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Abstract

small bodies mapping is a crucial but challenging capability for space exploration

missions. Current missions heavily rely on human intervention not only for on

ground map refinement, but also for operations supervision and planning. In fact,

the extreme variety of body shapes, dynamical environments and illumination con-

ditions makes spacecraft autonomous mapping a complex task in relation to the

limited computational resources available on-board. This thesis develops a method

to autonomously plan the timing of observations during the mapping of an unknown

small body, with particular application to imaging for stereophotoclinometry. The

goal is to define a policy that improves mapping quality, while both limiting the

amount of images to downlink and fastening the mapping process. The planning

framework is defined as a Partially Observable Markov Decision Process (POMDP),

proposing a novel problem architecture focused on data collection. Deep Reinforce-

ment Learning (DRL) is exploited to design the planning policies, comparing two

different techniques: Neural Fitted Q (NFQ) and Deep Q Network (DQN). The ob-

tained policies are extensively tested over a wide range of different possible scenarios

in order to verify their generalizing capability, which is of great importance when

exploring an unknown environment. Results show that the proposed solutions are

capable to deal with far-off different scenarios and outperform simple benchmarks.

Then, a computational analysis is addressed to determine feasibility and limits of

a possible on-board implementation of the algorithm. The proposed methodology

reveals to be a promising step forward in autonomous operations, helping in decreas-

ing the human effort during unknown small bodies mapping and increasing imaging

exploitation efficiency with a simple and flexible approach.

Keywords: Autonomous Exploration, Small Bodies Mapping, Reinforcement

Learning for Space Applications, Planning, Active Sensing





Sommario

La mappatura di piccoli corpi celesti sconosciuti è una fase cruciale ed ardua per le

missioni spaziali esplorative, attualmente resa possibile grazie ad un significativo in-

tervento umano nella realizzazione della mappa e nella supervisione e pianificazione

delle operazioni. Infatti, l’estrema varietà di tali oggetti celesti in quanto a forma,

ambiente dinamico ed illuminazione, rende la mappatura un compito complesso in re-

lazione alle limitate risorse computazionali disponibili a bordo. Questa tesi sviluppa

un metodo per pianificare autonomamente la tempistica delle osservazioni durante la

mappatura di un piccolo corpo celeste ignoto, in vista della successiva elaborazione

delle immagini a terra attraverso stereo-fotoclinometria. L’obiettivo è definire una

politica che velocizzi e migliori la qualità della mappatura, limitando la quantità

di dati da trasmettere. La pianificazione è formulata come processo decisionale di

Markov parzialmente osservabile (POMDP), proponendo un’architettura innovativa

focalizzata sulla raccolta delle immagini e che adotta l’apprendimento per rinforzo

come metodo di soluzione. Si confrontano le tecniche Neural Fitted Q (NFQ) e

Deep Q Network (DQN), testando le politiche di pianificazione cos̀ı ottenute su una

vasta gamma di scenari e verificandone la generalità. I risultati mostrano che en-

trambe le soluzioni hanno prestazioni superiori a semplici benchmarks, si adattano

a scenari alquanto differenti e migliorano l’efficienza della mappatura. Fattibilità

e limiti di una possibile implementazione dell’algoritmo a bordo sono indagati con

un’analisi computazionale. La metodologia proposta si rivela un promettente passo

avanti verso le operazioni autonome, aiutando a diminuire lo sforzo umano durante

la mappatura di piccoli corpi celesti ignoti ed aumentando l’efficienza nella raccolta

delle immagini con un approccio semplice e flessibile.

Parole chiave: Esplorazione Autonoma, Mappatura di Piccoli Corpi Celesti Ig-

noti, Apprendimento per Rinforzo in Applicazioni Spaziali, Pianificazione, Percezione

Attiva





Estratto in lingua italiana

Negli ultimi anni, frequenti missioni esplorative verso i piccoli oggetti celesti si

pongono obiettivi sempre più ambiziosi, che richiedono una continua innovazione

tecnologica. Queste missioni sono accomunate da operazioni volte a determinare

le caratteristiche dell’oggetto celeste ignote prima della missione stessa. Ad oggi

un significativo intervento umano è necessario per la buona riuscita e pianificazione

di tali operazioni. Un aumento dell’autonomia del veicolo è fondamentale per una

maggiore efficienza delle missioni future.

Questo lavoro di tesi mira ad aumentare l’autonomia dei veicoli spaziali durante

le fasi di mappatura di piccoli oggetti celesti. In questa tesi si usano tecniche di

Deep Reinforcement Learning (DRL) per ottenere una politica di pianificazione con

obiettivi multipli ed in parte contrastanti: da un lato la limitazione dei dati rac-

colti, dall’altro una mappatura rapida, globale e con caratteristiche che agevolino

la ricostruzione topografica del corpo. Tali obiettivi sono raggiunti selezionando

opportunamente gli istanti di osservazione del corpo durante la sua mappatura.

Operazioni di Mappatura

Un aspetto molto importante ed oneroso delle operazioni di mappatura è la raccolta

di immagini ai fini della derivazione della topografia del corpo. Una delle più comuni

tecniche utilizzate per la ricostruzione della forma di un oggetto celeste è la stereo-

fotoclinometria (SPC). Questa procedura è svolta a terra utilizzando immagini della

superficie del corpo e dati di navigazione acquisiti nel corso della missione. Il com-

plesso algoritmo di SPC richiede svariati cicli iterativi per ottenere un modello ad

alta risoluzione del corpo e una mappa di albedo. Tali prodotti, oltre ad essere di

interesse scientifico, sono impiegati per l’identificazione di punti di riferimento sulla

superficie, detti landmarks, utilizzati ai fini della navigazione relativa tra veicolo e



superficie. Per facilitare la convergenza dell’algoritmo servono da un lato accurati

dati di navigazione e dall’altro immagini che presentino caratteristiche favorevoli,

ovvero una grande varietà delle condizioni di illuminazione e angolazioni rispetto alla

superficie tra loro simili. SPC richiede una notevole quantità di dati da trasmet-

tere a terra: un’ottimizzazione della raccolta di immagini durante la mappatura

agevolerebbe SPC e renderebbe le operazioni più efficienti.

Pianificazione autonoma

Nell’ambito della robotica il problema dell’esplorazione autonoma di un ambiente

ignoto e’ conosciuto come active SLAM (mappatura e localizzazione simultanee at-

tive). In campo spaziale il problema della mappatura e navigazione attorno a piccoli

corpi è stato recentemente formulato come processo decisionale di Markov parzial-

mente osservabile (POMDP) in analogia con la robotica terrestre. In questo contesto

il veicolo spaziale è visto come un agente che si muove in un ambiente sconosciuto,

mappando il corpo celeste ed allo stesso tempo navigando utilizzando i sensori di

bordo ed una mappa della superficie. L’agente può prendere decisioni che influenzano

le proprie percezioni dell’ambiente, ad esempio controllando la propria traiettoria.

Tuttavia il POMDP è non risolvibile nella sua forma più generale e necessita

di una formulazione ridotta. In questa tesi si propone un’architettura di planning

ridotta innovativa, focalizzata sulla pianificazione dei tempi di osservazione, ottimiz-

zando la raccolta di immagini per SPC. Nel proporre tale architettura si presta par-

ticolare attenzione alle difficoltà che l’ambiente spaziale comporta: le limitate risorse

di bordo in termini di potenza computazionale e memoria, la grande influenza della

dinamica naturale sul moto del veicolo, con rischi legati ad un ambiente dinamico

variegato e caotico. I meriti principali di questa architettura sono la possibilità di

integrare la pianificazione senza rischi per la missione ed una grande flessibilità che

rende la pianificazione efficacie in diversi scenari ed indipendente dalle specificità

della missione.

Apprendimento per rinforzo

Il DRL è scelto come tecnica di soluzione del POMDP ridotto, poichè permette di af-

frontare processi decisionali complessi anche parzialmente osservabili, con spazi degli

stati ampi e continui. L’utilizzo di una rete neurale per l’approssimazione del valore



della ricompensa sul lungo periodo, permette di ottenere una policy in grado di gen-

eralizzare in caso di situazioni nuove, senza la necessità di un’esplorazione completa

dello spazio degli stati, impossibile quando essi sono infiniti come nell’architettura

di pianificazione qui proposta.

Due tecniche di DRL sono confrontate: NFQ e DQN. Le soluzioni al processo

decisionale ottenute attraverso DRL sono sub-ottimali e pertanto il confronto di

due tecniche differenti è indice della bontà dei risultati. Le due policy ottenute

sono inoltre validate confrontando i risultati con due benchmark: una strategia

uniforme, che scatta le immagini ad intervalli regolari, ed una strategia random. I

risultati mostrano un sostanziale miglioramento della mappatura in relazione agli

obiettivi preposti. Un’estesa analisi di sensitività conferma inoltre la capacità di

pianificare la mappatura in scenari disparati, che comprendono diverse forme dei

corpi, condizioni di illuminazione e dinamica relativa. Tali verifiche rivestono una

particolare importanza poichè vengono utilizzate tecniche di DRL, dove il successo

dell’apprendimento è particolarmente sensibile alla taratura di alcuni iperparametri

dell’algoritmo. Per un apprendimento corretto è inoltre fondamentale una corretta

formulazione della ricompensa: la policy potrebbe avere comportamenti indesiderati

nel caso in cui la ricompensa non fosse adeguata. Per questo motivo la performance

delle strategie è valutata attraverso parametri che rendano evidente quali sono le

azioni eseguite dall’agente e le loro conseguenze sulla mappatura.

Infine, il tempo computazionale impiegato per prendere le decisioni è sondato

con alcune analisi preliminari. L’architettura di planning è effettivamente leggera

entro certi limiti, definiti tramite le analisi.
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1 Introduction

In the last decades space agencies have shown a deep interest in the exploration

of unknown Solar System objects, like asteroids and comets. Such bodies are less

evolved with respect to larger ones, as planets or moons, and for this reason they

contain important clues to understand the Solar System origin and evolution. Explo-

ration missions towards small bodies present several challenging aspects to mission

design, including limited telecommunication, complex orbital dynamics and lack of

knowledge of some key aspects of the exploration environment. In fact, many charac-

teristics of the celestial body can not be fully assessed before the mission, like density,

rotational state, gravitational field, thermo-physical properties and topology. Their

determination becomes an essential operation, common to all small bodies missions.

In particular, the body shape reconstruction requires many iterations and refine-

ments that are performed on-ground only once the mission is in progress, thanks

to the collected data. Small bodies missions often involve very complex objectives,

such as landing or touching the object, for which it is necessary to have a complete

and detailed knowledge of all the above mentioned characteristics.

Guidelines for future missions strongly stress the necessity to enhance spacecraft

autonomy. Autonomous systems are desirable not only to reduce reliance on ground-

support personnel, but also to enable complex functions that would not otherwise be

possible. This is especially true for missions in which communication with ground

can not always take place or constitutes a bottleneck. Exploration and mapping of

small bodies currently requires a large employment of human resources for many

different aspects, like trajectory design, navigation, data collection and mapping

operations supervision and planning. An autonomous exploration is desirable for

future missions, but considering the high correlation between all of these aspects,
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Chapter 1. Introduction

improving autonomy is a big challenge and the process towards full spacecraft auton-

omy is still at an early stage. Autonomous exploration methods are being developed

in the robotics field, where the environment is in general less challenging.

The focus of this thesis is on on-board autonomous decision-making. This in-

teresting topic presents as main challenges the limited computational resources and

data storage available on-board, but offers the possibility to improve mission op-

erations. In particular, this thesis develops an autonomous planning algorithm for

the timing of observations while imaging an unknown small body. More specifically,

the aim is to plan the images collection to benefit stereophotoclinometry, the most

common mapping technique adopted in past missions for on-ground shape model

reconstruction.

The methodology developed in this thesis can be easily adapted for other imaging

techniques, like stereophotogrammetry. With the appropriate considerations, the

presented methodology can also be tailored on different instruments, as thermal

cameras or radars. Moreover, the applicability of the proposed approach is not

limited to small bodies missions, but can be extended in different contexts where

autonomous data collection is helpful.

In this chapter the thesis motivations are exposed and a literature review is

presented. Then, the work intended contributions and thesis overview are outlined.

1.1 Motivation

1.1.1 Exploration of small bodies

Numerous missions devoted to study small bodies took place in the past two decades.

NASA mission NEAR Shoemaker performed rendezvous with NEAR asteroids Mathilde

and Eros, closing observing and characterizing in depth the latter [1], while Dawn

orbited around Vesta in the main asteroid belt [2]. ESA mission Rosetta was the

first mission to reach and land on a comet, 67P Churiumov-Gerasimenko [3]. More

recent missions are the sample-return Hayabusa 2 to Ryugu [4] by JAXA and NASA

OSIRIS-REx to Bennu [5], which is still ongoing. Some future missions have been

proposed and are under plan, like NASA NEAScout, that exploits a deep-space

CubeSat [6], and ESA Hera, towards the asteroid binary systems Didymos and

again using CubeSats [7]. All these missions make evident the strong and long-

term interest of space agencies in small bodies exploration missions. The increasing
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complexity of mission scenarios and objectives entails a continuous technological

evolution and improvement.

1.1.2 Mapping and shape model reconstruction

Mapping is an operational phase common to all small bodies missions, despite their

different objectives. Such phase is particularly demanding, as it takes a long time

and requires large amounts of data to be sent on-ground, where they are analyzed

and elaborated by human experts. For instance, during Rosetta operations the

total number of images taken for the whole mission duration was about 100000 [8].

Moreover, the downlink of scientific data is limited and requires considerable time

and economic resources: communications with far bodies are not always possible

and are limited by ground stations availability.

Nevertheless, collecting data with multiple instruments like radar, optical and

thermal cameras, multispectral instruments is fundamental for environment explo-

ration and small bodies study. In particular, an important mapping operation is

imaging for high resolution shape model reconstruction. The reconstruction of the

body shape model has many purposes. In first place, it is of scientific interest and

useful for proximity operations. In fact, it is necessary for evaluating landing sites

hazards and conditions, for which the desirable map resolution has to be lower than

the lander footprint. In second place, it constitutes a valid instrument for assisting

in mission data elaboration. For instance, in past missions [9] it has been used

to support landmark-based navigation: simulating synthetic images along with an

albedo map, the landmark appearance is predicted, based on coarse camera pose

and Sun direction informations. Then, the expected appearance is cross-correlated

with the real image and a precise pose estimate is possible. The shape model can

also improve algorithms for landmark tracking and image matching during night

excursions by limb fitting. Or it can provide a cross-check with orbit determination

output for the estimation of gravity model.

1.1.3 Autonomy improvement

To successfully perform the mapping process requires a great human effort, starting

from planning and design of suited trajectories, then supervising navigation and

mapping operations, reconstructing the shape model on ground with increasing res-

olution. Human support has revealed to be crucial in past missions. For instance,

3
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during Rosetta mission the initial landmark identification on images was performed

manually [9]. Also the planning of mapping phases was performed by human ex-

perts. In order to build a coarse shape model with stereophotogrammetry, after

requirements identification the images acquisition was planned to be on pyramidal

lag orbits at 60-90 km from the surface. The number of images to be acquired was

also planned in advance, selecting an image separation of roughly one hour, in order

to provide a sufficiently large stereo angle between two subsequent images [10].

State of the art operations can be largely improved in the autonomy direction,

challenging under many aspects, above all the harshness of the environment and

complexity of requirements, leading to a greater mapping efficiency and cost effec-

tiveness and reducing the employment of human resources.

1.1.4 Related research fields

Today, small bodies exploration continuously requires humans-in-the-loop. This is

not true in other fields, were robots are capable to autonomously accomplish their

tasks while exploring and mapping an unknown environment. Some examples are

indoor and outdoor robots like underwater vehicles, autonomous cars or domestic

robots. For what concerns space applications, a similar context can be found in plan-

etary exploration: rovers need to perform several tasks like localization, trajectory

control and path planning considering terrain traversability analysis and obstacle

avoidance. Since such systems would benefit from autonomous environment explo-

ration, current research tries to reduce human involvement in the navigational loop

[11], [12].

Similar issues are encountered while mapping a small body: a spacecraft ob-

serves the environment through sensors, whose observations are used for navigation

and localization purposes, while moving around the body. An autonomous space-

craft should be able to perform all necessary tasks for mapping the body, including

planning the exploration. Analogies with the robotics field suggest to adopt similar

approaches also for the small bodies mapping problem, but tailoring them on its

peculiarities. Tools and methods to enhance spacecraft autonomy need to be care-

fully chosen, accounting for the very low computational power available on-board

and limiting risks for mission safety. In particular, machine learning offers interest-

ing possibilities for autonomy enhancement. A successful application of supervised

and unsupervised learning is autonomous driving, where the challenges are again
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obstacles classification, localization, mapping and planning [13], [14]. In the space

field, some research is investigating the possibilities of unsupervised learning for

rovers autonomous prediction of slippage events [14] or of supervised learning for

autonomous landing and hazard detection [15]. In particular, the generalizing ca-

pabilities of neural networks and their light computational architecture can be a

powerful tool when dealing with a not completely known scenario. However one has

to be aware that their black-box nature implies some risks.

1.2 Literature review and previous works

1.2.1 Small bodies mapping

In past years techniques and procedures for small bodies shape reconstruction have

been developed and tested. Two main branches exist in shape models 3D recon-

struction from images: shape from motion and shape from shading. Techniques for

small bodies shape model reconstruction descend from both methods, that have a

long history in computer vision [16]. Stereophotogrammetry (SPG) is derived from

shape from motion and first used by Giese et al. in various space applications [17],

[18]. SPG exploits triangulation of feature points matched in different images to re-

construct the body shape. While stereophotoclinometry (SPC) descends from shape

from shading and is based on a photometric model that allows to derive slopes from

pixels intensities. This method was first developed by Gaskell [19] and has been

refined in successive years, being successfully employed in several missions. Variants

and combinations of SPG and SPC have been also used [9]. In [20] it is developed a

multiresolution photometric method that builds the shape model from progressive

mesh deformation while increasing resolution.

Some research has defined criteria useful for evaluating the goodness of body

mapping, based on engineering judgment. In [10] illumination and observation SPG

requirements for imaging planning are provided. In [21] a method to quantify the

mapping performance for SPC is proposed, comparing different orbits around small

bodies and assuming a spherical shape as case study. Another research effort is to-

wards design of trajectories that ease the body mapping, offering adequate coverage

and suited illumination conditions [22].
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1.2.2 Autonomous exploration

Many works are present in the robotics field concerning autonomous exploration

of an unknown environment. In particular, such works deal with Simultaneous

Localization and Mapping (SLAM) techniques, that have been first developed in

the 80’ [23]. SLAM consists in estimating a map of an unknown environment and

at the same time localizing in it. The aim is to build a global and consistent

map of the environment with no a priori information and taking as inputs just

visual informations from a monocamera: features can be extracted and matched

between different frames and the camera pose can be retrieved. A triangulation

of the features is then performed through the collinearity equation, i.e. through

projective geometry, to reconstruct the 3D map of the environment [24].

At the end of the 90’, exploration planning has been added as third task for the

robot, giving rise to active SLAM. In this framework, mapping of the environment,

localization and planning of the exploration are strictly coupled. The active SLAM

approach has been first proposed and tested by Feder et al. [25], who considered the

problem of adaptive motion and sensing for feature-based mapping and localization

by autonomous underwater vehicles. A major challenge in robotic mapping is to

automate the data collection process, in order to build the highest quality map with

the least time and cost. Successive works have proposed different formulations in

terms of performance criteria and optimization procedures [26], [27]. Typical criteria

try to optimize the information gain, improving map accuracy and limiting the costs.

Literature concerning small bodies autonomous mapping is really exiguous. In

[28], autonomous mapping and navigation are studied, proposing to use a Structure

From Motion algorithm along with a real-time optimization to retrieve the body

rotation and center of mass trajectory, assuming a complete knowledge of spacecraft

pose. Other works propose to use SLAM for autonomous navigation [29], [30].

These works try to overcome the reliance on ground-in-the-loop operations, but the

proposed algorithms are known to have a high computational burden.

Pesce et al. [31] have recently driven knowledges from robotics to space field,

proposing to model navigation and mapping about small bodies as a Partially Ob-

servable Markov Decision Process (POMDP). Their work is the first to present a

general formulation of the active SLAM problem applied to small bodies exploration.

In particular, a planning strategy for orbit selection is proposed, with a simplified

solution that considers a fully observable environment.
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1.2.3 Deep Reinforcement Learning

Reinforcement Learning (RL) has been widely employed for policy design in planning

problems, comprising POMDP [32].

For what concerns the robotics field, Kollar et al. in [34] and [33] have proposed

to use RL to optimize trajectories for map exploration. Also, Deep Reinforcement

Learning (DRL) allows to design planning policies in partially observable scenarios.

Such tool is extremely useful for tackling complex planning problems with large and

continuous state spaces, that can be handled thanks to neural networks general-

izing capabilities. DRL has been recently proposed for end-end driving [35], using

recurrent networks that exploit time information, essential for tackling the POMDP.

It has been recently proposed to use DRL for imaging and mapping small bodies

by Chan et al. [36]. Their work is based on the framework defined in [31] and ex-

plores the POMDP solution more deeply, designing a neural network policy to both

maneuver the spacecraft and plan the images collection. However, the introduction

of maneuvering somehow limits the application of their work: as the authors declare,

trusting the control of a spacecraft to a neural network is inadvisable.

1.3 Intended contributions and thesis overview

This work proposes an innovative methodology to autonomously select the observa-

tion times during the imaging campaign of an unknown small body. In particular, an

autonomous planning policy is designed through DRL, under the general framework

of exploration planning.

The principal intended contributions of this thesis are to increase spacecraft au-

tonomy and to enhance the mapping process, raising the efficiency of data collection

without compromising the mission safety. The goal of this thesis is to produce an

algorithm that can be mission-independent, robust and highly flexible, all necessary

characteristics for applicability in unknown environments. Moreover, to be suitable

for real applications, the proposed method aims to be computationally efficient.

The present thesis offers a different point of view, proposing a novel approach,

and tries to make a step forward in this research field. The high level planning frame-

work has been studied only in few literature works [31], [36], where the algorithms

were more focused on trajectory planning.

Given the early stage of this research field and its multidisciplinary nature, the
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design of the proposed methodology starts from a targeted analysis of the involved

topics. A scheme of all related topics is shown in Figure 1.1. These include mapping

techniques for shape model reconstruction, dynamics in proximity of small bodies,

the exploration problem, related to POMDP and active SLAM, solving methodolo-

gies (Reinforcement Learning) and tools (Neural Networks).

Figure 1.1: Schematic overview of the involved topics

The thesis is structured as follows:

� Chapter 2 describes shape model reconstruction techniques, providing neces-

sary information to understand which aspects of small bodies imaging can

be improved and highlighting the main drivers for enhancing the mapping

process.

� Chapter 3 presents background knowledges about orbital dynamics in proxim-

ity of small bodies. A general overview of typical trajectories and strategies

selected for body mapping is also provided.

� In Chapter 4 POMDP mathematical formulation is introduced, then the ac-

tive SLAM problem is presented, allowing to define small bodies exploration

general framework.

� Chapter 5 deals with decision processes solving methods, focusing on Rein-

forcement Learning and presenting the chosen algorithms, Neural Fitted Q
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(NFQ) and Deep Q Network (DQN). Neural Networks are briefly introduced

as well, being a necessary tool for DRL algorithms.

� In Chapter 6 an innovative planning architecture for small bodies imaging is

proposed. Design choices derive from the considerations reported in previous

chapters. All modeling assumptions are presented and justified.

� In Chapter 7 learning scenario and hyperparameters design is described. The

testing procedure is defined and the simulation environment presented. Results

are shown and critically analyzed, comparing the performance of the proposed

solution with simple benchmarks. A computational analysis is reported to

investigate the limits of the chosen methodology.

� Chapter 8 concludes this thesis, summarizing its contributions and proposing

possible future developments.

� Appendix A contains the RPROP algorithm, used for the neural network

training.
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2 Small bodies mapping

The aim of this chapter is to provide the reader with context and problematics

related to small bodies mapping, giving an overview of current mapping procedures.

First, the typical mission architecture and mapping phases are presented, defining

a common framework for the relevant aspects to small bodies imaging. Then, it

is briefly described how shape reconstruction is performed through SPC and SPG.

Conclusions about key elements to enhance the mapping process are drawn.

2.1 Mapping missions common framework

2.1.1 Missions architecture

The operational phases in which the approach to the body is scheduled present

many similarities in past and current missions. In Figure 2.1a and Figure 2.1b a

scheme of mission phases involving image acquisition for high resolution shape model

reconstruction is displayed for Rosetta and OSIRIS-REx missions [5], [9]. After the

interplanetary travel the spacecraft arrives at the body and the characterization

phase starts. Basic characterization of the body is done to retrieve informations

like an approximated gravitational field and the body spin axis orientation and spin

rate. A preliminary shape model is also built. Then, at a closer distance, the global

mapping starts and the shape model is enhanced. This phase is followed by a close

observation phase, needed to complete the topographical, thermal and mineralogical

characterization necessary for landing site selection. During all these phases images

of the body are collect and sent on ground, where they are elaborated. While the

mission proceeds and the spacecraft gets closer to the body, several shape models
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(a) Rosetta mission phases

(b) OSIRIS-REx mission phases

Figure 2.1: Mapping phases

are built with increasing resolution.

For the purpose of outlining a common framework, three aspects are of particular

interest: the typical distances adopted while mapping the body, instrumentation

characteristics and surface portion examined.

A useful quantity to describe the distance is the interest ratio, i.e. the ratio

between distance from body center and maximum body radius. Such quantity allows

to compare scenarios involving different asteroids or comets. As a general criterion,

during the characterization phase the interest ratio is about 25. Then, for the global

mapping phase it ranges between 15 and 10, while in the close observation phase it

assumes values of 10-4. These are not strict thresholds.

For what concerns typical optical instruments, usually more than one camera

is present on-board, with field of views varying from about 1◦ to 20◦. The reason

for this wide range of FOVs is that optical instruments can have different tasks,

like shape reconstruction, navigation, dust or coma monitoring. Some examples

of cameras devoted to imaging for topography are reported in Table 2.1 [37]–[39].

These cameras possess a Charge-Coupled Device (CCD) array, therefore the pictures

quality could be affected by smearing, when the relative velocity between camera

12
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and body surface is too high or when two pictures are taken at too close time

instants. It can be noticed that the FOV is really narrow, thus allowing to collect

high resolution images when still far from the body surface.

Camera Mission FOV Pixels

NAC Rosetta 2.2◦ 2048x2048
PolyCam OSIRIS-REx 0.792◦ 1024x1024
MapCam OSIRIS-REx 3.99◦ 1024x1024

Table 2.1: Camera parameters

The surface percentage of a spherical body visible in the camera frame is dis-

played in Figure 2.2, varying distance from the body and camera field of view. As it

can be seen, the visible surface portion that can vary from roughly half of the body

to below the 1%. In particular, during the global mapping phase it is near to the

lower bound, with typical FOVs.

(a) Different mission phases (b) Mapping phases

Figure 2.2: Percentage of body surface visible in the camera FOV, varying the interest ratio

2.1.2 Shape model reconstruction

Before the mission a rough shape of the body is derived from light curves inversion.

In Figure 2.3 an image of comet 67P Churyumov - Gerasimenko nucleus is compared

with the shape predicted from light curves. As it can be observed, in this case the

expected shape is not well representative of the real one. Since they can be far

different from the real object, light curves models can not be trust as accurate
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shape reconstructions: high fidelity topography is possible only through a close

body exploration.

(a) Light curve inversion prediction [40] (b) Real image [8]

Figure 2.3: 67P Churyumov-Gerasimenko nucleus shape

When some images of the body are available, fast and robust methods to obtain

a shape model with coarse resolution are silhouette and shadow carving [41], [42]. In

silhouette carving the body shape is initialized as an ellipsoid or a cube, from which

volume is subsequently subtracted. This method is conservative and does not deal

with concave regions, so shadow carving needs to be successively applied to carve

out concavities.

The shape model is then refined during the subsequent observations of the body,

until a high resolution model is obtained. Two main methods are used for this

purpose: SPC and SPG. Both techniques are described in the following sections.

2.2 Stereophotoclinometry

SPC is a 3D reconstruction method that descends from shape-from-shading, com-

bining photometry and stereoscopy. The SPC technique was first introduced by

Gaskell [19], [43] and is based on the derivation of maplets (or L-maps): small scale,

3D high resolution maps, centered on points called landmarks. The creation of L-

maps is achieved by estimating landmark positions and camera poses in an iterative

process, exploiting a photometric model. The idea is that surface normals can be

estimated considering how light is reflected. Once the maplets are created, they can

be assembled together in the global shape model.
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In this section the method overview is provided, first introducing two necessary

tools: the reference frames and the photometric model.

2.2.1 Reference frames

Several reference frames are useful for our purposes. First of all, the body frame

bi, fixed with the body rotation. Typically the body-fixed frame has the two first

axes lying on the equatorial plane, with the first one defining the prime meridian.

The third axis coincides with the spin axis. Given the landmark position V and the

spacecraft position W, both expressed in in body-fixed frame, let’s define:

� the camera frame ci, centered on the camera and with axes c1 and c2 belonging

to the image plane and c3 in the camera principal axis direction.

� the landmark frame ui with axes aligned to East, North and landmark position

direction, centered in the landmark.

Figure 2.4: L-map and camera frames

A point on the surface with body-fixed coordinates P can be represented in the

L-map frame with coordinates:

x1 = (P−V) · u1

x2 = (P−V) · u2

h(x1, x2) = (P−V) · u3
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and in the camera frame coordinates:

X = (P−W) · c1

Y = (P−W) · c2

Z = (P−W) · c3

According to the classical pinhole camera model (for instance see [44]), the point

can be expressed in homogeneous coordinates and then in the camera coordinate

frame in the following way: [
X Y Z

]T → [
f
X

Z
f
Y

Z

]T
where f is the focal length of the instrument. Therefore, the point coordinates in

the image are:

X1 = f
(P−W) · c1

(P−W) · c3

X2 = f
(P−W) · c2

(P−W) · c3

The above equations can be rewritten as:

Xi = f
(V −W) · ci +Mi1x1 +Mi2x2 +Mi3h

(V −W) · c3 +M31x1 +M32x2 +M33h
i = 1, 2 (2.1)

where Mij = ci · uj, with i = 1, 2 and j = 1, 2, 3. So equation 2.1 shows the

geometric relation between the coordinates of a surface point in the maplet frame

with its corresponding coordinates in an image taken by the camera.

2.2.2 The photometric model

The photometric model allows to link the brightness of a pixel to the surface slopes

and albedo, through a reflectance function R. Given an image k, the brightness Ik

of the cell x = (x1, x2) can be predicted with the photometric model:

Ik(x) = Λka(x)R(φ, e, i) + Φk (2.2)

where a is the relative albedo, normalized to have a unitary mean over the map, Φk

is the background level and Λk is a scale factor that includes conversion from the

Sun flux intensity to the pixel signal rate. Please note that the photometric model

needs some parameters to be tuned in advance (Φk,Λk).

The reflectance R of a surface depends on the photometric angles shown in

Figure 2.5 :
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Figure 2.5: Angle definition in photometry

� The local angle of incidence i, which is the angle between Sun incidence unit

vector i and surface normal n.

� The local angle of emission e, which is the angle between emission, e (i.e the

spacecraft unit vector) and surface normal.

� The phase angle φ, which is the angle between the Sun incidence vector and

the emission vector.

Other two angles useful to define the illumination and viewing conditions are:

� The solar azimuth angle α, that is the angle from local North to the incidence

vector, projected on the surface plane.

� The spacecraft azimuth angle β, between the emission vector projection on

the surface plane and the local North.

Several models of the reflectance function are present in the literature [43], [45]. The

reflectance function can be modeled as the weighted sum of Lambert reflectance RL,

that models a pure diffusion reflection, and Lommel-Seeliger reflectance RLS, that

models a specular reflection:

R = P (φ)
[
(1− L(φ))RL(i) + L(φ)RLS(i, e)

]
(2.3)

L(φ) is a transition function, P (φ) represents an exponential decrease with the phase

angle. The reflectance models are:

RL(i) = n · i (2.4)
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RLS(e, i) =
n · i

n · (i + e)
(2.5)

Defining t1 and t2 as the surface slopes respectively along u1 and u2, the local surface

normal can be written as:

n =

[
− t1,−t2, 1

]T√
t21 + t22 + 1

(2.6)

In conclusion, the power of the photometric model consists in the fact that the

pixel intensity in an image depends only on the surface slopes and albedo, when the

vectors e and i are known.

2.2.3 The problem statement

The potential unknowns of the problem are the spacecraft position vector W, the

camera oriantation ci, the landmark position and the heights of the map. Two

different sub-problems can be identified:

1. If an ensemble of landmarks is exactly known for one image, than the camera

orientation and the spacecraft location can be retrieved.

2. Conversely, if the camera pose is known for several images, the landmark

location can be derived.

The global problem can be solved with an iterative method alternatively solving the

two sub-problems and with optical data only except from some information: the

scale, that can be provided by radio data, and the center of mass position, that can

be determined with doppler data. This is linked to the center of the figure.

2.2.4 The shape model generation process

SPC procedure starts by building the single maplets, that than are assembled to-

gether. The maplet generation process consists in estimating slopes and albedo

at each map cell from several images, then integrating slopes into heights, with a

complex procedure that comprises different iterative loops. Insights on the overall

process can be found in literature [43], [45]. A simplified scheme is shown in Figure

2.6.

The process starts with maplet Digital Elevation Model initialization: the L-map

reference frame is defined and all the heights are set to zero, thus at the beginning

of the maplet generation process the L-map is a flat surface.
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Figure 2.6: SPC process block diagram

The first step is brightness extraction. By supposing to know the current camera

pose in the body fixed frame, the image brightness corresponding to the map cell x

can be retrieved. Data are mapped from image k to each L-map cell: for each point

of the map x, the corresponding locations in image coordinates X are found with

equation 2.1 and data at map location x are extracted from image k. Let’s call Ek

the extracted brightness. This process is also known as ortho-rectification.

The second step is brightness prediction. Brightness can be predicted from the

current maplet, exploiting the photometric model in equation 2.2 and current values

of slopes and albedo, that of course are functions of the maplet cell. So a predicted

brightness Ik at map location x is computed. Again, the necessary input data are

the spacecraft and Sun position in body fixed coordinates.

As third step slopes and albedo can be recomputed at each map pixel minimizing

the weighted sum square residual between expected and extracted brightness in

several images (3 at least).

Unfortunately, in practice V, W or ci are not exactly known, so the actual and

predicted image will be not aligned. After several landmark positions are estimated

in camera coordinates for several images, V, W and ci are iteratively re-estimated.

This iterative process alternates the two sub-problems defined in the problem state-

19



Chapter 2. Small bodies mapping

ment subsection 2.2.3.

The first sub-problem is solved by minimizing the weighted sum square residuals

between the observed Y and predicted X values of landmark positions in the image,

over all landmarks in the considered image.∑
landmarks

(Y −X)TD(Y −X) (2.7)

where D is a weight matrix accounting for uncertainties. The observed landmark

location Y in the image is computed by correlating predicted brightness distribution

Ik with the extracted one Ek. The predicted landmark location X is computed

through equation 2.1. The output is a new estimation of W and ci.

The second sub-problem is solved by minimizing the weighted sum square resid-

uals between the observed Y and predicted X coordinates of one landmark over all

the images containing it. ∑
images

(Y −X)TD(Y −X) (2.8)

Correlating the map images, a shift is determined and the new landmark location

in the real image is computed, so the output is a new estimation of V. With the

new estimations of V, W and ci everything is iterated from first step on.

At this point, the estimations of slopes and albedo are still rough because heights

are unknown. Please note that if the height is not correct, not only the prediction

will not be realistic, but also a wrong mapping will cause the extraction of brightness

from a wrong pixel. So the steps described up to now are nested inside another loop,

that includes heights computation. Simplifying, the height is integrated from slopes

and from nearest neighbor heights. Information coming from preliminary shape

models, stereoscopy or overlapping maplets data are exploited as well. From the

new computed heights, updated slopes are derived.

All the procedure described in this section is repeatedly applied to the map until

convergence. After the generation of all the maplets, they are assembled together

to form the Global Topography Model (GTM), a high resolution shape model. The

starting point is the low resolution reference shape. For each point of the reference

shape a line is run in the local normal direction until an L-map is encountered at

some height. Since L-maps overlap, an average of the heights is computed and the

point position of the shape model is updated. The GTM resolution can be increased

ad the mission goes on.
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In addition to landing site selection and scientific investigations, a possible ap-

plication of maplets is refinement of navigation data. With the nominal spacecraft

position and camera pose, the photometric model is used to simulate the L-map im-

age brightness. Then, thanks to cross-correlation, the offset in the original image is

found. At least 3 maplets per image are needed to estimate both spacecraft position

and camera orientation. To have a very accurate and complete map is therefore es-

sential for an accurate navigation. Since the final maplet has been generated from a

large number of images, it is superpixelized and can easily be correlated with images

that have 5 times the resolution of the original images. This allow to navigate closer

to the body with respect to the distance at which images were taken.

2.3 Stereophotogrammetry

SPG is a dense stereo method. Stereo methods compute the position of some control

points by triangulating them in several images. In other words, patches from a

reference image are correlated to other images to find point correspondences. Then,

operations like rotations, translations and distortions are found to go from one

image to another and the 3D topography is deduced. SPG aims just to estimate the

heights of the topographic model, so no albedo information is deduced. A detailed

description can be found in Giese’s works [17], [18].

An initial bundle block adjustment is applied starting from recorded navigation

data associated to several images. Collinearity equations relate the image coordi-

nates with camera pose and body-fixed coordinates (similarly to equation 2.1) and

are solved with a least-squares adjustment, thus improving accuracy. Then, images

are correlated in order to find a large number of conjugate points. An image is

taken as reference and an automatic area-based matching strategy is applied: the

patterns identified in the reference image patched are searched for in the stereo tar-

get images. The coordinates of conjugate points are converted to the body-fixed

frame coordinates using collinearity equations. Finally the topographic model is

interpolated.

SPG does not require to know any preliminary shape, but presents some limita-

tions: the low resolution, that is comparable to the patch size, and the sensitivity to

illumination changes, that affects the conjugate points determination. Nevertheless,

SPG can be combined with SPC with the aim of finding a grid of anchor points dis-
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tributed in the L-map surface. Simulating the appearance of an image with known

slopes and albedo, anchor points can be observed. They are then used in the height

integration process as known constraint heights.

2.4 Possible improvements

In conclusion, high resolution shape model reconstruction is a complex procedure

that can only be performed on-ground, requiring to elaborate considerable amounts

of data with several loops. Nevertheless, the process can be improved in the au-

tonomy direction. Fundamental inputs to the process are the knowledge of Sun

direction and spacecraft pose, related to navigation data, as well as images of the

whole body with characteristics that could ease the selected mapping technique. In

particular, two frontiers are foreseen to ease on-ground analyses and decrease human

support:

� Autonomous navigation with accurate relative pose estimation.

� Image collection optimization, with appropriate illumination and stereo angles.

Both features are also linked to trajectory planning. Of course, depending on the

adopted mapping technique different requirements arise: SPC benefits from large

illumination variation, while SPG from constant illumination and different stereo

angles. The direction in which the surface is illuminated and observed of course

depends on the body shape, that is not completely known. Considering that the

spacecraft is exploring an unknown environment, automation and improvement of

all these aspects is not a trivial problem.
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3 The relative dynamics

The necessity of taking several pictures of the same area with suited emission

angles and illumination conditions makes the mapping problem tightly bonded to

the relative dynamics between asteroid and spacecraft. Moreover, uniform coverage

of the entire surface should be granted, producing a global map of the unknown

body while orbiting around it.

Having small bodies a low gravitational attraction, perturbations play a key

role in influencing the dynamics. The main forces acting on the spacecraft are the

Sun attraction, the Solar Radiation Pressure (SRP) and of course the gravity field

of the body. Asteroids and comets present heavily irregular shapes and therefore

the gravitational field in their surroundings is irregular as well. Several models of

the gravitational potential are present in literature. Different models also exist to

describe the relative dynamics between spacecraft and body, depending on pertur-

bations magnitude. Relevant contributions on this topic are related to Scheeres’s

works [46]–[50].

The purpose of this chapter is to give some insight into the dynamical environ-

ment possibly encountered during small bodies mapping. Typical orbit strategies

are presented, a general dynamical model is described. Then magnitudes of ac-

celerations acting on the spacecraft are briefly analyzed, comparing some possible

scenarios.

3.1 Dynamical environment and typical strategies

Small bodies are characterized by different masses, dimensions, shapes and rotational

states. Orbital parameters and physical data derived from ground observations and
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space missions can be found on JPL on-line Small Bodies Database Browser [51].

The typical body shapes can be quasi-spherical, typically for big or fast rotating

asteroids, or irregular (dog-bone, two-masses, elongated), with diameters that have

an order of magnitude ranging from 10−1 to 102 km and masses that can go from

1018 kg to below 1010 kg. Also the rotational dynamics is very diversified: slow

rotating asteroids can have a rotation period of the order of 102 h, while for fast

rotating asteroids there is a spin barrier of 2.2 h [52]. The typical case is a uniform

rotation around the major axis of inertia, but also small bodies tumbling in an

arbitrary rotation state exist. All the above mentioned variables concur to affect

the spacecraft-body relative dynamics and the illumination conditions variation of

the body surface, thus influencing the body mapping.

The dynamic environment in proximity of small bodies is challenging: the grav-

itational field can be highly irregular and perturbations like SRP, the gravitational

perturbation due to the Sun and comet outgassing may play a dominant role. For

this reason, orbits in proximity of small bodies have a non-Keplerian nature. Orbit

maintenance is a problematic issue in these highly perturbed environments, where

orbits are likely not stable and the spacecraft may escape or impact the body.

As a consequence of the rich and challenging dynamical environment, trajectory

design and planning is strictly mission-dependent. Several possible strategies for

mapping trajectories exist.

Families of stable orbits can be found in environments where SRP is the largest

perturbation; these orbits do not require active control and therefore are inexpen-

sive. In particular, three families of orbits are the most studied in literature: eclip-

tic, terminator and quasi-terminator orbits [22], [49], [50]. The framework in which

these families are found is the Augmented Normalized Hill three Body Problem

(ANH3BP). Ecliptic orbits are periodic, but may require maintenance maneuvers

and are suitable to observe only the region of the body near to the ecliptic plane.

Terminator orbits lie in the plane perpendicular to the Sun and are highly stable.

The main drawback of this solution is that the angle between spacecraft and Sun is

always 90◦, limiting the imaging opportunities. Quasi-terminator orbits are partic-

ularly good for global mapping campaigns because they are stable and also offer a

good variation of Sun-relative geometries. However their applicability is in practice

limited, depending on mission time scales, length scales and minimum allowable

orbit radius.
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Other strategies are based on actively controlled trajectories. In fact, when

the body mass is small such strategies can still be actuated with reasonable costs

and offer the possibility to easily obtain the desired Sun-spacecraft-body relative

geometry. Drawbacks are that fuel cost may become important if the strategy is

extended for a long time and that maneuvers require ground supervision. Examples

of controlled trajectories are direct hovering in the body-fixed or inertial frame, as

well as flybys, conic-like trajectories or ping-pong orbits [21], [53], [54].

3.2 Dynamical model

In this section a general model of spacecraft dynamics around small bodies is de-

scribed. Let’s consider an inertial frame I, a body-fixed frame B rotating with

angular velocity ωsb. The body frame B can be defined with the first two axes lying

on the small body equatorial plane and the third one aligned with its spin axis.

Typically the spin axis orientation is defined on catalogs through its right ascension

α0 and declination δ0 at a given reference time.

The spacecraft is subjected to the small body gravitational field and to the

other perturbing accelerations, in particular the solar radiation pressure and the

Sun gravity. The spacecraft translational dynamics in the inertial frame is:

r̈I = ∇UI + ap,I (3.1)

where ap,I are the perturbing accelerations acting on the spacecraft and ∇UI is the

body potential gradient. It has to be noticed that the potential evaluation depends

on the spacecraft position relative to the body.

Defining RIB as the rotation matrix from the body frame to the inertial one,

rI = RIBrB, where rB is the relative position expressed in the body-fixed frame.

Applying the transport theorem, the dynamics can be expressed in the body-fixed

frame:

r̈B + ω̇sb ∧ rB + 2ωsb ∧ ṙB + ωsb ∧ ωsb ∧ rB = ∇UB + ap,B (3.2)

This equation is coupled with the small body rotational dynamics. Anyway, typically

small bodies have uniform rotations around their principal inertial axis, so it is

possible to simplify the dynamics assuming a constant spin:

r̈B + 2ωsb ∧ ṙB + ωsb ∧ ωsb ∧ rB = ∇UB + ap,B (3.3)
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Even with the assumptions made, equation 3.3 still remains very general. During

an initial design phase, simplified scenarios are usually considered, to have general

insights on the dynamic environment in proximity of the small body. In particular,

two different regimes are described in [47]: one in which the irregularity of the

gravity field is negligible and another in which all the perturbations coming from

the Sun are of secondary importance.

3.3 Body gravitational potential

Small bodies have irregular shapes, therefore their gravity field is not well approx-

imated by the one produced by a point mass. In its most general expression, the

gravitational potential sensed by a point mass in proximity of a body is equal to

U =

∫
M

Gdm

ρ
(3.4)

where M is the total mass of the body, G is the universal gravitational constant and

ρ is the relative distance between the point mass and the differential mass dm.

Several methods exist in the literature to model the gravitational potential. The

most accurate one is the polyhedron model, introduced by Werner et al. [55]. The

polyhedron model transforms the volume integral of the potential into an integral

over the body surface, approximated as a polyhedron. Such model can be relied

as groundtruth and has a validity domain up to the surface level, but it is compu-

tationally expensive. Since the global mapping phase is carried out far from the

body surface, a less accurate model is sufficient. Harmonics expansion methods find

an analytic approximation of the potential, that is valid only in a region outside

a reference surface. In particular, for spherical harmonics (SH) such surface is the

smallest sphere enclosing the body (also called Brillouin sphere), for the ellipsoidal

ones (EH) it is the smallest ellipsoid. To make an accurate and long term dynamic

model of the asteroid approach is beyond the scope of this thesis. In particular, SH

are considered.

3.3.1 Spherical harmonics approximation

The potential function at a point P outside the Brillouin sphere can be expressed an

infinite summation of harmonics, weighted with some mass coefficients that encode
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informations about the body mass distribution.

U =
GM

r

∞∑
n=0

n∑
m=0

(ae
r

)n
Pnm(sinφ)(Cnmcos(mλ) + Snm sin(mλ)) (3.5)

where ae is a reference radius, Pnm are Legendre polynomials (m = 0) or associated

Legendre functions (m > 0) of degree n and order m. Cnm and Snm are the mass

coefficients and in particular, Cn0 and Sn0 are called zonal harmonics, Cnn and Snn

are referred to as sectorial harmonics and the remaining terms are the so called

tesseral harmonics. The radius r, latitude φ and longitude λ are the spherical

coordinates of the field point P in the body-fixed reference frame. In numerical

applications, the expression in equation 3.5 is truncated at a maximum degree N and

a normalization is performed to avoid having mass coefficients with large magnitude

variations, thus avoiding numerical issues.

The acceleration sensed by the point mass is equal to the potential gradient.

The gravitational acceleration is comprehensive of the central body gravity, i.e. the

zero degree term in equation 3.9, and the higher degree expansion terms, which

correspond to the body gravitational perturbation. Please note that gradient of

potential is already expressed in the body-fixed frame and depends on the considered

field point.

∇U = ab + aSH (3.6)

When deriving the potential gradient in spherical coordinates (ur,uφ,uλ) a singu-

larity appears at the poles:

∇U =
∂U

∂r
ur +

1

r

∂U

∂φ
uφ +

1

rcosφ

∂U

∂λ
uλ (3.7)

In 1973 Pines derived a singularity-free formulation for the geopotential [56], express-

ing it in terms of derived Legendre polynomials, also called Helmholtz polynomials.

The field point coordinates are expressed in the direction cosine coordinates

s =
x

r
= cosφcosλ

t =
y

r
= cosφsinλ

u =
z

r
= sinφ

(3.8)

leading to the following truncated expression of the potential:

U =
GM

r

N∑
n=0

n∑
m=0

(ae
r

)n
Hnm(u)Dnm(s, t) (3.9)
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Where Dnm is the mass coefficients function and Hnm are the Helmholtz polyno-

mials. The potential gradient is directly computed in cartesian coordinates. In

1988 Lundberg et al. compared several recursion schemes for the computation of

fully normalized Helmholtz polynomials and their derivatives [57]. More recently,

Fantino and Casotto developed an algorithm with a lumped coefficients approach:

U =
N∑
m=0

(A(1)
m cos(mλ) +B(1)

m sin(mλ))(cosφ)m (3.10)

where A
(1)
m and B

(1)
m are the lumped coefficients, that are functions of fully normalized

Helmholtz polynomials and mass coefficients. The derivation of the gradient of

potential in cartesian coordinates and the details of the algorithm can be found in

their work [58].

3.3.2 Mass coefficients computation

In real applications mass coefficients are derived from range data, but if the shape

model of a body is known, as well as its density distribution, they can be computed

via analytical methods [59].

By definition the mass coefficients are:[
Cnm

Snm

]
=

2− δ0m

M

(n−m)!

(n+m)!

∫
body

( r
ae

)n
Pnm(sinφ)

[
cosm(λ)

sin(mλ)

]
dm

=

∫
body

[
cnm

snm

]
dm

(3.11)

As already mentioned, a normalizing factor is commonly introduced:

Nnm =

√
(2− δ0m)(2n+ 1)(n−m)!

(n+m)!
(3.12)

[
Cnm

Snm

]
Pnm =

[
Cnm/Nnm

Snm/Nnm

]
PnmNnm =

[
Cnm

Snm

]
P nm (3.13)

Assuming the body as a polyhedron with constant density σ, the integral over the

body can be expressed in cartesian coordinates as the summation of different con-

tributions, given by the tetrahedra composing the polyhedron. In fact, a facet with
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vertices v1 = [x1 y1 z1]T , v2 = [x2 y2 z2]T , v3 = [x3 y3 z3]T can be as-

sociated to a tetrahedron with vertices v1,v2, v3 and the origin. Then, to ease

the integral computation, a transformation is performed from the tetrahedron to a

standard simplex with vertices [1 0 0]T , [0 1 0]T , [0 0 1]T and the origin.

This results in a coordinates change [x y z]→ [X Y Z]. The Jacobian of this

transformation is J = [v1 v2 v3].

[
Cnm

Snm

]
=

∫
body

[
cnm

snm

]
dm = σ

∑
simplices

∫ ∫ ∫ [
cnm(x, y, z)

snm(x, y, z)

]
dxdydz

= σ
∑

simplices

∫ ∫ ∫ [
cnm(X, Y, Z)

snm(X, Y, Z)

]
det(J)dXdY dZ

= σ
∑

simplices

∫ ∫ ∫ ∑
i+j+k=n

[
αijk

βijk

]
(X iY jZk)det(J)dXdY dZ

(3.14)

The integrands cnm and snm are homogeneous polynomials of degree n and coeffi-

cients αijk and βijk. The coefficient expressions derive from the Legendre polynomi-

als and they can be computed in a recursive manner. Solving the volume integral a

final expression of the mass coefficients is obtained:[
Cnm

Snm

]
= σ

∑
simplices

det(J)
∑

i+j+k=n

i!j!k!

(n+ 3)!

[
αijk

βijk

]
(3.15)

3.4 Sun perturbations

A part from the small body attraction, the other most important accelerations

acting on the spacecraft are the ones coming from the Sun: SRP and third-body

perturbation.

Figure 3.1: Relative Sun-spacecraft-small body position
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Defining D as the spacecraft position relative to the Sun and d as the aster-

oid position vector relative to the Sun (see Fig 3.1), the relative position between

spacecraft and asteroid in the inertial frame is:

rI = D− d (3.16)

Using a simple cannonball model [60], the acceleration due to Solar Radiation

Pressure expressed in the inertial frame is:

aSRP,I =
P0A

D2m
νCrD̂ (3.17)

where A is the spacecraft cross section in light, m is the spacecraft mass, ν is the

eclipse factor (equal to 0 if the spacecraft is in shadow and to 1 if in sunlight), Cr

is the reflectivity coefficient, with value approximately 1, P0 is the solar radiation

pressure at 1 au (about 4.56× 10−6 N
m2 ).

While the acceleration acting on the spacecraft due to the solar gravity is the

classical third body perturbation:

as,I = µs

( d

d3
− D

D3

)
(3.18)

3.5 Accelerations order of magnitude

In this section the order of magnitude of accelerations acting on the spacecraft is

computed considering some test small bodies: Eros, Itokawa and Bennu. Spherical

harmonics coefficients are computed up to the eighth degree exploiting shape models

available on JPL Planetary Data System [61], while the bodies orbital and physical

data are taken from JPL database [51].

Figures 3.3, 3.5 and 3.7 show the accelerations magnitude varying the interest

ratio, including typical distances of characterization, global mapping and close ob-

servation phases. For what concerns SRP, three different mass to area ratios have

been considered according to past missions data: 10 kg
m2 , 35 kg

m2 and 80 kg
m2 [22]. Of

course the irregularity of the gravity field is much more relevant when close to the

body surface, as can be observed from potential gradient magnitude contours in

Figures 3.2, 3.4 and 3.6.

In the case of elongated bodies like Eros the perturbations due to the irregularity

of the gravity field are some orders of magnitude larger than the ones coming from

the Sun, when the interest ratio is small (Figure 3.3). While for bodies with diamond
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or spherical shape, the spherical harmonics perturbation is much less relevant than

SRP, (Figure 3.5). In other cases, like Itokawa’s, SRP plays a dominant role and

can be even larger than the attraction of the primary body (Figure 3.7). In other

situations perturbing accelerations have a similar order of magnitude.

In conclusion, very different situations are observed and even for the same small

body more scenarios are encountered varying the distance. The adoption of a unique

simplified dynamic model to describe all the mapping phases or on different bodies

inevitably leads to significant errors, especially when running long-time simulations.

On the other hand, using a complex model that precisely describes perturbing forces

does not allow to probe the dynamical environment and to find orbits suited for

mapping in a repeatable way.

Figure 3.2: Potential gradient magnitude in proximity of Eros, outside Brillouin sphere, [ms2 ]
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Figure 3.3: Accelerations order of magnitude acting on the spacecraft in proximity of Eros, at its
aphelion

Figure 3.4: Potential gradient magnitude in proximity of Bennu, outside Brillouin sphere, [ms2 ]
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Figure 3.5: Accelerations order of magnitude acting on the spacecraft in proximity of Bennu, at its
perihelion

Figure 3.6: Potential gradient magnitude in proximity of Itokawa, outside Brillouin sphere, [ms2 ]
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Figure 3.7: Accelerations order of magnitude acting on the spacecraft in proximity of Itokawa, at its
perihelion
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4 Planning under uncertainty

The present chapter deals with the problem of planning under uncertainty, provid-

ing the general framework under which small bodies autonomous mapping falls. In

the robotics field autonomous exploration of an unknown environment is typically

formulated with an active SLAM approach, coupling the tasks of mapping, local-

ization and planning. Active SLAM can be seen as an instance of POMDPs. The

adaptation of this particular perspective on small bodies exploration is very recent

and can be found in literature only in Pesce et al. [31] and Chan et al. [36] works.

In this chapter, the mathematical formulation of POMDPs is briefly introduced,

then the active SLAM problem is presented as a general model for robotic ex-

ploration. Finally this model is specifically applied to small bodies autonomous

navigation and mapping, highlighting the additional challenges that arise.

4.1 Partially Observable Markov Decision Pro-

cesses

Markov Decision Processes (MDP) were introduced by Bellman in the 50s. They are

based on Markov chains. A Markov chain is a stochastic process with no memory.

This means that given some states, the process randomly evolves from one state sk

to another sk+1 with a transition probability that depends only on the pair (sk, sk+1)

and not on past states.

In a MDP, a decision-maker called agent can choose between several possible

actions. The transition probability to the next state depends on the chosen action

and can be associated to a scalar reward. The agent goal is to maximize the rewards

over time, with an optimal policy. So a MDP is characterized by:

35



Chapter 4. Planning under uncertainty

� A state space S.

� An action space A.

� An immediate reward or cost function r : S x A → R.

� A transition probability T (sk+1| ak, sk), that governs the process by mapping a

state-action pair to a probability distribution of states at the next time instant.

Therefore a MDP is a four-tuple 〈S,A,R, T 〉. A solution to a MDP is a policy which

maps from states to a probability distribution over actions π : S → p(A = a |S).

An optimal policy π? maximizes the reward over time.

The absence of memory in MDPs is defined by the Markov property : the next

state depends only on the current state and action and not on past actions and

states, so the future is conditionally independent of the past, given the present state.

This property is essential to many solution algorithms [32]. In real applications the

Markov property requirement can be difficult to meet. In order to respect it, the

state information must be rich enough so that the observed state transition does not

depend on additional historical information. But the agent sensors may not be able

to make distinctions between world states. This phenomenon is known as perceptual

aliasing and can be involuntary or voluntary. It is involuntary when the sensors can

provide only limited or inaccurate information about the environment state. It is

voluntary when the agent exploits only part of the sensor information, because of

time or resources constraints.

When the state is only partially observable, the problem can be defined as a

POMDP. In this case the agent can have only a partial knowledge of the environment:

the state is not observable but a signal stochastically related to it is observable. So

a POMDP can be described as a tuple 〈S,A,R, T ,Ω,O〉, where:

� S,A,R, T are the same spaces defined for the underlying MDP.

� Ω is the space of possible observations.

� O(ok+1| ak, sk+1) is the probability of making observation ok+1 at the next

time step, given action ak that leads to state sk+1.

POMDPs are difficult to be solved, therefore it is better to reduce them in

order to find a computationally tractable solution. A POMDP can be reduced
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to a MDP including the agent history h as internal state. The history is com-

posed by all past actions and observations, so history at time step k will be hk =<

a0, o1, a1, ..., ak−1, ok >. Usually the problem is tackled with a less direct approach

known as belief-space MDP. This formulation is a tuple 〈B,A,RB, τ〉, where:

� B is the belief space, with belief bk = p(sk|hk) equal to the probability of being

in state s after history h.

� A is the action space as in the original POMDP.

� rB is the expected immediate reward B x A → R

� τ(bk+1| ak, bk) is the belief transition function, i.e. the probability of reaching

the new belief bk+1, starting from bk and performing action ak.

The optimal policy is the one that maximizes the reward in the long term, assuming

to act according to that policy:

π? = argmax
π

Eπ

[
T∑
k=0

R(ak, bk)

]
(4.1)

This is called also finite horizon problem, since reward is optimized for the next T

steps of the agent. In case of infinite horizon optimality, the reward is maximized

over the entire agent lifetime, but a discount factor γ ∈ [0, 1] is considered:

π? = argmax
π

Eπ

[
∞∑
k=0

γkR(ak, bk)

]
(4.2)

Several approaches exist to solve POMDPs, like methods descending from operations

research, point-based algorithms and machine learning [62]–[66]. POMDPs are often

computationally intractable and their complexity makes it hard to find a solution

to their most general formulation. Exact solutions exist only for a very small class

of problems formulated as POMDPs.

4.2 Active Simultaneous Localization And Map-

ping

SLAM consists in estimating a map of an unknown environment and at the same

time localizing in it. Localization is the task of estimating the robot position and
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orientation (pose) while moving in the environment. This can be done exploiting

sensors data of various types (e.g. cameras, laser, sonar), commonly are affected

by noise. Moreover as the robot moves, estimation errors are accumulated and this

can lead to a divergence from the real pose. The mapping goal is to build a global

and consistent map of the environment. For instance, SLAM can take as inputs just

visual informations from a monocamera: features can be extracted and matched

between different frames and the camera pose can be retrieved. A triangulation of

the features is then performed through projective geometry, to reconstruct the 3D

map of the environment. So in this case landmarks are features characterized by

short descriptor vectors, that can be generated with various techniques [67].

The SLAM problem can be formulated as follows. The environment map at time

step k is made of a set of n landmarks mk = {m1,m2, ... ,mn}, where mi is the

position vector of the i-th landmark. The robot pose xk changes while the robot

moves under the control uk and can be estimated through observations of landmarks

location zk. A scheme is shown in Figure 4.1. The agent actions have stochastic

Figure 4.1: Simultaneous Localization And Mapping scheme, from [24]

effects and the environment is perceived through noisy and partial observations,

therefore SLAM can be described in probabilistic terms. If the robot state was

perfectly known, the mapping problem would have been governed by probability:

p(mk|x0:k, z0:k,u0:k) (4.3)
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On the contrary, if the map state was known the localization problem would have

been:

p(xk|m0:k, z0:k,u0:k) (4.4)

In practice, the two problems are coupled:

p(mk,xk|x0, z0:k,u0:k) (4.5)

There are several approaches to solve the SLAM problem, that can be based on

filters [24] or on graph optimization [67]. An important aspect of SLAM structure

is that landmarks estimates are highly correlated: even if their absolute position

is uncertain, the relative one may be known with a higher accuracy. While the

robot moves and observes an already visited landmark mi, this indirectly affects

the estimation of other landmarks mj not observed in the current step. In fact the

revisited landmark can be updated also with respect to the previous poses, where

it was observed along with other landmarks. For this reason SLAM largely benefits

from loop closing, i.e. when the robot closes its path coming back to a previously

visited location.

Active SLAM adds to the SLAM problem the planning task [25], [27], [66].

POMDP provides a framework to investigate the effects of actions and observations

on the agent’s environment perception, thus allowing to design policies that optimize

the agent’s interaction with the environment in some of its aspects.

Since the environment is stochastic, the problem can be described in probabilistic

terms according to the belief-space MDP formulation presented in the previous

section 4.1. The state vector is composed by robot pose and landmark locations

sk = (xk,mk) and its belief is bk = p(sk|z0:k). The actions that the agent can

take coincide with the control ak = uk. The belief is estimated from past control,

belief and current observations: bk+1 = τ(uk,bk, zk+1). For what concerns the

reward, it is usually modeled in terms of an objective function. For instance, a

planner can have multiple objectives like maximizing coverage or map accuracy and

minimizing navigation time, motion cost or resources utilization. Several criteria

exist to formulate the objective function to be optimized by the planning policy

[27], [68]. In particular, the exploration problem consists in choosing the sensing

trajectory to obtain the best map.
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4.3 Application to space environment

In the present section small bodies navigation and mapping is framed as a POMDP,

in analogy with the active SLAM problem. Many similarities can in fact be found

between classic robotic and space exploration. In both cases an autonomous robot

is exploring an environment that is not completely known and moves in it collecting

sensors information. Sensors data are used to localize in the environment and to

build a global map of it. On-board resources are limited, both in terms of computa-

tional capabilities and energetic resources. Nevertheless, space exploration presents

some differences and additional challenges with respect to the classic active SLAM,

so the general framework is now tailored on small bodies navigation and mapping.

The relative spacecraft-body state can be defined as xk = (rB, ṙB) where rB

and ṙB are the relative position and velocity defined in Chapter 3. Contrary to

classic robotics, natural dynamics plays a fundamental role for the state evolution.

In addition, the possibility of controlling the motion is constrained by stringent

safety requirements and propellant consumption. The sensors used for navigation

around small bodies can be of various types, like radar, lidar and optical. The state

belief bk can be retrieved with determination algorithms based on filters that may

exploit also other types of data, coming from proprioceptive sensors (gyroscopes,

accelerometers) or star trackers, Sun sensors. In case of optical measurements, the

map of the body mk is the set of landmarks on the body surface. Landmarks can be

generated in different ways, as manually by human experts, with computer vision

algorithms for feature extraction and matching or as centers of SPC maplets. The

landmarks knowledge is refined during the mission operations and requires human

supervision, as explained in Chapter 2.

Actions represent the ways in which the agent can interact with the environ-

ment. In a broad sense, the environment is everything external to the decision

maker. Therefore in this case actions can be a change of trajectory or attitude, but

also acquisition of sensory inputs or handling of data storage and communication.

In principle, there are several objectives towards which the planning goal can be

oriented, as optimization of scientific objectives with smart data collection or active

SLAM-like autonomous navigation with map accuracy improvement. In practice,

it is important to understand which decisions can be taken autonomously without

compromising the mission safety. In addition, it has to be considered that spacecraft
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are complex systems, with which the planning architecture should easily interface.

For instance, when planning is used for trajectory design, it should be seen as a high

level decision making, letting the task of maneuvering to a suited Guidance Naviga-

tion and Control system. As explained in Chapter 3, the dynamical environment in

proximity of small bodies is chaotic and errors in maneuvering can lead to impact

or escape from the body. In order to solve the planning problem, it is necessary to

reduce the policy space by defining proper states and actions, introducing substan-

tial simplifications to the general POMDP formulation, otherwise computationally

intractable. Up to now only few possibilities have been studied. In [31] the agent

planning is reduced to a fully observable environment and it is oriented to the max-

imization of mapping accuracy for SPC, choosing at fixed time intervals an orbit

within a subset of possibilities and thus generating an optimal orbit sequence. In

[36] the agent directly controls the spacecraft for moving around the body and again

benefits imaging for SPC. The agent can also decide in which time steps to take a

picture and when to downlink data. In this work state and action spaces are wider

and some uncertainty is considered for the spacecraft position knowledge.
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5 Deep Reinforcement Learning

This chapter introduces the tools used to tackle the autonomous small bodies

mapping problem. First, RL is introduced as a method to solve decision making

problems, with particular attention to Q-learning. In addition, advantages in using

DRL are briefly discussed. Then, basic knowledge is provided about neural networks,

since they are involved in DRL algorithms. Finally, the two DRL techniques of NFQ

and DQN are described in more detail.

5.1 Reinforcement Learning

Given the discrete nature of MDPs, usually a closed form solution to the problem

does not exist. RL is one of the most common methods to solve MDP problems

[32]. This powerful approach can be employed to solve large sequential decision

making problems in both fully observable and partially observable MDPs. Policies

may also be found with evolutionary methods, but this solution is feasible only

when the search space is small, otherwise the optimization becomes computationally

intractable.

The idea behind RL is to find a good policy by letting the agent interact with

the environment and collecting experiences. A scheme is shown in Figure 5.1. The

agent can understand thanks to the received reward if an action is valuable or not

when being in a certain state. The agent’s goal is to learn a control policy that

maximizes the discounted sum of rewards over time, i.e. the return:

Rk =
∞∑
k=0

γkrk (5.1)
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Figure 5.1: Reinforcement Learning scheme

where rk is the immediate reward at time step k and γ is the discount factor that

ranges in the interval [0,1]. If γ has a low value the immediate reward is more valued;

on the contrary large values give more importance to the future rewards. Typical

values used in RL algorithms are in the range 0.95− 0.99.

The value function Vπ(s) of a state s under the policy π is defined as the expected

return starting from s and following π thereafter:

Vπ(s) = Eπ
[ ∞∑
k=0

γkrk |s0 = s
]

(5.2)

Thanks to recursive relationships, it is possible to derive Bellman’s equation:

Vπ(s) =
∑
a

π(a|s)
∑
s′

p(s′|s, a)
[
r + γVπ(s′)

]
= Eπ

[
r + γVπ(s′)

]
(5.3)

where s′ is the possible next state. The optimal policy is therefore:

π? = argmax
π

Vπ(s) (5.4)

The corresponding optimal value function is:

V ?(s) = max
π

Vπ(s) (5.5)

Literature about RL algorithm is really wide [32], [69]. RL approaches can be

organized into two main categories: policy and value-based methods. The former

searches the space of behaviors in order to find a policy that performs well in the

environment; the latter estimates the utility of taking actions in given states of the

world.

Popular methods are Temporal Difference methods (Q-learning), Monte Carlo

methods and Dynamic Programming (policy iteration, value iteration). Every method
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has different advantages and disadvantages and the proper choice depends on the

specific RL problem. In particular, the nature and dimension of state and action

spaces are critical aspects. The optimal policy is usually not found, but a good

solution is anyway obtained.

Some memory approaches exist for RL in non-Markovian domains, some of them

including the history as a state or exploiting recurrent neural networks to keep

memory of past states [64], [70].

When dealing with multiple objective reinforcement learning, there is more than

one objective to optimize simultaneously. Two main strategies exist: singe-policy

or multiple-policy. In case of single-policy, the aim is to design a single policy that

simultaneously satisfies the presence of multiple objectives. So the problem is to

design an objective function that represents all the preferences. The most common

methods are the weighted sum approach, W-learning and analytic hierarchic process

(AHP) [71]. Instead, in the Convex Hull approach optimal value-functions or policies

for the single objectives are learned at once, without requiring to know the relative

priorities over reward components [72].

5.1.1 Q-learning

Q-learning is a widely used value-based RL technique in which action-state couples

are considered. This method can solve only MPDs with limited and discretized state

and action spaces. Q-learning is based on the estimation of the Q-value function,

also called action-value function.

For a given policy π, initial state s and action a, the Q-value function is the

expected return, given that the decision process is governed by policy π:

Qπ(s, a) = Eπ
[ ∞∑
k=0

γkrk | s0 = s, a0 = a
]

(5.6)

Again, exploiting recursive relationships:

Qπ(s, a) =
∑
s′

p(s′|s, a)
[
r + γ

∑
a′

π(a′|s′)Qπ(s′, a′)
]

= Rt + γEπ
[
Qπ(s′, a′)

]
(5.7)

The optimal policy is the one that maximizes the action value function:

π? = argmax
π

Qπ(s, a) (5.8)
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So the optimal Q-value Q?(s, a) corresponds to the sum of expected discounted

future rewards assuming that the agent acts optimally.

Q?(s, a) = max
π

Qπ(s, a) (5.9)

In classical Q-learning the action-value function can be estimated as:

Qk+1 = (1− α)Qk(s, a) + α
[
r(s, a) + γmax

b
Qk(s

′, b)
]

(5.10)

where α is a learning rate. Convergence of Q-learning has been proved by Watkins

et al. [73].

5.2 Deep Reinforcement Learning

Problems with continuous action and state spaces are particularly difficult to be

solved. If the state space is large, exploring all the states to find the optimal policy

or optimal value function is computationally intractable. Artificial Neural Networks

(ANN) overcome this issue by generalizing from previous encounters with different

states, similar to the current one. In DRL algorithms neural networks are used as a

function approximator within a RL algorithm. Extending reinforcement learning to

function approximation also makes it applicable to partially observable problems, in

which the full state is not available to the agent. DLR has shown excellent results, in

particular the two main fields of application are video-gaming and control problems.

In analogy with RL, two main branches can be found in DRL: policy search

and value-based methods [69], [74]. Policy search aims to directly find the optimal

policy with gradient-based or gradient-free methods. Value based methods (Deep

Q-learning) are less direct and exploit the neural network to approximate the q-

value function, instead of directly the policy. When the number of states of the

environment is very large or even infinite, it is not possible to experience them all

and multiple times, keeping track of all the Q-value estimates. In such cases the

policy can be represented by a neural network. Neural networks ability to generalize

complex and non-linear behaviors turns out to be of particular use in this situation:

the program can select an action, based on informations saved for similar states in

past experience, without the need of experiencing all the possible states.

Anyway, continuous action spaces are not well handled by DRL. The most

straightforward solution is to discretize the action space, but the number of actions
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increases exponentially with the number of degrees of freedom. Recent advances

extend actor-critic methods that combine policy and value-based to the continuous

action domain [75].

5.3 Neural Networks

ANN are numerical tools inspired to the structure of biological neural networks and

capable of performing an input-output mapping after a process called training. They

were born at the end of the 50’ with Rosenblatt’s perceptron and since then several

types of neural networks have been developed, with a large variety of tasks (function

approximation, pattern association, pattern recognition, control), architectures and

training algorithms [65], [76], [77]. The training methods can be of various types and

three main categories exist: supervised, unsupervised and reinforcement learning.

Here the focus is on the last method. In particular, in DRL algorithms ANN are

used to estimate the value-function, so with the task of function approximation.

In this section the classical Multilayer Perceptron (MLP) is described, along with

back-propagation training and empirical rules on ANN use.

5.3.1 Multilayer Perceptron

MLP are one of the most common types of ANN. Their structure is made of some

units called neurons, disposed in layers and connected to each other through linear

or non-linear relationships.

The network input, also called input layer, is a vector x of dimensions [R × 1].

A scheme of the i-th neuron of the net first layer is provided in Figure 5.2. The

weighted sum of neuron inputs is:

vi =
R∑
j=1

wijxj + bi (5.11)

where wij is the weight from neuron j to neuron i and bi the bias. The neuron

output is:

yi = fi(vi) (5.12)

where fi is the activation function. Typical activation functions are Heaviside func-

tion, logistic sigmoid, hyperbolic tangent or a linear function. Considering the whole
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Figure 5.2: Neuron scheme

first layer, made of R1 neurons, the input-output relationship can be written in ma-

trix form:

y1 = f1(W1x + b1) (5.13)

where y1 = [y1, y2, . . . , yR1 ]T is the first layer output, f1 = [f1, f2, . . . , fR1 ]T collects

the activation functions and b1 = [b1, b2, . . . , bR1 ]T the biases. W1 is the weights

matrix of the first layer, of dimensions [R1 × R]. A scheme of MLP with M layers

is shown in Figure 5.3, where the apex always stands for the layer number. The

last layer (M) is called output layer, while all the layers (1,2,..., M-1) in between

the input and output ones are called hidden layers. The final output of the MLP is

vector yM of dimensions [RM × 1], also shortly named y. Let’s also define y0 = x.

Input sum and output of the i-th neuron of layer m are:

vmi =
Rm−1∑
j=1

wmij y
m−1
j + bmi (5.14)

ymi = fmi (vmi ) (5.15)

Activation functions, number of layers and neurons are the ANN hyperparameters.

Their choice is usually made by the designer, but optimization procedures are also

possible.

5.3.2 Training: the back-propagation algorithm

The most common strategy for supervised learning is the back-propagation algo-

rithm now explained [76], [77]. Before starting the training, the MLP weights and
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Figure 5.3: Neural network scheme, matrix notation

biases are initialized to some random values, so at the beginning the network incor-

rectly maps inputs to outputs. During training the parameters are adapted accord-

ing to an error function until the ANN has learned to correctly perform its task.

This is possible thanks to the exploitation of a training set T , i.e. a set of inputs

associated to the corresponding desired outputs:

T = {x(n), t(n)}Nn=1 (5.16)

where x(n) is the n-th input and t(n) the corresponding n-th target. The error

between net output and desired target can be defined as a quadratic function:

E =
1

2
(t(n)− y(n))T (t(n)− y(n)) (5.17)

At each k-th training step, weights and biases can be updated with gradient - de-

scent :

wmij (k + 1) = wmij (k) + ∆wmij (k) = wmij (k)− η ∂E
∂wmij

(k) (5.18)

bmi (k + 1) = bmi (k) + ∆bmi (k) = bmi (k)− η ∂E
∂bmi

(k) (5.19)

The learning rate η scales the derivative and therefore has an important role for

the convergence of the algorithm: if its value is too small, the learning converges

too slowly, if it is too high than it causes oscillations and instability problems. In

adaptive methods, the learning rate is modified according to the observed behavior

of the error function.

One training step is composed by forward phase and backward phase. During

the forward phase, the input is propagated through all the network layers:

ym+1 = fm+1(Wm+1ym + bm+1) (5.20)
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for m = 0, 1, . . . ,M − 1. In the backward phase the output error is computed and

propagated backward in order to calculate the gradients. Recalling equations 5.17

and 5.14:
∂E
∂wmij

=
∂E
∂vmi

∂vmi
∂wmij

=
∂E
∂vmi

ym−1
j = smi y

m−1
j (5.21)

∂E
∂bmi

=
∂E
∂vmi

∂vmi
∂bmi

=
∂E
∂vmi

= smi (5.22)

where smi are the elements of the sensitivity vectors sm. For the output layer the

computation is straightforward:

sM = −ḞM(vM)[t− y] (5.23)

where

ḞM(vM) =


ḟM1 (vM1 ) 0 . . . 0

0 ḟM2 (vM2 )
...

. . .

0 ḟ sMRM (vMRM )

 (5.24)

Sensitivities of the other layers can be computed exploiting back-propagation from

the output layer to input one. Such relation can be easily derived using equations

5.14 and 5.15:

sm =
∂E
∂vm

=

[
∂vm+1

∂vm

]T
∂E

∂vm+1
= Ḟm(vm)

[
Wm+1

]T

sm+1 (5.25)

for m = M−1, . . . , 2, 1. Finally the layers weights and biases are updated according

to the gradient-descent equations 5.18 and 5.19.

It is important to interrupt the training at the proper moment. In fact, in case

of early stopping the net does not completely learn the input-output mapping. On

the contrary, if training is stopped too late, data are overfiedtted and the network

lacks in generalizing capabilities. The training can be interrupted when the gradient

vector falls below a tolerance value, because this means that the gradient descent

has almost reached a minimum (although if it could be stuck in a local minimum).

Another criterion is validation. The validation set is part of an already known data

set, similarly to the training set, but not used for training. During training such set

can be exploited to compute the output error; the algorithm is stopped as soon as the

validation error reaches the minimum, avoiding overfitting. In practice, a technique
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that can be used is to stop the training if the validation error has increased for a

certain amount of time since the last time it decreased.

The training process described up to now is called incremental training, since

the network is trained sequentially feeding the inputs. On the contrary, in batch

training the total data set is considered at once. Mini-batches are an intermediate

way between the two. When using batches or mini-batches, the training algorithm

differs in the definition of the error function. In particular, E is the mean error over

the training mini-batch TB ∈ T :

TB = {x(n), t(n)}NB

n=1 (5.26)

The case in which NB = N corresponds to the complete batch. The error becomes:

E =
1

2NB

NB∑
n=1

(t(n)− y(n))T (t(n)− y(n)) (5.27)

The gradient of the mean square error used for gradient-descent will simply be the

mean of individual squared errors gradients. While batch training is more stable, it

requires larger computational resources and if new data are added to the training

set it is necessary to start the learning process from scratch. For what concerns

incremental learning, it is more suited when reduced computational resources are

available, but it strongly depends on the learning rate and is more sensible to outliers.

5.3.3 Normalizing the inputs

Normalizing the inputs can significantly improve the training performance. A pro-

cedure for normalizing the neural network inputs has been developed by LeCun et

al. [78], in which all the inputs to the neural network are normalized to have a zero

mean value over the training set. The reason behind is that if the weights have

different means, their update will be more difficult during the learning process. For

instance in the extreme case in which the means are all positive, the weights of

neurons in the first hidden layer can only increase or decrease together. So the first

step to be performed is to shift the inputs so that the mean of each of them is zero

over the training set. Moreover the inputs should be uncorrelated, if possible. The

second step is therefore to remove linear correlation; principal components analysis

can be exploited. Finally, the inputs should have similar covariances. If a sigmoidal

activation function is employed, the standard deviation value should be equal to 1.

The steps are resumed in Figure 5.4.
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Figure 5.4: Neural network inputs normalization procedure, from [76]

5.4 Deep Q Learning algorithms

Now that both RL and ANN have been introduced, two of the most relevant Deep

Q Learning algorithms are presented: NFQ and DQN. Such algorithms are here

considered because of their popularity and encouraging results. It has to be noticed

that a large variety of DRL algorithms (policy-based, actor-critic) could be suitable

for tackling small bodies mapping, since they all present the advantages of handling

large continuous state spaces, generalizing capabilities and can deal with partially

observable environments. Here only NFQ and DQN are considered. NFQ was one

of the first Deep Q Learning algorithms and inspired many of the successive devel-

opments. It is selected because of its relative simplicity and good documentation

available. DQN is more recent and has been a significant breakthrough in the DRL

research field; it presents some similarities with NFQ, but it introduces innovative

mechanisms that can lead to better results.
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5.4.1 Neural Fitted Q Iteration

NFQ has been developed in 2005 by Reidmiller [79].

Experiences are collected by letting the agent interact with the environment

following a random policy. Triples of the form (s, a, s′) are stored in a sample set D,

on which the net is trained off-line. The neural network is initialized with random

parameters θ0, then the sample set is completely swept for a certain number of

iterations. At every iteration step, the net is used to estimate the Q-value. NFQ is

based on Algorithm 1, with relative scheme in Figure 5.5:

Algorithm 1 Neural Fitted Q Algorithm

1: collect E experiences and store in D
2: procedure NFQ
3: k = 0
4: initialize net:→ Q0 = Q(s, a|θ0)
5: while k < N do
6: compute target: ti = r(si, ai, s'i) + γmaxbQk(s'i, b)
7: network input: xi = (si, ai)
8: generate pattern set: P = [xi, ti], i = 1 : E
9: train net: Qk+1 = train(P )

10: k = k + 1
11: end while
12: end procedure

Figure 5.5: NFQ algorithm scheme

The training algorithm commonly used for NFQ is the resilient back-propagation

(RPROP), by Riedmiller [80], in which the weight is adapted based on local gradient

information. This direct adaptive method is robust against the choice of its initial
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parameter and converges with a reduced number of learning steps with respect to

classical gradient-descent. Therefore it is well suited to be used in a reinforcement

learning framework. A detailed description of the algorithm is reported in Appendix

A.

The main difficulty in applying NFQ is the training data collection: the prob-

lem must be suited to be solved with a random policy, that can allow the agent-

environment interaction and the collection of the state-action-state triples. If with a

random policy the environment exploration is not sufficient, the net will be trained

only on a subset of the different situations it could encounter. Another disadvantage

of this method is that it involves the repeated training of the network on hundreds

of iterations, so is not convenient to be used for very large networks. On the other

hand, this approach is model-free, stable, data efficient and simple to implement.

Some variants of the algorithm exist. In [81] a heuristic dynamic scaling of

the network output is proposed: the Q function assumes values that are unknown

and the neural network output will be within the interval I = (0, 1). Thanks to

the dynamic scaling, the interval (0, 1) is exploited at best and the need to design

reward to have Q-values comprised in that interval is overcome. In [82] a growing

batch variant is proposed: the transitions are collected with a random policy at

the beginning of the algorithm and after a certain number of iterations transitions

are collected again exploiting the trained policy. This approach helps to collect

transitions that are more and relevant as the policy performance increases.

5.4.2 Deep Q Network

Mnih et al. [83] have proposed a new DRL algorithm, that successfully overcame

the performance of human experts and other reinforcement learning algorithms in

many Atari games.

Experiences are collected playing many episodes, during which actions are chosen

according to an ε− greedy policy. This means that with probability ε the action is

random and with probability (1−ε) the action is the one that maximizes the current

Q-function. Usually the ε value is linearly varied between 1 and 0 during the learning,

in order to exploit the Q-function only when the net starts to approximate it well, so

the agent will spend more and more time in exploring only the relevant parts of the

environment. The choice of the greedy parameter can be critical to correctly collect

transitions, as also exploration of unknown regions of the state space is important.
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Two new mechanisms are introduced with respect to the NQF method: the target

network and experience replay.

� The so called experience replay consists in storing the agents experiences at

each time-step in a data set D, that is pooled over many episodes into a replay

memory. In other words, the Q-learning updates are applied over the random

experiences sampled from D. As in the NFQ case, the samples are randomized

to break correlations in the collected data. This mechanism allows not to forget

past experiences during the learning.

� The target network is an additional network that is used for approximating the

Q-value, while actions are taken according to the network that is undergoing

the training. At first the two networks are equally initialized, then after every

C steps of the algorithm the target net is updated and taken equal to the

trained net. The main purpose of this mechanism is to stabilize the learning

algorithm.

DQN is based on Algorithm 2, with scheme in Figure 5.6:

Algorithm 2 Deep Q Network Algorithm

1: Initialize replay memory D to capacity E
2: Initialize net:→ Q0 = Q(s, a|θ0)
3: Initialize target net:→ Q̂0 = Q(s, a|θ− = θ0)
4: for episode = 1,M do
5: Initialize sequence: s1

6: for k = 1,T do
7: with probability ε select action ai
8: otherwise ai = argmaxaQk(si, a|θ)
9: observe reward ri and new state s'i

10: store transition (si, ai, s'i) in D
11: compute target: ti = r(si, ai, s'i) + γmaxb Q̂(s'i, b|θ−)
12: network input: xi = (si, ai)
13: sample random minibatch of transitions P from D
14: P = [xi, ti], i = 1 : N
15: train net: Qk+1 = train(P )
16: k = k + 1
17: every C steps reset: Q̂ = Qk

18: end for
19: end for
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Figure 5.6: DQN algorithm scheme

One of the main reasons for the creation of DQN has been the need of fastening

the training process, particularly useful when training large networks. Nevertheless,

DQN can be used also when dealing with smaller networks as can lead to a better

performance in addition to the quicker training. The algorithm is data efficient, as

each experience is potentially used multiple times to train the network.
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6 Planning architecture for small
bodies imaging

The planning framework defined in chapter 4 presents a very general point of view

on small bodies exploration. In practice it needs to be reduced introducing some

assumptions, to be computationally tractable and actually useful for future applica-

tions. As already pointed out, such general formulation of small bodies navigation

and mapping as a POMDP is recent and not yet widely studied in literature. The

few related works solve the POMDP problem with different planning objectives,

approaches and assumptions [31], [36]. This thesis can be located under the same

general framework, but presents a novel planning architecture in which the focus

is moved on image collection timing. The proposed architecture allows an efficient

small body imaging, decoupling the decision process from the spacecraft dynamics,

thus eliminating safety issues and keeping the algorithm mission-independent.

In this chapter planning architecture is described, along with modeling choices

and assumptions, that derive from the critical analyses of context and tools carried

out in previous chapters. Then, the presented architecture is detailed through the

appropriate definition of rewards, actions and states.

6.1 Planning architecture overview

As explained in Chapter 4, exploration can be seen as an instance of a continuous

states and actions POMDP:

π? = argmax
π

Eπ

[
∞∑
k=0

γkR(ak,bk)

]
(6.1)

where bk is the belief of spacecraft and map states (xk, mk), ak the actions per-

formed by the agent following policy π and R the reward that models the planner
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objectives. Here a reduced policy space is considered in order to make the problem

computationally tractable. In particular, the planning goal is to choose sensing lo-

cations to better the map knowledge, collecting images with good characteristics for

enhancing the shape model reconstruction process.

Figure 6.1 shows the scheme of the proposed architecture. The planning architec-

ture is designed to be mission-independent and computationally light to cope with

limited on-board resources. In particular, the key infos needed by the algorithm are

the camera characteristics, the relative pose between camera and target, the illumi-

nation conditions and a rough body geometry. Then, such data are preprocessed

along with history information of already collected images. The next block is related

with the autonomous decision making: if the current observation epoch is worth,

then an image is taken. In particular, DRL is exploited to design the planning pol-

icy, comparing two different techniques: NFQ and DQN. To build up a successful

policy, prior knowledge needs to be incorporated in the process as much as possible,

having as an effect the simplification of the neural network task. It is in fact well

known that neural networks perform better when their structure is reduced. Once

the inputs to the neural network have been computed, they are fed into the net, that

outputs the estimated Q-value. At this point, the policy simply selects the action

with largest Q-value. Please note that such a policy is not random, but given one

input the output will be always the same. Finally, actions are recorded along with

conditions under which images were taken. Such data are important to understand

how the mapping campaign is proceeding.

Figure 6.1: On-board algorithm scheme

Thanks to the generalizing capabilities of neural networks and to the proposed

problem formulation, the presented algorithm can be trained on-ground, with no re-

training on-board. The training is performed with rewards formulated to improve

the on-ground SPC and to simultaneously limit the amount of collected images.
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This planning framework is different form other research works under many

aspects. The here proposed architecture differences from [31] because of different

planning goals, less restrictive assumptions and solution method. In fact [31] mainly

deals with orbit selection and reduces the environment to completely observable: the

planner evaluates reward for a subset of orbits and picks the best. Observations are

considered equally spaced on the orbits. It is also interesting to see differences

and similarities between the present thesis and Chan’s work [36], since they are

two independent and contemporary works, carried out almost in parallel: a similar

solution approach (DRL) is adopted, but the planning goal and model definition

are different. In [36] the neural network tasks include not only observations timing,

but also downlink and maneuvering: these complex objectives make it difficult and

risky to integrate such an architecture on-board. In particular, learning maneuvering

introduces issues related to the modeling of the dynamical environment, which are

not tackled. Here a safer planning is proposed, that has a large flexibility and

generality. The results of this thesis are supported by extensive tests, not carried

out in the other works, and the presented architecture is applicable to a wide variety

of scenarios.

A detailed definition of the here proposed reduced spaces of the decision process

is presented in the next sections, in terms of environment, reward, states and actions.

6.2 Environment model

The environment here considered is model-based, since a model to describe it is

available. This model includes all the elements relevant for the mapping campaign,

highlighted in Chapter 2. In particular, to derive images acquisition conditions and

body coverage, the following elements need to be considered:

� Body geometry.

� Sun direction, relative to the body.

� Camera position and orientation, relative to the body.

� Camera FOV.

� History of collected images conditions.
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The body geometry is here modeled with a low resolution polyhedron, made up

of triangular facets. Each facet is characterized by a normal unit vector n̂, with

respect to which photometric angles defined in Chapter 2 can be computed (please

refer to Figure 2.5).

The spacecraft and Sun trajectories relative to the body surface are modeled as a

set of discrete position vectors. To make an accurate and long term dynamic model

of the asteroid approach is beyond the scope of this thesis. The considered small

bodies are assumed on a keplerian orbit around the Sun and uniformly rotating about

their principal inertia axis. For what concerns the spacecraft dynamics, only the

central body attraction is considered (two body problem assumption). The adopted

simplified model does not want to represent all possible dynamics environments, that

are countless, as explained in Chapter 3. All the considerations made in Chapter 3

make evident that more complex models would for sure be more realistic, but not

more representative, since they would fit only for a very restricted class of mission

scenarios. It is therefore believed more useful to adopt here a simple model, but to

structure the planning architecture to be effective whatever the relative dynamics

between spacecraft and small body. For all these reasons a simplified dynamic

model is more convenient and sufficiently realistic to make considerations on image

collection planning.

The camera is assumed always pointed towards the body center, without attitude

changes. The camera FOV is simplified as conical.

6.3 Reward model

To appropriately model the reward is a delicate task, because the final policy will

maximize what the designer has indicated as valuable: only if the reward is well

defined the policy will be able to actually achieve the desired results. Several objec-

tives are accounted for in the reward definition. In particular, the main goals to be

achieved are:

� High quality and global map of the small body.

� Fastening of the mapping process.

� Reduction of the amount of data to be downlinked.
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The first goal depends on the adopted mapping technique. In the present thesis,

reward is defined to ease SPC, but if a different shape reconstruction technique is

used, different scores can be defined without changing the overall procedure. Please

note that some objective are in contrast and need to be balanced: a planner that

maximizes the coverage would explore new areas, while a planner that maximizes

the map quality would spend more time on the same areas. In addition, some

constraints are present on the number of images that can be taken, because of

memory and telecommunication issues. Therefore, only pictures containing relevant

information should be collected and sent to ground.

In this section the facet score and facet mapping index used to model the map

quality are described. Then, the overall reward is defined, including all the above

described objectives.

6.3.1 Facet score and facet mapping index

Given a set of images that include a surface portion of the body, a score can be

defined to assess the mapping quality for that area. The goodness of the mapping

depends mainly on three factors: the illumination conditions, the camera poses and

the surface topology. As detailed in Chapter 2, SPC benefits from images with large

variations in illumination and small variations in view angle. So the same surface

portion, i.e. the same facet of the representative shape model, should be observed

several times under the proper conditions, that are now modeled. The map quality

is represented by means of a low resolution shape model, in which a score Si is

associated to each facet i at the considered time instant. This score is the result

of the combination of five contributions: incidence, emission, emission variation,

solar azimuth angle and spacecraft azimuth angle scores. For the photometric angles

definition please refer to Chapter 2. The scores for SPC here defined rely on previous

works [31], with some slight changes.

Incidence score The incidence angle i should be kept between 20◦− 60◦ to avoid

shadows and excessive brightness, that won’t allow the extraction of useful informa-
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tion. Let’s define the incidence score Sii :

si =


1 if 20◦ ≤ i ≤ 60◦

1
10
i− 1 if 10◦ ≤ i ≤ 20◦

− 1
10
i+ 7 if 60◦ ≤ i ≤ 70◦

0 otherwise

(6.2)

Sii = µj(si) (6.3)

where µj is the mean performed over all the n taken pictures that contain the facet.

µj(x) =
1

n

n∑
j=1

(xj) (6.4)

(a) Incidence Score (b) Emission Score

Figure 6.2: Incidence and emission scores trend

Emission score The emission angle should be kept between 10◦ − 50◦. So in a

similar manner the emission score Sie is defined as follows:

se =


1 if 10◦ ≤ e ≤ 50◦

1
5
e− 1 if 5◦ ≤ e ≤ 10◦

− 1
10
e+ 6 if 50◦ ≤ e ≤ 60◦

0 otherwise

(6.5)

Sie = µj(se) (6.6)

The trend of emission and incidence scores for a single angle value (si and se) is

shown in Figure 6.2.
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Emission variation score Also, a large variation of emission angles is considered

beneficial, therefore the emission variation score is:

Si∆e = µj

(
max
k

2∆ejk
π

)
(6.7)

where ∆ejk = |ej − ek|. So for each emission angle ej under which the i-th facet is

seen, the maximum difference between the considered angle ej and the all the other

angles ek under which the facets was observed is computed. Then all the maximum

differences are normalized of π
2
, i.e. the maximum possible emission variation, and

the mean is performed.

Solar and spacecraft azimuth score Finally, the variation of solar azimuth

angles α should be large and the one of spacecraft azimuth angles β small. The

respective scores are computed in a similar fashion.

Si∆α = µj

(
max
k

∆αjk
π

)
(6.8)

Si∆β = 1− µj

(
max
k

∆βjk
π

)
(6.9)

Please note that in this case the normalizing value is π. All the angle variations are

defined as shown in Figure 6.3.

Figure 6.3: SPC facet angles variation examples, N = local North, W = local West
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Facet score The overall facet score is given by the weighted sum of the different

contributions. Please note that the scores defined above have values ranging between

0 and 1.

Si = wiS
i
i + weS

i
e + w∆eS

i
∆e + w∆αS

i
∆α + w∆βS

i
∆β (6.10)

The weights of the different criteria are computed according to AHP procedures.

AHP is a multicriteria decision making method developed by Saaty [84]. In his

work a procedure to derive weights for a set of criteria is defined, according to

their relative importance and relating them in a quantitative way. A matrix A with

elements aij is created to store the relative weights of the criteria, chosen according

to Table 6.1.

Value of aij Relative importance

1 j and k equally important
3 j slightly more important than k
5 j more important than k
7 j strongly more important than k
9 j absolutely more important than k

Table 6.1: Table of relative scores

The resulting matrix here proposed for the facet scores is shown in Table 6.2. The

weight vector is computed as the eigenvector associated to the maximum eigenvalue

and then normalized so that the sum of all the weights is 1. The obtained (here

rounded) weights are:

wi = 0.56 we = 0.17 w∆e = 0.06 w∆α = 0.10 w∆β = 0.10 (6.11)

Si
i Si

e Si
∆e Si

∆α Si
∆β

Si
i 1 5 7 5 5

Si
e 1/5 1 5 3 3

Si
∆e 1/7 1/5 1 1/3 1/3

Si
∆α 1/5 1/3 3 1 1

Si
∆β 1/5 1/3 3 1 1

Table 6.2: Matrix A for facets scores
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Facet mapping index The overall score represents the goodness of the images,

but does not account for the fact that increasing the number of pictures, the knowl-

edge of the area betters. Therefore the facet mapping index mi is defined for the

i-th facet:

mi = Si min
(

1,
n

N

)
(6.12)

where N is an arbitrary number of images. For instance, if N = 3, having 3 photos

with an ideal maximum score equal to 1 would be satisfying for mapping the area.

When the number of images is too low, the area is not well known so an high score

is not significant. On the other hand, having at least N images, additional images

increase the map knowledge only if they better the score.

6.3.2 Reward definition

The immediate reward depends on both states and actions:

rk = rk(sk, ak) (6.13)

If no action is taken the reward is null. When an image is collected in a forbidden

state s ∈ S−, a negative reward equal to -1 is returned to the agent and the image

is not accounted for in the successive mapping. Forbidden states correspond to

situations in which the image is in complete shadow or when the ideal number of

images is overcame, causing problems in on-board data storage. The ultimate goal

is to maximize the mapping index, therefore if the picture is taken in allowed states

the reward is:

r̃ = µm

(
mi
k −mi

k−1

mi
k

)
(6.14)

where mi
k is the mapping index of facet i at time k and µm stands for the mean over

all the facets in the current frame. Summarizing, the overall reward is:

rk =


−1 if ak = 1 and sk ∈ S−

0 if ak = 0

r̃ otherwise

(6.15)

If the agent immediately takes all the photos that can be sent on ground, for all the

successive time steps it will be forced to accept a zero or a negative reward. On the

other hand, the long term reward will be higher if images are collected only when it

is worth. This formulation of the overall reward is inspired by [82], where prohibited

states are defined for modeling learning tasks in control problems.
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6.4 Actions and states model

6.4.1 Actions

Here the reduced action space is defined. The agent interacts with the environment

only by choosing its sensing locations, so by collecting images, without controlling

its relative pose with respect to the body surface. A direct and continuous control

uk on the trajectory, as the one included in active SLAM problems, would be too

risky for this application. As a straightforward consequence of the reduced problem

definition, actions are discrete. The action at time step k is simply boolean:

ak =

{
0 if no picture is taken

1 otherwise
(6.16)

The number η of pictures to be ideally taken in a certain storage time Tstorage is

fixed. After this storage time images are downlinked and therefore the memory is

empty again. The discrete time steps in which an action can be taken are defined in

number equal to the ideal number of images times the control parameter ∆c. Ideally

with a large control parameter the final performance would be better, but also the

number of decisions to be taken would be too high. Shortening the control interval

the overall on-board computational time increases and also the learning time. So a

trade off between performance and learning must be done when choosing ∆c.

6.4.2 States

Also the state space is not equal to the complete space of the general POMDP:

spacecraft position and orientation, Sun illumination and map representations are

reduced. In particular, to directly consider the full and complete map state mk

would be too onerous, given the large number of landmarks on the body surface.

States have been designed to synthesize only the information necessary and useful for

decision making. The use of statistical quantities (mean and standard deviation) is

the only solution that allows to keep the number of observed states constant despite

of the change of number of facets in view. Moreover, to understand how the mapping

campaign is proceeding, all the history of past actions should be part of the states as

well. Of course to include the whole history in the states observation is not possible,

but anyway the POMDP is reduced by making part of the history observable.
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The reduced state includes memory, map and angles states, defined as follows:

memory state

s1 =
(
t− floor

(
t

Tstorage

)
Tstorage

)
/Tstorage

s2 = n
η

(6.17)

map state



s3 =
Alight

Aview

s4 = µm(mi)

s5 = σm(mi)

s6 = µM(mi)

s7 = σM(mi)

(6.18)

angles state



s8 = µm(si)

s9 = µm(se)

s10 = µm

(
maxj

∆αjk

π

)
s11 = µm

(
maxj

∆βjk
π

)
s12 = µm

(
maxj

2∆ejk
π

)
(6.19)

Memory state The memory state provides information on the time lapse and

number of collected images. The idea is that in a certain time interval Tstorage

pictures can be stored in the on-board memory before being sent on ground. The

ideal number of images to communicate at every time interval is η. In particular,

s1 represents the percentage of time spent in the current storage interval, while s2

the number of pictures taken n with respect to the ideal number η. The Tstorage and

η parameters can be tuned depending on mission constraints without affecting the

algorithm. These inputs help in evaluating how the collection of a new image would

impact on data storage.

Map state The map state provides general information on the mapping campaign

advancement. s3 is the fraction of area in light of the surface portion in view, thus

telling the area percentage whose knowledge will actually be improved by a new

picture. It can be roughly computed as the ratio between the image facets in light

and the total number of facets visible in the image. s4 and s5 are the mean of the

mapping index and its standard deviation over the surface in view, while s6 and

s7 are the same quantities over the whole body. These data are useful to decide

whether the exploration of the area under exam is worth from the coverage point of

view.
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Angles state The angles state gives local information about photometric angles

under which the facets in view and light are seen at the present time. In particular,

s8 and s9 are the inclination and emission scores mean. Please note that the means

are performed over all the facets in view and in light for the angles of the current time

instant only. While s10, s11 and s12 are the facets mean of the maximum variation

of current Sun azimuth, spacecraft azimuth and emission angles with respect to

the angles of already take pictures. These inputs allow to evaluate the possible

improvement of SPC for what concerns stereo angles and illumination conditions.

Please note that all the states can be estimated on-board through observations

of the environment elements described in section 6.2. So they can be computed

exploiting data that are available to the agent. In particular, during the global

mapping phase it can be fairly assumed to have a knowledge of a rough shape

model of the body. The camera field of view is of course known, while Sun direction

and camera pose can be estimated. In addition, all the states are here assumed to

be known with certainty, so the belief is about equal to the states bk ∼ sk, therefore

simplifying the POMDP. In particular, the memory data are known with certainty,

while relative position, attitude and surface illumination can be estimated through

sensors and determination algorithms that are typically available on-board.

It has to be highlighted that history of past observations is included as an input

since historical information about conditions under which past images were taken

is necessary for decision making. As explained in Chapter 4, this step is useful to

eliminate the dependence of the environment state from any historical information

not included in the state itself and therefore to respect the Markov property. Never-

theless, to input the full history to the neural network is not possible and data about

past photometric angles and mapping quality need to be preprocessed. This implies

a loss of information that makes the environment not fully observable, similarly to

voluntary perceptual aliasing.

With the presented definitions of reward, states and actions, the general POMDP

is reduced to:

π? = argmax
π

Eπ

[
T∑
k=0

γkrk(ak, sk)

]
= argmax

π
Qπ(ak, sk|θπ) (6.20)

Please note that the choice of DRL as solving tool to design the policy perfectly

fits this application. In fact, DRL can well handle large state and observation spaces,

but only discrete and low dimensional action spaces, as explained in Chapter 5.
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6.4.3 States computation

In order to feed the states to the neural network, a preprocessing block is included in

the algorithm (see Figure 6.1). The preprocessing block has the aim of elaborating

known environmental information for the generation of the neural network inputs.

The main difficulty is how to exploit them without an exceeding computational cost.

At each considered time instant, the facets in the camera field of view and in light

are detected. This can be easily done with geometrical considerations only, thanks

to the knowledge of the polyhedral shape model, the camera pose and the Sun

position relative to the surface. Of course it is necessary to account for the body

self-occlusion and self-shadowing. In fact, having small bodies irregular shapes,

some surface areas may be not visible because hided by other portions of the body

and in a similar manner, the shadow distribution on the surface is influenced by

the shape irregularity. Figures 6.4 and 6.5 show the relevance of self-occlusion and

self-shadowing for an irregular body.

Figure 6.4: Facets in the field of view cone for comet 67P-CG. Relevance of self-occlusion.

Then, for the facets in view and in light, the photometric angles are computed.

At this point, the computation of the neural network inputs is straightforward. The

only historical information needed are the photometric angles under which each facet

was seen in past taken images. In particular, photometric angles are stored for each

facet and facets scores and mapping index are updated.
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Figure 6.5: Facets in light and shadow for comet 67P-CG. Relevance of self-shadowing.

Please note that the preprocessing block is the one that has the largest computa-

tional cost, mainly because computations related to self-shadowing and self-occlusion

involve a double loop on the shape model facets. Anyway this step is fundamental

to increase the algorithm generality and to synthesize information provided to the

network. It would also be possible not to consider the shape model directly and to

implement a different algorithm architecture that does not need to preprocess geo-

metric data, thus saving computational time. Anyway this would open many other

issues, like how to handle historical information and how to represent the map state.

Moreover, if geometrical information is not included in the network inputs, the task

of relating camera pose, illumination and surface geometry would be transferred to

the network and needed to be learned during the training. Such approach implies

an increased complexity and a loss of generality: the mapping quality is strictly

related to the surface geometry and there is no way to deduce it if the training

has been done on a different body. So, the present approach prefers to accept the

largest computational cost and critically investigate the consequences of a delay in

the decisions, while keeping a large generality and independence from the specific

mission.
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7 Learning and test results

This chapter deals with learning and testing of the autonomous mapping plan-

ning policies. First, the learning process of the policies with DRL is commented:

the chosen learning environment is described, then the ANN architecture and hyper-

parameters choice are motivated in detail for both NFQ and DQN. Critical aspects

of the learning process and differences between the two techniques are highlighted.

Then, the testing simulation environment is described. Detailed results are pre-

sented for four main test cases along with sensitivity analyses that extensively verify

the policies performance and robustness, considering different possible scenarios. A

comparison with simple benchmarks is made. Finally, a computational analysis is

performed.

7.1 Learning

7.1.1 Learning environment

To properly define the environment with which the agent interacts during the learn-

ing is of fundamental importance for the learning success. The experiences set should

be complete, i.e. it should be an exhaustive collection of all possible cases that the

agent may encounter. Please note that the state is defined to be independent from

the asteroid, orbit and camera characteristics. Therefore a complete training set is

not a set built considering several asteroids and orbits, but a set of examples that

sufficiently explores the state space and includes relevant experiences for reaching

the final goal. Ideally it should contain a whole mapping stage, from the beginning

to the end, in which all the pictures are taken with the same instrument and at
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about a constant distance from the asteroid. Since the resolution of the maps to be

created is finer than the one already achieved at larger distances, the stage can be

considered independent from past stages for what concerns the coverage of the aster-

oid. In a few words, the learning environment should allow the agent to collect both

experiences in prohibited states S−, to avoid them in the future, and to make very

successful actions for mapping. For these reasons, in order to enhance the learning

process, a somewhat unrealistic situation is selected as learning environment:

� Non-keplerian orbit around asteroid Eros in Figure 7.1.

� Camera FOV of 10◦.

Before the selection of such training environment, more realistic orbits and cameras

were considered. Anyway, they have been discarded because the policies so obtained

revealed to be significantly inferior, because they allowed a minor variation of the

spacecraft-Sun-body relative geometry, therefore limiting the mapping possibilities.

This confirms the extreme importance of experiences that constitute the training

set.

The chosen asteroid is Eros because it is one of the few shape models available

in databases and because its elongated shape allows to image different percentages

of the body surface, keeping the distance fixed. In fact, the percentage of surface in

view varies between 6.4% and 0.7% with a mean of the 2.4% along the orbit. Please

remember that typical values are of about 3% − 1% for the global mapping phase,

as explained in chapter 2. The FOV has been chosen to image wider portions of the

body with respect to typical values, allowing to reach a good mapping with rela-

tively few images, thus reducing the number of repetitive experiences that would be

necessary to map with a smaller FOV. Anyway, experiences in which the percentage

of surface in view is more realistic are also collected, in the areas with maximum

body radius.

Also the selected orbit has good characteristics for mapping, because the shift

in RAAN due to Eros elongated shape allows to change the phase angle between

spacecraft and Sun. The trajectory has been obtained considering the spherical har-

monics perturbations, starting from an initial condition corresponding to osculating

orbital parameters of null eccentricity, 45◦ inclination and radius twice the asteroid

maximum one. Such an orbit has been a serendipitous finding and has been selected

because of its nice characteristics. Anyway, please note again that this situation
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is somehow fictitious, especially because of the close proximity, and that any good

mapping strategy would have been suited too, even a sequence of keplerian orbits

or an imposed trajectory that does not follow natural dynamics. For what concerns

the body illumination, some areas remains always in shadow, as it can be seen from

Sun direction in the body-fixed frame shown in Figure 7.2. The reason is that the

body spin axis inclination with respect to the ecliptic north is larger that Eros orbit

inclination. This allows to frequently collect also negative experiences for the body

mapping, which need to be learned and avoided. Data for asteroid orbit, rotation

period and spin axis orientation are taken from JPL Small-Bodies Database [51] and

International Astronomical Union reports [85].

(a) Spacecraft position in the body-fixed frame (b) Spacecraft position in the inertial frame

Figure 7.1: Spacecraft position in training environment

Figure 7.2: Sun direction in the body-fixed frame. Training environment.

The training simulation environment also assumes that the ideal number of im-
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ages during one episode is 500, with an ideal frequency of 1 picture per hour. The

downlink and control parameters defined in chapters 5 and 6 are:

� Tstorage = 10 h

� η = 10

� ∆c = 3

In practice, the orbit is discretized so that the number of points in the storage time

is three times the number of photos allowed. So the control interval between one

action and the successive one is quite coarse. This interval can be refined in future

works.

7.1.2 Neural network architecture design

The MLP used to approximate the Q-value function has the architecture shown in

Figure 7.3.

Figure 7.3: Neural Network architecture
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The MLP architecture is the same for both NFQ and DQN and is kept as simple

as possible, with a 13 elements input vector and a scalar output, in accordance to

planning necessities (see chapter 6). For what concerns the network hyperparame-

ters, there are two hidden layers made of 10 neurons and all activation functions are

tangential sigmoids. Such hyperparameters have been empirically chosen, according

to typical values for DRL algorithms with similar input and output sizes [82]. Please

note that the tangential sigmoid output is limited in interval [−1, 1]:

tanh(x) =
e2x − 1

e2x + 1
(7.1)

therefore it is necessary to scale outputs, as the possible Q-value is unknown. Since

reward assumes both positive and negative values, Q-value could have any sign, so

activation functions with output intervals [0, 1] are not appropriate. For the present

application hyperparameters optimization is not fundamental, since the network

architecture is really light and training is thought to be performed on-ground, with

no particular constraints on computational resources. Therefore a simple check has

been done at the end of the design, doubling the number of neurons in hidden layers:

the final performance does not improve, confirming that the chosen architecture is

robust enough.

7.1.3 NFQ learning

All the algorithms have been implemented in MATLAB environment. NFQ imple-

mentation is easier than DQN, since the experiences collection is not nested within

the training algorithm, as visible from schemes in Figure 5.5 and 5.6. Therefore

MATLAB Neural Network ToolboxTM has been used for the NFQ MLP training.

After experiences collection, the set is split into validation (15%) and training (85%).

Such division is used to understand when the training needs to be stopped, with

usual validation checks. A test set is not considered, because all the tests are per-

formed in a second moment interacting with environments different from the learning

one. The discount factor is γ = 0.95, as commonly found in literature. RPROP is

selected as training algorithm because of it robustness, with parameters as in ap-

pendix A. In particular, batch learning is preferred to incremental learning, because

the training set has a low dimension (500 ideal images and ∆c = 3 lead to a total

number of 1500 experiences). Input and output scaling is performed on the whole

experiences set. The Mean Square Error (MSE) between network outputs and tar-
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gets is reported for one training iteration in Figure 7.4, where one epoch corresponds

to a weights update step on the entire set of experiences. As it can be observed, the

MSE smoothly decreases until the validation check is met, i.e. the validation error

stops decreasing. Of course the training error is lower than the validation one.

Figure 7.4: Batch learning on NFQ network

Special attention was deserved to the fine tuning of the reward model, and in

particular to the prohibited memory states (please see chapter 6). At first the agent

was punished each time the stored pictures exceeded the ideal number before down-

link, i.e. an image was taken when s2 > 1. This definition resulted too restrictive

and the obtained policies collected very few images. On the contrary, relaxing the

punishment lead to an excessive collection of images, whatever other conditions. A

trade-off has been finally made by redefining the prohibited memory state as the

one in which the memory is full (s2 > 1) and the number of images overcomes the

ideal value at the k-th time instant (nk > nk,ideal), with

nk,ideal =
k

∆c

(7.2)

Riedmiller [82] when suggesting practical advices for NFQ implementation shows

that the original NFQ algorithm can work with a fixed set of transitions that can

be sampled randomly. Anyway, some artificial training transitions can be added to

the training set, as the author suggests. This practice revealed to be an important

mean for the policy success. Artificial transitions have been added so that each time
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the agent acting randomly fell into a prohibited state, the opposite action was also

taken and the training episode continuing from this new state.

For what concerns NFQ stopping criterion, typical methods operate with a fixed

number of iterations, without particular stopping criteria [82]. For the first itera-

tion, the estimated Q-value is taken equal to the immediate reward, without adding

the discounted Q-value. It has been found out that iterations after the first one

immediately satisfy validation checks. This result was completely unexpected and

means that the algorithm prematurely converges, becoming comparable to simple

supervised learning. The approximation done by the net is such that the immedi-

ate reward is confused with the long-term return when trained on the whole batch.

Some variants of the algorithm exist that re-initialize the network at each NFQ it-

eration, before the training [82]. In this case the algorithm does not prematurely

converge, as shown in Figure 7.5. In particular, 50 iterations are sufficient to reach

convergence.

Figure 7.5: Mean of expected Q-value during NFQ learning

Both the original algorithm and the one with re-initialization result with good

policies. However, the latter policy privileges again a rigid respect of memory con-

straints in spite of mapping improvement. On the other hand, surprisingly a su-

pervised training seems sufficient to obtain a good performance, but only with a

well studied training set. Since during tests such results proved to be satisfying and

better than the ones obtained with re-initialization or different settings, the policy
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with one iteration only is taken as the reference for NFQ.

In conclusion, for the NFQ algorithm the neural network hyperparameters and

the RPROP ones are not a big issue: the training algorithm is very stable and the

network is light, so it can be not optimized. On the contrary, the most critical steps

of the design are the collection of training experiences and the reward model. These

aspects are tightly bound to the specific problem and to its formulation. During the

design process an effort has been made in order to tune these aspects at best. Of

course other possibilities may exist.

7.1.4 DQN learning

Unlike NFQ, DQN requires a continuous collection of experiences. For this reason,

it is not possible to use MATLAB toolbox, therefore training algorithms have been

implemented and nested in the learning loop.

The training environment is again the one described in section 7.1.1, with same

redefinition of prohibited states as for NFQ. Experiences are collected accordingly

to the ε probability and to the current policy. Once an episode is finished, a new one

is restarted from scratch. A dynamic scaling of outputs is necessary. In particular,

outputs are rescaled each time the target net is updated. The discount factor is

again γ = 0.95.

During training simulations it has been noticed that two important hyperparam-

eters for the algorithm success are the target update frequency C and the mini-batch

size. They have been set respectively to 10 iterations and 100 experiences. Initial

replay memory size has been also set to 100. Another key parameter is the proba-

bility ε of following a random policy or the trained one. This value has been linearly

varied, as typically done [83]. Without a proper setting of such parameters the

algorithm diverges.

The MSE and Q-value evolution during the learning are reported in Figures

7.6a and 7.6b. In this case one epoch corresponds to one RPROP step on the

mini-batch. As it can be noticed, MSE decreases but it is much less stable with

respect to the NFQ one. This is a consequence of the different batch sizes used in

the two algorithms. The Q-value has an initial peak, that corresponds to a wrong

estimation, and then its value settles down oscillating. As for NFQ, this plot only

shows the mean Q-value estimate on a batch of random experiences. So it does

not indicate an evolution of the score achieved by the policy during learning, but
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(a) Training Mean Square Error on DQN network

(b) Mean of Q-value during DQN learning

Figure 7.6: DQN learning

provides information on how the function approximation proceeds. The Q-value

oscillations during learning are a typical behavior, as found in literature [83].

Exploration finishes (i.e. experiences are collected completely following the

trained policy) at epoch 1000. The final number of epochs has been tuned to 5000.

A possible improvement of the stopping criterion is to play one episode at each epoch

and examine the final score. Such score plots require great computational resources
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and usually present oscillating behaviors as well. Since positive results have been

obtained tuning the final number of epochs, such plots have not been evaluated, but

are suggested for future developments.

7.2 Testing simulation environment

The policies obtained through DRL are extensively tested over a wide range of

different possible scenarios to verify their generalizing capability, which is of great

importance when exploring an unknown environment. A first numerical validation

is performed comparing the DRL-based algorithm with two different simple bench-

marks: a policy that takes pictures at regular intervals (UNI) and another that

randomly selects the image acquisition instants (RAND). For the RAND strategy if

nk > nk,ideal the image is discarded and all the presented results are the mean over

100 runs. While for UNI, NFQ and DQN only 1 run is necessary, since they are

deterministic policies.

Since the learning process is highly related to reward modeling and hand-tuning

of the many parameters involved in the process, policy testing has a great impor-

tance. The testing scenarios here considered have been chosen also outside the

boundaries of usual global mapping mission framework (defined in chapter 2), in-

creasing mapping difficulty and challenging the policy capabilities.

The test cases have been chosen to cover all relevant aspects for the algorithm

application. In particular, four different bodies are considered: Eros, on which the

training has been performed, Itokawa, that presents an elongated shape, Bennu,

with diamond shape, and 67P-CG, with two-masses shape. In addition, sensitivity

analyses have been done varying:

� The distance from the body, that affects both relative dynamics and percentage

of surface in the camera field of view.

� The body rotational period, that influences illumination conditions variation

and again relative pose.

� The orbit inclination, that changes the surface portion object of the mapping.

Small bodies are assumed on keplerian orbits around the Sun [51]. Spin axis

orientation and rotational period are assumed constant. This assumption is rea-

sonable for small bodies uniformly rotating, even if in practice effects like Yorp or
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sublimation-induced torques change the spin state. In [85] small bodies poles right

ascension and declination are provided at a fixed time with respect to the invariable

plane of the Solar System, taken as reference plane. Here for simplicity those values

are taken and the ecliptic is assumed coincident with the reference plane.

The body shape models have all the same number of facets (1000). For what

concerns the environment parameters η, Tstorage and ∆c are equal to the training

environment. In [82] it is suggested to train the network for a specific control

interval. Therefore this parameter will not be varied with respect to the training

and it will be kept constant in all the simulations. The camera is assumed to have

a conical FOV of 3◦. The length of each episode is set to 1500 steps, with an ideal

number of images of 1500
∆c

= 500. So what determines the episode end is time. It

is meaningless to terminate the episode when the mapping campaign is finished,

because typically the complete body mapping can not be reached. This is due to

the assumptions made: in some test cases parts of the body are always in shadow

or the orbit inclination does not allow to cover the whole body. Moreover, given the

mapping index definition in chapter 6, even for the single facet it is in practice not

possible to reach the maximum ideal value of 1. The aim is to compare UNI, RAND,

NFQ and DQN strategies during the same time lapse and see how they perform in

different scenarios.

Often DRL results are compared just with the numerical final score obtained

during the episode. In such a way, however it is not easy to critically analyze how

policies actually behave. Being the design and learning procedure highly based on

engineering judgment, the test results are presented not with final reward scores,

but by means of some indexes that allow to easily understand the performance:

� Final number of collected images In = ntot, (a lower value is better).

� Final mapping index Imap = µM(mi
kend

), (a higher value is better).

� Integral mapping index over the campaign Isum = 1
∆c

∑
k µM(mi

k), (a higher

value is better).

Such parameters quickly allow to verify if the modeled reward actually leads to an

improvement of the proposed tasks: data reduction and mapping enhancement and

fastening.

In other literature works [31], [36] extensive tests are not presented, but only a

single or a couple of scenarios are considered. Here the generality of applicability
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of the algorithm is proved and the performance limits assessed, considering a large

variety of relevant test cases.

7.3 Case A: Eros

7.3.1 Detailed results

The basic simulation scenario for asteroid Eros has the following parameters:

� Rotational period Trot = 6 h.

� Circular polar orbit, with interest ratio equal to 4.

� Percentage of surface in view in the range 0.3%− 2.9%.

All the surface percentages indicated in this and in the following sections are com-

puted considering the real shape model and not an equivalent sphere. The final

performance indexes are displayed in Table 7.1, comparing the different strategies.

As it can be observed, both NFQ and DQN perform better than UNI and RAND:

the overall number of images is sensibly lower and final mapping index larger.

Strategy NFQ DQN UNI RAND

In 404 434 500 500
Imap 0.26 0.29 0.22 0.21
Isum 86.50 89.67 69.43 66.61

Table 7.1: Strategies comparison for basic scenario, case A

The final mapping index is show for NFQ, DQN and UNI strategies in Figure

7.7. The mapping is limited by the fact that the area with negative z axis remains

in shadow, with the considered spin axis orientation and asteroid orbit inclination.

DQN achieves a better mapping than NFQ, but more images are collected. The

trends of global mapping index and taken images are shown in Figures 7.8 and

7.9 for the whole episode. In particular, Figure 7.8 helps to understand the Isum

values of Table 7.2: NFQ and DQN have a similar trend, superior to the one of

other strategies, thus fastening the mapping process. The data storage during the

mapping is shown in Figure 7.10. As explained, the constraint on memory handling

has been relaxed during the learning and peaks of data collected are accepted. Such

peaks are larger for DQN, but they are anyway contained considering that n
η

never
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(a) NFQ (b) DQN (c) UNI

Figure 7.7: Eros, facets final mapping index

exceeds 2 and ∆c = 3. Finally, the light fraction of the frames (corresponding to

state s3) is shown for a representative interval in Figure 7.11, along with the boolean

values of NFQ and DQN actions. When the frame is in complete shadow images are

never taken: both policies have learned that imaging an area in complete shadow

is not worth. On the contrary, when the frame is in complete light, sometimes it is

not collected. This means that the policies do not simply collect all the images in

light but have learned how to select them in base of other criteria. Actions taken

by the two strategies are different in some cases.

Figure 7.8: Eros, global map mean index
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Figure 7.9: Eros, taken images

Figure 7.10: Eros, memory
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Figure 7.11: Eros, light fraction

7.3.2 Sensitivity analysis

The sensitivity analysis results are reported in Table 7.2. With interest ratio 6 the

percentage of surface in view ranges between 1.1% and 6.6%, while with interest

ratios 8 and 10 it is respectively in the intervals 2.7%− 12.2% and 5%− 18.4%.

NFQ and DQN show a very good generalizing capability and outperform UNI.

A general trend observed is that with NFQ the number of collected pictures is lower

than DQN and UNI, but with DQN a larger mapping performance is achieved,

sometimes even with a lower number of pictures. In some cases, Imap has a similar

value for the three strategies, but the goal is achieved more quickly by NFQ and

DQN. The only case in which the two strategies have Imap slightly lower than UNI is

with interest ratio 10. This may be due to two reasons: the percentage of surface in

view is out of training interval and of typical mission values (please refer to chapter

2); or when a large portion of the body is imaged it is more difficult to have control

on the viewing conditions of all facets in the frame. In fact 1% of the surface means

to consider about 10 facets, while 10% 100: very different viewing conditions may

be present in the same picture. Please note that anyway the number of pictures

for DQN is only 326, so the amount of data is largely reduced in spite of a small
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difference in Imap. This is not true for NFQ.

i = 30 deg i = 60 deg i = 90 deg

In Imap Isum In Imap Isum In Imap Isum

UNI 500 0.21 66.87 500 0.22 69.10 500 0.22 69.43
NFQ 430 0.25 87.64 431 0.26 87.58 404 0.26 86.50
DQN 498 0.24 83.30 493 0.26 84.91 434 0.29 89.67

Interest Ratio = 6 Interest Ratio = 8 Interest Ratio = 10

In Imap Isum In Imap Isum In Imap Isum

UNI 500 0.33 114.38 500 0.38 142.34 500 0.41 160.01
NFQ 381 0.33 120.64 377 0.37 143.31 488 0.39 150.86
DQN 317 0.37 135.90 320 0.38 151.13 326 0.39 159.87

T = 2 h T = 5 h T = 12 h

In Imap Isum In Imap Isum In Imap Isum

UNI 500 0.21 57.78 500 0.22 61.80 500 0.20 58.97
NFQ 409 0.25 79.00 402 0.25 84.18 415 0.25 74.06
DQN 459 0.28 81.41 446 0.29 86.20 469 0.25 71.76

Table 7.2: Eros, sensitivity analysis

7.4 Case B: 67P

7.4.1 Detailed results

The basic simulation scenario for comet 67P has the following parameters:

� Rotational period Trot = 12.4 h.

� Circular polar orbit, with interest ratio equal to 6.

� Percentage of surface in view in the range 0.3%− 2.9%.

The final performance indexes are displayed in Table 7.3, comparing the different

strategies. Again both NFQ and DQN perform better for all three indexes. This

confirms the large flexibility and generalizing capability of the proposed strategy,

that meets the objectives even when the body shape is extremely irregular and

different from training one.

The final mapping index is show for NFQ, DQN and UNI strategies in Figure

7.12. In this case the mapping is hindered by Sun illumination but also by the

significant self-shadowing and self-occlusion.
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Strategy NFQ DQN UNI RAND

In 365 385 500 500
Imap 0.29 0.36 0.25 0.23
Isum 91.55 111.34 67.01 65.06

Table 7.3: Strategies comparison for basic scenario, case B

Trends of global map mean index and number of taken images are shown in

Figures 7.13 and 7.14. The mapping quality presents some steps: they correspond

to shadow regions. By comparing the two trends it is evident that when the map

quality can not increase, NFQ and DQN do not take pictures. This of course leads

to a reduced number of images with respect to UNI and RAND.

The memory state is displayed in Figure 7.15. It can be observed that peaks

become less and less evident as the mapping proceeds.

(a) NFQ (b) DQN (c) UNI

(d) NFQ (e) DQN (f) UNI

Figure 7.12: 67P, facets final mapping index
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Figure 7.13: 67P, global map mean index

Figure 7.14: 67P, taken images
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Figure 7.15: 67P, memory

7.4.2 Sensitivity analysis

The sensitivity analysis results are reported in Table 7.4. With interest ratio 8 the

percentage of surface in view ranges between 0.9% and 5.2%, while with interest

ratios 10 and 12 it is respectively in the intervals 1.7%− 7.4% and 3%− 10.2%.

Looking at the results it is clear that DQN performs better for both final mapping

quality and fastening of the process. The typically lower number of images collected

by NFQ despite of a possible gain in mapping quality, may be due to the supervised-

like learning. The policy prefers not to exceed memory ideal limits, even if violating

it could result in a larger return in the long run. So with a simple supervised learning

good results are achieved, but the reinforcement performs globally better.

UNI confirms to be the worse strategy. Also in this case increasing the interest

ratio Imap for the three strategies is almost identical, thus the mapping process can

be made more efficient only by reducing data collection.
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i = 30 deg i = 60 deg i = 90 deg

In Imap Isum In Imap Isum In Imap Isum

UNI 500 0.27 79.67 500 0.27 72.15 500 0.25 67.01
NFQ 356 0.28 95.70 342 0.30 95.24 365 0.29 91.55
DQN 476 0.30 94.65 417 0.36 112.69 385 0.36 111.34

Interest Ratio = 8 Interest Ratio = 10 Interest Ratio = 12

In Imap Isum In Imap Isum In Imap Isum

UNI 500 0.33 102.68 500 0.41 125.66 500 0.40 130.36
NFQ 310 0.32 114.30 290 0.40 126.50 279 0.40 126.52
DQN 285 0.38 134.45 285 0.41 143.01 314 0.41 133.63

T = 2 h T = 5 h T = 12 h

In Imap Isum In Imap Isum In Imap Isum

UNI 500 0.21 50.94 500 0.25 62.84 500 0.24 65.59
NFQ 355 0.31 87.28 354 0.29 93.19 379 0.26 84.03
DQN 398 0.36 98.93 381 0.36 110.49 427 0.28 95.00

Table 7.4: 67P-CG, sensitivity analysis

7.5 Case C: Itokawa

7.5.1 Detailed results

The basic simulation scenario for asteroid Itokawa has the following parameters:

� Rotational period Trot = 12 h.

� Circular polar orbit, with interest ratio equal to 6.

� Percentage of surface in view in the range 0.7%− 4.1%.

From results in Table 7.5 it can be seen that as always the RAND strategy is

the worse. DQN outperforms NFQ for every performance index. NFQ performance

is comparable to UNI, a part from images number.

Strategy NFQ DQN UNI RAND

In 361 346 500 500
Imap 0.31 0.37 0.32 0.30
Isum 104.74 122.28 104.56 98.49

Table 7.5: Strategies comparison for basic scenario, case C
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The shape models in Figure 7.16 again present areas always in shadow. It is

important to notice that even in illuminated portions of the body the mapping index

with value 1 is never reached: it is an ideal value that according to its definition

(chapter 6) is impossible to reach in any realistic simulation. Anyway, it is a good

meter to compare the different strategies: facets with very good scores are present

in all three cases but DQN provides a better coverage.

(a) NFQ (b) DQN (c) UNI

Figure 7.16: Itokawa, facets final mapping index

Figures 7.17, 7.18 and 7.19 show mapping quality, number of images and memory

state. Considerations similar to 67P can be made.

Figure 7.17: Itokawa, global map mean index
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Figure 7.18: Itokawa, taken images

Figure 7.19: Itokawa, memory
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7.5.2 Sensitivity analysis

The sensitivity analysis results are reported in Table 7.6. With interest ratio 8 the

percentage of surface in view ranges between 1.7% and 6.6%, while with interest

ratios 10 and 12 it is respectively in the intervals 3.4%− 10.2% and 5.7%− 15.9%.

NFQ and DQN well perform, except from the case with interest ration 12, that is

the most critical encountered in all the simulations.

i = 30 deg i = 60 deg i = 90 deg

In Imap Isum In Imap Isum In Imap Isum

UNI 500 0.35 118.88 500 0.33 107.09 500 0.32 104.56
NFQ 346 0.32 119.37 364 0.31 108.98 361 0.31 104.74
DQN 404 0.36 134.23 380 0.37 117.17 346 0.37 122.28

Interest Ratio = 8 Interest Ratio = 10 Interest Ratio = 12

In Imap Isum In Imap Isum In Imap Isum

UNI 500 0.40 141.87 500 0.44 164.80 500 0.45 172.72
NFQ 347 0.38 137.50 357 0.42 153.51 443 0.43 158.82
DQN 348 0.41 137.28 338 0.41 150.97 429 0.43 164.49

T = 2 h T = 5 h T = 12 h

In Imap Isum In Imap Isum In Imap Isum

UNI 500 0.29 82.19 500 0.32 102.40 500 0.32 104.61
NFQ 345 0.33 108.89 357 0.32 111.15 353 0.31 108.94
DQN 336 0.38 118.79 315 0.38 130.02 340 0.36 116.76

Table 7.6: Itokawa, sensitivity analysis

7.6 Case D: Bennu

7.6.1 Detailed results

Bennu is a diamond-shaped asteroid, so the interest ratio is kept larger than in the

other simulations in order to have the typical portion of body in view. The basic

simulation has parameters:

� Rotational period Trot = 4.3 h.

� Circular polar orbit, with interest ratio equal to 10.

� Percentage of surface in view in the range 1.2%− 4.4%.
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Results for the basic simulation are reported in Table 7.7. DQN outperforms the

other strategies. In this case RAND performs better than UNI. In fact in Figure

7.20 it can be seen that UNI is not able to grant complete coverage of the body.

This is due to the imaging frequency, which is a consequence of the chosen ideal

number of images η in the storage time Tstorage.

Strategy NFQ DQN UNI RAND

In 289 268 500 500
Imap 0.43 0.47 0.37 0.44
Isum 154.85 172.23 132.74 146.59

Table 7.7: Strategies comparison for basic scenario, case D

(a) NFQ (b) DQN (c) UNI

Figure 7.20: Bennu, facets final mapping index

Figures 7.21, 7.22 and 7.23 show mapping quality, number of images and memory

state. Considerations similar to the other test cases can be made. Please note that

NFQ and DQN almost always stay under the ideal memory usage (see Figure 7.23).

7.6.2 Sensitivity analysis

The sensitivity analysis results are reported in Table 7.8. 7.8. With interest ratio 8

the percentage of surface in view ranges between 1.6% and 5.2%, while with interest

ratios 10 and 12 it is respectively in the intervals 2.5%−6.6% and 3.5%−8.1%. The

generalizing capabilities of the planning policies are confirmed also for case D: when

the scenario allows a better mapping the gain in performance is more evident; when

the surface portion in view is large, the final mapping quality achieved is similar

for all the techniques. NFQ and DQN allow for a remarkable saving in amount of

images and in particular DQN outperforms the other policies in mapping fastening

(larger Isum).
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Figure 7.21: Bennu, global map mean index

Figure 7.22: Bennu, taken images

95



Chapter 7. Learning and test results

Figure 7.23: Bennu, memory

i = 30 deg i = 60 deg i = 90 deg

In Imap Isum In Imap Isum In Imap Isum

UNI 500 0.33 126.86 500 0.42 147.55 500 0.37 132.74
NFQ 240 0.33 129.35 225 0.41 153.51 289 0.43 154.85
DQN 316 0.34 140.14 258 0.44 167.55 268 0.47 172.23

Interest Ratio = 11 Interest Ratio = 13 Interest Ratio = 15

In Imap Isum In Imap Isum In Imap Isum

UNI 500 0.47 163.96 500 0.50 191.41 500 0.51 204.92
NFQ 309 0.47 169.14 326 0.50 187.65 369 0.50 202.05
DQN 237 0.48 182.29 230 0.49 193.11 206 0.49 201.60

T = 2 h T = 5 h T = 12 h

In Imap Isum In Imap Isum In Imap Isum

UNI 500 0.45 130.30 500 0.47 146.53 500 0.47 151.14
NFQ 297 0.44 150.60 296 0.42 151.48 293 0.40 145.64
DQN 292 0.48 165.38 281 0.48 171.98 288 0.47 171.08

Table 7.8: Bennu, sensitivity analysis
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7.7 Final remarks

Some final remarks on the above presented results are provided in this section. The

policies obtained through DRL present the desired behavior, being able to achieve

all the objectives that were goal of the learning. Results show a substantial improve-

ment of mapping operations with both techniques and for all the considered small

bodies. In general DQN outperforms NFQ, allowing a faster mapping and a better

final mapping index. The policies performance has been validated with extensive

tests that include typical scenarios of the global mapping phase but also cases in

which the mapping is limited. When the percentage of surface in view is higher than

the usual of the mapping phase, the networks show good generalizing capabilities

with a performance comparable to benchmarks. In typical scenarios DQN and NFQ

show an excellent performance with respect to benchmarks, significantly reducing

the collected data amount, improving the image quality for SPC and speeding up

their collection.

Problems with memory handling are overcome accepting some peaks with re-

spect to the initial arbitrary threshold. Images in excess between one downlink and

the next one can be stored and sent on ground in successive moments when no or

few images are collected. Results show that peaks in memory usage are accept-

able, considering that they allow a significant performance improvement and that

the overall number of images never exceeds the ideal data amount of the mapping

campaign.

7.8 Computational time

An analysis of the algorithm computational performance is here presented. This

is a key aspect for a possible on-board implementation: if the decision time is too

long with respect to the relative dynamics, then the agent will not be able to take

the picture at the expected location. The algorithm is implemented in MATLAB

and run on an Intel® CoreTM i7-5500U CPU, clocked at 2.4 GHz, paired to a 16

GB DDR3 memory. The performance in a real application will be different, due to

the different programming language and hardware; anyway this analysis can still be

useful to catch the orders of magnitude and the on-line feasibility of the proposed

method. It is important to highlight that the computational time varies depending

on the overall number of images taken, the portion of the surface observed and the
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resolution of the employed shape model. The computational time employed to take

single decisions is shown in figure 7.24 for a 1000 facets sphere shape model and

1.5% of surface in the camera field fo view. The overall number of decisions is 500

and for this test each decision is enforced to be an image collection. A spherical

shape model is a good test case because the percentage of surface in view does

not change, keeping a constant distance from the body. Maximum, average and

minimum values are reported in table 7.9: all the three values are small, so the

algorithm proves to be fast. The related histogram is displayed in Figure 7.24.

Changes in the computational time are mainly linked to the calculation of facets in

view.

Time [s]

Average 0.0335
Minimum 0.0074
Maximum 0.1325

Table 7.9: Computational time

Figure 7.24: Computational time for the single decision, with 1.5% of the surface in view

Then, another analysis is done, increasing the percentage of surface in view. All

the other parameters are kept as before. The mean time linearly increases with
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the surface portion, as displayed in Figure 7.25. The mean time can be about two

orders of magnitude larger when the surface portion in view is large. Please note

that percentages larger than 10% are not typical of the global mapping phase.

The shape model resolution of 1000 facets used in this thesis is believed already a

good compromise, since 1% of the surface corresponds to roughly 10 facets. Anyway,

in Figure 7.26 the computational time is shown for a spherical body with 1.5% of

surface in view: increasing the number of facets of the polyhedron the time increases

quadratically, as expected from the algorithm structure presented in chapter 6. Each

point of the interpolation is again the mean time over 500 decisions.

Finally in Figure 7.27 a 50000 time steps simulation is run. As it can be observed

the computational time increases with the time steps, because of the memory of past

actions is kept. Anyway the increase is visible only after about 10000 steps and it

is not as demanding as in the previous situations.

The computational analyses here reported highlight which are the different pa-

rameters that affect the computational time and show well visible trends. The most

critical issue is believed to be the surface portion in view, since this parameter is

the most likely to be varied. A delay in the decision making can cause imaging of

a different area with respect to the expected one. For an hypothetical fast rotating

spherical body with 2 h rotational period, the surface displacement in 1 s is of about

the 0.1% of the characteristic dimension. Please observe that if the surface portion

in view is large, such displacement is not significant; while for a small area in view

the computational time is much smaller. Of course more accurate considerations

can be made once the spacecraft dynamics is fixed.
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Figure 7.25: Computational time for the single decision, varying the surface portion in view. Each point
is the mean computational time over 500 decisions.

Figure 7.26: Computational time for the single decision, varying the polyhedron facets. Each point is
the mean computational time over 500 decisions.
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Figure 7.27: Computational time for the single decision, increasing the simulation length. Each point
is the mean computational time over the past 500 decisions.

101





8 Conclusion

The present thesis proposes an innovative autonomous planning architecture for

small bodies exploration, focused on imaging for shape model reconstruction. The

proposed method exploits DRL to design a policy that improves mapping quality,

fastens the mapping campaign and reduces the amount of collected data. These

objectives are met by selecting the observation times while orbiting around the body,

according to the relative camera-body pose, the surface illumination conditions and

considering data storage and downlink limitations.

Autonomous small bodies exploration is framed as a POMDP problem, in anal-

ogy with terrestrial robotics active SLAM. A very general framework is provided,

critically analyzing the additional challenges presented by space applications, linked

to the harsh operative environment and complexity of space systems. The relative

dynamics between spacecraft and body reveals to be an important obstacle to au-

tonomous operations, because of its incomplete knowledge before the mission and

its chaotic nature, that could mine the safety of an autonomous spacecraft. More-

over, the great variability of accelerations order of magnitude leaves no space for

the definition of a simple, general and realistic dynamical model. Possible ways

to ease on-ground shape model reconstruction procedures are deduced through the

examination of small bodies mapping operations. In particular, the optimization

of images collection, lacking in the state of the art operations, is identified as a

promising step forward towards a more efficient approach to mapping. Illumination

and viewing conditions of the body surface emerge as key aspects for the realization

of SPC algorithm.

In light of such considerations, a novel reduced planning problem is defined,

choosing DRL as solution method. The proposed planning architecture does not
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require re-training on-board, thanks to the introduction in the algorithm of infor-

mation preprocessing. Incorporation of prior knowledges eases the ANN tasks; in

parallel the algorithm architecture is kept light and suitable for reduced computa-

tional resources.

The extensive numerical tests on policies obtained through NFQ and DQN have

shown substantial improvements to small imaging operations with respect to bench-

marks solutions, for all the proposed objectives. DRL confirms to be a valid approach

for solving the decision process problem, merging the advantages of RL and the ones

of ANNs. Good planning policies are found for an otherwise computationally in-

tractable problem, letting the agent interact with the environment and learn from

experiences. In addition, the use of an ANN as function approximator results in

a good generalization capability, verified through sensitivity analyses. The imple-

mentation of DQN and NFQ learning processes has emphasized the importance of

reward modeling for the achievement of the desired behavior. The proper defini-

tion of prohibited states for the agent punishment is essential to trade-off between

conflicting objectives. Design loops have lead to the conclusion that a flexible data

management is the best way to increase mapping quality and limit the collected

images at the same time.

In conclusion, the so far achieved results of the proposed approach reveal the

methodology to be a promising step forward in autonomous operations, helping in

decreasing the human effort during the mapping phases of unknown small bodies

and increasing imaging exploitation efficiency with a simple and flexible approach.

The research contributions introduced by this thesis are here summarized:

� After a deep examination of the topics involved in autonomous small bodies

mapping, a novel planning architecture with a DRL-based policy is proposed.

The merits of this architecture are the decoupling of the decision-making pro-

cess from spacecrafts dynamics, the autonomy improvement with very low risks

for the mission and the general validity of the planning framework, which is

mission-independent and does not require learning during operations.

� An extensive numerical testing is addressed. The designed policies prove to

outperform benchmarks in all the scenarios typical for global mapping, that

include different body shapes, relative dynamics, body coverage and illumina-
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tion conditions. Limits of the algorithm applicability are tested as well.

� The planning architecture is designed to be light. A computational analysis is

carried out, stressing the algorithm parameters that affect the computational

time. The proposed algorithm is computationally efficient and shows a fast

performance within the identified limits. The other literature works do not ex-

amine computational time of the proposed algorithm [31] or propose a solution

that can not be realized with the on-board computational power [36].

Future work

Small bodies autonomous mapping is a novel research field, which leaves large spaces

to further improvements. Some guidelines are here provided for future research on

this challenging topic.

Learning process improvement The numerical tests presented in this thesis

have shown that DRL is a promising tool for the autonomous small bodies map-

ping application. It is believed that several of these algorithms are suitable for the

problem and a deeper investigation on such methods would allow a constructive

comparison between different techniques. Anyway, beyond the algorithm choice, a

more important aspect is the learning process improvement. This can be done in

two directions. First, by exploiting a more realistic orbital dynamics that allows

a complete body mapping during the learning and by refining the control interval.

Second, by optimizing the algorithm hyperparameters (especially for the learning

stop) in order to improve the policy performance and avoid at least in part the

parameters hand-tuning.

Further validation It has been shown that the methodology here proposed bet-

ters the mapping process in the direction of reward, but how the reward actually

meets real necessities needs further developments in order to be assessed and vali-

dated. DRL algorithms are necessarily based on hand-tuned reward functions. For

this reason even if they maximize the proposed objectives, in practice they may not

lead to the desired behavior. Therefore, the obtained policy needs further valida-

tion. This can be done through simulations which include the generation of synthetic

images of the small body. The small body shape can be reconstructed from such
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images and compared with the original model, taken as a groundtruth. In this way

it is possible to verify the reward functions goodness and improve their definition if

necessary.

Planning architecture extension In the present work the restrictive assump-

tion of camera pointing towards the body center has been considered. In practice,

the appropriate camera control can lead to further improvements of the body imag-

ing. In fact, changing the camera orientation allows a direct control of emission

angles, while continuous body center pointing leads to an always low emission in

case of a quasi-spherical body shape, thus preventing an optimal mapping. A change

of the pose would overcome this issue. Moreover, this additional degree of freedom

may have beneficial effects on the body coverage and mapping fastening as well,

without risks and complexity related to a direct spacecraft attitude control. There-

fore extending the planning architecture including also camera control is considered

a good direction for future research. In addition, some work may be done to assess

how uncertainties in the state belief and delays in the decision making affect the

mapping performance.

106



Appendices

107





Appendix A. The RPROP algorithm

A The RPROP algorithm

The resilient back-propagation algorithm is here presented, following the steps

in [80]. The RPROP is an adaptive learning algorithm and consists of two steps:

adaptation and weight update rules. The weight is updated directly according to

an update-value ∆ij and not proportionally to the gradient as in classical back-

propagation.

The weight update rules are the following:

∆wij =


−∆ij(k) if ∂E

∂wij
(k) > 0

+∆ij(k) if ∂E
∂wij

(k) < 0

−∆wij(k − 1) if ∂E
∂wij

(k − 1) ∂E
∂wij

(k) < 0

0 otherwise

(A.1)

When the error is increasing, its derivative with respect to the weight is positive,

hence the weight is decreased by its update value. When the error decreases, the

derivative is negative and the weight is increased. When the derivative changes

sign, the previous step was too large and the minimum was missed, so the previous

update is reverted and the update-value is not adapted in the next step. In all the

other cases instead, the update-value is adapted based on local gradient information

with the adaptation rule:

∆ij =


η+∆ij(k − 1) if ∂E

∂wij
(k − 1) ∂E

∂wij
(k) > 0

η−∆ij(k − 1) if ∂E
∂wij

(k − 1) ∂E
∂wij

(k) < 0

∆ij(k − 1) otherwise

(A.2)

where 0 < η− < 1 < η+. When the partial derivative of the error keeps the same

sign than the previous step, the magnitude of the update-value is increased, in
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order to fasten the learning process. When the partial derivative changes sign, the

algorithm has jumped over a local minimum and so the update-value is decreased.

The RPROP algorithm scheme is the following:

Algorithm 3 RPROP Algorithm

1: for all weights and biases do
2: if ∂E

∂wij
(k − 1) ∂E

∂wij
(k) > 0 then

3: ∆ij(k) = min
(
η+∆ij(k − 1),∆max

)
4: ∆wij(k) = −∆ij(k)sign

(
∂E
∂wij

(k)
)

5: wij(k + 1) = wij(k) + ∆wij(k)
6: else if ∂E

∂wij
(k − 1) ∂E

∂wij
(k) < 0 then

7: ∆ij(k) = max
(
η−∆ij(k − 1),∆min

)
8: wij(k + 1) = wij(k)−∆wij(k − 1)
9: ∂E

∂wij
(k) = 0

10: else if ∂E
∂wij

(k − 1) ∂E
∂wij

(k) = 0 then

11: ∆wij(k) = −∆ij(k)sign
(

∂E
∂wij

(k)
)

12: wij(k + 1) = wij(k) + ∆wij(k)
13: end if
14: end for

Please note that the procedure here described always refers to weights and that

for biases it is identical.

The algorithm is proved to be very robust to the choice of its parameters. The

most common values adopted in literature are the ones proposed in [80]. The update-

value is set to ∆0 = 0.1 and its limits are set to ∆max = 50 and ∆min = 10−6, in

order to avoid overflow and underflow problems for floating points variables. The

increasing and decreasing factors are η− = 0.5 (so the update-value is halved) and

η+ = 1.2, to fasten the update-value growth while keeping a stable learning.
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[54] D. Garćıa Yárnoz, J.-P. Sanchez Cuartielles, and C. R. McInnes, “Alternating
orbiter strategy for asteroid exploration”, Journal of Guidance, Control, and
Dynamics, vol. 38, no. 2, pp. 280–291, 2014. doi: 10.2514/1.G000562.

[55] R. A. Werner and D. J. Scheeres, “Exterior gravitation of a polyhedron derived
and compared with harmonic and mascon gravitation representations of as-
teroid 4769 Castalia”, Celestial Mechanics and Dynamical Astronomy, vol. 65,
no. 3, pp. 313–344, 1996. doi: 10.1007/BF00053511.

[56] S. Pines, “Uniform representation of the gravitational potential and its deriva-
tives”, AIAa Journal, vol. 11, no. 11, pp. 1508–1511, 1973. doi: 10.2514/3.
50619.

[57] J. B. Lundberg and B. E. Schutz, “Recursion formulas of legendre functions
for use with nonsingular geopotential models”, Journal of Guidance, Control,
and Dynamics, vol. 11, no. 1, pp. 31–38, 1988. doi: 10.2514/3.20266.

[58] E. Fantino and S. Casotto, “Methods of harmonic synthesis for global geopo-
tential models and their first-, second- and third-order gradients”, Journal of
Geodesy, vol. 83, no. 7, pp. 595–619, 2009. doi: 10.1007/s00190-008-0275-0.

115

https://doi.org/10.1006/icar.1996.0072
https://doi.org/10.1006/icar.1996.0072
https://doi.org/10.2514/2.4552
https://doi.org/10.1016/j.actaastro.2011.10.021
https://doi.org/10.2514/1.57247
https://ssd.jpl.nasa.gov/sbdb.cgi
https://ssd.jpl.nasa.gov/sbdb.cgi
https://doi.org/10.1006/icar.2000.6482
https://doi.org/10.2514/1.3890
https://doi.org/10.2514/1.G000562
https://doi.org/10.1007/BF00053511
https://doi.org/10.2514/3.50619
https://doi.org/10.2514/3.50619
https://doi.org/10.2514/3.20266
https://doi.org/10.1007/s00190-008-0275-0


Bibliography

[59] R. A. Werner, “Spherical harmonic coefficients for the potential of a constant-
density polyhedron”, Computers & Geosciences, vol. 23, no. 10, pp. 1071–1077,
1997. doi: 10.1016/S0098-3004(97)00110-6.

[60] B. Schutz, B. Tapley, and G. H. Born, Statistical orbit determination. Elsevier,
2004.

[61] PDS Asteroid/Dust Archive. [Online]. Available: https://sbn.psi.edu/pds/
shape-models/ (visited on 03/05/2019).

[62] G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based POMDP
solvers”, Autonomous Agents and Multi-Agent Systems, vol. 27, no. 1, pp. 1–
51, 2013. doi: 10.1007/s10458-012-9200-2.

[63] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting
in partially observable stochastic domains”, Artificial intelligence, vol. 101,
no. 1-2, pp. 99–134, 1998. doi: 10.1016/S0004-3702(98)00023-X.

[64] L. Lin and T. Mitchell, “Memory Approaches to Reinforcement Learning in
Non-Markovian Domains”, Pittsburgh, PA, USA, Tech. Rep., 1992.
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