σz = 1mrad
as it is showed in Figure 3.2b.

(a) Example code for a Gaussian source
in spatial coordinate

(b) Plot of Figure 3.2a

Figure 3.2: Example 1

Over the Gaussian profile, there are other two geometrical profile that can be
defined: rectangular and circular. They have a uniform distribution of rays in their
space domain. For the rectangular distribution the parameter to define are the xz
limit of the coordinate that define the sides of the rectangle. Figure 3.3a shows an
example code where it is defined a circular profile with a radius of 1cm and, after,
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it is overwritten by another geometrical profile having a rectangular shape. In this
case the final profile of the Beam is shown in Figure 3.3b.

(a) Example code for a circular and a
rectangular spot

(b) Example plot of the rectangular
profile

Figure 3.3: Example 2

It is possible to define a special shape that have, more or less, the figure of
a person with a uniform distribution of the point in all the point of the space.
This special shape is showed in Figure 3.4a, that is defined in the code written in
Figure 3.4b. It is used to do a test "imaging" of a system checking that the image,
after the optical system, is affected by deformation or defect. As it is showed, the
"initialize_ as_ person" command take two input parameters, the number of the
total rays (by default are 25 ∗ 103), and a size parameter that set the coordinate
limit of the figure, more precisely. In Figure 3.4a the size correspond to 10−6 so the
limit are: xmax = 1µm, xmin = −1µm, zmax = 1µm, zmin = −20µm.

(a) Example plot "person" profile (b) Example code for the "person" spot

Figure 3.4: Example 3

The last piece of the Beam object is the "Flag" vector. Every component of
this vector have a correspondence with a certain ray and contain the information
about the number of optical element that, the ray, travel until a particular moment.
Moreover, this value become negative when the ray doesn’t hit an optical element,
in such a way to have an information where the rays were lost. Figure 3.5, resume
the main parameter of the Beam object with their default values
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Figure 3.5: Summary of the Beam object parameter

A part from the principal characteristic treated above, Beam object contain
methods or functions in order to manage better the information that it contain.
The other option defined are reported here below:

• "import_ from_" file(filename=’filename’): define a Beam with a character-
istic defined in a file ’.h5’

• "set_ point(x, y, z)": move the Beam in a part of the space centred in the
coordinate (x,y,z)

• "initialize_ from_ arrays(x, y, z, vx, vy, vz, f lag)": define a Beam with the
spatial value defined in the array x,y,z, the velocities’ value defined in the
array vx,vy,vz and the flag value defined in the array flag

• "duplicate()": duplicate a Beam

• "good_beam()": define a Beam that, starting from another Beam, extract
only the good rays (those that have a positive flag)

• "part_ of_ beam(indices)": define a Beam that, starting from another Beam,
extract the ray that correspond to the position defined in the array indices

• "number_ of_ good_ rays()": return the values of the good rays

• "merge(beam2)": merge a beam1 with another beam2, the first part of this
new beam correspond to the beam1, and the second part to the beam2

• "retrace(distance)": this correspond to a free propagation in the space of the
Beam within a distance equal to "distance"

At the end there are the command that plot the various characteristic of the beam,
that contain the information for the plotted characteristic, for example plot_ xy()
make a plot of the x and y coordinate of the beam, plot_ good_ xpzp() make a
plot of the x-velocities and z-velocities of only the rays that have a positive flag
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3.2 Optical Elements
Because, as discussed in Chapter 1, mirrors are the principal elements used

in synchrotron we first develop mirrors in the library. It is also interesting to
implement an ideal lens that is useful to verify ideal focusing of the Beam. Only
one kind of lens is implemented: ideal lens.

3.2.1 Mirrors
The different kind of mirror that are defined are:

• plane mirror

• spherical mirror

• ellipsoidal mirror

• paraboloidal mirror

• hyperboloidal mirror

All those geometrical shape are a subset of a surface conical figure. As is discussed
in Chapter 2, and reported in Equation 3.1, a surface conic is defined by a series of
coefficient.

a0x
2 + a1y

2 + a2z
2 + a3xy + a4yz + a5xz + a6x+ a7y + a8z + a9 = 0 (3.1)

The parameter needed to define the correct surface conic shape that define uniquely
the mirror desired are:

• focal distances

• angle of incidence ϑg, more precisely the program use the complementary
angle of ϑg that is ϑ = π

2 − ϑg (the input and output angle are in radiant)

The conic surfaces are defined in such a way to have the origin equal to the incidence
point of a collimated ray distant p (that correspond to the object focal distance)
from the mirror, and with the normal of the surface corresponding to the z-axis, as
it is showed in Figure 3.8. For the plane mirror the situation is simple, because the
equation of the surface is that in Equation 3.2, that have all the coefficient equal to
0 apart from a8 that is equal to 1.

z = 0 (3.2)

For the spherical case, the parameter that characterize a sphere is the radius, one
time defined the radius, the equation of the sphere is:

x2 + y2 + z2 = r2 (3.3)



30 Chapter 3. MONWES

Moreover, it is known, from the spherical lens optics (see Chapter 2) , that:
1
p

+ 1
q

= 2
rt sinϑg

(3.4)

and
1
p

+ 1
q

= 2 sinϑg
rs

(3.5)

where rt, is the tangential radius, and rs is the saggital radius. The sphere case has
rt = rs, this mean that, apart from the normal incidence case, the sphere cannot
perfectly focalize/collimate a beam.The radius chosen in "Surface_ conic" object
is that corresponding to the equation 3.4:

r = 2
sinϑg

pq

p+ q
(3.6)

where p correspond to the object focus length, q to the image lengths, ϑg to the
incidence angle.
For the paraboloid shape the correct coefficients that define the right surface are: the
incidence angle, the focal distance and another parameter that distinguish between
the cases shown in Figure 3.6a and, Figure 3.6b. These two system correspond
mirrors that, physically, have different behaviour, the first one Figure 3.6a, focalize
a Beam, the second one, Figure 3.6b, collimate a Beam.

(a) Focalizing case (b) Collimating case

Figure 3.6: Parabola

The general equation of a parabola, such that in Figure 3.7 is

y = 1
4f x

2 (3.7)

where f is the focal distance of the parabola. After a few calculation, see Appendix
A, it is possible to correlate f with the input parameter:

f = d sin2 ϑ (3.8)
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where d is the object focal distance, in the case depicted in Figure 3.6a, otherwise,
in the case depicted in Figure 3.6b, d is the image focal distance.

Figure 3.7: Part of a parabola (blue), with other characteristic (different color) [Wik18]

For the elliptical case the situation is represented in Figure 3.8. The general
equation of an ellipse where appear two unknown a and b.

x2

a2 + y2

b2 = 1 (3.9)

It is possible to correlate (Appendix A), the focal distances plus the incidence angle
with the two parametera and b with the following two equations:

p = a+ b

2 (3.10)

q =
√
ab cosϑ (3.11)



32 Chapter 3. MONWES

Figure 3.8: Ellipse System

Once the surface is defined in the x′
y

′ reference frame, thean it is done a rotation
and a translation in order to center it in the new xy system centered on the point
P. Normal at point P is the new z-axis.
For the hyperboloidal mirror the situation is similar to that of the ellipsoidal case,
in fact, the general equation of the an hyperbola such the one in Figure is

x2

a2 −
y2

b2 = 1 (3.12)

and the equations that correlate the focal distances and the incidence angle with
the parameter a and b are

p = a− b
2 (3.13)

q =
√
ab sinϑ (3.14)

Figure 3.9: Hyperbola System

After that, as in the case of the ellipsoidal mirror, a rotation and a translation
is needed to complete the work.
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In the program there is a further option that make the mirror cylindrical in one
dimension maintaining its surface conic in the other. To do this, in "Surface_
conicobject", it is defined a "set_ cylindrical" method, that change the shape of
the surface, from a complete revolution conic, to a surface conic in one dimension
and cylindrical in the other.
In addition of the mirrors elements is implemented also an ideal lens element that
follow the typical lens equation:

1
fx

= 1
p

+ 1
q

(3.15)

1
fz

= 1
p

+ 1
q

(3.16)

where fx is the x focal length and fz is the z focal length. For this optical element
the input parameters are the object focal distance, image object distance and the
two focal distances (fx, fz) that, in the default mode, are set equal with a value
equal to fx = fz = pq

p+q .

3.2.2 Compound Optical Element (KB and Montel sys-
tem)

This program include also two different system composed by more mirrors.
Starting from conical mirrors, combining them, is possible to have a compound
optical element that can simulate the behaviour of some typical instrumentation that
characterize the facilities, in particular in the synchrotron world. The compound
optical system implemented are two of those mentioned in Chapter 2

• Kirkpatrick-Baez system (KB system)

• Montel

3.2.3 Compound System: Kirkpatrick-Baez

KirkpatrickBaez or, more simply, KB system is shown in Figure 3.10. It is
composed by two cylindrical conic mirrors placed one after the other with the two
focal lengths that converge in the same point. There are implemented two different
kinds of KB system, a first one composed by two elliptical mirrors and a second
one composed by parabolic mirrors. The input parameters that the program needs
are the two incidence angles and the two foci, with respect to the centre of the
KB system, represented in Figure 3.11 and the separation of the two mirror, from
centre to centre.
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Figure 3.10: KB system

Figure 3.11: Different object/image focal length that characterize the whole KB system,
and the single mirrors. Is it also showed the separation length between
the two mirror

This system is simply a system composed by two conical mirrors in series.
The parameter needed to define the mirror are not the ones defined by the user.
The mirror parameters are the ones shown in Figure 3.11: p1, q1, p2, q2. These
parameters represent the object focal distance (p1, p2) and the image focal distances
(q1, q2) of the two mirror, as represented in Figure 3.11. Figure 3.12, show an
example of the definition for a KB system that have an object focal length of 2m,
an image focal distance of 5m, a separation between the two centre of the mirrors
of 1m, and the two angle of incidence equal each other to 2◦.

Figure 3.12: Example 4
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3.2.4 Compound System: Montel
The Montel system, depicted in Figure 3.13, is composed, as for the KB, by two

surface conical mirror cylindrical in one direction, but, because the two mirror are
not in series, as for the case of the KB, the situation is a bit complicate. Starting
from definition of the two mirrors one is rotated of 90◦, in order to have a mirror in
the xy plane, and another one in the zy plane. As shown in Figure 3.13 the centre
of the Cartesian system is set in the point where the optical axis of the system hit
the compound system having the normal of the first normal equal to the z-axis,
and the second normal equal to the - x-axis. The system is defined by the following
parameters p, q, ϑz, ϑx, where p and q are the focal distances of the two mirrors
and ϑz and ϑx are the angle of incidence to define the correct mirrors (by default
ϑz = ϑx).

Figure 3.13: Grafical 3D view of the Montel in its reference system

The Figure 3.14 shows an example code for a parabolic Montel system having
an object focal length of 5m, image focal length of 2m and the two incidence angle
of 1.5◦, that focalize a Beam. As for the KB system also in this case there are
implemented two possibilities, an ellipsoidal system (having the two mirror as
ellipsoid), and parabolic system (having the two mirror as ellipsoid).

Figure 3.14: Example 5

3.3 The tracing mechanism
Once defined the Beam and the different optical element, to complete a simula-

tion, is needed a tool that put everything together and modify the property of the
beam after the interaction with the optical elements.
For example, if one want to simulate the system depicted in Figure 3.15, one has to
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define a Beam source, the optical element and, at the end the distances between the
optical elements. The tracing part of the program, for the non-compound optical
element, is written in such a way that the trace work in series, one optical element
after the other. This works with the definition of two distances, object/image
distance from the centre of the optical element, the incidence angle of the Beam.
One possibility, to define the system in Figure 3.15 is to set the object distances of
the mirrors equal to distance d0 and d1, and the image distances equal to 0, for the
lens lets set the object distance equal to d3 and the image distance equal to d4 as it
is reported in Figure 3.16.

Figure 3.15: To simulate this system it need to define: source Beam parameters, optical
elements and the distances between them

Figure 3.16: Example 6

3.3.1 Tracing for simple Optical element
Going deeper in the code, the algorithm that trace a single element is divided

in 5 steps:

1. change the reference system from that of the optical axes to that of the optical
element using two rotations, one along x-axis, and second along y-axis. Then
a translation equal to the object distance of the optical element

2. free propagation up to the optical element

3. effect of the optical element (specular reflection)

4. free propagation to the image plane
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5. changing the reference system to one that has the optical axis equal to the
y-axis

The first three points are condensed in the method "effect_ of_ the_ optical_
element", that is showed in Figure 3.17a, and the last two point are condensed in
the method "effect_ of_ the_ screen" that is showed in Figure 3.17b.

(a) Example code for a Gaussian spot (b) Plot of Figure 3.2a

Figure 3.17: Example 7

Because of the different definition, the tracing method of the rays’ beam, need
a different interpreter that can link the beam with the different optical elements
that meet on his way. Because of the different nature, there are implemented two
kinds of tracing, a first one that trace the KB system, that is composed by a series
of optical elements and so can be used for all the compound optical elements that
are in series. And a second one that is specific to the Montel system, because it is
not composed by mirrors in series rather than mirrors in parallel, having the two
elements in a very small region of the space that have in which order the rays of
the beam hit the different mirrors.

3.3.2 Tracing for KB

For KB system the situation is more or less the same as for a simple optical
mirrors, with the only difference that there are more than one mirror. So the
algorithm to simulate the tracing system is nothing else than a for loop, that use
the tracing system of the simple optical element. In this the object and the image
distance from the centre of the system are the default ones, such as for the incidence
angles. Figure 3.18, show the trace code for the compound elements that are in
series.
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Figure 3.18: Tracing code for a compound optical element that use a sequential tracing
method, such as KB system.

3.3.3 Tracing for Montel
As it is said at the beginning of the Chapter, the tracing method used for Montel

is new and different from the other. For the KB case the tracing method utilized is
sequential. This mean that all the rays hit firstly a mirror, and secondly the other
mirror. Figure 3.19, show the KB and Montel and situations respectively.

(a) KB (b) Montel

Figure 3.19: For the KB system (3.19a) all the rays hit sequentially one mirror after the
other. For the Montel system (3.19b) a portion of rays coming from the
source hit firstly oe1 and secondly oe2, the other portion do the opposite
thing. From [LIA+11].

The first step to trace the Montel is that to change the reference frame from the
source optical axial to the optical system. This system is chosen to have origin in
the centre of whole system with the normal of the two mirror along z and -x axis,
as it is showed in Figure 3.13. Moreover, the change of reference frame, has to be
done in order to force the beam to have incidence angles, and distance from the
centre of the system equal to those chosen by the user. To do this, two rotations
and one translation are needed.
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The second step is the propagation. The beam can hit any of the two mirrors a new
method is implemented. This method, named "comparison _ time", compares the
time that each ray take to reach each mirror. Calculated the time for each ray, is
set a flag that specify the closest optical element. At this point the Beam is divided
in three "sub-Beams", a first one that contain the rays going to the first mirror,
a second one that contain the rays going to the second mirror, and a third one
that contain the rays that, because of the finite size of the mirrors, doesn’t hit any
mirror. At this point each sub-Beam is traced to the corresponding optical element
and so are computed the effect of the mirror on the 1st and 2nd sub-Beams. This
process gives three output: "beam1", "beam2" and "beam3". These output contain
the information of the beam along the whole propagation system.
The "beam1" and "beam2", are list of two dimension that contain the rays of that
will hit the first mirror at the first and at the second iteration. "beam3" is the most
important output, because contain the information of the beam at the image plane.
This list is divided in three Beam, where the first beam contain the information
of the ray that undergo no-reflection, the second Beam contain the information of
the ray that undergo one-reflection and the third contain the information of the
ray that undergo two-reflections. Figure 3.20, show the image produced by the
3 Beams. The red dots correspond to the beam with no-reflection, the blue dots
correspond to the beam with a single-reflection and the green dots correspond to
the beam with two-reflection.
The last step of this tracing method consist in a re-change of reference frame to
the optical axis of the two reflected beam (as showed in Figure 3.20, where the
green dots are centred in the point (0,0)). This transformation is similar to the first
step of this tracing method where the two reflection are done with respect to the
same angle of incidence, and the translation depend on the value set by the user
corresponding to the distance from the centre of the Montel system.
Here below a brief summary of the tracing method:
1. Changing the reference frame from the source optical axis to the Montel system
2. Focus the attention on the travel time of each ray in order to know which is the
nearest optical element of each ray
3. free propagation of each ray up to the nearest optical element
4. effect of the system for each ray
5. repeat the 2nd, 3rd and 4th passage two times, in order to consider the two
reflection
6. Change the reference system to the optical axes that is subject to two reflection,
doing two rotation and one translation
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Figure 3.20: Example 8

Because of the importance of the Montel system in my Thesis, it is implemented
some additional options with the aim to study better the behaviour of the system.
These new parameters that affect the tracing system are:
1. focal distances and incidence angles, that define the two rotation and the
translation of the tracing system
2. name of the File in which is saved the data of the simulation, by default no data
is saved
3. there is the possibility to choose a different point, from the origin, in which the
optical axis hit the system
4. there is also the possibility to have a final output frame that doesn’t correspond
to the two-reflected beam, but with the non reflected beam or with the other two
beam that are reflected only one time
5. It is also the possibility to figure out the footprint of the two reflected beam
on the system. For clarity the beam that hit the first mirror and after the second
is labelled with red point, the beam that hit the second and after first mirror is
labelled by blue colour.
In Chapter 4, these option will be useful in the comprehension of the Montel. The
possibilities to change the angle of incidence and to hit different part from the
origin can be used to study what happen to a beam when is not aligned, or not
perfectly aligned, and use these result to align the system in the laboratories. The
possibilities to save a File is useful in particular in those case where there is a huge
computational effort that need a lot of time, in these cases is possible to work with
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the result of a big simulation without reappointing it, and so save time. Figure 3.21
show the code that trace a Montel elements, containing also the special option that
were defined above.

Figure 3.21: Example 9





Chapter 4

Test and Results

In the first part of the Chapter is tested the correct working of the MONWES
library. The test for mirrors, ideal lens and KB is done against OASYS software.
For the Montel system, because it is not implemented in OASYS, it is done a
benchmark with the paper [RKM15].
The second part of the Chapter use the MONWES library to study the behavior
of the Montel system. It is studied the effect of a non-centered beam watching
what happen to the image dimension and the intensity in the case of centered and
non centered beam. At the end it is reported the study that I have done, for the
beamline ID20 of the ESRF, of a non-orthogonal Montel mirrors.

4.1 Testing against OASYS
OASYS (OrAnge SYnchrotron Suite) is a graphical environment for optic

simulation used in synchrotron facilities based on orange 3, developed by Manuel
Sanchez Del Rio (ESRF) and Luca Rebuffi (ELETTRA). The comparison between
the program and the OASYS software is done with the system in Figure 4.1. In
this system the 1st optical system collimate the source and the 2nd optical system
focalize the Beam at the image plane. The different length that characterize the
system are: between the source and the 1st optical system there is a distance of
d1 = f = 0.4m, between the 1st and the 2nd optical system a distance d2 = 0.6m
and the distance between the 2nd system and the image plane correspond to a
distance of d3 = f = 0.4. A system that have parameters defined as before, make
a copy of the source image at the image plane. The source parameter used are

43
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Figure 4.1: Optical system used for the test with OASYS

(a) Initial spot size (b) Initial Beam divergence

Figure 4.2: Parameter of the source used for the test with OASYS

showed in Figure 4.2, and correspond to a square source spot of 1µm2, and an
initial Gaussian divergence with a FWHM of 2.3mrad. The tests are done using
different optical systems, with the same focal length and, for the mirror, with a
grazing incidence angle of ϑ = 1.719◦. Below are plotted the image of the Beam at
the image plane, putting the OASYS results on the right, and my results on the
left.
The system simulated are done with:

1. ideal lenses Figure 4.3

2. parabolic mirror Figure 4.4

3. KB system Figure 4.5

As it is showed in the figures 4.3, 4.4 and KB system Figure 4.5, the result, of
OASYS and my simulations are in good agreement. The ideal lenses case show
a perfect replica of the source image, on the contrary, KB and paraboloid, show
similar images but a bit aberrated, because it degrades along the propagation.
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(a) My ideal lenses simulation (b) OASYS ideal lenses simulation

Figure 4.3: Image for the testing ideal lenses system in Figure 4.1 of: my simulation
(Figure 4.3a) and OASYS simulation (Figure 4.3b)

(a) My paraboloid simulation (b) OASYS paraboloid simulation

Figure 4.4: Image for the testing paraboloid system in Figure 4.1 of: my simulation
(Figure 4.4a) and OASYS simulation (Figure 4.4b)

(a) My KB simulation (b) OASYS KB divergence

Figure 4.5: Image for the testing KB system in Figure 4.1 of: my simulation (Figure
4.5a) and OASYS simulation (Figure 4.5b)
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Figure 4.6: Illustration of the Montel system used as a collimator in the paper [RKM15]

4.1.1 Benchmarking
The system used for the benchmarking is showed in Figure 4.6 using the reference

frame of the paper [RKM15]. The aim of this system is to collimate a Beam using
a Montel with two parabolic mirrors. The source used has a Gaussian dimension
of 2.5µm FWHM and a Gaussian divergence of 5mrad. The distances, between
the source/image plane and the center of the Montel are, respectively, ' 0.26m
and 10.06m. The incidence angle of the Beam is ϑg ' 2.86◦. The result, at the
image plane, of the beam size and beam divergence, after the double-reflection of
the Montel system, is showed in Figure 4.7. There in Figure 4.7a shows the beam
at the image plane, and Figure 4.7cshows the divergence. The quantitative values
reported on the paper correspond to a Gaussian-like distribution with a spatial
FWHM of ∼0.7mm for the spot size, and a FWHM of the Gaussian divergence ∼
0.01 mrad.
Repeating the simulation with MONWES, and using the parameter defined in
in the paper [RKM15] it obtains Figure 4.7. As it is showed in the Figure 4.7
there are a qualitative good agreement between the two simulation. Also, under a
quantitative point of view, there is a good agreement in fact, in my simulation are
obtained a value of ∼1mm of FWHM of image size, pretty similar to the one of the
other simulation, and ∼0.01 mrad FWHM of divergence that is equal to the one
obtained with the other simulation.

4.2 Analysis of Montel system
In this section a study of the Montel is done, using the Montel tools developed.

The first simulation, to verify that Montel work well, study the behaviour of a
point-wise source with a certain divergence, using a collimating system. The second
simulation, for the same reason of before, simulates a collimating beam with a
certain source shape geometry and figure out the image plot obtained by a focalizing
system in its image plane. What is expected is a point in the divergence space for
the first situation and in the real space for the second simulation, as a consequence
of the ideal collimating/focalizing system. For the simulation parabolic Montel with
an incidence angle of 2◦ (the choice of the angle is arbitrary) are used. Parabolic
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(a) Beam image shape of the paper (b) Beam image shape of the simulation

(c) Beam image divergence of the paper(d) Beam image divergence of the simulation

Figure 4.7: Results of the Montel simulations with a source beam with a FWHM spot
of 2.5µm and a Gaussian divergence of 5mrad
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(a) Source divergence (b) Image divergence

(c) Source divergence (d) Image divergence

Figure 4.8: Ideal system

system are chosen because is the only way to obtain a perfect collimating Beam.
Figure 4.8 reports the result for the ideal collimating/focalizing cases. For the
collimation system a point wise source is used with a Gaussian divergence of FWHM
of 25µm, 4.8a. At the image plane the Beam (Figure 4.8b) is collimated, reducing
its divergence of 3 orders of magnitude. For the focalizing system, it is used a
circular source spot having a radius of 1mm, Figure 4.8c, with a collimated source
beam. At the image plane the dimension of the Beam (Figure 4.8d) is reduced of 3
order magnitude. It is possible to conclude that both collimating and focalizing
system work but not perfectly (the final results are not point). One explanation
can be that, because of the particular configuration of the mirrors of the Montel,
the effect on the Beam are not perfect. This can be an intrinsic aberration of
the Montel, that can be studied more in the future.
Up to now the dimension of the Montel were not considered. The Montel is set
to have infinite dimension in all the direction. This approach hold in the case of
a small source and a narrow profile divergence, that hit only a small part of the
system. Otherwise, for example of an isotropic source that can be modelled with a
very big divergence, the situation change. In this part, to study to behaviour of
a big source, it is used a Beam source with a square shape with a side of 1mm,
with a Gaussian profile divergence of FWHM=1mrad. These parameters show
what happen to the Montel where it is covered over all its surface. I this case a
focalizing parabolic Montel is used with: object distance of 1m, image distance of
3m, incidence angle of 2◦, length of the Monte of 0.1m and width of the Montel of
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Figure 4.9: Illumination at the image plane of the different Beam (red dots correspond to
no-reflected rays, blue dot to one-reflected rays, green dots to two-reflected
rays).

20cm. Figure 4.9, show the image plane of the Montel defined above. This plot
show 4 figures, the biggest one, represented by the red dots, correspond to the rays
that reach the image plane without touch the Montel, the rays coloured in blue, are
those which are subject to only one reflection that are positioned in different part
of the image plane depending on which mirror meet, those that hit the xy-mirror
correspond to the beam elongated along z, the zy-mirror correspond to the beam
elongate along x. At the end, the green dots, are the rays that do both reflection
and are centred to the center of the image plane by definition of it.

4.3 Non-centred Beam
In this section is studied the effect of a Montel system of a non-centred Beam

in order to understand how to align correctly beam. The alignment study is study
simulating a beam that hit different point of the Montel. Is reported the behaviour
about the change of FWHM of both x′ and z′ , of a small (1µm2) source with a
narrow divergence (25µrad), following different path. Figure 4.10 show the different
path followed to simulate the non-centred. Every path is labelled with a name:

1. Y

2. XZ

3. XYZ1

4. XZY2

The system used is a focalizing parabolic Montel with an object focal distance of
0.2m and an image focal distance of 0.9, working on mirror designed for incidence
angle of ϑg = 2◦. Figure 4.11 show the result the two FWHM of the beam changing
the incidence point of the beam moving the different paths. This point is defined
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Figure 4.10: Different path for simulate the non-centred beam

with respect to the center of the Montel system that correspond to the origin (0, 0,
0). In Figure 4.12a, the incidence point move along y-axis, start from the point (0,
1.5mm, 0) and arriving to the point (0, -1.5mm, 0), and show, more or less, a flat
behaviour of the FWHM. Figure 4.12b start from the point (0, 0, 0.15mm) and
arrive to (-0.15mm, 0, 0) and have specular behaviour for the two FWHM, there
is a minimum of the two FWHM near the origin point, moving on the oe1 worse
the FWHM of z′ and maintain the other constant, on the contrary, moving on the
oe2 the situation is reversed, in this case the FWHM of x′ get worse, maintaining
constant the one of z′ . Figure 4.12c start from (0, 1.5mm, 0.15mm) and arrive to
(-0.15mm, -1.5mm, 0) and Figure 4.12d start from (-0.15mm, 1.5mm, 0) and arrive
to (0., -1.5mm, 0.15mm). The behaviour of this last two path are similar to that of
4.12b, this is reasonable, because the motion along y-axis does not influence the
FWHM because of the definition of the cylindrical mirror, that in any point along
the y direction have the same geometry.
In Figure 4.12 it is show the intensity profile of the two-reflection beam of source
with a 10mm2 of area and a Gaussian divergence of FWHM = 25µrad. In this case
the Montel used is the same as before but with a length of 20cm and a width of 2cm.
The intensity is calculated as the number of the rays in the two-reflection beam
with respect to the initial number of rays. The different path move along these
points; ymax=50cm, ymin=-50cm, xmin=-2cm, xmax=0, zmax=2cm, zmin=0
The plots in Figure 4.12, are interesting, because represents the intensity of the
"green" Beam in Figure 4.9, that can be directly measured and so, it is possible to
relate the centring of the Beam calculating the intensity of this Beam.
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(a) Y path (b) XZ path

(c) XYZ1 path (d) XYZ2 path

Figure 4.11: Results of the changing of the x and z FWHM at the image following
different path defined in Figure 4.10. The Montel system used have a
source beam with a FWHM spot of 2.5µm and a Gaussian divergence of
5mrad
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(a) Y path (b) XZ path

(c) XYZ1 path (d) XYZ2 path

Figure 4.12: Change of the intensity depending on the path defined in Figure 4.10.
The Montel system used have a square spot of 10mm2 and a Gaussian
divergence of 25mrad
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4.4 Simulation of a Montel system for ID20

In this section is reported the study that I have done for the beam of ID20 of
the ESRF. The simulation were done in order to study the Montel system bought
as analyser that will be used in the beamline. The purpose of this analyser is to
collimate the radiation in entrance. Company information states that changing the
orthogonality, with a particular angle, of the mirrors brings a better collimation of
the Beam.

4.4.1 System parameters

The system simulated have a source size of 1µm2(see Figure 4.13a) with a
Gaussian divergence of 25µrad(see Figure 4.13b). The parameters of the system are:
object distance of 351mm, mirror Length of 300mm, mirror width of 100mm, the
error max between the orthogonal configuration of the two mirror is of ∆ = ±0.03◦
and an incidence angle of 18.1mrad. In Figure 4.14 is showed a 3D graphic view of
the Monter system with the parameter used.

(a) Beam source size (1µ m2) (b) Beam source divergence (2hµ rad)

Figure 4.13: Source parameters used for the study of the Montel Analyser for ID20
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Figure 4.14: Montel parameters used for the simulation for ID20

4.4.2 Result of beam figure and footprint

The image plane is positioned at 1m from the center of the Montel system. The
property of the beam at the image plane are showed in Figure ??.It is obtained,
a new spot size with a length of 60µ m in the x direction and 100µ m in the z
direction, and the divergence has a dimension of ' 40µ rad.

(a) Size of the Beam at the image plane(b) Divergence of the Beam at the im-
age plane

Moreover is interesting to note the footprint of the two mirror (Figure 4.15) because
the area hit by the beam have a greater component on the y direction (due to the
grazing incidence), than in the other direction.The x-length of the xy-mirror, and
the z-length of the zy-mirror, is very small (at the order of 20µ m) with respect to
the y-length that is ' 20mm.



4.4. Simulation of a Montel system for ID20 55

Figure 4.16: FWHM of x’ after the Montel changing the orthogonality

(c) Footprint on oe1 (d) Footprint on oe2

Figure 4.15: Footprint, on the xy-mirror (4.15c) and on zy-mirror (4.15d). The red
dots are those rays that hit before xy-mirror and after zy-mirror, the blue
ones hit first xy-mirror and after zy-mirror.

4.4.3 Analysis of orthogonality
Figure 4.17 presents the interesting histograms versus the horizontal anlge x′

when the angle between the mirrors change (α = 90◦ + ∆). It can be noted a
improvement of the collimation of the beam changing the angle in the case of closer
mirrors (∆ = −0.01◦ ). Figure 4.16 show the trend of the FWHM of the x′ changing
the angle ∆, it is possible to note a minimum for negative angle (this ideal situation
is the pink curve reported in Figure 4.17) after that the situation become worse.
Moreover, the behaviour of the FWHM is not symmetrical with respect to 0◦, in
case of negative angle deviation the situation improve for a small range of deviation
angle, after that, the trend get worse, on the opposite way, the situation get worse
increasing the positive deviation angle.
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(a) Real histogram

(b) Fitted Histogram

Figure 4.17: Histogram of x’ after Montel



Conclusioni

In this thesis I have presented the reason why conical mirrors at grazing incidence
are used for X-ray radiation. With a focus on the Montel system. After, I have
described the implementation method for the python library MONWES that will
implement the Montel system into the OASYS Graphical Environment. The tests
done against OASYS, for elements already existing, and the benchmarking with
[RKM15] show the correct working of the program.
The simulation done on Montel, shows an intrinsic aberration. Due to the kind of
mirror disposition the image cannot be focused perfectly. On the contrary using a
mirrors disposition such as in KB system it is obtained the ideal situation. This
aberration is due to the fact on the orthogonal disposition of the mirrors. There is
no way to dispose the Beam on the mirrors in order to cancel out this aberration.
Moreover, on the study done for ID20, it can be concluded that the information
provided by the company are similar to the ones obtained with the simulation.
Having a less orthogonal mirrors can improve the collimating effect of the Montel.
The code is still under development, it is still missing the Wolter system. It is also
possible to improve the library including the angle-dependant reflection factor. In
the future, after the integration with OASYS, it can be used to designing beamlines
that use Montel system.
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Appendix A

How to calculate the ellipse’s and
hyperbola’s coefficients

A.1 Ellipse
For the ellipse showed in Figure A.1, the ellipse is defined as:

(
x

′

a

)2

+
(
y

′

b

)2

= 1 (A.1)

with
c2 = a2 − b2 (A.2)

Because the ellipse is the curve in a plane surrounding two focal points such that
the sum of the distances to the two focal points is constant for every point, so:

p+ q = (c+ a) + (a− c) = 2a (A.3)

Thus
a = p+ q

2 (A.4)

Now, considering the triangle AA′
P , using the law of cosines, and substituting with

the equations above:
4c2 = p2 + q2 − 2pqcos(2ϑ) (A.5)

4(a2 − b2) = p2 + q2 − 2pqcos(2ϑ) (A.6)

(p+ q)2 − 4b2 = p2 + q2 − 2pqcos(2ϑ) (A.7)

b2 = 2pq(1 + cos(2ϑ)
4 (A.8)

b = √pqcos(ϑ) (A.9)
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Figure A.1: Ellipse’s system

A.2 Hyperbola
For the Hyperbola the situation is similar. For the system in Figure A.2, the

equation of the parabola is

(
x

′

a

)2

−
(
y

′

b

)2

= 1 (A.10)

with
c2 = a2 + b2 (A.11)

In this case the definition of hyperbola is the curve in a plane surrounding two focal
points such that the difference of the distances to the two focal points is constant
for every point, so:

p− q = (c+ a)− (c− a) = 2a (A.12)

Thus
a = p− q

2 (A.13)

As before, considering the triangle F1F2P , using the law of cosines, and substituting
with the equations above:

4c2 = p2 + q2 − 2pqcos(2ϑg) (A.14)

4(a2 + b2) = p2 + q2 − 2pqcos(2ϑg) (A.15)

(p− q)2 + 4b2 = p2 + q2 − 2pqcos(2ϑg) (A.16)

b2 = 2pq[1− cos(2ϑg)]
4 (A.17)

b = √pqsin(ϑg) = √pqcos(ϑ) (A.18)
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Figure A.2: Hyperbola’s system
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