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ABSTRACT

Proximity operations about asteroids are challenging because of the non-uniform
gravity field that they generate, which is usually largely uncertain during design phases.
Asteroids, in fact, are usually mostly characterized in-situ, especially from the gravita-
tional point of view. Hovering and imaging the body are, in fact, fundamental science
phases, in the characterization of the object composition and nature. The gravity field
reconstruction plays, then, a fundamental role in the data fusion and in particular in
the enhancement of the scientific knowledge of the specific object.

In case the orbiter is a micro-satellite, a CubeSat or, in general, a platform with reduced
communication capabilities to ground, or a distributed system of platforms with high
autonomy requirements, those operations become extremely challenging.

In this framework, this work proposes a new approach to reconstruct the gravity field
of an objects using an Artificial Neural Network (ANN): the Hopfield Neural Network
(HNN). More specifically, the gravitational field of the object is represented through a
Spherical Harmonics Expansion (SHE) the coefficients of which must be estimated. In
particular, the identification problem is written as an optimization minJ (x) and the
performances of the identification are presented through several critical case studies in
different dynamical environments. Finally, those results are integrated in an Extended
Kalman Filter (EKF) navigation filter to assess its performance enhancement due to
the higher order model.

Keywords: Perturbed Two-Body Problem (P2BP), Spherical Harmonics Expansion
(SHE), Gravity Field, Parametric Identification, Small Bodies, Asteroids, Model Iden-
tification, ANN, HNN, Modified Hopfield Neural Network (MHNN), EKF, Navigation
Filter.
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SOMMARIO

Il design delle fasi operative di prossimitá di missioni aventi asteroidi come soggetti
risulta estremamente complesso a causa del campo gravitazionale che essi generano.
Infatti, questo risulta spesso differente rispetto al caso di corpo a simmetria sfer-
ica, richiedendo una modellazione piú complessa del semplice Problema a Due Corpi.
Questo é dovuto alla loro forma irregolare e alla distribuzione di massa, che spesso
risulta tutt’altro che omogenea. La ricostruzione del campo gravitazionale gioca un
ruolo fondamentale nella data fusion, che porta a una crescita sostanziale della conoscenza
scientifica dell’oggetto specifico.

Nel caso in cui l’orbiter é un micro-satellite, un CubeSat o, in generale, una piattaforma
con ridotte capacitá di comunicazione a terra, o un sistema distribuito di piattaforme
con elevate esigenze di autonomia, tali operazioni diventano estremamente impegnative
a il loro design risulta un problema incredibilmente sfidante.

In questo contesto, questo lavoro propone un nuovo approccio per ricostruire il campo
gravitazionale di un oggetto. In poarticolare, l’estensione della rete neurale ricorrente
di Hopfield al problema specifico viene modellata. Il campo gravitazionale dell’oggetto
é rappresentato attraverso un’espansione in armoniche sferiche i cui coefficienti ven-
gono stimati dalla rete. In particolare, il problema di identificazione é rappresentato
da un’ottimizzazione minJ (x), risolta dalla rete neurale in analisi. Le prestazioni
dell’identificazione sono presentate attraverso diversi casi studio in diversi ambienti di-
namici. Il metodo viene quindi esteso a casi di asteroidi binari. Infine, tali risultati
sono integrati in un filtro di navigazione (filtro di Kalman esteso) con l’obiettivo di
valutare il miglioramento delle sue prestazioni con il modello di ordine superiore.

Keywords: Problema dei Due Corpi Perturbato, Identificazione Parametrica, Aster-
odi, Identificazione Modello Dinamico, Reti Neurali, Filtro di Navigazione, filtro di
Kalman.
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INTRODUCTION

Because there is a law such as gravity,
the universe can and will create itself

from nothing.

Stephen Hawking

In recent years, the interest in minor celestial bodies such as asteroids and comets has
grown in the scientific community. They are extremely numerous in the Solar System
and even though they represent only a tiny fraction of the mass orbiting around the
Sun, their study is fundamental to understand the formation and the evolution of the
Solar System as well as the birth of life on Earth.

In parallel, advances in CubeSats technology allow the use of these platforms in com-
plex scientific missions: the small volumes and masses, the versatile purpose, as well
as the fast development time associated with a potential high return-to-cost ratio are
really attractive features and result the origin of the increasing number of new mission
proposals. The joint ESA/NASA Asteroid Impact and Deflection Assessment (AIDA)
mission is a clear example to how CubeSats supporting capabilities can enhance the
scientific as well as the technological return [1]. However, operation of a CubeSat in the
deep-space microgravity environment brings additional challenging factors in their de-
velopment, including the increased radiation environment, the significant contribution
of non-gravitational forces to the satellite orbit, the limited communication opportuni-
ties as well as the limited computational capabilities. These factors need to be taken
into account in the form of modifications to the classic CubeSat architecture. In partic-
ular, semi-autonomous satellite operation, navigation, and the active orbit correction
are usually required in those cases [2].

From the scientific point of view, one upon the major interests in the characterization
of small bodies is the gravitational mapping of the body. In fact, if one think to
an autonomous robotic mission to a minor body, the first problem is the model of
the body’s dynamical environment: it is usually not available, at least in the early
phases of the mission. Then, the gravitational mapping task appears to be crucial
and results even more crucial if the mission includes landings or, in general, proximity
operations. The most clear example is the case of ESA mission Rosetta, where the
complex dynamical environment of the comet 67P/Churyumov-Gerasimenko have been
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analysed. Moreover, a fine gravitational mapping is required not only for the proximity
operations them self but also to reconstruct a posteriori the internal structure of the
body and so its origin. In fact, gravity science, in combination with improved knowledge
of the shapes of the body from observations obtained from on-board cameras provide
insights of the interior of the body, from the core to the crust [3].

Finally, the gravitational mapping of small bodies results even more challenging if a
CubeSat or, in general, a platform with reduced communication capabilities to ground
is used to do it. In this framework, this work want to provide a new approach to
reconstruct the gravity field of either unknown or partially known objects.

0.1 A Brief Literature Review

The simplest technique for measuring in-situ a body’s gravity from orbit is to measure
the orbital period (or semi-major axis) of an object orbiting about it: by tracking
the spacecraft’s motion, one can estimate properties of the object’s gravitational field.
Kepler’s third law, in fact, allows the body’s mass to be determined [4]: this provides
complete knowledge of the body’s gravity field, if the body’s mass distribution is spher-
ically symmetric. From this information, the Restricted Two-Body Problem (R2BP)
model is built: it is really simple, analytically solvable as well as one of the most used
nowadays for mission design purposes [5].

However, the R2BP is not an accurate model even in case the body appears nearly
spherical: as an example, consider the case of the Earth. To the Earth, in fact, is
associated a flattening of about 0.0033 and as a first approximation, the oblateness
coefficient J2 is crucial in terms of satellite motion determination [6]. In this case,
high fidelity models are available tanks to the Gravity field and steady-state Ocean
Circulation Explorer (GOCE) ESA mission and Gravity Recovery And Climate Experi-
ment (GRACE) NASA mission [7]. These are unique cases since those missions have the
possibility to relay on the GPS for the orbit determination: it gives extremely accurate
measurements so that the gravitational mapping results to be extremely accurate too.
The results of the model coming from GOCE mission has been then used to reconstruct
a fairly accurate geoid model and so a density map of the planet.

In the case of a small body, such as an asteroid or a comet, however, the mass distribu-
tion is usually much more irregular than the case of the Earth, so that the gravity field
results to be largely unknown even during the proximity operation phases. However,
the gravitational field of those bodies is much weaker that in a planetary case so that
in some cases (as in the case of JAXA’s Hayabusa2 mission [8]), those bodies are con-
sidered as perturbation to the spacecraft heliocentric orbit from the mission analysis
point of view.

If, indeed, the body is flown, the R2BP results to be really inaccurate for mission
analysis & design purpose, due to the irregularities of the body but also due to the
presence of Solar Radiation Pressure (SRP), that is usually comparable to the body’s
gravity field in magnitude. For these reasons designing a natural periodic orbit about
those kind of bodies is a complicated task since exist only with limited geometry and
with a complex of orbital shape [9], [10], [11].
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0.1. A Brief Literature Review

For what regards the main gravity field, there have been a certain number of missions
that uses radio-science to estimate higher-order terms of the gravitational potential
field: Miller et al. [12] presents a 10th order model for 433 Eros tracking NEAR-
Shoemaker while Konopliv et al. [3] produced a 20th order gravity field model for 4
Vesta via tracking Dawn. This technique works well for large bodies but its accu-
racy decreases drastically for smaller bodies due to uncertainties arising from the SRP.
Radio-science can be used, in general, in different ways to reconstruct the gravitational
field. On one hand, the radio-science data can be processed directly to give a certain
expansion of the gravity field of the body: an ellipsoidal harmonics expansion of 433
Eros has been developed in [13], while a spherical harmonics one in [3]. On the other
hand, the data can be used to extract a shape model of the body in order to be used
in a shape-based gravitational model (such as the constant density polyhedron one).
Other authors in [14] propose, instead, a superposition of both this kind of results: a
gravity model fitting superimposing point-mascon and spherical harmonic fields to a
high-fidelity polyhedral model, resulting in reasonably fast and globally valid Pareto
optimal model.

A technique suitable for smaller bodies was employed by the Hayabusa spacecraft
at 25143 Itokawa [15]. This involved first propulsively hovering above the asteroid,
then ceasing propulsion, to fall freely, measuring height above the asteroid via LIDAR
measurements [16]. However, this technique provide a measure of only the mass of the
body, without any other information about the higher order harmonics of the gravity
field of the body.

In [17] a new technique that uses the fly-bys of a swarm of simple small probes (micro-
sat) is proposed for the estimation of the gravity field and the mass of the body. Fly-bys,
however, can be used also with more massive spacecraft for the reconstruction of the
gravitational features of a body, as in the case of OSIRIS-REx [18]: in this case the
spacecraft is tracked from the DSN and from the doppler-range data the gravitational
parameter can be recovered. As always, combining it with the volume and the density
of the asteroid, a high-fidelity approximation of the gravity field can be recovered using
a constant polyhedron model or more refined models.

A recent technique is presented in [19] and uses formation flying: it has two spacecraft
flying in formation about a target body, measuring range-rates between them, from
which gravity-field parameters are extracted. This method has been used in the GRACE
Earth gravity mission, and the GRAIL Lunar gravity mission. However, this technique
require two spacecraft flying in formation, and processing the measurements involves
a quite complicated non-linear estimation process.

Another novel technique for measuring the gravity field of a body from orbit uses
the Tidal Acceleration Gravity Gradiometry (TAGG) technique and is presented in
[20]. This method involves measuring the tidal acceleration field at a point offset from
the mass-centre of a spacecraft, which is caused by the gravity-gradient of a nearby
body, using an absolute (bias-free) accelerometer. This method has been applied (in
the study) to the case of Didymoon, the ∼ 150 m diameter secondary body of 65803
Didymos binary system, into which NASA plans to impact its DART spacecraft.

Last but not least, it is no worth to underline that, nowadays, a well-established method
capable to identify the gravitational field of a body on-board and online is not avail-
able, at least with traditional methods. There are, however, a number of studies in
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which novel techniques, such as machine learning and reinforcement learning ones are
proposed. Being most of those methods associated with a neural network, they result
lightweight from the computational point of view but usually have a major problem:
they need a training. In space applications, in fact, a training is not admissible since
during it the network can fail dealing to the failure of the mission.

In general, since the aim to reconstruct the gravity field of a body can be related to non-
linear system identification there are a number of methods that uses neural networks to
identify the system from scratch. As an example, Furfaro et al. in [21] propose the use
of Extreme Learning Machine (ELM) theories to design, train and validate Single-Layer
Forward Networks (SLFN) capable of learning the relationship between the spacecraft
position and the gravitational acceleration. Moreover, the analysis of the performances
in constant density models for 433 Eros and 25143 Itokawa show that the SLFN is able
learn the desired functional relationship both globally and as well as locally resulting
in a robust neural algorithm for on-board, real-time calculation of the gravity field
needed for close-proximity operations. This method, however, as said before, needs a
training for the SLFN.

There are novel techniques that reconstruct the gravitational field in an un-direct
way: as an example, Willis et al. in [22] propose to use neural reinforcement learning
algorithm to control a spacecraft around a small celestial body whose gravity field is
unknown. The controller optimization is formulated as a Markov Decision Process
(MDP) learning problem. A Direct Policy Search (DPS) with a genetic algorithm to
obtain controller policies is preformed, with a policy architecture presented as a Feed
Forward Neural Networks (FFNN) with one hidden layer. Also in this case, a batch of
data are needed to be used in the FFNN’s parameters optimization.

So, there are a number of studies that proposes the use of evolutionary methods for
forward modelling the gravitational environment about asteroids and other bodies but
the main problem, as said, is that they’re usually associated with a training. Other
examples can be the use of Back Propagation Artificial Neural Network (BPANN) for
the Earth gravity field approximation is presented in [23] and the use of ANN in [24]
for a body gravity field interpretation. It is of interest from this point of view, the
use of Radial Basis Functions (RBF)-based networks that are an alternative to the
popular Multi-Layer Perceptors (MLP) (e. g., the SLFN and the ANN discussed before)
[25]. Moreover, in [26] and [25] it has been shown that a RBF-based networks can be
used for the online identification of non-linear system.

More recently, in [27] the use of a neural network based Modified State Observer
(MSO) is presented. It is a fairly new technique that uses the MSO for estimating the
uncertainties that a satellite may experience while in orbit, with the primary advantage
that the neural network is trained online, meaning that no offline learning is required.
This method appears to be one among the most promising but it reconstruct the gravity
field in a indirect way: in fact the MSO reconstruct the accelerations along three axis
as (ax, ay, az), without giving any other informations. Indeed, if a spherical harmonics
expansion model wanted to be used to model the gravity field of the body, a forward
least-square optimization must be performed with those reconstructed accelerations to
extract the expansion.
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0.2. Problem Definition & Thesis Outline

0.2 Problem Definition & Thesis Outline

The main objective of this work is the online and in-situ identification of the gravita-
tional field of bodies such as asteroids and comets with platforms with reduced compu-
tational capabilities and communication opportunities. In particular, the identification
goal is to reconstruct the SHE model of the selected body and not to reconstruct directly
the resulting accelerations. Once the SHE model is reconstructed, then, the preliminary
design of a navigation filter based on the reconstructed model is assessed, by the use
of an EKF. These goals are achieved through 9 chapters organized as follows:

Cpt.1 In this chapter the dynamical models used for the orbital dynamics as well
as to represent the dynamical environment of the small bodies are presented.
The models allow to represent the dynamics of a spacecraft coupled with the
rotation of the body as well as to represent and design orbits in binary systems.

Cpt.2 This chapter, instead, deals with the mathematical models used to represent
the gravitational field of the selected bodies, U . In particular, different mod-
els are presented: the spherical harmonics expansion model, the shape-based
constant density polyhedron model and the tri-axial ellipsoid one.

Cpt.3 The last chapter of the first part has to be considered as a brief analysis on
the gravitational field of small bodies, being it much different from the point-
mass one. So, some examples are presented and some gravitational models are
compared from a qualitative and a quantitative point of view.

Cpt.4 This chapter deals with the mathematical modelling of the neural network
that is used to reconstruct the SHE coefficients. In particular, the parametric
identification problem is formulated as an optimization problem to be solved
by a specific tailored ANN called MHNN as well as the convergence is assured
by a Lyapunov stability analysis.

Cpt.5 This chapter is a transition one: since the HNN has never being used in gravi-
tational identification problems, its convergence velocity and accuracy is anal-
ysed on simple non-rotating, axis-symmetric bodies. Some useful hints are
extracted as well as the network instability phenomena is underlined.

Cpt.6 In the conceptual mission chapter, the idea is to think how a scientific mission
that approach a partially known object would refine the gravitational model of
the body using the MHNN. To do so, some parametric analysis are performed
on the body shapes and masses as well as on the spacecraft’s orbits used.

Cpt.7 The core of the gravitational model identification is presented in this chapter.
The cases of Bennu, Eros, Castalia as well as the binary KW4 are presented.
Parametric analysis are performed on the influence of rotational state, force
perturbations (mainly SRP), instruments noise as well as orbital initial condi-
tions to the network convergence.

Cpt.8 The third part of the work is dedicated to the navigation of the body. More
specifically this chapter deals with the mathematical modelling of the EKF as
well as to some hints of its numerical implementation.

Cpt.9 The last chapter, indeed, present some case studies in which the aim is to

7



integrate the EKF model with the higher-order SHE models reconstructed by
the MHNN. Also in this case parametric analysis are performed to understand
how the convergence of the filter behaves with different dynamical models as
well as different bodies.
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MINOR BODIES: CLASSIFICATION,
SHAPE MODELS AND SELECTION

In addition to the eight planets, there are populations of smaller objects orbiting
the Sun: comets, asteroids, and trans-neptunian objects. These populations differ
significantly from each other by the orbits and physical properties of their members.
Comets are icy bodies in the outer Solar system with stellar and galactic perturbations
delivering some of them periodically close to the Sun. Trans-neptunian objects, as
well, are icy, but have orbits that constantly keep them in the outer borders of the
Solar system.

Asteroids, which are the subjects of this thesis, are rocky bodies remnants left over
from the early formation of our solar system about 4.6 billion years ago.Most of them
can be found orbiting the sun between Mars and Jupiter within the main asteroid belt,
that will be called main belt from now one. From Figure 1 and Figure 2 can be seen
that the distribution of these objects is really dense.

Asteroids were discovered in 1801, when Ceres was first observed by Piazzi. The name
asteroid ("star-like") was given by William Herschel in 1802, because these objects
are so small compared to their distance from the Earth that they are observed as
point sources, just like stars. The next three asteroids Pallas, Juno, and Vesta were
discovered within the next seven years, after which it took almost 40 years to discover
the next one. Ever since, increasing numbers of new asteroids have been discovered
per each year. At the moment, according to [28], there are almost 790000 numbered
asteroids and almost 20000 numbered near-Earth asteroids (as of February, 2019). The
estimated total number of 1-km-sized objects or larger is 1.1-1.9 million (in the main
belt only), according to the results from the ISO (The Infrared Space Observatory)
Deep Asteroid Search.

The determination of diameter and shape of asteroids can be done using several different
methods [29], such as inverse light-curve technique, occultation methods, radio-location
method, and finally direct on-site inspection. In any case, the physical model of the
body is a reconstruction from indirect measurements and so it is exact within a certain
accuracy. As an example, if a inverse light-curve method is used, the accuracy if
function of the sampled the light-curve points [30]. The more densely sampled the
light-curve points are, the more detailed information is obtained i. e., the most accurate
the model is.
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Figure 1: Inner solar system minor bodies. Credits [28].
In green, Main Belt objects; in red, near-Earth objects; in blue, Trojans.

Figure 2: Main belt bodies distribution in function of the semimajor axis and the
eccentricity. Credits Alan, Chamberlin (2007, JPL/Caltech).
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0.1. Classification

0.1 Classification

Asteroids lie within three regions of the solar system. Most asteroids lie in the main
belt, that is estimate to contain more than 200 asteroids larger than 100 km, between
1.1 million and 1.9 million asteroids larger than 1 km in diameter and millions of smaller
ones. Many asteroids lie also outside the main belt. Trojan asteroids orbit a larger
planet in two special places, known as Lagrange points, where the gravitational pull of
the sun and the planet are balanced. Jupiter Trojans are the most numerous, boasting
nearly as high a population as the main asteroid belt. Neptune, Mars and Earth also
have Trojan asteroids.

NEA circle closer to Earth than the Sun. According to European Space Agency (ESA),
roughly 10’000 of known asteroids are in this class. Amor asteroids have close orbits
that approach but no not cross Earth’s path, according to NASA. Apollo asteroids have
Earth-crossing orbits but spend most of their time outside the planet’s path. Aten
asteroids also cross Earth’s orbit but spend most of their time inside Earth’s orbit.
Atira asteroids are near-Earth asteroids whose orbits are contained within Earth’s
orbit.

In addition to classifications of asteroids based on their orbits, most asteroids fall into
three classes based on composition:

• The C-type or carbonaceous asteroids are grayish in color and are the most
common, including more than 75 percent of known asteroids. They probably
consist of clay and stony silicate rocks, and inhabit the main belt’s outer regions.

• The S-type or silicaceous asteroids are greenish to reddish in color, account
for about 17 percent of known asteroids, and dominate the inner asteroid belt.
They appear to be made of silicate materials and nickel-iron.

• The M-type or metallic asteroids are reddish in color, make up most of the
rest of the asteroids, and dwell in the middle region of the main belt. They seem
to be made up of nickle-iron.

0.2 Shape Models

In this study, we consider a set of asteroids with different dynamical environments as
well as fairly different inertial and physical properties. We assume, to test the learning
algorithm, that the shape is known a-priori from previous studies, but with the aim
to eliminate the "dependence" of the method on the body, thus to generalize also to
cases in which the body properties are not known a-priori.

In general, the shape model of a celestial body represents its topographical character-
istics by means of certain model parameters. Usually the raw data coming from an
Astronomical Observatory or from a Deep Space Probe must be elaborated, reduced
and transformed in a topographic map, representing the surface of the body, for the
successive analyses. This map is then transformed in a vertex model, consisting on a
finite set of point describing the geometry of the body and in particular, its surface.
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In general, the coordinates of these points are expressed in Cartesian or in a Spherical
reference system centred in the centre of mass of the body.

Then, in order to convert all these single points in a topological entity, a connectivity
list between the numbered vertices must be provided to univocally define the shape of
the body. The connectivity list is simply a list of the vertices that must be connected
together in a certain order to obtain the elemental constituent of the whole shape
model. The connectivity list can be computed performing a Delaunay triangulation
[31] in a 3D Euclidean space, or can be obtained through a longitudinal and latitudinal
connection pattern of the vertices.

In the following sections there are presented a series of shape models that consists in a
vertex list, expressed in the 3D Cartesian reference with the origin in the centre of mass
of the body and the axis aligned with the principal inertia axes of the uniform body.
These axis are oriented in such a way that the ẑ axis is the one of the maximum inertia
axis, while the x̂ is along the minimum inertia axis and ŷ completes the right-hand
reference frame.

0.3 Physical Properties

The characterization of the asteroid starts from its physical properties, such as mass,
density, volume. Since the shape models are assumed to be known and of polyhedrical
type, the volume (V ) of the body is known or can be computed in a simple way.
Then, since the mass (M) is assumed to be known or estimated in some way, the
average density of the model (%) can be computed by the simple relation % = M/V .
Note that this is the average density, not the true density distribution of the body.
Moreover, it is no worth to be said that since the body is composed by polyhedrons,
its inertial properties depends on the discretization. Indeed the computation of the
inertial properties refers to the method presented in [32].

0.3.1 Shape descriptors

Since the majority of asteroids is non-spherical, and may have irregular, randomly
shaped geometries, they can be classified with descriptors comprising the characteri-
zation of the global shape compared with a sphere. The descriptors used in this study
are:

• Sphericity descriptor, ref. Wadell (1932):

ΨS =
Atrue

Acs
=

(
Vtrue

Vcs

) 1
3

where here Vtrue (Atrue) is the volume (area) of the body while Vcs (Acs) is the
volume (area) of the smallest circumscribing sphere. Sphericity values range from
0 (non-spherical) to 1 (perfect sphere).

• Roundness descriptor, ref. Wadell (1932):

ΨR =
Rmin

Rmax
(1)

12



0.3. Physical Properties

which is the ration of the radius of curvature of the largest inscribed circle (so
in this case, the minimum radius) and the radius of the smallest circumscribing
sphere. On the base of ΨR it is possible to classify the objects according with 1.

Table 1: Power’s scale of roundness.

Class Very Angular Angular Sub-Angular Sub-Rounded Rounder Well Rounded

ΨR 0.12 - 0.17 0.17 - 0.25 0.25 - 0.35 0.35 - 0.49 0.49 - 0.70 0.70 - 1.00

The defining S as the smallest dimension, I as the mean dimension and L as the longest
dimensions of the body, three other ratios can be defined:

• Aspect ratio: ΨAR = S/L

• Elongation: ΨE = I/L

• Flatness : ΨF = I/S

By the use of those 5 descriptors, in the next section the physical characterization of
some shape models, with different level of accuracy, is performed.

0.3.2 Bulk properties

Density is perhaps the most fundamental property for dis- criminating the composition
and internal structure of asteroids. It is also extremely difficult to measure, and the
number of precisely measured asteroid densities is still very limited. This is because
both mass and volume are required to determine the density of an asteroid. However,
a density estimate by itself can restrict the list of possible components of an asteroid’s
composition. The internal structure can be constrained using a comparison of the
asteroid bulk density (%) with the grain density of its most likely constituents (%C)
[33].

• If % � %C the asteroid is underdense. This is the case of asteroids that have
porous internal structure i. e., a fraction of volume is occupied by empty space
p = 1− %/%C .

• If % � %C the asteroid is overdense, and some highdensity material must be
present in its interior. This could be due to gravitational self-compression or the
result of the collision between two bodies of different densities. Most asteroids
with a mass above 1019 kg are overdense, while the majority of asteroids below
that threshold present some level of porosity.

• If % ∼ %C no clear conclusions can be made. However, given the comparable
spectral properties observed among members of dynamical families, it may be
reasonable to assume that the body is homogeneous.

This last case is the one taken into account in that work, however more complex bulk
density distributions can be used to refine the analysis in the underdense and overdense
case.
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0.3.3 The rubble-pile hypothesis

Originally, scientists predicted small asteroids to be hard and rocky, as any loose surface
material (regolith) generated by impacts was expected to escape their weak gravity.
Aggregate small bodies were not thought to exist, because the slightest sustained rel-
ative motion would cause them to separate. But observations and computer modeling
are proving otherwise, in fact most asteroids larger than a kilometer are now believed
to be composites of smaller pieces.

The rubble hypothesis, proposed decades ago by scientists, lacked evidence, until the
planetologist Shoemaker realized that a huge craters on the asteroid Mathilde and its
very low density could only make sense together: a porous body such as a rubble pile
can withstand a battering much better than an integral object. It will absorb and
dissipate a large fraction of the energy of an impact; the far side might hardly feel
a thing. At first, the rubble hypothesis may appear conceptually troublesome. The
material strength of an asteroid is nearly zero, and the gravity is so low one is tempted
to neglect that too. The truth is neither strength nor gravity can be ignored: gravity
binds a rubble pile together.

The size of an asteroid should determine which force dominates. One indication is
the observed pattern of asteroidal rotation rates. Some collisions cause an asteroid to
spin faster; others slow it down. If asteroids are monolithic rocks undergoing random
collisions, a graph of their rotation rates should show a bell-shaped distribution with
a statistical ’tail’ of very fast rotators. If nearly all asteroids are rubble piles, however,
this tail would be missing, because any rubble pile spinning faster than once every two
or three hours would fly apart.

0.4 Characterization of Selected Objects

0.4.1 Asteroids

A selection of asteroids is presented here. Data credits [34].

101955 Bennu Discovered by the LINEAR Project 11 Sept. 1999, 101955 Bennu
is a carbonaceous asteroid in the Apollo group. It is the target of the OSIRIS-REx
mission which is intended to return samples to Earth in 2023 for further study. The
shape mode of the body is presented in 3 on the next page at the maximum resolution.

433 Eros Discovered on Aug. 13, 1898 by Gustav Witt, and independently on the
same day by Auguste H.P. Charlois. Eros is famous as the first asteroid to be orbited
by a spacecraft, and as the first one on which a spacecraft landed. Eros is an S-type
asteroid, the most common type in the inner asteroid belt. It’s a typical member of the
Amors group of NEAs, which cross Mars’ orbit but do not quite reach that of Earth.
The shape mode of the body is presented in 4 on the facing page at the maximum
resolution.
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0.4. Characterization of Selected Objects

Figure 3: Polyhedron Shape Model for 101955 Bennu. (2018)
Credits: NASA/Goddard/University of Arizona. High-res. model ∼ 50k faces.

On-line resource: https: // www. asteroidmission. org/

Figure 4: Polyhedron Shape Model for 433 Eros. (2008)
Credits: NASA Planetary Data System. High-res. model ∼ 200k faces.

On-line resource: https: // space. frieger. com/

15

https://www.asteroidmission.org/
https://space.frieger.com/


Figure 5: Polyhedron Shape Model for 4769 Castalia.
Credits: NASA Planetary Data System. Low-res. model ∼ 5k faces.
On-line resource: https: // sbn. psi. edu/ pds/ resource/ rshape. html

4769 Castalia Is a near-Earth crossing asteroid that was discovered by Eleanor F.
Helin (Caltech) on August 1989. It has a dumbell shape and is about 1.8 kilometers
across at its widest. Its two distinct lobes are about 0.75 kilometers across. The
two lobes were probably separate objects that came together after a relatively gentle
collision. The surface of both lobes have similar composition and roughness. The
effective resolution of the reconstruction is about 100 meters. This is the first detailed
3D model of a near Earth asteroid yet produced, and the most conclusive evidence to
date of a "contact-binary" object in the solar system. The shape mode of the body is
presented in 5.

65803 Didymos Is a sub-kilometer asteroid and synchronous binary system, clas-
sified as potentially hazardous asteroid and near-Earth object of both the Apollo and
Amor group. It is the target of the proposed AIDA asteroid-mission. The asteroid was
discovered in 1996, by the Spacewatch survey at Kitt Peak, and its small 170-meter
minor-planet moon was discovered in 2003. Due to its binary nature, it was then named
"Didymos", the Greek word for twin.

0.4.1.1 Binary system (66391) 1999 KW4

The 1.5-kilometer-diameter primary (Alpha) is an unconsolidated gravitational aggre-
gate with a spin period ∼2.8 hours, bulk density ∼2 grams per cubic centimeter,
porosity ∼50%, and an oblate shape dominated by an equatorial ridge at the object’s
potential-energy minimum. The ∼0.5-kilometer secondary (Beta) is elongated and
probably is denser than Alpha. Its average orbit about Alpha is circular with a radius
∼2.5 kilometers and period ∼17.4 hours, and its average rotation is synchronous with
the long axis pointed toward Alpha. Exotic physical and dynamical properties may be
common among near-Earth binaries [35].
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0.4. Characterization of Selected Objects

Figure 6: Polyhedron Shape Model for 65803 Didymos A.
Credits: NASA Planetary Data System. Low-res. model ∼ 5k faces.

On-line resource: https: // space. frieger. com/

Table 2: Asteroids shape model parameters.

Rounded Irregularly Shaped

Asteroid Bennu Didymos A Eros Castalia

V (m3) 6.1713e7 1.2488e8 2.5072e12 6.6782e08
% (103 kg/m3) 1.2628 4.1875 2.6672 0.7487
ḡ (m/s2) 8.5521e-5 4.5402e-3 3.6032e-4 1.0123e-4
ΨR (-) 0.7577 0.8244 0.1716 0.2963
ΨS (-) 0.6254 0.7020 0.1092 0.2331
ΨAR (-) 0.7577 0.8244 0.1716 0.2963
ΨE (-) 0.4263 0.4460 0.2811 0.3258
ΨF (-) 0.5625 0.5410 1.6389 1.0995
Tr (h) 4.2880 2.2593 5.2656 4.0950
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Table 3: Binary system KW4 shape model parameters.

Alpha Beta

M (1012 kg) 2.353 0.135
V (m3) 1.1953e9 4.8035e7
% (103 kg/m3) 1.9685 2.8105
ḡ (m/s2) 3.6542e-04 1.8409e-04
ΨR (-) 0.7144 0.5785
ΨS (-) 0.5926 0.4423
ΨAR (-) 0.7144 0.5785
ΨE (-) 0.4182 0.3737
ΨF (-) 0.5854 0.6460
Rmax (km) 0.7838 0.2960
Rmin (km) 0.5600 0.1712
Tr (h) 2.7645 ± 0.0003 17.4223
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Part II

Modelling Small Bodies Environment
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CHAPTER 1
NON-KEPLERIAN DYNAMICAL MODELS

FOR SMALL SOLAR SYSTEM BODIES

This chapter deals with the fundamental background knowledge needed to model
the dynamical environment in the vicinity of small solar system bodies. So the mathe-
matical formulation is presented as well as the properties of each dynamical model are
discussed when relevant in the spacecraft trajectory design.

In general, the dynamics of a particle about such kind of bodies is extremely different
from the R2BP, where the attractor is reduced to a point mass and an analytical solution
exists [5]. In fact, in the case of small solar system bodies, this reduction cannot be
performed and the exact shape of the body must be taken into account to recover the
orbital path of the particle. Moreover, in order to fully describe the environment in the
vicinity of the body is necessary to take into account also the rotational dynamics of
the body and therefore the orbital dynamics of the particle will be non-linearly coupled
with the motion of the body. This characteristic, in fact, leads to trajectories that
depends on the body spin rate. Finally, the non-gravitational perturbations such as
the SRP and third-body perturbation usually are comparable to the gravitational ones
making the design of the trajectory even more difficult. If a binary system of bodies
is then considered, the difficulties increase because of the strong coupling between the
rotational dynamics of the two bodies and their mutual gravity field.

The description of the dynamical models needed to describe the particle motion starts
form the definition of the reference frames in which those models are expressed. In
particular, this section is divided in two parts: the first is relative to the reference
frame, the notation and the equation of motion needed in the case the trajectory design
is associated to a single body, or P2BP, while the second describes the one needed in
the case of a the design of a trajectory in the case of a binary system or Modified
Circular Restricted Three-Body Problem (MCR3BP). Finally, some hints about the
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Chapter 1. Non-Keplerian Dynamical Models for Small Solar System Bodies

Figure 1.1: Fundamental geometry and reference frames used for the P2BP.

implementation for the numerical integration of the problem are presented, in order to
highlight methods used and difficulties encountered.

1.1 The Perturbed Two-Body Problem

The fundamental geometry for this problem is presented in Figure 1.1. Three reference
frames are represented there: an inertial frame To = span{Î , Ĵ , K̂} centred in O.
This frame, in particular, is coincident with the J2000 reference frame. Then two
frames centred in G, the centre of mass of the body, are defined. An inertial frame
Tn = span{̂i, ĵ, k̂} and a body-fixed one Tb = span{b̂1, b̂2, b̂3}. This last frame is of
interest since usually small solar system bodies rotates.

Now, let us call R(t) the position of the attracted massless particle P in the Tn frame. It
can be expressed in the body-fixed frame Tb as r(t) = Rb

n(t)·R(t), where Rb
n(t) indicates

the direct cosine matrix from the n to the b reference. For this specific problem other
quantities of interest are:
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1.1. The Perturbed Two-Body Problem

• Da(t) : position of the small body in the To reference;

• S(t) = −Da(t) : position of the Sun in the Tn reference;

• s(t) = Rb
n(t) · S(t) : position of the Sun in the Tb reference;

• Dk(t) : position of the k-th perturbing body in the To reference;

• Dk−a(t) : position of the k-th perturbing body in the Tn reference.

• dk−a(t) = Rb
n(t)·Dk−a(t) : position of the k-th perturbing body in the Tb reference.

Where those quantities are useful to compute the non-gravitational perturbations that
will be defined in the following part.

Now, the equation of motion for the problem can be written in either the To, the
Tn or the Tb reference frame. In this work the integration of the equation of motion
is performed in the Tb being, in this frame, the gravitational field not-dependant on
time but only on the position of the particle. This will be a big advantage, as shown
later. Since the position vector in the rotating coordinates can be computed as r(t) =

Rb
n(t) ·R(t) then, being Rn

b (t) =
(
Rb
n(t)

)−1
=
(
Rb
n(t)

)T:
R(t) = Rn

b (t) · r(t) (1.1)

Then the velocity and the acceleration vectors reads:

Ṙ = Ṙn
b · r + Rn

b · ṙ (1.2)

R̈ = R̈n
b · r + 2Ṙn

b · ṙ + Rn
b · r̈ (1.3)

Here the time dependence is omitted for clarity. Calling aT(t) the sum of the acceler-
ations acting on the particle in the Tb reference then AT(t) = Rn

b (t) · aT(t), so:

R̈n
b · r + 2Ṙn

b · ṙ + Rn
b · r̈ = Rn

b · aT (1.4)

At this point, right-multiplying each term Eq. (1.4) for Rb
n and recalling that Rb

n ·Rn
b =

I3x3, the following expression is obtained:

r̈ + Rb
nR̈n

b · r + 2Rb
nṘn

b · ṙ = aT (1.5)

1.1.1 Rotational kinematics

Eq. (1.5) can be written with explicit dependence with respect to a general angular
velocity vector ω of the Tb with respect to Tn. In particular, the time dependence of
the rotation matrix can be related to the angular velocity. According to [36], [37]:

Ṙb
n = −[ω] · Rb

n (1.6)

Where here [ω] is the skew symmetric cross product matrix, defined as:

[ω] =

 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 (1.7)

Then once ω(t) is known then Eq. (1.6) can be integrated in order to compute Ṙb
n(t)

at the next time instant. But, taking into account the numerical errors, Ṙb
n(t) is

not guaranteed to stay orthogonal, then, it is necessary to implement a numerical
orthogonalization procedure that, at each time step, enforces the orthogonality.
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Chapter 1. Non-Keplerian Dynamical Models for Small Solar System Bodies

1.1.2 Translational dynamics

The equation of motion for the particle can be derived from Newton’s second law of
motion. So can be written as in Eq. (1.5). Then by using the rotational kinematics
equation, the equation of motion can be written:

r̈ + 2ω × ṙ︸ ︷︷ ︸
Coriolis

+ ω × (ω × r)︸ ︷︷ ︸
Centrifugal

+ ω̇ × r = aT (1.8)

Where here the right hand side of the equation can be expressed as:

aT(r, s,dk−a) = aG(r) + aSRP(r, s) +
N∑
k=1

a3rdk
(r,dk−a) (1.9)

here aG is the gravitational acceleration due to the gravity field of the body, aSRP the
acceleration contribution due to the SRP and a3rdk

the acceleration contribution due to
the k-th third-body. Note that here the dependence of each contribution is shown.

1.1.3 Rotational dynamics

The quantities in Eq. (1.8) are connected with the rotational dynamics of the main
body and are related together by the rigid body motion equation. It is possible to
express the Euler’s second law in the body fixed frame as:

ḣ + ω × h = m (1.10)

where here the angular momentum is expressed as h = I ·ω, with I is the inertia tensor
of the body. Since the body frame is assumed to be the principal inertia reference,
then:

I =

Ix 0 0

0 Iy 0

0 0 Iz

 (1.11)

Then Eq. (1.10) becomes:
Iω̇ + ω × Iω = m (1.12)

So, recognizing that ω = [ωx, ωy, ωz] and m = [mx,my,mz] it is possible to obtain the
Cartesian scalar form of Eq. (1.12).

1.1.4 Complete fully-coupled model

The complete dynamical and kinematic model for the P2BP is now defined. It is impor-
tant to note that the equation of motion presented in the previous sections are coupled
and so they must be solved together to correctly propagate the dynamics. Hence, the
full model is composed by a (3 × 3) first order matrix differential equation defined in
Eq. (1.6), a (3× 1) second order differential equation defined in Eq. (1.8) and a (3× 1)
first order differential equation defined in Eq. (1.12). Moreover, for the numerical in-
tegration, Eq. (1.8) must be transformed in a first order equation leading to a (6× 1)
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1.2. The Reduced-Order Perturbed Two-Body Problem

differential equation. Then the complete coupled model is composed by 18 different
first order scalar differential equations, expressed in the Cartesian body-fixed reference
frame. So the state vector of the whole system may be represented as:

q = {R11, R12, . . . , R33, ωx, ωy, ωz, x, y, z, ẋ, ẏ, ż}T (1.13)

where R11, R12, . . . , R33 are the 9 components of the direct cosine matrix Ṙb
n. The entire

system model can be written as:
q̇ = f(q) (1.14)

with known initial conditions q0, evaluated at t = 0.

1.2 The Reduced-Order Perturbed Two-Body Problem

A reduced order model for the P2BP can be recovered in the case the body is considered
to rotate at a constant speed about its major inertia axis, that is assumed to be b3.
Then, in this case ω = Ω = Ωb3 and so m = 0. So there is no need to integrate for the
angular velocities as well as for the kinematic since a direct time-dependence can be
extracted for Rb

n. Assuming that, at t = 0 the two references Tn and Tb are coincident,
then Rb

n(t) = TΩ(t) such that:

TΩ(t) =

 cos(Ωt) sin(Ωt) 0

− sin(Ωt) cos(Ωt) 0

0 0 1

 (1.15)

so the equation of motion presented in Eq. (1.8) can be written as:

r̈ = Ω2I3×3r− 2Ω

0 −1 0

1 0 0

0 0 0

 ṙ + aT (1.16)

That is, in scalar Cartesian form:
ẍ− 2Ωẏ = Ω2x+ aTx

ÿ + 2Ωẋ = Ω2y + aTy

z̈ = aTz

(1.17)

Note that Eq. (1.17) is the only one that has to be integrated in the case in which
the ROP2BP model is considered. This is an important simplification that lower the
variables of the problem from 18 to 6.

1.3 The Modified Circular Restricted Three-Body Problem

The fundamental geometry for the problem is defined on the basis of the one presented
in the P2BP. The major change is in the vicinity of the body, where another synodic
reference is defined as Ts = span{x̂s, ŷs, ẑs}, centred in the COM of the binary system
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Chapter 1. Non-Keplerian Dynamical Models for Small Solar System Bodies

Figure 1.2: Fundamental geometry and reference frames used for the MCR3BP.

and rotating with a constant angular velocity ΩS as well an inertial reference centred in
the COM C is defined as TS = span{X̂S, ŶS, ẐS}. Here the angular velocity is associated
to the two-body motion of the primaries and can be computed as:

ΩS =

√
G(m1 +m2)

d3
12

(1.18)

where m1 and m2 are the primary and the secondary mass, with centre of mass G1

and G2 respectively. Recall that here, being a restricted problem, the mass of the
flying spacecraft is neglected. Moreover, the distance d12 is intended to be the distance
between the centre of mass of the two bodies.

In this study, the synodic angular velocity ΩS is considered to be constant. In particular
ΩS = ΩSẐS so that the orbit of the two bodies are circular about C. This is a strong
assumptions since, in the most general case, those orbits are not circular and are also
time-dependant, due to the mutual attraction of the two bodies. In fact, the MCR3BP
can be seen as a simplification of the Full Two-Body Problem (F2BP) and of the Full
Restricted Three-Body Problem (FR3BP), as shown in [38] since those kind of models
goes beyond the purpose of this thesis. So, in this sense, the mutual interaction is
considered only in terms of the rotational dynamics of the bodies about their principal
axis.

Now let us briefly describe the other frames used in this part. First of all each of the
two bodies have its own Tn and Tb. In particular the principal has quantities denotes
with ′ while the secondary quantities denotes with ′′. In order to clarify at the most the
notation, let us briefly discuss some transformations: first of all, call R1 the position of
the particle with respect to the primary in the TS frame. Defining the transformation
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1.3. The Modified Circular Restricted Three-Body Problem

matrix form the TS to the Ts frame TΩS(t) then, under the previous assumptions:

TΩS(t) =

 cos(ΩSt) sin(ΩSt) 0

− sin(ΩSt) cos(ΩSt) 0

0 0 1

 (1.19)

Then assume that the TS and the Tn references of the two bodies are parallel so that
no rotation is needed to pass from a reference to another. Now consider the position
vector r′1 as the vector r1 expressed in the T′b reference. If Ω1 is the uniform angular
velocity of the primary about its b′3 axis, then:

R1 = TTΩ1
(t)r′1 (1.20)

The same procedure can be applied to any vector referred to the primary or, equiva-
lently, to the secondary. It is of particular interest to express the position r′1 in the T ′b
(or r′′2 in the T ′′b ) as a function of the position r in the Ts frame since the gravitational
field in the T ′b frame is time-independent. To do so, calling L1 the distance of the
primary to the centre of mass of the system in the TS:

R1 + L1 = R

TΩS (R1 + L1) = r

TΩS

(
TTΩ1

r′1 + L1

)
= r

So that:
r′1 = TΩ1

(
TTΩSr− L1

)
= TΩ1TTΩS (r− l1) = TΩ1TTΩSr1 (1.21)

Then the equation of motion can be written in the inertial, TS frame as:

R̈ = T̈TΩSr + 2ṪTΩS ṙ + TTΩS r̈ (1.22)

At this point, right-multiplying each term of the previous equation by TΩS , and recalling
that TΩSTTΩS = I3×3 the following expression is obtained:

r̈ = Ω2
SI3×3r− 2[ΩS]ṙ + TΩSR̈ with [ΩS] = ΩS

0 −1 0

1 0 0

0 0 0

 (1.23)

Where here:
R̈ = ∇U1(R1) +∇U2(R2) (1.24)

1.3.1 Equation of motion for the Classical CR3BP

The classical CR3BP formulation considers point-mass gravitational potential, so that
the potential functions in Eq. (1.24) may be written as:

U1(R1) =
Gm1

R1

=
Gm1

||R− L1||

U2(R2) =
Gm2

R2

=
µ

1− µ
Gm1

||R− L2||
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Note that since rotation matrix preserves the length of the rotated vector, then ||R|| =
||r||. Then Eq. (1.24), being ∇Uk(Rk)) = TTΩS∇Uk(rk)), becomes:

r̈ = Ω2
SI3×3r− 2[ΩS]ṙ +∇U1(r1) +∇U2(r2) (1.25)

When the components of position vectors of the three bodies are written as:

l1 =


−xP1

0

0

 l2 =


xP2

0

0

 r =


x

y

z

 (1.26)

If the mass ratio between the primaries is defined as:

µ =
m2

m1 +m2

(1.27)

Then:

r1 = r− l1 =


x+ µd12

y

z

 r2 = r− l2 =


x− (1− µ)d12

y

z


So that the equations of motion for the CR3BP model results:

ẍ = Ω2
Sx+ 2ΩS ẏ −Gm1

{
1

r3
1

(x+ µd12) +
µ

1− µ
1

r3
2

[x− (1− µ)d12]

}

ÿ = Ω2
Sy − 2ΩSẋ−Gm1

(
1

r3
1

+
µ

1− µ
1

r3
2

)
y

z̈ = −Gm1

(
1

r3
1

+
µ

1− µ
1

r3
2

)
z

(1.28)

1.3.1.1 Pseudopotential function and Jacobi integral

From the CR3BP associated theory, it is possible to extract the concept of pseudopo-
tential function V that is defined as [39]:

V(x, y, z) =
1

2
ΩS × (ΩS × r) + U(x, y, z) (1.29)

According to [39], moreover, it can be shown that the CR3BP has a useful integral of
motion. In particular, the following relation holds:

d

dt

[
1

2
ṙ · ṙ

]
=
dV
dt

(1.30)

Then, integrating, the integral of motion is found:

1

2
ṙ · ṙ = V(x, y, z)− C

2
(1.31)

where here C is the integration constant. This quantity is associated to the energy of
the particle through the relation C = −2E and is called Jacobi constant. Note that, due
to the opposite sign, if the energy increases, Jacobi constant decreases and viceversa.
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1.4. Periodic Orbits in the Restricted Three-Body Problem

1.3.1.2 Equilibrium points location and stability

One of the known properties of the CR3BP is the fact that it posses equilibrium points.
It is, in fact, well known that there are five equilibrium solutions: three on the x
axis, called collinear points and two forming equilateral triangles with the two pri-
maries, called triangular or equilateral points. Their location can be easily found [39]
by equating ∇V = 0.

From a stability analysis, moreover it results that (see [39]) collinear points are saddle
points (unstable), while triangular points are stable if µ < 0.03852.

1.3.2 Equation of motion for the MCR3BP

In this case, since each of the two bodies is considered to have a certain shape, different
from the spherical one, it would be beneficial (for numerical reasons but not only) to
evaluate the accelerations in Eq. (1.24) in the body frame of the bodies and the to
transform them in the synodic reference. To do so, consider the case in which the
primary rotates uniformly about it’s b′3 axis. Then Eq. (1.20) holds. Thus:

∇U1(R1) = ∇U1(TTΩ1
r′1) = TTΩ1

∇U1(r′1) (1.32)

So, Eq. (1.22) becomes:

r̈ = Ω2
SI3×3r− 2[ΩS]ṙ + TΩST

T
Ω1
∇U1(r′1) + TΩST

T
Ω2
∇U2(r′′2) (1.33)

Where here:

r′1 = TΩ1TTΩS(r− l1) = TΩ1TTΩSr1 (1.34)
r′′2 = TΩ2TTΩS(r− l2) = TΩ2TTΩSr2 (1.35)

Note, finally, that having defined ∆Ωk = ΩS − Ωk:

TΩST
T
Ωk

=

 cos(ΩSt) sin(ΩSt) 0

− sin(ΩSt) cos(ΩSt) 0

0 0 1


cos(Ωkt) − sin(Ωkt) 0

sin(Ωkt) cos(Ωkt) 0

0 0 1


= . . .

=

 cos(∆Ωkt) sin(∆Ωkt) 0

− sin(∆Ωkt) cos(∆Ωkt) 0

0 0 1


If ΩS = Ωk so that both the synodic frame Ts and the k-th body rotates at the same
angular velocity, then TΩSTTΩk = I3×3.

1.4 Periodic Orbits in the Restricted Three-Body Problem

The numerical methods employed to generate a periodic or quasi-periodic orbit are
based on the capability to predict motions nearby a reference solution. Such under-
standing is essential to estimate a series of incremental adjustments to the reference,
that may converge on the desired translational history [40].

29
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1.4.1 Linear variational equations

Consider a generic system of nonlinear ordinary differential equations, written in vector
form:

Ẋ = f(X,t) (1.36)

and a reference solution X∗(t). The first order, time-free variation to this reference at
time t+ δt is given by [41],[42]:

δX(t+ δt) = δX̃(t) + Ẋ∗(t)δt (1.37)

Here, the fixed-time variation is obtained by mapping the initial perturbation forward
using the State Transition Matrix (STM) Φ(t, t0):

δX̃(t) = Φ(t, t0)δX̃(t0) (1.38)

This result can be obtained substituting X = X∗ + δX̃ into Eq. (1.36) and expanding
the right-hand side in a Taylor series, centred in X∗:

f(X∗ + δX) = f(X∗) +
∂f

∂X

∣∣∣∣∗δX̃ (1.39)

So it results that:

δ ˙̃X =
∂f

∂X

∣∣∣∣∗δX̃ (1.40)

This equation has Eq. (1.38) as solution, then for the STM it results:

Φ̇(t, t0) = J f∗ ·Φ(t, t0)

Φ(t0, t0) = I6×6

where here J f∗ is the Jacobian matrix, defined as:

J f∗ =
∂f

∂X

∣∣∣∣∗ (1.41)

So Eq. (1.37) may be written as:

δX(t+ δt) = Φ(t, t0)δX̃(t0) + Ẋ∗(t)δt (1.42)

In the case of the CR3BP, in the non-dimensional form (look at [42] for the details),
the Jacobian results in:

J f(t) =

[
O3×3 I3×3

Vxx 2[Ω]

]
(1.43)

where here:

O3×3 = zero matrix
I3×3 = identity matrix
Vxx = matrix of second order derivatives of V
−[Ω] = skew-symmetric angular velocity matrix

30



1.4. Periodic Orbits in the Restricted Three-Body Problem

1.4.2 Trajectory design strategies

There are several different ways of generating periodic or quasi-periodic orbits in the
CR3BP. In this section a brief hint on the method used in this study is presented. For
a more detailed analysis, look at [43], [41]. Note that everything will be discussed in
that part could be extended to the case of the MCR3BP.

In general, to built up a family of periodic orbits, three main elements are needed:

1. an initial condition should be available as initial guess;

2. a corrector;

3. a continuation method.

Assuming that the initial condition is computed in some way (depending on the orbital
family), the corrector method can be either a single shooting or a multiple shooting
method. Assume, in general, a vector of n design variables X̄. To ensure that the
trajectory is quasi periodic, the free variables are subjected tom constraint, represented
by the constraints vector F(X̄). The objective of the method is a solution vector
that satisfy the constraints vector within some acceptable accuracy. Note that an
initial guess in needed. So, considering an initial free variable vector X̄0, F(X̄) can be
expanded, using Taylor series, as:

F(X̄) ≈ F(X̄
0
) +DF(X̄

0
)(X̄− X̄

0
) (1.44)

Therefore, according to [41], a single shooting method may be written as:

X̄j+1 = X̄j −DF(X̄
j
)
[
DF(X̄

j
)DF(X̄

j
)−1
]

F(X̄
j
) (1.45)

1.4.2.1 Design of DROs

In this part the design of DROs is addressed. To do so, for symmetry considerations,
in the CR3BP, the initial state of a DRO can be written as:

X0 =
{
x0 0 0 0 ẏ0 0

}T (1.46)

and so does the state after half period of the orbit. It T is the orbital period then
Th = T/2. In this particular case, then:

δXh = Φ(Th, t0)δX0 + ẊhδTh (1.47)

Therefore, a choice for the design variables vector, as well as the constraints vector and
its derivative can be:

X̄ =

{
ẏ0

Th

}
, F(X̄) =

{
yh

ẋh

}
, DF(X̄) =

[
Φ25 ẏh

Φ45 ẍh

]
(1.48)
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1.5 Force Models

In this section the acceleration model needed for the integration of the equation of
motion presented before is built. In fact when dealing with the orbital motion of a
particle in the small body environment the dominant force is usually from the small
body gravitational field but significant perturbations arise from other gravitational
and non-gravitational sources. The prime source of these perturbations are the Sun,
both gravitational and non-gravitational. Additional sources of perturbation include
planetary gravitational perturbations, which could become significant when the small
body has a close passage by a planet.

1.5.1 Third-Body Gravitational Perturbations

Solar and planetary gravitational perturbations are simple to specify if one assumes the
small body lies in a two-body orbit relative to the Sun or to the planet. The absolute
gravitational attraction that a particle would experience is simply given by [44]:

Aabs
3rd,k = − GMk

||R−Dk−a||
(R−Dk−a) (1.49)

WhereMk is the mass of the k-th perturbing body, while R and Dk−a are defined in the
previous sections but here it is recalled that R is the vector from the small body centre
of mass to the particle while Dk−a is the position vector from the small body centre of
mass to the perturbing body in the Tn frame. The absolute acceleration, however, is
not the relevant one to be considered. In fact, in this case the relative acceleration is
needed, that is:

A3rd,k = −GMk

[
R−Dk−a

||R−Dk−a||3
+

Dk−a

||Dk−a||3

]
(1.50)

Then in the Tb reference:

a3rd,k = −GMk

[
r− dk−a

||r− dk−a||3
+

dk−a

d3
k−a

]
(1.51)

for the k-th perturbing body. For the Sun case, instead:

a� = −GM�
[

r− s

||r− s||
+

s

s

]
(1.52)

For the use in perturbation analysis, however it is convenient to reason in terms of
perturbing acceleration potential. In the case of third-body perturbation, the potential
may be expressed as:

R3rd =
∑
k

GMk

[
1

||r− dk−a||
− r · dk−a

d3
k−a

]
(1.53)

where
a3rd,k =

∂R3rd

∂r
(1.54)
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Of particular note is the fact that dk−a � r. If we define as θk the angle between r
and dk−a, then:

r · dk−a

d3
k−a

=
1

dk−a

(
r

dk−a

)
cos θk (1.55)

Moreover it is possible to expand in terms of Legendre polynomials of argument θk the
first term of Eq. (1.53) as:

1

||r− dk−a||
=

1

dk−a

1√
1 +

(
r

dk−a

)2

− 2
(

r
dk−a

)
cos θk

=
1

dk−a

∞∑
n=0

(
r

dk−a

)n
Pn(cos θk)

(1.56)
Then note that:

• If n = 0 then the expansion gives 1
dk−a

that is negligible being dk−a � r and being
not dependant on r;

• If n = 1 then the term of the expansion and Eq. (1.55) cancels;

• Only the terms n ≥ 2 remains.

Then the perturbing acceleration results to be:

R3rd =
∑
k

GMk

dk−a

∞∑
n=2

(
r

dk−a

)n
Pn
(

r · dk−a

rdk−a

)
(1.57)

Now recalling that P2(x) = 3
2
x2− 1

2
and that P3(x) = 5

2
x3− 3

2
x then it results that the

first terms of the expansion are:

R(2)
3rd,k =

1

2

GMk

d3
k−a

[
3
(
r · d̂k−a

)2

− r2

]
(1.58)

R(3)
3rd,k =

1

2

GMk

d4
k−a

[
5
(
r · d̂k−a

)3

− 3r2
(
r · d̂k−a

)]
(1.59)

Then the the perturbation acceleration results [5], [44]:

a3rd,k = −GMk

d3
k−a

r− 3
r · dk−a

d2
k−a

dk−a︸ ︷︷ ︸
Second order term

− 15

2

(
r · dk−a

d2
k−a

)2

dk−a︸ ︷︷ ︸
Third order term

+ . . .

 (1.60)

The case in which the expansion in Eq. (1.60) is stopped at the second order term is
of particular interest since it coincides with the so called Hill problem.

1.5.2 Solar Radiation Pressure Perturbation

Associated also with the Sun are non-gravitational perturbations due to momentum
transfer from solar photons striking and recoiling off the orbiting body. The simplest
model for computing solar radiation accelerations is to assume that the spacecraft
presents a constant area perpendicular to the sun-line, and that the total momentum
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Chapter 1. Non-Keplerian Dynamical Models for Small Solar System Bodies

transfer is modelled as insolation plus reflection. Then the net acceleration have the
general form [44]:

aSRP = −(1 + ρ)P0Asc

msc

s− r

||s− r||3
(1.61)

here ρ is the total reflectance or albedo of the body in question. An important param-
eter is the mass to area ratio, denoted as Bsc = msc/Asc, since it controls the relative
strength of this perturbation. Typically the range of values for this parameter is be-
tween 20 and 40 kg/m2. This simple form of the SRP can be written as a potential in
the form:

RSRP = −(1 + ρ)P0

Bsc

1

||s− r||
(1.62)

If the spacecraft is close to the body, than this potential can be expanded. If the first
term of this expansion is kept then:

RSRP = −(1 + ρ)P0

Bsc

r · s
s3

(1.63)

So the resulting acceleration can be found to be:

aSRP =
∂RSRP

∂r
= −(1 + ρ)P0

Bscs3
s (1.64)

1.5.3 Force Model Implemented

In this section, for clarity, the complete acceleration model used for the dynamics
presented in the previous sections is presented. So for Eq. (1.9) the acceleration model
is, in the Tb frame:

aT(r, s,dk−a) =

Main gravity︷ ︸︸ ︷
aG(r) −

SRP︷ ︸︸ ︷
(1 + ρ)P0

Bscs3
s−

Sun︷ ︸︸ ︷
GM�
s3

[
r− 3

r · s
s2

s
]

+ . . .

· · · −
∑
k

GMk

d3
k−a

[
r− 3

r · dk−a

d2
k−a

dk−a −
15

2

(
r · dk−a

d2
k−a

)2

dk−a

]
︸ ︷︷ ︸

Other bodies

(1.65)

where here the accelerations associated with the main gravity of the body can be
computed according to the gravitational models presented in the next chapter.
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1.5.4 Ephemeris Models and Perturbations Analysis

For the computation of third-body and SRP perturbations an ephemeris model is needed
for the asteroid, for the Sun as well as for the other bodies whose contribution is
intended to be included. For this purpose, in this work a simple orbital propagator
based on the R2BP is implemented. The initial conditions are taken for all the bodies
from the NASA’s HORIZONS System [45] at 2019/07/25 at the noon.

Figure 1.3: SRP and 3rd-body Sun perturbations magnitudes for some selected
bodies. Here the quantities are computed at a reference distance of Rmax to the

body, and assuming ρ = 0.1 and Bsc = 30 kg/m2 for the SRP model.

In Figure 1.3 are shown the results for the computation of the SRP and Sun 3rd-body
perturbations for some selected bodies, over a period of revolution of the selected body
about the Sun. The results are shown in Figure 1.3 while in Figure 1.4 and Figure 1.5
a parametric analysis of the SRP perturbation is performed in function of Bsc and ρ.
As expected, the lower the mass-to-area ratio is the higher is the perturbation magni-
tude as well as the higher the reflectance ρ is the higher the perturbation magnitude
results. Finally, can be computed that other perturbations such as the one of planets
is negligible since of the order of 10−15 mgals.

1.5.4.1 Binary Asteroid 66391 (1999 KW4)

The case of the binary system 66391 has some particular features that must be analysed
separately, for what regards the perturbations to the main gravity field of KW4-α. In
fact this case can be treated with either the P2BP or the MCR3BP. The aim of this
section is to analyse the KW4-β 3rd-body perturbation to the motion of a particle
in the vicinity of the binary system as well as to understand when each dynamical
model is the more appropriate. According to the model presented in Eq. (1.60), the
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Chapter 1. Non-Keplerian Dynamical Models for Small Solar System Bodies

Figure 1.4: SRP perturbation magnitude
for KW4 with ρ = 0.1 and varying Bsc.

Figure 1.5: SRP perturbation magnitude
for Bennu varying ρ.

gravitational perturbation of β can be expanded as:

aβ = µβ

[
R− r

||R− r||3
− R

R3

]
(1.66)

where here R is the relative position of β which respect to α, obtained considering the
system α−β as a R2BP while r is the particle position which respect to α. Note that in
this case those vectors are expressed in the Tn reference frame since the magnitude of
the acceleration is of interest as well as the two bodies are point masses for this analysis.
Here ephemeris of β are obtained with the numerical integration of the associated R2BP,
using as initial conditions the one presented in Table 1.1.

Table 1.1: Keplerian parameters of KW4-β in the Tn reference. Credits [46].

a (m) e (-) i (deg) Ω (deg) ω (deg)

2548 ± 15 0.0004 ± 0.0019 156.1 ± 2 105.4 ± 3 319.7 ± 182

In order to understand which dynamical model is the more appropriate between the
the P2BP and the MCR3BP it is needed to define a boundary in which the P2BP is a
good model. In order to do so, as extensively discussed in [43], the concept of Sphere of
Influence (SOI) is not significant. Instead the concept of Surface of Equivalence (SOE)
is of interest. In this case, the SOE is defined as the surface where the 3rd-body
gravitational perturbation of β becomes of the same order of magnitude of the main
gravity of α. This surface can be found as the solution of F(r,R) = 0, where here,
having defined the two-body acceleration as:

a2BP = −µα
r3

r (1.67)

Then:
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Figure 1.6: Perturbation and main gravity
magnitude.

Note that in Figure 1.6 there
are three curves associated to
the perturbation: the dash
light one is the one related
to minλ,θ {||aβ(r, λ, θ)||} while
the dash dot one is related to
meanλ,θ {||aβ(r, λ, θ)||}. The min
and the mean curves indicates
that it is possible to select certain
points in the configuration space
in which the perturbation would
remain a perturbation ∀r.

F(r,R) = ||a2BP|| − ||aβ|| =
∣∣∣∣∣∣−µα

r3
r
∣∣∣∣∣∣− ∣∣∣∣∣∣∣∣µβ [ rrel

||rrel||3
− R

R3

]∣∣∣∣∣∣∣∣ (1.68)

Having defined rrel = R− r. Now, defining the non-dimensional parameter γ as:

γ =
mβ

mα

=
µβ
µα

(1.69)

Eq. (1.68) may be expressed in non-dimensional form using the fact that r̄ = r/R and
r̄rel = rrel/R:

F∗(r̄, R̂) = F(r,R)
R2

µα
=

∣∣∣∣∣
∣∣∣∣∣− r̄

r̄3

∣∣∣∣∣
∣∣∣∣∣︸ ︷︷ ︸

a∗
2BP

−γ
∣∣∣∣∣∣∣∣[ r̄rel

r̄3
rel

− R̂
]∣∣∣∣∣∣∣∣︸ ︷︷ ︸

a∗
β

(1.70)

where here R̂ = R/R. Then a more convenient form of the F(r,R) is:

F̄(r̄, R̂) =
F∗(r̄, R̂)

||a∗2BP||
= 1− γ

||a∗β||
||a∗2BP||

(1.71)

For this particular case, however, the definition of the SOE can be simplified having
that the orbit of β has e ≈ 0. So if a circular orbit is considered as the reference
for the computation then the problem of finding the SOE is reduced to F(r) = 0. A
further simplification can be applied if the problem is reformulated as follows: in the
general case, aβ(r, λ, θ) while a2BP(r). Then the curve Fr(r) = maxλ,θ {||aβ(r, λ, θ)||}
is compared to the one associated with the R2BP, that is ||a2BP(r)||. Defining F∗r̄ (r):

F∗r̄ (λ, θ) = 1− ||aβ(r̄, λ, θ)||
||a2BP(r̄)||

= 1− fβ(λ, θ)

f(r)
(1.72)

with r̄ = 2.631Rmax (that is the first intersection between f(r) and Fr(r). Results
in Figure 1.6. Moreover the concept of SOE can take into account for the error in
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orientation of the acceleration vectors. In fact we can define the angular measure of
the deviation of the P2BP acceleration with respect to the R2BP one:

ψrel(λ, θ) = arccos

(
a2BP(r̄) · (a2BP(r̄) + aβ(r̄, λ, θ))

||a2BP(r̄)|| ||a2BP(r̄) + aβ(r̄, λ, θ)||

)
(1.73)

Figure 1.7: Relative magnitude and direction of accelerations in case r̄ = Rmax.

Figure 1.8: Relative magnitude and direction in case r̄ = 2.631Rmax.

Figure 1.7 and Figure 1.8 are the results for F∗r̄ (λ, θ) and ψrel(λ, θ) in two different
cases. In the first case we are close to the surface of α so that the effect of β is only
a perturbation while instead in the second case there is a perfect match between the
perturbation and the main gravity at a RA = 143.1986◦ and δ = −15.2925◦ so that the
β effect cannot be consider a perturbation anymore. Note also that, also in the second
case if a polar orbit with a RA distant from 143.2◦ is selected, say 300◦, then the effect
of β can be still be considered a perturbation if and only if the orbit is highly-stable.
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CHAPTER 2
GRAVITY FIELD MODELS

This chapter dealt with the mathematical modelling of the gravity field of solar
generical system bodies via different techniques, with different level of accuracy and
fidelity. Since the aim of this work is to find a high-fidelity analytical or semi-analytical
approximation for the gravity field of a irregularly-shaped small body, the theory of
spherical harmonics and spherical Bessel functions is recalled.

The importance of this is that high-fidelity models, such as polyhedron or mascons
models, are really heavy from the computational point of view, so cannot be used as
models on-board of a satellite. On the other hand, a good analytical model is much
less expensive from this point of view and can be easily used for real-time, on-board
applications despite the fact that, in some cases, the approximation that they give of
the gravitational environment can be quite significant.

2.1 The Newtonian Potential Function

The Newtonian potential function of a rigid irregular body is described in this section.
In particular, the reference frame Tb is important from this point of view since the
gravity field can be seen as steady in this reference. Then, the Newtonian potential
function U is defined as:

U(x, y, z) , G

∫
V

%(r′)

||r − r′||
dv = G

∫
B

1

ρ
dm (2.1)

here dm is the mass element defined as dm = %dv = % dξ dη dζ. Note that the function
U is a function of the coordinates only x, y, z i. e., U is function of the position of the
attracted point P as expressed in the Tb frame, r = (x, y, z).
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Figure 2.1: Problem geometry.

2.1.1 Laplace’s equation

The potential expression Eq. (2.1) satisfies Laplace’s equation outside the body, in fact,
as reported in cite, from Eq. (2.1), we have:

∂U
dr

= −G
∫
B

ρ

ρ3
dm (2.2)

which yields to
∂2U
∂r2

= −G
∫
B

1

ρ3

[
I3×3 − 3

ρρ

ρ2

]
dm (2.3)

where I3×3 is a 3× 3 identity matrix. Thus, Laplace’s equation is given by computing
the trace of the second-order partial of potential.

∇2U = 0 (2.4)

which is valid anywhere outside the body.

2.1.2 Poisson’s Equation

Theorem 1. (Gauss’s Theorem) Let SB be a closed surface surrounding a region D
containing attracting matter with total mass M ; if Fn is the normal component of the
force at any point of SB due to the attraction of the mass within SB and also any
matter external to SB. Then we have:∫

S
FndSB = −4πGM (2.5)

Here:

Fn = F · n̂ =
∂U
∂r
· n̂ =

(
∂U
∂x

î+
∂U
∂y

ĵ +
∂U
∂z

k̂

)
·
(
∂x

∂n1

î+
∂y

∂n2

ĵ +
∂z

∂n3

k̂

)
=

3∑
i=1

∂U
∂ni

=
∂U
∂n
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Then: ∫
S

∂U
∂n

dSB = −4πM = −4πG

∫
B
%dB (2.6)

Where here we re-wrote the total mass in terms of the density distribution % over the
volume B.

Theorem 2. (Green’s Theorem) Let U be continuous, with first and second derivatives
uniform and continuous at all points of a space B bounded by a surface SB. Then if
∇2 is the Laplacian: ∫

V

=
∂U
∂n

dSB =

∫
B
∇2UdB = −

∫
B

4πG%dB (2.7)

Then since it holds at any point within B, Poisson’s equation is recovered i. e.,

∇2U = −4πG% (2.8)

2.2 Exterior Gravity Field: Spherical Harmonics Expansion

For simple boundaries, Laplace’s equation is relatively easy to solve provided there is
an appropriate coordinate system. For near-spherical objects, for example, the solu-
tions can be easily found approximating the boundary by a sphere. So, assuming a
small body as a nearly-spherical body a natural choice of coordinates are the spherical
coordinates, that are illustrated in Figure 2.1:

x = r sin θ cosλ

y = r sin θ sinλ

z = r cos θ

With the aim of approximating the exterior gravity field of a small body in the exterior
space of the Brillouin sphere, Laplace’s equation, in spherical coordinates, takes the
form, according to [47], of:

∇2U =
1

r2

∂

∂r

(
r2∂U
∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂U
∂θ

)
+

1

r2 sin2 θ

∂2U
∂λ2

= 0 (2.9)

Where here r is the radius, θ the colatitude and λ the longitude respectively. A solu-
tion to ∇2U = 0 can be found, by the method of separation of variables. Then the
gravitational potential at an exterior point of the Brillouin sphere can be written as:

U =
GM

r

∞∑
n=0

(
R0

r

)n n∑
m=0

(
CnmRn,m(θ, λ) + SnmSn,m(θ, λ)

)
(2.10)

where R0 is the radius of the Brillouin sphere, the coefficients Rn,m and Sn,m are defined
as follows:

Rn,m(θ, λ) = Pn,m(cos θ) cosmλ

Sn,m(θ, λ) = Pn,m(cos θ) sinmλ
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Chapter 2. Gravity Field Models

Figure 2.2: An example of zonal
harmonic (4,0) • Zonal harmonics

model the gravitational departure from
a perfect sphere from the latitudinal

point of view: oblateness of the body is
well represented by them.

Figure 2.3: An example of sectorial
harmonic (4,4) • Sectorial harmonic
take into account the extra mass

distribution in the longitudinal region
of the body.

Figure 2.4: An example of tesseral
harmonic (4,3) • Tesseral harmonics
attempt to model specific region of the

body which depart from a perfect
sphere.
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2.2. Exterior Gravity Field: Spherical Harmonics Expansion

Here, the Pn,m are associated Legendre polynomial that can be expressed as, defining
µ = cos θ:

Pn,m(µ) =
(1− µ2)m/2

2n n!

dn+m(µ− 1)n

d(µ)n+m
(2.11)

Where here µ = cos θ. Finally, Cnm, Snm can be determined using the orthogonality
properties of the harmonic functions. In order to prevent numerical problems, the
coefficients are normalized according to [48]. So that model results:

U =
GM

r

∞∑
n=0

(
R0

r

)n n∑
m=0

(
C̄nmR

m
n (θ, λ) + S̄nmS

m
n (θ, λ)

)
(2.12)

with:

Rm
n = Pmn (cos θ) cosmλ

Smn = Pmn (cos θ) sinmλ

Pmn =
Pn,m
Πnm

, C̄nm = Cnm · Πnm, S̄nm = Snm · Πnm

where here the Kaula [48] normalization is being used.

Πnm =

(
(n+m)!

(n−m)!(2− δm0)(2n+ 1)

)1/2

δm0 is the Kronecker delta, i. e., δm0 = 1 for m = 0. Then the final form of the
gravitational potential is recovered as:

U =
GM

r

{
1 +

zonal︷ ︸︸ ︷
N∑
n=2

(
R0

r

)n
C̄nP0

n(cos θ) + . . .

· · ·+
N∑
n=2

n∑
m=1

(
R0

r

)n (
C̄nm cos(mλ) + S̄nm sin(mλ)

)
Pmn (cos θ)︸ ︷︷ ︸

sectorial & tesseral

} (2.13)

2.2.1 Stokes coefficients

The expression for the Stokes coefficients in the general case are taken from [44]:

(C, S)nm =
2− δm0

M

(n−m)!

(n+m)!

∫
B

(
r

R0

)n
Pn,m(θ) cs(mλ)%dV (2.14)

where %dV = %(r, θ, λ)r2 sin θ dr dθ dλ and where cs stays for cos(mλ) and sin(mλ).

Axial-symmetric case. Suppose then that R = R(θ) so there is no dependence on
the longitude λ which means that the solid body is axial-symmetric, then:

%

∫
B
(·) dV =

%

Rn
0

· 1

3 + n

∫ 2π

0

cs(mλ)dλ ·
∫ π

0

R(θ)3+nPn,m(θ) sin θ dθ
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Chapter 2. Gravity Field Models

Note that the integrals
∫ 2π

0
cs(mλ) dλ 6= 0 if and only ifm = 0. So in the case the

asteroid is built as a solid of revolution about the z axis, the only (C, S)nm components
that are non-zero are the ones associated to zonal harmonics. This result is physically
sensible since in this case, since % is considered to be constant, there cannot be varia-
tions in the gravity field that depends on λ i. e., it must be constant with respect to it.
Moreover, note that in this particular case, being

∫ 2π

0
sin(mλ) = 0, Sn0 = 0 as expected

from the theory and
∫ 2π

0
cos(mλ) = 2π. Having that that in mind, equation Eq. (2.14)

becomes:
Cn =

2π%

M

1

(3 + n)

∫ π

0

(
R(θ)

R0

)n
R(θ)3Pnm(θ) sin θ dθ (2.15)

So that the gravity potential can be reduced to:

U =
GM

r

[
1 +

∞∑
n=2

(
R0

r

)n
CnPn(cos θ)

]
Note that the direct computation of the Stokes coefficients is possible using Eq. (2.15)
if and only if the function R(θ) is analytical.

Constant-density polyhedron case. The computation of the Stokes coefficients
from a constant-density polyhedron starts from Eq. (2.14) then it can be developed
is two main ways in according with [49],[32] or [50]. The method used in this work
is the one of Werner, presented in [49] and recalled here. Within this method, the
author defines a new parameter that corresponds mathematically to the integrand of
Eq. (2.14) and physically to the contribution of each polygonal face to the final value
of spherical harmonics coefficients:{

cnm

snm

}
=

2− δ0,m

M

(n−m)!

(n+m)!

(
r

R0

)n
Pn,m(cos θ))

{
cosmλ

sinmλ

}
(2.16)

Then using the recurrence relations of ALFs, we have have recurrences in the coefficients
cnm, snm. With increasing n,m the ALFs becomes huge and the Stokes coefficients be-
come small. So, for numerical reasons, fully normalized ALFs are used in this study.
This leads to normalized integrands c̄nm, s̄nm with analogous expressions with respect
to the one presented before. Now specified the integration over a polyhedrical body
surface with constant density and triangular faces. In this case, each face of the poly-
hedron can be divided from the rest in terms of a tetrahedron whose vertices are at
(x1, y1, z1), (x2, y2, z2), (x3, y3, z3) and (0,0,0). The order 1, 2, 3 is taken in counter
clockwise direction. Now we can operate a transformation of coordinates to reach the
so called standard simplex, that have each vertex located at a unit distance over each
axis except the 4th vertex that is at the origin. The change of variables is then:

x(X, Y, Z) = x1X + y1Y + z1Z

y(X, Y, Z) = x2X + y2Y + z2Z

z(X, Y, Z) = x3X + y3Y + z3Z

Then, can be shown that, after the change of variables the normalized integrands
c̄nm, s̄nm are homogeneous polynomials of degree n in the variables X, Y, Z i. e.,{

c̄nm

s̄nm

}
=

∑
i+j+k=n

{
ᾱijk

β̄ijk

}
X iY jZk (2.17)
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2.3. The Gravitational Field of a Constant Density Polyhedron

where the summation is taken over all the combinations of non-negative exponents i, j, k
which sum to n. The symbols ᾱijk and β̄ijk represent the X, Y, Z trinomial coefficients.
With the change of variables, the integrands must be multiplied by the determinant
of the Jacobian matrix J of the transformation. J is constant with respect to the new
integration variables X, Y, Z and can be computed as:

J =
∂(x, y, z)

∂(X, Y, Z)
=

x1 x2 x3

y1 y2 y3

z1 z2 z3

 (2.18)

So the final expressions for the integrated normalized harmonic coefficients are derived
as follows:{

C̄nm

S̄nm

}
=

y

extended body

{
c̄nm

s̄nm

}
dm = %

∑
f

y

tetrahedron

{
c̄nm(x, y, z)

s̄nm(x, y, z)

}
dx dy dz

= %
∑
f

y

simplex

{
c̄nm(X, Y, Z)

s̄nm(X, Y, Z)

}
det(J) dX dY dZ

= %
∑
f

det(J)f
y

simplex

( ∑
i+j+k=n

{
ᾱijk

β̄ijk

}
X iY jZk

)
dX dY dZ

= %
∑
f

det(J)f
∑

i+j+k=n

{
ᾱijk

β̄ijk

}
y

simplex

X iY jZk dX dY dZ

here the first summation is performed over the faces. Note that the evaluation of the
coefficients is reduced to the one of the integral of the trinomial function over the
simplex volume. This integral has an elegant solution has it can be found in [32] and
reported here. y

simplex

X iY jZk dX dY dZ =
i!j!k!

(n+ 3)!

So the final solution can be expressed as:{
C̄nm

S̄nm

}
= %

∑
f

(
det(J)f
(n+ 3)!

∑
i+j+k=n

i!j!k!

{
ᾱijk

β̄ijk

})
(2.19)

2.3 The Gravitational Field of a Constant Density Polyhedron

Among the different available techniques, one of the most effective for the computation
of the gravitational field of a body is the constant density polyhedron one. In that
case, following the procedure presented in [37], [51], the potential of a constant density
attractor can be derived as:

U = G%

∫
V

1

r
dV (2.20)

45



Chapter 2. Gravity Field Models

where V is the overall volume and r the modulus of the vector r between the field point
and the infinitesimal mass element dm = %dV . Defining the unit vector

r̂ =
r

r
(2.21)

Then, exploiting the Gauss divergence theorem

U =
1

2
G%

∫
V

(∇ · r̂) dV =
1

2
G%

∫
S

(n̂ · r̂) dS (2.22)

where n̂ is the unit normal to the infinitesimal surface. This can be transformed, for a
polyhedron model with a certain number of faces nf to

U =
1

2
G%
∑
faces

n̂f · rf
∫
S

1

r
dS (2.23)

with rf the vector from the field point to any point of the plane in which lies the
tetrahedron’s face. Exploiting properties of the polygons and defining n̂fe the unit
normal to tetrahedron’s edge e lying on the face’s f plane and rfe the vector from the
field point to a generic point on the edge e extension, then

U =
1

2
G%
∑
faces

∑
edges

(
rf · n̂f n̂fe · rfeLfe

)
− 1

2
G%
∑
faces

(rf · n̂f n̂f · rfωf ) (2.24)

where here
Lfe = ln

l1 + l2 + e

l1 + l2 − e
(2.25)

with l1 the distance from the field point to the first end of the edge, l2 the distance
from the field point to the second end of the edge and e the length of the edge. Here,
also ωf is intended to the be solid angle subtended by the face S, when viewed from
the field point and defined as

ωf =

∫
S

∆z

r3
dS (2.26)

Finally defining the following dyads:

E = n̂f1n̂
f1
e + n̂f2n̂

f2
e and Ff = n̂f n̂f

where f1 and f2 referred to two faces having the edge e in common, leads to the final
expression of the potential:

U =
1

2
G%
∑
edges

re · Ee · reLe −
1

2
G%
∑
faces

rf · Ff · rfωf (2.27)

From that, the computation of the the field derivatives is straightforward. In fact, for
the first derivative:

∇U = G%
∑
faces

Ff · rfωf −G%
∑
edges

Ee · reLe (2.28)

While for the Laplacian:
∇2U = −G%

∑
faces

ωf (2.29)
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2.4 The Gravitational Field of a Triaxial Ellipsoid

In studying the orbiter dynamics about small bodies it is sometimes convenient to
leave the gravitational harmonics formulation aside and concentrate on specific mass
distribution which have closed form solution for their gravitational field. For this
purpose, the gravitational field associated to a triaxial ellipsoid fits perfectly [52]. In
this paragraph the formulation is briefly recalled. If the total size of a body is a× b× c
where a ≥ b ≥ c, than the associated ellipsoid has major semiaxes α = a/2, β = b/2
and γ = c/2. Given a constant density % for the body, its gravitational parameters
results in:

µ =
4π

3
G%αβγ (2.30)

Defining x, y, z the body fixed coordinates of the ellipsoid, with x lying along α, y along
β and z along γ respectively, then the potential of a point, external to the ellipsoid
surface can be expressed [52],[53]:

Ug =
3µ

4

∫ ∞
κ

φ(x, y, z;u)
du

∆(u)
(2.31)

where here:

φ(x, y, z;u) =

[
x2

α2 + u
+

y2

β2 + u
+

z2

γ2 + u
− 1

]
(2.32)

∆(u) =
√

(α2 + u)(β2 + u)(γ2 + u) (2.33)

Where here κ is obtained as the solution of:

φ(x, y, z;κ(x, y, z)) = 0 (2.34)

It is of particular interest for this study the perturbation effect generated from a triaxial
ellipsoid related to the oblate spheroid model. This effects is included in the harmonic
coefficients C20 and C40 that for a constant density triaxial ellipsoid may be computed
as [52], [44]:

C20 = − 1

10α2
(α2 + β2 − 2γ2) (2.35)

C22 =
1

20α2
(α2 − β2) (2.36)

C40 =
15

7
(C2

20 + 2C2
22) (2.37)

C42 =
5

7
C20C22 (2.38)

C44 =
5

28
C2

22 (2.39)
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ASTEROIDS

The computation of the gravity field for this kind of small solar system object is
usually a quite complicated task due to the unknown or partially-known shape of the
body and to the completely unknown internal structure of it. Usually, high fidelity
models can be recovered by the use of the constant density polyhedron model. This
works also for the case of highly irregular bodies [54] but it is limited by the fact that the
density is usually not constant. In fact, specially highly irregular bodies have a quite
heterogeneous density distribution, due to their formation and this make extremely
challenging the modelling of the gravitational field.

However, since the aim of the work is not to built an high-fidelity model for the gravity
field of those kind of bodies then the problem of the computation of the gravitational
field associated to the bodies presented in Chapter 0.2 on page 9 reduces to the adoption
of one of the models presented in Chapter 2 on page 39.

According to Chapter 2 on page 39, then the gravitational model of a selected object
can be obtained with either the use of shape-based methods, such as the constant
density polyhedron one or by the use of a spherical harmonics expansion matched
with a spherical Bessel functions expansion. The constant density polyhedron model
is considered to be the high-fidelity representation of the gravitational field of the
selected object in this work but it has to be recalled that it can’t be used for on-board
applications since it is computationally heavy. So a discussion on the analytically
expanded field is needed since it will be the model used on board as well as the model
that the learning will refine.
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3.1 The Gravity Field of Some Selected Object

The case of rounded objects is of particular interest for this study since a large number
of minor bodies are rounded as well as some simplifications can be adopted in that case.
In terms of shape descriptors, this is the case in which ΨR,ΨS → 1. In particular, for
this study, an object with ΨR > 0.7 is considered rounded, according to Power’s scale
of roundness. However, most of asteroid are irregularly shaped so that the analysis of
irregular bodies is needed to despite the fact that it is much more difficult due to the
complicated shape. Now, in this part some selected object are characterized in terms
of their gravity field as well as to the approximations adopted.

Figure 3.1: Selected rounded asteroids: shape models in real scale.
From left to right: Didymos A, Bennu, KW4 Alpha

3.1.1 Axisymmetric approximation of rounded objects

Since rounded asteroids have usually a quasi-axisymmetric shape, one can think to do
an approximation of their shape. In particular an approximation can be a simplified
model in which the shape of the asteroid is approximated by a solid of revolution
obtained with, as its basis, an interpolated function R∗(θ) such that for θ ∈ (0, π),
R∗(θ) = Eλ [R(θ, λ)], where:

Eλ [R(θ, λ)] ,
1

2π

∫ 2π

0

R(θ, κ) dκ = R∗(θ)

The function R∗(θ) extracted applying the mean operator will be, practically, discrete
and can be interpolated to recover an analytical expression. Several methods can be
exploited for the interpolation, including Fourier based one and splines. For simplicity
(but also effectiveness), a polynomial interpolation is performed in this work, resulting
in the following approximate form for R∗(θ):

R◦(θ) ,
n∑
k=0

ak θ
k ' R∗(θ)

The coefficient ak are computed using a Least-Square Method (LSM). In this study
they can be easily recovered using the polyfit algorithm implemented in MATLAB.
To validate this axisymmetric approximation, a comparison with the real shape model
is performed. In particular, a map of the difference in altitude between the real and the
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3.1. The Gravity Field of Some Selected Object

axisymmetric approximated shape models is built. To do so, consider a generic point
R(θ, λ) ∈ Sreal, where Sreal is the surface of the object with the real shape and the
equivalent point Rapprx(θ, λ) ∈ Sapprx where Sapprx is made by the solid revolution of
R◦(θ) from 0 to 2π. Here θ ∈ (0, π) being the colatitude. Then the altitude difference
map is built such as, for a fixed longitude λ̄:

Dmap(θ, λ̄) ,
|R◦(θ)−R(θ, λ̄)|

R(θ, λ̄)
· 100 : (θ, λ) 7→ Dmap(θ, λ) (3.1)

Figure 3.2: Dmap(θ, λ) contour plot for the asteroid Bennu

The results are shown for the case of the asteroid Bennu in Figure 3.2: the axisymmetric
approximation give an approximation of the shape up to a <10% error on it. It can
be shown that the error, instead, is much lower in the case of bigger objects, such as
quasi-spherical moons. In any case, the aim of this approximation is to introduce a
simplification in the gravitational field of the body. In fact, being axisymmetric, the
only terms of a spherical harmonics expansion that are non-zero are the zonal one
making an expansion with only zonal terms the exact one e. g.,

U =
GM

r

[
1 +

∞∑
n=2

(
R0

r

)n
Pn(cos θ)

]
(3.2)

Then, defining apn(x, y, z) the acceleration due to the n-th term of the expansion,

apn(x, y, z) =

∣∣∣∣∇{GMr
(
R0

r

)n
Pn(cos θ)

}∣∣∣∣ (3.3)

then for axisymmetric bodies apn = apn(r, θ). Finally, an integral measure of the
acceleration associated with the n-th term of the expansion can be expressed as:

Apn(n, r) = Eθ[apn(r, θ)] =
1

π

∫ π

0

apn(r, ϑ) dϑ (3.4)
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Moreover, it can be of interest, since the acceleration in this case is function of the
colatitude θ, to have a measure of the sensitivity of it with respect to the θ instead
of r ∈ [Rmax, RSOI] (which sensitivity is analysed with Apn). Then, another integral
measure can be introduced as:

Θpn(θ, n) =

∫ ∞
0

apn(ξ, θ) dξ ≈
∫ RSOI

0

apn(ξ, θ) dξ (3.5)

Figure 3.3: log10 Api(n, r) contour plot for the axisymmetric approximation of
KW4 -α.

The results for Apn(n, r) in the case of the asteroid KW4-Alpha are shown in Figure 3.3.
In general, these maps gives a way to determine, from an integral point of view, the
order of magnitude of the contribution of the n-th term of the expansion at a distance
r from the body. For example, as it can be seen, as RSOI/Rmax = O(1) then, the order
of magnitude of the n-th term is approximately 10−n (mgals). Thus the higher the
distance from the body, the more difficult will be to identify high order terms.

The results for Θpn(θ, r) are shown instead in Figure 3.4 for the case of KW4-Alpha too.
Note that the inclination of the orbit i = 90◦ − θ. Now, being the order of magnitude
of the n-th contribution to the acceleration a function of the colatitude and so of the
inclination of the orbit, if a Keplerian orbit about the body is considered, then it would
be preferred to have high-inclined orbits instead of equatorial ones to have an higher
perturbative effect. This result could be expected since ap(r, θ) and so to have an
high-inclined orbit would be beneficial since the "range" of latitudes covered is much
higher, resulting in the complete exploitation of the spherical harmonics expansion. If
instead a nearly-equatorial orbit is chosen then only some of the low-degree harmonics
would be seen.

Despite the fact that the axisymmetric model is an approximate model those, these
results can be generalized also to the case in which the true gravity field of the body is
under exam. In particular, the considerations that have been done can be generalized
too. In fact, while in the identification of the zonal harmonics a polar orbit would
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3.1. The Gravity Field of Some Selected Object

Figure 3.4: log10 Θpn(θ, r) contour plot for the axisymmetric approximation of
KW4 -α.

be beneficial, in the case the aim is to reconstruct the effect of sectorial harmonics
an equatorial orbit would be the best choice for the same considerations done in the
zonal case. For what regards the tesseral harmonics, unfortunately, it is not possible
to extract any kind of behaviour from this analysis.

On the model order choice. The previous analysis shown that the influence to
the model of the single expansion term obviously decreases as increasing the order of
the model itself. So a spontaneous question arise: how should one choose the model
order to stop the expansion? Basically, for the own SHE model structure, the higher
the model the better the approximation would be. But from an operative point of
view, if a model is intended to be used on-board, a compromise between model order
and expected accuracy must be considered. In particular, in the case of asteroid’s
missions the accuracy (and so the model order) basically depends on the application.
For example, formation flying requires an accurate model to "work" properly so a model
of model Nf � 1 should be used. If the mission objective is instead the gravimetric
characterization of the body then the model order Ng � Nf . If, instead, the intention
is only to have a fairly good prediction of the orbital dynamics about the body than
the accuracy requirements can be relaxed, since usually the orbits are not so close so
that only the lower degree harmonics influence the orbital path.

3.1.2 Polyhedron model gravity field

In the case of rounded objects, only the external spherical harmonics expansion is
used as the physics of the reconstructed model, if the aim is to orbit the body at
a reasonable distance. But, in any case, the expansion is an approximation of the
real gravity field. Also, in the case of irregular bodies, the analytical expansion of
the gravity field can be obtained matching the internal and the external expansions.
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However, in the hypothesis of constant density model, the true gravity field associated
to the body is assumed to be the one computed with the polyhedron model. So, the aim
of this section is to provide an insight of the resulting gravity fields for some selected
bodies in such a way, once the field will be then approximated with an expansion, one
can compute how much it differs from the true one.

Figure 3.5: Polyhedron accelerations at a distance r = Rmax for Bennu.

In particular in Figure 3.5 are shown the accelerations for the asteroids Bennu. In can
be noticed that, due to the bulged shape of the bodied, these get higher in proximity
of the equatorial plane and lower at the poles of the bodies. It is not worth to say that
as far as r increases as far as the magnitude of the gravitational acceleration decreases.
Moreover increasing the distance to the body would give a more uniform acceleration

Figure 3.6: Polyhedron accelerations at a distance r = Rmax for Castalia.
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field. The limit case is when r →∞ where the acceleration of the body would be the
point-mass one.

In Figure 3.6, instead, the results for the shape-based gravity field are presented. This
case is much different with respect to the case of Bennu since the filed have maxima
in correspondence of the bulged regions while the other regions have much smaller at-
traction. This results in large differences in the gravity field magnitude as a function
of longitude and latitude which respect to the Bennu case. This characteristic is pe-

Figure 3.7: Polyhedron accelerations at a distance r = Rmax for the comet 67P.

culiar of irregularly shaped bodies, as it can be seen for the case of the comet 67P in
Figure 3.7 and makes extremely difficult flight around them.

3.1.3 Spherical harmonics expansion gravity field

In the case of rounded objects the spherical harmonics expansion of the gravity field
converges to the true gravity field retaining only a limited number of terms. This
is a big advantage since it would reduce the dimension of the estimation problem
presented in Chapter 4 on page 59 as well as would reduce the space required to store
the reconstructed gravitation model. However, if the intention is to model the field of
highly irregular bodies then the number of harmonics needed to reconstruct correctly
the field are much higher, increasing the complexity of the estimation problem. In
Figure 3.8 and Figure 3.9 the results for the case of Bennu, respectively with a 4th
order zonal expansion and a 4th order (complete) expansion at a distance 2Rmax are
shown. The error is here defined as an acceleration error:

Da =
aPoly − aSHE

aPoly

· 100 (3.6)

It can be noticed that even the zonal representation gives a good approximation even
with a low-degree harmonics expansion. This is not the case for highly irregular bodies.
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Figure 3.8: Da for the case of Bennu with max degree n = 4 and considering only
the zonal terms of the expansion.

Figure 3.9: Da for the case of Bennu with max degree n = 4.
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CHAPTER 4
PARAMETRIC IDENTIFICATION OF

GRAVITY FIELD MODELS COEFFICIENTS

The field of parametric identification or parameters estimation of non-linear systems
is one of the most crucial within the framework of system engineering. It consists in
modelling the internal model of a dynamical system from observations of its external
behaviour. In general, identification techniques can be classified according to whether
a model of the system under exam has been formulated, either by the application of
physical laws or the intuition of expert. When these models are not available then
linear models are usually adopted due to their simplicity and the fact that existing
methods for the identification of linear systems are well established. On the other
hand when a physical model of the phenomena is recovered methods that incorporates
them are not only appealing from the methodological point of view but also attain a
more accurate identification. In fact when the overall structure of a model is known,
identification reduces to determining the numerical values of some of the parameters of
the system model. Hence in that case identification is usually referred to as parametric
identification or, simply, parameter estimation.

From the mathematical view point, this study deals with the application of parametric
identification on ODEs. In general, these kind of differential equations can be repre-
sented as ẋ = f(x,u,p, t), where x is the state of the system under consideration, u
the inputs, p the vector of parameters and t the time. In the case of the identification
of gravitational field coefficients, however, there is another way to write the mathe-
matical model of the system, due to the form of the gravitational potential itself. For
simplicity and clarity, let us consider the case in which the spherical harmonics expan-
sion of the gravity field of a body is developed in such a way the zonal terms only are
retained. In this case we can express the gravitational potential as U = U2B + UPert,
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Chapter 4. Parametric Identification of Gravity Field Models Coefficients

where U2B = µ/r and:

UPert =
N∑
n=2

{
µ

r

(
R0

r

)n
Pn(cos(θ))

}
Cn = PT (x(t)) · p

Where here the vector of parameters p contains the spherical harmonics expansion
coefficients. Then, the equation of motion of the system can be written as, defining
the state vector x as x = {r,v}T, as follows:

ẋ =

{
ṙ

v̇

}
=

{
v

− µ
r3

r +∇UPert

}
(4.1)

Note, in particular that here the parameters appears only in ∇UPert = ∇UPert(r(t),p).
Then defining A = ∇PT, it is possible to write the equation in the so called linear in
the parameters (LIP) form, that is:

y = A(x) · p

In order to match the LIP form with the equation of motion on the left-hand side there
must be all the terms that does not depends on the parameters, thus:

y = v̇ +
µ

r3
r

Finally note that, being the gravitational force a positional force, in this case the matrix
A depends only on the position, thus A(r) Note also that A is, in general, non-square.
Then the LIP form of the equation of motion is:

y(r, v̇) = A(r) · p (4.2)

Note that the equation is linear with the respect to the parameters despite the fact
that it is non-linear with respect to the state. Now, suppose to have a-priori guess
p0 of the parameters and define δp this deviation, then the LIP equation of motion
becomes:

y(r, v̇) = A(r) · (p0 + δp)

Suppose to use an estimation algorithm to estimate δp and the estimation provided is
δp∗. The goal of the estimation is to minimize the so called estimation error defined
as ∆p = δp − δp∗. In practice, the estimation error cannot be used since δp is not
available. Instead the prediction error, e = y − A · δp∗, is used.

4.1 Problem Formulation

Assuming that the mathematical model can be written in the LIP form y(t) = A(t) ·p,
for some y : [t0,+∞[→ Rm, A : [t0,+∞[→ Rm×n, p ∈ Rn is the vector of parameters
to be estimated on-line. Furthermore, a series of assumptions are needed [55]:

(H1) y,A ∈ C1;

(H2) y,A are bounded;
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4.1. Problem Formulation

(H3) y(t),A(t) are known or can be measured or reconstructed at each time;

(H4) p ∈ ]− c, c[n for some known c > 0

To solve the on-line estimation problem, an algorithm A should generate at time t an
estimation p∗ of p based on the available informations: c and the values of y and A.
Some desirable properties for the algorithm are:

(P1) ∀t > t0 p∗(t) ∈ ]− c, c[n;

(P2) limt→+∞ p∗(t) = p(t).

The property (P1) defines the search region for the algorithm while the property (P2)
defines the ultimate goal of the on-line estimator. The difference between different
estimators will be, of course, in the trajectory p∗(t). Having defined the prediction
error as e(t,p∗(t)) then the on-line estimation should solve an optimization problem,
defined as:

min
p∈ ]−c,c[n

{
sup

t∈[t0,+∞[

{
1

2
eT(t,p∗(t)) · e(t,p∗(t))

}}
(4.3)

There are, in general, two families of methods that can be used to solve this kind of
problem: least-square estimators and gradient-based estimators.

4.1.1 Least-square estimators

It works on the minimization of the square of the prediction error, summed along the
whole temporal evolution of the system and defined as:

E(e) =
1

2

(
eTe
)

Thus, it is natural to think of least square as a batch algorithm. In fact, as an example,
a cost function for the minimization can be defined as:

J =

∫ t

0

||E(e(τ))||2 dτ =
∑
tk

||E(e(tk))||2 (4.4)

Which means that the temporal evolution of the prediction error must be known a-
priori. In contrast, on-line estimation if often required. Then there are some variants
of least square algorithms that allows for on-line estimation but the computational
complexity of them is much higher. Last but not least, when the parameters are time-
varying, additional corrections must be added, increasing again complexity.

As an example, the results of a LSM are shown in Figure 4.1 and Figure 4.2. As it can
be seen, the optimization is capable to compute almost exactly the two coefficients C2

and C3 of the spherical harmonic expansion.

4.1.2 Gradient-based estimators

According to [56], a common technique for on-line estimation is the gradient method
that, due to its simplicity, presents some advantages over least mean squares algorithms
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Chapter 4. Parametric Identification of Gravity Field Models Coefficients

Figure 4.1: Cost function value vs
iteration for the particleswarm

optimization.

Figure 4.2: Location of the minima of
J (e) in function of the parameters

value, for the test model.

in estimation of time-varying parameters. In the gradient method, the estimation is
continuously modified in the direction that best minimizes the prediction error i. e., the
direction of the gradient of the square of the prediction error as a function of the
estimation vector p∗ i. e.,

ṗ∗ = −k∇
(
eTe
)

(4.5)

here k is a design parameter, which must be critically chosen as a trade-off between
small values - slow convergence and large values - oscillations. The asymptotical con-
vergence to zero of the prediction error can be proved if A and y are constant, but the
result is also valid as long as A and y change slowly, which we assume in the sequel.

4.1.3 The modified Hopfield Neural Network

Among the others, it has been shown that there are two main types of ANN that are
capable to solve combinatorial optimization problems: the feed-forward RBF neural
network - where the neurons belonging to the same layer receive inputs from neurons
of the previous layer and send their values only to neurons of the next layer, and
the feedback HNN - where the neurons belonging to the same layer send their output
to neurons of the next and previous layers [57]. A training phase is needed in both
cases and it involves adjusting the weights on the interconnections in the network until
the error which is the difference between the actual output and the target output is
small. In this application, in particular, an online adjustment of the network is needed,
meaning that no offline training is available for the network. For this reason, this is
an unsupervised learning problem. In [57] a deep comparison between RBF and HNN is
presented and the HNN appears to be the most promising because:

• It is a global network which means that every input vector produce activation
while RBF are local network meaning that only onput vectors in the close neigh-
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borhood of centers produce activation and the other inputs have negligible values;

• Use unsupervised learning while RBF is an hybrid learning algorithm;

• HNN have a simple technical implementation using electronic or optical devices.

In general, HNNs are a kind of ANNs formulated by Hopfield in its paper [58]. The model
developed as well as its stability has been extensively studied in the last decades. In
the original Hopfield’s formulation of the network, the dynamics of the neuron i is
governed by the ODE, [55] :

dpi
dt

= −pi +
N∑
j=1

wijφj(pj(t))− bi (4.6)

where pi(t) is the total input to the neuron i, φj is a continuous non-linear, bounded and
strictly increasing function called activation function, and wij and bi are parameters
corresponding respectively to the synaptic efficiency associated with the connection
from neuron j to neuron i, and the bias of the neuron i.

si(t) = α tanh

(
pi(t)

β

)
(4.7)

where β > 0 is a coefficient to eventually regulate the slope of the activation function
while α is chosen such that si(t) ∈] − α, α[. Then according to [59], [58], in order to
prove that the neural system defined in Eq. (4.6) is stable, the candidate Lyapunov
function:

V (s) = −1

2

n∑
i=1

n∑
j=1

wijsisj +
n∑
i=1

bisi + β
n∑
i=1

∫ si

0

tanh−1(g) dg (4.8)

is defined and is proved that it is indeed a Lyapunov function, as long as the conditions
wii = 0 and wij = wji hold for the network weights. Therefore, Lyapunov stability
theory [60] guarantees that the states of the ODE converge towards a minimum of the
Lyapunov function. The key concept associated to the theory of HNN is the fact that:

∂V

∂si
= −dpi

dt
(4.9)

so that the network defines a gradient system. This can read as the network states
evolve in the direction that minimized the Lyapunov function. So the application of
Hopfield networks to the solution of optimization problems is a direct consequence of
the dynamical properties of the network and, in particular, of the existence of Lya-
punov function. Then, the optimization procedure consist in matching the Lyapunov
function 4.8 to the target function of the considered optimization problem. Many opti-
mization problems posses a quadratic target function that matches the first two terms
of 4.8 but this formulation has a problem: the integral term. In fact, it makes the
network deviate from the minimum of the target function.

Abe formulation [61] of the problem is generally preferred in the case the network is
applied to optimization since its Lyapunov function does not contain any integral term
i. e., is defined as:

V (s) = −1

2

n∑
i=1

n∑
j=1

wijsisj +
n∑
i=1

bisi (4.10)

63



Chapter 4. Parametric Identification of Gravity Field Models Coefficients

Figure 4.3: Activation function values in
function of the parameter β.

Figure 4.4: Hopfield neural network
structure: note that the HNN is a
recurrent network. Here, a discrete
version of the network is presented.

Then, the network is formulated as a ODE:

dpi(t)

dt
= neti(t) =

n∑
j=1

wijsj − bi with si(t) = α tanh

(
pi(t)

β

)
(4.11)

Now, applying the chain rule:

dsi
dt

=
1

αβ

(
α2 − s2

i

)( N∑
j=1

wijsj − bi

)
(4.12)

A further note has to be done here since the previous procedure to recover a ODE
system in the state si(t) can be applied only in case the Abe formulation is considered
otherwise, if the Hopfield formulation is used as the model, this procedure would bring
to a differential algebraic problem. The previous equation may be written in matrix
notation as follows:

ds(t)

dt
=

1

αβ
D ·
(
Ws(t)− b

)
(4.13)

where:
D(s(t)) = diag

(
(α2 − s2

i )i∈n

)
is positive definite and invertible. This is a non-autonomous non linear dynamic sys-
tem whose architecture is fully determined by the number of neurons, and whose dy-
namics is fully characterized by α, β,W,b and s(t0). Note also that the two-step
dynamics defined in equation Eq. (4.11) is, strictly speaking, a Differential Algebraic
Equation (DAE), while, instead Eq. (4.13) is a simple ODE which ease the numerical
implementation. Note also that the equation may be re-written also as in the so called
linear-gradient form:

ds

dt
=

1

αβ
D∇V (s)
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4.1. Problem Formulation

Thus, it is easy to show the stability of the estimator in the case of an autonomous
network [62], using Lyapunov stability theory. In fact, since a Lyapunov function exists,
the only possible long-term behaviour is for trajectories to asymptotically approaching
a point that belongs to the set of fixed points. Those fixed points are defined ad the
points where dV/dt = 0 i. e.,

dV

dt
=

n∑
i=1

∂V

∂si

dsi
dt

= −
n∑
i=1

neti (α
2 − s2

i )neti = 0

Then the fixed points can a be vertex of the hypercube where |si| = α or an interior
points neti = 0. A remarkable property of the network is then that trajectories always
remain within the hypercube ] − α, α[n as long as the initial values belongs to the
hypercube too i. e., the hypercube is invariant. In any case, the stability of the method
is shown in [55], [56] where a non-autonomous HNN is shown to be the solution of the
optimization problem defined in Eq. (4.3) if ∀t ≥ t0 then ker(A(t)) = {0} holds. Then
the solution is obtained at any time with:

W = −ATA
b = −Wp0 − ATy

Note that A:

• Is a square, symmetric and positive definite matrix;

• Can be seen as an estimator of the covariance of the state, if normalized by the
mean:

σj1,j2 = E[aj1aj2 ] '
1

m

∑
aj1aj2

• The wii are the variances associated to the A matrix i. e., tr(W) > 0;

• Since W is symmetric then its eigenvalues are real and positive while the eigen-
vectors:

W = ΛVΛ =
∑
i

λiviv
T
i

then detW =
∏

i λi > 0 since λi > 0∀i.

4.1.4 Discrete modified Hopfield networks

In this section, for the sake of comparison, we describe the conventional discretization
that is usually adopted to implement Hopfield networks. According to [63] and [64] the
usual discretization of Hopfield networks results from replacing the derivative dpi

dt
by a

finite difference Euler method, such as:

dpi
dt

=
∆pi
h

=
(pi)k+1 − (pi)k

h
(4.14)

where h is the time step. The discrete dynamics resulting from this approximation is
then:

(pi)k+1 = (pi)k + h (neti)k (4.15)
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where

(neti)k =
n∑
j=1

(wij)k(sj)k − (bi)k then (si)k+1 = α tanh

(
(pi)k+1

β

)
(4.16)

Then this two-step dynamics can be rewritten as an one-step map as follows:

(si)k+1 = α tanh

(
1

β
((pi)k + h (neti)k)

)
= α

(si)k + tanh
(
h
β
(neti)k

)
1 + (si)k tanh

(
h
β
(neti)k

) (4.17)

Now, according to [63], this equation does not coincide with any reported numerical
method and in particular it is no longer the Euler method applied to the single ODE
given in Eq. (4.12) which, instead, is given by:

(si)k+1 = (si)k +
h

αβ

(
α2 − (si)

2
k

)( N∑
j=1

(wij)k(sj)k − (bi)k

)
(4.18)

Note that Eq. (4.17) is bounded but it is not continuous when 1+(si)k tanh
(
h
β
(neti)k

)
=

0. In principle, this condition cannot be achieved since |si| < α, but in a computer
implementation must decide which value is adopted to avoid this singularity that can
appears due to round-off errors. The choice in this study is to set (si)k+1 = (si)k if
the singularity is encountered. In this way the fixed points of the systems are also
preserved. Obviously the methods presented are equivalent.
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CHAPTER 5
PARAMETRIC IDENTIFICATION OF

SIMPLIFIED MODELS

In this part the HNN is extensively tested on the basis of the model Eq. (4.1), with
∇Upert containing only the zonal terms of the expansion. To give an applicative mean-
ing to this simplified model, one can think to a rounded body that can be well approx-
imated in an axisymmetric manner. For this case, series of tests have been done in
order to understand how the network behaves on the parametric identification of grav-
ity field coefficients and how it can be improved. Note that in this part only the gravity
of the main body is taken into account. However the Sun third-body perturbation as
well as the SRP must be taken into account for orbits about this kind of bodies since
they can be of the same order of magnitude of the gravity field of the body. But in
this part, since the aim is to test the HNN capability of computing correctly the Stokes
coefficients, these effects are not yet considered. Other strong assumptions considered
in this part are:

• The minor body is considered to be steady ;

• A perfect determination is assumed for the state of the orbiting object: the state
vector is, in fact, assumed to be known and expressed with respect to the exact
centre of mass of the body.

Before starting the tests, recall from Chapter 3 on page 49 that:

(R1) The order of magnitude of the n-th element of a spherical harmonic expansion
decrease as far as the distance from the body increases;

(R2) The higher the inclination of the orbit, the higher the order of magnitude of the
perturbation will be (from an integral point of view and zonal perturbations).
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Figure 5.1: Test 1(a) · Results with a0 = 1.5Rmax.
Color scale goes from black (β = 1e− 3) to red (β = 1e− 6).

Recall also that the HNN used here is fully determined once α, β,W,b and s(t0) are
given. Thus once the initial conditions on the orbit i. e., r(t0) and v(t0) are given and
the newtork is initialized with a certain s(t0), then the performances would depends
on the values of the two parameters α, β. The dependence of the performances on
the orbit itself is implicit in the definition of W and b and meets the points (R1) on
the previous page and (R2) on the preceding page. So, in general, the study of the
convergence of the network for the j-th parameters pj is a function of some arguments:

pj = pj(α, β, pi0 ; a0, e0, i0,Ω0, ω0; t) (5.1)

Then considering an axisymmetric body would reduce the function to:

pj = pj(α, β, pi0 ; a0, e0, i0; t)

Moreover, in this case we consider to initialize the network with s(t0) = 0, and we
consider the case in which e0 = 0. This last assumption is for simplicity. A case in
which e0 ∈]0, 1[ will be analysed later as well a case in which e0 > 1. So then:

pj = pj(α, β; a0, i0; t) (5.2)

Moreover, a statistical measure can be introduced to eliminate the time dependence:
the Maximum Likelihood Estimation (MLE). It would have an estimated value p̂j =
p̂j(α, β; a0, i0) as well as variance associated σ2

j = p̃j(α, β; a0, i0). Then, since all those
functions are different for each parameter, in general we can write them in the form
F(j;α, β; a0, i0). Thus in order to plot the results, one have to fix at least three
between the arguments of the function F . Now a series of tests on the asteroid KW4-α
are performed to understand how the function F can be interpreted.

Test 1 (a),(b). This test is performed varying the value of β and keeping fixed the
other arguments of the function. In particular, the case in which a0 = 1.5Rmax (a)

68



and 2Rmax (b), i0 = 90◦ and T = 150 days is considered, while β ∈ [1e − 3, 1e − 6].
The results are shown in Figure 5.1 and Figure 5.2: small values of β guarantee a
faster convergence and the convergence is improved as far as the distance to the body
is small.

Figure 5.2: Test 1(b) · Results with a0 = 2Rmax.
Color scale goes from black (β = 1e− 3) to red (β = 1e− 6).

Moreover, as the distance to the body increases, as it can be seen from Figure 5.2, as
the convergence is less smooth.

Figure 5.3: Test 1(b) · Results with a0 = 2Rmax, parametrized for the number of
Stokes coefficients. Color scale goes from black (β = 1e− 3) to red (β = 1e− 6).
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Figure 5.4: Test 1(a) · Results with a0 = 1.5Rmax: MLE, mean.

Last but not least, the convergence rate and smoothness depends, in this case, also
from the number of coefficient to be estimated. In Figure 5.3 a clear example: looking
at the coefficient C3, it can be seen that in the second row it converges smoothly while
in the third, when another coefficient is added, the behaviour is different.

The previous considerations, finally, can be reinforced with the MLE analysis, whose
results are shown in Figure 5.4: as far as β gets smaller, as far as the estimated mean
tends to the true value of the coefficient. It should be said that, however, too small
values of β would bring the network to instability: an example, with β = 1e − 8 is
shown in Figure 5.5.

Figure 5.5: Test 1(a) · Results with a0 = 1.5Rmax: instability phenomenon.

Note that the instability would influence the convergence to the method through oscil-
lations about the true value of the coefficient. This is due to the fact that the activation
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Figure 5.6: Test 2 · Results.
Color scale goes from black (a0 = 1.5Rmax) to red (a0 = 3Rmax)

function is too steep and even small variations of the neuron state would give a large
output. Note also that, in case the network is unstable, a dense fitting is needed to
catch its behaviour: if the fitting is not enough dense then the network would converge
to the vertex of the hypercube, for numerical reasons, and gives ±α.

Test 2. This test is performed varying the value of a0 and keeping fixed the other
arguments of the function. In particular, the case in which a0 ∈ [1.5Rmax, 3Rmax],
i0 = 90◦ and T = 150 days is considered, while β = 1e − 4. The results are shown in
Figure 5.6. In this case the higher order terms convergence is largely influenced by the
value of a0: as far as the distance to the body increases as slow as it is the convergence
to the real parameter value. Of course, the behaviour has a strong dependence on β
and i0 as it can be seen from Figure 5.7.

The results shown in Figure 5.7 are of interest also because the parameters converges,
depending on the distance to a different estimated value and this value is not the actual
value of the parameter. This results comes from the fact that the body is axisymmetric
and the orbit considered is equatorial so that the estimation error is dominated by a
bias error due to the lack of informations. Those error gets smaller as far as i0 increases
as shown in Figure 5.8.

As in test 1 the convergence depends also on the number of parameters to be estimated,
due to the cross-correlations present in the model, as can be seen in Figure 5.9.

Test 3. This test is performed varying the value of i0 and keeping fixed the other
arguments of the function. All the previous considerations are valid and as i0 gets
higher as the convergence in fast as well as the network converges in a reasonable time.
In particular with a0 = 2Rmax and β = 1e − 4 fixed it is interesting to look at the
results parametrized for the number of coefficients, varying i0 ∈ [0, 90◦].
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Figure 5.7: Test 2 · Results with i0 = 0◦.
Color scale goes from black (a0 = 1.5Rmax) to red (a0 = 3Rmax)

Figure 5.8: Test 2 · Results with i0 = 60◦.
Color scale goes from black (a0 = 1.5Rmax) to red (a0 = 3Rmax)
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Figure 5.9: Test 2 · Results parametrized for the number of Stokes coefficients.
Color scale goes from black (a0 = 1.5Rmax) to red (a0 = 3Rmax)

Figure 5.10: Test 3 · Results parametrized for the number of Stokes coefficients.
Color scale goes from black (i0 = 0◦) to red (i0 = 90◦)
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Figure 5.11: Test 4 · Results.
Color scale goes from black (α = 1) to red (α = 1e + 4)

Then the results shown in Figure 5.10 can be read in several ways:

(T3.1) The convergence of the low degree coefficients, in particular C2 and C3 does not
show a strong dependence on the inclination;

(T3.2) In general, the network convergence do depends on i0 and the number of coeffi-
cients to be estimated;

(T3.3) Higher order coefficients associated with small i0 suffer a bias error. This error
decreases as far as i0 gets larger.

Figure 5.12: Test 5 · Results.
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Test 4. In this case the value of β = 1, a0 = 1.5Rmax and i0 = 90◦ while effect of the
variation of α ∈ [1, 1e + 4] are analysed. The results in Figure 5.11 show a increase in
the convergence speed as far as α gets larger. Also in that case, as it was for test 1, it
is possible to make the network unstable, if the value of α is chosen too large.

Test 5. The previous tests underline that the variation of both the parameters α and
β strongly influence the convergence rate. So in this test a series of combinations of
those parameters is analysed in order to understand how they affect the performances
of the network. In particular α = {1e4, 1e2, 1} and β = {1, 1e− 2, 1e− 4}. Results are
shown in Figure 5.12: as one can see, the behaviour is quite similar in all the cases,
so we can conclude that the effect of the changes in α or β are mostly equivalent with
respect to the performances of the network.

Recall that in this chapter all the results are shown in the particular case of KW4-α,
so they’re not general at all but the global behaviour of the network in case of the
analysis of a rounded body can be extracted.

5.1 On the tuning of the MHNN

As underlined in the previous paragraphs, the tuning of β is essential to have a fast and
accurate response of the network. In this section is presented a brief discussion on how
it has to be tuned in cases different with respect to the axisymmetric one presented in
the chapter. In general, assume that:

β = β(µ, r) (5.3)

Note also that:
µ = GM = G%V (5.4)

So that:
β = β(M, r) = β(%,R0, r) (5.5)

Since there is a strong correlation between the mission scenario and the tuning of the
network, assume a simple oblate spheroid. In this case:

V =
4

3
πR2

xRz →
V

R3
x

=
4

3
πp2

xpz (5.6)

So that in general one would expect:

β = β(%,R0, px, pz, a, i) (5.7)

The choice of the spheroid is made since in that case there is no dependence on the
ascending node position and so on Ω and ω. Moreover, from the analysis of the previous
results, the inclination of the orbit is setted to be 90◦, since zonal harmonics have to
be estimated. So, β results:

β = β (%,Rx, a) (5.8)

since here one can assume Rz = pxzRx. Note that from those considerations it results
that β is, for sure, non-linearly coupled with its variables. This can be seen, for
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example from the fact that the volume of the body V ∝ %R3
x so that the gravitational

parameter varies linearly with % and cubically with the body dimensions, and so does
the gravitational attraction, at a fixed distance from the body. So, in general, at a fixed
%, in case of a spherical body pxz = 1, the point mass gravity exhibit the behaviour
presented in Figure 5.13. In general, a dependence of β on the mass of the body is

Figure 5.13: g values with % = 2700 kg/m3.

something expected as well as the fact that the higher the gravitational force will be
the higher/faster the response of the network. This is something expected since the
state of the network p, at each time step, is weighted by W that being constructed
from A results to be ∝ µ2/r4.

In fact, even in the case the activation function is not too steep (β ≥ 1), which
operatively means that s ≈ p, then assuming that the n-th zonal term potential can
be written as Un = µ

r
un(x, y, z), then the neuron signal results amplified by a factor

that ∝ µ/r2 = g where the proportionality is given by a term u2
nn ≤ 1. So the higher

the accelerations the more responsive the network should be.

Figure 5.13, however, can be read in several different ways:

1. One can enter with R0 (so with the mass) and can built a function g(ā)

2. One can enter with g and so built a relation between ā and R0 (so a correlation
orbit-mass with the same g values). This second way seems to be more interesting
for this tests since I would expect that the network will behave in the same way
for different bodies/orbit couples having the same g values. From the plot in
Figure 5.13, in fact we could extract curves ā = f(R0). This, by using the simple
point mass relation g = µ

a2
lead to the following result:

ā =
a

R0

=
0.2067%1/3

√
g

µ1/6 = 0.005285

√
%R0

g
= Cg

√
%R0

g
(5.9)
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5.1. On the tuning of the MHNN

where here the constant Cg is computed as:

Cg =

√
4

3
πG · 105 (5.10)

Since g is considered to be in mgals.

The previous results and considerations can be extended to an oblate spheroid. For
this study, consider pxz 6= 0. In that case the expression for ā is equal while the Cg
results:

Cg =

√
4

3
πGpxz · 105 (5.11)

So now we have a simple tool to be used to generate normalized semi-major axis at fixed
g, varying the principal physical properties of the body i. e., dimensions and density.
This is a fundamental tool to be exploited since

Operative β(µ, r) dependence. From the operative point of view, the dependence
of β on the body as well as on the orbit can be easily shown considering the case in
which µ or r are fixed. In the case of the simple spheroid, r → a so that either µ or a
have to be fixed, assuming i = 90◦. If a 1.5Rx orbit is selected as well as β = 1e− 3, as

Figure 5.14: β(µ) dependence example in the C20 identification.

a guess, then the dependence on µ is clear from Figure 5.14. Similarly, keeping fixed β
and increasing a we expect slower response of the network.

Fixed-g analysis. From the network formulation presented in Chapter 4 it is clear
that the principal informations that enters the network are accelerations. In this chap-
ter, in fact, it was pointed out that the network barely solve an optimization problem
with cost function (and so Lyapunov function):

J = V = −1

2
sTATAs + sTATy +O(y2) (5.12)
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Chapter 5. Parametric Identification of Simplified Models

In particular, a major point was that the linear gradient form of the network simplified
the formulation. In this case consider the fact that the parameters to be estimated
are always <1. The network parameter α is setted to be 1. It results that the MHNN
formulation results:

ds

dt
=

1

β
diag

{
1− s2

i

}
∇V (5.13)

Now consider the case of the identification of a single term, recalling that A ∝ g:

∇V = −ATAs+ ATy ∝ −g2s + gy ∝ −g2s+ g∂g (5.14)

Resulting in:
ds

dt
∝ g2

β
(1− s2)

(
s− ∂g

g

)
(5.15)

But, more in details:
∂g

g
∝
∇Un
g
∝ ān → ∂g

g
= f(µ, n) (5.16)

So that the temporal behaviour of s(t), even in the case of fixed g results to be depen-
dant, in some way, on the inertial properties of the body and so on its mass. Moreover,
this dependence seems to be non-linear with respect to the problem parameters.

Figure 5.15: MHNN convergence in
function of ā (or R0), β = 1e-9.

Figure 5.16: MHNN convergence in
function of ā (or R0), β = 1e-10.

In Figure 5.15 and Figure 5.16 the results of the mean identified coefficient C20 in the
case g = 1 (mgal), % = 2700 kg/m3 and pxz = 0.8 are presented for two different value
of β. This test is a model matching one since the gravity field of the body is assumed
to be a SHE of the 2nd degree and the network estimates only the associated coefficient.
The convergence to the real value of C20, at fixed g appears to be independent on ā (or
µ or R0) for a fraction of them. But it is also evident that the correct tuning of β can
lead to basically a µ-independent behaviour at fixed g. In fact, if β is optimally setted
to 1e-12 then the network converges for all the values of ā or R0 within the selected
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5.1. On the tuning of the MHNN

Figure 5.17: Normalized mean value error for the 1 mgals case.

range to the exact solution. This dependence is further analysed in Figure 5.17 where
the results for the optimal β tuning is addressed. The minimization process is based
on the mean value of the identified coefficient Ĉ:

J (β) = mean Ĉ(t) =

∫
T

Ĉ(β, τ) dτ (5.17)

where here the integral do depend on the choice of β. The optimal line, so, can be
written as a function β = β(Rx). This can be traduced to a function β(µ) for a network
working at fixed g value. So:

1. β do depends on the mass of the body even in the fixed g case.

2. A choice of a small β, say 1e-12, can basically eliminate the dependence on
the mass but it should be recalled that in this case a single-coefficient model
matching example is presented. So in real applications a β that is too small can
lead to instability of the network. This can be avoided by putting a "margin" on
the choice of β in such a way instability are avoided, but lowering the network
convergence velocity.

3. In general, β(Rx) = a1R
a2
x results to be a good interpolation for this case, where

a1 and a2 do depends on the g level. For example in the case g = 1 mgals,
a1 = 2.5e− 9 and a2 = −1.25 while for the case g = 10 mgals, a1 = 4.6e− 6 and
a2 = −1.527 and for the case g = 50 mgals, a1 = 3e− 2 and a2 = −1.58.

4. The dependence a1(g) and a2(g) can be also extracted. In particular, interpo-
lating previous results, a2 = a3g

a4 + a5 while a1 = a6g
a7 , so that a3 = 0.3595,

a4 = −0.6394, a5 = −1.609, a6 = 1.4e− 8 and a7 = 3.716.

From the previous analysis trends of the results are more important that the results
them-self. In fact:

β(Rx, g) = a1(g)Ra2(g)
x = 1.4e− 8 · g3.716R0.36g−0.64−1.6

x ∝ 1.5e− 8 · g4 ·R−n(g)
x (5.18)
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where here n(g) ∼ 1. So the function β(Rx, g) can be used to have an idea of the correct
order of magnitude of β in function of the mass/the dimensions of the body (Rx) as
well as of the orbit (g). Of course this function is built for a simple slightly-oblate body
so that a more detailed analysis is needed in case of more complex shapes.

As an example, the tuning of a model-matching network for oblate spheroids is ad-
dressed through a Montecarlo optimization coupled with an optimization. In particular
the Montecarlo is performed over the parameters α = β of the spheroid always keeping
them > γ and on the density %. The optimization, instead have the objective function
defined before, J (β). The coefficient C20 is identified though a polar orbit.

Figure 5.18: Montecarlo β optimum.

The results for this specific analysis are presented in Figure 5.18. Note that there are
some excluded values : those values are the one which the identification does not con-
verge within one period. Note, also, that these results have to be seen in an indicative
way: they’re not general at all, but can be used to generate a good first guess for β.

5.2 Adaptive learning with gradient descent method

Another approach, based on gradient descent method is presented here. Gradient
descent is a first-order iterative optimization algorithm for finding the minimum of a
function. To find a local minimum of a function using gradient descent, one takes steps
proportional to the negative of the gradient (or approximate gradient) of the function
at the current point. So the idea is to find a way to relate the a relative change on β
to the convergence of the network. To do so, consider a simple network with only one
neuron and the hyper-parameter α = 1. According to Eq. (4.13), the neuron dynamics
can be written as:

ṡ =
ds

dt
=

1

β
(1− s2)(Ws− b) (5.19)
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5.2. Adaptive learning with gradient descent method

Figure 5.19: Adaptive MHNN vs MHNN.

where W and b are the weight and bias matrices and are associated with the actual
orbital state. Let us call ṡ the neuron state velocity. Now:

∂ṡ

∂β
= − 1

β2
(1− s2)(Ws− b) (5.20)

Then β changes as a function of the neuron state velocity as:

∂β

∂ṡ
= − β2

(1− s2)(Ws− b)
=
∂β

∂s
∂t ≈ βk+1 − βk

sk+1 − sk
h (5.21)

Now assuming γ small (<1) and positive,

βk+1 = βn + γ
sk+1 − sk

h

∂β

∂ṡ
= βk − γ

∣∣∣∣sk+1 − sk
h

β2
k

(1− s2
k)(Wsk − b)

∣∣∣∣ (5.22)

Note that here the coefficient γ has been introduced to rescale the gradient term i. e., to
do not get unstable the method. Note also that this formulation is anti-proportional
to the network convergence so that a stop criteria for the update of β is needed. In
particular note that as far as s approach the true value of the parameter:

• sk+1 − sk is bounded and small;

• 1− s2
k ' 1, being sk � 1 usually;

• Wsk − b is bounded and small too, being ∇V . Note that Wsk − b should be, in
theory, negative. But due to the fact that there is not a exact matching between
the real model and the reconstructed one, it can oscillate about zero, once the
network is converged.

In Figure 5.19 the results for a sample-case identification of C20. The central body
is Bennu and a Γ10Rmax

45 orbit is selected. β0 is setted to be 1, assuming no previous
knowledge of the body so that none of previous analysis can be used. The Gradient
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Figure 5.20: Adaptive MHNN vs MHNN: gradients convergence

Algorithm 1 GD-HNN simil-code.
Require: β0, s(0)
1: for k = 1, . . . , nsteps do
2: procedure Built HNN
3: Here Wk, bk are built: netk = Wksk − bk.
4: end procedure
5: if |netk| > ε then
6: Update βk+1 with gradient-descent method.
7: else
8: Keep the same β i. e., βk+1 = βk.
9: end if

10: end for

Descent (GD) relaxation term γ is setted to 0.1 for this simulation. Figure 5.20, instead,
show the behaviour of two important parameters for the performances evaluation:

1. ∇V that in this case is simply dV/ds = Ws − b: it should converge to zero
when the network converges to the exact solution. In this case it oscillates since
the model reconstructed does not match the real one. If, instead, a 2nd-degree
harmonics expansion is used as model for the propagation, instead, the Lyapunov
theory result is confirmed, as it can be seen from Figure 5.21 and Figure 5.22.

2. ∇F(β), that is all the term that multiply γ in the gradient formulation and it is
associated to the network dynamics. At the end of the optimization (GD-based),
it should converge to a small value, as it does.

Finally, a remark on the implementation of the adaptive algorithm is performed: as
said before, since Ws − b → 0, ideally the gradient term would become ∞. To avoid
that, the algorithm is implemented as in Algorithm 1. ε = 1e− 19.
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Figure 5.21: Adaptive MHNN vs MHNN: model matching case.

Figure 5.22: Adaptive MHNN vs MHNN: Lyapunov function gradient in the case of
model matching.
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CHAPTER 6
CONCEPTUAL MISSION DESIGN

In this chapter the conceptual design of a mission to an unknown or a partially know
object is considered. One of the first things that scientific missions to small solar
system bodies do is the to understand the dynamical environment of the body. This
includes, at first, the determination or the refinement of mass, inertia and angular
velocity vector of the body. Then a characterization of the gravitational field of the
body. In this framework, this work proposes a new way to reconstruct on board an
approximation of the gravitational field of the body with the aim to unload at the
most the need to communicate to ground for instructions as well as to enhance the
autonomy of the spacecraft.

From the conceptual point of view, the reconstruction of the gravitational field of the
body through the use of a MHNN can be subdivided in 4 sub-phases:

(P.1) 2B-Identification : in this phase the point mass model is being reconstructed.
The MHNN, in fact, can be used to identified/refine the mass of the body.

(P.2) Inspection: in this phase the main objective is to reconstruct a guess of the lower
degree coefficients to have an idea of both the shape of the body and to have a
good initial guess of them for the next phases;

(P.3) Identification: in this phase the initial guesses are refined through the use of
specific orbits. Also, higher degree coefficients can be included;

(P.4) Refinement : the main task of this phase is to refine some specific coefficients to
increase the accuracy of the model.

It is obvious that such phases cannot be completely autonomous, but the use of the
MHNN investigated in this work would can guarantee a much higher degree of autonomy.
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Figure 6.1: Mass and density estimates of asteroids. Symbol size represents asteroid
diameter. The colour and contrast of the symbols represent taxonomy and

measurement uncertainty, respectively S-type asteroids (red) are on average more
dense (average: 2.7 g/cm3) than C-type (grey, average: 1.3 g/cm3). Average

X-type: 1.85 g/cm3. Credits [33].

Table 6.1: Average density taxonomic classes where density determinations more
accurate than 20% are available. Credits [33].

Class Density (g/cm3)

S 2.72 ± 0.54
Sq 3.43 ± 0.20
C 1.33 ± 0.58
X 1.85 ± 0.81
Xc 4.86 ± 0.81
K 3.54 ± 0.21
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In general, the shapes and the masses of minor bodies are different from body to body
but two "major" families can be distinguished: convex and concave objects. Convex
objects can be approximated by spheres, ellipsoids and tri-axial ellipsoids while those
approximations gives poor results in case of concave ones (e. g., in case of highly irreg-
ular bodies). For this reason the spherical harmonic expansion of the body give better
results in the case of convex objects (i. e., rounded bodies) with respect to the case of
concave ones, as explained before. For this reason, the design of a conceptual mission
about a rounded/convex object is considered and parametric analysis are performed
on tri-axial ellipsoid shaped bodies. To do so, first a correlation between the mass
and the density of the body is extracted from Figure 6.1: in Table 6.1 the resulting
class-density correlation.

Figure 6.2: %-period correlation for the limit spin rate.

For what regards the asteroid rotation, instead, the limit spin rate ωs is given by [33]:

ωs =

√
4πG%

3
(6.1)

where G is the gravitational constant and % the bulk density of the body. This limit
is essentially the spin rate at which internal tensile stresses would be present within a
spherical, constant density object (the actual spin rate for a body also depends strongly
on its elongation). This spin rate also corresponds to local circular speed at the surface
of the body, at which centrifugal forces equal the gravitational attraction of the body.
In Figure 6.2 the resulting limit spin rate for the various classes.

6.1 2B-Identification Phase

The first phase of such conceptual mission is associated to the refinement of the point-
mass model. To do so, the LIP form of the network results in:

y =
(
− r

r3

)
·GM (6.2)
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6.1.1 Model-matching of spherical bodies

In this case, to simplify the analysis as well as to obtain significant results the analysis
of the 2B-IP are referred to the model matching of the gravitational parameter GM. Here
with model matching we refer to the reconstruction of the exact dynamical model, not
on the identification of an approximation of it. In particular we refer to the capability
of the network to match exactly a dynamical model. So, in this case, the central body
is modelled as a spherical mass with radius R0 and density % in such a way the model
on the base of the matching is the R2BP. The combination (R0, %) can be then associate
at Figure 6.1 and so to observed objects.

If the MHNN is used to identify a object that is assumed to be unknown e. g., initializing
the network from zero, the identification is extremely fast (∼ seconds, at most minutes)
if the network is correctly tuned. Recall that since it can be that GM > 1, then the
network parameters (α, β) must be carefully chosen. In particular, α must be chosen >
1 otherwise the network will converge to its fixed points (±1) if GM > 1: the network
should be tuned is such a way α ≥ GM. Now in order to analyse the convergence, a
time parameter τm is defined:

τm = tcv

√
GM

R3
0

(6.3)

Where here tcv is defined as the time at which the mass error, defined as

em(t) =
|M̂(t)−M |

M
(6.4)

is less than a certain threshold εm e. g., em(tcv) ≤ εm. Here, with M is denoted the
true mass value while with M̂(t) its reconstruction. In the case of optimized model
matching, the convergence is monotonic so that em(t)→ 0 from above. Note also that:

τ ∗m =
T

tcv

τm = 2π

(
a0

R0

)3/2

= 2πā
3/2
0 (6.5)

This quantity is of interest because correlates the semimajor-axis of the orbit with the
expected performances of the network. In the model matching case, it remains constant
because the orbit is not perturbed while in real cases can be used as a parameter of
merit: the more it diverges from its initial value, the more the orbit is perturbed.

By setting the network with α = 10log(2R0) and β = 1e− 7, one can obtain the perfor-
mance presented in Figure 6.3. In this case εm = 1e−8. From that results, then, some
considerations can be extracted:

1. In model matching, the network is extremely fast (as it has been pointed-out also
in previous chapters);

2. There is a correlation between the network performances e. g., the time parameter,
and the shape/mass of the body;

3. τm increases with the sphere radius, R0;

4. τm increases with the density, %;

5. τm increases with a0 for a fixed couple (R0, %).
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Figure 6.3: τm(%,R0) correlation for a Γ3Rmax
0 orbit about a sphere.

6.1.2 Oblate-prolate ellipsoid model identification

The simple case of an oblate-prolate spheroid is useful to understand how the network
behaves in the identification of the mass in case the perturbations to the spherical
shape becomes relevant. In this case, since tcv cannot be defined in an unique way, the
parameter of merit is:

ēm =
1

T ∗

∫ T ∗

0

em(τ) dτ (6.6)

In this case T ∗ = 0.8Tmax, where Tmax = T/10. The oblate spheroid is defined through

Figure 6.4: ēm(%,R0) correlation for a
Γ3Rmax

0 orbit about an oblate spheroid. Figure 6.5: Oblate ellipsoid model.

χα = 1, χβ = 0.75 and χγ = 0.5, where χ = l/R0 and l are the axis of the ellipsoids.
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The prolate spheroid is defined, instead, as χα = 0.5, χβ = 0.75 and χγ = 1. Then

Figure 6.6: ēm(%,R0) correlation for a
Γ3Rmax

0 orbit about a prolate spheroid. Figure 6.7: Prolate ellipsoid model.

for those cases there are differences in the identification of the mass of the body if it
is considered to be oblate or prolate. However, the error express a similar dependence
on ρ and R0, meaning that the behaviour of the network is basically independent on
the body shape in absolute terms.

6.2 Inspection/Identification Phase

An inspection phase can be thought to be the first step in the characterization of
the gravitational field of the body. In general, scientific missions to asteroid are rich
of sensors so that even in the approach to the body an estimation of the shape and
rotational dynamics of it is available.

If those informations are not available one should remember that, in this phase, due
to the distances to the body its the gravity field is really close to the one of a point
mass i. e., the perturbations are small. Then the MHNN can be used to reconstruct
at first the 2-body gravity and then, among the others, low degree harmonics, that
are the only that can be seen from the dynamical point of view. Note that the a
first (rough) information of the shape of the body can be identified using the tri-axial
ellipsoid model only later. In this case, in fact, it is possible to relate analytically
the semi-axis α, β, γ to the zonal and sectorial harmonics associated. In particular, in
Chapter 2.4 on page 47 some non-linear relation Cij = Cij(α, β, γ) were presented. So
having identified 3 among those coefficients it is possible to recover the semi-axis of
the ellipsoid. This information, in case the body is an oblate/prolate spheroid (as in
the case of Bennu, KW4-α) or have a elliptical shape (as in the case of Itokawa) is a
good approximation of the true shape of the body.
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Figure 6.8: SRP order of magnitude analysis with % = 2200 kg/m3 and C(0.1, 20).

6.2.1 Distant body-centred orbits

There are some different ways through which the low degree harmonics can be recon-
structed. One among the others is to use distant body-centred orbits. They can be
built according to the P2BP but in this case the perturbations coming from the Sun
becomes comparable to the main body ones, and is some cases, depending on the mass
of the body, prevalent. For this reason the design of a body-centred orbit can be quite
difficult and, in particular, the design of a stable orbit can result impossible.

To understand if the non-gravitational perturbations are comparable to the gravita-
tional one a simple order of magnitude analysis is performed. Assuming Eq. (1.64) as
the force model for the SRP, then it may be compared to the main body gravitational
acceleration as:

µbody

r2
=
C(ρ,Bsc)

A2
0

(6.7)

Where A0 denotes the semi-major axis of the body orbit about the Sun. Then it is
possible to compute the non dimensional radius at which the two accelerations becomes
equal as:

r̄ =
1

Rmax

√
µbodyA2

0

C(ρ,Bsc)
(6.8)

If now, one assume that the body is spherical with radius R = Rmax then:

R =

 m

4

3
π%


1/3

→ r̄ =

(
4

3
π

)1/3√
G ·
(

1

C(ρ,Bsc)

)1/2

· %1/3 · A0 ·m1/6 (6.9)

So basically if one among the density of the body %, the distance of the body to the
Sun A0 and the mass of the body m increases then r̄ increases, meaning that orbit
closer to the body will be mainly driven by the body gravity field.
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6.2.1.1 Oblate-spheroid case

An oblate spheroid is defined as a triaxial ellipsoid with χα = χβ 6= (>)χγ. In the
case of an oblate spheroid, only zonal harmonics are different from zero. In those
simulations SRP and Sun 3BP is included.

Figure 6.9: 2.5 AU, S-class oblate spheroidal body. Γ10R0
90 orbit, with R0= 500 m, χγ

= 0.75, χα = χβ = 1 and C(0.1, 20). Network β = 1e− 12.

Figure 6.10: 2.5 AU, S-class oblate spheroidal body. Γ10R0
90 orbit, with R0= 5 km,

χγ = 0.75, χα = χβ = 1 and C(0.1, 20). Network β = 1e− 12.

In Figure 6.9 and Figure 6.10 the results for a S-class body (% = 2700 kg/m3) for
two different values of R0. Note that the convergence gets better in the second case:
the network is faster in this case since the orbit is more stable as well as, being the

92



6.2. Inspection/Identification Phase

perturbations dependant on the mass m linearly and being m ∝ %R3
0, the perturbation

is stronger.

Figure 6.11: NEA (1 AU), Xc-class oblate spheroidal body. Γ10R0
90 orbit, with R0= 5

km, χγ = 0.50, χα = χβ = 1 and C(0.1, 20). Network β = 1e− 12.

6.2.1.2 Prolate-spheroid case

A prolate spheroid is defined as a triaxial ellipsoid with χα = χβ 6= (<)χγ. In Fig-

Figure 6.12: NEA (1 AU), S-class prolate spheroidal body. Γ10R0
90 orbit, with R0= 5

km, χγ = 1, χα = χβ = 0.5 and C(0.1, 20). Network β = 1e− 12.

ure 6.12 the results for a S-class body. It can be seen that the network convergence is
not so different with respect to the oblate spheroid case.
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6.2.1.3 Oblate/prolate-ellipsoid case

In this case oblate/prolate ellipsoids are built and the network convergence is studied.

Figure 6.13: NEA (1 AU), Xc-class oblate spheroidal body. Γ10R0
45 orbit, with R0= 5

km, χα = 1, χβ =0.75 χβ = 0.5 and C(0.1, 20). Network β = 1e− 9.

Figure 6.14: NEA (1 AU), Xc-class prolate spheroidal body. Γ10R0
45 orbit, with R0= 5

km, χα = 0.5, χβ =0.75 χβ = 1 and C(0.1, 20). Network β = 1e− 9.

In Figure 6.13 and Figure 6.14 the results for, respectively, an oblate and a prolate Xc-
class body. The convergence is, also in this case, unchanged for low-degree harmonics.
In Figure 6.15 and Figure 6.16 the results of a parametric analysis on χγ: the behaviour
of the identification changes as far as ξβ changes from 0.2 to 0.8: in the first case the
body is almost always a prolate ellipsoid, being χβ ≤ χγ < χα = 1 while in the other
case the body is almost always an oblate ellipsoid. However the performances of the
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Figure 6.15: Γ3R0
45 orbit identification in the case of oblate/prolate body with χα=1

and χβ = 0.2. Results divided in the classes presented in Table 6.1 from upper left.
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Figure 6.16: Γ3R0
45 orbit identification in the case of oblate/prolate body with χα=1

and χβ = 0.8. Results divided in the classes presented in Table 6.1 from upper left.
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Figure 6.17: Γ10R0
45 orbit identification in the case of oblate S-class body with R0 =

1 km, χα=1 and χβ = χγ = 0.8. Network tuned with β = 1e− 7. ν0 = 180◦.

network in the identification are fair good for both coefficients and both cases, decaying
the error δCnm (%) under 0.1% after ∼ 0.1T . This result underline once more that the
network is capable to work in several different dynamical environments without being
affected (too much) by them.

6.2.2 High-elliptical orbits

High elliptical orbits or can also be used to reconstruct the lower degree harmonics,
but their design can be challenging if the free-dynamics wanted to be exploited and the
non-gravitational perturbation included. As an example, the case of a high elliptical
orbit with e0 = 0.8, a0 = 10R0 and and inclination of 45◦ is presented in the case the
non-gravitational perturbations are included in Figure 6.17 and Figure 6.18.

The convergence of the network is fast in proximity of the perigee. However, in this
case it can be beneficial for the network to be tuned with a β(m, r), in such a way
the network convergence would be improved. Note that the dependence is associated
not only on the orbit (r) but also on the body (and so on the mass m). Recall that
m ∝ %R3

0 so that β(%,R0, r) or β(%, r̄). For a fixed body e. g., a fixed couple (%,R0),
then β(r) only. It can be further simplified by using a Taylor expansion:

β(r) ' β0 +
∂β

∂r

∣∣∣∣
0

(r − r0) (6.10)

Where 0 denotes a certain reference distance. So that:

∂β

∂r

∣∣∣∣
0

= −β0 − β(r)

r − r0

(6.11)

Note that those orbits have no applicative purpose while indeed shown once more that
the network is faster as the orbit is closer to the body, at fixed β. Finally, it is also
possible to use hyperbolic arcs for the identification, as shown in Figure 6.19.
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Figure 6.18: Γ10R0
45 orbit identification in the case of oblate Xc-class body with R0 =

10 km, χα=1 and χβ = χγ = 0.8. Network tuned with β = 1e− 5. ν0 = 180◦.

Figure 6.19: Γ−4R0
45 orbit identification in the case of oblate S-class body with R0 =

1 km, χα=1 and χβ = χγ = 0.8. Network tuned with β = 1e− 5. ν0 = -90◦ and
e0 = 1.25.
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Figure 6.20: Γ3Rmax
90 about Castalia. (β = 1e− 8).

6.3 Identification & Refinement Phases

Identification and refinement phases can be designed in several different ways, depend-
ing on the mission objectives too. In fact, scientific missions about asteroids have
usually different objectives than the generation of a high fidelity gravitational model.
A refined model is, instead, needed if a landing or an impact shall be designed.

In general, the identification & refinement phases can start from the results of the
previous phase with the aim to built up other coefficients. As an example, consider the
case in which the coefficients C20 and C22 are known from the previous phase. Then
the LIP form to be used in the parametric identification may be corrected. In particular
being Crs the coefficients that have been estimated

U =
∑
r,s

Urs +
∑
n,m

Unm (6.12)

Then the LIP form becomes, in general:

v̇ − aCO − aCF +
µ

r3
r−∇

∑
r,s

Urs(r) = A(r) · p (6.13)

Note that here the coefficients Crs are considered to be constants and not varying in
time, otherwise:

v̇ − aCO − aCF +
µ

r3
r−∇

∑
r,s

Urs(r, t) = A(r) · p (6.14)

An example for the identification of the coefficients C30 and C40 using the modified LIP
model for the MHNN, in the case of asteroid Castalia is presented in Figure 6.20.
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CHAPTER 7
MHNN GRAVITY FIELD IDENTIFICATION

In this part the HNN is extensively tested on several case studies. Here a case-
dependent expanded gravity field is developed and then identified to understand how
the network behaves in the real applications. The major difference which respect to
the performance evaluation performed in Chapter 5 on page 67 is the fact that the
true dynamical environment of the body is considered so that the models presented
in Chapter 1 on page 21 for the P2BP in the Tb reference and the MCR3BP have to
be used, depending on the application. Moreover, in the real cases it is of interest
also the influence of other perturbations such as the SRP or the other gravitational
perturbations.

7.1 The Case of Asteroid 101955 Bennu

The first case study is on the parametric identification of the gravitational field of the
asteroid 101955 Bennu. Since the aim of this work is to evaluate the performances of
the network and not reproduce an high-fidelity environment of the dynamical environ-
ment about the selected body, instead of the P2BP, the ROP2BP is model selected for
representing it. For clarity, the model is here recalled:

r̈ + 2Ω× ṙ + Ω× (Ω× r) = aT (7.1)

where here Ω = Ωb̂3. In this first part, only the main body gravitational attraction is
retained, as a polyhedron-based one:

aT(r) =
∂U(r)

∂r
= −G%

∑
edges

Ee · reLe +G%
∑
faces

Ff · reωf (7.2)
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Here U(r) is the gravitational potential of the body. As discussed in Chapter 2 on
page 39, if the polyhedron model is used to built up this potential then a high-fidelity
model is obtained under the hypothesis of constant density. Instead, if the potential
is represented through a spherical harmonics expansion then the fidelity of the model
depends on the number of harmonics that are considered.

Figure 7.1: Model differences on two orbits about Bennu. Mid-quality polyhedron
model of approx 2500 faces used.

In this work the interest is to reconstruct the gravity field of the body in question up to
a certain degree N then some informations about this order are needed to initialize the
network. Assuming that a model of the body is available from previous observations
than a reference orbit Γ45 can be built. This orbit is characterized by a period P =2Tr,
where Tr is the rotation period of Bennu (∼4.2880 hours), and an inclination of 45◦.
Recall that for a Keplerian orbit, period and semimajor axis are related through the
Kepler’s third law:

P = 2π

√
a3

GM
(7.3)

Defining non-dimensional semimajor axis as ā = a/Rmax is this case it results ā = 1.75.
So, if Γ45 would be a Keplerian orbit then it would be in 2:1 resonance with the
asteroid rotation but since in this case a P2BP is considered then the resonance is not
preserved. Since in the case of the P2BP the so called Keplerian parameters1 can be
used to characterize any point of the curve Γ45 (instead of the r,v states) [5], then the
variations on the orbital period as well as to the other parameters can be computed.

1Being nominally the semi-major axis (a), the eccentricity (e), the inclination (i), the longitude
of the ascending node (Ω), the argument of the perigee (ω) and the true anomaly (ν)
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7.1. The Case of Asteroid 101955 Bennu

Recall that in this case the integration of the equation of motion is performed in the
Tb frame while, instead, the Keplerian parameters must be computed in the Tn frame
so a proper conversion of the position vector r and the velocity vector ṙ to R,V must
be applied. Having defined TΩ(t) in Chapter 1 on page 21 then:

R(t) = TTΩ(t)r(t) (7.4)

V(t) = TTΩ(t) ([Ω]r(t) + ṙ(t)) where [Ω] =

0 −Ω 0

Ω 0 0

0 0 0

 (7.5)

Once R,V are computed than the procedure described in [5] can be applied to convert
the in the a, e, i,Ω, ω, ν Keplerian Parameters (KEPs). Note that here neither Ω neither
ω are intended to be the angular velocity of the asteroid.

Figure 7.2: KEPs variations on 2 orbits about Bennu. Mid-quality polyhedron
model of approx 5000 faces used.

In Figure 7.2 the results in terms of the KEPs variations for a polyhedron model based
orbit, for the orbit resulting from a 10th degree spherical harmonics expansion (darker
curve) and from the one resulting from a 10th degree spherical harmonics expansion
with only zonal terms (lighter curve).

In Table 7.1 some of the coefficients of the spherical harmonics expansion for the
asteroid Bennu are reported. Those are un-normalized coefficients. Note that the
magnitude of the coefficients C20, C22, C30, C31 and C40 are much larger than the one
of the others. Note also that some of the coefficient are in brackets: this is because
they should be zero since the equation of motion are written in the Tb frame, that is the
principal inertia frame, but they’re not zero because are computed from the polyhedron
model that has a certain discretization.
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Table 7.1: Bennu spherical harmonics expansion coefficients up to degree 4.

C20 -0.040804
C21 0 (0.00055237) S21 0 (-0.00012594)
C22 0.0018883 S22 0 (-0.00058876)

C30 0.0049144
C31 0.0011623 S31 -0.00032144
C32 -0.00024379 S32 -0.00019989
C33 0.00017464 S33 -2.7456e-05

C40 0.019919
C41 -0.00082558 S41 -0.00061812
C42 -0.00017304 S42 -2.3051e-05
C43 -8.2511e-06 S43 -2.8951e-05
C44 2.1742e-05 S44 4.5268e-05

Assume now that the main objective is to reconstruct those five coefficients in order to
built up the potential function U(r). In particular, this function can be expanded as:

U(r) =
GM

r
+ Ug,2(r) + Ug,3(r) + Ug,4(r) (7.6)

where here:

Ug,2(r) =
GM

r

(
R0

r

)2 [
C20

(
3

2
cos2 θ − 1

)
+ 3C22 sin2 θ cos 2λ

]
Ug,3(r) =

GM

r

(
R0

r

)3 [
C30 cos θ

(
cos2 θ − 3

2
sin2 θ

)
+ C31 sin θ

(
15

2
cos2 θ − 3

2

)
cosλ

]
Ug,4(r) =

GM

r

(
R0

r

)4

C40

(
5

8
cos4 θ − 3 cos2 θ sin2 θ +

3

8

)
To fully understand the dynamics about this specific body as well as to validate the
dynamical model adopted, before proceeding to the identification, long term behaviours
on the orbit should be analysed. In Figure 7.3 the results of the propagation of a polar
orbit Γ90 are presented in terms of KEPs. In this case Γ90 is taken as a 3:2 resonant
orbit. It can be noticed that the behaviour of the KEPs is quite similar to the case in
which a zonal harmonics expansion is considered, in fact both i(t) and Ω(t) exhibit small
variations, while the most important variations can be seen in the eccentricity. This can
be related to the fact that the body have a pronounced bulged equatorial region so that
strong zonal perturbations among the others are expected. This is further confirmed if
another Γ90 is considered with a 5:1 resonance (Figure 7.4, the darker line comes from
a polyhedron-based model while the lighter one form the integration of a spherical
harmonics expansion with only the C20 term included). This result is important since
it shows that even at a distance ∼ 3.2Rmax the major perturbation contribution is
associated to the first zonal harmonics only. It can be shown that sectorial harmonics, in
this particular case, have low influence on the overall perturbation. Finally, important
conclusion that comes from the analysis is that orbits about this kind of bodies seems
to be quite "stable" in this case, at least if the other non-gravitational perturbations
are not considered.
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7.1. The Case of Asteroid 101955 Bennu

Figure 7.3: KEPs variations on 100 orbits about Bennu: Γ90, 3:2 resonance case.

Figure 7.4: KEPs variations on 10 orbits about Bennu: Γ90, 5:1 resonance case.

7.1.1 MHNN performances

In order to apply the parametric identification method based on the MHNN presented
in Chapter 4 on page 59 the gravitational potential have to be written as:

U(r) = P(r) · p (7.7)

where p is the vector of parameters to be estimated, that in this case contains C20,
C22, C30, C31 and C40. In this manner, being aT = ∇U(r) the problem can be written
in the usual LIP form.

Test 1. This test is performed on a Γ2:1
90 orbit. All the parameters of the vector p

defined before are estimated. The network is initialized with p0 = 0 and its conver-
gence is presented in Figure 7.5. The estimated values of the parameters, expressed
in terms of MLE are, instead, presented in Table 7.2. Note that the MLE is computed
on the last orbits and not on all the time-series. Note also that the capability of re-
constructing the coefficient is quite good in all cases except for C31: in this case the
variance is higher in magnitude that the mean value so the coefficient is considered not
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Figure 7.5: Test 1 · SHs coefficients identification.

reconstructed correctly. Note also that the long term propagation (20P = 20 orbital
periods) converges, as expected, with a smaller error with respect to the short term
one.

Test 2. This test is performed on a Γ90, in the case the orbit has a period of 1 day
(∼ 5.6P ). According to Chapter 3 on page 49 as far as the distance increases as far
as the order of magnitude of the n-th degree perturbation is of order 10−n. At this
distance, in fact, can be shown that the network is capable to identify only C20 and
C22. In Figure 7.6 the results of the identification of C20. Using a moving mean it can
be found that the estimate converges to −0.039 in both the cases presented.

Table 7.2: Test 1 · MLE with 95% confidence interval.

True

MHNN: 10P MHNN: 20P

β = 1e− 6 β = 1e− 7 β = 1e− 6

MLE σ MLE σ MLE σ

C20 -0.0406 -0.0390 0.00149 -0.0366 0.00283 -0.0400 0.0012
C22 0.00188 0.00203 0.00170 0.00173 0.00190 0.00182 0.00125
C30 0.00499 0.00621 0.00058 0.00443 0.00443 0.00552 0.00121
C31 0.00129 -0.0005 0.0018 -0.0008 0.00326 -0.00043 0.00126
C40 0.01949 0.0157 0.00103 0.0219 0.00126 0.01744 0.00124
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Figure 7.6: Test 2 · SHs coefficients identification for the case of a Γ5.6:1
90 orbit.

Test 3. Here a Γ2:1
45 orbit is considered. The aim of this test it to verify the convergence

of the method in case of a lower inclination orbit. The results for this case are shown

Figure 7.7: SHs coefficients identification for the case of Γ2:1
45 .

in Figure 7.7. It can be seen that the use of a low-inclination orbit does not influence
the convergence of the 2nd degree terms but instead do influence (in a negative way)
the one of higher-degree terms, at least if those coefficients are estimated all together.

Test 4. Here a set of orbits with i0 ∈ [0◦, 90◦] and a0 ∈ [2, 6]Rmax is built and
propagated for a period P = 10 · P (a0) = 10P0. The coefficients C20, C22, C30 and
C40 are estimated. In order to evaluate the overall performance of the network a mean
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Figure 7.8: δCnm analysis results for the case of Bennu.

operator is applied in such a way, for the n,m term:

δ∗Cnm(a0, i0) =
1

5P0

∫ 10P0

5P0

Ĉnm(a0, i0, τ)− Cnm
Cnm

dτ (7.8)

where Ĉnm denotes the time dependant coefficients estimated from the MHNN while
Cnm the true coefficients. Here the previous operator is nothing than mean in time
over 5P0. Now define δCnm(a0, i0) = δ∗Cnm(a0, i0) · 100 as the parameter of merit
needed for the analysis of the global behaviour of the network.

The results in Figure 7.8. As it can be seen, the estimation coefficients C20 and C40

is independent from the inclination but do depend on the distance. In particular, C40

if estimated with the other coefficients, have a stronger dependence on the distance
than C20. The other coefficients, namely C22 and C30, instead exhibit large variations
in terms of δCnm also in function of the inclination. In particular, the zonal term C30

seems to need an high inclination orbit to be estimated.

108



7.1. The Case of Asteroid 101955 Bennu

Figure 7.9: Bennu heliocentric orbit. Earth orbit for comparison.

7.1.2 MHNN sensitivity to force pertubations

In order to analyse the behaviour of the network in a dynamical environment that
is more similar to the real one, the SRP and the Sun 3-rd Body Perturbation (3BP)
are introduced. In Figure 7.10 the sensitivity of the identification for the Γ2:1

90 orbit

Figure 7.10: Sun and SRP effects on C20. Figure 7.11: SRP effects on C20.

considering the single perturbations. It can be seen that the predominant is the SRP
while the Sun 3BP is negligible. The force model used is the one presented in Eq. (1.65)
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Figure 7.12: Effect of instrument noise
on the reconstruction of C20.

Figure 7.13: Effect of the ascending
node Ω0 on the reconstruction of C20.

and recalled here for completeness:

aT(r, s,dk−a) = aPoly(r)−

SRP︷ ︸︸ ︷
(1 + ρ)P0

Bscs3
s−

Sun︷ ︸︸ ︷
GM�
s3

[
r− 3

r · s
s2

s
]

(7.9)

In Figure 7.9 the complete Bennu heliocentric orbit. On it, 4 points have been high-
lighted: they correspond to ν = 0, π/2, π and 3π/2. These are the orbital points in
which the sensitivity analysis is performed. A reference orbit Γ2:1

90 is considered. The
MHNN is initialized from zero, with β = 1e−6 and it is applied to reconstruct C20 only.
For the SRP model is Bsc is taken as 20 kg/m2 and ρ as 0.1.

Figure 7.14 the results for the analysis for those ν. It can be seen that the performances
of the network have a strict dependence to the orbital position of Bennu with respect
to the Sun. The performances, moreover, depends also on the ascending node position
so on the orientation of the orbit with respect to the Sun: these effects can be seen in
Figure 7.13.

7.1.3 MHNN sensitivity to instrument noise

In the previous part the perturbations effect on the parameters identification has been
analysed. There may be, however, another source of deviation for the parameters: it
may arise from the the noise of the instruments used on board. In fact, in order to be
work properly, the network needs position and velocity measurements. In this work a
standard Gaussian noise is added to the true state in order to emulate for this noise.
To do so, the MATLAB function randn is used to generate a random noise with a certain
variance. In this work we assume that the reconstructed position is given by the true
one r plus a random one that has zero mean and standard deviation σ2

r assigned. In
Figure 7.12 the results for this analysis: there is a variation of the reconstructed state
just in case σ2

r is quite high.
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7.1. The Case of Asteroid 101955 Bennu

(a) ν = 0 (b) ν = π/2

(c) ν = π/2 (d) ν = 3π/2

Figure 7.14: C20 MHNN identification results for some selected position on the
Bennu heliocentric orbit.
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Table 7.3: Castalia spherical harmonics expansion coefficients up to degree 4.

C20 -0.08899
C21 0 S21 0
C22 0.03623 S22 0

C30 -0.01235
C31 0.008330 S31 -1.879e-4
C32 0.000933 S32 1.797e-4
C33 -0.0005785 S33 3.878e-4

C40 0.01520
C41 -0.000358 S41 -2.238e-4
C42 -0.001559 S42 1.001e-4
C43 -0.00006 S43 3.206e-5
C44 0.0001364 S44 -3.714e-5

7.2 The Case of Asteroid 4769 Castalia

In this case, the parametric identification of the gravitational field of Castalia is pre-
sented. This case is far more complicated that the previous one since the shape of
the body is highly irregular. This results in a far complicated gravitational field and
yields to highly perturbed orbits. In Table 7.3 some of the coefficients of the spherical
harmonics expansion are reported. Note that those are normalized coefficients. Note
also that, in this case, the magnitudes of the coefficients C20, C22, C30 and C40 are
much larger than the one of the others.

Figure 7.15: SHs coefficients identification, Γ2:1
90 .

In Figure 7.15 the results of the identification of the coefficients C20, C22 and C30 in
the case of a Γ2:1

90 about Castalia are presented. The network is initialized with p0 = 0
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Figure 7.16: Γ2:1
90 orbit about Castalia.
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Figure 7.17: SHs coefficients identification, Γ10:1
60

and β = 1e− 6. The resulting orbit is presented in Figure 7.16.

As in the case of Bennu, the network is capable of identifying correctly the three
coefficients to be estimated. Of course, the performances of the estimation depends on
the initial conditions so on the resulting orbital path: this can be seen comparing the
previous results with Figure 7.18 where the results of the estimation for a Γ5:1

45 orbit
are presented. Finally, the network is capable to identify the coefficients (in particular

Figure 7.18: SHs coefficients identification, Γ10:1
60

the low-degree ones) also in case the the reference orbit is quite far from the body: in
Figure 7.17, as an example, the estimation of C20 based on a Γ10:1

60 orbit. In this case
β = 1e− 7.
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However, also in this case, perturbations can act to degrade the performance of the
network. As for the case of Bennu, those perturbations can be divided in force pertur-
bations and instruments noise. The results of the sensitivity of the network to those
kind of perturbations are shown, for a Γ5:1

90 orbit in Figure 7.19, where ρ = 0.1, Bsc =
20 kg/m2 and the orbital position is the one of the asteroid on the 25th of July 2019
at noon and Figure 7.20, where σ2

r = 50 m2.

Figure 7.19: Effect of Sun 3BP and SRP
on the reconstruction of C20.

Figure 7.20: Effect of instrument noise
on the reconstruction of C20.

In this case a major difficulty comes from the fact that, orbits closer to the body feels
a highly irregular field and results to highly unstable orbits. This obviously influence
negatively the convergence of the MHNN as well as can lead to divergence.

7.2.1 MHNN sensitivity to asteroid rotation perturbations

In Chapter 1 on page 21 the equation of motion for the rotational dynamics of the
central body where presented. Since the aim of this section is to analyse the effect of
a perturbation on the rotational dynamics of the body, that in previous analysis was
assumed to be uniform about the principal inertia axis b3, it convenient to reason with
only the free dynamics associated to the body e. g., m = 0. This is a strong assump-
tion since the rotational dynamics of such kind of bodies is usually highly perturbed
but for this analysis it would introduce a complexity that can be avoided considering
perturbations to the ideal rotational axis ω = ωb3. In fact expressing the rotational
axis unit vector in spherical coordinates as

êω =


cos(δλ) sin(δθ)

sin(δλ) sin(δθ)

cos(δθ)

 (7.10)

Then the reference state is the one where δθ = 0. So, assuming every other conditions
would lead to a perturbation to the rotational axis of the body. In order be a considered
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a perturbation then δθ must be small, so that:

êω ≈


δθ · cos(δλ)

δθ · sin(δλ)

1

 (7.11)

Note that δλ can assumed to be any value between 0 and 360◦ since if δθ is small. Using
this model the rotational axis would remain on the cone built from the revolution of
êω about the b̂3 axis e. g., precession motion is experienced.

Figure 7.21: Identification of C20 in the case of the perturbed rotation of Castalia.

The sensitivity analysis results for the case of a Γ4:1
90 orbit about the asteroid Castalia

are presented in Figure 7.21. Here the perturbations to the rotational axis direction are
assumed to be δθ = δλ = 5◦ and the MHNN is initialized with β = 1e− 5. As it can be
seen, the perturbations enters the identification. Of course, as far as the perturbations
increase in magnitude as the rotation of the asteroid becomes less uniform resulting in
a more perturbed identification.
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Figure 7.22: δCnm(i0, a0) analysis results for the case of Castalia.

Figure 7.23: δCnm(i0,Ω0) analysis results for the case of Castalia.

7.3 MHNN Performances Compared

In the previous sections of this Chapter the behaviour of the MHNN is being studied for
some specific cases. The intention of this section is, indeed to sum-up those results in
order to extract global behaviours of the identification. In this case the identification
of the coefficients C20 and C22 is analysed.

7.3.1 Sensitivity to orbital initial conditions

First of all, also in the case of the asteroid Castalia it is possible to perform a parametric
analysis on the initial conditions in terms of a0 and i0, as it has been done for the case
of Bennu: referring to Figure 7.8 for it, the results for the case of Castalia are presented
in Figure 7.22. Note that in this last case only the coefficients C20 and C22 have been
computed. The network is initialized with the same β of the case of Bennu. It can be
seen in both Figure 7.22 and Figure 7.8 that the behaviour of the parameter of merit
δCnm is really similar despite the fact that the asteroids are really different.

In the same way a parametric analysis can be done on the initial inclination i0 and
the longitude of the ascending node Ω0. The results are presented in Figure 7.23 and
Figure 7.24 for the case of Castalia and Bennu respectively. In this case a Γ3Rmax

α is
considered and the network is initialized with β = 1e− 7.
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Figure 7.24: δCnm(i0,Ω0) analysis results for the case of Bennu.

7.3.2 Results analysis

From all the previous results the previous results we can extract some general global
behaviours:

(R1) The estimation velocity has a strong dependence on the distance and on β/α.
This can be clearly noticed, for example, from Figure 7.22 where the error become
large as far as the normalized distance increases and it is due to the fact that a
fine tuning of the network is needed as far as the reference orbit changes.

(R2) The estimation accuracy is good whenever the network is well-trained e. g., β or
α are correctly selected. This can be seen from both Figure 7.23 and Figure 7.24
where β is selected to be 1e − 7 as the result of a optimization. Moreover, the
accuracy seems to be weakly dependant on combinations of i0,Ω0, at a fixed β.

(R3) The fact that the choice of beta β is fundamental for the overall performances
of the network is underlined again. In Figure 7.25, the results associated to the
evaluation of δCnm for a Γ3Rmax

45 are presented: a wrong choice of beta can lead
to completely wrong results. Recall also that a β too small lead to instability of
the network as well as large oscillations.

(R4) Convergence as well as instability phenomena are non-linearly and probably
stochastically coupled with the reference orbit and, in the case of rounded objects,
strongly coupled with a0, i0 and β e. g., a fine tuning is needed.

Figure 7.25: δCnm(β) analysis results for the case of Castalia.

In Figure 7.26, moreover the results for the case of a Γ3Rmax
α orbit are presented: it
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Inclination (deg) Inclination (deg)

Figure 7.26: δCnm(i0) analysis results for the case of Castalia.

can be seen that the behaviour as a function of the initial i0 is symmetric with respect
to i0 = 90◦ and symmetric for the two cases. In fact, for i0 = 90◦, δC20 exhibit a
maximum of the parameter of merit as also δC22. These maximum are, however, not a
maximum of magnitude. Moreover, the errors in the estimation of C20 are comparable
with respect to the ones associated with C22 in this case. Finally it is interesting the
fact that retrograde orbits’ estimation performances are specular to direct ones. Note
that the optimal condition for C20 is near 60◦ while for C22 near 40◦ in this case.

7.3.3 Sample-based convergence analysis

(S1) In Figure 7.27 and Figure 7.28 the results for a Γ3Rmax
90 based identification in the

case of Bennu and Castalia respectively. In those cases β = 1e− 7. In both cases
a good convergence for both the coefficients is evident.

(S2) The identification capabilities of the network are further confirmed by the anal-
ysis of the reconstructed accelerations. An example of the performances in the
approximation of the acceleration is presented in Figure 7.30 for the case of a
Γ3Rmax

45 about Bennu. In this case β = 1e− 7. Here the normalized accelerations
are defined as ã = a

µ
R2

max.

So, in general we can conclude that the capability of the network to reconstruct low-
degree harmonics is good, fast and accurate for both the case of rounded as well as of
irregular bodies. Of course, there is a dependence on the body and on the initialization
of β, that seems again to be a critical parameter.
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Figure 7.27: MHNN identification: a Γ3Rmax
90 orbit about Castalia.

Figure 7.28: MHNN identification: a Γ3Rmax
90 orbit about Bennu.
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Figure 7.29: MHNN identification: a Γ3Rmax
45 orbit about Bennu. Red curve

represents a moving mean performed over a single period.

Figure 7.30: Main body normalized acceleration perturbations reconstruction
associated to the orbit presented in Figure 7.29.
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7.4 The Case of the Binary 66391 (1999 KW4)

In previous sections, the analysis of the convergence of the MHNN has been studied on
the basis of the P2BP. The aim of this part is to show how to extend the methodology
to a three-body case. In particular, the case of the binary system 66391 (1999 KW4)
is considered under the MCR3BP hypothesis.

Table 7.4: KW4 binary main parameters

µ (non-dim) ΩS (rad/s) d12 (m)

0.05430 1.0019e-4 2548

In Table 7.4, the main parameter associated to the corresponding CR3BP. Note that
in this case the triangular points results to be unstable.

7.4.1 Force model

In this case two force models are used as the basis of the identification. In particular,
a spherical harmonic expansion in which the terms associated to the coefficients C20

ad C22 are retained for both bodies is considered as a baseline in this case.

Figure 7.31: DRO family.

122



7.4. The Case of the Binary 66391 (1999 KW4)

Figure 7.32: Results for the binary system in the case of a DRO close to KW4-β.
For the network, β = 1e− 7.

7.4.2 Identification

It is of interest to see if the method based on the MHNN works also in the case the
orbit is a non-Keplerian orbit that lives in the three-body problem. For this purpose,
a simulation is setted up with the aim to reconstruct the coefficient associated with
KW4-β. In this case the LIP form of the equations is tricky since both the asteroids
are rotating with different angular velocities. Then defining Tk = TΩ1TTΩS

, then:

TT2
(
v̇ − aCO − aCF − T1a1

)
+
µ2

r3
2

r2 = A(r2) · p (7.12)

DROs are preferred for the identification due to their stability. Refer to 1.4.2 on page 31
for their generation in the CR3BP/MCR3BP. In Figure 7.31 some orbits of the family
are presented. Then, for the identification the dark thick orbit is used as the example
of the identification on distant orbit while the gray-blue one as the case of a much
closer orbit (referred to KW4-β). In this case, since the interest of the thesis is only
to address the possibility to apply the method for the case of a binary systems, the
generation of the DRO is performed on the basis of the CR3BP using the single shooting
method. From the results presented in Figure 7.32, Figure 7.33 it can be seen that the
capability of the network to reconstruct the dynamics is good also in that case.
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Figure 7.33: Results for the binary system in the case of a DRO at a mid-distance
from KW4-β. For the network, β = 1e− 9.
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CHAPTER 8
THE EXTENDED KALMAN FILTER

The use of the EKF for navigation has a long history of flight-proven success [65].
Since the filter needs a model of the dynamical environment, the implementation in
parallel to the MHNN identification seems to be promising. First, it has to be said that
the use of a EKF is preferred over the one of a Unscented Kalman Filter (UKF) since
one of the aims of this thesis is to enhance the autonomy degree of small satellites with
limited computational capabilities, then being the EKF much lighter from this point of
view, it is selected.

The Kalman Filter (KF) was firstly developed by Rudolf E. Kalman in 1960’s [66]: it
can statistically minimize the error of the state combining the actual available mea-
surements and the prior knowledge of the system. However, this approach involves
some basic assumptions. The classical KF, in fact, is used only with linear system.
Moreover, the noise is assumed to be white. This means that the noise value is not
correlated in time and that its power is equal for each frequency. This would imply
that the noise has infinite power and this is not applicable to any real case. Finally,
the noise has to be a Gaussian distribution [67].

However, many real-world applications use non-linear models for describing the system
or the measurements. Then, in the early 1980’s, Maybeck [68] introduces the EKF that
tries to overcome the limitations of the linearity of the models used in the KF. The idea
is to use a non-linear description of the system model and linearise this model about
the state estimation for each time step. So, as soon as a new estimate is predicted,
a linearised trajectory is available in the estimation process. Remembering that the
linearisation process involves the assumption of small deviations from the reference
trajectory, this can be ensured by incorporating the update of the reference trajectory
in the estimation process.
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Algorithm 2 EKF procedure
Require: x̂(0|0),P(0|0)
1: for k = 1, . . . , n do
2: procedure Prediction
3: x̂(k|k − 1) = x̂(k − 1|k − 1) +

∫ k
k−1

f(x(t)) dt (state prediction)

4: F = ∂f(x)
∂x

∣∣∣∣
x=x̂(k|k−1)

(process Jacobian)

5: Φk = I + F∆t (state transition matrix)
6: P(k|k − 1) = ΦkP(k − 1|k − 1)ΦT

k + Q (covariance prediction)
7: h(x̂(k|k − 1)) (measurement prediction)
8: end procedure
9: z(k) = y(k)− h(x̂(k|k − 1)) (innovation evaluation)

10: H = ∂h(x)
∂x

∣∣∣∣
x=x̂(k|k−1)

(measurements Jacobian)

11: S(k) = HP(k|k − 1)HT + R(k) (covariance innovation)
12: K(k) = P(k|k − 1)HT [S(k)]−1 (Kalman gain)
13: procedure Update
14: x̂(k|k) = x̂(k|k − 1) + K(k)z(k) (update state)
15: P(k|k) = [I−K(k)H]P(k|k − 1) (update covariance)
16: end procedure
17: end for

8.1 Dynamical Model

Now, for the development of the filter, assume to ave a stochastic differential equation
given by [65]:

dx(t) = f(x(t), t) + B(t) dwx(t) (8.1)

where x(t) ∈ Rn is a random process whose distribution is known at t0 and dwx(t) is
the process noise that reflect the uncertainty to in the dynamical model. Suppose also
that the initial distribution x(t) is Gaussian with mean and covariance given by

E[x(t0)] = x̄0 and E[(x(t0)− x̄0)(x(t0)− x̄0)T ] = P0 (8.2)

and suppose that the infinitesimal increments of w(t) are Gaussian, with:

E[wx(t)] = 0 and E[wx(t)w
T
x (τ)] = Q(t) δ(t− τ) (8.3)

Assume also that:
E[wx(t)(x(t0)− x̄0)T ] = 0,∀t (8.4)

Note that even though we have assumed that x(t0) and wx(t) are Gaussian, we cannot
assume that x(t) remains Gaussian for t > t0 , because f(x(t), t) is non-linear.

8.2 Measurement Model

In an ideal world, we might have devices for measuring all of the state vector compo-
nents directly. Unfortunately, this is almost never the case. Instead measures of other
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Figure 8.1: EKF algorithm scheme. Credits [31].

quantities related to the state are usually available, at discrete times ti as:

y(ti) = h(x(ti), ti) + wy(ti) (8.5)

where here h : Rn → Rm is the measurement function and wy(ti) a Gaussian measure-
ment noise with mean and covariance given by

E[wy(t)] = 0 and E[wy(ti)w
T
y (tj)] = R(ti) δ(tij) (8.6)

Assume also that:

E[wy(ti)(x(t0)− x̄0)T ] = 0 and E[wx(t)w
T
y (ti)] = 0 ∀t, i (8.7)

8.3 Numerical Implementation

As already said, the system and the measurement equations are non-linear. This implies
that a first-order approximation has to be used in the continuous Riccati equations for
the systems dynamics matrix F and the measurement matrix H respectively. These
are defined as:

F =
∂f(x)

∂x

∣∣∣∣
x=x̂

and H =
∂h(x)

∂x

∣∣∣∣
x=x̂

(8.8)

The fundamental matrix for the discrete Riccati equations is approximated by the
Taylor-series expansion of eF∆t, and can be expressed as:

Φk = I + F∆t+ . . . (8.9)

where ∆t is the sampling time. In general, the Taylor-series expansion is approximated
with only the first two terms [67],[65]. Then the EKF procedure is briefly summarized
in pseudo-code in Algorithm 2 on the preceding page.
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8.3.1 System Dynamics

The dynamical model associated to the stochastic differential equation under the hy-
pothesis of the P2BP have state vector X defined as

X =
{
r; v
}

=
{
x y z u v w

}T (8.10)

So that the dynamics function results:

f(X(t), t) =



u

v

w

2Ωv + Ω2x+ ∂UNET

∂x

−2Ωu+ Ω2y + ∂UNET

∂y

∂UNET

∂z

=



u

v

w

2Ωv + ∂VNET

∂x

−2Ωu+ ∂VNET

∂y

∂VNET

∂z

(8.11)

Where the modified potential function is defined as:

VNET(r, t) = UNET(r, t) +
1

2
Ω2(x2 + y2) (8.12)

Note that here the underscore NET means that the potential function U is the one
reconstructed by the MHNN. Moreover, the Jacobian associated to the dynamics is F
and can be computed as:

F(r, t) =
∂f

∂X
=


∂f1
∂x

∂f1
∂y

. . . ∂f1
∂w

∂f2
∂x

. . . ...
...

... . . .
. . . ...

∂f6
∂x

. . . . . . ∂f6
∂w

 =

 O3×3 I3×3

∇∇VNET(r, t) −2Ω[I]

 (8.13)

where here ∇∇VNET(r, t) represent the gravity gradient and [I] the skew-symmetric
cross product matrix.

8.3.1.1 System Dynamics with SRP

The inclusion of the SRP in the dynamical model of the filter is important since it can
be of the same order of magnitude of the body’s gravity. So, even, a simple SRP model
can help the filter to converge and give more accurate results. In this case the dynamic
function can be written as: So that the dynamics function results:

f(X(t), t) =



u

v

w

2Ωv + ∂VNET

∂x
+ ax,SRP

−2Ωu+ ∂VNET

∂y
+ ay,SRP

∂VNET

∂z
+ az,SRP

(8.14)
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Where here, according to Chapter 1, the SRP model can be written as:

aSRP = −C s− r

|s− r|3
(8.15)

Then defining r̃ = |s − r| and SX i = si − ri, the SRP model can be rewritten as, per
components:

ai,SRP = −CSX i(r, s)

r̃3(r, s)
(8.16)

So, in general, at each time step k, the EKF needs an information of the spacecraft
state relative to the body (r) as well as an information of the state of the body about
the Sun (s). Moreover, the coefficient C can depend on the attitude of the spacecraft
so that can be time dependant. Finally, the orbit of small solar system bodies are
usually uncertain and this introduce a further complexity on the problem. There are
a number of approaches possible. Among the others, the most accurate are:

1. Introduce the body state inside the EKF estimation;

2. Use a Schmidt-Kalman filter ([69],[70]): this method allows to propagate the
uncertainty associated to the orbit of the body without the introduction of its
orbital states in the estimation process.

However, in this work, since the preliminary performances of the filter are assessed,
none of those methods is used: since the orbital period of a spacecraft about any small
body is much smaller than the orbital period of the body about the Sun, the Sun
position vector is assumed to be well known and time fixed e. g., s(t) = s̄, such that.

ai,SRP = −C̄SX i(r)

r̃3(r)
(8.17)

Then the Jacobian associated to the SRP part of the model can be written as:

F∗SRP(r, t) =
∂aSRP

∂X
=

[
∂aSRP

∂r
O3×3

]
(8.18)

where here, being δij the Kronecker delta:

∂ai,SRP

∂rj
=
C̄

r̃3

[
δij − 3

SX iSX j

r̃2

]
(8.19)

So that the model Jacobian results:

F(r, t) =
∂f

∂X
=


O3×3 I3×3

∇∇VNET(r, t) +
∂aSRP

∂r
−2Ω[I]

 (8.20)
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MHNN-BASED EKF FILTER

In this chapter a basic EKF navigation filter is implemented and integrated with the
results obtained by the MHNN. The aim of the discussion is to improve the performances
of the filter through the use of a reconstructed spherical harmonics expansion as system
dynamical model. Since the aim is not to implement a real-world test case for the
filter, a simplified measurement model is implemented. In particular, recalling that the
discrete time measurement model can be written as

y(ti) = h(x(ti), ti) + wy(ti) (9.1)

In this case, since the real dynamics xR(t) is assumed to be available, then the measures
can be assumed to be a Gaussian distribution about it with a variance σy, such that

σy = {(σy,r)1×3 ; (σy,v)1×3} (9.2)

Then the measurement dynamics can be written as

y(ti) = N (xR(ti),σy) (9.3)

This constraint, from the mathematical point of view, the form of the covariance matrix
associated to the measures, that is:

R = R(ti) = diag{σ2
y} (9.4)

The last assumptions are associated to the model covariance and the process covariance.
In particular for what regards the model, its covariance matrix is assumed to be a
diagonal time-independent matrix of the form:

Q = diag{(σ2
q,r)3×1 , (σ2

q,v)3×1} (9.5)
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while the process covariance is initialized as:

P(0) = diag{(xR(tp)− xM(tp))
2} (9.6)

where here xM(t) represents the propagation of the filter model dynamics and tp ∈
(0, Tmax). In this case, if the time step of the propagation is defined ts then tp = ts, so
that the process covariance is initialized by the models difference after a step.

Finally, a note on the system dynamics must be said: the MHNN identification, has it
has been extensively analysed in the previous chapters, is a time dependant process.
Indeed, if a dynamical model is built on it, it would be time dependant too. This is a
complicating effect since in this case the filter need a fine time-dependant tuning. This
task goes beyond the aim of this work but is deeply investigated by other authors [67].

9.1 Numerical Investigation on Simple Bodies

In order to assess the performance of the navigation filter, some test cases are analysed
in this section on ellipsoidal bodies. First, the notation that used is presented: the body
physical and geometrical properties are organized in a row vector {χα, χβ, χγ; %,R0},
with dimensions {n.d., n.d., n.d.; kg/m3, km}; the orbit selected is, instead, denoted as
Γa0i(◦) while the filter parameters as {Ts;σy,r, σy,v, σq,r, σq,v}. The filter dynamics model
is assumed to be time-fixed, as the result of the convergence of the MHNN.

Finally, the results are compared in terms of normalized Root Mean Square Error
(nRMSE) as:

nRMSE(ti) =
||xR(ti)− x̂(ti)||
||xR(ti)||

(9.7)

where here the quantity of interest is x and xR is its real value while x̂ the EKF
reconstructed value. Please note that, substuting x̂ with the measures y, the normalized
precision of the measures is obtained.

Case 1. In this case, the performance of the filter are assessed on a simple case. An
oblate spheroid with {1, 1, 0.7; 2700, 1} is considered and a Γ2R0

45 orbit is assumed. In
Figure 9.1 the results for a case in which the EKF is tuned according to {30 · 60; 1, 1e−
2, 1e− 3, 1e− 3}, with T the orbital period. Note that in this case the measurements
are assumed to be extremely precise and the performances of the 2-body dynamical
model are similar to the one of the 2nd-degree SHE model: small differences can be seen
and the last appears to be more precise than the former. However, a deeper statistical
analysis is needed to asses the real performances of the filter but it goes beyond the
scope of this test.

Case 2. In this case, a parametric analysis is performed on the object of case 1.
To do so, consider two non-dimensional coefficients ξQ and ξR such that the filter
parameters becomes: {ts;

√
ξRσy,r,

√
ξRσy,v, ξQσq,r, ξQσq,v}. Note that the coefficient

ξR enters both the measure covariance matrix as well as the measures equation. In
Figure 9.2 the results of a parametric analysis are presented. From that it can be seen
that the choice of both the ξ coefficient is crucial since it can bring the filter to diverge.
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Figure 9.1: Case 1 · EKF’s vs measures’ nRMSE. First row: 2B dynamical model.
Second row: 2nd-degree SHE dynamical model.

Figure 9.2: Case 1/2 · EKF results: parametric analysis.
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Moreover, the choice of ξQ seems to be driven by the µv,nRMSE. However the results
appears to be quite similar if the dynamical models are considered to be the R2BP and
a 2nd degree SHE model, but there is a difference: the last diverges for ξQ that are
smaller than the ones that bring the first to diverge: the last is of higher fidelity with
respect to the first.

Figure 9.3: Case 1/2 · EKF results: parametric analysis on ξQ,R.

In Figure 9.3, instead, the results for a parametric analysis on both ξQ and ξR are shown
for the R2BP case. The results for higher order models are similar so to avoid confusion
they are not represented. In both cases (r and v), assuming the 10% limit a good
approximation, the bi-logarithmic plots are divided in two parts by a quasilinear line
between (1e− 4, 1) and (1e− 2, 100). At the right of the line the filter converge, with
a precision that depends from ξR (in fact there are horizontal curves where nRMSE
increases with ξR). At the left, instead, the filter diverges. Along the horizontal
lines, recalling the results Figure 9.2, the filter follows the measures while along the
quasilinear line the behaviour is associated at the dynamical model. Note that the
slope of the line can be written as:

m =
∆ log y

∆ log x
' 1 (9.8)

It can be seen also that the divergence region of the filter is really sharp and coincide
with the quasilinear line. So for this specific case there exists a sort of linear correlation
between ξR and ξQ that can be seen as a convergence threshold. To conclude this
analysis one expect that for a model of increased fidelity, this line shifts to the left, as
confirmed by Figure 9.2.

Case 3. In this case, a parametric analysis is performed on the object of case 1. The
DoFs, in this case, are ξQ,R and the discretization, Ts.
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Figure 9.4: Case 3 · EKF results: parametric analysis on ξQ and Ts.

Figure 9.5: Case 3 · EKF results: parametric analysis on ξR and Ts.
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Figure 9.6: EKF results: parametric analysis on m.

The results for this case are presented in Figure 9.4 for the nRMSE(ξQ, Ts) case and the
behaviour is much more complicated that in the previous case but can be summarized
as follows:

1. The EKF exhibit good convergence properties for small values of Ts (upper-left).

2. As far as the Ts increases, as the divergence is more pronounced for smaller ξQ
values (bottom-right).

3. For larger ξQ values the filter follows the measures more than the model: the
nRMSE, in fact appears to be mostly independent from Ts in the upper part of
the plots.

For what regards the results for the nRMSE(ξR, Ts) case, instead, they are shown in
Figure 9.5 and appears to be, independent from Ts up to ξR ∼ 100 and appears to
diverge quickly in the upper-right part of the plot, where both ξR and Ts assume the
biggest values.

9.2 Parametric Analysis

Up to now the analysis of the convergence of the EKF is assessed for a particular
case and two dynamical models have been compared. However, to further assess the
convergence of the filter a parametric analysis is performed on the physical/orbital
DoFs of the problem.
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Figure 9.7: EKF results: parametric analysis on χγ.
R0 = 1 km for the first row and R0 = 10 km for the last.

9.2.1 Mass uncertainty

Usually to the mass of an object is associated an uncertainty, at least in the initial
phases of the mission. However, as studied in the previous chapters, the network is
capable to reconstruct it correctly so that even the R2BP is refined. In this section a
brief parametric analysis is performed assuming a spherical body {1, 1, 1; 2700, 10− 5}
with the mass m that is uncertain with a variance of 20%m. The results of the analysis
on a Γ10R0

0 orbit with the EKF tuned as {0.5 ·T,
√

10, 1e−2
√

10, 1, 1e−2} are presented
in Figure 9.6 where it can be noticed that:

1. As expected, the filter has a lower nRMSE for χm = m/mtrue → 1.

2. As far as mtrue increases as far as the minimum for the nRMSE is located at
χm = 1.

3. The position estimation is more precise than the velocity one.

4. There is a dependence of the performances on the dimensions i. e., on the mass
of the body. The higher the mass the better the performances.

9.2.2 Shape parametric analysis

In this section a parametric analysis that involves the shape of the body is considered.
First, in Figure 9.7 the results for a oblate spheroid are assessed for varying χγ. A Γ2R0

0

orbit is considered and the EKF is tuned according to {0.1 · T, 1, 1e− 4, 1e− 1, 1e− 1}
while the body properties are {1, 1, χγ; 2700, 1 − 10}. The results that, show that, as
far as R0 increases, as the nRMSE decreases in magnitude but increases in variance
for both the position (r) and the velocity (v). In Figure 9.8, instead, the results for
the parametric analysis of an triaxial ellipsoid are presented. For clarity, the results
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Figure 9.8: EKF results: parametric analysis on (χγ, χβ). R0 = 2.5 km.

presented are only the one obtained with a 2nd-degree SHE model. The analysis pointed
out that the sensitivity of the nRMSE to the shape of the body is low, since the variations
are small.

Figure 9.9: EKF results: parametric analysis on (R0, a0).

In Figure 9.9, instead, the results of a parametric analysis on the dimensions and
the orbit semi-major axis are presented. In this case a soft dependence on both the
parameters can be noticed. In particular, as R0 and a0 increases the filter becomes
more precise. This can be probably explained by the fact that for high a0 the influence
of the higher-order harmonics can be neglected and the asteroid can be seen as a point
mass. This analysis is performed on an oblate spheroid, so probably the network would
behave differently in case the body is more irregular.
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9.3 MHNN-Based Filter in High Fidelity Models

The aim of the previous section was only to asses the performance of the filter and to
understand when a fine tuning is needed as well as how to do it. The major results
can be summed-up in:

(R1) The filter tuning depends, in this formulation, on 8 constants, namely ts, ξR, ξQ, σy,r,
σy,v, σq,r and σq,v. They influence the overall performances as well as the conver-
gence of the filter. In particular ξR, σy,r and σy,v are associated to the measure-
ments model and the filter performances degrades if they increases while ξQ, σq,r
and σq,v are associated to the dynamics model and the performances of the filter
increases if the model order increase. Finally, the discretization ts plays and im-
portant role in the performances too: the higher, the lower the performances of
the filter. In particular as ts increases it can be seen that the filter follows more
the measures than the model.

(R2) The filter performances have a dependence on the dimension/mass of the body.
In general, the higher the mass, the better the performances.

(R3) The σi,j’s can drive the filter to diverge. In general if the model is not accurate
a low ξR together with an high ξQ lead to divergence.

(R4) Higher-order models (than the R2BP one) can improve the overall performances
of the filter.

Figure 9.10: EKF results. First row R2BP, second 2nd-degree SHE.

9.3.1 The case of Castalia

In this section the analysis of the performances of an EKF are analysed for the case
of asteroid 4769 Castalia. Since the higher degree gravitational perturbations tends to
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Figure 9.11: EKF results. First row R2BP, second 2nd-degree SHE, third 4nd-degree
SHE with only zonal terms.

disappear as far as a0 increases and the perturbed model tend to be equal to the R2BP,
then the filter is tested for a close-proximity orbit e. g., a Γ2Rmax

45◦ .

In Figure 9.10 the results for a case which the sampling is 30 seconds. It can be seen
that the performances of the filter gets better with the higher order model, especially
for the velocities, where the error is halved. In this case the filter is tuned with:

(C1.1) σy,r = 10;

(C1.2) σy,v = 0.1;

(C1.3) σ2
q,r = σ2

q,v = 1e-8.

In Figure 9.11, instead, the results for a case in which the sampling is 300 seconds.
Also in this case, it can be seen that higher order models gives better results. However,
in terms of magnitude, the fact that ts has increased increases the nRMSE. In that case
the filter is tuned with:

(C2.1) σy,r = 10;

(C2.2) σy,v = 0.1;

(C2.3) σ2
q,r = σ2

q,v = 1e-6.

Indeed, the measurements model is not changed while the σq terms are increased to
prevent the filter to diverge. To further asses the previous results, a statistical analysis
on the performances can be assessed. The results in terms of mean (µ) and standard
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Figure 9.12: EKF statistical results. First row associated to R2BP, second to a
2nd-degree SHE model.

deviation (σ) computed on the mean nRMSE of a batch of 1000 of simulations are
presented in Figure 9.12. In this case the filter is tuned as in (C2.1,2,3). The results
show that the µ of the higher-order model is lower than the one of the R2BP meaning
that the performances are enhanced. However, the 2nd-degree model exhibit an higher
standard deviation.

Figure 9.13: EKF results. First row R2BP, second 4nd-degree SHE.

In Figure 9.13, instead, the results for a lower-precision measurement model are pre-
sented showing lower but still good performances of the filter. In this case, in fact, the
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filter is tuned according to:

(C3.1) σy,r = 100;

(C3.2) σy,v = 1;

(C3.3) σ2
q,r = σ2

q,v = 1e-6.

In that case the filter is exhibit still good performances but it results slower and less
precise than in the previous cases.

Figure 9.14: EKF results. First row R2BP, second 4nd-degree SHE.

Finally the case of a larger orbit is tested: a Γ5Rmax
45◦ is considered. The results of a

statistical analysis of a batch of 1000 samples is shown in Figure 9.14. Also in that
case the two models are quite similar and the convergence does not change that much.
However, for this specific test the R2BP model seems to be more accurate than the
4nd-degree model.

9.3.2 The case of Eros

The previous section deals with the analysis of the performances of a EKF navigation
of asteroid Castalia. In this part, instead a much larger asteroid is considered: Eros.
In the introduction of this work it was pointed out that Eros has a mass ∼ 1000 times
the one of Castalia. So one expect different performances of the filter.

In Figure 9.15 and Figure 9.16 are presented two analysis performed on a Γ5Rmax
45◦ orbit.

In particular in the first case the filter is tuned according to:

(E1.1) σy,r = 100;

(E1.2) σy,v = 1;
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Figure 9.15: EKF results. First row R2BP, second 2nd-degree SHE, third 4nd-degree
SHE and forth 8nd-degree SHE.
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Figure 9.16: EKF results. First row R2BP, second 8nd-degree SHE.

(E1.3) σ2
q,r = σ2

q,v = 0.01.

While in the second case according to:

(E2.1) σy,r = 1000;

(E2.2) σy,v = 10;

(E2.3) σ2
q,r = σ2

q,v = 0.1.

Note this is not an optimal tuning but a trial/error tuning performed to mimic the
optimality. However both the cases show an increased precision in the filtering process
if higher-order models are used. However, with respect to the case of Castalia, the
tuning phase of the filter is much different (the σq are much different in that case with
respect to the previous).

A final note is needed regarding the SRP. All the results of the previous analysis
consider a case in which no SRP model neither disturbance is present. However, in
real applications the SRP plays an important role and even a rough model of it should
be implemented in the filter. It can be shown, in fact, that in case the SRP model is
not added and the σq’s are chosen to be small (say, for example 1e− 6) then the filter
diverges while if the model is added then, for the same σq the filter does not diverge.
So, one can conclude that a simple SRP model would increase the stability of the filter
to its tuning.

9.4 MHNN identification coupled EKF navigation

In the previous sections of this chapter the numerical assessment of the EKF perfor-
mances where addressed in case the dynamical model is updated to a spherical har-
monics expansion one by the MHNN. From the operative point of view, in fact, a strong
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Figure 9.17: Coupled MHNN-EKF workflow.

coupling is expected between the MHNN and the EKF, as presented in Figure 9.17. In
particular one can identify two ways of coupling:

1. MHNN to EKF: the MHNN reconstruct time dependant coefficients that updated
the dynamical model inside the filter. However, in this case the filter tuning
becomes more challenging [71]. In fact this work uses a time fixed model since
there is no need to tune perfectly the filter, being the measurement model not
well defined. So, this coupling is not analysed here.

2. EKF to MHNN: the MHNN reconstruct the coefficient taking as input the state
reconstructed from the filter. The performances, in this case, are addressed here.

MHNN performances in flying asteroid Castalia. As an example, in this para-
graph the integration EKF to MHNN is performed in the case of asteroid Castalia. In
particular a EKF model with C2, C3 and C4 is considered and C22 is reconstructed.
First consider the case of a Γ2Rm

45 . Consider the network tuned with β = 1e − 6 and
the EKF tuned with:

(EKMH1.1) σy,r = 100;

(EKMH1.2) σy,v = 1;

(EKMH1.3) σ2
q,r = σ2

q,v = 0.01.

The results in terms of state estimation are presented in Figure 9.18 while the network
behaves as in Figure 9.19. Indeed in this case the performances of the identification
are changed but neither the 2BP nor the higher order one associated to the filter gives
important differences in the identification. This is further confirmed if the case of a
Γ5Rm

45 orbit is considered: in that case the higher order harmonics are only barely sensed
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Figure 9.18: EKF to MHNN results: state estimation.
First row, 2BP model, second row, 4th degree zonal SHE.

Figure 9.19: EKF to MHNN results: coefficient identification.
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Figure 9.20: EKF to MHNN results: coefficient identification.

by the flying object so that, from the identification point of view the use of a higher
order navigation filter gives basically the same results that the ones of a 2BP-based
filter, as it can be seen in Figure 9.19.

However, in case the measurement model is really inaccurate, i. e., tuning the EKF with:

(EKMH1.1) σy,r = 1000;

(EKMH1.2) σy,v = 10;

(EKMH1.3) σ2
q,r = σ2

q,v = 10.

the network basically diverges. This is related to the fact that the state estimate gives
about a 90% error so that subsequent state becomes basically uncorrelated and this
bring to divergence the identification. Note that assuming a σy,r = 1000 means that
we admit errors in the position reconstructions that are bigger than the dimension of
the body (Rmean ∼ 500 m).
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CHAPTER 10
CONCLUSIONS

Most of the future space mission are planned to explore and study asteroids and, in
general, small solar system bodies. During those missions, as pointed out in previous
chapters, the study of the dynamical environment of the body is a one of the most
important phases of every mission: either a landing, a deflection or a scientific mission
need to have a refined dynamical model in order to safely and successfully address its
objectives.

The present work developed a methodology, based on a feedback ANN called MHNN,
capable of reconstructing the gravitational field of a body. In particular, the coefficient
of the analytical SHE are identified by using the specific tailored MHNN. This approach
results to be really powerful since the SHE approximate the global gravitational field of
the body so that the results of the identification can be used also to extract the shape
and/or the density distribution of the body.

Small body environment modelling

The first part of the work is dedicated in the dynamical modelling of the environment
that one could expect flying about an asteroid, a comet or a moon. In particular
two main models have been presented, one associated with a single rotating body
(P2BP) and the second associated to a binary system of rotating bodies (MCR3BP). The
influence of higher order gravitational and non-gravitational perturbations is included
(such as SRP and Sun 3BP). Then, the state of the full coupled equations have been
reduced according to some assumption, such as, for example, a P2BP with uniform
asteroid rotation leads to the ROP2BP and some basic trajectory design tools for the
MCR3BP have been introduced.
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Finally, a series of gravitational models have been critically presented. First, the dif-
ferences between them have been highlighted then the SHE model is studied more in
detail, especially for simplified bodies.

MHNN Gravity Field Identification

This is the core of the work. In that part the performances of the MHNN has been
extensively studies through a series of specific tests. In general, the convergence and
the stability of the network was proved by other authors [55], [56] analytically. So,
the aim of this work was to understand how to use this network in the gravitational
field identification. To do so, first a series of tests have been performed on simplified
axis-symmetric bodies, varying the orbital elements. Then a conceptual mission has
been presented as a parametrized methodology to use the MHNN basically with any
kind of bodies. Finally, some test cases have been presented on real environments to
underline perturbation effects on the identification. Those real environments comprise
also a binary system. All those analysis have been used to understand how the network
have to be tuned as well as how it performs in different dynamical environments.

MHNN-Based EKF Navigation

The last part of the work presents the performances of a EKF navigation filter whose
dynamics is based on the MHNN results. Since it wanted to be only a preliminary
analysis, the EKF formulation is simplified as well as the MHNN results are considered
to be stationary. However, the results of this analysis are significant since the filter
shows increasing performances as the model order increases.

Future Work

The present work is a pioneering study about the use of machine learning techniques
in the aerospace world. Being pioneering, there is a lot of research to be done, on
different fields.

• From the gravitational model view point, the Internal Spherical Bessel Functions
Expansion can be implemented instead of the SHE: this can be useful in case
the a landing or close proximity operations are planned, in particular in case
the target body is highly irregular. Moreover, the case of a binary system needs
further investigations.

• From the network point of view, a trial-error tuning was analysed in this work:
this is clearly not the best for an autonomous mission. In particular, this work
underline that the tuning of the activation function parameters α, β is crucial to
the network convergence and performances: an adaptive network is needed also
from the point of view of its parameters. Some ideas have been analysed, but
their development goes beyond the scope of this work. Moreover, the choice of
the model order to stop the identification in such a way the identified SHE model
represents a sufficiently accurate model of the reality can be automatized also.
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• Finally, the EKF implemented in this work needs to be refined: first of all the
measurement models are needed depending on a real-case application. Moreover,
in this work the filter dynamical models are assumed to be dependent only on
the state and not on time. In this application, however, since the network gives
time dependant results, an adaptive version of the filter has to be implemented,
as in [71].
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ACRONYMS

DoF Degree of Freedom

nRMSE normalized Root Mean Square Error

SHE Spherical Harmonics Expansion

R2BP Restricted Two-Body Problem

P2BP Perturbed Two-Body Problem

MCR3BP Modified Circular Restricted Three-Body Problem

SRP Solar Radiation Pressure

ROP2BP Reduced-Order P2BP

F2BP Full Two-Body Problem

FR3BP Full Restricted Three-Body Problem

SOI Sphere of Influence

SOE Surface of Equivalence

KEPs Keplerian Parameters

SHs Spherical Harmonics

CR3BP Circular Restricted Three-Body Problem

3BP 3-rd Body Perturbation

STM State Transition Matrix

DRO Distant Retrograde Orbits

AIDA Asteroid Impact and Deflection Assessment

R2BP Restricted Two-Body Problem

GOCE Gravity field and steady-state Ocean Circulation Explorer

GRACE Gravity Recovery And Climate Experiment
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ALF Associated Legendre Functions

MATLAB Matrix Laboratory

GD Gradient Descent

2B-IP 2B-Identification Phase

NEA Near-Earth Asteroid

LSM Least-Square Method

ODE Ordinary Differential Equation

LIP linear in the parameters

ANN Artificial Neural Network

HNN Hopfield Neural Network

MHNN Modified Hopfield Neural Network

DAE Differential Algebraic Equation

GPS Global Positioning System

TAGG Tidal Acceleration Gravity Gradiometry

DSN Deep Space Network

ELM Extreme Learning Machine

SLFN Single-Layer Forward Networks

MDP Markov Decision Process

DPS Direct Policy Search

FFNN Feed Forward Neural Networks

BPANN Back Propagation Artificial Neural Network

RBF Radial Basis Functions

MLP Multi-Layer Perceptors

MSO Modified State Observer

MLE Maximum Likelihood Estimation

ESA European Space Agency

NASA National Aeronautics and Space Administration

EKF Extended Kalman Filter

KF Kalman Filter

UKF Unscented Kalman Filter
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