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Summary 

In solar applications the tubes of the receiver are irradiated only from one side being 

the other one practically insulated. State of the art heat transfer fluids are thermal oils and 

molten salts, while recently also liquid metals have been also considered. One method of 

optimization of a solar tube heat exchanger is by using entropy minimization. A semi-

empirical solution exists for the case of uniformly heated tube but not for more complex 

boundary conditions, as a strongly inhomogeneous wall heat flux. In this thesis OpenFOAM 

is used to perform Reynolds-Averaged-Navier-Stokes (RANS) simulations of forced 

convection to air and liquid metals flowing in a non-uniformly heated tube. The main 

objective is to numerically analyze entropy generation due to heat transfer and fluid flow for 

this geometry and boundary condition. 
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CHAPTER 1  

INTRODUCTION 

In engineering field there are a lot of technical applications where the heat transfer 

and the flow within the pipe is in high importance. Flow with low Prandtl number fluids are 

in particular interest since they represent the liquid metals. In Figure 1.1 you can observe the 

range of Prandtl numbers and corresponding fluids. 

 

Figure 1.1. Prandtl Number of Fluids 

For the gases the Prandtl number are about one, indicating that dissipation of 

momentum and heat are at the same level. However in liquid metals heat diffuses much 

quicker than in other fluids due to very low Pr number, which at the same time indicates that 

thermal boundary layer is much thicker in liquid metals relative to velocity boundary layer. 

This particular property can be benefited in solar applications. In this thesis particular 

attention will be fallen into Pr numbers 0.007, 0.025 and 0.046 corresponding to Sodium 

and Sodium-Potassium Alloys (Na, NaK), Lead Bismuth Eutectic (LBE) and Pure Lead (Pb), 

Mercury (Hg) consecutively. 

In pipes most interesting region is near wall part, here viscous forces dominate thus 

the structure of the flow differs significantly from turbulent zone. In order to resolve this 

viscous layer strong refined computational grid is required which can lead to high 

computational costs. For this reason near wall models were developed in Computational 
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Fluid Dynamics. This models apply analytical wall functions near walls thus only core region 

of the flow is simulated which significantly reduces computational cost. Most of the 

analytical wall functions contain such parameter as turbulent Prandtl number that is 

considered as constant in most simulation codes although it increases towards the wall [1], 

Figure 1.2. In following simulations Kays mathematical model will be used to take the non-

fixed value into account. As the Pr number increases the thermal boundary layer becomes 

thinner, which means essential transport mechanism for heat becomes closer and closer to 

the wall. Opposite happens for decreasing Pr number. 

 

Figure 1.2. Turbulent Prandtl Number 

Concentrated solar power systems are the energy systems where large area solar 

energy is concentrated in a small area with the help of mirrors or lenses. In CSP systems 

liquid metals are proposed to be used for being very efficient heat transfer media and 

resistant to high thermal loads. The tubes of a receiver of CSP are irradiated from one side 

while other side is practically insulated. One of the methods of optimization of solar tube 

heat exchangers is by using the minimization of entropy generation. Semi empirical solution 

exists for uniform heat flux on the wall of the tube, but for more complex boundary 

conditions such as inhomogeneous wall heat flux there are no any correlations. In current 

study OpenFoam open source CFD tool will be used to perform RANS simulations for non-

uniform heated tube for different liquid metals. Objective of thesis is to numerically analyze 

entropy generation due to heat transfer and fluid flow with non-uniform heat flux.  

 



 

3 

 

CHAPTER 2                       

FUNDAMENTALS 

2.1 Transport Equations 

The investigation of heated and cooled fluid reduces to the fact that conservation of 

mass, momentum and energy have to be solved. The balance of mass and momentum, or in 

other words Navier-Stokes equations can be written in conservative form as [3]: 

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌�⃗� ) = 0 

𝜕(𝜌�⃗� )

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌�⃗� �⃗� ) = +𝜌𝑔 − 𝑔𝑟𝑎𝑑(𝑝) + 𝑑𝑖𝑣(𝑓) 

where 𝑓 is viscous stress tensor; 

The conservative equation of energy: 

𝜕(𝜌𝑒)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑒�⃗� ) = −𝑝 𝑑𝑖𝑣(�⃗� ) + 𝑑𝑖𝑣(𝑘 𝑔𝑟𝑎𝑑(𝑇)) + Φ + 𝑆𝑖  

The computational analysis in this thesis acknowledges an incompressible, pressure 

driven, fully developed turbulent circular pipe flow. 

2.2 Finite Volume Method 

Equations defined above can’t be solved analytically, they require numerical methods 

to be solved. Most widely used technique in commercial codes is finite volume method. The 

idea of this approach is to discretize the domain into finite set of control volumes, Figure 2.1, 

and for each volume cell general conservation for mass, momentum and energy equations 

are applied [3]. 
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Figure 2.1 Control Volumes 

General form of all equations can be written as:  

𝜕

𝜕𝑡
∫𝜌𝜙𝑑𝑉
𝑉⏟      

+

𝑢𝑛𝑠𝑡𝑒𝑎𝑑𝑦

∮𝜌𝜙𝑉 ∙ 𝑑𝐴
𝐴⏟      
𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

= ∮Γ∇𝜙 ∙ 𝑑𝐴
𝐴⏟      
𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

+ ∫𝑆𝜙𝑑𝑉
𝑉⏟    

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

 

where 𝜙 is  

 

    

 

 

 

 

 

In differential form equations take general form shown below: 

𝜕(𝜌𝜙)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝜙�⃗� ) = 𝑑𝑖𝑣[Γ𝑔𝑟𝑎𝑑(𝜙)] + 𝑆𝜙  

The integral form of this differential equation can be demonstrated as follows: 

∫
𝜕(𝜌𝜙)

𝜕𝑡
𝑑𝑉

𝐶𝑉

+∫ 𝑑𝑖𝑣(𝜌𝜙�⃗� )𝑑𝑉
𝐶𝑉

= ∫ 𝑑𝑖𝑣[Γ𝑔𝑟𝑎𝑑(𝜙)]𝑑𝑉
𝐶𝑉

+∫ 𝑆𝜙𝑑𝑉
𝐶𝑉

 

Applying Gauss theorem: 

∫
𝜕(𝜌𝜙)

𝜕𝑡
𝑑𝑉

𝐶𝑉

+∫�⃗� ∙ (𝜌𝜙�⃗� )𝑑𝐴
𝐴

= ∫�⃗� ∙ Γ𝑔𝑟𝑎𝑑(𝜙)𝑑𝐴
𝐴

+∫ 𝑆𝜙𝑑𝑉
𝐶𝑉

 

Equation 𝜙 

continuity 1 

x-mom. 𝑢 

y-mom. 𝑣 

z-mom. 𝑤 

energy ℎ 
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Some of the problems in CFD can require just steady state solution, some of them 

can be time dependent. In first case our equations will have this form: 

∫�⃗� ∙ (𝜌𝜙�⃗� )𝑑𝐴
𝐴

= ∫�⃗� ∙ Γ𝑔𝑟𝑎𝑑(𝜙)𝑑𝐴
𝐴

+∫ 𝑆𝜙𝑑𝑉
𝐶𝑉

 

For time dependent problems: 

∫
𝜕

𝜕𝑡
(∫ 𝜌𝜙𝑑𝑉
𝐶𝑉

) 𝑑𝑡
∆𝑇

+∫�⃗� ∙ (𝜌𝜙�⃗� )𝑑𝐴
𝐴

= ∫�⃗� ∙ Γ𝑔𝑟𝑎𝑑(𝜙)𝑑𝐴
𝐴

+∫ 𝑆𝜙𝑑𝑉
𝐶𝑉

 

Depending of the type of the problem the integral equations are discretized into a 

system of algebraic equations by using numerical methods and solved by iterative 

techniques. The solution of the flow field is defined at nodes inside each cell. The accuracy of 

solution is directly dependent on the density of the grid.  

The conservation equations are more complex than they appear. They are nonlinear, 

coupled and difficult to solve. It is not easy to show with current mathematical tools that only 

one unique solution exists for particular boundary conditions. Navier-Stokes equations 

describe quite well the flow of Newtonian fluids but for only few very simple cases analytical 

solution is available. 

2.3  Turbulence  

2.3.1  General  

Turbulence in fluid flow is defined as chaotic changes of pressure and velocity fields. 

It is characterized by three dimensionality, unsteadiness and seemingly random fluctuations. 

Although turbulent flow is considered chaotic it is well organized in coherent spatial 

structures, where large structures carry most energy, are highly influenced by the domain of 

the geometry and are responsible for mixing of mass, heat and momentum, while smaller 

structures are more universal and is not directly influenced by geometry of the domain. 

Above mentioned structures are called eddy. Kolmogorov theory describes how the 

energy is transferred from big to smaller eddies. There are described three main turbulent 

length scales: Integral scale, Taylor scale, Kolmogorov scale, Figure 2.2. 
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Figure 2.2. Turbulent Length Scales 

Kolmogorov’s theory is based on tree hypothesis [3]: 

 Hypothesis of local isotropy, which says that at sufficiently high Re fluid 

flows the small scale turbulent motions (𝑙 ≪ 𝑙0) are statistically isotropic. 

 First similarity hypothesis, which states that at sufficiently high Re fluid 

flows statistics of small scale motions (𝑙 < 𝑙𝐸𝐼) have universal form and is 

defined by kinematic viscosity and turbulent dissipation rate. 

 Second similarity hypothesis, which asserts that in every turbulent flow at 

sufficiently high Re, the statistics of the motion of scale in range  𝜂 ≪ 𝑙 ≪

𝑙0 have a universal form and is defined only by turbulent dissipation rate, 

independent of kinematic viscosity. 

Energy transfer in fluid flow is described in Figure 2.3. Here we can see that most of 

the energy is contained in large eddies, subsequently large eddies transfer its energy into 

smaller one until Kolmogorov scale, where kinetic energy is dissipated into internal energy. 

 

Figure 2.3. Energy Transfer in Fluid Flow 

By knowing two parameters, kinematic viscosity and turbulent dissipation rate 

Kolmogorov length, time and velocity scales can be defined. Scales indicate smallest eddies 

where energy is dissipated. 

𝐿𝑒𝑛𝑔𝑡ℎ 𝑠𝑐𝑎𝑙𝑒:  𝜂 = (
𝜐3

𝜖
)

1
4
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𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑠𝑐𝑎𝑙𝑒:  𝑢𝜂 = (𝜖𝜐)
1
4 

𝑇𝑖𝑚𝑒 𝑠𝑐𝑎𝑙𝑒:  𝜏𝜂 = (
𝜐

𝜖
)

1
2

 

𝑅𝑒𝜂 =
𝜂𝑢𝜂

𝜐
= 1 

Kolmogorov Reynolds number 𝑅𝑒𝜂  of small eddies is equal to one, indicating that 

cascade proceeds to smaller and smaller scales until Re number is small enough for 

dissipation to take the place. 

Dimension of large scale eddies is in direct proportion with turbulent kinetic energy 

and inversely proportional to turbulent dissipation rate: 

𝑙0 ∼
𝑘
3
2

𝜖
 

Hence, we can calculate the ratio of small and large scale eddies: 

𝜂

𝑙0
∼ 𝑅𝑒𝐿

−
3
4 

𝑢𝜂

𝑢0
∼ 𝑅𝑒𝐿

−1/4
 

𝜏𝜂

𝜏0
∼ 𝑅𝑒𝐿

−1/2
 

Hereof we can make one important conclusion, at high Re numbers the velocity and 

timescale of smallest eddies are much smaller compared with largest eddies. Moreover, at 

large Re numbers the range of intermediate scales will be wider. 

The definition of turbulent kinetic energy is as follows: 

𝑘 =
1

2
< 𝑢𝑖𝑢𝑖 > =

1

2
(𝑢′2 + 𝑣′2 + 𝑤′2)  

In order to understand how energy is distributed among different scales we have to 

look at energy spectrum Figure 2.4, where 𝐸(𝜅) is energy contained in eddies of size 𝑙 and 

wave number 𝜅 [3]. 
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Figure 2.4. Energy Spectrum 

Thus, another definition for turbulent kinetic energy can be demonstrated in this way: 

𝑘 = ∫ 𝐸(𝜅)𝑑𝜅
∞

0

 

In 1941 Kolmogorov showed that: 

𝜂

𝐿0
≈ 𝑅𝑒0

−
3
4 = (

𝑈0𝐿0
𝜐
)
−
3
4

 

Hence, we can find the smallest eddy scale by knowing Reynolds number of the fluid 

flow. 

Kolmogorov’s theory is an asymptotic theory, the shape of the spectra can deviate 

from Kolmogorov’s model for intermediate Re numbers. Kolmogorov’s theory assumes that 

energy cascade is in one way, meaning that energy is transferred from large eddies to smaller 

one but in reality it is possible another way around, although, only small proportion of eddies 

are doing this way. 

2.3.2 Turbulence Models 

For very few simple cases directly full unsteady Navier-Stockes equations can be 

solved which resolves all eddy scales, thus there is no need for any turbulence models. It is 

called DNS, direct numerical simulations. It is useful only as a research tool and feasible only 

for simple geometries. The model that solves large eddies and model small one is called LES, 

large eddy simulations. Eddies smaller than a mesh are modelled, it has a drawback, it is 

inherently unsteady. Most widely used turbulence model in industrial flows is RANS, 

Reynolds Averaged Navier-Stokes, which completely models the turbulence, Figure 2.5.a, 

thus drastically reduce amount of time and CPU required for simulations. Only this model is 

suitable for steady state solutions. 
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a) 

 

 

b) 

Figure 2.5. Turbulence models 

The idea behind RANS is that all components of the field are divided into fluctuating 

and mean components [9], Figure 2.5.b. 

𝜑(𝑥 , 𝑡) = Φ(𝑥 ) + 𝜑′(𝑥 , 𝑡) 

Φ(𝑥 ) = lim
∆𝑇→∞

1

∆𝑇
∫ 𝜑(𝑥 , 𝑡)𝑑𝑡
𝑡+∆𝑇

𝑡

 

The root mean square (r.m.s.) values of velocity components are in particular 

importance because they are easily measured and they express the average magnitude of 

velocity fluctuation which is used in calculations of turbulent kinetic energy. 

𝜑𝑟𝑚𝑠 = [
1

∆𝑡
∫ (𝜑′)2𝑑𝑡  
∆𝑡

0

]

1
2

 ;   (𝜑′)2̅̅ ̅̅ ̅̅ ̅ =
1

∆𝑡
∫ (𝜑′)2𝑑𝑡  
∆𝑡

0

;      

𝑘 =
1

2
(𝑢′2 + 𝑣′2 + 𝑤′2) ; 

Unsteady Reynolds-averaged Navier-Stokes equations for incompressible flow in 

scalar formulation have the following form: 

𝜕𝑈

𝜕𝑥
+
𝜕𝑉

𝜕𝑦
+
𝜕𝑊

𝜕𝑧
= 0 

𝜕𝑈

𝜕𝑡
+ 𝑑𝑖𝑣(𝑈�⃗⃗� ) = −

1

𝜌

𝜕𝑃

𝜕𝑥
+
𝜇

𝜌
𝑑𝑖𝑣[𝑔𝑟𝑎𝑑(𝑈)] + [−

𝜕𝑢′𝑢′̅̅ ̅̅ ̅̅

𝜕𝑥
−
𝜕𝑢′𝑣′̅̅ ̅̅ ̅̅

𝜕𝑥
−
𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑥
] 

𝜕𝑉

𝜕𝑡
+ 𝑑𝑖𝑣(𝑉�⃗⃗� ) = −

1

𝜌

𝜕𝑃

𝜕𝑦
+
𝜇

𝜌
𝑑𝑖𝑣[𝑔𝑟𝑎𝑑(𝑉)] + [−

𝜕𝑣′𝑢′̅̅ ̅̅ ̅̅

𝜕𝑥
−
𝜕𝑣′𝑣′̅̅ ̅̅ ̅̅

𝜕𝑥
−
𝜕𝑣′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑥
] 

𝜕𝑊

𝜕𝑡
+ 𝑑𝑖𝑣(𝑊�⃗⃗� ) = −

1

𝜌

𝜕𝑃

𝜕𝑧
+
𝜇

𝜌
𝑑𝑖𝑣[𝑔𝑟𝑎𝑑(𝑊)] + [−

𝜕𝑤′𝑢′̅̅ ̅̅ ̅̅

𝜕𝑥
−
𝜕𝑤′𝑣′̅̅ ̅̅ ̅̅

𝜕𝑥
−
𝜕𝑤′𝑤′̅̅ ̅̅ ̅̅ ̅

𝜕𝑥
] 
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Fluctuating components in this set of equation are called Reynolds stresses, so in 

order to be able to compute turbulent flows with RANS equations it is necessary to predict 

this stresses. 

𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑠: 𝝉𝒊𝒋 = −𝝆𝒖𝒊′𝒖𝒋′̅̅ ̅̅ ̅̅ ̅̅  

Many turbulent models are developed to predict Reynolds stresses. Most common 

models are categorized based on number of additional transport equations to be solved 

together with RANS equations. 

Classification of turbulent models: 

 Based on Boussinesq hypothesis 

 Zero equation: Mixing length model 

 One equation: Spalart-Allmaras model 

 Two equations: k-ϵ model, k-ω  

 Based on stress transport model  

 Zero equation: Algebraic RSM(Reynolds Stress Model) 

 Seven equations: RSM model 

Boussinesq suggested that Reynolds stresses should be proportional to mean rates of 

deformation, meaning: 

𝝉𝒊𝒋
′ = −𝝆𝒖𝒊′𝒖𝒋′̅̅ ̅̅ ̅̅ ̅̅ = 𝝁𝒕 (

𝝏𝑼𝒊

𝝏𝒙𝒋
+
𝝏𝑼𝒋

𝝏𝒙𝒊
) −

𝟐

𝟑
𝝆𝒌𝜹𝒊𝒋  

where 𝜇𝑡(turbulent viscosity) and 𝑘(turbulent kinetic energy per unit mass) are 2 unknowns. 

In standard k-ϵ model Prandtl-Kolmogorov relation is used which describes the link 

between turbulent viscosity, turbulent kinetic energy and turbulent dissipation rate. 

𝜇𝑡 = 𝐶𝜇𝜌
𝑘2

𝜖
 

Extra two transport equations used in k-ϵ turbulence mode have the following general form: 

𝜕(𝜌𝑘)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑘�⃗⃗� ) = 𝑇𝑘 + 𝐷𝑘 + 𝑃𝑘  

𝜕(𝜌𝜖)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝜖�⃗⃗� ) = 𝑇𝜖 + 𝐷𝜖 + 𝑃𝜖  

Where 𝑇, 𝐷, 𝑃 are transport, dissipation and production terms. The main difference 

between different turbulence models rise from the definition of generation and destruction 

terms, the method of calculation of turbulent viscosity, turbulent Pr number, which by the 

way is responsible for the diffusion of k and ϵ. 

The idea behind turbulence stress transport model is that each Reynolds stress have 

its own transport equation, and that gives better prediction of Reynolds stresses but it 

requires more CPU resources and is less stable than k-ϵ model.  
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2.3.3 Wall Functions 

Near wall modelling plays significant role in CFD. Since the walls are the main 

sources for turbulence and vorticity the fluid have to be resolved properly in that zone, thus 

accurate representation of the flow near the wall region will determine how successful the 

turbulent flow will be predicted. Fluid flow region can be divided into four zones, viscous 

sublayer, buffer layer, fully turbulent or log-law region and outer layer, which completely 

depends on Reynolds number [3], Figure 2.6. 

 

Figure 2.6. Wall functions 

 

Wall functions are set of algebraic formulas that link solution variable at the near 

wall cells and corresponding quantities on the wall, they are required to model first tree 

layers thus significantly reducing the CPU time. They need to have first cell center of the grid 

point to lay in the logarithmic layer, meaning that at least   𝑦+ > 30. Low Reynolds 

turbulence models resolve velocity profiles all the way to the wall, thus in this case it is 

required to have 𝑦+ ≤ 1. 

2.4 Solution Schemes 

Solution of transport equations for each velocity component contains few problems, 

the convection term in momentum equation contains non-linear quantity and there is no 
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separate equation for pressure. And the last one is the most complex issue. The linearized 

and discretized form of Navier-Stockes equation have the following form: 

𝑎𝑝𝑢𝑝 = ∑𝑎𝑛𝑏𝑢𝑛𝑏 + 𝑏𝑝 + (𝑝𝑝 + 𝑝𝐸)𝐴𝑝 

Where nonlinear quantities contribute to the 𝑎𝑝 coefficient. P subscript represents 

main cell centre value and 𝑛𝑏 subscript symbolize neighbour cell values.  

Here an iterative approach is required, meaning that if pressure field is correct the 

resulting field will satisfy continuity equation. Thus, it is required guess and correct 

technique to find the pressure field.  

The pressure velocity coupling methods are based on guess of the right pressure, and 

the main ones are: 

 SIMPLE (Semi Implicit Method for Pressure Linked Equations) 

 Very Robust 

 SIMPLEC (SIMPLE Consistent) 

 Faster convergence for simple problems 

 SIMPLER (SIMPLE Reduced) 

 PISO (Pressure Implicit with Splitting of Operators)  

 Useful for unsteady flows and geometries having high skew mesh 

2.5 Heat Transfer Phenomena 

One of the most important non-dimensional number in heat transfer is the Prandtl 

number, which describes material property and is defined as ratio between momentum and 

thermal diffusivity.  

𝑃𝑟 =
𝑐𝜇

𝜆
=
𝜈

𝑎
=
𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦

𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦
 

Physical meaning of Prandtl number is that it relates thermal boundary layer and 

velocity boundary layer thickness, Figure 2.7 [2]. 

𝛿𝑣
𝛿𝑇
∼ √𝑃𝑟 

From this mathematical definition we can make few conclusions, for fluids with 

Prandtl number close to unity thermal and momentum boundary layers have same thickness. 

If Prandtl number is much lesser than one, which describes properties of liquid metals, 

thermal boundary layer is much thicker that velocity boundary layer, in another words heat 

transfer occurs faster than momentum transfer in y direction. 
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Figure 2.7. Boundary Layers 

In Figure 2.8 we can observe which Prandtl number describes which type of fluid. 

 

Figure 2.8. Fluids and corresponding Pr numbers 

When it comes to turbulent flows turbulent Prandtl number appears as an analogy to 

molecular Prandtl number. It defines the ratio between eddy diffusivity of momentum and 

eddy conductivity shown as  

𝑃𝑟𝑡 =
𝜈𝑡
𝛼𝑡

 

It correlates the turbulent transfer of momentum identified as turbulent stresses to 

turbulent transfer of heat identified as turbulent convective heat flux 

𝑢′𝑣′̅̅ ̅̅ ̅̅ ↔ 𝑢′𝑇′̅̅ ̅̅ ̅̅  

We should keep in mind that turbulent 𝑃𝑡𝑡 number is not material property and 

based on experimental study it is in order of 𝑃𝑡𝑡 ∼ 0.85, but it can deviate a lot from this 

value close to the wall as previously mentioned. 

Kays summarized experimental data of many authors and found that for Prandtl 

numbers between 0.7 and 64 the correlation   

𝑃𝑟𝑡 = 0.85 + 0.7 (
𝜈𝑡
𝜈
)𝑃𝑟 

operates quite well, but for lower Prandtl numbers subsequent correlation shows better 

results.  
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𝑃𝑟𝑡 = 0.85 + 2 (
𝜈𝑡
𝜈
) 𝑃𝑟 

Another important non-dimensional number in fluid dynamics is Nusselt number 

which can be defined locally or as a mean value. It represents the ratio of convective heat 

transfer to conductive heat transfer. 

𝑁𝑢𝐷 =
ℎ𝐷

𝜆
=
−𝜆
𝜕𝑇
𝜕𝑦
∣𝑦=0

𝜆
𝐷
(𝑇𝑤 − 𝑇𝑚)

  

In many engineering applications analytical computation of Nusselt number is too 

complex therefore empirical correlations are frequently used. 

2.6 Essentials of entropy and its generation 

Efficient energy use in heat exchangers or whole power plants can be predicted if 

only together with first law of thermodynamics second one is also taken into account. By 

applying second law we can assess the amount of exergy present in the system which 

depends on the amount of entropy generated. Hence, heat exchanger producing lesser 

entropy due to irreversibilities will destruct lesser available work leading to higher efficiency 

of the system. Thus entropy generated can be considered as efficiency parameter. For 

instance, pipe with small cross section will encounter small temperature gradients leading to 

smaller entropy generation due to heat transfer but from another hand due to high pressure 

drops the entropy generation due to friction will be high. So overall performance can be 

evaluated only by linking this two terms and estimating total entropy production rate which 

should be as small as possible. 

Entropy is a state variable and in specific form has following unit J/kgK. For single 

phase has form demonstrated below [5]: 

𝜌 (
𝜕𝑠

𝜕𝑡
+ 𝑢

𝜕𝑠

𝜕𝑥
+ 𝑣

𝜕𝑠

𝜕𝑦
+ 𝑤

𝜕𝑠

𝜕𝑧
) = 𝑑𝑖𝑣 (

𝑞 

𝑇
) +

Φ

𝑇
+
Φ𝜃
𝑇2

 

Here two production terms are included Φ and Φ𝜃. There is no need to solve this 

equation in order to determine entropy field, since 𝑠 is a function of pressure and 

temperature 𝑠 = 𝑠(𝑝, 𝑇). Thus, once temperature and pressure fields are known entropy can 

be determined as a post processing quantity. 

Time averaged equation have to be considered in order to determine mean entropy 

field, thus Reynolds Averaged Navier Stokes approach have to be considered by splitting the 

equation quantities into mean and fluctuating parts [5]: 

𝑠 = �̅� + 𝑠′                                      𝑢 = �̅� + 𝑢′ 
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Hence, time averaged equation takes following form: 

𝜌 (
𝜕�̅�

𝜕𝑡
+ �̅�

𝜕�̅�

𝜕𝑥
+ �̅�

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕�̅�

𝜕𝑧
) = 𝑑𝑖𝑣 (

𝑞 

𝑇
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 − 𝜌 (

𝜕𝑢′𝑠′̅̅ ̅̅ ̅

𝜕𝑥
+
𝜕𝑣′𝑠′̅̅ ̅̅ ̅

𝜕𝑦
+
𝜕𝑤′𝑠′̅̅ ̅̅ ̅̅

𝜕𝑧
) + (

Φ

𝑇
)

̅̅ ̅̅ ̅̅
+ (

Φ𝜃
𝑇2
)

̅̅ ̅̅ ̅̅ ̅
 

Entropy production terms can be determined in two ways. If we consider equation 

for laminar flow the first method will be determination in detail the entropy generation 

terms and calculating them directly, which will be called direct method. The second method 

consists on the idea of equating of all entropy generation to the rest part of the equation, 

which can be calculated from known velocity, pressure and temperature fields, and current 

method is called indirect one [5]. 

In case of turbulent flow equation has two additional turbulent terms, thus, overall 

we can divide entropy production by dissipation into two terms: viscous dissipation 

(𝑆𝑔𝑒𝑛,𝑓𝑟𝑖𝑐,𝑚𝑒𝑎𝑛) and turbulent dissipation (𝑆𝑔𝑒𝑛,𝑓𝑟𝑖𝑐,𝑓𝑙𝑢𝑐). 

(
Φ

𝑇
)

̅̅ ̅̅ ̅̅
= 𝑆𝑔𝑒𝑛,𝑓𝑟𝑖𝑐,𝑚𝑒𝑎𝑛 + 𝑆𝑔𝑒𝑛,𝑓𝑟𝑖𝑐,𝑓𝑙𝑢𝑐 

The first term represents dissipation in mean flow field, second describes dissipation 

by turbulence. 

Where they can be defined as: 

𝑆𝑔𝑒𝑛,𝑓𝑟𝑖𝑐,𝑚𝑒𝑎𝑛 =
𝜇

�̅�
[2 {(

𝜕�̅�

𝜕𝑥
)
2

+ (
𝜕�̅�

𝜕𝑦
)
2

+ (
𝜕�̅�

𝜕𝑧
)
2

} + (
𝜕�̅�

𝜕𝑦
+
𝜕�̅�

𝜕𝑥
)
2

+ (
𝜕�̅�

𝜕𝑧
+
𝜕�̅�

𝜕𝑥
)
2

+ (
𝜕�̅�

𝜕𝑧
+
𝜕�̅�

𝜕𝑦
)
2

] 

𝑆𝑔𝑒𝑛,𝑓𝑟𝑖𝑐,𝑓𝑙𝑢𝑐 =
𝜇

�̅�
[2 {(

𝜕�̅�

𝜕𝑥
)

̅̅ ̅̅ ̅̅ ̅2

+ (
𝜕�̅�

𝜕𝑦
)

̅̅ ̅̅ ̅̅ ̅2

+ (
𝜕�̅�

𝜕𝑧
)

̅̅ ̅̅ ̅̅ ̅2

} + (
𝜕�̅�

𝜕𝑦
+
𝜕�̅�

𝜕𝑥
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2

+ (
𝜕�̅�

𝜕𝑧
+
𝜕�̅�

𝜕𝑥
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2

+ (
𝜕�̅�

𝜕𝑧
+
𝜕�̅�

𝜕𝑦
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2

] 

Analogously we can divide entropy production due to heat transfer into mean 

component (𝑆𝑔𝑒𝑛,ℎ𝑒𝑎𝑡,𝑚𝑒𝑎𝑛) due to time mean temperature gradients and fluctuating 

component (𝑆𝑔𝑒𝑛,ℎ𝑒𝑎𝑡,𝑓𝑙𝑢𝑐) due to gradients of temperature fluctuations. 

(
Φ𝜃
𝑇2
)

̅̅ ̅̅ ̅̅ ̅
= 𝑆𝑔𝑒𝑛,ℎ𝑒𝑎𝑡,𝑚𝑒𝑎𝑛 + 𝑆𝑔𝑒𝑛,ℎ𝑒𝑎𝑡,𝑓𝑙𝑢𝑐 

where they can be defined as: 

𝑆𝑔𝑒𝑛,ℎ𝑒𝑎𝑡,𝑚𝑒𝑎𝑛 =
𝜆

�̅�2
[(
𝜕�̅�

𝜕𝑥
)

2

+ (
𝜕�̅�

𝜕𝑥
)

2

+ (
𝜕�̅�

𝜕𝑥
)

2

] 

𝑆𝑔𝑒𝑛,ℎ𝑒𝑎𝑡,𝑓𝑙𝑢𝑐 =
𝜆

�̅�2
[(
𝜕�̅�

𝜕𝑥
)

̅̅ ̅̅ ̅̅ ̅2

+ (
𝜕�̅�

𝜕𝑥
)

̅̅ ̅̅ ̅̅ ̅2

+ (
𝜕�̅�

𝜕𝑥
)

̅̅ ̅̅ ̅̅ ̅2

] 

Overall in time averaged entropy equation appears four groups of entropy production terms: 

 𝑆𝑔𝑒𝑛,𝑓𝑟𝑖𝑐,𝑚𝑒𝑎𝑛→ entropy generation by direct dissipation 

 𝑆𝑔𝑒𝑛,𝑓𝑟𝑖𝑐,𝑓𝑙𝑢𝑐→entropy generation by indirect dissipation 

 𝑆𝑔𝑒𝑛,ℎ𝑒𝑎𝑡,𝑚𝑒𝑎𝑛→entropy generation due to mean temperature gradients  

 𝑆𝑔𝑒𝑛,ℎ𝑒𝑎𝑡,𝑓𝑙𝑢𝑐→entropy generation due to fluctuating temperature gradients 
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The mean terms of entropy generation can be calculated from known mean 

temperature and velocity fields. Fluctuating terms cannot be neglected and should be 

exposed to turbulence modelling. Since almost all turbulence models include turbulent 

dissipation rate ϵ the modelling proposed by Kock and Herwig [14] can be applicable: 

𝑆𝑔𝑒𝑛,𝑓𝑟𝑖𝑐,𝑓𝑙𝑢𝑐 =
𝜌𝜖

�̅�
 

𝑆𝑔𝑒𝑛,ℎ𝑒𝑎𝑡,𝑓𝑙𝑢𝑐 =
𝛼𝑡
𝛼
𝑆𝑔𝑒𝑛,ℎ𝑒𝑎𝑡,𝑚𝑒𝑎𝑛 

Knowing the field values of each terms and integrating it overall of the control 

volume the total entropy produced can be calculated, which can be our target. 

Due to steep gradients of T near to wall the entropy generation will accumulate at 

that regions, so in order to resolve that part of field or dense numerical grid have to be 

produced, or wall functions for entropy field should be used, which are defined as analytical 

expressions and are described in Kock [5]. In case if we use Low Reynolds Number 

turbulence models numerical grid will be fine near the wall so there will be no need for wall 

functions. 

All of the information provided above are related with direct method of entropy 

calculation but few words have to be told about indirect method, which in some cases can be 

useful. So the entropy production in turbulent flow will be the sum of (
Φ

𝑇
)

̅̅ ̅̅ ̅
 and (

Φ

𝑇2
)

̅̅ ̅̅ ̅̅
 terms. 

Mathematically indirect method can be defined in the following way: 

𝑆𝑔𝑒𝑛 =  (
Φ

𝑇
)

̅̅ ̅̅ ̅
+ (

Φ

𝑇2
)

̅̅ ̅̅ ̅̅
 

⏞        
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

= 𝜌 (
𝜕�̅�

𝜕𝑡
+ �̅�

𝜕�̅�

𝜕𝑥
+ �̅�

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕�̅�

𝜕𝑧
)

⏞                
Convection

− 𝑑𝑖𝑣 (
�⃗� 

𝑇
)

̅̅ ̅̅ ̅̅ ̅̅ ̅⏞    
Molecular Flux

+

𝜌 (
𝜕𝑢′𝑠′̅̅ ̅̅ ̅̅

𝜕𝑥
+
𝜕𝑣′𝑠′̅̅ ̅̅ ̅̅

𝜕𝑦
+
𝜕𝑤′𝑠′̅̅ ̅̅ ̅̅ ̅

𝜕𝑧
)

⏞              
Turbulent Flux

   

 

Turbulent flux term can be modelled analogous to turbulent heat flux in energy 

equation, thus the local rate of entropy production can be determined by computing the right 

hand side of equation once the turbulence model of turbulent flux is known or neglected, 

which can be justified only in some particular cases at very high Re number flows. As it was 

mentioned before the indirect method can provide only total entropy generation rate but not 

separate term ones.  

Bejan [6] showed that for uniform heat flux with neglecting the turbulent heat flux 

and with Prandtl number equal to one the entropy generation in control volume will have 

following form: 

∰𝑆𝑔𝑒𝑛𝑑𝑉 = −
8𝑚4𝑐𝑝 ln (

𝑇2
𝑇1
)

𝜋3𝜌2𝐷6𝑞𝑤
2
𝑐𝑓 +

𝑞𝑤
2𝐷2𝜋𝐿

𝜆𝑇1𝑇2
𝑁𝑢−1 
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Which with Blasius and Dittus-Boelter correlations: 

Blasius → cf = 0.316Re
1
5 

𝐷𝑖𝑡𝑡𝑢𝑠 − 𝐵𝑜𝑒𝑙𝑡𝑒𝑟 →  Nu = 0.023Re0.8Pr0.4 

will have the form: 

∰𝑆𝑔𝑒𝑛𝑑𝑉 =𝐶1𝑅𝑒
5.75 + 𝐶2𝑅𝑒

−1.8 

where 𝐶1 and 𝐶2 are constants. 

Following indirect method can be used to understand the physics of complex 

processes and the ways to reduce overall entropy generation in technical devices but if more 

superior analysis will be required then direct method should be applied. One important thing 

should be kept into the mind, entropy generated multiplied with ambient temperature gives 

us the useful energy that is forever lost. 
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CHAPTER 3                             

APPROPRIATE TURBULENT MODEL 

In current part of the project individual turbulent models will be evaluated by 

application to the pipe flow over a range of Reynolds numbers. The objective is to determine 

best suited turbulence model for particular our case. Fife different turbulence models were 

taken into account. Two high Reynolds number (HRN) and tree low Re number (LRN) 

models: Launder-Shaurma k-epsilon, v2f, k-omega SST, Realizable k-epsilon and k-epsilon 

RNG consecutively.  

Geometry of pipe is very simple, so structured mesh were generated for our case, 

Figure 3.1. This type of the mesh is aligned with the flow which typically leads to better 

results and faster convergence. Moreover, lesser number of cells are used in computation. 

More detailed mesh information can be seen in Table 3.1. As we can observe LRN models’ 

mesh requires higher number of cells due to denser mesh near the wall, moreover higher the 

Reynolds number of the flow greater the number of cells. Particular attention have to be paid 

to y+ when we use different models, LRN has need to 𝑦+ ∼ 1, meanwhile, HRN models 

require 𝑦+ ≥ 30  
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Figure 3.1. 2D Mesh 

Table 3.1. Mesh Information 

 

 

Substantial influence on the solution renders the discretization schemes and the 

solution algorithms. For the incompressible fluids there are two important algorithms PISO 

and SIMPLE. PISO performs well for unsteady cases, SIMPLE operate better with steady 

cases as previously mentioned. In our situation there is a steady case, so SIMPLE algorithm 

will be selected. Considering the discretization schemes bounded Gauss linear method has 

been chosen. Gauss linear is preferred against UPWIND scheme because it reduces 

numerical diffusion, although completely it cannot be avoided due to discretization.  

Boundedness is preserved with this scheme, thus over and undershooting are avoided 

leading to more physical results. 

Number of Cells

Turbulence models

Re LaunderShaurmaKe kOmegaSST v2f realisableKE RNGkEpsilon

10000 606 606 606 66 66

40000 1806 1806 1806 186 186

80000 3006 3006 3006 366 366

120000 3966 3966 3966 486 486

200000 9006 9006 9006 846 846

500000 13206 13206 13206 1806 1806

Re Max y+

10000 0.78 0.79 0.8 32 32

40000 0.89 0.95 0.92 33 33

80000 1.01 0.99 1.02 31 31

120000 1.11 1.01 1.11 33 33

200000 0.75 0.9 0.77 30 30

500000 1.2 1.28 1.2 33 33
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Although HRN models can give good description of the flow in fully turbulent region 

they apply wall functions in a viscous, buffer and log-law regions which can perform well for 

Pr numbers close to the unity and rather simple geometries. Moreover, to obtain values of 

temperature and velocity fields near wall requires interpolation of the points according to the 

wall functions. 

We are interested in modeling the flow of liquid metals (very low Pr number) where 

wall functions were found to not give right profile. It is required to resolve in detail whole 

fluid domain, thus LRN models seem to be more utile due to the fact that they are applied to 

the whole fluid region, including near wall region. Wall functions for both types of turbulence 

models are shown in Table 3.2. 

Table 3.2. Wall Functions 

 
 

Understanding which turbulent model is more suitable for our case requires the data 

or correlations already available so that our models can be compared. Nusselt numbers were 

computed using each fife models for Pr=1 and the results were compared with experimental 

correlation of Gnielinski, Figure 3.2, which shows best performance for Prandtl numbers 

close to unity. As it can be observed some models overpredict Nusselt values, some of them 

underpredict.  

Low Re number turbulence models' wall BC

alphat epsilon k nut p T U

type fixedValue fixedValue kLowReWallFunction nutLowReWallFunction zeroGradient fixedGradient noSlip

value uniform 1e-10 uniform 1e-9 Uniform 1e-10 Uniform 0 depends on Re number

High Re number turbulence models' wall BC

alphat epsilon k nut p T U

type fixedValue epsilonWallFunction kqRWallFunction nutkWallFunction zeroGradient fixedGradient noSlip

value uniform 1e-10 uniform 5.3905e-4 Uniform 0.00375 Uniform 0 depends on Re number
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Figure 3.2. Correlations and Simulations results 

 
Before jumping into conclusion of which model performs better and to judge about 

the correctness of the solution convergence have to be checked.  Residuals of the case with 

𝑅𝑒 = 200000 and LS turbulence model can be seen in Figure 3.3.  In our case we are 

interested only in 𝑈𝑧 velocity component and temperature residuals, they seem to be low but 

not low enough, so it has been monitored the value of the temperature at random cell center 

and Nu number, this results can be observed in Figure 3.4, 3.5, thus we can speak about 

converged solution. Other mean velocity components have very small values since main flow 

direction is in z direction.  
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Figure 3.3. Residuals 

 

 

Figure 3.4. Convergence of Temperature 



 

24 

 

 

Figure 3.5. Convergence Nusselt number 

 

As a result of simulations two turbulence models provide results with the smallest 

error. First is Realisable k-epsilon, which is HRN model, with a maximum error 15.33%, but 

as previously said HRN models cannot correctly evaluate wall region especially for low 

Prandtl number fluids. Second one is Launder-Shaurma k-epsilon, which is LRN model, with 

a maximum error of 15%. Furthermore, from Figure 3.2 we can observe that 𝑣2𝑓 model 

results are very close to Launder-Shaurma model. Bar chart, Figure 3.6, demonstrates us the 

relative errors of different turbulence models, hence, we can judge the performance of each 

model related with our case. 

 

 

Figure 3.6. Relative Errors of Models 
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In our application case we are interested in heat transfer, it is clear that in case of 

laminar flow there is a linear relationship between flow temperature and wall distance: 

𝑇+ = 𝑃𝑟 𝑦+ 
Nevertheless, when flow becomes turbulent and Pr number deviates a lot from unity 

this mathematical relationship becomes nonlinear. To be able to make numerical simulations 

of heat transfer between fluid and solid this relationship have to be mathematically modeled, 

otherwise, numerical grid have to be sufficiently refined so that first grid cell lies in linear 

region. Thus, before concluding which model will be used in simulation of liquid metals 

temperature and velocity profiles will be examined in contrast with Reichardt and Kader 

correlations. Reichardt correlation were developed for velocity profile of the turbulent flow 

[7] and has the following form: 

𝑢+ =
1

𝜅
ln(1 + 𝜅𝑦+) + 7.8 [1 − 𝑒−

𝑦+

11 −
𝑦+

11
𝑒−

𝑦+

3 ] 

where κ is the Von Karman constant and here is equal to 0.42. 

Similarly Kader correlation were developed for temperature profile of the turbulent 

flows [7]: 

𝑇+ = 𝑃𝑟 𝑦+𝑒−𝐿 + (2.12 ln(1 + 𝑦+) + 𝛽)𝑒−
1
𝐿 

where  

𝐿 =
[0.01(𝑃𝑟 𝑦+)4]

[1 + 5Pr3y+]
   

𝛽 = (3.85𝑃𝑟
1
3 − 1.3)

2

+ 2.12 ln(𝑃𝑟) 

You can notice in Figure 3.7 that Launder-Shaurma k-epsilon describes quite well 

both velocity and temperature fields in whole domain. Whereas in realizable k-epsilon model 

in order to obtain values of velocity and temperature field near wall, more precisely for 𝑦+ <

30, requires wall function employment and interpolation of values according to wall function 

laws, which is done in Figure 3.7 d). Mesh does not contain field values for 𝑦+ < 30 in 

comparison with Launder Shaurma k-epsilon model. Although there are advantages of 

Launder Shaurma model it has one drawback, it requires very fine mesh near wall, so that 

𝑦+ ≤ 1, especially for high Re number flows, hence a lot of iterations are needed for the 

convergent solutions. 
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a) 

 
 

b) 

 
 

c) 

 
 

d) 

 
 

c)  

  

Figure 3.7. Simulation  and Mathematical Models’ Boundary Layers 
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Hereafter we will be using Launder-Shaurma turbulence model since it showed its 

advantages over other considered turbulence models and it is best suited for our further 

simulations. 

Before proceeding with Launder-Shaurma model few more things will be discussed. 

In Low Reynolds Number turbulence models in the direction normal to the wall it is 

mandatory to have first cell center with 𝑦+ ≤ 1 and at least 5 to 10 cells within 𝑦+ = 20 in 

order to correctly describe viscous sublayer. From the Figure 3.8 we can observe that this 

condition is satisfied. Within 𝑦+ = 20 lay 10 and 14 cells corresponding to 𝑅𝑒 = 10000 and 

𝑅𝑒 = 200000 respectively. 

 

 

 
Figure 3.8. Number of Cells within Boundary Layer 

 
Another important thing that should be considered is checking if our grid is mesh 

independent. Thus, grid convergence study were performed for case with Re=10000. 

Simulations were performed for 3 different mesh, coarse, medium and fine and Nusselt 

number were calculated, results can be observed in Figure 3.9. 
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Figure 3.9. Mesh Independence Test 

Based on this computations Grid Convergence Index (𝐺𝐶𝐼) and discretization error is 

estimated [15], 

𝐺𝐶𝐼 = 0.00035 and 𝑁𝑢 = 33.901 ±  0.012, 

which is closer to the value given by Gnielinski for 𝑅𝑒 = 10000 compared with simply coarse 

mesh value. 
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CHAPTER 4                                                  

LIQUID METAL CORRELATIONS 

Liquid metals (LM) have some properties that can be used as an advantage in some 

processes, they have large thermal conductivity, small kinematic viscosity, small vapor 

pressure and very wide temperature range over which they remain in liquid phase. Thus, we 

can say that they are quite efficient environment for heat transfer. They can be used in such 

processes as power generation from solar energy in concentrated solar panels as a heat 

transfer fluid. The idea behind concentrated solar panel technology is that the sunlight rays 

are focused by number of mirrors on a receiver which leads to very high discharge 

temperatures of a working fluid. Moreover, liquid metals can withstand very high thermal 

loads, which is another advantage.    

In literature there are available many correlations describing the heat transfer but 

the ones for liquid metals differ significantly from usual ones. Here, in present part of the 

project liquid metals with fully-developed, forced-convective heat transfer were analyzed. 

Liquid metals have very low Pr number meaning that thermal boundary layer is much thicker 

than hydrodynamic one. 

Thanks to a dimensional analysis it can be figured out that Nu number has a 

functional dependence on Re and Pr numbers, however many authors agree that Nu number 

can be represented by only Peclet number. According to [8] there are few correlations that 

describe well the dependence of Nu number and Pe, and the best one is Skupinsky 

correlation, although there are correlations that model particular LM, and they perform 

better than Skupinsky. All LMs models have following form: 

𝑁𝑢 = 𝑎 + 𝑏𝑃𝑒𝑐𝑃𝑟𝑑 

Where a, b, c, d are constants representing different correlations. They are 

determined from experimental points, where a uniform heat flux for a pipe was applied by 
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means of electric heating. The data of the experiments have up to 50% deviations from 

correlation results for different conducted experiments and the cause of that can be: 

 Different experimental setup conditions. Different and improper wetting, or presence 

of entrained gas can cause large deviations. 

 Evaluation of measured data. The values of Nusselt number and Peclet are computed 

from measured data of temperature, fluid properties, heat flux and flow rates, which 

combined all together can lead to unsimilar results. 

 Problems related with mixed convection. Buoyancy can play huge role, especially in 

liquid metals.  

 
Launder Shaurma k-epsilon turbulence model were used in order to describe the 

fluid flow of LMs and the results were compared with Skupinsky correlation and Chen and 

Chiou, which seems to have best performance, correlation coefficient [8] are shown in Table 

4.1. Prandtl number range for LMs analyzed here is from 0.007 to 0.046 where 0.007 

corresponds to Sodium Potassium (NaK) fluid, 0.025 corresponds to Lead-Bismuth Eutectic 

(LBE) and 0.046 corresponds to Mercury (Hg). Results together with bar charts of relative 

errors for Re number dependence can be observed in Figure 4.1. 

 

Table 4.1. Liquid metal correlations coefficients 

 Skupinski 
Chen & 
Chiou 

a 4.82 5.6 

b 0.0185 0.0165 

c 0.827 0.85 

d 0 0.01 
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a) 

 
 

b) 

 
 

c) 

  

Figure 4.1. Liquid metal correlations and Errors  

It can be noticed that Chen and Chiou correlation gives better results (relative errors 

are lower than in Skupinsky correlation for all Prandtl numbers) if compared with Launder-

Shaurma turbulence model. 

If we consider that Nu number of LM is function of Pe number only, although we can 

see that in Chen and Chiou correlation there is a small separate dependence from  Pr number 

(d=0.01), but this small dependence causes very small effect, then the outcome can be viewed 

in Figure 4.2. 

Peclet number is a nondimensional number describing the ratio between advective 

and diffusive transport rates. Mathematically speaking: 

 

𝑃𝑒 =
𝐴𝑑𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑅𝑎𝑡𝑒

𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑅𝑎𝑡𝑒
= 𝑅𝑒𝐷𝑃𝑟 



 

32 

 

 

 
Figure 4.2. Peclet and Nusselt numbers relationship 

We can establish that Nusselt number for liquid metals could quite well be described 

by only one single nondimensional Peclet number according to Figure 4.2. 
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CHAPTER 5                                        

ENTROPY GENERATION ANALYSIS 

Entropy generation minimization is an important topic, it allows us to understand if 

system behaves in its best performance. Knowing the entropy generation field will allow us to 

understand where the highest irreversibilities occurs, thus allowing us to assess and optimize 

problematic areas of geometry. In case of concentrated solar panels receiver tubes we can 

optimize the diameter based on the optimal Reynolds number. Furthermore, we can 

comprehend which fluid performs better, minimizing the generated entropy. All of this small 

improvements can lead to increased performance of the whole solar power plant. 

5.1 Mathematical model and solver 

Mathematical model is a description of the system using mathematical concepts, in 

our particular case it will be differential equations. For our investigations and calculations 

OpenFoam open source toolbox is going to be used since it allows to develop and customize 

numerical solvers, post-processing and pre-processing utilities for the solution of continuum 

problems. We are going to implement direct method of entropy generation calculation, thus 

entropy production will be computed as post-processing value. In order to find velocity and 

pressure fields RANS equations will be solved, for temperature field simplified energy 

equation will be applied. 
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Navier Stokes equation in OpenFoam has following form: 

Mathematical Formulation: OpenFoam Formulation: 

𝝏

𝝏𝒕
(𝝆𝑼) + 𝛁 ⋅ (𝝓𝑼) − 𝝁𝛁𝟐𝑼 = −𝛁𝒑 

𝒔𝒐𝒍𝒗𝒆 

( 

𝒇𝒗𝒎 ∷ 𝒅𝒅𝒕(𝒓𝒉𝒐,𝑼)       

+𝒇𝒗𝒎 ∷ 𝒅𝒊𝒗(𝒑𝒉𝒊, 𝑼)            

−𝒇𝒗𝒎 ∷ 𝒍𝒂𝒑𝒍𝒂𝒄𝒊𝒂𝒏(𝒎𝒖,𝑼) 

==                                                         

−𝒇𝒗𝒄 ∷ 𝒈𝒓𝒂𝒅(𝒑)                     

); 

 

Continuity Equation in OpenFoam: 

Mathematical Formulation: OpenFoam Formulation: 

𝝏𝝆

𝝏𝒕
+ 𝛁(𝝆𝑼) = 𝟎 

𝒔𝒐𝒍𝒗𝒆 

( 

𝒇𝒗𝒎 ∷ 𝒅𝒅𝒕(𝒓𝒉𝒐)               

+  𝒇𝒗𝒄 ∷ 𝒅𝒊𝒗(𝒑𝒉𝒊)                     

); 

As previously mentioned energy equation will be simplified to suit for our case. 

Full form of energy equation have the following form: 

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡

⏞    
I

  + 𝜌𝑐𝑝𝑈𝑖
𝜕𝑇

𝜕𝑥𝑖

⏞      
II

= −𝑃
𝜕𝑈𝑖
𝜕𝑥𝑖

⏞    
III

+ 𝜆
𝜕2𝑇

𝜕𝑥𝑖
2

⏞  
IV

− 𝜏𝑖𝑗
𝜕𝑈𝑗

𝜕𝑥𝑖

⏞    
V

  

Where: 

I : Local energy change with time 

II : Convection term 

III : Pressure work 

IV : Heat Diffusion or Heat Flux 

V : Irreversible change of mechanical energy into the heat 

For our particular case we can use reduced version of energy equation, which is going 

to perform faster giving us required temperature field. It will suit our case and reasonable 

simplifications won’t cause big deviations from real solution. The simplified energy equation 

together with turbulence model will have following form: 

𝜕𝑇

𝜕𝑡
+ �⃗� ∇𝑇 = (𝛼 + 𝛼𝑡)∇

2𝑇 

This equation can be reduced further, since we are interested on steady state solution 

and we have constant heat flux boundary condition at walls of pipe, moreover, bulk flow is in 

x direction, so other velocity components are negligible. 
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𝑢
∂𝑇

𝜕𝑥
= (𝛼 + 𝛼𝑡) (

∂2𝑇

𝜕𝑦2
+
∂2𝑇

𝜕𝑥2
) 

𝜕𝑇

𝜕𝑥
=
𝜕𝑇𝑤
𝜕𝑥

=
𝜕𝑇𝑏
𝜕𝑥

= 𝑐𝑜𝑛𝑠𝑡 →
∂2𝑇

𝜕𝑥2
= 0 

Furthermore, we can divide temperature component into constant value and linear 

increased value due to constant heat flux at wall. 

𝑇 = �̅� +
𝜕𝑇

𝜕𝑥
𝑥 = �̅� +

∆𝑇

𝐿
𝑥 

where  
∆𝑇

𝐿
  is a linear growth of temperature along the pipe length. 

𝑢
∂�̅�

𝜕𝑥

⏞
=0

+ 𝑢
∆𝑇

𝐿
= (𝛼 + 𝛼𝑡)

∂2�̅�

𝜕𝑦2
 

0 = (𝛼 + 𝛼𝑡)
∂2�̅�

𝜕𝑦2
− 𝑢

∆𝑇

𝐿
 

Temperature field computed with this equation is not suitable for entropy generation 

calculation, although it correctly represents temperature gradients. Thus, in this case we 

need absolute temperature field, which will be called as corrected temperature (𝑇𝑐𝑜𝑟𝑟). This 

two fields will differ by only a constant value calculated as follows: 

𝑚𝑐𝑝𝑇𝑏 = ∫ 𝜌𝑐𝑝𝑢 ∙ 𝑇𝑑𝐴 = ∫𝜌𝑐𝑝�̅�𝑑𝐴
𝐴

+∫𝜌𝑢𝑐𝑝𝐶𝑑𝐴
𝐴𝐴

 

𝑚𝑐𝑝 = ∫𝜌𝑢𝑐𝑝𝑑𝐴 
𝐴

 

𝑇𝑏 =
∫ 𝜌𝑐𝑝�̅�𝑑𝐴𝐴

∫ 𝜌𝑢𝑐𝑝𝑑𝐴 𝐴

+ 𝐶 

𝐶 = 𝑇𝑏 −
∫ 𝜌𝑐𝑝�̅�𝑑𝐴𝐴

∫ 𝜌𝑢𝑐𝑝𝑑𝐴 𝐴

→ 𝑇𝑐𝑜𝑟𝑟 = �̅� − 𝐶 

By setting bulk temperature to a certain value, in our case it will be 300K, the “𝐶” 

constant will allow us to reach to the absolute temperature needed in entropy generation 

equations.  

Energy Equation in OpenFoam: 

Mathematical Formulation: OpenFoam Formulation: 

𝟎 = (𝜶 + 𝜶𝒕)
𝛛𝟐�̅�

𝝏𝒚𝟐
− 𝒖

𝚫𝑻

𝑳
 

 

TEqn( 

          fvm::div(phi, T) 

        - 

fvm::laplacian(alphaEff, T) 

        == 

          - mag(U)*gradT 

    ); 



 

36 

 

In CFD numerical schemes are applied to solve the bunch of differential equations. 

For each term in partial differential equations different sets of schemes are applied. Table 5.1 

summarizes the scheme types used in our cases [16]. 

Table 5.1. Numerical Schemes 

Categories Schemes 

Gradient ∇ Gauss linear 

Divergence ∇ ∙ Bounded Gauss linear Upwind 

Laplacian ∇2  Gauss linear corrected 

Gradient Normal to the cell centre Corrected 

Cell to face interpolation of values  Linear 

 

Gauss linear is a standard finite volume discretization of Gaussian integration where 

it is required the interpolation of values from cell centers to face centers with linear 

interpolation scheme.  

The advantages of Bounded Gauss linear upwind scheme for divergence calculation 

was already highlighted above but being short we can say that boundedness is preserved with 

this scheme leading to better convergence. 

 Although the orthogonality of the mesh is good for our geometry the corrected 

scheme for surface normal gradient is used, it adds an explicit non-orthogonal correction to 

the orthogonal component, thus, maintaining second order accuracy. 

The laplacian term scheme is basically the summarization of two schemes cited 

above, Gauss linear and Corrected. 

Interpolation schemes are used to interpolate values from cell centers to face cell 

centers. Primarily it is used to interpolate velocities to face centers for the calculation of flux 

ϕ. 

In OpenFoam there are different available linear solvers to solve discretized 

differential equations. Pressure equation uses Preconditioned Bi-Conjugate Gradient 

(PBiCG) solver with Diagonal incomplete LU (DILU) preconditioner. Momentum, turbulent 

and energy equations use smooth solvers with Gauss-Seidel smoother, which generally is the 

most reliable and robust option providing good convergence. 

In order to be able to compute new fields of entropy produced the OpenFoam library 

swak4foam is going to be used. It combines the functionality of groovyBC [9] and 

funkySetFields [10] by offering the possibility to specify the expressions involving the 

fields and evaluate them, thus allowing to do many things avoiding programming. 

Following entropy generation equations, previously derived, are going to be used and 

their swak4foam formats are shown in Table 5.2. 
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Table 5.2. Swak4foam formulations 

Mathematical Formulation: OpenFoam swak4foam Formulation: 

 

 

 

SgenFricMeanExpression 

{ 

field SgenFricMeanPost; 

variables "nu=0.00001;"; 

expression 

"nu*2*magSqr(symm(grad(U)))/Tcorr"; 

dimension [ 0 2 -3 -1 0 0 0 ]; 

create true; 

} 

 

𝑆𝑔𝑒𝑛,ℎ𝑒𝑎𝑡,𝑚𝑒𝑎𝑛 =
𝜆

�̅�2
[(
𝜕�̅�

𝜕𝑥
)

2

+ (
𝜕�̅�

𝜕𝑥
)

2

+ (
𝜕�̅�

𝜕𝑥
)

2

] 

 

SgenHeatMeanExpression 

{ 

field SgenHeatMeanPost; 

variables 

"Pr=0.007;nu=0.00001;lambda=nu/Pr;"; 

expression 

"lambda/sqr(Tcorr)*magSqr(grad(Tcorr))"; 

dimension [ 0 2 -3 -1 0 0 0 ]; 

create true; 

} 

 

𝑆𝑔𝑒𝑛,𝑓𝑟𝑖𝑐,𝑓𝑙𝑢𝑐 =
𝜌𝜖

�̅�
 

 

SgenFricFluctExpression 

{ 

field SgenFricFluctPost; 

expression "epsilon/Tcorr"; 

dimension [ 0 2 -3 -1 0 0 0 ]; 

create true; 

} 
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𝑆𝑔𝑒𝑛,ℎ𝑒𝑎𝑡,𝑓𝑙𝑢𝑐 =
𝛼𝑡
𝛼
𝑆𝑔𝑒𝑛,ℎ𝑒𝑎𝑡,𝑚𝑒𝑎𝑛 

 

SgenHeatFluctExpression 

{ 

field SgenHeatFluctPost; 

variables 

"Pr=0.007;Prt=0.85;nu=0.00001;"; 

expression 

"nut/nu*Pr/Prt*SgenHeatMeanPost"; 

dimension [ 0 2 -3 -1 0 0 0 ]; 

create true; 

} 

 

 

To be able to understand why entropy generation 𝑆𝑔𝑒𝑛  have this OpenFoam forms 

let’s look into subsequent equations [11]: 

𝑔𝑟𝑎𝑑(�⃗⃗� ) =

[
 
 
 
 
 
 
𝜕𝑈𝑥
𝜕𝑥

𝜕𝑈𝑥
𝜕𝑦

𝜕𝑈𝑥
𝜕𝑧

𝜕𝑈𝑦

𝜕𝑥

𝜕𝑈𝑦

𝜕𝑦

𝜕𝑈𝑦

𝜕𝑧
𝜕𝑈𝑧
𝜕𝑥

𝜕𝑈𝑧
𝜕𝑦

𝜕𝑈𝑧
𝜕𝑧 ]
 
 
 
 
 
 

 

𝑠𝑦𝑚𝑚(𝑔𝑟𝑎𝑑(�⃗⃗� )) =
1

2

[
 
 
 
 
 
 2

𝜕𝑈𝑥
𝜕𝑥

𝜕𝑈𝑥
𝜕𝑦

+
𝜕𝑈𝑦

𝜕𝑥

𝜕𝑈𝑥
𝜕𝑧

+
𝜕𝑈𝑧
𝜕𝑥

𝜕𝑈𝑦

𝜕𝑥
+
𝜕𝑈𝑥
𝜕𝑦

2
𝜕𝑈𝑦

𝜕𝑦

𝜕𝑈𝑦

𝜕𝑧
+
𝜕𝑈𝑧
𝜕𝑦

𝜕𝑈𝑧
𝜕𝑥

+
𝜕𝑈𝑥
𝜕𝑧

𝜕𝑈𝑧
𝜕𝑦

+
𝜕𝑈𝑦

𝜕𝑧
2
𝜕𝑈𝑧
𝜕𝑧 ]

 
 
 
 
 
 

 

𝑚𝑎𝑔𝑆𝑞𝑟 (𝑠𝑦𝑚𝑚 (𝑔𝑟𝑎𝑑(�⃗⃗� ))) =

= (
𝜕𝑈𝑥
𝜕𝑥
)
2

+ (
𝜕𝑈𝑦

𝜕𝑦
)

2

+ (
𝜕𝑈𝑧
𝜕𝑧
)
2

+ 0.5 (
𝜕𝑈𝑥
𝜕𝑦

+
𝜕𝑈𝑦

𝜕𝑥
)

2

+ 0.5 (
𝜕𝑈𝑦

𝜕𝑧
+
𝜕𝑈𝑧
𝜕𝑦
)

2

+ 0.5 (
𝜕𝑈𝑥
𝜕𝑧

+
𝜕𝑈𝑧
𝜕𝑥
)
2

 

Note: In OpenFoam  

𝑚𝑎𝑔(𝑇) = 𝑠𝑞𝑟𝑡(𝑇: 𝑇)  

𝑚𝑎𝑔𝑆𝑞𝑟𝑡(𝑇) = 𝑇: 𝑇 

where ":"  means double inner product [17]. 

𝑒𝑥:    𝑇: 𝑆 = 𝑇11𝑆11 + 𝑇12𝑆12 + 𝑇13𝑆13 +⋯ 
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5.2 Meshing and Boundary Conditions 

Meshing or in other words discretization is a process of splitting big geometries into 

smaller fragments. This small blocks have their own nodes and boundary faces. In finite 

volume method all differential equations are applied to it and later are reduced to algebraic 

equations to be solved with computer. In our case the geometry is simple pipe and it can be 

discretized into smaller fragments which will be small rectangle, this kind of mesh is called 

structural mesh, and it has many advantages previously mentioned. Knowing that pipe have 

symmetry plane we can reduce the amount of mesh by twice by just assigning symmetry 

boundary condition. Sometimes it can be deceptive, geometries seeming to have ideal 

symmetry line may not have symmetry in flow field, and as an example we can give an 

external flow of fluid over the cylinder. Geometry seems to be in symmetry but due to Von 

Karman vortexes [18] fluid flow is not symmetrical, moreover they don’t have steady state 

solution, Figure 5.1. In case of internal flow inside the pipe there is no such vortexes and fluid 

flow field can be considered as symmetrical, Figure 5.2. 

 

Figure 5.1. Nonsymetrical vortexes 

 

 

Figure 5.2. Mesh for symetrical fluid flow 
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As said above, we have bunch of differential equations. It is known that differential 

equations have unlimited possible solutions unless proper boundary conditions are applied. 

At the inlet and the outlet of the pipe cyclic boundary conditions are applied. This kind of 

boundary condition allows us to achieve fully developed flow inside pipe with relatively short 

pipe geometry length. Turbulent kinetic energy and turbulent dissipation rate for inlet 

boundary condition and as a field initialization can be calculated using turbulence 

intensity(𝐼) property [19], which for medium turbulence can take 5% value, or can be 

calculated based on Re number of flow. 

𝐼 = 0.16(𝑅𝑒)−
1
8 

𝑘𝑖𝑛 =
3

2
(𝐼𝑈)2 

𝜖𝑖𝑛 =
𝐶𝜇
0.75𝑘

3
2

𝑙
;    𝑤ℎ𝑒𝑟𝑒 𝑙 = 0.07𝐷 𝑎𝑛𝑑 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑐𝑎𝑙𝑒. 

Paramount importance carry boundary condition at a wall related with energy 

equation. For uniform heat flux Neuman boundary condition are going to be applied, 

meaning that the temperature gradient should be assigned there. In order to understand 

what values have to take the temperature gradients at the wall we should do the following for 

constant heat flux at the wall: 

(
𝜕𝑇

𝜕𝑛
)
𝑤
=
𝑞𝑤
𝜆
=
𝑚𝑐𝑝∆𝑇

𝜆𝜋𝐷𝐿
=
𝑚𝑐𝑝

∆𝑇
𝐿

𝜆𝜋𝐷
=
𝜌𝑢𝑏

𝜋𝐷2

4
𝑐𝑝
∆𝑇
𝐿

𝜆𝜋𝐷
=

1
4
𝜌𝑢𝑏𝐷

𝜇

𝑐𝑝
∆𝑇
𝐿
𝜆
     

(
𝜕𝑇

𝜕𝑛
)
𝑤
=
1

4
𝑅𝑒𝑏Pr 

∆T

𝐿
 

Since  
d𝑇𝑏

𝑑𝑥
=

𝜕𝑇

𝜕𝑥
= 𝑐𝑜𝑛𝑠𝑡 =

∆T

𝐿
 and 𝑞" = 𝑐𝑜𝑛𝑠𝑡 temperature gradient value at the wall 

becomes function of Reynolds and Prandtl numbers. 

In case of non-uniform heat flux boundary condition at the wall will slightly differ. 

Half of the wall will be considered adiabatic, meaning that (
𝜕𝑇

𝜕𝑛
)
𝑤
= 0 , in another half 

cosinusoidal heat flux will be applied representing the density of solar rays 

concentration[12], Figure 5.3. 
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Figure 5.3. Cosinusoidal heat flux 

 

Thus for OpenFoam the cosinusoidal heat flux can be represented as follows: 

𝑄′ = 𝑚𝑐𝑝
∆𝑇

𝐿
= ∫ 𝑞" ̅̅̅̅ 𝑐𝑜𝑠(𝜃)

𝐷

2
𝑑𝜃

𝜋
2

0

 

𝑞" ̅̅̅̅ =
2𝑚𝑐𝑝

∆𝑇
𝐿

𝐷
∙
4𝜋𝜇

4𝜋𝜇
=
𝑅𝑒𝜇𝑐𝑝𝜋

∆𝑇
𝐿

4
 

(
𝜕𝑇

𝜕𝑛
)
𝑤

̅̅ ̅̅ ̅̅ ̅̅ ̅
=
1

4
𝑅𝑒𝑏Pr π 

∆T

𝐿
 

Thus the wall boundary condition will have the subsequent form: 

(
𝜕𝑇

𝜕𝑛
)
𝑤

̅̅ ̅̅ ̅̅ ̅̅ ̅
=
1

4
𝑅𝑒𝑏Pr π

∆T

𝐿
∙ cos (𝜃) 

where θ can be described with geometrical parameters for each cell face located at wall  

boundary. 

Here we can understand that the temperature gradient at wall will change depending 

on the type of the fluid considered and Reynolds number of the flow for the same amount of 

heat supply to the domain. 

5.3 Analysis of Results  

Predicting efficient thermal use in energy systems carries paramount importance, 

since the amount of available work is dependent on the amount of entropy generated. 

Therefore, systems with smaller entropy productions leads to lesser irreversibilities, thus, 

higher available work. So the objective of this part of thesis is understanding how and what 

leads to lower entropy generation in concentrated solar panels. 

In literature there are already available algebraic equations for specific cases of 

uniform heat flux on the surface of the tube heat exchangers [9]. Those equations together 
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with numerical results are going to be compared to check the correctness of simulation 

results. 

According to A. Bejan [4] and [13] for constant heat input per unit length (𝑄′̇ ) and 

constant mass flow rate (�̇�) the entropy generation equation is as following: 

𝑺𝒈𝒆𝒏
′ =

𝑸′𝟐

𝝅𝝀𝑻𝟐𝑵𝒖
+
𝟑𝟐�̇�𝟑𝒇

𝝅𝟐𝑻𝝆𝟐𝑫𝟓
 

By applying friction factor correlation of McAdams: 

𝑓 = 𝐴 ∙ 𝑅𝑒−𝐵 

where 𝐴 = 0.046 𝑎𝑛𝑑 𝐵 = 0.2, 

and Dittus-Boelter correlation: 

𝑁𝑢 = 𝛼𝑅𝑒𝛽𝑃𝑟𝛾 

where          𝛾 = 0.4,    𝛽 = 0.8,   𝛼 = 0.023 𝑓𝑜𝑟 0.6 < 𝑃𝑟 < 160,   𝑎𝑛𝑑 𝛾 = 0.4,    𝛽 = 0.4,    

                       𝛼 = 0.625  𝑓𝑜𝑟 0.005 < 𝑃𝑟 < 0.05 

𝑆𝑔𝑒𝑛
′ =

𝑄′2

𝜋𝜆𝑇2𝛼𝑅𝑒𝛽𝑃𝑟𝛾
+
32�̇�3𝐴 ∙ 𝑅𝑒−𝐵

𝜋2𝑇𝜌2𝐷5
 

In order to find which value of Re number minimizes the generated entropy 

𝑆𝑔𝑒𝑛
′  equation have to be differentiated by Re and equated to zero. 

𝜕𝑆𝑔𝑒𝑛
′

𝜕𝑅𝑒
= −

𝛽𝑄′2

𝛼𝜋𝜆𝑇2𝑅𝑒𝛽+1
∙ 𝑃𝑟−𝛾 +

(5 − 𝐵)𝐴𝜋3𝜇5

32𝜌2𝑇�̇�′
∙ 𝑅𝑒4−𝐵 = 0 

𝑹𝒆𝒐𝒑𝒕 = (
(𝟑𝟐𝜷�̇�𝟐𝝆𝟐𝑸′𝟐)

(𝟓 − 𝑩)𝑨𝝅𝜶𝝀𝑻𝝁𝟓
)

𝟏
𝟓−𝑩+𝜷

 

Now, in order to generalize the case, we can normalize the equation based on 𝑅𝑒𝑜𝑝𝑡.  

𝑆𝑔𝑒𝑛
′ = �̅�𝑅𝑒−𝛽 + �̅� 𝑅𝑒5−𝐵; �̅� =

𝑄′2

𝜋𝜆𝑇2𝛼𝑃𝑟𝛾
; �̅� =

𝜋3𝜇5𝐴

32𝑇𝜌2�̇�2
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𝑆𝑔𝑒𝑛
′

𝑆𝑔𝑒𝑛,𝑚𝑖𝑛
′ =

�̅�𝑅𝑒−𝛽 + �̅� 𝑅𝑒5−𝐵

�̅�𝑅𝑒𝑜𝑝𝑡
−𝛽
+ �̅� 𝑅𝑒𝑜𝑝𝑡

5−𝐵
=

�̅�

�̅� + �̅�𝑅𝑒𝑜𝑝𝑡
5−𝐵+𝛽

∙ (
𝑅𝑒

𝑅𝑒𝑜𝑝𝑡
)

−𝛽

+
�̅�

�̅�𝑅𝑒𝑜𝑝𝑡
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+ �̅�
∙ (

𝑅𝑒

𝑅𝑒𝑜𝑝𝑡
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5−𝐵

 

𝑅𝑒𝑜𝑝𝑡
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32𝜌2�̇�2𝑇

𝜋3𝜇5𝐴
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𝟏

𝟏 +
𝜷

𝟓 − 𝑩

∙ (
𝑹𝒆

𝑹𝒆𝒐𝒑𝒕
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−𝜷

+
𝟏
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+ 𝟏
∙ (

𝑹𝒆

𝑹𝒆𝒐𝒑𝒕
)

𝟓−𝑩
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Hereafter normalized entropy generation equation will be used to assess the results 

of simulations. 

Figure 5.4 demonstrate the solution fields of velocity and temperature for uniform 

heat flux, primarily fields that need to be calculated. As it can be observed highest 

temperature is on the wall boundary where temperature gradient was applied. In order to 

judge if the fields are converged we can monitor the temperature value inside a random cell, 

Figure 5.5, realizing that the temperature value is not changing with iterations. 

  

Figure 5.4. Temperature and velocity fields in uniformly heat pipe 

 

Figure 5.5. Convergence process 

 

Knowing velocity and temperature fields, entropy generation fields can be estimated. 

Figure 5.6 demonstrates us four entropy production terms. By analyzing this fields we can 

understand that mean values of entropy production terms have maximum values at the wall. 

It is expected since at this point gradients are highest. Fluctuating terms have different 

behavior, at the wall boundary their values are null, but close to wall they have their peak 

values. 
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a) Entropy generation due to mean heat transfer 

 

 

 

b) Entropy generation due to fluctuating heat transfer 
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c) Entropy generation due to mean friction component 
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d) Entropy generation due to fluctuating friction component 

 

 

Figure 5.6. Entropy generation fields in uniformly heated duct 

 

Further the results of entropy generation for non-uniform heat flux will be analyzed. 

Non uniform heat flux case is more realistic for the concentrated solar panels application and 

it does not have any semi analytical derivation in literature, this is the reason why its 

simulation results are caring big importance in our research. Figure 5.7 demonstrates the 

results for non-uniform case, and the difference can be seen from the first glance.  Left hand 

side of the pipe is heated with non-uniform cosinusoidal heat flux. In current case velocity 

and energy equations are uncoupled, thus the temperature field is not affecting the velocity.  
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Figure 5.7. Temperature and velocity fields in non-uniformly heated duct 

 

By knowing temperature and velocity fields the entropy generation fields can be 

computed. Figure 5.8 demonstrates the results. 

 

 

a) Entropy generation due to mean heat transfer 
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b) Entropy generation due to fluctuating heat transfer 
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c) Entropy generation due to mean friction component 
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d) Entropy generation due to fluctuating friction component 

 

 

Figure 5.8. Entropy generation fields in non-uniformly heated duct 

 

We can understand that at the wall boundary where the heat flux occurs the entropy 

generation terms due to friction are lower compared with adiabatic wall since entropy 

generation is inversely proportional to temperature of the field. Thus we can say that the 

higher the temperature of the fluid the lower the entropy production. Mean components of 

the entropy production have their maximum exactly at the wall boundary, while the 

fluctuating values have their peaks close to the wall. 

Entropy generation is dependent on the Reynolds number of the flow and the 

Prandtl number of the fluid. Figure 5.9 demonstrates us optimal Reynolds numbers for 

different Prandtl numbers. 
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Figure 5.9. Optimal Reynolds number dependency on Pr number 

 

We can observe certain gap in the range 0.1 < 𝑃𝑟 < 0.6, since Nusselt number 

correlations neither for liquid metals neither for gases covers this region. Using this optimal 

Reynolds numbers normalized or in other words generalized results for all the cases can be 

constructed. Moreover, we can use this information to understand what kind of fluid is best 

suited for given Reynolds number of the flow.  

In addition to optimal Reynolds value we can examine the entropy generated at 

optimal Reynolds numbers. Figure 5.10 illustrates to us that low Prandtl number fluids 

generates lesser entropy, thus, they are more efficient to use. In addition to it we can notice 

that at uniform heat flux system are in more order, producing lesser entropy, hence higher 

exergy of the system. 
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Figure 5.10. Optimum Entropy generation values 

 

In previous chapters nondimensional entropy equation for constant heat flux and 

mass flow rate were derived. Those results will be compared with simulation for both 

uniform and non-uniform heat flux cases. Figure 5.11 contains the results for 𝑃𝑟 = 1. 

 

Figure 5.11. Normalized entropy generation, Pr=1 
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We can observe that for high Re number fluid flows there is quite good agreement. At 

high Re number flows entropy production due to friction dominates while entropy 

generation due to heat flux has minor effect, hence we can notice that non-uniform and 

uniform curves coincide at large Re numbers. As opposite, at low Re number flows entropy 

generation due to heat flux prevails, thus we can see the difference in behavior of uniformly 

heated and non-uniformly heated systems. Important point is that there is a minimum point, 

where the sum of entropy production due to heat transfer and friction has minimum value. 

We should operate our system as close as possible to that extremum point.  

The similar results are obtained for liquid metal fluids, Figure 5.12-5.14. 

 

Figure 5.12. Normalized entropy generation, Pr=0.007 
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Figure 5.13. Normalized entropy generation, Pr=0.025 

 

Figure 5.14. Normalized entropy generation, Pr=0.046 

 

Smaller the Prandtl number of the fluid larger the difference between uniform and 

non-uniform cases, although that difference reduces to zero at large Reynolds numbers. 

Sometimes it can be useful to see how each component of entropy production terms 

changes with Reynolds numbers. Figure 5.15 exposes it to us. 
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Figure 5.15. Entropy production terms 

 

We can recognize that fluctuating components are greater than mean components of 

entropy production in all range of Re numbers, but they have the same behavior as their 

corresponding mean components. With increasing Re number friction component increases 

while heat component reduces intersecting at certain point. We can notice one more 

interesting point, the slope at which the entropy generation due to heat transfer changes are 
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much lower than the slope in case of entropy production due to friction, meaning that 

entropy generation due to temperature gradient is less sensitive to Re number changes than 

friction component of entropy generation. 
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CHAPTER 6                               

CONCLUSION 

Concentrated Solar Panels technology is considered one of the promising solar power 

generation systems especially for the large scale power generation. The idea behind this 

technology is to concentrate large amounts of solar rays into a point (in case of solar power 

tower) or into a line (in case of parabolic trough) named collector or receiver. Thus, fluid 

flowing within the collector transfers the heat of solar rays to heat engine, which usually is a 

steam turbine. Nowadays solar salts or organic fluids are mainly used as a heat transfer fluids 

in CSP. In current thesis particular attention is given in to liquid metals by highlighting their 

advantages. According to the research conducted, liquid metals are proposed as an advanced 

high temperature transfer fluids because of superior thermal conductivity, high chemical 

stability at elevated temperatures (which cannot be said for organic fluids) and wide range of 

temperatures at which fluid remains in liquid phase. 

From this research and analysis we can make few conclusions, the first one is to 

understand that the lower is the Prandtl number of the liquid the lesser entropy it will 

generate at its optimal Reynolds number. This information can be very useful since it will 

lead to operation of concentrated solar panels at higher efficiency, eventually it is one of the 

most important parameters in the design of the system. Second one, based on the results 

obtained, we can say that more uniformly the tube is heated the better effect it has on 

efficiency, especially if we operate our system at small Reynolds numbers where entropy 

generation due to heat transfer dominates.  

One thing we should keep in mind, there is always a minimum point of entropy 

generation for given fluid type, and that point is represented by optimum Reynolds number. 

We should operate our system as close as possible to that point. For given diameter of 

receiver tube, fluid type and knowing operating conditions we can compute optimal velocity 
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of the fluid inside the receiver in a way described in current study and control it, thus we will 

keep our system at highest efficiency. 

Concentrated solar panels possesses very big potential in energy sector, thus it is 

worth to investigate the possibilities of improving the performance of this technology, and 

that was the primarily objective of this thesis.
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