
POLITECNICO DI MILANO
SCHOOL OF INDUSTRIAL AND INFORMATION ENGINEERING

Master of Science in Computer Science and Engineering
Department of Electronics, Information and Bioengineering

Reinforcement Learning
in Configurable Environments:

an Information Theoretic approach

AI & R Lab
The Artificial Intelligence and Robotics Lab

Politecnico di Milano

Supervisor: Prof. Marcello Restelli
Co-supervisor: Dott. Alberto Maria Metelli

Author:
Emanuele Ghelfi, 875550

Academic Year 2017-2018

A mio padre...

Abstract

The general goal of Reinforcement Learning (RL) is to design agents able to learn a be-
haviour from interactions with an environment. Most of the problems tackled by Rein-
forcement Learning are typically modeled as Markov Decision Processes in which the en-
vironment is considered a fixed entity and cannot be controlled. Nevertheless, there exist
several real-world examples in which a partial control on the environment can be exercised
by the agent itself or by an external supervisor. For instance, in a car race the driver can set
up his/her vehicle to better suit his/her needs. With the phrase environment configuration
we refer to the activity of altering some environmental parameters to improve the perfor-
mance of the agent’s policy. This scenario has been recently formalized as a Configurable
Markov Decision Process (CMDP).
The aim of this thesis is to further investigate the framework of Configurable Markov De-
cision Processes. We propose a new information theoretic algorithm, namely Relative En-
tropy Model Policy Search (REMPS), able to manage CMDPs with continuous action and
state spaces.
We propose a theoretical analysis of REMPS deriving the performance gap between the
ideal case of the algorithm and the approximated case. Moreover, we empirically evaluate
the performance of our approach in three scenarios, showing that it outperforms a naïve
gradient method in several situations.

I

Estratto in Lingua Italiana

L’Apprendimento per Rinforzo (Sutton and Barto, 1998) è un campo dell’Intelligenza Artifi-
ciale che tratta il problema dell’apprendimento tramite interazione con l’ambiente. Questa
disciplina considera problemi di decisioni sequenziali, modellizzati come Processi Deci-
sionali di Markov (Puterman, 1994). Il decisore, indicato come agente, deve stabilire quale
azione effettuare considerando l’incertezza dell’ambiente e la sua esperienza. Definiamo,
in questo contesto, l’apprendimento come processo di adattamento dinamico del compor-
tamento di un agente allo scopo di raggiungere un obiettivo. Il comportamento dell’agente,
che descrive quali azioni prendere in certe situazioni (stati), è chiamato politica. Lo scopo
degli algoritmi di Apprendimento per Rinforzo è quello di sviluppare agenti in grado di
apprendere tramite interazione con l’ambiente, focalizzandosi sull’apprendimento di una
politica che massimizzi una metrica di prestazione.

Nella maggior parte dei problemi affrontati in letteratura, l’ambiente è considerato un’entità
fissa, che non può essere controllata. Nonostante questo, esistono diversi esempi reali nei
quali può essere esercitato un controllo parziale dell’ambiante dall’agente stesso o da un
supervisore esterno. L’ambiente può essere quindi configurato per massimizzare la veloc-
ità di apprendimento o la prestazione finale dell’agente. Questo scenario è stato recen-
temente formalizzato come Processo Decisionale di Markov Configurabile (Metelli et al.,
2018a). Risolvere un Processo Decisionale di Markov Configurabile significa trovare la po-
litica dell’agente e la configurazione dell’ambiente che, congiuntamente, massimizzino le
prestazioni. In (Metelli et al., 2018a) gli autori presentano un algoritmo di apprendimento
sicuro, Safe Policy Model Iteration (SPMI), per risolvere questo tipo di problema. Questo
approccio è riuscito a mostrare i vantaggi della configurazione in esempi illustrativi, anche
se è ben lungi dall’essere applicabile in scenari reali. Anzitutto, SPMI è applicabile solo
a problemi con spazi di stati e azioni finiti, mentre molti esempi interessanti di Processi
Decisionali di Markov Configurabili hanno almeno uno spazio di stati continuo. Secon-
dariamente, questo algoritmo richiede una conoscenza esatta della dinamica dell’ambiente.
Questa limitazione è rilevante, in quanto in realtà non conosciamo quasi mai la dinamica
reale dell’ambiente e, anche se un modello può essere disponibile, questo può essere troppo
approssimato o complesso per essere utilizzato (ad esempio il modello fluido-dinamico di
una macchina).

III

In questa tesi vogliamo investigare più approfonditamente la relazione tra la politica e la
configurazione dell’ambiente e trovare tecniche per ottimizzare questi componenti in modo
congiunto. Presentiamo un algoritmo, derivato da Relative Entropy Policy Search (Peters
et al., 2010) (REPS), chiamato Relative Entropy Model Policy Search (REMPS) che uti-
lizza una formulazione primale-duale per aggiornare i parametri di politica e modello verso
un ottimo locale. In aggiunta presentiamo una strategia di proiezione che tiene in consid-
erazione l’effetto congiunto di politica e funzione di transizione. Studiamo le proprietà
teoriche del nostro approccio analizzando l’errore dovuto alla differenza di prestazioni dal
caso approssimato rispetto al caso ideale. La valutazione sperimentale di REMPS è effet-
tuata su tre domini. Il primo dominio, chiamato catena, è semplice e viene utilizzato per
visualizzare il comportamento del nostro algoritmo. Il secondo dominio, Cart-Pole, è un
banco di prova classico per gli algoritmi di RL. Il terzo dominio, TORCS, è più complesso
e mostra le prestazioni del nostro approccio in un problema di guida e configurazione au-
tomatica. Nei risultati sperimentali mostriamo che il nostro approccio è migliore rispetto a
metodi a gradiente in alcune situazioni.

La tesi è strutturata come segue. Il Capitolo 1 presenta il contesto, le motivazioni e
lo scopo della tesi. Il Capitolo 2 è un’introduzione all’apprendimento per rinforzo e ai
Processi Decisionali di Markov, insieme ad alcune importanti estensioni. Nel Capitolo 3
presentiamo lo Stato dell’Arte dei Processi Decisionali di Markov Configurabili e Relative
Entropy Policy Search, siccome il nostro approccio si fonda su queste basi. Nel Capitolo
4 sviluppiamo i contributi principale di questa tesi: l’algoritmo Relative Entropy Model
Policy Search e la sua analisi teorica. Nel Capitolo 5 mostriamo la valutazione sperimentale
dell’algoritmo su tre esempi illustrativi. Il Capitolo 6 contiene la conclusione, nella quale
descriviamo brevemente il lavoro svolto e proponiamo possibili estensioni e direzioni di
ricerca.

Ringraziamenti

Ringrazio in primo luogo la mia famiglia che mi ha sempre sostenuto sia moralmente che
economicamente durante i miei studi.
In secondo luogo desidero ringraziare il prof. Marcello Restelli e il Dott. Alberto Maria
Metelli che in questi mesi mi hanno dato tutto il supporto necessario per riuscire a conclud-
ere la stesura di questa tesi. A loro sono veramente grato per avermi introdotto al mondo
della ricerca e in particolare al mondo del Reinforcement Learning.
Vorrei ringraziare tutti i miei compagni di università, tra questi in particolare Leonardo,
Emiliano, Edoardo, Samuele, Giulio. E’ anche grazie allo stimolo continuo, alla collabo-
razione e al confronto che si impara.
Un ringraziamento speciale va alla "Nonna" Luciana per aver allietato le mie giornate di
studio con il suo buonissimo ragù.
Un ultimo ringraziamento, ma non di certo per importanza, va alla mia ragazza Giulia per
avermi sopportato in questi mesi e per essermi sempre stata vicino.

Emanuele
Milano, 20 Dicembre 2018

VII

Notation

Column vectors are denoted by bold, lowercase letter (e.g. x). The notation xT is for row
vectors. Matrices are denoted by bold, uppercase letters (e.g. M).

ω model parameter vector ω ∈ Rd′

θ policy parameter vector θ ∈ Rd

∆(X) set of probability distributions over space X

P(x) Probability of event x

A action space

P configuration space, also referred to as model space

S state space

Ω family of model parameters Ω ⊆ Rd′

Π policy space

π policy

πθ policy parametrized by θ

Θ family of policy parameters Θ ⊆ Rd

E
x∼D

[f(x)] Expected value of the function f given that samples x are distributed ac-

cording to D

a action

at action at time t

Gt Return from time step t

P model configuration, environment dynamics

Pω model parametrized by ω

r(s, a) reward received after performing action a in state s

IX

R(s, a, s′) reward received after performing action a in state s and landing in s′

s state

st state at time t

t discrete time step t

x ∼ D(·) sample x comes from the distribution D(·)

X

Contents

Abstract I

Estratto in Lingua Italiana III

Ringraziamenti VII

1 Introduction 1

2 Reinforcement Learning 5

2.1 Markov Decision Processes . 5

2.1.1 Formal Model . 5

2.1.2 Transition Model . 6

2.1.3 Policy . 7

2.1.4 State distribution . 8

2.1.5 State Kernel . 8

2.1.6 Goal and Rewards . 8

2.1.7 Policy and Value Functions . 9

2.1.8 Optimality Conditions . 11

2.2 Linear Programming . 13

2.3 Dynamic Programming . 14

2.3.1 Policy Iteration . 14

XI

2.3.2 Value Iteration . 15

2.4 Policy Search . 15

2.5 MDP extensions . 18

2.5.1 MDP with imprecise probability 18

2.5.2 Bounded-parameter Markov decision processes 18

2.5.3 Non stationary MDPs . 18

3 State of the Art 21

3.1 Configurable Markov Decision Processes 21

3.1.1 Formal Model . 22

3.1.2 Model and Policy spaces . 23

3.1.3 Theoretical Foundations . 24

3.1.4 Safe Policy Iteration and Safe Model Iteration 25

3.1.5 Safe Policy Model Iteration . 26

3.1.6 Limitations . 27

3.2 Relative Entropy Policy Search . 28

3.2.1 Problem Formulation . 28

3.2.2 Parametric Policy . 29

3.2.3 REPS extensions . 30

4 Relative Entropy Model Policy Search 33

4.1 Motivations . 33

4.2 Relative Entropy Model Policy Search . 34

4.2.1 Optimization . 35

4.2.2 Projection . 36

4.2.3 Model Approximation . 40

4.2.4 Discussion . 40

XII

4.3 Theoretical Analysis . 43

4.3.1 Problem Formulation . 43

4.3.2 Assumptions . 46

4.3.3 Sensitivity to the KL constraint 46

4.3.4 Finite-Sample Analysis . 47

4.3.5 Analysis for bounded probability densities 50

5 Experimental Evaluation 55

5.1 Chain Problem . 55

5.1.1 Sensitivity to ε . 57

5.1.2 Sensitivity to parameter initialization 58

5.1.3 Comparison with SPMI . 59

5.2 Cart-Pole . 62

5.2.1 Results . 63

5.3 Autonomous Driving and Configuration with TORCS 65

5.3.1 Environment Description . 65

5.3.2 Results . 66

6 Discussion and Conclusions 69

Bibliography 71

A Proof of Linear Programming Formulation 77

B Gradient Methods for CMDP 79

B.1 REINFORCE . 79

B.2 G(PO)DMP . 79

C REMPS derivation 81

XIII

List of Figures

2.1 Agent Environment interface, from (Sutton and Barto, 1998). 6

2.2 Policy Iteration, from (Sutton and Barto, 1998). 14

4.1 Illustration of REMPS and information projection. The ball centred in dP,π

with radius ε represents the KL constraint over the space of distributions.
The surface DΩ,Θ represents the space of available distributions. Distances
are not euclidean since measured with the KL divergence. 38

5.1 Chain problem. On the edges we have (action, action probability, transition
probability, reward). 56

5.2 Different representations of the average reward surface of the chain exper-
iment as function of model and policy parameters. There is a local maxi-
mum in θ = 0, ω = 1, a global maximum in θ = 1, ω = 0. We start our
algorithm near the local minima in θ = 0.33, ω = 0.66. 57

5.3 Chain experiment. Top left: average reward of REMPS and GPOMDP.
Top right: updates of the model and policy parameter of GPOMDP and
REMPS. Bottom left: shows the updates of the model parameter ω. Bottom
right: updates of the policy parameter θ. Shaded areas represent the 95%
confidence interval over 10 runs of the algorithm. 58

5.4 Average reward and primal of the best model-policy couple in the chain
experiment as function of ε using the projection of the discounted stationary
state distribution. 59

5.5 Chain experiment with random initialization of model and policy parame-
ter. Comparison between GPOMDP and REMPS. Top: model parameter.
Center: policy parameter. Bottom: average reward. 60

5.6 SPMI on the chain experiment. Left: average reward. Center: model pa-
rameter. Right: policy parameter. 61

5.7 Cart-Pole environment representation. 62

XV

5.8 Cartpole experiment. Left: results of REMPS and GPOMDP using the ex-
act model. Right: results of REMPS and GPOMDP using the approximated
model. Top: model parameter ω. Middle: average timesteps per episode.
Bottom: Average return. The shaded area represents the 95% confidence
interval over twenty runs of the algorithm. 64

5.9 TORCS experiment. Comparison between policy learning and policy-configuration
learning. Learning the configuration yields a performance improvement.
Top: Average reward. Middle: Rear wing angle. Bottom: Front-Rear Brake
repartition. 67

XVI

List of Tables

5.1 Hyper-parameters used in our chain experiments. 56

5.2 Hyper-parameters used in the exact cartpole experiment. 63

5.3 Hyper-parameters used in the approximated cartpole experiment. 63

5.4 State space of the TORCS experiment. 65

5.5 Configuration space of the TORCS experiment. 66

XVII

List of Algorithms

1 Policy Iteration . 15
2 Value Iteration . 16
3 Safe Policy Iteration . 26
4 Safe Model Iteration . 26
5 Safe Policy Model Iteration . 27
6 Relative Entropy Model Policy Search . 42

XIX

Chapter 1

Introduction

Your work is going to fill a large part of your life, and the only way to be truly satisfied is to do
what you believe is great work. And the only way to do great work is to love what you do.

Steve Jobs

Reinforcement Learning (Sutton and Barto, 1998) (RL) is a field of artificial intelligence
(AI) and machine learning (ML) that deals with the problem of learning from interactions.
In this context we define learning as the dynamic adaptation process of a behaviour in order
to achieve some objective. We, as human beings continually face this problem. For exam-
ple, as infants we were unable to walk. Nonetheless, we gradually understand the effect of
our action through trials and errors, even without a supervisor teaching us how to do it. We
start from no knowledge about how our actions influence the world, but in some months we
learn how to reach our goal which, in this case, is walking.
Reinforcement Learning lies between the areas of neuroscience, artificial intelligence, op-
timal control, psychology, operation research and statistics. RL considers Sequential Deci-
sion Making problems, modeled as Markov Decision Processes (Puterman, 1994) (MDPs),
which are problems arising in many real-world scenarios. In this settings the decision
maker, referred to as the agent, has to take decisions accounting for the environment un-
certainty and its experience. Agents are goal-directed, they need only a notion of goal, a
numerical signal to be maximized. Unlike supervised learning, in RL there is no need to
provide good examples, it is the agent which learns how to map situations to actions. The
mapping from situation (states) to actions is called policy in literature and it represents the
agent’s behaviour. Solving an MDP means finding the agent’s policy by maximizing the
total reward.
The RL approach has proven to be successful in several domains, such as robotics (Kober
et al., 2013), finance (Moody et al., 1998), videogames (Atari, Dota) (Mnih et al., 2013,
2015; Lillicrap et al., 2015a), board games (Alpha Go) (Silver et al., 2016, 2017).

2 Chapter 1. Introduction

Motivations

In most of the problems tackled by RL the environment is considered a fixed entity that
cannot be controlled. Nevertheless, there exist several real-world examples in which a
partial control on the environment can be exercised by the agent itself or by an external
supervisor. With the phrase environment configuration, we refer to the activity of altering
some environmental parameters to improve the performance of the agent. Consider, as
before, a child learning to walk. His/her parents (supervisors) can dynamically configure
the environment, trying to help their child. They can help their child during his/her first
steps, they can reduce the pain while falling by using a mat, or they can help their child by
setting up goals of increasing difficulty (e.g., walking further).
We can easily notice that most of the existing environments are consist of a fixed part and a
configurable part. For example, in a car race the fixed parts are the physics laws, while the
configurable parts are the wing angle, the type of tyres, the brake settings. This process of
environment configuration is common in many other scenarios (e.g., robotics, e-learning).
In these examples there is an entity entitled to configuration activity that configures some
environment features (transition function, reward, task difficulty) in order to improve the
learning speed or the final performance of the agent.

State of the Art

The scenarios presented above have been recently formalized as Configurable Markov De-
cision Processes (Metelli et al., 2018a) (CMDP). Solving a CMDP means to find the agent’s
policy π together with the environment configuration P which, jointly, maximize the total
reward. In (Metelli et al., 2018a), a safe-learning algorithm, Safe Policy Model Iteration
(SPMI), is presented to solve the learning problem in the CMDP framework. The basic
idea is to optimize a lower bound on the performance improvement so that a monotonic
performance improvement is guaranteed. Although this approach succeeded in showing
the advantages of configuring the environment in some illustrative examples, it is quite far
from being applicable to real-world scenarios. We believe that the most significant limi-
tations of SPMI are two. First, it is only applicable to problems with a finite state-actions
space, while the most interesting examples of CMDPs have, at least, continuous state space
(e.g., the car configuration problem). Second, it requires full knowledge of the environ-
ment dynamics. This latter limitation is the most relevant as, in reality we almost never
know the true environment dynamics, and even if a model is available it might be too ap-
proximate and hardy usable, being very complex and computationally expansive (e.g., the
fluido-dynamical model of a car).

Goal

The aim of this thesis is to further investigate the close relationship between policy and
environment and to find ways to optimize them jointly in order to achieve high performance.
Our approach is intended to manage CMDPs with continuous action and state spaces and

3

it does not require full knowledge of the model, an approximated (learned) model can be
exploited. These features permits the application of our algorithm on real-world cases.

Contribution

The contribution of this thesis are algorithmic, theoretical and experimental. We present an
algorithm derived from Relative Entropy Policy Search (REPS) (Peters et al., 2010), namely
Relative Entropy Model Policy Search (REMPS), which exploits a primal-dual formulation
to update the model and policy parameters toward a local optimum. Moreover, we present
a projection strategy suitable for CMDP that takes into account the joint effect of the policy
and the transition function.
We derive some theoretical guarantees for the single step of REMPS, obtaining a bound on
the difference of performance between the exact case and the approximated case.
We show the experimental results of our algorithm on some standard RL benchmarks to
highlight the importance of configuring the environment.

Thesis Outline

The structure of this thesis is organized as follows. In Chapter 2 we present the Rein-
forcement Learning and Markov Decision Processes frameworks, along with some notable
extensions. We start from the Markov Decision Process formalization, we introduce the
main components such as the transition function, the reward and the policy. Finally we
describe the main approaches for solving MDPs, namely Linear Programming, Dynamic
Programming and Policy Search.
In Chapter 3 we depict the State of the Art of Configurable Markov Decision Processes
since our algorithm builds upon them. We focus on the motivations underlying the frame-
work proposal and we outline some limitations of the state of the art method for solving
CMDPs. The second part of the chapter is devoted to REPS and its extensions.
In Chapter 4 we present the main contributions of this thesis: the REMPS algorithm and
its theoretical analysis. In the first part of the chapter we formalize the CMDP learning
problem in an information theoretic fashion. Motivated by two theorems we consider three
projection strategies suited for CMDPs. The main goal of the theoretical analysis is to pro-
vide a finite-sample analysis of the single step of REMPS.
In Chapter 5 we show the experimental evaluations of our algorithm on three illustrative
examples.
Chapter 6 contains the conclusion, in which we briefly describe our work together with
some possible extensions and research directions.
Appendix A reports the proof of the Linear Programming solution presented in Section 2.2.
Appendix B contains the extension of two main estimators for the policy gradient to the
case of the model gradient. In Appendix C we show the derivation of the REMPS solution
in closed form.

Chapter 2

Reinforcement Learning

All models are wrong, but some are useful.

George E. P. Box

In this chapter, we present the basics of the Reinforcement Learning framework needed
for contextualize the work of the following chapters. We will first introduce the Markov
Decision Process model, Section 2.1, then we present the main approaches for the exact
solution of Markov Decision Processes, namely Linear Programming, Section 2.2, and
Dynamic Programming, Section 2.3. In Section 2.4 we present Policy Search algorithms,
that represents an approximate solution to the Markov Decision Processes problem. At
the end of this chapter we will consider some notable extensions to the Markov Decision
Process framework, Section 2.5.

2.1 Markov Decision Processes

A Markov Decision Process (Puterman, 2014) (MDP) is a formal framework for modelling
sequential decision making problems. The decision maker is usually called agent. In MDPs
an agent interacts with an environment through actions and receives a reward based on the
action and on the current state of the environment. The goal of the agent is to maximize the
cumulative sum, possibly discounted, of rewards in a given horizon (possibly infinite). The
task the agent has to learn is defined through the rewards it receives.

2.1.1 Formal Model

In this work we consider finite-time MDPs in which time is divided in discrete steps. At
each time step t = 0, 1, ...,H the agent receives a representation st of the state of the

6 Chapter 2. Reinforcement Learning

Environment

Agent

state St reward rt action At

Rt+1

St+1

Figure 2.1: Agent Environment interface, from (Sutton and Barto, 1998).

environment, st ∈ S , takes an action, at ∈ A, receives a reward, rt ∈ R, and lands in
the next state st+1 according to the environment dynamics P : S × A → ∆(S). Here H
denotes the horizon length, H ∈ R+ ∪ {+∞}.
Formally an MDP is a tuple 〈S,A, R, γ, P, µ〉, where:

– S is the state space (discrete or continuous);

– A is the action space (discrete or continuous);

– R : S ×A× S → R is the reward function;

– γ ∈ [0, 1] is the discount factor for future rewards;

– P : S × A → ∆(S) is the transition function, where P (·|s, a) is the probability
distribution over the next states given that the agent executes action a in state s;

– µ ∈ ∆(S) is the initial state distribution.

Formally the reward function is defined over S ×A× S, so a reward realization is
R(st, at, st+1). Usually we forget the dependence on the state st+1 by taking the expecta-
tion over the next states according to the environment dynamics:

r(st, at) = E
st+1∼P (·|st,at)

[R(st, at, st+1)] . (2.1)

A trajectory is sequence τ = 〈st, at, Rt〉t=0,...,H in which st represent the current state, at
the action taken, Rt the reward received at time step t.

2.1.2 Transition Model

The transition function must satisfy two properties in order for the problem to be an MDP:

Markovian: the current state and action are a sufficient statistic to define the probability
over the next states;

Stationarity: the environment dynamics does not change over time.

2.1. Markov Decision Processes 7

These usually are assumptions made in order to simplify the problem. The Markovian prop-
erty can be ensured by adding enough information to the state. The Stationarity property
can be ensured in a similar way, if a task is non stationary it can be translated in a stationary
task by adding the time component to the state description.

2.1.3 Policy

The agent interacts with the environment by means of a policy that defines its behaviour.
At each decision epoch a decision maker takes action according to its behaviour b. In the
most general case the action at depends on the whole history from time 0 to time t. We
denote the set of histories with Ht. A stochastic behaviour bt can be defined as:

bt : Ht → ∆(A) . (2.2)

A behaviour is said to be Markovian if the distribution over actions depends only on the
current state:

bt : S → ∆(A) . (2.3)

A policy is stationary if the distribution over actions does not depends on the time. In this
work we will denote a stationary Markovian policy with π:

π : S → ∆(A) . (2.4)

It is useful to consider parameterized policies, where θ ∈ Rd is the vector of policy param-
eters. To denote a parameterized policy we use the notation πθ and we omit the subscript
when it is clear from the context that the considered policy is parameterized. The usage of
a parameterization implicitly defines a set of policy in which we are interested, we denote
the policy family with Π and we have π ∈ Π. Common policy parameterizations are:

Linear (deterministic), the resulting action is a linear combination of the state features
φ(s):

π(s) = θTφ(s). (2.5)

Gaussian, the resulting action has a gaussian distribution, in which the mean and the
variance depend on state features:

π(·|s) ∼ N (m(φ(s)), v(φ(s))). (2.6)

The Gaussian parameterization is useful for continuous action spaces.

Boltzmann, used for discrete action spaces, the resulting action is a soft-max acting on the
weighted state features:

π(ai|s) =
eθ

T
i φ(s)∑

j e
θTj φ(s)

, (2.7)

where θi is the set of parameters associated to action ai.

In all of these parametrizations the state features might be non-linear features depending on
some parameters, e.g. coming from a neural network; radial basis function (RBF) features,
tile coding features.

8 Chapter 2. Reinforcement Learning

2.1.4 State distribution

Behaving accordingly to a policy in an MDP induces a distribution over the state space.
Here we recall the formulation of the γ-discounted future state occupancy (Sutton et al.,
1999):

d̂πµ,γ(s) =

+∞∑
t=0

γtP(st = s|µ, P, π) . (2.8)

The previous formula defines d̂πµ of a state s as the sum of the discounted probability of
being in s in a time step t given the policy, the initial state distribution and the transition
model. Formally d̂πµ is not a distribution as it does not sum up to 1. We normalize it
obtaining the γ discounted state distribution:

dπµ,γ(s) = (1− γ)d̂πµ(s) . (2.9)

2.1.5 State Kernel

The transition model and the policy naturally define the state kernel, that has a primary
role in our work. Formally the state kernel is a function P π : S → ∆(S). It defines, for
each state, a probability measures over the set of states. It consider jointly the effect of the
transition model and the policy. The state kernel is obtained by marginalizing the transition
model over the actions:

P π(s′|s) =

∫
A
π(a|s)P (s′|s, a)da . (2.10)

2.1.6 Goal and Rewards

In Reinforcement Learning the agent’s goal is to maximize the total amount of rewards it
receives. This is based on the reward hypothesis (Sutton and Barto, 1998):

That all of what we mean by goals and purposes can be well thought of
as the maximization of the expected value of the cumulative sum of a received
scalar signal (called reward).

Even if a scalar reward signal might seem limiting, this concept has proven to be very flex-
ible and applicable to a wide range of tasks. For example, in locomotion tasks the reward
can be defined to be proportional to the amount of distance traveled from the previous step
to the current step. In making a robot reaching a goal the reward can be defined as -1 for
every step until the agent finds the goal, encouraging the agent to reach the goal as fast as
possible. It is very important in RL that the reward is given in such a way that it describes
what is the goal of the task, it should not describe how to do something. However, in some
cases the reward definition might be not trivial. Think for example to a reward for a driving

2.1. Markov Decision Processes 9

task. In the case of driving it is not trivial to define what does it mean to drive in a good
way.
RL tasks can be divided in episodic and continuing. In episodic tasks we have that H , the
horizon length, is finite, while in continuing tasks H = +∞. The return, Gt quantifies the
agent performance. For episodic tasks the return from time step t can be defined as the sum
of rewards received until the end of the episode:

Gt =
H∑
k=t

rk . (2.11)

It is easy to see that for continuing tasks this formulation of return diverges since we have
an infinite sum of rewards. To deal with continuing tasks we need to introduce the notion of
discounting. The discount factor γ ∈ [0, 1] quantifies the present values of future payoffs.
We introduce the discounted return as the cumulative, discounted, sum of rewards until the
end of the episode:

Gt =

H∑
k=0

γkrt+k+1 . (2.12)

The discount factor, besides having the interpretation mentioned before, can be seen as the
probability that the process continues for another step. From the agent point of view, if the
discount factor is near to zero greedy actions are profitable since future rewards do not have
high values. If the discount factor is near to 1 the agent is far-sighted, it is possible for him
to sacrifice an action related to a good immediate reward now for a higher reward in the
future steps. We indicate with G(τ) the return associated with the trajectory τ .

2.1.7 Policy and Value Functions

Policy evaluation is the process of quantifying how good a policy is, it is a key step in
almost all RL algorithms. The performance of a policy is defined as the expected value of
the return under state and action distribution:

Jπ = E
s0∼µ

at∼π(·|st)
st+1∼P (·|st,at)

[
H∑
t=0

γtR(st, at, st+1)

]
. (2.13)

The simple idea formalized above is that policy π1 it is better then policy π2 if, on average,
it collects more rewards. Solving an MDP means to find the policy π∗ such that:

π∗ ∈ arg max
π

Jπ . (2.14)

When we have a parametrized policy we can cast the problem to the point of view of policy
parameters. We have that J depends on the policy parameters:

J(θ) = E
s0∼µ

at∼πθ(·|st)
st+1∼P (·|st,at)

[
H∑
t=0

γtR(st, at, st+1)

]
. (2.15)

10 Chapter 2. Reinforcement Learning

θ∗ ∈ arg max
θ

J(θ) . (2.16)

The Value function (or state-value function) provides a utility measure to a state following
a policy. The value of a state s under policy π, denoted as vπ(s), is the expected discounted
return starting from s following the behaviour prescribed by π:

vπ(s) = E
π

[Gt|st = s] . (2.17)

In this way the value function embeds long-term information. Similarly, we define the value
of a state-action pair (s, a) under policy π as the expected discounted return starting from
s, executing action a and following the behaviour π. This utility measure is denoted as
Q-function or action-value function:

qπ(s, a) = E
π

[Gt|st = s, at = a] . (2.18)

The value function is not suitable for control as it does not provide information on which
action to take. The Q-function provides a utility to all actions in a particular state. Value
function and Q-function are clearly strictly related, the former is obtained by averaging the
latter over the action distribution defined by the policy:

vπ(s) = E
a∼π(·|s)

[qπ(s, a)] . (2.19)

Using the state value function it is possible to re-write the performance of a policy:

Jπ = E
s∼µ

[vπ(s)] . (2.20)

The value function has also a recursive formulation, denoted as Bellman expectation oper-
ator for vπ (Bellman, 1957):

vπ(s) = E
a∼π(·|s)
s′∼P (·|s,a)

[
R(s, a, s′) + γvπ(s′)

]
. (2.21)

We can express in a recursive manner also the Q-function, the associated operator is denoted
as Bellman expectation operator for qπ:

qπ(s, a) = E
a′∼π(·|s′)
s′∼P (·|s,a)

[
R(s, a, s′) + γqπ(s′, a′)

]
. (2.22)

The Bellman expectation operators have several properties (see 2.1.8). The operators are
mainly used in iterative policy evaluation (see 2.3.1). We give the formal definition of the
Bellman Expectation operators.

Definition 2.1.1 (Bellman Expectation Operator for vπ). The Bellman expectation operator
for vπ is defined as T π : R|S| → R|S|, maps state-value functions to state-value functions:

(T πv)(s) = E
a∼π(s)

s′∼P (·|s,a)

[
R(s, a, s′) + γv(s′)

]
. (2.23)

2.1. Markov Decision Processes 11

Definition 2.1.2 (Bellman Expectation Operator for qπ). The Bellman expectation operator
for qπ is defined as T π : R|S|×|A| → R|S|×|A|, maps Q-functions to Q-functions:

(T πq)(s, a) = E
a′∼π(s′)
s′∼P (·|s,a)

[
R(s, a, s′) + γq(s′, a′)

]
. (2.24)

2.1.8 Optimality Conditions

Besides Eq. (2.14) we can define another partial ordering over policies, the ordering induced
by value functions.

Definition 2.1.3. Policy π is better or equal (�) policy π′ if its expected return is greater
or equal to that of π′ for all states:

π � π′ ⇐⇒ vπ(s) ≥ vπ′(s), ∀s ∈ S . (2.25)

Following the previous definition an optimal policy is a policy that is better or equal to
all other policies in all states. This optimality condition is stricter than the one presented
in (2.14). From the definition of optimal policy the optimal state-value function and the
optimal Q-function follows:

v∗(s) = max
π

vπ(s) (2.26)

q∗(s, a) = max
π

qπ(s, a) . (2.27)

There is always at least an optimal (deterministic) policy maximizing the state-value func-
tion in every state (Puterman, 1994) and all optimal policies share the same optimal state
value-function. The knowledge of the optimal Q-function makes it possible to find the
optimal deterministic policy selecting in every state the action yielding the highest q-value:

π∗(s) ∈ arg max
a

q∗(s, a) . (2.28)

This holds if we have complete freedom in the selection of the policy (i.e. when Π is the set
of all Markovian policies). However for practical algorithms we need to restrict our policy
space (e.g. parametric policy space), in these cases it is convenient to use the definition of
optimal policy in (2.14).
The optimal state-value function and optimal Q-function satisfy the Bellman optimality
equations:

v∗(s) = max
a

q∗(s, a) (2.29)

= max
a

E
s′∼P (·|s,a)

[
R(s, a, s′) + γv∗(s′)

]
. (2.30)

q∗(s, a) = E
s′∼P (·|s,a)

[
R(s, a, s′) + γmax

a′
q∗(s′, a′)

]
. (2.31)

12 Chapter 2. Reinforcement Learning

At an intuitive level the Bellman optimality equation for v∗ expresses the fact that the opti-
mal state-value function must equal the expected return for the best action in that state. The
Bellman optimality equation for q∗, similarly, expresses the fact that the optimal Q-function
must equal the immediate reward plus the discounted return of the best action in the next
state according to the environment dynamic.
The right handside of Eq. (2.29) it’s defined as Bellman Optimality Operator.

Definition 2.1.4 (Bellman Optimality Operator for v∗). The Bellman optimality operator
for v∗ is defined as T ∗ : R|S| → R|S|, maps state-value functions to state-value functions:

(T ∗v)(s) = max
a

E
s′∼P (·|s,a)

[
R(s, a, s′) + γv(s′)

]
. (2.32)

Definition 2.1.5 (Bellman Optimality Operator for q∗). The Bellman optimality operator
for q∗ is defined as T ∗ : R|S|×|A| → R|S|×|A|, maps Q-functions to Q-functions:

(T ∗q)(s, a) = E
s′∼P (·|s,a)

[
R(s, a, s′) + γmax

a′
q(s′, a′)

]
. (2.33)

The Bellman operators (2.1.8, 2.1.7, 2.1.8, 2.1.7) are characterized by the following prop-
erties, where we will use T to denote both the expectation operator and the optimality
operator:

– Monotonicity:

f1 ≤ f2 =⇒ Tf1 ≤ Tf2 ; (2.34)

– Max-Norm contraction:

‖Tf1 − Tf1‖∞ ≤ γ ‖f1 − f2‖∞ , ∀f1, f2 ; (2.35)

– v∗ is the unique fixed point of T ∗. vπ is the unique fixed point of T π.

– Convergence:

lim
k→∞

(T ∗)kf = v∗ , ∀f ∈ R|S| (2.36)

lim
k→∞

(T π)kf = vπ ,∀f ∈ R|S| . (2.37)

Solving Eq. (2.29) and Eq. (2.31) leads us directly to the MDP solution. Unfortunately
these equations are non-linear because of the presence of the max operator and there is
no closed form solution for the general case. There exists many iterative solution methods
trying to solve an approximation of the Bellman optimality equations that are discussed in
the following sections.

2.2. Linear Programming 13

2.2 Linear Programming

The problem of computing an optimal policy for an infinite horizon finite-states MDP can
be formulated as linear program (LP) (d’Epenoux, 1963). In this section we will go further
in the LP formulation since our algorithm extends on this. The basic idea follows from
Definition 2.1.3: we want to find the value function maximizing the value of each state
weighted by the initial state distribution subject to a feasibility constraint:

minimize
v

∑
s∈S

µ(s)v(s)

subject to v(s) ≥ r(s, a) + γ
∑
s′∈S

P (s′|s, a)v(s′) ,∀s ∈ S, ∀a ∈ A .

Where we have |S| variables and |S||A| constraints. Notice that the maximization role is
taken by the constraints, while we need to minimize since otherwise an optimal solution
would have infinite values for all variables v.

Theorem 2.2.1 (Linear Programming Solution) v∗ is the solution of the above linear pro-
gram.

It is possible to prove the above theorem using the properties of the Bellman optimality
operators, the interested reader can refer to Appendix A. It is also interesting to analyze the
Dual Linear Program:

maximize
p

∑
s∈S

∑
a∈A

d(s, a)r(s, a)

subject to
∑
a∈A

d(s, a) = µ(s) + γ
∑
s′∈S

∑
a′∈A

d(s′, a′)P (s|s′, a′), ∀s ∈ S

d(s, a) ≥ 0, ∀s ∈ S, ∀a ∈ S .

In the dual program d(s, a) is the discounted state action distribution (Sutton et al., 1999):

d(s, a) =
∞∑
t

γtP(st = s, at = a) . (2.38)

The objective of the dual is the usual objective: maximize the expected discounted sum of
rewards. The constraints are needed for ensuring that p is a valid distribution. From the
dual program it is possible to extract the optimal policy:

π∗(s) ∈ arg max
a

d(s, a) . (2.39)

For each state s we have that d(s, a∗) = 1 if action a∗ is optimal in state s. When there are
multiple optimal actions we have a split of the probability between these actions. The LP
formulation is an exact way of solving the MDPs, unfortunately this formulation becomes
impractical when the states space grows too much.

14 Chapter 2. Reinforcement Learning

π v

evaluation

improvement

π ← greedy(v)

v ← vπ

Figure 2.2: Policy Iteration, from (Sutton and Barto, 1998).

2.3 Dynamic Programming

Dynamic programming (Bellman, 1957) (DP) is by far the most common way for solv-
ing MDPs when the dynamics and the reward function are known. DP takes into account
the sequential or temporal structure of the problem. It is a method for solving complex
problems by breaking them into subproblems. A problem, in order to be solved by DP
techniques, must have two properties: 1. Optimal Substructure, 2. Overlapping Subprob-
lems. The optimal substructure property means that the principle of optimality applies and
the optimal solution can be decomposed into subproblems. The overlapping subproblems
property means that subproblems recur many times and the solutions can be stored and
reused. In MDPs both properties are satisfied. The Bellman equation gives the recursive
decomposition while the state-value function caches and reuses previous solutions.

2.3.1 Policy Iteration

Policy Iteration (Howard, 1960) is a two stage algorithm: Policy Evaluation (PE) and Policy
Improvement (PI). The first stage (Policy Evaluation) aims at evaluating the current policy
through the application of the Bellman Expectation Operator. The PE phase is needed
since we want to perform an update of the current policy. The update direction can be
computed using the action-value function in the following way. Suppose we know vπ(s′)
for a particular s′. To improve the current policy it is enough to compute qπ(s′, a) for each
a ∈ A and then to compare it with vπ(s′). If exists an action a′ such that q(s′, a′) > vπ(s′),
then we can improve the current policy using the following update rule:

π′(s) =

{
π(s) if s 6= s′

arg max
a

qπ(s, a) if s = s′ (2.40)

Basically this update rule states that the new policy is the same as the old policy except for
states in which there exists an action a such that the action-value function qπ is greater than
the value function vπ. The justification for the previous statement comes from the Policy
Improvement Theorem.

Theorem 2.3.1 (Policy Improvement Theorem) Let π and π′ be a pair of policies such that:

qπ(s, π′(s)) ≥ vπ(s) , ∀s ∈ S , (2.41)

2.4. Policy Search 15

Algorithm 1 Policy Iteration

Input: S,A, P,R
Output: π ≈ π∗

1: Initialize vπ and π randomly
2: repeat
3: vπ ← Evaluate policy π by applying T π

4: π← Improve policy π
5: until no improvement found
6: return Policy π

Then the policy π′ must be as good or better than π.

Given the previous theorem we can expand the update rule (2.40) by computing the greedy
policy in all states:

π′(s) ∈ arg max
a

qπ(s, a) . (2.42)

This update rule meets the condition of Theorem 2.3.1, so the updated policy is as good as,
or better than the old one. When the new policy is as good as the old, vπ

′
= vπ, we know,

thanks to the optimality operator property, that vπ = v∗, we have obtained the optimal
policy. Now we can formalize the Policy Iteration Algorithm, see Algorithm 1. All the
previous ideas can be easily extended to the case of stochastic policies.

2.3.2 Value Iteration

The Value Iteration (VI) algorithm performs evaluation and improvement in the same step.
While Policy Iteration performs a search in the space of policies, Value Iteration searches
in the space of value functions, calculating the policy only in the last step. Value Iteration
is obtained simply by turning the Bellman Optimality Operator into an update rule:

vk+1(s) = max
a

E
s′∼P (·|s,a)

[
R(s, a, s′) + γvk(s

′)
]
, ∀s ∈ S . (2.43)

Value Iteration algorithm is reported in Algorithm 2.
Both PI and VI converge to an optimal policy for discounted finite MDPs.

2.4 Policy Search

Policy search (PS) methods explore directly the policy space. In the PS framework the RL
problem is formalized as:

π∗ ∈ arg max
π∈Π

Jπ . (2.45)

Among PS methods it is worth mentioning policy gradient methods (Sutton et al., 1999;
Peters and Schaal, 2008b). Policy gradient methods consider a set of parameterized policies

16 Chapter 2. Reinforcement Learning

Algorithm 2 Value Iteration
Input: S,A, P,R
Output: π ≈ π∗

1: Initialize v randomly
2: repeat
3: v← Apply Bellman Optimality operator T ∗v
4: until no changes in the value function
5: return Policy π:

π(s) = arg max
a

E
s′∼P (·|s,a)

[
R(s, a, s′) + γv(s′)

]
,∀s ∈ S . (2.44)

(see Section 2.1.3) πθ(a|s) where θ ∈ Rd is the vector of policy parameters. In this cases
the space of policies is represented by Π =

{
πθ : θ ∈ Θ ⊆ Rd

}
. A standard requirement is

that the policy must be differentiable in its parameters. A common technique to maximize
the performance of a policy is to perform gradient ascent over the policy parameters:

θk+1 = θk + α∇θJ(θk) , (2.46)

where α ≥ 0 is the learning rate, also called step size. The quantity∇θJ(θk) is the gradient
of the performance of the policy and it can be computed through the policy gradient theorem
(Sutton et al., 1999).

Theorem 2.4.1 (Policy Gradient Theorem) For any MDP:

∇θJ(θ) =

∫
S
dµ,πθ(s)

∫
A
∇θπθ(a|s)qπθ(s, a)dads . (2.47)

In real cases since the state distribution is not known it is not possible to compute analyti-
cally the gradient of the performance measure. We need to resort to a sample approximation
of it. Gradient ascent method guarantees convergence at least to a local optimum even if
in practice local optima can be avoided using a stochastic approximation to the gradient or
policies belonging to high dimensional spaces.

Gradient Estimation

REINFORCE method (Williams, 1992) builds on the fact that the outer integral in Eq. (2.47)
is the analytical expression of the expected value under the state distribution induced by the
policy π. We can rewrite the gradient in the following way (where we use π for πθ):

∇θJ(θ) = E
s∼dµ,π(·)

[∫
A
∇π(a|s)qπ(s, a)ds

]
(2.48)

= E
s∼dµ,π(·)
a∼π(·|s)

[∇ log π(a|s)qπ(s, a)] , log trick: ∇f = f∇ log f

2.4. Policy Search 17

The estimation of the action value function can be performed in a straightforward way from
the sum of discounted rewards: q̂π ≈ ∑H

k=0 γ
kr(sk, ak) Summarizing, we can obtain an

approximation of the gradient through the following estimator:

∇̂θJ(θ)RF = 〈
(

H∑
k=0

∇θ log π(ak, sk)

)(
H∑
k=0

γkr(sk, ak)

)
〉N , (2.49)

where N is the batch size, the number of collected trajectories, 〈·〉N denotes the sample
mean over N trajectories and H is the horizon length.
REINFORCE gradient estimation suffers of high variance, that grows at least cubically with
the length of the horizon and quadratically with the magnitude of the reward.
G(PO)MDP (Baxter and Bartlett, 2001) employs a better approximation with lower vari-
ance exploiting the observation that future actions do not depend on past rewards (if the
policy does not change within an episode) leading to the following estimation:

∇̂θJ(θ)G(PO)MDP = 〈
H∑
l=0

(
H∑
k=l

∇θ log π(ak|sk)
)(

γlr(sl, al)
)
〉N . (2.50)

Natural Policy Gradient

As presented in (Furmston and Barber, 2012), the general form of Policy Gradient updates
is:

θk+1 = θk + αG(θk)−1∇θJ(θk) , (2.51)

where G(θ) is a positive definite matrix. The matrix G(θ) defines the metric used to
measure vectors in the parameter space. The parameter update in Equation (2.46) can
be derived from this formulation by using G(θk) = I , that is the Euclidean norm. This
assumption does not take into account that the space parameterized is actually a Riemannian
manifold. As (Amari, 1998) suggested it is better to define a metric based not on the
choice of coordinates but rather on the manifold (i.e. the surface) that these coordinates
parameterize. Natural Gradient (Kakade, 2002) exploits this structure and uses as metric the
Fisher Information Matrix of the trajectory distribution and due to the Markovian structure
of the dynamics it is given by:

G(θ) = E
s∼dπµ,γ(·)
a∼πθ(·|s)

[
∇θ log πθ(a|s)∇θ log πθ(a|s)T

]
. (2.52)

Convergence to a local maximum is guaranteed; by choosing a more direct path to the
optimal solution in parameter space, the natural gradient has faster convergence and avoids
premature convergence of steepest ascent gradient; the natural policy gradient can be shown
to be covariant, i.e., independent of the parameterization of the policy; it requires fewer data
points for a good gradient estimate.

18 Chapter 2. Reinforcement Learning

2.5 MDP extensions

The standard MDP framework has been extended in the literature in order to cover many
real cases scenarios. Here we report some notable extensions that can be related and com-
pared to the framework considered in this work.

2.5.1 MDP with imprecise probability

MDP with imprecise probability (MDPIP) (Harmanec, 2002) covers the case in which it
is not easy (or even possible) to define a precise probability measure for a given transition
P (·|s, a). In this cases the probability parameters are imprecise and therefore the transi-
tion model cannot be defined by means of a probability distribution but it must be defined
through a set of probability distribution. These sets of distribution are known as transition
credal sets K(·|s, a).
In this framework it is common to use game theoretic approaches maximizing the lowest
expected reward with respect to the probability parameters, known as Γ-maximin criterion.
In this cases the optimal value function is:

v∗(s) = max
a∈A

{
min

P (·|s,a)∈K(·|s,a)
r(s, a) + γ

∑
s′∈S

P (s′|s, a)v∗(s′)

}
. (2.53)

2.5.2 Bounded-parameter Markov decision processes

Bounded-parameter MDPs (Givan et al., 2000) can be used to represent variation or uncer-
tainty concerning the parameters of sequential decision problems in cases where no prior
probabilities on the parameter values are available. BMDPs form an efficiently solvable
special case of the class of MDPIPs. In this context interval value functions are introduced
as a natural extension of traditional value functions. An interval value function assigns a
closed real interval to each state, representing the fact that the value of that state falls within
that interval. An interval value function can be used to bound the performance of a policy
over the set of exact MDPs associated with a given bounded-parameter MDP.

2.5.3 Non stationary MDPs

Non stationary MDPs (Bowerman, 1974) are used to model scenarios in which the transi-
tion dynamic and the reward function are non stationary, i.e. they change over time. We
can model this scenario with a different transition and reward functions for each timestep:

P (s′|s, a, t) = P t(s′|s, a) (2.54)

R(s, a, s′, t) = Rt(s, a, s′) . (2.55)

A usual assumption made in this family of MDPs is that there is a correlation between
contniguous time frames. In this way the agent can use recent experience and forget past

2.5. MDP extensions 19

experience. In (Hopp et al., 1987) an optimality condition for non stationary MDPs has
been defined. Moreover, (Garcia and Smith, 2000), (Cheevaprawatdomrong et al., 2007)
and (Ghate and L. Smith, 2013) focused on how to find an optimal policy for non stationary
MDPs in an effective way.

Chapter 3

State of the Art

The measure of greatness in a scientific idea is the extent to which it stimulates thought and
opens up new lines of research.

Paul A.M. Dirac

In this chapter, we present the framework of Configurable Markov Decision Processes
(Metelli et al., 2018a) Section 3.1 since it is the MDP extension that formalizes our learn-
ing problem. We recall that our main goal is to find an algorithm able to jointly optimize
policy and model parameters by keeping into account their relationship. In Section 3.2,
we present the Relative Entropy Policy Search (REPS) algorithm as our algorithm takes
inspiration from it.

3.1 Configurable Markov Decision Processes

In most of the problems tackled by RL the environment is considered to be a fixed entity
that cannot be controlled. Nevertheless, there exist several real-world motivational exam-
ples in which a partial control on the environment can be exercised by the agent itself or by
an external supervisor. With the phrase environment configuration we refer to the activity
of altering some environmental parameters to improve the performance of the agent.
Configurable Markov Decision Processes (CMDPs) are an extension to the Markov De-
cision Processes framework that considers the environment optimization. A CMDP is an
MDP in which it is possible to configure some environmental parameters in order to im-
prove the agent performance or the learning speed. CMDPs arise naturally in many real
world cases. Formula One engineers have to configure their cars (e.g. wings, tyres, engine,
brakes) to minimize lap time. In industry, machines have to be configured to maximize
the production rate. These are cases in which the goal of the configuration is to improve
performance, however in the case of car race it is possible for the supervisor to improve
the learning speed of the pilot by presenting tracks of different difficulty. This example
resembles the child example in Chapter 1, in which parents present to their son goals of

22 Chapter 3. State of the Art

different difficulty, in order to teach him to walk.
In all the above examples the agent or a supervisor configures some environmental param-
eters to achieve good performance.
In this work we consider configurable transition functions and we focus on how to improve
performances by jointly optimizing the environment and the policy.
We remark that there is a profound difference between this scenario and the other MDP
extensions presented in Section 2.5. In other MDP extensions the environment is assumed
not fixed or not fully known in the case of MDPIP, that is the transition function is not sta-
tionary, but there is no possibility to configure it. In the context of CMDPs the environment
is not fixed since we want to exploit the configurability structure to obtain a performance
gain.

3.1.1 Formal Model

The following definition characterizes the Configurable Markov Decision Processes.

Definition 3.1.1 (Configurable Markov Decision Process). A Configurable Markov Deci-
sion Process is a tuple CM = 〈S,A, R, µ, γ,P,Π〉, where 〈S,A, R, µ, γ〉 is an MDP
without the transition model, P is the model space and Π is the policy space.

The model space P will be sometimes referred to as configuration space in the rest of the
document. In this scenario the learning subjects are the policy and the model spaces. The
performance of a model-policy pair is denoted by JP,πµ and defined as:

JP,πµ =
1

1− γ

∫
S
dP,πµ (s)

∫
A
π(a|s)

∫
S
P (s′|s, a)R(s, a, s′)dsdads , (3.1)

where dP,πµ is the discounted state distribution induced by the model P and the policy π (see
Section 2.1.4). The goal of a learning process in a CMDP is to find a couple model-policy
pair (P ∗, π∗) such that:

P ∗, π∗ ∈ arg max
P∈P,π∈Π

JP,πµ . (3.2)

Recall that the standard MDP solution is only a half of the CMDP solution, as the MDP
solution is defined as:

π∗ ∈ arg max
π∈Π

JP,πµ , (3.3)

under a fixed model P . In other words, it requires to find the optimal policy in a fixed
environment P .
It is useful now to redefine some important quantities in the MDP theory by considering the
contribution of the model:

vP,π(s) = E
a∼π(·|s)
s′∼P (·|s,a)

[
R(s, a, s′) + γvP,π(s′)

]
, (3.4)

qP,π(s, a) = E
s′∼P (·|s,a)

[
R(s, a, s′) + γvP,π(s′)

]
. (3.5)

3.1. Configurable Markov Decision Processes 23

These quantities are the same as the ones defined in Section 2.1 but here we emphasize the
model contribution. Notice that in the case of fixed model (standard MDP framework) we
can forget this dependency but in our context it is better to keep it explicit.
To measure the utility of a transition we introduce the state-action-next-state value function
or U-function:

uP,π(s, a, s′) = R(s, a, s′) + γvP,π(s′) . (3.6)

The U-function is the expected return starting from state s, taking action a, landing in state
s′ and then following the trajectory induced by the policy π and the model P . It can be
considered as an extension of the action-value function that considers the contribution of
the model.

3.1.2 Model and Policy spaces

In Section 2.1.3 we discussed about possible policy parameterizations. Working with a
bounded (e.g. parameterized) policy space can be beneficial since we have a finite number
of parameters to tune. Besides reducing the search space, a bounded policy space can
also represent real world limitations on the selection and implementation of the policy.
Similarly, when configuring the transition model we can have different scenarios. In the
most common case we are limited in the model selection, we can configure some MDP
parameters (e.g. brake pressure, tyres type, wing angle) but we cannot configure the main
dynamic laws (e.g. physics of the environment). In (Metelli et al., 2018a) three types of
scenarios are defined:

Unconstrained: no limitation on the model and policy spaces. This is not the most com-
mon scenario, thus it is possible to have no constraints on the model (policy) selec-
tion.

Constrained: in this case we have an initial model (policy) P0 (π0) and we are not allowed
to move too far. The notion of distance in this case can be expressed with the usual
divergences between probability measures (e.g. Kullback-Leibler, Total Variation,
Wasserstein). In this cases we formalize the model and policy spaces in the following
way:

P = {P : d(P, P0) < εp} (3.7)

Π = {π : d(π, π0) < επ} . (3.8)

Parametric: in the most common case only a limited part of the model can be configured.
We can represent this scenario by means of a parametric model space in which the
alteration are limited to the choice of the model parameters. We express this type of
model and policy spaces by:

PΩ =
{
Pω : ω ∈ Ω ⊆ Rk

}
(3.9)

ΠΘ = {πθ : θ ∈ Θ ⊆ Rp} . (3.10)

From now on, we use θ for identifying the policy parameters and ω for identifying
the model parameters.

24 Chapter 3. State of the Art

The parametric case is the scenario mainly considered in this work.

3.1.3 Theoretical Foundations

Safe Policy Model Iteration (SPMI), presented in (Metelli et al., 2018a), is a safe approach
for solving the CMDP learning problem. A possible approach to Safe Reinforcement Learn-
ing is to employ a lower bound on the performance improvement obtained by moving from
a model-policy pair (P, π) to another pair (P ′, π′). Once obtained a lower bound on the
performance improvement it is possible to maximize this lower bound finding the model-
policy pair yielding the best possible improvement. It is useful to introduce some important
quantities (Kakade and Langford, 2002; Pirotta et al., 2013). We define the policy advan-
tage function, that quantifies how much an action is better than the others in a state:

AP,π(s, a) = qP,π(s, a)− vP,π(s) . (3.11)

We introduce the model advantage function, that quantifies how much landing in a state s′

after having performed action a starting in state s is better than the other states:

AP,π(s, a, s′) = R(s, a, s′) + γvP,π(s′)− qP,π(s, a) = (3.12)

= uP,π(s, a, s′)− qP,π(s, a) . (3.13)

We define the relative advantage functions for quantifying the one-step improvement at-
tained by a new policy π′ or a new model P ′ when starting from the model P and the
policy π:

AP,π
′

P,π (s) = E
a∼π′(·|s)

[
AP,π(s, a)

]
, (3.14)

AP
′,π

P,π (s, a) = E
s′∼P ′(·|s,a)

[
AP,π(s, a, s′).

]
(3.15)

We define also their expected value under the γ-discounted state distribution:

A
P,π′
P,π,µ = E

a∼π′(·|s)
s∼dP,πµ

[
AP,π(s, a)

]
, (3.16)

A
P ′,π
P,π,µ = E

(s,a)∼δP,πµ

s′∼P ′(·|s,a)

[
AP,π(s, a, s′)

]
, (3.17)

Where δP,πµ is the stationary state–action distribution under the model P and the policy π.
From the previous theory we can obtain a lower bound of the performance improvement
using only information available from the current model-policy.

Theorem 3.1.1 (Coupled Bound) The performance improvement of model-policy pair (P ′, π′)
over (P, π) can be lower bounded as:

JP
′,π′

µ − JP,πµ︸ ︷︷ ︸
Performance improvement

≥
A
P ′,π′
P,π,µ

1− γ︸ ︷︷ ︸
Advantage term

−
γ∆AP

′,π′
P,π DP ′π

′
,Pπ

E
2(1− γ)2︸ ︷︷ ︸

Dissimilarity Penalization

, (3.18)

3.1. Configurable Markov Decision Processes 25

where ∆AP
′,π′

P,π = sups,s′∈S

∣∣∣AP ′,π′P,π (s′)−AP ′,π′P,π (s)
∣∣∣, and

DP ′π
′
,Pπ

E = E
s∼dP,πµ

||P ′π′(·|s)− P π(·|s)||.

The bound is composed by two terms. The advantage term quantifies how much the model-
policy pair (P ′, π′) is better with respect to the current one. The dissimilarity term is a
penalization that prevents the algorithm from moving too far away from the current model-
policy. In practice this bound it is difficult to use in an algorithm since it does not separate
the dependence of the two main components of a CMDP. The lower bound on the perfor-
mance improvement used in SPMI is the following.

Theorem 3.1.2 (Decoupled Bound) The performance improvement of model-policy pair
(P ′, π′) over (P, π) can be lower bounded as:

JP
′,π′

µ − JP,πµ︸ ︷︷ ︸
Performance improvement

≥ B(P ′, π′) =
A
P ′,π
P,π,µ +AP,π

′
P,π,µ

1− γ︸ ︷︷ ︸
Advantage term

− γ∆qP,πD

2(1− γ)2︸ ︷︷ ︸
Dissimilarity Penalization

, (3.19)

where D is a dissimilarity term keeping into account the dissimilarity of the model and the
policy and ∆qP,π = sups,s′∈S,a,a′∈A

∣∣qP,π(s′, a′)− qP,π(s, a)
∣∣.

This bound effectively decouples the effect of the model and the policy and it is used in
SPMI.

3.1.4 Safe Policy Iteration and Safe Model Iteration

In (Metelli et al., 2018a) the lower bound in Theorem 2.3.1 is used in different ways. When
limited to policy learning, the resulting algorithm resembles Safe Policy Iteration (SPI)
(Pirotta et al., 2013) but uses a new lower bound on performance improvement. The idea is
to select a target policy π̄, the greedy policy with respect to the q-function, and then find the
value α∗ such that the policy obtained as convex combination between the current policy
and the target one maximizes the value of the lower bound. SPI is reported in Algorithm 3.
Safe Model Iteration (SMI) is the symmetrical version with respect to SPI, for the model
learning problem, that is learning the best model for the current policy. As before, the idea
is to select a target model P̄ , the greedy model with respect to the u-function, and then find
the value β∗ such that the model obtained as convex combination between the current model
and the target one maximizes the value of the lower bound. SMI is reported in Algorithm 4.
SMI-SPI is a sequential approach derived from the previous approaches. It does a full
model learning with a fixed policy and then a full policy learning with fixed model.
SPI-SMI is the symmetrical version. It is worth noting that these two algorithms do not
solve the original CMDP problem, but an approximated version.

26 Chapter 3. State of the Art

Algorithm 3 Safe Policy Iteration

Output: Optimal Policy
1: Initialize π(0) randomly
2: for t = 0,1,... until convergence do
3: Evaluate current policy π(t)

4: Compute target π̄(s) ∈ arg maxa∈A q
P,π(s, a)

5: Compute termsAP,π̄P,π,µ, D
π̄,π
∞ , Dπ̄,π

E ,∆qP,π

6: Compute α∗ = min

(
(1−γ)
γ∆qP,π

A
P,π̄
P,π,µ

Dπ̄,π∞ ,Dπ̄,πE
, 1

)
7: Update the policy as: π(t+1) = α∗π̄ + (1− α∗)π(t)

8: end for
9: return Optimal Policy π(t)

Algorithm 4 Safe Model Iteration
Output: Optimal Model

1: Initialize P (0) randomly
2: for t = 0,1,... until convergence do
3: Evaluate current model P (t)

4: Compute target P̄ (s, a) ∈ arg maxs′∈S u
P,π(s, a, s′)

5: Compute termsAP̄ ,πP,π,µ, D
P̄ ,P
∞ , DP̄ ,P

E ,∆qP,π

6: Compute β∗ = min

(
1−γ

γ2∆qP,π
A
P̄ ,π
P,π,µ

DP̄ ,P∞ ,DP̄ ,PE
, 1

)
7: Update the model as: P (t+1) = β∗P̄ + (1− β∗)P (t)

8: end for
9: return Optimal model P (t)

3.1.5 Safe Policy Model Iteration

Safe Policy Model Iteration (SPMI) requires to compute the target policy π̄ and model P̄ ,
then it computes the next policy and model as linear combination of the current pair and
the target pair:

π′ = απ̄ + (1− α)π (3.20)

P ′ = βP̄ + (1− β)P , (3.21)

where α and β are the parameters maximizing the lower bound in 3.19. SPMI is reported
in Algorithm 5.

In the SPMI algorithm, it is the value of the lower bound that selects which update has
to be performed at each step, such as a policy update, a model update or a policy-model
(joint) update. Instead, SPMI alternated (SPMI-alt) forces policy and model updates to be
alternated, independently to the bound value. SPMI-sup uses the same update strategy of
SPMI, but it optimizes a slightly looser lower bound on performance improvement. This
bound is, basically, the straightforward restatement of the one presented in (Pirotta et al.,

3.1. Configurable Markov Decision Processes 27

Algorithm 5 Safe Policy Model Iteration

Output: Optimal Model Policy Pair
1: Initialize π(0), P (0) randomly
2: for t = 0,1,... until convergence do
3: π̄ = PolicyChooser(π(t))
4: P̄ = ModelChooser(P (t))
5: α∗, β∗ = arg maxα,β B(α, β)
6: π(t+1) = α∗π̄ + (1− α)π(t)

7: P (t+1) = β∗P̄ + (1− β)P (t)

8: end for
9: return Optimal Policy Model Pair (P (t), π(t))

2013), adapted to deal with a learning problem in the CMDP framework:

JP
′,π′

µ − JP,πµ ≥
A
P ′,π
P,π,µ +AP,π

′
P,π,µ

1− γ − γ∆qP,πDsup

2(1− γ)2
, (3.22)

where Dsup = Dπ′,π2

∞ + 2Dπ′,π
∞ DP ′,P

∞ + γDP ′,P 2

∞ (see (Metelli et al., 2018a) for the defini-
tion of these distances), which is obtained by the dissimilarity term of the decoupled bound
(Eq. (3.19)), upper bounding Dπ′,π

E ≤ Dπ′,π
∞ and DP ′,P

E ≤ DP ′,P
∞ .

3.1.6 Limitations

Although this approach succeeded in showing the advantages of configuring the environ-
ment in some illustrative examples, it is quite far from being applicable to real-world scenar-
ios. We believe that the most significant limitations of SPMI are three. First, it is applicable
only to problems with a finite state-actions space, while the most interesting examples of
CMDPs have, at least, a continuous state space (e.g., the car configuration problem). Sec-
ond, it requires a full knowledge of the environment dynamics. This latter limitation is the
most relevant as, in reality we almost never know the true environment dynamics, and even
if a model is available it might be too approximate or hardy usable being very complex and
computationally expansive (e.g., the fluido-dynamical model of a car). A third problem
could be the high sample complexity of safe methods. Being conservative, safe methods
allow only small updates. Therefore the required number of iterations might be too high for
online applications.

28 Chapter 3. State of the Art

3.2 Relative Entropy Policy Search

Relative Entropy Policy Search (Peters et al., 2010) (REPS) is an information theoretic
approach to the problem of policy search. The main idea behind information theoretic ap-
proaches is to stay close to the observed data (Deisenroth, 2011). This idea is translated in
the constraint that the stationary distribution after the policy update should not jump away
from the stationary distribution before the update. The updated policy should stay close to
the old one to avoid premature convergence to highly suboptimal policies and to limit the
information loss.
Policy Gradient methods (Section 2.4) tackle this problem by allowing only small incre-
mental policy updates. However, they are in some sense myopic, looking only at local
information. REPS is a more powerful method based on a constrained maximization prob-
lem with a closed form solution. By looking at a neighborhood of the current policy it is
able to overcome local minima as we will see later in this dissertation.
Natural Policy gradient algorithms (Kakade, 2002) were the first to implement the informa-
tion theoretic approach but they still require a user-specified learning rate. REPS uses the
same information theoretic constraint as Natural Actor Critic (Peters and Schaal, 2008a)
(NAC), but updates the policy using a weighted maximum likelihood estimates, thus not
requiring a learning rate. The distance index used in the constraint DKL(d‖d̄), where d is
the distribution we search for and d̄ is the distribution from which samples are generated,
forces d to be low where d̄ is low, intuitively it prevents d to move too far from the old data.

3.2.1 Problem Formulation

REPS considers infinite horizon problems, thus it maximizes the average reward per time
step. We denote with dπ(s) the stationary state distribution induced by the policy π, with
dπ(s, a) = dπ(s)π(a|s) the distribution over states and actions induced by the new policy,
with d̄(s, a) the observed data distribution.

Primal The constrained optimization problem considered is the following:

maximize
d

∫
S

∫
A
dπ(s, a)r(s, a) ds da (3.23)

subject to DKL(dπ||d̄) =

∫
S

∫
A
dπ(s, a) log

dπ(s, a)

d̄(s, a)
ds da ≤ ε (3.24)∫

S
dπ(s′)φ(s′)ds′ =

∫
S

∫
A

∫
S
dπ(s, a)P (s′|s, a)φ(s′) ds da ds′ (3.25)∫

S

∫
A
dπ(s, a) ds da = 1 , (3.26)

where φ : S → Rk maps MDP states to stationary features under policy π. The constraint
Eq. (3.25) is a consistency constraint that ensures the compatibility of the state action dis-
tribution dπ with the transition model P . The key difference to the Linear Programming

3.2. Relative Entropy Policy Search 29

formulation (Section 2.2) lies in the use of Eq. (3.24) that bounds the Kullback-Leibler dis-
tance of the new distribution from the old one. The choice of ε depends on the problem and
on the number of samples available.
REPS can act as a global maximizer if provided with an infinite number of samples and
with an extremely large ε.

Dual The REMPS problem is solved considering the dual:

min
θ,η

η log

(∫
S

∫
A
d̄(s, a) exp

(
ε+

1

η
δθ(s, a)

)
dsda

)
(3.27)

subject to η ≥ 0 , (3.28)

where δθ(s, a) = r(s, a) +
∫
S P (s′|s, a)θTφ(s′) ds′ − θTφ(s) is the Bellman error. By a

simple re-parametrization of the dual with η̂ = η−1 we obtain a convex problem that can
be efficiently solved by standard optimizers such as Broyden–Fletcher–Goldfarb–Shannon
(BFGS).

Theorem 3.2.1 (REPS Solution) The optimal policy solution of the REMPS problem defined
above is:

π(a|s) =
d̄(s, a) exp(1

η δθ(s, a))∫
A d̄(s, a′) exp(1

η δθ(s, a
′)) da′

, (3.29)

where η and θ are determined by the solution of the dual.

The interested reader is referred to (Peters et al., 2010) for the derivation of the solution.
All components of REPS can be expressed by sample averages, thus the application of the
algorithm to continuous state and action spaces is straightforward.

3.2.2 Parametric Policy

The solution (3.29) is possible if we have total freedom on the selection of the policy, that
is when the policy space Π is unbounded or when the state and action spaces are finite. In
order to deal with either continuous state space or continuous action space the distributions
dπ(·) and π(·|s) need to be represented by parametric distributions (Daniel et al., 2012).
The parametric distribution is obtained through Moment Projection of the distribution dπ,
solution of the REPS problem, that we will denote as d for ease of notation. The Moments
Projection is obtained by searching for d̂, π̂ minimizing the KL-divergence DKL(d||d̂π̂).
The optimization problem is the following:

d̂ , π̂ = arg min
d′,π′

∫
S

∫
A
d(s, a) log

d(s, a)

d′(s)π′(a|s) dads (3.30)

= arg min
d′,π′
−
∫
S

∫
A
d(s, a) log

(
d′(s)π′(a|s)

)
dads (3.31)

= arg min
d′,π′
−
∫
S

∫
A
d̄(s, a)

d(s, a)

d̄(s, a)
log
(
d′(s)π′(a|s)

)
da ds (3.32)

30 Chapter 3. State of the Art

≈ arg min
d′,π′
−

∑
(s,a)∈D

exp

(
1

η
δθ(s, a)

)
log
(
d′(s)π′(a|s)

)
, (3.33)

where D is dataset collected with the distribution d̄. The KL-divergence is estimated
through importance sampling from samples coming from d̄.

3.2.3 REPS extensions

Episode-based REPS

In (Kupcsik et al., 2013) an episode-based version of REPS that is equivalent to stochastic
search was presented. This REPS extension employs a meta-policy that defines the distri-
bution from which policy parameters are drawn. The KL–constraint it is then defined at the
level of the meta-policy. The Episode-based REPS formulation is:

max
p

∑
s,ψ

p(s,ψ)Gs,ψ (3.34)

subject to
∑
s,ψ

p(s,ψ) log
p(s,ψ)

q(s,ψ)
< ε (3.35)

∑
s

p(s)φ(s) = φ̂, (3.36)

where parameters ψ are the parameters of the meta policy, Gs,ψ is the full return starting
from s with parameters ψ. The distribution p is the distribution over context s and meta
policy parametersψ. The Eq. (3.35) bounds the relative entropy with respect to the observed
distribution q. The last constraint is needed for continuous or high dimensional discrete
state spaces and matches feature averages instead of single probability values. In Eq. (3.36)
φ(s) is the feature vector describing the context and φ̂ is the feature vector averaged over
all observed contexts.

MORE

Model-Based Relative-Entropy Stochastic Search (Abdolmaleki et al., 2015) (MORE) uses
the same episode-based formulation of the policy search together with a constraint lower-
bounding the entropy of the new policy, enforcing exploration. Moreover MORE learns
a quadratic surrogate model of the objective function to compute the solution analytically.
MORE formulation is:

max
π

∫
π(θ)Gθdθ (3.37)

subject to
∫

Θ
π(θ) log

π(θ)

q(θ)
dθ < ε (3.38)

H(π) ≥ β (3.39)

3.2. Relative Entropy Policy Search 31

∫
Θ
π(θ)dθ = 1, (3.40)

where Gθ denotes the expected return when evaluating parameter vector θ. The term
H(π) = −

∫
π(θ) log π(θ)dθ denotes the entropy of the distribution π and q(θ) is the

old distribution.

Trust Region Approaches

REPS can also be related to algorithms using a trust region approach. The trust region is
the neighbourhood of the current policy (defined by some distance) such that we can have
a reliable estimate of the performance.

TRPO Trust Region Policy Optimization (TRPO) (Schulman et al., 2015) uses this con-
cept together with off policy optimization. This lead to the following formulation:

max
θ′

Lθ′(θ) (3.41)

subject to D̄dθ
KL(θ,θ′) ≤ ε , (3.42)

where θ are the current policy parameter, θ′ are the new policy parameter, Lθ(θ′) is a sur-
rogate of the performance of the new policy estimated under the old policy and D̄dθ

KL(θ,θ′)
is the expected KL–divergence between the new and the old policy. The theory justifying
TRPO actually suggests using a penalty instead of a constraint, i.e., solving the uncon-
strained optimization problem:

max
θ′

Lθ(θ′)− βDmax
KL (θ,θ′) , (3.43)

where Dmax
KL (θ,θ′) = maxsD

max
KL (πθ(·|s), πθ′(·|s)). TRPO uses a hard constraint rather

than a penalty because it is hard to choose a single value of β that performs well across
different problems or even within a single problem, where the characteristics change over
the course of learning.

PPO Proximal Policy Optimization (PPO) (Schulman et al., 2017) implements the con-
cept of trust region by using a clipped objective the prevents excessively large policy up-
dates:

Lclipθ (θ′) = E
s∼dπ(·)
a∼πθ(·|s)

[
min

(
wθ′/θ(a|s), clip

(
wθ′/θ(a|s), 1− ε, 1 + ε

))
Aπθ(s, a)

]
,

(3.44)
where Aπ(s, a) is the advantage function and wθ′/θ(a|s) =

πθ′(a|s)
πθ(a|s)

is the importance
weight associated with action a in state s.

32 Chapter 3. State of the Art

POIS Policy Optimization via Importance Sampling (POIS) (Metelli et al., 2018b) is a
model–free, actor–only, policy optimization algorithm, that mixes online and offline opti-
mization to efficiently exploit the information contained in the collected trajectories. POIS
explicitly accounts for the uncertainty introduced by the importance sampling by optimizing
a surrogate objective function. The latter captures the trade-off between the estimated per-
formance improvement and the variance injected by the importance sampling. The POIS
algorithm uses as penalization the Rényi divergence (Rényi, 1961; Van Erven and Har-
remos, 2012), an information–theoretic dissimilarity index between probability measures.
The surrogate objective function proposed in action-based POIS is:

LA−POIS
θ (θ) = E

τ∼p(·|θ)

[
wθ′/θ(τi)R(τi)

]
− λ

√
d̂2

(
p(·|θ′)‖p(·|θ)

)
N

, (3.45)

where wθ′/θ(τi) is the importance weights associated to the trajectory τi,

wθ′/θ(τi) = p(τi|θ′)
p(τi|θ) =

∏H−1
t=0

πθ′ (aτi,t|sτi,t)
πθ(aτi,t|sτi,t)

, and the term d̂2

(
p(·|θ′)‖p(·|θ)

)
is the approx-

imated Rényi divergence between the new stationary distribution and the old one:

d̂2

(
p(·|θ′)‖p(·|θ)

)
=

1

N

N∑
i=1

H−1∏
t=0

d2 (πθ′(·|sτi,t)‖πθ(·|sτi,t)) .

POIS has a strong theoretical grounding, since its surrogate objective function derives from
a statistical bound on the estimated performance, that is able to capture the uncertainty
induced by importance sampling. The experimental evaluation in (Metelli et al., 2018b)
shows that POIS is able to achieve a performance comparable with TRPO and PPO.

Chapter 4

Relative Entropy Model Policy
Search

Our beliefs are based on our experience, which gives us a very incomplete picture of the world,
and it’s easy to jump to false conclusions.

Pedro Domingos, The Master Algorithm

In this chapter, we will present a novel information theoretic approach to solve CMDPs,
namely Relative Entropy Model Policy Search (REMPS). REMPS is an extension of REPS
(see Section 3.2) for the case of model-policy learning, it is able to overcome local max-
ima/minima and provides an exact update step. REMPS formulates the learning problem
as a constrained optimization problem for which we find the solution in closed form.
In Section 4.2 we formalize the optimization problem, we derive the solution and we pro-
pose several projection strategies able to work with continuous state and action spaces. In
Section 4.3 we propose a theoretical study of the REMPS property, providing a bound on
the difference of performance between the ideal formulation of REMPS and the samples
approximation formulation.

4.1 Motivations

When an agent interacts with the environment there is a tight connection between the pol-
icy and the model configuration. In standard RL applications, where the environment is
assumed to be fixed during the learning process, it is common to treat model configuration
as instance of hyperparameters selection problem. In this case it is possible to use standard
techniques like Bayesian Optimization. Using these techniques we are solving a slightly
different problem with respect to the CMDP learning problem (Section 3.1) that is defined
as:

P ∗, π∗ ∈ arg max
P∈Pω ,π∈Πθ

JP,π.

34 Chapter 4. Relative Entropy Model Policy Search

If the model configuration is selected before the training phase we are actually searching
for the best policy given a model. If the model configuration is selected after the train-
ing process we are searching for the best model for a given policy. In general a model
configuration induces an optimal policy and a policy induces an optimal configuration but
the pairs model-policy found in these ways are, in general, different from the pair model-
policy yielding the optimal performance. For this reasons treating model parameters as
hyperparameters it is not the correct way to proceed. Furthermore the model-policy learn-
ing problem is a different problem with respect to the ones usually solved in the literature.
In principle we can act with gradient methods over the policy and the model (see Section 2.4
and Appendix B) but we argue that this is not a smart way to tackle the CMDP probelm.
Gradient methods tackle local optima in the return landscape by using policies with a huge
number of parameters, multiple restarts and stochastic gradient ascent updates. However,
these methods for avoiding local optima are not theoretically justified. Moreover, while
a policy can have an arbitrarily large number of parameters, in the context of CMDP the
model parameters are fixed given a problem and usually the cardinality of model parame-
ters is much smaller with respect to the cardinality of policy parameters. Moreover multiple
restarts using different values for the model parameters might cause dangerous behaviours.
We describe the rationale behind the choice of an information theoretic approach with an
example. Suppose the agent found itself in the model Pω0 with the best policy πθ∗(ω0) for
that model. A good choice for the update of the model is Pω1 such that the learning process
starting from πθ∗(ω0) in Pω1 yields good results. In other words the update of a component
(model) of a CMDP should take into account future updates of the other (policy). By acting
with gradient updates we do not obtain this behaviour: the gradient of the performance in
(Pω0 , πθ∗(ω0)) with respect to the policy parameters yields zero value (since it is a local
optima) and the gradient with respect to the model parameters points towards the direction
where the performance of the current policy are improved. As said before, we do not want
to consider the current policy in the model update, we should consider future policies.
The two issues of gradient methods explained above can be solved by information theoretic
approaches. Our REMPS formulation, as we will see later, considers jointly the model
and the policy yielding an exact model-policy update in the neighbourhood of the current
model-policy pair. REMPS is based on two phases: optimization and projection. In the
optimization phase we seek for the best stationary distribution d (in the space of all pos-
sible distribution) that is not far from the current distribution more than ε > 0 in terms of
KL-divergence. The distribution d, might fall outside the space of representable stationary
distributions given our model and policy spaces. Therefore, like in (Daniel et al., 2012), in
the projection phase we perform a projection onto the representable space finding the actual
distribution d̂.

4.2 Relative Entropy Model Policy Search

In this section we present the optimization phase and the projection phase of REMPS. We
consider a CMDP with parametric model and policy spaces. Model parameters are denoted
withω and policy parameters with θ. The performance of a configuration-policy pair (P, π)

4.2. Relative Entropy Model Policy Search 35

is defined in terms of the long-term expected reward:

JP,π = lim inf
H→+∞

E
at∼π(·|st)

st+1∼P (·|st,at)

[
1

H

H−1∑
t=0

R(st, at, st+1)

]
.

We express the state-action-next-state stationary distribution as:

dP,π(s, a, s′) = dP,π(s)π(a|s)P (s′|s, a).

4.2.1 Optimization

We define the following constrained optimization problem:

max
d

∫
S

∫
A

∫
S
d(s, a, s′)R(s, a, s′)dsdads′ (4.1)

subject to: (4.2)

DKL(d||dP,π) ≤ ε (4.3)∫
S

∫
A

∫
S
d(s, a, s′)dsdads′ = 1 , (4.4)

where dP,π(·, ·, ·) is the sampling distribution and ε is a parameter controlling how large a
model-policy update can be.
This formulation is derived from the REPS formulation but it takes into account also the
model parameters by considering the joint distribution obtained by the model and the policy.
The objective is the maximization of the average reward. The KL–constraint prevents the
optimized joint distribution from moving too far from the sampling distribution. The last
constraint is only needed to ensure that the obtained distribution is well formed. It is worth
noting that, differently from REPS, we do not impose a constraint on the validity of the
stationary distribution with respect to to the transition model, as we have the possibility to
change it, configuring the environment.

REMPS Dual The dual problem is given by:

min
η∈[0,+∞)

g(η) = η log

(∫
S

∫
A

∫
S
dP,π(s, a, s′) exp

(
ε+

R(s, a, s′)

η

)
dsdads′

)
, (4.5)

which is convex in η−1.

In real cases we do not have access to the real sampling distribution dP,π, so we cannot
compute the exact solution of the dual problem. Like in REPS, all components of REMPS
can be estimated from samples. The dual function can be rewritten as:

g(η) = η log E
(s,a,s′)∼dP,π(·,·,·)

[
exp

(
ε+

R(s, a, s′)

η

)]
(4.6)

36 Chapter 4. Relative Entropy Model Policy Search

≈ η log

 1

N

∑
(s,a,s′)∈D

exp

(
ε+

R(s, a, s′)

η

) , (4.7)

where D is dataset of triples (s, a, s′) collected with the distribution dP,π. From this for-
mulation it is easy to obtain a sample estimation of the dual since it is the empirical mean
of the above exponential function with samples coming from the the current model P and
the current policy π. We refer to the approximated dual function with g̃.
The following theorem derives the solution of the constrained optimization problem in
terms of the sampling distribution dP,π, the reward associated to each sample R(s, a, s′),
the Lagrange multiplier η and the ε parameter.

Theorem 4.2.1 (REMPS solution) The solution of the REMPS problem is:

d(s, a, s′) =
dP,π(s, a, s′) exp

(
R(s,a,s′)

η

)
∫
S
∫
A
∫
S d

P,π(s, a, s′) exp
(
R(s,a,s′)

η

)
dsdads′

(4.8)

which is induced by the optimal model and policy:

π′(a|s) =
π(a|s)

∫
S P (s′|s, a) exp

(
ε+ R(s,a,s′)

η

)
ds′∫

A π(a|s)
∫
S P (s′|s, a) exp

(
ε+ R(s,a,s′)

η

)
ds′da

(4.9)

P ′(s′|a, s) =
P (s′|s, a) exp

(
ε+ R(s,a,s′)

η

)
∫
S P (s′|s, a) exp

(
ε+ R(s,a,s′)

η

)
ds′

. (4.10)

where η is the minimizer of the dual problem 4.5.

The proof is given in Appendix C.

4.2.2 Projection

The REMPS problem is solved in closed form but the solution might lie outside the space
of the feasible models and policies. Therefore there is the need to obtain a solution that can
be represented.
We consider the case in which both the model and the policy are parametric: PΩ = {Pω :
ω ∈ Ω ⊆ Rk} and ΠΘ = {πθ : θ ∈ Θ ⊆ Rp}, the space of joint distributions induced
by PΩ and ΠΘ is DΩ,Θ = {dP,π : P ∈ PΩ, π ∈ ΠΘ}. We denote with dω,θ a distribution
belonging to DΩ,Θ to highlight the dependence on the model and policy parameters.
We decide to perform a moment projection searching, inside the space DΩ,Θ, for the solu-
tion that best represents d, the solution of the optimization problem.
This decision is based on the following bound, relating the performance gap of two distri-
butions to the KL–divergence.

Theorem 4.2.2 (Joint bound) Let us denote with dP,π the stationary distribution induced
by the model P and policy π and dP

′,π′ the stationary distribution induced by the model P ′

4.2. Relative Entropy Model Policy Search 37

and policy π′. Let us assume that the reward is uniformly bounded, that is for s, s′ ∈ S ,
a ∈ A it holds that |R(s, a, s′)| < Rmax. The norm of the difference of performance can
be upper bounded as:

|JP,π − JP ′,π′ | ≤ Rmax

√
2DKL(dP,π‖dP ′,π′). (4.11)

Proof. Starting from the definition of the difference of the performance:

|JP,π − JP ′,π′ | ≤
∣∣∣∣∫
X
dP,π(x)R(x)dx−

∫
X
dP

′,π′
(x)R(x)dx

∣∣∣∣ (4.12)

≤ Rmax

∣∣∣∣∫
X
dP,π(x)− dP ′,π′

(x)dx

∣∣∣∣ (4.13)

≤ Rmax TV (dP,π, dP
′,π′

) (4.14)

≤ Rmax

√
2DKL(dP,π‖dP ′,π′), (4.15)

where we denote with X the space S × A × S, and with x a tuple (s, a, s′) for ease of notation.
Eq. (4.14) follows from the definition of Total Variation Distance and Eq. (4.15) follows from the
Pinsker inequality.

The previous bound relates the difference of performance between the stationary distribu-
tions to the KL–divergence between the two distributions, considering jointly the effect of
the model and the policy. Now we derive a similar bound, that uses corollary 3.1 of (Metelli
et al., 2018a) and its extension to the case of undiscounted reward.

Theorem 4.2.3 (Disjoint bound) Let us denote with dP,π the stationary distribution induced
by the model P and policy π, dP

′,π′ the stationary distribution induced by the model P ′ and
policy π′. Let us assume that the reward is uniformly bounded, that is for s, s′ ∈ S, a ∈ A
it holds that |R(s, a, s′)| < Rmax. If (P ′, π′) admits group invertible state kernel P ′π

′
the

norm of the difference of performance can be upper bounded as:

|JP,π − JP ′,π′ | ≤ Rmax c1Es,a∼dP,π
[√

2DKL(π′‖π) +
√

2DKL(P ′‖P)
]
, (4.16)

where c1 = 1 + ||A′#||∞ and A′# is the group inverse of the state kernel P ′π
′
.

Proof. Starting from the definition of the difference of the performance:

|JP,π − JP ′,π′ | ≤
∣∣∣∣∫
X
dP,π(x)R(x)dx−

∫
X
dP

′,π′
(x)R(x)dx

∣∣∣∣ (4.17)

≤ Rmax

∣∣∣∣∫
X
dP,π(x)− dP ′,π′

(x)dx

∣∣∣∣ (4.18)

≤ Rmax TV (dP,π, dP
′,π′

) (4.19)

≤ Rmax c1Es,a∼dP,π
[√

2DKL(π′‖π) +
√

2DKL(P ′‖P)
]

(4.20)

where we denote with X the space S × A × S, and with x a tuple (s, a, s′) for ease of notation.
Eq. (4.19) follows from the definition of Total Variation Distance and Eq. (4.20) follows from the
Pinsker inequality.

We propose three techniques to project the REMPS solution over the space of the feasible
distributions DΩ,Θ.

38 Chapter 4. Relative Entropy Model Policy Search

d

d̂

dP,π
DKL(d̂||dP,π)

ε

≤ ε

DΩ,
Θ

Figure 4.1: Illustration of REMPS and information projection. The ball centred in dP,π with radius
ε represents the KL constraint over the space of distributions. The surfaceDΩ,Θ represents the space
of available distributions. Distances are not euclidean since measured with the KL divergence.

Projection of the stationary distribution

In principle, as REMPS works on the stationary distribution, we should project it directly,
i.e., finding the parameters that induce the most similar stationary distribution. The projec-
tion problem is:

θ̂, ω̂ = arg min
θ∈Θ,ω∈Ω

DKL

(
d(s, a, s′)‖dω,θ(s, a, s′)

)
s.t. dω,θ(s) =

∫
S

∫
A
dω,θ(s′)πθ(a|s′)Pω(s′|s, a)dads′.

However this problem is impractical as the constraint is difficult to enforce in continuous
state-spaces even if replaced with the matching of the expectations of some features. Dif-
ferently, in finite state-action spaces it is possible to enforce its sample based version by
introducing a variable for each dω,θ(s).

Projection of the state kernel P π

The projection of the state kernel P π is a relaxed version with respect to the stationary
distribution projection. We minimize the expected KL–divergence between P π of the dis-
tribution d recovered by REMPS and P πθω , that is the state kernel distribution defined by

4.2. Relative Entropy Model Policy Search 39

our parametric space:

θ̂, ω̂ = arg min
θ∈Θ,ω∈Ω

∫
S
d(s)DKL(P π(·|s)‖P πθω (·|s))ds

= arg max
θ∈Θ,ω∈Ω

∫
S
d(s)

∫
S
P π(s′|s) logP πθω (s′|s)ds′ds

= arg max
θ∈Θ,ω∈Ω

∫
S
d(s)

∫
S

∫
A
π′(a|s)P ′(s′|s, a) logP πθω (s′|s)ds′ds

= arg max
θ∈Θ,ω∈Ω

∫
S

∫
A

∫
S
d(s, a, s′) log

∫
A
Pω(s′|s, a′)πθ(a′|s)da′dsdads′

The sample-based version requires to compute the state kernel from samples, this can be
done for the case of finite actions (and possibly continuous state-space):

θ̂, ω̂ = arg max
θ∈Θ,ω∈Ω

∑
(s,a,s′)∈D

d(s, a, s′)

dP,π(s, a, s′)
log

∑
a′∈A

Pω(s′|s, a′)πθ(a′|s)

= arg max
θ∈Θ,ω∈Ω

∑
(s,a,s′)∈D

exp

(
R(s, a, s′)

η

)
log

∑
a′∈A

Pω(s′|s, a′)πθ(a′|s),

where D is a dataset collected with the distribution dP,π and we use importance sampling
in order to recover the expected value under the distribution d from samples coming from
the sampling distribution dP,π and we rewrite the ratio d/dP,π as:

d(s, a, s′)

dP,π(s, a, s′)
∝ exp

(
R(s, a, s′)

η

)
,

neglecting a constant.

Projection of policy and model independently

In this simpler version of the projection problem we minimize the expected KL–divergence
between the distributions π′ and P ′ and their corresponding parametric distributions πθ and
Pω.

θ̂ = arg min
θ∈Θ

∫
S
d(s)DKL(π′(·|s)‖πθ(·|s))ds = (4.21)

= arg min
θ∈Θ

∫
S
d(s)

∫
A
π′(a|s) log

π(a|s)
πθ(a|s)dads = (4.22)

= arg min
θ∈Θ

∫
S

∫
A

∫
S
d(s, a, s′) log

π′(a|s)
πθ(a|s)dsdads′ = (4.23)

= arg max
θ∈Θ

∫
S

∫
A

∫
S
d(s, a, s′) log πθ(a|s)dsdads′, (4.24)

that can be estimated from samples:

θ̂ = arg min
θ∈Θ

∑
(s,a,s′)∈D

exp

(
R(s, a, s′)

η

)
log πθ(a|s), (4.25)

40 Chapter 4. Relative Entropy Model Policy Search

where D is a dataset collected with dP,π. Symmetrically, for the transition model:

ω̂ = arg min
ω∈Ω

∫
S

∫
A
d(s, a)DKL(P ′(·|s, a), Pω(·|s, a))dsda =

= arg max
ω∈Ω

∫
S

∫
A

∫
S
d(s, a, s′) logPω(s′|s, a)dsdads′,

and the sample based optimization works as for the policy. This optimization problem can
be easily solved in a sample-based form for both finite and continuous state and action
spaces.

4.2.3 Model Approximation

In the previous sections we presented REMPS in the case of known environment. However,
the perfect knowledge of the environment is difficult, or even impossible, in practice. Even
in cases where an environment model is available it might be too approximate or hardy
usable being very complex and computationally expansive.
In REMPS it is possible to use any model approximation method, the only requirement
is that it must be possible to learn the mapping (s, a,ω) → s′, from state, action and
environment configuration to a distribution over the next states. Notice that in REMPS
the environment model is used only the projection phase, while the optimization phase is
model-free.
In order to learn an environment approximation we use a maximum likelihood (ML) ap-
proach. We collect a dataset composed by tuples (s, a,ω, s′) and given a parametric model
defining a distribution over the state space we find the parameters by maximizing the log-
likelihood of the seen transitions. The parametric model can be a Gaussian Process, a
Neural Network or some other function approximator model. We denote the model approx-
imation with P̃ .

4.2.4 Discussion

In this section we discuss the main benefits and limitations of REMPS. Being an infor-
mation theoretic approach, REMPS, has the main goal of maximizing the performance
while staying close to the observed data. This translates into the KL constraint between the
sampling distribution dP,π and the optimized distribution d. REMPS considers jointly the
effect of the two CMDP components and finds a distribution, in the space of all possible
distributions, maximizing the average reward while satisfying the KL constraint using a
primal-dual formulation. However, due to a possible limitation in the representation power
of the model and the policy this distribution might be unfeasible. Notice that a lack in rep-
resentation power of the policy can be easily addressed (e.g. using more parameters), while
a limited representation power in the model has to be expected since the number of param-
eters and their influence is fixed given a task. REMPS solves this problem by performing a
KL–projection, that is finding the model-policy pair minimizing the KL distance between
their joint distribution d̂ and d.

4.2. Relative Entropy Model Policy Search 41

Having access to infinite samples we are sure that d is close the sampling distribution, that
is DKL(d‖dP,π) ≤ ε. This constraint might be, in practice, not satisfied due to wrong
estimations. We also highlight the fact that performing the Moment Projection we can
actually find a suboptimal distribution. By a simple inspection we can easily prove that
DKL(d‖d̂) ≤ ε. However, being the KL–divergence not symmetric, we have no insight on
DKL(d̂‖dP,π) that is a more relevant quantity.
In practice we can add a regularization in the projection phase penalizing some type of dis-
tance between the new model-policy parameters and the sampling parameters, even if this
is not theoretically justified.
The REMPS pseudocode is reported in Algorithm 6.

42 Chapter 4. Relative Entropy Model Policy Search

Algorithm 6 Relative Entropy Model Policy Search

Input: ε: KL constraint, P : model.
1: Initialize πθ0 , Pω0 randomly
2: for t = 0,1,... until convergence do
3: Collect samples from πθt , Pωt
4: Obtain η∗, the minimizer of the dual problem:

η∗ = min
η∈[0,+∞)

g(η) (4.26)

= min
η∈[0,+∞)

η log

(∫
S

∫
A

∫
S
dP,π(s, a, s′) exp

(
ε+

R(s, a, s′)

η

)
dsdads′

)
.

(4.27)

5: Project the optimal distribution d onto DΩ,Θ according to the projection strategy.

a. Projection of the stationary distribution:

θ̂, ω̂ = arg min
θ∈Θ,ω∈Ω

DKL(d(s, a, s′)‖dω,θ(s, a, s′))

s.t. dω,θ(s) =

∫
S

∫
A
dω,θ(s′)πθ(a|s′)Pω(s′|s, a)ds′da.

b. Projection of the state kernel:

θ̂, ω̂ = arg max
θ∈Θ,ω∈Ω

∫
S

∫
A

∫
S
d(s, a, s′) log

∫
A
Pω(s′|s, a′)πθ(a′|s)da′dsdads′.

c. Projection of policy and model independently:

θ̂ = arg max
θ∈Θ

∫
S

∫
A

∫
S
d(s, a, s′) log πθ(a|s)dsdads′ (4.28)

ω̂ = arg max
ω∈Ω

∫
S

∫
A

∫
S
d(s, a, s′) logPω(s′|s, a)dsdads′. (4.29)

6: Update policy: θt+1 ← θ̂
7: Update model: ωt+1 ← ω̂
8: end for
9: return Policy-Model Pair (πθt , Pωt)

4.3. Theoretical Analysis 43

4.3 Theoretical Analysis

In this section we derive some theoretical guarantees for the single step of REMPS when it
is executed starting from a finite number of samples N . This analysis is based on (Cortes
et al., 2010).

Notation Let d be a stationary distribution, we will denote with

Dd =

{
d′ =

d exp
(

1
η
r
)

∫
d exp

(
1
η
r
) : η ∈ [0,+∞)

}
. Given a policy hypothesis space Π and a transi-

tion model hypothesis space P , we will denote with DP,Π = {dP,π : P ∈ P, π ∈ Π} the
set of stationary distributions induced by the policy and model hypothesis spaces. For the
sake of brevity we will denote with X = S × A × S the state-action-next state space and
with x = (s, a, s′) a state-action-next-state triple. Given a set X , we denote with ∆(X) the
set of probability distributions on X .

4.3.1 Problem Formulation

In this section we revisit the REMPS problem formulation in order to understand better
its component to perform a theoretical analysis. The REMPS problem takes as input a
KL-divergence threshold and provides as output a new stationary distribution on the space
DP,Π. As we said before, our algorithm is divided in two phases: optimization and projec-
tion.

Optimization The problem we aim to solve in the optimization phase can be stated as
follows. Given a KL-divergence threshold ε > 0, let (P, π) ∈ P × Π be the current
configuration-policy pair inducing a stationary distribution dP,π, we seek for a new station-
ary distribution d that solves the optimization problem OPTP,π(ε):

max
d∈∆X

Jd = E
x∼d

[R(x)] (4.30)

s.t. DKL(d||dP,π) = E
x∼d

[
log

d(x)

dP,π(x)

]
≤ ε. (4.31)

The solution of OPTP,π(ε) is:

d(x) =
dP,π(x) exp

(
1
ηR(x)

)
∫
X d

P,π(x) exp
(

1
ηR(x)

)
dx
, x ∈ X , (4.32)

where η is the unique solution of the dual problem DUALP,π(ε):

min
η∈[0,+∞)

η log E
x∼dP,π

exp

(
1

η
R(x) + ε

)
. (4.33)

44 Chapter 4. Relative Entropy Model Policy Search

In practice we have access neither to dP,π nor to d. Therefore we need to estimate expecta-
tions with samples averages from samples collected with the distribution dP,π. Notice that
we have only access to an empirical estimate of dP,π, which is d̂P,π = 1

N

∑N
i=1 δ(x − xi)

uniform on the seen xs. For this purpose we perform an importance sampling procedure.
We define the weights w(xi) = d(xi)

d̂P,π(xi)
= Nd(xi). Thus, the approximated problem we

need to solve is actually ÕPTP,π(ε):

max
d∈∆({xi:i∈{1,2,...,N}})

J̃d =
1

N

N∑
i=1

w(xi)R(xi) =
N∑
i=1

d(xi)R(xi) (4.34)

s.t. D̃KL(d||dP,π) =
1

N

N∑
i=1

w(xi) logw(xi) = (4.35)

=

N∑
i=1

d(xi) log d(xi) + logN ≤ ε. (4.36)

This problem yields a solution which is defined only over the seen state-action-next state
triples:

d(xi) =
exp

(
1
η̃R(xi)

)
1
N

∑N
j=1

(
1
η̃R(xj)

) , i ∈ {1, 2, ..., N}, (4.37)

where η̃ is the unique solution of the approximated dual problem D̃UALP,π(ε):

min
η∈[0,+∞)

η log
1

N

N∑
i=1

(
1

η̃
R(xi) + ε

)
. (4.38)

Once solved this problem, the new distribution over the whole space X is characterized
only by the Lagrange multiplier η̃:

d̃(x) =
dP,π(x) exp

(
1
η̃R(x)

)
∫
X d

P,π(x) exp
(

1
η̃R(x)

) , x ∈ X . (4.39)

We denote the performance of the new stationary distribution d̃ as with J
d̃

= E
x∼d̃ [R(x)].

As expected we would like find d̃ maximizing J
d̃

but we actually use an empirical estimate
J̃
d̃
.

Projection In the Projection phase we aim to find the best representation of the stationary
distribution we got from the optimization phase given hypothesis space DP,Π. Let d be the
solution of OPTP,π(ε), the projection problem PROJDP,Π(d) can be stated as the moment-
projection of d onto DP,Π:

max
d′∈DP,Π

H(d||d′) = E
x∼d

[
log d′(x)

]
, (4.40)

where we considered the cross-entropy H(d||d′) instead of the KL–divergence, since
DKL(d||d′) = H(d||d′) − H(d) and the entropy term H(d) is independent on d′. We

4.3. Theoretical Analysis 45

call d′ the solution of this problem, which can be considered the solution of the complete
problem REMPSP,π(ε) = PROJDP,Π(·) ◦ OPTP,π(ε). Clearly, also in the projection phase
we need to consider the Monte Carlo estimates again obtained by the very same samples
{xi}Ni=1 collected with the sampling distribution dP,π. Let d̃ be the solution of ÕPTP,π(ε),
the approximated projection problem P̃ROJDP,Π(d̃) becomes:

max
d′∈DP,Π

H̃(d̃||d′) =
1

N

N∑
i=1

w(xi) log d′(xi). (4.41)

We call d̃′ the solution of this problem, which can be considered the solution of the complete
approximated problem ˜REMPSP,π(ε) = P̃ROJDP,Π(·) ◦ ÕPTP,π(ε).

Off-distribution estimation Given a value of the Lagrange multiplier η inducing the
distribution d, let us define the ratio importance weight ŵ(x) and the self-normalized im-
portance weight w̃(x) as:

ŵ(x) =
d(x)

dP,π(x)
=

=
exp

(
1
ηR(x)

)
∫
X d

P,π(x) exp
(

1
ηR(x)

)
dx
,

w̃(x) =
ŵ(x)∑N
i=1 ŵ(xi)

=

=
exp

(
1
ηR(x)

)
∑N

i=1 exp
(

1
ηR(xi)

) .
Thus, the off-distribution estimator J̃d, which is optimized by ÕPTP,π(ε) is actually a self-
normalized importance weighting estimate, opposed to the ratio importance weighting es-
timate Ĵd which does not appear in the optimization problems, but will be useful in the
following:

Ĵd =
1

N

N∑
i=1

ŵ(xi)R(xi),

J̃d =
N∑
i=1

w̃(xi)R(xi).

Analogously, we define the KL-divergence estimators:

D̂KL(d‖dP,π) =
1

N

N∑
i=1

ŵ(xi) log ŵ(xi),

D̃KL(d‖dP,π) =

N∑
i=1

w̃(xi) log (Nw̃(xi)) ,

46 Chapter 4. Relative Entropy Model Policy Search

and, given d′ ∈ DP,Π, we define the cross-entropy estimators:

Ĥ(d‖d′) =
1

N

N∑
i=1

ŵ(xi) log d′(xi),

H̃(d‖d′) =

N∑
i=1

w̃(xi) log d′(xi).

It is well known that the ratio estimation is unbiased while the self-normalized estimator is
biased but consistent.

4.3.2 Assumptions

We start providing two assumptions that we will consider in the whole analysis:

Assumption 4.3.1 (Uniformly bounded reward) For any s, s′ ∈ S , a ∈ A, it holds that:
|R(s, a, s′)| ≤ rmax.

Assumption 4.3.2 (Finite pseudo-dimension) Given a policy π ∈ Π and a transition model
P ∈ P , the pseudo-dimensions of the hypothesis spaces { d

dP,π
: d ∈ DdP,π}, { d

dP,π
R : d ∈

DdP,π}, { d
dP,π

log
(

d
dP,π

)
: d ∈ DdP,π} and { d

dP,π
log (d′) : d ∈ DdP,π , d

′ ∈ DP,Π} are
bounded by v < +∞. The first is the space of non-normalized weights. The second is the
space average reward estimators, the third is the space of KL–divergence estimators and
the last is the space of cross-entropy estimators.

4.3.3 Sensitivity to the KL constraint

In this section, we analyze how the performance of the solution of the problem OPTP,π(ε)
changes when we change the KL-divergence threshold. Suppose that ε′ ≤ ε, the constraint
is more restrictive, thus we expect that Jd′ ≤ Jd, where d′ is the solution of OPTP,π(ε′)
and d is the solution of OPTP,π(ε), since we are in the ideal case. Let us consider a new
class distributions dα = αd + (1 − α)dP,π, with α ∈ [0, 1]. Ideally we could increase α
until we satisfy the constraint ε′ getting the best representation of d fulfilling the constraint
(a projection).

Lemma 4.3.1 Let d and d′ be the solution of the problems OPTP,π(ε) and OPTP,π(ε′) with
ε′ ≤ ε. Let dα = αd+ (1− α)dP,π with α ∈ [0, 1]. If DKL(dα‖dP,π) = ε′, then α ≥ ε′

ε .

Proof. We use the convexity of the KL-divergence: DKL(αµ1 + (1 − α)µ2‖αν1 + (1 − α)ν2) ≤
αDKL(µ1‖ν1) + (1− α)DKL(µ2‖ν2) for α ∈ [0, 1]. Take µ1 = d, µ2 = ν1 = ν2 = dP,π:

ε′ = DKL(dα‖q) = DKL(αd+ (1− α)dP,π‖αdP,π + (1− α)dP,π) ≤
≤ αDKL(d‖dP,π) + (1− α)DKL(dP,π‖dP,π) = αDKL(d‖dP,π).

Therefore, observing that DKL(d‖dP,π) ≤ ε:

α ≥ ε′

DKL(d‖dP,π)
≥ ε′

ε
. (4.42)

4.3. Theoretical Analysis 47

The following results upper bound the reduction of performance.

Proposition 4.3.1 (ε sensitivity) Let d and d′ the solutions of OPTP,π(ε) and OPTP,π(ε′)
respectively starting from dP,π and with ε′ ≤ ε. Then:

Jd − Jd′ ≤ rmax‖d− dP,π‖1
(

1− ε′

ε

)
. (4.43)

Proof. Consider the α′ ∈ [0, 1] such thatDKL(dα′‖dP,π) = ε′. We start observing that being d′ the
optimal solution with constraint ε′ and since dα′ fulfills the constraint, we surely have Jd′ ≥ Jdα′ .
Consider the following sequence of inequalities:

Jd − Jd′ ≤ Jd − Jdα′

≤ rmax‖d− dα′‖1
≤ rmax‖(1− α′)(d− dP,π)‖1
= rmax(1− α′)‖d− dP,π‖1.

Applying Lemma 4.3.1 we get 1− α′ ≤ 1− ε′

ε , from which the result follows.

4.3.4 Finite-Sample Analysis

We have seen in the previous section that we need to solve using samples both phases
of the REMPS problem. Starting from dP,π, OPTP,π(ε) yields the solution d whereas
R̃EMPSP,π(ε) provides the solution d̃′ which is derived from the ÕPTP,π(ε) problem yield-
ing d̃ and the P̃ROJDP,Π(d̃) problem. There are two sources of error in this process. First, d̃
is obtained from a finite sample and thus it might differ from d (estimation error). Second,
we limit to a hypothesis space DΠ,P that might not be able to represent d̃ (approximation
error). The goal of this analysis is to provide a bound to the quantity Jd−Jd̃′ . For this pur-
pose, we consider the following decomposition to isolate the contribution of the OPTP,π(ε)
and DUALP,π(ε) from the contribution of PROJDP,Π(·):

Jd − Jd̃′ = Jd − Jd̃︸ ︷︷ ︸
OPT

+ J
d̃
− J

d̃′︸ ︷︷ ︸
PROJ

. (4.44)

Jd− Jd̃ A typical approach, from Empirical Risk Minimization (ERM), for bounding the
estimation error is to sum and subtract the empirical risk of the empirical risk minimizer
J̃
d̃

and exploit the fact that this quantity is larger (smaller in supervised learning) than the
empirical risk of any other hypothesis in the hypothesis space (being ERM), in particular d.
However, in our framework the hypothesis space changes since the constraint con the KL–
divergence is estimated from samples and, in principle, it can impose more relaxed/tight
conditions. For this purpose we introduce a new distribution dwhich is the optimal solution
of the OPTP,π(ε) problem using the sample constraint. For this reason, d̃ and d are searched

48 Chapter 4. Relative Entropy Model Policy Search

in the same hypothesis space and thus we can apply theory from ERM. Clearly, we need
to manage the discrepancy between d and d; for this, we use the sensitivity analysis we
presented before. Let us define the discrepancy in the constraint for a given hypothesis d:

∆ε(d) = DKL(d‖dP,π)− D̃KL(d‖dP,π). (4.45)

As a consequence D̃KL(d‖dP,π) ≤ ε ⇐⇒ DKL(d‖dP,π) ≤ ε + ∆ε(d). Finally, we
define ∆ε = supd∈D

dP,π
∆ε(d). We have the usual two cases. i) If ∆ε ≤ 0 then the exact

constraint is always (i.e., for every hypothesis) tighter and thus Jd ≥ Jd. ii) If ∆ε > 0 then
there exist at least one hypothesis for which the constraint is looser; thus it might be that
Jd ≤ Jd. In general, the following result holds.

Lemma 4.3.2 Let d, d as defined before. The following bound holds:

Jd ≤ Jd + 2rmax max

{
0,min

{
1

2
,
∆ε

ε

}}
. (4.46)

Proof. If Jd−Jd ≤ 0 then the theorem holds. Otherwise, it must be that ∆ε(d) ≥ 0 (this is because
we find d as optimal solution having smaller performance with respect to d). We define dα as in the
previous proposition so we get:

Jd − Jd ≤ Jd − Jdα

≤ rmax

(
1− ε

ε+ ∆ε(d)

)
‖d− dP,π‖1

≤ rmax
∆ε(d)

ε+ ∆ε(d)
‖d− dP,π‖1

≤ 2rmax min

{
1

2
,

∆ε(d)

ε

}
≤ 2rmax min

{
1

2
,

∆ε

ε

}
,

where we exploited the fact that ‖d − dP,π‖1 ≤ 2, ∆ε(d)
ε+∆ε(d) ≤

∆ε(d)
ε , being ∆ε(d) ≥ 0, and

∆ε(d)
ε+∆ε(d) ≤ 1

2 being ∆ε(d) ≤ ε and finally ∆ε(d) ≤ ∆ε. Taking the max between the two cases we
get the result.

Notice that max
{

0,min
{

1
2 ,

∆ε
ε

}}
≤ |∆ε|ε and

|∆ε|
ε = 1

ε supd∈D
dP,π

∣∣∣D̃KL(d‖dP,π)−DKL(d‖dP,π)
∣∣∣, which is convenient for using ERM

theory. Now we are ready to bound Jd − Jd̃.

Lemma 4.3.3 Let d and d̃ be the solutions of the OPTP,π(ε) and ÕPTP,π(ε) problems, the
latter using N i.i.d. samples collected from dP,π. Let ε > 0 be the KL–constraint. Then, it
holds that:

Jd− Jd̃ ≤ 2 sup
d∈D

dP,π

|Jd− J̃d|+
2rmax

ε
sup

d∈D
dP,π

∣∣∣D̃KL(d‖dP,π)−DKL(d‖dP,π)
∣∣∣ . (4.47)

Proof. We use a very simple argument of ERM combined with the previous result. Let p as defined
before, we have:

Jd − Jd̃ ≤ Jd − Jd̃ +
2rmax

ε
max

{
0,min

{
1

2
,

∆ε

ε

}}

4.3. Theoretical Analysis 49

≤ Jd − Jd̃ +
2rmax

ε
|∆ε|

= Jd − Jd̃ +
2rmax

ε
|∆ε| ± J̃d̃

≤ Jd − J̃d + J̃d̃ − Jd̃ +
2rmax

ε
|∆ε|

≤ 2 sup
d∈D

dP,π

|Jd − J̃d|+
2rmax

ε
sup

d∈D
dP,π

∣∣∣D̃KL(d‖dP,π)−DKL(d‖dP,π)
∣∣∣ ,

where we exploited the fact that J̃d ≤ J̃d̃, being d̃ the ERM over the same hypothesis space.

J
d̃
− J

d̃′ For bounding this second term is useful to recall the property of the KL–
divergence DKL(d‖d′) = H(d‖d′) − H(d), where H(d‖d′) is the cross–entropy (like-
lihood when computed on finite samples) between d and d′ and H(d) is the entropy of d.
When performing the projection we are minimizing the term H(d‖d′) since H(d) does not
depend on d′. We can state the following result.

Lemma 4.3.4 Let d̃ and d̃′ be the solutions of the ÕPTP,π(ε) and P̃ROJDP,Π(d̃) problems
using N i.i.d. samples collected from dP,π. Let ε > 0 be the KL–constraint. Then, it holds
that:

J
d̃
− J

d̃′ ≤rmax

√
2 sup
d∈D

dP,π

inf
d′∈DP,Π

DKL(d‖d′)+ (4.48)

+ rmax

√
2 sup
d∈D

dP,π

sup
d′∈DP,Π

∣∣∣Ĥ(d‖d′)−H(d‖d′)
∣∣∣. (4.49)

Proof. Let us call:
ν1 = sup

d∈D
dP,π

sup
d′∈DP,Π

∣∣∣Ĥ(d‖d′)−H(d‖d′)
∣∣∣ . (4.50)

Consider the best approximation of d̃ contained in DP,Π, let us call it d∗

(d∗ = arg mind′∈DP,Π
H(d̃‖d′)). Then we can state the following inequalities:

Jd̃ − Jd̃′ ≤ rmax‖d̃− d̃′‖1 (4.51)

≤ rmax

√
2DKL(d̃‖d̃′) (4.52)

≤ rmax

√
2H(d̃‖d̃′)− 2H(d̃) (4.53)

≤ rmax

√
2Ĥ(d̃‖d̃′)− 2H(d̃) + ν1 (4.54)

≤ rmax

√√√√2

(
1

N

N∑
i=1

ŵ(xi)

)
H̃(d̃‖d̃′)− 2H(d̃) + ν1 (4.55)

≤ rmax

√√√√2

(
1

N

N∑
i=1

ŵ(xi)

)
H̃(d̃‖d∗)− 2H(d̃) + ν1 (4.56)

≤ rmax

√
2Ĥ(d̃‖d∗)− 2H(d̃) + ν1 (4.57)

≤ rmax

√
2DKL(d̃‖d∗) + 2ν1 (4.58)

50 Chapter 4. Relative Entropy Model Policy Search

≤ rmax

√
2DKL(d̃‖d∗) + rmax

√
2ν1 (4.59)

≤ rmax

√
2 sup
d∈D

dP,π

inf
d′∈DP,Π

DKL(d‖d′) + rmax

√
2ν1, (4.60)

where line (4.52) follows from Pinsker inequality, lines (4.54) and (4.58) follow from the hypothesis,
line (4.55) follows from the fact that d̃′ is ERM, line (4.59) follows from the inequality

√
a+ b ≤√

a +
√
b and lines (4.55) and (4.56) follows from the fact that

(
1
N

∑N
i=1 ŵ(xi)

)
H̃(d̃‖d̃′) =

Ĥ(d̃‖d̃′).

Putting all together we get the following result.

Theorem 4.3.1 (Error Decomposition) Let π ∈ Π and P ∈ P be the current policy
and transition model respectively. Let ε > 0 be the KL–divergence constraint. Let d′ ∈
DP,Π be the solution of the REMPSP,π(ε) problem and d̃′ ∈ DP,Π be the solution of the

R̃EMPSP,π(ε) problem computed with N > 0 samples collected with dP,π. Then, under
Assumptions 4.3.1, it holds that:

Jp − Jd̃′ ≤ 2 sup
d∈D

dP,π

|Jd − J̃d|+

+
2rmax

ε
sup

d∈D
dP,π

∣∣∣D̃KL(d‖dP,π)−DKL(d‖dP,π)
∣∣∣+

+ rmax

√
2 sup
d∈D

dP,π

inf
d∈DP,Π

DKL(d‖d′)+

+ rmax

√
2 sup
d∈Ddp,π

sup
d′∈DP,Π

∣∣∣Ĥ(d‖d′)−H(d‖d′)
∣∣∣.

Proof. Put together Lemma 4.3.3 and Lemma 4.3.4.

4.3.5 Analysis for bounded probability densities

In the following, we will provide a finite–sample analysis of REMPS under the following
restrictive assumption.

Assumption 4.3.3 (Finite inf , Non–zero sup) For every π ∈ Π and a transition model
P ∈ P , for every d ∈ DdP,π and for every s, s′ ∈ S and a ∈ A it holds that 0 < m ≤
d(s, a, s′) ≤M < +∞ and 0 < m ≤ dP,π(s, a, s′) ≤M < +∞.

This assumption ensures that all loss function we are considering are uniformly bounded
and allows us to state a sequence of useful facts.

Lemma 4.3.5 For any d ∈ DdP,π and for any d′ ∈ DP,Π. The following facts hold:

1. The importance weights are bounded above and below: m
M ≤ ŵ(x) ≤ M

m .

4.3. Theoretical Analysis 51

2. The empirical KL divergence is bounded:
∣∣∣D̂KL(d‖dP,π)

∣∣∣ ≤ max
{

1
e ,

M
m log M

m

}
;

3. The empirical cross–entropy is bounded:
∣∣∣Ĥ(d′‖d)

∣∣∣ ≤ max
{
−M
m logm, Mm logM

}
;

4.
∣∣∣D̂KL(d‖dP,π)− D̃KL(d‖dP,π)

∣∣∣ ≤ Λ(M,m,N)
∣∣∣ 1
N

∑N
i=1 ŵ(xi)− 1

∣∣∣, where Λ(M,m,N) =

max
{

log M
m + 1,− log m

M − 1, logN + 1
}

.

5.
∣∣∣Ĵd − J̃d∣∣∣ ≤ rmax

∣∣∣ 1
N

∑N
i=1 ŵ(xi)− 1

∣∣∣.
Proof. 1. Immediate consequence of Assumption 4.3.3, just observing that ŵ(x) = d(x)/dP,π(x).

2. |D̂KL(d‖dP,π)| ≤ 1
N

∑N
i=1 |ŵ(x) log ŵ(x)|. Now, we know that ŵ(x) ≤ M

m and that the
function |y log y| has a local maximum whose value is 1/e. As a consequence, |ŵ(x) log ŵ(x)| ≤
max{1/e,M/m}.

3. |Ĥ(d‖d′)| ≤ 1
N

∑N
i=1 |ŵ(x) log d′(x)|. The maximum is attained when both ŵ(x) and

| log d′(x)| are maximum. ŵ(x) ≤M/m, while | log d′(x)| ≤ max{− logm, logM}.
4. The absolute derivative of y log y is | log y + 1|. Consider the term ŵ(xi) log ŵ(xi), we

know that m/M ≤ ŵ(xi) ≤ M/m, therefore the maximum absolute derivative has value
max{log(M/m)+1,− log(m/M)−1}. Consider the termNw̃(xi) = Nŵ(xi)/

∑N
i=1 ŵ(xi).

We know that m/M ≤ Nw̃(xi) ≤ N , thus the maximum absolute derivative has value
max{log(N) + 1,− log(m/M) − 1}. Since the Lipschitz constant of an average is smaller
or equal to the Lipschitz constant of each term, we get the result.

5. Consider the inequalities:∣∣∣Ĥ(d′‖d)− H̃(d′‖d)
∣∣∣ =

∣∣∣∣∣ 1

N

N∑
i=1

ŵ(xi)r(xi)−
∑N
i=1 ŵ(xi)r(xi)∑N

i=1 ŵ(xi)

∣∣∣∣∣
=

∣∣∣∣∣
∑N
i=1 ŵ(xi)r(xi)∑N

i=1 ŵ(xi)

(
1

N

N∑
i=1

ŵ(xi)− 1

)∣∣∣∣∣
≤ rmax

∣∣∣∣∣ 1

N

N∑
i=1

ŵ(xi)− 1

∣∣∣∣∣

We report now a standard result of learning theory that we are going to use extensively
throughout the analysis Mohri et al. (2012).

Theorem 4.3.2 Let H be a family real-valued functions and let G = {Lh(x) : h ∈ H} be
the family of loss functions associated to H. Assume that Pdim(G) = v. and that the loss
function L is bounded by M .Then, for any δ ∈ (0, 1), with probability at least 1 − δ, the
following holds for all h ∈ H:

E
X

[Lh(X)] ≤ 1

N

N∑
i=1

Lh(xi) +M

√
8v log 2eN

v + 8 log 4
δ

N
. (4.61)

1

N

N∑
i=1

Lh(xi) ≤ E
X

[Lh(X)]M

√
8v log 2eN

v + 8 log 4
δ

N
. (4.62)

52 Chapter 4. Relative Entropy Model Policy Search

Using this result, we immediately derive the following.

Lemma 4.3.6 Each of these events hold with probability at least 1− δ:

(E1) ∀d ∈ DdP,π :
∣∣∣ 1
N

∑N
i=1 ŵ(xi)− 1

∣∣∣ ≤ M
m

√
8v log 2eN

v
+8 log 8

δ
N ;

(E1) ∀d ∈ DdP,π :
∣∣∣Ĵd − Jd∣∣∣ ≤ rmax

M
m

√
8v log 2eN

v
+8 log 8

δ
N ;

(E3) ∀d ∈ DdP,π :
∣∣∣D̂KL(d‖dP,π)−DKL(d‖dP,π)

∣∣∣ ≤ K̄

√
8v log 2eN

v
+8 log 8

δ
N , where K̄ =

max
{

1
e ,

M
m log M

m

}
;

(E4) ∀d ∈ DdP,π , ∀d′ ∈ DP,Π :
∣∣∣Ĥ(d′‖d)−H(d′‖d)

∣∣∣ ≤ M
m M̄

√
8v log 2eN

v
+8 log 8

δ
N ,

where M̄ = max {− logm, logM}.

Proof. It is a trivial application of Theorem 4.3.2 after symmetrization, by carefully defining the
max of each function involved and exploiting Assumption 4.3.2.

We can now put all together.

Theorem 4.3.3 (Finite–Sample Bound under Assumption 4.3.3) Let π ∈ Π and P ∈ P
be the current policy and transition model respectively. Let ε > 0 be the KL–divergence
constraint. Let d′ ∈ DP,Π be the solution of the REMPSP,π(ε) problem and d̃′ ∈ DP,Π
be the solution of the R̃EMPSP,π(ε) problem computed with N > 0 samples collected with
dP,π. Then, under Assumptions 4.3.1, 4.3.2 and 4.3.3, there exists a constant φ and function
ψ(N) = O (logN), such that for any δ ∈ (0, 1), with probability at least 1 − 4δ it holds
that:

Jd − Jd̃′ ≤
√

2rmax sup
d∈D

dP,π

inf
d∈DP,Π

√
DKL(d‖d)+

+ rmaxφ
4

√
8v log 2eN

v + 8 log 8
δ

N
+

+ rmaxψ(N)

√
8v log 2eN

v + 8 log 8
δ

N
.

Proof. We start from Theorem 4.3.1 and we bound each term using Lemma 4.3.5 and Lemma 4.3.6.
Let us start with supd∈D

dP,π
|Jd − J̃d|:

sup
d∈D

dP,π

|Jd − J̃d| = sup
d∈D

dP,π

|Jd − J̃d ± Ĵd|

≤ sup
d∈D

dP,π

|Jd − Ĵd|+ sup
d∈D

dP,π

|Ĵd − J̃d|

≤ sup
d∈D

dP,π

|Jd − Ĵd|+ rmax sup
d∈D

dP,π

∣∣∣∣∣ 1

N

N∑
i=1

ŵ(xi)− 1

∣∣∣∣∣

4.3. Theoretical Analysis 53

≤ 2rmax
M

m

√
8v log 2eN

v + 8 log 8
δ

N
,

where we exploited events (E1) and (E2). Consider supd∈D
dP,π

∣∣∣D̃KL(d‖dP,π)−DKL(d‖dP,π)
∣∣∣:

sup
d∈D

dP,π

∣∣∣D̃KL(d‖dP,π)−DKL(d‖dP,π)
∣∣∣ = sup

d∈D
dP,π

∣∣∣D̃KL(d‖dP,π)−DKL(d‖dP,π)± D̂KL(d‖dP,π)
∣∣∣

≤ sup
d∈D

dP,π

∣∣∣DKL(d‖dP,π)− D̂KL(d‖dP,π)
∣∣∣+

+ sup
d∈D

dP,π

∣∣∣D̃KL(d‖dP,π)− D̂KL(d‖dP,π)
∣∣∣

≤ sup
d∈D

dP,π

∣∣∣DKL(d‖dP,π)− D̂KL(d‖dP,π)
∣∣∣

+ sup
d∈D

dP,π

Υ(M,m,N)

∣∣∣∣∣ 1

N

N∑
i=1

ŵ(xi)− 1

∣∣∣∣∣
≤
(

max

{
1

e
,
M

m
log

M

m

}
+ Υ(M,m,N)

)√
8v log 2eN

v + 8 log 8
δ

N

≤ f(N)

√
8v log 2eN

v + 8 log 8
δ

N
,

where we defined Υ(M,m,N) = max
{

log M
m + 1,− log m

M − 1, logN + 1
}

,
f(N) =

(
max

{
1
e ,

M
m log M

m

}
+ Υ(M,m,N)

)
and we exploited events (E1) and (E3). Finally,

the term supd∈DdP,π supd′∈DΠ,P

∣∣∣Ĥ(d‖d′)−H(d‖d′)
∣∣∣ can be bounded using Lemma 4.3.6. Let us

define c = M
m max{− logm, logM} and ν =

√
8v log 2eN

v +8 log 8
δ

N and we put all together obtaining:

Jd′ − Jd̃′ ≤ 4rmaxν +
2rmax

ε
f(N)ν + rmax

√
2 sup
d∈D

dP,π

inf
d∈DP,Π

√
DKL(d‖d) + rmax

√
2cν

= rmax

√
2 sup
d∈D

dP,π

inf
d∈DΠ,P

√
DKL(d‖d) + rmax

√
ν

((
4 +

2

ν
f(N)

)√
ν +
√

2c

)
= rmax

√
2 sup
d∈D

dP,π

inf
d∈DΠ,P

√
DKL(d‖d) + rmaxφ

√
ν + rmaxψε(N)ν,

where we renamed ψε(N) = 4 + 2
ε f(N) and φ =

√
2c. Notice that ψε(N) = O(logN). Since we

made a union bound over the events (E1), (E2), (E3) and (E4), the statement holds with probability
1− 4δ.

Chapter 5

Experimental Evaluation

It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are, if it doesn’t
agree with experiment, it’s wrong.

R.P. Feynman

In the previous chapter we presented the REMPS algorithm, able to optimize the model and
the policy in the context of discretes and continuous CMDPs. In this chapter we perform an
experimental evaluation of REMPS. In Section 5.1 we consider the chain environment, that
is a toy problem for which we can visualize the return surface and we can easily understand
the behaviour of our algorithm. In Section 5.2 we evaluate the performance of our algorithm
on the discrete-actions, continuous-states, cart-pole problem, a standard RL benchmark. We
compare REMPS with the G(PO)MDP (Baxter and Bartlett, 2001) extension for CMDPs
(see Appendix B.2). In Section 5.3 we consider an autonomous driving and configuration
problem in a complex environment: TORCS. The goal of the TORCS experiment is to show
the benefit of environment configuration in a complex task, similar to real world tasks.

5.1 Chain Problem

We use the chain problem as a proof of concept to show the benefits of our algorithm.
Using this environment we experimentally validate the ability of REMPS to overcome local
minima in the return landscape.
The environment in illustrated in Fig. 5.1. There are two actions available to the agent
denoted with a0 and a1. The policy is very simple and has only one parameter:

πθ(a0|s) = θ ∀s ∈ S, (5.1)

πθ(a1|s) = 1− θ ∀s ∈ S . (5.2)

Thus the policy is uniquely defined by the parameter θ ∈ [0, 1], that is the probability of
selecting action a0 and it is the same on all states. The model has only one parameter, ω,

56 Chapter 5. Experimental Evaluation

S0 S1

a0, θ, 1− ω, 0

a0, θ, ω, s

a1, 1− θ, 1− ω, s a1, 1− θ, ω, 0

a0, θ, ω, s

a0, θ, 1− ω,L

a1, 1− θ, ωk, l
a1, 1− θ, 1− ωk, s

Figure 5.1: Chain problem. On the edges we have (action, action probability, transition probability,
reward).

Parameter Value

k 0.2
L 10
l 8
s 2
ω0 0.8
θ0 0.2

num of samples 2 · 104

num of steps per episode 5 · 102

Table 5.1: Hyper-parameters used in our chain experiments.

that is the probability of action failure. Action a0 (forward), if successful, brings the agent
to state s1. Action a1 (backward), if successful, brings the agent to state s0. The agent gets
an high reward, L > 0, if, starting from state s1 executes successfully action a0. The agent
gets a smaller reward l, (0 < l < L) if it lands in state s1 starting from s1 but executing
action a1. Agent gets an even smaller reward, s (0 < s < l) when it lands in state s0. The
parameter k is not configurable and it has been added to avoid symmetries in the return
surface. In the chain problem we are in the ideal case, the model is known, thus we can
project the stationary distribution directly. We initialized the model parameters to ω0 and
the policy parameter to θ0 such that the initial position in the return landscape is near a
local minima. Starting from this position a gradient method should point toward the local
maxima, while we empirically demonstrate the ability of our algorithm to reach the pair
(P ∗,π∗) yielding maximum performance in this environment. The average reward surface
as function of the model and policy parameters is illustrated in Fig. 5.2.
Table 5.1 summarizes the parameters used in our experiments.
We compare the result of our algorithm with G(PO)MDP over model and policy param-

eters. It is possible to see that G(PO)MDP, being a gradient method follows the slope of
the objective function and it is attracted by the local maximum in θ = 0, ω = 1. REMPS
outperforms G(PO)MDP reaching the global maximum in θ = 1, ω = 0 after few itera-
tions. We perform different runs varying the ε parameter to show the effect of the parameter.
Results are shown in Fig. 5.3.

5.1. Chain Problem 57

00.20.40.60.81

0
0.5

1

2

4

6

8

10

θ
ω

J

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

2

3

4

5

6

7

8

9

Figure 5.2: Different representations of the average reward surface of the chain experiment as func-
tion of model and policy parameters. There is a local maximum in θ = 0, ω = 1, a global maximum
in θ = 1, ω = 0. We start our algorithm near the local minima in θ = 0.33, ω = 0.66.

5.1.1 Sensitivity to ε

The choice of ε is critical and problem-dependent. A too small ε causes a premature con-
vergence of REMPS to local maximum. A too high ε yields imprecise estimation of the
performance of the model-policy target and causes an imprecise projection on the space of
possible probability distributions. Fig. 5.4 shows the performance of the best model-policy
found as function of ε. We show the value of the primal that is the value of the objective

58 Chapter 5. Experimental Evaluation

5 10 15 20

2

4

6

8

10

12

J(π∗, P ∗)

Iteration

A
ve
ra
g
e
R
ew

ar
d

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(θ0, ω0)

(θ∗, ω∗)

θ

ω

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

ω∗

Iteration

ω

5 10 15 20

0.2

0.4

0.6

0.8

1
θ∗

Iteration

θ

REMPS ε = 1e−4 REMPS ε = 1e−2 REMPS ε = 10 REMPS ε = 1e−1 GPODMP

Figure 5.3: Chain experiment. Top left: average reward of REMPS and GPOMDP. Top right: up-
dates of the model and policy parameter of GPOMDP and REMPS. Bottom left: shows the updates
of the model parameter ω. Bottom right: updates of the policy parameter θ. Shaded areas represent
the 95% confidence interval over 10 runs of the algorithm.

function without any constraint on the policy and model. We can see that the value of the
primal is greater than the actual value of the objective after the projection, thus the pro-
jection yields a degradation of the performance. The performance degradation is due to
the following reason. Moving too far away from the current stationary distribution the pri-
mal solution might not be representable using our hypothesis space. Performing a Moment
Projection we obtain a a performance degradation with respect to the original solution.

5.1.2 Sensitivity to parameter initialization

REMPS behaves consistently with respect to a random initialization of model and policy
parameters. In Fig. 5.5 we can see that REMPS updates the model and policy parameters
toward the global maximum while GPOMDP updates vary with the initial parameters. In
the GPOMDP learning curve it is possible to see clearly the two attractors. REMPS shows
a stable behaviour in the case of few model parameters and complex return landscape.

5.1. Chain Problem 59

0.2 0.4 0.6 0.8 1

2

4

6

8

10

12

J(π∗, P ∗)

ε

J
∗ (
ε)

J exact

Primal

Figure 5.4: Average reward and primal of the best model-policy couple in the chain experiment as
function of ε using the projection of the discounted stationary state distribution.

5.1.3 Comparison with SPMI

SPMI is, at the moment of writing, the unique algorithm proposed for CMDPs. We com-
pare in this section the comparison between SMPI and REMPS. In Fig. 5.6 we show the
behaviour of the variants of SPMI on the chain experiment. We can easily notice that SPMI
requires a huge number of iterations before convergence. While REMPS converges approx-
imately after 10 iterations, SPMI requires a number of iterations in the order of 103. This is
due to the conservative step size of safe approaches. SPMI, SPMI-alt, SPMI-sup and SPI-
SMI reach the global maximum while SMI-SPI goes (very slowly) to the local maximum.
SMI-SPI is not able to reach the global maximum since it alternates a model improvement
step to a policy improvement step considering the two components in a separate manner.
We recall that SPMI is applicable to the chain experiment since this environment has a dis-
crete state space and a discrete action space, while the standard version of this algorithm
cannot be applied to the environments presented later in this chapter.

60 Chapter 5. Experimental Evaluation

0 20 40 60 80 100
−0.2

0

0.2

0.4

0.6

0.8

1

ω∗

Iteration

ω

0 20 40 60 80 100
−0.2

0

0.2

0.4

0.6

0.8

1

ω∗

Iteration
ω

20 40 60 80 100

0.2

0.4

0.6

0.8

1
θ∗

Iteration

θ

20 40 60 80 100

0.2

0.4

0.6

0.8

1
θ∗

Iteration

θ

20 40 60 80 100

2

4

6

8

10

12

J(π∗, P ∗)

Iteration

A
ve
ra
ge

R
ew

ar
d

20 40 60 80 100

2

4

6

8

10

12

J(π∗, P ∗)

Iteration

A
ve
ra
ge

R
ew

ar
d

REMPS GPOMDP

Figure 5.5: Chain experiment with random initialization of model and policy parameter. Compar-
ison between GPOMDP and REMPS. Top: model parameter. Center: policy parameter. Bottom:
average reward.

5.1. Chain Problem 61

2 4 6 8 10

·103

2

4

6

8

10

12

J(π∗, P ∗)

Iteration

A
ve
ra
ge

R
ew

ar
d

0 2 4 6 8 10

·103

−0.2

0

0.2

0.4

0.6

0.8

1

ω∗

Iteration

ω

2 4 6 8 10

·103

0.2

0.4

0.6

0.8

1
θ∗

Iteration

θ

SPMI SPMI-alt SPMI-sup SMI-SPI SPI-SMI

Figure 5.6: SPMI on the chain experiment. Left: average reward. Center: model parameter. Right:
policy parameter.

62 Chapter 5. Experimental Evaluation

5.2 Cart-Pole

The Cart-Pole domain is a standard RL benchmark. The Cart-Pole world consists of a cart
that moves along the horizontal axis and a pole that is anchored on the cart. The state space
is continuous and it is represented by the x position of the cart, the cart velocity ẋ, the pole
angle γ with respect to the vertical, the pole angular velocity γ̇. The action space is discrete
and composed by two actions: left L or right R. The model parameter is represented by the
force ω to be applied to the cart, that is the same for both actions. The range of the force is
[0, 30]. The resulting force is ±ω depending on the action. We add noise on the resulting
action proportional to the force applied and independent noise to each state component.
The Cart-Pole environment is represented in Fig. 5.7.

The goal is to keep the pole in the vertical position (γ = 0) as long as possible. The
episode ends when the pole reaches a certain angle (|γ| > γ̄) or after a predefined number
of steps. We want to encourage smaller forces, to this end we use the following reward
function:

R(s, a, s′) = 10− ω2

20
− 20 ∗ (1− cos(γ)).

The first part is a fixed reward for each for each timestep the pole is up and the pole angle is
inside the range [−γ̄,+γ̄]. The second part is a penalty proportional to the force. The third
part is a penalty proportional the pole angle, it is 0 when the pole is in the vertical position.
Ideally the agent should learn to balance the pole with the smaller force possible, keeping
it fixed in the vertical position.

γ

γ̇

ẋ

x

Figure 5.7: Cart-Pole environment representation.

5.2. Cart-Pole 63

Parameter Value

Num of samples 105

Dual Regularization 0
Policy Regularization 0

ε 10−3

Policy Linear with softmax
ω0 8

Table 5.2: Hyper-parameters used in the exact cartpole experiment.

Parameter Value

Num of samples 5 · 104

Dual Regularization 10−4

Policy Regularization 0
ε 10−3

Policy Linear with softmax
ω0 8

Table 5.3: Hyper-parameters used in the approximated cartpole experiment.

5.2.1 Results

We test the performance of REMPS both in the case of an exact model and in the case of an
approximated (fitted) model. In Fig. 5.8 we show the performance of our algorithm starting
from a fixed value of the model parameter, ω0 = 8. In the exact case, Fig. 5.8 (left), it is
possible to see that the model parameter has a decreasing trend in the first iterations, then
it converges to a minimum. The timesteps increase and then reach a maximum. The return
increases since the agent is less penalized by the force term (since the model parameter is
becoming smaller) and it is learning to balance the pole. In the approximated case, Fig. 5.8
(right), the cart-pole model is learned by a neural network (NN). The inputs of the NN
are the state st, the action at and the model parameter ω. The output neurons represents
the mean and the variance of a Gaussian distribution over the state space representing the
probability of landing in a given state. We collect data with a fixed random policy before
training. We fitt the dynamic model by maximizing the log-likelihood, obtaining a neural
network predicting P (s′|s, a, ω). The model learns the effect of the model parameters on
the dynamic. As baseline we use the G(PO)MDP algorithm over the model and policy pa-
rameters. Both in the exact version and in the approximated one, REMPS shows a more
stable behaviour with respect to G(PO)MDP. In the exact case the two algorithms are com-
parable, the improvement of REMPS are slower but at the end it outperforms G(PO)MDP
with precise selection of the model parameter.
In the approximated case (using the same approximation of the model) REMPS performs
better, it is very stable compared to G(PO)MDP.

64 Chapter 5. Experimental Evaluation

500 1,000 1,500 2,000

2

4

6

8

10

Iteration

ω

500 1,000 1,500 2,000

2

4

6

8

10

Iteration

ω

500 1,000 1,500 2,000

50

100

150

200

Iteration

T
im

es
te
p
s

500 1,000 1,500 2,000

50

100

150

200

Iteration

T
im

es
te
p
s

500 1,000 1,500 2,000

500

1,000

1,500

2,000

Iteration

R
et
u
rn

500 1,000 1,500 2,000

500

1,000

1,500

2,000

Iteration

R
et
u
rn

REMPS exact REMPS approx GPOMDP exact GPOMDP approx

Figure 5.8: Cartpole experiment. Left: results of REMPS and GPOMDP using the exact model.
Right: results of REMPS and GPOMDP using the approximated model. Top: model parameter ω.
Middle: average timesteps per episode. Bottom: Average return. The shaded area represents the
95% confidence interval over twenty runs of the algorithm.

5.3. Autonomous Driving and Configuration with TORCS 65

Parameter Description

angle Angle between the car direction
and the direction of the track axis.

rpm Number of rotation per minute of the car engine.
speedX Speed of the car along the longitudinal axis of the car.
speedY Speed of the car along the transverse axis of the car.
speedZ Speed of the car along the Z axis of the car.
track Vector of 19 range finder sensors: each sensors returns the

distance between the track edge and the car within
a range of 200 meters.

trackPos Distance between the car and the track axis.
wheelSpinVel Vector of 4 sensors representing the rotation speed of wheels.

Table 5.4: State space of the TORCS experiment.

5.3 Autonomous Driving and Configuration with TORCS

The Open Racing Car Simulator (Bernhard Wymann, 2013), TORCS, is a car racing simu-
lation, which allows to simulate driving races. It is a complete 3D racing simulator offering
a complete set of sensors and controls. TORCS has been used as RL environments in (Loia-
cono et al., 2010; Lillicrap et al., 2015b; Koutník et al., 2013; Mnih et al., 2016) and many
others.
We modified the source code of TORCS adding the possibility to configure the car param-
eters following the "Car Setup Competition".1 The goal of this experiment is to show the
benefits of the environment configuration in the context of autonomous driving.

5.3.1 Environment Description

The state space of the TORCS environment is composed by 29 dimensions, S ⊆ R29. The
action space is composed by 2 dimensions, A ⊆ R2. The first dimension of the action
space is the acceleration/brake action, while the second dimension is the steering angle.
The configuration space is very large, so we considered only a subset in our experiments.
All configuration parameters are normalized in the range [0, 1]. The state space space is
summarized in Table 5.4 and the configuration parameters in Table 5.5. We defined the
reward function in the following way:

R(s, a, s′) = speedX′ · cos(angle′), (5.3)

where speedX′ is the velocity on the longitudinal direction of the car in state s′ and angle′

is the angle between the car direction and the direction of the track axis. We give a penalty
of 1000 if the agent runs backward, if it goes out of track or if the progress in the race is
too low. The rationale behind this reward is to encourage the agent to go at high speed and
to stay centered with respect to the track.

1https://sourceforge.net/projects/cig

66 Chapter 5. Experimental Evaluation

Parameter Description

Rear Wing Angle of the rear wing.
Front Wing Angle of the front wing.

Front-Rear Brake Repartion Repartition of the brake between the front and rear.
Front Anti-Roll Bar Front Spring.
Rear Anti-Roll Bar Rear Spring.

Front Left-Right Brake Brake disk diameter of the front wheels.
Rear Left-Right Brake Brake disk diameter of the rear wheels.

Table 5.5: Configuration space of the TORCS experiment.

The policy we used in our experiments is a Gaussian Policy parameterized by a fully con-
nected neural network:

π(a|s) = N (φm(s),φv), (5.4)

where the mean φm(s) is a non-linear function of the current state s and the variance φv it
is independent from the current state.
In the projection phase of REMPS we can only perform a disjoint projection of the policy
and model (see Section 4.2.2) since the state and action spaces are continuous.

5.3.2 Results

In the first phase of our experiments we run a random policy in order to collect the dataset
for model fitting. We fitted the model with a neural network using a predefined number of
iterations as in Section 5.2. During the actual training phase we used the model network
to approximate the system dynamics and we optimized the policy and the environment
configuration. A comparison between the results obtained learning only the policy (REPS)
and the results obtained learning the policy and the environment configuration (REMPS)
are given in Fig. 5.9. Configuring the environment yields a performance boosting even
in an environment with complex dynamic and even starting with a random policy, where
the effect of the configuration is limited. We highlight the fact that we learn the model
once using a fixed, random policy, while we could alternate model-policy optimization and
model fitting for a more precise estimation.

5.3. Autonomous Driving and Configuration with TORCS 67

0 2 4 6 8 10 12

·102

−60

−40

−20

0

Iteration

A
ve
ra
ge

R
ew

ar
d

2 4 6 8 10 12

·102

0.2

0.4

0.6

0.8

1

Iteration

R
ea
r
W

in
g

2 4 6 8 10 12

·102

0.2

0.4

0.6

0.8

1

Iteration

F
ro
n
t-
R
ea
r
B
ra
ke

R
ep
a
rt
it
io
n

REMPS REPS

Figure 5.9: TORCS experiment. Comparison between policy learning and policy-configuration
learning. Learning the configuration yields a performance improvement. Top: Average reward.
Middle: Rear wing angle. Bottom: Front-Rear Brake repartition.

Chapter 6

Discussion and Conclusions

In this chapter, we discuss the main contribution of this thesis, and we propose some pos-
sible future extensions and refinement of the approaches presented in this work. The first
contribution of this document is a new algorithm, namely REMPS, able to solve the model-
policy learning problem in the context of CMDPs. REMPS is an extension of REPS (Peters
et al., 2010) that considers also the model optimization. Along with REMPS we present
three types of policy and model projection strategies in order to deal with limited represen-
tation power. REMPS is able to work with continuous state and action spaces, moreover it
does not require the knowledge of the full transition model, requiring only an approxima-
tion.

We presented a theoretical study of the property of the algorithm, providing a lower
bound to the difference between the performance of the solution found using an infinite
number of sample and infinite representation power and the solution using a finite number
of samples and finite representation power. We showed that this bound depends on the
number of samples, on the representation power of the model and policy spaces and on the
value of the KL–constraint ε.

Along with a theoretical study of the algorithm, we presented also an empirical evalua-
tion. We tested our algorithm on three domains. The first domain (chain problem) is a proof
of concept showing the ability of REMPS to overcome local minima. The second domain
(cart-pole) is a standard RL benchmark with continuous action space, discrete action space.
We used cart-pole to test the performances in both the exact model and in the approximated
model scenarios. The last experiment is a complex experiment of autonomous driving and
configuration using the TORCS environment. In our experiments we showed the benefits
of model configuration and the benefits of using an information theoretical approach with
respect to a gradient method such as G(PO)MDP.

70 Chapter 6. Discussion and Conclusions

We outline some possible extensions and research directions.

Adaptive ε The ε parameter in the KL constraint is critical since it is responsible for
the magnitude of the update. A high value of ε results in too large model-policy updates,
while a too small ε results in no updates at all. An optimal value for ε can be found using
heuristics or using a principled way, optimizing some utility function.

Other divergences REMPS (and REPS) algorithm is based on the KL divergence. The
usage of this kind of distance is justified by the closed form solution of the learning problem.
However the KL distance has some problems. The first problem is that it is not symmetric,
so after the model-policy projection we have no clue on the distance from the projected
model and policy to the ones used for sampling. Moreover the use of KL distance requires
the policy to be stochastic, since the KL between two deterministic policy is 0 or ∞. An
interesting extension of our algorithm could use different types of distance, i.e. Rényi
divergence, Hellinger or Weisserstein. We highlight the fact that using the Total Variation
distance it is not possible to solve the REMPS optimization problem in closed form.

Policy Space Identification The presented approach to the CMDP learning problem is
a joint approach, in which the supervisor and the agent are the same entity. In a realistic
case the two entity can be different, i.e. an F1 pilot and a mechanical engineer. In these
cases it can be beneficial to split the policy learning and the model learning. The agent
should be freely allowed to learn using some strategy, the supervisor should study the agent
behaviour proposing for each episode the best (according to some utility measure) envi-
ronment configuration. In order to do this the supervisor should know the agent’s policy
space. However, in realistic cases the policy can be unknown. In these scenarios the su-
pervisor should identify the policy space of the agent and perform optimizations using this
approximation.

Finite–Time Analysis In our theoretical analysis we derived a bound valid for a single
step of REMPS. An interesting theoretical extension would be an analysis for multiple
steps of REMPS obtaining a bound on Jd(T)−Jd̃(T) , where d(T) is the distribution obtained
using infinite samples after T step of optimization and d̃(T) is the solution obtained with N
samples with limited capacity on the model and policy selection.

Bibliography

[Abdolmaleki et al. 2015] ABDOLMALEKI, Abbas ; LIOUTIKOV, Rudolf ; PETERS,
Jan R. ; LAU, Nuno ; PUALO REIS, Luis ; NEUMANN, Gerhard: Model-Based Relative
Entropy Stochastic Search. In: CORTES, C. (Ed.) ; LAWRENCE, N. D. (Ed.) ; LEE, D. D.
(Ed.) ; SUGIYAMA, M. (Ed.) ; GARNETT, R. (Ed.): Advances in Neural Information
Processing Systems 28. Curran Associates, Inc., 2015, pp. 3537–3545. pp. 3537–3545

[Amari 1998] AMARI, Shun-Ichi: Natural Gradient Works Efficiently in Learning. In:
Neural Comput. 10 (1998), February, nr. 2, pp. 251–276. – 10 (1998), February, nr. 2,
pp. 251–276

[Baxter and Bartlett 2001] BAXTER, Jonathan ; BARTLETT, Peter L.: Infinite-horizon
policy-gradient estimation. In: Journal of Artificial Intelligence Research 15 (2001),
pp. 319–350. 15 (2001), pp. 319–350

[Bellman 1957] BELLMAN, Richard: Dynamic Programming. Dover Publications, 1957
Dover Publications, 1957

[Bernhard Wymann 2013] BERNHARD WYMANN, Christophe Guionneau Christos
Dimitrakakis Rémi Coulom Andrew S.: TORCS, The Open Racing Car Simulator.
http://www.torcs.org. 2013

[Bowerman 1974] BOWERMAN, Bruce L.: Nonstationary Markov decision processes
and related topics in nonstationary Markov chains, Iowa State University, PhD Thesis,
1974

[Cheevaprawatdomrong et al. 2007] CHEEVAPRAWATDOMRONG, Torpong ; SCHO-
CHETMAN, Irwin E. ; SMITH, Robert L. ; GARCIA, Alfredo: Solution and Forecast
Horizons for Infinite-Horizon Nonhomogeneous Markov Decision Processes. In: Math.
Oper. Res. 32 (2007), February, nr. 1, pp. 51–72. 32 (2007), February, nr. 1, pp. 51–72

[Cortes et al. 2010] CORTES, Corinna ; MANSOUR, Yishay ; MOHRI, Mehryar: Learning
Bounds for Importance Weighting. In: LAFFERTY, J. D. (Ed.) ; WILLIAMS, C. K. I.
(Ed.) ; SHAWE-TAYLOR, J. (Ed.) ; ZEMEL, R. S. (Ed.) ; CULOTTA, A. (Ed.): Advances
in Neural Information Processing Systems 23. Curran Associates, Inc., 2010, pp. 442–
450. – pp. 442–450

[Daniel et al. 2012] DANIEL, Christian ; NEUMANN, Gerhard ; PETERS, Jan: Hierarchi-
cal Relative Entropy Policy Search. In: LAWRENCE, Neil D. (Ed.) ; GIROLAMI, Mark
(Ed.): Proceedings of the Fifteenth International Conference on Artificial Intelligence

71

72 Bibliography

and Statistics vol. 22. La Palma, Canary Islands : PMLR, 21–23 Apr 2012, pp. 273–281.
pp. 273–281

[Deisenroth 2011] DEISENROTH, Marc P.: A Survey on Policy Search for Robotics. In:
Foundations and Trends in Robotics 2 (2011), nr. 1-2, pp. 1–142. 2 (2011), nr. 1-2,
pp. 1–142

[d’Epenoux 1963] D’EPENOUX, F.: A Probabilistic Production and Inventory Problem.
In: Management Science 10 (1963), nr. 1, pp. 98–108. 10 (1963), nr. 1, pp. 98–108

[Furmston and Barber 2012] FURMSTON, Thomas ; BARBER, David: A Unifying
Perspective of Parametric Policy Search Methods for Markov Decision Processes. In:
PEREIRA, F. (Ed.) ; BURGES, C. J. C. (Ed.) ; BOTTOU, L. (Ed.) ; WEINBERGER, K. Q.
(Ed.): Advances in Neural Information Processing Systems 25. Curran Associates, Inc.,
2012, pp. 2717–2725. pp. 2717–2725

[Garcia and Smith 2000] GARCIA, Alfredo ; SMITH, Robert L.: Solving Nonstationary
Infinite Horizon Dynamic Optimization Problems. In: Journal of Mathematical Analysis
and Applications 244 (2000), nr. 2, pp. 304 – 317. 244 (2000), nr. 2, pp. 304 – 317

[Ghate and L. Smith 2013] GHATE, Archis ; L. SMITH, Robert: A Linear Programming
Approach to Nonstationary Infinite-Horizon Markov Decision Processes. 61 (2013), 04,
pp. 413–425. 61 (2013), 04, pp. 413–425

[Givan et al. 2000] GIVAN, Robert ; LEACH, Sonia ; DEAN, Thomas: Bounded-
parameter Markov decision processes. In: Artificial Intelligence (2000), pp. 39. (2000),
pp. 39

[Harmanec 2002] HARMANEC, David: Generalizing Markov decision processes to im-
precise probabilities. In: Journal of Statistical Planning and Inference 105 (2002), June,
nr. 1, pp. 199–213. 105 (2002), June, nr. 1, pp. 199–213

[Hopp et al. 1987] HOPP, Wallace J. ; BEAN, James C. ; SMITH, Robert L.: A New
Optimality Criterion for Nonhomogeneous Markov Decision Processes. In: Operations
Research 35 (1987), nr. 6, pp. 875–883. 35 (1987), nr. 6, pp. 875–883

[Howard 1960] HOWARD, R. A.: Dynamic Programming and Markov Processes. Cam-
bridge, MA : MIT Press, 1960 Cambridge, MA : MIT Press, 1960

[Kakade and Langford 2002] KAKADE, Sham ; LANGFORD, John: Approximately Op-
timal Approximate Reinforcement Learning. In: Proceedings of the Nineteenth Interna-
tional Conference on Machine Learning. San Francisco, CA, USA : Morgan Kaufmann
Publishers Inc., 2002 (ICML ’02), pp. 267–274. – pp. 267–274

[Kakade 2002] KAKADE, Sham M.: A Natural Policy Gradient. In: DIETTERICH, T. G.
(Ed.) ; BECKER, S. (Ed.) ; GHAHRAMANI, Z. (Ed.): Advances in Neural Information
Processing Systems 14. MIT Press, 2002, pp. 1531–1538. pp. 1531–1538

[Kober et al. 2013] KOBER, Jens ; BAGNELL, J. A. ; PETERS, Jan: Reinforcement
learning in robotics: A survey. In: The International Journal of Robotics Research 32
(2013), nr. 11, pp. 1238–1274. 32 (2013), nr. 11, pp. 1238–1274

Bibliography 73

[Koutník et al. 2013] KOUTNÍK, Jan ; CUCCU, Giuseppe ; SCHMIDHUBER, Jürgen ;
GOMEZ, Faustino: Evolving Large-scale Neural Networks for Vision-based Reinforce-
ment Learning. In: Proceedings of the 15th Annual Conference on Genetic and Evolu-
tionary Computation. New York, NY, USA : ACM, 2013 (GECCO ’13), pp. 1061–1068.
– pp. 1061–1068

[Kupcsik et al. 2013] KUPCSIK, Andras G. ; DEISENROTH, Marc P. ; PETERS, Jan ;
NEUMANN, Gerhard: Data-Efficient Generalization of Robot Skills with Contextual
Policy Search. (2013), pp. 7. (2013), pp. 7

[Lillicrap et al. 2015a] LILLICRAP, Timothy P. ; HUNT, Jonathan J. ; PRITZEL, Alexan-
der ; HEESS, Nicolas ; EREZ, Tom ; TASSA, Yuval ; SILVER, David ; WIERSTRA, Daan:
Continuous control with deep reinforcement learning. In: CoRR abs/1509.02971 (2015).
– abs/1509.02971 (2015)

[Lillicrap et al. 2015b] LILLICRAP, Timothy P. ; HUNT, Jonathan J. ; PRITZEL, Alexan-
der ; HEESS, Nicolas ; EREZ, Tom ; TASSA, Yuval ; SILVER, David ; WIERSTRA, Daan:
Continuous control with deep reinforcement learning. In: CoRR abs/1509.02971 (2015).
– abs/1509.02971 (2015)

[Loiacono et al. 2010] LOIACONO, D. ; PRETE, A. ; LANZI, P. L. ; CARDAMONE, L.:
Learning to overtake in TORCS using simple reinforcement learning. In: IEEE Congress
on Evolutionary Computation, July 2010, pp. 1–8. – pp. 1–8

[Metelli et al. 2018a] METELLI, Alberto M. ; MUTTI, Mirco ; RESTELLI, Marcello:
Configurable Markov Decision Processes. In: DY, Jennifer (Ed.) ; KRAUSE, An-
dreas (Ed.): Proceedings of the 35th International Conference on Machine Learning
vol. 80. Stockholmsmässan, Stockholm Sweden : PMLR, 10–15 Jul 2018, pp. 3488–
3497. pp. 3488–3497

[Metelli et al. 2018b] METELLI, Alberto M. ; PAPINI, Matteo ; FACCIO, Francesco ;
RESTELLI, Marcello: Policy Optimization via Importance Sampling. In:
arXiv:1809.06098 [cs, stat] (2018), September. (2018), September

[Mnih et al. 2016] MNIH, Volodymyr ; BADIA, Adria P. ; MIRZA, Mehdi ; GRAVES,
Alex ; LILLICRAP, Timothy ; HARLEY, Tim ; SILVER, David ; KAVUKCUOGLU, Ko-
ray: Asynchronous Methods for Deep Reinforcement Learning. In: BALCAN, Maria F.
(Ed.) ; WEINBERGER, Kilian Q. (Ed.): Proceedings of The 33rd International Confer-
ence on Machine Learning vol. 48. New York, New York, USA : PMLR, 20–22 Jun
2016, pp. 1928–1937. – pp. 1928–1937

[Mnih et al. 2013] MNIH, Volodymyr ; KAVUKCUOGLU, Koray ; SILVER, David ;
GRAVES, Alex ; ANTONOGLOU, Ioannis ; WIERSTRA, Daan ; RIEDMILLER, Martin A.:
Playing Atari with Deep Reinforcement Learning. In: CoRR abs/1312.5602 (2013). –
abs/1312.5602 (2013)

[Mnih et al. 2015] MNIH, Volodymyr ; KAVUKCUOGLU, Koray ; SILVER, David ; RUSU,
Andrei A. ; VENESS, Joel ; BELLEMARE, Marc G. ; GRAVES, Alex ; RIEDMILLER,
Martin ; FIDJELAND, Andreas K. ; OSTROVSKI, Georg ; PETERSEN, Stig ; BEATTIE,

74 Bibliography

Charles ; SADIK, Amir ; ANTONOGLOU, Ioannis ; KING, Helen ; KUMARAN, Dhar-
shan ; WIERSTRA, Daan ; LEGG, Shane ; HASSABIS, Demis: Human-level control
through deep reinforcement learning. In: Nature 518 (2015), 02, pp. 529 EP –. – 518
(2015), 02, pp. 529 EP –

[Mohri et al. 2012] MOHRI, M. ; ROSTAMIZADEH, A. ; TALWALKAR, A.: Foundations
of Machine Learning. MIT Press, 2012 (Adaptive computation and machine learning
series). – (Adaptive computation and machine learning series)

[Moody et al. 1998] MOODY, John ; WU, Lizhong ; LIAO, Yuansong ; SAFFELL,
Matthew: Performance functions and reinforcement learning for trading systems and
portfolios. In: Appears in Journal of Forecasting 17 (1998), 09, pp. 441–470. 17 (1998),
09, pp. 441–470

[Peters and Schaal 2008a] PETERS, J. ; SCHAAL, S.: Natural Actor-Critic. In: Neuro-
computing 71 (2008), mar, nr. 7-9, pp. 1180–1190. 71 (2008), mar, nr. 7-9, pp. 1180–
1190

[Peters et al. 2010] PETERS, Jan ; MULLING, Katharina ; ALTUN, Yasemin: Relative
Entropy Policy Search. 2010

[Peters and Schaal 2008b] PETERS, Jan ; SCHAAL, Stefan: Reinforcement learning of
motor skills with policy gradients. In: Neural Networks 21 (2008), nr. 4, pp. 682 – 697.
– 21 (2008), nr. 4, pp. 682 – 697

[Pirotta et al. 2013] PIROTTA, Matteo ; RESTELLI, Marcello ; PECORINO, Alessio ;
CALANDRIELLO, Daniele: Safe Policy Iteration. In: DASGUPTA, Sanjoy (Ed.) ;
MCALLESTER, David (Ed.): Proceedings of the 30th International Conference on Ma-
chine Learning vol. 28. Atlanta, Georgia, USA : PMLR, 17–19 Jun 2013, pp. 307–315.
– pp. 307–315

[Puterman 1994] PUTERMAN, Martin L.: Markov Decision Processes: Discrete Stochas-
tic Dynamic Programming. 1st. New York, NY, USA : John Wiley & Sons, Inc., 1994
New York, NY, USA : John Wiley & Sons, Inc., 1994

[Puterman 2014] PUTERMAN, Martin L.: Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons, 2014 John Wiley & Sons, 2014

[Rényi 1961] RÉNYI, Alfréd: On Measures of Entropy and Information. In: Proceedings
of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume
1: Contributions to the Theory of Statistics. Berkeley, Calif. : University of California
Press, 1961, pp. 547–561. – pp. 547–561

[Schulman et al. 2015] SCHULMAN, John ; LEVINE, Sergey ; MORITZ, Philipp ;
JORDAN, Michael I. ; ABBEEL, Pieter: Trust Region Policy Optimization. In:
arXiv:1502.05477 [cs] (2015), February. (2015), February

[Schulman et al. 2017] SCHULMAN, John ; WOLSKI, Filip ; DHARIWAL, Prafulla ;
RADFORD, Alec ; KLIMOV, Oleg: Proximal Policy Optimization Algorithms. In:
arXiv:1707.06347 [cs] (2017), July. (2017), July

BIBLIOGRAPHY 75

[Silver et al. 2016] SILVER, David ; HUANG, Aja ; MADDISON, Chris J. ; GUEZ,
Arthur ; SIFRE, Laurent ; DRIESSCHE, George van den ; SCHRITTWIESER, Julian ;
ANTONOGLOU, Ioannis ; PANNEERSHELVAM, Veda ; LANCTOT, Marc ; DIELEMAN,
Sander ; GREWE, Dominik ; NHAM, John ; KALCHBRENNER, Nal ; SUTSKEVER,
Ilya ; LILLICRAP, Timothy ; LEACH, Madeleine ; KAVUKCUOGLU, Koray ; GRAE-
PEL, Thore ; HASSABIS, Demis: Mastering the game of Go with deep neural networks
and tree search. In: Nature 529 (2016), 01, pp. 484 EP –. – 529 (2016), 01, pp. 484 EP –

[Silver et al. 2017] SILVER, David ; SCHRITTWIESER, Julian ; SIMONYAN, Karen ;
ANTONOGLOU, Ioannis ; HUANG, Aja ; GUEZ, Arthur ; HUBERT, Thomas ; BAKER,
Lucas ; LAI, Matthew ; BOLTON, Adrian ; CHEN, Yutian ; LILLICRAP, Timothy ; HUI,
Fan ; SIFRE, Laurent ; DRIESSCHE, George van den ; GRAEPEL, Thore ; HASSABIS,
Demis: Mastering the game of Go without human knowledge. In: Nature 550 (2017),
10, pp. 354 EP –. – 550 (2017), 10, pp. 354 EP –

[Sutton and Barto 1998] SUTTON, Richard S. ; BARTO, Andrew G.: Introduction to
Reinforcement Learning. 1st. Cambridge, MA, USA : MIT Press, 1998 Cambridge,
MA, USA : MIT Press, 1998

[Sutton et al. 1999] SUTTON, Richard S. ; MCALLESTER, David ; SINGH, Satinder ;
MANSOUR, Yishay: Policy Gradient Methods for Reinforcement Learning with Func-
tion Approximation. In: Proceedings of the 12th International Conference on Neural
Information Processing Systems. Cambridge, MA, USA : MIT Press, 1999 (NIPS’99),
pp. 1057–1063. pp. 1057–1063

[Van Erven and Harremos 2012] VAN ERVEN, Tim ; HARREMOS, Peter: Rényi
Divergence and Kullback-Leibler Divergence. In: CoRR abs/1206.2459 (2012). –
abs/1206.2459 (2012)

[Williams 1992] WILLIAMS, Ronald J.: Simple statistical gradient-following algorithms
for connectionist reinforcement learning. In: Machine Learning 8 (1992), May, nr. 3,
pp. 229–256. 8 (1992), May, nr. 3, pp. 229–256

Appendix A

Proof of Linear Programming
Formulation

This appendix provides the proof of Theorem 2.2 that we report here for completeness:

minimize
v

∑
s∈S

µ(s)v(s)

subject to v(s) ≥ r(s, a) +
∑
s′∈S

P (s′ | s, a)v(s′) , ∀a ∈ A .

Theorem (Linear Programming Solution) v∗ is the solution of the above linear program.

Proof. Let T ∗ be the Bellman optimality operator, then the above LP can be rewritten as:

minimize
v

µT v

subject to v ≥ T ∗(v) .

Using the monotonicity property if v ≥ T ∗(v), then T ∗(v) ≥ T ∗(T ∗(v)), and by applying infinite
times the operator we obtain: v ≥ T ∗∞(v) = v∗. Any feasible solution of the LP must satisfy
v ≥ T ∗(v), thus it must satisfy v ≥ v∗. Hence, assuming all entries µ are positive, v∗ is the optimal
solution to the LP.

Appendix B

Gradient Methods for CMDP

In this section we provide the straightforward extension of REINFORCE and G(PO)DMP
gradient estimation optimizing the policy and the configuration parameters.

B.1 REINFORCE

Let us start by stating the expression of the gradient of the expected return with respect to a
parametric transition model differentiable in its parameters ω.

Theorem B.1.1 (P-Gradient Theorem, from (Metelli et al., 2018a)) Let Pω be a class of
parametric stochastic transition models differentiable in ω, π be the current policy, the
gradient of the expected return with respect to ω is given by:

∇ωJP,π =

∫
S

∫
A
dP,π(s, a)

∫
S
∇ωPω(s′|s, a)uP,π(s, a, s′)ds′dads

We can now derive in a straightforward manner the REINFORCE estimator for model learn-
ing:

∇̂ωJP,πRF = 〈
(

H∑
k=0

∇ω logPω(sk+1|sk, ak)
)(

H∑
k=0

γkR(sk, ak, sk+1)

)
〉N , (B.1)

where 〈·〉N denotes the empirical average over a batch size of dimension N .

B.2 G(PO)DMP

In order to derive the G(PO)MDP estimator for model learning we start from a trajectory
based perspective:

80 Appendix B. Gradient Methods for CMDP

JP,π =

∫
pθ,ω(τ)G(τ)dτ,

where pθ,ω(τ) is the probability of the trajectory τ under the distribution induced by the
parameters θ,ω and G(τ) is the return of the trajectory τ . Using the log-trick and taking
the derivative with respect to the model parameters we obtain:

∇ωJP,π =

∫
pθ,ω(τ)∇ω log p(τ)G(τ)dτ (B.2)

=

∫
pθ,ω(τ)

(
H∑
k=0

logPω(sk+1|sk, ak)
)
G(τ). (B.3)

Now we are exactly in the G(PO)MDP settings and we can use the following approximation
of the gradient:

∇̂ωJPπG(PO)MDP = 〈
H∑
l=0

(
H∑
k=l

∇ω logPω(sk+1|sk, ak)
)(

γlR(sl, al, sl+1)
)
〉N ,

(B.4)
where 〈·〉N denotes the empirical average over a batch size of dimension N .

Appendix C

REMPS derivation

This appendix provides the derivation of the REMPS solution. We report here the for-
mulation of the REMPS problem. For the sake of brevity we use X = S × A × S and
(s, a, s′) = x ∈ X , moreover we indicate with d(·) the optimized distribution and with
dP,π(·) the sampling distribution.

maximize
d

∫
X
d(x)R(x) (C.1)

subject to
∫
X
d(x) log

d(x)

dP,π(x)
dx ≤ ε (C.2)∫

X
d(x)dx = 1 . (C.3)

We solve the problem with Lagrangian multipliers. We denote with η the langrangian
multiplier associated with the KL constraint and with λ the multiplier associated with the
constraint of being a valid distribution.

L(d(·), η, λ) =

∫
X
d(x)R(x)dx+ (C.4)

+ η

(
ε−

∫
X
d′(x) log

d(x)

dP,π(x)
dx

)
+ (C.5)

+ λ

(
1−

∫
X
d(x)dx

)
. (C.6)

Observe that ∂
∂f(x0)

∫
f(x)g(x)dx = g(x0). So we take the derivative with respect to d(x)

to get:

R(x)− η log
d(x)

dP,π(x)
+ η − λ = 0 , (C.7)

from which we get, solving for d(x):

d(x) = dP,π(x) exp

(
R(x)

η

)
exp

(
1− λ

η

)
. (C.8)

82 Appendix C. REMPS derivation

By enforcing the constraint that d should be a valid distribution we obtain:

d(x) =
dP,π(x) exp

(
R(x)
η

)
∫
X d

P,π(x) exp
(
R(x)
η

)
dx

. (C.9)

Substituting into the Lagrangian function (C.6), we obtain the dual function:

g(η, λ) = −η + ηε+ λ (C.10)

= η log

(∫
X
dP,π(x) exp

(
ε+

R(x)

η

)
dx

)
. (C.11)

From (C.8) we extract the policy and model inducing the distribution d. We return to the
original formulation for the sake of clarity.

π′(a|s) =

∫
S d(s, a, s′)ds′∫

A
∫
S d(s, a, s′)ds′da

(C.12)

=
π(a|s)

∫
S P (s′|s, a) exp

(
ε+ R(x)

η

)
ds′∫

A π(a|s)
∫
S P (s′|s, a) exp

(
ε+ R(x)

η

)
ds′da

, (C.13)

P ′(s′|a, s) =
d(s, a, s′)∫
S d(s, a, s′)ds′

(C.14)

=
P (s′|s, a) exp

(
ε+ R(x)

η

)
∫
S P (s′|s, a) exp

(
ε+ R(x)

η

)
ds′

. (C.15)

	Abstract
	Estratto in Lingua Italiana
	Ringraziamenti
	Introduction
	Reinforcement Learning
	Markov Decision Processes
	Formal Model
	Transition Model
	Policy
	State distribution
	State Kernel
	Goal and Rewards
	Policy and Value Functions
	Optimality Conditions

	Linear Programming
	Dynamic Programming
	Policy Iteration
	Value Iteration

	Policy Search
	MDP extensions
	MDP with imprecise probability
	Bounded-parameter Markov decision processes
	Non stationary MDPs

	State of the Art
	Configurable Markov Decision Processes
	Formal Model
	Model and Policy spaces
	Theoretical Foundations
	Safe Policy Iteration and Safe Model Iteration
	Safe Policy Model Iteration
	Limitations

	Relative Entropy Policy Search
	Problem Formulation
	Parametric Policy
	REPS extensions

	Relative Entropy Model Policy Search
	Motivations
	Relative Entropy Model Policy Search
	Optimization
	Projection
	Model Approximation
	Discussion

	Theoretical Analysis
	Problem Formulation
	Assumptions
	Sensitivity to the KL constraint
	Finite-Sample Analysis
	Analysis for bounded probability densities

	Experimental Evaluation
	Chain Problem
	Sensitivity to
	Sensitivity to parameter initialization
	Comparison with SPMI

	Cart-Pole
	Results

	Autonomous Driving and Configuration with TORCS
	Environment Description
	Results

	Discussion and Conclusions
	Bibliography
	Proof of Linear Programming Formulation
	Gradient Methods for CMDP
	REINFORCE
	G(PO)DMP

	REMPS derivation

