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Abstract

The problem of finding the positions of the repetitions of a string within a
text, known as substring search, recurs in many application scenarios. When
the size of the text is huge, the construction of a full-text index is the only
viable solution since it allows to perform substring search queries in sublin-
ear time. In this scenario, it may be unconvenient to store the index locally,
in turn requiring to outsource both the data and the computation to the
cloud. This may become an issue when dealing with confidential informa-
tion, e.g. biological data of a patient who resorts to personalized medicine,
since an untrusted cloud service provider may gain illicit benefits from such
confidential data. Secure enclaves allow to instantiate trusted and authenti-
cated execution environments on untrusted machines, preventing any rogue
access to their internal content. While they allow to securely handle confi-
dential data in plaintext, the most widespread implementation of enclaves,
Intel SGX, is prone to side channel attacks that are especially effective in
leaking sensitive information. In this work, we propose Oblivious Substring
Query on Remote Enclave (ObSQRE), a novel substring search protocol that
implements oblivious full-text indices to solve the private substring search
problem in the outsourcing scenario. It prevents an adversary with root
privileges on an untrusted machine from inferring the structure of the text
as well as the correlation between queries. It encompasses three different
substring search algorithms that rely on the ORAM cryptographic primitive
to prevent any information leakage. To the best of our knowledge, Oblivious
Substring Query on Remote Enclave (ObSQRE) is the first to directly ad-
dress the remote private substring search problem exploiting secure enclaves.
ObSQRE exhibits practical performance, being able to find occurrences of a
protein (∼ 3000 nucleotides) within 32 MB of genomic data in only 500 ms.
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Sommario

La ricerca di sottostringhe all’interno di un testo più ampio è un problema
comune in diversi scenari. Quando la dimensione del testo è considerevole,
opportune strutture di indicizzazione consentono di cercare sottostringhe con
complessità sublineare nella lunghezza del testo; date le dimensioni usuali di
un indice, potrebbe essere dispendioso memorizzarlo ed interrogarlo su una
macchina desktop. Una possibile soluzione consiste nell’esternalizzare sia
l’indice che la ricerca delle sottostringhe presso un fornitore di servizi di
cloud computing. Quando i dati contenuti nel testo sono sensibili, come per
esempio quelli del genoma di un paziente che si sottopone a trattamenti di
medicina personalizzata, affidare la gestione delle informazioni ad un sogget-
to terzo presenta criticità legate alla privacy dei dati. In questo contesto, le
enclavi consentono di eseguire le porzioni sensibili di un programma in un’a-
rea di memoria inaccessibile dall’esterno, consentendo di operare su dati in
chiaro senza compromettere la loro segretezza. Tuttavia l’implementazione
di enclavi più diffusa, Intel SGX, è vulnerabile ad attacchi a side channel,
che sono in grado di estrarre il contenuto di enclavi che non adottano contro-
misure specifiche. In questo lavoro presentiamo Oblivious Substring Query
on Remote Enclave (ObSQRE), un nuovo protocollo per la ricerca di sotto-
stringhe basato su indici testuali cosiddetti oblivious, che garantiscono sia la
segretezza del testo che delle sottostringhe cercate, nascondendo anche le lo-
ro similarità. ObSQRE fornisce tre distinti algoritmi di ricerca, che sfruttano
le ORAM per nascondere le informazioni recuperabili tramite side channels.
Secondo la nostra indagine, ObSQRE è la prima soluzione per la ricerca di
sottostringhe in maniera oblivious basata su enclavi. I risultati sperimentali
mostrano l’efficienza di ObSQRE in scenari reali, dato che è possibile cercare
una proteina (∼ 3000 nucleotidi) in un genoma di 32 MB in circa 500 ms.
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Estratto in Italiano

La nascita e la diffusione di servizi di cloud computing, che mettono a
disposizione sia spazio di archiviazione remoto che infrastrutture per l’esecu-
zione di carichi di lavoro intensivi, ha offerto una valida alternativa all’alle-
stimento di cluster privati per la gestione e l’elaborazione dell’informazione.
Nel momento in cui la quantità di dati da processare diventa ingente, l’affitto
di risorse e macchine remote diventa la soluzione più conveniente. Infatti, la
messa a punto di server privati richiede un investimento considerevole sia per
l’acquisto delle componenti hardware sia per i costi di gestione, che includono
la necessità di personale specializzato per la manutenzione dell’infrastruttu-
ra. D’altro canto, i cloud provider offrono elevate garanzie di affidabilità e
tolleranza ai guasti come parte integrante dei loro servizi.

Tuttavia, quando un client ha la necessità di elaborare una mole ingente
di dati confidenziali, potrebbero sorgere seri problemi riguardanti la privacy.
Infatti, il cloud provider è un’entità esterna che potrebbe trarre beneficio dal-
l’impiego fraudolento delle informazioni che risiedono sui suoi server, pertan-
to è buona norma considerarlo una potenziale minaccia. Sebbene la cifratura
dei dati ne protegga il contenuto, essa rappresenta un ostacolo per la loro
elaborazione: gli algoritmi di cifratura standard, infatti, impediscono di uti-
lizzare i dati per successive operazioni prima che essi vengano decriptati. In
casi estremi in cui le performance non sono un problema, il client potrebbe
accedere ai dati, memorizzati in remoto e processarli localmente. Tutta-
via è stato dimostrato che il server può estrarre informazioni confidenziali
ispezionando l’ordine in cui i dati sono richiesti dal client, definito pattern
di accesso, se esso dispone di abbastanza informazioni di dominio [5, 19,29].
Pur esistendo primitive quali la crittografia omomorfa, o Fully Homomorphic
Encryption (FHE), che permettono di operare direttamente su dati cifrati,



esse comportano un costo computazionale così alto che non possono essere
impiegate nella pratica.

D’altro canto, in alcuni scenari applicativi, tecniche puramente crittogra-
fiche consentono di ottenere tempi di elaborazione ragionevoli garantendo alti
margini di confidenzialità. In particolare, protocolli di Symmetric Searchable
Encryption (SSE) consentono di effettuare ricerche (o query) su dati cifrati
senza rivelare né il contenuto dei dati remoti, né cosa il client stia effettiva-
mente richiedendo. La SSE consente di risolvere il seguente problema: dato
un insieme di documenti e delle parole rilevanti, che fungono da chiavi di ri-
cerca, è necessario identificare quali documenti contengano una determinata
chiave. Ad esempio, la medicina personalizzata, che adatta pratiche mediche
e farmaci al corredo genetico di ciascun individuo per massimizzarne l’effi-
cacia, è un campo applicativo che pone la necessità di eseguire ricerche di
questo tipo su dati estremamente sensibili ma di dimensioni ingenti, impo-
nendo l’adozione di soluzioni sufficientemente performanti. La SSE potrebbe
essere impiegata, ad esempio, per identificare quali genomi appartenenti ad
un gruppo di individui contengano una specifica variante di un gene, celando
sia il gene ricercato che i risultati della query.

Essendo le operazioni svolte sul server remoto, è inevitabile che esso
apprenda alcuni dettagli relativi alle query dalla loro esecuzione: per quan-
tificare le informazioni che il server può ricavare, ogni protocollo di SSE
definisce un preciso profilo di leakage che determina cosa il server apprende
durante l’esecuzione del protocollo. Nella maggior parte dei casi esse non
sono sufficienti a stabilire la composizione originaria del dataset.

La ricerca di sottostringhe è un problema più generale rispetto a quello
risolto dalla SSE. Essa consiste nel ricercare le posizioni in cui una sequenza
di caratteri viene rinvenuta in un testo più grande. È evidente che la ricerca
di sottostringhe può essere usata per la ricerca per parole chiave: infatti, è
sufficiente restituire come risultati della computazione tutti i testi in cui una
determinata parola occorra almeno una volta. Tecniche puramente crittogra-
fiche categorizzabili come Substring-SSE sono state impiegate per risolvere
questo problema [7], ma i protocolli che ne derivano consentono ad un attac-
cante di capire quanto sia lungo il prefisso comune a due sottostringhe che
vengono ricercate. Tale informazione può essere ricavata confrontando fino a
che punto le porzioni del dataset che esse richiedono durante l’elaborazione,
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definite pattern di ricerca, coincidono. Pertanto, questo problema richiede
l’adozione di tecniche finalizzate a celare completamente il pattern di ricerca,
che altrimenti rivela la similirità nei contenuti ricercati dal client.

Per tale ragione, una primitiva crittografica nota come Oblivious RAM
(ORAM) viene sfruttata in [25]. Le ORAM infatti consentono di svincolare
totalmente il pattern di accesso alla memoria dall’elemento al quale si è
interessati, anche quando esso viene prelevato ripetutamente: esse ricorrono
a continue ri-cifrature e rimescolamento del contenuto della memoria per
impedire al server di associare gli accessi alla memoria ad una determinata
porzione dei dati. Mentre il server memorizza la maggioranza dei dati, il
client ne estrae di volta in volta una porzione, per accedere all’elemento di
interesse e per effettuare le operazioni di rimescolamento. Al termine del
processo, il client aggiorna il contenuto della struttura dati remota senza
che il server possa capire l’elemento a cui è stato fatto accesso e come i dati
sono stati riorganizzati. Il leakage profile di tale applicazione consta della
sola lunghezza della stringa originale e lunghezza della query. Tuttavia, dato
che parte del protocollo delle ORAM viene eseguito dal client, è necessario
trasmettere una notevole quantità di dati tra client e server attraverso la
rete, provocando un notevole calo di performance. Inoltre, il server ha solo
la funzione di una memoria di dimensione considerevole, che non può operare
direttamente sul contenuto di una ORAM essendo esso processato in chiaro
dal client.

In questo contesto, le enclavi rappresentano una soluzione a tali proble-
mi: infatti esse consentono di definire porzioni di memoria alle quali nessuna
componente hardware o software facente parte del sistema può accedere,
incluso il sistema operativo (SO) e, di conseguenza, qualunque attaccante
avente i privilegi di root. Questo fa sì che neanche il cloud provider, che
è il legittimo possessore della macchina, possa accedere al contenuto incap-
sulato da una enclave, che pertanto può operare su dati in chiaro senza il
rischio che essi vengano rivelati. Questo consente di adottare algoritmi con-
venzionali senza applicarvi alcuna modifica e senza ricorrere a complesse
costruzioni crittografiche, che comportano un aumento dei tempi di elabora-
zione. In particolare, una enclave potrebbe accedere ai dati cifrati contenuti
nella porzione di memoria non protetta e decriptarli nella propria, in modo
da poter operare su di essi in chiaro. Intel Software Guard Extensions (Intel

vii



SGX) è una tecnologia integrata in tutte le CPU prodotte da Intel a partire
dalla microarchitettura Skylake che consente di istanziare enclavi. Sebbene
inizialmente ideata per impedire ai fruitori di contenuti digitali di violarne
i diritti d’autore, ovvero per il Digital Rights Management (DRM), Intel
SGX si adatta bene anche allo scenario del cloud computing, e in particolare
alla possibilità di processare informazioni confidenziali. Oltre a garantire
confidenzialità, le enclavi di Intel SGX sono sottoposte ad un processo di
attestazione remota, che ne garantisce l’autenticità. Infatti, il possessore
della macchina potrebbe eseguire un’enclave differente da quella prevista dal
client che ne fa uso: pertanto ricorrere all’attestazione remota consente di
verificare l’autenticità dell’enclave e garantire che il possessore della macchi-
na non abbia barato. Una enclave speciale, che ha l’accesso esclusivo a chiavi
di attestazione integrate sul die della CPU, genera una prova crittografica
che può essere verificata accedendo ai servizi di attestazione esposti da Intel,
ovvero Intel Attestation Service (IAS).

Tuttavia, l’assunzione che un avversario non abbia la possibilità di estrar-
re segreti durante l’esecuzione di un’enclave ha alimentato l’interesse nei con-
fronti dei reali margini di sicurezza garantiti dalle enclavi, e quali attacchi sia
possibile sferrare per comprometterli. In particolare, le Intel SGX, da speci-
fica, non implementano alcuna contromisura contro gli attachi side channel,
che mettono a rischio la confidenzialità sfruttando sorgenti di informazione
collaterali, dovute alla maniera in cui tale tecnologia è implementata. In par-
ticolare, un avversario a livello di root è in grado di ispezionare la sequenza
di indirizzi virtuali a cui un’enclave accede, ovvero il suo pattern di accesso
alla memoria. Dato che i programmi usualmente effettuano salti condizio-
nali o accedono a indici di un array che dipendono da variabili contenenti
un segreto, l’analisi degli indirizzi a cui un’enclave effettua l’accesso è estre-
mamente efficace nell’inferire tali segreti. La granularità degli indirizzi che
un attaccante può discriminare è di una pagina, che ha dimensione di 4 kB

su architetture x86_64. Tuttavia, essa è sufficiente a estrapolare un’ingente
quantità di informazioni, ad esempio i contorni di una immagine in formato
JPEG processata all’interno di un’enclave [42]. Tali attacchi, definiti page
table attacks per via della loro risoluzione, sono deterministici e in grado
di estrarre segreti durante una singola esecuzione dell’enclave. Attacchi più
complessi, i cosiddetti cache attack, sfruttano il fatto che la cache L1 è con-
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divisa tra i processori logici quando l’hyperthreading è attivo, consentendo
ad un thread attaccante di interferire con gli accessi a memoria effettua-
ti dall’enclave quando essi sono in esecuzione sullo stesso processore fisico.
Sebbene tali attachi abbiano una granularità più fine, richiedono esecuzioni
multiple dell’enclave per via del fatto che non sono deterministici [2].

Gli attachi presenti nello stato dell’arte mostrano come sia possibile rico-
struire il contenuto di chiavi cifrate o i dati processati da librerie preesistenti
quando esse vengono integrate in una enclave senza apportarne modifiche.
Vi sono diverse contromisure atte a garantire la retrocompatibilità di soft-
ware esistente, alcune basate su memoria transazionale [20] [34], altre basate
su modifiche dei programmi eseguite all’atto della compilazione [35]. Il loro
svantaggio è che oltre ad introdurre un significativo rallentamento, in genere
risolvono solo i problemi relativi ad un unico side channel. Dato che la com-
binazione di diverse contromisure potrebbe essere difficile da implementare,
è evidente che sia necessario un approccio più solido che rappresenti una
soluzione di lungo termine.

In particolare, le problematiche che sono state esposte possono essere ri-
solte implementando algoritmi che siano oblivious, ovvero tali che la sequenza
di operazioni che essi eseguono non dipenda dal loro input. Ciò comporta la
realizzazione di algoritmi che evitino sia di eseguire salti condizionali (man-
tenendo un flusso di esecuzione a tempo costante) sia di accedere a strutture
dati con indici dipendenti da valori segreti. Quest’ultimo requisito è soddi-
sfatto dalle ORAM, che infatti rendono il pattern di accesso alla memoria e
l’elemento richiesto completamente scorrelati anche a seguito di accesi ripe-
tuti. Nonostante i protocolli di ORAM tradizionali prevedano uno scenario
remoto, in cui solo il client ha accesso alle informazioni in chiaro, l’uso di
enclavi consente concettualmente di spostare il client su un’enclave in esecu-
zione sul server. Tale approccio ha due evidenti vantaggi: innanzitutto, non
è richiesto che il client implementi in locale l’algoritmo, dato che anche esso
può essere eseguito in enclave; in secondo luogo, non è necessario scambia-
re dati attraverso la rete, essendo i trasferimenti tra client e server eseguiti
nell’ambito della stessa macchina. Il client dell’enclave svolge le operazioni
fondamentali per la sicurezza, in particolare il rimescolamento del contenuto
della ORAM. Bisogna tuttavia tenere in considerazione che tali operazioni
sono esposte ai side channel: un avversario in grado di scoprire come essi
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vengono ridisposti vanificherebbe l’uso delle ORAM. Per fronteggiare questo
problema, i protocolli ORAM doubly oblivious [31] [24] implementano un
client che non espone alcuna informazione all’esterno.

La ricerca di sottostringhe che opera su testi di dimensione considerevo-
le (nell’ordine delle centinaia di MB o qualche GB) richiede la creazione di
strutture di indicizzazione che consentono di effettuare una query in tempo
sublineare rispetto alla lunghezza del testo. Tuttavia, gli indici non solo sono
molto più onerosi da memorizzare rispetto al testo originale, ma richiedono
una serie di accessi casuali, che potrebbero rivelare facilmente la similarità
delle sottostringhe ricercate. Per risolvere il problema dell’occupazione di
memoria e processing si può ricorrere ad una enclave istanziata su un server
remoto, mentre per proteggere il pattern di ricerca, gli indici possono essere
memorizzati in una struttura dati basata su ORAM. Oblivious Substring
Query on Remote Enclave (ObSQRE) è un innovativo protocollo di ricerca
sicura di sottostringhe, che integra diversi indici testuali per effettuare query
in modo efficiente. In particolare, impiega tre differenti indici, specificando
per ciascuno di essi un modo opportuno per proteggerne il contenuto me-
diante delle ORAM. I protocolli di ORAM che adotta sono tre, ovvero la
Path, Circuit e Ring ORAM. Oltre a fornire una implementazione doubly
oblivious per la Path e la Circuit ORAM, ObSQRE estende tale approccio
anche alla Ring ORAM, della quale non esiste una versione doubly oblivious
nello stato dell’arte. Nessuna di queste primitive è stata impiegata per ri-
solvere il problema della ricerca di sottostringhe sfruttando l’esecuzione in
enclave.

I tre indici che vengono impiegati derivano dalla Burrows-Wheeler Tran-
sform (BWT) del testo e dal suo suffix array, e consentono di implementare
le rispettive versioni dell’algoritmo di backwards search, che processa i carat-
teri della sottostringa da ricercare a partire dall’ultimo. Abbiamo modificato
gli algoritmi in modo da tenere in considerazione i requisiti di sicurezza e
le vulnerabilità delle enclavi: in particolare, sono stati eliminati tutti i salti
condizionali e gli accessi agli indici sono mediati dalle ORAM, garantendo
che l’esecuzione di ogni ricerca sia totalmente oblivious, e pertanto, resisten-
te ad ogni tipo di attacco side channel che si basi sull’ispezione del pattern
di accesso alla memoria. Le soluzioni finali rivelano solo la lunghezza iniziale
del testo e il numero di caratteri dell’alfabeto che compone le stringhe, ed è
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possibile anche offuscare la lunghezza della query nonché il numero di risul-
tati. Se n è la lunghezza del testo ed m il numero di caratteri della query, le
soluzioni che presentiamo eseguono la ricerca in O(m · log2 n). Nonostante
la complessità sia asintoticamente la stessa per tutti gli algoritmi, le costanti
moltiplicative sono abbastanza rilevanti da identificare una soluzione miglio-
re delle altre in tutti i test. Per validare il nostro approccio, consideriamo
testi di lunghezza variabile basati su alfabeti di diversa dimensione, quali i
caratteri ASCII, le basi azotate che compongono il DNA e gli amminoacidi
che costituiscono le proteine. Sebbene alcune soluzioni mostrino variazioni
delle perfomance a seconda dell’alfabeto considerato, un indice in particolare
ottiene gli stessi risultati a prescindere da esso. I test dimostrano che le co-
struzioni basate su Circuit ORAM sono le più efficienti salvo per alcuni casi,
in cui, tuttavia, lo scarto di performance è trascurabile. L’algoritmo migliore
consente di eseguire una query di 3050 caratteri, su un testo di 32 MB in
537 ms, ottenendo un tempo di esecuzione di circa 176µ s per ogni carattere
di sottostringa. Ciò rende ObSQRE un protocollo interessante anche in sce-
nari applicativi reali, dato che sottostringhe di tale lunghezza codificano un
gene all’interno del DNA.

Un ulteriore contributo consiste nell’attenta analisi dell’attestazione re-
mota. Infatti Intel l’ha ideata prevalentemente per applicare tecniche di
DRM, che consentono di evitare la propagazione e l’abuso di materiale pro-
tetto dal diritto di autore. Nello scenario da loro prospettato, un client che
richiede l’accesso a contenuti protetti effettua una richiesta ad un server, che
li invia in forma cifrata ad una enclave solo dopo che essa si sia autenticata.
In tal merito, il provider di tali contenuti coincide con l’autore o sviluppatore
dell’enclave, o Independent software vendor (ISV). La procedura standard
prevista da Intel SGX consente solo all’ISV di attuare l’attestazione remota
ed accedere all’apposito servizio di Intel, l’IAS. Nel nostro scenario, un client
che non necessariamente è l’autore di una enclave, vuole eseguire software
sicuro su un server potenzialmente malevolo. Dettagli implementativi del
protocollo di attestazione normalmente impedirebbero di eseguirla e richie-
dere all’IAS il responso sull’autenticità dell’enclave. Tuttavia, applicando
modifiche minimali che non intaccano la sicurezza complessiva, è possibile
adattare il protocollo originario anche a seguito di un cambio dei suoi re-
quisiti. Tutti i lavori che usano le Intel SGX danno per scontata questa
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possibilità o trascurano tale problema. Pertanto, siamo stati i primi a forni-
re una analisi puntuale della sicurezza del protocollo nello scenario del cloud
computing e a proporre una maniera per poterlo mettere in atto.

In sintesi, il nostro lavoro fornisce i seguenti contributi.

• Design ed implementazione di ObSQRE, un protocollo efficiente per la
ricerca di sottostringhe in uno scenario remoto garantendo elevati livelli
di confidenzialità, che includono la protezione del testo, del contenuto
delle sottostringa cercata, e del risultato della query, impedendo all’at-
taccante di correlare sottostringhe cercate in query distinte. ObSQRE
combina l’esecuzione in enclave tramite Intel Software Guard Exten-
sions (Intel SGX) e le doubly oblivious ORAM per la realizzazione di
indici testuali oblivious, che consentono di effettuare ricerche in tem-
po sublineare rispetto alla lunghezza del testo, ottenendo risultati di
interesse pratico.

• Design ed implementazione di una versione doubly oblivious della Ring
ORAM, mai presentata in letteratura, con ottimizzazioni che tengono
in considerazione lo scenario in cui il client della ORAM non è remoto,
ma ha accesso diretto ai dati contenuti nella ORAM.

• Esecuzione di test estensivi per valutare le performance di diversi pro-
tocolli ORAM doubly oblivious, in particolare Path, Ring e Circuit
ORAM. I risultati sono confrontati con quelli delle controparti non
doubly oblivious, per stimare l’impatto che un client oblivious ha sulle
performance.

• Analisi del protocollo di attestazione remota di Intel finalizzata al-
la sua adozione nel contesto di outsourcing della computazione nel
cloud, superando i limiti della procedura di Intel che ne ostacolerebbero
l’adozione nello scenario considerato nel nostro lavoro.
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Chapter 1

Introduction

The current trend when dealing with huge amount of data is outsourc-
ing them to cloud storage rather than keeping them on local machines. In
fact cloud storage providers guarantee high Service-level agreements (SLAs),
making data available at any time and with relatively low latency, but also
shared and synchronized among all the users that have proper access permis-
sions, since the remote machines where data is kept are accessible through
the network. In order to achieve the same degree of availability, it’s neces-
sary to arrange a private cluster with huge backing storage, large network
bandwidth to serve multiple requests and very high reliability, which usu-
ally comes at the cost of replication of both servers and storage devices, in
order to face potential data losses due to disk failures. Besides the price of
the hardware, it is also necessary to take into account the costs to keep the
infrastructure online, that include power and network bills, as well as the
effort required for maintainance. All these factors make the employment of
a private cluster unfeasible in most of the cases, especially for companies and
users who don’t have the technical background or budget to set up such an
infrastructure. Hence, these functions are usually delegated to an external
provider that offers all these services as part of her fees.

Nonetheless, outsourcing data poses the problem of confidentiality: in
fact, an untrustworthy service provider may exploit sensitive information to
illicitly gain benefits, potentially harming the owner. Data encryption is
not a viable solution in all the cases: indeed, the outsourced data may not
be composed of static files, but also be part of a huge data structure that
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Introduction

doesn’t fit the client memory but is required to perform some kind of com-
putation. In this scenario, it would be reasonable to offload the execution of
the algorithm to the cloud as well, in order to cut the necessity for the net-
work round trips required to fetch the needed data. However, standard data
encryption techniques would prevent the remote machine from performing
any computation over the uploaded dataset. If performance is not a major
concern, a client may decide to run the algorithm locally, fetching portions of
her encrypted dataset and operating on plaintext only on her own machine to
protect against eavesdroppers. Even in this case, if the cloud service provider
knows which kind of processing is carried out by the client, she can infer a
huge amount of information by inspecting the sequence of requests issued
by the client. For example, if the user uploads a data structure that returns
the results that match a certain kind of search criterion, an untrustworthy
server may infer the similarity of different queries by comparing the sequence
of accesses during their execution, i.e. their search pattern. Several works
showcase that with enough domain knowledge, an untrustworthy server may
reconstruct substantial portions of an encrypted dataset only leveraging its
knowledge of the search patterns [5,19,29]. There exist cryptographic primi-
tives, namely Fully Homomorphic Encryption (FHE) and Secure Multiparty
Computation (SMC), that allow to perform computations over encrypted
data as well as reducing this information leakage. Nonetheless, they intro-
duce a releavant overhead in the computations, up to the point of making
them impractical in real world scenarios.

The problem of querying huge amounts of confidential data recurs in
several situations. For example, personalized medicine adapts medical prac-
tices and drugs based on the genome of an individual, in order to maximize
the effectiveness of medical treatments as well as diagnosing rare patholo-
gies. It requires to perform thorough analysis over the genome of a patient,
which is extremely sensitive since it contains most of his clinical informa-
tion. Another application scenario may involve a company owning a huge
amount of confidential data, such as logfiles or emails of its employees, that
wants to outsource them while preserving the possibility to search for specific
contents.

Symmetric Searchable Encryption (SSE) partially answers to the need
for secure and efficient ways to query encrypted data. In particular, given
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a set of documents and a set of keywords that may be looked for, SSE
solves the problem of finding the subset of documents that contain a certain
keyword. Unlike FHE and SMC, SSE achieves performance levels that make
it a viable solution in real world applications. SSE protocols rely on purely
cryptographic constructions as well, and comply to a provable security level
that is defined by their leakage model. It must be taken into account that
some information necessarily leaks due to the fact that it’s a remote party
that actually carries out the computation. However, the leakage model allows
to estimate the amount of information that an untrusted party learns about
the original dataset or the queries while executing the protocol. A client opts
for a certain solution according to the security level she wants to achieve, the
trust he puts on the remote server as well as the desired security/performance
tradeoff, since higher confidentiality guarantees usually come at the cost of
a higher overhead. In the scenarios we envision, SSE may be adopted to find
which genomes contain a sequence of nucleotides that encode specific traits,
warnings or errors in logfiles or releavant keywords in emails.

The problem solved by SSE is very specific and may exhibit some limita-
tions, such as the impossibility to add a new keyword to the remote dataset
once it has been uploaded. On the other hand, substring search is a more
general problem, that amounts to finding the positions of the repetitions (or
occurrences) of a sequence of characters within a larger text. It is straightfor-
ward to notice that substring search is a generalization of the problem solved
by SSE: in fact, given a set of documents, it is possible to answer a SSE query
by returning the identifiers of the documents where a certain keyword occurs
at least once. The solution to substring search problem also exhibits much
more flexibility since it is possible to look for patterns that were not initially
included among the keywords, without perfoming any update on the remote
data. Indeed, a Substring-SSE based solution to the substring search prob-
lem based on suffix trees is described in [7]. While their approach allows
to totally conceal the structure and content of the initial text, besides its
length and the size of the alphabet, it leaks the search pattern of its queries,
allowing to understand to which extent the prefixes of two searched strings
match.

The leakage of the search pattern is a major concern when perform-
ing substring search, since it allows to establish the similarity between two
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queries just by inspecting which elements of the remote data structures are
accessed. In this regard, other works aim at totally concealing the search
pattern to the remote server, so that it is impossible to infer meaningful in-
formation about the queries as well. ORAMs were successfully employed to
achieve this purpose [25]. ORAMs are cryptographic primitives that allow a
client to fetch portions of her remote dataset without letting the server know
which element was actually needed. Their property is that the server does
not learn anything about the real arrangement of the data even when repeat-
edly accessing the same element: in fact, they resort to continuous shuffle
and re-encryptions that scramble the data in such a way that the sequence
of memory accesses needed to fetch a portion of the data is totally random
looking and uncorrelated to the logical identifier of the requested element.
The server that stores the bulk of the data does not need to have huge com-
putational power, as the shuffles and encryptions are executed by the client
after each access to the remote dataset. Hence, ORAM protocols require the
constant interaction between the client and the server and usually incur a
high bandwidth blowup, since they require the transfer of much more data to
conceal which portion of the original dataset was requested. Since network
latency is much greater than the time the client spends in the computation,
it becomes the figure of merit to establish the efficiency of remote ORAM
protocols. In [25], several ORAMs are used to wrap two efficient text indices,
i.e. the suffix tree and array, in order to hide the search pattern of the queries
as well as the content of the original text. While this protocol leaks very
little information about the initial data, it only addresses the scenario in
which the dataset is composed of several short strings (i.e. made of at most
100 characters) concatenated together. Even if this solution may be adapted
to query slightly larger texts, it does not apply when handling texts whose
size ranges from hundreds of MB to GB, such as genomes. Furthermore, the
protocol requires several roundtrips for every query character, making its
performance strictly dependent on the latency of the network. It is worth to
notice that the client plays a fundamental role, both in ORAM management
and computation. In fact, ORAMs only provide a way to conceal the search
pattern of an application, but don’t enable the execution of operations over
encrypted data: the algorithm to query the remote data structure needs
to operate on plaintext data and is totally implemented on the client side.
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Hence, this approach in general provides stronger security guarantees but
fails in allowing to offload the computation to the remote server.

All the solutions to the substring search problem that solely rely on
cryptographic constructions exhibit strong limitations: while Substring-SSE
carries out the computation on the server, it incurs an information leakage
that may be significant and harmful in extremely sensitive contexts, such
as when handling biological data; on the other hand, solutions that rely on
ORAMs require a lot of interactions between the client and the server and
lose the amenable possibility to offload the computation to a remote party.

If the owner of the remote machine was trusted, it would be possible
to perform computations on plaintext data: while this situation is unlikely
to happen when dealing with an unknown and possibly untrusted entity, it
would be sufficient that only the portion of the machine carrying out sen-
sitive computations was trustworthy. All the components in the Trusted
Computing Base (TCB) of a system are provably secure against all the at-
tacks that belong to the threat model they assume. The cloud computing
scenario poses a tough challenge in this regard: in fact, the whole software
stack running on a server is potentially compromised, including the operat-
ing system (OS) or hypervisor. Hence the threat model of cloud computing
usually includes adversaries with root permissions, that have full ownership
of the machine and may interfere with the computations at their will. This
is where enclaves come into place: an enclave is a secure execution environ-
ment hosted within an untrusted system that provides strong guarantees of
confidentiality and integrity. An enclave encapsulates code and data in such
a way that neither any portion of the software, nor any hardware component
may access their content: this includes the OS, hypervisor, peripherals and
even other enclaves allocated on the system. Hence, an enclave allows to de-
fine a TCB even on a remote machine owned by an unfaithful cloud provider
that is interested in learning confidential data. They are used to wrap and
safely execute the sensitive portions of a program: since their content cannot
be inspected, they can implement algorithms that operate on plaintext data
without running the risk of leaking confidential information. In particular,
while the bulk of the data is stored in encrypted form in the untrusted por-
tion of the system, it is decrypted once moved inside an enclave, that can
safely store the cryptographic keys of the dataset as well.
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Intel SGX is one of the few commercially available implementations of
enclaves, as they are included in all the CPUs since the Skylake microar-
chitecture. Besides the possibility to allocate private memory regions that
contain the sensitive portions of a program, it also offers the possibility to
perform remote attestation, a procedure that provides a strong cryptographic
proof of the authenticity of an enclave: it attests that the enclave has been
instantiated with the expected content, preventing the server from replac-
ing it with a rogue one that implements malicious behaviors. However, the
remote attestation protocol devised by Intel is mainly conceived for the Dig-
ital Rights Management (DRM) scenario, allowing a provider of copyrighted
contents to protect them from a client potentially interested in infringing
the terms of use. In this setting the content provider, that corresponds to
the enclave developer, delivers and processes such protected data using an
enclave of its own, after ensuring its authenticity. Incidentally, Intel is in-
volved directly in the remote attestation process, and only grants access to
this service to enclave developers. Conversely, in our scenario, a client is
willing to attest an enclave, whose author is a third party developer, and
that is allocated on a remote server. The attestation procedure of Intel does
not apply straightforwardly to our scenario, thus limiting the adoption of
Intel SGX based solutions to outsource computation on a remote server. To
overcome these hindrances, we provide a thorough analysis of the attestation
protocol showing how to adapt it to our needs. Surprisingly enough, none
of the works that exploit Intel SGX in cloud computing scenario have ever
provided a description of how to circumvent these limitations.

While enclaves seem to offer a technological solution that totally super-
sedes purely cryptographic constructions, the strong attacker model they
assume has drawn the attention over their actual security. It turns out that
indeed they are exposed to subtle attacks that compromise the confidentiality
of the contents they are supposed to protect. In particular, they are vulner-
able to side channels, that are unwanted sources of information that derive
from the way that Intel SGX is integrated into existing platforms. The main
source of side channel leakage of Intel SGX is the memory access pattern: in
fact, a privileged attacker has the means to inspect the sequence of memory
addresses accessed by an enclave, from which it can infer releavant informa-
tion regarding the control flow of the application. In particular, enclaves leak
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significant information when they branch on conditions evaluated on secrets
or access memory locations based indices that depend on confidential data.
While these programming practices are totally legitimate in software whose
focus is not security, they turn out to be a major concern when developing
applications that need to comply to high security standards. In fact, these
attacks are successful in retrieving significant portions of sensitive informa-
tion when retrofitting legacy applications that don’t have the strong attacker
model of Intel SGX in mind [2,3, 42].

While there are mitigations that protect legacy applications even when
running within an enclave [20,34,35], they mostly act as stopgaps, as newer
attacks that exploit subtleties and undocumented behaviours of CPUs may
totally dismantle the security they try to achieve. The countermeasures are
usually compiler based solutions that aim at concealing the control flow of
a program or rely on Intel Transactional Synchronization Extensions (TSX)
to hide the memory access pattern of the enclave. Their major limitation is
that they usually address one source of side channel leakage at a time, and
don’t simultaneously protect from all the attacks that have been conceived.
Furthermore, they usually incur a quite high performance penalty: hence,
combining several mitigations may be impossibile, impractical or introduce
such an high overhead that the final solution is not practical.

A rich line of works explores methodologies to build countermeasures di-
rectly into new applications, taking into account security concerns related to
side channels at design time. Some works resort to oblivious algorithms [43],
whose control flow and memory access pattern does not depend on input
data, and thus are not prone to the inspection of the memory access pat-
tern. While they incur some overhead with respect to their non-oblivious
counterpart, they solve the problem at its root, in a way that cannot be
thwarted by new side channels that allow to inspect the sequence of mem-
ory locations accessed by the enclave. Another line of works focuses on the
construction of data structures that prevent the server from knowing which
element is accessed [1]. Notably, an ORAM protocol whose client is executed
within an enclave is presented in [24] and [31], that implement an enclaved
version of Path and Circuit ORAM respectively. Executing the ORAM client
on the same machine that stores the bulk of its data allows to dramaticaly
improve performance, since there is no more need to transfer data over the
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network when accessing it. Furthermore, the data that is stored in encrypted
form can be safely decrypted and processed within the enclave, making it
possible to offload the whole computation on the remote server unlike tradi-
tional remote ORAM protocols. However, this requires a careful revision of
the operations performed by the ORAM client, that must be implemented
in such a way that the server doesn’t learn how data is shuffled between
subsequent accesses. In fact, data shuffles and re-encryptions are critical
steps in ensuring that there is no correlation between the elements that pop-
ulate the ORAM and the sequence of memory location accessed to retrieve
them. ORAM protocols that conceal the operations performed on the client
side, besides concealing which element of the remote dataset is accessed, are
defined doubly oblivious.

The purpose of Oblivious Substring Query on Remote Enclave (Ob-
SQRE) is performing substring search queries in such a way that a malicious
server doesn’t learn any information regarding the original text besides its
length and alphabet, i.e. the set of characters that compose it, and cannot
establish any correlation between the queries. We exploit enclaved execution
to provide confidentiality and allow the client to offload the data as well as
the computation to a remote machine. To the best of out knowledge, there
are no works in the state of the art that address the problem of oblivious
substring search exploiting enclaves, and in particular, Intel SGX. In order
to guarantee good performance, we adopt solutions that preprocess the ini-
tial text to produce an index which can be later used to perform queries in
sublinear time with respect to the length of the text. Hence, we address the
case in which the given dataset is a very long string, that is frequent when
dealing with biological data, such as genomes, and logfiles. Since full-text
indices require to perform scattered memory access that leak the search pat-
terns of queries, we wrap them into doubly oblivious ORAMs in order to
prevent the server from inferring the content of the text and the similarity
between queries. On the other hand, the substring search algorithms are im-
plemented in such a way that they don’t branch on conditions that depend
sensitive data. To fulfill this purpose, we adopted an algorithm known as
backwards search, whose regular control flow is amenable for our scenario,
while it achievies the same perfomance of much more complex data struc-
tures. We implement three different versions of backwards search, exploiting
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full-text indices derived from the Burrows-Wheeler Transform (BWT) of the
original text as well as its suffix array, and compare their performance. Our
protocol allows to retrieve the number of occurrences of a substring in a
single round of communication.

Our work provides several contributions, that we now summarize.

• We design and implement ObSQRE, a private substring search pro-
tocol that leverages Intel SGX and doubly oblivious ORAMs to build
oblivious full-text indices. We implement 3 different variations of back-
wards search, allowing to perform substring search queries in sublinear
time in the lenght of the text in order to achieve performance of prac-
tical interest. Our solution hides the structure of the text, the content
of the substring searched and the result of the queries, as well as the
similiraties among substrings searched in distinct queries.

• We provide a doubly oblivious construction of Ring ORAM, that is not
present in the state of the art. In particular, we optimize it to take into
account the fact that the client and the server of the ORAM reside on
the same machine.

• Besides Ring ORAM, we also implement existing doubly oblivious Path
and Circuit ORAMs, and we perform extensive benchmarks in order
to establish their performance when coupled with Intel SGX. Further-
more, we compare them with their singly oblivious counterpart to esti-
mate the performance overhead due to the implementation of an obliv-
ious client.

• We review the remote attestation procedure devised by Intel in order
to adapt it to the scenario of outsourced computation in the cloud. In
particular, we show how a client who is not an enclave developer can
access the remote attestation facilities run by Intel.
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Chapter 2

State of the Art

In this chapter we introduce all the concepts that will recur throughout
the work. In Section 2.1 we present Intel SGX, explaining the basic mecha-
nisms behind its security, the threat model it assumes and the rich literature
of works that leverage side channels to extract confidential information dur-
ing the execution of an enclave, as well as a series of possible mitigations.
In Section 2.2 we provide the details about several ORAM constructions,
starting from Path ORAM, that paved the way for more elaborate primi-
tives such as Ring and Circuit ORAM. We explain their function and how
to optimize ORAMs according to the access pattern of the application that
employs them, introducing the concept of Oblivious Data Structures. Sec-
tion 2.3 describes existing full-text indices that provide useful background
for the substring search problem in a safe setting. Finally, the related works
described in Section 2.4 either show how to exploit Intel SGX enclaves to
guarantee confidentiality, possibly combining them with ORAM construc-
tions, or provide some background about purely cryptographic techniques to
perform remote substring search in the outsourcing scenario.

2.1 Intel SGX

Intel Software Guard Extensions (Intel SGX) is a technology shipped
with Intel CPUs since the Skylake microarchitecture. It allows to instantiate
protected and trusted execution environments, called enclaves, which provide
strong confidentiality and integrity guarantees for both the code and the data
they encapsulate, even when running on an untrusted system. Each enclave
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is allocated in a portion of the physical memory that is unaccessible to all
of the software and hardware composing the system (except for the CPUs)
including hypervisor, OS, Intel Management Engine (Intel ME) and other
enclaves [12].

The strong security guarantees provided by Intel SGX introduce a new
threat model, which includes root-level adversaries and malicious cloud ser-
vice providers that have full control over the attacked machine. Since the
purpose of Intel SGX is to reduce the Trusted Computing Base (TCB) to the
sole CPU, the final user will need to trust only the CPU hardware and its
manufacturer, rather than other third-party vendors and service providers.
This especially comes in hand when she needs to offload intensive compu-
tations over confidential data in the cloud, where privacy may be a major
concern.

Although enclaves are set up by the untrusted OS of a remote machine,
the enclave developer or Independent software vendor (ISV) can verify that
the code and data they contain is legitimate. The remote attestation proce-
dure allows enclaves to provide a cryptographic proof of their authenticity,
named attestation report. Intel must be considered a trusted party in the
process: in fact, the signature appended to the report is generated by a spe-
cial enclave signed by Intel and can be verified by the ISV only by querying
the Intel Attestation Service (IAS), which is run by Intel on its own premises.
Thus, the Intel SGX ecosystem, besides a set of architectural features, in-
cludes also a whole SDK, the services to attest an enclave and the Platform
Software (PSW), that includes the special enclaves needed to sign attestation
reports. We now provide a brief overview of Intel SGX technology, followed
by the threat model assumed by Intel and the security weaknesses which
must be taken into account in the design of SGX applications.

2.1.1 Technical description

An Intel SGX based application is composed of two portions: an un-
trusted one which contains code running outside the enclave and data which
is accessible to the host machine, and a trusted one, which is composed by
one or more secure enclaves employed in the application. These enclaves
are distributed as shared objects (.dll files on Windows OS and .so files
on Unix-like OS’s) that are loaded into memory using specific functions in-
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cluded in Intel SGX libraries. Therefore, the content of an enclave can be
inspected and reverse engineered allowing an end user who is not the enclave
developer to verify that the behavior implemented by an ISV is the one it
advertizes. As any other library, each enclave exposes an interface, i.e. a
set of functions that can be called by the untrusted code: it defines the only
locations where a process can jump to start executing enclave code. This
operation is performed via a specific instruction, EENTER, that switches the
logical processor to enclave mode. Only a process running in user mode can
call EENTER: since no privilege switch happens when entering enclave mode, a
malicious process executing an enclave cannot take over or harm the hosting
system. Furthermore, as neither the privileged system software may read
or write the content of an enclave, after a successful remote attestation the
end-user of the enclave can trust its code.

An enclave can be conceived as a portion of memory that is accessible
only by the code it encapsulates. Therefore, part of the main memory must
be reserved for enclaves that may be allocated on the system. The Processor
Reserved Memory (PRM) serves this purpose. Its size of 128MB stores both
enclaves and metadata: the former reside in the Enclave Page Cache (EPC),
which is about 96MB, while the latter in the Enclave Page Cache Metadata
(EPCM). The EPCM tracks which parts of the EPC are valid and the enclave
owning them.

It is responsibility of the CPU to protect the PRM from rogue memory
accesses: when an unauthorized process tries to access the EPC, the oper-
ation triggers the abort transaction semantics, that skips write operations
and returns the integer value −1 on read operations. On the other hand,
any attempt to tamper with the EPCM triggers a page fault : only Intel SGX
dedicated instruction can manipulate data contained in the EPCM. Exter-
nal peripherals cannot issue DMA transactions targeting the PRM, since the
memory controller residing in the CPU ignores them. Moreover, whenever
data that will be written to the PRM leaves the CPU package, it is transpar-
ently encrypted, so that any attempt to directly leak secrets from the data
bus (a technique known as tapping) fails.

The strict memory access policy required by Intel SGX must not inter-
fere with the normal functioning of a system: one of the design goals was to
implement this technology with little modifications to existing hardware and
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computational model, both to ease its adoption and to avoid drastic mod-
ifications to system software. The memory protection mechanism adopted
by Intel SGX is tightly coupled with the address translation logic of modern
CPUs [12]: we briefly review the memory management techniques employed
in modern system software, and supported by x86_64 CPUs, to later describe
the specific modifications introduced by Intel SGX.

In current OS’s, each process running on a machine lives in a separate
virtual address space, whose size is usually much bigger that the physical
memory available on the system (by contrast, this is usually referred to as
physical address space). This abstraction gives each process the illusion of
running on an independent system equipped with enough memory to cover
the whole range of addresses it may access. The OS is in charge of map-
ping virtual addresses to the physical ones that are used to fetch data from
the main memory. This operation, known as address translation, would be
costly if implemented without hardware support. This is why all current
general purpose CPUs include a Memory Management Unit (MMU) which
is involved in the whole process.

This memory management technique carries along many advantages. The
most obvious one is that executables are relocatable, i.e. agnostic of the phys-
ical memory addresses they will be loaded to. In fact, the addresses they
access no longer refer to physical memory: this means that two distinct pro-
cesses can reference overlapping virtual address ranges without contending
the same memory locations, given that the OS maps them to different por-
tions of the physical address space. Moreover, address translation prevents
a process from reading and writing memory locations owned by another pro-
cess, a desirable security and safety property known as memory isolation.

The virtual address space is partitioned in fixed-size units named pages.
Memory is granted to processes at the granularity of pages, in order to
leverage locality and limit the negative effects of memory fragmentation.
Address translation maps pages to memory frames, which are ranges of the
physical address space with the same size of a page. From now on, the
term page will be used to refer to an address range in the virtual address
space of a process, while a frame refers to an equally large portion of the
physical memory installed on the system. The page-frame mapping may
change during the lifetime of a process, and in extreme cases, when the
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system runs out of physical memory, the least-frequently used pages may be
swapped out on a larger backing storage device. This comes at the cost of
a severe time penalty when accessing a swapped-out page, as it needs to be
moved to a free frame from a much slower device such as an hard-drive.

A virtual address is divided roughly in two parts. The least significant
bits are used as a page offset, and thus address translation does not modify
them. The remaining part, the virtual page number, is translated to a physi-
cal frame number. Page size is required to be a power of two in order to ease
the retrieval of page offset and page number. In x86_64, the virtual address
space is 48-bits wide, while the size of each page amounts to 4kB: thus, the
page offset is 12-bits wide, to index each of the 4kB in a page, while the
virtual page number is composed by the remaining 36-bits of the address.
The virtual addresses are stored in sign-extended representation, as they are
shorter than the 64-bits wide words of the CPU. While the maximum size
of the physical address space is 52-bits, the current platforms only support
shorter physical addresses, according to the memory requirements of different
market segments. Desktop CPUs support 40-bits physical addresses, while
server platforms 44-bits ones.

In order to perform the mapping, it is necessary to traverse an OS-
managed data structure called page table, by using the different fields com-
posing a virtual address (as in Figure 2.1). Due to its size, the page table
is organized in a hierarchical way as a 512-ary tree, whose root address is
stored in the special register CR3. It points to the so called Page Map Level
4 (PML4), which contains 512 entries. The most significant 9 bits of the
virtual page number represent the index of the table where the pointer to
a Page-Directory-Pointer Table (PDPT) is stored. The PDPT is another
table with 512 entries that is indexed with the following 9 bits of the virtual
page number to retrieve the Page Directory (PD). In an analogous way, a
fragment of the Page Table (PT) is retrieved from the PD: indexing the PT
yields the physical frame number associated to the initial virtual page, thus
completing the page table walk. Each entry in these tables is 8 bytes wide:
therefore, the size of each table is 512 · 8 B = 4096 B = 4 kB, exactly fit-
ting a memory frame. The entries accomodate both a 40-bit physical frame
number and several flags that are used by the OS for memory management.
Among these, the accessed bit is set whenever a particular page is accessed,
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Figure 2.1: Representation of the fields composing an x86_64 virtual address

the dirty bit is set on write operations and several protection bits impose
read, write and execute restrictions to the pages. In case there is no physical
frame mapped to the virtual page, or the present bit is not set, then a page
fault is triggered, which requires the OS to reserve a new physical frame and
to update the page table with the mapping between the requested virtual
page number and the physical frame.

A page table walk is an expensive operation, that requires four memory
accesses just to retrieve a physical address. In such cases, caching is bene-
ficial since it avoids frequent retranslations of the same address, that would
occur due to the locality of memory accesses: a special cache, the Transla-
tion Lookaside Buffer (TLB), holds the mapping between virtual page and
physical frame numbers. In order to speed-up page table walks that occur
with TLB-misses, the MMU resorts to specialized hardware, the Page Miss
Handler (PMH). The PMH is in charge of executing all the required checks
before granting access to memory. Thus, the address translation is entirely
performed in hardware by the TLB and PMH; the OS is invoked only in case
a page fault is detected by the PMH.

In an Intel SGX based application, enclaves are loaded at runtime in the
virtual address space of the calling process. This area is named ELRANGE (en-
clave linear address range) and is mapped to frames belonging to the EPC.
After completing address translation, Intel SGX embeds additional checks
in the control flow of the PMH in order to prevent any code outside the
enclave from accessing memory owned by the enclave itself. As outlined in
Figure 2.2, access to a memory address which belongs to ELRANGE is granted
if and only if the logical processor is in enclave mode and the corresponding
physical address belongs to an EPC frame owned by the current enclave,
while in case the virtual address is not in ELRANGE, the PMH needs to check
that the address is not mapped to the PRM. In case of success, the result
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Figure 2.2: Simplified view of the security checks performed by the PMH

of address translation is added to the TLB: when this happens, further ref-
erences to that memory locations are considered legit and the CPU doesn’t
apply any security check. Hence, whenever the logical processor exits enclave
mode, either after returning from a function or due an exception, the TLB
is flushed to prevent subsequent unchecked accesses to enclave memory. All
the machine instructions introduced to support enclave creation, execution
and attestation are implemented in microcode, and can thus be updated to
fix security vulnerabilities that may arise due to the complexity of the checks
we have just described.

2.1.2 Threat Model and Side-Channel Attacks

The main purpose of secure enclaves is allowing to instantiate a secure
and trusted execution environment within an untrusted system. This neces-
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sity arises in several contexts where a computation needs to avoid the leakage
of protected or sensitive data. One notable case is Digital Rights Manage-
ment (DRM), that attempts to prevent illicit distribution, abuse or license
bypassing of copyrighted works. For example, streaming services are likely
to hinge upon secure enclaves to prevent replay of digital contents. Another
scenario involves cloud services, that offer the possibility to rent computing
resources in situations where the cost to buy and maintain a private infras-
tructure would be much higher. The use of enclaves doesn’t require the
cloud providers to be trusted, since sensitive data can be exchanged with
the external world in encrypted form.

In the cloud computing scenario, the whole software stack running on
the machines is considered untrusted: in fact, a cloud provider may employ
compromised hypervisors or host OS’s that extract sensitive information
for profit. Therefore, the threat model of Intel SGX considers root-level
adversaries with full control over the machine. Unlike other technologies,
hardware attacks that compromise the CPU package are not included in the
threat model [12], but they are mitigated using per-CPU keys which are con-
cealed on the die using special circuitry. In this way, a costly imaging attack
to reverse-engineer the CPU allows to compromise the keys of one or a few
processors, thus making large scale attacks extremely expensive. Moreover,
the threat model does not include address bus tapping : indeed, while mem-
ory encryption, originally meant to enforce confidentiality, has the side effect
of thwarting data bus tapping, the address bus is totally exposed. Nonethe-
less, besides the costs of bus tapping attacks, the information that can be
retrieved by inspecting the memory address bus is too incomplete to mount
a successful attack [12]. This is mainly due to caching, which avoids bus
transactions when frequently accessing the same memory locations: since
many data are cached due to the temporal and spatial localities of the ap-
plications, the information which can be retrieved is too sparse and noisy
to leak some valuable knowledge. Active side channel attacks that induce
faults over the memory buses with the purpose of tampering with encrypted
data are not considered as a part of the threat model as well.

In section 2.1.1 we highlighted that enclaves are distributed as shared
objects, which are not encrypted and can thus be inspected. The remote at-
testation procedure allows to verify that the code and data contained in these
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shared objects are correctly loaded into the enclave without being tampered
by the untrusted machine. Obviously, it must be ensured that pieces of code
which are not verified during the attestation are not run inside the enclave,
as this would allow the adversary to easily learn the data sealed inside the
enclave. This necessary requirement implies that the code inside an enclave
cannot call functions of dynamic libraries provided by the untrusted OS (in-
cluding system calls to the OS, which are indeed forbidden) [12]. Therefore,
all the libraries providing functionalities needed by code running inside the
enclave must be statically linked, thus ensuring that their content can be
verified during the remote attestation procedure.

For this reason, there exists library OS such as Haven of Graphene-
SGX [3, 42] which may execute syscalls on behalf of the enclave, handing
in the results. By statically linking these libraries to an enclave, it is possi-
ble to port legacy applications to Intel SGX, although reusing code that was
not written with the Intel SGX threat model in mind is strongly discour-
aged. Indeed, side-channel attacks, which surprisingly enough are explicitly
excluded by Intel from the threat model of Intel SGX [11], are extremely re-
liable in extracting secrets if the developer doesn’t explicitly address them.
Side-channels are unwanted information sources that arise from the physical
implementation of a system rather than software or hardware vulnerabilities.
The existence of these side channels fostered a rich line of research [2,3,42],
focusing on legacy applications to showcase the implicit limitations of Intel
SGX, but also proposing mitigations [20,34,35] to avoid the design of ad-hoc
applications.

In the case of Intel SGX, there are two main side channels, namely the
sequence of page faults observed by the untrusted OS and the influence of
cache evictions on memory access time, which allow to infer the memory
access pattern of an application. This information turns out to be sufficient
to exfiltrate some confidential data from the enclave thanks to the little
amount of noise exhibited by these side channels, up to the point of defining
them controlled channels due to their determinism.

Controlled channel attacks primarily exploit the memory access pattern
of an application to extract secrets during its execution. In fact it is cus-
tomary that software contains data-dependent memory accesses that can be
monitored by a privileged attacker [42]. Algorithm 2.1.1 shows a secret-
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dependent control transfer that happens during the well-known square-and-
multiply algorithm to compute the modular exponentiation between an in-
teger c ∈ ZN , for a composite N , and the exponent exp. This algorithm
is employed in vanilla implementations of the decryption procedure of RSA
cryptosystem, where the integer c is a ciphertext and the exponent exp is
the secret key. In this algorithm, the square operation (line 4) is performed
in every iteration of the loop, while the multiplication (line 7) is performed
only when the current bit of the private exponent is set to 1: whenever
an attacker observes two consecutive square operations, she knows that the
current bit of the private exponent is a 0, while a multiplication interleaved
between two square operations necessarily identifies the current bit of the
private exponent as 1. With this trick, the adversary is able to fully re-
construct the private exponent of an Rivest-Shamir-Adleman Cryptoscheme
(RSA) key-pair. Data accesses are prone to similar attacks. For example,
common Advanced Encryption Standard (AES) implementations resort to
precalculated T-tables to squash the SubBytes and MixColumns phases. At
the beginning of each round, the 16 bytes composing the AES state are used
to index the T-tables. In case of 128-bits keys, the AES state is initialized
with the XOR of the plaintext and the key. If the T-tables access pattern
(an information which is not protected by Intel SGX) allows to guess the
value of the bytes used as index during the first round, a Chosen-Plaintext
Attack (CPA) can easily reveal the key by XORing the guessed AES state
with the known plaintext [35]: this method can exploit vulnerable binaries
and extract up to 25 bits of information in a single round, against the 3 bits
of the best known cryptanalytic attack.

Even though these examples refer to leaking cryptographic keys, it is
possible to reconstruct different kind of secrets with enough domain knowl-
edge. For example, in [42] the authors attack three widely used libraries:
Freetype, which renders characters into bitmaps using a font, Hunspell, a
popular spell-checking library that uses a hash-table based dictionary, and
an implementation of Joint Photographic Experts Group (JPEG) transfor-
mation, a lossy compression method for digital images, producing a raster
representation.

The attacks were delivered using a well-established methodology that
leverages the high privileges that the threat model endows. Unlike other
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Algorithm 2.1.1: RSA SquareAndMultiply algorithm
Input: A message c ∈ ZN , for a composite N
An RSA private exponent exp
Output: mexp mod N

1 res← m
2 n← dlog(exp)e
3 for b← n− 2 to 0 do
4 res← res2 mod N
5 if expb == 1 // expb denotes the b-th bit of exp
6 then
7 res← res ·m mod N
8 end
9 end

10 return res

solutions present in literature [12], Intel SGX leaves page tables under the
control of the OS, in order to avoid drastic modifications to memory man-
agement. As a malicious OS may arbitrarily write on the page table, it can
easily trigger page faults on enclave memory accesses in several ways, for in-
stance by resetting the present flag for all the virtual pages in ELRANGE (see
Section 2.1.1). When a trap occurs during enclave execution, the logical pro-
cessor exits enclave mode after saving its execution context to the EPC and
cleaning-up the CPU state, a process known as Asynchronous Exit (AEX).
The exception is handed to the OS, that performs a potentially malicious
page-fault handler. Since the page offset bits are cleared while in enclave
mode, an attacker may only monitor memory accesses with the granular-
ity of a page, i.e. 4kB. However, this is sufficient to retrieve secrets if the
applications are carefully profiled offline.

By inspecting the code, it is possible to spot where it performs secret-
dependent memory accesses either to a function or data. The attacker will
record the sequences of page faults that leak secrets. When executing the
enclave, she will mark those pages as not present, in order to trigger page
faults and compare runtime traces to the sequences she previously collected.
However, tracking a subset of enclave pages may yield false positives: in
fact, this is equivalent to sample the access patterns only for tracked pages.
It may happen that the adversary detects a sequence of page faults that
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leaks a secret, but in reality the enclave performs other memory accesses
to untracked pages, since it is executing a totally different portion of the
program instead. Thus, if the attacker is not careful in including in the
tracked set all the pages that may be interleaved with a significant sequence
of accesses, he may mispredict some secrets.

The authors managed to extract confidential text from the first two li-
braries and draw the borders of images decoded from JPEG, after wrapping
the libraries in enclaves. The attacks were successful in reconstructing up to
70% of the texts and draw the borders of several JPEG pictures up to the
point that the portrayed objects are distinguishable.

The drawback of this methodology is that repeatedly triggering page
faults incurs in a performance penalty that ranges from 3× to more than
300×, possibly raising the suspicion of a careful user.

The discovery of controlled channels has raised the interest in auto-
mated techniques to delete information leakage of legacy applications and
libraries. In [35] a compiler-based technique known as deterministic mul-
tiplexing achieves page-fault obliviousness, i.e. all the execution paths of a
sensitive function trigger the same page fault trace. A sequence of instruc-
tions that are executed without branching constitutes a basic block : the
different execution paths of a function can be arranged in the shape of a tree
whose nodes are basic blocks. The execution of a function is equivalent to a
tree traversal from the root: when the control flow reaches the end of a basic
block, either the left or right child is executed based on the evaluation of
a branching condition. While bounded loops are unrolled, unbounded ones
are treated as a separate execution tree in order to conceal secret dependent
branches that happen within it. For example, in Algorithm 2.1.1, it is neces-
sary to hide whether or not line 7 is executed based on a condition that leaks
secrets, but not the overall number of iterations of the loop. The original
tree that represents a function might be unbalanced: hence, the first trans-
formation performed by deterministic multiplexing is introducing padding
basic blocks to obtain a perfect binary tree. The execution of the function is
then performed level-wise: all the basic blocks in the current level are copied
to an executable page named code staging area to trigger the same sequence
of page faults.

The CPU later jumps at the right offset to execute the correct basic
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block among the ones on the same level of the tree. All the data that might
be accessed is copied to a data staging area, that is flushed at the end of
the execution of a level to take into account possible updates. Deterministic
multiplexing is quite expensive and might have a 4000x overhead in execution
times. The functions of the program that will undergo the transformation
need to be chosen carefully. Even though manual optimizations may reduce
the performance penalty, this solution mainly serves as a stopgap [3] that is
unlikely to be adopted in contexts where execution times matters.

A different line of research exploits Intel Transactional Synchronization
Extensions (TSX). TSX were originally meant to ease the development of
multithreaded applications and improve their peformance: instead of acquir-
ing exclusive locks on resources, several transactions are allowed to enter the
critical section of a program simultaneously. Transactions commit changes
to shared data structures if they don’t incur any conflict, performing a roll-
back otherwise. This makes sure that each transaction has permanent side
effects only if it can be executed atomically. To achieve the purpose, the
modified data (the so called write set) has to fit the private L1 cache of a
logical processor, so that local changes are not visible from the other proces-
sors. On the other hand, the read set needs to fit the L3 cache. TSX strict
policy treats cache evictions occurring during a transaction as an error, since
it would make temporary changes visible before commitment.

The reason why TSX comes in hand to secure SGX applications is that
any exception, including interrupts, aborts a transaction and jumps to a user-
space handler rather than notifying the OS. This way, even when a page fault
occurs, the application can conceal this event to the OS in the first place,
adopting countermeasures against a possible attack. T-SGX [34] uses this
behaviour to hide page faults, thus preventing the OS from collecting traces
that leak secrets. The core idea is to wrap function calls perfomed in enclave
mode in TSX transactions. However, the implementation is not straightfor-
ward, since TSX supports only read and write sets that fit, respectively, the
L3 and L1 caches and any interrupt will abort transactions that have been
running for too long. A possible solution is to divide the code into execution
blocks that are likely to complete without benign error conditions. However,
since all of these blocks will be wrapped in a separate transaction, page faults
may be exposed in the time interval between two consecutive transactions
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that reside in different memory pages. In order to face this problem, T-SGX
employs a single page, called springboard, which stores a thunk code which
is in charge of starting a transaction and then jumping to the proper code
block, that generally resides in a different page. When a code block ends its
execution, the address of the next block is placed in a register, such as %r15.
Control flow is transferred back to the springboard, which ends the current
transaction and jumps to the next block. The jump instruction is performed
in a new transaction if the next block is labeled as sensitive code whose page
faults need to be concealed. It’s easy to prove that any page fault directly
observable by the OS happens within the springboard: in fact, any attempt
to unmap a code page to induce a page fault results in an aborted transac-
tion, while the only page faults that can be triggered outside a transaction
are the ones happening within the springboard. When an exception arises,
T-SGX employs a simple policy: it restarts the execution of a same block up
to 10 consecutive times, before signaling this event as an attack. The number
of restarts reflects the common benign abort events that may happen during
the execution of a program. The runtime overhead of T-SGX is usually 2x,
which seems a good compromise for an automated technique.

T-SGX effectively thwarts contolled channel attacks as presented in [42].
However, the powerful threat model of Intel SGX allows to mount more
refined attacks that exploit architectural details of CPUs. Specifically, the
Hyper-Threading (HT) technology featured by Intel CPUs allows to concur-
rently run two threads on the same physical core thanks to partial replication
of functional units: each core implementing HT appears to the OS as two
separate logic processors, that can be scheduled independently. However,
some of the resources of the core are not duplicated, notably caches. The
core idea of cache attacks on Intel SGX is mapping on the same physical core
a thread executing in enclave mode and a thread controlled by the adversary,
referred to as spying thread, and then to exploit cache contention between
these threads in order to extract secret information. The privileged attacker
cannot trivially exfiltrate information from contended caches: indeed, since
caches are totally transparent to software, there is no way to directly access
them. Furthermore, a spying thread cannot access memory frames in the
EPC since the TLBs are split: even if the enclave thread caches a virtual to
physical mapping referring to the EPC, the spying thread needs to pass all
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the security checks implemented by the PMH by itself. However, when two
threads reside on the same physical core they contend the L1 cache, and it
may happen that the execution of a thread causes the eviction of cache lines
owned by the concurrent thread. This will produce the evident side effect of
a slower memory access, since the required data will be fetched from lower
levels of the memory hierarchy. By measuring memory access times, the
spying thread can infer useful side-channel information.

The attack described in [3] exploits a novel technique known as Flush +
Flush. An x86 instruction, clflush, forces the eviction of all the cache lines
that correspond to a specific virtual address. Its pecularity is that it takes
more time to execute when entries corresponding to that virtual address are
found in the cache, while it’s faster otherwise. The attack manages to collect
information about the memory access pattern by monitoring page tables. In
fact, when the PMH performs address translation, it caches the chunks of
page table it uses. A root level adversary may clflush the address of the
portion of the page table that refers to the code or data it wants to monitor
during the execution of the enclave. When clflush takes a longer time to
execute, this means that the PMH performed a page table walk on behalf
of the enclave, and that the enclave accessed a releavant page that leaks
secrets. Since cache lines are 64 B wide, they contain 8 page table entries
and thus allow to monitor the access pattern at the granularity of 32 kB. An
alternative approach consists in monitoring the accessed and dirty bits (A/D
bits) of page table entries, that are set whenever a read or write operation
occur. The TLB is always flushed on enclave exit, hence an enclave always
triggers page table walks when it starts its execution. With these methods,
an attacker can monitor the memory access pattern even when instrumenting
code with T-SGX, as page tables are managed by the OS and not included
in the read/write set of a transaction.

The spying thread monitors the access to specific trigger pages, and sends
an interrupt to the enclave when an access is detected. It then inspects the
accessed bits of the page table in order to determine which pages the en-
clave required within two interrupts. Since T-SGX allows a transaction to
restart up to 10 times, a single interrupt is not detected as an attack Even
though the information the attacker can collect is not as complete as a full
page fault trace, in most cases it is sufficient to distinguish secret dependent
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branches. The authors validated the attacks leaking a 512-bit private key
from the double-and-add routine of libgcrypt, used for elliptic curve cryp-
tography. This function exhibits the same control flow as Algorithm 2.1.1,
save for the fact that square operations and multiplications are substituted
by doubling operations and additions, respectively. The A/D bit technique
allows to retrieve a full 512-bit private key while the Flush+Flush ap-
proach up to 485 bits, enough to complete the attack by means of bruteforce.
Flush+Flush technique can monitor accesses to virtual pages with a finer
instruction granularity because the clflush instruction can be executed in
a much tighter loop. However, it allows to detect access to trigger pages at
the much coarser granularity of 32 kB, while the slower A/D bits technique
achieves a resolution of 4 kB.

Both the approaches apply when protecting the enclaves via T-SGX.
Indeed, they don’t require page fault traces and frequent interrupts.

A different cache attack, named Prime+Probe [2], allows to totally cut
necessity for interrupts. In this setting, the spying thread pollutes all the L1
cache lines with dummy data and then executes the enclave. By carefully
measuring access time to the dummy data, it understands which entries were
evicted due to the execution of the enclaved thread. Since the information
that can be collected primarily amounts to the cache sets that were partially
evicted by the enclave, only specific applications with regular access pat-
terns to arrays are vulnerable. Notably, implementations of cryptographic
primitives, such as RSA that rely on precalculated tables and T-table based
implementation of AES are prone to this attack. Prime+Probe suffers
from relevant noise and requires several runs to obtain reliable results. This
condition is not easily achieved in many contexts because of remote attesta-
tion, that allows to establish a secure channel between the enclave and the
user. Since the ephemeral symmetric key is safely stored inside the enclave
and destroyed as soon as the session is torn down, performing a replay attack
to collect enough statistics about the execution of the enclave is not always
possible.

In order to defeat cache attacks, Cloak [20] tries to preload sensitive
portions of the program in the cache after starting a TSX transaction. Since
read or write set evictions result in a roll back, a transaction can only succeed
if its memory accesses hit the cache during its whole execution. Even if TSX
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does not encompass the L1 instruction cache in the read set of a transaction,
the authors empirically verified that instruction cache evictions caused by a
concurrent thread trigger transaction failure. This undocumented behaviour
conceptually allows to preload the L1 instruction cache as well. In order
to achieve this in practice, they devised a low level trick. x86_64 supports
multibyte NOP instructions, for example, the opcode 0x0f1f8000000000. The
NOP is recognized only by its prefix 0x0f1f80, while the remaining zeroes
are padding and can be overwritten. Suppose that the address of the first
zero byte of the NOP is stored in %r14. Let the current instruction be jmp

%r14; %r15 stores the address of the next instruction, instead. We encode
jmp %r15 = 0x41ffe6 in three of the 4 spare bytes of the NOP, obtaining
0x0f1f8041ffe600. When we execute that assembly, the CPU first jumps
to the location pointed by %r14. The NOP and the following 64B of code
will be loaded in the instruction cache. Since we don’t execute the NOP, but
rather jmp %r15, we jump back to the previous location. When we happen
to execute the code in that cache line, the CPU will stumble in a NOP and
ignore padding bytes, thus skipping the instruction encoded in the NOP. This
approach doesn’t use the stack, in order to avoid evictions of the data cache.

Cloak defeats Prime+Probe attacks. In fact, the spying thread that
tries to read its dummy data to measure the access time triggers evictions
of data in the write set of the running transaction. Since Prime+Probe is
already very noisy and unreliable, success rates drop to zero when code is in-
strumented with Cloak. Cloak was used to shield vulnerable implementations
of cryptographic primitives, namely the already cited RSA exponentiation
and T-tables based AES encryption, as well as a tree-based classification
algorithm, exhibiting an overhead that didn’t exceed 30x. Notably, it some-
times improved performance, due to the fact that it forces all the sensitive
computation to happen in the cache, thus improving memory access times.

On the other hand, Cloak is totally inneffective against the Flush+Flush

attack we described. In fact, in that case the cache side channel is used to
infer which page table entries were brought in the L1 as a consequence of
a page table walk. Since page tables are transparently managed by the OS
and PMH, they don’t fall in the read/write set of any transaction running
within the enclave.

Pure cache side channels, like the Prime+Probe technique, and mem-
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ory access pattern leakage are mostly orthogonal. In fact, the latter aim at
discovering secret dependent branches of an application. On the other hand,
cache attacks provide a fine grained analysis of the access patterns of a pro-
gram, but their noise and inaccuracy requires several runs of an application
to collect enough statistics. T-SGX [34] effectively thwarts basic controlled
channel attacks, but is defeated by attacks that exploit cache side channels to
extract information about page table walks. On the other hand, while deter-
ministic multiplexing [35] provides page fault obliviousness, the granularity
of probabilistic cache attacks such as Prime+Probe [2] may leak memory
accesses in the data staging area. Cloak [20], instead, defeats cache side chan-
nels, but since page table walks are not wrapped within a TSX transaction,
it is vulnerable to the A/D bit techniques as well as Flush+Flush [3].

Combining several countermeasures may incur in a great performance
overhead and some technologies such as TSX may not be enabled or sup-
ported on all platforms, thus disabling many of the presented shielding tech-
niques. Even if the scope of this work is limited to memory attacks, they
are not the only concern of Intel SGX. Foreshadow [39] exploits cache side
channels and out-of-order execution quirks to leak sensitive secrets, notably
the private keys used by the Quoting Enclave (QE) to create attestation
reports. This attack totally breaks the remote attestation mechanism, thus
dismantling the security guarantees of Intel SGX.

The variety and effectiveness of the attacks we have just presented high-
light the need to put aside the idea of retrofitting legacy applications to Intel
SGX, and Intel’s guideline to align all sensitive information to a 4 kB seems
a simplistic statement given the presence of attacks that can leak access pat-
terns at a much finer granularity. In this work, we focus on an alternative
approach, which tries to prevent attacks by re-designing applications to re-
move any dependency between memory accesses and the sensitive data. In
particular, the control flow and data access pattern of an oblivious algorithm
does not depend at all on input data. Page table traces are uniform during
every execution, while cache attacks are defeated by breaking the corre-
spondence between the secret indices used to access data structures and the
resulting memory addresses. All the presented countermeasures are hence
unnecessary because the application would exhibit a totally flat and uniform
execution flow by itself, and hence an attacker cannot gain any knowledge
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during its execution.

2.2 Oblivious RAM

Generally speaking, memory is a contiguous array of homogenous entries
that are indexed via an ordinal number, that tells the absolute position
of each element. Besides providing the necessary information to access a
location, the index also represents the logical identifier of each memory cell.
A Random Access Memory (RAM) allows to directly fetch the i-th element
without sequentially scanning the preceding i− 1 ones, which is required by
sequential memories instead.

The correspondence between logical and physical identifiers eases the
implementation and usage of memories. Even when adopting address trans-
lation and other advanced memory management techniques, these basic prin-
ciples still hold: algorithms access data structures using logical indices, such
as integers, that are trivially mapped to virtual addresses. Nevertheless, this
simple mapping allows to infer the sequence of logical identifiers accessed by
the application, referred to as logical access pattern, from the sequence of
physical identifiers accessed by the application, referred to as memory access
pattern, which turns out to be a relevant security issue when the memory con-
tent must be hidden from an adversary who can observe the latter. Indeed,
the memory access pattern can be analyzed to extract meaningful informa-
tion about the logical access pattern of an application, which in turn may
depend on sensitive information. This security issue arises in several appli-
cation scenarios, the most common one being outsourced data storage. In
this context, there are two entities: a client, with limited storage capabilities,
who owns a a big dataset which contains private information, and a remote
untrusted server, which has much significant storage capabilities. Given its
limited storage capabilities, the client offloads it to the server, which exposes
an Access procedure to fetch and update the content of the outsourced
data. In order to preserve the confidentiality of the data, the client encrypts
the dataset before offloading it; nevertheless, by observing the memory ac-
cess pattern of the client, the remote server will be able to infer the logical
access pattern of the client, which may leak sensitive information about the
outsourced data. This leakage can be avoided by breaking the correlation
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between logical indices and memory access patterns: a trivial solution would
be always accessing all the elements to hide which one is actually needed,
but it scales poorly with the size of the dataset. This is where Oblivious
RAMs (ORAMs) come into place. ORAMs are cryptographic primitives
which decouple the logical identifiers of memory locations from their ad-
dresses, resorting to continuous scrambling and re- encryptions to break any
correlation that may arise in subsequent accesses. In ORAM protocols, the
dataset is stored by the remote server in an ORAM data structure; the server
does not need to provide a significant computational power: its task simply
amounts to fetching and writing back the required data, while the scram-
bling and encryption operations happen on the client side. Data fetched
by the client is exchanged through the network, so the bandwidth blowup
is the major figure of merit in evaluating remote ORAM protocols. While
the first ORAM schemes were impractical due to their complexity, the Path
ORAM framework presented in [36] has paved the way for their adoption in
several applications that provide strong security guarantees while incurring
reasonable runtime penalty. We now describe Path ORAM as well as two
improved constructions, namely Ring ORAM and Circuit ORAM, which will
be employed in this work.

2.2.1 Path ORAM

Path ORAM [36] received a lot of attention due to its simplicity, security
and performance.

The basic storage unit is called block or record : its size B varies according
to the data it will contain. Therefore, a dataset with l bits is split inN = d lB e
ORAM blocks. Several blocks are grouped together to make up a bucket.
The parameter Z defines the number of records contained in a bucket.

The Path ORAM is a complete binary tree of buckets with L = dlog2Ne
levels numbered from 0 (root) to L − 1 (leaves). Figure 2.3 represents the
ORAM tree for N ∈ [5, 8] and Z = 4. As the ORAM contains 2L ≥ N

buckets, each containing Z blocks, it is straightforward to observe that there
are more than N blocks in the whole ORAM: thus, there are some blocks,
referred to as dummy, which store random data instead of a portion of the
original data. These additional blocks are necessary to aid the scrambling
operations intended to decouple the position of a block in the ORAM tree
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Bucket 0
Block 0
Block 1
Block 2
Block 3

Bucket 1
Block 0
Block 1
Block 2
Block 3

Bucket 3
Block 0
Block 1
Block 2
Block 3
Leaf 0

Bucket 4
Block 0
Block 1
Block 2
Block 3
Leaf 2

Bucket 2
Block 0
Block 1
Block 2
Block 3

Bucket 5
Block 0
Block 1
Block 2
Block 3
Leaf 1

Bucket 6
Block 0
Block 1
Block 2
Block 3
Leaf 3

Figure 2.3: A Path ORAM with Z = 4. The path leading to leaf 1 is colored
in red

from its logical identifier, which is called block id, or bid in short. A dummy
block is tagged with an empty id, that is bid = ⊥.

The leaves are numbered in reverse lexicographical order by tagging each
left branch along its path from the root with 0 and each right branch with
1. For example to follow the red path, it is necessary to traverse a right
and then a left edge, generating the sequence 10. Once reversed, it becomes
01, which corresponds to the leaf id, shortly denoted as lid, shown in the
picture. Thus, each lid ∈ [0, 2L−1 − 1] identifies a single path from the root
to the leaf. Performing the tree exploration from the LSB of the leaf id will
come in hand when describing the more elaborate Ring and Circuit ORAM
protocols. In order to adopt a uniform convention for all the ORAMs, this
leaf labelling method can be used for Path ORAM as well.

Each block, apart for its block id and its data, also contains the leaf id of
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the path where it resides. Leaf ids play a fundamental role in the retrieval
of data blocks, since the following invariant holds in Path ORAM: each data
block resides in one of the buckets that belong to the path identified by its
leaf id. As a consequence, when a block is stored in a non-leaf bucket, its leaf
id corresponds to one of the leaves of the subtree rooted at that bucket. The
client keeps track of the mapping between a block id and its corresponding
leaf id in the position map, denoted as pos_map in the algorithms. In
addition, the client locally holds a list of blocks which cannot be currently
inserted in the ORAM tree without breaking the invariant property, which
is called stash. We now describe the Access procedure of Path ORAM to
retrieve a block with identifier bid from the ORAM tree. The client retrieves
the leaf id from the position map: lid = pos_map[bid]. It then asks the
server to return the whole path corresponding to lid, appending all the blocks
in the path to the stash. The whole path on the ORAM tree is invalidated
and will be updated at the end of the procedure. Then, the client looks for
a block in the fetched path with tag bid. After that, it samples a random
value lid′ and updates with these value both pos_map[bid] and the leaf id in
the record metadata. In this way, subsequent accesses to the same block will
fetch a different path on the ORAM tree. The new path has no correlation
with the older one, given that the mapping between the block ids and the
leaf ids is not leaked to the server. To keep the stash size small, the client
tries to move as many elements as possible from the stash to the ORAM
tree, a procedure which is called stash eviction, or simply eviction. In order
to avoid that the leaf ids of the blocks in the stash are leaked, the blocks
are evicted from the stash only if they can be placed in the path which has
just been fetched by the client. Therefore, in order to preserve the invariant
that a block is kept in the path that leads to its leaf id, the client tries to
evict the updated record in an empty block contained in a bucket that is a
common ancestor of lid and lid′. The stash eviction is performed from the
leaf to the root in order to push as down as possible the elements contained
in the stash. In fact buckets placed at higher levels of the tree are common
ancestors of an increasing number of leaves, and thus they can host many
more blocks and improve the eviction probability. After placing as many
blocks in the path as possible, the newly constructed path is re-encrypted in
order to hide which data was modified, and is written back to the ORAM, in
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place of the previously invalidated path. A fairly detailed description of the
operations performed by the client during an ORAM access is described in
Algorithms 2.2.1 and 2.2.2, split between the block fetch and path eviction.
FetchBucket and WriteBucket are remotely executed on the server
and respectively read and write the bucket at a certain level of a specified
path. GetMaxDepth evaluates the maximum depth where a block can
reside given its leaf id and the current eviction path: if the value it returns
is greater or equal than the current depth, then the block can reside in the
corresponding bucket without breaking the leaf id invariant.

Algorithm 2.2.1: Path ORAM Fetch
Input: A block id bid
Input: new_data to write to the block, it may be ⊥ if it’s a read

operation
Output: The data corresponding to block bid and its leaf id lid

1 data← ⊥
2 lid← pos_map[bid]
3 new_lid← UniformRandom(0, 2L−1 − 1)
4 pos_map[bid]← new_lid

// look for entry bid in the path lid
5 for l← 0 to L− 1 do

// fetch the bucket at level l from path lid
// bucket is an array of blocks

6 bucket← FetchBucket(lid, l)
7 stash← stash ∪ bucket
8 end
9 foreach block ∈ stash do

10 if block.bid == bid then
11 data← block.payload
12 block.lid← new_lid
13 break
14 end
15 end
16 return (data, lid)

As the client has limited storage capabilities, it is necessary to guarantee
that the stash size does not exceed its memory limits. To this extent, an
upper bound on the stash size S is set: if more than S blocks must be stored
in the stash, then a stash overflow event occurs, which is a failure condition of
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Algorithm 2.2.2: Path ORAM Evict
Input: The lid of the path to evict

1 for l← L− 1 to 0 do

2 bucket← ⊥
3 i← 0

4 foreach block ∈ stash do

/* if bucket at level l is a common ancestor of
block.lid and lid */

5 if GetMaxDepth(lid, block.lid) ≥ l then
6 bucket[i]← block
7 stash = stash− block
8 i← i+ 1

9 end
10 if i == Z then
11 break
12 end
13 end

14 WriteBucket(bucket, lid, l)

15 end

Algorithm 2.2.3: Path ORAM Access
Input: A block id bid
Input: new_data to write to the block, it may be ⊥ if it’s a read

operation
Output: The data corresponding to block bid

1 (data, lid)← Fetch(bid, new_data)
2 evict(lid)

3 return data
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the ORAM. Even worse, in case of a stash overflow, the server comes to know
that S + 1 valid blocks are in the stash, thus causing a slight information
leakage. Path ORAM provides upper bounds on the overflow probability
for each combination of Z and S for Z > 5. The overflow probability of a
Path ORAM with stash size S is Θ(1.6−S) [36]. Empirically, Z = 4 is the
minimum value for which the theoretic bounds still hold and the stash size
is independent of the number of elements N stored in the ORAM.

The bandwidth overhead of an ORAM is defined as the ratio of exchanged
data and block size B. Every time a path is fetched, B · Z · logN bits are
exchanged between the client and the server, thus leading to a bandwidth of
O(Z · logN).

2.2.2 Ring ORAM

Ring ORAM [16,28] introduces critical modifications to the eviction pro-
cedure of the Path ORAM to improve its bandwidth. While the overall struc-
ture and mechanism of the ORAM is left unchanged, the bucket structure
is heavily modified to support the optimizations it introduces. Moreover,
the fully optimized version requires a server capable of performing simple
computations, even though this is not strictly necessary.

The bandwidth overhead of Path ORAM is O(Z · logN) while Ring
ORAM manages to reduce the online bandwidth to fetch a block to O(1).
The first observation to achieve the bandwidth reduction is that evictions
cost O(Z · logN) by themselves, and thus cannot be performed for every
access. The eviction period A rules how many accesses on the ORAM are
performed before full eviction takes place. In Path ORAM, an eviction is
performed after every access, thus A = 1. Conversely, Ring ORAM achieves
higher eviction periods by employing a fixed eviction schedule to uniformly
distribute blocks along paths. Specifically, the paths to be evicted are chosen
by iterating over the leaves of the tree with increasing values of the leaf id;
as each leaf corresponds to a path in the ORAM tree, this schedule allows
to eventually evict all paths in the tree. The advantage of this deterministic
eviction schedule ensures is that every time an evicted path includes a bucket,
it will include its left or right child in an alternated fashion, to maximize the
amount of blocks that are flushed from their parent bucket.

While the overall bandwidth of Ring ORAM remains the same, the cost of
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evictions is amortised over many rounds, yielding visible practical improve-
ments: Path ORAM generates 2.6×more traffic than Ring ORAM [28]. This
approach allows to achieve a much better online bandwidth, when coupled
with some tricks in order to drop the bandwidth required to fetch an element
from O(Z · log(N)) to O(1).

To achieve this bandwidth reduction, each bucket is enriched with addi-
tional metadata, which are reported in Table 2.1. The size of these metadata
is negligible with respect to the block size B, therefore downloading all the
metadata of a path requires significantly less bandwidth than downloading
the path itself. We now show how these metadata can be employed by the
client in order to reduce the bandwidth to fetch the requested block.

The client first downloads the metadata of all the buckets in a path,
which contain information about the blocks that a bucket contains. Unlike
Path ORAM, which downloads all the Z records in a bucker, the client of
Ring ORAM picks only one block from each bucket: if the requested block
is found, the client selects it, otherwise it chooses one at random. The
records that have already been accessed are marked as invalid, in order to
prevent correlation attacks across ORAM accesses. However, in this way
logN potentially valid blocks would be added to the stash. Since evictions
are not performed every round, this would cause the stash size to grow
fast, overflowing the limited storage capabilities of the client. This pitfall
can be overcome if all the blocks, save for the one that the client wants to
access, are dummies. Hence each bucket also contains D records that are
guaranteed to be dummy. The Z possibly non-dummy blocks are permuted
to prevent the server from distinguishing dummy records from the valid
ones. The bucket metadata stores the Pseudo-Random Permutation (PRP)
in encrypted form, along with the block ids of the Z valid blocks. To maintain
the invariant that at most one valid block is fetched from a path, every bucket
is reshuffled after D accesses to refresh the dummy blocks: this operation,
that is named EarlyReshuffle, guarantees that a bucket never runs out of
dummy records, and is invoked each time the counter of accesses to a bucket
hits D. We highlight that the validity bits of the records contained in a
bucket, along with the total number of accesses before an EarlyReshuffle,
are stored plaintext metadata even in unprotected memory. In fact, not only
the server knows how many times a bucket is accessed and which record is
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Table 2.1: Format of the bucket metadata

Field Bit width Elements Description
IV λ 1 IV of given security parameter

Block id logN Z Block ids of the Z valid blocks
Leaf id log (2L−1 − 1) Z Leaf ids of of the Z valid blocks

PRP log (Z +D) Z Index of the valid blocks in the
bucket

Valid 1 Z +D
Set if the corresponding record
has been fetched

Counter logD 1 Counts the number of accesses
to the block

selected from time to time, but also cooperates in updating these portions
of bucket metadata. Therefore, the server is a honest but curious actor
that does not tamper with these values, but collaborates with the client to
implement the protocol.

In order to allow the decryption of each record independently, Ring
ORAM adopts a block cipher in Counter Mode (CTR Mode). The Ini-
tialization Vector (IV) is contained in the bucket metadata, as it is a public
parameter. The offset of a block in the bucket serves as a way to derive the
right counter to encrypt the block itself. This first trick allows to erase the
Z factor from the bandwidth, as the client requests only one block from each
bucket in a path.

The so called XOR Technique further reduces the bandwidth by a log (N)

factor, thus obtaining O(1) online bandwidth. Suppose that the dummy
blocks are all ciphertexts encrypting a plaintext value d fixed by the client
and unknown to the server. In this case, the client can reconstruct locally
the dummy record di as it appears in the i-th bucket: indeed, di can be
computed by encrypting d in CTR Mode mode with a counter CTRi which
is derived from the IV of the i-th bucket and the offset of the dummy block
in the bucket. Suppose that the x-th bucket is the one containing the target
record. Therefore, the server can return a single block obtained by XORing
together all the blocks in a path, which is equivalent to a random masking
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of the target block:

b =

L−1⊕
i=0

bi =

 L−1⊕
i=0,i 6=x

bi

⊕ bx = mask ⊕ bx (2.1)

where bx is the real block among the L blocks chosen by the client. As the
client can reconstruct the dummy records, it can also reconstruct the mask,
thus retrieving the block bx: L−1⊕

i=0,i 6=x
di

⊕ b = mask ⊕ b = bx (2.2)

This way, the correct block can be retrieved by sending only B bits over
the network, thus reaching O(1) online bandwidth.

The Access procedure of ring ORAM is extensively showed in Algo-
rithm 2.2.4. While its overall structure is the same as Path ORAM, we
need some refinements to account for the modified eviction procedure and
the bucket reshuffle. In the first phase, the client fetches the metadata of
all buckets in a path by the FetchBucketMetadata function. Then,
it employs the SelectOffset (detailed in Algorithm 2.2.5) to choose the
block to be fetched from each of the L buckets in the path. The server
employs these offsets to retrieve the blocks and computes a single block by
the XOR trick, which is sent to the client. The eviction procedure reads
the whole path identified by eviction_path and performs the same opera-
tions as the Path ORAM, save for the fact that, after eviction, the client
generates a PRP for each bucket and shuffles the bucket accordingly. Lastly,
the EarlyReshuffle scans the metadata of the fetched path and deter-
mines the buckets which needs to be re-shuffled, i.e., all the buckets whose
bucket.counter is greater than D. the client fetches all these buckets from
the ORAM tree, it adds all their valid and non-dummy entries to the stash
and it refills the buckets, uploading them once permuted.

The Ring ORAM features many parameters, summarised in Table 2.2.
The formal proof of their relationship is treated in [16], here we just present
how to derive them. Once again the stash overflow probability decreases
exponentially with stash size.

Ring ORAM is an elaborate construction, and even if the basic working
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Algorithm 2.2.4: Ring ORAM Access function as implemented on
the client
Input: A block id bid
Input: new_data to write to the block, it may be ⊥ if it’s a read

operation
Output: The data corresponding to block bid

1 persistent variable access_counter ← 0
2 persistent variable eviction_path← 0

3 lid← pos_map[bid]
4 new_lid← UniformRandom(0, 2L−1 − 1)
5 pos_map[bid]← new_lid

6 for l← 0 to L− 1 do
// meta is a struct as described in Table 2.1

7 meta← FetchBucketMetadata(lid, l)
8 (offset[l], dummy[l])← SelectOffset(meta, bid)

9 end

/* fetch the blocks from the server and perform the pseudo
XOR trick */

10 data← XorTrick(lid, offset, dummy)
11 if data == ⊥ then
12 data← StashFind(bid)
13 StashRemove(bid)

14 end

15 if new_data 6= ⊥ then
16 stash← stash ∪ (bid, new_lid, new_data)
17 end
18 else
19 stash← stash ∪ (bid, new_lid, data)
20 end

// perform stash eviction
21 if access_counter mod A = 0 then
22 EvictPath(eviction_path)
23 eviction_path← eviction_path+ 1

24 end
25 access_counter ← access_counter + 1

26 EarlyReshuffle(lid)
27 return data
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Algorithm 2.2.5: Ring ORAM SelectOffset function
Input: A block id bid
Input: Encrypted metadata meta of a bucket
Output: The chosen offset in the bucket and whether it is a dummy

1 dec_meta← Dec(meta)
2 dec_meta.counter ← dec_meta.counter + 1

/* find the indices of dummies by discarding the ones in
the PRP */

3 dummies← [0, Z +D − 1]− dec_meta.prp
// dicard dummies that were already fetched

4 dummies← {index ∈ dummies | dec_meta.valid[index] == 1}
// select a random dummy

5 offset← dummies[UniformRandom(0, |dummies| − 1)]
6 is_dummy ← true

7 for i← 0 to Z do
8 if dec_meta.bid[i] == bid ∧ dec_meta.valid[dec_meta.prp[i]]

then
/* if the bid is matched but it is invalid, the

required data was already fetched and can be found
in the stash */

9 offset← dec_meta.prp[i]
10 is_dummy ← false
11 end
12 end

13 return (offset, is_dummy)

Table 2.2: Parametrization of the Ring ORAM

Parameter Description Value
Z Valid blocks Free parameter, ≥ 4

A Eviction rate arg max
A

Z · ln
(

2Z

A

)
+
A

2
− Z − ln (4)

1

D Dummy blocks minimize

(
2Z

S
· (1 +Q(A+ 1, S))

)
S Stash size P [overflow] <

AS

(2Z)S(1− e−q)

2

1
Q(a, x) is the regularized incomplete gamma function

2
q = Z · ln

(
2Z

A

)
+
A

2
− Z − ln (4)
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principle is the same as Path ORAM, it introduces many tweaks to improve
its bandwidth requirements, that is the major source of latency in the remote
scenario.

2.2.3 Circuit ORAM

Circuit ORAM is another variation of Path ORAM that introduces a
totally different eviction procedure. Circuit ORAM is mainly optimized for
hardware implementations [40], focusing on reducing as much as possible
the stash size S, the number Z of non-dummy blocks in each bucket and the
complexity of the circuit required for the eviction.

The main purpose of Circuit ORAM is to minimize the number of scans
of the stash and the fetched path during the eviction. The algorithm frees
the stash entry holding the block that can reside in the deepest bucket of
the path. This record is carried along the eviction path, from root to leaf,
until either the algorithm finds a new block that can go deeper, or it reaches
the maximum depth for the current block: in the first case, the two blocks
are swapped, while in the second, the current record replaces a dummy one.
This process goes on until it reaches the leaf.

Nonetheless, there is a great pitfall in this strategy: while carrying down
a block towards its target bucket, it is possible that there are no free entries
in the target bucket to host it, which means that it needs to be written
back to the stash. To avoid this issue, the algorithm needs to determine the
destination of the currently evicted block by considering both the deepest
bucket which can host it and and the fullness of the buckets. In this way,
it is possible to decide beforehand if it is better to leave the block in a less
deep bucket. To this extent, the eviction procedure does two preliminary
sweeps on the evicted path metadata to determine which blocks should be
moved as deep as possible, to avoid that a block must be written back to
the bucket it belong or the stash, which would make an eviction pass totally
worthless. Then, it does a last sweep where the blocks are effectively moved
in the target buckets.

The first sweep is done by the PrepareDeepest function, reported in
Algorithm 2.2.6. PrepareDeepest starts by finding the block of the stash
that can reside in the deepest bucket. The stash is considered a bucket placed
at level −1, right before the root of the ORAM tree. Then, the buckets are
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Algorithm 2.2.6: Circuit ORAM PrepareDeepest
Input: A list of buckets bucket
Input: The leaf id lid of the current path
Output: An array deepest

// the stash is considered a bucket at level -1
1 src← ⊥
2 deepest_level← −2

3 foreach block ∈ stash do
/* GetMaxDepth evaluated the maximum depth in the

current path where a block can be moved */
4 d← GetMaxDepth(block.lid, lid)
5 if d > deepest_level then
6 src← −1
7 deepest_level← d

8 end
9 end

10 deepest[−1]← ⊥
11 for l← 0 to L− 1 do

/* record the level of the deepest block that can reside
in the current bucket */

12 deepest[l]← src

13 for i← 0 to Z − 1 do
14 d← GetMaxDepth(bucket[l].block[i].lid, lid)
15 if bucket[l].block[i].bid 6= ⊥ ∧ d > deepest_level then
16 deepest_level← d
17 src← l

18 end
19 end

20 if deepest_level < l then
21 src← ⊥
22 end
23 end

24 return deepest
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scanned one by one from the root to the leaf. When the i-th level of the
tree is considered, the variable src holds which of the previous i− 1 buckets
contains the block that can travel deeper in the path, while deepest_level
is equal to the max depth it can reach. Hence, deepest[i] will be assigned
the source level of the deepest block found so far, or ⊥ if no viable blocks
exist. Line 15 updates the variable src only if a bucket contains a block
whose depth is ≥ deepest_level. Since the buckets are scanned from root
to leaf, this policy favours the levels that are closer to the root, which are
more valuable since they can contain blocks assigned to a greater number of
leaves. The helper function GetMaxDepth finds the level of the deepest
common ancestor of two leaves and can be implemented in O(1) if specific
machine instructions are available, or O(logN) otherwise.

The second sweep of the eviction is done by the PrepareTarget func-
tion, which is reported in Algorithm 2.2.7. For each bucket i starting from
the leaf, PrepareTarget reads the correspoding deepest[i] entry to test
whether or not there is a block in the upper buckets that can reside in the
current one. That block will be evicted to the current bucket either if it
already has a free block, or if it contains a block that will be moved down,
thus making room for a new record. When one of this condition holds, dst
is assigned the current bucket level, while src the value of deepest[i]. Once
that src and dst are set, all the buckets between dst and src are skipped. In
fact, the algorithm has already managed to free a block of the more valuable
bucket at level src. When getting to src, target[src] will be set to dst (line
5), meaning that the deepest block in that bucket will be picked up and
moved to the level dst.

Finally, the third sweep scans the path from root to leaf and evicts the
deepest blocks of each bucket to the level pointed by target. Eventually,
the whole path is re-encrypted and written back to the ORAM tree. The
whole eviction procedure is reported in Algorithm 2.2.8.

This eviction procedure simply tries to move the most promising blocks
as deep as possible, freeing slots that are closer to the root. However, at most
one entry at a time is evicted from the stash, whose size is doomed to increase
monotonically as each access appends exactly one block to it. To face this
problem, the eviction procedure is applied to two different paths, according
to the same deterministic schedule used by Ring ORAM. The usage of such
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Algorithm 2.2.7: Circuit ORAM PrepareTarget
Input: A list of buckets bucket
Input: The leaf id lid of the current path
Input: The output of Algorithm 2.2.6 deepest
Output: An array target

// source level of the block to evict
1 src← ⊥
// destination level of the block to evict

2 dst← ⊥
3 for l← L− 1 to 0 do

/* if destination was reached, write the src to the
target array */

4 if l == src then
5 target[l]← dst
6 dst← ⊥
7 src← ⊥
8 end
9 else

10 target[l]← ⊥
11 end

/* bucket.HasFreeBlock returns true if the bucket
contains a dummy record */

12 has_free_block ← bucket[l].HasFreeBlock()

/* you can evict a block to the current bucket if it has
a free block or it will evict a block downwards:
target[l] 6= ⊥ */

13 if (dst = ⊥ ∧ has_free_block ∨ target[l] 6= ⊥) ∧ deepest[l] 6= ⊥
then

14 dst← l
15 src← deepest[l]

16 end
17 end

// manage the stash
18 target[−1]← dst

19 return target
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Algorithm 2.2.8: Circuit ORAM Eviction
Input: A list of buckets bucket
Input: The leaf id lid of the current path

1 deepest← PrepareDeepest(bucket, lid)
2 target← PrepareTarget(bucket, lid, deepest)

3 hold← ⊥
4 dst← ⊥
5 if S 6= ∅ ∧ target[−1] 6= ⊥ then
6 hold← arg maxs∈stashGetMaxDepth(lid, s.lid)
7 stash← stash− hold
8 dst← target[−1]

9 end

10 for l← 0 to L− 1 do
11 to_write← ⊥
12 if l = dst ∧ hold 6= ⊥ then
13 to_write← hold
14 hold← ⊥
15 dst← ⊥
16 end

17 if target[l] 6= ⊥ then
18 index←

arg maxi∈[0,Z) GetMaxDepth(lid, bucket[l].block[i].lid)

19 hold← bucket[l].block[index]
20 bucket[l].block[index].bid← ⊥
21 dst← target[l]

22 end

23 if to_write 6= ⊥ then
24 for i← 0 to Z − 1 do
25 if bucket[l].block[i].bid = ⊥ then
26 bucket[l].block[i]← to_write
27 break
28 end
29 end
30 end
31 end
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a schedule is required in order to keep the stash size small, however it has
the drawback that the evicted paths may be different from the one fetched
to retrieve a certain block. Since this block must be replaced by a dummy
block in the ORAM tree, then the client has to re-encrypt the whole path in
order to conceal which particular record was extracted. In conclusion, the
Access procedure has to fetch and write back three paths, the one where the
requested block is located and the two which must be evicted according to
the deterministic schedule based on reverse lexicographical ordering. This
is a great disadvantage in a remote protocol, since this implementation is
the most bandwidth hungry of all. However, Circuit ORAM is designed to
be implemented in hardware: even if the "client" is a separate entity, it
resides on the same die as the "server", which is a simple memory. The
bandwidth cost is not a problem in this local scenario, where data does not
travel through a high latency network when exchanged between the client
and the server.

Despite the bandwidth, the multiple evictions of Circuit ORAM allows
the stash size to be the smallest of all the described protocols: the stash
overflow probability decreases as 14 · e−S , which allows to allocate a stash
of a handful of elements even for high security parameters. The theoretical
bound still hold when adopting smaller values for Z, which makes Circuit
ORAM the solution that incurs in the smallest memory overhead.

2.2.4 Recursive position map

All of the ORAM protocols that we described assume a client that has
strongly constrained resources in terms of memory. Even if we focused our
attention on the sizing of the stash in order to prevent its overflow, the client
needs to store locally the position map as well. It turns out that its size grows
linearly with the number of blocks that are stored in the ORAM, making it
worthless in case its block size B is in the same order of magnitude of the
leaf ids or the number of blocks is too high.

In such cases, the solution is to store the position map recursively into a
hierarchy of ORAMs until it requires O(1) local client storage [33]. Let C be
the the number of entries in the local position map of client and let’s assume
that the blocks stored in the recursive position map host C entries as well.
Even though this is not strictly necessary, it simplifies both the complexity
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analysis and the implementation. Let N be the number of elements contained
in the ORAM, with every block id bid ∈ [0, N − 1]. Since the ORAMs we
presented have the shape of a binary tree with L = dlog2Ne levels and 2L−1

buckets, and can hold up to 2L blocks, without loss of generality we assume
that N is a power of two as well.

The recursive position map consists of the array pos_map with C entries
stored on client side and several intermediate ORAMi, with 1 ≤ i ≤ R =

dlogC (N)e − 1, stored on server side. After accessing these data structures,
the client retrieves the leaf id of the block with id bid it wants to fetch. The
ORAM that actually contains the data is named ORAM0.

Each leaf id in pos_map[j] references a portion of the original position
map of size:

len0 =

⌈
N

C

⌉
that contains indices for block ids in the range [j ·len0, (j+1)·len0−1]. Given
a block id bid that the client wants to retrieve, the integer idx0 = b bidlen0

c
is used to access the locally stored position map pos_map. The leaf id
pos_map[idx0] is used to fetch a block in ORAM1 which stores an array
pos_map1 with C entries. The j-th entry of this array references

len1 =

⌈
len0
C

⌉
contiguous block ids in the range [idx0 · len0 + j · len1, idx0 · len0 + (j + 1) ·
len1 − 1]. Among these C entries, the client selects the idx1-th one, where
idx1 = b bid−idx0·len0

len1
c, which contains the leaf id for a block in ORAM2.

Eventually, after R recursive steps, the client obtains a block which con-
tains C entries, each referencing lenR = 1 block id. The client selects the
idxR-th entry of this block, where idxR = b bid−

∑R−1
z=0 idxz ·lenz

lenR
c, obtaining the

leaf id of the block with id bid, which can be used to finally fetch the block
from ORAM0.

In order to identify the proper block throughout the Access procedure
in each ORAMi, 1 ≤ i ≤ R, the client needs to employ unique block ids for
each of these ORAMs. Specifically, for ORAMi, each block is identified by the
concatenation of all the indexes idx0, . . . , idxi−1 employed in all the previous
recursion steps to identify the path to be fetched in the next ORAMs. For
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instance, the block with index idx0 in ORAM1 stores the position map of
blocks of ORAM0 with ids in the range [idx0 · len0, . . . , (idx0 + 1) · len0− 1];
similarly, the block with index idx1||idx0 in ORAM2 stores the position map
for blocks of ORAM0 with ids in the range [idx0 · len0 + idx1 · len1, . . . , idx0 ·
len0 + (idx1 + 1) · len1 − 1].

The last problem to be addressed is that evictions of fetched blocks in
ORAMi map them to new leaves, thus requiring to update the the block of
ORAMi−1 which contains the leaf id of the fetched block. To this extent, the
new leaf id for the block which will be fetched in ORAMi can be chosen before
the block fetched in ORAMi−1 is written back, hence storing in ORAMi−1

the updated leaf id for the corresponding block of ORAMi. Algorithm 2.2.9
outlines the retrieval of the leaf id lid for a block with id bid in the ORAM0,
combining all the ideas described so far. Two procedures read and write

are employed to fetch and write back elements from the various ORAMs: the
former fetches from ORAMi the path with id lid and look-for the block with
id rec_bid in this path, while the latter evicts the fetched path to ORAMi

by taking into account that the updated leaf id for the block with id rec_bid
is the value ev_lid sampled in the previous iteration.

The retrieval of the correct leaf id via recursion impacts the performance
of the ORAM. The time complexity can be evaluated in terms of exchanged
data, that is O(B · log (N)) for any tree-based ORAM if we consider Z as a
constant factor which does not depend on the number of elements N. Since
the size of ORAMi is Ci, the resulting time complexity is:

R∑
i=1

B · log2 (Ni) =

logC (N)−1∑
i=1

B · log2 (Ci) = B · log2(C)

logC(N)−1∑
i=1

i

= O(B · log2(C) · log2C(N))

If we change the base of the logarithm, we obtain:

O
(
B · log2(C) · log2C(N)) = O(B · log2(C) · log22(N)

log22(C)

)
= O

(
B

log2C
log22N

)

The number of bits to to encode a leaf id is log2N−1 since there are 2L−1

leaves, with L = dlog2Ne. In order to achieve O(1) storage on the client
side, the block size of the recursive position map has to be BR ∈ O(log2N).
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Algorithm 2.2.9: RecursiveORAM leaf id resolution
Input: A block id bid
Output: The leaf id of the block

1 len← dN/Ce
2 rec_bid← ε
3 offset← 0
4 ev_lid← GenRandLeaf()

// scan over the client-side pos_map
5 idx← bbid/lenc
6 lid← pos_map[idx]
7 offset← idx · len
8 rec_bid← idx || rec_bid
9 pos_map[idx]← ev_lid

10 for i← 1 to R do
// fetch recursive position map chunk

11 rec_pos_map← ORAMi.Read(rec_bid, lid)
// find next leaf id

12 len← dlen/Ce
13 idx← b(bid− offset)/lenc
14 lid′ ← rec_pos_map[idx]

// update and write back recursive position map chunk
15 ev_lid′ ← GenRandLeaf()
16 rec_pos_map[idx]← ev_lid′

17 ORAMi.Write(rec_bid, lid, rec_pos_map, ev_lid)
// update recursive block id and offset

18 rec_bid← idx || rec_bid
19 offset← offset+ idx · len
20 ev_lid← ev_lid′

21 lid← lid′

22 end

23 return lid
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The block size of the last level ORAM B0 is an independent parameter, and
can thus be chosen to minimize the bandwidth due to recursion.

If we choose B0 = log2N , the overhead due to recursion is:

BR · log22N

B0
=

log32N

log2N
= log22N

while choosing a larger block B0 = log22N incurs in a overhead of O(log2N)

[36]. Even if this seems a convenient choice of parameters, such a big block
size may become impractical also for moderate ORAM sizes and may be
hard to adopt in common applications, that usually require to store much
smaller records.

2.2.5 Oblivious Data Structures

The ORAM protocols we have described require a position map, either
stored on the client or recursively stored in hierarchical ORAMs of increasing
size, in order to access data blocks. The position map allows to access a
generic elements in the ORAM. This comes in hand when ORAMs are used
to mimic the functionality of a RAM or wrap data structures such as arrays,
that in fact can be accessed at random locations. However, several data
structures inherently exhibit a hierarchical access pattern, which requires to
necessarily retrieve some elements before fetching the desired one. It is the
case of trees, whose exploration always starts from the root and follows a
path towards a leaf. Each internal node is connected to a limited number of
successors, based on the branching factor.

In such cases, random access is not useful, hence the usage of a full
position map can be avoided. Oblivious Data Structure (ODS) improve the
performance of ORAM schemes leveraging the access pattern of the data
structure they encapsulate [41]. For example, an ODS that wraps a tree-
like structure requires the client to store only the position map entry that
points to the root, since each access to internal nodes will start from the
root anyways. The root, in turn, will contain the necessary information to
reach its children. Since each ORAM block is uniquely identified by the tuple
(block_id, leaf_id), it serves as a pointer for the block. Thus, an ORAM
block that represents the root of a k-ary tree will hold the node content
and k pointers to its children, specified as (block_id, leaf_id) tuples. The
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Search key

LEFT CHILD RIGHT CHILD

Block id Block id

Leaf id Leaf id

Figure 2.4: Block of an ODS implementing a binary search tree

structure of internal nodes is depicted in Figure 2.4. While the block id refers
to the logical index of an entry, the leaf id tells the client in which path the
block is stored. Since the leaf ids are now stored in other blocks of the same
ORAM, when these ids are changed then the pointer in the parent node
must be updated accordingly. To this extent, the same eviction strategy
discussed for the recursive position map, outlined in Algorithm 2.2.9, can be
employed. In fact, ODS’s can be seen as a sharper way to store the position
map recursively.

We will extensively use ODS to wrap binary search trees to implement
our algorithms. There are other examples of data structures can benefit from
this approach, though, such as graphs [41] and linked lists.

2.3 Substring Search Algorithms

Substring search algorithms address the problem of finding the positions
of the repetitions, or occurrences, of a string, named pattern, in a larger
string named text. There are many solutions to this problem that can be
organized in several taxonomies, according to the size of the inputs, number
of patterns to search, matching strategy or additional requirements, such as
approximate matching [21].

Here we discuss algorithms that exactly match the pattern and that per-
form the search in sublinear time with respect to the length of the text. The
scenario addressed by these algorithms is the search of many patterns in the
same large string, which justifies a computationally intensive preprocessing
stage that builds an index of the text. Such index is later used to query as
many patterns as needed without applying any change to it. This is usually
the only practical solution when searching for many different patterns in a
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big text, whose size is in the order of hundreds of MB or even GB. On the
other hand, full-text indices don’t usually support updates and require to
re-run a full preprocessing step each time the text changes. Since this is a
computationally demanding task, adopting a full-text index may be worth
only in case the text rarely changes (e.g., when the text is genomic data).

We now introduce some notation that will come in hand in the following
sections. A string is a sequence of symbols that belong to a finite alphabet
Σ. Its characters exhibit a total order, meaning that it is possible to lexico-
graphically sort strings over Σ. A special symbol $ /∈ Σ is optionally used
to delimit the end of a string. The total order relationship on Σ is trivially
extended to Σ ∪ {$} by introducing the relationship that the symbol $ is
smaller than any symbol σi ∈ Σ. The characters of the string are indexed
in an array-like manner: given a string S, S[i] is its i+ 1-th character, with
i ∈ [0, |S|− 1]. Substrings are defined via their range: S[i, j] is the substring
that begins at the i-th character and ends at the j-th (inclusive). We denote
the substring s[i, |S|−1], i.e., a suffix of S, as S[i, ], while similarly we denote
as S[, j] the prefix of S ending at j (inclusive) (i.e., the substring S[0, j]).
Given two strings S1, S2, S1 v S2 denotes that S1 is a prefix of S2. By
convention, we use P to denote the pattern and T for the text, with their
respective lengths m = |P | and n = |T |. All the algorithms discussed in the
following aims at finding all the positions of occurrences of P in T , that is
the set of integers PosP,T = {i ∈ {0, . . . , n−m} | T [i, i+m− 1] = P}. We
will denote the empty string by ε.

2.3.1 Suffix Trees

A suffix tree is a full-text index that provides support for many string
processing algorithms, and notably allows to search for a pattern in O(m)

time irrespective of the length of the text. The most efficient algorithm [37] to
build a suffix tree runs in Θ(n) time and requires Θ(n) space. Even though
the asymptotic bounds look promising, they hide very high multiplicative
constants: suffix trees occupies about 20x the space of the initial string,
making them very demanding in terms of memory consumption. To simplify
the construction of suffix trees, we first show how to construct a suffix trie,
and then we discuss how to obtain a suffix tree from the constructed trie.

A suffix trie is a |Σ|+ 1-ary tree which stores all the suffixes of a string
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S. Each internal node of a suffix trie may have up to |Σ|+1 children, and its
edges are labeled with a symbol of the alphabet or the end-of-string delimiter
$. Each leaf of the suffix trie corresponds to a suffix of the string S, which
can be obtained by concatenating all the labels of the edges along the path
from the root to the leaf; thus, each leaf is marked with the index where
the corresponding suffix starts in the original string. Specifically, a suffix
trie is built by inserting all the suffixes of the string S in the trie, as shown
in Algorithm 2.3.2. Algorithm 2.3.1 implements the insertion of a string in
the trie. The process starts at the root of the trie: the algorithm consumes
one character of the string at every step, either traversing an existing edge
marked with the current character of the string, or allocating a new node,
linked to its parent with an edge whose label is the current character. The
process ends with the creation of a leaf, that stores the current index where
the suffix occurs in the original string.

Algorithm 2.3.1: Suffix trie prefix Insert
Input: The root of a suffix trie
Input: A string S over the alphabet Σ
Input: The index that identifies the string

1 node← root

2 for i← 0 to |S| − 1 do
3 next_node← node.child[S[i]]

4 if next_node = ⊥ then
5 next_node← CreateEmptyNode()
6 node.child[S[i]]← next_node
7 end

8 node← next_node
9 end

// add the leaf $ and mark it with index
10 node.child[$]← CreateLeaf(index)

Although Algorithm 2.3.2 builds a suffix trie in O(n2) time, it is simple
enough to give the general idea. A more advanced algorithm that exploits a
richer representation of internal nodes achieves the same goal in O(n). The
outcome of a run for the string alfalfa is shown in Figure 2.5. A suffix tree1

1even though suffix trees store more information, we neglect it as it doesn’t come in
hand in substring search
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Algorithm 2.3.2: Suffix trie Construction
Input: An input string T over an alphabet Σ
Output: The corresponding suffix trie

1 trie← CreateEmptyNode()

2 for i← 0 to |T | − 1 do
3 Insert(trie, T [i, ], i)
4 end

// add the empty string
5 Insert(trie, ε, |T |)
6 return trie

is a compact form of suffix trie, as it is obtained by erasing all the sequences
of nodes with a single edge (e.g., the paths highlighted in red in Figure 2.5)
and concatenating their labels in a single one. It is possible to prove that
this simple operation allows to shrink the memory required to store a suffix
tree to O(n). The result of edge compression is depicted in Figure 2.6.

It is possible to immediately spot some recurring properties of suffix trees.
By construction, they have |S|+ 1 leaves, each one corresponding to one of
the suffixes of S or the empty string ε. The number of internal nodes is not
fixed, but it is upper bounded by 2 · |S|. The branching factor is at most
(|Σ| + 1), as, for all the edges starting on the same node, their labels start
with distinct characters; however, each internal node has a varying number
of children, according to the structure of the initial string. Moreover, both
the depth and the number of nodes at the same level highly depend on the
structure of the original string, and is not known in advance. Given a path
from the root of the tree to a node, we call the concatenation of all the edge
labels along this path as path label. A path label can lead to only one internal
node by construction.

In order to employ suffix tree to look for occurrences of a pattern P , it
is worth noting that each occurrence of P is a prefix of a suffix: indeed,
as an occurrence of P is defined as an index i ∈ {0, . . . , n −m} such that
T [i, i+m− 1] = P , then P is necessarily a prefix of T [i, ]. Therefore, all the
occurrences of a pattern can be retrieved via a simple tree exploration, since
a suffix tree allows to easily find all the prefixes of the suffixes T . Algorithm
2.3.3 describes this process. The exploration starts at the root of the suffix
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Figure 2.5: Suffix trie for the string alfalfa
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tree, looking for the edge whose label starts with the first character of the
pattern (line 5. If there is no such edge, the search for a substring fails,
otherwise the edge label label is compared against the string. If the label is
a prefix of the current pattern, |label| characters of the pattern are consumed,
the edge is traversed and the process restarts at the next node, considering
the suffix of the pattern that starts at index |label|. If a mismatch occurs in
the middle of label, then the pattern does not occur in the text. The process
goes on until the whole pattern is consumed: if this happens in the middle
of an edge, it is traversed anyways. The sequence of nodes explored by a
pattern P is fixed since each internal node has at most one child whose edge
label begins with a specific σi ∈ Σ. Moreover, all the suffixes beginning with
P will traverse the same exact path, eventually passing through in the final
node reached by P . Hence, all the leaves of the subtree rooted at that node
represent suffixes whose prefix is P , hence their tags represent the positions
of the text where the pattern occurs.

For example, when looking for the pattern P = lfal, the algorithm first
descends in the intermediate node n3, consuming the first three characters of
P . Then it goes to the leaf marked with 1, that is, in fact, the index where
lfal occurs in alfalfa.

2.3.2 Suffix Arrays

Suffix arrays hold the starting indices of all the suffixes of a string once
they are sorted lexicographically. Although less powerful than suffix trees,
they represent a much more compact full-text index. In fact, they contain
exactly n + 1 entries, each one requiring dlog2 ne bits to store the position
where a suffix starts. The overhead in terms of memory consumption in
order to store a suffix array is dlog2(n)e/dlog2(|Σ|)e, as dlog2(|Σ|)e is the
number of bits used to encode the characters of the alphabet Σ.

A trivial strategy to generate a suffix array is applying a sorting algorithm
to the suffixes of a string. The complexity of sorting is O(n log n), while the
lexicographical comparison between strings of length between 0 and n takes
at most O(n), yielding a total complexity of O(n2 log n). However, there is
an efficient algorithm that exploits the natural redundancy of the suffixes of
the string to perform the same task in Θ(n) time and space [26].

A more original way to achieve the same purpose is lexicographically
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Algorithm 2.3.3: Suffix tree SubstringSearch
Input: An input string P over an alphabet Σ
Input: The root node of a suffix tree stree
Output: The occurrences of P in the tree

1 node← stree
2 i← 0

3 while i < |P | do
4 leading_char ← P [i]
5 node← node.child[leading_char]

6 if node = ⊥ then
// a mismatch occurred

7 return ∅
8 end
9 else

/* we assume that the edge label is stored in the
child node */

10 label← node.label
11 if label v P [i, ] then

// match |label| characters of the pattern
12 i← i+ |label|
13 end
14 else if P [i, ] v label then

// all the pattern has been consumed
15 i← |P |
16 else
17 return ∅
18 end
19 end
20 end

21 return all the leaf tags of the subtree rooted at node
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Figure 2.7: Suffix array SA of the string alfalfa

sorting the outgoing edges of each node in the suffix tree, placing as the
leftmost edge the one with the lexicographically smallest label and as the
rightmost edge the one with the lexicographically greatest label, and then
visit the tree with a depth-first search, merging into an array all the ids of the
visited leaves (which corresponds to the indexes of a suffix by construction
of the suffix tree). The suffix array for the string alfalfa is shown in Figure
2.7.

Each row of the matrix on the left side is a rotation of the initial string
alfalfa$. The characters highlighted in red represent the suffix up to the
terminator. As all the rows are lexicographically sorted, then the suffixes
are lexicographically sorted too; the suffix array is built by concatenating
the indices of the suffixes of the original string, i.e., the starting positions of
the suffix in the original string. It is easy to note the order of the indexes is
the same as the leaf ids of the suffix tree in Figure 2.6.

Looking for occurrences of a pattern P in a suffix array still relies on
the property that each occurrence is a prefix of a suffix. In particular, as
the suffix array contains the indices of all the suffixes in lexicographical
order, then all the suffixes with the same prefix P represents a contiguous
portion in the suffix array: therefore, to identify this portion, it is sufficient
to identify the lexicographically smallest an greatest suffix whose prefix is
P . As the suffixes are lexicographically sorted in the array, these can be
efficiently retrieved with two binary searches. Algorithm 2.3.4 shows the
binary search to find the least suffix. Its only peculiarity is that whenever
a suffix starting with P is found, the search continues in the left subtree
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in order to potentially find a lexicographically smaller suffix (line 9); in the
meanwhile, idx keeps the index of the smallest occurrence happened so far.
Since the search continues in the left subtree when there is a match, this
algorithm is informally named leftmost binary search: the rightmost search
is trivially its dual, as it proceeds in the right subtree to find a greater match.
A binary search on an array with n + 1 requires O(log n) iterations; in our
case, at each iteration the lexicographic comparison between the pattern P
and the suffix is performed, whose cost is O(m), thus yielding an overall
complexity O(m log n).

Algorithm 2.3.4: Suffix array LeftmostBinarySearch
Input: An input string P over an alphabet Σ
Input: The suffix array SA
Output: The leftmost index of the SA entry prefixed by P

1 idx← −1
2 start← 0
3 end← |SA| − 1

4 while start ≤ end do
5 middle← start+ b end−start2 c
6 suffix← T [SA[middle], ]

/* if the pattern is a prefix of that suffix, update
index */

7 if P v suffix then
8 idx← middle

/* if there is a match, go to the left in order to
find another leftmost match */

9 end← middle− 1

10 end

11 else
// go left, common dichotomic search

12 if P > suffix then
13 end← middle− 1
14 end
15 else
16 start← middle+ 1
17 end
18 end
19 end

20 return idx
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Figure 2.8: First step of the BWT for the string alfalfa

In order to avoid the comparison of the whole pattern every time, suf-
fix arrays can be enriched with another array, the Longest Common Prefix
(LCP) array, that stores how long the common prefix between any entry and
its left/right child is. The complexity of the search drops to O(m+ log n) if
matching characters in the LCP are skipped.

2.3.3 Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) of a string is a permutation of
its characters, plus the delimiter $, that exhibits remarkable features. Given
a text T , it is obtained applying the following transformations [4]:

1. generate all the right (left) rotations of a string and arrange them in a
matrix, obtaining n+ 1 rows with n+ 1 elements;

2. sort the rows lexicographically, obtaining the BWT matrix ;

3. The characters in the last column constitutes the BWT of the original
string, denoted by L

If we consider our running example alfalfa, after the first step we obtain
the matrix in Figure 2.8, where the initial character of the string is in evi-
dence. After the second, the outcome is exactly the same as in Figure 2.7.
Hence, the BWT of our running example will be L = aff$llaa.

We will now present some of the properties of the BWT. Let us consider
the first and last column of the BWT matrix, as depicted in Figure 2.7. They
will be $aaaffll and aff$llaa respectively. To this extent, we introduce
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some additional notation which will be useful throughout the discussion of
the properties. Given a string S over Σ and the delimiter $, we denote as
posS(σ) the position in S of the character σ ∈ Σ ∪ {$}.

Lemma 1. Let L be the last and F the first columns of the BWT matrix
built for string T . For each pair of corresponding characters in F and L,
i.e., F [i] and L[i], i ∈ {0, . . . , n}, posT (F [i]) = posT (L[i]) + 1 mod (n + 1),
which means that L[i] preceeds F [i] in the original string T .

Proof. The proof is trivial. In fact, each row of the BWT matrix is, by
construction, a rotation of the original string. The delimiter $ preceeds the
first character T [0] in each row of the matrix as shown in Figure 2.8. This
property is preserved when permutating the rows, and hence stands for the
index k of L where $ occurs, as well.

Lemma 1 allows to explain how the BWT can be efficiently constructed
from the suffix array. Indeed, the suffix array stores the position in the
original string of F [i], while the i-th character of the BWT is L[i], which
precedes F [i] and thus occurs at position SA[i]−1. Therefore, the BWT of a
string T can be constructed in O(n) time from the suffix array as BWTT [i] =

T [SA[i]− 1 mod (n+ 1)].

Lemma 2. Let T be a string over the alphabet Σ. For each pair of indices
k1, k2 ∈ {0, . . . , n} where T [k1] = T [k2], it holds that:

posF (T [k1]) < posF (T [k2])⇔ posL(T [k1]) < posL(T [k2])

Proof. Suppose that posF (T [k1]) < posF (T [k2]). As the string F contains
the starting character of the suffixes in lexicographical order, than this
means that T [k1, ] < T [k2, ]. As T [k1] = T [k2], this necessarily implies
that T [k1 + 1, ] < T [k2 + 1, ], therefore posF (T [k1 + 1]) < posF (T [k2 + 1]),
since F is constructed from sorted suffixes. Denote f1 = posF (T [k1 + 1])

and f2 = posF (T [k2 + 1]). By Lemma 1, then L[f1] = T [k1] and L[f2] =

T [k2], therefore posL(T [k1]) = f1 and posL(T [k2]) = f2, which implies that
posL(T [k1]) < posL(T [k2]).

Conversely, suppose that posL(T [k1]) < posL(T [k2]. By Lemma 1, posF (T [k1+

1]) = posL(T [k1]) and posF (T [k2+1]) = posL(T [k2]), thus posF (T [k1+1]) <

posF (T [k2+1]), which necessarily implies that the suffix T [k1+1, ] is smaller
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Figure 2.9: Visualization of Lemma 2

than the suffix T [k2 + 1, ]. If we now consider the suffixes T [k1, ] and T [k2, ],
then since T [k1] = T [k2], then T [k1 + 1, ] < T [k2 + 1, ] ⇒ T [k1, ] < T [k2, ].
Therefore, since the string F contains the starting characters of the suffixes
in lexicographical order, then posF (T [k1]) < posF (T [k2])

Lemma 2 basically claims that, for each character σ ∈ Σ, if we enumerate
all the occurrences of σ in T , then these occurrences appear in the same
order in both F and L. For instance, in Figure 2.9, the letter l has been
enumerated, obtaining the string al1fal2fa$. It’s easy to observe that l2
preceeds l1 both in the string F and in the string L.

A third lemma can be easily derived from Lemma 2. This lemma employs
the concept of rank. Let S be a string over an alphabet Σ and σ ∈ Σ a symbol
of the alphabet. We define the rank as:

rankS,σ(x) = | {i ∈ [0, x) | S[i] = σ} |

The rank of a character σ up to position x is basically the number of occur-
rences of σ in S[0, x− 1].

Lemma 3. Let T be a string over the alphabet Σ. For each character T [k],
k ∈ {0, . . . , n} in T , define xi = posF (T [k]) and yi = posL(T [k]). Then, for
all k ∈ {0, . . . , n}, rankF,T [k](xi) = rankL,T [k](yi).

Proof. If rankF,T [k](xi) = r, then it means that there are r occurrences
of T [k] in F [0, xi − 1], denoted by T [k1], . . . , T [kr]. Suppose, without loss
of generality, that posF (T [k1]) < · · · < posF (T [kr]) < xi. As T [k1] =
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· · · = T [kr] = T [k], Lemma 2 is applicable, therefore posL(T [k1]) < · · · <
posL(T [kr]) < yi, which means that rankL,T [k](yi) = r = rankF,T [k](xi).

F and L contain enough information about the original text to implement
an efficient string searching algorithm [15]. The column L is the BWT of
the original string, while the information in F can be easily compressed in
O(|Σ|) space instead of O(n). All the occurrences of a symbol σ ∈ Σ are
contiguous in F , so it’s possible to represent this information via a dictionary
C that tracks the first position in F where each character σ occurs. In the
running example of Figure 2.7, C[$] = 0, C[a] = 1, C[f ] = 4 and C[l] = 6. For
convenience, we also define another entry C[∗] = |T |+ 1 that in our example
is C[∗] = 8. From there on, we will assume the existence of a function
next(σi) = σi+1, that maps each character of the alphabet to the next one
in alphabetical order. The last character of the alphabet will be mapped to
∗ instead.

The string matching algorithm that we will describe is known as back-
wards search, as it starts to match the pattern from the last character. Given
a pattern P of length m, it finds the occurrences of {P [m− 1], P [m− 2,m−
1], . . . , P [m− i,m−1], . . . , P [0,m−1]} by successive refinements. For exam-
ple, when looking for lfal, it matches the sequence of patterns {l , al , fal , lfal}.
These occurrences are identified by a range of contiguous characters in F ,
which represents all the starting characters of suffixes which are prefixed by
an increasing portion of the pattern; specifically, in the i-th iteration, the
occurrences of P [m − i,m − 1] are represented by two indexes starti, endi,
which identifies the substring F [startm−i, endm−i] composed by the starting
characters of all the suffix prefixed by P [m− i,m− 1]. In the first iteration,
the starting and ending index that match the occurrences of P [m− 1] in T
are trivially retrieved from the C dictionary:startm−1 = C[P [m− 1]]

endm−1 = C[next(P [m− 1])]− 1

and the total number of occurrences is given by endm−1−startm−1+1. Now
suppose to add the character placed at index m− 2. The algorithm aims at
finding two indexes startm−2 and endm−2 representing all the occurrences
of P [m − 2,m − 1] in T . For sure, startm−2 and endm−2 will both fall in
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the interval defined by [C[P [m − 2]], C[next(P [m − 2])] − 1]. However, only
the suffixes starting with P [m− 2] that are followed by P [m− 1] represent a
match and must be included in the new range. We now show how to retrieve
them.

The expression rankL,P [m−2](endm−1 + 1)− rankL,P [m−2](startm−1) re-
turns the number of occurrences of P [m − 2] in L[startm−1, endm−1]. By
Lemma 1, they are followed by P [m−1] in the original string, since P [m−1]

is the corresponding character in the F column. Hence, they also represent
matches for the last two characters of the pattern, and the difference be-
tween the two ranks is equivalent to endm−2 − startm−2 + 1. Let y1, y2 ∈
[startm−1, endm−1] be the first and last positions of L[startm−1, endm−1]

where the character P [m − 2] occurs. Of course, rankL,P [m−2](endm−1 +

1) = rankL,P [m−2](y2 + 1), as no characters equal to P [m − 2] occur in
L[y2+1, endm−1], and similarly rankL,P [m−2](startm−1) = rankL,P [m−2](y1),
since no characters equal to P [m − 2] occur in L[startm−1, y1 − 1]. Denote
the positions in the original string T of the characters L[y1] and L[y2] as,
respectively, k1 and k2, i.e., k1 = posT (L[y1]) and k2 = posT (L[y2]) and
define as x1 = posF (T [k1]) and x2 = posF (T [k2]). In particular, as all the
occurrences of a symbol σ ∈ Σ are contiguous in F , then x1 is obtained
as the sum of the position of the first occurrence of P [m − 2] in F (i.e.,
C[P [m− 2]]) to the number of occurrences of P [m− 2] preceding T [k1] in F
(i.e., rankF,P [m−2](x1)); similarly, x2 is obtained as the sum of the position
of the first occurrence of P [m − 2] in F (i.e., C[P [m − 2]]) to the number
of occurrences of P [m− 2] preceding T [k2] in F (i.e., rankF,P [m−2](x2)). As
by Lemma 3, rankF,P [m−2](x2) = rankL,P [m−2](y2) and rankF,P [m−2](x1) =

rankL,P [m−2](y1), then we obtain x1 = C[P [m − 2]] + rankL,P [m−2](y1) and
x2 = C[P [m − 2]] + rankL,P [m−2](y2). We observe that rankL,P [m−2](y2) =

rankL,P [m−2](y2 + 1) − 1, as L[y2] = P [m − 2], therefore, in conclusion we
obtain that:

x1 = C[P [m− 2]] + rankL,P [m−2](y1) =

= C[P [m− 2]] + rankL,P [m−2](startm−1)

x2 = C[P [m− 2]] + rankL,P [m−2](y2 + 1)− 1 =

= C[P [m− 2]] + rankL,P [m−2](endm−1 + 1)− 1
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The integers x1, x2 identify the range F [x1, x2], composed by the starting
characters of suffixes which are prefixed by P [m− 2,m− 1], that are all the
occurrences of P [m− 2,m− 1]. Therefore, x1 and x2 can be assigned to the
new indexes startm−2 = x1 and endm−2 = x2.

By generalizing this reasoning for all the characters P [i] of the pattern,
we obtain:startm−i = C[P [m− i]] + rankL,P [m−i](startm−i+1)

endm−i = C[P [m− i]] + rankL,P [m−i](endm−i+1 + 1)− 1

We observe that, when a pattern is not found in a text, both the ranks
in the previous expressions will be equal, and thus startm−i > endm−i,
effectively leading to a number of occurrences equal to endm−i− startm−i +

1 = 0. Algorithm 2.3.5 summarizes this procedure. The indices start, end
computed by Algorithm 2.3.5 identify the range F [start, end] which contains
the starting characters of the suffixes of T prefixed by P . The positions of
these characters in the original string, which are the occurrences of P , are
stored in the corresponding entries of the suffix array, SA[start, end]. The
computational complexity of Algorithm 2.3.5 clearly depends on the cost of
computing rank queries. Given the BWT L, rankL,σ(i), for i ∈ {0, . . . , n}
and σ ∈ Σ, can be precomputed and stored in a table with |Σ| rows and n+1

columns; thus, the rank queries in Algorithm 2.3.5 can be implemented by
simply retrieving elements from this table with O(1) cost, yielding an overall
complexity O(m) for Algorithm 2.3.5.

2.4 Related Works

The related works are divided in two different categories that are mostly
orthogonal. The first one includes works that implement secure substring
search protocol only relying on cryptographic constructions. One of the
presented solutions adopts techniques recurring in the context of SSE to
safely query an index based on suffix tree [7], while an ORAM based solution
is presented in [25]. The other line of works focuses on the evaluation of the
security of enclaved programs through their leakage profile [17], or put in
place specific practices that try to mitigate side channels at their root [24,43],

65



CHAPTER 2. State of the Art

Algorithm 2.3.5: BackwardsSearch using BWT
Input: An input string P over an alphabet Σ
Input: The array C
Input: The BWT L of a text T
Output: The indices of the occurrences

1 m← |P |
2 start← C[P [m− 1]]
3 end← C[next(P [m− 1])]− 1

4 for i← m− 2 to 0 do
5 σ ← P [i]
6 start← C[σ] + rankL,σ(start)
7 end← C[σ] + rankL,σ(end+ 1)− 1

8 if start > end then
9 break

10 end
11 end

12 return (start,end)

rather that relying on automated techniques to retrofit existing software.
While not directly related to our application scenario, the latter provide
useful reference for developing applications that directly address the powerful
threat model of Intel SGX.

2.4.1 Private Substring Search Protocols

The algorithm proposed in [7] exploits an alternative representation of
suffix trees based on dictionaries (Subsection 2.3.1). Specifically, in a suffix
tree, for each internal node the labels of all edges start with a distinct char-
acter of the alphabet; thus, the concatenation of the path label of the node
and the first character of an edge, referred to as initial path label, uniquely
identifies all children of the node at hand. As an example, in Figure 2.6,
alfa is the path label for n4, but al is sufficient to uniquely identify this
node. This property can be used to arrange a suffix tree as a dictionary,
that uses a hash function over the initial path label to identify each internal
node of the suffix tree. In particular, [7] employs a keyed hash function Fk1 ,
or equivalently a keyed Pseudo-Random Function (PRF), to compute a hash
of the initial path label for each node, which is used to index a dictionary.
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The dictionary entries contain information about the initial path label vi of
the children, in particular the result of Fk2(vi). In order to hide information
about the initial text, the dictionary is padded to have exactly 2N nodes,
each with exactly |Σ| children in scrambled order. Furthermore, each dictio-
nary entry contains an index that points to the full edge label, as well as the
index of the leftmost leaf and the number of leaves in its subtree.

The schemes additionally employs Π, a symmetric cipher offering Au-
thenticated Encryption (AE) and randomization via an IV, that exposes
the encryption Π.Enckey(ptx) and decryption Π.Deckey(ctx) functionalities,
returning ⊥ when the key is wrong.

A client that wants to search for the pattern P in the data structure,
uploads a series of tokens Π.EncFk2

(P [0,i])(Fk1(P [0, i])) for i ∈ [0, |P | − 1],
corresponding to a prefix of P .

During the first part of the protocol, finds the longest prefix of the pat-
tern that matches the initial path label of a node. In particular, the server
starts from the dictionary entry corresponding to the root node and employs
the hashed initial path labels of the children as as a key to decrypt the to-
kens. When decryption is successful, a token matches the initial path label
of one fo the children node, which is chosen as the next node to be explored.
The plaintext obtained indexes this node in the dictionary, thus it is then
employed to retrieve the dictionary entry corresponding to the selected chil-
dren. With a similar procedure, the server explores the children of this node
to find a node whose initial path label corresponds to one of the tokens. The
server iterates this exploration until a child node whose initial path label
matches a token is found. Algorithm 2.4.1 shows how tree exploration is
performed.

Since this phase is performed by the server, it is able to establish the
length of the longest common prefix between subsequent queries by inspect-
ing the sequence of accesses to the dictionary. However, the fact that tokens
are encrypted prevents the server from deriving this information a priori,
and in particular, in the case two queries don’t occur in the original text.

At the end of this phase, the server obtains a node whose initial path
label is the longest prefix of the P which matches the initial path label of
a node in the suffix tree. In the second phase, the client downloads the
full edge label of a node to check whether or not the suffix of the pattern
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Algorithm 2.4.1: Suffix tree substring search in SSE setting
Input: The dictionary D containing the suffix tree
Input: The sequence of tokens Tok generated from a pattern P
Output: The node corresponding to the longest initial path label

among the tokens

/* the entry corresponding to the root is known on the
server side */

1 node← D[Fk1(ε)]
2 i← 0

3 while i < |P | do
4 next_key ← ⊥
5 j ← i

6 while j < |P | ∧ next_key = ⊥ do
7 k ← 0
8 while k < |Σ| − 1 ∧ next_key 6= ⊥ do
9 next_key ← Π.Decnode.child[k](Tok[j])

10 if next_key 6= ⊥ then
11 i← j + 1
12 end

13 k ← k + 1

14 end

15 j ← j + 1

16 end

17 if next_key 6= ⊥ then
18 node← D[next_key]
19 end
20 else
21 break
22 end
23 end

24 return node
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is contained in the edge label. If so, P occurs in the text, and the client
will also retrieve the indices of the occurrences, by employing the index of
the leftmost leaf and the number of leaves of the subtree rooted in the node
identified in the first phase, an information stored in the dictionary entry
of the node at hand. This index and the number of leaves are employed to
access another data structure which allows to retrieve the actual occurrences
of the pattern in the text. The characters of the original text are stored in a
separate array in permuted order, so that an attacker does not know where
an edge label is placed within the original text. This also holds for the leaves
of the suffix tree, that would otherwise leak the lexicographical ordering of
the suffixes that potentially match a pattern. Nonetheless, the server is still
able to determine the similarity of subsequent queries by comparing the sets
of accessed locations.

Although the usage of AE allows the client to verify if the server is
misbehaving, thus opening to malicious server scenarios, the possibility to
relate successive queries is a huge drawback of this protocol. We observe
that this is possible thanks to the inspection of the logical access pattern
of the application, that in this case doesn’t require the exploitation of any
side channel. With enough domain knowledge, a similar amount of leakage
has already been showed to be sufficient to recover significant portions of
data [5, 19,29].

To the extent of totally hiding the correlation between queries, [25] hides
the nodes traversed during a suffix tree exploration by employing an ORAM
for each level of the tree. This solution is tailored for the case where the
original text T is the concatenation of d independent strings whose length
l is in the order of hundreds of characters, and in general d >> l. Since a
substring cannot span multiple strings, the maximum length of a suffix in
this tree is l. Suffix trees exhibit an irregular structure: while the maxi-
mum number of levels is l, the number of nodes residing on the same level
cannot be predicted. In order to overcome this issue, internal nodes are
distributed according to specific rules that guarantee that the size of each
level is bounded. The figure of merit to evaluate the efficiency of the proto-
col is its communication cost, since the ORAMs reside on a remote server.
The protocol exhibits poly-logarithmic cost with respect to the number of
documents: for instance, when the length of each string l is O(log(d)), its
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communication cost is O(log log d · log3 d). Nevertheless, this cost depends
linearly from the length l, making this protocol unpractical for long strings.

The same work proposes also a simpler construction based on suffix arrays
with cost O(log3 d) which does not linearly depend on the length l of the
string. Nonetheless, this solution doesn’t allow to update the suffix array
with more strings after the data structure has been constructed. A suffix
array can be arranged in memory as a k-ary search tree: each internal node
contains a pointer for each of the k children; in addition, for each children,
the node stores the smallest suffix that belongs to the subtree rooted in
the children. The implementation sets k = 2: thus, a slightly modified
version of Algorithm 2.3.4 and its dual allow to retrieve the occurrences of a
pattern. In order to choose the correct child, each node stores k suffixes. A
compressed representation avoids to store the suffixes in internal nodes, and
defers character-by-character comparisons to the last level of the tree, that
needs to store entire suffixes. While this solution works well in the case of
multiple concatenated string, this solution is inefficient for a large, unique
text, whose suffix lengths are in the same order of magnitude of its size,
requiring a lot of space in the last level.

2.4.2 Intel SGX based Applications

Several applications employ Intel SGX to preserve the confidentiality of
sensitive data, estimating the amount of information that leak during the
execution of an enclave. The security of applications is usually intended
relatively to a specific leakage model, that establishes which information is
not confidential and can be safely learnt from the untrusted server without
compromising confidentiality. While some domains have well established
models, in other cases the choice is driven by the security requirement of the
application. Thus, even enclaves with a lenient leakage profile are marked as
secure if they don’t exceed the leakage threshold established by the enclave
developer.

HardIDX [17] implements a safe index based on B+-trees, a popular data
structure in database design that optimizes access to large block devices such
as hard drives. B+-trees store actual data in the leaves, while internal nodes
serve as k-ary search tree. When the B+-tree fits in the EPC, the search
can be performed entirely within the enclave, leaking the access patterns at
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the granularity of a 4kB page. Nonetheless, a page may contain multiple
nodes; furthermore, the enclave explores nodes in the same level of the tree
in arbitrary order, thus limiting the amount of information inferred by the
server about the topology of the B+-tree. In most cases, however, the limited
size of the EPC forces the enclave to move only a subset of the nodes in the
reserved memory. Despite the nodes are secretly permuted before being
moved outside the enclave, an attacker may formulate hypotheses on the
structure of the tree at the granularity of nodes, and observe subsequent
queries to both establish their similarity, progressively refining its guesses
about topology. The adopted leakage model takes into account this kind of
attacks. Notably, HardIDX offers protection against active attackers that
don’t comply to the protocol. As the confidentiality and integrity of the
nodes stored outside the enclave is guaranteed by the usage of AE schemes,
the main risk is that an attacker doesn’t return all the results to the client, or
omits some nodes requested by the enclave during the search phase. Multi-
set hashes provide protection against untrustworthy servers: a hash of the ids
of requested nodes is accumulated in the enclave and is compared to the hash
of ids of the nodes handed in by the untrusted host. If the enclave detects a
discrepancy at the end of the search, it aborts the computation. The same
procedure is applied on the client side when checking the authenticity of the
results. Since the value of a multi-set hash does not depend on the order
in which elements are added, they are compatible with the permutation of
internal nodes which is employed and results, necessary to partially conceal
the topology of the tree. Furthermore, chosen-query attacks are not possible
since the queries are encrypted with a key that is shared only between the
enclave and the remote client. Any attempt to execute rogue queries results
in wrong decryption which can be detected via AE.

Opaque [43] implements oblivious relational operators that allow to per-
form Spark SQL queries on encrypted data. In fact, the adoption of sole
encryption of database entries has proved to be insufficient in providing pro-
tection against motivated attackers, who may discover information looking
at the access patterns, such as which entries of a table are associated to the
same foreign key. In order to provide access pattern obliviousness, Opaque
focuses on providing an oblivious sort primitive in a distributed scenario,
that is pivotal for implementing database primitives. Sorting networks, that
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have O(n log2 n) complexity, perform a sequence of comparisons and swaps
that does not depend on the input data, thus exhibiting an access pattern
which is independent from the input data; this property allows to make any
information about access pattern inferred from side channels useless when
data are obliviously sorted inside a secure enclave. In order to open up to
a distributed scenarios, sorting networks are combined with a scrambling
procedure which allows to avoid leaking access patterns to adversaries which
observe the amount of data exchanged among different nodes. The obtained
sorting method is named column sort : local data is first sorted within each
node through a sorting network, and then shuffled among different machines
in a fixed number of rounds, until each node has a portion of the sorted
array. Sorting allows to implement in an oblivious manner many relational
operators. A FILTER is obtained by obliviously sorting entries according to
the assigned label, that is 0 if the condition is not met, and 1 otherwise.
In order to conceal the number of rows that pass the filter, all of them are
carried along the computation and later discarded by the client. Aggrega-
tion queries (e.g. GROUP BY operator in SQL), which aims at partitioning the
records according to an aggregation attribute and then computes an aggre-
gate value for each partition, can be performed by sorting all the rows based
on aggregation attributes and evaluating the aggregate value for each parti-
tion. Then, the nodes exchange intermediate results to determine the final
value. A primary-foreign key JOIN can be achieved by the means of sorting
as well: the primary key table Tp and the foreign key table Tf are concate-
nated, and sorted by the join attributes, placing Tp entries before Tf entries
in case of ties. Each primary key occurs only once in Tp, ensuring that a
single Tp key will be followed by all the entries of Tf that will be joined with
it. For each entry, a node emits either a dummy record or a correctly joined
one. Oblivious sorting once again allows to discard all the dummies. Intel
Architectural Enclave (Intel AE) ensures that the data received by a node is
authentic, and generates a MAC that certifies that the output comes from
a trustworthy enclave. It is sufficient that all the nodes and the client share
an ephemeral symmetric key. The computation starts from the client, that
generates the initial tokens for the query, and that later verifies the MAC of
the results to ensure that the attacker didn’t tamper with the computations.

Oblix [24] implements a sorted multimap, that implements efficient re-
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trieval of elements based on a search key even when it is shared among dif-
ferent entries. A possible implementation of sorted multimaps results from
overlapping a self-balancing tree, such as an AVL tree, that preserves effi-
ciency even after updates, with an order statistics binary tree, that keeps
track of the number of entries in the left and right subtree of a node that
share its key. The main idea of the work is concealing the access pattern
exploiting an ORAM whose client resides in the enclave: it exploits an ODS
to store the position map recursively, leveraging the tree-like access pat-
tern of the sorted multimap, and operates on obliviously on the stash via
linear scans or using sorting networks. While a previous paper showcased
this solution [31] highlighting the advantages of Circuit ORAM, Oblix opti-
mizes Path ORAM achieving better results. The protocol was successfully
employed to implement the private contact discovery of Signal and Google’s
Key Transparency, besides a searchable encryption protocol that retrieves all
the documents where a certain keyword occurs. The implementation details
are here omitted, since our work is based on the same principles.

SSE schemes can also be backed by enclaved execution, as in [1]. The
protocol they describe, named Bunker, retrieves the documents associated
to a certain keyword using an oblivious dictionary data structure. Consider
n documents identified with ids {d1, d2, . . . , dn} and a set W of keywords
extracted from these documents. For each w ∈W , consider the sets of ids of
documents which contain the keyword, denoted by Dw = {dw,1, . . . , dw,mw},
where mw = |Dw|. The client employs a dictionary structure containing
(index, value) pairs to retrieve the set Dw for a given keyword w. This
structure is built by by employing a PRF F and a symmetric cipher Γ,
whose keys k1 and k2, respectively, are securely shared between the enclave
and the client once they have established a secure channel. Specifically, for
each keyword w ∈ W , mw pairs are added to the dictionary, one for each
document containing w:indexi = Fk1(w || version ||i)

valuei = Π.Enc(k2, dw,i || salt)

The client stores a local dictionary that associates each keyword w to a
version and mw, the number of documents containing w ∈ W ,. When it
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needs to retrieve the ids of the documents containing w, it sends an en-
crypted token (w, version,mw) to the enclave, which can derive the indexi
for i ∈ [1,mw]. Those indexes are used to fetch and remove valuei from
the dictionary, guaranteeing page fault and cache line obliviousness by rely-
ing on existing techniques to build an oblivious dictionary. The values are
decrypted in the enclave using k2 and transmitted to the client using the
secure channel. The entries are re-added to the dictionary, with a different
salt and an incremented version number (both on client and server). In or-
der to update the dictionary with more entries, more (index, value) pairs
are added without updating the version number, but rather mw. In this
protocol, the enclave is just used as a safe storage for holding k1 and k2 and
reduce the number of round trips of the protocol, similarly to embedding the
ORAM client in an enclave. The information leakage assumed in Bunker is
not concerned with the number of results, but guarantees that subsequent
queries cannot be related: the indexes used to access the dictionary for a
same keyword w change each time, and even if updates are performed with-
out oblivious accesses, the protected fetch and remove procedure is sufficient
to hide which dictionary entries match w. The crucial part of the protocol
concerns updates: in particular, Bunker does not reveal the document ids of
updates, but only their insertion time in the dictionary.
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Proposed Approach

We present Oblivious Substring Query on Remote Enclave (ObSQRE),
a two-party protocol that allows a client to identify the positions of all the
repetitions (or occurrences) of a substring in a text outsourced to a remote
machine (e.g. in the cloud) in an oblivious manner. The obliviousness re-
quirement mandates that the protocol guarantees the confidentiality of the
outsourced text, the queried substring and the results of the query against an
untrustworthy service provider, as well as protecting search pattern, which
means that the could provider cannot correlate subsequent queries to estab-
lish their similarity. Our scenario, in which a memory constrained client
owns a huge dataset over which she wants to perform several queries, sug-
gests the usage of algorithms based on full-text indices, that allow to perform
an arbitrary number of queries in sublinear time with respect to the size of
the text and without applying any modification to the indexing structure
itself. Since the construction of the index is performed offline, it doesn’t
impact the online efficiency of the protocol.

We structure the description of the protocol as follows: in section 3.1
we provide an overview of the opportunities and challenges posed by secure
enclave, defining the rationale behind the implementation of doubly oblivious
ORAMs; in section 3.2 we review all of our doubly oblivious constructions,
showing their asymptotic complexity and optimizations enabled by our sce-
nario; finally, in 3.3 we describe the full-text indices, how to pack them into
ORAMs and the associated substring search algorithms.
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3.1 ObSQRE Overview and Construction

A secure enclave is a trusted execution environment that runs within an
untrusted system, giving the opportunity to have a TCB even on a remote
server owned by a potentially malicious cloud provider. Since the memory
of enclaves cannot be inspected by any hardware or software component on
the machine, it is indeed possible to operate on sensitive plaintext data with-
out any confidentiality concern. This feature totally cuts the necessity for
complex cryptographic constructions such as FHE and SSE protocols, that
instead perform computation directly on ciphertexts, with a performance
overhead that usually prevents their adoption in real world scenarios. A
program handling sensitive data which is run inside an enclave can fetch
encrypted portions of the dataset and decrypt then in safe memory, thus
allowing to combine outsourcing of data and the possibility to query it using
already existing algorithms. Intel SGX is integrated on the vast majority
of recent Intel CPUs, making enclaves widely available. Since they can run
algorithms providing data confidentiality, the private subtring search prob-
lem may benefit from their exploitation as well. In particular, it is possible
to outsource a huge text to the cloud, in encrypted form, while being able
to find the occurrences of substrings. To provide high performance, it may
be necessary to preprocess the text to generate an index that allows to run
queries in sublinear time with respect to its length.

However, the rich literature on side channel attacks targeting Intel SGX
proves the insufficiency of mere encryption in order to protect sensitive data,
whose internal structure can be revealed by inspecting the way a client ac-
cesses her dataset even when these data are safely stored in enclave memory.
In this regard, full-text indices require a lot of scattered memory accesses
that may be analyzed by a malicious cloud provider to infer the sequence of
logical memory identifiers, which depend on both the searched pattern and
the full-text index, thus leaking much sensitive information. Hence, we need
to devise specific countermeasures to protect confidential data as well as the
computation that is performed on the server.

Rather than using compiler-based techniques or transactional memory to
defeat side channel attacks, we embed sensitive information in ORAMs in
order to conceal the logical access pattern to the indexing structures: this
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solution prevents an attacker from inferring both the content of the initial
text and the similarities between subsequent queries. While ORAMs allow
to decouple the logical identifiers of data structures from the memory access
pattern, we also resort to algorithms whose control flow does not depend on
secret information and that exhibit a data-independent execution trace. In
other words, we design oblivious algorithms, which cannot be dismantled by
the discovery of other side channels, and thus represents a long term solution.
On the other hand, most of the side channel countermeasures presented in
Section 2.1.2 are more exposed to potential vulnerabilities due to unknown
architectural details, and address only one side channel at a time. The
combination of several countermeasures might be inefficient, impossible or
ineffective to face newer side channels.

Since ORAMs incur a very high bandwidth cost, we exploit enclaved
execution to run within the server all the computation usually performed
on the remote ORAM client. This cuts the necessity for network roundtrips
in order to access the content of an ORAM, dramatically improving their
performance. In particular, the number of matches occ can be obtained with
a single communication. The actual indices of occurrences may be retrieved
either with a single data exchange, or with a communication cost equal to
O(occ). We implement the latter approach since it allows the client to fetch
only a portion of the results, in case the specific match she is looking has
already been found.

Nonetheless, embedding an ORAM client within an enclave requires rele-
vant changes to the protocols since the shuffle operations are exposed to side
channels as well. An adversary may come to know several information, such
as whether a block is found in the stash or in the fetched path, the number
of entries in the stash and, above all, the placement of data blocks inside
buckets after evictions. This information, along with some domain knowl-
edge about the usual access pattern of the application, allows a malicious
server to find the mapping between leaf ids and block ids, thus subverting
the security guarantees provided by ORAMs.

Traditional ORAMs constructions are usually referred to as singly obliv-
ious: indeed, the fact that a block is reassigned a different path each time
the client fetches it prevents the server from learning any information about
the arrangement of the blocks in the ORAM: hence, she cannot correlate
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subsequent accesses and reconstruct the trace of logical indices used to fetch
elements from data structures.

In order to make the protocol safe in our scenario, where the memory
access pattern of the ORAM client is leaked ot the server, the client must be
oblivious as well: hence, the resulting ORAM protocols are defined doubly
oblivious. While doubly oblivious ORAM constructions already exist [24]
[31], we extend this approach to Ring ORAM introducing optimizations that
leverage the fact that the client resides on the same machine as the server.
We implement doubly oblivious Path and Circuit ORAMs as well and review
how to make them doubly oblivious.

Our constructions rely on two basic building blocks: an oblivious ternary
operator and an oblivious Swap primitive. The former, ternary_op, allows
to implement basic control flow without leaking which branch is chosen,
while the latter, swap, is used to exchange the content of two data buffers
based on a boolean condition without leaking the condition itself.

C++ ternary operator cond?val_1:val_2 is an expression that evaluates
to val_1 if cond is true, to val_2 otherwise. The prototype of its oblivi-
ous couterpart is std::uint64_t ternary_op(bool sel, std::uint64_t

a, std::uint64_t b). The parameters of the function follow the same or-
dering as the customary ternary operator. To introduce its implementation,
we adopt the System V AMD64 ABI calling convention, as in all Unix-like sys-
tems, and the AT&T syntax for assembly. We exploit the x86_64 instruction
CMOVcc [31], that moves a source operand to a destination if the flag encoded
in cc is set. Its property is that it always performs the same amount of work
regardless of whether or not the destination operand is written, hence it is
oblivious. Following the ABI, the three parameters of the function are stored
in the registers %rdi, %rsi, %rdx respectively and the return value in %rax.

Listing 3.1: ternary_op function body

1 cmpb $0 , %rd i
2 movq %r s i , %rax
3 cmovz %rdx , %rax

Listing 3.1 shows how the function is implemented. Line 1 evaluates the
boolean condition: if %rdi is 0, cmovz overwrites the value in %rax.

Swap takes a boolean argument and two words made of k bits. Their
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values are swapped if the condition evaluates to true. Algorithm 3.1.1 shows
its implementation. If cond is false, the value a and b are XORed with 0,
and thus they do not change. On the other hand, if the condition is true,
a = a⊕ (a⊕ b) = b, and similarly for b. The complexity of this algorithm is
O(k).

Algorithm 3.1.1: Oblivious Swap primitive
Input: A boolean value cond
Input: A k-bit word a
Input: A k-bit word b

1 mask ← ternary_op(cond,1k, 0)
2 temp← mask & (a⊕ b)
3 a← a⊕ temp
4 b← b⊕ temp

The algorithm can be turned into an oblivious write primitive by sup-
pressing line 4. In this case, the content of b, which becomes the source
operand, overwrites a, which is the destination.

In order to obliviously access the position map, we either use an ODS or
recursion. In the latter case, the chunks of position map that we fetch from
the ORAMs are small enough to allow linear scans and oblivious selection of
the proper leaf id for each level of the recursion. Since the size of the blocks of
recursion is a free parameter, it is possible to tune this value to the one that
balances the cost of linear scans and number of levels in the recursion. Stash
management has a much higher impact on performance instead, because
obliviousness makes evictions the most costly operation of doubly oblivious
ORAMs. We will describe the details of our doubly oblivious contructions
in the next Section 3.2.

Now that we have introduced doubly oblivious ORAM protocols, we need
to clarify the terminology we will use to refer to the various actors of the
system, since many ambiguities may arise. With the term server, we refer to
the remote machine, possibly owned by a cloud provider, which is equipped
with Intel SGX and runs the server-side of ObSQRE. The powerful threat
model of Intel SGX includes root level adversaries that own the machine.
Among the the various attacker models, a honest but curious adversary only
monitors side channels to infer sensitive information, while a malicious one
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may deliberately tamper with the data or memory, deviating from the orig-
inal protocol. In the latter case, the victim cannot prevent this behaviour,
but may instrument the code in order to detect active attacks and abort the
execution immediately. Performing a Denial of Service (DoS) attack would
prevent the client from execute its program on remote server. If the server
acts this way, it definitely loses the chance to monitor the queries performed
by a client, and the opportunity to leak her secrets. Hence, DoS’s are out of
our scope.

The server executes the whole ORAM protocols locally. The ORAM
client is embedded in an enclave, and accesses an ORAM tree that is kept in
unprotected memory. The enclaved ORAM client fetches the correct paths
itself from the unprotected memory: since data is not exchanged between
physically separated machines, all the work is delegated to the enclaved
portion of the protocol, even in the case of Ring ORAM. Ultimately, the
ORAM server is just the unprotected memory that hosts the ORAM tree or
an active attacker that deliberately tampers with it. On the other hand, the
real client of the application is the entity who wants to perform substring
search over a provided text. A totally separate machine hosts the client, who
submits queries to the remote server through the network. The client is a
very weak actor, with limited computational capabilities and memory.

Figure 3.1 shows the different interacting parts of ObSQRE. An Hyper-
text Transfer Protocol (HTTP) server exposes the functionalities of ObSQRE
via API calls. The substring search algorithms run within the enclave and use
the oblivious memory access primitives implemented in our library libobl.
The indices for substring search are processed and encrypted offline, to pre-
vent the server from inspecting them. The client uploads an index to the
server by other means, prior to the execution of substring search protocol.

3.2 Design of Doubly Oblivious ORAMs

3.2.1 Doubly Oblivious Path ORAM

The Access procedure of Path ORAM is rather simple and requires
little modifications in order to achieve obliviousness. The first difference
is that an oblivious client cannot implement the stash as a dynamically
sized linked list, since it would simply leak the number of elements that it
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Figure 3.1: Overview of ObSQRE

contains during each access. On the other hand, in the original Path ORAM
protocol, the stash has already a maximum size S established a priori to
make overflow probability negligible. Therefore, in our doubly oblivious
version, the stash has always a fixed size S, thus concealing the number of
blocks stored. Furthermore, during both the fetch and eviction phase of
the Access routine, the stash is scanned linearly in order to conceal which
element is actually retrieved as well as the position where a the block fetched
from the path is placed. In this scenario, exceeding the stash size S becomes
a severe failure condition, that also leaks the fact that the stash size grew
up to S + 1 elements.

In the Fetch procedure, which aims at retrieving the block whose id is
bid, the client linearly scans both the fetched path and the stash in order to
find the proper record. In particular, to conceal which element is actually
retrieved, the currently inspected block and the buffer which will eventually
store the requested block are obliviously swapped, depending on the equal-
ity of the id of the block at hand with bid. The asymptotic cost of these
operations is O(B · (S + Z · logN)).

During this procedure, the concatenation of the fetched path to the stash
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(Algorithm 2.2.1, line 7) increases its size to S′ = S + Z · logN . In this
regard, we observe that the Z · logN blocks are only temporarily stored in
the stash: in fact, since they belong to a fetched path, they are already
correctly bucketed because of the Path ORAM invariant. Hence, at least
Z · logN blocks will be evicted, keeping the stash size less than S after each
ORAM access.

Algorithm 3.2.1 implements a baseline oblivious stash eviction. The
client obliviously swaps each entry of the stash with every record of all
the buckets, actually moving only the ones that can reside in the current
bucket. To this extent, the function GetMaxDepth returns the maximum
depth in the tree where a block can reside, given its leaf id and the current
path. As already discussed in Subsection 2.2.1, the leaves are numbered in
reverse lexicographical order and their id represents a path starting from the
root. When two paths have common ancestors, they coincide up to a certain
depth, where they diverge. By XORing together two leaf ids and counting
the number of trailing zeroes, it is possible to calculate this depth. This
operation requires O(1) on x86_64 CPUs, that offer the an instruction that
counts the trailing zeroes of a 64 bit word – namely TZCNT. Once again, to
guarantee the best possible eviction probability, the blocks are pushed as
down as possible in the path, that is filled starting from the leaf up to the
root. The path that is evicted is initialized with dummy blocks, so that
when a swap is successful, the corresponding entry of the stash becomes the
dummy, and hence a free slot.

The complexity of this algorithm is:

O
(
S′ · Z ·B · logN) = O(S · Z ·B · logN + Z2 ·B · log2N

)
A simple observation allows to easily improve the eviction complexity by

a constant factor: in fact, all the blocks that belong to the path which has
just been fetched are already correctly bucketed, since their leaf ids are not
changed by the Access procedure. Therefore, only the block with id bid is
obliviously (i.e., with a linear scan) removed from the path and appended
to the stash, since it is reassigned a fresh leaf id that may otherwise break
the path invariant. For all the other blocks in the fetched path, instead, we
perform an in place eviction to push them as deep as possibile in the fetched
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Algorithm 3.2.1: Oblivious Path ORAM OblEvict
Input: The lid of the path to evict

1 Initialize all the buckets in the path with block id ⊥
2 for i← 0 to S′ − 1 do
3 maxDepth← GetMaxDepth(lid, stash[i].lid)
4 for l← L− 1 to 0 do
5 commonAncestor ← (maxDepth ≥ l)
6 for z ← 0 to Z − 1 do
7 isFree← (bucket[l].block[z].bid == ⊥)
8 isV alid← (stash[i].bid 6= ⊥)
9 Swap(isFree ∧ isV alid ∧

commonAncestor, stash[i], bucket[l].block[z])

10 end
11 end

12 WriteBucket(bucket, lid, l)

13 end

paths: given a bucket at level i, we try to evict all of its blocks to all the
buckets at levels {L − 1, L − 2, . . . , i + 1]}, in order to place them in the
deepest available record. The stash will no longer host S′ slots, but only
S (only the block retrieved by the client is appended to the stash), and its
eviction is not changed at all.

The in place part of path eviction takes:

O(
0∑

i=log (N)−1

B ·Z2 ·(log (N)−1−i)) = O(B ·Z2 ·
logN−1∑
i=0

i) = O(B ·Z2 · log2N

2
)

while the complexity of stash eviction is O(S ·B · Z · log(N)).

Oblix [24], which also employs a doubly oblivious Path ORAM, tries to
further optimize the eviction procedure by hinging upon sorting networks,
that are used to group the blocks in the stash by obliviously sorting them
according to the max depth they can reach. At the end of the process, it
is possible to rebuild a full path just by picking Z contiguous blocks at a
time, which will form a new bucket. Of course, it is necessary to perform
a preliminary analysis to include as many dummy blocks as needed to fill
partially empty buckets. While this approach saves a factor of Z, the high
constant factor hidden behind the asymptotic complexity of sorting networks
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Algorithm 3.2.2: Oblivious Path ORAM OblEvict2
Input: An array of buckets bucket after the fetched block has been

replaced by a dummy
Input: The lid of the path to evict
// in place path eviction

1 for l1 ← L− 2 to 0 do
2 for z1 ← 0 to Z − 1 do
3 maxDepth← GetMaxDepth(lid, bucket[l1].block[z1].lid)
4 for l2 ← L− 1 to l1 + 1 do
5 commonAncestor ← (maxDepth ≥ l2)
6 for z2 ← 0 to Z − 1 do
7 isFree← (bucket[l2].block[z2].bid == ⊥)
8 isV alid← (bucket[l1].block[z1].bid 6= ⊥)
9 Swap(isFree ∧ isV alid ∧

commonAncestor, bucket[l2].block[z2], bucket[l1].block[z1])

10 end
11 end
12 end
13 end
14 for i← 0 to S − 1 do
15 maxDepth← GetMaxDepth(lid, stash[i].lid)
16 for l← L− 1 to 0 do
17 commonAncestor ← (maxDepth ≥ l)
18 for z ← 0 to Z − 1 do
19 isFree← (bucket[l].block[z].bid == ⊥)
20 isV alid← (stash[i].bid 6= ⊥)
21 Swap(isFree ∧ isV alid ∧

commonAncestor, stash[i], bucket[l].block[z])

22 end
23 end

24 WriteBucket(bucket, lid, l)

25 end
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(which is O(S log2 S)), makes this solution slower than the naive approach.

Following this idea, we also tried to further optimize eviction: in par-
ticular, we noticed that we can perform evictions without linear scans over
both the stash and the evicted path if all of their elements are obliviously
shuffled. Indeed, after the shuffle, an attacker cannot distinguish real and
dummy blocks, as well as the bucket originally storing them. We devised
an oblivious shuffle algorithm, outlined in Algorithm 3.2.3, that operates on
arrays whose size is a power of 2, a requirement that can be easily fulfilled
via padding. The algorithm divides the array in two partitions and oblivi-
ously swaps the corresponding elements in each partition. At the end of this
process, each element has exactly the same probability of residing in either
of the two portions of the array. Then, the same algorithm is recursively
applied to the two subarrays, until only one element is left in each partition.
The movements of each entry between partitions is akin to the exploration of
a complete binary tree from root to leaf, where the left or right path is taken
with equal probability of 1/2. Hence, at the end of the process, each leaf (i.e.
the final position in the shuffled array) has probability 1/N of being reached.
When N is not a power of two, the resulting recursion tree is unbalanced
and thus the algorithm does not provide uniform probability. Although

Algorithm 3.2.3: Oblivious Shuffle
Input: An array A whose size is a power of 2

1 if |A| == 1 then
2 return
3 end
4 else
5 for i← 0 to |A|2 − 1 do
6 cond← RandomBit(0, 1)

7 j ← |A|
2 + i

8 Swap(cond == 0, A[i], A[j])

9 end
10 Shuffle(A[0 . . . |A|2 − 1])

11 Shuffle(A[ |A|2 . . . |A| − 1])

12 end

the complexity of Algorithm 3.2.3 for an array of size n is O(n log n) swaps,
the performance we achieved are much worse than the baseline, confirming
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the experimental results of [24]. We thus opted for the improved version of
eviction as implemented in Algorithm 3.2.2.

3.2.2 Doubly Oblivious Ring ORAM

The Ring ORAM protocol is elaborate with respect to Path ORAM,
and manages to reduce the online bandwidth to O(1) thanks to complex
mechanisms that rely on metadata associated to each bucket, as reported
in Table 2.1. Ring ORAM performs an eviction each A accesses and in
order to avoid stash growth, endows each bucket with D dummy blocks
that are fetched when the one with the correct block id is not found. The D
dummy blocks and Z possibly valid records are intermixed in order to prevent
the remote server from understanding whether or not a bucket contains the
requested block. In order to keep track of the position of the non-dummy
blocks, their offsets in the buckets are stored in the PRP field. Since after D
accesses a bucket potentially runs out of dummies, the EarlyReshuffle

procedure refreshes them in order to prevent more that one valid block to
be fetched during each invocation of Access.

Even though the doubly oblivious implementation of Ring ORAM we
provide abides by this framework, some modifications are necessary to im-
prove it based on the fact that the ORAM client resides on the same machine
as the server. The most relevant difference between the original version of
Ring ORAM and our implementation is that the buckets don’t store the
PRP of the Z valid blocks. In fact, if keeping track of the offsets where real
blocks reside is not strictly necessary for a singly oblivious implementation,
it is totally unnecessary when the client is hosted within an enclave. In the
original SelectOffset procedure of Ring ORAM, the PRP is employed
to distinguish the Z real blocks from the D dummy ones. Specifically, the
PRP allows to look for dummy blocks only by iterating over D validity bits
(Algorithm 2.2.5, line 4) and, similarly, to verify if a real block is valid by
directly looking at its valid bit (Algorithm 2.2.5, line 7). Nonetheless, in
a doubly oblivious scenario, the algorithm can no longer access only the D
validity bits of the dummy blocks, as this would trivially leak the positions of
the real blocks, making the PRP pointless. Therefore, we discard the usage
of the PRP, resorting to the analysis of the block ids in order to distinguish
between a real block and a dummy block. Specifically, the bucket meta-
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data stores the block id of all blocks, including the dummy ones, slightly
increasing the size of the metadata: indeed, our doubly oblivious version
saves the Z · log (Z +D) bits required by the PRP but stores D additional
block ids, which require D · log(N) space. However, this equivalent way to
encode bucket metadata allows to select the proper offset for a bucket with
a single sweep of the bucket metadata, as showed in Algorithm 3.2.4. Our
SelectOffset procedure picks a specific record from each bucket, either
choosing a dummy block or the correct one, if valid. The flag found re-
turned by the procedure specifies if the selected block is a real or a dummy
one. The procedure needs to ensure that index selection looks random: while
real records are scattered for this purpose, the client must choose a totally
random dummy, possibly with a single scan over the block ids. In order to
achieve this purpose, the client extracts a random number, and selects the
current dummy record only if this value is greater than the previous maxi-
mum. Of course, if the requested block id is found, the client chooses that
index instead. Since the selection of a dummy index depends on a random
value, it looks random as well.

Whenever the client finds the (offset, found) pair for a bucket, it fetches
the block identified by offset, and obliviously writes it to a buffer only if
found evaluates to true. This cuts the necessity for the XOR trick, since the
block stored in the buffer after all buckets of the path have been analyzed
is the only one actually written, which corresponds to the only real block
selected among the buckets in the path. Finally, since dummy blocks don’t
require to be the encryption of a known string, they can be left uninitialized.
We remark that this approach blurs the distinction between dummy blocks
inside the Z set and the dummies of D: however, if during eviction we
guarantee that a bucket has at most Z valid blocks, our doubly oblivious
construction is semantically equivalent to a baseline Ring ORAM.

Concerning the eviction of a path, we recall that in Ring ORAM the
client only needs to evict Z blocks for each bucket, since this is the number
of possibly non-dummy blocks. It may happen that there are more than Z
valid records when the bucket being evicted has been accessed less than D
times: in this case, some of the remaining records will be discarded in order
to leave exactly Z valid blocks. In order to do that, the client samples at
random the blocks to invalidate, choosing among the valid ones (i.e. that
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Algorithm 3.2.4: Oblivious SelectOffset function
Input: A block id bid
Input: Encrypted metadata meta of a bucket
Output: The chosen offset in the bucket and whether it is a dummy

1 dec_meta← Decrypt(meta)
2 dec_meta.counter ← dec_meta.counter + 1

3 curr_max← −1
4 found← false
5 offset← UniformRandom(0, Z +D − 1)

6 for i← 0 to Z +D − 1 do
// the server knows which blocks were already accessed

7 if dec_meta.valid[i] then
// the range [0,127] is a mere implementation choice

8 rnd← UniformRandom(0, 127)
/* always evaluates to false once the bid has been

found in the bucket */
9 upd_dummy ← (dec_meta.bid[i] == ⊥) ∧ (rnd >

curr_max) ∧ ¬found
10 upd_found← (dec_meta.bid[i] == bid)

11 offset← ternary_op(upd_dummy, i, offset)
12 curr_max← ternary_op(upd_dummy, rnd, curr_max)
13 offset← ternary_op(upd_found, i, offset)

14 found← found ∨ upd_found
15 end
16 end

17 return (offset, found)
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haven’t been accessed yet) with block id ⊥. Knuth’s S algorithm [23, pag.
142] samples with uniform probability a required number of elements out of a
set in a single scan. Because of these properties, its oblivious implementation
is straightforward. Once that the Z records are read into the enclave, the
same eviction procedure as the Path ORAM applies: the ORAM client first
performs an in place eviction, and then a stash eviction, which tries to place
as many entries as possible from the stash in the evicted path. The only
difference is that each block is obliviously written to only one uniformly
randomly chosen location per bucket, saving a multiplicative factor of Z.
This is possible since the Z blocks will be later permuted and interspersed
in Z+D records, in order to reconstruct the original bucket structure. Since
this is akin to a reshuffle, it is not necessary to conceal the block offset where
a record is evicted.

Before writing back a path to the ORAM tree, the client needs to permute
the Z possibly valid entries in each bucket of the path. In our case, the client
intersperses them into Z+D slots, guaranteeing that each valid block will be
written to a location with uniform probability. At the beginning, the Z +D

entries of the bucket are empty, i.e. their block id is ⊥. We perform Z

iterations in which each block is obliviously swapped with every block of the
bucket. Only one of these writes will be real. In order to ensure that each
of the real block is written to a specific location of the bucket with uniform
probability, we resort to Algorithm 3.2.5. During its i-th iteration, there
will be Z +D − i dummy blocks in the bucket. The client draws a random
integer offset ∈ [0, Z+D−i−1] and writes the valid block to the offset-th
unselected block in the bucket. In order to do that, the client subtracts 1

from offset each time an unwritten block is met. When offset drops to
−1, a real write is carried out since the correct entry has been reached. The
next times an unselected block is found, the value of offset will decrease
further, thus not triggering the write condition in line 10.

It is possible to prove that the presented algorithm guarantees uniform
distribution of the Z real blocks in the bucket. The j-th record in the bucket
will host the i-th record if the client extracts it at the i-th iteration. The
procedure is equivalent to drawing, at each stage, one random offset x among
the unselected ones. If we assume that the generated random values are not
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Algorithm 3.2.5: Oblivious Intersperse function
Input: An array of Z blocks block
Output: An array of Z +D blocks oblock

1 for i← 0 to Z +D − 1 do
2 oblock.bid[i]← ⊥
3 selected[i]← false
4 end

5 for i← 0 to Z − 1 do
6 offset← UniformRandom(0, Z +D − i− 1)

7 for j ← 0 to Z +D − 1 do
// a block not selected is a dummy for sure

8 isDummy ← ¬selected[j]
9 offset← offset− ternary_op(isDummy, 1, 0)

10 pick ← offset == −1 ∧ isDummy
11 selected[j]← selected[j] ∨ pick
12 Swap(pick, oblock[j], block[i])

13 end
14 end

15 return oblock
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correlated, this probability is:

Pr[xi = j∧xi−1 6= j∧· · ·∧x0 6= j] =
1

Z +D − i ·
i−1∏
k=0

Z +D − k − 1

Z +D − k =
1

Z +D

The complexity of Intersperse is O(B ·Z ·(Z+D)). The overall complexity
of evictions, considering that it is performed every A accesses, is

O
(
B · Z · log2N

2 ·A +
B · S · logN +B · Z · (Z +D) · logN

A

)
In the original Ring ORAM paper [16], the authors propose to append

the Z valid blocks remaining in the bucket to the stash and then tries to
evict Z blocks from the stash in this bucket, in order to reduce the stash
occupancy. However, the stash overflow analysis of Ring ORAM [16] assumes
that reshuffles don’t influence stash occupancy, hence the implementation
they provide for sure reduce stash occupancy, but is not required to prevent
stash overflows. Since in our scenario evicting Z blocks from the stash would
require Z costly linear scans of the stash, our EarlyReshuffle just calls
Intersperse for all the buckets in the path that have been accessed more
than D times. We empirically verified the statements reported in the stash
overflow analysis, and never incurred an overflow due to this implementation.

3.2.3 Doubly Oblivious Circuit ORAM

Circuit ORAM exhibits a very high bandwidth blow-up since it needs
to fetch three paths for every access. The first one contains the block that
the client wants to retrieve, while the other two paths are selected by the
deterministic eviction schedule. This is a major issue that makes of Circuit
ORAM impractical for remote protocols, but since bandwidth is not a prob-
lem when the client and the server reside on the same physical machine, be
it on a circuit or within an enclave, it well suits our scenario.

In order to prevent side-channel leakage when the adversary has physical
access to the chip implementing the client logic, Circuit ORAM routines,
and in particular evictions, are designed to be doubly oblivious by default.
In particular, Algorithms 2.2.6 and 2.2.7 are oblivious when the assignments
enclosed in if statements are substituted by our oblivious ternary operator.
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Since they perform a linear scan over the stash and fetched path, without
moving any data block, their complexity is O(S + Z · logN). The whole
eviction, outlined in Algorithm 2.2.8, requires little modifications, which
are showed in Algorithm 3.2.6: in particular, the client obliviously swaps
the block contained in to_write with every record of the current bucket,
in order to conceal the target bucket of the block currently stored in hold.
This sequence of operations is marked in red in the pseudocode and is per-
formed for every block of a bucket, yielding an additional factor of Z in
the asymptotic complexity. Hence, the resulting complexity we achieve is
O(B · (S+Z · logN)), which prevails on the two linear scans over metadata.
Even though this is the best eviction complexity achieved, it is necessary
to take into account that the client applies this procedure twice, hence its
efficiency is not visible for small ORAMs, but rather asymptotically.

One great advantage is that the stash size is very low with respect to the
other protocols, making linear scans much faster.

3.2.4 Protection against active attackers

The ORAMs presented so far guarantee confidentiality and protect the
user from a honest but curious attacker, but don’t provide any guarantee
against intentional memory tampering. Authenticated Encryption (AE) pro-
vides integrity and authentication, thus allowing to detect when the cipher-
text contained in the ORAM tree has been altered. However, it is insufficient
in preventing a malicious attacker from delivering more refined techniques,
such altering the topology of the tree by shuffling buckets, or replaying older
values. These attacks would remain undetected since the MAC stored inside
bucket metadata would match, as AE alone cannot ensure freshness of en-
crypted data, nor fix the structure of the tree. To achieve this purpose, the
ORAM tree can be enriched to implement a Merkle tree with data [27].

Given a hash function H, a Merkle tree with data is a binary tree which
stores within each internal node a digest Hn = H(data ||Hl ||Hr), where Hl

and Hr are the digests contained in the left and right child, respectively. As
an ORAM is organized as a binary tree too, each bucket of the ORAM can
be the data stored in a Merkle tree node. This construction allows the client
to verify the integrity of all the paths in the ORAM tree by retaining only
the digest of the root node. Indeed, this digest can be re-computed from
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Algorithm 3.2.6: Circuit ORAM Eviction
Input: An array of buckets bucket
Input: The leaf id lid of the current path
Input: The output of Algorithm 2.2.7 target

1 hold← ⊥
2 dst← target[−1]
3 max_depth← −1

4 for i← 0 to S − 1 do
5 curr_depth← GetMaxDepth(stash[i].lid, lid)
6 deepestBlock ← (curr_depth > max_depth) ∧ (stash[i].bid 6=

⊥) ∧ target[−1] 6= ⊥
7 max_depth←

ternary_op(deepestBlock, curr_depth, max_depth)
8 Swap(deepestBlock, hold, stash[i])

9 end

10 for l← 0 to L− 1 do
11 toEvict← (l == dst) ∧ (hold 6= ⊥)
12 dst← ternary_op(toEvict, target[l], dst)

// if to evict, immediately move to bucket
13 Swap(toEvict, hold, bucket[l].block[0])
14 curr_depth← GetMaxDepth(bucket[l].block[0].lid, lid)
15 cond← toEvict ∧ bucket[l].block[0].bid 6= ⊥
16 max_depth← ternary_op(cond, curr_depth, -1)

17 for i← 1 to Z − 1 do
18 curr_depth← GetMaxDepth(bucket[l].block[i].lid, lid)

// if the next dst is ⊥
19 swap_cond← (dst == ⊥) ∧ (bucket[l].block[i].bid ==

⊥) ∧ (hold.bid 6= ⊥)
// if the next dst is 6= ⊥

20 swap_cond2← (dst 6= ⊥) ∧ (bucket[l].block[i].bid 6=
⊥) ∧ (curr_depth > max_depth)

21 Swap(toEvict ∧ (swap_cond ∨
swap_cond2), bucket[l].block[i], hold)

22 max_depth←
ternary_op(swap_cond2, curr_depth, max_depth)

23 end
24 end

93



CHAPTER 3. Proposed Approach

all the nodes of each path, starting from the leaf up to the root. Therefore,
given a fetched path from the ORAM, the integrity of all nodes on the path
can be verified by re-computing the digest of the root node and comparing
it with the digest retained by the client. Thanks to its structure, a Merkle
tree allows the client to verify any tampering of the ORAM tree topology
and any bucket swap results in a failure of the digest verification. The digest
computation has no additional overhead when using an AE scheme, such as
AES in Galois Counter Mode (GCM). Indeed, these schemes produce also a
cryptographic digest which is verified upon decryption of the data.

The disadvantage of this construction is that, in order to compute the
digest for all the nodes, all the buckets in the ORAM (even dummy ones)
need to be fill with some data (i.e., initialized), an operation that may be-
come slow as its size grows (although it would be performed just once when
constructing the ORAM tree). Luckily, it is possible to circumvent this
drawback [27] by adding two boolean values, vl and vr to each internal node.
These values tell whether or not the left or right child, respectively, has been
accessed at least once. The buckets that have never been accessed are left
uninitialized, and client will fill them with actual content only the first time
a path containing these buckets is evicted. In case an uninitialized bucket
is found along a path, its digest is substituted by 0. The tag associated to
each node is thus

Hn = H(data || vl || vr || vl ∧Hl || vr ∧Hr)

The server knows which buckets were already accessed by the client,
since they reside in unprotected memory: as a consequence, it also knows
which ones are uninitialized. Even though the digest of invalid buckets is
not checked, the server cannot exploit this condition to inject its own data,
as the client totally discards their content.

The Circuit and Path ORAM that we implement embed this mechanism
to ensure freshness and protection against a malicious attacker. Ring ORAM,
instead, forces the usage of CTR Mode mode to enable scattered access to
data blocks and doesn’t decrypt a whole bucket when a single record is
fetched. These characteristics make it unsuitable for the integration of a
Merkle tree: as a consequence, it only guarantees protection against a honest
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$ a f l

a 0 0 0 0

f 0 1 0 0

f 0 1 1 0

$ 0 1 2 0

l 1 1 2 0

l 1 1 2 1

a 1 1 2 2

a 1 2 3 2

1 3 3 2

Figure 3.2: BWT rank matrix for alfalfa

but curious adversary.

3.3 Substring search algorithms

The algorithms of substring search we implement are variations of back-
wards search (Algorithm 2.3.5). Its advantage is that it is a relatively simple
algorithm that requires much more compact data structures than suffix trees,
but yields the same time complexity. Moreover, its control flow is extremely
regular and can be made oblivious just by exploiting ORAMs to access in-
dexing structures.

3.3.1 BWT based substring search

The first algorithm we present relies on the BWT of the original text T .
It performs rank queries in O(1) thanks to precalculated values stored in a
matrix, that will be referred to asM . M has |T |+2 rows and |Σ|+1 columns.
Each entry M [x][σ] stores rankBWT,σ(x), thus reducing rank queries to a
simple lookup. Figure 3.2 shows the resulting indexing data structure for
our running example alfalfa. We remark that the last row is needed since
rankBWT,σ(x) counts the occurrences of σ in BTW [0, x − 1], thus without
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count0 0 0 0 0

BWT0 a f f

count1 0 1 2 0

BWT1 $ l l

count2 1 1 2 2

BWT2 a a ε

Figure 3.3: BWT rank matrix for alfalfa sampled with period R = 3

the last row, the occurrence of the last character in the BWT will not be
counted in any of the entries of the matrix M .

The size ofM may become prohibitive for large texts and alphabets, since
it contains O(|Σ| · |T |) entries whose size in bits is O(log |T |), as a single
character σ may occur up to |T | times in the original text. To overcome
this issue, we construct a new data structure which retains only some of
the rows of M , interleaving these rows with the BWT of the text. The
construction of this data structure depends on an integer R, referred to as
sample period, which determines which rows of M are kept. Specifically,
the data structure MR has d |T |+2

R e entries, where the x-th entry is a pair of
elements (countx, BWTx), the former being the (x ·R)-th row of M and the
latter being a substring of the BWT from position x·R to position (x+1)·R−1

(i.e., countx = M [x · R, ] and BWTx = BWT [x · R, x · R + R − 1]). Figure
3.3 shows the matrix MR for sampling period R = 3. In the last sample,
BWT3 is padded with the empty character ε to exactly count 3 characters.

We now describe how to compute the rankBWT,σ(x) by hinging uponMR.
Let idx be bx/Rc. In order to perform the rank query, it is sufficient to fetch
the idx-th entry of MR and compute the sum of countidx[σ] = M [idx ·R, σ]

with the number of occurrences of σ in BWTidx = BWT [idx · R, idx · R +

R − 1]. Algorithm 3.3.1 shows the resulting rank procedure. Even if it
scans up to R characters of the BWT, the size of R is usually negligible
with respect to |T |, so that its complexity is still O(1). We observe that MR

improves the required space only by the constant factor R, implying that the
asymptotic bounds for memory are the same. However, since linear scans are
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very fast, R can be chosen big enough to make a huge difference in practical
implementations. The tradeoff between computation and space saving can
be tuned freely according to the requirements of the application.

Algorithm 3.3.1: Rank using MR

Input: The index x of the rank
Input: The character σ of the rank
Input: The BWT of T
Input: The matrix MR

Output: rankBWT,σ(x)

1 idx← bx/Rc
2 offset← x mod R
3 partial_rank ← 0

4 for i← 0 to offset−1 do
5 if MR[idx].BWT [i] = σ then
6 partial_rank ← partial_rank + 1
7 end
8 end

9 rank ←MR[idx].count[σ] + partial_rank
10 return rank

While R is a public parameter of our protocol. when Algorithm 3.3.1
is executed inside an enclave, we need to conceal which entry of MR is ac-
cessed, as well as the σ entry of countidx and the value of offset. To conceal
idx, we wrap the data structure MR into a recursive ORAM, storing both
countidx and BWTidx in a single ORAM block. Furthermore, to conceal the
entry accessed in countidx, we resort to a linear scan that selects the ele-
ment corresponding to character σ with oblivious swaps. Finally, we always
perform R iterations in Algorithm 3.3.1 to hide the value of offset, using
the ternary_op primitive to inhibit the increment when offset characters
of the BWTidx have already been scanned. Backwards search also needs the
C array: since its length is |Σ| + 1, it is small enough to allow linear scans
to hide which entry is actually fetched.

The access to the recursive ORAM impacts the performance of this al-
gorithm. In a doubly oblivious scheme, the Access cost is dominated by
the eviction procedure: hence, in order to estimate the complexity of our
oblivious algorithm, we choose to employ the eviction complexity of Circuit
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ORAM, as it is the most efficient. From this complexity, we omit the terms
S, the stash size, and Z, the number of blocks found in each bucket, as they
are always small enough to be considered negligible with respect to the size
of the ORAM. Therefore, we employ O(B · logN) as the cost of an ORAM
access. In Subsection 2.2.4 we evaluated the cost to retrieve the leaf id from
a recursive position map, which is O(BR · log22N/ log2C), where BR is the
block of the recursive ORAMs employed to store the position map and C

is the recursion factor for the recursive ORAMs. This bound was assessed
for a remote ORAM protocol, whose bandwidth cost is the figure of merit
of its complexity and amounts to O(B · logN). The bounds we found for
the remote scenario also hold for Circuit ORAM, even though its asymptotic
complexity is related to the cost of evictions. Since doubly oblivious Path
and Ring ORAM have complexity that is roughly O(B · log2N), recursive
access to the position map has a cost of O(BR · log32N/ log2C). The number
of elements of the last level ORAM is |T |/R, the size of the block of the
recursive position map is BR ∈ O(C), while the block size of the ORAM
containing MR is B0 ∈ O(|Σ|+R).

In conclusion, the cost to access the ORAM wrapping theMR data struc-
ture is:

O
(

C

log2C
· log22

( |T |
R

)
+ (|Σ|+R) · log2

( |T |
R

))
= O

(
log22(|T |)

)
when we consider C, R and Σ constants. When searching a pattern of size
m, we obtain O(m · log2 (|T |/R)).

3.3.2 STBWT algorithm

An alternative way of performing rank queries would be storing, for each
character σ ∈ Σ, an array occσ whose entries are the positions where a it
occurs in the BWT, in order. If we have such information, the rankBWT,σ(x)

would trivially be the first index k such that occσ[k] ≥ x. The various occσ
arrays drawn from the BWT of alfalfa, whose Σ = {a, f, l}, are represented
in Figure 3.4.

Since occσ is sorted, we can improve on this approach by performing a
rightmost binary search for x; the outcome of this search will be the last
index h such that occσ[h] < x, therefore the resulting rank will be k =
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occa 0 6 7

occf 1 2

occl 4 5

Figure 3.4: Array of the occurrences for the BWT of alfalfa

h + 1, as the first index of the array is 0 and we actually want to count
the number of entries before the index k. The binary search procedure is
reported in Algorithm 3.3.2, which can just provide rank calculations in
Algorithm 2.3.5. We refer to the resulting algorithm as Search-tree BWT
(STBWT). Since the cardinality of the different occσ arrays is proportional
to the length of the text, the complexity of the unprotected version of this
algorithm is O(m · logN).

Algorithm 3.3.2: STBWT Rank
Input: The array of the occurrences occσ
Input: The argument x of the rank
Output: rankBWT,σ(x)

1 st← 0
2 end← |occσ| − 1
3 rank ← 0

4 while st <= end do
5 middle← st+ b end−st2 c
6 if occσ[middle] < x then
7 st← middle+ 1
8 if middle ≥ rank then

// indexing starts from 0, so we add 1
9 rank ← middle+ 1

10 end
11 end
12 else
13 end← middle− 1
14 end

15 end

16 return rank
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In order to hide the access pattern to the array, it is necessary to wrap
it within an ORAM. A convenient way to achieve this purpose is exploit-
ing the general framework of tree-based ODS’s. In fact, the binary search
performed over the occσ arrays is akin to the exploration of a search tree:
building a search tree from a sorted array is a trivial task, that only re-
quires to recreate the access pattern of the binary search. In particular, for
each partition delimited by the indices st and end, that defines the nodes
contained in a subtree, the middle element evaluated as the entry at index
middle = st + b end−st2 c is chosen as subroot, splitting the given subtree in
two other partitions delimited by st,middle− 1 and middle+ 1, end respec-
tively. Figure 3.6(b) shows the binary tree generated from the sorted array
in (a). The numbers shaded in black represent the indices of the initial array
that hold the search key, that are equivalent to the value of middle for their
corresponding partition. Of course, this approach yields a balanced search
tree whose depth is log |occσ|, which in fact derives from the time complexity
of a binary search over a sorted array. For each σ ∈ Σ it is thus necessary
to build a separate tree: however, it is not possible to wrap them within
distinct ODS’s, since the current pattern character would be trivially leaked
by detecting which ODS is currently accessed by the enclave. Hence, in the
case of STBWT, all the search trees are kept in a single ODS: in order to
explore each one of them, we keep an array of |Σ| elements that point to the
various roots. Once that the ORAM address of a root has been resolved,
the exploration continues as in a standard ODS, leveraging the pointers con-
tained within each internal node, which references the children elements of
the node at hand in a single tree. In order to obliviously select the proper
root pointer, we resort to linear scans: this is possible since the number of
roots |Σ| is usually negligible with respect to the length of the text.

The details of our ODS construction are deferred to Subsection 3.3.4, as
well as the resulting complexity of a root to leaf exploration performed by
STBWT.

3.3.3 SA-Ψ algorithm

The successor array Ψ is a data structure that derives from the suffix
array and allows to implement an alternative version of backwards search. If
SA[x] is the suffix of T that starts at the k-th character of the string, Ψ[x]
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7 6 3 0 5 2 4 1a)

3 7 5 2 6 4 1 0b)

⊥ 0 6 7 1 2 4 5c)

Figure 3.5: (a) The SA (b) ISA and (c) Ψ of the running example alfalfa

is the index of SA of the suffix starting at position k + 1:

SA[Ψ[x]] = SA[x] + 1

The construction of the Ψ array is quite straightforward. Let ISA be the
inverse suffix array: if SA[x] = k, then ISA[k] = x. In other words, the k-th
entry of the ISA tells which index of the SA stores the suffix starting at
the k-th character of T . The construction of the ISA is shown in Algorithm
3.3.3. It turns out that Ψ[x] is, in fact, ISA[SA[x] + 1], save for Ψ[0] = ⊥.
In fact, SA[0] corresponds to the terminator $, which has no successors. The
ISA and the successor array Ψ for string alfalfa are depicted in Figure 3.5.

Algorithm 3.3.3: Construction of the ISA
Input: The suffix array SA
Output: The inverse suffix array ISA

1 for i← 0 to |SA| − 1 do
2 ISA[SA[i]]← i
3 end

4 return ISA

Given a character σ ∈ Σ, the entries of Ψ in the range [C[σ], C[next(σ)]−1]

point to the successors of all the suffixes that start with σ. If we consider
two consecutive entries of the suffix array in that range, namely SA[x] =

101



CHAPTER 3. Proposed Approach

k1, SA[x+1] = k2, they point to two suffixes that can be written as suffixk1 =

σ || suffixk1+1 and suffixk2 = σ || suffixk2+1. Of course, Ψ[SA[x]] will
point to suffixk1+1 while Ψ[SA[x + 1]] to suffixk2+1. Since suffixk1 is
lexicographically smaller than suffixk2 (being the suffix array sorted), the
suffixes obtained by dropping their initial character σ will preserve this or-
dering as well: hence, the suffix pointed by Ψ[SA[x]] is smaller that the one
of Ψ[SA[x + 1]]. Repeating this reasoning for all the contiguous entries of
the Ψ array that fall in the range [C[σ], C[next(σ)] − 1], we obtain a key
property which will be exploited in the search algorithm, namely that the
Ψ entries relative to the same character are sorted, i.e., for each σ ∈ Σ,
Ψ[C[σ], C[next(σ)]− 1] is sorted in ascending order.

The concept behind backwards search with Ψ relies on this property.
As usual, given a pattern P of length m, the search starts from its last
character, including a new one at each iteration. In the i-th iteration, the
backwards search algorithm generates the indices sm−i and em−i that de-
limit the portion of the suffix array which contains the positions of suffixes
whose prefix is the pattern P [i,m−1]. The boundaries for the last character
P [m − 1] = σm−1 are retrieved from the C array as usual: sm−1 = C[σm−1]
and em−1 = C[next(σm−1)]− 1. If we include the next character P [m− 2] =

σm−2, the refined limits will fall in the range {C[σm−2], C[next(σm−2)]− 1},
which indeed points to all the suffixes of the text starting with σm−2. Among
them, we want to include only the ones whose second character is σm−1.
This requirement is fulfilled by all the suffixes whose Ψ entry falls in the
range {sm−1, em−1}. Since Ψ[C[σm−2], C[next(σm−2)] − 1] is sorted, then
these suffixes are represented by two indexes sm−2, em−2: the former is
the position of the leftmost element in Ψ[C[σm−2], C[next(σm−2)] − 1] such
that Ψ[sm−2] ≥ sm−1, while the latter is the position of the rightmost el-
ement in Ψ[C[σm−2], C[next(σm−2)] − 1] such that Ψ[em−2] ≤ em−1. Al-
gorithm 3.3.4 shows how to retrieve the value sm−2, which is the value s′

returned at the end of the algorithm. The algorithm employs two indexes
start, end, which denotes the range of possible values for sm−2 at each it-
eration. This range is progressively refined by hinging upon the fact that
Ψ[C[σm−2], C[next(σm−2)] − 1] is sorted. Specifically, the range is updated
by looking at its middle element: if this falls outside {sm−1, . . . , em−1}, then
we update the indexes start and end in order to try moving the middle el-
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ement inside {sm−1, . . . , em−1} (lines 10 and 7); conversely, if the middle
element resides inside {sm−1, . . . , em−1}, then it may be the leftmost element
such that Ψ[middle] ≥ sm−1. Therefore, we save it as a candidate value for
sm−2 (line 12) and we update end in order to look at elements on the left
of the current candidate value for sm−2 (line 13). At the end of the algo-
rithm, s′ necessarily stores the position of the leftmost element such that
Ψ[s′] ≥ Ψ[sm−1]: indeed, start is at most as big as the position of the first
element of Ψ which is at least as big as sm−1 (i.e., the desired index sm−2),
while end is at least as small as the last element of Ψ which is smaller than
s (i.e., sm−2− 1); thus, sm−2 is necessarily the last position assigned to s′ at
line 12. In order to find em−2, we employ a dual procedure, which explores
elements on the right of the candidate value whenever the middle element
resides inside {sm−1, . . . , em−1}. By applying the same procedure, we can
compute indexes sm−3 and em−3 from sm−2 and em−2, and so on, until all
the m characters of the whole pattern are considered.

The algorithm we just described can be performed obliviously if the Ψ

array is arranged in |Σ| separate search trees, which are wrapped into an ODS
as discussed for STBWT. Nevertheless, we also devise a way to perform
a search over the whole Ψ array in order to gain the ability to pack Ψ

within a single-rooted ODS. We first describe the modified search procedure
which does not necessarily start from the range related to character σ in
the Ψ array (i.e., Ψ[C[σ], C[next(σ)] − 1]), as ensured by lines 1 and 2 of
Algorithm 3.3.4; then, we show how to adopt a single-rooted search tree to
perform this search over Ψ. Algorithm 3.3.5 show the search procedure to
compute the index sm−i, which is done over all the Ψ array (first two lines
of the algorithm). When the current middle element does not belong to the
portion of the Ψ array corresponding to the current character σ, which is
Ψ[C[σ], C[next(σ)]−1], the value of Ψ[middle] is ignored: instead, the search
proceeds in the left partition (i.e. left subtree) if middle < C[σ] (line 8)
or in the right if middle > C[next(σ)] − 1 (line 8). When middle falls in
the right range, instead, the value of Ψ[middle] is taken into account, and
processed as in Algorithm 3.3.4: hence, if it falls in the right boundaries
[s, e] (lines 15 and 18) it is saved in s′, and the search continues among
the leftmost (respectively, rightmost) element during the search for sm−i
(respectively, em−i). The complexity of this implementation of backwards
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Algorithm 3.3.4: Leftmost Ψ− Search
Input: The Ψ array of T
Input: The previous interval s and e
Input: The current character σ
Input: The C array
Output: The new start of the inteval s′

// indices of the binary search
1 st← C[σ]
2 end← C[next(σ)]− 1
// -1 means no matches, i.e. failure

3 s′ ← −1

4 while start ≤ end do
5 middle← st+ b end−st2 c
6 psi← Ψ[middle]

// try to find the interval of Ψ pointing to [s, e]
7 if psi > e then
8 end← middle− 1

9 end
10 else if psi < s then
11 start← middle+ 1

12 else
13 s′ ← middle

// leftmost search always goes to the left
14 end← middle− 1

15 end
16 end

17 return s′

104



3.3. Substring search algorithms

search is O(m · logN).

This intricate search criterion is devised to pack the Ψ array in a single-
rooted binary tree, which is, generally speaking, a more traditional way to
exploit ODS’s.

While this algorithm exhibits a more complex control flow than the pre-
vious, it is possible to transform it in an oblivious one by resorting to the
ternary_operator primitive. We will show the final complexity of this al-
gorithm later, when explaining the structure of the ODS that hosts Ψ.

3.3.4 Binary search tree ODS

In Subsections 3.3.3 and 3.3.2, we explained how to use an ODS to achieve
obliviousness for two of our algorithms, namely SA-Ψ and STBWT, without
specifying how such an ODS should be structured. We only showed that an
array that exhibits some kind of ordering may be arranged in a tree recreating
the access pattern of a binary search, as depicted in Figure 3.6(a) and (b),
that in fact serves as a way to turn both Ψ and occσ into search trees.

It turns out that the data structure we obtain via this process is ready
to be put into an ORAM. In particular, we start the insertion from the root,
and properly link each node to its children by assigning them a block id bid,
which can be chosen akin to the numbers shaded in black in Figure 3.6(b),
and a leaf id that is used to evict the children but is also kept in the parent
node as a pointer, similarly to what we did for recursive position maps. In
the basic construction, all the nodes are stored within the same ORAM,
whose capacity must be big enough to host all of them. If we assume that
each ORAM access introduces an overhead proportional to logN , and that
a root to leaf exploration requires the traversal of logN levels, the resulting
complexity of a round of search would be:

logN∑
i=0

logN = O(log2N)

We can achieve a better complexity by restructuring the ODS.

The access pattern of a binary search is fixed: exploration starts from
the root, traversing all the levels in sequence until it reaches a leaf. In order
to optimize the traversal, we may pack each level of the binary tree in a
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Algorithm 3.3.5: Full leftmost Ψ− Search
Input: The Ψ array of T
Input: The previous interval s and e
Input: The current character σ
Input: The C array
Output: The new start of the inteval s′

// indices of the binary search
1 st← 0
2 end← |Ψ| − 1
// match boundaries

3 s′ ← −1
// indices of the SA matching σ

4 range_left← C[σ]
5 range_right← C[next(σ)]− 1

6 while start ≤ end do
7 middle← st+ b end−st2 c

// try to find the interval [range_left, range_right]
8 if middle > range_right then
9 end← middle− 1

10 end
11 else if middle < range_left then
12 start← middle+ 1

// right range
13 else
14 psi← Ψ[middle]

// try to find the interval of Ψ pointing to [s, e]
15 if psi > e then
16 end← middle− 1
17 end
18 else if psi < s then
19 start← middle+ 1
20 else
21 s′ ← middle

// leftmost search always goes to the left
22 end← middle− 1

23 end
24 end
25 end

26 return s′
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Figure 3.6: (a) A sorted array (b) a balanced binary search tree and (c) a
complete balanced binary search tree
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separate ORAM [18]: thus, ORAMi will store the i-th level of the search
tree, that in turn contains 2i nodes assuming that levels are numbered from
0 (root) to logN . The complexity we achieve is:

logN∑
i=0

log 2i =

logN∑
i=0

i = O(
log2N

2
)

Even if we improve only by a constant factor, this optimization turns out
to have a strong impact on final performance, which is line with the results
showed in previous works [18, 25]. As an example, the ODS for STBWT is
reported in Figure 3.7: here, all the nodes in the same level of each of the
|Σ| trees are merged in a single ORAM and each level is stored in a separate
ORAM.

To construct our ODS, we initialize the search tree level by level instead
of performing a full binary tree insertion for each element. This is arguably
the most efficient way to add nodes to the tree, since exactly N accesses to
the ORAM are required. Nevertheless, this initialization strategy requires
that the parent knows the correct leaf ids of its two children nodes, even if
these have not been inserted into the ODS yet. In order to overcome this
issue, we generate leaf ids via a deterministic Cryptographically Secure Pseu-
dorandom Number Generator (CPRNG), such as AES in CTR Mode. More
specifically, let Πk be a CPRNG seeded with k that exposes a function Gen

to produce random values and Init to generate the sequence from the begin-
ning. Let GenSeed be a function that returns a random seed – on x86_64,
the instruction RDSEED would serve the purpose. Algorithm 3.3.6 shows how
a single level of the path can be initialized: it inserts one node at a time in
each level, using k2 to generate its children pointers and k1 to determine the
leaf corresponding to the path where it will be evicted. k1 is the seed that
was used to fill the children pointers of the previous level, so that the newly
inserted elements are correctly pointed by the ones in the previous level. The
initialization of the block ids that complete an ORAM pointer is omitted,
since reasonable block ids, such as the ones shaded in black in Figure 3.6(b),
can be easily generated. k2 is returned by LevelInitialization, and is
used by the ODS Construction procedure (Algorithm 3.3.7) to link two
consecutive levels.
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This way of instantiating an ODS does not leak any secret: in fact, even
if the new nodes are explicitly assigned a path, they are just appended to the
stash at insertion time. The paths that are evicted due to ORAM access are
either random (Path ORAM) or deterministic (Ring and Circuit ORAM),
and thus are not related at all to the path assigned to the inserted node.

Algorithm 3.3.6: Binary tree ODS LevelInitialization
Input: The current level l
Input: An array of 2l search keys key
Input: The seed k1 used for the previous level
Output: The seed k2 used for the current level

1 k2 ← GenSeed()
2 Πk1 .Init()
3 Πk2 .Init()

4 for i← 0 to 2l − 1 do
5 node← CreateEmptyNode()
6 node.key ← key[i]

// construct the pointers to the children
7 node.left.leaf_id← Πk2 .Gen()
8 node.right.leaf_id← Πk2 .Gen()

// generate and assign the leaf id
9 ev_leaf ← Πk1 .Gen()

10 node.leaf_id← ev_leaf

11 Add node to the stash of ORAMl and perform the eviction
12 end

// return the seed for the next level
13 return k2

Nonetheless, the last level L = blogNc of the tree represents a problem
for this algorithm. In fact, its nodes are scattered, and generating the correct
leaf id via a CPRNG requires to go through the previous ones as well. In
order to avoid leakage, it is necessary to perform dummy accesses as if all
the nodes in L− 1 had two children, further decaying performance.

The solution we adopted is to build a complete binary search tree, in
which all the nodes on the last level are compacted to the left, as in Figure
3.6(c).

In order to build a balanced tree that is also complete starting from a
sorted array, it is necessary to carefully choose the index root of the original
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Algorithm 3.3.7: Binary tree ODS Construction
Input: A list of levels of a search tree lev

// get number of levels
1 L← | lev |
// initialize seed k1

2 k1 ← GenSeed()

3 for i← 0 to L− 1 do
4 k2 ← LevelInitialization(i, lev[i], k1)
5 k1 ← k2
6 end

array that will serve as a root of the complete tree. In particular, root splits
the array A in two partitions, [0, root − 1], [root + 1, |A| − 1] that need to
contain the correct number of elements so that recursive application of the
root selection for all the subtrees in lower levels yields a complete tree.

A perfect binary tree is a complete binary tree whose last level is full. It
is easy to observe that any complete tree is contained within a perfect one.
We will number the levels of a tree from 0 (root) to L = blogNc, where N is
the number of nodes in the tree. A perfect tree contains 2L+1−1 nodes, 2L of
which in the last level. Half of the nodes in the last level (2L−1) will belong
to the left subtree of the root, the other half to the right. A complete tree
has x ≤ 2L nodes on its last level. The last level of the left subtree will thus
contain k = min(x, 2L−1) elements. The left subtree, that starts at level 1, is
complete up to level L−1, and thus contains Nl = b2L−2c+k nodes (the floor
function is applied in case L = 1). Hence, index Nl correctly partitions array
A and can be chosen as a root for the tree. The same reasoning can be applied
to choose the elements from subarrays A[0, root− 1] and A[root+ 1, |A| − 1]

that must become the roots of, respectively, the left and right subtrees of
the complete tree. Algorithm 3.3.8 sums up this function, while the numbers
shaded in black in Figure 3.6(c) show the results of recursive application of
the subroot selection.

The strategy we have just described allows to efficiently initialize the
ODS. As a consequence, the sequence of elements inspected during the bi-
nary searches performed in Algorithms 3.3.2 and 3.3.5 must correspond to a
path in a complete binary tree constructed by subroot selection procedure in
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Algorithm 3.3.8: SubrootSelection
Input: The starting index of a partition s
Input: The length of a partition
Output: Index of the subroot relative to a 0-indexed array

1 if len == 1 then
2 return 0
3 end
4 L← blog (len)c
// number of elements in the last level

5 x← len− (2L − 1)
6 k ← min(x, 2L−1)
7 return s+ b2L−2c+ k

ORAM0

ORAM1

ORAM2

ORAM3

Figure 3.7: ODS of STBWT

Algorithm 3.3.8; this is equivalent to choosing the middle element (line 5 in
Algorithm 3.3.2 and line 7 in Algorithm 3.3.5) by hinging upon the subroot
selection procedure we have just described.

Now that we have introduced the structure of our ODS, we can evaluate
how obliviuosness impacts the performance of SA-Ψ and STBWT. Once
again, we adopt Circuit ORAM access time, O(B · logN). However, the
blocks of the ORAM have a fixed structure, consisting of the search key (i.e.,
the corresponding entries of Ψ and occσ in, respectively, SA-Ψ and STBWT
ODS) and the pointers to the two children. As a consequence, the access
time becomes O(logN), as the cost O(B) to obliviously copy the content of
a block is equivalent to simply copying one integer and two pointers, which is
obviously O(1). Our ODS consists of log |T | levels, that the client traverses
for each character of the pattern. Therefore, the overall complexity of these
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algorithms becomes:

m ·
log |T |∑
i=0

(log 2i) = m ·
log |T |∑
i=0

i ∈ O(m · log2 |T |)

thus adding a log |T | term to their initial complexity.

3.3.5 Security and leakage of the proposed solutions

The security of our solutions is based on three pillars: the trusted exe-
cution environment provided by Intel SGX, the confidentiality and integrity
guarantees obtained by using AE ciphers and the obliviousness of the ac-
cess patterns of the algorithms which is mainly guaranteed by ORAM. The
full-text indices are computed by the client in a preprocessing stage and
encrypted offline with an authenticated block cipher, in order to guarantee
both their confidentiality and their integrity. Plaintext information within
the binary files, such as the length of the text and the size of the input alpha-
bet, is authenticated as well. Then, these encrypted indices are outsourced
to the server (Figure 3.1). During the setup phase of ObSQRE, depending on
the algorithm chosen by the client to perform the substring search queries,
several ORAMs are instantiated and filled by the secure enclave with the
content of the full-text indices, which are fetched from the untrusted storage
and decrypted inside the enclave. The ORAMs use ephemeral random keys
generated by RDRND, that are securely stored in the enclave and wiped as
soon as the client tears down a session. This ensures that it is not possible
to dump the content of the ORAM tree to replay a whole session, for example
querying data structures for which an attacker doesn’t own the keys.

All the sensitive indexing structures are packed within an ODS or a re-
cursive ORAM: since they totally hide the logical access pattern of the search
algorithms, it is not possible to infer any information about the content of
the indices; furthermore, ORAMs allow to conceal the the similarity of sub-
sequent queries, thus protecting the search patterns. Furthermore, the shape
of the indexing structures, i.e. the number of levels of the ODS’s or position
map, is publicly known, so there is nothing to learn about it.

We now separately discuss the text indices of the corresponding substring
search algorithms in order to analyze the information leaked by each of them.
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In the BWT backwards search, we use an ORAM with recursive position
map. The sample period R does not affect the security, but rather the
tradeoff chosen by the client between computation and memory consumption,
and it is assumed to be publicly known since it can be easily exfiltrated by
the adversary from the execution of Algorithm 3.3.1 in the enclave. The
overall leakage is limited to the length of the original text and the size of its
alphabet.

In order to guarantee obliviousness, SA-Ψ performs a root to leaf access
to the ORAMs composing its ODS for every query character. The last level
may not be complete: however, L accesses to the ORAM must be done,
because otherwise the adversary can infer that the binary search algorithm
is visiting a shorter or longer path of the binary search tree. To overcome
this issue without inserting dummy block in the last level of tree, namely
ORAML, the algorithm performs an access to one of the dummy blocks (with
bid = ⊥) of ORAML when a node on level L− 1 has no children. Thanks to
this trick, SA-Ψ only leaks the length of the original string.

Conversely, STBWT introduces more challenges in this regard. The trees
associated to each character may exhibit different depths, thus leaking in-
formation about the relative frequencies of characters. In this case, it is
necessary to perform accesses from ORAM0 to ORAML in order to conceal
the character we are looking for. To avoid the leakage of character fre-
quencies, it is possible to pad each search tree to the size of the one of the
most recurring character, severely impacting memory usage. Nonetheless,
we stick to the first approach, as we deem the information about the relative
frequencies of characters not significant enough to motivate the performance
overhead required to hide this leakage; however, we remark that we also de-
velop a more safe version that only leaks the number of occurrences of the
most frequent character.

Concerning the leakage of the lengthm of the pattern being searched in a
query, it is easy to observe that all the backwards search algorithms perform
a m iterations, thus the adversary can trivially infer this information. To
mitigate this problem, we give the client the possibility to pad each query
with a varying number of dummy characters placed at random. Dummy
characters exhibit the same behavior of real ones but don’t contribute to the
update of the start and end indices that mark the matches.
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The result of each query, that is the positions of all the occurrences of
a pattern on the suffix array, is not revealed, as their limits are returned in
encrypted form. In order to retrieve these indices, a suffix array is optionally
enclosed within the index. The suffix array is packed in recursive ORAM,
that stores res entries inside each block. The client can fetch a portion of the
suffix array only at this granularity, however the number of chunks retrieved
is proportional to the number of occurrences of the pattern found in the
text. To this extent, ObSQRE allows the client to request additional chunks
which are not related to the occurrences of the pattern, in order to hide the
number of matches; the decision about the number of dummy chunks to be
retrieved is delegated to the client, which can choose the trade-off between
the information leakage and latency of a query depending on the application
scenario.

Lastly, we recall that for Circuit and Path ORAMs, it is possible to
overlap the ORAM tree with a Merkle tree nodes, in turn guaranteeing the
integrity and freshness of the buckets and avoiding replay attacks. Therefore,
when the full-text indices are wrapped into either Circuit or Path ORAM, our
solutions are secure even against malicious adversaries as well. Conversely,
when Ring ORAM is employed, the security and leakage guarantees of our
solutions are provided only only against a passive attacker, who audits the
application without direct intervention.
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Implementation

In this chapter we carefully review the remote attestation process, that
allows a remote party to establish the authenticity of an enclave allocated
on a distinct and potentially malicious machine. The scenario envisioned by
Intel SGX is mainly oriented to Digital Rights Management (DRM) or similar
purposes. In this case, the user of an enclave is a client who wishes to access
protected contents distributed by a provider that enforces specific terms of
use. When a client wants to ask for some resources, she has to execute a
secure enclave developed by the provider in order to safely deliver and handle
such copyrighted data. Before sending contents over the network, the servers
of the provider need to ensure that the enclave that was instantiated on the
client is the right one: the remote attestation step guarantees its authenticity,
also performing an authenticated Diffie-Hellman Key Exchange (DHKE) to
establish a secure channel that will be employed for further communications.
In this context, the client represents the untrusted entity, who potentially
wishes to abuse some digital contents, and the remote attestation is carried
out by the content provider, that corresponds to the ISV that developed the
enclave. Intel grants access to the IAS, which needs to be queried in order to
verify the authenticity of the attestation proof generated by the enclave, only
to the ISV, strongly suggesting that indeed Intel SGX was mainly conceived
for DRM.

The case of cloud computing is totally different though. In particular, a
client who wishes to process a huge amount of data outsources the compu-
tation to an untrusted remote server with bigger storage and computational
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capabilities. When the dataset of the client is sensitive, she may exploit a
secure enclave to protect its content during the computations: hence, the
client wishes to perform remote attestation to establish the authenticity of
an enclave before trusting it. We point out that the user of a specific en-
clave not necessarily corresponds to the original enclave developer, and it
is likely unwilling to undergo all the annoying steps needed to gain access
to the IAS, which includes requesting an X.509 certificate from a trusted
certification authority.

In this regard, we show how the usual flow of the attestation procedure
can be modified in order to achieve this purpose, i.e. allowing a client to
attest an enclave that was developed by a third party ISV and is run on a
remote server. Since the ISV still needs to intercede in the access to the
IAS, we also show how to prevent an unfaithful ISV from colluding with a
cloud service provider to cheat during the remote attestation. Surprisingly
enough, all the previous works that rely on Intel SGX in the cloud setting
did not consider these pitfalls at all. Section 4.1 goes through the original
protocol devised by Intel and then explains how it can be adapted to our
needs.

Section 4.2 gives a rapid overview of the Intel SGX programming model,
highlighting the limitations of this technology and some workarounds to cir-
cumvent them. Section 4.3 provides a high level overview of the several parts
composing ObSQRE, specifically showing the sequence of operations that a
client performs to query a full-text index of his own, including the several
data exchanges required by remote attestation.

4.1 Intel SGX remote attestation overview

As discussed in Section 2.1, remote attestation allows a remote party
to verify that the secure enclave was correctly instantiated on the remote
untrusted machine and to establish a secure channel via a key exchange. We
now provide an high level overview of the remote attestation protocol devised
by Intel, highlighting some hindrances which harden its employment in our
cloud-computing scenario. Remote attestation first performs a DHKE to
derive a common key between the enclave and the ISV, which is then used
to instantiate a secure channel; then, it generates a proof of authenticity
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of an enclave, referred to as quote, which can be later sent by the ISV to
the IAS, obtaining an attestation report which specifies the soundness of
the quote. Specifically, the quote is signed using a per-CPU key, called
attestation key, that is only accessible to a special enclave authored by Intel,
the Quoting Enclave (QE). The usage of a privileged enclave prevents any
other entity from forging rogue quote signatures, and thus guarantees that
the machine is equipped with legitimate and updated Intel SGX hardware.
The consequence is that an attacker cannot simulate the steps performed by
Intel SGX to perform remote attestation.

The quote is composed of several fields that allow to certify the correct
setup of an enclave and the identity of its developer, the ISV. The former
function is fulfilled by the MRENCLAVE, the latter by the MRSIGNER, both
derived using Secure Hash Algorithm 2 (SHA-2).

The MRENCLAVE, which stands for ’enclave measurement’, is generated
during the setup of the enclave. The CPU exploits specific Intel SGX in-
struction to assign EPC frames to an enclave and initialize their content.
These instructions update a SHA-2 hash that testifies both the sequence of
operations and the data that were used to build the enclave [12]. The hash is
kept in the EPCM and updated by microcode, so that it cannot be tampered
with. MRENCLAVE includes both the code and the data of the application run-
ning in the enclave; therefore, if the MRENCLAVE matches with the one which
identifies the enclave, it means that the machine did not cheat in the process
of creating the enclave and thus the remote user of the enclave can trust the
application running inside it.

On the other hand, the MRSIGNER is employed to identify the ISV. Specif-
ically, each ISV employs an RSA keypair with public exponent 3 to sign its
enclaves; the MRSIGNER is the SHA-2 hash of the modulus related to the key-
pair, which must be a valid 3072-bits RSA modulus. The signature appended
to the enclave shared object is checked by Intel SGX after terminating its
setup. The presence of MRSIGNER in the quote strictly binds each enclave to
its developer.

When the remote party receives the quote along with its signature, it can
query the IAS to verify that the process was successful.

The IAS can verify the attestation signatures generated by any Intel
CPU that features Intel SGX. However, this is potentially harmful for pri-
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vacy, since IAS would be able to track the software executing on each of its
CPUs. In order to circumvent this drawback, Intel adopts a group signature
scheme, called Enhanced Privacy ID (EPID). Each CPU is assigned to an
EPID group containing a huge number of CPUs, in order to blur their iden-
tities. The public key of the EPID group can verify the signatures generated
by all the processors in the group: this way, the CPU vendor cannot exactly
know which piece of hardware actually generated the signature. IAS black-
lists attestation signatures coming from compromised platforms, which are
included in the Signature Revocation List (SigRL).

There are two caveats in the attestation procedure which hinders its
adoption by entities different from the ISV. First, the DHKE which is per-
formed at the beginning relies on a keypair 〈ISVpub, ISVpriv〉, whose public
key must be embedded in the enclave and included in the data authenticated
in the MRENCLAVE, while the private key is retained by the ISV in order to
reliably perform the DHKE. Therefore, the private key must be shared with
all the entities willing to remotely attest the enclave, which may be a serious
concern for the ISV. The second caveat is that Intel only allows the ISV to
access IAS. Indeed, an ISV needs to perform several steps in order to be
granted access to IAS:

1. first, it has to obtain an X.509 certificate from a trsuted certification
authority, (though the certificate can be self-signed for testing pur-
poses);

2. then, it subscribes to Intel Development Services;

3. finally, it waits for the grant by Intel, which sends a Service Provider
ID (SPID) via e-mail.

The ISV uses the certificate to perform mutual TLS authentication with the
IAS. The end user of the enclave is likely not willing to undergo all these steps
in order to utilize the application running in the enclave, preventing their
adoption in our cloud computing scenario. In conclusion, it is rather clear
that the remote attestation procedure cannot be straightforwardly applied
to our cloud computing scenario, hindering the adoption of secure enclaves
for outsourced computation. Therefore, we deeply analyzed the Intel SGX
attestation procedure to obtain a revised procedure which can be carried on
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Table 4.1: Format of the first message

Message Decription

Message m1
Ga

Gax Ephemeral P-256 public key
Gay

EPID Group Id To verify the signature of the QE

by several entities which are simple users (not owners) of the enclave with-
out undergoing annoying steps such as requiring digital certificates. Quite
surprisingly, this issue has never been analyzed in existing works presenting
Intel SGX based applications. We now present our analysis and our revised
attestation procedure, starting with a detailed description of the remote at-
testation procedure devised by Intel.

4.1.1 Client-to-Server attestation

The attestation and key exchange protocol devised by Intel [10] allows
the ISV to authenticate the enclave running on the client machine (DRM
scenario). Since the client is untrusted, we assume that it will play the role
of a Man-in-the-middle (MITM) during the execution of the key exchange.
Moreover, we assume that the part of the computation executed by the
enclave strictly follows the protocol, which is true if the ISV implemented
it properly. Throughout this subsection, we use CMACk(m) to refer to the
AES-128 Cipher-based MAC (CMAC) of m with key k.

Before provisioning secrets to an enclave, the ISV asks the enclave to
attest itself. In the process, a key exchange establishes a secure channel that
can be used for further communications.

Phase 1 The client fetches its EPID Group Id, that is used by IAS to
verify the quote signatures produced by a group of CPUs. It initializes an
attestation context within the enclave that holds the intermediate results of
the key exchange. The attestation context contains the public key of the
ISV ISVpub, which is a point on the elliptic curve P-256. To ensure that the
correct public key is used, it can be hardcoded within the enclave image: as
such, it will become part of the MRENCLAVE. Finally, the client generates an
ephemeral keypair over the curve P-256: we will refer to the public portion
of the key as Ga = (Gax, Gay). The message sent to the ISV resembles the
format of Table 4.1.

119



CHAPTER 4. Implementation

Table 4.2: Format of the second message

Message Decription

Message m2,A

Gb
Gbx Ephemeral P-256 public key
Gby

Parameters Contains the SPID of the ISV
Sigisv Thwarts MITM and authenticates the ISV

Message m2,B SigRL Signature Revocation List
CMACSMK(m2,A) MAC to verify integrity of message m2,A

Phase 2 The ISV server queries the IAS to retrieve the SigRL of the
client’s EPID group. The signature generated by the QE changes according
to the SigRL, which blacklist compromised CPUs for which secret keys have
been leaked. Then, it generates an ephemeral keypair over P-256, with public
key Gb = (Gbx, Gby) and private key Gbp. It can then complete the DHKE
evaluating Gab = Gbp ∗Ga = (Gabx, Gaby), where ∗ denotes the product of
two points over P-256 elliptic curve. It then computes the Key Derivation
Key (KDK) as CMAC0(Gabx). The KDK will serve as the shared secret
between the ISV and the enclave.

The KDK is employed to compute the Sigma Key (SMK) as:

CMACKDK(0x01 || ”SMK” || 0x80 || 0x00)

The SMK, that can be derived within the enclave as well, is used to generate
the MACs of subsequent messages, in order to avoid tampering.

In the DRM scenario, the enclave wants to establish the identity of the
remote party. In order to do that, the ISV uses its private key ISVpriv to sign
the message Gb ||Ga, yielding Sigisv. The aim of this step is twofold: first, it
authenticates the ISV server to the enclave, since the ISV is the only owner
of ISVpriv. Furthermore, it allows the enclave to verify both that the server
received the right ephemeral public key Ga and that the ephemeral public
Gb received by the enclave has not been tampered with, thus, thwarting any
MITM attack from the untrusted client.

Finally, the ISV includes in the message other metadata, including its
SPID. The format of this message is reported in Table 4.2.

Phase 3 Intel SGX API provides routines to perform the following op-
erations within the enclave:
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Table 4.3: Format of the third message

Message Decription

Message m3
Ga

Gax Ephemeral P-256 public key
Gay

Quote Quote generated by the QE
CMACSMK(m3) MAC to verify integrity of message 3

1. derive KDK and SMK using the ephemeral public key Gb received from
the ISV in message m2;

2. verify Sigisv with ISVpub;

3. verify the CMAC of the message m2,A.

If all these checks are successful, it requests the quote to the QE, and assem-
bles a message as reported in Table 4.3. Since this message is authenticated
with SMK, the ISV can verify that the Ga it used to derive the KDK was
legitimate. The quote, besides MRENCLAVE and MRSIGNER, includes another
field, called REPORTDATA, which contains the SHA-2 hash of Ga ||Gb || V K,
where the Verification Key (VK) is computed as CMACKDK(0x01||”V K”||0x00||0x80||0x00).
REPORTDATA play a pivotal role in our revision of the attestation procedure
to make it suitable for our scenario.

Phase 4 The ISV needs to implement these checks:

1. check correctness of the CMAC;

2. verify that the Ga in the message matches the one used to derive the
KDK;

3. evaluate VK and check the content of the REPORTDATA, to verify that
the enclave received the correct Gb.

If these checks are successful, the ISV can submit the quote to the IAS. A
nonce may be optionally submitted to the IAS via its HTTP API, an impor-
tant feature that will come in hand in our scenario [9]. IAS answers "OK" if
the attestation signature was correctly verified, appending the content of the
request submitted by the ISV. IAS signs the request submitted by the ISV,
so that she can verify that the content of its request was correctly received.
It then may check the nonce for freshness, if it was previously included in
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the verification request. If all these security checks are successful, the ISV
extracts the MRSIGNER and MRENCLAVE from the quote and checks it against
the ones it authored. At this point, both the enclave and the ISV can derive
the Session Key (SK) and Master Key (MK):SK = CMACKDK(0x01 || ”SK” || 0x00 || 0x80 || 0x01)

MK = CMACKDK(0x01 || ”MK” || 0x00 || 0x80 || 0x01)

that can be used to encrypt subsequent data exchanges, thus concluding the
remote attestation procedure.

4.1.2 Security against MITM attacks in our scenario

In phase 2 of the remote attestation procedure, the pair of ephemeral
public keys Gb,Ga generated for the attestation by the ISV and the enclave
are signed with the private key ISVpriv of the ISV: this prevents MITM at-
tacks from the untrusted machine where the enclaves resides, as this machine
cannot produce a valid signature where the ephemeral public key of the ISV
(i.e., Gb) is replaced by a key Gc chosen by the adversary, which is needed to
perform a successful MITM attack. Nonetheless, we have already discussed
that the need to know ISVpriv is a severe hindrance for the adoption of the
attestation procedure in our could computing scenario. In this case, an en-
tity (referred to as user or client) rents a untrusted server in the cloud and
instantiates an enclave developed by a third party, the ISV. Even though
the ISV is not trusted, the client may inspect the enclave binary to verify
that it conforms to the specifications. On the other hand, remote attestation
is needed to prove that the server actually instantiated the correct enclave.
The ISV supposedly wants all the clients to use the enclave without having to
recompile it with a distinct hardcoded public key for each user; furthermore,
we assume that the ISV is not willing to share its private key ISVpriv with
all the clients. In this case the attestation procedure we introduced earlier
represents an obstacle to the wide adoption of enclave based applications.

Luckily, we observe that signing the pair of ephemeral keys Gb,Ga is
not strictly required to prevent MITM attacks. To show this, we consider a
remote attestation procedure where, in Phase 3, the enclave does not verify
the signature Sigisv. We suppose that the untrusted server in our cloud
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scenario tries to act as a MITM between the enclave and the client. In
order to break the secure channel created via a DHKE, a MITM performs
two separate key exchanges with the communicating parties, using its own
public key Gc, for which he knows the private key Gcp. The adversary
replaces Ga in message 1 with Gc, and then generates a shared secret Gbc
with the ISV as soon as it receives Gb. Then, it replaces Gb in message m2,A

with Gc and forward the message to the enclave as well, establishing another
secure channel based on the shared key Gac. From now on, all the CMACs
can be substituted, delivering a successful attack.

However, the attack can be easily detected by the client. This is due
to the fact that the quote and its signature cannot be forged by a MITM,
since they are generated by the trusted platform. The impossibility to forge
enclave quotes derives from the fact that the QE is the only entity that can
derive the attestation key that produces the signature. Therefore, a MITM
cannot modify the REPORTDATA field of the quote, that contains the SHA-
2 hash of Ga || Gc || V Ka,c. Ga is the public key generated by the enclave,
while Gc is the public key employed by the attacker as a MITM. On the other
hand, the client expects to find in REPORTDATA the hash of Gc ||Gb || V Kc,b,
that will mismatch with the one in the quote. REPORTDATA provides already
full protection against a MITM attack and also guarantees freshness of the
quote, hence preventing quote replaying attacks, as it contains an ephemeral
public key generated by the ISV.

Even though not officially documented, we argue that the usage of the
ISV keypair is only necessary to authenticate the ISV to the enclave. In
fact, if not used, any remote party would be able to perform a key exchange
with the enclave. In a scenario such a DRM, each ISV is interested in
guaranteeing that its enclave is not exploited by third parties to distribute
protected material. Conversely, in our scenario, the enclave is not interested
in authenticating the entity performing the attestation: as we will see in
the description of our revised attestation procedure, an entity still needs
to interact with the ISV in order to successfully perform attestation, thus
preventing unauthorized entities from reliably attesting the enclave.
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4.1.3 Server-to-Client attestation

Since we acknowledge that the verification of the Sigisv signature in phase
2 of the attestation procedure is not required in our scenario, we can skip
this step. To this extent, we decide to avoid the definition of a custom at-
testation protocol since it would require to re-write some parts of Intel SGX
API, which currently allows to perform the whole attestation procedure with
few calls to specific routines that hide to the developer all the details about
remote attestation. Conversely, in order to ensure the compatibility with
the existing protocol, we mandate that the ISV generates a random P-256

keypair 〈ISVpub, ISVpriv〉, whose public key is embedded in the enclave as
part of its data, while the private key is sent to the authorized users. Never-
theless, as Sigisv is actually useless in our revised attestation procedure, the
ISV would be no longer concerned in case ISVpriv is publicly leaked (indeed
ISVpriv may even be publicly shared by the ISV with no security issues).
Although this solution may appear not elegant, it allows us to still rely on
the existing Intel SGX API, which are likely to be severely scrutinized to
assess their reliability and security and which are already included in the
TCB of Intel SGX.

The other problem of our revised attestation procedure is that the client
cannot perform mutual TLS authentication with IAS, hence she is prevented
from verifying quote signatures. In fact, it is reasonable to assume that in the
general case a user is not willing to request a certificate from a Certificate
Authority and to subscribe to IAS. In this case, the ISV that developed
the enclave can intercede between the client and the IAS. When performing
remote attestation, the client sends the quote to the ISV along with a nonce,
that will become part of the request submitted to the IAS. The ISV then
forwards the response it receives to the client, that can verify its freshness
thanks to the nonce. We remark that this solution does not require the user
to trust the ISV, and it works also in the case the ISV colludes with the cloud
server hosting the enclave itself. We don’t implement a separate server to
forward the requests to the IAS, but perform all the required security checks
to ensure freshness, validating our approach. The overall picture is depicted
in Figure 4.1.

We remark that our remote attestation procedure does not impact the
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Figure 4.1: Overview of server-to-client attestation

security of our application. In fact, the indices used to perform substring
search are encrypted using a symmetric key only owned by one client. Once
the secure channel is established, it is employed to send this key to our
enclave, which then decrypts the content of the index and allocates it in
memory using either an encrypted ORAM or ODS. An attacker cannot de-
crypt the index of another client unless she derives the proper keys by other
means. Furthermore, even though she managed to take over an initialized
session of another client, she would not be able to perform any query, since
they are encrypted using Intel AE with the SK, that is only known to the
legitimate client.

4.2 Enclave programming model

Intel SGX enclaves are distributed as shared objects that are attached to
the virtual address space of a process upon request. The setup of an enclave
requires the usage of special instructions to allocate and fill EPC frames,
computing the MRENCLAVE. The function sgx_create_enclave fulfills this
purpose, returning the id eid of the instantiated enclave in case of success.
sgx_destroy_enclave deallocates the enclave associated to a certain eid.

The code running on the untrusted part of the system may jump into an
enclave only at predefined locations, established by the enclave developer.

125



CHAPTER 4. Implementation

The interface of an enclave must be in C and is declared in a special file
with extension .edl [11]. The .edl file allows to declare both the methods
that can be called by untrusted software, usually named ecalls, and the
untrusted methods that may be invoked from within the enclave, named
ocalls. Its syntax is similar to C, although it introduces some special con-
structs that decorate pointer arguments. Enclaves implement strict policies
regarding pointers: in fact, a data buffer residing in unprotected memory
locations may be accidentally modified by the enclave, leaking secret infor-
mation. The Intel SGX toolchain automatically generates edger routines
that move data buffers between the enclave and unprotected memory. This
implies that the dimension of data buffer must be known a priori in order
to move the correct amount of information. If a pointer is decorated with
the keyword [in], its content is dumped to a buffer stored within the en-
clave. Thus, the enclave can safely modify it, even writing secrets, since the
changes do not apply to the original data buffer. A pointer decorated with
[out] is initially allocated within the enclave, and its content is moved in
the memory location at the end of the execution of the function. These two
behaviours are combined if the developer specifies [in,out].

On the other hand, when a pointer is declared as [user_check], none
of the operations we described is performed, and any sanity check is dis-
cretional. A [user_check] pointer is needed, for example, when allocating
untrusted memory to store the ORAM trees. In fact, calling a malloc or new
from within the enclave allocates protected memory, which is a very limited
resource. malloc must be wrapped inside an ocall in order to allocate un-
trusted memory. Enclave developers can use specific methods offered by the
SDK, namely sgx_is_outside_enclave to ensure that the pointer returned
by the untrusted host refers to a valid memory location. In fact, no one
prevents it from returning a pointer that refers to virtual addresses mapped
to the EPC, thus causing the enclave to overwrite its own memory. This is
why [user_check] pointers should be used only when strictly necessary.

All the functions declared in the .edl must return void. When invoked
from the untrusted code, their prototype implicitly changes: in fact their
first parameter must be the enclave id, followed by the other parameters de-
clared in the .edl and they return an integer, which either signals successful
invocation of an enclave function or failure (due, for example, to an incorrect
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initialization of the enclave).

In order to allow the inspection of an enclave, all the external libraries
it uses must be statically linked in the enclave image. In fact, no one would
prevent an untrusted OS from loading a compromised version of a library,
and code running within the enclave can only invoke untrusted methods de-
clared as ocalls anyways. It is not always straightforward to port libraries,
e.g. cryptographic ones, for enclave use. Some libraries offer optimized ver-
sions of algorithms that leverage x86_64 extensions, such as AVX and SSE.
In order to choose the right implementation, most of them resort to the
CPUID instruction, which is forbidden in enclave mode and causes a SIGILL.
This was the case of wolfCrypt, a cryptographic library that we employ in
our work and that is discussed later. Thus, it is often necessary to apply
slight modifications to the original sources to account for the limitations of
enclaves, that also encompass perform I/O, multithreading and some ad-
vanced functionalities normally provided by C/C++ [11].

The last major limitation of Intel SGX is that they don’t allow to perform
system calls as they imply jumping to kernel code, that is not included in
the TCB according to the threat model adopted so far. In order to execute
the routines of the OS it’s necessary to invoke them via an ocall, and then
return the results to the enclave. Before using them, the enclave should
carry out several sanity checks in order to establish whether or not they look
legitimate: ultimately, the enclave cannot rely on the operations performed
by the OS as it may deliberately return malformed values to interfere with its
execution or trigger vulnerabilities. Since rewriting wrappers for syscalls
may be a tedious and lengthy task, library OS’s such as Haven or Graphene-
SGX [42] already provide these facilities. In ObSQRE we only need to read
the contents of a full-text index from a binary file or allocate untrusted
memory to host the ORAM tree, hence we prefer to implement these few
functionalities by ourselves.

4.3 Implementation details

The functionalities of our enclave are exposed via a HTTP API that
allows a client to perform remote attestation and substring search. All the
server side of the application is developed in C/C++, while the client is
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written in Python.
We decouple the portion of the server that manages the connections from

the implementation of the HTTP API. The class multi_server implements
a basic multithreaded server that listens on a port and dispatches requests to
worker threads. We adopt the asio library for networking because of its ease
of use, but we do not exploit its full potential that relies in its asynchronous
model. When used asynchronously, asio1 serves many requests concurrently
on the same thread because it does not hang on socket read/writes. All the
operations are put in a queue along with a callback that is executed when
network I/O has completed. While this technique allows to design servers
that can handle thousand of connections with minimum latency, our appli-
cation doesn’t stress on networking performance. Therefore we opted for the
more traditional and simple synchronous model, that waits for network I/O
to complete before executing the next operation.

multi_server is an abstract class, and thus it cannot be instantiated.
Its only function is accepting connections: any class that derives from it
must implement the virtual method void process_request(socket&), that
serves the requests according to an agreed protocol. The reason behind this
choice is that multi_server may come in hand when fast prototyping other
remote protocols, saving us from re-implementing the networking part.

subtol_server implements the bare minimum part of HTTP needed to
run our protocol. We decide to implement the necessary features ourselves
because HTTP is a relatively simple protocol. We implement only a few
HTTP headers, and perform some sanity checks on them:

• Host, that is mandated by the standard and contains the domain name
of the server;

• Content-Lenght, the length in bytes of the HTTP body in case of
POST requests;

• Cookie, that contains the identifier of a session of our application.

Even though we don’t have in mind to firmly comply to the standard, we
find out that our basic implementation works with all the clients we tried,
i.e. cURL, Mozilla Firefox and the Python Requests library.

1think-async.com/Asio/ contains thorough reference of this library
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We define a series of API calls that must be called in a certain order
to establish a session. The requested method is encoded in the URI of the
HTTP request and exploits cookies to keep track of a session. The eventual
parameters and results are exchanged in JavaScript Object Notation (JSON)
due to its flexibility and wide availability of libraries to handle it.

The /start_session call initializes a session and returns a random
session-id cookie made of 32 alphanumerical characters. It performs the
Phase 1 of the remote attestation protocol described in Subsection 4.1.1 as
well. The cookie must be included in subsequent requests in order to update
the state of a session. The /attestation/1 and /attestation/2 are neces-
sary to complete the creation of the secure channel. The client posts Message
2 in the body of the /attestation/1 request, and receives Message 3 in the
response. At this point, the client can query the IAS to establish whether
or not the enclave is trustworthy. She informs the server about the outcome
via /attestation/2, which contains fixed ack/nack string encrypted with
the Session Key (SK) to either proceed with the protocol or abort it. In
our implementation, we don’t implement the whole infrastructure depicted
in Figure 4.1, but rather embed the ISV within the client. This decision
was driven by the fact that splitting the ISV into a separate entity is just a
programming task, that does not add any significant insights to the core of
our work.

From there on, all subsequent communications are encrypted or authen-
ticated with the SK and are thus protected against any eavesdropper. More-
over, since the attestation and key exchange protocols are secure against a
MITM attacker even in the server-to-client scenario, the client has a strong
guarantee that his SK is only known by the enclave.

We don’t use HTTPS for our prototype, but we argue that it would not
add any security margin to our application. In fact the untrusted server
hosting the enclave may try a MITM attack at every moment. Since Intel
SGX attestation provides protection against a local MITM, this holds for an
adversary that tries to perform an attack over the network as well. Even
if our application uses cookies that are sent in plaintext, an attacker would
not be able to take over a session and perform queries on behalf of the
real client. In fact, each command issued to the enclave is either encrypted
or authenticated via the SK, that cannot be derived by any third party.
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Although an attacker can take over a session at the beginning of a key
exchange, he doesn’t own the cryptographic key to decrypt the dataset of
other client, and hence cannot query it. We notice that the malicious server
can replay older queries, as well as a remote attacker that takes over a
session. However, none of them can learn any information since the results
are encrypted.

4.3.1 Oblivious primitives

We implement several ORAM protocols and substring search algorithms,
and allow to freely combine them. With the /configure method, the client
can select the desired ORAM protocol and its parameters. Since this infor-
mation is public and can be easily inferred by the server, we only authenticate
the configuration parameters.

All the oblivious primitives, save for the ODS implementing the binary
search tree, are part of the libobl, which can be used for other enclaves as
well. It must be compiled as a static library to be linked against an enclave
image.

All of the ORAMs derive from an abstract class, tree_oram, that defines
their interface. It exposes the following pure virtual methods:

• access wraps together block fetch and stash eviction;

• access_r and access_w correspond to the Read and Write methods
of Algorithm 2.2.9 and come in hand when implementing both the
recursive position map and the ODS, since the content of a fetched
block containing ORAM pointers can be modified with the updated
leaf ids before it is written back;

• write is useful for Algorithm 3.3.6 to skip path fetch when initializing
the content of an ODS.

We can exploit polymorphism to allow the user to choose the preferred
ORAM implementation.

Both the ODS and recursion require the instantiation of several ORAMs
of varying size. In order to easily implement this, we employ the abstract
factory pattern: each ORAM is associated to an allocator that instantiates
ORAMs of a certain type and size. The classes implementing the recursive
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position map and the ODS are fed with the allocator, and invoke its method
spawn to build a new ORAM object. spawn returns a pointer to a generic
tree_oram, that hides the underlying implementation but exposes all the
required methods thanks to polymorphism.

Among the ORAM implementations, there are singly oblivious versions of
Path and Ring ORAM in order to evaluate the impact of doubly obliviousness
on performance. Furthermore, linear_oram implements a simple oblivious
primitive through linear scans over an array. It is useful to understand when
ORAMs start to achieve better performance with respect to a trivial solution.
linear_oram does not encrypt data, and thus is safe to use only if totally
allocated within the enclave, as if it was a stash only.

We thought to another use for linear_oram. In fact, ODS-based schemes
allocate very small ORAMs in the upper levels of the tree. Hence, we define
a custom allocator that chooses a linear_oram instead of a tree_oram if the
number of elements is below the break even.

The content of Circuit and Path ORAM is encrypted and authenticated
using AES-128 in GCM, using an ephemeral random key generated via the
instruction RDRND, available on most x86_64 platforms. We tested several
cryptographic libraries, finding out that wolfCrypt (which is a part of wolf-
SSL2) achieves execution times that are by far better than its competitors,
namely OpenSSL and Intel Integrated Performance Primitives (Intel IPP)
library. In particular, the cryptographic part of Intel IPP is available in the
Intel SGX SDK if it’s built with the pre-compiled optimized libraries, oth-
erwise an implementation based on OpenSSL is provided. wolfCrypt was
initially considered because its low memory footprint suits the limited size of
the EPC, but it manages to achieve outstanding performance thanks to the
exploitation of AES New Instructions (AES-NI), that are specific opcodes
introduced by Intel to speedup the computation of AES. Surprisingly, Intel
IPP is better than wolfCrypt for AES in CTR Mode, since it exposes a more
convenient API that allows to minimize the number of calls to the libray.
Hence, Intel IPP is our choice for Ring ORAM.

2www.wolfssl.com/ links to the full documentation of both the SSL/TLS suite and the
cryptographic library
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Table 4.4: Format of the binary file containing a full-text index

Field Size (bytes) Description

Algorithm 8
0 or 4: SA-Ψ
1 or 5: STBWT
2 or 6: BWT

String length N 8 Length of the original text
Alphabet size 8 Size of the alphabet |Σ|

Size of integer I 8 Constant, 4
PBKDF2 salt size sizes 8 Size of PBKDF2 salt

AES-GCM IV 12
IV for AES (according to
NIST)

PBKDF2 salt sizes Salt for PBKDF2

Sample period R 8
(only BWT) Sample period
employed to build MR

Character bits 8
(only BWT) Number of bits to
encode a BWT character

Sample size 8
(only BWT) Size of an entry of
MR

Suffix array ∼ (N + 1) · I Suffix array (optional)
C array ∼ (|Σ| · I) C array for backward search

Index ∼ (N + 1) · I
SA-Ψ: Ψ array
STBWT: arrays of occurrences
BWT: samples of matrix M

AES-GCM MAC 16 MAC of the whole file

4.3.2 Session setup, query and tear down

After choosing the preferred ORAM primitive, the client specifies the
name of the file containing the desired full-text index. The header of the
file contains information about the particular indexing structure, either the
BWT, SA-Ψ or STBWT. The indexing structure is encrypted with AES-
128, using a key derived with the Password-based Key Derivation Function
2 (PBKDF2) [22], so that the client can enter a password instead of a binary
cryptographic key. PBKDF2 repeatedly applies a hash function with a salt
for an agreed number of iterations. We choose the GCM mode fo operation
in order to verify the authenticity of the file. The simple file format we
use is reported in Table 4.4. In our implementation, we allow a client to
retrieve only the number of occurrences: indeed, the client can freely choose
how many positions of such occurrences must be returned. Therefore, the

132



4.3. Implementation details

client can choose if the main indexing structure, that allows to retrieve the
range of the suffix array that represent a match for the pattern, should be
coupled with the suffix array itself, allowing to retrieve the positions of the
occurrences, or not, thus retrieving only the number of matches. When the
suffix array is included, a value ≥ 4 is employed in the algorithm field (look
at Table 4.4). We only encrypt the suffix array (if present), the C array and
the index. The rest of the content is only authenticated since the information
it contains is public and part of the leakage model we assume.

Using the /load method, the client specifies both the file name and
the password. The latter is encrypted by the client and decrypted by the
enclave with the symmetric key SK established during the remote attestation
procedure. Since SK is ephemeral, this prevents replay attacks that aim at
decrypting an index without the consent of the client.

Once the indexing structure is properly loaded into the ORAMs, the
client can finally issue queries. The API call /substring submits an en-
crypted query to the server, that returns the initial and final indices of the
suffix array that refer to matches of the pattern. If we call them s and
e respectively, the client can determine the number of matches evaluating
e − s + 1, since the range [s, e] is inclusive (see Algorithm 2.3.5). If either
s = e = −1 or s > e, the pattern is not found in the original text. The client
can pad the query with as many dummy characters as she wishes to con-
ceal the length of the query. After calling /substring, the client can invoke
/suffix to retrieve the corresponding entries of the suffix array. The suffix
array is divided into windows of R entries: the client starts from fetching
the window bs/Rc. It can then fetch as many portions of the suffix array as
she wishes to conceal the number of matching patterns.

A session can be torn down via the command close, that deallocates the
ORAMs and destroys the attestation context, preventing a SK from being
reused.

The client is implemented in Python and uses the Requests library in
order to perform all the API calls. We implemented a small command line
interface (CLI) in order to test and benchmark our work.
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Chapter 5

Experimental results

The experimental evaluation of our work aims at finding the optimal
combination of ORAM primitives and substring search algorithms, as well as
assessing the estimated asymptotic complexities and practical performance
metrics of our three proposed solutions. In Subsection 5.1 we provide general
information about the platform where we perform our tests and the datasets
we choose in order to benchmark ObSQRE. Since we implement three dif-
ferent ORAM protocols, in Subsection 5.2 we provide sound values for their
free parameters, evaluate their performance in the scenario of enclaved exe-
cution and assess the overhead due to doubly obliviousness. In Subsection
5.3 we tune the paramters for the BWT based substring search algorithm, in
particular the sample period R and the size of the recursive position map C.
Finally, in Subsection 5.4, we directly compare the three different full-text
indices we develop.

5.1 Experimental setup

We perform our experiments on an machine endowed with Intel SGX,
which means that the performance data showed in this chapter refers to
actual execution times on real hardware, instead of being measured on In-
tel SGX simulator. Even though Intel SGX is included in all the CPUs
since the Skylake microarchitecture, it requires support from the mother-
board firmware to allocate the PRM, that is where enclaves reside. The
motherboard of the server where we perform our test supports Intel SGX
technology; the machine is equipped with an Intel Xeon E3-1220 v6 CPU at

135



CHAPTER 5. Experimental results

Table 5.1: Choice of parameters for ORAM primitives. Z is the number of
blocks in each bucket, S is the stash size, A is the eviction period and D is
the number of dummy blocks in a bucket.

ORAM Z S A D
Path 4 64 – –
Circuit 3 8 – –

Ring 4 32 3 6
8 41 8 13

3GHz, 32GB of RAM and runs Ubuntu 16.04 LTS. We use Intel SGX SDK
and PSW v2.5, compiled with Intel’s optimized libraries.

In order to narrow down the choice of ORAMs, we perform synthetic
benchmarks to establish the time needed by the Access procedure of each
implementation. Path ORAM has only two parameters: the number of
blocks in a bucket, Z, and the size of the stash S. We fix Z = 4 since it
is the minimum value of Z that guarantees exponentially decreasing stash
overflow probability [36]. The upper bound for stash overflow probability is
1.6−S : by choosing S = 64, we achieve a probability of 2−43. For Circuit
ORAM, the value Z = 4 exhibits a stash size that does not exceed 5 [40].
Following the hints of [40], we opt for a more aggressive combination, picking
Z = 3 and S = 8. We validate these values empirically, experiencing no stash
overflows in several runs that perform ∼ 230 accesses adopting a round-
robin schedule over the block ids: in fact, this access pattern is provably
the one that maximizes stash occupancy for all of the ORAM schemes we
consider [36]. For Ring ORAM we test two different configurations, deriving
the right parameters from Table 2.2 by hinging upon the theoretical overflow
analysis done by Ring ORAM authors. First, we choose Z = 4 as it directly
compares with the competitors. Since this value of Z allows a maximum
eviction period of A = 3, the second configuration is more aggressive: indeed,
we choose Z = 8 to get an eviction period of 8, thus assessing how a greater
value for A impacts performance in a practical scenario. The configurations
employed for all the ORAMs being evaluated are summarised in Table 5.1.

In our tests we also include singly oblivious implementations of Path
and Ring ORAMs in order to measure the impact of doubly obliviousness
on their performance. We are not planning to exploit them in the final
substring search protocol: indeed, the clients of singly oblivious ORAMs
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are still executed within an enclave, and exposed to side channel leakage
that may compromise their security. We keep some optimizations that we
introduced for doubly oblivious primitives, for example the in-place eviction
of the currently fetched path, as well as some other ones that rely on the
fact that client resides on the same machine as the server, like the removal
of the XOR trick for Ring ORAM. The major difference with respect to
their doubly oblivious counterpart is that they don’t perform linear scans
with oblivious swaps, but rather manage the fetched path as a simple array
of buckets and the stash as a list of blocks whose size changes dinamically.
Hence, by evaluates their performance, we can quantify the overhead due to
the implementation of an oblivious client. Since the modifications done to
make Circuit ORAM are minimal and straightforward, we are not interested
in assessing the overhead introduced by these simple changes, hence focusing
only on its doubly oblivious version. For singly oblivious Path and Ring
ORAM we adopt the same configurations of Table 5.1, since they are not
affected by the way the client is implemented.

We test our substring search algorithms with standard benchmarks of
varying length and alphabet size. We consider datasets with different alpha-
bets as we are willing to analyze the impact of alphabet size on the perfor-
mance of our substring search algorithms. The genomes of escherichia coli
(ecoli in short) [13] and saccharomyces cerevisiae (sacc in short) [14] only
contain the four nucleotides composing the DNA, while the human chromo-
some 21 (CHR21 in short) [13] is expressed in FASTA format [8], that include
additional characters to account for uncertainty in the genome sequencing
process. This chromosome exhibits only a subset of FASTA symbols (namely,
7), therefore the alphabet is only slightly larger than ecoli and sacc. The
Swiss-Prot database (prot in short) [38] contains many human proteins,
which are encoded using the 25 symbols of the slighty larger protein alpha-
bet. Furthermore it is the only dataset made of several strings, that are
concatenated and separated by a symbol that doesn’t occur elsewhere in
the text (i.e., the end-of-string delimiter symbol). Finally, we choose the
corpus of the works of William Shakespeare (shake in short) [32] for our
tests on natural language. shake contains between 89 and 91 characters
according to the portion of the text that is considered, but given its high
alphabet size, this difference is negligible. Table 5.2 summarizes the chosen
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Table 5.2: Substring search datasets

Dataset Full name Length Alphabet
(MB) Type Size

ecoli Escherichia coli 5.5 Nucleic acid 4
sacc Saccharomyces cerevisiae 12.2 Nucleic acid 4
CHR21 Human chromosome 21 46.7 FASTA 7
prot Swiss-Prot DB 201.9 Proteins 25
shake Shakespeare corpus 5.5 ASCII 89-91

datasets. We perform the tests over incremental portions of our datasets,
ranging from 1MB to 32MB. We don’t consider texts of greater size since
Ring ORAM with Z = 8 has a huge memory footprint. In fact, each bucket
stores Z + D = 21 records and there is approximately one bucket for every
element of a text, hence the solutions based on Ring ORAM require 21x the
memory of the initial indexing structures. Given the limited resources of our
machine, we opt for smaller datasets in order to provide a fair comparison
between all the ORAMs we test, without running out of memory. This is not
an issue since in this stage we are mainly interested in analyzing the trends
of the different combinations of ORAMs and substring search algorithms:
we will show some preliminary tests over bigger datasets after we identifying
the best solution among the proposed ones.

5.2 ORAM benchmarking

The benchmarks of the ORAM primitives are taken outside the enclave
in order to totally delete the noise generated by the context switch to enclave
mode. We generate a dataset of increasing size consisting of 8 byte random
values. Since the size of the blocks B is fixed, we consider it a constant and
delete it from the complexity bounds of the ORAMs. For every dataset size
N , we fully initialize the ORAMs inserting all the elements, in order to reach
a steady-state, and we compute the average access time over 1024 accesses.
The result of the test is depicted in Figure 5.1.

The linear scan approach was included to show how quickly tree based
ORAMs outperform a trivial strategy. The exponential trend is due to the
fact that the x-axis, which represents the number of elements N , has a
logarithmic scale and a linear scan has complexity O(N).
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Figure 5.1: Comparison of ORAM primitives. SO stands for singly oblivious
versions

As discussed in Section 3.2, eviction is the heaviest operation in terms of
computational complexity for doubly oblivious ORAMs. This is confirmed
by the experimental results showed in Figure 5.1, as the difference between
the performances of the various doubly oblivious ORAMs can be explained by
analyzing the computational cost of their eviction procedures. The eviction
complexity of doubly oblivious Path ORAM, O(Z2 · log2N +S ·Z · log(N)),
is the highest among all the doubly oblivious primitives, and it’s not sur-
prising that it is the slowest. Ring ORAM improves its performance thanks
to the fact that evictions are performed every A accesses. Moreover, our
optimizations allow to save multiplicative factors of Z and logN , yielding
a complexity of O(Z · log2N + S · log(N) + Z · (Z + D) · logN) for a sin-
gle eviction. Even if Ring ORAM with Z = 4 performs more than twice
the evictions of Z = 8, the latter also exhibits a much greater value for D,
that impacts on eviction complexity. Thus, the performance improvement of
Ring ORAM with Z = 8 over Ring ORAM with Z = 4 is not so significant.
Circuit ORAM has the best asymptotic bounds, hence it prevails for larger
N . Since its complexity is logarithmic in N , it is the only primitive that
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does not exhibit a slight quadratic trend among doubly oblivious ones. Ring
ORAM with Z = 8 is slightly better for N ≤ 211, though.

Unsurprisingly, singly oblivious primitives are much faster. Despite its
longer eviction period A, Ring ORAM performs worse than Path ORAM,
that in fact is a much simpler protocol. The reason is that in our local sce-
nario bandwidth costs have not a high impact on performance, since they
are just memory to memory transfers. Ring ORAM, on the other hand,
improves on a remote scenario in which network latency absorbs the vast
majority of execution time. Hence, the simpler control flow of Path ORAM
results in shorter execution times. Figure 5.2 shows the slowdown of the
doubly oblivious primitives with respect to their singly oblivious counter-
parts. Path ORAM is the fastest singly oblivious ORAM due to its simple
structure, but also the slowest doubly oblivious since its eviction has a cost
that is roughly O(log2 (N)) and is performed after each Access. Hence,
its overhead nearly reaches a factor of 6 and is doomed to grow for larger
ORAM sizes, since the Access complexity of a singly oblivious Path ORAM
is O(log (N)), resulting in a ratio that will be O(log (N)) as well. Indeed,
the overhead resembles a straight line in the plot since the x-axis is in log-
arithmic scale. While the overhead of Ring ORAM is a straight line for
the same reasons outlined for Path ORAM, the resulting slopes are much
gentler thanks to several optimizations that reduce the multiplicative factor
hidden in the asymptotic complexity of doubly oblivious evictions. Specif-
ically, as evictions are the operations where there is more gap between the
single and doubly oblivious Ring ORAMs, amortizing them over A accesses
has a greater impact on the doubly oblivious ORAMs. Indeed, evictions
are relatively cheap operations in a singly oblivious implementation, hence
adopting a higher A produces negligible effects in our local setting; con-
versely, a longer eviction period yields more benefits in the doubly oblivious
version. This motivation is confirmed by observing the slowdown for the two
configurations we consider in our tests for Ring ORAM: despite the slow-
down of the doubly oblivious versions is similar for both configurations, Ring
ORAM with Z = 8 exhibits a slightly smaller gap due to its longer eviction
period.
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Figure 5.2: Overhead of doubly oblivious ORAMs with respect to their singly
oblivious counterpart

5.3 BWT parameter tuning

The complexity of the BWT based algorithm depends on the parameter
R, i.e. the sampling period of the matrix M that stores the ranks for back-
wards search. R needs to be carefully chosen since it has several side effects
that may influence the performance of this solution, namely:

1. bigger values for R lead to a bigger block size of the ORAM, since each
block will contain R consecutive characters from the BWT of the text;

2. bigger values for R increase the number of characters of the BWT
which need to be scanned linearly during the rank computation, as all
the R characters in a block must always be inspected;

3. bigger values for R decrease the number of blocks of the ORAM that
is N = |T |

R , for a text T .

In short, the block size and the number of characters to be scanned during
the rank increase with R and decay the performance, but on the other hand
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the number of required ORAM blocks decreases for bigger values R, deter-
mining a better access time. It is not possible to forecast where the correct
trade-off lies, since the constant factor hidden behind these operations is
unpredictable.

Furthermore, BWT based backward search employs a recursive position
map, as described in Subsection 2.2.4. The number of elements stored in
each chunk of the recursive position map, C, is another free parameter which
needs to be aptly tuned. We observe that these two parameters, R and C,
are intertwined: we expect that the ideal value for C depends on the number
of blocks stored in the ORAM, which in turn depends on R, as outlined in
the third point of the listing above. Performing an exhaustive search in
both these dimensions would require too much time. Nonetheless, these two
parameters are related only by the number of blocks of the ORAM: hence,
we first find the ideal size of C for ORAMs with various number of blocks;
then, for every R, we compute the the number of blocks as N = |T |

R and
choose the optimal value C for that number of blocks.

5.3.1 Calibration of C

In order to find the optimal value for C, we run synthetic benchmarks
for the most promising doubly oblivious primitives, i.e. the Ring ORAMs
with the two configurations (Z = 4 and Z = 8) and the Circuit ORAM.
We test ORAMs of varying sizes between 29 and 222 elements in order to
cover all the combinations of text sizes and possible sample periods in our
datasets. For each ORAM and dataset size, we try out all the C values in the
range {22, 23, . . . , 210}. We choose 210 as the upper bound because Figure
5.1 shows that linear scan becomes less efficient than using an ORAM at
that point. Since obliviousness requires to scan linearly all the entries in the
position map chunks, the optimal value must necessarily be in the tested
range.

The block size of the ORAM that stores the data is 8 bytes (as in the
previous test): in fact we don’t want its access time to influence our results.
We fully initialize all the ORAMs, to reach a steady-state, and collect 1024

samples of the access time. In Figure 5.4 we show the results for dataset
sizes between 217 and 222, while the full results are shown in Appendix A.

We observe that the shape of the plots is always similar, with the optimal
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values always lying in the range [25, 27]. It is possible to notice that Ring
ORAM with Z = 4 is always slower than the other two solutions, confirming
the results shown in Figure 5.1. However, Ring ORAM with Z = 8 is slightly
faster than Circuit, contradicting the trend of the previous benchmarks.
Since recursion employs ORAMs of increasing sizes, specifically the ORAM
for the i-th level stores Ci blocks, the first levels are quite small. The better
performance of Ring ORAM when the number of blocks is small is indeed
confirmed by the benchmarks of the various ORAMs showed in Figure 5.1:
here, Ring ORAM performs better than Circuit, up to 210 blocks. Further-
more, we observe that this effect slowly reduces as we approach to 222, again
suggesting the better scalability of Circuit ORAM against Ring ORAM. In-
deed, we observe that the performance of Ring and Circuit ORAMs for the
optimal values of C become closer when the dataset size increases. In or-
der to prove this empirical evidence, we perform further tests increasing the
number of elements in the last level ORAM to 225. The results are shown
in Figure 5.3. We performed the tests only for Circuit ORAM and Ring
ORAM with Z = 8, for a reduced range of C between 24 and 28, as all
the optimal values found in previous tests were included in this range. The
results show that the access time of Circuit ORAM for the optimal value
C = 32 is lower than Ring ORAM. Since the asymptotic bounds of Circuit
ORAM are better, we expect this gap to grow in its favor when the number
of blocks increases.

We extract the optimal values from all the plots and report them in Table
5.3. Different optimal values (29 and 210) are found for datasets with 29 and
210 blocks, respectively: this effect is due to the fact that the position map is
totally stored on the client side, and no intermediate ORAMs are accessed.
It’s easy to see that the optimal value for C doesn’t change if we consider
different ORAM primitives, meaning that the balance between the number
linear scans of recursive position map, the number of levels and their size
remains the same.

5.3.2 Calibration of R

The tests to find the the optimal sample period R are performed on all
the real datasets employed in our evaluation: the results reported here are
actual query times taken from the BWT based algorithm (see Section 3.3.1)
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Figure 5.3: Comparison of recursive position map for Ring and Circuit
ORAM with 225 elements

Table 5.3: Optimal values for C

Size Circuit Ring (Z=4) Ring (Z=8)
log2C time (µs) log2C time (µs) log2C time (µs)

29 9 14.367 9 15.452 9 13.838
210 10 16.746 10 18.308 10 16.337
211 6 31.040 6 32.230 6 29.288
212 6 35 6 36.915 6 33.478
213 7 44.435 7 45.865 7 42.352
214 7 50.263 7 52.386 7 48.470
215 5 55.425 5 60.159 5 54.146
216 6 63.877 6 68.882 6 62.187
217 6 69.730 6 76.598 6 69.191
218 6 77.834 6 85.185 6 77.183
219 5 91.742 5 99.446 5 89.659
220 5 98.763 5 108.283 5 97.459
221 6 116.413 6 125.978 6 113.606
222 6 123.677 6 133.299 6 122.182

144



5.3. BWT parameter tuning

22 25 28

100

150

Position map size

A
cc

es
s

ti
m

e
(µ

s)

217

Ring (Z=4)
Circuit

Ring (Z=8)

22 25 28

100

150

200

Position map size

218

Ring (Z=4)
Circuit

Ring (Z=8)

22 25 28

100

150

200

Position map size

A
cc

es
s

ti
m

e
(µ

s)

219

Ring (Z=4)
Circuit

Ring (Z=8)

22 25 28

100

150

200

250

Position map size

220

Ring (Z=4)
Circuit

Ring (Z=8)

22 25 28
100

150

200

250

300

Position map size

A
cc

es
s

ti
m

e
(µ

s)

221

Ring (Z=4)
Circuit

Ring (Z=8)

22 25 28

150

200

250

300

Position map size

222

Ring (Z=4)
Circuit

Ring (Z=8)
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ber of blocks ranging from 217 to 222
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Figure 5.5: Calibration of the sampling period R for CHR21
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running on Intel SGX, averaged over 32 queries of 24 characters to remove
noise in the measurements. We consider portions of the original texts of
increasing size to analyze the impact on the optimal value of R. We consider
values of R in the interval {23, 24, . . . , 210}. We pick 8 as lowest value of R
since it is comparable to the size of the smallest alphabet of our testcases,
which is 4 for ecoli and sacc, that only contain nucleotides. This choice is
motivated by the fact that all the substring search algorithms we consider
already perform a scan over the |Σ| entries of array C for each query character.
Hence, a smaller value of R would not be so relevant, since the complexity of
linear scans would already be dominated by the size of the alphabet. Figures
5.5, 5.6, 5.7 show the results of this analysis for CHR21, prot and shake,
respectively, while the plots for ecoli and sacc are reported in Appendix A.
In general, these benchmarks appear more noisy and irregular than the ones
analyzed so far. One hypothesis which may explain this behavior is that the
execution inside secure enclaves introduces some non deterministic effects,
due to caching effects of memory pages of ORAM blocks, which may avoid
costly page table walks.

It is possible to observe that larger alphabets prevent R from achieving
better performance as it grows. Especially for moderate to high text sizes,
both the prot and shake (Figure 5.7) datasets exhibit a regularly growing
query time for increasing R. We ascribe this behavior to the fact that a
single character requires more bits to be encoded, specifically log2 |Σ|, which
makes the overhead due to the higher block size in the ORAM overwhelming
with respect to the benefits on the access time given by a smaller number of
blocks.

On the other hand, datasets over smaller alphabets, such as the genomic
ones (Figure 5.5), still benefit from increasing sampling periods, due to the
fact that their block size doesn’t grow too much. In fact, an increasing R
allows to allocate less blocks, thus optimizing the access time to ORAMs.
This is mostly true for Ring ORAM, which exhibits good performance when
containing a small number of blocks: in this case, the additional time spent
in longer linear scans is less than the one saved in the memory access. Cir-
cuit ORAM, on the other hand, scales better with increasing number of
blocks, and suffers from longer linear scans for texts whose size is at most
4 MB. However, all these observations exhibits outliers, that complicate the
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Figure 5.7: Calibration of the sampling period R for shake

analysis.

Circuit ORAM usually performs better for optimal choices of parameters,
and notably for larger texts and alphabets, which prevent the usage of a high
R. Whenever there is a moderate text size and large R, Ring ORAM with
Z = 8 competes on equal terms. On the other hand, Ring ORAM with
Z = 4 is slower and less stable, since it exhibits the highest spikes. Overall,
it is hard to devise a general rule to establish which alternative is the best,
since there are three different parameters that depend on R. The best choice
of parameters, that leverage different properties for each type of ORAMs,
achieve the same performance levels for the data size we consider.

Table 5.4 summarizes the values of R that minimize the query time for
each dataset and ORAM. The optimal size of the recursive position map is
derived from Table 5.3: given a text T and a sample period R, the number of
elements in the last level ORAM will be N = |T |

R . For each ORAM protocol,
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Table 5.4: Optimal combinations of R and C for each dataset

Dataset Size Circuit Ring (Z=8) Ring (Z=4)
(MB) R log2C R log2C R log2C

ecoli
1 1024 10 1024 10 512 6
2 64 5 1024 6 256 7
4 128 5 64 6 256 7

sacc

1 512 6 512 6 1024 10
2 512 6 1024 6 128 7
4 64 6 512 7 256 7
8 512 7 1024 7 1024 7

CHR21

1 1024 10 1024 10 256 6
2 2048 10 512 6 128 6
4 256 7 256 7 512 7
8 512 7 128 6 256 5
16 128 6 512 5 512 5
32 512 6 256 6 512 6

prot

1 64 7 256 6 1024 10
2 512 6 128 6 128 6
4 256 7 256 7 512 7
8 512 7 256 5 256 5
16 256 6 256 6 512 5
32 256 6 128 6 512 6

shake
1 512 6 512 6 256 6
2 512 6 128 7 256 7
4 128 5 256 7 256 7

we choose the value of C based on this N .

5.4 Substring search algorithms

The comparison among the substring search algorithms takes place on
the final application running on Intel SGX. The execution times are the av-
erage of 32 queries for the same pattern. In our tests, we always employ
patterns of the same length: indeed, since all the three substring search al-
gorithms perform a number of iterations which is equal to the length of the
pattern, it is straightforward and not particularly interesting to show the
linear dependence between the length of the pattern and the query execu-
tion time. Specifically, the patterns used for the different datasets are 24
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characters long, padded with dummies when necessary. While the dummies
contribute with the same amount of computation of a real characters, they
obviously do not have any side effect on the results of the query. We choose
this query length since its size allows to construct substrings with a reason-
able number of occurrences for all the given datasets without resorting too
much to padding. Searching for patterns which occur in the texts provides
a fast way to verify the correctness of our algorithms.

In Figure 5.8, 5.9 and 5.10 we plot the results for the dataset CHR21,
prot and shake respectively. The ones of ecoli and sacc can be found in
Appendix A since they are akin to the ones of CHR21. It is evident that the
BWT based algorithm outperforms all the other ones for all our test cases,
achieving a speedup between 3x and 5x when compared to the best ODS
based algorithm. Even if its cost per query character is O(log2(N)), hence
similar to the one of ODS’s based algorithms, it has much better constant
factors in front of it. Indeed, the joint optimization of C and R allows to
perform fine tuning of this solution: once that the value of R that balances
the cost of linear scans with the number blocks of the ORAM is found, it
is possible to choose the C that optimizes the retrieval of the right leaf id
from the levels of the recursion. The optimization of these important pa-
rameters significantly contribute to the approximately 6× speed-up observed
in the results. The performance levels guaranteed by the different ORAM
primitives are comparable, as observed in Subsection 5.3.2.

On the other hand, ODS based approach exhibit a regular trend. For
SA-Ψ, Circuit ORAM is always faster that the Ring ORAMs, and for the
latter, Z = 8 yields better results than Z = 4. The same holds for STBWT.
These two algorithms have the same asymptotic complexity, but the shape
of their ODS is slightly different: in fact, SA-Ψ consists of a complete bi-
nary tree containing N elements, while STBWT arranges the occurrences
of each character in a separate complete binary tree. The first structure
is deeper, while the split trees are shallower, but have bulkier levels. The
former approach seems to be the better one due to a lower access time, but
we also identify another reason for its performance. Backwards search based
on SA-Ψ performs a linear scan over |Σ| elements to fetch an entry from the
array C. However, STBWT requires to additionally scan the array contain-
ing the roots of each of the |Σ| search trees that compose the ODS. Hence, it
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Table 5.5: Comparison of query time for alphabet size

Dataset Alphabet size BWT (ms) SA-Ψ (ms) STBWT (ms)
sacc 4 3.31 16.13 17.67
ecoli 4 3.19 16.19 17.27
CHR21 7 2.99 16.04 18.40
prot 25 3.63 16.22 18.98
shake 91 4.57 16.17 23.27

performs twice the linear scans of SA-Ψ. This effect is visible if we observe
the benchmarks of shake: in this case, the slowest ORAM of SA-Ψ is faster
than any STBWT solution. On the other hand, by reducing progressively
the alphabet size, we notice how the fastest STBWT implementation beats
the slowest SA-Ψ ORAM (for prot and CHR21). This observation highlights
how linear scans have an impact on performance, along with alphabet size.

Since all the patterns we search have the same length, we may better
assess how performance changes according to alphabet size. In order to
perform the comparison, we pick the best query times for each algorithm for
text sizes of 4 MB, that is common to all the considered datasets. The results
are shown in Table 5.5. While the STBWT is the solution that exhibits the
highest sensitivity to alphabet size, because of the previous observation, SA-
Ψ which is less affected by the alphabet size: we ascribe this result to the
fact that it performs only one linear scan over an array with |Σ| elements per
each iteration of the backward search, namely the linear scan on the array C
(Algorithm 3.3.5). Conversely, the BWT requires two additional linear scans
of arrays with |Σ| elements in each iteration of the backward search algorithm
(Algorithm 2.3.5): indeed, each rankBWT,σ(x) query needs to linearly scan
the array MR[b xRc].count, which has |Σ| entries. However, the alphabet size
influences also the choice of the sample period R, which has also an impact
on the performance of this algorithm: specifically, R tends to be greater
than the alphabet size is small, thus the cost of linear scans of |Σ| elements
may be superseded by the R characters which need to be linearly inspected
when fetching an entry fromMR. Therefore, the choice of an optimal sample
period may reduce the impact of the alphabet size on the performance of the
queries. Ultimately, we can conclude that even if negligible, the alphabet
size has an influence in the query time of the algorithms.
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We provide comparison of our oblivious text indices with a baseline im-
plementation with no security guarantees, which searches the same pattern
on the same unencrypted text index, without hinging upon ORAM or Intel
SGX. We recall that given a pattern of length m and a text of length n,
the complexity of the BWT based algorithm is O(m), while both SA-Ψ and
STBWT run in O(m · log (n)). The results obtained for CHR21 and shake are
depicted in Figures 5.11 and 5.12 respectively, while the rest of the plots are
reported in Appendix A. Since the unprotected version of the BWT based
approach saves a multiplicative factor of log2 (n), it is the one which exhibits
the largest overhead, of about 7000× for CHR21 and 10000x for shake. We
observe that the maximum size of the latter is only 4 MB, yet its overhead is
much greater than CHR21, which reaches 32 MB. This is due to the alphabet
sizes of the two datasets: in fact, shake comprises up to 91 distinct ASCII
characters, while CHR21 only a subset of 7 FASTA characters. We argue that
the time spent scanning linearly the array C and the sample MR[b xRc].count
in the oblivious versions indeed produces massive effects on the overall time
penalty, since their length depends on the size of the alphabet. In general,
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we notice that the overhead of each oblivious algorithm increases with the
size of the input alphabet due to the longer linear scans, which surprisingly
have a strong impact on the performance. We observe that the overhead of
STBWT is much greater that the one of SA-Ψ, even though they should in-
cur the same penalty of log (n). In fact, the unprotected version of STBWT
performs the binary search on each of the occσ array separately, while in the
version implemented within ObSQRE, the ODS that stores the search trees
is shared among all the characters of the alphabet in order to conceal which
one is being processed. This produces bulkier ORAMs for each level of the
ODS, further penalizing the oblivious version. SA-Ψ is the algorithm that
exhibits the smallest overhead in all of the datasets. This is partially due
to the fact that it is less prone to the size of the alphabet, but also depends
on the way it is implemented in the unprotected version. In fact, we adopt
Algorithm 3.3.5 instead of Algorithm 3.3.4 even if the former carries useless
overhead. This choice is motivated by the need to validate Algorithm 3.3.5,
that is fairly exotic in its search criterion, rather than implementing its most
optimized baseline version. We argue that if we performed the search over
the Ψ array only choosing the entries corresponding to the current character,
we would obtain an overhead similar to the one of STBWT.

Ultimately, the performance loss introduced by ORAMs, Intel SGX and
obliviousness ranges from about 2000× to 10000×, which is considerable.
However, we highlight that ObSQRE achieves performance levels that make
it usable in real world scenarios, despite its huge overhead.

In this regard, we perform further tests over 32 MB of CHR21, searching
for a pattern composed of 3050 nucleotides. Each sequence of 3 nucleotides
corresponds to a single amino acid, while a human protein is approximately
composed of 1000 amino acids. Hence, a pattern of ∼ 3000 characters, that
encodes a gene within a human chromosome, represents a query of practi-
cal interest in the genomic setting. We opted for the BWT based approach
combined with Circuit ORAM, since this is the best solution among all the
alternatives we provide, and we choose the optimal parametrization accord-
ing to Table 5.4. We search for the same substring 128 times and average
the running times we obtain. ObSQRE executes our queries in 537 ms, thus
requiring 176µ s for each character. Since Circuit ORAM is the least mem-
ory hungry ORAM, we are able to run the search over the larger human
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chromosome 1, whose size is 249 MB. The average execution time we obtain
is 775 ms, i.e. about 254µ s per query character. This last test shows that
our protocol provides good scalability even when the size of the input text
reaches considerable values.
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Chapter 6

Conclusion

In this work we present an efficient protocol that solves the problem of
obliviously searching for occurrences of a substring in a text that is stored
remotely. We address the scenario of large texts that are not be processed
locally by a memory constrained client, and thus require outsourcing of con-
fidential data. To provide good perfomance, we opt for substring search algo-
rithms that allow to execute queries in sublinear time with respect to the text
length, thanks to indexing structures that are built offline and do not change
during the execution of the queries. In order to guarantee data confidential-
ity, we perform the computations within a trusted execution environment
provided by Intel SGX technology: in order to achieve strong confidentiality
and integrity guarantees, we directly address the information leakage due
to side channels, that allows a root level adversary to observe the memory
access pattern in Intel SGX based applications. In this regard, we rely on
strong and provably secure cryptographic primitives, namely ORAMs, that
allow to totally conceal the memory access pattern of an application, which
turns out to be the main source of side channel leakage. The usage of secure
enclaves allows to run the ORAM client on the same machine that stores the
bulk of the data: this approach allows to overcome the main limitation of
ORAMs, i.e. the bandwidth blowup and the need for several network round
trips, which may severely impact the performance of the final application.
In particular, our protocol allows to retrieve the number of occurrences of
a pattern in a single request. On the other hand, the usual ORAM proto-
cols need to be reviewed and modified to take into account that the ORAM
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client is exposed to side channel leakage as well, potentially compromising
the security of these constructions.

We compare several ORAM protocols assessing their theoretical and
practical efficiency in the context of secure enclaves. In particular, we im-
plement two existing doubly oblivious ORAMs, namely Path and Circuit
ORAM, and present a doubly oblivious version of Ring ORAM, optimizing
its construction to take into account our scenario. We discuss how ORAMs
can be used to wrap the full-text indices we choose and compare the effec-
tiveness of three different substring search algorithm. While two of them
leverage the concept of ODS, the third one resorts to a more traditional re-
cursive position map. Even though all of them achieve the same asymptotic
complexity of O(m · log2 n), where m is the length of the pattern and n

the size of the text, the experimental evidence highlights that the algorithm
based on recursive position map is the most efficient, since it hides much bet-
ter multiplicative constants. In particular, we experimentally verified that
our best solution is able to find the occurrences of a protein sequence (rep-
resented by approximately 3000 nucleotide) over 32 MB of genomics data in
only 500 milliseconds, which means that a single query character requires a
few hundreds µs to be processed. To validate our solution, we perform our
tests on datasets of varying length and we analyze the correlation between
the achieved performance and the alphabet size. In particular, we find out
that alphabet size does not influence significantly the search time, and one
of the algorithms in particular, SA-Ψ, does not exhibit any perfomance gap
when querying string over a larger alphabet. Our final solution only leaks
the length of the text and the size of the alphabet, which are usually as-
sumed to be public parameters, while guaranteeing the confidentiality of the
outsourced text, the queried substring and the occurrences of the substring.
The length of the substring and the number of occurrences, which could be
inferred, respectively, by the number of iterations of the substring search
algorithm being employed and by the amount of elements returned to the
the client, are partially concealed by adopting proper padding strategies.

Lastly, we carefully reviewed the remote attestation procedure in order to
assess its security. Intel primarily designed it for DRM or similar purposes:
in the scenario they envision, the client of the application runs an enclave
in order to access protected data (e.g. copyrighted works) distributed by
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a service provider. The service provider, which coincides with the enclave
developer or ISV, performs remote attestation before sending the contents
to the client, ensuring that she will not be able to abuse it or violate license
agreements. In the cloud computing scenario, instead, the tenant (or client)
allocates an enclave on a remote server to prevent it from leaking confidential
data. However, in general the client is not the same entity as the ISV,
and thus she has not access to the IAS, that are extremely important in
verifying attestation signatures. We argue that it is infeasible that each
client recompiles an enclave and gains access to the IAS, since it requires a
certificate issued by a Certification Authority. Hence, we explicitly address
this problem, proving that even when the requirements of remote attestation
change, the procedure originally devised by Intel is secure even in the cloud
server to client scenario. Most of the related works based on Intel SGX either
take for granted that the procedure is valid or they do not even consider this
remote attestation issue: to the best of our knowledge, we are the first to
perform such an analysis.

In the future we intend to explore additional substring search algorithms
based on backwards search, exploiting advanced data structures in order to
perform rank queries. We also want to perform extensive tests over datasets
of increasing size in order to assess the memory footprint and the scalability
of the currently available solutions. We plan to extend our work by explor-
ing concurrent ORAMs [6, 30], that unlike the conventional ones we have
presented, allow to access several data at the same time. This would provide
the possibility to run multiple queries over the same dataset simultaneously,
in turn allowing to both open up to high throughput implementations for
a single user as well as taking into account multi-user scenarios. Further-
more, we intend to use the ORAM primitives we develop in other application
scenarios that can benefit from being executed inside secure enclaves.
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Appendix A

Experimental results
addendum

Here we report the experimental results that were omitted in Chapter
5 due to space limits. In particular, Figures A.1 and A.2 complete the
benchmarks aiming at finding the optimal size of the recursive position map
C. Figures A.3 and A.4 represent the calibration of R for the datasets ecoli
and sacc, that follow the same considerations of CHR21 due to the fact that
they all are genomic datasets. For the same reason, the results of ObSQRE
for ecoli and sacc are depicted in Figures A.5 and A.6. Finally, Figures
A.7, A.8 and A.9 represent the overhead of ObSQRE against the unprotected
baseline for the datasets ecoli, sacc and prot.
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