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Abstract

Exchange processes between free-flows and porous-media flows are common
in many industrial and environmental applications. In the case of turbulent
flows and rough interfaces, an accurate description of the free-flow is im-
portant because the turbulent eddies near the interface strongly affect the
exchanges.

The aim of this thesis is the investigation of the effects of rough inter-
faces in coupled free-flow and porous-media flow systems. In particular,
this work exploits the application of high resolution schemes for the finite
volumes discretization of the convective term in the momentum equation of
the incompressible Navier-Stokes equations. The focus is on the Total Vari-
ation Diminishing (TVD) methods, which have been implemented in the code
DuMu*, within the framework of a staggered-grid approach. Two possible
extension to the case of non-uniform grids have been considered.

Several comparison tests with the first order upwind method have been
performed, showing more accurate solutions for the TVD methods on the
same grid. Afterwards the RANS equations have been used in order to
simulate turbulent flows, employing the k-w turbulence model. The backward
facing step test has been used to validate the results against the ones from the
NASA CFL3D code. A good prediction of the reattachment length has been
obtained. At last, a coupled free and porous-medium flow configuration has
been studied, with focus on the effect that a rough interface has on the flow
field. With high values of permeability, the porous-medium flow, modelled
using the Forchheimer’s law, has an influence on the flow in the free-flow
region.

Keywords: TVD methods, RANS, porous-media, coupled problem, DuMu*.






Sommario

Processi di scambio tra flussi liberi e flussi in mezzi porosi sono comuni in
molte applicazioni industriali o ambientali. In caso di regimi turbolenti e
interfacce che presentano rugosita, ¢ importante avere un’accurata descri-
zione del flusso libero, in quanto i vortici che si vengono a creare vicino
all’interfaccia, a causa della turbolenza, hanno una grande influenza su tali
scambi.

L’obbiettivo di questa tesi e I'investigazione dell’effetto di un’interfaccia
rugosa in un sistema accoppiato comprendente un flusso libero ed un flusso
in un mezzo poroso. In particolare questo lavoro sfrutta l'applicazione di
schemi ad alta risoluzione (high resolution schemes) per la discretizzazione
a volumi finiti del termine convettivo nelle equazioni di Navier-Stokes in-
comprimibili. L’attenzione e rivolta ai metodi Total Variation Diminishing
(TVD), i quali sono stati implementati all’interno del codice DuMu*, nell’am-
bito di una discretizzazione su griglia sfalsata (staggered grid). Sono state
inoltre considerate due possibili generalizzazioni al caso di griglie cartesiane
non uniformi.

I molteplici test di confronto con il metodo upwind di ordine 1 che sono
stati effettuati hanno evidenziato una migliore accuratezza dei metodi TVD
a parita di griglia. In seguito, per simulare flussi turbolenti, sono state uti-
lizzate le equazioni RANS, scegliendo il modello di turbolenza k-w. E stato
utilizzato il test del backward facing step per validare i risultati, confrontan-
doli con quelli disponibili prodotti dal codice CFL3D della NASA. E stata
ottenuta una buona previsione della distanza di riattacco, in accordo con i
risultati di riferimento. Infine e stato studiato un problema accoppiato tra
flusso libero e flusso in un mezzo poroso, ponendo attenzione all’effetto che
un’interfaccia con ostacoli ha sul campo di velocita. Si ¢ ottenuto che per
valori alti di permeabilita il flusso nel mezzo poroso, descritto con la legge di
Forchheimer, influenza il flusso libero.

Parole chiave: metodi TVD, RANS, mezzi porosi, problema accoppiato,
DuMu*.
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Chapter 1

Introduction

Flow and transport processes between free-flows and porous-media flows are
common in a wide range of environmental, industrial, civil and medical ap-
plications. For example a turbulent air flow has a significant effect on the
drying rate of an adjacent wet porous-medium like a soil, as studied by
Mosthaf [Mos14], Davarzani et al. [Dav+14] and Fetzer [Fet18]. Although
systems like this are very common, they involve many different physical phe-
nomena that act at different scales and, due to the variety of time and space
scales involved and the complexity of the phenomena, a reliable prediction of
the evaporation rates is still a challenge. In Figure 1.1 we can see a schematic
representation of the mechanisms that play a role in such a situation, where
both transport and thermal effects can be relevant. Moreover, considering
natural phenomena, an additional difficulty is given by the intrinsic uncer-
tainty and heterogeneity of material properties, such as the soil porosity, and
atmospheric conditions, e.g. the air humidity or the solar radiation.

These studies can be exploited, for example, to better understand the
process of soil salinization, one of the most serious agricultural problems
in many arid and coastal areas in the world. It consists in the excessive
accumulation of salt in the soil pores, with the consequence of a partial
or complete loss of fertility. A limited amount of salt precipitation in the
soil, due to evaporation of irrigation water, is inevitable, but a mismanaged
irrigation plan could lead to salinity problems in the long term, especially
in arid areas where irrigation is necessary to increase the production for
food supply (see [FAO19]). According to [MTO08], more than 6% of world’s
total land area is affected by salinization. The section of soil which is most
affected by salinization is the one near the surface, hence the importance of
studying the interactions between the free-flow and the porous-medium flow
that occur there. For example, Jambhekar et al. [Jam+16] have investigated
the application of kinetic approaches to describe the salt precipitation in a
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Figure 1.1: Example of physical phenomena affecting the exchange processes
between a free-flow and a porous-medium flow. Figure source: [Fet18].
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coupled system.

Switching to technical applications, Proton Exchange Membrane (PEM)
fuel cells represent a possible alternative power source that, in particular,
could be used for transportation. In their design, transport and diffusion
phenomena through gas channels and gas diffusers play an important role in
the electrochemical reactions that determine the cell performances and effi-
ciency. As we can see in Figure 1.2, reactant gases are transported through
gas channels and supplied at the anode and cathode, then they diffuse into
porous layers called gas diffusers, that should deliver them uniformly and effi-
ciently to the catalyst layers, where reactions take place (see [Wul6], [Babl14]
and [Wal08]). Protons are produced at the anode and transported through
the membrane to react with oxygen at the cathode and produce water. The
water management within the cells is of great importance, because it is essen-
tial to have a certain level of humidity in the membrane in order to facilitate
the transport of protons, but an excess of water could flood the catalyst lay-
ers, with the result of an inhibition of the reactions. Because of the complex
and compact geometry of PEM fuel cells, it is generally difficult and ex-
pensive to take measurements, thus mathematical and numerical models are
helpful in order to better understand the mechanical, thermal and chemical
phenomena that take place and this way improve the cell performances and
lifetime.

Other examples of applications can be found in the fields of refrigeration
of stored food [Ver+406], cooling systems for acrospace engineering [Dah+14],

18
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Figure 1.2: (a): Salt-affected soil. Figure source: [FAO19]. (b): Operation
principle of PEM fuel cells. Figure source: [YLO05].

ventilation of motorcycle helmets [CD13], wind flow around buildings in
urban environments [DBC10] and hemodynamics [BQQO09].

1.1 State of the art

In order to study these processes we focus on the case of the evaporation
from a porous material and we consider a system that involves two sub-
domains: the upper one with a free-flow and the lower one occupied by a
porous-medium, represented in Figure 1.1. At the interface between the two
subdomains there is exchange of mass, momentum and energy.

Numerical studies of this coupled system can be performed with a single-
domain approach or with a two-domain approach [Fet18]. Within the single-
domain approach, the same equations are solved in the whole computational
domain, including both the free-flow region and the porous-medium. A first
possibility is to use the Navier-Stokes equations to model the fluid motion and
thus to perform a direct numerical simulation (DNS) of the whole system.
The porous-medium has to be resolved at the pore-scale, thus a detailed
knowledge of the pore structure and geometry, which is not easy to obtain for
real materials, is necessary. The computational effort is very high because of
the strict spatial and temporal requirements of a DNS, all of which increase
further if the system is non-isothermal, multi-phase and multi-component.
Fattahia et al. [Fat+15] and Krafczyk et al. [Kra+15] have performed DNS
in porous-media domains using the lattice Boltzmann method, while Yang et
al. [Yan+18] have performed coupled simulations considering idealised coarse
porous materials. A cheaper possibility for the case of laminar single-phase

19



Chapter 1 - Introduction

flows is to employ the Brinkman’s equation [Bri47|, which is a superposition
of the Stokes equations and Darcy’s law, with a modified viscosity. Then the
transition between the two regions can be expressed with a spatial variation
of the involved physical parameters, either considering a transition region or
admitting a discontinuous variation at the interface. Shavit et al. [SRA04]
proposed a modification of the Brinkman’s equation and applied it to the
case of shallow water flows over porous surfaces.

Within the two-domain approach, adopted also in this thesis, different sets
of equations are used in the two subdomains and they are coupled imposing
suitable conditions at the interface. This allows to keep separated models to
describe phenomena that act on different temporal and spatial scales. The
free-flow can be modelled with the Stokes equations, Navier-Stokes equations
or Reynolds Averaged Navier-Stokes (RANS) equations, depending on the
flow regime. The porous-medium flow, instead, is usually described using a
Reference Elementary Volume (REV) scale approach, exploiting the Darcy’s
law or the Forchheimer’s law when the Reynolds number is higher or the
Richards’ equation when the flow is unsaturated. The interface could also
be complex, i.e. it could be adapted to store mass, to, for example, take into
account information about the formation of droplets (see [Babl4]).

Cimolin and Discacciati [CD13] compared the performances of a single-
domain approach exploiting a penalization technique and a two-domain ap-
proach, using the Navier-Stokes equations and the Forchheimer’s law to
model an incompressible, single-phase, single-component flow. They con-
cluded that the former is easier to implement, but the latter more accurately
describes the physics of the problem. Alternative approaches may exploit
pore-networks models in the porous-medium subdomain, that allow to focus
on the pore scale effects, avoiding the complexity of a DNS (see [WJH19]).

Mosthaf et al. [Mos+11] proposed a Stokes/Darcy coupling concept for
multi-phase, multi-component, non-isothermal flows. It is based on phe-
nomenological arguments and it tries to be as close as possible to the im-
position of thermodynamic equilibrium. Davarzani et al. [Dav+14], instead,
focused on the coupling in case of non-equilibrium conditions among phases.
Fetzer et al. [FSH16| generalized the equilibrium concept to the case of tur-
bulent flows, in [Fet18] several turbulence models are tested and possible
simplifications in the implementation of interface conditions are considered.
The effects of turbulence, as well as the non-linear inertial effects of the
Navier-Stokes equations, are sometimes neglected for simplicity, but to model
natural systems they must be included as they affect the physical factors im-
portant in most applications. Another aspect investigated in [Fet18] is the
influence of a rough interface between the two subdomains. In particular,
both the effects of a sand-grain roughness and of periodical porous obstacles

20



1.2 - Content of the thesis

are studied. Rough interfaces have been taken into account also in [KB04|
and [Kuz04] to analyse heat transfer within a duct, while rough boundaries
for free-flows are considered in [LYCO04] to study flow paths around build-
ings, in [Bro+18], in a limnological framework, and in [TKO08] to study heat
exchangers.

Theoretical results about the well-posedness can be found in [DMQO02],
for the Stokes/Darcy problem, and in [DQ09], for the Navier-Stokes/Darcy
problem. They are based on classical results for saddle-point problems. Re-
garding the numerical aspects, many different methods have been employed
in literature. In [DQO9] several finite elements choices are considered, in
[Mos14] the box method is used, while in [Fet18] the same box method is
compared to a combined staggered and collocated finite volumes method.
In [DMQO2] an iterative algorithm is proposed in order to decouple the two
subdomains, while in [RMH15] a temporal decoupling strategy is used.

1.2 Content of the thesis

In this thesis the focus is on the improvement, from the numerical point
of view, of the free-flow model with respect to [Fetl8] and on the further
investigation of the effects of a rough interface between the two subdomains.

When the flow is in a turbulent regime, turbulent eddies develop near
the interface and they cascade through consecutively smaller scales until the
kinetic energy dissipates into internal thermal energy. Because of their loc-
ation, they have a strong influence on the exchange processes between the
two subdomains, so an accurate evaluation of their behaviour is of crucial
importance. Improvements can be obtained with a refinement of the grid,
but also by employing high order methods. In particular, in the discretiza-
tion of the Navier-Stokes equations using finite volumes, the approximation
used for the non-linear term V - (vv') plays a key role. A common and easy
choice is to employ a first order upwind approximation for the transported
velocity, but this option can produce solutions with excessive numerical dif-
fusion. Other possibilities are given by high order methods like the Linear
Upwind Differencing (LUD) scheme, the Central Differencing (CD) scheme
or the Quadratic Upstream Interpolation for Convective Kinetics (QUICK)
scheme. Under specific conditions, they can produce accurate solutions but
they have also been shown to be unstable in certain situations and to produce
overshoots or undershoots that may lead to unphysical values of quantities
which, for example, have to be non-negative (see [VMO07]). With this in mind,
our interest is in the Total Variation Diminishing (TVD) methods, a family
of methods that has been derived with the purpose of providing a solution

21



Chapter 1 - Introduction

with a second order accuracy, but without any risk of numerical oscillations.
They are called also high resolution methods [Har83].

Using this tool, we study a coupled system involving a turbulent free-flow
and a porous-medium flow, considering an isothermal, single-phase, single-
component fluid. It is a simplified model with respect to the one employed
in [Fet18] to study evaporation processes, but it allows to focus on the fluid
mechanical phenomena that occur at the interface. In particular, being the
soil surface intrinsically rough in nature, it is important to investigate the
effects given by a rough interface, to obtain a deeper understanding of the
flow behaviour in this situation.

The thesis is organized as follows. In Chapter 2, the equations employed
in the models will be presented, with particular attention to the free-flow
equations. In Chapter 3, the finite volume method will be described and, in
Subsection 3.1.3, the TVD methods will be introduced. At last, in Chapter 4,
the numerical results will be shown. In particular, we will compare the
results obtained with the TVD methods with those obtained with the first
order upwind scheme. Then, two tests involving turbulent flows are presented
and, finally, more complex scenarios involving a rough interface, consisting of
cavities or porous obstacles, between a free-flow region and a porous-medium
are investigated.

The high order methods mentioned above have been implemented in the
framework of the open-source simulator DuMu*: DUNE for multi-{phase,
component, scale, physics, ...} flow in porous-media, see [Koc+18] and
[Fle4-11]. DuMu* is an additional module of DUNE (Distributed and Unified
Numerics Environment, [DUN18]) and, through the use of an object-oriented
design in conjunction with template programming, it provides a C++ envir-
onment that allows an efficient implementation of numerical models related
to porous-media flows.

All the source code used for the simulations performed can be found
at https://git.iws.uni-stuttgart.de/dumux-pub/vescovini2019a, to-
gether with the instructions to install the required software.
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Chapter 2

Governing equations

In this chapter we present the equations that we have used to model the free-
flow and the porous-medium flow. For the free-flow we start considering the
incompressible Navier-Stokes equations to simulate laminar flows, then we
move to the Reynolds Averaged Navier-Stokes (RANS) equations with the
k-w model as a turbulence model. For the porous-medium flow our choice is
the Forchheimer’s law, which is an extension of the more common Darcy’s
law to higher Reynolds numbers.

2.1 Free-flow

2.1.1 Navier-Stokes equations

The Navier-Stokes equations describe the motion of a Newtonian viscous
fluid, defining a relation between the following physical quantities:

e o, the density of the fluid [kg/m?],
o v = [u,v,w]T, the velocity vector [m/s],
e ¢, the specific total energy [J/kg].

They can be derived starting from the general principles of conservation of
mass:

d

— dV = 2.1

= eav=o, (2.1)
the second Newton’s law:

d/ gvdV:/ gde+/ on dA (2.2)
dt Jv 1% ov

23



Chapter 2 - Governing equations

and the first law of thermodynamics:

CZ/VedV:Q—l—W (2.3)

for any material volume V. In equation (2.2) vector b represents possible
external volume forces per unit of mass, for example the gravity g, o is the
Cauchy stress tensor and n is the outward unit vector normal to the surface
OV of V. In equation (2.3) @ is the net rate of heat added to the fluid and
W is the net rate of work done on the fluid.

For viscous fluids we can identify two contributions in the Cauchy stress
tensor:

o=—-pl+T, (2.4)

—pl is a contribution due to pressure, while 7 is the viscous stress tensor,
for which the constitutive relation of Newtonian fluids is used:

T=2uS+ ANV - V), (2.5)

where p is the dynamic viscosity [Pas], A is a dilatation factor and S is the
symmetric strain rate tensor:

\V4 T
g_ Vv + Vv .
2
Moreover we define the kinematic viscosity [m?/s] as
1
V= —. 2.6
. (2.6)

We want to deal with incompressible fluids with a constant density that
is not related to the pressure through a state equation. Thus, the energy
equation can be decoupled from the others and we can exclude it from the
system. Notice that, with this assumption, p is no longer the thermodynamic
pressure. Using these assumptions from the balance equations (2.1) and (2.2)
we obtain the incompressible Navier-Stokes equations:

V-v=0 (2.7)
ov T 1
a%—V-(vv)—V-(qu)—i-EVp—g:O (2.8)
All the computations needed to obtain these equations can be found in any
book of fluid mechanics, for example in [VMOT7]. The continuity equation
reduces to an incompressibility constraint (2.7) that is enforced in the mo-
mentum equation through the pressure that acts as a Lagrangian multiplier.
The second term of the momentum equation (2.8) is non-linear and repres-
ents the advection that the velocity enforces on itself, while the third one is
a diffusive term that express the action of the viscosity.
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2.1 - Free-flow

Boundary conditions

When the equations (2.7) and (2.8) are solved in a bounded domain {4,
suitable conditions have to be provided at the boundary 02, depending on
the situation that we want to model. Common choices, adopted also in the
test cases in Chapter 4, are the following:

e on inflow boundaries, Dirichlet conditions are imposed to the velocity:

vV = Vin, (2.9)

e on solid walls, homogeneous Dirichlet conditions are imposed to the
velocity (also called no-slip conditions):

v =0, (2.10)

e on outflow boundaries, natural boundary conditions are imposed, res-
ulting in the following prescription for the stress :

on = —pn+ 2uSn = od, (2.11)

where n is the outward unit vector normal to the surface. However
outflow boundary conditions are usually located where the flow is al-
most unidirectional and the surface stresses are known, so, especially
when using the finite volumes method, they are replaced by:

(VV)II = 07 P = Pext, (212)

thus fixing a a zero-gradient condition for the velocity and imposing a
Dirichlet condition to the pressure (see [VMO07]).

Moreover it is usually useful to take advantage of symmetries in the flow field,
when they are known because of the domain and of the boundary conditions.
For example, to model a flow in a channel, we can impose the following
symmetry conditions along the centre of the domain and consider only half
of it:

Vp-n=0, Vy-n=0, wv,=0, (2.13)

where v; an v,, are the tangential and normal components of the velocity.
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Reynolds number

If we consider the non-dimensional form of equation (2.8), scaling the lengths
by a reference quantity L and the velocities by a reference quantity U, and
neglecting gravity, we obtain

ov

AR )_v<1

ot Re

W) +Vp=0, (2.14)
where © denotes non-dimensional quantities. The non-dimensional number
Re that multiplies the viscous term is the Reynolds number and it is defined

as:
UL

14

Re (2.15)

This quantity plays an important role characterising the behaviour of the
solution of the Navier-Stokes equations, since it expresses the ratio between
the inertial forces and the viscous forces. This can be easily seen in equation
(2.14) since, when Re > 1, the viscous term loses importance with respect
to the advective one and vice versa.

If Re < 1 we have a creeping flow and generally the advection term can
be neglected, reducing the Navier-Stokes equations to the Stokes equations,
that are much simpler to analyse and to solve because they are linear. The
assumption of creeping flow is common in porous-media models, as we will
see in Section 2.2. If Re > 1 we have a laminar flow, which is characterized
by a well-ordered viscosity-dominated motion, with adjacent layers of the
fluid that slide with little interaction between each others. There exists a
critical value Re. such that when Re > Re. a transition from a laminar to
a turbulent flow regime starts to take place, but this threshold value is very
problem dependent as it is affected by the geometry of the domain and by
the boundary conditions imposed.

2.1.2 Turbulence and RANS equations

Turbulence is characterized by an irregular, chaotic and intermittent be-
haviour, that shows space and time fluctuations of the physical quantities
related to the flow, as we can see in Figure 2.1. Due to this complexity,
turbulence is usually studied with a statistical approach, relying on the the-
ory developed by Kolmogorov in 1941 [Kol41]. A complete description of
turbulence can be found for example in [Pop06], [Wil06] or [Dav04].

The first thing that can be observed in a turbulent flow is the presence
of many three-dimensional eddies, that enhance the dispersive and mixing
properties of the flow. They cover a wide spectrum of length scales, in which
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Figure 2.1: Example of fluctuating velocity in a turbulent flow.

we can identify three distinct bands; in the first one, corresponding to large
scales, comparable to the size of the domain, there is an injection of kinetic
energy and eddies are generated. Then, there is an intermediate band in
which convection is dominant and eddies shrink without a significant loss of
energy. The third band corresponds to the smallest scales at which eddies
are present. In fact, once they reach a certain size, the effect of viscosity
starts to be relevant and the kinetic energy of the eddies is dissipated into
internal thermal energy. So, globally, energy is transferred from the large
scales to the small ones, until it gets dissipated; this process is known as the
Richardson energy cascade (Figure 2.2).

Simulation of turbulent flows

From the Kolmogorov theory we can obtain useful information for the sim-
ulation of turbulent flows. Let us indicate with [ the length scale at which
eddies are generated and with [p the length scale at which they dissipate.
Then, according to [Kol41], it can be obtained that

U~ Ref. (2.16)
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Figure 2.2: Scheme of the Richardson energy cascade.

If we want to perform a reliable simulation of a turbulent flow using the
Navier-Stokes equations (2.7)-(2.8), we need a grid with a spatial resolution
sufficient to resolve all the eddies until the smallest ones, otherwise we would
neglect important information about the viscous dissipation of these struc-
tures. Assuming to have a domain of size comparable to [y, then we need
a size of the cells of the grid not bigger than [p and from (2.16) we deduce
that we need at least Rel cells in each of the three dimensions of the do-
main. Because of the fluctuating behaviour of turbulence, we always have
to perform unsteady simulations, so let us denote with ¢, the characteristic
time of evolution of the eddies at [y and with tp the characteristic time of
evolution of the eddies at {p. Again from [Kol41] we have that

t )
= ~ Re>. (2.17)
ip

The total number of “operations” N needed in a simulation can be considered
proportional to:

N ~ N;Nejem, (2.18)
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2.1 - Free-flow

where V; is the total number of time-steps and Ngen, is the total number of
elements in the grid and. From the previous relations we obtain:

3
NNMMMNH«%>:RJ. (2.19)
tp \Up
Reynolds numbers can be easily of the order of 10° or greater in common situ-
ations, so even with this rough estimate we can see that the computational
effort for these simulations, called Direct Numerical Simulations (DNS), is
usually very high. Moreover such a detailed information that we would ob-
tain usually goes beyond the real need in many applications, therefore other
approaches have been developed in order to solve this issue, such as the one
proposed by the RANS equations.

RANS equations

The Reynolds Averaged Navier-Stokes (RANS) equations focus on the mean
flow field, avoiding to simulate all the eddies but without forgetting to take
into account their effect. In engineering applications this is the most common
way to simulate turbulent flows because it is cheap and usually the mean
information is enough for many applications, but we must not forget that the
obtained result is not the flow field as it appears in reality. In case that more
detail is needed, another approach is given by the Large Eddy Simulations
(LES), that consist in applying a filter to the Navier-Stokes equation that let
us resolve the eddies until a certain threshold size.

The first step towards the RANS equations is to decompose each instant-
aneous quantity in the sum of a mean value - and a fluctuation -

v=v+Vv, p=p+p. (2.20)

According to [VMO7] the mean value can be obtained with a time average over
a long time interval for steady flows, while it is obtained with an ensemble
average for unsteady flows, so that by definition

V=0 =0 (2.21)

We want equations for the mean velocity v and the mean pressure p, so we
apply the average operation to the Navier-Stokes equations (2.7)-(2.8) and
we obtain:

V-v=0 (2.22)
ov

— 1
5;+V-W$ﬁ+vmWWU—v-@VW+EVp—g=0 (2.23)
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Figure 2.3: Scheme of the evolution of a boundary layer along a flat plate.
The origin of the x-axis is set at the stagnation point. Figure source: [Fet18].

For what concerns the continuity equation, the average commutes with the
divergence operator, so we obtain that also the mean velocity has to fulfil
the incompressibility constraint (2.22). Averaging the momentum equation
all the terms behave analogously, except the non linear term which produces
an extra contribution:

wli=Fw+v)v+v)T=vw' +vvT (2.24)

The new term

Th=—pov'V'T (2.25)

is called Reynolds stress tensor. Mathematically, it expresses the correlation
between the components of the instantaneous velocity field, while physically
it represents the diffusive effect of turbulence (see [VMO07]).

Boundary layers

When a fluid flows along a boundary, such as a solid wall, the region near the
the wall is called boundary layer and it is important because the viscosity
plays a major role there, even in turbulent conditions. Independently of the
flow regime, the no-slip condition imposes a null velocity at the wall and thus
a gradient orthogonal to the flow direction. The thickness of the boundary
layer 0 is conventionally defined as the position where the velocity reaches
the 99% of its maximum value and different values are observed for different
kinds of flow. See for example [SG17], [Pop06] or [Dav04] for a complete
description.

Let us consider a flow over a flat plate as depicted in Figure 2.3: when the
flow reaches the plate a laminar boundary layer starts to develop. Initially a
laminar regime holds and the layer is characterized by a moderate gradient of
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2.1 - Free-flow

the velocity profile at the wall. After a certain distance a turbulent boundary
layer starts to grow: it is thicker but the gradient of the velocity at the wall
is stronger. We can define a Reynolds number based on the distance from
the beginning of the plate and another one based on the boundary layer
thickness, respectively

u>r u®>d

Re, = ——, Res=—, (2.26)

14 14

where u* is the maximum velocity far from the wall.

For the laminar boundary layer the profile can be computed analytically
through the Blasius equation, which is obtained using dimensional arguments
(see [SG17]). The thickness grows as the square root z, i.e. the distance from
the stagnation point:

x v

=491/ —. 2.27
vV Re, u> ( )
When Res is higher than a certain threshold, the turbulent boundary layer
begins, but in this case the velocity profile can be expressed only through
some empirical laws. In order to do that it is useful to define a non-
dimensional wall coordinate:

d(z) =49

+_ WY

Tw
=,/— 2.28
RS (229)

where 7, is the shear stress at the wall. In the boundary layer four different
regions can be identified:

e near the wall, for approximately y* < 5, a small laminar viscous sub-
layer is always present and it cannot be neglected. In this area the
viscous stresses are dominant over the Reynolds stresses and the velo-
city profile can be approximated with a linear relation:

u=uy", (2.29)

e after that there is a buffer layer in which the viscous and Reynolds
stresses are comparable,

e then, approximately in the region 30 < y* < 150, there is the so called
log-layer, in which the velocity profile can be approximated with a
logarithmic function:

1
U= U, < logy, + A), k=041, A=505, (2.30)
K
where k is the von Karman constant,
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e at last there is an external region, in which the behaviour depends on
the external flow field.

Be aware that the numbers given above as bounds for ¥ are not universal
but are very problem-dependent.

Turbulence models

The quantity 75 is a symmetric tensor with dim x dim entries, so in three
dimensions we have 6 new unknowns that need to be modelled in order to
close the problem, this procedure is known as turbulence modelling. In 1877
Boussinesq [Bou77] suggested that 7x could be similar to the viscous stress
tensor, thus expressed as

- 2
TR =21S — ggkI. (2.31)

The first term has the same form of 7 if we consider the mean velocity
field, the only difference is that the dynamic viscosity u is substituted by
a turbulent viscosity p; [Pas]. The second term is needed to model the
isotropic part of 7 correctly:

dim

tr(tgr) = —tr(ov'v't) = —Qz (vh)?2 = —20k, (2.32)

where k is the turbulent kinetic energy defined as

1 dim

5> (2 (233)

i=1

k:

while exploiting equation (2.22) we get

dim 95

— Ul _
tr(2mS) = 2p Y o 21, (V -v) =0. (2.34)
i=1 9%i

With this hypothesis y; and k are the only unknowns left and the momentum
equation (2.23) becomes:

ov 1 2
a*: FV () = V- (V) + V(D + S0k) — g =0, (2.35)

where we have introduced an effective kinematic viscosity

Vet =V + Uy, V= i (2.36)
0
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2.1 - Free-flow

Since for incompressible fluids we have removed the thermodynamic relation
between ¢ and p, we can consider as unknown a generalized pressure pgey,
such that:

_ 2
Pgen =p+ g@k, (237)

reducing the unknowns to 14 alone, which can be estimated using different
turbulence models.

The idea of the Boussinesq hypothesis (2.31) comes partially from an
analogy between the motion of the turbulent structures and the molecular
motion, but there are cases in which it can be shown that this hypothesis
leads to poor results (see [Pop06]). There exist also turbulence models called
Reynolds stress equations models (RSM) that do not use it and try to find
equations for all the entries of the Reynolds stress tensor, but in this way
a large set of equations is obtained and consequently the required computa-
tional effort increases. See [Pop06] or [VMO07] for more information.

From now, on the over-bar used to denote averaged quantities will be
neglected in order to simplify the notation.

Zero-equations models

The simplest turbulence models are called zero-equations models or algeb-
raic models because they compute the turbulent viscosity using an algebraic
relation that exploits geometrical quantities, so they do not introduce any
additional PDE to the problem. Due to their simplicity they were used in the
past years when the computational resources were limited, but they have in-
trinsic weak points and they can be applied only in special simple situations.

An important example is Prandtl’s mizing length model [Pra25]. It is
useful with two-dimensional flows when the mean velocity field has a domin-
ant direction and the gradient in the longitudinal direction is negligible with
respect to that in the orthogonal direction. Let us assume that v is the main
component of the velocity and that the flow is bounded by a wall at y = 0.
From dimensional considerations it can be assumed that

vy = lmixvmixa (238)

where [, and v are a characteristic length scale and a velocity scale of
turbulence. Then, it is reasonable to choose

du

2.

Umix = lmix

because the shear stress in the mean flow gives its contribution to the tur-
bulent mixing of the largest eddies. At last, [ is chosen from empirical
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considerations derived from the boundary layer theory previously described.
For example,
Inmix = KY, (2.40)

in the original version, or
Imix = Ky[1 — exp(y™/26)], (2.41)

using a correction proposed by Van Driest [Van56] that dampens v; for y — 0.

k- model

Two-equation models involve the solution of two additional PDEs and the
k-¢ is probably the most famous one in this category. The key contribution
to this model was given by Launder and Sharma [LS74]. It is based on
the assumption that the turbulent viscosity v; could be correctly determined
through the turbulent kinetic energy k and its dissipation rate €. Considering
the dimension units, the relation must be

Vy = CN;’ (242)

where C), is a non-dimensional constant and ¢ is defined as

/ NT
e=28-9, S/:w.

. (2.43)

Starting from the momentum equation of the Navier-Stokes model (2.8)
and from the decomposition in mean value plus fluctuation (2.20), we derive
an equation for k:

8]{:+V~(kv)—V~[<V+W>Vk1—2yts-s+5:0, (2.44)
ot Ok

where o0}, is a non-dimensional constant. In a similar way we could derive
an evolution equation for e, but it would contain too many terms difficult to
model and to measure, so an empirical equation built in analogy with the
one for k is used instead:

2

Oe vy € g
a—i—V-(ev) -V [(u—i—O_E)Ve] —CglfQVtS-SjLCEQZ =0. (245)

The standard model sets the following constants (see [VMO7]):

C,=009, op=1, o0.=13 C, =144, C., =192  (2.46)
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2.1 - Free-flow

This model behaves best for confined flows and high Reynolds number,
where the Reynolds stresses are dominant. Near the wall this assumption
fails, so it is common to use a wall function such as the one given by the
boundary layer theory (2.30) in order to compute the velocities at the cells
near the wall. This can be done easily for flat walls and it brings also com-
putational advantages, because we can avoid to have very small cells near
the wall to resolve the viscous sublayer.

Over the years, many variants of this model have been developed, for
example the RNG k- model, which is derived with a different procedure
with the purpose of improving the equation for ¢, or the low-Re k-¢ model,
which adds extra terms in order to correctly model the behaviour near the
wall. See [VMO7] for more details.

k-w model

The k-w model is another two-equations model that uses a specific dissipa-
tion rate w instead of the dissipation rate €. It was originally proposed by
Kolmogorov [Kol42] and subsequently refined many times by Wilcox [Wil08§].

The equation for the turbulent kinetic energy is analogous to the one used
in the k- model:

glijV-(kv)—V- [(V—Fa*f})Vk] — P+ f"kw =0, (2.47)

with the production term P that can be limited in the following way:
P =min{2yS - S,205%kw}. (2.48)

The equation for w is empirical and driven by physical considerations as it
was the equation (2.45) for €. It reads:

Oow w

]C Oq 2
a—i—v-(wv)—v- l(u—i—aw) Vw} —akQVtS-S—UVk-ijLﬂw =0. (2.49)

The term ”
;dw - Vw (2.50)

is a new addition with respect to (2.45). It is related to cross-diffusion and
its activation depends on the direction of the gradients of k£ and w:

{o if Vi -Vw <0 1
Oq4 = 3

, S (2.51)
040 i Vk-Vw>0
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The turbulent viscosity 14 is obtained as

, @:nmx{%chwmé&s} (2.52)

The model is closed with the following empirical coefficients:

Vy =

& o

9 3 13 177 1 7
/8 o 04 25 ) B 2500 ) o 2 ) 1 ] ( )
The interpretation of w is not straight-forward: originally it was defined
by Kolmogorov as “the rate of dissipation of energy in unit volume and time”,
therefore defined as

w=". (2.54)

Other contributors to the development of this model have referred to it as
the the root mean square (RMS) of the fluctuating vorticity, i.e.

w=1(W)? w=Vxv. (2.55)

In this case, w? is the double of the enstrophy, which is a quantity associated
to the energy related to vorticity.

This model has shown good results also near boundaries, so it does not
require any wall correction. For our purposes it is the most appropriate
choice because we would like to have non-flat boundaries, so employing a
wall law would be cumbersome, if not impossible. Moreover, the values near
the boundary are very important in our tests, because they influence the
exchange processes across the interface between free-flow and porous-medium
flow.

As boundary conditions, we have:

e on inflow boundaries, Dirichlet conditions are set both for k and w.
According to [ANS09], the following formulas can be used:

100k1/2

, 2.56
70X L (2:56)

3
k= Svall?, w=

where vy, is the inflow velocity and [ is a non-dimensional quantity
called turbulence intensity that could be estimated as

0.16
1= (2.57)

Here, C,, = 0.09 and L is a characteristic size of the domain,
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2.2 - Porous-medium flow

e on solid walls, k£ = 0, while, according to [Wil06], the following asymp-
totic behaviour for w is used:

w— B as d—0, (2.58)

where d is the distance from the nearest wall,

6v
2

e on outflow and symmetry boundaries, a zero-gradient condition is as-
sumed:

Vk-n=0, Vw-n=0. (2.59)

2.2 Porous-medium flow

According to [NB17] a porous-medium is “a material consisting of a solid
matrix with an interconnected void”. The void spaces are called pores and
they allow a fluid to flow through the material. We consider the solid matrix
to be fixed, neglecting the fluid-structure interaction. Examples of porous-
media are sand, wood, soil, sandstone and ceramics.

To simulate flow through a porous medium theoretically we could use the
standard fluid dynamics equations at the pore scale, but this approach is
extremely expensive because of the strict spatial and temporal requirement
of a direct numerical simulation in such a complex domain. Moreover, from
the point of view of applications, the knowledge of the model variables at
such level of detail is often useless, considering also the fact that at this scale
they are very irregular and, also, it is hard to get measurements of them.
What is usually done is to upscale the description of the flow by considering
averaged quantities within a Representative Elementary volume (REV), thus
considering the porous-medium as a continuum at a larger scale. In this way
we lose the information at the pore scale, but we obtain results that are
comparable to experimental measurements. The upscaling procedure can be
done by rigorous homogenization techniques [All89] or by formal averaging
[Wit99]. We briefly describe the latter approach.

Given a domain €,,, occupied by the porous-medium, we consider at
every point x € {0, a ball B,(x) of radius r, that will be the REV. Starting

from a function f defined at the pore scale we compute its average f :

A

1
F(x) = AT /B oy [y, VX E O (2.60)

The radius r, and thus the dimension of the REVs, should be chosen such
that
l<r< L, (2.61)
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Figure 2.4: An example of a REV in a porous-medium. Comparison of its
size with the one of the pores and the one of €2,,,. Figure source: [NB17].

where [ is the pore scale size and L is the macro scale size, as for example in
Figure 2.4. In such a way the high frequency variations of microscopic prop-
erties are averaged out at the REV scale, but the low frequency variations of
macroscopic properties are kept (see [Hel97]).

Let us define the porosity of the porous-medium as

1

p(x) = B0 Jo,00 X(y)dy, (2.62)

where x(x) is the characteristic function of the void space:

1 if x is void
x(x) = {0 if x is not void ’ VX € Som. (2.63)

For simplicity we will assume to have porous-media with constant poros-
ity. In natural materials usually ¢ is not greater then 0.6, but for some
artificial materials, such as metallic foams, ¢ could be almost 1.

When two or more fluids flow through the pores, for example liquid water
and gaseous air, we have a multiphase flow system. According to [Hel97],
the term phase denotes each of the distinct fluids that are separated by
a sharp interface, across which discontinuities in fluid properties exist. A
phase can be a pure substance or a mixture of substances with uniform
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2.2 - Porous-medium flow

chemical structure and physical properties, so a phase is a homogeneous
system. Different phases, instead, can present different physical properties
and thermodynamic variables. In general, multiple liquid phases can coexist,
for example water and oil, but only one gaseous phase is possible because
gases are always miscible. Each chemical substance a phase is made of is
called component. Each component can be present in different phases in
different physical states, for example water in a liquid phase and water vapour
is a gaseous phase, and phases may exchange components by phase transitions
processes, like vaporization or condensation. In the following, we will limit
our description and test cases to single-phase, single-component flows.

2.2.1 Continuity equation

The governing equations for a porous-medium at the REV scale can be com-
puted from the standard equations for the fluid through the application of
volume averaging techniques (see [Wit99]).

We obtain the following continuity equation:

do

where p denotes the density of the fluid. v is the velocity obtained averaging
over a REV containing both fluid and solid and it can be called Darcy velocity
or seepage velocity. It should not be confused with the intrinsic velocity V
that we would obtain averaging over a REV containing only fluid, as they
are related by:

v =¢V. (2.65)

If we assume that the fluid is incompressible, then the continuity equation
reduces to
V-v=0. (2.66)

2.2.2 Momentum equation

According to the assumptions, we can obtain different laws.

Darcy’s law

For the momentum equation the most common choice is the Darcy’s law:
1
V= —;K(Vp — 08), (2.67)

39



Chapter 2 - Governing equations

where K [m?] is the permeability tensor of the porous-medium; it is sym-
metric and positive-definite and it can be simplified to a scalar for isotropic
porous-media. This equation holds for creeping flows, with Re < 1, for which
inertial effect can be neglected.

It was first obtained experimentally by Henry Darcy in 1856, who dis-
covered a proportionality between the flow rate and the pressure drop across
a uniform porous-medium. After that there have been many attempts to
derive it analytically, starting from the Navier-Stokes equations and using
volume averaging techniques with different assumptions made, see for ex-
ample [Wit86]. Moreover it can be obtained through a homogenization pro-
cedure if the porous-medium is periodic (see [Hol95]).

The permeability is a quantity that depends only on the geometry of the
porous medium and not on the flow, typical values range from 10~ m? of
gravel to 10719 m? of limestone. There are models to compute it in the case
of simple geometries, for example through the Carman-Kozeny equation (see

INB17)).

Forchheimer’s law

There exist many generalizations of Darcy’s law, for example to multiphase
and multicomponent flows, to non-Newtonian fluids or, as in this case, to
higher Reynolds numbers. The extension that we are interested in is the so
called Forchheimer’s law [For(01], that reads:

1
v+ CF\/Ein =~ K(Vp - o8) (2.68)

where the second term is added to the Darcy’s law in order to take into
account any possible inertial effect. Cr is a non-dimensional coefficient which
is here taken equal to 0.55, even if there exist many different corrections (see
INB17] and [Jam11]).

As reported by Nield and Bejan [NB17], the equation was originally pro-
posed by Forchheimer in 1901, but the dependence on vK was later in-
troduced by Ward [War64]. Withaker [Wit96] derived it with the volume
averaging starting from the Navier-Stokes equations.

This equation holds when the flow in the porous-medium is laminar, but
the drag from linear becomes quadratic because the contribution due to
solid obstacles becomes comparable to the one due to friction. According
to [NB17], the transition from a linear to a quadratic regime is smooth and
takes place at

Rex =~ 100, (2.69)
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where Rek is a Reynolds number based on the square root of the permeab-

ility:
UVK

v

2.3 Coupling conditions

At the interface between the free-flow region and the porous-medium we have
to impose suitable conditions in order to couple the two subdomains. Let
us denote with Qg the free-flow domain and with (2, the porous-medium
domain, then

Fine = ﬁﬂ" N ﬁpm (271)

is the interface between them.

Following Mosthaf et al. [Mos+11], we would like to have conditions such
that the interface could be as close as possible to local thermodynamic equi-
librium. However, this cannot be rigorously achieved due to the different
model concepts in the two subdomains. Since we are dealing with single-
phase, single-component isothermal flows, we only have to impose the mech-
anical equilibrium, for which we need:

e the continuity of normal mass fluxes, that in our incompressible case
reduces to the continuity of the normal component of the velocity:

[Vv-nlg=—[v-nly, on I, (2.72)

where the subscripts g and p,, denote that the quantities are evaluated
in the free-flow or in the porous-medium subdomain. Notice that

Ng = —Npy, o0 Ly, (2.73)

e the continuity of normal stresses:
[(ovvT — peg Vv + pD)n)g = —[pn]p,  on Tiy, (2.74)

that may result in a jump of the pressure at the interface, although
pressure is typically a continuous thermodynamic variable,

e a condition for the tangential component of the velocity in the free-
flow and in particular we use the one proposed by Beavers and Joseph
[BJ67]:

K
K— \/_(Vv)n—v> -ti] =[v-tilpm, Vie{l,...,dim—1}, (2.75)
ff

05:3)
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on Iy, where agy is a non-dimensional coefficient that depends on
properties of the permeable material and t;, i € {1,...,dim — 1} is a
basis of the plane tangential to the interface I'y,. With this condition
we allow a slip of the tangential component of the velocity and the
more the porous-medium is permeable, the more slip is allowed.

We also employ the simplification introduced by Saffman [Saf71]:
[V tiom ~0, Vie{l,... dim—1}, (2.76)

so we neglect the tangential velocity in the porous-medium since it is
very small with respect to the one in the free-flow region, thus obtaining
the Beavers-Joseph-Saffman (BJS) condition:

K_ \/K(vV)n—v> .tiL: 0, Vie{l,...dim—1}. (2.77)

aBJ

This condition can be derived also using homogenizations techniques
(see [JMO0O0] and [DQO09)]).
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Chapter 3

Numerical model

In this chapter we describe the methods that we have chosen to discretize
the mathematical model. For the spatial discretization we use the finite
volumes method, which allows to solve flow problems efficiently, guaranteeing
the conservation of mass also locally. See [LeV02] for a general description.
In the free-flow region, we discretize the equations using the staggered grid
concept, while in the porous-medium we employ a cell-centred approach with
a Two Point Flux Approximation (TPFA).

For the temporal discretization we use the implicit finite differences meth-
ods Backward Euler (BE) and Backward Differencing Formula of order 2
(BDF2).

3.1 Free-flow

3.1.1 Staggered grid discretization

The staggered grid discretization is characterized by the distinction between
the degrees of freedom related to scalar primary variables and those related to
vectorial primary variables. In saddle point problems, like the incompressible
Navier-Stokes or RANS equations, if we locate all the primary variables, i.e.
pressure, velocity and possibly the turbulent kinetic energy and its dissipa-
tion rate, at the same positions in the grid, spurious modes in the pressure
solution may arise, leading to wrong results. In the context of finite volumes,
a possible solution to this issue is to represent the variables in a staggered
fashion, putting the degrees of freedom related to scalar variables, particu-
larly the pressure, at the centre of the cells and those related to vectorial
variables on the faces, aligned to the faces normal direction. Therefore, we
obtain different control volumes, as we can see in Figure 3.1 for the case of
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A A A
j+1 | | |
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I Control volume for p
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Jj-2 | | |

i—2 I-1i-1 1 i I+1 i+1

Figure 3.1: An example of a uniform staggered grid with the pressure degrees
of freedom (dofs) stored at the centres of the cells and the velocity dofs stored
on the faces. The different control volumes are highlighted. The indices in
capital letters ..., I —1,I,I+1,... and ..., J—1,J,JJ+1,... refer to cells,
thus to the position of cell-centred variables, while the indices in lower case
letters ..., —1,4,4+1,... and ...,7—1,7,5 + 1,... refer to faces, thus to
the position of staggered variables.

the Navier-Stokes equations in a two-dimensional domain.

This approach is known also as Marker and Cell (MAC), as it was names
in its first appearance in a paper by Harlow and Welch [HW65], within a finite
differences framework. A more recent description can be found in [VMOT7].

Another advantage of this discretization method is that on the boundary
we have naturally the degrees of freedom of the normal component of the
velocity, so it is easier to impose boundary and interface conditions with
respect to the case where all the degrees of freedom are stored at the cell
centres.

For the sake of simplicity we focus our attention on the two-dimensional
case, where the velocity vector is v = [u,v]T.
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3.1 - Free-flow

Continuity equation

The continuity equation (2.22) is discretized using control volumes that co-
incide with the cells of the grid, thus it is treated is a cell-centred way. Since
we are dealing with incompressible fluids, it does not involve the density and
this makes its approximation simpler. We integrate over the “grey” control
volume V,, = [x;_1, %] X [y;-1,9;], according to Figure 3.1, and we apply the
Gauss’s divergence theorem:

/v-vdV: v-ndA=0. (3.1)
A AV,

The integral over the boundary 0V, can be split over the four faces, that we
identify with e, (east), n, (north), w, (west), s, (south):

/ v-ndA:/udA—i—/ vdA—/
oVp ep n w

P P

wdA — / v dA. (3.2)

At this point we discretize the equation approximating the values of the
velocity with the values at the centre of the faces, for example:

/ wdA ~ ui e, (3.3)

P

where |e,| denotes the measure of the face e,. Thus we obtain

s glep| 4+ vr |y — iy s|wp| —vrj-1]sp| = 0. (3.4)

Momentum equation

The momentum equation (2.35) is discretized using the staggered control
volumes. Let us consider the equation for the component u of the velocity:

ouy. (uv) = V- (regVu) + 2 J (p+ ok) =0. (3.5)

ot Ox
Notice that, since we are considering a two-dimensional model, we have sub-
stituted the factor 2/3 with a 1 in front of gk, because it comes from the
requirement (2.32).
We integrate it over the “red” control volume V,, = [z, 141] X [yj-1, y;],
according to Figure 3.1, and apply the Gauss’s divergence theorem:

ou 10
/Vu [m+V~(uv) — V- (v V) + an(p—l—gk)] AV =

d
= VuudV—i— 8Vuu(v-n) dA—/avul/eff(VU'n) dA +

1
+— [ (p+ ok, dA =0, (3.6)
o0 Jov,
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where n, is the component in the x direction of the outward unit normal
n. Let us identify again the four faces of 9V, with e, (east), n, (north), w,
(west), s, (south), so that

OV, = e, NNy Nwy N Sy (3.7)

In the equation (3.6) there are four terms of different nature, let us consider
each of them separately, starting from the simplest one:

in the storage term we approximate the velocity with the value at the
centre of the control volume:

d duw
dt/%ude |V (3.8)

in the pressure term the contributions from the faces n, and s, are null
because n, = 0 on them, so

/Wu(p + ok, dA = /eu(p 4 ok) dA — /wu(p +ok)dA. (3.9)

Then we approximate p and k£ with the values at the centre of the faces:

| (p+ o) dA R (prars + okias)led, (3.10)

(=N

| 0+ ok) dA % (1 + ok ). (3.11)

in the diffusive term we have both a frontal momentum flux contribu-
tion from the faces e, and w,, and a lateral momentum flux contribution
from the faces n, and s,:

0u au
/M Vesr(V - 1) dA = / Verrg dA -~ /w Ve dA+

+/nu ueﬂgz dA — / yeggz dA. (3.12)
Here, we develop the contributions from e, and n,, the other two are
analogous.

For the frontal momentum flux we approximate the viscosity with the
value at the centre of the face, while we approximate the derivative of
the velocity with a centred finite difference:

ou U; —
/ Vel dA =~ Veff,{[—i—l,J}MkuL (3.13)

Tiv1 — X4
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For the lateral momentum flux we split the face n, into the two halves
related to the two cells [x;_1, z;] X [yj-1,y;] and [z, 1] ¥ [yj—-1, Y]
ny =[x,z X {y;} U [zi, 2ra] < {y;} (3.14)

We employ again a centred finite difference to approximate the deriv-
ative of the velocity, while, for the approximation of the viscosity, we
compute an average between the two cells sharing the face:

ou zij  Ou T+ Ou
e—dA:/ ol A / a2l A, 1

Ui, g+1 — Ui g |nu|
)
Yjr1 —Ys 2

T Ou 1
eff 5 dA ~ =
/ﬂﬂl,j 3 H@y 2 (Veﬁ:{ﬂj} + Veff,{I,J.H})

triy Ou 1 U, g1 — Ui, |
Veim— AdA = —(Veft {1417} + Vef {141,741 : : .
/mi,j oy 2(6{ b ) Yo —Ys 2
in the convective term we have again both a frontal momentum flux
contribution from the faces e, and w, and a lateral momentum fux
contribution from the faces n, and s,:

/a u(v-n)dA:/uudA— uu dA +
Vau Cy Wy

+ [ w dA—/ wo dA. (3.16)

Ny

For the discretization we have to distinguish between the transporting
velocity, coming from v - n, and the transported field, that in this case
is the velocity itself. For the former we average between the values
sharing the face, while for the latter we have to consider an approxim-
ation using a differencing scheme, like the upwind method or the TVD
methods. For the moment we simply denote this approximation with a
superscript *, then several possible options will be explained in detail
in Subsections 3.1.2 and 3.1.3. We develop only the contributions from
e, and n,, the other two are analogous.

For the frontal momentum flux we approximate the transporting ve-
locity with an average between the values at the centre of the two
staggered cells sharing the staggered face:

/ uu dA%u*MkuL (3.17)
eu 2

For the lateral momentum flux we approximate the transporting velo-
city with an average between the values a the two ends of the face (see
Figure 3.2):

UL+ Vi

/ uwv dA ~ u I |n|. (3.18)
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*
' ny |
] ]
] ]
| w
1 L] 1
wy, > ey
] ]
] ]
] ]
] ]
] ]
i i
Su

Figure 3.2: Degrees of freedom involved in the lateral part of the advective
flux.

The equation for the component v of the velocity is analogous to the one for
u described above, with the only addition of the gravity term:

v 10
E—FV'(UV)—V-(VQHVU)—FE@(p—i‘Qk) —g=0, (3.19)

with ¢ = —9.81m/s. The gravity term is discretized simply as:

/V g dv = g|V.|, (3.20)

where V,, = [z;_1, xi] X [y5, ys41] is the “blue” control volume in Figure 3.1.

Turbulence model equations

The equations for the turbulent kinetic energy (2.47) and the specific dis-
sipation rate (2.49) are treated analogously to the continuity equation, but
they involve more terms. Let us integrate them over the same control volume

Vp = [%4#&'] X [yjflayj]:

e the storage terms are approximated with the values at the centre of the

coll ok d dk
—dV = — V ~ LJ 1%
v, Ot v = dt v;,k 4 dt Vil (3:21)
Ow 0wy g

d
dV—dt/prdVN V). (3.22)

v, Ot ot
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e the Gauss’s divergence theorem is applied to the convective terms:

V. (kv)dV = k(v-n) dA, (3.23)

Vi OV

. dV = -n) dA 3.24
LV v dv = [ (v ) da, (3.24)

then the velocity is approximated with its value at the centre of the face,
while for the transported quantities & and w we employ the upstream
value with respect to the sign of the velocity, so considering for example
the face e, and supposing that u; ; > 0 we have:

/ ku dA = kp ju; gle,|, / wu dA =~ wr yu; glep). (3.25)

Notice that this approach is not the only possible choice, as it will be
explained with more details in Subsections 3.1.2 and 3.1.3.

e the Gauss’s divergence theorem is applied to the diffusive terms:

/ V-[<V+U*k>Vk dV:/ <u+o—*k>v1€.ndA, (3.26)
Vp w ] av, w

A w w

/ V. KV + ak> Vw| dV = (V + 0k> Vw-ndA.  (3.27)
v, av,

Then, considering for example the face e,, the derivatives of k£ and w
are approximated with centred finite differences, while the coefficients
involving the viscosity are approximated by a weighted average between
the values at the centre of the cells sharing the face, thus assuming a
linear trend:

/ <V + 0*k> % dA ~ (V + O'*k> —kHl’J ~Fry lep], (3.28)
ep w ) O0x W) o TI+1 —T1

w w Try1 — X

/ <V+0k>?; dA =~ (l/—f-O'k) Mkﬂ, (3.29)
€p avg

where the subscript ., denotes the weighted average

Tryl — Ty Ty — Ty
* = ———(K)j g+ ————(x . 3.30
( )avg Tre1 061( )LJ Tre1 xl( )I+1,J ( )
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e in the source terms all the quantities are approximated with their value
at the centre of the cell. We report here only the derivatives appearing
in the entries of symmetric strain rate tensor S, Vk and Vw, that are
computed with centred finite differences:

@ ~ Uj1,g + U g — Uj—1,7 — ui—Q,J’ (3.31)
Oxlr,g 2(xr41 — x1-1)
o . e — vy
l ~ Ur,j+1 + Ur,5 Vr,j-1 V1,5 2’ (332>
Oy lr.g 2<yJ+1 — Yj-1)
ou u; + u;_ — Ui 1 — U1 J—
et ~ ,J+1 1,J+1 ,J—1 1,J 1’ (333)
Oy 1.7 2(yJ+1 - nyl)
o . U — U
ov ~ Vi1, + Vr41,5-1 — Vi-1,j — Vr-1,5 17 (3.34)
ox 1y 2(xr1 — 21-1)
ok k — kr_ ok k — ki g_
Y ~ 1+1,J 1 1,J’ htdd ~ 1,J+1 ,J 1, (335)
ox 1,7 Trg1 — Tr—1 0ylr.g Yi+1 — Yj-1
87w ~ Wr1,J — WI—I,J7 (97w ~ Wwr.Jj+1 — wi,J—l' (3.36)
Ox 1. Try1 — Tro1 Oy 1.5 Y1 — Y1
e the sink terms are approximated with the values at the centres of the
cells:
/V Bkw dV ~ Bk gwr |V, (3.37)
| Bt av = gt v, (3.38)
Vp ’

3.1.2 Linear differencing schemes

The choice of the scheme for the approximation of a transported field is of
great importance for both the accuracy and the stability of the solution of the
problem. In general this decision has to be taken for every convective term,
in our case in the discretization of the Navier-Stokes equations and of the
turbulence model equations. As already mentioned, an important property
that the scheme should have is the transportativeness (see [VMOT7]), i.e. it
should take into account the direction of the flow. From a physical point
of view this comes from the fact that, when in a flow convection dominates
over diffusion, a bias towards the value on the face from which the flow
comes should be applied. From a mathematical point of view instead we can
introduce the following dimensionless number, the Péclet number:

_ ulh

P
¢ v’

(3.39)
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Figure 3.3: Location of the degrees of freedom used to approximate u*. The
superscripts Y, Y, P and P stand respectively for upstream, far-upstream,
downstream and far-downstream. They hold for the case of positive trans-
porting velocity at the face where u* is.

where h denotes the cell width. It discriminates between stable and unstable
discretization for a given flow: when the grid is too coarse or the viscosity
is too low Pe — o0, and this can lead to a loss of stability of the numerical
method (see for example [Qual4]).

In the following we will list the most straight-forward options for linear
schemes, referring to the convective term of the equation (3.5) for the u
component of the velocity. Here we consider uniform grids, with positive
transporting velocity according to Figure 3.3, but all the schemes can be
generalized to the case of non-uniform grids. Moreover the basic construction
is one-dimensional, so that it may be used in every dimension for a multi-
dimensional problems. For a complete description see for example [VMO07].

CD scheme

The Central Differencing (CD) scheme consists in using an average between
the two first neighbouring values:

w= (3.40)

Employing Taylor expansions, it can be easily seen that this approximation is
of second order, but, being symmetric, it does not have the transportativeness
property. Indeed it can be shown that, when Pe > 1, it is not stable.
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Upwind scheme

Opposed to the CD scheme, the upwind scheme consists in using only the
upstream value:
u* =uY. (3.41)

It is a simple, widely used and robust scheme as it has the transportative-
ness property, but its accuracy is only of first order, indeed it introduces in
the solution an important amount of numerical diffusion that smooths the
gradients.

Hybrid scheme

The hybrid scheme [Spa72] consists in evaluating if Pe < 1 or Pe > 1 at each
face and then employing respectively the CD or the upwind. It exploits the
good properties of the two schemes mentioned above, so it is highly stable
and accurate when the diffusion is dominant, however the overall accuracy
in terms of Taylor expansions reduces to first order.

QUICK scheme

The Quadratic Upstream Interpolation for Convective Kinetics (QUICK)
scheme [Leo79] is a higher order method that involves an extended stencil of
degrees of freedom. It can be obtained evaluating the quadratic interpolator
of u”, u¥ and ufV at the position where u* is:

. duP +6uY —utv
u =

g (3.42)

Its accuracy is of third order, but it may produce unphysical overshoots or
undershoots in the solution when there are strong gradients. This beha-
viour is not desirable, in particular in the case where the simulation involves
quantities such as the turbulent kinetic energy k that have to be positive.

LUD scheme

The Linear Upwind Differencing (LUD) scheme is an extension of the upwind
scheme that has a second order accuracy, however it can produce unphysical
oscillations too. It can be obtained evaluating the linear interpolator of uY
and ufV at the position where u* is:

3ulV — ufv

2

*

u (3.43)
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Figure 3.4: Solution of the problem (3.44)—(3.46) at the time ¢t = 0.5. The
upwind method smooths the gradient, while the CD and QUICK methods
produce oscillations.

An example

We test the behaviour of the CD, Upwind and QUICK methods when they
are applied to a one-dimensional scalar conservation law:

dg 0o

5 T3 =0 Vre(0,1), V>0 (3.44)
$(0,6) =1, Vt>0 (3.45)
¢(z,0) =0, Vze(0,1) (3.46)

In this case there is no diffusion but only the linear transport of a step from
left to right. The equation (3.44) can be discretized with finite volumes stor-
ing the degrees of freedom at the ends of each cells, as it is in the staggered
grid concept. Then the differencing schemes presented above can be applied
to the discretization of the transport term, while for the temporal discretiz-
ation we use the Backward Euler method (see Subsection 3.1.4).
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In Figure 3.4 we can see the solution at t = 0.5. The upwind method is
very diffusive near the step, but bounded within the extrema of the exact
solution. The CD and QUICK methods instead better approximate the steep
gradient, but produce oscillations for x < 0.5.

3.1.3 TVD methods

Total Variation Diminishing (TVD) methods belong to a category of methods
called high resolution methods [Har83|, that address the problem of comput-
ing a solution without any oscillation and with higher order accuracy, second
order in this case. They were originally developed for scalar conservation
laws of the type:

o6 Of(9)
E—i_ or

—0. (3.47)

For this kind of problems the total variation of the numerical solution

can be defined as:
Naor—1

TV(¢)= > lbir1 — i, (3.48)
i=1
where ¢; is the numerical solution at the node 7 of the discretized domain. A
method is called TVD if the total variation of the solution does not increase
with time:

TV ("t < TV (¢") Vn >0, (3.49)

where ¢" is the numerical solution at the time-step ¢". In [Har83] it has been
proved that a TVD scheme is monotonicity preserving, i.e. it does not create
new local extrema, local minima are non-decreasing and local maxima are
non-increasing. This is the desirable property that we would like to have to
avoid the creation of solutions containing overshoots and undershoots, as it
happens using the higher order methods presented in the previous subsection.

According to [Swe84] and [MMD16] we can achieve our goal adding to
the first order upwind approximation a second order non-linear anti-diffusive

flux:

WU — oy FU

x v, 1 D U
ut=u" + 21/)(7‘)(u u’), r= BT (3.50)
The flux includes a function ¢ called fluz limiter, which should dampen the
flux contribution in regions of the domain where it could produce oscilla-
tions. It is chosen non-negative in order to preserve the sign of the flux and
it depends on the variable r, defined as the ratio between two consecutive
differences of the solution. The non-linearity cannot be avoided, in fact it was
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3.1 - Free-flow

proved by Godunov [God59] that any monotonicity preserving linear scheme
can be at most first order accurate.

Exploiting the approximation (3.50) to solve a problem like (3.47) and
imposing the TVD condition (3.49) on the solution, we obtain the following
bounds for the flux limiter function:

Y(r)=0 if r<Q0,
Y(r) <min{2r, 1} if 0<r <1, (3.51)
P(r)y <2 if r>2.

Notice that when r < 0 we are in presence of a local maximum or minimum,
because the differences between the upstream and downstream nodes and the
one between the far upstream and upstream nodes have opposite signs. When
this happens, ¥ is set to zero, so only the first order upwind contribution is
employed in the approximation of u*. It is also required to v to fulfil the

following symmetry property:
1
wr) _ w() (3.52)
r r

which ensures that backward- and forward-facing gradients are treated in the
same way.

In order to have a second order scheme, @) must be at least Lipschitz-
continuous, i.e. there must exists a constant L > 0 such that

[ih(21) — (x2)| < Llwy — 23] Vry,zp € R (3.53)

Moreover, following [Swe84] and [Van74], any second order scheme can be
obtained as a convex combination of the CD scheme (3.40) and the LUD
scheme (3.43), in the following way:

W(r) =0(r)Yep(r)+ (1 —0(r)rup(r) Yr >0, (3.54)

where 6(r) is a parameter such that 0 < 0(r) < 1, Vr > 0, while ¢¢cp
and Y yp are the linear flux limiter functions that can be associated to the
schemes CD and LUD rearranging the approximations (3.40) and (3.43) in
the general TVD form expressed by (3.50):

Yep(r)=1 Vr, (3.55)
Yrup(r) =r Vr. (3.56)
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Figure 3.5: In grey the TVD region in which the flux limiter functions must
fit. It is called also Sweby’s diagram.

Thus, adding these requirements to the previous ones, we obtain the following
bounds for the flux limiter function of a TVD method:

P(r)y=0 if r <0,
r<(r) <min{2r,1} if 0<r <1, (3.57)
1 <¢(r) <min{r,2} if r>2.

In Figure 3.5 they are reported in a 1 — r diagram known also as Sweby’s
diagram.

Flux limters

Starting from the bounds (3.57), it is easy to create a flux limiter function. In
literature many possible choices can be found. We list here some of the most
popular functions that have been implemented in DuMu* and in Figure 3.6
we can see their graph in the Sweby’s diagram:

e Van Leer [Van74]:

) =" 1, (3.58)

It is a smooth function that asymptotically reaches 2 for r — oc.
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e Van Alabada [Van82]:

r2 4 r fr>0
I r
Yir)y={r*+1 T (3.59)
0 ifr<0

It is a smooth function that instead goes to 1 as r — oo.
e Min-Mod [Roe85]:
¥(r) = max{0, min{r, 1}}. (3.60)

It is a piecewise linear function that lies on the lower boundary of
the TVD region. Intuitively, using this limiter we add to the upstream

value half of the smallest increment in absolute value between u¥ — uf'V

and u? — uY.

e Superbee [Roe85]:
(r) = max{0, min{2r, 1}, min{r, 2} }. (3.61)

It is a piecewise linear function that lies on the upper boundary of the
TVD region.

o UMIST [LLO4]:

3 1 3
(r) = max {O,min{Qr,?,ﬁ,Q}}. (3.62)

It is a piecewise linear function that was designed as a symmetrical
TVD version of QUICK.

e MC (Monotinized Central) limiter [Van77]:

¥(r) = max {O,min{Qr,T—;l,Q}}. (3.63)

It is also known as MUSCL (Monotonic Upstream-Centred Scheme for
Conservation Laws) limiter.

It is not easy to compare the different flux limiters in order to find the
best one. Generally the Van Alabada and the Min-Mod can be slightly less
accurate since ¥ — 1 as r — oo, while a scheme like the Superbee can
produce sharper gradients, but sometimes the convergence can be slower.
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Figure 3.6: The Sweby’s diagram with the flux limiters presented in this
section as functions of r.

In particular, according to [Swe84]|, it is said to be overcompressive, i.e. it
may turn sine waves into square waves. The UMIST instead has a more
complex function, so its evaluation can be more expensive. However their
performances should be compared case by case.

In Figure 3.7 we can see the application of the TVD method using the Van
Leer flux limiter (3.58) to the problem (3.44)—(3.46). It can be observed that
the gradient is approximated with the same accuracy of the QUICK scheme
(3.42), but the overshoot for # < 0.5 is avoided. Because of their good
behaviour, we will broadly use TVD methods in the numerical experiments
reported in Chapter 4.

Non-uniform grids

The theory of TVD methods presented above holds for structured uniform
grids. In order to deal with Cartesian non-uniform grids, that, for example,
employ a grading, we have to generalize it considering the information about
the distances between the degrees of freedom involved in the approximation.
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1.2 —
— Upwind
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Figure 3.7: Solution of the problem (3.44)—(3.46) at the time ¢t = 0.5.
The TVD method approximates the gradient as accurately as the QUICK
method, but it does not produce any overshoot for x < 0.5.
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uF U u FU u U uD
—_ —_> o —_— o —_
Tru FU* dU,D dU,D

FU*

Figure 3.8: Non-uniform staggered grid. The distance between u and uV

is the same that there is between uY and u”.

The generalization has always to be consistent, i.e. the approximation (3.50)
has to be recovered in case of uniform grid. In literature several slightly
different approaches can be found, see for example [Bru96], [DMO03], [LLO0S],
[BAMO5], [HSH12] and [Zen13]. We describe here some of them.

A first simple approach consists in modifying the value of ufV appearing
in the factor r defined in (3.50).

The idea is that if the grid is not uniform, the distances between u
and uY and between vV and u'Y might be different, as it is represented
in Figure 3.8. In this situation the formula (3.50) cannot be used directly,
because the degree of freedom «f'Y is not at the position ©*V", where it would
be if the grid was uniform, with cell sizes equal to the distance between uY
and u?, i.e. at the position upstream with respect to uY, at a distance equal
to the one between uV and u?”, see Figure 3.8. We want to use the ratio:

D

WU — o FU
r =
ul — U ’

thus we need to build an approximation for ufV".
Darwish and Moukalled [DMO03] proposed the following scheme that ap-

proximates the difference u? — uf'Y

r=—p = g =5 L (364)
. du? du?
Ul — uFU — TR = 25%7]3, (3.65)

where 7, ; denotes the vector from the point A to B. Li and Liao [LLOS]
showed that this method behaves well with parabolic solutions, but not so
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3.1 - Free-flow

well with exponential solutions. So they proposed an improved approxima-
tion which introduces more upwind information:

.
wU — yFU . duFU
r=——>" ufV ~ Y + T

- ~ FU,FU*-
uP — U’ dx

(3.66)

Hou et al. [HSH12] introduced a different and more rigorous approach.
The idea in order to improve the approximations described above was to
consider not only the distances between the degrees of freedom, but also the
sizes of the cells around them. Let us consider for example a non-uniform
staggered grid as in Figure 3.9.

i ut u’ u?
—_> ° —> (3 — ° — ° —_>
i‘ AxFU Vi‘ Ax( Vi‘ AXD Vi
Figure 3.9: Non-uniform staggered grid with cell sizes.
We generalize (3.50) in the following way:
1
uw' =uY + Y(r)(uP —uY), (3.67)
Ry p
Ry, = Aq;U—l—Aa:D’ Cu¥ =WtV 2P — gV (3.68)

: Az, T U _pFU D _ U
Ry; p takes into account the sizes of the upstream and downstream staggered
cells, while r is modified into the ratio between an approximation of the
gradients. Notice that if the grid is uniform R;p = 2, as in the uniform
formula (3.50).

Repeating the procedure described in the Subsection 3.1.3, the TVD con-
dition (3.49) and the second order accuracy are imposed, obtaining the fol-

lowing modified bounds for the flux limiter function :
(r)y=0 if r<0

R
rgw(r)gmin{m’,1} if 0<r<1 (3.69)
Rpyy —1

1 <y(r) <min{r, Ry p} if r7>2

In Figure 3.10 we can see the modified TVD region; with respect to Fig-
ure 3.5, the upper bounds have changed. At last, the flux limiter functions
(3.58)—(3.63) have to be generalized in order to fit into these new bounds.
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Figure 3.10: In grey the modified TVD region for non-uniform grids in which
the flux limiter functions must fit [HSH12].

3.1.4 Time discretization

The RANS equations have to be discretized in time. Let us consider a vector
¢ containing all the degrees of freedom of the components of the velocity v,
of the turbulent kinetic energy k£ and of its specific dissipation rate w. After
having performed the spatial discretization, we obtain the following system
of Ordinary Differential Equations (ODEs):

dp
— =1t(@.1). (3.70)

where we have included in the function f at the right-hand side all the terms
except the time derivative. We introduce a discretization of the time interval
(0,7) into N; uniform time-steps, such that At = T'/Nt is the time-step size
and t" = nAt, n=20,...,N;. Let ¢" be the numerical solution at the time
t™. In order to discretize in time the equations (3.70), we have employed two
implicit schemes, so that at every iteration f will depend on ¢ and ¢ at the
current time-step and not at the previous one.
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3.2 - Porous-medium flow

Backward Euler method

The Backward Euler (BE) method (or implicit Euler method) consists in
approximating the time derivative with a backward finite difference:

@ N d)n o d)n_l
dt At
It is a first order method in terms of convergence and it is unconditionally

stable, so no particular attention must be paid to the choice of At in order to
guarantee the stability. Of course an initial condition ¢° must be provided.

= f(¢", ™). (3.71)

BDF2 method

The Backward Differencing Formula 2 (BDF2) method consists in approxim-
ating the time derivative with a backward finite difference of second order:

@ B 3¢n_4¢n71 +¢n72
dt "~ 2At

It is of second order in terms of convergence and it is unconditionally stable
too. It is a two-step method because it requires two initial conditions; this is a
problem at the very first time step because we would need to know ¢~ '. This
issue is usually solved performing the first time-step with a one-step method,
the BE usually, and then starting with the BDF2 from the second iteration.
This procedure does not affect the overall convergence order, because a single
step of a first order one-step method introduces a local truncation error that
is of second order.

The method can be generalized to case of non constant time-steps. Let

= f(@", 7). (3.72)

us define At" =t" —t""', n=1,..., N, then the scheme becomes:
d¢ " 1 1 nog A"+ A1
T ¢ n n—1 + n o ¢ ' n n—1
dt Atm + At At At At
At™

+ "2 = f(¢",t"). (3.73)

At —L(At" + A1)

See [QSS07] for more detailed information about time discretization methods.

3.2 Porous-medium flow

In the porous-medium region (2,, we have to solve only a steady scalar
equation, with the pressure as a primary variable, where, due to the incom-
pressibility of the fluid, the time derivative is not present. It is obtained
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Figure 3.11: Location of the degrees of freedom within a cell-centred ap-
proach.

substituting the velocity computed with (3.75) into (3.74):

V-v=0 (3.74)
1
v+cF\/Kz\vyv+ JK(Vp— 0g) = 0 (3.75)

We employ a cell-centred finite volumes method, so the degrees of freedom of
the pressure are located at the centre of each cell, as we can see in Figure 3.11,
and the cells of the grid correspond to the control volumes.

Let us integrate the equation (3.74) over a control volume V;, (see Fig-
ure 3.12) and apply the Gauss’s divergence theorem:

/ V.vdV={ v-ndA. (3.76)
VL 6VL

The Forchheimer’s law (3.75) is non-linear, so locally we use the Newton’s
method to compute the velocity, i.e. the flux over the boundary oV:

J¢(vi)ovisr = —f(vy), Vk > 0 until convergence (3.77)
Viit1 = Vg -+ 5Vk+1, (378)

where 1
f(v) = v+ cmﬁfbww + K(Vp - og) (3.79)

and J¢(v) is its Jacobian matrix:
90 L 7

J;(v) =1+ CpVK=([vI+ —wv'). 3.80
£(v) r u(|| v ) (3.80)
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3.2 - Porous-medium flow

Figure 3.12: Two cells V;, and Vy sharing the face o.

We use as initial guess v the velocity computed with the Darcy’s law (2.67).

The evaluation of (3.79) and (3.80) over dV7, is performed with a Two
Point Flux Approximation (TPFA) method, which exploits the values of the
two cells sharing the face; it is a simple but robust method, commonly used
in commercial software. Let us consider, for instance, the face o = 0V, UdVj,
according to Figure 3.12, and let the permeability tensor be diagonal so that
it act as a scalar. We approximate the derivative of the pressure dp/dz with
a centred finite difference:

dp Pr — DL

—_— 3.81
oxr xp—1xr ( )

We approximate the permeability K with its value at x,, while for the vis-
cosity p (and eventually the density p) we employ the upwind value.

In case of discontinuous permeabilities at the face o, an harmonic average
weighted on the distances between the cell centres and the face is performed:

lzr —xp| v — 7 N |tRr — 24|
K K Kr

(3.82)

These formulas for the TPFA approximation are the simplified version
for a Cartesian grid, while in the general case of an unstructured grid the
method is derived exploiting a decomposition of the vector

dL,U =Xo — X[, (383)
based on the co-normal vector Kn;. Moreover it can be shown that this
approximation is consistent only if the grid is K-orthogonal, i.e. if Knp is

parallel to dz,. See [Woll3] for further details.
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Figure 3.13: Cells at the coupling interface. The degrees of freedom uif and
pgm are fictitious.

3.3 Coupling conditions

The discretization of coupling conditions described in Section 2.3 requires
attention because of the different concepts employed in the two subdomains.
For the sake of simplicity, let us suppose to have a two-dimensional domain
split by an horizontal interface, so that u and v are respectively the tangential
and normal component of the velocity to the interface, and that the porous-
medium occupies the lower subdomain. In Figure 3.13 the degrees of freedom
of two cells touching the interface are represented. The superscripts ¥ and
¢ denote respectively the interface and the internal part of the cells. The
degrees of freedom wuif and pgm are additional with respect to the staggered
and cell-centred approaches, respectively, but they are fictitious, i.e. there
is no equation associated to them, but their value is used only to impose
the interface conditions. Let us suppose also that the permeability in the
porous-medium is isotropic, so that we can consider it a positive scalar.

For the continuity of mass fluxes (2.72) we use the velocity of the free-flow
at the interface vl to express the flux across the boundary of the porous-
medium.

For the continuity of normal stresses (2.74) the key point is the approx-
imation of pf . This is done exploiting the Forchheimer’s law (3.75) and
approximating the derivative of p with a finite difference:

i c i c Koo O i i
Ppm = Py + (0" = ) [ — (i + CrVK + p\vélvé) + 99}, (3.84)
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where y'f and Ypm denote respectively the coordinates along the y-axis of pgm
and pf,. K and p are evaluated at the centre of the porous-medium cell.
Then, pif | is applied at the right-hand side of (2.74) and it is thus used as a
natural boundary condition on ['jy.

The Beavers-Joseph-Saffman condition (2.77) can be rewritten as

K 9
g VKO Tine. (3.85)
agy Oy

Equation (3.85) is then discretized as

) Kus — if
ull = \/_“‘j i (3.86)
agy Yg — Y’
and, rearranging the terms, we obtain
. us K 1
uff = s g VK (3.87)

1+ Beys’ agy yg — yit’

which can be used as a Dirichlet condition for the tangential component of
the velocity.

3.4 Resulting algebraic equations

When all the equations have been discretized, we obtain for every time-step
a non-linear algebraic system:

F(x")=0 Vn>1, (3.88)

where x" € RMaof g the vector containing all the degrees of freedom of all
the unknowns at the time-step ¢t". This system is then solved monolithically
using the Newton’s method:

Jp(x)ox;,, = —F(x;), VEk >0 until convergence (3.89)
X = Xp, + 0Xp, g, (3.90)

starting from the solution at the previous time-step as initial guess xjj = x"~!.

Jr is the Jacobian matrix of F. Its entries are computed numerically using
centred finite differences:

Fi(x} +¢;e;5) — Fi(x} — ¢;e;)
2€j

[JF]ij — 5 (391)
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where ¢; = 1078|[x}];] and e; is the j-th vector of the canonical basis in
RNaof - Notice that the evaluation of the residuals Fj related to the degrees
of freedom in the porous-medium involves the application of the Newton’s
method (3.77)—(3.78). The convergence criterium is based on the relative
shift: given a relative shift vector s, whose components are computed as

[5XZ+1L‘
(xRia)i + [x310)/27

and a tolerance tol, for example equal to 107°, we stop iterating when

S; =

(3.92)

Is]oo < tol, (3.93)
where | - | denotes the norm of the maximum
Isoo = max |s;|. (3.94)

Eventually, the linear system (3.89) is solved with a direct solver, using the
library UMFPack.

The time-step size is variable since at each new time iteration it is chosen
multiplying the previous time-step size by a factor depending on how many
iterations were required for the convergence of the Newton’s method at the
previous time iteration.
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Chapter 4

Numerical results

In this chapter we present the numerical results. First, we perform some
verification tests of the methods developed for the Navier-Stokes equations.
The convergence of higher order methods is tested, first in space, then in
time. After that, another comparison test between the upwind method and
the TVD methods is performed, using a channel flow. Eventually, the results
from the backward facing step test using RANS equations are shown and
compared to those from the CFL3D code from [Lanl15]. A second set of tests
concerns the coupling with the porous-medium flow. First, we consider a
turbulent flow through a channel with two cavities separated by a porous-
medium and we study the influence of its permeability on the flow pattern.
Then, we study a flow in a channel with a porous obstacle.

4.1 Navier-Stokes tests

4.1.1 Space convergence

We want to test the spatial convergence order of the error of the solution of
the Navier-Stokes equations computed in the L*(€2) norm as

I8 = 6nli2(e) = [ (6o = 60)? dA. (4.1)

where ¢ can denote velocity or pressure and ¢., and ¢, are the corresponding
exact and numerical solutions. We compare the results obtained with the
upwind method (3.41) and the TVD methods described in Subsection 3.1.3.
We consider a steady version of the equations (2.7)—(2.8), neglecting the
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gravity term but taking into account two possible source terms h and f:
V-v—h=0 (4.2)
1
V. (vwh) =V (vVv)+ EVp —f=0 (4.3)

For the sake of simplicity, we consider here all the quantities appearing in
the equations to be non-dimensional.

Sin-Cos test

Let us solve the equations (4.2)—(4.3) over a two-dimensional unit domain
Q= (0,1)%, with the following source terms:

f(z,y) = [~2vcos(z)sin(y), 2v cos(y) sin(z)]",

so that, choosing o = 1, the analytical solution, depicted in Figure 4.1, is
given by

Uex (T, y) = — cos(z) sin(y), (4.6)
Vex (2, y) = sin(z) cos(y), (4.7)
P, y) = _ cos(2z) 1— sm(2y). (4.8)

Dirichlet boundary conditions for the velocity are applied on the whole
boundary 0f2 using the exact solution. Because of this choice, the pressure
solution is defined up to a constant, since it does not appear in the boundary
conditions and only its gradient is involved in the momentum equation (4.3).
Therefore, in order to match the particular exact solution (4.8), we fix at one
point in the domain the value of the numerical solution.

The problem is solved over a sequence of five uniform grids, starting from
4 x 4 cells and each time halving their sizes. Both the cases of ¥ = 1 and
v = 1073 are tested, that correspond respectively to Re = 1 and Re = 103,
In Figure 4.2, the computed errors are reported as functions of the square
root of the number of cells, while in Table 4.1 we can compare directly the
order of convergence for different differencing schemes.

We observe, as expected, a better behaviour of the TVD methods with
respect to the upwind method. In Table 4.1a, we can see that, at Re = 1,
the formers show a full second order convergence for the velocity, while for
the pressure the rate is a bit lower; the latter, instead, shows a first order
convergence for all variables. At Re = 103, a slight decrease of the rates of the
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Figure 4.1: Exact solution of the Sin-Cos test (4.6)—(4.8). On the left the
magnitude of the velocity field, on the right the pressure field.

|Upwind Min-Mod Van Leer

p| 1.008 1.569 1.626
w| 1.143 1.962 1.977
v | 1.058 1.928 1.945

(a) Re=1

|UpWind Min-Mod Van Leer

p| 1.148  1.659 1.058
w| 1.071  1.441 1.437
v| 1.068  1.533 1.560

(b) Re =103

Table 4.1: Convergence orders for the Sin-Cos test. They are computed
considering the last two refinements of the grid.
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Figure 4.2: L*(Q2) norm of the errors for the Sin-Cos test depending on the
square root of the number of cells in the grid. The grey lines are the reference
lines parallel to a first order convergence (the lower one) and a second order

convergence (the upper one).
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TVD methods can be observed also for the velocities, but they remain higher
then the ones of the upwind method. In Table 4.1b, we observe a convergence
order of 1 for the pressure using the Van Leer flux limiter, but, looking at
Figure 4.2f, we can see that the global trend points to a convergence of higher
order. In this case the ratio between the errors at the last two refinements,
reported in Table 4.1b, is misleading, because the error at the second-last
refinement is smaller than expected. Moreover, it can be observed how,
thanks to the faster convergence, on the same grid the absolute values of the
errors reach smaller values using the TVD methods. The performances of
the Min-Mod and Van Leer flux limiters are very similar.

Analogous tests with other analytical solutions are reported in Ap-
pendix A. They show always a better convergence of the TVD methods with
respect to the upwind method, even of in some cases the convergence order
of pressure and velocity behave differently.

4.1.2 Time convergence

We test the time convergence of the L>(0, T; L?(2)) norm of the error of the
solution of the Navier-Stokes equations:

| pex — Pnlloeo.1522(0)) = €88 5UDe 0.1y [Pex () — D1() | 22(0)5 (4.9)

where esssup denotes the essential supremum that for a function f: Q — R
is defined as

esssupg f =inf{M € R : |f(x)] < M a.e. in Q}. (4.10)

In our case it will be the maximum of the L?*(2) norm of error over the time
interval (0,7"). We compare the results obtained with the BE method (3.71)

and the BDF2 method (3.72).
We consider the unsteady version of the equations (4.2)—(4.3):

Vov—h=0 (4.11)
ov

1
E-FV-(VVT)—V-(I/VV)—I—EVp—fZO (4.12)

Again gravity is neglected and two possible sources h and f are taken into
account, moreover all the quantities are considered to be non-dimensional.

Unsteady Sin-Cos test

Let us solve the equations (4.11)—(4.12) over a two dimensional unit domain
Q2 = (0,1)? and in the time interval (0,7), with 7' = 1. We use the following
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source terms:

h(z,y,t) =0, (4.13)

£,y 1) = 2 (cosé()?t)

+ Vsin(2t)> [— cos(z) sin(y), cos(y)sin(z)]’, (4.14)

so that, choosing o = 1, the analytical solution is given by

Uex(T,y,t) = — cos(x) sin(y) sin(2t), (4.15)
Vex (2, y, 1) = sin(z) cos(y) sin(2t), (4.16)
. y.1) = — LI G200 (4.17)

The solution is equal to (4.6)—(4.8), used in the steady test for the space
convergence, except for the modulation over time. We choose v = 0.1, so
that Re = 10. Dirichlet boundary conditions for the velocity are applied on
the whole boundary 0f2 using the exact solution. The pressure is again fixed
at one point in order to match the particular exact solution (4.17).

The problem is solved seven times subdividing the time interval (0,7)
into uniform time-steps and each time doubling their number, starting from
a discretization with a single time-step. Uniform grids of 40 x 40 and 80 x 80
cells are employed and, as a differencing scheme, the TVD method with the
Van Leer flux limiter (3.58) is used. From Figure 4.3, we observe that, as
expected, the BE method shows a first order convergence, while the BDF2
method is of second order. Moreover we notice that, with a grid of 40 x 40
cells, in the last refinement the error with the BDF2 method does not decrease
anymore. This happens because the grid is too coarse and the spatial error
becomes dominant over the temporal one, so that, even with small time-
steps, we cannot improve the solution. Refining the grid, the spatial error
is reduced and the temporal order of convergence is restored entirely for the
pressure and almost entirely for the velocity.

4.1.3 Rough channel test

We test the behaviour of the TVD methods compared to the upwind
method solving the unsteady Navier-Stokes equations (2.7)—(2.8) in a two-
dimensional channel with a rough (i.e. non-flat) lower boundary that consists
of small, evenly spaced cavities. Two different configurations are studied,
one with shallow cavities, depicted in Figure 4.4, and another with deeper
cavities, depicted in Figure 4.10.
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Figure 4.3: L*(0,T; L*(Q))) norm of the errors for the unsteady Sin-Cos
test depending on the number of time-steps. On the left the errors for the
pressure, on the right the errors for the magnitude of the velocity. The grey
lines are the reference lines parallel to a first order convergence (the lower
one) and a second order convergence (the upper one).

On the left boundary T, we set inflow boundary conditions (2.9), spe-
cifying a horizontal velocity

V = Vin = [Uin,0]", wp = 1m/s. (4.18)

On the lower and upper boundaries I',,, we set no-slip boundary conditions
(2.10), while on the right boundary 'y, we set outflow boundary conditions
(2.12), fixing the value of the pressure

P = Pext = 1.1 x 10° Pa. (4.19)

As initial conditions, velocity is set to zero everywhere, while pressure is set
t0 pext everywhere. Density is ¢ = 1kg/m?. The gravity contribution in (2.8)
is neglected.

Shallow cavities

In the case of shallow cavities we use the domain in Figure 4.4 and we employ
a uniform grid of 95 x 50 cells. The problem is then solved over the time
interval (0,7, with 7= 10s. The initial time-step is At = 5 x 1073 s, then
it is adapted as explained in Section 3.4, allowing a maximum time-step of
0.1s. At first we set v = 5 x 107*m?/s, so that Re = 2 x 10%. Since we
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Tin 0.9m Tout

Figure 4.4: Domain of the rough channel test with shallow cavities.

5.7e-03 02 04 06 08 1 1.2e+00
L

Figure 4.5: Magnitude of the velocity [m/s] in the rough channel test with
shallow cavities at ¢ = T. Re = 2 x 10%. Van Leer flux limiter.

do not have an analytical solution for this problem, we compute a reference
solution using the upwind method over a grid six times finer (see Figure 4.7).

In Figure 4.8 we compare the profiles of the magnitude of the velocity
along a cross-section near the end of the channel, at x = 8.75m, i.e. at
the centre of the last cavity. The TVD solutions match the reference case,
while the upwind solution shows a small shift, especially in the lower part
of the channel, above the cavity. In Table 4.2, we can see the L?(€) norm
of the errors of the coarse solutions computed with respect to the reference
one, along the cross-section mentioned above. The one related to the upwind
method is at least one order of magnitude larger than the others.

We repeat the test choosing v = 1m?/s, so that Re = 1. In Figure 4.9
we see that all the solutions have the same profile, moreover in the cavity
there is not any recirculation. In Table 4.3 the L?(£2) norm of the errors are

Upwind Van Leer ~ Van Alabada
1.708 x 10~* 9.556 x 107% 1.119 x 10°
Min-Mod Superbee MC Limiter
1.537 x 107° 8.335 x 107¢ 8.659 x 1076

Table 4.2: L*(Q) norm of the errors for the profile of the magnitude of the
velocity along the cross-section at z = 8.75m and ¢ = 7' in the rough channel
with shallow cavities. Re = 2 x 103.
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Figure 4.6: Magnitude of the velocity [m/s| in the rough channel test with
shallow cavities, around the last cavity, at ¢ = T, in the reference case.
Re = 2 x 103. The arrows are not scaled.

Figure 4.7: Comparison of the grids used in the rough channel test. In black
the grid used for the reference solution, with cell sizes 16.7 mm x 3.3 mm, in
blue the grid used in the other simulations, with cell sizes 100 mm x 20 mm.
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Figure 4.8: Profile of the magnitude of the velocity [m/s| in the rough channel
with shallow cavities along the cross-section z = 8.75m, at t = T. Re =
2 x 103. The region on the left of the dashed line is inside the cavity.
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Figure 4.9: Profile of the magnitude of the velocity [m/s| in the rough channel
with shallow cavities along the cross-section x = 8.75m, at t =T. Re = 1.
The region on the left of the dashed line is inside the cavity.

reported; the upwind one is the bigger, but they are all very similar. So, in
this situation of low Re, being the results very similar, the benefit of using a
high-resolution scheme is reduced.

Deep cavities

In the case of deep cavities we use the domain in Figure 4.10 and we employ a
uniform grid of 95 x 70 cells. Again we solve until 7" = 10s, starting from an
initial time-step of 1073s. We set v = 5 x 107 m? /s, so that Re = 2.8 x 103.
As before we compute a reference solution over a grid six times finer.

In Figure 4.11 we compare the profiles of the magnitude of the velocity
along the cross-section at x = 8.75m. Now the biggest differences are in the
region inside the cavity, where a recirculation occurs. The upwind method,
with its numerical diffusion, smooths the profile, while the TVD methods
produce more accurate results, even if they do not match exactly the reference

79



Chapter 4 - Numerical results

Upwind Van Leer  Van Alabada
3.431 x 1075 2917 x 1075 2.937 x 1076
Min-Mod Superbee MC Limiter
2.956 x 1076 2.899 x 1076 2.902 x 1076

Table 4.3: L*(2) norm of the errors for the profile of the magnitude of the
velocity along the cross-section at = 8.75m and ¢ = T in the rough channel
with shallow cavities. Re = 1.

Tw

9.5m
Tin 0.9m Tout

|

0.5m 0.5m Ty

Figure 4.10: Domain of the rough channel test with deep cavities.

solution. Further, when looking at the L?*(2) norm of the absolute errors
reported in Table 4.4, we see that the upwind method has again the largest
error, but the difference with the other schemes is reduced with respect to
the previous case of shallow cavities. This is due to the wider recirculation
region with respect to the previous case, which is critical for the accuracy of
all the methods because there we have local extrema for the velocity.
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Figure 4.11: Profile of the magnitude of the velocity [m/s|] in the rough
channel with deep cavities along the cross-section x = 8.75m, at ¢t = T.
Re = 2.8 x 103. The region on the left of the dashed line is inside the cavity.

Upwind Van Leer  Van Alabada
3.180 x 107* 5.862 x 1075 6.900 x 1075
Min-Mod Superbee MC Limiter
8.579 x 1075 7.883 x 107° 5.584 x 10°

Table 4.4: L*(Q2) norm of the errors for the profile of the magnitude of the
velocity along the cross-section at x = 8.75m and ¢ = 7" in the rough channel
with deep cavities. Re = 2.8 x 103.
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4.2 RANS test: backward facing step

The backward facing step is a widely-used test configuration, in which a
turbulent flow in a channel incurs separation because of a sudden enlargement
in the flow domain. We see in Figure 4.13 the big recirculation that arises
after the step, a smaller eddy near the corner and a very small eddy precisely
at the corner. We want to use this problem in order to test the results that
we obtain using the TVD method, with the Van Leer flux limiter (3.58),
and the k-w turbulence model, comparing them with the numerical results
from [Lan15], computed using the NASA CFL3D code, and the experimental
results from [DS85].

In the domain €2, depicted in Figure 4.12, with a step height H = 1m, we
solve the RANS equations (2.22)-(2.23)-(2.47)-(2.49), imposing inflow bound-
ary conditions on the left boundary I';,

V= Vip = [uin, 0], up = 44.2m/s, (4.20)

no-slip boundary conditions on the lower and upper boundaries I', and out-
flow boundary conditions on the right boundary I'yy, fixing the value of
pressure

P = pext = 1.1 x 10° Pa. (4.21)

The density is ¢ = 1kg/m?3 and the viscosity is v = 1.228 x 1073 m?/s, so
that, in order to match [Lanl5], the Reynolds number based on the step

height results
uinH

Rey = ~ 3.6 x 10*. (4.22)

The domain sizes are chosen according to [Lan15], with the only exception
of the channel length before the step. In fact, in [Lanl5], a small portion of
the horizontal boundary near I';, uses symmetry boundary conditions, but
we simplify the model employing no-slip boundary conditions on the whole
horizontal boundaries. As a consequence, we shorten the channel length in

Iy y

80m 50m

I‘in 1-‘out

H=1m T, |

+ x
0

Figure 4.12: Domain €2 of the backward facing step test. For convenience,

we set the origin of the z-axis in correspondence of the step and the origin
of the y-axis at the bottom of the channel.
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4.2 - RANS test: backward facing step

order to match the profile of the u component of the velocity along the cross-
section at the position x/H = —4 as closely as possible, with a boundary
layer thickness of approximately 1.5H (see Figure 4.16).

According to [Lanl5], CFL3D is a code for compressible fluids, but it
was used at “essentially incompressible” conditions, such that the influence
of compressibility should be very small. Moreover it is reported that the
model is unsteady, but it is solved until quasi-steady solution are obtained.
In [KBRYS] it is explained that a second order implicit method for the ad-
vancement in time is used.

Thus, we employ the BDF2 method with non-constant time-steps (3.73),
starting from At = 107°s and simulating until 7' = 30s. It can be observed
that, after approximately ¢ = 20s, the solution stabilizes at a steady state.
As initial conditions we set

Uin if x <0
P=DPext VXEQ, V= [uinit:O]T Uinit = 4 g T
5 Uin ifz>0

(4.23)

The factor 8/9 ensures that the flow rate at [y, and at 'y is the same. For
k and w we set in the whole domain the values estimated with (2.56).

According to [Lanl5], a key indicator for the reliability of a simulation is
the prediction of the reattachment length l..., i.e. the distance after the step
at which the recirculation finishes and thus the u component of the velocity
at the bottom of the channel becomes positive. We analyse this length com-
puting the friction coefficient C'y, that is a non-dimensional indicator of the
stress at the wall, defined as

Tw ou

Cr=+—5, Twu=p—| . 4.24
! %QUfef 9y ly=0 ( )

Ure is the u component of the velocity at the centre of the channel at z/H =
—4. In our case when Cy < 0 the flow is recirculating, then, at = l,.,, Cf
becomes positive. The numerical results from [Lanl5| predict lyen/H =~ 6.8,
while the experimental results from [DS85] predict ..,/ H = 6.26 4+ 0.10, as
it can be seen in Figure 4.15.

Performing a sensitivity analysis in order to choose a suitable grid, we
observe that:

e with a coarse mesh the reattachment length decreases, in particular a
refinement of the smallest cell in the y-direction is effective.

e high aspect ratios in the cells increase the number of Newton iteration
needed to get the convergence of the problem.
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15 20 25 30 35 40 4.7e+01
| L

Figure 4.13: Velocity field [m/s] after the backward facing step at ¢ = T.
Rey = 3.6 x 10*. The arrows are not scaled.

Figure 4.14: Velocity field [m/s] and grid around the backward facing step
at t =7T. Rey = 3.6 x 10*. The arrows are not scaled.

e the cells in the portion of the channel after the step can be coarsened
in the z-direction without a great influence on the solution.

e too refined cells in the y-direction in the area with the recirculation do
not improve the solution in a relevant way.

So, in the following analysis, we choose a grid made of 119 x 70 cells, em-
ploying gradings up to 1.25 in order to have small cells near the walls, as it is
required by the k-w model. In Figure 4.14 we can see the grid in the region
around the step.

Regarding the reattachment length, we obtain a good agreement with
the CFL3D code; looking at Figure 4.15, with the Van Leer flux limiter
we predict lyen/H =~ 6.67. Moreover, in the whole recirculating region, the
two patterns are very similar, also compared to the experimental data from
[DS85]. Using the first order upwind method, instead, we compute l.e,/H =~
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Figure 4.15: Friction coefficient at the bottom of the channel after the back-
ward facing step at t = T'. The reattachment length is the distance at which
it becomes positive after its global minimum.

6.02, so approximately a 10% underestimation occurs. From the profile, it
seems that the whole recirculation is slightly smaller. Looking at the value
near the end of the channel, instead, both the Van Leer and the upwind show
a lower value with respect to the CFL3D code. Comparing in Figure 4.16
the profiles of the u component of the velocity along some cross-sections
downstream with respect to the step, we obtain, similarly, a good agreement
between the Van Leer results and those from the CFL3D code, while the
results from the upwind method present a small shift, in particular in the
cases £/H = 4 and x/H = 10. Along the cross-section at z/H = 1, the
velocity at the wall is positive for the Van Leer and the CFL3D, since we are
in correspondence of the corner eddy. For the upwind method, instead, the
velocity is negative, as we are already in the bigger eddy because the whole
pattern is shifted.
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Figure 4.16: Profiles of the u component of the velocity [m/s] along four
cross-sections in the backward facing step test at t = T. Rey = 3.6 x 10%.
User 18 the velocity in the centre of the channel at z/H = —4.
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4.3 Free-flow and porous-medium flow coup-
ling

4.3.1 Cavities problem

In this subsection our goal is to study the behaviour of a coupled system with
turbulent free-flow and porous-medium flow, that are in contact by means of
a rough interface, exploiting the benefit of high resolution methods. A first
approximation of this kind of interface can be obtained with a series of little
cavities, as it is used in Subsection 4.1.3 to study the rough channel with
the Navier-Stokes equations. Now we use the RANS equations with the k-w
that we tested in the previous section using the backward facing step case.
In order to resolve the viscous sub-layer, we need very small cells next to the
walls, that in this case are not flat but have different orientations. Since we
are using a structured grid, the flexibility of employing local refinements in
order not to increase the computational effort too much is limited, thus we
decide to consider a simple configuration with only two cavities.

We start our analysis from the free-flow, studying the pattern of the
velocity field and, in particular, how, without the porous-medium, the two
cavities influence each other. After choosing a configuration such that this
influence is minimized, we take into account the effect of a porous-medium,
to see how its presence affects the whole flow field. We consider both the
cases of shallow cavities and deep cavities.

Cavities mutual influence

In this first test we simulate only the free-flow, solving the RANS equations
(2.22)-(2.23)-(2.47)-(2.49) in the domain Qg depicted in Figure 4.17. It con-
sists of a channel with inflow boundary conditions on the left boundary I';,:

V = Vin = [Uin,0]",  wpn = 1m/s, (4.25)

no-slip boundary conditions on the lower boundary I',,, symmetry boundary
conditions on the upper boundary I'yy,, and outflow boundary conditions on
the right boundary I'yy, fixing the value of the pressure:

P = Pexs = 1.1 x 10° Pa. (4.26)

The height of the channel is 0.6 m and it is chosen such that the flow is
almost uniform in the upper part of the domain so that we can exploit the
symmetry boundary conditions. The first portion of the lower wall is flat,
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Figure 4.17: Free-flow domain (g in the cavities problem. The distance d is
varied from 0.05m to 2m. For convenience we set the origin of the z-axis at
I';, and the origin of the y-axis at the bottom of the cavities.

in order to let the flow develop, then there are the two shallow cavities of
height h = 0.1 m and length 0.5m, spaced by a tunable distance d.

We want to see how the flow field in the second cavity is affected by the
presence of the first cavity, depending on the distance d between them, that
can range from 0.05m to 2m.

The density of the fluid is ¢ = 1kg/m® and its kinematic viscosity is
v = 107°m?/s, so that the Reynolds number is Re = 6 x 10°. We neglect
the gravity contribution. We simulate the time interval (0,7), with 7" = 30s,
such that the solution reaches an equilibrium, and we use an initial time-step
At = 1073s. We start from the initial conditions of uniform parallel flow for
y > h and no flow for y < h

Uy, ify>h

] (4.27)
0 ify<h

V= [uinit7 0]T7 Uinit = {

while we set in the whole domain Qg p = Pext, k = kin and w = wy,, estimated
with the formulas (2.56).

Performing a sensitivity analysis, we choose a grid made of 377 x 50 cells
for the case of d = 1m. It is important to have small uniform cells in the
region of the cavities, so we employ gradings of 1.1 in the z-direction in
the inlet and outlet portions of the channel, where we can afford to have
longer cells. In the y-direction we employ instead a grading of 1.2 in the
region above the cavities. As a result, the cell size around the two cavities
is 5mm X 3.3mm. When d < 1m also the cells between the cavities are
uniform, while when d > 1 m a slight symmetric grading of 1.025 is employed.

At a first glance, the behaviour of the fluid in the two cavities is very
similar, there is not any strong influence of the first one on the second one
and the pattern of the velocity field is the same, as we see in Figure 4.18. In
order to better analyse the results of the simulations, we compare the profiles
of the u component of the velocity in the first cells above y = h. The velocity
in these points drives the flow in the cavities, since we start from an initial
condition of zero velocity inside them. Looking at the profiles in Figure 4.19,
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Figure 4.18: Magnitude of the velocity field [m/s| around the cavities, with
d=1matt=T. Re= 06 x 10°.

there is a positive peak of the velocity near the centre of each cavity, then,
after the end of the cavity, there is a negative peak, followed by a length
of approximately 0.5m, hereby referred to as the recovery distance d,e.. In
this distance, the flow returns nearly to the dynamics before the cavity, in
particular the velocity recovers the value correspondent to z = 4m. The
values in the second cavity are slightly lower than the corresponding ones in
the first cavity, but the shape is the same. This confirms the fact that the
behaviour of the flow in the two cavities is analogous.

The peaks above the cavities are due to the fact that those sections of
the profile are not touching the wall, so the effect of wall friction is lower
with respect to other sections and this allows the velocity to reach higher
values. Then, at the end of the cavities, where the wall begins, there is a
sudden decrease in the velocity because, before the corner of the cavity, the
flow is split into a portion that goes down and generates the recirculation
and another portion that instead goes up, as we observed in Figure 4.20.
It is likely that this change in the flow direction implies a reduction in the
u component of the velocity. After the distance d,.., the effect of the wall
has restored the boundary layer present before the cavity. If the distance
between the cavities is smaller than the recovery distance, i.e. d < d,e., the
flow in the second cavity will be slower because it will be driven by lower
velocities.

We report in Figure 4.21 the maximum values of the u component of the
velocity in correspondence of the peak above the second cavity, depending
on the distance between the cavities. We see that if d < d,.. the velocity
is affected by the presence of the first cavity, which reduces its value. For
d > d,. the velocity is slightly decreasing as d increases; this fact can be
interpreted as the effect of the turbulence that is generated near the end of
the first cavity. As it can be seen in Figure 4.22, the turbulent kinetic energy
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Figure 4.19: Profile of the u component of the velocity at y = h, with a
distance d = 1m between cavities, at t = T. Re = 6 x 10°.
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Figure 4.20: v component of the velocity [m/s| near end of a cavity at ¢t =T
It can be observed that the flow splits. Re = 6 x 10°.
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Figure 4.21: Relation between the maximum velocity in the peak above the
second cavity and the distance d between the cavities.

produced from the first cavity is transported towards the second one, leading
to an increased thickness of the boundary layer as we move in the z-direction.

Coupled problem with shallow cavities

In this second test we simulate the same situation as in the previous single-
domain test, choosing a distance between the two shallow cavities d = 1 m, so
that they do not influence each other directly. In addition to this, we couple
the free-flow with the simulation of a flow inside a porous-medium that fills
the space between the cavities, as shown in Figure 4.23. In this way, we have
two domains, {2¢ and (2, that are in contact through the interface I'y,;. The
considered fluid is always isothermal, single-phase and single-component and
gravity is neglected, as in the previous cases.

We want to analyse the differences that the presence of the porous-
medium induces in the flow field with respect to the previous case and study
how they change as we vary the permeability.

In the domain Qg we solve, as before, the RANS equations with the
k-w model, while in the €2, we solve the continuity equation for a porous-
medium flow (2.66), exploiting the Forchheimer’s law (2.68), in which we
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Figure 4.22: Turbulent kinetic energy [m?/s?] around the cavities with d =
Im,att=T. Re =6 x 10°.
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Figure 4.23: Domain change with respect to Figure 4.17 for the coupled
problem with shallow cavities. The subdomain €, is introduced between
the cavities.

neglect the gravity contribution. We use the same initial and boundary
conditions we used before, but this time we have to impose, in addition, the
coupling conditions described in Section 2.3 on the interface I';,; and no-flow
conditions on the boundary I'., fixing the normal flux, i.e. the v component
of the velocity to zero. We employ the same time discretization and the same
grid we used before in Qg and we extend it in €2, in a conforming way.

As we did in the previous case, we compare in Figure 4.24 the profiles
of the u component of the velocity at the position y = h for several values
of permeability. For values of K lower than 10~®m?, the porous-medium
results to be almost impermeable, or at least the flow field in Qg is the same
that we had in the previous test considering only the free-flow and impervious
boundaries. The maximum velocities in the corner of the porous-medium are
some orders of magnitude lower than those in the cavities (see Figure 4.25).

Starting from K = 3.1 x 10~ m?, we observe some changes in the velocity
profile and increasing the permeability those changes are enhanced. The
increase of the maximum velocity in correspondence of the first cavity can
be due to the reduction of the wall behaviour of the porous-medium. The flow
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Figure 4.24: Profiles of the u component of the velocity at y = h in the
coupled problem with shallow cavities for several values of permeability, at
t=T. Re =06 x 10°.
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Figure 4.25: Magnitude of the velocity field [m/s| in the coupled problem
with shallow cavities, with K = 3.1 x 107 m?, at t = 7. Re = 6 x 10°.
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Figure 4.26: Velocity field [m/s] near the end of the first cavity in the coupled
problem with shallow cavities, with K = 3.1 x 10~"m?, at t = T". A portion
of fluid enters into the porous-medium. The dashed line is the interface I'j.
The length of the arrows is not scaled. Re = 6 x 10°.

is allowed to reach higher velocities and it is less forced to reduce its velocity
because a more relevant amount of fluid enters into the porous-medium (see
Figure 4.26). Then this flow exits from the top of €2, within approximately
the first 20 cm; in the case of high permeability, this region with a peak in
the v component of the velocity spreads and moves a bit to the right, as it
can be seen in Figure 4.27.

After the distance d,.., the value of the velocity observed before the effect
of the cavity is recovered and the boundary layer is restored. With high val-
ues of permeability this value is higher than the one with low permeabilities;
this is due to the Beavers-Joseph-Saffman condition (2.77) at the interface,
which allows more slip as the permeability increases. Eventually the be-
haviour around the second cavity is approximately the same with all the
permeabilities. There is a portion of fluid that goes back inside the porous-
medium, but, since it comes from the corner eddy, the values involved are
lower compared to what happens in the first cavity, so this effect does not
seem to influence the free-flow notably (see Figure 4.28).
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Figure 4.27: v component of the velocity [m/s|] near the end of the first
cavity in the free-flow domain Qg, t = 7. K = 3.1 x 107" m? on the left and
K = 3.1 x 1072 m? on the right. Re = 6 x 10°.
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Figure 4.28: Velocity field [m/s] near the beginning of the second cavity in
the coupled problem with shallow cavities, with K =3.1 x 107" m? at t = T
Some flow enters into the porous medium. The dashed line is the interface
[ine. The length of the arrows is not scaled. Re = 6 x 10°.

95



Chapter 4 - Numerical results

l—‘sym
Qge
l-‘int
me
T ‘h =03m T
l—‘base

Figure 4.29: Domain change with respect to Figure 4.17 for the coupled
problem with deep cavities. The subdomain (2, is introduced between the
cavities.
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Figure 4.30: Magnitude of the velocity field [m/s] in the coupled problem
with deep cavities, with K = 3.1 x 107°m? at t =T. Re = 6 x 10°.

Coupled problem with deep cavities

We repeat the previous test considering the domain with deep cavities de-
picted in Figure 4.29, such that h = 0.3m. The grid is extended uniformly.
Using the same model and the same boundary and interface conditions, we
want to see if, with a different height of the cavities, the porous-medium flow
affects differently the flow field. As before, we vary the permeability of the
porous-medium in order to understand which is the threshold value between
a permeable and an almost impermeable behaviour.

In Figure 4.30, we can see the magnitude of the velocity field in the region
around the cavities and the porous-medium. As before, the two cavities
show the same recirculation pattern, but it is different from the one that
is generated when the cavities are shallow (see Figure 4.25), because of the
different size of the domain. Here, there is a bigger circular eddy touching
the right boundary of the cavity and some smaller eddies in the left region
of the cavity.

In Figure 4.31, we compare the profiles of the u component of the velo-
city at the position y = h, for several values of permeability. With respect
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Figure 4.31: Profiles of the u component of the velocity at y = h in the
coupled problem with deep cavities for several values of permeability, at
t=T. Re =06 x 10°.

to Figure 4.24, we observe a different profile in correspondence of the cav-
ities, because of the different recirculation pattern inside them. As before,
we notice that, as the permeability increases, the maximum velocity in cor-
respondence of the first cavity increases, the minimum velocity above the
beginning of the porous-medium decreases and the velocity above the end of
the porous-medium increases. The threshold value for the permeability of
approximately 1078 m? seems to be still valid. With respect to the previous
test case, we observe that the value of the velocity before the second cavity,
for 5 < = < 5.5, increases faster. Indeed, when K = 3.1 x 107" m?, it is
greater than 0.3m/s, while in the previous geometry, for the same value of
permeability, it was approximately 0.27m/s. This fact could be due to a
smaller amount of fluid exchanged with the porous-medium, or at least to
differently distributed exchanges along the interface.
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Figure 4.32: Velocity field [m/s] around the first cavity in the coupled prob-
lem with deep cavities, with K = 3.1 x 107"m?, at t = T. The dashed line
is the interface I'ip;. The length of the arrows is not scaled. Re = 6 x 10°.

In Figure 4.32 we see the velocity field around the first cavity. A portion
of flow enters into the porous-medium near its upper-left corner, then it exits
from above as in the case of shallow cavities. The section of I'y,; such that
y < h/2 is characterized by a more complex behaviour for what concerns the
flow direction. In fact, because of the multiple eddies, the exchange of fluid
occurs both from the free-flow region to the porous-medium and vice versa.
In Figure 4.33 we see the velocity field around the second cavity. Here, the
flow pattern across the interface is analogous to the one in the case of shallow
cavities, depicted in Figure 4.28.

It is interesting to evaluate the mass flow rate 7 across the interface
between the free-flow and the porous-medium flow. In particular, we com-
pute, at t = T, the amount of mass that goes from the free-flow region to
the porous-medium per unit of time as:

m = g max{ov - n,0} dA, (4.28)
int
where n is the outward unit vector normal to 0Q. Notice that, being the
fluid incompressible and imposing no-flow conditions on the lower boundary
of the porous-medium I'y,¢, the net mass flow rate across 'y, is zero.
In Figure 4.34 we compare the values in the two cases of shallow and deep
cavities. In both the situations we observe a relevant increase of the mass
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Figure 4.33: Velocity field [m/s] around the second cavity in the coupled
problem with deep cavities, with K = 3.1 x 107"m? at t = T. The dashed
line is the interface I'y,.. The length of the arrows is not scaled. Re = 6 x 10°.

flow rate when the permeability is approximately greater than 10~8m?, so
the same threshold value that we found in the previous analysis. m is always
greater in the case of deep cavities than in the case of shallow cavities. In
Table 4.5 we compare the values and we compute the ratio Mgeep/Mshallows
that results to be between 1.3 and 1.5 for every value of permeability. The
ratio between the measure of the I'y, is 1.6/1.2 = 1.3, so it is likely that the
difference in the mass flow rate between the two cases is simply due to the
different surface of the interface.

4.3.2 Obstacle problem

In this subsection we study the behaviour of a turbulent flow in a channel
with a porous obstacle of height ~ = 0.1 m on the lower boundary, as depicted
in Figure 4.35. We want to analyse how the porous-medium affects the flow
field, considering several possible values of permeability. We solve the RANS
equations (2.22)-(2.23) with the k-w turbulence model (2.47)-(2.49) in the
subdomain Qg and the continuity equation for a porous-medium flow (2.66),
exploiting the Forchheimer’s law (2.68), in the subdomain €. We neglect
the gravity contributions. We impose inflow boundary conditions on the left
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Figure 4.34: Mass flow rate from the free-flow region to the porous-medium
across [y, depending on the permeability.

K [m2] mdeep [kg/ S] mshallow [kg/ S] mdeep / mshallow
3.1 x 1072 9455 x 107  6.401 x 1074 1.477
3.1x107% 1.083x 107* 7.673 x107* 1.411
3.1x107% 1.812x107% 1.389 x 1073 1.304
1.55 x 1077 3.063 x 1073 2.271 x 1073 1.349
3.1x 1077 3.805 x 107% 2.690 x 1073 1.414

Table 4.5: Mass flow rate from the free-flow region to the porous-medium
across ['j, depending on the permeability.
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Figure 4.35: Domain for the obstacle problem.
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boundary I'j,:
T

vV =V, = [tin, 0],  ujp = 1m/s, (4.29)
no-slip boundary conditions on the lower boundary I',,, symmetry boundary
conditions on the upper boundary I'yy,, and outflow boundary conditions on
the right boundary I'yy, fixing the value of the pressure:

P = Pext = 1.1 x 10° Pa. (4.30)

On the interface I'y,;, we impose the coupling conditions described in Sec-
tion 2.3, while on the boundary I', we impose no-flow conditions. The dens-
ity of the fluid is ¢ = 1kg/m? and its kinematic viscosity is v = 107> m?/s,
so that the Reynolds number is Re = 6 x 10°. We start considering a per-
meability K = 107? m?. We simulate the time interval (0,7, with 7' = 30s,
such that the solution reaches an equilibrium, and we use an initial time-step
At = 107%s. As initial conditions we set:

in ifer<0Vazx>1
v = [uinitaO]T Vx € Qf, Uit = 2; 1 v ! . ) (4.31)
sUin f0<z<1m
P = Dext Vx € fo U me7 (432)
k=kpn, w=wn VxE€E Q. (4.33)

The factor 7/6 ensures that the flow rate is uniform along the channel. Per-
forming a sensitivity analysis, we choose a grid made of 280 x 82 cells, em-
ploying gradings up to 1.2 in order ho have refined cells near the walls. The
size of the cells in the region around the upper-left corner of the obstacle
shows to affect significantly the solution. Indeed, looking at Figure 4.36, we
can see how the pattern of the velocity field changes for three different grids.

In Figure 4.37, we see the velocity field near the beginning of the porous
obstacle. At the frontal face of the porous-medium, corresponding to = =
4.5m, a small portion of the main flow enters into the obstacle, while the left
amount of fluid recirculates near the bottom of the channel. At the corner of
the porous-medium, the flow is deflected towards an higher region, so that,
above the upper surface of the obstacle, a recirculation is generated and the
velocity at the porous wall is negative. In Figure 4.38, we can see, instead, the
velocity field near the end of the obstacle. The velocity pattern is analogous
to the one generated by a backward facing step, as studied in Section 4.2.
There is a small amount of fluid exiting from the porous-medium, but it does
not seem to affect the eddies in the region after the obstacle.

Now we analyse how a change in the permeability of the porous obstacle
influences the flow field, considering a range from 107! m? to 108 m?2.
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(a) (c)

Figure 4.36: Magnitude of the velocity field [m/s] near the beginning of the
porous-medium, at t = T, considering a grid of (a) 207 x 52 cells, with min-
imum cell size at the obstacle corner equal to 3.3 mm x 4.4mm, (b) 242 x 68
cells, with minimum cell size at the obstacle corner equal to 2mm x 2.7 mm,
(c) 280 x 82 cells, with minimum cell size at the obstacle corner equal to
1.4mm x 2mm. Re = 6 x 10°.
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Figure 4.37: Velocity field [m/s| near the beginning of the obstacle in the
obstacle problem, with K = 107°m? at ¢t = 7. The dashed line is the
interface. The length of the arrows is not scaled. Re = 6 x 105.
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Figure 4.38: Velocity field [m/s| near the end of the obstacle in the obstacle
problem, with K = 107" m? at ¢t = T'. The dashed line is the interface. The
length of the arrows is not scaled. Re = 6 x 10°.
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Figure 4.39: Magnitude of the difference of the velocity field [m/s] in the

obstacle problem between the cases K = 1078 m? and K = 107!* m?.

In Figure 4.39 we see the magnitude of the difference between the velocity
field when K = 1078 m? and K = 107! m?. We observe that the most relevant
differences are near the beginning of the obstacle, arising from the upper-left
corner. Near the end of the obstacle, instead, the flow field is approximately
the same. In Figure 4.39 we observe the two components of the same velocity
difference, at the beginning of the porous-medium domain. The area around
the upper-left corner is the one with the greatest difference. In particular,
when K = 1078 m?, both components of the velocity present higher values, so
that more fluid coming from the free-flow region “crosses” the corner of the
porous obstacle and exits from above. In Figure 4.41, the profiles of the u
component of the velocity along the section at y = h, i.e. above the obstacle,
are reported for different values of permeability. We observe negative values
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Figure 4.40: Components of the difference vg — vy; [m/s] at the beginning
of the porous obstacle, where v, is the velocity field computed considering a
permeability K = 107" m?.
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Figure 4.41: Profiles of the u component of the velocity at y = h, i.e. above
the porous obstacle, which occupies the region 4.5 < x < 5.5. t = T,
Re =6 x 10°.
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starting from x = 4.5, corresponding to the recirculation above the porous-
medium. As K increases, the minimum value of u and the reattachment
length, i.e. the point where the velocities becomes positive, increase. It
is likely that, as a more relevant amount of fluid crosses the corner of the
porous-medium, the area where the flow is deflected is extended. As a result,
the recirculation il slightly shifted in the flow direction, with the consequent
increase of the reattachment length.
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Chapter 5

Conclusions and outlook

5.1 Conclusions

In this thesis we have dealt with the study of the TVD methods for the
approximation of the convective term in the momentum equation of the
Navier-Stokes equations and of the RANS equations, within a finite volumes
framework. We implemented them for the simulation of coupled free-flow and
porous-medium flow models, with the aim of improving the results obtained
by standard first order upwind schemes by reducing numerical dissipation
in the solution, while guaranteeing stability and avoiding the creation of
unphysical oscillations.

In all the tests that have been performed, we have experienced an in-
creased accuracy of the solution with respect to those obtained when using
the first order upwind method. The spatial convergence rates in the tests
with analytical solution were between 1.5 and 2 in many cases, while with
the upwind method we had always a first order convergence. The differ-
ences were more relevant at large Reynold numbers (10 with respect to 1),
because of the increased importance of the convective term with respect to
the diffusive one. For what concerns the validation of the code for turbulent
flows, in the backward facing step test we have obtained, using the Van Leer
flux limiter, a satisfying agreement with validated numerical results from the
CFL3D code and experimental data. Moreover, employing a BDF2 scheme
for the temporal discretization, we can guarantee a high order discretization
both in space and in time, thus allowing a more accurate study of transient
phenomena.

With this tool, we have studied a coupled model consisting of a free-flow
and a porous-medium flow, focusing in particular on the effects that a rough
interface, with cavities or porous obstacles, has on the flow field.
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At first, we have considered only the free-flow and we have studied how
the velocity is affected by the presence of two cavities at the interface. In par-
ticular, we have investigated which is the distance between the cavities such
that the variation in the flow field due to the first cavity does not influence
the behaviour around the second one significantly. We have obtained that,
for cavities 0.5 m long, after a distance equal to one cavity the flow field has
recovered the undisturbed configuration it had before the first cavity. How-
ever, each cavity introduces an increase in the turbulent kinetic energy, that
accelerates the growth of the turbulent boundary layer.

Then, we have chosen a distance such that the two cavities do not in-
fluence each other and we have placed a porous-medium between them, in
order to analyse how its presence affects the flow field. We have observed
that, for values of permeability greater than 1078 m?, the flow field in the free-
flow shows noticeable differences when compared to a case with impermeable
boundaries, both in the case of the shallow cavities and deep cavities. In
particular, not only the fact that the flow can enter into the porous-medium
has an effect, but also the Beaver-Joseph-Saffman slip condition imposed at
the interface between the two subdomains affects the flow dynamics. The
presence of eddies in the cavities influences the flow in the porous-medium,
because in correspondence of the corner it can enter also from a direction op-
posite to the one of the main flow. However, when this happens, the values
of the velocity are relatively small and thus this behaviour does not affect the
free-flow as it happens when the flow enters the porous-medium at the end
of a cavity. We have evaluated the mass flow rate from the free-flow region
to the porous-medium and we have noticed a relevant increase for values of
permeability greater than 1078 m?. Comparing the cases of shallow and deep
cavities, the mass flow rate has shown to be proportional to the measure of
the interface.

At last, we have considered a flow in a channel with a porous obstacles
on the lower boundary. We have observed that the porous-medium flow
influences the free-flow only at the frontal face of the obstacle, where the flow
is stopped by the porous medium, while at the backward face the behaviour
remains the same independently of the permeability.

5.2 Future developments

Future developments to this work can be devoted to the investigation of more
complex models, involving multiphase, multi-component and non-isothermal
models. Exploiting the accuracy of high-resolution methods, a more reli-
able prediction of the evaporation rate from a wet soil could be performed.
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Moreover, it could be interesting to study other types of rough interfaces, for
example to see if a smooth interface described by a sinusoidal function could
behave differently with respect to those we have analysed.

In this work the TVD methods have been adopted only in the momentum
equation, but, in particular with non-isothermal models with non-constant
density, from the numerical point of view it could be important to analyse
their application to the continuity equation as well.

From the point of view of the coupling, the interface conditions could be
adapted in order to employ other finite volumes discretization schemes in the
porous-medium, including, for example, a Multi Point Flux Approximation
(MPFA). Moreover, iterative algorithms to decouple the two subdomains
could be taken into account and compared to the monolithic approach we
have adopted.

Within the DuMu* framework a possibility to improve the efficiency of
the simulations could be to employ an adaptive algorithm in order to refine
the grid only where it is useful. This approach can lead to non-conforming
meshes containing hanging nodes, thus a challenge would be the application
of the TVD scheme to this case. Moreover, a parallelization of the code
would be beneficial for the computational time, but the extended stencil of
high order methods requires attention whilst decomposing the domain.
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Appendix A

Space convergence

We report here some more convergence examples in addition to the Sin-Cos
presented in Subsection 4.1.1.

A.1 1D test

We solve the equations (4.2)—(4.3) over a one-dimensional unit domain 2 =
(0,1), with the following source terms:

h(x) = 622, (A.1)

2
f(z) =122° — 24vr — =, (A.2)
o
so that, choosing ¢ = 1, the analytical solution, depicted in Figure A.1, is
given by

Uex (7) = 227, (A.3)
Pex () = 2 — 2. (A.4)

Dirichlet boundary conditions for the velocity are applied on the whole
boundary 02 using the exact solution. The pressure is fixed at one point
in order to match the exact solution (A.4).

The problem is solved over a sequence of eight uniform grids, starting from
4 cells and each time halving their size. Both the cases of v = 1 and v = 1073
are considered, that correspond respectively to Re = 1 and Re = 10%. In
Figure A.2 the computed errors are reported as functions of the number of
cells, while in Table A.1 we can compare directly the convergence orders for
the different differencing schemes.

In this test, at Re = 1, all the methods behave similarly, as we can see in
Table A.la, with the second order convergence for the velocity also using the
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Figure A.1: Exact solution of the 1D test (A.3)-(A.4).
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velocity field, on the right the pressure field.

‘Upwind Min-Mod Van Leer

p| 0.985 1.000 0.990
w| 1.985 1.996 1.996
(a) Re=1
‘ Upwind Min-Mod Van Leer
p| 0.852 1.501 2.172
w| 1.318 2.274 2.356

(b) Re = 10?

02 04 06 08 1 0 02 04 06 038

X

On the left
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Table A.1: Convergence orders with for the 1D test. They are computed
considering the last two refinements of the grid.
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Figure A.2: L*(Q)) norm of the errors for the 1D test depending on the
number of cells in the grid. The grey lines are the reference lines parallel to a
first order convergence (the lower one) and a second order convergence (the
upper one).
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upwind method. Probably, in this one-dimensional configuration, the second
order diffusive term is dominating. From Table A.1b we observe instead that,
at Re = 10, the TVD methods keep the second order convergence for the
velocity and increase the rate also for the pressure, while the upwind method
presents decreased convergence orders with respect to the case at Re = 1.
With the finest grid we observe from Figure A.2 that with the TVD methods
the errors are three orders of magnitude lower than with the upwind method.

A.2 Kovasznay test
We solve the equations (4.2)—(4.3) over a two-dimensional domain Q =

(—0.5,2) x (=0.5,1.5), without any source term, so that, choosing o = 1,
the analytical solution, depicted in Figure A.3, is given by

Uex(2,9) = 1 — e cos(2my), (A.5)
A
Vex (T, y) = 2—6” sin(27y), (A.6)
T
1
pex(xa y) = 5(1 - €2Ax>7 (A?)
1 1
A= — — | — +4n? A.
2v 42 +ar (A-8)

as reported in [Kov48]. Dirichlet boundary conditions for the velocity are
applied on the whole boundary 0f2 using the exact solution. The pressure is
fixed at one point in order to match the exact solution (A.7).

The problem is solved over a sequence of seven uniform grids, starting
from 4 x 4 cells and each time halving their size. Both the cases of v =
2.5x 1072 and v = 2.5 x 10~* are considered, that correspond respectively
to Re = 80 and Re = 8 x 10%. In Figure A.4 the computed errors are reported
as functions of the number of cells, while in Table A.2 we can compare directly
the convergence orders for the different differencing schemes.

From Table A.2, we see that in this test the convergence results for
Re = 80 and Re = 8 x 10 are very similar. With the upwind method
the convergence orders are always 1, while with the TVD methods we obtain
a second order, but only for the velocity. However, observing Figure A .4,
the convergence orders for the TVD methods at Re = 8 x 10% are increasing
in the last four refinements, indicating that further refinements would be
needed to reach the asymptotic behaviour.
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Figure A.3: Exact solution of the Kovasznay test (A.5)—(A.7). On the left the
magnitude of the velocity field, on the right the pressure field. The arrows
are not scaled.

|UpWind Min-Mod Van Leer

p| 0.823 0.890 0.902
u| 0.928 2.436 2.379
v | 0.940 2.422 2.565

(a) Re =80

|UpWind Min-Mod Van Leer

p | 1.000 0.907 0.865
u| 1.030 1.835 1.822
v | 0.997 1.960 1.958

(b) Re =8 x 10?

Table A.2: Convergence orders with for the Kovasznay test. They are com-
puted considering the last two refinements of the grid.
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Figure A.4: L?(2) norm of the errors for the Kovasznay test depending on
the number of cells in the grid. The grey lines are the reference lines parallel
to a first order convergence (the lower one) and a second order convergence
(the upper one).

116



Bibliography

[AlI89]
[ANS09]

[Bab14]

[BAMO5]

[BJ67]

[Bou77]

[BQQOY

[Brid7]

[Bro+18]

[Bru9e)

G. Allaire. ‘Homogenization of the Stokes flow in a connected
porous medium’. In: Asymptotic Analysis 2 (1989), pp. 203-222.

ANSYS Inc. ANSYS FLUENT 12.0 - User’s Guide. 12th ed.
2009.

K. I. Baber. ‘Coupling free flow and flow in porous media in
biological and technical applications: From a simple to a complex
interface description’. PhD thesis. Universitat Stuttgart, 2014.

M. Berger, M. Aftosmis and S. Muman. ‘Analysis of Slope Lim-
iters on Irregular Grids’. In: 43rd AIAA Aerospace Sciences Meet-
ing and Ezhibit. 2005.

G. S. Beavers and D. D. Joseph. ‘Boundary conditions at a natur-
ally permeable wall’. In: Journal of Fluid Mechanics 30.1 (1967),
pp. 197-207.

J. Boussinesq. Essai sur la théorie des eauz courantes. Impre-
merie Nationale, 1877.

S. Badia, A. Quaini and A. Quarteroni. Coupling Biot and
Navier-Stokes problems for fluid-poroelastic structure interac-
tion. Technical report. Universitat Politecnica de Catalunya,
2009.

H. C. Brinkman. ‘Calculation of the viscous force exerted by a
flowing fluid on a dense swarm of particles’. In: Applied Science
Research 1 (1947), pp. 27-34.

T. Broecker, W. Elsesser, K. Teuber, I. Ozgen, G. Niitzmann and
R. Hinkelmann. ‘High-resolution simulation of free-surface flow
and tracer retention over streambeds with ripples’. In: Limnolo-
gica 68 (2018), pp. 46-58.

C. W. S. Bruner. ‘Parallelization of the Euler Equations on Un-
structured Grids’. PhD thesis. Virgina Polytechnic Institute and
State University, 1996.

117



Bibliography

[CD13]

[Dah+14]

[Dav+14]

[Dav04]

[DBC10]

[DMO03]

[DMQ02]

[DQOY]

[DS85]

[DUN18]
[FAO19]

F. Cimolin and M. Discacciati. ‘Navier-Stokes/Forchheimer mod-
els for filtration through porous media’. In: Applied Numerical
Mathematics 72 (2013), pp. 205-224.

W. Dahmen, T. Gotzen, S. Miiller and M. Rom. ‘Numerical sim-
ulation of transpiration cooling through porous material’. In: In-
ternational Journal of Numerical Methods in Fluids 76.6 (2014),
pp. 331-365.

H. Davarzani, K. Smits, R. M. Tolene and T. Illangasekare.
‘Study of the effect of wind speed on evaporation from soil
through integrated modeling of the atmospheric boundary layer
and shallow subsurface’. In: Water Resources Research 50 (2014),

pp. 661-680.

P. A. Davidson. Turbulence - an introduction for scientists and
engineers. Oxford University Press, 2004.

T. Defraeye, B. Blocken and J. Carmeliet. ‘CFD analysis of con-
vective heat transfer at the surfaces of a cube immersed in a
turbulent boundary layer’. In: International Journal of Heat and
Mass Transfer 53.1 (2010), pp. 297-308.

M. Darwish and F. Moukalled. ‘TVD schemes for unstructured
grids’. In: International Journal of Heat and Mass Transfer 46.4
(2003), pp. 599-611.

M. Discacciati, E. Miglio and A. Quarteroni. ‘Mathematical and
numerical models for coupling surface and groundwater flows’.
In: Applied Numerical Mathematics 43.1-2 (2002), pp. 57-74.

M. Discacciati and A. Quarteroni. ‘Navier-Stokes/Darcy Coup-
ling: Modeling, Analysis, and Numerical Approximation’. In:
Revista Matemdtica Complutense 22.2 (2009), pp. 315-426.

D. M. Driver and H. L. Seegmiller. ‘Features of Reattaching
Turbulent Shear Layer in Divergent Channel Flow’. In: AIAA
Journal 23.2 (1985), pp. 163-171.

DUNE. 2018. URL: https://www.dune-project.org/.

FAO. Soil salinity management. 2019. URL: http://www.fao.
org/tc/exact/sustainable-agriculture-platform-pilot-
website/soil-salinity-management/en/.

118


https://www.dune-project.org/
http://www.fao.org/tc/exact/sustainable-agriculture-platform-pilot-website/soil-salinity-management/en/
http://www.fao.org/tc/exact/sustainable-agriculture-platform-pilot-website/soil-salinity-management/en/
http://www.fao.org/tc/exact/sustainable-agriculture-platform-pilot-website/soil-salinity-management/en/

Bibliography

[Fat+15]

[Fet18]

[Fle+11]

[For01]

[FSH16]

[Godh9]

[Har83]

[Hel97]

[Hir06]
[Hol95)

[HSH12]

E. Fattahia, C. Waluga, B. Wohlmuth, U. Riide, M. Manhart and
R. Helmig. ‘Pore-scale lattice Boltzmann simulation of laminar
and turbulent flow through a sphere pack’. In: arXiv preprint
arXiv:1508.02960 (2015).

T. Fetzer. ‘Coupled Free and Porous-Medium Flow Processes Af-
fected by Turbulence and Roughness’. PhD thesis. Universitat
Stuttgart, 2018.

B. Flemisch, M. Darcis, K. Erbertseder, B. Faigle, A. Lauser,
K. Mosthaf, S. Miithing, P. Nuske, A. Tatomir, M. Wolff et al.
‘DuMu*: DUNE for multi-{phase, component, scale, physics, ... }

flow and transport in porous media’. In: Advances in Water Re-
sources 34.9 (2011), pp. 1102-1112.

P. Forchheimer. ‘Wasserbewegung durch Boden’. In: Zeitschrift
des Vereines Deutscher Ingenieure 45 (1901), pp. 1781-1788.

T. Fetzer, K. M. Smits and R. Helmig. ‘Effect of Turbulence and
Roughnesson Coupled Porous-Mediu/Free-Flow Exchange Pro-
cesses’. In: Transport in Porous Media 114.2 (2016), pp. 395—
424.

S. K. Godunov. ‘A difference method for numerical calculation of
discontinuous solutions of the equations of hydrodynamics’. In:
Mat. Sb. (N. S.) 47.3 (1959), pp. 271-303.

A. Harten. ‘High resolution schemes using flux limiters for hyper-
bolic conservation laws’. In: Journal of Computational Physics
49.3 (1983), pp. 357-393.

R. Helmig. Multiphase Flow and Transport Processes in the
Subsurface: A Contribution to the Modeling of Hydrosystems.
Springer, 1997.

C. Hirsch. Numerical Computation of Internal and FExternal
Flows. Vol. 2. Butterworth-Heinemann Limited, 2006.

M. Holmes. Introduction to Perturbation Methods. Springer,
1995.

J. Hou, F. Simons and R. Hinkelmann. ‘Improved total variation
diminishing schemes for advection simulation of arbitrary grids’.
In: International Journal for Numerical Methods in Fluids 70
(2012), pp. 359-382.

119



Bibliography

[HW65]

[Jam+-16]

[Jam11]

[IMO0]

[KB04]

[KBROS]

[Koc+18]

[Kol41]

[Kol42]

[Kov4s)]

F. H. Harlow and J. E. Welch. ‘Numerical Calculation of Time-
Dependent Viscous Incompressible Flow of Fluid with Free Sur-
face’. In: The Physics of Fluids 8.12 (1965), pp. 2182-2189.

V. A. Jambhekar, E. Mejri, N. Schroder, R. Helmig and N.
Shokri. ‘Kinetic Approach to Model Reactive Transport and
Mixed Salt Precipitation in a Coupled Free-Flow-Porous-Media
System’. In: Transport in Porous Media 114.2 (2016), pp. 341—
369.

V. A. Jambhekar. ‘Forchheimer Porous-media Flow Models - Nu-
merical Investigation and Comparison with Experimental Data’.
Master thesis. Universitat Stuttgart, 2011.

W. Jager and A. Mikeli¢. ‘On the interface boundary condition
of Beavers, Joseph and Saffman’. In: SIAM Journal on Applied
Mathematics 60.4 (2000), pp. 1111-1127.

A. V. Kuznetsov and S. M. Becker. ‘Effect of the interface rough-
ness on turbulent convective heat transfer in a composite por-
ous/fluid duct’. In: International Communications in Heat and
Mass Transfer 31.1 (2004), pp. 11-20.

S. L. Krist, R. T. Biedron and C. L. Rumsey. CFL3D User’s
Manual (version 5.0). 1998. URL: https://cf13d.larc.nasa.
gov/C£13dv6/cf13dv6_vbSmanual.html.

T. Koch, D. Glaser, K. Weishaupt, S. Ackermann, M. Beck,
B. Becker, S. Burbulla, H. Class, E. Coltman, T. Fetzer, B.
Flemisch, C. Griininger, K. Heck, J. Hommel, T. Kurz, M. Lipp,
F. Mohammadi, M. Schneider, G. Seitz, S. Scholz and F. Wein-
hardt. DuMu* 3.0.0. Dec. 2018. DOI: 10.5281/zenodo.2479595.
URL: https://doi.org/10.5281/zenodo.2479595.

A. N. Kolmogorov. ‘The local structure of turbulence in incom-

pressible viscous fluid for very large Reynolds numbers’. In: Dokl.
Akad. Nauk SSSR. Vol. 30. 4. 1941, pp. 299-303.

A. N. Kolmogorov. ‘Equations of Turbulent Motion in an Incom-
pressible Fluid’. In: Izvestia Academii Nauk USSR: Physics 6.1-2
(1942), pp. 56-58.

L. I. G. Kovasznay. ‘Laminar flow behind a two-dimensional grid’.
In: Mathematical Proceedings of the Cambridge Philosophical So-
ciety 44 (1948), pp. 58-62.

120


https://cfl3d.larc.nasa.gov/Cfl3dv6/cfl3dv6_v5manual.html
https://cfl3d.larc.nasa.gov/Cfl3dv6/cfl3dv6_v5manual.html
https://doi.org/10.5281/zenodo.2479595
https://doi.org/10.5281/zenodo.2479595

Bibliography

[Kra+15]

[Kuz04]

[Lan15]

[LeoT9]

[LeV02]

[LLOS]

[LLY4]

[LS74]

[LYC04]

[MMD16]

[Mos+11]

M. Krafezyk, K. Kucher, Y. Wang and M. Geier. ‘DNS/LES stud-
ies of turbulent flows based on the cumulant lattice Boltzmann
approach’. In: High performance computing in science and en-
gineering ‘14. Springer, 2015, pp. 519-531.

A. V. Kuznetsov. ‘Numerical modeling of turbulent flow in a
composite porous/fluid duct utilizing a two-layer k— model to
account for interface roughness’. In: International Journal of
Thermal Sciences 43.11 (2004), pp. 1047-1056.

Langley Research Center. Turbulence Modeling Resource. 2015.
URL: https://turbmodels. larc.nasa.gov/backstep_val.
html.

B. P. Leonard. ‘A stable and accurate convective modelling pro-
cedure based on quadratic upstream interpolation’. In: Computer
Methods in Applied Mechanics and Engineering 19.1 (1979),
pp- 99-98.

R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems.
Cambridge University Press, 2002.

L. Li and H. Liao. ‘An improved r-factor algorithm for TVD
schemes’. In: International Journal of Heat and Mass Transfer
51 (2008), pp. 610-617.

F. S. Lien and M. A. Leschziner. ‘Upstream monotonic interpol-
ation for scalar transport with application to complex turbulent
flows’. In: International Journal for Numerical Methods in Fluids
19 (1994), pp. 527-548.

B. E. Launder and B. I. Sharma. ‘Application of the energy-
dissipation model of turbulence to the calculation of flow near a
spinning disc’. In: Letters in Heat and Mass Transfer 1.2 (1974),
pp. 131-137.

F.S. Lien, E. Yee and Y. Cheng. ‘Simulation of mean flow and
turbulence over a 2D building array using high-resolution CFD
and a distributed drag force approach’. In: Journal of Wind En-
gineering and Industrial Aerodynamics 92.2 (2004), pp. 117-158.

F. Moukalled, L. Mangani and M. Darwish. The Finite Volume
Method in Computational Fluid Dynamics. Springer, 2016.

K. Mosthaf, K. Baber, B. Flemisch, R. Helmig, A. Leijnse, I.
Rybak and B. Wohlmuth. ‘A coupling concept for two-phase
compositional porous-media and single phase compositional free-
flows’. In: Water Resources Research 47 (2011).

121


https://turbmodels.larc.nasa.gov/backstep_val.html
https://turbmodels.larc.nasa.gov/backstep_val.html

Bibliography

[Mos14]

IMT08]
INB17]
[Par17]
[Pop06]
[Pra25]
[QSS07]
[Quald]

[RMH15]

[Roe85]

[Saf71]

[Sall6]
[SG17]

[SpaT2]

K. Mosthaf. ‘Modeling and Analysis of Coupled Porous-Medium
and Free Flow with Application to Evaporation Processes’. PhD
thesis. Universitdat Stuttgart, 2014.

R. Munns and M. Tester. ‘Mechanisms of Salinity Tolerance’. In:
Annual Review of Plant Biology 59 (2008), pp. 651-681.

D. A. Nield and A. Bejan. Convection in Porous Media. 5th ed.
Springer, 2017.

N. Parolini. ‘Computational Fluid Dynamics - Course Notes’.
Notes for the master in mathematical engineering. 2017.

S. B. Pope. Turbulent Flows. Cambridge University Press, 2006.

L. Prandtl. ‘Bericht iiber Untersuchungen zur ausgebildeten Tur-
bulenz’. In: Zeitschrift fiir angewandte Mathematik und Mech-
canik 5.2 (1925), pp. 136-139.

A. Quarteroni, R. Sacco and F. Saleri. Numerical Mathematics.
2nd ed. Springer, 2007.

A. Quarteroni. Numerical Models for Differential Problems.
2nd ed. Springer, 2014.

I. Rybak, J. Magiera and R. Helmig. ‘Multirate time integration
for coupled saturated /unsaturated porous medium and free flow
systems’. In: Computational Geosciences 19 (2015), pp. 299-309.

P. L. Roe. ‘Some contributions to the modeling of discontinous
flows’. In: Lectures in Applied Mathematics 22 (1985), pp. 163—
193.

P. G. Saffman. ‘On the boundary condition at the surface of a
porous medium’. In: Studies in Applied Mathematics 50.2 (1971),
pp- 93-101.

S. Salsa. Partial Differential Equations in Action: From Model-
ling to Theory. 3rd ed. Springer, 2016.

H. Schlichting and K. Gersten. Boundary-Layer Theory. 9th ed.
Springer, 2017.

D. B. Spalding. ‘A Novel Finite-difference Formulation for Differ-
ential Expression Involving Both First and Second Derivatives’.

In: International Journal for Numerical Methods in Engineering
4.4 (1972), pp. 551-559.

122



Bibliography

[SRAO4]

[Swed4]

[TKOS]

[Val07]

[Van56]

[Van74]

[Van77]

[Van&2]

[Ver+-06]

[VMO7]

[Wal0g|

U. Shavit, R. Rosenzweig and S. Assouline. ‘Free flow at the inter-
face of porous surfaces: a generalization of the Taylor brush con-
figuration’. In: Transport in Porous Media 54.3 (2004), pp. 345—
360.

P. K. Sweby. ‘High Resolution Schemes Using Flux Limiters for
Hyperbolic Conservation Laws’. In: SIAM Journal on Numerical
Analysis 21.5 (1984), pp. 995-1011.

N. Targui and H. Kahalerras. ‘Analysis of fluid flow and heat
transfer in a double pipe heat exchanger with porous structures’.

In: Energy Conversion and Management 49.11 (2008), pp. 3217—
3229.

L. Valdettaro. ‘Dispense del corso di Teoria, Modellistica e Sim-
ulazione della Turbolenza’. Notes for the master in mathematical
engineering. 2007.

E. R. Van Driest. ‘On Turbulent Flow Near a Wall’. In: Journal
of the Aeronautical Sciences 23.11 (1956), pp. 1007-1011.

B. Van Leer. ‘Towards the ultimate conservative difference
scheme II. Monotonicity and conservation combined in a second
order scheme’. In: Journal of Computational Physics 14.3 (1974),
pp. 361-370.

B. Van Leer. ‘Towards the ultimate conservative difference
scheme III. Upstream-centered finite-difference schemes for ideal
compressible flow’. In: Journal of Computational Physics 23.3

(1977), pp. 263-275.

G. D. Van Alabada. ‘A comparative study of computational
methods in cosmic gas dynamics’. In: Astronomy and Astrophys-
ics 108 (1982), pp. 76-84.

P. Verboven, D. Flick, B. Nicolai and G. Alvarez. ‘Modelling
transport phenomena in refrigerated food bulks, packages and
stacks: basics and advances’. In: International Journal of Refri-
geration 29.6 (2006), pp. 985-997.

H. K. Versteeg and W. Malalasekera. An Introduction to Com-
putational Fluid Dynamics: The Finite Volume Method. 2nd ed.
Pearson Education Limited, 2007.

L. Walter. ‘Towards a model concept for coupling porousgas dif-
fusion layer and gas distributor in PEM fuel cells’. Master thesis.
Universitat Stuttgart, 2008.

123



Bibliography

[War64]
[Wil06]
[Wilog]

(Wits6]

[Wit96]

[Wit99]
[WJIH19]

[Woll3]

[Wul6]

[Yan+18]

[YLO5]

[Zen13]

J. C. Ward. ‘Turbulent flow in porous media’. In: Journal of the
Hydraulics Division 90.5 (1964), pp. 1-12.

D. C. Wilcox. Turbolence Modeling for CFD. 3rd ed. DCW in-
dustries, 2006.

D. C. Wilcox. ‘Formulation of the k-w Turbulence Model Revis-
ited’. In: ATAA Journal 46.11 (2008), pp. 2823-2838.

S. Withaker. ‘Flow in Porous Media I: A Theoretical Derivation
of Darcy’s Law’. In: Transport in Porous Media 1 (1986), pp. 3—
25.

S. Withaker. ‘The Forchheimer equation: a theoretical develop-
ment’. In: Transport in Porous Media 25 (1996), pp. 27-61.

S. Withaker. The Method of Volume Averaging. Springer, 1999.

K. Weishaupt, V. Joekar-Niasar and R. Helmig. ‘An efficient
coupling of free flow and porous media flow using the pore-

network modeling approach’. In: Journal of Computational Phys-
ics: X 1 (2019), p. 100011.

M. Wolft. ‘Multi-Scale Modeling of Two-Phase Flow in Porous
Media including Capillary Pressure Effects’. PhD thesis. Uni-
versitat Stuttgart, 2013.

H. Wu. ‘A review of recent development: Transport and per-
formance modeling of PEM fuel cells’. In: Applied Energy 165.C
(2016), pp. 81-106.

G. Yang, B. Weigand, A. Terzis, K. Weishaupt and R. Helmig.
‘Numerical Simulation of Turbulent Flow and Heat Transfer in a
Three-Dimensional Channel Coupled with Flow Through Porous
Structures’. In: Transport in Porous Media 122.1 (2018), pp. 145—
167.

L. You and H. Liu. ‘A two-phase flow and transport model for
PEM fuel cells’. In: Journal of Power Source 155 (2005), pp. 219—
230.

X. Zeng. ‘A general approach to enhance slope limiters on non-
uniform rectilinear grids’. In: arXiv preprint arXiv:1301.0967
(2013).

124



	Contents
	List of Figures
	List of Tables
	Introduction
	State of the art
	Content of the thesis

	Governing equations
	Free-flow
	Navier-Stokes equations
	Turbulence and RANS equations

	Porous-medium flow
	Continuity equation
	Momentum equation

	Coupling conditions

	Numerical model
	Free-flow
	Staggered grid discretization
	Linear differencing schemes
	TVD methods
	Time discretization

	Porous-medium flow
	Coupling conditions
	Resulting algebraic equations

	Numerical results
	Navier-Stokes tests
	Space convergence
	Time convergence
	Rough channel test

	RANS test: backward facing step
	Free-flow and porous-medium flow coupling
	Cavities problem
	Obstacle problem


	Conclusions and outlook
	Conclusions
	Future developments

	Space convergence
	1D test
	Kovasznay test

	Bibliography

