
Politecnico di Milano

Corso di Laurea Magistrale in Ingegneria Informatica
Dipartimento di Elettronica, Informazione e Bioingegneria

Scuola di Ingegneria Industriale e dell’Informazione

Efficient containers distribution at global
scale

Relatore: Prof. Marco Domenico SANTAMBROGIO
Correlatore: Dott. Ing. Rolando BRONDOLIN

Tesi di Laurea di:
Simone Mosciatti Matr. 878758

Anno Accademico 2017-2018

Simone Mosciatti: Efficient containers distribution at global scale, An
Homage to The Elements of Typographic Style, c© Dicembre 2018

A chi ha passione per quello che fa.

Ognun vede quel che tu pari. Pochi sentono quel che tu sei.
— Niccolò Machiavelli

A C K N O W L E D G M E N T S

Many people contributed to this work and to my studies and I would
like to thank them here.

First of all I would like to thank the Politecnico of Milano and its
professors. In particular I would like to thank the NECST Lab, for the
many corrections, for the (malriposta) trust and opportunities, and for
the freedom it gave me in pursuing my interests and goals.

CERN, my colleagues and my supervisors that for some weird
reasons seem to appreciate all the mess I am leaving in their codebase.
Accelerating!

The friends from China whose support and friendship helped me
in these years and that were always there to cazzeggiare. Sapervi cosi’
distanti ma cosi’ uniti non mi fa temere nessuna distanza, grazie!

The new friends from Milan who have never let me down. Parlare
con voi mi ha fatto crescere, grazie!

The old friends of a lifetime that always make me laugh, talk,
share and that are always there to sfottermi. Siete sempre in grado di
ricordarmi chi sono, da dove vengo e sopratutto dove vado, grazie!

Then to my family, that always managed to catch me when I was
trying to run away as a child, but then exhausted eventually let me
go in order: to the US, to Milan, to China and last to Switzerland. Per
l’incodizionato supporto in ogni mia scelta e decisione, grazie!

My brother, I don’t know exactly why, but Thanks. Mi fai vedere il
mondo da un altra prospettiva senza mai farmi sentire solo, grazie!

Finally Ema (Miao Miao) who in these years has always been there
for me and with me, her presence and smile make me stronger and
bolder allowing me to pursue goals that I don’t know if I would have
been able to reach without her. Ti mao!

iii

A B S T R A C T

The problem of software distribution has always been an issue at
CERN, given the massive dimension of the software used for analyzing
the data collected from the LHC. The problem of software distribution
has been historically solved by the use of a distributed, read-only
file system like CernVM-FS that allows distributing binaries to all
the geographically distributed data-centers used for High Energy
Physics computation. However, the problem of managing run-time
dependencies is still open, indeed, some application can run perfectly
well in an environment while not working in a different one.

The problem of run-time dependencies is already been solved in
the industry with the use of containers, immutable computing en-
vironments which encapsulate all the run-time dependencies of an
application allowing it to run with ease on different machines. More-
over, containers are becoming more widespread also inside CERN,
suggesting that they will be a key component for running future High
Energy Physics workload. However the integration between containers
and CernVM-FS is not yet mature enough and no automatic tool to
manage the whole lifetime of a container images inside CernVM-FS
exists yet.

Indeed, containers are difficult to distribute in an efficient way since
their content is stored inside a few large files. Moreover it has been
shown that most of the content of containers is not used while running
the application itself. Efficient content distribution and managing
runtime dependencies should not be contrasting goals. Hence, in
this work, we present a way to efficiently distribute the content of
containers in order to avoid waste of bandwidth and time.

iv

S O M M A R I O

Il CERN è una organizzazione Europea che opera il più grande la-
boratorio della fisica delle particelle al mondo. Il CERN ospita la
strumentazione delle 4 più grandi collaborazioni nel campo della
fisica: ALICE, ATLAS, CMS e LHCb.

Al CERN sono ospitati anche un insieme di collaborazioni nel
campo della fisica più piccole che beneficiano delle strumentazioni,
conoscienze, effetto network e servizi disponibili.

Tra i servizi che il CERN offre ai suoi utenti quello informatico è
uno dei più interesanti. Infatti il CERN ospita e gestisce il WLCG [6],
uno dei più grandi centri di calcolo usati per la ricerca pubblica.

Un problema che influenza le operazioni dentro il centro di cal-
colo è come installare e impostare il software sui singoli server. Il
software usato nell ambito scientifico è di grandi dimensioni ed è
molto dispendioso in tempo di banda e tempo spostare ogni binario
da una posizione centrale ad ogni singolo computer. Diverse soluzioni
sono state proposte e alla fine is problema è stato risolto con l’uso
di CernVM-FileSystem [4], un file system di sola lettura che mette
a disposizione un sistema di distribuzione software che è scalabile,
solido e che richiede poca manutenzione.

Provvedere solo alla distribuzione del software, pero’ non è suffi-
ciente. Infatti anche le dipendenze a run time devono essere gestite
per garantire operazioni senza problemi. Una possibile soluzion per
gestire le dipendenze a run time è l’uso dei container. I container
impacchettano tutte le dipendenze in un file system immutabile così
da poter eseguire l’applicazione sempre nello stesso ambiente anche
se su macchine diverse.

Distribuire il contenuto dei container usando CVMFS non è pratico,
visto che i containers sono distribuiti come un insieme di grandi file e
questo è contrario ai principi di funzionamento di CVMFS che lavora
meglio con tanti piccoli file.

Questa tesi esplorerà il problema di create un file system di sola
lettura addatto per distribuire il contenuto di container sui nodi di
computazione. Descriveremo la struttura di un file system di sola
lettura generico e implementero la metodologia proposta con CVMFS.

La tesi è strutturata come segue:

• Il Capitolo 2 fornisce tutte le informazioni necessarie di base.
Inizia esplorando l’architettura del centro di calcolo del CERN,
poi spiega il ruolo di CVMFS, la sua architettura di alto livello e
come e perchè è uno strumentto adatto all ambiente del CERN.
Il capitolo illustrerà anche le run time di containers che verranno

v

usate in questo lavoro. Alla fine forniremo la definizione del
problema che questa tesi si pone.

• Il Capitolo 3 descriverà lo stato dell’arte. Inizieremo illustrando
alcuni file system distribuiti e la loro architettura, Poi descrivere-
mo come centri di calcolo di tutte le dimensioni sono operati e
gestiti. L’ultima parte di questo capitolo esplorerà altri progetti
nella letteratura che lavorano in modo pigro come CVMFS.

• Il Capitolo 4 descriverà la metodologia che puo’ essere usata
da un file system di sola lettura generico come CVMFS per
ospitare immagini di containers e raggiungere una distribuzione
del contenuto efficiente.

• Il Capitolo 5 mostrerà i dettagli della implementazione e come il
file system è gestito e creato sopra CVMFS usando del software
apposito.

• Il Capitolo 6 mostrerà i risultati di questo lavoro comparando il
tempo di avvio di containers in scenari diversi, così come l’uso
di banda.

• Il Capitolo 7, infine, esplorerà come questo lavoro puo’ essere
migliorato. Mostreremo anche alcune direzioni per lo svilup-
po della distribuzione dei containers che pensiamo siano di
interesse.

vi

C O N T E N T S

1 introduction 1

2 background and problem definition 3

2.1 WLCG 3

2.2 CVMFS 5

2.2.1 CVMFS High Level Overview 5

2.2.2 CVMFS Details 6

2.3 Containers 7

2.3.1 Docker and the cvmfs/graphdriver plugin 7

2.3.2 Singularity 9

2.4 Problem Definition 10

3 state of the art 11

3.1 Distributed File System 11

3.2 Provising of Machines 12

3.2.1 Single o Local Machines and Small Clusters 12

3.2.2 Local cluster 13

3.2.3 WLCG environment 14

3.2.4 Managing run time dependencies on the WLCG 15

3.3 Working lazily 16

4 methodology 18

4.1 High Level overview of the proposed file system 18

4.2 Singularity Images 20

4.3 Docker Thin Images 22

4.4 Keeping track of the work already done 24

4.5 Closing remarks 26

5 implementation 27

5.1 CVMFS Write Interface 27

5.2 Singularity Ingestion 27

5.3 Docker Ingestion 28

5.3.1 CVMFS Ingestion of Tarball 29

5.3.2 Docker Ingestion Algorithm 29

5.4 Garbage Collection of Images 30

5.5 Administrator Interface 30

5.6 The repository-manager command line tool 32

6 results 33

6.1 Containers startup time 33

6.1.1 Comparison of the startup time 34

6.1.2 Use of the proposed file system structure vs.
using CVMFS without sub catalogs 34

6.2 Data transfer necessary for start a container 36

6.3 Space Requirement 36

6.4 Complexity 38

7 conclusion and future work 39

vii

contents viii

bibliography 41

L I S T O F F I G U R E S

Figure 2.1 Schematic representation of the WLCG 4

Figure 2.2 Decision proces for running docker thin im-
ages 9

Figure 4.1 High level visualization of the proposed file-
system 19

Figure 4.2 Visualization of the Filesystem structure, the
arrows indicate symbolic links 20

Figure 4.3 Visualization of the "super directories" in the
".flat" subdirectory 21

Figure 4.4 Complete visualization of the .flat directory 25

Figure 4.5 Structure of the .metadata/ directory 25

Figure 6.1 Comparison of the containers startup times
with the proposed file system structure and
without the use of sub-catalogs. The units are in
milliseconds. Average of n = 100 runs. Lower
is better. 35

Figure 6.2 Comparison of the bandwidth with the pro-
posed file system structure and without the use
of subcatalogs. The units are in MB. Average of
n = 100 runs. Lower is better. 37

L I S T O F TA B L E S

Table 5.1 Available placeholders and their application to
the image https://registry.hub.docker.com/library/centos:centos6 32

Table 6.1 Benchmark of startup time of a containers, the
first number is the average while the second is
the standard deviation. The units are in mil-
liseconds. n = 100 34

Table 6.2 Apparent size in GB of the two folder .layers
and .flat 37

Table 6.3 Result of the cyclomatic complexity analysis,
only function with complexity greater or equal
to 3 are shown 38

ix

Listings x

L I S T I N G S

Listing 2.1 Example of a recipe file of a Docker thin im-
age 8

Listing 4.1 Algorithm to add an image reference to the
layer metadata 23

Listing 4.2 Algorithm to remove an image from the file-
system 24

Listing 5.1 Algorithm to unpack a Docker image with Sin-
gularity and ingest it into CVMFS 28

Listing 5.2 Example of a small wish-list 31

1
I N T R O D U C T I O N

CERN, European Organization for Nuclear Research, (French: Con-
seil européen pour la recherche nucléaire) is an European research
organization that operates the largest particle physics laboratory in
the world.

Its mission is to:

• Provide a unique range of particle accelerator facilities that
enable research at the forefront of human knowledge

• Perform world-class research in fundamental physics

• Unite people from all over the world to push the frontiers of
sciences and technology, for the benefits of all.

It host the instrument of the 4 biggest physic collaborations: ALICE,
ATLAS, CMS and LHCb.

CERN hosts also a plethora of smaller physic collaborations that
benefits from the instruments, know how, network effects and services
available.

Between the services offered to its users the computing service is
one of the most interesting. Indeed CERN hosts and manages the
WLCG [6], one of the biggest computing data center used for public
research.

An issue that affects the operations inside the data center is the
provisioning of software on the computing servers. Scientific software
is large and is very time and bandwidth consuming moving every
binaries from a central repository to the computing nodes. Several
solutions have been proposed and eventually the problem has been
solved with the use of CernVM-FileSystem [4], a read only file-system
that provides a scalable, reliable and low maintenance software distri-
bution system.

However simply provide the servers with the necessary software is
not enough. Indeed also run time dependencies need to be managed
to ensure smooth operations. A possible solution to manage run time
dependencies is the use of containers. Containers pack up all the
run time dependencies in an immutable file system so that they can
execute their application always in the same environment, even if
running on different machines.

However, distribute containers content using CVMFS is not conve-
nient, since the containers are distributed as a set of big files and this
works against the working principle and performance of CVMFS that
works better with a lot of small files instead of few large files.

1

introduction 2

This thesis will explore the problem of creating a suitable read-only
file-system structure to provision containers images on computing
nodes. We will provide a general read-only file-system structure and
we will implement the proposed methodology on top of CVMFS.

This thesis is structured as follows:

• Chapter 2 provides the necessary background. It start by explor-
ing the computing architecture at CERN, then it explain the role
of CVMFS, its high level architecture and how and why it fits
well in the WLCG geographically distributed data center. The
chapter will then illustrate the container run-times that we will
exploit in this work and how they interact with CVMFS. Finally
we are going to state the problem definition of this thesis.

• Chapter 3 will describe the state of the art. We will start by
illustrating few distributed file systems and their architecture.
Then we will move on to describe how provisioning of servers is
done in environments of different size and dimensions. The last
part of this chapter will explore other projects in the literature
that work lazily as CVMFS.

• Chapter 4 will provide the methodology that can be used by
a generic read-only file system like CVMFS to host containers
images and achieve efficient content distribution.

• Chapter 5 will dig into the details of how the file system is
managed and created on top of CVMFS using custom software.

• Chapter 6 will show the result of this work comparing start up
times of containers in different scenarios as well as the band-
width used.

• Chapter 7 will finally explore how this work can be enhanced
and improved. Moreover we will show other directions regarding
the distribution of containers content that we believe are of
interest.

2
B A C K G R O U N D A N D P R O B L E M D E F I N I T I O N

In this chapter we are going to introduce the concept and the tech-
nologies that made this work possible. We will start introducing the
Worldwide LHC Computing Grid (WLCG), which is the collaboration
that provide the computing power necessary to the CERN mission.
The dimension of the WLCG and its specific workload required and
allowed a specific software distribution system, CernVM-FileSystem
which is used to provision the machines on the WLCG.

Then we will introduce the concept of containers, a different way
to solve the software distribution problem that is widely adopted
in the industry. In particular, we will focus on Docker containers
and the Docker images format. We will then explore Singularity, a
container runtime capable of running containers images stored as
simple folder in the file system. Finally we will explore the Docker
cvmfs/graphdriver, a Docker plugin that allow to run Docker images
whose content is available on a read-only file-system without the need
of downloading or accessing the Docker standard images.

wlcg

The Worldwide LHC Computing Grid is a global collaboration of
more than 170 data centers in 42 countries. The mission of the WLCG
is to provide the computing resources to store, distribute and analyze
the data generated by the operations of the LHC [6],[8].

The organization of the WLCG follows a hierarchical model, where
each level of the hierarchy is called Tier. The most central Tier is the
Tier-0, which is hosted by CERN in the Geneva Area and in Budapest.
There are 13 Tier-1 data centers with enough storage and computing
capabilities to support the Grids operation around the clock. Tiers-1
are geographically distributed: 8 of them are in Europe, 3 in North
America and the rest is in Asia. Finally, the Tier-2 data centers do not
have strict requirements and are generally operated by research centers
and universities [8]. A schematic representation of the architecture of
the WLCG is provided on Figure 2.1.

The work of the WLCG is mostly divided in two big classes: analysis
of the data from the LHC detectors and Monte Carlo simulations. The
WLCG assumes and supports a batch computing paradigm. Analysis
and simulations are split in smaller jobs that are distributed to different
computing node that can work in parallel [8], [3].

Before to start each job it is necessary to install the software on the
server. Unfortunately the amount of software potentially needed in

3

2.1 wlcg 4

Figure 2.1: Schematic representation of the WLCG

2.2 cvmfs 5

each computing node and the velocity at which the software is updated
can make the installation challenging. Moreover, simpler installation
techniques that rely on packages managers are not applicable since
they would put the centralized package managers themselves under
too much load. Several solution have been proposed and used in the
past, eventually it settled for the use of CernVM-FileSystem (CVMFS)
[4].

cvmfs

This section will explore CernVM-FileSystem, we will start with an
high level overview of CVMFS, then we will explore what happens
when a file is requested.

CVMFS High Level Overview

CernVM-FileSystem [4] provides a scalable, reliable and low-maintenance
software distribution system. It is implemented as a read-only POSIX
file-system in user space exploiting FUSE (File-system in USErspace)
[29] and standard web server technologies such as Apache or NGNIX.

Each running instance of CVMFS provides a read-only file-system
that is denominated repository. At CERN different collaborations main-
tains different repositories, but all of them can be mounted from all
the computing node in the WLCG. CVMFS is engineered to support
repository of size on the order of the Terabyte with billions of files.

To save storage space files are addressed by their content (Content
Addressable Storage), hence duplicated files will be stored only once.

In order to distribute software to geographically distant data centers
and keep a low latency, CVMFS allows to cache content in different
machines. This allow to host a cache server in each Tier of the WLCG.
The use of caches fits perfectly with the Tiers model of the WLCG
presented above. The Tier-0 host the main repository (Stratum-0), and
the Tier-1 host the first level of cache (Stratum-1) and so on.

The content of the files are served using the HTTP protocol by a
standard web server. The files are lazily downloaded only on the
machine that need them and only when necessary.

In order to locate and request files from CVMFS the clients down-
load the catalog, a simple SQLite database which describes a subtree
of the whole file-system. The catalog contains all the metadata of
files and directories, including owner, group, permission, and size.
Moreover the catalog contains also the URL where to download the
files.

A root catalog is available in a know path, and, if the file-system
grows too large, the root catalog links to other sub-catalogs. The
use of sub-catalogs allows to keep each catalog small improving the
query time. Moreover, while normal files hosted in CVMFS can be

2.2 cvmfs 6

split into small blocks and each block can be serve separately, this
is not supported for catalogs. Indeed each sub-catalog needs to be
fully downloaded before it can be used. Hence big catalogs can be a
bottleneck both with the respect of query time, download time and
bandwidth.

CVMFS Details

CVMFS is implemented using the Client-Server architecture. The
server is responsible to manage the content of the repository and to
expose it via HTTP API. The client is installed in the host machine
and is responsible to expose the content of the repository to the users
and it is implemented as a FUSE daemon which implements all the
system calls necessary for a read-only file-system.

When a CVMFS file-system is mounted, it starts by reading a config-
uration file which describes each repository. The client then downloads
a simple text file which points to the catalog of the repository. Once
the catalog is downloaded the client has all the information necessary
to start responding to the system calls performed by the user.

As an example, when the user requires a stat system call against a
file, the client reads from the catalog all the information about the file
like, size, permission, mode, etc.. and replies with them. Instead when
the user requires to read from a file, the client first downloads the file
from the server, stores it into a local cache and passes through each
read operation to the local copy.

This approach allows to download only the file really required,
since all the other system calls can be served by just reading from
the catalog. However this implies that the reading latency from a file
depends on the network latency. This strategy works very well if the
reading latency of a file is not a major concern and if reading from the
catalog is fast. However, if the catalog grows too big, then the queries
become too slow.

To overcome this limitation the sub-catalogs were introduced. A
sub-catalog is exactly like the normal catalog, but while the catalog
refers to the whole file-system tree, a sub-catalog refer to a smaller
sub tree of the file-system. In order to avoid confusion, we will refer to
the root-catalog as the catalog that includes the root of the file-system
and to sub-catalog to all the other catalogs in the file-system. The root-
catalog, of course, embeds several sub-catalogs, and each sub-catalog
can, recursively, embed another sub-catalog.

When it is required to read information about a file, the client starts
by looking into the root catalog and then it follows the sub-catalogs
structure until it finds the required file.

2.3 containers 7

containers

While CERN solved its problems of software distribution with CVMFS
the industry opted for a different approach: containers. Containers
are a standard units of software that package up code and all its
dependencies so that computer applications run quickly and reliably
from one computing environment to another [21].

In order to standardize containers and make the technology inter-
operable in 2015 the Open Container Initiative (OCI) was founded [12].
The OCI defined a standard format to use to pack containers into
images [9], this format have been adopted by Docker and is used in the
Docker Images. A Docker image is an immutable set of tar files, where
each tar file is called layer. Prior to run the container, each layer gets
mounted one on top of the other to re-create the original environment
where to run the application [10]. The content of each image is codified
in a json file, the manifest, which provides the unique name of the
image itself and which refers to each layer that compose the image
by their unique identifiers. The unique identifier of both images and
layers is the result of the function hash256 of their content [11].

Docker images are distributed through Docker registries, simple
HTTP servers that given the unique identifiers of a layer provide the
layer itself, similarly, given the identifier of an image the registries
provides its manifest [18].

Docker allow to associate a human readable identifier to each image,
this name is composed by a namespace, which identifies the user
or organization that created the image, a name, which identifies the
image itself and a tag, which identifies the version of the image. These
names are not immutable and are meant to be used just by humans to
recognize and use the images [20]. The repository where the image
is hosted, its namespace, its name and its tag create a hierarchical
structure between the several images that is easy to navigate for
humans.

Docker and the cvmfs/graphdriver plugin

Docker is a thin CLI layer on top of a Linux daemon, dockerd which is
responsible to obtain the Docker images from the registries, mount the
layers, manage the runtime of the image and allow communication of
a Docker runtime with the host system [19].

Docker layers can be shared between different images, so the Docker
daemon download them once and store them in the local machine
for future use [16]. On average less than 7% of the content inside a
Docker image is used during the runtime of the image [14]. The layers
are distributed as a single tar file [10], hence a naive distribution of
layers with CVMFS would not provide any advantage. The whole tar

2.3 containers 8

files would need to be downloaded erasing the advantages of using
CVMFS.

A solution to this problem was introduced with the cvmfs/graphdriver
plugin and the concept of "thin-images" [13]. In this work we are not
interested in the internals of the cvmfs/graphdriver plugin, it will
be sufficient to know that the Docker daemon can be enhanced with
the use of plugins [17] and that the plugin allows us to run what are
called "thin-images".

Thin-images are Docker images that are created starting from stan-
dar (fat) Docker images. The content of a thin-image is only a simple
json file whose content is the list of layers needed by the original
fat-image and where to find them in the host file-system, we call this
file the recipe an example of recipe file is show on Listing 2.1. Thin-
images can be executed only if the Docker daemon have enabled the
cvmfs/graphdriver plugin, indeed the plugin is able to read the con-
tent of the thin-image, mount the original layers inside the container,
and finally execute the application [13].

Listing 2.1: Example of a recipe file of a Docker thin image

{

"version": "1.0",

"origin": "https://registry.hub.docker.com/library/python:

latest",

"layers": [

{

"digest": "bc9ab7...0257b7",

"url": "cvmfs://thin.osg.cern.ch/.layers/bc/bc9ab7...0257b

7/layerfs"

},

{

"digest": "193a63...110d7f",

"url": "cvmfs://thin.osg.cern.ch/.layers/19/193a63...110d7f

/layerfs"

},

{

"digest": "e5c3f8...818580",

"url": "cvmfs://thin.osg.cern.ch/.layers/e5/e5c3f

8...818580/layerfs"

},

{

"digest": "b61a0d...b615a9",

"url": "cvmfs://thin.osg.cern.ch/.layers/b6/b61a0d...b615a

9/layerfs"

}

]

}

If the files necessary to run the thin-images are distributed by CVMFS,
it is possible to run docker containers without downloading any
unnecessary content.

2.3 containers 9

Figure 2.2: Decision proces for running docker thin images

Moreover the cvmfs/graphdriver plugin is able to run standard
(fat) Docker images, hence conventional Docker images are supported
seamlessly [13].

On Figure 2.2 we show how the plugin decides how to mount the
container file system. If it detects that the image is a standard fat
Docker image it runs it as a standard image, if it detects that is a thin
image it mounts the layers from the CVMFS read-only file system.

The downside of this approach is that a "thin-image" can be down-
loaded, stored in the local storage and successfully run using the
content provide by CVMFS. On a second moment the images can
be updated, uploaded newly on the registry and the old content in
CVMFS is deleted to host the new content of the image. If now the
user tries to run the same images, it will not download it again from
the registry but it will use the image already cached, referring to
content not available anymore on CVMFS, hence it will fail to run.

Singularity

Singularity [32] is another container runtime, it provides its own image
format but it is capable to run standard Docker images [31] as well.
Moreover it is capable of running containers, also Docker containers,
directly from a directory containing the unpacked container file-system
itself [30].

Given the Singularity capability to run Docker containers directly
from a directory containing the unpacked Docker image file-system

2.4 problem definition 10

its integration with CVMFS is simpler that the one with Docker itself.
Indeed it is sufficient to host the directory containing the unpacked
file-system of the Docker image in CVMFS.

problem definition

We have introduced how CERN has overcome the challenges of soft-
ware distribution using CVMFS. Unfortunately this is not enough
since run-time dependencies between software components can break
applications that instead are running perfectly fine in a different envi-
ronment.

Since containers pack up all their runtime dependencies in a stan-
dard environment they are a suitable solution for this problem. How-
ever, containers are distributed as big tar files which is against the
design, working principles and performance characteristics of CVMFS.

Both CVMFS and containers aim to solve the same challenge of
server provisioning, however they made different trade-offs. CVMFS
opted for an efficient distribution of the content, making difficult
and inconvenient to pack all the runtime dependencies of a particu-
lar application. Containers, instead, opted to make each application
self-contained so that the application can run reliably on different
computer environments, however losing efficiency in the distribution
of the content.

Efficient content distribution and efficient dependency management
should not be contrasting goals. For this reason, in this thesis work
we will tackle the problem of how to efficiently distribute software in
HPC clusters while efficiently preserving all its runtime dependencies.

3
S TAT E O F T H E A RT

In this chapter we will provide the state of the art for the technologies
that are of interest for this work. In Section 3.1 we will discuss the
state of the art in distributed file system where we will see the major
difference between CVMFS and other distributed file system. In Sec-
tion 3.2 we will explore how provisioning and installation are done
on computing clusters of various size, starting from the smallest up
to the globally distributed one. Finally in Section 3.3 we will explore
early achievement of working lazily when provision machines.

distributed file system

Several distributed file systems have been proposed and are available.
One of the first implementations of a distributed file system is the
Andrew File System (AFS) [24]. It provides a read-write file system,
however it guarantees only weak consistency, hence read and write
operations are directed only to locally cached copy of the file. The
changes are propagated to the server when a file is eventually closed.
AFS informs the client if a different user modifies a cached file using
callbacks, but those callbacks are discarded after any communication
error between the client and the server, including network failures or
timeouts. The need to keep a constant connection open between the
client and the server makes the client/server ration quite small, 200.
Hence for every 200 clients a new server machine is needed.

Another commercial distributed file system is BeeGFS [33] it has a
different approach than AFS, since it is composed by three different
components: the clients, the metadata servers and the storage servers.
The client coordinate and informs the metadata servers which in turns
coordinate the storage servers that, finally, are accessed by the clients.
Also this architecture of distributed file system relies on metadata
components that bounds the number of clients imposing an overhead.

Another approach to store huge amount of data is Amazon S3

(Simple Storage Service) [15]. S3 does not provide a classical POSIX in-
terface but an eventually consistent REST interface. Objects are created
immediately but deletions will eventually happen in the future. More-
over it has no knowledge of permissions outside of a simple access
control list, symbolic links or even folders. Due to this shortcomings
S3 is not directly usable to distribute and instal software one HPC
clusters, however it can be used as a simple layer to access the file
leaving all the metadata handling to CVMFS. As mentioned in Section
2.2 the files provided by CVMFS are accessed using the HTTP protocol.

11

3.2 provising of machines 12

And they don’t have to be in a web server managed by CVMFS but
they can be in any accessible location.

To the best of our knowledge, no distributed file system handles
metadata like CVMFS does, indeed all the metadata queries to CVMFS
are handled by the client themselves reading the catalogs files, hence
the metadata operations are not a limitation anymore since they scale
out with the number of clients. Of course this is possible since CVMFS
provides to the clients only a read interface and the write are all
serialized in the CVMFS server component.

provising of machines

In this section we are going to explore how it is possible to provision
and install software on cluster of machines. The proposed method-
ologies will grow in complexity as the size of the cluster grows. In
parallel we will see how the problem shifts from the handling of files
to the handling of metadata.

In Section 3.2.1 we will describe how installation and provisioning
of machines is done in humble set up with very few machines. The
need of automation will arise on bigger clusters, hence in Section
3.2.2 we will describe how automatic tools help in provisioning local
clusters. In Section 3.2.3 we will explore the solution that were applied
to the WLCG before CVMFS and their weaknesses. Finally in Section
3.2.4 we will explore proposed solution to the problem of managing
run time dependencies in a globally distributed cluster like the WLCG.

Single o Local Machines and Small Clusters

Several systems have been proposed to manage installation and provi-
sioning of machines.

The simpler approach is of course the manual approach were the
source code is downloaded on the local machine, compiled and finally
installed. While this works fine for the expert user, it introduces a lot of
difficulties and friction for users that are not experts. The compilation
part is error prone and it may require dependencies, so the user must
be ready to do a lot of research and even reading makefiles if necessary.
Moreover, if the software has run-time dependencies, it is necessary
for the user to install them as well, and so recursively.

Of course there is no need to re-compile the software every time,
moreover compilation is an expensive and quite technical step that not
all users are confident in doing. Indeed the package managers [34], [27]
solves this kind of problem, the software is compiled once by expert
on the software itself and distributed along with a script that install
it in the most appropriate location in the system and with a series
of dependencies. This is a major shift in the interface since now the
user simply installs a package without caring of all its dependencies

3.2 provising of machines 13

or without even needing a compiler. It is the package manager that
will eventually install run time dependencies, directly or indirectly.

The distribution of packages poses already a challenge, if enough
users are interested in the packages hosted in a single package man-
ager, it would be necessary to load balance the request between several
mirrors site, indeed this is what happens in big linux distribution that
serves a lot of users. The package manager itself is mirrored to differ-
ent data center each one serving a part of the traffic.

Local cluster

As long as the installation of software is manual and done in rela-
tively small clusters, package managers are suitable for hosting all the
software and provision all the servers.

When the cluster starts to grow, manual installation is not a solution
anymore, indeed specialized tools are available to manage the state of
a fleet of machines.

Ansible [22], [2] is a tool that helps in managing the installation of
software in a fleet of machines. It is based on two simple concepts,
the inventory and the playbook. The inventory associates each machine
that is managed to a set of tags. The playbook is a set of statuses each
associated with a tag. When provisioning a fleet of machines, Ansible
tries to adapt the status of each server in a way that it respects the
status declared in the playbook. As an example in the playbook we
may declare that the servers tagged as web-server need to have the
apache service on, while the servers tagged as build-node needs to
have the gcc package installed. In the first case Ansible will try to
start the apache service while in the second case it will try to install
the gcc package.

A possible issue with Ansible is about the use of those servers: users
may login into the server, change their configuration to fix an urgent
problem and then do not update the Ansible playbooks. In the long
term this causes a drift on configuration and settings that makes quite
difficult to manage the fleet of services.

A solution to the drift in configuration is the use of a different tool,
Puppet [28], [2] which works on a similar principle of Ansible but it
constantly monitor the status of each machine reverting any changes.

If different users need to access a shared pool of computing re-
sources, another solution consist in the use of virtual machines. Each
physical machine gets partitioned into a set of different, isolated vir-
tual machines where each users can install and configure its software.
Moreover the image of the virtual machine itself may come with
software already installed and configured.

Providing software already installed in a machine is a major concep-
tual shift where we move from the user having the responsibility to
install all the needed software to a model where the software is already

3.2 provising of machines 14

in the system itself. However, virtual machines while providing the
stronger level of isolation possible in a shared environment are slow
to set up and also slower than native performance.

An evolution of virtual machines are the containers: containers
provide a smaller level of isolation than virtual machines but are much
quicker to set up and have close to native performance. Moreover
containers are simple to build and their popularity is raising between
developers as well. Indeed it is possible to set up a container that
encapsulates all the status necessary to run a specific computation:
this allows to move the container from a machine to another without
worrying anymore of run-time dependencies.

All these solutions work well in local clusters, however all of them
requires to move all the necessary software on a local machine, also
components that are not needed. Starting a fleet-wide installation
using tools like Ansible or Puppet means that the package managers
needs to serve at roughly the same time all the packages necessary by
all the machines, which can quickly sum up to a lot of bandwidth. The
use of virtual machines or containers is not better in this cases since it
still requires to move a lot of content. In big cluster it is common to
provide local package managers and local container registries.

Providing the content to several different machines is a problem
that can be solved by a careful use of caches and optimizations. Diving
deeper into the containers world, the OCI standard defines that each
layer is identified by a single unique digest. This helps since it provides
an unique identifier to cache and, more importantly, by bundling
together a lot of different files in a single tar files it sidesteps the need
of managing metadata for all the files in a container. Still this comes
at the cost of needing to download a big file even if its content is not
all necessary. Similar consideration can be done for the provisioning
of Virtual Machines.

WLCG environment

The WLCG poses several challenges with the respect of provisioning.
First of all it is a geographically distributed data center, hence in order
to avoid slow and inter-data center communication is necessary to
cache all the necessary binaries in each data center. Then it operates
in batch mode, hence if several jobs started all together in different
machines and if each of them would need to download binaries or
containers, they will quickly overload both the network infrastructure
and the content provider. Moreover, scientific software is usually quite
large, as an example the atlas/analysisbase 1 Docker image, compressed,
is roughly 1GB on size. Indeed, several solution have been proposed
and tested to address these issues.

1 We are refering to the Docker image relative to the version 21.2.56 of the atlas/analy-
sisbase tools.

3.2 provising of machines 15

The Andrew File System [24] (AFS) is a distributed read-write file
system optimized for home directories on globally distributed work-
stations. AFS provides a global name space (/afs) partitioned into cells
and volumes. Scientific collaborations can host the authoritative copies
of their experiment software on public volumes (cell /afs/cern.ch).
Using AFS, scientific software need to be installed only once in the
server in order to be used by several clients. Since AFS needs to keep
the connection state for all its clients it has a low client/server ration
with is limited to about 200:1.

Another proposed mechanism to manage installation on the WLCG
are the grid installation jobs, described in [5]. Jobs that pre-install soft-
ware releases on worker node. In order to avoid to install the software
on every single node WLCG Tiers provides a share software areas, a NFS
volume mounted to every worker node that can be used to provide
the software itself. While the share software areas are a necessity, they
also introduce a single point of failure and high chance to overload
the NFS with meta-data operations.

An evolution of the grid installation jobs is the ALICE Software In-
stallation System described in [5]. The software releases are still dis-
tributed as packages but those packages are physically distributed
to the worker nodes using the BitTorrent protocol. This improves the
installation times using all the bandwidth not only from the package
manager through the worker nodes but also between the worker node
themselves. Unfortunately this architecture required to still transfer all
the packages to all the nodes which is a waste of bandwidth, introduce
sources of errors and it is time consuming.

Another evolution of the grid installation jobs is GROW-FS [7] which
pioneered the idea of meta-data handling on the worker nodes and
not in a central node. GROW-FS provides as well a shared areas for
installation using a simple web server. GROW-FS uses a single catalog
for the entire directory tree and changes to the file system structure
requires to completely reconstruct the catalog as well as re-mounting
the file system on the worker nodes.

Managing run time dependencies on the WLCG

Other than the distribution of content, CERN faced the problem of
managing run-time dependencies. A possible solution to this problem
would be to statically link all the dependencies, but this would gen-
erate extremely big binaries. Another solution would be to carefully
managing all the software installed on the machines, including all the
recursive dependencies. However this clash with the WLCG model
where jobs can migrate from a data center to another along with their
dependencies. Moreover sometimes even a very careful installation is
not sufficient since it is possible that two application that could run
on the same machine have clashing dependencies.

3.3 working lazily 16

The problem of how to manage runtime dependency is been solved
outside CERN in several different ways.

On small scale it is possible to use simple package managers that
automatically install the dependencies, however they suffer of few
different problem. First and foremost in case of dependencies clashing
the package manager simply refuse to install the required package,
which is not an acceptable solution. Then at the scale of the WLCG
the package manager quickly become a bottleneck with respect to the
bandwidth necessary to distribute the content but also with respect to
the size of the internal databases.

Another possible solution is the use of containers. Packaging all the
runtime dependencies along the application code in an immutable file
system allow containers to exactly reproduce the same environment
and condition to ensure smooth operations. The use of containers
however is not convenient in very large clusters like the WLCG, indeed
the content necessary to run a container is distributed as few large
tar files and this makes the distribution itself inefficient since a lot of
content not useful for the application itself is downloaded anyway.

Several system have been propose to decrease the downloading
time of containers images, however all of them work ahead of runtime
trying to optimize how fast the overall system is capable of delivering
the whole image into the host. FID (Faster Image Distribution) [23]
is a P2P Docker images distribution system that is able to accelerate
the speed of distributing Docker images by taking full advantage
of the bandwidth of not only the Docker Registry but also of the
other nodes in the cluster, while decreasing the downloading time.
However, FID still require to download all the image before to run
the computation. Another work by Anwar et all. [1] characterize the
workload of large-scale registries in order to derive design implications
for more optimized registries, still they are working to optimize the
time necessary to serve and download the whole image from the
registry.

While the aim of this work is still to decrease the start up time of
uncached containers we took a different road. The previous works
focus on optimizing the delivery time of the whole content image, we
decided to focus on minimizing the amount of content that the client
needs to download which of course leads to shorter start up time for
the containers and also to save bandwidth.

working lazily

The experience with the installation mechanisms tested at CERN
suggests that it is necessary to work lazily in order to provide software
and content to a wide fleet of machines and this is exactly what
CVMFS does for us. However we need another step in order to solve
also the problem of run time dependencies.

3.3 working lazily 17

Few other system have been proposed to address the problem using
a similar architecture. The cvmfs/graphdriver [13] allows us to run
Docker images starting from a recipe file that list the layers to mount
and their location in the file system. Unfortunately a way to provide
the thin images was not provided, moreover it was not provided a
way to structure the file system itself. Slacker [14] tackle the same
problem but it uses a very different implementation. Their work is
based on NFS and flatten layers. All the layers of an image get flattened
into a single layer, and such layers stored as a single file into a NFS
shared between the Docker Registries and the Docker Client. While
cvmfs/graphdriver shares a set of layers as Docker images, Slacker share
a simple reference to the file stored in the NFS. Slacker is able to reach
very interesting performance thanks to the implementation of the NFS
they use that relies on network disks. We lack the details about the
NFS used by Slacker but we believe that their performance may be
strongly influenced by the size of the cluster.

Similarly to Slacker in another work Nicolae et al. [26] proposed
another lazy structure this time to run Virtual Machines. They trap
the IO to the Virtual Machine image using FUSE and redirect those
call into a shared read-write file system backed by local disk on each
machine. Similarly to Slacker we believe that this approach works well
on a small set of machines but it won’t scale well on a big cluster.
Indeed their experimental set up was limited to 120 machines. As
mentioned above for the grid installation jobs the use of NFS brings the
risk of overloading the NFS itself with metadata operations.

In this work we aim to finally bridge the two worlds of containers
and distributed read-only file system like CVMFS. Instead of working
with blocks like Slacker and Nicolae et al. our primitives will be files.
Similarly we are not going to provide a read-write interface to the
worker node since this will definitely impact the scalability of the
solution given the necessities to implements locks. The client will only
be able to read the files.

4
M E T H O D O L O G Y

In this chapter we will introduce a read-only file-system structure
for running Docker images using both Singularity and the docker
thin-images plugin. We focus on Singularity because it is a widely
deployed system in HPC and on Docker thin-images because it allows
the user to leverage the Docker infrastructure to run images whose
content is distributed with a read only file-system.

Section 4.1 will provide a high level overview of the proposed
methodology explaining why we decided to focus our design on
CVMFS, Singularity and Docker with the cvmfs/graphdriver plugin.

Section 4.2 will analyze the file-system structure to host the Docker
images to run with Singularity. We will explain how we created a
hierarchical structure similar to the one of the docker registries while
keeping the repository maintainable and without putting too much
pressure in the sub-catalog system of CVMFS.

Section 4.3 will analyze how we stored the content used by the thin-
images Docker plugin. Structural similarities between Docker images
and Docker layers will drive us to adopt a very similar solution to
avoid stressing the sub-catalog system. The sharing of layers between
different docker images will allow us to avoid repeating work, but it
will introduce difficulties during the deletion of the image itself that
we will solve using a reference count system.

Finally Section 4.4 will show how we kept track of the images
already present in the file-system.

high level overview of the proposed file system

The aim of this work is to provide an efficient content distribution
system to run containerized application on big distributed clusters.

The aim of this work is to efficiently distribute software in HPC
clusters while efficiently preserving its runtime dependencies. To
tackle this problem we will resort on CVMFS to efficiently distribute
the content of the containers together with containers technologies
to preserving the runtime dependencies in such a way that only the
strictly necessary files will be downloaded into the worker nodes of
the clusters.

The content distribution part will be managed by CVMFS which
provides the primitives necessary to efficiently distribute the content.
Moreover, to the best of our knowledge, CVMFS is the only stable and
tested system that allows to distribute lazily and efficiently Terabytes
of data in a distributed data center like the WLCG. Starting from the

18

4.1 high level overview of the proposed file system 19

/cvmfs/unpacked.cern.ch

registry.hub.docker.com

library

centos:centos7

.layers/

.metadata/

Figure 4.1: High level visualization of the proposed file-system

data distributed by CVMFS, there are two container run-times that
we can use to actually run the containers. The first one is Singularity,
introduced in Section 2.3.2 that allows to run containers whose content
is already unpacked in a simple folder. The second one is Docker with
the cvmfs/graphdriver plugin, which allows Docker to run thin images
made of a simple recipe json file which describes where are in the file
system the necessary layers that are needed to be mounted before to
start the container itself.

The proposed structure is absolutely generic and even if not imple-
mented with CVMFS it would allow the above container run-times to
work with minimal modifications 1. However some choices of the di-
rectory structures have been taken starting from the design of CVMFS
and may not be necessary on a generic read-only file system.

The proposed file-system provides two main structure. A non-
hidden set of directories that host the unpacked images to run with Sin-
gularity and a hidden folder to host the layers used by the cvmfs/graphdriver
Docker plugin. Along with these structures another hidden directory
will contain metadata information about the Docker images already
in the repository.

The directories that host the unpacked Docker images have the same
hierarchical structure of the Docker structure mentioned in Section 2.3,
hence the first directory is the name of the registry that host the image,
it follows the namespace which refers to the user of the organization
responsible for the image and the last level is the image name along
with the tag.

The directory that host the layers of the Docker images can concep-
tually be a flat structure simply containing the layers each identified by
its digest. However a simple flat structure will put too much pressure
in the catalog system so we aggregated layers that share the same
digest prefix and create a sub-catalog for each aggregation.

The hidden metadata folder will follow the same hierarchical struc-
ture of Docker images, allowing to quickly locate the metadata infor-
mation of an image given just the name of the image itself.

1 The implementation of cvmfs/graphdriver relies on a specific cvmfs url in the recipe
format which is a simple implementation details that can be easily generalized.

4.2 singularity images 20

/cvmfs/unpacked.cern.ch

registry.hub.docker.com

library

centos:centos7 -> /cvmfs/unpacked.cern.ch/.flat/75/75835...0c4ab6d

centos:latest -> /cvmfs/unpacked.cern.ch/.flat/75/75835...0c4ab6d

debian:stable -> /cvmfs/unpacked.cern.ch/.flat/a4/a4274...ba594cb

gcc:latest -> /cvmfs/unpacked.cern.ch/.flat/ce/ceccd...a75dd28

openjdk:9 -> /cvmfs/unpacked.cern.ch/.flat/5a/5adaf...5344d70

python:2.7 -> /cvmfs/unpacked.cern.ch/.flat/3c/3c43a...0e7c9d4

python:3.4 -> /cvmfs/unpacked.cern.ch/.flat/43/43953...ed73435

efajardo

docker-cms:tensorflow ->

/cvmfs/unpacked.cern.ch/.flat/2d/2d5b4...97d44fc

Figure 4.2: Visualization of the Filesystem structure, the arrows indicate
symbolic links

singularity images

To run Docker images using Singularity it is sufficient to start the
singularity executable providing as input the directory where the
image is been unpacked. In this section we are going to show how we
structure the file-system in a way that allow users to easily discover
and run unpacked docker images using Singularity while keeping the
file-system easy to maintain.

As mentioned in Section 2.3 Docker images have a hierarchical
structure. The first level of the hierarchy is the docker registry where
the image is hosted. The most common registries in our case are the
official docker hub 2 and the CERN internal registry 3.

The second level in the hierarchical structure is the namespace of
the docker image. If the image is one of the official docker images
it will be the standard namespace: “library”. In all the other cases,
the namespace will be the same as the original docker image. For
example for the images belonging to the ATLAS collaboration we use
the namespace atlas.

The last level is the name of the image itself together with the tag of
such image, separated by a colon (:). We decided to avoid yet another
level containing just the tags. Indeed there are relatively few tags for
each image and adding another level of indirection would have made
it harder to explore the file-system. Moreover, we decided to use the
colon because it is the same character used in the docker registries
between the images and the tag and it is immediately recognizable by
the users.

While this structure is user friendly, it makes the maintenance of
the repository complex.

2 registry.hub.docker.com

3 gitlab-registry.cern.ch

4.2 singularity images 21

/cvmfs/unpacked.cern.ch/.flat

0c

0cbf37812bff083eb2325468c10aaf82011527c049d66106c3c74298ed239aaf

2c

2cc378c061f7b3e8d9096728eb75722a89f31fb3f3117ed10c66cc2f4b8ab281

5a

5adaf00da2a3cf6b611e7c850778fad3dc62c548864706b822b5f3ce65344d70

ea

ea4c82dcd15a33e3e9c4c37050def20476856a08e59526fbe533cc4e98387e39

eadfca9546a132104b8bdb6b76952c6e5d412301704b7bc94e9176bcc5dda0fe

Figure 4.3: Visualization of the "super directories" in the ".flat" subdirectory

The tags used in each image are not immutable, hence, without
continuous maintenance, it may happen that the images stored inside
the file-system are not up to date making difficult for the user to know
what version of the software is being run. Moreover with the described
structure, it would be extremely complex to detect if an image is up
to date or if it needs further updates.

To work around this issues we exploited the fact that each image is
uniquely identified by its digest. Indeed we decided to store the real
content of the images in an hidden folder that embed the digest itself
while preserving the structure presented above using symbolic links.

We show the directory structure of the file-system on Figure 4.2.
The folder that contains the real content of a Singularity image are

all below the standard subdirectory .flat/. The name .flat/ was
chosen to make it clear that only flatted file systems are stored in
there.

Embedding the digest in the name of the folder allows to immedi-
ately find the location of an image, which is useful when an image
become obsolete and need to be deleted from the file-system.

From a theoretical point of view it would be sufficient to store the
whole content of the Singularity images in the folder .flat/$image_digest.
However, from a practical point of view this would create too much
content in a single folder putting too much pressure in the CVMFS
sub-catalog system.

To overcome this issue we decided to create a fixed number of "super-
directories" where we placed the unpacked folder of the images. To
easily locate each unpacked folder in the super-directories we decided
to call each super-directory as the prefix of the digest of the images it
is containing. Since the digest is an hexadecimal string this approach
provides us with 16 × 16 = 256 fixed super-directories inside the
.flat/ directory, each of which will contain only the content of the
images whose digest start with those 2 specific bytes.

On figure 4.3 we can see that “0c”, “2c”, . . . , “ea” are all “super-
directories” and each one contains only the file-systems that start with

4.3 docker thin images 22

“0c”, “2c”, . . . , “ea” respectively. Note the case of “ea” that contains
file-systems of multiple images whose digest start with “ea”.

However, to relieve pressure from the catalog system is not sufficient
to simply aggregate the images into "super-directories", we also need
to create a sub-catalog for each "super-directory." Moreover, since
each image can contains itself a lot of files we decided to create a
sub-catalog also for each unpacked image.

Another positive side-effect of the use of symbolic links is that sym-
bolic links manipulation is defined as atomic in the POSIX standard.

The use of "super-directories" is necessary for limits in the im-
plementation of CVMFS and they are not necessary on an abstract
read-only file-system.

docker thin images

While for running docker images using Singularity it is sufficient
to have the image unpacked in a simple directory, running Docker
containers using the thin-images plugin requires a more complex set
up. As explained in Section 2.3.1 the recipe of the docker thin-image
contains the path of the directories where each layer of the original
docker image is hosted, those directories will be mounted by the
docker plugin.

All the docker layers are stored under a common subdirectory of
the file-system, the .layers/ directory.

Since the sub-tree of the file-system used by the Docker thin-images
is used only by the Docker plugin we don’t need to create a human-
friendly structure like we did for the Singularity sub-tree.

Like docker images also the docker layers are identified by an
unique digest, and similarly to the docker images, store all of them
in a single directory will put too much pressure in the CVMFS sub-
catalog system, hence we follow the exact same model used for storing
the unpacked images also for the layers, creating 216 super-directories.

A big advantage of the use of layers over flat images is that layers
can be shared by multiple images.

The sharing of layers allow us to avoid re-doing work that is already
been done, in particular if a layer is already in the file-system it will not
be added again. On the other hand it makes more complex removing
an image since it is necessary to remove each layer that compose the
image, but some layers may be shared between images.

Removing layers has the important implication that once the layer
is removed every thin image that relies on it would not work anymore.
However those thin-images could be stored on the client side where
we don’t have any access.

To not disrupt the user workflow while keeping the repository to a
manageable size we considered several options:

1. Never remove layers

4.3 docker thin images 23

Listing 4.1: Algorithm to add an image reference to the layer metadata

function AddReferenceToImage(LayerReference, ImageReference)

begin

ReferenceFile <- FindReferenceFile(LayerReference)

if ReferenceFile exist

begin

References <- LoadReferenceFromFile ReferenceFile

Append ImageReference to References

Overwrite References to ReferenceFile

end;

else

begin

References <- ImageReferences

Write References to ReferenceFile

end;

end;

2. Remove layers as soon as possible

3. Provide a grace period before finally removing the layer

The option to never remove layers is impractical since the size of
the file-system will grow unbounded.

Remove layers as soon as possible is not desiderable, even running
computation could be broken by this policy and the users have no
way to deal with this possibility but retrying the whole computation.

The last option is the most sensible and better suited for our use case,
and so it is the one that we implement, this gave users the possibility
to:

1. Complete their computation

2. Update the local images in order to always run stable containers

In order to know which layer to delete from the file-system we
store a reference that map each layer to the images that use the layer
itself.These references are stored as metadata in a simple .json file.
We store one of these reference files for each layer in the file-system.
Anytime a new image is added to the file-system we update the several
reference files, adding for each layer in the image, a reference to the
image itself. When we decide to remove an image, for any layer we
check that it is used only by the image we want to remove, if this is
the case, we remove the layer, if it is not the case we just remove the
reference of the image.

In order to store both the metadata information about the layers
(in particular the "reference" file mentioned above) and the actual
file-system of the layer an additional directory structure is used. Below
the directory called as the digest of the layer there are two more
directories:

4.4 keeping track of the work already done 24

Listing 4.2: Algorithm to remove an image from the file-system

function RemoveLayer(LayerReference, ImageReference)

begin

ReferenceFile <- FindReferenceFile(LayerReference)

References <- LoadReferenceFromFile ReferenceFile

Remove ImageReference from References

if sizeof References = 0

Remove Layer

else

Overwrite References to ReferenceFile

end;

1. layerfs/ directory that actually store the content of the layer

2. .metadata/ directory that stores the references to the image in a
simple JSON encoded file, “origin.json”

Of course, the recipe of the thin images is not concerned at all with
the content of the .metadata/ directory. Hence the recipe files points
directly to the layerfs/ directory.

The complete structure for storing docker images is the one showed
in Figure 4.4

keeping track of the work already done

To avoid to perform duplicated work it is necessary to keep track
of which image is already been added to the file-system. The same
information may be used by the users to know exactly what images
are hosted in the file-system.

In order to know which image is already been added to the file sys-
tem we need to uniquely identify each image. As already mentioned,
using the combination of image name and tag is not enough, since the
tag is mutable: hence we rely on the digest of the image.

The information about each image is stored into another top-level
hidden directory, .metadata/.

Inside the .metadata/ folder we have others directories, one for
each hosted image. Inside those directories there is a single file,
manifest.json that store the manifest of the image itself.

As already mentioned in Section 2.3 the manifest contains the digest
of the image itself. Comparing the manifest stored in the file-system
with the manifest downloaded from the docker registries it is possible
to understand if the image should be updated or not.

The structure of the .metadata/ folder is shown in Figure 4.5.

4.4 keeping track of the work already done 25

/cvmfs/unpacked.cern.ch/.layers

21

2100d...d7b7dbf

.metadata

origin.jsonthe reference file
layerfs/ ... This directory contains

the file-system of the

layer itself and is the

one that appears in the

recipe of the thin-image
217f7...601e9e7

.metadata

origin.json

layerfs/

c3

c300b...4190f83

.metadata

origin.json

layerfs/

c3683...53a1c45

.metadata

origin.json

layerfs/

Figure 4.4: Complete visualization of the .flat directory

/cvmfs/unpacked.cern.ch/.metadata

registry.hub.docker.com

library

python:latest

manifest.jsonthe manifest file
r-base:latest

manifest.json

julia:latest

manifest.json

atlas

athena:latest

manifest.json

Figure 4.5: Structure of the .metadata/ directory

4.5 closing remarks 26

closing remarks

In this chapter we have introduced a file-system structure suitable to
host docker images that can be run using both Singularity and the
docker thin-images plugin.

We started by storing the unpacked images used by Singularity in
a hierarchical structure that recall the one of the Docker registries to
enhance the discoverability of the images itself. This approach however
would have made difficult to maintain the repository since we would
not know the version of each image unpacked. We overcome this issue
storing the real unpacked images in a hidden directory that embed
the digest of the image itself and using symbolic links to preserve
the hierarchical structure. Too many unpacked images stored under
the same directories however would have put too much pressure
on the catalog system of CVMFS, hence we adopted the concept of
super-directories.

On the second part we analyzed how to store the layers used by
the docker thin-image plugin. A single layer can be used by multiple
images. This allowed us to avoid repeating work but at the same time
it makes more complex to remove an image from the file-system. We
decided to keep a reference count to know when it is safe to actually
delete a layer. The same issue of too many files under the same sub-
catalog arose also for storing the layers, we used the same approach
used for the unpacked images based on the super-directories.

The last section explored how we kept track of exactly which image
is already stored in the file-system storing the image catalog in a
hidden subdirectory.

5
I M P L E M E N TAT I O N

In this chapter we are going to explore how the ingestion inside
CVMFS is been implemented. At first we will describe the write
interface of CVMFS, then we are going to talk how we unpack Docker
images to use them with Singularity. We will move on to describe how
we ingest Docker fat images while transforming them into Docker thin-
images suitable to be used with the cvmfs/graphdriver plugin, moreover
we will explore the custom modification done to CVMFS in order to
accommodate the needs of layer ingestion. We will then explore how
all the bookkeeping of images and layers is manages. Then we are
going to understand how the images are removed from the file system.
Finally we will show the interface given to the administrator.

All the work presented in this chapter is implemented in the
repository-manager, a command line utility written in the Go(lang)
language [25].

cvmfs write interface

As mentioned in Section 2.2.2 CVMFS is implemented with a Client-
Server architecture: while the client is strictly read-only, the server
does provide a write interface. What we write in the server is what
the client is then able to read. The write interface of CVMFS is a trans-
actional interface, hence it is possible to open a transaction, modify
the file system and then either publish the modification or abort the
transaction. Those actions are carried out respectively by the command
‘cvmfs_server transaction‘, ‘cvmfs_server publish‘ and ‘cvmfs_server
abort‘. When a transaction is open the server file system is a standard
writable linux file system, hence it is possible to modify it using the
standard POSIX API, Linux commands or even graphical file explor-
ers. Moreover it is possible to test locally the new file system without
actually commit the changes. Of course these actions are not available
to the clients that have access only to a read-only interface.

Finally it is important to keep in mind that only a single transaction
can be opened at any given time since CVMFS will refuse to open a
second transaction.

singularity ingestion

The step to ingest a singularity images are pretty straightforward. Ini-
tially the image is downloaded from the remote registry and stored in
a temporary area. The download is carried out by Singularity itself, in

27

5.3 docker ingestion 28

Listing 5.1: Algorithm to unpack a Docker image with Singularity and ingest
it into CVMFS

function UnpackAndIngestDockerImage(DockerImageName)

Digest <- RetrieveDigestFromImageName DockerImageName

TemporaryDirectory <- CreateTempDirectory

UnpackDockerImageWithSingularity TemporaryDirectory

StartCVMFSTransaction

begin

FlatDir <- CreateFlatDirectory Digest

MoveFrom TemporaryDirectory Into FlatDir

end;

CommitCVMFSTransaction

HumanReadableName

<- GetDirFromDockerImageName DockerImageName

StartCVMFSTransaction

begin

CreateDirectory HumanReadableName

CreatSymlinkFrom HumanReadableName Toward FlatDir

end;

CommitCVMFSTransaction

end;

order to minimize the possibilities of inconsistencies or of errors. Once
the download completed successfully and the unpacked container
file-system is in the local file-system we start the real ingestion phase.

The first step of the ingestion is to open a transaction in CVMFS.
Once we open the transaction we copy the temporary directory into
the CVMFS filesystem under the “.flat/” directory. Then we commit
the first transaction. A second transaction takes care of creating the
symbolic link as described in 4.2.

This few steps are sufficient to make the Singularity images avail-
able through CVMFS. The pseudocode 5.1 show the details of the
algorithm.

docker ingestion

Converting Docker fat images into Docker thin images is a more complex
task than simply make the unpacked image available to use with
Singularity. We will explore all the details of this process in this
section.

In the first part we will introduce how CVMFS is able to directly
ingest tar file which is the format used to distribute Docker images as

5.3 docker ingestion 29

mention in Section 2.3. Then we will explore how starting from the
Docker manifest we add the layers to the CVMFS file system, then we
show how we create the thin image itself.

Moreover we also upload the Docker thin image to a Docker registry.

CVMFS Ingestion of Tarball

As mention in 2.3 Docker layers are distributed as tar files. In order
to support the use case of ingesting Docker layer we decided to
add a new command to CVMFS ‘cvmfs_server ingest‘. The ingest
command takes as input a tar file and a directory inside the CVMFS
file system and extracts all the files and directories in the tar file into
the directory provided as input. This command implicitly opens and
commits a CVMFS transaction, hence it is possible to have only a
single concurrent ingestion.

Docker Ingestion Algorithm

The first step of the algorithm is to retrieve the manifest of the Docker
images from the Docker registry, as soon as we have the manifest the
algorithm checks if the specific image is already been successfully
ingested into the file system. This check happens using the metadata
stored in the .metadata directory as mention in Section 4.4. The check
consists in a simple comparison between the digest of the manifest of
Docker images just downloaded and the digest of the images already
stored in the .metadata folder. If the images is already in the file system
the algorithm terminates.

The next step is to ingest each layer of the Docker image into the
CVMFS file system. As previously we check if the layers already exist
in the file system itself. Since the layers are stored under a path that
embeds theirs own digest as describe in Section 4.3, checking if a layer
is already in the file system consists in simply checking if the folder
where we would ingest the layer already exists or not. If the layer
already exists we move to the next layer of the image.

The ingestion of a layer follows a similar procedure of the ingestion
of an unpacked image, the layer is first downloaded into a tempo-
rary directory and then it is ingested using the ‘cvmfs_server ingest‘
command. Another option could have been to avoid storing the layer
in the temporary directory and simply let the ‘cvmfs_serve ingest‘
command read the content of tar file from STDIN, we decided against
this approach since a non negligible amount of times the download of
the layer fails in the middle wasting all the work already done by the
’ingest‘ command.

If the ingestion of any of the layers fails we stop the whole algorithm
and we rely on retries from the administrator in order to have the
Docker image served on CVMFS.

5.4 garbage collection of images 30

After all the layers have been successfully ingested the next step
of the algorithm is the creation of the Docker thin image. The Docker
thin image is a standard Docker image which content is a single file
thin.json that contains the set of layers to mount before to start the
container itself as mentioned in Section 2.3.1. To create this image it is
sufficient to encode the location of the layers into a .json file and then
pack this file into a standard Docker image. The Docker thin image is
then uploaded into the Docker registry.

The last step of the algorithm is to store the metadata information
about the image just ingested in order to avoid to repeat work already
done. This is done simply storing the manifest of the docker image in
the .metadata folder following the schema presented in Section 4.4.

garbage collection of images

We have described how we can add new images to the CVMFS file
system, however updating an image is quite common, especially if the
images are referred by mutable tag such as “latest” which actually
represent the latest version of a particular application.

During the update of an image we avoid to immediately delete
the files from the CVMFS repository, as mentioned in Section 4.3 this
could cause disruption of service for users.

Instead we keep track of all the images that are not necessary
anymore in a specific file, the remove-schedule.json file which is
stored in the hidden directory .metadata/ just below the main root of
the CVMFS file system. The remove-schedule.json files contains a
collections of the manifest of all the images we are not interested in
anymore.

When it is time to actually delete all the old images we scan the
remove-schedule.json file and we carry out the actual removal of the
images.

The removal of a singularity image is quite simple, indeed, is suffi-
cient to remove the whole directory.

Removing the layers of the docker images is more complex. At first
we need to identify all the layers that we need to check. This is simple
since this information is stored in the manifest itself which is stored
in the remove-schedule.json file.

Then, for each layer we obtain the list of images that need the layer
itself. From that list we remove the image we are eliminating from the
file system. If the list is now empty we proceed to remove also that
specific layer from the file system.

administrator interface

In order to store images in the CVMFS file system is necessary to
know what image to store, in which repository store it and how to call

5.5 administrator interface 31

the respective thin-image. We decide to call the triplet <Input image,

CVMFS Repository, Output image> a wish.
To express a list of those wishes we opted for a simple YAML file

that store a specialization of a generic “wish list”. In the YAML file we
specify a list of Input images, only a single CVMFS repository and a
single syntactical transformation for the Output images. An example
of this specific wish list is show on Listing 5.2.

Listing 5.2: Example of a small wish-list

version: 1

user: smosciat

cvmfs_repo: ’thin.osg.cern.ch’

output_format: ’$(scheme)://gitlab-registry.cern.ch/smosciat/thin

-osg/$(image)’

input:

- ’https://registry.hub.docker.com/library/centos:latest’

- ’https://registry.hub.docker.com/library/centos:centos6’

- ’https://registry.hub.docker.com/library/centos:centos7’

- ’https://registry.hub.docker.com/library/debian:latest’

- ’https://registry.hub.docker.com/library/debian:stable’

- ’https://registry.hub.docker.com/library/debian:testing’

- ’https://registry.hub.docker.com/library/debian:unstable’

- ’https://registry.hub.docker.com/library/ubuntu:latest’

- ’https://registry.hub.docker.com/library/fedora:latest’

- ’https://registry.hub.docker.com/library/python:latest’

- ’https://registry.hub.docker.com/library/python:2.7’

- ’https://registry.hub.docker.com/library/python:3.4’

- ’https://registry.hub.docker.com/library/openjdk:latest’

- ’https://registry.hub.docker.com/library/openjdk:8’

- ’https://registry.hub.docker.com/library/openjdk:9’

- ’https://registry.hub.docker.com/library/gcc:latest’

- ’https://registry.hub.docker.com/library/r-base:latest’

- ’https://registry.hub.docker.com/continuumio/anaconda:

latest’

- ’https://registry.hub.docker.com/bbockelm/cms:rhel6’

- ’https://registry.hub.docker.com/bbockelm/cms:rhel7’

- ’https://registry.hub.docker.com/efajardo/docker-cms:

tensorflow’

- ’https://registry.hub.docker.com/lincolnbryant/atlas-wn:

latest’

The syntactical transformation depends on the input image and is
applied to obtain the final name of the output image. It simply replace
the placeholder $(PLACEHOLDER) on the Output Image with respective
item of the Input Image. We show a reference table on Table 5.1.

The use of a simple YAML file to express the desired content of the
file system brings several benefits. Since the wish list can be hosted on
a version-control system like Github or Gitlab can be used to host and
keep track of the several version of the wish-list. Moreover it enables a
Pull-Request based approach to change the wish list itself. Users who

5.6 the repository-manager command line tool 32

$(scheme) https

$(registry) registry.hub.docker.com

$(repository) library/centos

$(reference) 6

$(image) library/centos:6

Table 5.1: Available placeholders and their application to the image
https://registry.hub.docker.com/library/centos:centos6

wish a new image to be added to the repository can simply make a
pull request adding their image to the wish list. The administrator
of the system act as a gatekeeper, inspect the image that has been
required to be added and decides if it is the case to add the image or
not.

the repository-manager command line tool

All the work presented in this chapter has been implemented in the
repository-manager [25] command line tool. The tool provide to the
administrator of the repository just two main command. The convert
command and the garbage-collect command.

The convert command takes as input a wish list as show in Section
5.2 and follow all the procedures to add the unpacked Docker images
to be used with Singularity to the repository as well as creating the
several Docker thin images and push them into the Docker registries.
Moreover, whenever it needs to delete an image it adds it to the
remove-schedule.json file.

The actual removing of the images is carried out by the garbage-
collect command which reads the remove-schedule.json files and
carried out the removal as described in Section 5.4.

Finally another command of the utility is worth to mention, is the
loop command, which simply executes the convert command in an
infinite loop, each time reading again the wish list file. This allows
the administrator to run the conversion in the background and set
up a periodic job that updates the wish list file downloading it from a
version control system.

6
R E S U LT S

In this section we will explore the experimental results of this work.
At first we will focus on the startup time of containers and we will
make two different comparison for this metric.

First we will compare the use of CVMFS structured as explained
in Chapter 4 as content distribution mechanism against the standard
way of distributing containers content using Docker Registries, this
will show how much faster is to distribute content using CVMFS than
using the standard Docker registries. Then we will compare a less
sophisticate use of CVMFS without the use of super-directories and
sub-catalogs against the proposed file system structure that instead
exploit the sub-catalog mechanism, this will show how the proposed
file system structure compare against simply distribute the files with
CVMFS.

Then we will compare the data transfer necessary to start a container,
similarly we will compare the data transfer necessary by the proposed
solution against the data transfer necessary by a less sophisticate use
of CVMFS without the use of super-directories and sub-catalogs.

Moreover we will show the storage requirement for storing the
images and how much the CVMFS de-duplication mechanism helps
in saving space.

Finally we will measure the complexity of managing the proposed
file system structure.

All the measurements have been effectuate on a machine with
processor Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz and 16GB of
RAM.

containers startup time

In the first part of this section we explore the startup time of containers
hosted in CVMFS using the proposed structure against containers
hosted in a normal file system and served using standard Docker
Registries. This measurements will show what speed up on the start
up time are achievable using CVMFS as content distribution system.

The second part of this section will analyze the startup time of
container hosted in CVMFS using the proposed file system struc-
ture against hosting containers in CVMFS but without the use of
super-directories and sub-catalogs, this will show how a careful im-
plementation of the file system structure will produce better overall
results with the respect of start up time.

33

6.1 containers startup time 34

On both parts we will use a representative use case, we will start
a standard python container, start the python interpreter and imme-
diately quit the interpreter itself executing the quit() command. We
decided to use this use case since it requires to have access to the
python interpreter in the container, which is an executable file of not
negligible size: 3.4MB. Moreover, we chose the standard python im-
age because is a widely used image during both development and
production work. The size of the whole image is of roughly 923MB.

All the measurements are made inside CERN infrastructure and are
collected using the standard unix util time.

Comparison of the startup time

For this analysis we propose 8 scenarios that we synthesized in Ta-
ble 6.1. The Thin-Image on CVMFS row represent the startup time of
containers which content is hosted in the CVMFS architecture dis-
cussed in this work. The Default columns represent the start up time
of containers using the default distribution system based on Docker
Registries.

Cache No Cache

Avg STD Avg STD

Thin-Image on CVMFS
Singularity 103.1 ms 43.8 ms 291.3 ms 40.2 ms

Docker 967.4 ms 54.0 ms 1800.2 ms 351.3 ms

Default
Singularity 73.8 ms 20.7 ms 18847.6 ms 3668.4 ms

Docker 952.6 ms 52.9 ms 12792.1 ms 1689.9 ms

Table 6.1: Benchmark of startup time of a containers, the first number is the
average while the second is the standard deviation. The units are
in milliseconds. n = 100

We can see that the use of CVMFS is a huge help when the cache
is not available, moreover its overhead is almost negligible when the
cache is present. Is interesting to know that the containers hosted
in CVMFS without cache starts in an amount of time that order of
magnitude is comparable to the containers hosted naively but using
cache (4 times slower in the case of Singularity and 2 times slower in
the case of Docker.)

Use of the proposed file system structure vs. using CVMFS without sub
catalogs

In this section we are going to analyze how the use of sub-catalogs
affect the startup performance. Differently from the above test, in this
case the differences lies mostly on the uncached case. Indeed when

6.1 containers startup time 35

the sub-catalog is already downloaded and cached in the local client
the time difference is negligible. For this test, as base case we use
the containers served using the file system structure presented in
this work, on the other side we serve the containers without using
sub-catalogs. Moreover, in the case without sub-catalogs we present
the case where the whole repository contains 10, 20, 30 and 40 images.

Since no sub-catalogs are used the cvmfs_client will need to down-
load a single catalog that keep track of all the files contained in,
respectively, 10, 20, 30 and 40 images.

We used the Singularity runtime for this test because its start up is
less influenced by the run time overhead. Moreover, the base case is
equivalent to the case showed in the previous test, using the Singularity
run time, served by CVMFS without cache.

Figure 6.1: Comparison of the containers startup times with the proposed file
system structure and without the use of sub-catalogs. The units
are in milliseconds. Average of n = 100 runs. Lower is better.

6.2 data transfer necessary for start a container 36

On Figure 6.1 we can see how, on increasing the images in the
catalogs, hence in increasing the size of the sub-catalog the time to
start a containers without using the cache increases as well.

Indeed, the catalog needs to be downloaded completely before that
it can be used, hence increasing the catalog size impacts directly with
the startup time of the containers. Which is the reason why we decide
to use the concept of super directories and sub-catalogs. Indeed with
several sub-catalogs it is not necessary anymore to download a single,
large, catalog, but it is sufficient to download the small sub-catalogs
which refer to the specific super directory we are accessing. The trade-
off is that downloading a single, albeit larger, catalog require only one
connection round-trip while downloading several catalogs requires
several round-trips, however, from our measurement, this does not
seems to impact the overall startup time.

data transfer necessary for start a container

In this section we are going to show how the presence of sub-catalogs
affect the amount of data transfer necessary to start a container. Also
in this case we run the python image calling immediately the quit()
command.

Similarly to the above case we present the case where the catalogs
contains 10, 20, 30 and 40 images and we compare it with the baseline
case, hence with the case that use the structured showed in this work.

Also in this tests the cvmfs_client need to download the catalog
each time, hence it will need to download a catalog that contains the
metadata of the files of respectively 10, 20, 30 and 40 images before to
execute the container itself.

The results of the data transfer measurements are shown on Figure
6.2

Also in this case we can see how structuring the file system using
sub-catalogs improves the efficiency in the data transfer. Indeed using
smaller sub-catalogs as proposed will allow to download only the few
catalogs that are necessary while using a bigger catalog will force the
cvmfs_client to download a big catalog file even if it is not going to use
it all.

Finally is interesting to remember that the Docker image we are
running is roughly 1GB in size.

space requirement

By default CVMFS stores all its content in /srv, hence the most reliable
way to obtain the size of the repository is to analyze the storage used
under /srv. The storage required for the whole repository is of 14G
calculated with the du unix utility.

6.3 space requirement 37

Figure 6.2: Comparison of the data transfer necessary to start a container
with the proposed file system structure and without the use of
sub-catalogs. The units are in MB. Average of n = 100 runs. Lower
is better.

We then obtained the size of the two hidden folder .layers and .flat
using again the du utility. We finally show all the measurement on
Table 6.2.

We can see that the Content-Addressable-Storage used by CVMFS
helps a lot by reducing the amount of space required to host the
repository by half, which make sense since the .layers and the .flat
folders contains the exact same files. Moreover, files are also shared
between different Docker images, and those file are de-duplicated as
well, which explain why the size of the storage folder is much smaller
than the materialized files.

6.4 complexity 38

Storage .flat .layers

Size 14 24 26

Table 6.2: Apparent size in GB of the two folder .layers and .flat

complexity

In order to estimate the complexity of managing the file-system we
decided to use the cyclomatic complexity of the tool that creates and
manages the file-system itself that we discussed on Chapter 5. We
used gocylo [36], a command line tool that calculates the cyclomatic
complexity of functions written in the Go(lang) language. We show
the result of the cyclomatic analysis on Table 6.3.

Cyclomatic Complexity Function

37 ConvertWish

15 ParseImage

14 AddManifestToRemoveScheduler

12 GarbageCollectSingleLayer

12 (Image).GetChanges

12 (Image).downloadLayer

11 SaveLayersBacklink

11 IngestIntoCVMFS

9 requestAuthToken

9 CreateSymlinkIntoCVMFS

9 RemoveDirectory

8 (Image).GetLayers

7 FindImageToGarbageCollect

7 (Image).GetReference

6 AlreadyConverted

6 getBacklinkFromLayer

6 (*execCmd).Start

Table 6.3: Result of the cyclomatic complexity analysis, only function with
complexity greater or equal to 3 are shown

While the cyclomatic complexity is very high it is important to
note that idiomatic golang codes requires to manually check every
possible error returned by other functions, all these checks increase
dramatically the cyclomatic complexity of the code. Indeed there are
19 error check without any logic in the code but simply returning
early in the ConvertWish function.

7
C O N C L U S I O N A N D F U T U R E W O R K

In this work we have presented a way to merge efficient run time
dependency management using containers technologies with efficient
content distribution provided by CVMFS.

The proposed methodology exposed on Chapter 4 is based on pro-
viding a POSIX file system that container runtime can use to load their
content. The use of containers allow to efficiently manage runtime
dependencies logically packing them in different layers exposed as
directories. We build such file system on CVMFS to exploit its effi-
cient content distribution mechanism. This forced some of our design
decision regarding the file system tree like the use of super directories,
however the exact same structure is applicable also to different file
system, not only to CVMFS.

The implementation of the proposed methodology have been ex-
plored on Chapter 5 where we have described a software capable of
creating and managing the whole proposed file system from ingesting
the containers content to deleting it without breaking old images.
Moreover we have concluded the work started with the cvmfs/graph-
driver that provided only a way to use the thin images while we finally
proposed a methodology to easily produce them starting from stan-
dard Docker fat image and deploy the thin images on standard Docker
Registries for an easy distribution.

Finally, on Chapter 6 we have shown the advantages that the pro-
posed system brings in terms of startup time of uncached containers
and bandwidth consumption while at the same time not imposing run
time penalties.

The final work is in a stable state and there are plans to actually
deploy it in production inside CERN, nevertheless several further ad-
vancement are possible with respect to increasing the set of supported
container run-times or improving the software that manages the file
system.

For what concerns the run-times we believe that similar work to the
one done for Docker with the cvmfs/graphdriver plugin can be done
also for different technologies. In particular we are confident that the
approach of thin images can be adopted also by containerd [35], this time
implementing a custom snapshotter instead of a Docker graphdriver
plugin. Different container run-times needs further investigation.

A big limitation to lazily serve the content for containers using lazy
systems like CVMFS is the OCI standard. Container run-times that
follow the OCI standard do not expose any interface to actually load
custom content into the container itself, but they rely simply on tarballs

39

conclusion and future work 40

to provide the content, hence hacks like the one in the cvmfs/graphdriver
are necessary. A solution could be a custom container run-time which
provides the possibility to specify how the content should be loaded
and from where.

Another improvement to the system is related to the tool that builds
the file system structure. It could be re-structured to limit the cyclo-
matic complexity in order to allow further enhancement. Another big
improvement would be to exploit to the fullest the transactional inter-
face of CVMFS. Indeed several transactions are used when ingesting
a new image into the file system. An improvement would be to use
only a single transaction per image.

B I B L I O G R A P H Y

[1] Ali Anwar et al. “Improving Docker Registry Design Based on
Production Workload Analysis.” In: 16th USENIX Conference on
File and Storage Technologies (FAST 18). Oakland, CA: USENIX
Association, 2018, pp. 265–278. isbn: 978-1-931971-42-3. url:
https://www.usenix.org/conference/fast18/presentation/

anwar.

[2] J. O. Benson, J. J. Prevost, and P. Rad. “Survey of automated soft-
ware deployment for computational and engineering research.”
In: 2016 Annual IEEE Systems Conference (SysCon). 2016, pp. 1–6.
doi: 10.1109/SYSCON.2016.7490666.

[3] I Bird et al. Update of the Computing Models of the WLCG and the
LHC Experiments. Tech. rep. CERN-LHCC-2014-014. LCG-TDR-
002. 2014. url: http://cds.cern.ch/record/1695401.

[4] J. Blomer, P. Buncic, R. Meusel, G. Ganis, I. Sfiligoi, and D.
Thain. “The Evolution of Global Scale Filesystems for Scientific
Software Distribution.” In: Computing in Science Engineering 17.6
(2015), pp. 61–71. issn: 1521-9615. doi: 10.1109/MCSE.2015.111.

[5] Jakob Blomer, Predrag Buncic, and Thomas Fuhrmann. “De-
centralized Data Storage and Processing in the Context of the
LHC Experiments at CERN.” Presented 05 Jul 2012. 2011. url:
https://cds.cern.ch/record/1462821.

[6] CERN. WLCG. url: https://web.archive.org/web/20181122162700/
http://wlcg.web.cern.ch/ (visited on 11/22/2018).

[7] G Compostella, S Pagan Griso, D Lucchesi, I Sfiligoi, and D
Thain. “CDF software distribution on the Grid using Parrot.” In:
Journal of Physics: Conference Series 219.6 (2010), p. 062009. url:
http://stacks.iop.org/1742-6596/219/i=6/a=062009.

[8] Christoph Eck et al. LHC computing Grid: Technical Design Report.
Version 1.06 (20 Jun 2005). Technical Design Report LCG. Geneva:
CERN, 2005. url: http://cds.cern.ch/record/840543.

[9] The Linux Foundation. Image Format Specification. url: https://
web.archive.org/web/20181122170529/https://github.com/

opencontainers/image-spec/blob/master/spec.md (visited on
11/22/2018).

[10] The Linux Foundation. Image Layer Filesystem Changeset. url:
https://web.archive.org/web/20181122170713/https://

github.com/opencontainers/image-spec/blob/master/layer.

md (visited on 11/22/2018).

41

https://www.usenix.org/conference/fast18/presentation/anwar
https://www.usenix.org/conference/fast18/presentation/anwar
http://dx.doi.org/10.1109/SYSCON.2016.7490666
http://cds.cern.ch/record/1695401
http://dx.doi.org/10.1109/MCSE.2015.111
https://cds.cern.ch/record/1462821
https://web.archive.org/web/20181122162700/http://wlcg.web.cern.ch/
https://web.archive.org/web/20181122162700/http://wlcg.web.cern.ch/
http://stacks.iop.org/1742-6596/219/i=6/a=062009
http://cds.cern.ch/record/840543
https://web.archive.org/web/20181122170529/https://github.com/opencontainers/image-spec/blob/master/spec.md
https://web.archive.org/web/20181122170529/https://github.com/opencontainers/image-spec/blob/master/spec.md
https://web.archive.org/web/20181122170529/https://github.com/opencontainers/image-spec/blob/master/spec.md
https://web.archive.org/web/20181122170713/https://github.com/opencontainers/image-spec/blob/master/layer.md
https://web.archive.org/web/20181122170713/https://github.com/opencontainers/image-spec/blob/master/layer.md
https://web.archive.org/web/20181122170713/https://github.com/opencontainers/image-spec/blob/master/layer.md

bibliography 42

[11] The Linux Foundation. OCI Content Descriptors. url: https://
web.archive.org/web/20181122171756/https://github.com/

opencontainers / image - spec / blob / master / descriptor . md

(visited on 11/22/2018).

[12] The Linux Foundation. Open Containers Initiative. url: https:
/ / web . archive . org / web / 20181122170509 / https : / / www .

opencontainers.org/ (visited on 11/22/2018).

[13] N Hardi, J Blomer, G Ganis, and R Popescu. “Making containers
lazy with Docker and CernVM-FS.” In: Journal of Physics: Con-
ference Series 1085.3 (2018), p. 032019. url: http://stacks.iop.
org/1742-6596/1085/i=3/a=032019.

[14] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. “Slacker: Fast Distri-
bution with Lazy Docker Containers.” In: 14th USENIX Confer-
ence on File and Storage Technologies (FAST 16). Santa Clara, CA:
USENIX Association, 2016, pp. 181–195. isbn: 978-1-931971-28-7.
url: https://www.usenix.org/conference/fast16/technical-
sessions/presentation/harter.

[15] Amazon Web Services Inc. Cloud Object Storage | Store and
Retrieve Data Anywhere | Amazon Simple Storage Service. url:
https://web.archive.org/web/20181128173120/https://aws.

amazon.com/s3/ (visited on 11/28/2018).

[16] Docker Inc. About storage drivers. url: https://web.archive.
org/web/20181122172916/https://docs.docker.com/storage/

storagedriver/ (visited on 11/22/2018).

[17] Docker Inc. Docker Engine managed plugin system. url: https://
web.archive.org/web/20181122174052/https://docs.docker.

com/engine/extend/ (visited on 11/22/2018).

[18] Docker Inc. Docker Registry. url: https://web.archive.org/
web/20181122172148/https://docs.docker.com/registry/

(visited on 11/22/2018).

[19] Docker Inc. Docker overview. url: https://web.archive.org/
web / 20181122172634 / https : / / docs . docker . com / engine /

docker-overview/ (visited on 11/22/2018).

[20] Docker Inc. Docker tag. url: https://web.archive.org/web/
20181122172506/https://docs.docker.com/engine/reference/

commandline/tag/ (visited on 11/22/2018).

[21] Docker Inc. What is a Container. url: https://web.archive.org/
web/20181122172321/https://www.docker.com/resources/

what-container (visited on 11/22/2018).

[22] Red Hat. Inc. Ansible is Simple It Automation. url: https://
web.archive.org/web/20181127163843/https://www.ansible.

com/ (visited on 11/27/2018).

https://web.archive.org/web/20181122171756/https://github.com/opencontainers/image-spec/blob/master/descriptor.md
https://web.archive.org/web/20181122171756/https://github.com/opencontainers/image-spec/blob/master/descriptor.md
https://web.archive.org/web/20181122171756/https://github.com/opencontainers/image-spec/blob/master/descriptor.md
https://web.archive.org/web/20181122170509/https://www.opencontainers.org/
https://web.archive.org/web/20181122170509/https://www.opencontainers.org/
https://web.archive.org/web/20181122170509/https://www.opencontainers.org/
http://stacks.iop.org/1742-6596/1085/i=3/a=032019
http://stacks.iop.org/1742-6596/1085/i=3/a=032019
https://www.usenix.org/conference/fast16/technical-sessions/presentation/harter
https://www.usenix.org/conference/fast16/technical-sessions/presentation/harter
https://web.archive.org/web/20181128173120/https://aws.amazon.com/s3/
https://web.archive.org/web/20181128173120/https://aws.amazon.com/s3/
https://web.archive.org/web/20181122172916/https://docs.docker.com/storage/storagedriver/
https://web.archive.org/web/20181122172916/https://docs.docker.com/storage/storagedriver/
https://web.archive.org/web/20181122172916/https://docs.docker.com/storage/storagedriver/
https://web.archive.org/web/20181122174052/https://docs.docker.com/engine/extend/
https://web.archive.org/web/20181122174052/https://docs.docker.com/engine/extend/
https://web.archive.org/web/20181122174052/https://docs.docker.com/engine/extend/
https://web.archive.org/web/20181122172148/https://docs.docker.com/registry/
https://web.archive.org/web/20181122172148/https://docs.docker.com/registry/
https://web.archive.org/web/20181122172634/https://docs.docker.com/engine/docker-overview/
https://web.archive.org/web/20181122172634/https://docs.docker.com/engine/docker-overview/
https://web.archive.org/web/20181122172634/https://docs.docker.com/engine/docker-overview/
https://web.archive.org/web/20181122172506/https://docs.docker.com/engine/reference/commandline/tag/
https://web.archive.org/web/20181122172506/https://docs.docker.com/engine/reference/commandline/tag/
https://web.archive.org/web/20181122172506/https://docs.docker.com/engine/reference/commandline/tag/
https://web.archive.org/web/20181122172321/https://www.docker.com/resources/what-container
https://web.archive.org/web/20181122172321/https://www.docker.com/resources/what-container
https://web.archive.org/web/20181122172321/https://www.docker.com/resources/what-container
https://web.archive.org/web/20181127163843/https://www.ansible.com/
https://web.archive.org/web/20181127163843/https://www.ansible.com/
https://web.archive.org/web/20181127163843/https://www.ansible.com/

bibliography 43

[23] W. Kangjin, Y. Yong, L. Ying, L. Hanmei, and M. Lin. “FID: A
Faster Image Distribution System for Docker Platform.” In: 2017
IEEE 2nd International Workshops on Foundations and Applications
of Self* Systems (FAS*W). 2017, pp. 191–198. doi: 10.1109/FAS-
W.2017.147.

[24] James H. Morris, Mahadev Satyanarayanan, Michael H. Conner,
John H. Howard, David S. H. Rosenthal, and F. Donelson Smith.
“Andrew: A Distributed Personal Computing Environment.” In:
Commun. ACM 29 (1986), pp. 184–201.

[25] Simone Mosciatti. repository-manager, utlity to manage the un-
packed.cern.ch CVMFS repository. url: https://web.archive.
org/web/20181125115146/https://github.com/cvmfs/docker-

graphdriver / tree / devel / repository - manager (visited on
11/25/2018).

[26] Bogdan Nicolae, John Bresnahan, Kate Keahey, and Gabriel
Antoniu. “Going Back and Forth: Efficient Multi-Deployment
and Multi-Snapshotting on Clouds.” In: The 20th International
ACM Symposium on High-Performance Parallel and Distributed
Computing (HPDC 2011). San José, CA, United States, June 2011.
url: https://hal.inria.fr/inria-00570682.

[27] The Debian Project. APT - Advanced Package Tool. url: https://
web.archive.org/web/20181128175621/https://wiki.debian.

org/Apt (visited on 11/28/2018).

[28] Puppet. Deliver better software, faster | Puppet. url: https://
web.archive.org/web/20181127164038/https://puppet.com/

(visited on 11/27/2018).

[29] Nikolaus Rath. libfuse, The reference implementation of the Linux
FUSE (Filesystem in Userspace) interface. url: https : / / web .

archive . org / web / 20181124093000 / https : / / github . com /

libfuse/libfuse (visited on 11/24/2018).

[30] Sylabs.io. Singularity Appendix | run. url: https://web.archive.
org/web/20181122175328/https://www.sylabs.io/guides/2.

6/user-guide/appendix.html#run (visited on 11/22/2018).

[31] Sylabs.io. Singularity and Docker. url: https://web.archive.
org/web/20181122174545/https://www.sylabs.io/guides/

2.6/user-guide/singularity_and_docker.html (visited on
11/22/2018).

[32] Sylabs.io. Singularity. url: https://web.archive.org/web/
20181122154728/https://www.sylabs.io/ (visited on 11/22/2018).

[33] ThinkParQ and Fraunhofer. BeeGFS - The Leading Parallel Cluster
File System. url: https://web.archive.org/web/20181128172734/
https://www.beegfs.io/content/ (visited on 11/28/2018).

http://dx.doi.org/10.1109/FAS-W.2017.147
http://dx.doi.org/10.1109/FAS-W.2017.147
https://web.archive.org/web/20181125115146/https://github.com/cvmfs/docker-graphdriver/tree/devel/repository-manager
https://web.archive.org/web/20181125115146/https://github.com/cvmfs/docker-graphdriver/tree/devel/repository-manager
https://web.archive.org/web/20181125115146/https://github.com/cvmfs/docker-graphdriver/tree/devel/repository-manager
https://hal.inria.fr/inria-00570682
https://web.archive.org/web/20181128175621/https://wiki.debian.org/Apt
https://web.archive.org/web/20181128175621/https://wiki.debian.org/Apt
https://web.archive.org/web/20181128175621/https://wiki.debian.org/Apt
https://web.archive.org/web/20181127164038/https://puppet.com/
https://web.archive.org/web/20181127164038/https://puppet.com/
https://web.archive.org/web/20181124093000/https://github.com/libfuse/libfuse
https://web.archive.org/web/20181124093000/https://github.com/libfuse/libfuse
https://web.archive.org/web/20181124093000/https://github.com/libfuse/libfuse
https://web.archive.org/web/20181122175328/https://www.sylabs.io/guides/2.6/user-guide/appendix.html#run
https://web.archive.org/web/20181122175328/https://www.sylabs.io/guides/2.6/user-guide/appendix.html#run
https://web.archive.org/web/20181122175328/https://www.sylabs.io/guides/2.6/user-guide/appendix.html#run
https://web.archive.org/web/20181122174545/https://www.sylabs.io/guides/2.6/user-guide/singularity_and_docker.html
https://web.archive.org/web/20181122174545/https://www.sylabs.io/guides/2.6/user-guide/singularity_and_docker.html
https://web.archive.org/web/20181122174545/https://www.sylabs.io/guides/2.6/user-guide/singularity_and_docker.html
https://web.archive.org/web/20181122154728/https://www.sylabs.io/
https://web.archive.org/web/20181122154728/https://www.sylabs.io/
https://web.archive.org/web/20181128172734/https://www.beegfs.io/content/
https://web.archive.org/web/20181128172734/https://www.beegfs.io/content/

bibliography 44

[34] Seth Vidal. yum - Yellowdog Updater, Modified. url: https://web.
archive.org/web/20181128175354/http://yum.baseurl.org/

(visited on 11/28/2018).

[35] The containerd authors. containerd -An industry-standard container
runtime with an emphasis on simplicity, robustness, and portability.
url: https://web.archive.org/web/20181128165122/https:
//containerd.io/ (visited on 11/28/2018).

[36] fzipp. gocycle, Calculate cyclomatic complexities of functions in Go
source code. url: https://web.archive.org/web/20181124194738/
https://github.com/fzipp/gocyclo (visited on 11/24/2018).

https://web.archive.org/web/20181128175354/http://yum.baseurl.org/
https://web.archive.org/web/20181128175354/http://yum.baseurl.org/
https://web.archive.org/web/20181128165122/https://containerd.io/
https://web.archive.org/web/20181128165122/https://containerd.io/
https://web.archive.org/web/20181124194738/https://github.com/fzipp/gocyclo
https://web.archive.org/web/20181124194738/https://github.com/fzipp/gocyclo

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede and Ivo Pletikosić. The
style was inspired by Robert Bringhurst’s seminal book on typography
“The Elements of Typographic Style”. classicthesis is available for both
LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

Thank you very much for your feedback and contribution.

Final Version as of December 4, 2018 (classicthesis v4.6).

https://bitbucket.org/amiede/classicthesis/
http://postcards.miede.de/

	Dedication
	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	2 Background and Problem Definition
	2.1 WLCG
	2.2 CVMFS
	2.2.1 CVMFS High Level Overview
	2.2.2 CVMFS Details

	2.3 Containers
	2.3.1 Docker and the cvmfs/graphdriver plugin
	2.3.2 Singularity

	2.4 Problem Definition

	3 State of the Art
	3.1 Distributed File System
	3.2 Provising of Machines
	3.2.1 Single o Local Machines and Small Clusters
	3.2.2 Local cluster
	3.2.3 WLCG environment
	3.2.4 Managing run time dependencies on the WLCG

	3.3 Working lazily

	4 Methodology
	4.1 High Level overview of the proposed file system
	4.2 Singularity Images
	4.3 Docker Thin Images
	4.4 Keeping track of the work already done
	4.5 Closing remarks

	5 Implementation
	5.1 CVMFS Write Interface
	5.2 Singularity Ingestion
	5.3 Docker Ingestion
	5.3.1 CVMFS Ingestion of Tarball
	5.3.2 Docker Ingestion Algorithm

	5.4 Garbage Collection of Images
	5.5 Administrator Interface
	5.6 The repository-manager command line tool

	6 Results
	6.1 Containers startup time
	6.1.1 Comparison of the startup time
	6.1.2 Use of the proposed file system structure vs. using CVMFS without sub catalogs

	6.2 Data transfer necessary for start a container
	6.3 Space Requirement
	6.4 Complexity

	7 Conclusion and Future Work
	 Bibliography
	Colophon

