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Abstract

This thesis stems from a personal interest in the world of artificial intelligence

(AI). Working in the practical part of this branch of computer science, I realized

that AI is often misunderstood from both people and the scientific community. So

I started to explore the debates about AI that are underway today, both from a

mathematical and a philosophical point of view.

The scope of the thesis is an overview of Godel’s Incompleteness Theorems and

how they are used within the debate on the mechanism of the human mind. In this

context, it is essential to talk about the ”Godel’s disjunction” according to which

either the power of the human mind cannot be expressed by any finite machine or

absolutely unsolvable problems exist.

Sommario

Questa tesi nasce da un interesse personale al mondo dell’intelligenza artificiale

(AI). Lavorando nella parte applicativa di questa branca della computer science, mi

sono accorto di come l’AI sia mal compresa dalle persone, sia nel mondo quotidiano

ma spesso anche all’interno della comunità scientifica, e questo mi ha portato a

interrogarmi sui fondamentali dell’AI e a ricercare dibattiti in corso sia dal punto

di vista matematico che filosofico.

L’obiettivo della tesi è fare una panoramica sui Teoremi di Incompletezza di

Godel e su come essi siano usati all’interno del dibattito sul meccanicismo della

mente umana. A tale scopo, viene riportata e analizzata la cosiddetta ”Disgiun-

zione di Godel”, disgiunzione secondo la quale o il potere della mente umana non

può essere espresso da nessuna macchina finita o esistono problemi assolutamente

irrisolvibili dall’uomo.





Contents
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5.4 Gödel’s opinion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Conclusion 51



Introduction

This thesis stems from a personal interest in the world of artificial intelligence (AI)

and in particular on the way this subject has been discussed within the scientific

and philosophical community.

AI is not a new term, there has been conversation about AI since ancient

times and the mathematical community started to formalize it in the first half

of the 20th century. However only in the last two decades AI has become one

of the most popular scientific topics. We can attribute the merit to scientific

advances both in terms of hardware (increase of computational power), software

(increase of parallelization capacity) and modeling (neural networks). It seems

that the so-called ”AI winter” is over and the results achieved have started to

have a real impact on the world where we live. The term AI is on everyone’s lips

regardless of extraction, culture or location and there have been events with a high

media attention, such as when in 2007 IBM Watson beat the two world champions

at ”Jeopardy!” or when in 2016 Google DeepMind’s AlphaGo beat the strongest

players of Go (which is considered one of the most complex board games in the

world).

Most of the time, however, the term AI is used improperly and it is difficult to

realize what this field really covers. Perhaps because of media events, or science

fiction movies or perhaps because of the aggressive marketing undertaken by tech-

nology companies, there are too many cases in which AI is associated simply with

magic or with robots that will conquer the world.

Today, many companies in the world are investing large amounts of capital in AI,

but what kind of AI is it? And what do we mean with AI? Perhaps the definition

problem stems from the intrinsic difficulty of defining a real discipline. Russell and

Norvig [2002] in their book AIMA (cornerstone of modern artificial intelligence),

try to solve this definition problem characterizing AI with its goal. The definition

should therefore be of the form ”AI is the field that aims at building...”. S. J. Rus-

sell, for example, describes AI as a field dedicated to creating intelligent agents

that work by taking tuples of perceptions from the surrounding environment and
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reproducing behavior based on these perceptions. These agents are implemented

by a program on a machine and try to maximize the expected value of a utility

function. We can see how the definition is set in terms of optimization of a utility

function, in the sense that the agent, given a task that has a goal, tries to find the

best result for him. It is clear that this type of definition aims to focus only on

the result of a single human action. This is an appropriate definition for all the AI

applications we have available today, falling in the so-called ”Weak” AI. We can in

fact distinguish between ”Strong” and ”Weak” AI by taking note of the different

goals that these two versions of AI strive to reach.

Strong AI (or General AI) seeks to create artificial persons: machines

that have all the mental powers we have, including phenomenal con-

sciousness.

Weak AI, on the other hand, seeks to build information-processing ma-

chines that appear to have the full mental repertoire of human persons

[Searle, 1997].

For the Strong AI, I prefer the definition given in 1973 by Newell, one of the

precursors of the modern AI:

AI is the field devoted to building artifacts that are intelligent, where

’intelligent’ is operationalized through intelligence tests, and other tests

of mental ability (including, e.g., tests of mechanical ability, creativity,

and so on).

With this definition, we leave the information technology field and we enter a more

philosophical field in which we consider intelligence as a set of human abilities and

not as the optimization of a specific utility function.

Trying to bring the discussion to a more formal level, we can transfer our questions

from the computer world to the world of idealized machines (Turing machines) and

again to formal systems (Chapter 2). At this point we can ask ourselves: have there

been attempts to prove mathematically that the capabilities of the human mind

exceed any mechanism or formal system? Many attempts lead to one person: Kurt

Gödel.

It is fair to say that there is no mathematical theorem that has aroused as

much interest among both mathematicians and non-mathematicians as Gödel’s

Incompleteness Theorem, which appeared in 1931. The popular impact that this

theorem has had in recent decades can be seen in every field. Unfortunately, many

references to the incompleteness theorem outside the field of formal logic are based
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Figure 1: Kurt Gödel

on gross misunderstandings. Sokal and Bricmont [1998] and Franzén [2005], point

out that ”Gödel’s theorem is an inexhaustible source of intellectual abuses”. So

the question is: why are these theorems so cited and abused even today? We can

probably find the reason for this interest in the fact that the theorems start from

a concept that is very easy to understand from everyone: the liar paradox, which

says ”this sentence is false”. It’s fascinating because of its use of the self-reference

for making the truth of the sentence indefinable. In fact, if this sentence were

true then it would be in contradiction with what it says, that is to be false, and if

instead it were false, then it would say to be true contradicting itself also in this

case. This ease of first understanding leads people to approach the incompleteness

theorems, ignoring that they are based on a formalism and a complexity that has

been difficult to understand even for the mathematical community itself. Gödel’s

genius was to bring that simple concept back into an unassailable mathematical

formalism, proving the incompleteness of arithmetic and shaking the entire math-

ematical community.

Some years later, other logicians and philosophers started to debate on different

issues based on the Gödel’s theorems, such as the mechanism of the human mind.

This is a debate that has lasted for almost a century and that struggled to find the

standards of mathematical rigor shared by the community. In recent years much

effort has been spent to try to formalize this debate: this led to define the so-called

”Gödel’s disjunction”:

either ... the human mind (even within the realm of pure mathematics)

infinitely surpasses the power of any finite machine

or else there exist absolutely unsolvable diophantine problems.

There have been repeated attempts to apply Gödel’s theorems to demonstrate that
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the powers of the human mind outrun any mechanism or formal system. Let us

call it Anti-Mechanism. Consequently, Mechanism holds the possibility that there

can exist a machine that has the same human cognitive capabilities.

Within this thesis, I will examine this disjunction by trying to make explicit the

mathematical and philosophical assumptions. An interesting aspect of the disjunc-

tion is that it stays halfway between mathematical logic and philosophy, probably

the main reason why the debate is still so undefined. The statement itself is of

a philosophical nature since it includes informal concepts such as mind, machine,

or absolutely unsolvable problem. Nevertheless, all the authors considered are

substantially in agreement on the validity of the disjunction and on the fact that

Gödel has established beyond any reasonable doubt that the problem of the mech-

anization of the human mind and of the existence of humanly unsolvable problems

are linked and mutually dependent. In the light of Gödel’s disjunction, those who

want to argue in favor of the existence of humanly unsolvable problems could then

rely on arguments in favor of the possibility of mechanizing the human mind. On

the contrary, those who wish to argue against the Mechanism, could instead start

from the fact that all problems are humanly solvable.

I will present the Incompleteness Theorems in Chap. 1, followed by the debate on

Mechanism of the human mind in Chap. 2 and the Gödel’s Disjunction in Chap.

3,4 and 5.



Chapter 1

Gödel’s Incompleteness Theorems

In 1931, Kurt Gödel published his First and Second Incompleteness Theorems

(or simply Gödel’s Theorems). These Incompleteness Theorems settled some of

the crucial questions of the day concerning the foundations of mathematics. in

the early 1900s Hilbert, after the crisis in the foundations of mathematics, pub-

lished a list of twenty-three unsolved problems in mathematics. The second one

was about proving that the axioms of arithmetic are consistent. Gödel tried to

solve this problem but succeeded in proving the opposite, shaking up the whole

mathematical community. The theorems remain of the greatest significance for the

philosophy of mathematics and it has also frequently been claimed that Gödel’s

Theorems have a much wider impact on very general issues about language, truth

and the mind.

Gödel presented and proved his incompleteness theorem in an Austrian scientific

journal in 1931. The title of his paper was ”On formally undecidable propositions

of Principia Mathematica and related systems I.” Principia Mathematica (PM)

was a work in three volumes by B. Russell and A. N. Whitehead, published 1910-

1913, putting forward a logical foundation for mathematics in the form of a system

of axioms and rules of reasoning within which all of the mathematics known at the

time could be formulated and proved.

The first incompleteness theorem established that on the assumption that the sys-

tem of PM satisfies a property that Gödel named ω-consistency, it is incomplete,

meaning that there is a statement in the language of the system that can be neither

proved nor disproved in the system. Such a statement is said to be undecidable in

the system.

The second incompleteness theorem showed that if the system is consistent,

meaning that there is no statement in the language of the system that can be

5
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both proved and disproved in the system, the consistency of the system cannot be

established within the system.

Although Gödel used in his proof the property of ω-consistency, which is a

stronger property than consistency, J. Barkley Rosser showed in 1936 that Gödel’s

theorem could be strengthened so that only the assumption of plain consistency is

needed to conclude that the system is incomplete. Also, it was immediately clear

that his result also applied to a wide range of axiomatic systems for mathematics.

Today the incompleteness theorem is often formulated as a theorem about any

formal system within which a certain amount of elementary arithmetic can be ex-

pressed and some basic rules of arithmetic can be proved (see Section 1.2 for more

details).

In my opinion, the most fascinating aspect about these theorems and their res-

onance is that they were also discussed in a non-formalized context, despite their

mathematical complexity. In fact, ”consistent,” ”inconsistent,” ”complete,” ”in-

complete,” and ”system” are words used not only as technical terms in logic, but

in many different ways in ordinary language, so it is not surprising that Gödel’s

theorem has been considered by the most different people and has been associated

with various ideas in some informal sense. On the other hand the kind of reasoning

put forward in Gödel’s paper was at the time unfamiliar to logicians and mathe-

maticians, and even some accomplished mathematicians (for example, the founder

of axiomatic set theory, Ernst Zermelo) had difficulty grasping the proof. This is

perhaps the reason why it took twenty years for the theorems to be universally

accepted and why even today there is a strong focus on debates on them.

In the Gödel disjunction analyzed in the next chapters, the two theorems will be

used in the proofs of the different arguments. In particular, the first one is mainly

used by Lucas and Penrose for proving the Anti-Mechanism and the second by

Godel for his Disjunction. I will outline in this chapter the most relevant aspects

of the theorems summarizing the works of Murawski [1999], Raatikainen [2005],

Franzén [2005], Smith [2007] and mostly Raatikainen [2018b].

1.1 Basics

Here some preliminaries about arithmetic and logic that we need in this work.

Numeral The formal term (”numeral”) canonically denoting the natural number

n is abbreviated as n. In the standard language of arithmetic used here, the number

n is denoted by the term 0
′...′ , where the successor symbol ’′’ is iterated n times.
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That is, numerals which name 1, 2, 3, . . . are 0′, 0′′, 0′′′, . . . .

Quantifiers In logic, quantification specifies the quantity of specimens in the do-

main of discourse that satisfy an open formula. The two most common quantifiers

are ”for all” ∀ and ”there exists” ∃. Bounded quantifiers are often included in a

formal language in addition to the standard quantifiers ”∀” and ”∃”. In Peano

arithmetic, there are two types of bounded quantifiers: ∀n < t and ∃n < t.

A formula A in first order language is quantifier-free if and only if it contains

no unbounded quantifiers.

A theory has quantifier elimination if for every formula A, there exists another

formula AQF without quantifiers that is logically equivalent to it.

Syntactic consequence A formula A is a syntactic consequence of a set Γ of

formulas within some formal system F if there is a formal proof of A in F from

the set Γ.

Γ `F A

Syntactic consequence does not depend on any interpretation of the formal system.

Semantic consequence A formula A is a semantic consequence within some for-

mal system F of a set of formulas Γ

Γ |=F A,

if and only if there is no model I of F in which all members of Γ are true and A

is false. Or, in other words, the set of the interpretations that make all members

of Γ true is a subset of the set of the interpretations that make A true.

Recursive sets and recursively enumerable sets First, there may be a mechan-

ical method which decides whether any given number belongs to the set at issue

or not (in which case the set is called ”decidable” or ”recursive”), and, second,

there may be a mechanical method which generates or lists the elements of the set,

number by number. In the latter case, the set is called ”recursively enumerable”

, i.e. it can be effectively generated or it is ”semi-decidable”. It is a fundamental

result of the theory of computability that there are semi-decidable sets but are not

decidable (i.e., not recursive).

Consistency, Soundness, and Completeness Very informally, consistency states

that the system does not entail a contradiction; a soundness theorem for a deduc-

tive system expresses that all provable sentences are true; completeness states that
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all true sentences are provable. This concepts will be ananlyzed more formally

afterwards.

ω-consistency In his original proof, Gödel used his specific notion of ω-consistency,

and for some purposes, it is still convenient to follow Gödel’s original approach.

Given a free variable x, a formalized theory F is ω-consistent if it is not the case

that for some formula A(x), both F ` ¬A(n) for all n, and F ` ∃xA(x). Naturally

this implies normal consistency.

Existential formulas and 1-consistency Actually, a simple special case of ω-

consistency suffices in the first theorem; namely, the assumption is only needed

with respect to what logicians call
∑0

1-formulas; these are, roughly, the purely

existential formulas; more exactly, formulas of the form ∃x1∃x2 . . . ∃xnA, where

A does not contain any unbounded quantifiers. This restricted ω-consistency is

called 1-consistency.

1-consistency can be expressed intuitively simply as the requirement that the

formal system in question does not prove any false
∑0

1-sentences (i.e., the system

is sound at least in the case of such sentences).

Universal formulas A universal
∏0

1-formulas is a formula of the form

∀x1∀x2 · · · ∀xnA where A is a quantifier-free formula.

1.2 Arithmetical Theories

In the statements of the incompleteness theorems, there is the requirement that

”a certain amount of elementary arithmetic can be carried out”. Let us see what

it means and for what theories we can apply the Incompleteness Theorems.

Arithmetical Theories The weakest standard system of arithmetic that is usu-

ally considered in connection with incompleteness and undecidability is so-called

Robinson arithmetic (due to Raphael M. Robinson), standardly denoted as Q. As

axioms, it has the following seven assumptions:

• ¬ (0 = x′)

• x′ = y′ → x = y

• ¬(x = 0)→ ∃y (x = y′)

• x+ 0 = x
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• x+ y′ = (x+ y)′

• x× 0 = 0

• x× y′ = (x× y) + x

Where ”x′” is the successor function, + the addition and and x the multipli-

cation. 0 is the only constant and denotes the number zero. Adding to these

elementary axioms the axiom scheme of induction:

φ(0) ∧ ∀x [φ(x)→ φ (x′)]→ ∀xφ(x)

results in (first order) Peano Arithmetic (PA). Note that unlike Q, PA con-

tains infinitely many axioms, because all instances of the induction scheme (one

corresponding to every formula φ(x) with at least one free variable of the language)

are taken as axioms. PA is generally taken as the standard first-order system of

arithmetic.

Another natural and much-studied arithmetical system, which lies between Q

and PA, is Primitive Recursive Arithmetic (PRA). It contains not just the above

axioms of Q governing successor, addition and multiplication, but also defining

axioms for all primitive recursive functions, and the application of the induction

scheme is restricted to quantifier-free formulas (i.e., φ(x) is not allowed to contain

any (unbounded) quantifiers).

However, essentially the same system is obtained if one takes just the axioms

of Q and the induction scheme restricted to purely existential formulas (
∑0

1-

formulas). Moreover,
∑0

1-induction can be shown to be equivalent to the induction

scheme restricted to purely universal formulas (
∏0

1-formulas). PRA is sufficient

for developing the theory of syntax for formalized theories [Raatikainen, 2018b].

To summarize: when it is said, in the context of the incompleteness theorems,

that ”a certain amount of elementary arithmetic can be carried out” in a system,

this usually means that it contains PRA or at least Q. For the first incompleteness

theorem, Q is sufficient; for the standard proofs of the second theorem, something

like PRA, at a minimum, is needed [Raatikainen, 2018b].

1.3 Representability and Completeness

We also need the notion of representability of sets and relations in a formal system

F. More precisely, two related notions are needed.
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Strong representation A set S of natural numbers is strongly repre-

sentable in F if there is a formula A(x) of the language of F with one

free variable x such that for every natural number n:

n ∈ S =⇒ F ` A(n)

n /∈ S =⇒ F ` ¬A(n)

Weak representation A set S of natural numbers is weakly repre-

sentable in F if there is a formula A(x) of the language of F such that

for every natural number n:

n ∈ S ⇔ F ` A(n)

As the incompleteness results in particular teach us, there are sets which are

only weakly but not strongly representable (the key example being the set of

statements provable in the system).

In the case of both kinds of representability (weak and strong), there is always

a simple existential
∑0

1-formula, which represents the set in question, and usually

such a formula is used to represent S.

Quite independently of the particular formal system chosen, exactly the decid-

able, or recursive, sets are strongly representable, and exactly the semi-decidable,

or recursively enumerable sets are weakly representable. This holds for all for-

malized systems which contain Q. Instead of using the notion of representability,

Gödel took a different approach by speaking of sets being decidable in a formal

system F (entscheidungsdefinit). If the proofs of F are systematically generated,

it will be eventually determined, for any given number n - whether it belongs to

S or not - given that S is strongly representable in F.

In sum, we have:

The Representability Theorem

In any consistent formal system which contains Q:

1. A set (or relation) is strongly representable if and only if it is re-

cursive;

2. A set (or relation) is weakly representable if and only if it is recur-

sively enumerable.
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1.4 Arithmetization of the formal language: Gödel’s num-

bering

Godel needed to bring the concepts of any formal language into arithmetic. So

he took the language of a formal system, which is always precisely defined, and

fixed a correspondence between the expressions of that language and the system of

natural numbers. A coding, arithmetization, or Gödel numbering, of the language.

The essential point is that the chosen mapping is effective: it is always possible

to pass, purely mechanically, from an expression to its code number, and from

a number to the corresponding expression. This was one of the most ingenious

elements of Gödel that allowed him to apply concepts of common language such

as the liar paradox to arithmetic.

One proceeds as follows: first, the primitive symbols of the language are paired

with distinct natural numbers, ”symbol numbers”. A little number theory then suf-

fices to code sequences of numbers by single numbers. Consequently, well-formed

formulas, as sequences of primitive symbols, are each assigned a unique number.

Finally derivations, or proofs, of the system, being sequences of formulas, are arith-

metized, and are also assigned specific numbers. Such a code, the ”Gödel number”

of a formula A, is denoted as pAq, and similarly for derivations.

In this way, syntactical properties, relations and operations are reflected in

arithmetic: for example, neg(x) is the arithmetical function that sends the Gödel

number of a formula to the Gödel number of its negation; in other words,

neg(pAq) = p¬Aq

similarly, impl(x, y) is the function which maps the Gödel numbers of a pair of

formulas to the Gödel number of the implication of the formulas:

impl(pAq, pBq) = pA→ Bq

and so on. There is an arithmetical formula, call it Fmla(x), which is true of n

iff n is a Gödel number of a well-formed formula of the system. There is also an

arithmetical formula M(x, y, z) which is true exactly if one has a valid application

of the rule of inference. In this way, all the syntactic properties and operations can

be simulated at the level of numbers, and moreover they are strongly representable

in all theories which contain Q.

The same can be applied to proofs and the provability itself. As it is decidable
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whether a given sequence of formulas constitutes a proof of a given sentence, the

binary relation ”x is (the Gödel number of) a proof of the formula (with the Gödel

number) y” can be strongly represented in all systems containing Q. Let us de-

note the formula which strongly represents this relation in F itself as PrfF (x, y).

The property of being provable in F can then be defined as ∃xPrfF (x, y). Let us

abbreviate this formalized provability predicate as ProvF (x). It follows that the

latter is weakly representable:

F ` A⇒ F ` ProvF (pAq)

It is always possible to choose the provability predicate ProvF (x) to be a
∑0

1

-formula.

1.5 Self-reference: the diagonalization lemma

As we said, Gödel’s numbering was the key to apply common concepts like the

self-reference to arithmetic. Gödel formalized it in the diagonalization lemma.

The Diagonalization Lemma

Let A(x) be an arbitrary formula of the language of F with only one

free variable. Then a sentence D can be mechanically constructed such

that

F ` D ↔ A (pDq)

In the literature, this lemma is sometimes also called ”the self-referential lemma”

or ”the fixed point lemma”. It has many important applications beyond the in-

completeness theorems.

It is often said that given a property denoted by A(x), the sentence D is a

self-referential sentence which ”says of itself” that it has the property A. Note

that the lemma only provides a (provable) material equivalence between D and

A(pDq) (which states that both sides must have the same truth-value) and does

not claim any sort of sameness of meaning.

1.6 First Incompleteness Theorems

We can now claim and prove the first theorem.

Gödel’s First Incompleteness Theorem

Assume F is a formalized system which contains Q. Then a sentence
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GF of the language of F can be mechanically constructed from F such

that:

• If F is consistent, then F 0 GF .

• If F is 1-consistent, then F 0 ¬GF .

Such an independent, or undecidable (neither provable nor refutable in F )

statement GF in F is often called the Gödel sentence of F .

In favourable circumstances, it can be shown that GF is true but unprovable.

This is the case if, for example, the provability predicate ProvF (x) has been chosen

as a
∑0

1 -formula: The Gödel sentence is then provably equivalent to the universal

formula ∀x¬PrfF (x, pGFq). Such formulas can be proved false whenever they in

fact are false: if false, there would be a number n such that F ` PrfF (n, pGFq)

(this holds already in Q). This, however, would contradict the incompleteness the-

orem. Therefore, GF cannot be false, and must be true. For this reason, the Gödel

sentence is often called true but unprovable.

Note that Gödel’s theorem is the general incompleteness result of Gödel which

concerns a large class of formal systems, while the Gödel sentence is the con-

structed, formally undecidable sentence which varies from one formal system to

another. This is why it is important to include the subscript F in GF .

Proof The Diagonalization Lemma is applied to the negated provability predicate

¬ProvF (x). This gives a sentence GF such that:

F ` GF ↔ ¬ProvF (pGFq). (G)

Thus, it can be shown, even inside F, that GF is true if and only if it is not provable

in F. It is not difficult to show that GF is neither provable nor disprovable in F, if

F only is 1-consistent.

For the first half, assume that GF were provable. Then, by the weak repre-

sentability of provability-in-F by ProvF (x), F would also prove ProvF (pGFq).

However, because F in fact also proves the equivalence (G), F would then prove

¬GF too. But this would mean that F is inconsistent. In sum, if F is consistent,

then GF is not provable in F. For this first half, the assumption of the simple

consistency of F suffices.

For the second half, it has to be assumed that F is 1-consistent (if ProvF (pGFq)
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has been chosen such that it is a
∑0

1-sentence; otherwise, the more general as-

sumption of ω-consistency is needed).

Assume that F ` ¬GF . Then F cannot prove GF , for otherwise F would

be simply inconsistent. Hence no natural number n is the Gödel number of a

proof of GF , and because the proof relation is strongly representable, for all n,

F ` ¬PrfF (n, pGFq). If also F ` ∃xPrfF (x, pGFq), F is not 1-consistent, against

the assumption. Therefore F does not prove ∃xPrfF (x, pGFq), in other words, by

the definition of ProvF (x), F does not prove ProvF (pGFq). By the key equivalence

(G), F also does not prove ¬GF (contradiction). �

1.7 Second Incompleteness Theorems

Given the arithmetized provability predicate, it is also easy to present an arithme-

tized consistency statement: pick some manifestly inconsistent formula (in arith-

metical theories, a standard choice is (0 = 1)); let us denote it by ψ; (the arith-

metized counterpart of) the consistency of the system can then be defined as

¬ProvF (pψq). Let us abbreviate this formula by Cons(F ). The proof of the first

part of the first incompleteness theorem can then presumably be formalized inside

F . This gives:

F ` Cons(F )→ GF

where GF is the Gödel sentence for F provided by the first theorem. If Cons(F )

were provable in F , so would be GF , by simple logic. This would contradict

Gödel’s first theorem. Consequently, Cons(F ) cannot be provable in F either.

Gödel’s second incompleteness theorem

Assume F is a consistent formalized system which contains elementary

arithmetic. Then F 0 Cons(F ).

Which informally can be read as ”If F is a sound system, in which a certain amount

of elementary arithmetic can be carried out, then its own consistency can not be

proved in F”.

There is a question of philosophical importance that should be mentioned here:

as it stands, Gödel’s second incompleteness theorem only establishes the unprov-

ability of one sentence, Cons(F ). But does this sentence really express that F is

consistent? Furthermore, might there not be other sentences which are provable

and also express the consistency of F?

Giving a rigorous proof of the second theorem in a more general form that

covers all such sentences has turned out to be very complicated and it will be
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omitted in this work. I just cite Feferman [2006] who said that it is customary to

say that ”whereas the first theorem and its relatives are extensional results, the

second theorem is intensional: it must be possible to think that Cons(F ) in some

sense expresses the consistency of F - that it really means that F is consistent.”



Gödel’s Incompleteness Theorems 16



Chapter 2

Towards the debate on

Mechanism

In the 1930s, many logicians wondered about in what systems we could apply the

incompleteness theorems. What they wanted to prove was the possibility of mov-

ing from a formal theoretical system to practical applications without losing the

formalism necessary for the theorems. In other words the goal was to consider,

instead of decidable sets or properties, computable functions which are useful in

considering real applications, like machines. Gödel, Alonzo Church and Alan Tur-

ing have shown that these two concepts (decidable sets and computable functions)

are interchangeable. They independently presented different proposals for an exact

mathematical definition of computable functions and, consequently, of decidable

sets. Recall that a set of axioms and the notion of provability are necessary for a

formalized system to be decidable. Moreover, since the label ”recursive function”

has, for historical reasons, been dominant in the logical literature, decidable sets

are often called ”recursive sets”.

2.1 Turing machines and Church-Turing thesis

The purpose of Turing and Church (and, indirectly, Godel) was to find a precise

definition of effective procedure (or ”mechanical procedure” or ”algorithm”),

i.e. processes that can be performed through a finite sequence of steps from an

idealized agent starting from a finite number of instructions. We can summarize

the results that Gödel, Turing and Church independently found:

• In 1933, Kurt Gödel created a formal definition of the class of general recur-

sive functions. The class of general recursive functions is the smallest class of

functions which includes all the constant functions, the projections, the suc-

17
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cessor function, and which is closed under function composition, recursion,

and minimization.

• In 1936, Alonzo Church created a method for defining functions called λ-

calculus. Within λ-calculus, he defined an encoding of the natural numbers

called the Church numerals. A function on the natural numbers is called

λ-computable if the corresponding function on the Church numerals can be

represented by a term of the λ-calculus.

• In 1936, before learning about Church’s work, Alan Turing created a theoret-

ical model for machines, now called Turing machines, which could perform

calculations by manipulating symbols on a tape as input. Given an adequate

encoding of natural numbers as symbol sequences, a function on natural

numbers is called Turing-computable if a Turing machine can compute the

corresponding function on encoded natural numbers.

Church [Church, 1936] and Turing [Turing, 1936–1937] showed that these three

classes of computable functions, formally defined, coincide: a function is lambda-

computable if and only if it is Turing-computable if and only if it is general recur-

sive.

Among these, as Gödel [1986] pointed out, Turing’s analysis of fictitious and ab-

stract computing machines (Turing machines) was particularly relevant, as well as

Church’s work on the λ-calculus. The equation of this intuitive notion is often

called ”The Church-Turing thesis”.

Church-Turing thesis

The notion of Turing machine completely captures the concept of effec-

tive procedure.

As it will be explained in Chapter 3, the Church-Turing thesis is one of the fun-

damental assumptions, together with the second incompleteness theorem, which is

the basis of the Gödel’s disjunction proof.

Another fundamental assumption is the fact that Turing machines in a certain

sense constitute the mechanical counterpart of the theories studied by logicians. In

fact, given a theory F and an adequate numerical coding (like Gödel numbering)

of the formulas in the language of this theory, it is possible to determine through

an effective procedure whether a given number is the code of a formula of F . Since,

therefore, the proofs are nothing more than finite sequences of formulas, it is still

possible to determine whether a given number is the code of a proof and, when it

is, we can actually determine the code of the last formula of the sequence, that is
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the proven theorem. It follows that, given a theory, one can define a mechanical

procedure where one can control, for each natural number, if it is the code of a

proof of F and that, when it is, it produces the code of the theorem established by

the proof. We can then associate to each theory a Turing machine that enumerates

all the theorems of F .

Conversely, given a Turing machine M and an appropriate formal language, M

can be made to correspond to an equivalent theory in the specified language, simply

by choosing a suitable encoding so that all the numbers that M can enumerate, are

codes of formulas of the considered language and, finally, defining the theorems

of F as the deductive closure of the formulas enumerated by M according to

this encoding [Feferman, 2006]. We therefore have the following (meta) theorem

which mathematically establishes the relation between Turing machines and logical

theories.

Isomorphism theories-machines

Given any logical theory F , there is a Turing machine whose input and

operating rules correspond to the axioms and rules of F and whose

output consists of all and only the theorems of F . Conversely, given

any Turing machine M , there is a theory whose axioms and logical rules

correspond to the inputs and rules of the machine and whose theorems

are all and only the outputs of M .

It follows that we can talk about Turing machines the same way we talk about

logical theories: everything that can be done through an automatic machine can be

done through a corresponding logical theory and vice versa. So we can analyze the

problem of Mechanism, i.e. the possibility of the mechanization of the human mind,

as a logic problem. The isomorphism between formal systems and Turing machines

also allows us, in the context of the discussion on the Disjunction, to ignore the

formal definition of the Turing machine and to speak freely of ”machine”, i.e. any

device capable of manipulating symbols and to prove syntactically true theorems

[Beccuti, 2018].

We can also freely speak about the axioms or consistency of a Turing machine,

always meaning the axioms and consistency of the theory corresponding to the

machine considered on the basis of the aforementioned isomorphism. Similarly we

can talk about the application of the second incompleteness theorem to Turing

machines. Given a consistent Turing machine, there is a declaration (the one that

expresses the consistency of the machine itself) that this machine cannot prove.

Finally the Mechanistic thesis that we will discuss later can be expressed, taking

into account the Church-Turing thesis and without losing its generality, as:
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Mechanistic thesis

The human mind in the field of pure mathematics is a Turing machine.

Therefore, in this context, speaking of the mechanization of the mind means speak-

ing of the possibility of simulating the capabilities of the mind through a machine.

2.2 Artificial Intelligence

The term ’artificial intelligence’ made its advent at DARPA-sponsored summer

conference at Dartmouth College, in Hanover, New Hampshire. Certainly the field

of AI was in operation before 1956. For example, in a famous Mind paper of 1950,

Alan Turing argues about the question ”Can a machine think?” that he reformu-

lated in the context of its Turing Test (TT) as ”Can a machine be linguistically

indistinguishable from a human?”. The TT was a test in which a woman and a

computer are sequestered in sealed rooms, and a human judge asks questions by

”teletyping” to them. If the judge can do no better than 50/50 when delivering a

verdict as to which room houses which player, we say that the computer in ques-

tion has passed the TT. Turing predicted that his TT would be passed by 2000,

but even today the most articulate of computers still can’t meaningfully debate

a sharp toddler. Moreover, while in certain focused areas machines out-perform

minds (e.g. Deep Blue at chess, Watson at Jeopardy! or Alpha Go at Go), minds

have a capacity for cultivating their expertise in virtually any sphere. AI simply

hasn’t managed to create general intelligence; it hasn’t even managed to produce

an artifact indicating that eventually it will create such a thing [Bringsjord and

Govindarajulu, 2018].

But what is the definition of AI? AI is a field that can be studied from the per-

spective of many fields, like philosophy, mathematics and logic, computer science,

biology, ... . Philosophers know better than anyone else that it can be extremely

complex to give a definition that can satisfy all the different profiles that work in

the field. Russell and Norvig [2002] in their book AIMA (cornerstone of modern

artificial intelligence), characterize the definition of AI with its goal. The defini-

tion should therefore be of the form ”AI is the field that aims at building...”. All

possible definitions can be included in the four areas listed below [Bringsjord and

Govindarajulu, 2018]:

1. ... systems that think like humans

2. ... systems that think rationally

3. ... systems that act like humans
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4. ... systems that act rationally

We can find many definitions in the literature. For example, philosopher Haugeland

[1985] falls into the first category when he says that AI is:

The exciting new effort to make computers think ... machines with

minds, in the full and literal sense.

The second is instead defended by Winston [1992]. The third category is occupied

most prominently by Turing, whose test is passed only by those systems able to

act sufficiently like a human. Luger and Stubblefield [1993] seem to fall into the

forth category when they write:

The branch of computer science that is concerned with the automation

of intelligent behavior.

Also Russell and Norvig themselves are firmly in the forth category. They describe

AI as a field dedicated to creating intelligent agents that work by taking tuples of

perceptions from the surrounding environment and reproducing behavior based on

these perceptions. These agents are implemented by a program on a machine and

try to maximize the expected value of a utility function.

We can see how these types of definitions are very far from each other: some

are more philosophical, others concerns computer science and others biology. Only

some of them treat the concept of the human mind. So how can we create a

parallelism with Mechanism? We need to get more specific and to introduce a

dichotomy in the definition: let’s distinguish between ”Weak” and ”Strong” AI.

2.2.1 Weak AI

”Weak” AI is informally an AI system that can only act like it thinks and has a

mind. Searle [1997] defined it as ”information-processing machines that appear to

have the full mental repertoire of human persons”.

A Weak AI is an AI with no or limited ability to self-modify or generalize.

For example, a machine that plays chess might have superhuman ability in the

chess game, but it can only play chess. While it might tune its underlying model

and slowly improve, it cannot modify itself in a deep enough way to generalize to

other tasks. For this reason, sometimes Weak AI is also referred as ”narrow” AI or

”applied AI”. In general, in the weak AI one do not care about human cognitive

processes but exclusively about solving specific problems.

AI has achieved far greater commercial success and academic respectability by



Towards the debate on Mechanism 22

focusing on specific sub-problems where they can produce verifiable results and

commercial applications, such as artificial neural networks, computer vision or

data mining. These ”applied AI” systems are now used extensively throughout

the technology industry, and research in this vein is very heavily funded in both

academia and industry.

2.2.2 Strong AI

Searle [1997] defines ”Strong” AI as ”artificial persons: machines that have all

the mental powers we have, including phenomenal consciousness”. Strong AI, also

called Artificial general intelligence (AGI), has the capacity to understand and

learn any intellectual task that a human being can, i.e. the capacity to perform the

full range of human cognitive abilities. According to this definition, the machine

should not be considered as an instrument but opportunely programmed so that it

can be compared to the human mind, with an indistinguishable cognitive capacity.

We can therefore create a parallelism between mechanism and Strong AI: studying

the mechanization of the human mind is equivalent to study the possibility to create

a Strong AI. In the following chapters, I will only refer to the term Mechanism in

order to be aligned with the considered literature.



Chapter 3

Gödel’s disjunction

In recent years some philosophers and logicians (to name a few, Feferman [2006],

Fano and Graziani [2011], Stern [2018], Horsten and Welch [2016], Raatikainen

[2018a]) have tried to put clarity on a debate that started some decade ago and

that still remains undefined: what are the consequences that can be drawn from

Gödel’s incompleteness theorems about the human mind? Everything started from

some Anti-Mechanistic arguments according to which the incompleteness theorems

may indicate, or even prove, that the human mind surpasses any machine.

The main supporters of these arguments were Lucas and Penrose (Chap. 4).

Their thesis was that the mathematical theorems that can be proven by an idealized

human mind, can be generated by some effective procedure. This means, assuming

the Turing-Church thesis, that the theorems that an idealized human mind can

produce, are the output of a Turing machine.

Unlike Lucas and Penrose, Gödel did not believe that so strong thesis could

be deduced as a direct consequence of its incompleteness theorems. Instead, he

encapsulated his thought in a disjunction: one can believe in Anti-Mechanism only

if he denies the possibility of the existence of humanly unsolvable problems. Offi-

cially he never took a part and he held the view that both disjuncts are consistent

with incompleteness theorems.

The first time Godel spoke about this topic was in 1951 during a conference at the

American Mathematical Society:

it [second incompleteness theorem] makes it impossible that someone

should set up a certain well-defined system of axioms and rules and

consistently make the following assertion about it: All of these axioms

and rules I perceive (with mathematical certitude) to be correct, and

moreover I believe that they contain all of mathematics. If someone

makes such a statement he contradicts himself. For if he perceives the

23
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axioms under consideration to be correct, he also perceives (with the

same certainty) that they are consistent. Hence he has a mathematical

insight not derivable from his axioms [Gödel, 1951] (page 309).

Does this mean that it is not possible to understand all mathematics in a single

system of axioms? This can be considered the genesis of the Disjunction and it is

clear that we need to discuss about the interpretability of this statement and the

underlying idealizations.

3.1 The Disjunction from different perspectives

3.1.1 Subjective and objective mathematics

I want to start with the definition of ”mathematics”. During the aforementioned

conference, Gödel introduced a distinction between subjective mathematics (the

set of provable propositions starting from some system of axioms) and objective

mathematics (the set of true propositions in an absolute sense). Do these sets

coincide? If yes, then there is no hope of being able to understand all mathematics

in a single axiomatic system, because if such a system exists, then the statement

that expresses the consistence of the system cannot be provable in such a system,

and this contradicts the initial assumption. If instead objective mathematics is

distinct from subjective mathematics, then subjective mathematics could be liable

to be understood in a single axiomatic system, but there would remain the problem

of explaining the existence of true mathematical propositions that are not provable

in a formal system. Gödel therefore supported the following disjunctive thesis:

either subjective mathematics cannot be formalized, or objective mathematics is

not reducible to subjective mathematics. In other words

Either subjective mathematics surpasses the capability of all computers,

or else objective mathematics surpasses subjective mathematics, or both

alternatives may be true.

which he reformulated in more general terms:

Godel’s Disjunction

So the following disjunctive conclusion is inevitable: Either mathematics

is incompletable in this sense, that its evident axioms can never be com-

prised in a finite rule, that is to say, the human mind (even within the

realm of pure mathematics) infinitely surpasses the powers of any finite

machine, or else there exist absolutely unsolvable diophantine problems
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... (where the case that both terms of the disjunction are true is not ex-

cluded, so that there are, strictly speaking, three alternatives).. [Gödel,

1951] (Page 310).

3.1.2 Materialism and Platonism

Thus, Gödel’s thesis is the following: either Mechanism is false or there are math-

ematical problems that we can not hope to solve. Let us try to make a parallelism

with Materialism (or Physicalism), which holds that matter is the fundamental

substance in nature and that all things, including mental states and consciousness,

are results of material interactions. According to Gödel both alternatives of the

Disjunction stand in clear opposition to Materialism in philosophy: of the mind

in the case of the first disjunct, of mathematics in the case of the second one.

He said:

If the first alternative holds, this seems to imply that the working of the

human mind cannot be reduced to the working of the brain, which to

all appearance is a finite machine with a finite number of parts, namely,

the neurons and their connections. [Gödel, 1951]

and the second one

seems to disprove the view that mathematics is only our own creation;

for the creator necessarily knows all properties of his creatures, because

they can’t have any others except those he has given to them. So this

alternative seems to imply that mathematical objects and facts (or at

least something in them) exist objectively and independently of our

mental acts and decisions, that is to say, some form or other of Platonism

or ”realism” as to the mathematical objects [holds]. [Gödel, 1951]

Note that he intended Platonism as the existence of abstract objects, which are

asserted to ”exist” in a ”third realm” distinct both from the sensible external world

and from the internal world of consciousness.

If we accept the inferences and statements made so far, we have a variant of

the Disjunction:

either physicalism is false or else Platonism in mathematics is true, or

both [Wang, 1996].
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3.1.3 Psychology and Socrates

The relevance of the incompleteness theorems with regard to the human mind,

although discussed by many logicians, remains however largely ignored by much

of the contemporary philosophical and psychological debate, which does not seem

to have understood its importance yet. As Benacerraf observed, in fact,

it follows that [...] psychology as we know it is therefore impossible.

For, if we are not at best Turing machines, then it is impossible, but if

we are, then there are certain things we cannot know about ourselves or

any others with the same output as ourselves. I won’t take sides. But

we can [...] reformulate the [philosophical] scope of Gödel’s theorems

as follows: if I am a Turing Machine then I am barred by my very

nature from obeying Socrates’ profound philosophical injunction: Know

thyself. [Benacerraf, 1967]

3.2 Idealization

When a scientific model is studied in science philosophy, we often need to idealize

some concepts or some hypothesis. In particular, idealization is the process by

which models assume facts about the phenomenon being modeled that are not

strictly real but make models easier to understand or solve. It is very important

to indicate the specific idealizations underlying a debate in order to formalize the

thesis and the arguments. Regarding the formulation of the Disjunction, some

unanswered questions of epistemological, linguistic and idealistic nature persist.

For example, the exact content of the Mechanistic thesis is not completely clear.

The same applies to the content of Gödel’s second disjunct on what human math-

ematicians can and cannot know (Gödel spoke also of ”absolutely unknowable

propositions”).

Moreover, the relevance of completeness theorems for Mechanism depends on

what the mechanist claims. The thesis that the human mind is, or can be modeled

as, a computer or a Turing machine is often too vague to apply something as

formal and precise as Gödel’s theorems. The mechanist claims that there may be

a machine whose results are the same as those of a human or a group of humans.

But what kind of machine? What results? And what kind of human?

3.2.1 Unknowable arithmetic truths

In the second disjunct, Gödel comes to the conclusion of the possibility that arith-

metic (absolutely) unknowable truths exist. If we stop on the first interpretation
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of the sentence, it might seem obvious that there are unknowable mathematical

truths. Shapiro [2016] gives an intuitive example.

Let p and q be two prime numbers, each greater than 101.000.000. If their product

n = pq were written in standard Arabic, decimal notation, it would have about

two million digits. Consider the proposition P for which n has exactly two prime

factors. By hypothesis, P is true. However it is extremely unlikely that a human

being could know P . That is, nobody can have convincing evidence for P . In fact,

it is unlikely that anyone could even understand P or even analyze the sentence.

Thus, there are probably unknowable truths that can be plausibly stated. This

example is somehow provocative, with the aim of showing how this part of the

debate is philosophically unclear. In parallel, Penrose does not speak of unknow-

able truths but rather ”unassailable”. What does he mean? We could object that

anyone can assail practically anything in a subjective way. Presumably, Penrose

claims that propositions should have such strong evidence that no one could ques-

tion them once the proof is understood. But some tests are so long and complicated

that no human being can understand them. Therefore we need a formalization of

the concepts of knowability and unassailable by the ”human mind”. This topic

is well addressed by Koellner in [Horsten and Welch, 2016] which investigates the

concepts of relative and absolute ”provability” of arithmetic truths in the context

of the second disjunct (see Chap. 5).

3.2.2 Absolutely undecidable truths

Other than unknowable, we can speak about absolutly unprovable (or absolutely

undecidable). Hence, we should question about the concept of absolute provabil-

ity: let us try to analyze who (and how) tried to define it.

An attempt has been made, starting from a proposal of Gödel himself, studying

the properties of the absolute provability of mathematical propositions through a

theory of arithmetic enriched with an atomic modal operator of provability, suit-

ably axiomatized. In this direction, there are many contributions of Tharp and

Fitch but their proposals are not entirely satisfactory since the propositions must

necessarily contain the aforementioned modal operator and it is therefore a propo-

sition that is only semi-mathematical, not an arithmetical statement as in Gödel’s

disjunction.

Another attempt, not entirely satisfactory, is that of Feferman and Solovay

[1990] which highlight the existence of undecidable statements from the practical

point of view, i.e. decisions a priori decidable but too complex to be decided in a

reasonable time by a human being or a computer, like the statement ”the value of
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the 101010
100

-th decimal digit of π is 7”. This argument is valid if we are speaking

about real humans and computers but it does not hold for the idealized ones.

Boolos [1982] shows instead that there are true ”extremely undecidable” arith-

metic statements, i.e. completely undecidable utterances characterized (within

Peano arithmetic) by arithmetic-modal properties also possessed by all the other

statements of Peano arithmetic and hence indistinguishable from them (within

Peano arithmetic). Despite the suggestive name, Boolos does not prove that the

extremely undecidable statements are unprovable in an absolute sense, but only

inside Peano’s arithmetic.

On the other hand, Williamson’s approach is completely different. In 2016

he advances an original metaphysical argument for the conclusion that every true

statement is absolutely provable based on the plausibility of the counterfactual

existence of beings capable of proving it. Williamson, after having argued the

non-analytic nature of mathematical truths, says that mathematical knowledge

does not derive only from proofs, but, as far as the axioms are concerned, also

from the evolutionary history of human beings, for which some statements seem

”primitively convincing ”by virtue of the specific hereditary characteristics of our

brain [Williamson, 2016]. If we accept that every arithmetic statement is true or

false and tertium non datur, then, argues Williamson, every arithmetic statement

is absolutely provable (or refutable). Note, however, that Williamson does not

believe that his argument can be used to support anti-mechanistic positions: even

assuming that the aforementioned creatures are possible (future) human beings

then for every arithmetic truth it is possible that there exists a mathematician

who can prove it. This is different from saying that it is possible that there is a

mathematician who can prove all the arithmetic truths.

Finally, further attempts are made in the direction of considering independent

statements of set theory (for example, the axiom of choice or the hypothesis of

the continuous in [Koellner, 2016a]) as possible candidates for being absolutely

undecidable statements. As it was well explained by Koellner, this is Gödel’s

opinion until 1946, when he expresses the hope that we can reach a generalized

completeness theorem for set theory based on the notion of Turing computability

which establishes the impossibility of absolutely undecidable statements. Gödel

then reaches the more mature view expressed at the 1951 conference. Koellner

concludes that, in the context of set theory,

There is at present no solid argument to the effect that a given statement

is absolutely undecidable. We do not even have a clear scenario for how

such an argument might go. [Koellner, 2006]
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3.2.3 Human mind and Machines

In addition to the concept of demonstrability, we can ask ourselves, precisely,

what is meant by ”human mind”. In the Disjunction, Godel speaks about ”human

mathematical mind”. Does he mean the mind of a single mathematician or, more

generally, the community of mathematicians?

Probably we are not talking about mathematicians as physical individuals, i.e.

medical and physical limitations are not relevant. Presumably, the mechanist and

the anti-mechanist are both talking about an ideal human, or a community of ideal

humans (or mathematicians). Lucas and Penrose both refer to human capabilities

”in principle”. To idealize a mathematician, we should first understand how math-

ematicians know the mathematics they know. Then we have to somehow transfer

this epistemology to the ideal humans, to understand how they get to know con-

cepts and theorems. If we can clarify this point, we could then express the ideal

mathematician’s subjectivity at the center of Penrose’s argument and we could

define what he means by ”unassailable” (see Chap. 4).

We can find an answer to the question about ideal humans starting from the

concept of machine. As Shapiro [2016] noted, we must obviously idealize also on

machines, whose idealization is however less complex than the human one. Like

humans, today’s digital computers have limitations, such as memory and materi-

als, and are more like finite state machines. Computers are also subject to software

malfunctions and bugs. It is in fact not sure that there can exist a physical com-

puter whose output is one of the sets mentioned in the Church-Turing thesis.

Could there be a hardware that corresponds to a human being in its arithmetic

productions, reproducing both truths and errors? Or could there be hardware that

matches the true arithmetic phrases of a given human? Maybe we know how to

produce such a computer, but maybe we can’t build it, depending on what we

mean by building.

In any case, none of these considerations is relevant to the mechanistic thesis.

On the machine side, the idealization solution is simple: we ignore the finite limits.

In particular, suppose our machines never run out of memory, energy, time or

work materials. Suppose then that they will never stop calculating just because

they run out of material or memory or storage space: the traditional idea of

potential infinity. Suppose further that the machines operate indefinitely without

interruption, following their assigned programs perfectly. That is, by applying a

known distinction between hardware and software, we ignore the hardware. We

only consider what happens when programs are executed as they are wrote: we

assume that the machines in question are abstract objects like Turing machines.
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So in the debate we try to have idealizing hypotheses about humans analogous

to those of Turing machines. We do not talk about the theorems that a subject

produces, but about the theorems they can produce, an idealization similar to the

one we invoke for Turing machines.

In short, both when we talk about the human and the machine, we talk about its

potential without considering physical limits or malfunctions. Imagined creatures

have unlimited lives, unlimited spans of attention, unlimited energy and unlimited

materials at their disposal, just like Turing machines do. This let us to overcome

the problems about unknowable truths like the aforementioned one on large prime

numbers. However, it is assumed that these ideal mathematicians are like humans

in every other aspect.

In chapter 5, I will report a more specific analysis on this theme, trying to

formalize the concepts of idealized human mind and idealized machine through a

parallelism with absolute and relative provability.

3.3 Fixing a framework for a proof

Given all these premises, one way to deal with the Disjunction is to define some

hypotheses that we have to take for granted:

a. The second incompleteness theorem

b. The theories-machines isomorphism

c. The Church-Turing thesis

For some arguments, we need also (d) the consistency of the human mind, in order

to apply the second incompleteness theorem to the human mind. Here a basic

proof that uses the 4 hypotheses:

1. Assume that the human mind can be algorithmically simulated.

2. It follows that, for (c), there is a Turing machine capable of simulating the

human mind in its ability to produce true theorems of arithmetic.

3. From (b) then follows that the mind can be simulated through a formal

system of axioms.

4. Thus, if the mind is consistent, the second incompleteness theorem (a) applies

to this system of axioms.

5. Thus there exists a true statement (d) that the system itself (the mind)

cannot prove.
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6. For the initial assumption, then, this statement is humanly (that is, abso-

lutely) unprovable. �

Hence, if we suppose Mechanism, there are statements that are unprovable by any

system.

Shapiro [2016] formulate a short more elegant proof of the Disjunction that uses

the concepts of objective and subjective mathematics introduced previously, as

well as the indefinable theorem of Tarski’s truth:

1. Let S be the set of mathematical truths recognizable as such by the human

mind (subjective mathematics), and let V be the set of mathematical truths

(objective mathematics).

2. For definition, S ⊆ V .

3. Moreover, due to the Tarski’s undefinability theorem, V is not definable in

the language of arithmetic and therefore a fortiori V is not recursively enu-

merable.

D1 It follows that if S = V then even S is not recursively enumerable, and

therefore Mechanism is false.

D2 Then it follows that, if Mechanism is true, S 6= V and in such a case there

exists a proposition φ ∈ V such that φ /∈ S. This means that φ is true but

not humanly provable. �

Reference to diophantine problems It follows from some results of Gödel him-

self and from the joint work of Putnam, Robinson and Matiyasevich on the tenth

Hilbert problem that the statement that expresses the consistency of a formal

system is always (demonstrably) equivalent to a statement in the form

∀x1 . . . xnP (x1 . . . xn) 6= 0

where P is a diophantine polynomial, i.e. a polynomial with coefficients and integer

variables [Feferman, 2006]. In this sense in the statement of the Disjunction, Gödel

speaks of ”absolutely unresolvable diophantine problems”.
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Chapter 4

First Gödel’s disjunct

In 1961, J.R. Lucas published ”Minds, Machines and Gödel” [Lucas, 1961], in

which he formulated a controversial Anti-Mechanistic argument. The argument

holds that Gödel’s first incompleteness theorem shows that the human mind is

not a Turing machine. The topic has generated many discussions that are still

open due to the difficulty of defining a precise and formal perimeter in which to

develop the debate. The reason of the interest around this debate is that the

influential computational theory of the mind, which states that the human mind is

a computer, is false if Lucas’s argument is confirmed. That is, if Lucas’s argument

is correct, then ”strong artificial intelligence”, the idea that it is possible to build

a machine that has the same cognitive capabilities as human beings, is false.

However, numerous objections to Lucas’s argument have been presented. Some

of these objections imply the consistency or inconsistency of the human mind: if

we cannot establish that human minds are consistent, or if we can establish that

they are actually inconsistent, then Lucas’s argument fails. Others criticize various

idealizations made by Lucas. Others claim that some parts of his argument are

hardly defensible. Lucas’s argument was reinvigorated when the physicist R. Pen-

rose formulated and defended a similar argument in his two books, The Emperor’s

New Mind [Penrose, 1989] and Shadows of the Mind [Penrose, 1994]. Although

there are similarities between the arguments of Lucas and Penrose, there are also

some important differences. Penrose argues that the Gödelian arguments imply

a series of statements concerning consciousness and quantum physics; for exam-

ple, consciousness derives from quantum processes and may require a revolution in

physics to obtain a scientific explanation. There have also been objections raised

on Penrose’s argument and on the various thesis that he deduces from it: some

question the anti-mechanistic argument itself, while others question the solidity of

its claims about consciousness and physics.

33



First Gödel’s disjunct 34

4.1 Lucas

Lucas used the proof of the first incompleteness theorem and tried to apply it

to the human mind. First of all, consider a machine built to produce arithmetic

theorems. Lucas starts from the theories-machines isomorphism to say that the

operations of this machine are analogous to a formal system. Suppose now that we

construct a Gödel sentence for this formal system. Since the Gödel sentence cannot

be proved in the system, the machine will not be able to produce this sentence as

a truth of arithmetic. However, a human can look at it and see that the Gödel

sentence is true. In other words, there is at least one thing that a human mind can

do that no machine can do. Therefore he says, ”a machine cannot be a complete

and adequate model of the mind” [Lucas, 1961]. In short, the human mind is not

a machine.

Lucas [1990] describes his argument as follows:

I do not offer a simple knock-down proof that minds are inherently better

than machines, but a schema for constructing a disproof of any plausible

mechanist thesis that might be proposed. The disproof depends on the

particular mechanist thesis being maintained, and does not claim to

show that the mind is uniformly better than the purported mechanist

representation of it, but only that it is one respect better and therefore

different. That is enough to refute that particular mechanist thesis.

Lucas therefore believes that a variant of his argument can be formulated to refute

any future thesis of mechanists. In particular, imagine the following scenario:

• a mechanist formulates a particular mechanistic thesis claiming that the hu-

man mind is a Turing machine with a specific formal specification S.

• Lucas rejects this thesis by producing the Gödel sentence for S, which we can

know to be true, but which Turing’s machine cannot.

• The mechanist exposes a different thesis claiming, for example, that the hu-

man mind is a Turing machine with formal specification S ′.

• Lucas produces the Gödel sentence for S ′, and so on, until, presumably, the

mechanist does not give up.

Lucas also deals with the concept of completability. That is, why can’t we simply

add the Gödel sentence to the list of theorems that S-machines can produce?

Doing so presumably will give those machines what they lack compared to human

minds. The answer is that even if we add the Gödel sentence to the S machines
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Lucas can simply produce a new Gödel sentence for these updated machines S ′,

i.e. a sentence that we can see is true but the new machines cannot, and so on ad

infinitum. In short, as Lucas [1990] states in paragraph 9: ”It is very natural ...

to respond by including the Gödelian sentence in the machine, but of course that

makes a different machine with a different Gödel sentence all of its own ”.

Lucas [1990] observed, ”although some degree of idealization seems allowable

in considering a mind untrammeled by mortality..., doubts remain about how far

into the infinite it is permissible to stray.”

In fact, a mechanist could also try ”adding a Gödelizing operator, which gives,

in effect a whole denumerable infinity of Gödelian sentences”. That is, some may

try to give a machine a method to construct an infinite number of Gödel’s sen-

tences; if this can be done, then perhaps any Gödel sentence can be produced

by the machine. Lucas [1990] argues that this is not the case; a machine with

such an operator will have its own Gödel sentence, one that is not on the initial

list produced by the operator. This may be possible with the transition in the

transfinite.

Although Lucas’s argument is easily attackable, it has been very successful

because of the large consequences it could have in the world of Mechanism and

Artificial Intelligence.

Shapiro [2016] puts this debate in a more formal way and I try to sum it up

here. Let K be the collection of sentences in the language of first order arithmetic

that can be proved by a human in general. With proved here, we do not mean

to be deduced in a particular formal system since the affirmation of Lucas (and

also Penrose) goes beyond any given formal system. Proved here means something

similar to known with unmistakable mathematical certainty, through full mathe-

matical rigor. We therefore call K the collection of known arithmetic sentences.

For convenience, let’s identify the sentences with their Gödel numbers, and then

think of K both as a collection of sentences and a collection of natural numbers.

The protagonists of the debate assume that K has sharp boundaries like any other

series of natural numbers and we can then investigate its arithmetic and compu-

tational properties. The mechanist therefore claim that there is a Turing machine

that enumerates K. In other words, they state that K is enumerable in a recur-

sive way. Lucas and Penrose affirm that they can refute this thesis, citing the

incompleteness theorems in the crucial points.

4.1.1 Arguments against Lucas

As Beccuti [2018] explains, Lucas’s argument is based on 3 assailable idealizations:
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1. The consistency of the human mind

2. The knowability of the consistency of the human mind

3. The knowability of the machine that should represent the human mind

For a review of the most famous criticisms of Lucas’s topic, one can consult

Labinaz [2016]. The most pertinent objections to Lucas’ argument are based on

the invalidity of one or more of the aforementioned assumptions. In fact it is pos-

sible that the human mind is a machine, but it is not a consistent machine. Or

it is possible that the mind is a consistent machine but does not know that it is.

Finally it is possible that the human mind is a consistent machine, that knows it

is consistent, but that it is not able to accurately establish its nature as a machine

(i.e. that it does not know which kind of machine it is). Here are some arguments.

Consistency What I consider the main objection against Lucas is exposed by

Franzén [2005] who criticizes how Lucas uses the incompleteness theorems in a

hurried and not very formal way. He claims that Lucas’s argument is not valid

because it is based on the mistaken idea that ”Gödel’s theorem states that in a

consistent system which is strong enough to produce simple arithmetic there are

formulas which cannot be proved in the system, but which we can see to be true.”.

Franzén emphasizes that the theorem does not state anything of the kind. In

general, we simply have no idea whether the Gödel sentence of a system is true or

not, even in cases where it is actually true. What we do know is that the Gödel

sentence is true if and only if the system is consistent, and this is not provable in

the system itself. When we know that the system is consistent, we also know that

Gödel’s sentence is true, but in general we do not know if every formal system is

consistent or not. If the human mind had the ability to determine the consistency

of any consistent formal system, this would certainly mean that the human mind

surpasses any computer, but there is no reason to believe that this is the case.

Can be a machine an adequate model of the mind? Since we cannot conclude

from the incompleteness theorem that the human mind surpasses any computer

as far as arithmetic is concerned, we could try to draw the weaker conclusion

that no machine will be an adequate model of mind in the sense that no machine

can never be exactly equivalent to the human mind with regard to arithmetic

ability. But this also does not follow from the incompleteness theorem. Suppose

there is a ”human arithmetic skill” and we continue to assume that a particular

formal system S embodies exactly that ability. If we know that S is consistent,
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we will actually have a conflict with the incompleteness theorem. But again what

is missing is an argument for which we should know that S is consistent. Lucas

introduces here the reflection: ”The best we can say is that S is consistent if we

are”. This is irrelevant because even though we know we are consistent, there is no

reason why we should conclude that S is consistent, unless we already know that

S encodes the human arithmetic skill - and why should we know? Gödel himself

commented that nothing excludes the existence of a formal system S that exactly

encodes human arithmetic ability, although we could not recognize the axioms of

S as evidently true. So we further weaken the conclusion. What follows from the

incompleteness theorem is that we cannot really specify any formal system S such

that S incorporates those and only those arithmetic truths that we can know to

be true. Using the second theorem, since every S system for which we know that

all its arithmetic theorems are true, we can produce an arithmetic assertion - an

arithmetization of ”S is consistent” - that we also know to be true and that it is

not a theorem in S. We cannot specify any formal system that exhausts all our

arithmetic knowledge.

Our Gödel sentence Benacerraf [1967] makes a well known critique of Lucas’

argument. He claims that to construct the Gödel sentence for any given formal

system one must have a solid understanding of the algorithm behind the system.

Furthermore, the formal system that the human mind could implement is probably

extremely complex, so complex that we could never get the insight into its necessary

character to build our own Gödel sentence. In other words, the fact that we

understand the truth of the Gödel sentence on some systems does not imply that

we can construct and see the truth of our own Gödel sentence. If we cannot, then

perhaps we are not at all different from machines; we could be very complicated

Turing machines, but still Turing machines. To rephrase this objection, let us

suppose that a mechanist produces a complex formal system S and claims that

human minds are actually S. Obviously, Lucas will try to produce the Gödel

sentence for S to show that we are not S. But S is extremely complicated, so

complicated that Lucas cannot produce Gödel sentence for S, and therefore cannot

deny this particular mechanistic thesis. In short, according to Benacerraf, the

most we can deduce from Lucas’s argument is a disjunction: ”either no (formal

system) encodes all human arithmetical capacity – the Lucas-Penrose thought –

or any system which does has no axiomatic specification which human beings can

comprehend” [Wright, 1995]. One answer that Lucas made in 1996 is that, even if

he fails to create the sentence for S, he could be helped by other mathematicians

or by computers. In short, at least according to Lucas, it could be difficult, but
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it seems that we could, at least in principle, determine the Gödel sentence for any

given system. Very questionable objection.

This argument, that the mind can be a machine but that it is not humanly

possible to know which machine it is, constitutes perhaps the strongest argument

against the anti-mechanist based on the incompleteness theorems.

The Whiteley Sentence Whiteley [1962] responded to Lucas by claiming that

humans have similar limitations to what Lucas’ argument attributes to machines; if

so, then perhaps we are no different from machines after all. Consider, for example,

the Whiteley sentence, i.e. ”Lucas cannot consistently assert this formula”. If this

sentence is true, then the statement of the sentence makes Lucas inconsistent.

Thus, either Lucas is inconsistent or cannot pronounce the sentence on lack of

inconsistency, in which case the sentence is true and therefore Lucas is incomplete.

Even Hofstadter [1975] argues against Lucas in this direction.

4.2 Penrose

Penrose formulated and defended Lucas’ argument in two books, The Emperor’s

New Mind in 1989 and Shadows of the Mind in 1994. Since the latter is at least

partly an attempt to improve the first, the discussion can only concentrate on the

second. Penrose [1994] consists of two main parts: (a) a Gödelian argument to

prove that the minds of humans are not calculable and (b) an attempt to deduce

a number of statements involving consciousness and physics from (a). I will avoid

treating part (b) as it is about a domain of quantum physics that goes beyond the

interest of this work.

Penrose considers its version ”as the central (new) core argument against the

computational modelling of mathematical understanding”.

Here is a summary of the new topic as explained by Chalmers [1996]:

1. suppose that ”my powers of reasoning are captured by a certain formal system

F ,” and, given this assumption, ”consider the class of statements I may know

to be true”

2. Since I know I am sound, F is sound, and so is F ′, which is simply F plus

the assumption (made in (1)) that I am F .

3. But then ”I know that G(F ′) is true, where G(F ′) is the Gödel sentence of

system F ′.
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4. However, Gödel’s first incompleteness theorem shows that F ’ could not see

that the Gödel sentence is true.

5. Furthermore, we can deduce that ”I am F ′” (since F ′ is simply F plus the

hypothesis made in (1) that I am F ), and we can also infer that I can see the

truth of the Gödel sentence (and therefore since we are F ′, F ′ can see the

truth of the Gödel sentence).

6. That is, we have reached a contradiction (F ′ can both see the truth of the

Gödel sentence and not see the truth of the Gödel sentence).

7. Therefore, our initial hypothesis must be false, that is, F or any other formal

system cannot capture my powers of reasoning.

4.2.1 Arguments against Penrose

Chalmers [1996] believes that the ”greatest vulnerability” with this version of the

argument is step (2); in particular, he thinks the statement that we know we are

sound is problematic. McCullough [1995] states that for the success of Penrose’s

argument, two statements must be true: (I) ”Human mathematical reasoning is

sound. That is, every statement that a competent human mathematician considers

to be ’unassailably true’ actually is true”, and (II) ”The fact that human math-

ematical reasoning is sound is itself considered to be ’unassailably true’”. These

statements seem implausible to McCullough who observes: ”For people (such as

me) who have a more relaxed attitude towards the possibility that their reasoning

might be unsound, Penrose’s argument doesn’t carry as much weight”. McDermott

[1995] questions this aspect of Penrose’s argument by looking at how mathemati-

cians actually work. He states, ”it is difficult to see how thinkers like these could

even be remotely approximated by an inference system that chugs to a certifiably

sound conclusion, prints it out, then turns itself off”. For example, McDermott

points out that in 1879 Kempe published a proof of the four-color theorem that

was not denied until 1890 by Heawood; there appears to have been an 11-year

period in which many competent mathematicians were unsound.

Penrose tries to overcome these difficulties by distinguishing between individual

and correctable errors that mathematicians sometimes make and things that can

be ”unequivocally” true. Penrose [1994] states ”If [a] robot is ... like a genuine

mathematician, although it will still make mistakes from time to time, these mis-

takes will be correctable ... according to its own internal criteria of ’unassailable

truth’ ”. In other words, while mathematicians are fallible, they are still valid

because their errors can be distinguished from those that can be unequivocally
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true and can even be corrected (and any machine, if it is to imitate mathematical

reasoning, must act in the same way). The basic idea is that mathematicians can

make mistakes and still be sound, because only unassailable truths are important;

these truths are the output of a sound system, and we don’t have to worry about

the rest of the mathematicians’ output. Again, a very questionable objection.

4.3 Formalizing the proof

J. Stern proposes in [Stern, 2018] a formalized proof for Lucas-Penrose argument.

In the debate considered in this work and availing ourselves to the notion of

absolute provability, Mechanism is equivalent to the claim that the the set of

absolutely provable sentences can be recursively enumerated. That is,

there exists an explicit system of axioms and rules that proves all the absolutely

provable sentences. This allows us to express the Anti-Mechanism thesis into pre-

cise formal claims.

Let us call APT (Absolute Provability and Truth) a theory extending Peano Arith-

metic as explained in Chapter 2 of Stern [2018] and reported below. We need to

know that APT is a consistent theory and we want to show that APT proves that

the mind is not a machine.

To this end, we use the predicate K for absolute provability. Moreover, if Σ is a

recursive set of axioms of some theory T , we let σ be a natural representation of this

set in a language extending the arithmetical language of, say, Peano Arithmetic.

Let Prσ be a natural provability predicate of T . With this notation, Mechanist

thesis becomes:

∃σ∀x (Kx↔ Prσ(x)) (MEC)

A refutation of Mechanism would reject this claim. That is, Anti-Mechanism

would be the thesis that there is no recursive set of sentences Σ from which all

absolutely provable sentences follow:

¬∃σ∀x (Kx↔ Prσ(x)) (ANTIMEC)

Following the outlines of the traditional arguments by Lucas and Penrose, the

refutation of Mechanism will proceed via a reductio strategy: we will assume that

the absolutely provable sentences coincide with the theorems of some recursively

axiomatizable theory T and we will derive a contradiction starting from this as-

sumption.
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That is, we will assume

∀x (Kx↔ Prσ(x))

for some σ. However, it is important to notice that throughout the reductio proof

we may not assume that the human mind knows which recursively axiomatizable

theory it is—this would not amount to a refutation of Mechanism but of a much

stronger claim. In particular, even though the reductio argument will be carried

out in APT and, implicitly, we may assume that in our reductio assumption Prσ

stands for the provability predicate of APT, we may not infer Prσ(_φ ^) whenever

we have proved φ.

Before we give the argument, we introduce some concepts. The two constitutive

principles of absolute provability, formalized by a sentential predicate K,

Kpφq→ φ (T)

if φ is a theorem, then so is Kpφq (Nec)

for all sentences φ of the language, are jointly inconsistent. The idea is that (T)

and (Nec) implicitly assume a naive truth predicate, which in the presence of self-

referential sentences leads to paradox, as Gödel and Tarski have taught us. As

a consequence, the naive truth predicate has to be replaced by a non-naive truth

predicate for which φ and Tpφq are no longer equivalent or intersubstitutable in

all contexts. This means making the truth predicate explicit in formulating the

principles of absolute provability. We are led to the following alternative principles

of absolute provability, which seem to represent the same intuitive notion as (T)

and (Nec):

∀x(Kx→ Tx) (TK)

if Tpφq is a theorem, then so is Kpφq (T-Nec)

Whether any paradox will arise now only depends on the theory of truth we adopt.

We need other two definitions. First, we need the truth predicate to distribute

over a disjunction:

Tpφ ∨ ψq→ Tpφq ∨ Tpψq for all φ, ψ. (∨D)

Tpφq→ φ for all φ. (T-out)

APT is indeed the theory extending Peano Arithmetic by the principles (∨D) and
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(T -Out), together with (TK).

We can now formulate in these terms the standard Liar Sentence (LS), that is,

a sentence λ such that APT, or any other arithmetical theory extending Q in an

arithmetical language containing the truth predicate T , proves:

¬Tpλq↔ λ (LS)

We can now give the argument to the effect that the mind is not a machine,

reasoning in APT:

Proof Assume for reductio that the mind is a machine.

∀x (K(x)↔ Prσ(x))

By the principle (TK) the reductio assumption implies

∀y (Prσ(y)→ T (y)) (1)

and by universal instantiation

Prσ (pλ ∨ ¬λq)→ T (pλ ∨ ¬λq) (2)

Since λ∨¬λ is a classical tautology it is provable independently of which axioms

are assumed. Therefore λ ∨ ¬λ is provable relative to any set of axioms and, in

particular, it is provable relative to the set of axioms at stake:

Prσ (pλ ∨ ¬λq) . (3)

By (2) this yields:

Tpλ ∨ ¬λq (4)

Due to (∨D) the truth predicate commutes with disjunction and hence

Tpλq ∨ Tp¬λq (5)

Because of (LS) the left disjunct of (5) is equivalent to ¬λ. But due to (T -Out)

the right disjunct also implies ¬λ. We can infer

¬λ (6)
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By (L) the latter implies Tpλq and thus by (T-Out) we derive

λ (7)

This ends the reductio proof since it contradicts (6). We conclude

¬∀x (K(x)↔ Prσ(x))

Moreover, we have not introduced any assumption concerning σ and therefore

we can introduce the universal quantifier

∀σ¬∀x (K(x)↔ Prσ(x)) (Conclusion)

The latter is clearly equivalent to ANTIMEC: the mind is not a machine. �
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Chapter 5

Second Gödel’s disjunct

The second disjunct says that:

there exist absolutely unsolvable diophantine problems.

In the same Gibbs lecture, Gödel reformulate this disjunct saying that ”the math-

ematical world is independent of human reason, insofar as there are mathematical

truths that lie outside the scope of human reason”. The two formulations are

equivalent since the existence of mathematical absolutely unsolvable problems im-

plies that there are some mathematical truths that the human mind can not prove

and that therefore stand outside the human reason.

Unlike the first Disjunct, there were no strong supporters who tried to prove this

Disjunct, probably because of the philosophical/mathematical complexity of its

definition. Moreover, the underlying hypotheses on the concepts involved (abso-

lute provability and knowability of the idealized human) are rarely well articulated

and, consequently, it is difficult to evaluate the effectiveness of the arguments. In

this chapter I will not analyze the arguments in favor or against this Disjunct (like

in the previous chapter) but instead dwell on the concepts of relative provability,

absolute provability and truth with the aim of seeing the disjunction in terms of

provability.

Koellner [2016b] focused on these concepts, trying to analyze the set relation

between them. I summarize here his thoughts.

Let F be an arbitrary formal system with the characteristic that every sentence of

F is true and the rules of F preserve the truth; let K be the set of all the sentences

that are absolutely provable; and let T be the set of true sentences. It should be

noted that K and T are fixed, while F is a variable term that is used to capture

the notion of relative provability, being relative to the considered system. We will
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limit F such that F ⊆ K and assume that K has the basic feature that K ⊆ T .

So our initial hypotheses guarantee that

F ⊆ K ⊆ T.

The question is: can we draw more substantive conclusions regarding the rela-

tionship between F , K and T? For example, are there any proper inclusion?

5.1 Relative Provability and Truth

The first substantive conclusion is provided by the incompleteness theorems, and

concerns the relation between F and T . The incompleteness theorems tell us that

for any system F there are true statements that are outside the scope of F . In the

words of Gödel:

No well-defined system [F] of correct axioms can comprise all [of] objec-

tive mathematics [T], since the proposition which states the consistency

of the system is true, but not demonstrable in the system. [Gödel, 1951]

Hence, for any F we have:

F ( T

This is a clear and definite statement because the concepts involved (relative

provability and arithmetic truth) are clear and defined. In contrast to the notions

of F and T , the notion K of absolute provability is less clear. However, we must

have that for every F:

F ( K or K ( T.

That is, the absolute provability exceeds the relative provability (compared

to any F ), or the truth exceeds the absolute provability. But to arrive at a more

precise conclusion, i.e. for example which inclusions are proper, we require a better

understanding of the nature of K.

5.2 Absolute Provability

Although the incompleteness theorems show that certain statements are undecid-

able with respect to particular systems (and therefore F ( T ), it is not clear if

some of these statements are absolutely undecidable (K ( T ). Gödel certainly

thought that it was not derivable from his theorems:
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[These statements are] not at all absolutely undecidable; rather, one can

always pass to “higher” systems in which the sentence in question is de-

cidable. (Some sentences, of course, nevertheless remain undecidable.)

In particular, for example, it turns out that analysis is a system higher

in this sense than number theory, and the axiom system of set theory

is higher still than analysis. [Gödel, 1986]

Here the concept of absolute provability seems to be understood as what can be

proved by some set of well-justified axioms.

But instead of trying to give a substantial analysis of the concept of absolute

provability, Koellner [2016b] tries to work rather with its structural properties.

The concept of absolute provability will be understood here in a highly idealized

sense. For example, let us assume that it satisfies the following principles (in which

we have used the ”K” symbol as an operator):

(1) Kϕ, where ϕ is a first-order logical validity.

(2) (K(ϕ→ ψ) ∧Kϕ)→ Kψ

(3) Kϕ→ ϕ

(4) Kϕ→ KKϕ

The first of these principles - known as logical omniscience - reveals that K

is considered in a highly idealized sense since some of the logical validities are

too long for a real agent to understand them. This phenomenon - for which we

capture the arithmetical truths by raising ourselves to higher concepts - gives

us some clues that perhaps absolute provability exceeds all the forms of relative

provability. But contrary to appearances it does not establish it completely. So

maybe there is a ”master system”, F∗, such that the relative provability with

respect to F∗ coincides with the absolute provability. What we can conclude is

simply that if such a system exists, then we will never know (in the sense of being

able to absolutely prove) that all its axioms are true. This is precisely what Gödel

had in mind when he wrote the following about his incompleteness theorems:

For, it makes it impossible that someone should set up a certain well-

defined system of axioms and rules and consistently make the follow-

ing assertion about it: All of these axioms and rules I perceive (with

mathematical certitude) to be correct, and moreover I believe that they

contain all of mathematics. If someone makes such a statement he con-

tradicts himself. For if he perceives the axioms under consideration to

be correct, he also perceives (with the same certainty) that they are

consistent. Hence he has a mathematical insight not derivable from his
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axioms. [Gödel, 1951]

In other words, the incompleteness theorems allow us to conclude that F ( T

but not to conclude that F ( K. But we can draw a conditional conclusion to

the effect that if the soundness of F is absolutely provable, then

F ( K.

But how do we move to a conclusion without such strong conditions? The problem

is that for all we know, we have not ruled out the possibility that there is a F that

coincides with K. Gödel was aware of this possibility:

However, as to subjective mathematics, it is not precluded that there

should exist a finite rule producing all its evident axioms. However, if

such a rule exists, we with our human understanding could certainly

never know it to be such, that is, we could never know with mathe-

matical certainty that all propositions it produces are correct. For this

(or the consequence concerning the consistency of the axioms) would

constitute a mathematical insight not derivable from the axioms [and]

rules under consideration, contrary to the assumption [Gödel, 1951]

In other words it could actually happen that there is an F such that F = K.

We have only shown that if there is such a F then it must be ”hidden” in the sense

that we cannot absolutely prove that it has this characteristic. We can only reach

a conditional conclusion, namely

∃F s.t. F = K =⇒ K ( T

Which implies that there are φ in T that neither φ nor ¬φ are in K. Gödel

says:

[I]f the human mind were equivalent to a finite machine, then objective

mathematics not only would be incompletable in the sense of not be-

ing contained in any well-defined axiomatic system, but moreover there

would exist absolutely unsolvable diophantine problems of the type de-

scribed above, where the epithet ”absolutely” means that they would

be undecidable, not just within some particular axiomatic system, but

by any mathematical proof that the human mind can conceive. Gödel

[1951]

then reformulating in a disjunctive form:

∀F, F ⊆ K or K ⊆ T
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Gödel then reaches the famous formulation of the disjunction (Section 3.1.1).

In the terms of this section, either absolute provability overcomes all forms of

relative provability or there are absolutely undecidable arithmetic statements.

5.3 Comparison with machines and human minds

So far we have talked about the concepts of relative provability, absolute provability

and truth by setting aside the concepts of idealized finite machine and idealized

human mind. But these latter concepts appear in Gödel’s quotations and are

central to the standard formulations of the disjunction. We can notice that the

concept of an idealized finite machine closely corresponds to the concept of relative

provability, and the concept of an idealized human mind closely corresponds to the

concept of absolute provability.

The first correspondence is well established and easy to explain. Speaking of

relative provability we mean the provability with respect to a recursively axioma-

tizable formal system, which is a precise mathematical concept. As explained at

the beginning of Chapter 2, this is part of a group of precise and formal concepts

that have all been shown to be equivalent to the concept of being computable by

an effective procedure. Moreover, this concept had the advantage that it seemed

to provide an adequate conceptual analysis of the informal concept of computabil-

ity. So we can accept this analysis and take the concept of ”calculable from an

idealized finite machine” co-extended with the concept of ”relative provability”.

The second correspondence is more difficult because neither the concept of

idealized human mind nor the concept of absolute provability are precise. In fact,

I think both concepts are problematic (like Koellner [2014] emphasizes several

times). What is important for our purposes is that the idealizing hypotheses made

on the concept of an idealized human mind are parallel to those made on the

concept of absolute provability. And so, for our purposes, it is safe to assume

(following Gödel) that these two concepts are co-extended.

5.4 Gödel’s opinion

We can summarize this discussion as follows: Gödel thought he was able to estab-

lish the disjunctive conclusion, but he did not think he was able to establish the

first disjunct (in the sense that for every F, F ⊆ K) because he was aware of not

being able to exclude the possibility that a master system F∗ actually existed such

that F∗ = K; he could only show that if such a master system F∗ existed, then

it must be ”hidden” in the sense that we would never be able to absolutely show
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that it produced only truth.



Chapter 6

Conclusion

In this work I presented the significant steps of the debate on the mechanism of

the human mind based on Gödel’s theorems. Starting from these theorems, I have

analyzed how one can deduct a disjunction for which either the capabilities of the

human mind infinitely exceed those of the machines, or else there exist absolutely

unsolvable problems. In this conclusion, I would like to briefly analyze the re-

lationship between the Disjunction and artificial intelligence, which represents a

main theme of the current technological world and that is also the reason why I

became passionate about this topic.

In the context of the mechanism of the human mind, the Disjunction tells us

that on the one hand the human mind surpasses every finite machine and we

cannot therefore represent its capabilities with algorithms and with a computer

(Anti-Mechanism); on the other hand, it tells us that we can mechanize the mind

but there are truths that are absolutely unknowable to us, including our own na-

ture. Given this, let us analyze how can we use this Disjunction in the context of

artificial intelligence (AI).

In Chapter 3, I analyzed the hypotheses underlying the debate and how the var-

ious elements are treated from a philosophical point of view. In particular, it is

important to remember that when we talk about computer we mean Turing ma-

chines and when we speak about the human mind we mean an idealized human

mind. Under these assumptions, the Disjunction is provable and accepted. But

what happens when we try to consider the real world with real computers and we

want to focus on AI? As we saw in Chapter 2, we can distinguish two different

types of AI: on the one hand there is Strong AI (or General AI) that seeks to

create artificial humans, i.e. machines that have all the mental powers we have,

including phenomenal consciousness, and on the other hand Weak AI that seeks
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to build information-processing machines that only appear to have the full mental

repertoire of human persons.

In the context of the Disjunction, since we talk about Mechanism it is clear

that the discussion is limited only to Strong AI because both theories speak of be-

ing able to represent all human cognitive abilities through effective procedures (see

Chapter 2). We can then move on to the question that most affects the community

around AI:

Is it possible to build a Strong Artificial Intelligence? (D)

To answer (D), we can start by analyzing the Disjunction: imagine that we want

to follow one or the other Disjunct.

If we consider the first Disjunct, as we did in Chapter 4, then the answer is

trivial: there exist capabilities of the human mind that cannot be encapsulated

in a Turing machine and, consequently, in a computer. The answer to (D) would

therefore be ”no”. If we consider the second Disjunct, we would accept that ab-

solutely unknowable truths exist. For the second incompleteness theorem, one of

these unknowable truths is the consistency of man itself. As Benacerraf said, ”if I

am a Turing Machine then I am barred by my very nature from obeying Socrates’

profound philosophical injunction: Know thyself”. We could therefore infer that

we could encapsulate all of our capabilities in a Turing machine but we could not

know its truths and its original nature. How could we consequently build it if we

do not know its true nature?

Hence, I can summarize my thoughts about the Disjunction with respect to the

possibility of realizing a Strong AI as:

• it may be that we are something more than computing machines and it

cannot exists one machine that has all the capabilities of our mind

• or it may be that we are nothing but computing machines, and in this case

we will never be able to understand exactly what type of machine we are and

consequently we cannot build it.

Today there are many companies that invest large amounts of capital in research

and development for building artificial intelligence. The AI market magnitude is

today of the order of tens of billions of dollars. Hence, am I concluding that the

investments made today in AI are useless? Absolutely not.
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Most of the companies treat only the ”Weak” AI . The Disjunction only refers

to Strong AI and it does not exclude the possibility of existence of Weak AI. The

impossibility of creating a machine that is the ”perfect copy” of a human does not

exclude the possibility to create machines that outperform humans in many (or

even all) daily tasks. In fact today in many fields like computer vision, natural

language processing or information retrieval, there are models that already have

super-human performances in very specific tasks. These machines can help people

in the most repetitive jobs, allowing them to concentrate where there is greater

added value.

In addition to these topic-focus companies, there are enterprises and research cen-

ters that try to go beyond and aim to create a Strong AI, often called Artificial

General Intelligence (AGI). An example is Open AI, in my opinion the main com-

pany that is moving in this direction today. Let us note, however, that they

themselves define AGI as ”highly autonomous systems that outperform humans at

most economically valuable work”. This is very different from the true essence

of Strong AI: the attention is shifted from ”encapsulating the capacities of the

human mind” to ”outperforming humans in the tasks commonly associated with

their jobs”. I firmly believe that this is possible, given that this type of AI can be

seen as a generalization of Weak AI rather than AGI.

In conclusion, we have seen how the Gödel’s Incompleteness Theorems led to a

disjunction that is becoming a landmark in the debate on the mechanism of the

human mind. From this, I have inferred that Strong AI is impossible to reach but

instead we can achieve the development of a generalized Weak AI.
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F. Beccuti. La disgiunzione di gödel. In N18 / APhEx. Aphex, 2018.

P. Benacerraf. God, the devil and gödel. The Monist, LI, pp. 9-32, 1967.
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D. Hofstadter. Gödel, Escher Bach. New York, Basic Books, 1975.
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