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Abstract

The scope of this Thesis is to present a novel MILP (Mixed-Integer Linear

Programming) decomposition algorithm for the predictive design of complex Multi-

Energy System (MES). MES are becoming extremely relevant for the energy sector,

opening to high renewable penetration without giving up good conversion e�cien-

cies, system flexibility and optimal market interaction. Nevertheless, due to their

inherent complexity, finding e�ective optimization methods that allow to properly

design and consequentially operate MES is not a trivial task.

In the first part of this work, di�erent optimization methods are reviewed in

view of their main advantages and drawbacks and, among these, MILP optimization

methods are identified as one of the most promising approaches, mainly because

of their ability to ensure global optimality. MILP optimization of energy systems

is introduced both from a mathematical and from a numerical perspective, and a

novel MILP modeling environment for MATLAB named POLIMIP is presented,

adding relevant functionalities with respect to state-of-the-art softwares such as

YALMIP [73] and allowing for the implementation of advanced MILP optimization

techniques that have been used for developing the proposed algorithm.

The second part of the Thesis is focused on tackling one of the main challenges

of MILP optimization of MES design: reducing computational complexity. This

is initially done by comparing two of the most advanced decomposition methods

found in literature and by highlighting their main potentialities and limitations. A

novel decomposition paradigm based on the innovative concept of local auxiliary

problem is then presented allowing for a higher modeling flexibility with respect

xv
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to previous methods without compromising computational performances. Finally,

the new decomposition algorithm is implemented in POLIMIP and tested on a

real case-study involving the optimal design of a multi-energy microgrid satisfying

the electric, thermal and cooling loads of a university campus in Northern Italy.

Three di�erent time horizons are considered in the case-study: 3, 7 and 14 typical

days. In all cases, the computational times of the proposed method outperform a

general-purpose state-of-the-art MILP solver in reaching the global optimum by

one order of magnitude, hence proving the e�ectiveness of the novel decomposition

approach.

Keywords: Optimization, MILP, Decomposition, Design, Multi-Energy Systems,

Microgrids
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Introduction

In a world calling for important and fast changes in our
energy infrastructures [2], the ability to e�ectively de-
sign systems whereby electricity, heat, cooling, fuels, and
transport optimally interact with each other becomes
decisive to fully exploit the potential of new paradigms
and technologies nowadays emerging in the energy sector.
In this context, Multi-Energy Systems (MES) play an
important role [3]. In particular, being able to e�ectively
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design their architecture in consideration of the combined
e�ect of capital and operation costs is becoming more
and more important both from a technical and from an
economical perspective. Such task is a challenging one
due to the inherent complexity of most mathematical
models of Multi-Energy Systems, which typically require
advanced numerical techniques that in many cases are
not able to ensure the global optimality of the solution,
hence strongly limiting the quality of the proposed design.
The main reasons behind the mathematical complexity of
MES models are: discreteness of the equipment, binary
logics of the unit commitment, strong inter-dependency
between design and operation, non-linearities, necessity
to consider a su�ciently long time horizon in the simu-
lation of the system’s operation. Being an enumerative
optimization method, Mixed-Integer Linear Program-
ming (MILP) represents one of few e�ective approaches
ensuring the global optimality of the solution. Moreover,
by means of integer variables MILP models can accu-
rately describe the behaviour of the energy system. The
non-negligible drawback of MILP is its numerical com-
plexity. In fact, integer programming is NP-complete,
which essentially means that its computational time tends
to explode with increasing number of discrete variables
[4]. So called hierarchical decomposition methods are an
e�ective way to significantly improve the computational
performances of MILP optimization algorithms for MES
[5] [6]. These approaches exploit some characteristic
features of the problem structure to improve the search
of the combinatorial solution space and allow for the
optimization of more complex system architectures simu-
lated on longer time horizons, thus increasing the quality
of the design solution. The core contribuition of this
Thesis work is a novel decomposition algorithm for MES
design problem allowing for a higher modeling flexibility
with respect to previous methods. The new algorithm is
introduced in chapter 3 after a brief review of the main
approaches to MES design (chapter 1) followed by an
in-depth analysis of MES MILP optimization (chapter 2).
Finally, in chapter 4, the novel decomposition algorithm
is tested on a real case-study involving an on-grid MES
with electric, thermal and cooling loads. The results of
the test are then compared with that of a state-of-the-art
commercial MILP solver.

1. Multi-Energy Systems (MES): an

overview

1.1 MES design: a complex task

A comprehensive definition of a Multi-Energy System
(MES) can be found in [3]:

”..an integrated energy system consisting of
distributed energy resources and multiple en-
ergy loads operating as a single, autonomous
grid either in parallel to or “islanded” from

Figure 1. Typical architecture of a multi-energy
microgrid

the existing utility grid”

Although initially designed for the production of elec-
tricity, today MES (see fig.1) are becoming the most
promising model of distributed generation of electric,
thermal and cooling power, for both on-grid and o�-grid
applications [7]. The main advantages ranges from an
e�cient exploitation of the primary energy sources (e.g.
through heat recovery), to a significant flexibility and a
potentially high penetration of renewable energy sources.
Of course, all these potentialities are e�ectively exploited
only if both the design and the operation of the system
are conducted in an optimal way. For this reason, an
increasing attention is rising towards MES modeling and
optimization both in the academic and in the industrial
fields.

The main challenges encountered when approaching
the optimal design of a MES originate from the inherent
coupling between design and operation. In fact, due
to the high level of interconnection between generating
units, design choices regarding a single variable may
dramatically change the optimal value of all the others.
Moreover, many internal interconnections also result
in many possible operation strategies that inevitably
a�ect the optimality of the design solution. The result
is a single, huge, and often untreatable mathematical
problem.

1.2 Main approaches to MES design optimization

Modern approaches to MES design optimization may be
clustered in two main categories: two-layer algorithms
vs. one-shot algorithms [8]. In the firsts, the problem is
solved by means of two nested but separate algorithms.
The outer loop iteratively generates a potential design
solution, while the inner loop optimizes the unit committ-
ment and estimates the operating expenses for the cor-
responding system configuration. Conversely, one-shot
algorithms make use of a single model containing both
design and operation variables. System sizing and dis-
patch are solved simultaneously in a single optimization
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problem. It is possible to mathematically demonstrate
that design and operation in MES are coupled such that
when solve sequentially or iteratively the results are not
guaranteed to constitute a combined system optimum
[9]. For this reason, contrarily to one-shot algorithms,
traditional two-layer algorithms cannot ensure the global
optimality of the solution. At the same time, most one-
shot models tend to become very complex when applied
to large MES and may result in non-acceptable compu-
tational times.

Beyond Montecarlo simulation methods, which today
are of low interest, two-layer algorithms for MES design
optimization are largely found in literature, mainly due
to their ability to find good sub-optimal solution in rea-
sonable computational times and to the possibility to
easily implement realistic operational strategies in the
lower layer. The most commons are Particle Swarm Op-
timization (PSO) and Genetic Algorithms (GA). PSO is
one of the most used evolutionary algorithms to explore
the upper level of MES design problem [10]. Evolution-
ary algorithms consist in metaheuristic procedures that
imitate biological mechanism to e�ciently explore the
combinatorial space of design solutions [11]. PSO tends
to guarantee a good exploration of the solution space
without going too far from the global optimum point [12]
[13], while one of its main drawbacks is that computa-
tional times may strongly vary from one instance to an-
other, depending on the input tuning parameters. With
respect to PSO methods, Genetic Algorithms (which
still belong to the class of evolutionary algorithms) are
typically adopted due to their ability to quickly improve
the objective function, achieving convergence in a very
short time [14]. On the other hand, they easily get stuck
on local optima that can significantly di�er from the
global one [12], hence determining a low quality of the
solution.

One-shot algorithm are based on models where design
and operation variables are simultaneously optimized
in a single problem. The optimization solver sees the
whole simulation period and finds the best operation
strategy as if it was possible to precisely predict the load
behaviours and the RES production for the entire time
horizon of the optimization. This is generally called pre-
dictive design, and can be both a limitation (it is based
on an operation logic that is typically not embedded in
the on-field control systems) and an opportunity (it is
the only way properly design systems with long-term
memory e�ects, such as seasonal energy storage). Pre-
dictive (one-shot) MES design is mainly performed with
LP (Linear Programming), MILP (Mixed-Integer Linear
Programming) and MINLP (Mixed-Integer Non Linear
Programming) techniques. LP is the simplest one, only
allowing for a linear objective function, linear constraints,

and for continuous variables. MILP is an extension of
LP, also allowing for integer and binary variables. This
feature is particularly important for MES optimization
both for the design (it allows to model the discrete size
of the selected equipment) but also for the operation
(it allows to precisely model the unit commitment, in-
troducing startup costs, minimum up-time, piece-wise
performance curves, etc.). Finally, MINLP also allows
for non-linear objective and constraints but, on the other
hand, determines a significant increase in the compu-
tational burden with respect to linear methods such as
LP and MILP and in some cases it does not ensure the
global optimality [15].

2. MILP optimization and MES design

2.1 MILP optimization: general concepts and soft-

ware implementation

A Mixed-Integer Linear Programming problem (or MILP
problem) is a linear optimization problem containing
both discrete and continuous variables. The possibility
to deal with integer and binary variables makes MILP
optimization a very versatile tool nowadays adopted solve
a wide number of real world problems [16] [17] [18] [19]
[20] [21]. The most compact way to express a generic
MILP problem is its canonical form:

min/max f = c
T

x+d
T

y

s.t. Ax+By Æ b

x Ø 0,x œ Rn

y œ Zm

(1)

where x œRn is a vector of n continuous variables, y œ Z
m

is a vector of m integer variables, c œ Rn is a vector con-
taining all the n objective coe�cients of the continuous
variables x, d œ Rm is a vector containing all the q ob-
jective coe�cients of the integer variables y, b œ Rr is a
vector of r constant terms, A œRr ◊Rn and B œRr ◊Rm

are the so called constraint matrices containing the r ◊n

and r ◊ m coe�cients multiplying the continuous and
integer variables appearing in each one of the r linear
constraints defining the problem. It is worth noting that
both the objective function f = c

T
x+d

T
y and the set of

r constraints Ax + By Æ b are expressed as linear com-
binations of the continuous and integer variables x and y.

Despite their simplicity of representation, MILP prob-
lems are very di�cult to solve due to the combinatorial
nature of the domain of y variables. In fact, most solution
algorithms for MILP problems are based on enumerative
techniques whose computational complexity increases
exponentially with the number of discrete variables [4].
As a consequence, many advanced algorithms have been
developed in literature aiming at reducing the compu-
tational time required to solve an instance of a MILP
problem. The most widely adopted of these methods is



A novel MILP decomposition algorithm ensuring global optimality for the predictive design of complex Multi-Energy

Systems — 4/25

by far the Branch and Bound (B&B) algorithm, intro-
duced in 1960 by Land and Doig [22] and nowadays used
as a reference algorithm by all commercial solvers [23].
The basic idea behind the B&B algorithm is to adopt
a search strategy based on a binary enumeration tree
in which each node represents a LP problem character-
ized by a unique set of linear constraints. The initial
node (also known as root node) is solved by assuming
continuous y variables (we speak about a fully relaxed
problem). Moving through the nodes, the set of initial
constraints is progressively expanded with new ones by
suitably bounding the y variables (branching). These
additional ”branching constraints” are specifically aimed
at restoring the integer nature of y. Thanks to this
progressive constraining process, a lower bound of the
objective function f is always available during the search
by solving relaxed 1 LP problems. If an integer solution
is found at a certain point of the search, we call this an
incumbent and its objective value a cuto� value f̃ . Since
f̃ is surely an upper bound for the global optimum f ,
we are then able to fathom all the nodes exhibiting a
solution of the LP relaxation higher than f̃ . Typically
convergence is declared setting a tolerance on the so-
called relative gap2. In this way, the algorithm is able
to significantly reduce the size of the explored portion
of the combinatorial solution space with respect to an
exhaustive enumeration method.

Many advanced B&B techniques have been developed
over the years to increase the computational e�ciency
of the algorithm without compromising the global opti-
mality of the solution. Among these, the most relevant
ones are undoubtedly cutting planes, heuristics and de-
composition methods. Cutting planes (or simply cuts)
are inequality constraints that tighten the solution space
of the relaxed linear problem without cutting out any
possible discrete solution and that are not included in
the initial set of constraints defining the MILP prob-
lem. If a cut also excludes discrete solutions, then it is a
special type of cut called integer cut. These additional
constraints can be derived in various ways (before or
during the search) and are so e�ective in speeding the
convergence of the algorithm that are nowadays embed-
ded in all commercial MILP softwares as a modified of
the B&B algorithm called Branch and Cut. Heuristics
are techniques aiming at generating an integer feasible
solution in a short time. These techniques don’t guar-
antee any optimality by themselves but, if integrated
in a B&B algorithm, they may significantly speed up
the convergence time by promoting the generation of

1
A relaxed problem in an unconstrained version of the original

problem in which at least one integer variable assumes a fractional

value
2
The relative gap is the distance between the current cuto�

value and the the highest lower bound available, divided by the

cuto�

good cuto� values without conducting all the necessary
branching. Finally, decomposition methods rely on parti-
tioning the original MILP problem into smaller MILP or
LP problems that are easier to solve. These approaches
can be very e�ective in reducing the computational time
of a MILP algorithm but, deriving from the exploitation
of specific features of the problem structure, they tend
to be strongly model-dependent.

In practice, MILP models of real-life energy systems
are solved by relying on two typologies of softwares:
modeling environments [24] [25] [26] [1] [27] [28] [29] [30]
[31] [32] and numerical solvers [33] [34] [35] [36] [37] [38]
[39] [40] [41] [42] [43] [44]. The firsts are used to translate
the algebraic formulation3 of a specific model into its
equivalent canonical form (1), which is taken as input
by the latters, who are responsible for tuning and im-
plementing the branch-and-cut algorithm to eventually
find its optimal solution. MILP modeling environments
are available both as open and commercial softwares for
many programming languages (Python, C, C++, .NET,
Java, MATLAB etc.) and are substantially equivalent to
each other. A notable exception concerns YALMIP [1],
one of the most widely adopted MILP modeling software
for the MATLAB programming language, for which we
have highlighted three peculiar limitations (the latter of
which is ascribed to the MATLAB API of the solver and
not to YALMIP itself):

1. Impossibility to define sets, and thus to adopt an
indexed syntax for the definition of variables and
parameters;

2. Incompatibility with some of the functionalities of
the the MATLAB API of the MILP solver;

3. Absence of advanced functionalities in the MAT-
LAB API of the MILP solver.

2.2 POLIMIP: a set-oriented MILP modeling environ-

ment for MATLAB

All these limitations are overcome thanks to the devel-
opment of a novel multi-language modeling environment
with MATLAB interface named POLIMIP: a set-oriented
MILP modeling environment for MATLAB. As evident
in figure 2, POLIMIP is obtained starting from a modi-
fied version of YALMIP by implementing the function
ndSparse [45] and other custom functions. Moreover, in
order to allow the integration of other solver APIs to
overcome the third limitation reported above, a multi-
language architecture following the scheme reported in
figure 3 was implemented. In this Thesis, the POLIMIP
modelling environment was used to implement the novel
decomposition method proposed in section 3 and to set
up the case-study analyzed in section 4.

3
The algebiric formulation is the physical description of the

problem by means of physical parameters, variables and constraints
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Figure 2. General organization and main modules of
POLIMIP

Figure 3. Multi-language architecture adopted to
implement advanced solver functionalities not supported
by the MATLAB API of the solver

2.3 Full-MILP algorithms for the optimal design of

MES

At this point, before introducing MES decomposition
methods, it is important to give a clear overview of the
most widespread techniques adopted nowadays to reduce
the complexity of MILP problems for MES design:

- Model simplification: it is possible to significantly
reduce numerical complexity by directly acting
on one or more of the modelling choices behind
the mathematical description of the energy sys-
tem (simplifying or even neglecting some of its
variables and/or governing equations). Of course,
this leads to a less accurate physical description of
the system’s features, hence resulting in a reduced
soundness of the objective function;

- Time aggregation: an exponential increase of the
size of the combinatorial solution space with the
number of time steps is observed when binary or
integer operation variables (typically used to model
the on/o� logic of the generators) are introduced in
the MILP formulation of the problem. To mitigate
this problem it is possible to increase the length
of the time-step, hence reducing the number of
interger/binary operation variables. Of course, the
main drawback is a lower representativity of the
system’s dynamics;

- Solution space reduction: the size of the combina-
torial solution space of a MILP problem actually

explored by a branch-and-bound search algorithm
can be significantly reduced by providing an initial
upper bound associated with a sub-optimal integer
feasible solution [46]. In this way, all the nodes
leading to a local objective value higher than the
initial cuto� value will be fathomed due to sub-
optimality, thus reducing the number of explored
combinations. As far as MES are concerned, an
easy but e�ective way to find an initial incumbent
is by guessing a reasonably oversized and/or redun-
dant design and by solving the associated integer
operation problem;

- Decomposition methods: decomposition methods
are at the same time the best performing and the
less intuitive among the four complexity reduction
strategies presented in this section. In one line,
they can be intended as custom branch-and-bound
search strategies exploiting the peculiarities of the
problem’s structure to reduce its combinatorial com-
plexity [47]. This is mainly done by breaking the
original problem into smaller sub-problems that
are easier to solve and that eventually provide inte-
ger cuts to reduce the size of the explored portion
of the original search tree. The main price to
be paid for this higher e�ectiveness is a marked
problem-dependency. Moreover, their numerical
implementation is quite a hard task since it neces-
sarily requires an in-depth knowledge and control of
the solution algorithm adopted by numerical solver.
The novel decomposition algorithm proposed in
the following chapter aims precisely at mitigating
these two main limitations: (i) by broadening the
class of treatable MES problems with respect to
previous methods and (ii) by automatizing the
numerical definition and implementation of their
decomposed formulation on the widely adopted
commercial solver IBM CPLEX.

3. A novel MILP decomposition algorithm

allowing for mixed integer and continuous

MES design

Mixed-Integer Linear Programming is undeniably one of
the most promising approaches for design optimization
of MES, since it combines high modelling flexibility with
the capability of ensuring global optimality. The main
issue associated to MILP optimal design problems is the
computational time required by the search algorithm. In
MILP problems, numerical complexity increases expo-
nentially with the number of binary and integer variables
due to the expansion of the branch and bound tree. In
particular, in MES design the number of operation bi-
nary variables depends on the selected time horizon of
the problem. So, when increasing the time horizon of
unit commitment from some representative days to entire
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weeks or months in order to enhance the representative-
ness of the solution, the solver may struggle in finding
the optimal solution in an acceptable amount of time.

3.1 An introduction to MILP decomposition of MES

problems: exploiting the internal hierarchy be-

tween design and operation

As previously stated, MILP decomposition methods are
an e�ective way to reduce computational complexity with-
out recurring to detrimental simplifications of the original
model of the energy system. This is possible by e�ectively
exploiting some peculiar characteristics of the problem’s
structure that typically make these approaches highly
problem-dependent. This high problem-dependency is
also one of the reasons why very few MES decomposition
methods are actually found in literature. In fact, only
few authors focused their e�orts in developing original
decomposition algorithms for MES, being this a task
requiring a combination of in-depth knowledge coming
both from energy modelling and from applied mathemat-
ics. Among these authors, Iyer and Grossmann [5] and
Yokoyama [6] proposed two of the most cited and highly
performing hierarchical decomposition methods for MES
that inspired our novel approach. An important feature
of both these approaches are their strict assumptions on
the problem structure. To highlight these restriction and
to better understand the main limits and potentialities
coming from them, we will introduce a general MILP
formulation of a MES design problem that we will com-
pare with the two formulations required by the methods
just introduced. A general MES design model can be
formulated as the following MILP problem:

min f
!
zD,yD,xD,zO,yO,xO

"

s.t. l
!
zD,yD,xD,zO,yO,xO

"
Æ 0

zD œ {0,1}nz

yD œ Zny

xD œ Rnx

zO œ {0,1}mz

yO œ Zmy

xO œ Rmx

(2)

where f is the objective function (a linear combination
of all the problem’s variables), zD, yD and xD are the
vectors containing the nz binary, ny integer and nx con-
tinuous design variables, while zO, yO and xO are the
vectors containing the mz binary, my integer and mx

continuous operation variables defining the problem. Ef-
fective formal decomposition for problem (2) are based
on the observation that MES design problems are always
characterized by an inherent hierarchy between design
and operation variables: by fixing integer design vari-
able (also known as high-hierarchy variables) (e.g. the
investment decision on a given unit), we activate pro-
cesses involving integer operation variables (also known

as low-hierarchy variables) (e.g. on/o� status variables
of that unit).

To better understand these concepts, it is possible con-
sider branching priorities as the simplest form of hi-
erarchical decomposition. Applying branching priori-
ties to integer design variables, the binary search tree
starts exploring the general problem branching only high-
hierarchy variables (upper level). Going deep into the
tree we find a node where all the high-hierarchy variables
are well constrained and assume an integer value, while
low-hierarchy variables are still relaxed. We found an
entrance node to the lower level. In the lower level, the
branching procedure continues considering fixed values
of the high-hierarchy variables, hence restoring the co-
herence between the two levels and providing a solutions
respecting all the constraints of the original problem.
Operating a simple ordering on the integer variables
to be branched, branching priorities technique can be
applied to the general formulation (2) without any as-
sumption on the model, but it does not solve the problem
of combinatorial nature of MILP variable domain.

Decomposition by Iyer and Grossmann With respect to
this general formulation, the model by Iyer and Gross-
mann [5] introduces the following restricting assumptions:

- There are no integer design variables: ny = 0;

- There are no integer operation variables: my = 0;

- Each binary design variable represents the invest-
ment variable of a potential unit;

- Each binary operation variable represents the on-o�
variable of a potential unit in a specific time-step;

- Each continuous design variable represents the ca-
pacity of an associated unit: nx = nz := n.

The resulting reference formulation is then:

min fD(zD,xD)+
ÿ

fOt
(zOt

,xOt
)

s.t. gt

!
zD,xD,zOt

,xOt

"
Æ 0 ’t œ {1, . . . ,T}

h
!
zD,xD,zO1 ,xO1 ,zO2 ,xO2 , ...,zOT

,xOT

"
Æ 0

zD œ {0,1}n

xD œ Rn

zOt
œ {0,1}n ’t œ {1, . . . ,T}

xOt
œ Rn ’t œ {1, . . . ,T}

(3)

where the problem constraints l have been divided into
two main categories: the uncoupled constraints gt (con-
straints containing only operation variables indexed on
a single time-step, such as energy balances) and the
coupling constraints h (constraints containing operation
variables indexed on more than one time-step, such as
minimum up-time requirements). It is worth noting that,
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being f a linear combination of the problem’s variables,
it can always be expressed as a sum of terms depending
on a smaller subset of variables.

Decomposition by Yokoyama Moving to the method by
Yokoyama et al. [6], the restricting assumptions on the
problem structure are the followings:

- There are no continuous design variables: nx = 0;

- There are no coupling constraints h.

The resulting reference formulation is then:

min fD

!
zD,yD

"
+

ÿ
fOt

!
zOt

,yOt
,xOt

"

s.t. gt

!
zD,yD,zOt

,yOt
,xOt

"
Æ 0 ’t œ {1, . . . ,T}

zD œ {0,1}nz

yD œ Zny

zOt
œ {0,1}mz ’t œ {1, . . . ,T}

yOt
œ Zmy ’t œ {1, . . . ,T}

xOt
œ Rmx ’t œ {1, . . . ,T}

(4)

The strong simplification of discarding both continuous
variables and coupling constraints allowed the authors
to divide the single operation subproblem into a series
of T lighter and independent ones. Moreover, the inte-
ger design variables yD are restored in the upper level,
allowing the modelling of discrete equipment capacities.
In the light of the above, it is possible to compare the
decomposition methods by Iyer and Grossmann [5] and
by Yokoyama et al. [6] on the basis of four main features
related to the specific assumptions on the MES model
structure.

Feature
Iyer and

Grossmann
Yokoyama

et al.
Continuous design variables Yes No

Coupling constraints Yes No
Discrete capacities No Yes

Solve complete operation Always Never

In brief:

- The method by Iyer and Grossman can be ap-
plied to MES models containing time-coupling con-
straints and/or continuous equipment capacities,
but it is not suitable for models with discrete sizes
of the units. Moreover, it always solves the com-
plete operation worker problem (defined on the
whole time horizon), hence not exploiting at all the
multi-period structure found in most MES models
to reduce the computational time of the solver;

- The method by Yokoyama et al. can be applied
to MES models with discrete equipment capacities,
but it is not suitable for models with time-coupling

constraints and/or with continuous design variables.
On the other hand, unlike the method by Iyer
and Grossmann, the operation subproblem is never
solved as a whole, hence e�ectively exploiting the
multi-period structure of the MES model to reduce
the combinatorial complexity of the search tree.

It is clear that the two methods are perfectly comple-
mentary. As a consequence, MES models exhibiting a
“hybrid” set of modelling features, such as a catalogue
of generating units characterized by both discrete and
continuous capacities, cannot be solved by any of the
decomposition methods previously introduced.

3.2 Mathematical formulation of the novel hierarchi-

cal decomposition method for MES design opti-

mization

The novel decomposition method proposed in this Thesis
work aims precisely at overcoming the limiting trade-
o� a�ecting the two approaches discussed above. In
particular, its development has been specifically oriented
at fulfilling the following three main requirements:

1. Universality: being applicable to any MES prob-
lem having the general form reported in eq. (2);

2. Performance: being faster than a general-purpose
search algorithm in finding the global optimum;

3. Usability: being easy to implement without ad-
vanced programming skills.

To fulfill the universality condition, in our method
we refer to the following form of the general formulation
of a MES problem reported in eq. (2):

General problem

min fD(zD,yD)+fDú(xD)+
ÿ

fOn
(zOn

,yOn
,xOn

)

s.t. gn(zD,yD,xD,zOn
,yOn

,xOn
) Æ 0 ’n œ {1, . . . ,N}

h(zD,yD,xD,zO1 ,yO1 ,xO1 , ...,zON
,yON

,xON
) Æ 0

zD œ {0,1}nz

yD œ Zny

xD œ Rnx

zOn
œ {0,1}mz ’n œ {1, . . . ,N}

yOn
œ Zmy ’n œ {1, . . . ,N}

xOn
œ Rmx ’n œ {1, . . . ,N}

(5)

where we assumed without loss of generality that the
time horizon is composed of N typical periods of T time
steps each4 (e.g. 4 typical days of 24 hours each or 2

4
Such indexing choice is particularly convenient to impose peri-

odic constraints (e.g. the state of charge of a storage element at

the end of each typical period must be higher than that at the

beginning of the same period.)
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typical weeks of 168 hours each) and we made explicit the
coupling constraints h from the uncoupled constraints
gn. Moreover, we chose to rewrite the objective function
f as the sum of 2+ N terms, each containing only cer-
tain types of variables. It is worth noting that this can
always be done due to the linearity of f with respect to
the problem variables.

Starting from (5), the inherent hierarchy between de-
sign and operation variables can be exploited by defining
a master design problem with relaxed operation vari-
ables and a worker pseudo-operation problem aimed at
restoring the integer feasibility of zOn

and yOn
and at

determining the value of xD and xOn
for a given combi-

nation (z̄D, ȳD) of binary and integer design variables:

Master Problem (MP)

min fD

!
zD,yD

"
+fDú

!
xD

"
+

ÿ
fOn

!
zOn

,yOn
,xOn

"

s.t. gn

!
zD,yD,xD,zOn

,yOn
,xOn

"
Æ 0 ’n œ {1, . . . ,N}

h
!
zD,yD,xD,zO1 ,yO1 ,xO1 , ...,zON

,yON
,xON

"
Æ 0

zD œ {0,1}nz

yD œ Zny

xD œ Rnx

zOn
œ Rmz ’n œ {1, . . . ,N}

yOn
œ Rmy ’n œ {1, . . . ,N}

xOn
œ Rmx ’n œ {1, . . . ,N}

(6)

Worker Problem (WP)

min fD

!
zD,yD

"
+fDú

!
xD

"
+

ÿ
fOn

!
zOn

,yOn
,xOn

"

s.t. gn

!
zD,yD,xD,zOn

,yOn
,xOn

"
Æ 0 ’n œ {1, . . . ,N}

h
!
zD,yD,xD,zO1 ,yO1 ,xO1 , ...,zON

,yON
,xON

"
Æ 0

zD œ {0,1}nz

yD œ Zny

xD œ Rnx

zOn
œ {0,1}mz ’n œ {1, . . . ,N}

yOn
œ Zmy ’n œ {1, . . . ,N}

xOn
œ Rmx ’n œ {1, . . . ,N}

yD = ȳD

zD = z̄D

(7)

with mz, my and mx all higher than or equal to T . It
must be noticed that, due to the presence of coupling
variables (xD) and constraints (h), a subdivision of the
worker problem in smaller subproblems (as done in [6])
is not possible.

Figure 4. Graphical representation of concepts like
“upper level”, “lower level”, “master problem”, “worker
problem”, “integer design candidate”, “entrance node”
and “global incumbent”

By directly implementing the above decomposition with-
out any further expedient we would obtain a behaviour
like that depicted in figure 4.

The branching tree of the MP (6) (also known as
upper level) is explored until an integer design candidate
(z̄D, ȳD) is found. When this happens, we say that we
have found an entrance node to the lower level. At this
point the information about (z̄D, ȳD) is transferred to
the WP (7), which is immediately set up and solved.
The branching tree of problem (7) is also known as lower
level. If the solution to problem (7) is both feasible and
optimal, then it represents a global incumbent and the
value of its objective function a global cuto�. Otherwise,
the lower level is exited prematurely and the correspond-
ing value of (z̄D, ȳD) is discarded. In any case, the search
process of a new integer design candidate is resumed in
the upper level. These steps are repeated iteratively until
a convergence criteria is met (typically, a specific value
of the relative gap).

By following this approach we would only exploit the
hierarchical relationship between the integer design and
operation variables, without relying at all on the multi-
period structure of the problem, exactly like branching
priorities. In particular, by solving the WP we would
obtain an information with the highest value possible:
either we find that the solution is infeasible/suboptimal
or we find a new global cuto�. Nonetheless, the computa-
tional e�ort required to extract such information would
be the highest as well, since an extensive exploration
of the subtree in the lower level is required each time
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an integer design candidate is found in the upper level.
This can become a non-negligible burden, in particular
if the time horizon of the unit committment problem is
significantly extended: the longer the time horizon, the
more severe the impact on the computational time due to
the exponential complexity of the subtree to be explored.
To support this, it is worth recalling that the approach
by Yokoyama and al. aims precisely at avoiding the
complete resolution of problem (7) by giving up coupling
variables and constraints in the model formulation. In
the following we propose an alternative decomposition
paradigm aiming at avoiding the resolution of the WP
for each design candidate (z̄D, ȳD) without adding any
restricting assumption on the general problem structure
reported in eq. (5), thus ensuring the universality of the
method.

To this aim, the innovative concept of local auxiliary
problem P̄

Õ is introduced. In general, we define as auxil-
iary problem a modified version of an original problem P

which is easier to solve and that provides a valid lower
bound for the objective function of P (or for a part of
it). Following this definition, an auxiliary problem dif-
fers from a WP in that it is completely optional (that
is, it is not required to ensure the coherence between
upper and lower level). In a decomposition method, an
auxiliary problem is an additional subproblem that can
be solved to provide useful cuts aimed at reducing the
size of the combinatorial solution space, thus improving
the overall computational performance of the algorithm.
In the context of a hierarchical decomposition of a MES
problem, a local auxiliary problem P̄

Õ is defined as an
auxiliary problem whose original problem P̄ is a WP
(7). On the other hand, a global auxiliary problem P̌

Õ is
defined as an auxiliary problem whose original problem
P̌ is the general problem (5). A global auxiliary problem
di�ers from a local one in that its solution does provide
a valid lower bound not only for the general problem,
but also all the possible WPs. This is due to the fact
that its original problem is an under-constrained version
of the WP (7), from which it is obtained by removing
the constraints zD = z̄D and yD = ȳD). Conversely, a
local auxiliary problem provides a lower bound which is
only valid for its original WP.

An important property of local auxiliary problems is
that, being derived by a over-constrained version of the
general problem, their lower bounds are always higher
than those provided by a corresponding5 global auxiliary
problem. This property is not exploited by any of the
decomposition methods previously discussed, and repre-
sents the main original feature of the novel decomposition
method here proposed. In fact, by relying on a more e�ec-

5
By corresponding we mean problems optimizing the same part

of objective function

tive generation of lower bounds in the lower level (thanks
to the definition of suitable local auxiliary problems), we
are able to overcome the trade-o� between universality
and performance that makes the two algorithms analyzed
before complementary, going towards a highly performing
decomposition method which is also universally applica-
ble. In our case, local auxiliary problems are simplified
operation subproblems obtained from a corresponding
WP by removing one or more constraints. In the pro-
posed decomposition method, they are specifically used
to e�ectively prove the sub-optimality or infeasibilty of
a given integer design candidate (z̄D, ȳD) before solving
the associated complete WP (7).

Following the search scheme reported in figure 4, when
the hierarchical B&B search algorithm reaches the en-
trance node, the integer design candidate (z̄D, ȳD) (and
so the value of f̄D) are fixed. At this point, instead of
solving the corresponding WP on the full time horizon
and compute the optimized value of the remaining part
of f , it is possible to define smaller auxiliary problems to
separately bound the contributions fDú and fOn

given
by the coupling variables xD and by the MES opera-
tion in the di�erent typical periods. Being additional
and optional, auxiliary problems must have two main
characteristics:

1. They must be very fast to solve;

2. They must provide valuable information to speed
up the B&B search algorithm (e.g. by generating
useful integer cuts for the MP).

The aim is to find the best trade-o� between the computa-
tional time required to solve the additional subproblems
and the reduction of combinatioral complexity obtained
through the information extracted from each auxiliary
problem.

In general, for a MES problem, we can classify aux-
iliary problems on the basis of four main constraining
features here defined:

Fixed integer design All the integer design variables
of the MP are fixed to a certain integer value. It
allows to reduce the number of integer variables (di-
rectly but also indirectly, constraining correspond-
ing operation variables of non-selected units) to
branch and so the combinatorial complexity of the
search tree. This is an inevitable condition for
all the WPs defined in the lower level, where the
design candidate is set at the entrance node and
represents the actual di�erence between local and
global auxiliary problems.

Coupling The problem is solved on the whole time hori-
zon. This characteristics is required if we want
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to obtain significant information about the contri-
bution given to the objective function by design
variables, which need to assume a unique value
on the whole time horizon to maintain a physical
meaning. We can say they must respect a “cou-
pling constraint”. Nonetheless, both global and
local auxiliary problems used to bound the objec-
tive function of the WPs may take advantage of
the subdivision in typical periods to solve problems
defined only on a single period, significantly reduc-
ing the number of integer variables of the problem
and thus its complexity.

Integrality The problem is solved maintaining all the
integrality constraints active. This characteristic
allows to obtain a value of the objective function
well-representing the one of the MP, but can be
removed on certain variables of the WP to simplify
the search tree and compute lower bounds of the
objective function very quickly.

Objective coupling The problem is solved optimizing
the whole objective function. Of course, in general
all the di�erent part of the objective function are
inevitably interconnected, since design decisions
influence the optimal operation strategy. In order
to extract precise information about a specific term
of f , auxiliary problems can be defined giving up
the trade-o� and optimizing only a single part of
the objective function.

A local auxiliary problem can be properly defined
starting from a WP by keeping the fixed integer design
constraint feature and by dropping one or more between
coupling, integrality and objective coupling. In fact, by
also dropping the fixed integer design constraining feature
we obtain a global auxiliary problem. It must be stressed
out that the only way to obtain valid lower bounds for
each term of f separately is by dropping the objective
coupling constraining feature (that is, by defining local
auxiliary problems in which each of the terms fD, fDú

and fOn
is optimized on its own). This is a necessary

requirement to e�ectively exploit the multi-period struc-
ture of the problem and eventually avoid the solution of
the unit committment on the whole time horizon for a
given integer design candidate.

The global auxiliary problems (GAP) set up to obtain a
set of valid global lower bounds for fD, fDú and fOn

are
defined starting from the general problem (5) by drop-
ping the objective coupling and coupling constraining
features and by neglecting the coupling constraints h.
We have then:

GAP for fD

min fD

!
zD,yD

"

s.t. gn

!
zD,yD,xD,zOn

,yOn
,xOn

"
Æ 0

zD œ {0,1}nz

yD œ Zny

xD œ Rnx ’n œ {1, ...,N}
zOn

œ {0,1}mz

yOn
œ Zmy

xOn
œ Rmx

(8)

GAP for fDú

min fDú
!
xD

"

s.t. gn

!
zD,yD,xD,zOn

,yOn
,xOn

"
Æ 0

zD œ {0,1}nz

yD œ Zny

xD œ Rnx ’n œ {1, ...,N}
zOn

œ {0,1}mz

yOn
œ Zmy

xOn
œ Rmx

(9)

GAP for fOn

min fOn

!
zOn

,yOn
,xOn

"

s.t. gn

!
zD,yD,xD,zOn

,yOn
,xOn

"
Æ 0

zD œ {0,1}nz

yD œ Zny

xD œ Rnx ’n œ {1, ...,N}
zOn

œ {0,1}mz

yOn
œ Zmy

xOn
œ Rmx

(10)

Both the values of fD and fDú are optimized N

times (once for each typical period). Hence, since we are
looking for a lower bound, only the highest among all the
solutions to problems (8) and (9) are considered. Being
completely independent of the specific values of zD and
yD, all these problems can be solved before starting the
actual B&B search. Moreover, since they are obtained
from a relaxed version of the general problem (5), their
solutions provide a set of global lower bounds

˜
f̌D,

˜
f̌Dú

and
˜
f̌On

for fD, fDú and fOn
valid both in the upper

and in the lower level that can be used to compute the
following lower bounds for f and f̄ :

˜
f

¶ :=
˜
f̌D +

˜
f̌Dú +

ÿ

˜
f̌On

Æ f (11)

˜
f̄

¶ := f̄D +
˜
f̌Dú +

ÿ

˜
f̌On

Æ f̄ (12)
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where f̄ and f̄D are the values of f and fD associated
with a given integer design candidate (z̄D, ȳD).

The local auxiliary problem (LAP) set up to obtain
a valid local lower bound for the fDú term of the ob-
jective function associated with a certain integer design
candidate (z̄D, ȳD) is defined starting from the WP (7)
by dropping the objective coupling and the integrality
constraining features. We have then:

LAP for fDú

min fDú
!
xD

"

s.t. gn

!
zD,yD,xD,zOn

,yOn
,xOn

"
Æ 0 ’n œ {1, . . . ,N}

h
!
zD,yD,xD,zO1 ,yO1 ,xO1 , ...,zON

,yON
,xON

"
Æ 0

zD œ {0,1}nz

yD œ Zny

xD œ Rnx

zOn
œ Rmz ’n œ {1, . . . ,N}

yOn
œ Rmy ’n œ {1, . . . ,N}

xOn
œ Rmx ’n œ {1, . . . ,N}

yD = ȳD

zD = z̄D

(13)

Being dependent on the specific values of z̄D and ȳD,
these problems can only be solved in the lower level after
each entrance node. Moreover, since they are obtained
from a relaxed version of the WP (7), their solution
provides a local lower bound

˜
f̄Dú for fDú only valid in

the subtree associated with the integer design candidate
(z̄D, ȳD).

It must be noticed that problem (13) is not a restricted
version of the global auxiliary problem for fDú , since
it contains both a restriction (zD = z̄D, yD = ȳD and
the coupling constraint h) and a relaxation (zOn

œ Rmz ,
yOn

œ Rmy ’n œ {1, . . . ,N}). As a consequence,
˜
f̄Dú

may be lower or higher than
˜
f̌Dú , depending whether

the prevailing e�ect is that of the restriction or that of
the relaxation. In any case, we can write that:

max
!

˜
f̌Dú ,

˜
f̄Dú

"
≠

˜
f̌Dú Ø 0 (14)

Eq.(14) is trivial and always true, but useful to justify
following steps. The local auxiliary problems (LAP) set
up to obtain some valid local lower bounds for the fOn

terms of the objective function associated with a certain
integer design candidate (z̄D, ȳD) are defined starting
from the WP (7) by dropping the objective coupling and
the coupling constraining features (that is, by defining
one problem for each typical period) and by relaxing the
coupling constraints h. We have then:

LAP for fOn

min fOn

!
zOn

,yOn
,xOn

"

s.t. gn

!
zD,yD,xD,zOn

,yOn
,xOn

"
Æ 0

zD œ {0,1}nz

yD œ Zny

xD œ Rnx ’n œ {1, ...,N}
zOn

œ {0,1}mz

yOn
œ Zmy

xOn
œ Rmx

yD = ȳD

zD = z̄D

(15)

Being dependent on the specific values of zD and yD,
these problems can only be solved in the lower level after
each entrance node. Moreover, since they are obtained
from a relaxed version of the WP (7), their solution
provides a local lower bound

˜
f̄On

for fOn
only valid in

the subtree associated with the integer design candidate
(z̄D, ȳD).

It must be noticed that problem (13) is actually a re-
stricted version of the global auxiliary problem for fDú ,
since it can be obtained from it by adding the additional
constraints zD = z̄D and yD = ȳD. As a consequence,

˜
f̄On

is always higher than
˜
f̌On

:

˜
f̄On

≠
˜
f̌On

Ø 0 ’n œ {1, . . . ,N} (16)

At this point, thanks to the N + 1 eqs. (14) and (16)
and to eq. (12), we are able to write the following chain
of inequalities providing N + 2 local lower bounds for
f̄ , in which the N + 1 ones indicated as

˜
f̄

(k) (with k œ
{1, ...,N +1}) are those obtained after solving k among
the N +1 local auxiliary problems defined before for a
given integer design candidate:

˜
f̄

¶ Æ
˜
f̄

(1) Æ
˜
f̄

(2) Æ · · · Æ
˜
f̄

(N+1) Æ f̄ (17)

where
˜
f̄

(k) is equal to

˜
f̄

(k) := f̄D +max
!

˜
f̌Dú ,

˜
f̄Dú

"
+

ÿ

nœU
˜
f̌On

+
ÿ

nœS
˜
f̄On

(18)

or to

˜
f̄

(k) := f̄D +
˜
f̌Dú +

ÿ

nœU
˜
f̌On

+
ÿ

nœS
˜
f̄On

(19)

depending on whether the local auxiliary problem for
fDú is among the k local auxiliary problems already
solved or not. In the above definitions, S is the set of
indexes of the k (or k ≠ 1) local auxiliary problems for
fOn

already solved, while U is the set of indexes of the
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N ≠k (or N ≠ (k ≠1)) local auxiliary problems for fOn

still unsolved.

At this point we are ready to define a solution algo-
rithm exploiting the valuable information provided by
the global and local auxiliary problems previosuly defined
to periodically generate valid local integer cuts6. These
cuts are used to prune the subtree rooted at the node
in which they are generated, thus significantly reducing
the total number of explored nodes both in the upper
and in the lower level. A local integer cut is enforced in
the upper level every time a valid lower bound

˜
f for f

exceeds the current cuto� value f̃ . A local integer cut
is enforced in the lower level every time a valid lower
bound

˜
f̄ for f̄ exceeds the current cuto� value f̃ . For

our purposes, an integer cut enforced at a node j is a
linear constraint of the form:

f < (fú)j (valid locally) (20)

where (fú)j is the solution of the LP relaxation of node
j. In this way, node j is immediately fathomed due
to violation of constraint (20), and the corresponding
subtree pruned. To better understand the usefulness of
lower bounds in generating integer cuts it is possible to
notice that the knowledge of a global lower bound

˜
f in

a node in the upper level may determine a premature
pruning of the corresponding subtree, hence completely
avoiding the generation of an integer design candidate
and the exploration of the associated tree in the lower
level.

Description of the solution algorithm The detailed algo-
rithmic steps of the solution scheme are reported below
(CPLEX is used as the reference solver):

1. The global auxiliary problems are solved to obtain
and store the values of the global lower bounds

˜
f̌D,

˜
f̌Dú and

˜
f̌On

;

2. A queue Q containing the indexes of the local
auxiliary problems is initialized with an arbitrary
order;

3. The global cuto� is initialized to a su�ciently high
value and the search in the upper level is started;

4. A generic callback [48] is called at each node j in
the upper level after solving the corresponding LP
relaxation. If the elements of zD and yD contain at
least one fractional value, then the following lower

6
An integer cut is valid if it only cuts out sub-optimal or

infeasible integer solutions. An integer cut is local if it is only

enforced for the subtree rooted at the node where the cut is

generated.

bound for f is computed and compared with the
global cuto� value:

˜
fj = max

!
(fú

D)j ,

˜
f̌D

"
+max

!
(fú

Dú)j ,

˜
f̌Dú

"
+

+
ÿ

max
!
(fú

On
)j ,

˜
f̌On

"
(21)

where (fú
D

)j , (fú
Dú)j and (fú

On
)j are the values of

fD, fDú and fOn
evaluated for the solution of the

LP relaxation of node j:

- If
˜
fj < f̃ then the search of the current tree

branch is continued by branching on node j;
- If

˜
fj Ø f̃ then the search of the current tree

branch is interrupted by fathoming node j

through a suitable integer cut.

If, on the other hand, all the elements of zD and yD

have binary/integer values, then an integer design
candidate (z̄D, ȳD) has been found, and node j is
labeled as an entrance node. The lower level is
entered and the Q is re-ordered7;

5. In the lower level, the values of f̄D and
˜
f̄

¶ asso-
ciated with the integer design candidate (z̄D, ȳD)
are immediately computed:

- If f̄D <

˜
f̌D we are sure that the current integer

design candidate will eventually lead to an
unfeasible solution. This is due to the fact
that

˜
f̌D is a globally valid lower bound for fD.

In this case, the lower level is immediately
exited without solving any auxiliary/worker
problem and the search of a new integer design
candidate in the upper level is resumed;

- If f̄D Ø
˜
f̌D then we can’t conclude anything

about the feasibility of (z̄D, ȳD) and the search
algorithm remains in the lower level.

Moreover:

- If
˜
f̄

¶ Ø f̃ we can conclude that, since
˜
f̄

¶ Æ f̄ ,
the current integer design candidate will surely
lead to a sub-optimal solution: the lower level

7
Thanks to eq. (17) we are sure that each time a local auxiliary

problem is solved in the lower level, it determines an increase

˜

f̄ (k) ≠
˜

f̄ (k≠1)
or

˜

f̄ (1) ≠
˜

f̄¶
of the local lower bound for f̄ which is

equal to

˜

f̄On ≠
˜

f̌On Ø 0 or to max

!
˜

f̌Dú ,
˜

f̄Dú
"

≠
˜

f̌Dú Ø 0, depending

on the specific type of auxiliary problem. Similarly to what is

done with the WPs of the algorithm by Yokoyama et al. [6], all

these increases are stored in a list li indexed on the N + 1 local

auxiliary problems and are used to e�ciently re-order the queue

Q of local auxiliary problems each time the algorithm enters the

lower level with a new integer design candidate. This is simply

done by prioritizing the local auxiliary problems corresponding to

the lists li characterised by the highest mean values of their stored

increases. In this way, we are solving first those problems who will

most likely provide the highest increase in

˜

f̄ (k)
, hence eventually

leading to a faster proof of sub-optimality/infeasibility of the given

integer design candidate.
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is exited prematurely without solving any aux-
iliary/worker problem and the search of a new
integer design candidate is resumed in the
upper level;

- If
˜
f̄

¶
< f̃ we can’t conclude anything on the

final value of f̄ : the algorithm sets up and
solves the local auxiliary problem contained
in the queue Q, starting from the first. The
following valid upper bound is computed be-
fore solving each local auxiliary problem for
fOn

:

f̃On
= f̃ ≠

!

˜
f̄

(k≠1) ≠
˜
f̌On

"
(22)

6. The local auxiliary subproblem is solved and a
feasibility check is carried out:

- If the local auxiliary problem is infeasible,
we can then conclude that, being it a under-
constrained version of the worker problem,
also the latter will be infeasible. In this case
the lower level is exited prematurely without
solving any further auxiliary/worker problem
and the search of a new integer design candi-
date is resumed in the upper level;

- If the local auxiliary problem is feasible, then
the new local lower bound

˜
f̄

(k) is computed
with the new

˜
f̄On

or max
!

˜
f̌Dú ,

˜
f̄Dú

"
;

7. A sub-optimality check is done by comparing
˜
f̄

(k)

with f̃ :

- If
˜
f̄

(k) is higher than the current cuto� value
f̃ , then the lower level is exited prematurely
without solving any auxiliary/worker prob-
lem and the search of a new integer design
candidate is resumed in the upper level;

- If
˜
f̄

(k) is lower than the current cuto� value f̃ ,
then the next auxiliary problem in the queue
is set up and solved by the algorithm;

8. If all the N +1 local auxiliary problems are succes-
fully solved and the final value

˜
f̄

(N+1) of the local
lower bound is still lower than the current cuto� f̃ ,
then the algorithm sets up and solves the worker
problem to restore the coherence with the upper
level. By means of a dedicated callback, the lower
bound of this problem is continuously compared
with the global cuto� at each node of the subtree:
if it is higher, then the problem is aborted and
the corresponding integer design candidate imme-
diately discarded. A new cuto� value may be found
or not depending on the feasibility and optimality
of the solution of the worker problem. In any case,
the algorithm resumes the search of a new integer
design candidate in the upper level.

It is worth stressing that, in this solution scheme, the
complete worker problem (step 8) is only solved if all the
N +1 local auxiliary problems are feasible and contribute
to a lower bound

˜
f̄

(N+1) which is lower than the global
cuto�. Of course, a check of the relative gap is performed
each time a generic callback is entered. The algorithm
is stopped when the relative gap falls below a certain
threshold.

It is important to underline that, each time the complete
worker problem is solved (step 8), all the computational
time spent in solving the local auxiliary problems be-
comes additional with respect to a reference case without
any auxiliary problem (we are introducing an overhead).
Hence, there exists a trade-o� between the computational
time saved when the algorithm exits the lower level before
solving the worker problem and the overhead introduced
when

˜
f̄

(N+1)
< f̃ . Nevertheless, it is worth noting that

the increase in computational time associated with a
higher number of local auxiliary problems associated to
a higher number of typical periods is approximatively
linear (we are growing the number of subproblems with-
out varying the number of integer operation variables in
each one of them8). At the same time, by increasing N ,
the computational time required to solve the complete
worker may potentially explode due to the combinatorial
complexity of the problem (by linearly increasing the
number of integer operation variables of the problem
we are exponentially growing the number of possible
discrete solutions). Considering this, we can reasonably
expect that for problems defined over a su�ciently long
time horizon, the time saved thanks to the additional
integer cuts deriving from the local auxiliary problems
will eventually prevail on the computational overhead
introduced when

˜
f̄

(N+1)
< f̃ , and that the highest the

number of typical periods, the highest the benefit.

4. Assessment of the numerical

performances of the novel decomposition

algorithm on a real case study

In the last section, the numerical performances of the
novel decomposition algorithm are tested on a real case
study. The problem regards the optimal design of a multi-
energy microgrid for the university campus of Politecnico
di Milano called ”Bovisa” in northern Italy. The MES
must be designed to satisfy the demands of electricity,
heat and cooling for all the buildings and the labora-
tories during the year. The system has been modelled
to include both integer and continuous design variables,
being therefore incompatible with both the methods by
Iyer and Grossman and by Yokoyama et al.

8
Of course, we are also increasing the number of continuous

operation variables xOn , but this only slows the solution time of

the LP relaxations, without a�ecting the size of the combinatorial

solution space.
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Figure 5. The microgrid architecture of the Bovisa case
study

4.1 Description and modelling of the Bovisa case study

The architecture of the system is presented in fig.5. The
microgrid includes cogenerative gas turbines for the com-
bined generation of electricity and heat, auxiliary boilers
and refrigerators including both absorption and electric
chillers. Each technology is available in the form of a
catalogue that contains di�erent models characterised
by various performance parameters, sizes and costs. For
each technology is possible to select only a single model
during the design phase. For each model we can install
up to 4 units that can be operated separately. The cata-
logue of the available models is reported in tab.1. There
are ten di�erent available models of gas turbine and four
models for each of the other component. It means that
the design problem counts 88 potential machine units
that might be installed to optimize the microgrid. It
means that considering a time horizon of 14 days, the
model will contain more than 29,500 binary variables only
to model the on-o� operation process of such units. The
installation costs and the balance of plants associated
to each technology are evaluated referring to [49]. We
consider also a cost for the connections to the national
electricity grid and to the gas network proportional to
the maximum electric power and natural gas rate re-
quired by the system during the year. We assume a
cost of the electricity connection equal to 50Ä/MW/y,
while for the natural gas network 70Ä/MW/y (referred
to the LHV of natural gas). The variables modelling
the two connections introduce the need for introducing
continuous design variables. The cost of the single MWh
of electricity and natural gas we referred to historical

real market prices, hence also considering typical hourly
variations during the entire year. The objective function
is defined minimizing the annuity associated to the mi-
crogrid. CAPEX are distributed as yearly costs assuming
a life-time of the system of 15 years and a discount rate
of 5%.

Observing the model reported in Appendix A, it is
worth saying that, despite the relative simplicity of the
Bovisa microgrid architecture, the accurate design model
must include continuous design variable for modelling
the maximum electric power and fuel consumption rate
required to the external networks. In a hierachical de-
composition method continuous design variables act as
coupling variables between the UC representative peri-
ods, hindering the implementation of multiple worker
problems, as done by Yokoyama et al. in [6]. This shows
that, even in relatively simple MES, the need of a univer-
sal MES decomposition method is crucial to implement
an e�cient search algorithm without giving up modelling
accuracy.

The design problem of the microgrid under analysis
is solved in three di�erent cases, gradually increasing
the length of the time horizon to test the performances
of the decomposition algorithm. The profiles for the
demands of electricity, heating and cooling are always
generated clustering the yearly data directly collected on
field in a previous year. The hourly profile resolutions
for the representative days are generated by means of a
traditional k-means algorithm. The mathematical model
has the structure of a typical catalogue based design
problem and it is reported in Appendix A.

4.2 Analysis of the numerical performances

For each case, we also solved the problem by means of
a conventional B&B algorithm as a benchmark. All the
solver parameters were left untouched to the default val-
ues automatically set by CPLEX. The only exception
concerns branching priority orders: a higher branching
priority was given to integer and binary design variables
in order to fairly compare the two solution approaches. In
fact, a conventional CPLEX instance without branching
priority orders would not exploit at all the hierarchical re-
lationship between design and operation variables, hence
performing worse than what possible for a MES design
problem. For all the simulations we used a 4-core 2.9
GHz personal computer with a 16Gb RAM. The main
purpose of our test is twofold:

1. Assessing the e�ectiveness of the integer cuts im-
plemented both at the upper and at the lower level
by the decomposition algorithm. This is neces-
sary to understand if the global and local auxiliary
problems have been properly defined and if they
provide useful information to speed up the B&B
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Gas Turbine

Nominal Power [MW] 0.2 0.25 0.33 1 1.7 1.876 3.515 3.98 4.6 5.38
Heating Rate [MW] 0.295 0.376 0.45 1.299 3.233 3.945 8.92 8.80 9.56 10.91
E�ciency [-] 0.295 0.289 0.311 0.295 0.269 0.247 0.279 0.297 0.293 0.323
Cost [Ä/kW] 2001 1765 1716 1628 912 880 853 829 804 827

Auxiliary Boiler

Nominal Power [MW] 0.7 1 1.4 2
E�ciency [-] 0.92 0.92 0.92 0.92
Cost [Ä/kW] 19.43 16.9 15.29 14.35

Electric Chiller

Nominal Power [MW] 0.564 0.704 0,844 1,056
COP [-] 5 5 5 5
Cost [Ä/kW] 115 115 115 115

Absorption Chiller

Nominal Power [MW] 0,692 1,036 1,382 1,728
COP [-] 1.2 1.2 1.2 1.2
Cost [Ä/kW] 240 240 240 240

Table 1. Catalogue of the available models for the Bovisa case study

tree exploration;

2. Assessing the computational performance of the
novel decomposition algorithm referring to the con-
ventional B&B algorithm enforced with branching
priorities as benchmark. In particular, we want
to analyse the behaviour of the algorithm with in-
creasing length of the time of horizon and so the
complexity of the problem, when the conventional
algorithm struggles for convergence.

To this aim, the design problem has been solved
in three di�erent cases, gradually extending the time
horizon for the unit commitment from 3 days, to 7 and
finally 14 days. The three design solutions are reported
in tables 2, 3, 4. As we can notice, all the technologies
have been installed, in general with a high number of
units. Analysing the ED solution reported in fig.6 for
three representative days, it is clear that the location is
characterised by a strong weather seasonality and load
variability (long academic vacations, weekends, etc.) that
results in very di�erent profiles and so di�erent operation
strategy depending on the considered typical period. The
optimization procedure tends to select smaller units that
cannot take advantage of economy of scale, but that can
ensure to the system a high operation flexibility. This
leads also to the fact that depending on the number
of typical days introduced in the model and so on the
representativity of the UC simulation, the design solution
may be significantly di�erent, resulting in an increase of
the objective function of around 5% going from 3 to 14
typical days.

Design Solution

Selected Technology GT3 AB1 EC4 AC1
Number of Units 4 1 3 3
Maximum El Power 2.95 MW
Maximum NG Request 4.97 MW
Objective Function 2,642,976 Ä/y
Table 2. Design solution of the 3-day design problem

Design Solution

Selected Technology GT3 AB1 EC4 AC2
Number of Units 4 3 4 3
Maximum El Power 3.58 MW
Maximum NG Request 5.64 MW
Objective Function 2,716,181 Ä/y
Table 3. Design solution of the 7-day design problem

Design Solution

Selected Technology GT3 AB2 EC4 AC4
Number of Units 4 4 4 3
Maximum El Power 4.35 MW
Maximum NG Request 6.33 MWh
Objective Function 2,799,185 Ä/y

Table 4. Design solution of the 14-day design problem
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(a) Electricity UC of three out of the 14 typical days of the problem

(b) Heating UC of three out of the 14 typical days of the problem

(c) Cooling UC of three out of the 14 typical days of the problem

Figure 6. Economic dispatch for three representative days of the 14-day design problem
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The really interesting results are extracted through
the analysis of the computational performances. As
reported in fig. 7a, the decomposition algorithm is com-
petitive also in a limited time horizon of 3 days. The
solution time is halved with respect to the traditional
algorithm. Of course, this result seems not extremely
remarkable, since the traditional algorithm takes a more
than acceptable amount of time to get to 1% gap (around
2,000s). Yet, it is clear that with such microgrid architec-
ture a time horizon of 3 days (72 operation hours) can be
easily optimized by a traditional branch and bound algo-
rithm, that can also take advantage of CPLEX advanced
features like dynamic search and root node processing.

As expected, moving from 3 to 7 typical days, the
complexity of the problem has exploded and the search
tree for the conventional B%B algorithm has grown ex-
ponentially. CPLEX with default settings and branching
priorities takes more than 24,200 s (6 hours and 40 min-
utes) to reach a relative gap of 1%, while the decompo-
sition algorithm achieves the same gap in around 1,621
s (27 minutes), outperforming the conventional one and
being 15 times faster (see fig. 7b). It is also interesting to
highlight that the decomposition algorithm requires only
additional 500 seconds to reach full convergence, while
the conventional one still needs more than 20,000 s. A
similar phenomenon occurs also in the 3-day design prob-
lem (see fig. 7a). Generally, the decomposition algorithm
at 1% gap has already gathered a lot of information from
the solution of worker and auxiliary problems. Integer
cuts start being very e�ective and the full converge is
achieved quite quickly.

The 14-day design problem is the one really demon-
strating the e�ectiveness of the decomposition algorithm.
As reported in fig. 7c, when increasing the time horizon
from 7 to 14 representative days, the conventional B&B
algorithm does not converge. After 50,000s the relative
gap is still below 5% and the search procedure is stuck
due to the enormous dimensions of the search tree. In-
troducing additional information that with a relatively
small e�ort lead to prune extensive part of the tree at
the upper level and to limit the exploration in the lower
level is the only way to obtain the global optimum solu-
tion in a reasonable amount of time. The decomposition
algorithm achieve 1% relative gap in less than 7,200 s (2
hours).

Such promising performances are confirmed by the
analysis of the e�ectiveness of the introduced integer
cuts of the decomposition algorithm. As extensively dis-
cussed, the role of local auxiliary problems is to evaluate
lower bounds of the global objective function that allows
to discard the corresponding integer design candidate
before solving the complete worker problem in the lower

(a) Computational performances of the novel decomposition

algorithm in the 3-day design problem

(b) Computational performances of the novel decomposition

algorithm in the 7-day design problem

(c) Computational performances of the novel decomposition

algorithm in the 14-day design problem

Figure 7. Computational performance comparisons
between decomposed and conventional algorithms
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level. Looking at fig. 8 referred to the 14-day design
problem, we can state that the results are extremely
promising. Considering 78 design candidates entering
the lower level, only 7 complete worker problems are
solved, while 71 are prematurely discarded thanks to
local auxiliary problems (more than 90%). In addition to
that, we can see that over 1136 potential local auxiliary
problems, only 698 (around 60%) are actually solved in
the lower level. This means that in general is su�cient
to solve the auxiliary problems referred to 8 of the 14
typical periods to find the design candidate is infeasible
or suboptimal. This percentage is higher during the first
branching operations and tends to decrease as the num-
ber of design candidates entering the lower level increases.
The reordering of the local auxiliary problems allows the
algorithm to gradually learn which are the typical periods
that favour infeasibility or suboptimality. As a result, the
decomposition algorithm spends only 34.5% in the lower
level, meaning the computational burden introduced by
the solution of the auxiliary problems is acceptable if
compared to the branching operations of the upper level.
Finally, the results are convincing also for what global
auxiliary problems are concerned. In spite they require
around 15% of the overall solution time to be solved,
they contribute to discard 342 design candidates even
before entering the lower level (in addition to improving
the e�ectiveness of the lower bounds in the lower level).

The results obtained in the three cases are summa-
rized in fig. 9. The presented graph finally enforces the
theoretical discussion with numerical evidence and high-
lights the potentialities of the decomposition algorithm
developed in this work. Conventional B&B shows the
typical exponential growth in computational time when
increasing the time horizon of the design problem, such
that in the 14-day design problem is not able to converge
to the optimal solution in an acceptable amount of time.
Introducing the concept of auxiliary problems and ex-
ploiting the multi-period nature of MES design problems,
the decomposition algorithm is able to e�ectively deal
with an increasing number of integer operation variables,
thanks to a more intelligent exploration of the lower
level. Increasing the time horizon from 3 days to 14 days
to obtain a more robust design solution, the algorithm
moves from being the most e�cient way to evaluate the
optimum solution (15 times faster the conventional one)
to being the only possible way to find the optimum design
candidate in practical times.

Conclusions

In this Thesis work, starting from the legacy of Iyer
and Grossman [5] and Yokoyama [6], we introduced a
novel MILP decomposition method exploiting the in-
herent hierarchy beween design and operation in MES
design problems and we demonstrated its e�ectiveness

Figure 8. Analysis of the e�ectiveness of the introduced
auxiliary problems and cuts in the 14-day design
problem

Figure 9. Computational performance comparison for
di�erent lengths of the time horizon
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with respect to conventional approaches by means of a
case study involving the design of a multi-energy micro-
grid for a university campus.

The main innovative elements of our proposed approach
are both mathematical and numerical. From a mathe-
matical standpoint, our method does not introduce any
restricting assumption on the MES problem structure
with respect to previous decomposition algorithms, hence
ensuring the universality of the approach without sac-
rificing computational performance. Moreover, from
a numerical perspective, an e�ort was made to guaran-
tee a high usability of the decomposition algorithm for
practical MES design purposes.

- Universality. Our method can be applied to MES
problems not compatible with previous state-of-
the-art decomposition paradigms. In particular,
the MES model may contain both continuous and
integer/binary design variables, as well as time-
coupling constraints. This capability is particularly
important in solving MES designs with complex
architectures requiring a high modelling flexibility;

- Performance. Thanks to the introduction of
the innovative concept of local auxiliary problem
we were able to mantain a high generality of the
method without giving up computational perfor-
mances. This was demonstrated through a real
case study in which the novel approach has been
compared to the conventional MILP search strat-
egy implemented in the commercial solver IBM
CPLEX. Gradually increasing the time horizon
and so the complexity of the design problem, con-
ventional B&B showed an exponential growth in
convergence time, while the decomposition algo-
rithm demonstrated is capability of taking advan-
tage of the multi-period nature of the problem to
reduce complexity;

- Usability. The practical usability of the developed
decomposition method is a feature indipendent
from the previous two. Nonetheless, it is not less
important. In fact, the implementation of MILP
decomposition requires an in-depth knowledge of
commercial solver API and of the corresponding
programming language. Yet, MES desing is a field
of interest for academics and professionals that do
not necessarly have advanced programming skills.
For this reason, we developed a dedicated code
which automates the implementation of the decom-
position algorithm in the POLIMIP, the MATLAB
modelling environment developed in this Thesis
work. Usability of the algorithm is crucial also
beacause it favours future applications to new case
studies and further developments.

Finally, we want to stress that the formal descrip-
tion of the novel decomposition method proposed in this
work has been carried out mantaining a general profile
that laid the ground for an actual decomposition frame-
work for Multi-Energy Systems. In fact, the high-level
concepts of ”auxiliary problem” and ”constraining fea-
ture” can be intended as mathematical tools that can
be further expanded and/or modified to create new de-
composition methods for specific types of MES problems.
Some examples of possible future developments are:

- Assessment of the performances of the algorithm
when applied to di�erent MES architectures and
operation models;

- Implementation of an heuristic operation logic in
the lower level (instead of a predictive one);

- Application of the decomposition framework to a
multi-year design problem for optimal investment
planning considering yearly load variation scenar-
ios.
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Symbols appearing in chapter 3

f complete objective function;
gt( or gn) uncoupled constraints;

h coupling constraints;
zD binary design variables;
yD integer design variables;
xD continuous design variables;

zOt
( or zOn

) binary operation variables;
yOt

( or yOn
) integer operation variables;

xOt
( or xOn

) continuous operation variables;
nz number of binary design variables;
ny number of integer design variables;
nx number of continuous design variables;
mz number of binary operation variables;
my number of integer operation variables;
mx number of continuous operation variables;

T number of time steps in a typical period;
N number of typical periods;

fD term of the objective function depending on the integer/binary design variables;
fDú term of the objective function depending on the continuous design variables;

fOt
( or fOn

) term of the objective function depending on the operation variables of period t (or n);
¯ (superscript) value related to an integer design candidate;
ú (superscript) value related to the LP relaxation at the current node;

˜
(subscript) lower bound;

˜ (superscript) upper bound;
¶ (superscript) value computed before solving any local auxiliary problem;

˜
f̌D global lower bound for fD;

˜
f̌Dú global lower bound for fDú ;

˜
f̌On

global lower bound for fOn
;

˜
f̄D local lower bound for fD;

˜
f̄Dú local lower bound for fDú ;

˜
f̄On

local lower bound for fOn
;

˜
f̄

(k) best local lower bound available after solving k local auxiliary problems;

Appendix A

Sets

I := {GT, AB, EC, AC} Available technologies
Ji := {M1i, M2i..MNi} Models in the catalogue for each technology i œ I

U := {1,2,3,4} Potential installable units for each model j œ Ji

TY P := {1,2,3,4....Ntyp} Typical days
T := {1,2,3,4...24} Hourly time step of each period

Variables
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Binary/Integer Design Variables (zD/yD)

“̂i,j := Selection variable for the model j of the technology i
’j œ Ji, i œ I

Ï̂i,j,u := Investment variable for the unit u of the jth model
’u œ U,j œ Ji, i œ I

Binary/Integer Operation Variables (zO/yO)

ẑi,j,u,n,t := On-o� variable for uth unit at each time step t of the typical period n
’t œ T,n œ TY P,u œ U,j œ Ji, i œ I

”̂i,j,u,n,t := Startup variable for uth unit at each time step t of the typical period n
’t œ T,n œ TY P,u œ U,j œ Ji, i œ I

Continuous Design Variables (xD)

êl
max := Maximum power required to the national electric grid [MW]

f̂u
max := Maximum fuel consumption rate required to the natural gas network [MW]

Continuous Operation Variables (xO)

ŷi,j,u,n,t := Primary energy output of the uth unit at each time step t of the typical period n
’t œ T,n œ TY P,u œ U,j œ Ji, i œ I

ŷ
2
GT,j,u,n,t := Secondary energy output of the uth GT unit at each time step t of the typical period n

’t œ T,n œ TY P,u œ U,j œ JGT

x̂
ty

i,j,u,n,t
:= Energy input of the uth unit at each time step t of the typical period n
’t œ T,n œ TY P,u œ U,j œ Ji, i œ I

x̂i,j,u,n,t := Energy input of the uth unit accounting for start-up consumptions
’t œ T,n œ TY P,u œ U,j œ Ji, i œ I

ˆouti,n,t := Total primary energy output from the ith technology
’t œ T,n œ TY P,i œ I

ˆout
2
GT,n,t := Total secondary energy output from gas turbines

’t œ T,n œ TY P

îni,n,t := Total energy input for the ith technology
’t œ T,n œ TY P,u œ U,j œ Ji, i œ I

êln,t := Purchased electricity from the grid

Objective Function

f̂D := Part of the objective function depending on integer design variables
f̂Dú := Part of the objective function depending on continuous design variables
f̂On

:= Part of the objective function depending on operation variables of the typical period n
’n œ TY P
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Parameters

Energy demand and weather prediction

d
el

n,t := Electricity demand ’t œ T,n œ TY P

d
ht

n,t := Heating demand ’t œ T,n œ TY P

d
co

n,t := Cooling demand ’t œ T,n œ TY P

◊n,t := Temperature profile ’t œ T,n œ TY P

Hn := Yearly weight of the typical period n according to the clustering n œ TY P

Machine operation characteristics

mi,j := Performance slope ’j œ Ji, i œ I

qi,j := Performance intercept ’j œ Ji, i œ I

m
T

i,j := Performance temprerature dependence ’j œ Ji, i œ I

m
2
GT,j := Performance slope for the GT seconday output ’j œ JGT

q
2
GT,j := Performance intercept for the GT seconday output ’j œ JGT

m
2T

GT,j := Performance temperature dependence for the GT seconday output ’j œ JGT

x
l

i,j := Minimum input ’j œ Ji, i œ I

x
u

i,j := Maximum input ’j œ Ji, i œ I

y
u

i,j := Nominal output ’j œ Ji, i œ I

rui,j := Rump-up limit ’j œ Ji, i œ I

rdi,j := Rump-down limit ’j œ Ji, i œ I

sui,j := Start-up consumption ’j œ Ji, i œ I

Cost parameters

ICi,j := Investment cost ’j œ Ji, i œ I

CRF := Capital Recovery Factor
C

el := Cost of connection to the national electric grid
C

fu := Cost of connection to the natura gas network

c
fu

i,n,t
:= Cost of the fuel per MWh ’t œ T,n œ TY P,i œ FU

c
el

n,t := Market price of the elctricit ’t œ T,n œ TY P

Constraints

Catalogue Selection and Investment Decision

ÿ

i

“̂i,j Æ 1 ’j œ Ji, i œ I

Ï̂i,j,1 = “̂i,j ’j œ Ji, i œ I
ÿ

nœT Y P

ÿ

tœT

ẑi,j,u,n,t Æ Ïi,j,u ·Nty ·24 ’u œ U,j œ Ji, i œ I

Prioritization Constraints

Ï̂i,j,u Æ Ï̂i,j,u≠1 ’u œ U \{1}, j œ Ji, i œ I

ẑi,j,u,n,t Æ ẑi,j,u≠1,n,t ’t,œ T,n œ TY P,u œ U \{1}, j œ Ji, i œ I
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Input-output relationships

ŷi,j,u,n,t = mi,j x̂
ty

i,j,u,n,t
+(qi,j +m

T

i,j◊n,t)ẑi,j,u,n,t ’t œ T,n œ TY P,u œ U,j œ Ji, i œ I

x
l

i,j ẑi,j,u,n,t Æ x
ty

i,j,u,n,t
Æ x

u

i,j ẑi,j,u,n,t ’t œ T,n œ TY P,u œ U,j œ Ji, i œ I

ˆouti,n,t =
ÿ

jœJi

ÿ

uœU

ŷi,j,u,n,t ’t œ T,n œ TY P,i œ I

îni,n,t =
ÿ

jœJi

ÿ

uœU

x̂i,j,u,n,t ’t œ T,n œ TY P,i œ I

ˆout
2
GT,n,t =

ÿ

jœJi

ÿ

uœU

ŷ
2
GT,j,u,n,t ’t œ T,n œ TY P

Start-up, minimum up time and ramp limits

”̂i,j,u,n,t Ø ẑi,j,u,n,t ≠ ẑi,,ju,n,t≠1 ’t œ T,n œ TY P,u œ U \{1}, j œ Ji, i œ I

x̂i,j,u,n,t = x̂
ty

i,j,u,n,t
+SU ”̂i,j,u,n,t ’t œ T,n œ TY P,u œ U \{1}, j œ Ji, i œ I

ŷi,j,u,n,t≠1 ≠ ŷi,j,u,n,t Æ rui +(1≠ ẑi,j,u,n,t)M ’t œ T \{1},n œ TY P,u œ U,j œ Ji, i œ I

ŷi,j,u,n,t ≠ ŷi,j,u,n,t≠1 Æ rdi +(1≠ ẑi,j,u,n,t)M ’t œ T \{1},n œ TY P,u œ U,j œ Ji, i œ I

tÿ

t≠tmin+1
ẑi,j,u,n,t Ø t

min
”̂

i,j,u,n,t≠tmin+1 ’t œ {t
min

, . . . ,T
end},n œ TY P,u œ U,j œ Ji, i œ I

Energy balances
ÿ

iœOUT el

ˆouti,n,t ≠
ÿ

iœINel

îni,n,t Ø d
el

n,t ≠ êln,t ’t œ T,n œ TY P

ÿ

iœOUT ht

ˆouti,n,t + ˆout
2
GT,n,t ≠

ÿ

iœINht

îni,n,t Ø d
ht

n,t ’t œ T,n œ TY P

ÿ

iœOUT co

ˆouti,n,t ≠
ÿ

iœINco

îni,n,t Ø d
co

n,t ’t œ T,n œ TY P

Maximum fuel consumpiton and power from the grid

êln,t Æ êl
max ’t œ T,n œ TY P

ÿ

iœF U

îni,n,t Æ fu
max ’t œ T,n œ TY P

Objective function

f̂D =
ÿ

iœI

ÿ

jœJi

ÿ

uœU

Ci,jÏ̂i,j,uCRF

f̂Dú = êl
max

C
el + f̂u

max
C

fu

f̂On
=

A
ÿ

iœF U

ÿ

tœT

îni,n,tc
fu

n,t
+

ÿ

tœT

êln,tc
el

n,t

B
8760
Hn

’n œ TY P

min f̂ = f̂D + f̂Dú +
ÿ

nœT Y P

f̂On
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[17] T. Öncan and M. Caǧirici. “MILP formulations
for the order batching problem in low-level picker-
to-part warehouse systems”. In: IFAC Proceedings
Volumes (IFAC-PapersOnline) 46.9 (2013). cited
By 1, pp. 471–476. doi: 10.3182/20130619-3-RU-
3018.00372 (cit. on p. 3).
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Chapter 1

Multi-Energy Systems (MES): an

overview

1.1 MES design: a complex task

"The increasing share of variable renewable energy sources and the 2020

and 2030 targets for the reduction of greenhouse gas emission in the EU

are calling for important changes in our energy system: more flexibility,

more active involvement of all stakeholders and more collaboration. If no

actions are taken, the power system will face several risks such as poor

quality of the electricity supply, congestion, lack of stability, excessive

levels or curtailments, impossibility to cope with electro mobility demand,

etc. The challenge is therefore to create and deploy common tools for

planning, integration and operation across the energy system and its

actors." [1]

European Commission

From researchers to policy makers, from companies to international organizations,

many e�orts are being made nowadays to encourage the penetration of renewable

energy sources into existing energy-mixes and to favour the emergence of new

electrification plans already geared towards sustainability in countries that are cur-

rently developing their own power systems [4]. Nevertheless, meeting challenging

environmental targets and guaranteeing secure and a�ordable energy to

1
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future generations are two equally important missions of the energy sector that

may risk hindering each other.

The quotation at the beginning of this chapter is taken from the H2020 call

"Tools and technologies for coordination and integration of the European energy

system". European commission has inevitably come to admit that, while new

energy generation technologies are continuously evolving, our energy distribution

system is still tied to obsolete paradigms. Energy resources are becoming more

and more unpredictable. Energy services are increasing and require more flexibility.

In such a context, the way we intend and design the energy system cannot do

without two key factors: coordination and integration. The "classic" energy

system where generation units, as well as loads, networks and energy vectors are

treated "separately" is giving way to a model whereby electricity, heat, cooling, fuels,

and transport optimally interact with each other at various levels, from buildings

to districts, cities or regions. The capability of properly designing and operating

so-called Multi-Energy Systems (MES) is decisive to fully exploit the potential

of new technologies that are now trying to emerge in the energy sector.

1.1.1 MES: their role and applications in the energy sector

A comprehensive definition of MES can be found in [2], where the fundamental

concept of multi-energy system is summed up as follows:

"..an integrated energy system consisting of distributed energy resources

and multiple energy loads operating as a single, autonomous grid either

in parallel to or “islanded” from the existing utility grid"

MES are often associated to the innovative concept of Smart Grid and the idea

of optimally integrating distributed renewable electricity resources in the national

power system by means of electric storage and load demand aggregation. Nonethe-

less, this only covers a part of the MES framework. Multi-energy systems try

to practice integration strategies addressing all energy sectors, and not only
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electricity, from both the operational and the design viewpoints [3]. Nowadays,

generation and consumption of the various energy vectors are strictly interconnected.

For instance, heating and cooling continuously interact with the electric system in

many distributed technologies such as CHP (combined heat and power), electric

heat pumps, air condition and refrigeration systems. Electricity is intensifying its

presence also in transport and fuel-chain, with the emergence of bio-fuels, electric

vehicles and hydrogen-based transports [5].

The cited "integration" of MES occurs at three di�erent levels:

Multi-service A multi-energy system is generally capable of generating di�erent

useful outputs and multiple services to the external market. This comes with

the possibility of turning otherwise wasted conversion by-products into useful

output, improving both techno-economic and environmental performances.

This is one of the reason why many MES are based on multi-generation units,

such as CHP and CCHP (Combined Cooling, Heat and Power) systems. A

co-generative engine for heating and power of a building may represent the

smallest "block" in a MES. Of course, the generation of many energy vectors

requires a connection with many di�erent external energy networks, such as

electricity, DH (district heating), gas, hydrogen, etc [7].

Multi-input The many interactions with the external market are not only limited

to the multiple outputs, but also and primarily to the inputs. Apart from

the more classic connections with electricity and gas networks, MES may

receive also "unconventional" goods as input, such as waste to be converted

into bio-fuel to produce heat and electricity [8], or water to feed an electrolizer

for hydrogen generation. Such "goods" are seen from the MES perspective

as energy carriers, to be converted into useful outputs for the market. MES

possible inputs include also renewable energy sources (RES), such as solar

radiation or kinetic wind power. RES have a great potential both from the

economic and environmental perspective, but they bring about the challenge

of being non-programmable and di�cult to predict.
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Figure 1.1: Typical architecture of a multi-energy microgrid

Multi-process The last level of MES interconnectivity is within the processes.

MES are not simply systems of energy conversion, with a classic generation-

consumption balance, but may include di�erent processes, such as transport

and storage. As electric and thermal storage technologies are becoming more

competitive [9], the inclusion of energy storage systems in MES design o�ers

many economic advantages and allows to better exploit non-programmable

sources and, at the same time, to o�er a higher flexibility of the operation.

The MES definition and framework can be related to many di�erent innovative

systems in the energy sector, from virtual power plants [10] to smart grids [11].

However, the most concrete application is surely in the field of microgrids. Micro-

grids are low or medium voltage distribution systems controlling and coordinating

many distributed energy resources, mainly distributed generation, storage and

controllable loads [7]. Although initially designed for the production of electricity,

today multi-energy microgrids (see fig.1.1) are becoming the most promising model

of distributed generation, for both on-grid and o�-grid applications [9]. The main

advantages are related to:

- Optimal utilization of primary energy sources for multiple services and, con-

sequentially, high conversion e�ciency;

- High energy system flexibility and optimal market interaction;
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Figure 1.2: Example of a energy hub containing converters ÷ and storage — [14]

- Potentially high penetration of RES without compromising the quality

and the availability of the o�ered services.

All these benefits come at non-negligible costs: increased complexity and high

unpredictability. At this point, a spontaneous question arises: how is it possible

to properly design and operate these systems in order to e�ectively exploit all their

potentialities?

1.1.2 Mathematical modelling of MES: main challenges

When speaking of MES, design phase and operation phase should always be

considered together, since strongly interdependent. This unavoidable interdepen-

dence actually represents one of the main inherent complexities in developing

mathematical models that allow to e�ectively design these kind of systems.

When designing a simple energy system, with single independent units, independent

processes and one or two energy vectors to be converted, the solution space is quite

limited. In this case, many design variables (e.g. the size of the components) can

be limited to a narrow range or reasonable values defining some nominal operating

conditions. Hence, when moving to the detailed techno-economic optimization

through the simulation of the operation phase, the values of many variables has

already been set. Moreover, optimal operation strategies are often trivial, based on
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very simple trade-o�, and produce very similar results regardless the simulation

scenario.

On the other hand, in MES design all the units are interconnected and design

choices regarding a single variable may dramatically change the optimal value of all

the others. Multiple components, multiple processes, multiple scenarios. The solu-

tion space is so broad that even the most trivial design choice may result impossible

to make without a detailed and comprehensive simulation of the operation phase

of the system. Many internal interconnections result in many possible operation

strategies that inevitably a�ect the optimality of the design solution. Many external

interconnections force the behaviour of individual components and influence the

behaviour of the entire system. Hence, a suitable model for the design of MES needs

to incorporate an accurate and realistic mathematical description of its complex

operation, resulting in a single huge problem.

MES operation modelling

In light of the above, the first step to model the design of a MES is to find

a way to properly describe its operation. To this end, many researchers had the

idea of providing synthetic information and optimization basis of complex systems

through input-output relationships. They have set aside the traditional operation

models used in electrical systems to give space to a new framework: the energy

hub [13] [12]. The basics elements of an energy hub are energy conversion units,

energy storage units and input-output connections [14] (see fig.1.2).

The energy hub concept is nowadays a common approach for steady state

modelling and optimization of MES dispatch and can represent energy system

operation at various scales and resolution, from optimal dispatch [15] to optimal

power flow modelling, topological optimization and reliability assessment [16]. As a

matter of fact, it is surely a way to schematically model an interconnected system

made of many di�erent components such as a MES. Nonetheless, a proper MES
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Figure 1.3: Temporal scales in MES

operation model should address many modelling issues that inevitably carry a high

level of complexity.

Multiple time scales All MES dispatch models are steady-state model, assuming

that fast phenomena have reached equilibrium in the time-step interval. Nonetheless,

MES cover a wide range of time scales, from microseconds for the electric system

operation to months for the seasonal influences of RES (see fig.1.3). The use of

temporal-aggregated data allows to simplify the model but may lead to neglect

fine-scale phenomena deviating the results [17]. Generally, during the design phase

the aggregation is performed at the scale of Unit Commitment (UC) (from 1

hour to 15 minutes).

Non-linear relations In spite the fact that many MES relations can be expressed

as linear equations (e.g. energy balances), the input-output behaviour of several

units shows significant non-linearities. For instance, o�-design performance curves of

thermal generators like gas turbine are often represented through quadratic or cubic

curves. Heat exchangers or chemical reactors conversion laws are strongly non-linear,

too. Even without considering fast-dynamic phenomena, MES operation models

need to deal with non-linear equations, or through the use of non-linear models (high

complexity and accuracy), or through linearisation procedures (trade-o� between

complexity and accuracy).
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Binary operation logics Proper models for UC require binary variables that

represent the status of the machines at each time interval. In this way, the on-o�

logics of the energy hub unit operation are modelled, along with many dynamic

phenomena of energy generators, such as start-up costs, minimum up time and

ramp limits. Without binary status variables, the optimization algorithm generally

proposes solution that are not realistic nor feasible. On the other hand, the

integration of binary operation variables is typically computationally expensive.

Predictive control strategies For MES operation planning, the concept of

Economic Dispatch (ED) is central. The ED is the optimization of the UC in

order to cover the energy demands at a minimum cost or to maximize the energy

production revenues, at the same time satisfying all the physical constraints [18].

Since ED requires short-term planning strategies to optimize the memory e�ects of

MES components (e.g. energy storage), Model-based Predictive Control techniques

are being applied, based on receding prediction horizon and feedback mechanisms

[19]. Predictive control strategies result in further complications of the UC model,

that needs to account for the stochastic nature of the problem, caused b y uncertainty

over demand and RES prediction.

From operation to design modelling

As previously said, the MES design problem needs to embed the simulation of

the operation to produce reliable results, so all the criticalities of dispatch modelling

will be present during the design phase as well. In addition to that, we need to

consider the challenges related to the design optimization itself.

Discreteness of components MES design models include many candidate com-

ponents which may potentially integrated into the final architecture. The investment

decision on each potential component is modelled through binary variables. More-

over, one of the crucial decision to make is the size of the components. The simplest

way to model it is by means of a simple continuous variable. Yet, this may produce

very inaccurate results. If we consider for instance a Gas Turbine (GT), the selection

of the GT nominal power a�ects the performances and the consumptions, too. In
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Figure 1.4: Main modelling challenges for MES design and operation

that case it is necessary to introduce binary variables that change the performance

curve when a certain size threshold is exceeded. And the complexity is further

increased in the event that the catalogue of the available unit model is limited and

a continuous design is not representative. Catalogue-based design models require

investment binary variables for each available model and for each architectural

technology, or sometimes also for each potential unit of each available model of

each architectural technology [20]. For this reason, the number of binary design

variables is prone to increase very fast with the size of the components’ catalogue.

Design under uncertainty MES design models need to simulate the operation

phase of potential architecture configurations to evaluate their performance, and such

simulations are based on predicted profiles of load demands and RES production. Of

course, the quality of the solution strongly depends on the capability of predicting

load behaviour and weather conditions to create representative profiles. This is why

MES design models may include machine learning algorithm to increase prediction

accuracy [21] as well as stochastic design algorithms to account for multiple possible

scenarios [22].

Practicability of embedded optimal operation strategy Design models

embed operation simulation that are generally performed by optimizing long-term
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periods (weeks, months or even a full year) to exploit energy storage and dispatchable

loads at best. In this way, the design model embeds a kind of omniscience of the

control system that can never be realized in reality, and this could compromise

the optimisation of the solution found. One of the greatest challenges of MES

modelling lies in taking into account the control strategies implemented in field

while assessing the operation performance of possible design solutions.

1.2 Main approaches to MES design optimiza-

tion

The aim of this section is to present the main methodologies historically applied

to solve MES design optimization problems and to highlight their main potentialities

and limitations.

1.2.1 Design optimization methods: a review

As already mentioned in the previous sec. 1.1, the optimization of multi-energy

architectures is a problem where the operation of the system is considered from

the design phase. To this end, the optimization framework may be based on two

di�erent paradigms:

Two-layer (TL) The problem is solved by means on two nested algorithms. The

outer loop iteratively generates potential design solution, while the inner

loop optimize the UC and estimates the operating expenses (OPEX) for the

corresponding system configuration.

One-shot (OS) One-shot optimization frameworks make use of a single model

containing both design and operation variables. System sizing and dispatch

are solved simultaneously in a single optimization problem.

It is possible to mathematically demonstrate that design and operation in MES are

coupled such that when solve sequentially or iteratively the results are not guaranteed

to constitute a combined system optimum [24]. For this reason, traditional two-

layer algorithms cannot ensure the global optimality of the solution and this is
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the unfair advantage of OS optimization. At the same time, accurate OS models

tend to become very complex when applied to large multi-energy systems and may

result in non-acceptable computational times. Beyond such general considerations,

each optimization strategy is characterised by specific pros and cons, which is

correct to know before approaching the resolution of a generic MES design problem.

Historically, TL algorithms were the first to significantly attract the attention of

researchers, showing important improvements over the year.

Montecarlo simulation [TL] In the outer loop Monte Carlo-based methods

perform random generation of component sizes that are then investigated solving

the ED problem in the inner loop. In order to increase the e�ectiveness of Monte

Carlo exploration, it is possible to combine random simulation with analytical

procedures as proposed in [25]. This method was one of the first to be proposed in

the field of MES design, but to date it remains one of the least interesting. The

main reason is that for advanced multi-energy architecture the design solution space

is so broad that random research would take an extremely long time to explore

it e�ectively. In [23], a case in which a Monte Carlo-based algorithm with Latin

Hypercube Sampling consisting in 10,000 random samples takes 10 hours to get to

results very similar to the ones obtained through evolutionary algorithms in less

than 1 hour.

Partical Swarm Optimization [TL] Particle Swarm Optimization (PSO) is

one of the most used evolutionary algorithms to explore the upper level of MES

design problem. Evolutionary algorithms consist in metaheuristic procedures that

imitate biological mechanism to select and generate the family of the solutions to

investigate [26]. In spite being one of the first to be employed in this field, PSO is

still one of the most promising alternative for TL optimization. When working with

evolutionary algorithm, the main issue is to find a proper tuning of the parameters

(number of particles, iterations, etc.) and to obtain the best trade-o� between:

1. Controlling the maximum computational time for the optimal sizing;

2. Getting su�ciently close to the global optimum of the problem.
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Even if tuning methodologies are present in literature [28], defining a generalized

approach is still an open challenge.

Evolutionary algorithms are stochastic methods and their exploration of the

solution space may vary significantly even starting from the same population. One

of the main advantage of PSO is that it tends to guarantee a good exploration of

the solution space without going too far from the global optimum point [23], [29].

The price is a relatively long convergence time, which inevitably results in a very

large number of operation simulation. If the operation problem is complex and

requires more than few tenths of a second to be solved (e.g. high number of units,

sophisticated rolling-horizon control strategies) the convergence time will probably

result unacceptable.

Genetic Algorithms [TL] Genetic Algorithms (GA) have been recently intro-

duced as innovative solution space exploration method for two-layer MES design

optimization. GA are evolutionary algorithms as PSO, but recently they have

attracted a lot of attention thanks to their ability to quickly improve the objec-

tive function, achieving convergence in a very short time [30]. Nonetheless, GA

algorithm are often characterised by very undesired behaviour: after reaching an

interesting area of the solution space very quickly, they get stuck on that without

guaranteeing a good exploration of the problem. As a consequence, the proposed

solution may very a lot from run to run (even starting from the same population)

and is often far from the global optimum of the problem [23]. This is why many

researchers are still sceptical about their actual usefulness.

TL methods have for many years been the only way to achieve su�ciently

robust results for the design of multi-energy systems, in particular in the field

of multi-energy system. One of the main reason is that, since in TL algorithms

design solution search and UC optimization are de-coupled, once a design solution is

found it is possible to directly simulate the operation strategy that will be actually

implemented on field [31]. This allows to obtain a good coherence between the
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simulation results and the actual performance on field.

OS algorithm are based on models where design variables are related to operation

variables and simultaneously optimized in a single problem. The optimization solver

sees the whole simulation period and finds the best operation strategy as if it was

possible to precisely predict the load behaviours and the RES production for the

entire time horizon of the optimization. This is generally called predictive design

and is the reason why OS approaches su�er for the modelling issue reported in

sec. 1.1 as "Practicability of embedded optimal operation strategy". Nevertheless,

in recent years predictive design has become a need more than a burden, since it

is the only way properly design systems with long-term memory e�ects, such as

seasonal energy storage. Di�erent strategies have been studied to deal with the

stochastic nature of the problem [32] and sophisticated control algorithm have been

developed to integrate the optimal operation strategy obtained through predictive

solutions in on-field Energy Management Systems (EMS) [20]. While many TL

methods are implementing predictive optimization in the inner loop as well, OS

methods are attracting more and more attention, in particular for their capability

of always ensuring the globality of the optimum they find.

Linear Programming [OS] Linear Programming (LP) is surely the simplest

way to perform a one-shot design optimization of a MES [33]. Unfortunately, it only

admits purely linear equations containing continuous variables in the model. The

impossibility to model integer and binary variables does not allow to describe in

detail both the operation dynamics of the system and the discreteness of the design

catalogue. Moreover, also non-linear input-output relations need to be modelled

with very simplified linear fitting. LP cannot be applied to solve detailed design

problems, with broad catalogues of hourly simulation of unit commitment. Yet, the

main advantage is surely related to the extremely low computational time required

for the optimization. They are mainly applied to obtain qualitative information or

to solve optimization problem for which all the other OS methods would require an

excessive amount of time (e.g. multi-year design optimization).
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Mixed-Integer Linear Programming [OS] When speaking of predictive de-

sign of MES and microgrids, Mixed-Integer Linear Programming (MILP) is without

doubts the reference optimization approach. Thanks to the adoption of integer and

binary variables in the model it allows to precisely describe the on-o� logic of the UC.

Non-linear equations of typical MES units can be approximated through piece-wise

relations using binary variables without impacting the quality of the results [34].

Catalogue-based design can be properly model using binary investment variables

[35]. MILP optimization ensures global optimality while modelling the behaviour

of the system in detail, and it is nowadays one of the most promising approach

to MES design problems. The non-negligible drawback of MILP is its numerical

complexity. In fact, integer programming is NP-complete, which essentially means

that its computational time tends to explode with increasing number of discrete

variables. In particular, since the number of operation binary variables depends on

the time horizon and time step of the problem, when increasing the time horizon of

unit commitment (from some representative days to entire weeks or months) the

solver may struggle in finding the optimal solution in an acceptable amount of time.

This is why some researchers nowadays are focused on clustering techniques to

limit the time horizon without compromising its representativity [36]. Reducing the

computational complexity of MILP algorithms is still an open challenge addressed

by many researchers.

Mixed-Integer Non-linear Programming [OS] Mixed-Integer Non-linear

Programming (MINLP) methods come with all the advantages of MILP plus

the possibility of modelling also non-linear relations. It is worth to say that the vast

majority of MES non-linear modelling relations can be easily linearised without

compromising the accuracy of the results. Yet, there are some specific cases in which

strongly non-linear phenomenon need to be considered for a detailed description

of the system, such as power electronic relations [37]. Of course, the solution of

complex MES design problems with MINLP requires a tremendous computational

power and time, so non-linear programming is generally avoided unless strictly

necessary.



Chapter 2

MILP optimization and MES

design

2.1 MILP optimization: general concepts and

software implementation

In this section we will provide some general insights about MILP optimization,

including both theoretical concepts and practical considerations concerning its

numerical implementation in complex real-world MES design problems.

2.1.1 Introduction to the Branch and Bound algorithm

A Mixed-Integer Linear Programming problem (or MILP problem) is a linear

optimization problem containing both discrete and continuous variables. The

possibility to deal with integer and binary variables makes MILP optimization a

very versatile tool nowadays adopted solve a wide number of real world problems in

the fields of finance [38], logistics [39], production planning [40], chemical engineering

[41], control engineering [42], energy engineering [43] and many others. The most

15
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compact way to express a generic MILP problem is its canonical form:

min/max f = cT x + dT y

subjected to Ax + By Æ b

x Ø 0, x œ Rn

y œ Zm

(2.1)

where x œ Rn is a vector of n continuous variables, y œ Zm is a vector of m

integer variables, c œ Rn is a vector containing all the n objective coe�cients of the

continuous variables x, d œ Rm is a vector containing all the q objective coe�cients

of the integer variables y, b œ Rr is a vector of r constant terms, A œ Rr ◊ Rn

and B œ Rr ◊ Rm are the so called constraint matrices containing the r ◊ n and

r ◊ m coe�cients multiplying the continuous and integer variables appearing in

each one of the r linear constraints defining the problem. It is worth noting that

both the objective function f = cT x + dT y and the set of r constraints Ax + By Æ b

are expressed as linear combinations of the continuous and integer variables x and y.

Unfortunately, despite their simplicity of representation, MILP problems are very

di�cult to solve due to the combinatorial nature of the domain of y variables. In

fact, most solution algorithms for MILP problems are based on enumerative tech-

niques whose computational complexity increases exponentially with the number

of discrete variables [44]. To have an idea of the exponential complexity of these

kind of techniques we can refer to the simplest enumeration technique possible,

consisting in an exhaustive search of the discrete solution space where a linear-

programming problem containing all and only the x variables of the original MILP

is solved by means of a traditional simplex method for each possible combination

of the y variables. This trivial solution strategy is so ine�cient that, even by

assuming a solving time of 10≠4s for each LP subproblem, it would take more than

248 · 10≠4s = 892, 55 years to solve a MILP problem with 48 binary variables (e.g.

a hourly unit commitment problem of a single unit on a 2-day time horizon). As a

consequence, many advanced algorithms have been developed in literature aiming

at reducing the computational time required to solve an instance of a MILP problem.
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Brief description of the Branch and Bound scheme

The most widely adopted of these methods is by far the Branch and Bound

(B&B) algorithm, introduced in 1960 by Land and Doig [45] and nowadays used as

a reference algorithm by all commercial solvers [46]. In the following we will refer

to a minimization problem without loss of generality. The basic idea behind the

B&B algorithm is to adopt a search strategy based on a binary enumeration tree in

which each node represents a LP problem characterized by a unique set of linear

constraints. More in detail, a full relaxation of the MILP problem (that is, a LP

version of the problem in which all the y variables are treated as continuous ones)

is initially solved in the root node. Then, the enumeration procedure is started by

taking a variable yi assuming a fractional value yú
i

and by defining two new distinct

LPs (the child nodes) only di�ering from their parent node due to the constraints

yi Ø Áyú
i
Ë (2.2)

and

yi Æ Âyú
i
Ê (2.3)

respectively. Of course, if the variable yi is supposed to be binary, the branching of

the parent node is simply done by putting yi = 0 and yi = 1. This procedure is

repeated recursively, selecting a di�erent branching variable at each node among

the ones contained in the y vector. In this way, a complete enumeration of the

discrete solution space is possible by properly tightening the continuous space with

constraints like those reported above (we talk about implicit enumeration). A

graphical example summarizing the branching procedure of a B&B algorithm is

reported in figure 2.1. The root node 0 becomes the parent node of 1 and 2 after

branching on the integer variable y1. 5 and 6 are child nodes of 4, from which are

derived after branching of the binary variable y3.

It is clear that branching alone is just a particular enumeration technique. The

real advantage of the B&B method over an exhaustive enumeration method lies

instead in the bounding procedure which, combined with node fathoming, allows

to exploit the convexity of the linear problem to reduce the number of explored
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Figure 2.1: The branching procedure of the B&B algorithm

nodes on the enumeration tree. When, during the branching process, all the y

variables of an LP solution in certain node take integer values, then a feasible

solution of the original MILP problem is found. Such a solution is called incumbent

and the value of the associated objective function represents an useful upper bound

for the objective function of the original MILP problem. In each moment of the

optimization process, the lowest among all the upper bounds found during the

search is known as the cuto� value. A convenient lower bound is also available

in each instant by simply taking the highest objective function value among all

the feasible nodes explored in the search tree. This value is also known as the

best bound. While the best bound is only used to tighten the solution space of

the various LP subproblems, the cuto� value can be repeatedly compared with

the value of the objective function of each explored node to test its sub-optimality.

If the objective value of a certain node is higher than the cuto� value, then we

conclude that any further branching would lead to child nodes with a worse value

of f . Hence, the node is fathomed and the corresponding tree branch pruned. The

same is done if the node is infeasible (that is, if the set of linear constraints that

define it make the associated LP problem infeasible) or integer feasible (that is, if

all the y variables have taken integer values so that any further branching is useless).

The B&B algorithm terminates when all the unfathomed nodes of the enumeration



2.1. MILP optimization: general concepts and software implementation19

tree are explored. At this point, being the B&B an implicit enumeration algorithm

(but still an enumeration algorithm), we are sure that the cuto� value coincides

with the global minimum value of f for the MILP problem under consideration.

Hence, we can state that the B&B algorithm ensures global optimality. Another

interesting feature of the B&B algorithm is that, being both an upper and a lower

bound available at each node, it is possible to always estimate the maximum relative

error that we would accept by taking the best incumbent as the optimal solution of

the problem. Such a parameter is called the relative gap, and is defined as the ratio

of the di�erence between the cuto� value and the best bound and the cuto� value.

Advanced Branch and Bound techniques

By increasing the number of pruning opportunities, or by pruning at a higher

level of the enumeration tree, it is possible to significantly reduce the number of

nodes explored in a B&B instance. To this end, many advanced Branch and Bound

techniques have been developed over the years to reduce the computational times

without compromising the global optimality of the solution found by the algorithm.

A detailed and exhaustive treatment of such techniques is out of the scope of this

work. Nevertheless, being the novel algorithm presentend in Chapter 3 based on

some of these advanced techniques, an introduction of some selected basic concepts

becomes necessary.

Cutting planes A cutting plane (or simply a cut) is an inequality constraint that

tighthens the solution space of the relaxed linear problem without cutting out any

possible discrete solution and that is not included in the initial set of constraints

defining the MILP problem. If a cut also excludes discrete solutions, then it is a

special type of cut called integer cut. These additional constraints can be derived

in various ways. For instance, they can be generated before the beginning of the

branching procedure by directly manipulating the initial set of constraints or during

the search algorithm by solving specific instances at each node. In general, as evident

in figure 2.2, the tightened solution space generated by a cutting plane always

contains the discrete solution space of the original MILP problem (also known as
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Figure 2.2: E�ect of the introduction of a cutting plane on the tightness of the relaxed

solution space

convex hull), thus keeping the possibility to achieve a global optimum. Cutting

plane generation is an extensive research area in operations research [47], and is so

e�ective in tightening the relaxation of the solution space that, already in 1958 (two

years before the pubblication of the B&B algorithm), R. Gomory developed an early

algorithm for the solution of MILP problems completely based on recursive cut

generation [48], today known as the Cutting Plane method. Nevertheless, the most

common implementation of cutting planes in modern MILP solvers is an integration

with the traditional B&B scheme also known as Branch and Cut algorithm [49] [50].

According to this scheme, cuts are continuously generated during the exploration

of the search tree to reduce the number of branching operations by cutting out

fractional solutions after tightening the relaxed solution space of the nodes.

Heuristics A MILP heuristic is a technique aiming at generating an integer

feasible solution in a short time. Heuristic techniques don’t guarantee any optimality

by themselves but, if integrated in a B&B algorithm, they may significantly speed

up the convergence time by promoting the generation of good cuto� values without

conducting all the necessary branching. Of course, this only happens if the time

saved due to ligther branching is higher than the additional time spent to solve the

set of heuristics (which, as reported in [51], is typically the case). A very simple but

illustrative example is the so called rounding heuristic [52], which basically consists

in converting the fractional solution of a node in an integer one by rounding all the

fractional values. The direction of the rounding procedure (upward or downward)
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for each variable is decided so that all the involved constraints are still respected.

Decomposition methods A decomposition method consists in partitioning the

original MILP problem into smaller MILP or LP problems that are easier to solve.

In this way, the original enumeration tree is broken down into several lighter trees

that can be possibly discarded all at once by relying on information not available

during conventional branching of the original problem. Decomposition methods

can be of di�erent types (e.g. column generation, row generation) and, unlike

heuristic methods, they can only be applied to very specific kind of problems

characterized by well defined structures. Famous MILP decomposition methods are

the Benders decomposition [54] (also implented in many commercial solvers [53])

and the Dantzig-Wolfe decomposition [55].

For the sake of completeness, after having mentioned alternative approaches to

the B&B algorithm for solving MILP problems (e.g. the Cutting Plane method),

it is worth mentioning the paper by Raman and Grossman [56], where a Logic-

Based method is applied to solve MILP problems pertaining to the field of chemical

engineering.

2.1.2 MILP solvers and modeling environments

The numerical solution of a MILP instance can be found by relying on a number

commercial or open MILP solvers like CPLEX [57], Gurobi [58], BARON [59],

Mosek [60], LINDO [61] (commercial), GLPK [62] and LP_solve [63], BLIS [64],

CBC [65], MINTO [66], SCIP [67], SYMPHONY [68] (open). All these softwares

take as input a numerical representation of the canonical form reported in eq. (2.1)

and provide as output the value of the objective function, together with a solution

vector in which the optimal value of each variable of the problem is listed in the

corresponding position. As an example, the lines of code required to run a MILP

instance in the CPLEX Python API are:

prob = cplex.Cplex()

prob.objective.set_sense(prob.objective.sense.minimize)

prob.linear_constraints.add(rhs=b, senses=s)
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prob.variables.add(obj=f, lb=l, ub=u, types=c)

prob.linear_constraints.set_coefficients(zip(rows, cols, vals))

prob.solve()

where b is a 1 ◊ r list containing the r constant terms appearing in the right-hand

side of the linear constraints, f is a 1 ◊ (n + m) list containing the objective coe�-

cients appearing in vectors c and d, l and u are two 1 ◊ (m + n) lists containing

the lower and upper bounds for each variable of the problem, c is a 1 ◊ (n + m)

string in which each character represents the typology of the corresponding variable

(real, integer or binary), while each i-th element of the tuple (rows[i], cols[i],

vals[i]) individuates the coe�cient vals[i] of the variable cols[i] in the con-

straint rows[i] of the A matrix.

The canonical form is undoubtedly the most compact and e�cient way to represent

a generic MILP problem, which makes it the default input logic by most solvers

on the market. Nevertheless, such representation is not informative at all, since

it is extremely unpractical to extract any information about the mathematical

problem from which it is generated. The formulation of a MILP problem is therefore

distinguished from its implementation in a solver. The first is tipycally done by

following an algebraic description written in a set-oriented notation in which each

variable may be indexed on one or more sets. Similarly, the constraints that bind

these variables together (as well as the objective function) are expressed according

to the so-called parameters of the model, which are also indexed on appropriate

sets defined in advance. The basic blocks of a generic algebraic formulation of a

MILP problem are then: (i) sets, (ii) parameters, (iii) variables, (iv) constraints, (v)

objective function, as clearly seen in the following illustrative case study taken from

[69], which also shows the set-oriented indexing logic of the problem’s variables and

parameters:

Sets

P := {Seattle, San Diego} Plants

M := {New-York, Chicago, Topeka} Markets
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Parameters

ai := supply of commodity of plant i ’i œ P

bj := demand of commodity at market j ’j œ M

cij := shipping cost per unit shipment between plant i and market j ’i œ P, j œ M

Variables

x̂ij := amount of commodity to ship from plant i to market j ’i œ P, j œ M

Constraints

ÿ

j

x̂ij Æ ai ’i œ P

ÿ

i

x̂ij Ø bj ’j œ M

Objective

minimize f =
ÿ

i

ÿ

j

cij x̂ij

By using the numeric data reported in [69] for the parameters ai, bj and cij, the

canonical form of the above problems writes:

min
5
2.5 1.7 1.8 2.5 1.8 1.4

6

S

WWWWWWWWWWWWWWWU

x13

x14

x15

x23

x24

x25

T

XXXXXXXXXXXXXXXV

subjected to

S

WWWWWWWWWWWWU

1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

T

XXXXXXXXXXXXV

S

WWWWWWWWWWWWWWWU

x13

x14

x15

x23

x24

x25

T

XXXXXXXXXXXXXXXV

Æ

S

WWWWWWWWWWWWU

350

600

325

300

275

T

XXXXXXXXXXXXV

xij Ø 0, xij œ R ’i œ P, j œ M

(2.4)

It is apparent that, for problems even slightly more complex than the one reported

above, the size of the constraint matrix A (whose columns and rows represent the
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variables and the constraints, respectively) may explode, making the conversion from

the algebraic form to the canonical form impossible to perform by hand. This is why

such task is typically automatically run by a class of dedicated software programs

also known as MILP modeling environments. They take as input a formulation of

the problem as similar as possible to the algebraic form and, subsequently, convert

it into the canonical form accepted by the low level solver. Some widely adopted

MILP modeling environments are: GAMS [70], AMPL [71], PYOMO [72], YALMIP

[73], JuMP [74], PuLP [75], ZIMPL [76], CVX [77], CVXPY [78], TOMLAB [79].

Almost all the above mentioned environments are based on a set-oriented synthax

aiming at closely emulating the algebraic formulation. For instance, the GAMS

formulation of the problem example reported above is the following:

Sets

i canning plants / Seattle, San-Diego /

j markets / New-York, Chicago, Topeka / ;

Parameters

a(i) capacity of plant i in cases

/ Seattle 350

San-Diego 600 /

b(j) demand at market j in cases

/ New-York 325

Chicago 300

Topeka 275 / ;

Table d(i,j) distance in thousands of miles

New-York Chicago Topeka

Seattle 2.5 1.7 1.8

San-Diego 2.5 1.8 1.4 ;

Scalar f freight in dollars per case per thousand miles /90/ ;

Parameter

c(i,j) transport cost in thousands of dollars per case ;

c(i,j) = f * d(i,j) / 1000 ;

Variables

x(i,j) shipment quantities in cases

f total transportation costs in thousands of dollars ;

Positive variables x ;
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Equations

cost define objective function

supply(i) observe supply limit at plant i

demand(j) satisfy demand at market j ;

cost .. f =e= sum((i,j), c(i,j)*x(i,j)) ;

supply(i) .. sum(j, x(i,j)) =l= a(i) ;

demand(j) .. sum(i, x(i,j)) =g= b(j) ;

Model transport /all/ ;

Solve transport using LP minimizing f ;

A peculiar exception among MILP modeling environments is "YALMIP: A

toolbox for modeling and optimization in MATLAB" [80]. In fact, unlike other

well-known packages such as Pyomo, AMPL and GAMS, YALMIP does not support

the definition of sets and the consequent indexing of variables and parameters.

This missing functionality represents a big barrier to the use of MATLAB for the

resolution of MILP optimization problems, especially considering that:

- To the best of the authors’ knowledge, there aren’t other open-source alterna-

tives to YALMIP for high-level modeling of MILP problems in MATLAB;

- MATLAB is a programming language widely adopted in the industrial/engi-

neering environment;

- A MILP problem can represent a constitutive element of a "master" MATLAB

code with which it interacts dynamically. Not everyone who needs to solve a

MILP problem (e.g. industrial engineers) has the expertise to develop their

own code in environments other than MATLAB (e.g. in Python through

Pyomo), while data exchange between MATLAB and softwares like GAMS

and AMPL is rather slow and cumbersome.

2.2 POLIMIP: a set-oriented MILP modeling en-

vironment for MATLAB

It has already been underlined how one of the biggest limitations of YALMIP as

a MILP modelling environment is the impossibility to adopt a "GAMS-like" indexed

syntax for the definition of variables and parameters. However, this isn’t the only
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Figure 2.3: General organization and main modules of POLIMIP

limitation that di�erentiates YALMIP from other similar softwares like Pyomo.

YALMIP, in fact, is not compatible with many advanced commercial solver features

such as the definition of branching priorities in the branch and bound algorithm or

the use of callback functions during the solver search. Depending on the particular

functionality, these limitations may be attributable to two distinct reasons: (i) a

lack of compatibility between YALMIP and the MATLAB API of the low level

solver, (ii) the absence of the advanced functionality in the MATLAB API of the

low level solver.

"POLIMIP: a set-oriented MILP modeling environment for MATLAB" is a novel

modeling toolbox developed to overcome the three main limits of YALMIP in mod-

eling and solving MILP problems in MATLAB, namely: (i) absence of a set-oriented

synthax, (ii) absence of full compatibility with the MATLAB API of the MILP

solver and (iii) absence of advanced functionalities in the MATLAB API of the

MILP solver.

2.2.1 Problem I: absence of a set-oriented synthax.

A comparison between the YALMIP and AMPL synthaxes in defining a real

variable xij ’i œ S1, j œ S2 with n(S1) = 2 and n(S2) = 3 is reported here:

YALMIP
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x = sdpvar(2,3)

AMPL

var x {set1,set2}

From this very simple example, it is already possible to highlight the total absence

of the mathematical concept of "set" in the YALMIP environment, which adopts

a "matrix-oriented style" . Moving to the definition of a parameter pi ’i œ S3

with n(S3) = 4 we notice that in YALMIP we simply rely on the definition of a

MATLAB array, while in AMPL we still keep a set-logic:

YALMIP

p = [1 2 3; 4 5 6]

AMPL

param p {set3}

Finally, examining the constraints formulation, the algebraic description xij <

pij ’i œ S1, j œ S2 becomes:

YALMIP

for i = 1:2

for j = 1:3

for k = 1:2

Constraints = [ Constraints, "x(i,j) <= p(i,k)"]:

end

end

end

AMPL

subject to constraint {i in set1, j in set2, k in set3}: x[i,j] <= p[i,k]

The previous examples suggests us to model mathematical sets in MATLAB as row

arrays of length equal to their cardinality, that we will call set-arrays. Apparently,

in order to allow for set operations as set union and intersection, each element

of the array must indicate one and only one of the elements of the associated

mathematical set, hence being its one-to-one image. For this purpose, each element

of each set-array must be unique (that is, it cannot be present in other set-arrays of
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the same MILP problem). The most elegant and immediate way to implement this

feature is through a one-to-one correspondence of the elements of each set-array

with a subset of the natural numbers. More formally, the generic set-array with N

discrete elements is defined in MATLAB as:

set = i:j

where i and j are two natural numbers (with N = i - j + 1) belonging exclusively

to the set-array they are defining. With reference to the above example (opting a

mapping starting from 1 without "holes") we have then:

set1 = 1:2

set2 = 3:5

set3 = 6:7

This logic is particularly convenient, as it allows each image in a set-array to be

directly used as an index of the set element it represents. In practical terms, the

image relative to the third element of set2 (that is, 5) is obtainable as set2(3),

and this formal writing can be extended to represent also the associated index.

Following this logic, the element of the parameter p relative to the first element

of set2 and to the second element of set3 will be characterized by the writing

p(set2(1),set3(2)), while the exmaple of constraint reported above becomes:

for i = set1

for j = set2

for k = set3

Constraints = [ Constraints, "x(i,j) <= p(i,k)"]:

end

end

end

which closely resembles the algebraic notation. The price to pay for the elegance of

such a notation lies in the sparsity of the matrix p, which will contain zeros in the

positions from (1,1) to (2,7). The same applies to the sdpvar variables.

E�ciency in numerical representation of sparse matrices and vectors is a key

requirement for MILP modeling softwares that implement the set-array indexing
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logic described above. In fact, in the presence of an ine�cient numerical representa-

tion, such indexing logic could be incompatible with MILP problems characterized

by a high number of variables and/or parameters due to RAM memory saturation.

As an illustrative example, let’s consider a problem consisting of four sets containing

3000 elements each:

set1 = 1:3000

set2 = 3001:6000

set3 = 6001:9000

set4 = 9001:12000

Let’s then consider two parameters p1 and p2 defined on set1 and set2 and on

set1 and set4, respectively. These parameters have the same number of elements

(i.e. 9000000) but, due to the indexing logic adopted, the p1 array has a size of

6000 ◊ 6000 and memory occupation of 288Mb, while the p2 parameter has a size

of 12000 ◊ 12000 and a memory occupation of 1.15Gb of memory (4◊). Moreover,

the ratio between these two memory sizes increases quadratically with the number

of sets on which p1 and p2 are indexed. It follows that, considering problems with

larger sets and/or with multiple variables/parameters (possibly indexed on more

than two sets), this ine�ciency in memory usage, as well as negatively a�ecting

computational performance, may lead to the numerical unrepresentability of the

problem. To relieve this issue, the MATLAB sparse function allows to e�ciently

define sparse vectors and 2D matrices by significantly cutting the memory over-

head due to the presence of zero elements. For instance, with reference to the

above example, the commands p1 = sparse(p1) and p2 = sparse(p2) reduce

the memory size of both p1 and p2 to 144Mb from 288Mb and 1.15Gb, respectively.

However, this built-in function cannot be extended to N-dimensional matrices with

N > 2. This limit is unacceptable for our purposes, as it does not allow to define

sparse parameters indexed on more than two sets (that are those objects on which

the representation overhead introduced by the proposed indexing scheme impacts

most). The same applies to variables (i.e. YALMIP’s sdpvar objects), as openly

stated by its developer Johan Lofberg [81]. It is then reasonable to conclude that

the reason behind the absence of a set-oriented indexing logic in YALMIP lies

in the limitations of the MATLAB function sparse, which can only be applied
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to one-dimensional and two-dimensional matrices, hence not allowing an e�cient

representation of variables and parameters indexed on more than two sets.

This initial barrier can be overcome thanks to the ndSparse function by M. Jakob-

son and M. Volker [82], which is basically an extension of the built-in sparse

function that also applies to multi-dimensional arrays. In addition to directly

solving the problem of N-dimensional sparse parameters, this function was also used

to develop a modified version of YALMIP containing the new function sparsevar,

which introduced the possibility to define multi-dimensional sparse sdpvar objects.

The synthax of the function call is illustrated in the following example, in which a

sparse object test_var containing two sdpvar objects (one in position (20, 30, 40)

and another in position (200, 300, 400)) is defined:

test_var = sparsevar([20, 30, 40; 200, 300, 400],ndspvar(1,2))

The new custom version of YALMIP (embedding sparsevar for the definition

of N-dimensional sparse variables and ndSparse for the definition of N-dimensional

sparse double arrays) finally opened the way to an e�cient implementation of the

set-oriented modeling synthax built around the concept of set-array previously

introduced. This implementation was done by developing a dedicated MATLAB

toolbox in which the four core elements are represented by the functions dset,

dpar, dvar and constr1 for the GAMS-like definition of sets, parameters, vari-

ables and constraints, respectively. To easily compare the synthax of this novel

set-oriented modeling environment with the algebraic and GAMS formulations

previously reported, we still refer to the simple transport problem introduced in

section ??:

sets.m

% Definition of set "I" with 2 elements

dset(‘I’,2)

% Definition of set "J" with 3 elements

dset(‘J’,3)

1A detailed description of these functions is available in the POLIMIP Quick User Guide

reported in ??



2.2. POLIMIP: a set-oriented MILP modeling environment for
MATLAB 31

data.m

% Data for parameter ‘a’

a = [350, 600];

% Data for parameter ‘b’

b = [325, 300, 275];

% Data for parameter ‘c’

d = [2.5, 1.7, 1.8; 2.5, 1.8, 1.4];

f = 90;

c = f * d / 1000;

parameters_v1.m

% Definition of parameter ‘a’

dpar(‘a’,"I")

% Definition of parameter ‘ b’

dpar(‘ b’,"J")

% Definition of parameter ‘ c’

dpar(‘c’,"I","J")

parameters_v2.m

% Definition of parameter ‘a’

for i = s.I

dpar(‘a’,i)

end

% Definition of parameter ‘b’

for j = s.J

dpar(‘b’,j)

end

% Definition of parameter ‘c’

for i = s.I

for j = s.J

dpar(‘c’,i,j)

end

end

variables_v1.m
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% Definition of variable x

dvar(‘x’,‘real’,"I","J")

variables_v2.m

% Definition of variable x

for i = s.I

for j = s.J

dvar(‘x’,‘real’,i,j)

end

end

objective.m

% Definition of the objective function

Objective = sum(sum(p.c(s.I,s.J).*v.x(s.I,s.J)));

constraints.m

% Definition of the first constraint

for i = s.I

constr(‘sum(v.x(i,s.J)) <= p.a(i)’)

end

% Definition of the second constraint

for j = s.J

constr(‘sum(v.x(s.I,j)) >= p.b(j)’)

end

where the scripts ending with v1.m and v2.m indicate alternative notations for

the definition of the problem variables and parameters. A strong resemblance

between the algebraic description of the problem and the POLIMIP programming

synthax can be noticed. We hope that this will help make optimization modeling

in MATLAB more accessible to academics and professionals from many di�erent

fields.

2.2.2 Problem II: incompatibilities between the modelling

environment and the MATLAB API of the MILP

solver.

For many classes of MILP problems, it is possible to significantly speed up the

solver time by properly tuning the B&B search algorithm based on our categorical
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knowledge of the problem. As an example, CPLEX gives the possibility to freely

choose which integer/binary variables to branch first during the binary tree search.

As reported in [83], this may lead to better performances in problems characterised

by an internal hierarchy between integer variables: "Problems that use integer

variables to represent di�erent types of decisions should assign higher priority to

those that must be decided first. For example, if some variables in a model activate

processes, and others use those activated processes, then the first group of variables

should be assigned higher priority than the second group. In that way, you can

use priority to achieve better solutions". This is the exact situation encountered

in typical MES design problems: by fixing integer and binary design variables we

activate processes involving integer and binary operation variables. Unfortunately,

at the moment of writing, YALMIP still doesn’t allow to set branching priorities for

sdpvar objects, even though the MATLAB API of CPLEX does accept this kind of

annotation [84]. There is therefore an incompatibility issue between the modeling

environment (YALMIP) and the solver (CPLEX MATLAB API). In POLIMIP

we have introduced this functionality by suitably modifying the YALMIP-CPLEX

interface code and by including some dedicated functions for variable annotation

(such as setpriority) in the proposed modeling toolbox.

It has to be noticed that the case of branching priority orders is just one of

several examples of incompatibility between the high-level modeling software and

the low-level solver API. However, the implementation described above can be

easily repeated for every tuning parameter of each supported solver, thus allowing a

full compatibility between POLIMIP and the functionalities of the MATLAB API

of most commercial MILP solvers on the market.

2.2.3 Problem III: absence of advanced functionalities in

the MATLAB API of the MILP solver.

Most commercial solvers are distributed in the form of APIs for di�erent coding

languages. For instance, CPLEX and Gurobi APIs are available for C, C++, Java,

.NET, Python, R and MATLAB. Nonetheless, not all solver functionalities are
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Figure 2.4: Multi-language architecture adopted to implement advanced solver func-

tionalities not supported by the MATLAB API of the solver

available in each API. For instance, as reported in [85], the MATLAB API of

CPLEX does not support control callbacks2, and the same applies to Gurobi. The

impossibility to use control callbacks in the MATLAB environment introduces a

significant limitation to the possibility of implementing advanced solution strategies

based on modifications of the default branching logic of the solver. However this

time, unlike what seen before with reference to branching priority orders, the

incompatibility is at the solver level and, therefore, it cannot be solved by sim-

ply upgrading the code of the modeling environment (in our specific case, YALMIP).

The only way to overcome this restriction is by means of a multi-language ar-

chitecture characterised by an interface module between the modelling environment

(written in MATLAB) and a fully-compatible solver API (written in Python, C,

C++, .NET or in Java). The proposed architecture is reported graphically in figure

2.4.

The problem data are directly provided by the user to MATLAB through dedi-

cated scripts involving the POLIMIP functions dset, dvar, dpar and constr (as

reported in a previous illustrative example). Other possible inputs are the solver

options and the variable annotations for setting the branching priority orders. Once

2A control callback is a special function that allow user code to be executed regularly during

the tree search.
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all the raw information required to solve the optimization problem is stored in the

MATLAB working environment, the POLIMP toolbox starts the generation of the

canonical form of the problem, which is eventually saved on the current working

folder as a list of solver-ready .csv files. These files are then passed to a dedicated

program written in one of the coding languages mentioned above, whose task is

to call the solver API with full compatibility and eventually find the solution to

the problem. The latter is thus stored in a further .csv file that is immediately

recovered in MATLAB by the POLIMIP toolbox, hence allowing for a convenient

post-processing of the results.

The API Python was preferred over the other available coding languages due

to its higher understandability and adoption. Moreover, since .py modules can be

directly called and executed in the MATLAB environment [86], this choice opens to

the possibility of implementing a single-platform and integrated toolbox, in which

the flow of information between MATLAB and Python is flawlessly managed by

tools such as the MATLAB Engine API for Python [87]. In this way, the decoupling

between the modeling environment and the solver program is completely transparent

to the user, who then only interacts with the multi-language architecture through

traditional MATLAB scripts.

2.3 Full-MILP algorithms for the optimal design

of MES

As already reported in section 1.2.1, MILP algorithms are just one of many

possible approaches to MES design optimization. Their undiscussed advantage

lies in the ability to find a global optimum, which is a very important feature

for particularly complex problems (such as MES design and operation problems)

whose solution space is characterised by a very high number of local optima. On

the other hand, when dealing with full-MILP algorithms, the price to be paid

is a significant computational complexity linked to the exponential increase of

the potentially explored tree nodes with the number of integer and binary vari-
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ables. To mitigate this issue, a common approach is to perform a sort of hybrid

decomposition of the optimization problem into a design and an operation layer.

In this hybrid architecture, the upper design layer is usually solved by means of

an evolutionary algorithm, while the lower operation level is solved as a MILP

problem with fixed design [88] [31]. This approach aims at lowering the compu-

tational time of the algorithm by renouncing to the global optimality of the solution.

In this long-running challenge between di�erent solution approaches and paradigms,

the theorem proved in [90] paves the way to some interesting observations: "there

is no polynomial time algorithm3 for solving the synthesis problem of decentralized

energy systems unless P = NP4 ". The general validity of this statement (it is true

for any possible algorithm) somehow legitimates the adoption and development of

advanced full-MILP algorithms for the solution of MES design problems by stating

that an exponential increase of the computational time with the problem size should

be expected by non-MILP algorithms as well.

In the following paragraph, a critical review of the state-of-the-art strategies

adopted to reduce the computational complexity of full-MILP algorithms for the

optimization of MES design is carried out to better understand the main advantages

introduced with the novel decomposition method presented in the next chapter.

2.3.1 Complexity reduction strategies for full-MILP MES

design methods

As evident in figure 2.5, the attention of the scientific community towards

full-MILP methods for the design of MES gained relevance in recent years5.
3A polynomial-time algorithm is an algorithm whose execution time is either given by a

polynomial on the size of the input, or can be bounded by such a polynomial.
4The P versus NP problem is a major unsolved problem in computer science. It is one of the

seven Millennium Prize Problems selected by the Clay Mathematics Institute, and it is a widely

spread belief that its solution is P ”= NP [91].
5The research has been conducted on Clarivate Analytics’ Web of Science [92] by comparing the

two entries ((milp OR (mixed integer linear programming) OR (mixed-integer linear programming))
AND ( (energy syst*) OR microgrid OR micro-grid) AND design) and (((energy syst*) OR
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Figure 2.5: Number of papers concerning MILP methods for the design of microgrids

and multi-energy systems vs. number of papers concerning all kinds of

methods for the design of microgrids and multi-energy systems (trend).

One of the main reasons behind this increasing trend is undoubtedly the devel-

opment of advanced solution methods allowing for a reduction of the computational

e�ort required to solve the MILP formulation of the problem, thus allowing an

accurate optimization of complex real-world microgrid and multi-energy systems

in a reasonable solver time. These methods can be divided into four (possibly

overlapping) categories.

1. Model simplification One of the easiest ways to reduce numerical complexity

is by directly acting on one or more of the modelling choices behind the mathemat-

ical description of the energy system, simplifying or even neglecting some of its

variables and/or governing equations. Of course, a simplified mathematical model is

always associated with a less accurate physical description of the system’s features,

hence resulting in a reduced soundness of the objective function. Some model

simplification strategies commonly found in MES design problems are: adoption of

linear performance curves for the generating units (no piecewise approximation)

[93], continuous capacities [95] and absence of dynamic features such as ramp-up

limits, minimum up/down time and start-up/shut-down penalties [94].

microgrid OR micro-grid) AND design).
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2. Time aggregation An exponential increase of the size of the combinatorial

solution space with the number of time steps is observed when binary or integer

operation variables (typically used to model the on/o� logic of the generators) are

introduced in the MILP formulation of the problem. As a direct consequence, the

number of time steps that can be included in the problem is strongly influenced

by the increase in its computational complexity. The modelist is then faced with

the choice of mantaining the initial time horizon by increasing the time-step (time

aggregation) or, alternatively, of reducing the length of the time horizon. Of course,

both choices are not always viable or acceptable. For instance, for energy systems

containing a seasonal storage (e.g. an hydrogen tank coupled with a reversible

PEM fuel cell), an excessive shrinking of the time horizon would lead to a limited

exploitation of the storage element. In such cases, where capturing fast dynamics is

less relevant than considering a su�ciently large time horizon, time aggregation is

the preferred simplifying solution. A typical time-step for MES design problems is

1 hour [20] [96], but time aggregations up to 2 [97] and 4 hours [98] are also found

in literature.

3. Solution space reduction The size of the combinatorial solution space of

a MILP problem actually explored by a branch-and-bound search algorithm can

be significantly reduced by providing an initial upper bound associated with a

sub-optimal integer feasible solution [99]. In this way, all the nodes leading to a

local objective value higher than the initial cuto� value will be pruned due to sub-

optimality, thus reducing the number of explored combinations. In a commercial

MILP software, this can be done by implementing an user-defined heuristic in

the pre-processing phase providing a so called "MIP start" to the solver [100]. As

far as MES are concerned, an easy but e�ective way to find an initial incumbent

is by guessing a reasonably oversized and/or redundant design and by solving

the associated integer operation problem. Regardless of the quality of the design

candidate, this procedure may still lead to better incumbents than the ones found by

the solver during the default root node processing phase, since it relies on problem

information that may seem trivial to the user, but not to a general-purpose solver.
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4. Decomposition methods Decomposition methods are at the same time the

best performing and the less intuitive among the four complexity reduction strategies

presented in this section. In one line, they can be intended as custom branch-and-

bound search strategies exploiting the peculiarities of the problem’s structure to reduce

its combinatorial complexity [101]. This is mainly done by breaking the original

problem into smaller sub-problems that are easier to solve and that eventually

provide integer cuts to reduce the size of the explored portion of the original

search tree. The main price to be paid for this higher e�ectiveness is a marked

problem-dependency. Moreover, since all these methods are based on the iterative

solution of one or more user-defined sub-problems in some specific points of the

branch-and-bound search algorithm, their numerical implementation is quite a hard

task since it necessarily requires an in-depth knowledge and control of the solution

strategy of the numerical solver. The novel decomposition algorithm proposed

in the following chapter aims precisely at mitigating these two main limitations:

(i) by broadening the class of treatable MES problems with respect to previous

methods and (ii) by automatizing the numerical definition and implementation of

their decomposed formulation on a widely adopted commercial solver.





Chapter 3

A novel MILP decomposition

algorithm allowing for mixed

integer and continuous MES

design

As mentioned in sec.1.2 and extensively discussed in sec.2.3, MILP is undeniably

one of the most promising approaches for design optimization of multi-energy

systems since it combines high modelling flexibility with the capability of ensuring

global optimality. The main issue associated to MILP optimal design problems

is the computational time required by the search algorithm. In MILP problems,

numerical complexity increases exponentially with the number of binary and integer

variables due to the expansion of the branch and bound tree (see subsec.2.1.1). In

particular, in MES design the number of operation binary variables depends on

the selected time horizon of the problem. So, when increasing the time horizon

of unit commitment from some representative days to entire weeks or months in

order to enhance the representatively of the solution, the solver may struggle in

finding the optimal solution in an acceptable amount of time. In this chapter, after

a brief review of the current state-of-the-art MILP decomposition algorithms for

MES design, we introduce an innovative general framework that may be applied to

decompose the branch and bound procedure of a MES design problem in order to

41



42
Chapter 3. A novel MILP decomposition algorithm allowing for mixed

integer and continuous MES design

increase computational performance and make the solution of complex multi-period

models viable while mantaining the guarantee of global optimality ensured by a

traditional branch-and-bound scheme.

3.1 An introduction to MILP decomposition of

MES problems: exploiting the internal hier-

archy between design and operation

A generic decomposition method consists in partitioning the original MILP

problem into smaller MILP or LP problems that are easier to solve. In this way,

the original enumeration tree is broken down into several lighter trees that can

be possibly discarded all at once by relying on information not available during

conventional branching of the original problem. The main subproblem is also

called master problem, while the others subproblems solved during the B&B to

restore all the original constraints are also reported as worker problems [103]. As

suggested by the name itself, hierarchical decomposition distinguish between

master problem and worker problems on the basis of an inherent hierarchy between

di�erent integer variables of the model. Very similarly to the case of branching

priorities (see subsec.2.2.2), a high-hierarchy variable is the one that activate the

process that other variables use. There is no clearer hierarchy than that which exists

between the design and operation variables of a MES design problem: by fixing

integer design variable (e.g. the investment decision on a given unit) we activate pro-

cesses involving integer operation variables (e.g. on/o� status variables of that unit).

3.1.1 Implementing branching priority orders in MES prob-

lems by means of an equivalent decomposition method

When applying a hierarchical decomposition the B&B tree of the master problem

is divided between upper level and lower level. The upper level is the part of the

tree that is explored normally branching the high-hierarchy integer variables. The
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lower level is the part of the tree where worker problems are solved separately from

the master. We can define high-hierarchy variables the integer variables that are

branched in the upper level, while we indicate as low-hierarchy variables the integer

variables that are still relaxed when entering the lower level. To better understand

how hierarchical MES decomposition algorithms a�ect the search path of a tra-

ditional branch-and-bound tree we can rely on a simple but illustrative excercise

that consists in implementing the branching priorities for the integer and binary

design variables of a MES problem by means of an equivalent decomposition method.

The behaviour of the resulting B&B algorithm is presented in fig.3.1. The bi-

nary search tree starts exploring the master problem branching only high-hierarchy

variables. We are in the upper level. Going deep into the tree we find a node

where all the high-hierarchy variables are well constrained and assume an integer

value, while low-hierarchy variables are still relaxed. We found an entrance node

to the lower level. In the lower level, the worker problem is solved with fixed val-

ues of the high-hierarchy variables, hence restoring the coherence between the two

levels and providing a solutions respecting all the constraints of the original problem.

To define equivalent decomposition in a formal way, let us first consider the following

mathematical formulation of a generic MES problem:

min f
1
zD, yD, xD, zO, yO, xO

2

subjected to l
1
zD, yD, xD, zO, yO, xO

2
Æ 0

zD œ {0, 1}nz

yD œ Zny

xD œ Rnx

zO œ {0, 1}mz

yO œ Zmy

xO œ Rmx

(3.1)

where f is the cost function (a linear combination of all the problem’s variables), zD,

yD and xD are the vectors containing the nz binary, ny integer and nx continuous
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design variables, while zO, yO and xO are the vectors containing the mz binary,

my integer and mx continuous operation variables defining the problem. Let’s also

consider the following modified version of problem 3.1:

min f
1
zD, yD, xD, zO, yO, xO

2

subjected to l
1
zD, yD, xD, zO, yO, xO

2
Æ 0

zD œ {0, 1}nz

yD œ Zny

xD œ Rnx

zO œ Rmz

yO œ Rmy

xO œ Rmx

(3.2)

By solving this problem (which is nothing more than the original problem but

with a relaxed operation) with a conventional solver, we end up finding an integer

combination (ȳD, z̄D) in correspondence of a so-called entrance node. This new

integer design candidate is then used to define the following worker problem, aiming

at restoring the integrity of the operation variables for the specific integer design

candidate found at the entrance node:

min f
1
zD, yD, xD, zO, yO, xO

2

subjected to l
1
zD, yD, xD, zO, yO, xO

2
Æ 0

zD œ {0, 1}nz

yD œ Zny

xD œ Rnx

zO œ {0, 1}mz

yO œ Zmy

xO œ Rmx

yD = ȳD

zD = z̄D

(3.3)

This problem is solved with a conventional B&B algorithm in which five scenarios

can be encountered after solving the relaxed LP problem at each node:
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1. The LP problem is infeasible: the node is fathomed and the branching

operation is continued;

2. The LP problem is feasible but sub-optimal: the node is fathomed and the

branching operation is continued;

3. The LP problem is feasible and its objective is below the global cuto� value

(see subsec.2.1.1): the branching operation is continued;

4. The LP problem is integer feasible and its objective is below the global cuto�

value: the global cuto� value is updated and the solution of the worker

problem is saved as the new global incumbent;

5. The LP problem is integer feasible and its objective is above the global cuto�

value: the integer solution is rejected due to sub-optimality;

In any case, the algorithm goes back to the upper level (problem 3.2) and starts

again branching the high-hierarchy design variables until a new entrance node (that

is, a new incumbent) is found or a convergence criterion is met, typically a specific

value of the relative gap.

Of course, when speaking of branching priorities the distinctions between upper

level and lower level, master problem and worker problems are purely conceptual.

What happens in reality is a simple B&B search algorithm in which the branching

operations of the low-hierarchy variables start only when all high-hierarchy variables

assume integer/binary values. Nonetheless, what has been presented as a possible

schematization of a prioritized B&B is exactly what happens in a hierarchical decom-

position of a MES optimization problem. Due to the clear hierarchical relationship

between design and operation in MES model, we consider high-hierarchy variables

of a MES design problem all the integer design variables (e.g. investment decisions,

number of units, discrete capacities, etc.). On the other hand, integer operation

variables are considered low-hierarchy variables and are always relaxed in the upper

level. One of the most important characteristics of MES models is that low-hierarchy

variables are typically organized in di�erent independent sub-groups. This occurs



46
Chapter 3. A novel MILP decomposition algorithm allowing for mixed

integer and continuous MES design

Figure 3.1: Branching priorities interpreted as hierarchical decomposition
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thanks to the subdivision of the UC horizon in multiple typical representative time

periods (typical days, weeks, etc.). As we will see, typical periods are determining

in improving the performance of a hierarchical decomposition algorithm.

3.1.2 Critical review of two state-of-the-art hierarchical de-

composition methods for MES design: the Iyer/Gross-

mann and the Yokoyama decompositions

In this section, two highly performing and widely known decomposition ap-

proaches for MES design are critically analyzed to highlight their main limits and

potentialities and to put into perspective the novel decomposition method proposed

in the following section. The two methods here analyzed are those developed by

Iyer and Grossmann1 (1998) [102] and by Yokoyama2 (2015) [104]. Both methods

are based on some restricting assumptions on the problem’s structure that can be

clearly highlighted starting from a direct comparison with the general formulation

reported in eq. (3.1).

The Iyer and Grossmann decomposition

The additional restricting assumptions on the problem structure advanced by

Iyer and Grossmann [102] with respect to the general formulation reported in (3.1)

are the followings:

- There are no integer design variables: ny = 0;

- There are no integer operation variables: my = 0;

- Each binary design variable represents the investment variable of a potential

unit;

- Each binary operation variable represents the on-o� variable of a potential

unit in a specific time-step;
198 times cited at the time of writing.
234 times cited at the time of writing.
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- Each continuous design variable represents the capacity of an associated unit:

nx = nz := n.

The resulting reference formulation is then:

min fD(zD, xD) +
ÿ

fOt(zOt , xOt)

subjected to gt

1
zD, xD, zOt , xOt

2
Æ 0 ’t œ {1, . . . , T}

h
1
zD, xD, zO1 , xO1 , zO2 , xO2 , ..., zOT , xOT

2
Æ 0

zD œ {0, 1}n

xD œ Rn

zOt œ {0, 1}n ’t œ {1, . . . , T}

xOt œ Rn ’t œ {1, . . . , T}

(3.4)

where the problem constraints l have been divided into two main categories: the

uncoupled constraints gt (constraints containing only operation variables indexed on

a single time-step) and the coupling constraints h (constraints containing operation

variables indexed on more than one time-step). It is worth noting that, being f a

linear combination of the problem’s variables, it can always be expressed as a sum

of terms depending on a smaller subset of variables, as done in (3.4).

The decomposition proposed by the authors consists of a master (design) problem

providing a tentative combination z̄D of the binary design variables, which is passed

to a single worker (pseudo-operation) problem with the task of determining the

corresponding feasible values of xD, xO and zO. The design problem (upper level)

is a modified version of the original problem reported in eq. (3.4) in which all the

constraints containing the binary operation variables zOt are eliminated and all the

corresponding objective function coe�cients put equal to zero:
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min fD(zD, xD) +
ÿ

f Õ
Ot

(xOt)

subjected to gÕ
t

1
zD, xD, xOt

2
Æ 0 ’t œ {1, . . . , T}

hÕ
1
zD, xD, xO1 , xO2 , ..., xOT

2
Æ 0

zD œ {0, 1}n

xD œ Rn

xOt œ Rn ’t œ {1, . . . , T}

(3.5)

The pseudo-operation subproblem (lower level) is instead identical to the original

one, but with the binary design variables fixed by the design problem:

min fD(zD, xD) +
ÿ

fOt(zOt , xOt)

subjected to gt

1
zD, xD, zOt , xOt

2
Æ 0 ’t œ {1, . . . , T}

h
1
zD, xD, zO1 , xO1 , zO2 , xO2 , ..., zOT , xOT

2
Æ 0

zD œ {0, 1}n

xD œ Rn

zOt œ {0, 1}n ’t œ {1, . . . , T}

xOt œ Rn ’t œ {1, . . . , T}

zD = z̄D

(3.6)

From an algorithmic standpoint, the implementation of the decomposition is

done by iteratively solving the sequence of design and pseudo-operation problems

and, every time an integer feasible solution is found in the lower level, by adding a

special set of integer and design cuts avoiding the multiple generation of the same

design candidate z̄D and enforcing the coherence between upper and lower level (see

figure 3.2). The algorithm is implemented and tested on a real case-study involving

a CHP plant with a superstructure of more than 20 potential units, outperforming

the computational performance of the traditional branch-and-cut solver of one order

of magnitude.

It is important to point out that, as the authors state in their paper, "the (operation)

problem, however, must be solved simultaneously due to the linking constraints h"

that, in the case study reported in the paper, are used to model the maximum
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up-time of the units due to scheduled maintenance. As we will see in the in the next

paragraph, this limitation is not encountered in the method proposed by Yokoyama

et al. [104], in which the problem structure does not allow any kind of coupling

constraint, hence unlocking the possibility to slice the operation subproblem in

many smaller ones.

The Yokoyama decomposition

The additional restricting assumptions on the problem structure advanced by

Yokoyama et al. [104] with respect to the general formulation reported in (3.1) are

the followings:

- There are no continuous design variables: nx = 0;

- There are no coupling constraints h.

The resulting reference formulation is then:

min fD

1
zD, yD

2
+

ÿ
fOt

1
zOt , yOt , xOt

2

subjected to gt

1
zD, yD, zOt , yOt , xOt

2
Æ 0 ’t œ {1, . . . , T}

zD œ {0, 1}nz

yD œ Zny

zOt œ {0, 1}mz ’t œ {1, . . . , T}

yOt œ Zmy ’t œ {1, . . . , T}

xOt œ Rmx ’t œ {1, . . . , T}

(3.7)

As already anticipated, the strong simplification of discarding both continuous

variables and coupling constraints allowed the authors to divide the single operation

subproblem into a series of T lighter and independent ones. Moreover, the integer

design variables yD are restored in the upper level, allowing the modelling of

discrete equipment capacities. By following a hierarchical logic very similar to that

illustrated in section 3.1.1, the master problem of the decomposed formulation is
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Figure 3.2: The decomposition algorithm by Iyer and Grossmann [102]
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simply obtained from the original problem by relaxing all the operation variables:

min fD

1
zD, yD

2
+

ÿ
fOt

1
zOt , yOt , xOt

2

subjected to gt

1
zD, yD, zOt , yOt , xOt

2
Æ 0 ’t œ {1, . . . , T}

zD œ {0, 1}nz

yD œ Zny

zOt œ {0, 1}mz ’t œ {1, . . . , T}

yOt œ Zmy ’t œ {1, . . . , T}

xOt œ Rmx ’t œ {1, . . . , T}

(3.8)

while the k-th worker problem is defined as:

min fD

1
zD, yD

2
+ fOk

1
zOk

, yOk
, xOk

2

subjected to gk

1
zD, yD, zOk

, yOk
, xOk

2
Æ 0

zD œ {0, 1}nz

yD œ Zny

zOk
œ {0, 1}mz

yOk
œ Zmy

xOk
œ Rmx

zD = z̄D

yD = ȳD

’k œ {1, . . . , T} (3.9)

where (z̄D, ȳD) is the integer design candidate found at the entrance node in the

upper level. It is worth stressing that the possibility to consider only the k-th

constraint gk and objective term fOk
among all the T possible ones in the definition

of each worker problem wouldn’t be possible in presence of a coupling constraint

h or of a coupling variable xD. Nevertheless, by giving up coupling variables and

constraints, the authors opened to a more e�cient definition of the subtrees in the

lower level with respect to the approach by Iyer and Grossmann, by avoiding the

definition of a complete operation subproblem over the whole time horizon.

Moreover, this choice allows to generate an initial set of valid lower bounds for fD

and for all the fOt by solving some preliminary critical problems before starting
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with the actual decomposition algorithm. These additional problems are defined

starting from problem 3.9 by removing the constraints zD = z̄D and yD = ȳD and

by optimizing each single term of the objective function on its own:

min fD

1
zD, yD

2

subjected to gk

1
zD, yD, zOk

, yOk
, xOk

2
Æ 0

zD œ {0, 1}nz

yD œ Zny

zOk
œ {0, 1}mz

yOk
œ Zmy

xOk
œ Rmx

’k œ {1, . . . , T} (3.10)

min fOk

1
zOk

, yOk
, xOk

2

subjected to gk

1
zD, yD, zOk

, yOk
, xOk

2
Æ 0

zD œ {0, 1}nz

yD œ Zny

zOk
œ {0, 1}mz

yOk
œ Zmy

xOk
œ Rmx

’k œ {1, . . . , T} (3.11)

All the T solutions
˜
fCO

Ot
of the critical operation problems 3.11 are stored and used

as valid lower bounds for fOt while, as far as the critical design problems 3.10 are

concerned, only the highest among the T solutions
˜
fCD

D
is stored as a valid lower

bound for fD.

The price to be paid with respect to the decomposition by Iyer and Grossmann

is uncompatibility of the method with MES models characterised by continuous

unit capacities or involving an inherent coupling between operation variables across

di�erent time-steps, such as problems with seasonal storage elements and/or with

generating units a�ected by non-negligible memory e�ects (e.g. ramp-up limits,

minimum down time and maximum up time, start-up and shut-down penalties etc.).
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However, the numerical implementation of the problem is more elegant than that

proposed by Iyer and Grossmann in 1998, mainly due to the significant advance-

ments in the capabilities of commercial solvers in managing a fine tuning of the

search algorithm by means of advanced software functionalities such as the callback

functions3 [105]. Unlike Iyer and Grossmann, who simply re-start the same MILP

problem by iteratively adding integer cuts after each subproblem in order to exclude

all the integer design candidates already explored from being generated again,

Yokoyama and al. take advantage of the legacy callbacks of the CPLEX solver to

reject all the incumbents found in the upper level by problem 3.8. In this way, the

upper bound of the master problem is never actually updated in CPLEX and the

search procedure in the upper level never interrupted. Of course, keeping track of

the actual cuto� value becomes a task of the software program written to implement

the decomposition algorithm.

A more detailed description of the decomposition algorithm proposed in [104]

(see fig. 3.3) is reported below (CPLEX is used as the reference solver):

1. The critical design and operation problems are solved to obtain the lower

bounds
˜
fCD

D
and

˜
fCO

Ot
;

2. The cuto� value f̃ is initialized to a su�ciently high value. The order in

which the T worker problems are solved in the lower level (here defined the

worker problems’ queue) is arbitrarily set and the B&B binary tree search of

problem 3.8 is started;

3. At each node of the upper level, the user cut callback [110] is called and the

following lower bound is built starting from the information coming from

both the critical problems and the LP relaxation of the master problem at

the current node:

˜
f = max

A

˜
f ú

D
,
˜
fCD

D
,

B

+
ÿ

max
A

˜
f ú

Ot
,
˜
fCO

Ot

B

(3.12)

3From the IBM website: "callbacks allow you to monitor closely and to guide the behavior of

CPLEX optimizers. In particular, callbacks allow user code to be executed regularly during an

optimization or during a tuning session."
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where
˜
f ú

D
and

˜
f ú

Ot
are the value of fD and fOt from the solution of the LP

relaxation at the current node. This lower bound is compared with the current

cuto� f̃ : if it is higher, then the node is fathomed by adding a suitable local

user cut, otherwise the algorithm exits from the callback and resumes the

B&B search in the upper level;

4. Each time an incumbent4 (z̄D, ȳD) is found in the upper level (that is, each

time an entrance node is reached in the upper tree), it is rejected by means of

the incumbent callback [108]. The lazy constraint callback is called immediately

after, thus entering the lower level;

5. When in the lower level, the objective function associated with the solution

of the LP problem of the entrance node is used together with the solutions of

the critical problems to build a valid lower bound
˜
f for the objective value f

of the original problem:

˜
f = fD(z̄D, ȳD) +

ÿ
max

A

˜
f̄ ú

Ot
,
˜
fCO

Ot

B

(3.13)

where
˜
f̄ ú

Ot
is the value of fOt provided by the LP relaxation of the master

problem at the entrance node. This lower bound is compared with the current

cuto� f̃ : if it is higher, then the lazy constraint callback is exited and the

tree exploration in the upper level resumed, otherwise the solution algorithm

sets up and solves the first worker problem in the queue;

6. After solving each worker problem, the lower bound provided by eq. (3.13) is

updated as follows:

˜
f = fD(z̄D, ȳD) +

ÿ

solved
f̄Ot +

ÿ

unsolved
max

A

˜
f̄ ú

Ot
,
˜
fCO

Ot

B

(3.14)

where the second term is the summation of the solutions f̄Ot of the worker

problems already solved in the current lower level, while the other summation

is the same as in eq. (3.13) but limited to the indexes of the worker problems

still unsolved. This lower bound is compared with the current cuto� f̃ : if it is
4It is worth noting that an incumbent of 3.8 is an integer combination (z̄D, ȳD) of the design

variables. For this reason, this is also called a design candidate.
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higher, then the algorithm immediately exits from the lower level, otherwise

the solution algorithm sets up and solves the next worker problem in the

queue;

7. When all the worker problems in the queue are succesfully solved, then

an integer feasible solution of the original problem has been found. As

a consequence, eq. (3.14) is used to compute the value of the associated

objective function, which is then compared with the current cuto�: if it is

lower, then it is used to update the problem’s cuto� by means of a suitable

lazy constraint, otherwise the algorithm immediately exits the lower level. In

any case, the B&B search in the upper level is resumed from where it left o�.

The above search algorithm stops when the relative gap falls below the user-defined

value5. In order to provide a comprehensive overview of the method reported in

[104], we still need to specify how the queue of worker problems is updated during

the search. In brief, this is done by computing the di�erence f̄Ot ≠ max
1

˜
f̄ ú

Ot
,
˜
fCO

Ot

2

after solving each t-th worker problem and by storing it in a list �t dedicated to

that specific subproblem. Every time the algorithm enters the lower level, the mean

value of each list �t is computed: this value represents the average increase in
˜
f

related to the solution of the t-th worker problem. As such, this can be intended

as the expected increase of
˜
f found by solving the upcoming t-th worker problem.

As a consequence, the queue of worker problems is updated by prioritizing those

problems related to an index t corresponding to the highest mean value of �t,

since these are those who will most likely provide the highest increase of
˜
f , thus

eventually leading to a faster proof of suboptimality.

5It is worth mentioning that, since all the incumbents found in the upper level are rejected by

the algorithm, the relative gap must be manually computed in the user cut callback called at each

node of the upper level by comparing the current cuto� with the current best bound provided by

CPLEX.
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Figure 3.3: The decomposition algorithm by Yokoyama et al. [104]



58
Chapter 3. A novel MILP decomposition algorithm allowing for mixed

integer and continuous MES design

How decomposition a�ects MES modelling: a comparison between the

two methods

In the light of the information given in the previous sections, it is possible to

compare the decomposition methods by Iyer and Grossmann [102] and by Yokoyama

et al. [104] on the basis of four main features related to the specific assumptions on

the MES model structure.

Feature Iyer and Grossmann Yokoyama et al.

Continuous design variables Yes No

Coupling constraints Yes No

Discrete capacities No Yes

Solve complete operation Always Never

In brief:

- The method by Iyer and Grossman can be applied to MES models containing

time-coupling constraints and/or continuous equipment capacities, but it is

not suitable for models with discrete sizes of the units. Moreover, it always

solves the complete operation worker problem (defined on the whole time

horizon), hence not exploiting at all the multi-period structure found in most

MES models to reduce the computational time of the solver;

- The method by Yokoyama et al. can be applied to MES models with discrete

equipment capacities, but it is not suitable for models with time-coupling

constraints and/or with continuous design variables. On the other hand,

unlike the method by Iyer and Grossmann, the operation subproblem is never

solved as a whole, hence e�ectively exploiting the multi-period structure of

the MES model to reduce the combinatorial complexity of the search tree.

It is clear that the two methods are perfectly complementary. As a consequence,

MES models exhibiting a "hybrid" set of modelling features, such as a catalogue of

generating units characterized by both discrete and continuous capacities, cannot

be solved by any of the decomposition methods previously introduced.
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3.2 Mathematical formulation of the novel hier-

archical decomposition method for MES de-

sign optimization

In this section the mathematical formulation of the novel hierarchical decompo-

sition method for the predictive design of complex MES architectures is presented.

With respect to previous methods, the purpose of the proposed framework is

threefold:

1. Universality: being applicable to any MES problem having the general form

reported in eq. (3.1);

2. Performance: being faster than a general-purpose search algorithm in finding

the global optimum;

3. Usability: being easy to implement without advanced programming skills.

3.2.1 Definition of the general, master and worker prob-

lems

As Iyer and Grossmann clearly state in their paper [102], in presence of time-

coupling constraints and/or variables, the solution of a worker problem defined

on the whole time horizon of the original problem is necessary each time a design

candidate is found at the upper level. This is required to maintain a coherence

between the two levels. As a consequence, in order to mantain a high level of

generality of the algorithm, the general master and worker problems adopted in

the proposed method are those defined in section 3.1.1 and below reported for the



60
Chapter 3. A novel MILP decomposition algorithm allowing for mixed

integer and continuous MES design

reader’s convenience:

General problem

min f
1
zD, yD, xD, zO, yO, xO

2

subjected to l
1
zD, yD, xD, zO, yO, xO

2
Æ 0

zD œ {0, 1}nz

yD œ Zny

xD œ Rnx

zO œ {0, 1}mz

yO œ Zmy

xO œ Rmx

(3.15)

Master problem

min f
1
zD, yD, xD, zO, yO, xO

2

subjected to l
1
zD, yD, xD, zO, yO, xO

2
Æ 0

zD œ {0, 1}nz

yD œ Zny

xD œ Rnx

zO œ Rmz

yO œ Rmy

xO œ Rmx

(3.16)

Worker problem

min f
1
zD, yD, xD, zO, yO, xO

2

subjected to l
1
zD, yD, xD, zO, yO, xO

2
Æ 0

zD œ {0, 1}nz

yD œ Zny

xD œ Rnx

zO œ {0, 1}mz

yO œ Zmy

xO œ Rmx

yD = ȳD

zD = z̄D

(3.17)



3.2. Mathematical formulation of the novel hierarchical decomposition
method for MES design optimization 61

where, as always, (z̄D, ȳD) represents the integer design candidate associated with

a feasible solution (an incumbent) of the master problem (3.16). Without loss of

generality, we assume that the time horizon is composed of N typical periods of

T time steps each6 (e.g. 4 typical days of 24 hours each or 2 typical weeks of 168

hours each) and we make explicit the coupling constraints h from the uncoupled

constraints gn. Moreover, we choose to rewrite the objective function f as the sum

of 2 + N terms, each containing only certain types of variables. It is worth noting

that this can always be done due to the linearity of f with respect to the problem

variables. The resulting general, master and worker problems are:

General problem

min fD

1
zD, yD

2
+ fDú

1
xD

2
+

ÿ
fOn

1
zOn , yOn , xOn

2

subjected to gn

1
zD, yD, xD, zOn , yOn , xOn

2
Æ 0 ’n œ {1, . . . , N}

h
1
zD, yD, xD, zO1 , yO1 , xO1 , ..., zON , yON , xON

2
Æ 0

zD œ {0, 1}nz

yD œ Zny

xD œ Rnx

zOn œ {0, 1}mz ’n œ {1, . . . , N}

yOn œ Zmy ’n œ {1, . . . , N}

xOn œ Rmx ’n œ {1, . . . , N}

(3.18)

6Such indexing choice is particularly convenient to impose periodic constraints (e.g. the state

of charge of a storage element at the end of each typical period must be higher than that at the

beginning of the same period.)
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Master problem

min fD

1
zD, yD

2
+ fDú

1
xD

2
+

ÿ
fOn

1
zOn , yOn , xOn

2

subjected to gn

1
zD, yD, xD, zOn , yOn , xOn

2
Æ 0 ’n œ {1, . . . , N}

h
1
zD, yD, xD, zO1 , yO1 , xO1 , ..., zON , yON , xON

2
Æ 0

zD œ {0, 1}nz

yD œ Zny

xD œ Rnx

zOn œ Rmz ’n œ {1, . . . , N}

yOn œ Rmy ’n œ {1, . . . , N}

xOn œ Rmx ’n œ {1, . . . , N}

(3.19)

Worker problem

min fD

1
zD, yD

2
+ fDú

1
xD

2
+

ÿ
fOn

1
zOn , yOn , xOn

2

subjected to gn

1
zD, yD, xD, zOn , yOn , xOn

2
Æ 0 ’n œ {1, . . . , N}

h
1
zD, yD, xD, zO1 , yO1 , xO1 , ..., zON , yON , xON

2
Æ 0

zD œ {0, 1}nz

yD œ Zny

xD œ Rnx

zOn œ {0, 1}mz ’n œ {1, . . . , N}

yOn œ Zmy ’n œ {1, . . . , N}

xOn œ Rmx ’n œ {1, . . . , N}

yD = ȳD

zD = z̄D

(3.20)

with mz, my and mx all higher than or equal to T .

By directly implementing the above decomposition scheme without any further

expedient, one would find the equivalent method for the implementation of the

branching priorities described in section 3.1.1. In this case, by solving the worker

problem we would obtain an information with highest value: either we find that
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the solution is infeasible/suboptimal or we find a new best cut-o�. Nonetheless, the

computational e�ort required to extract such information would be the highest as

well, since an extensive exploration of the subtree in the lower level is required each

time a design candidate is found in the upper level. This can become a non-negligible

burden, in particular if the time horizon of the UC problem is significantly extended:

the longer the time horizon, the more severe the impact on the computational time

due to the exponential complexity of the subtree to be explored. To support this,

it is worth recalling that the approach by Yokoyama and al. introduced in section

3.1.2 aims precisely at avoiding the complete resolution of problem (3.20) by giving

up coupling variables and constraints in the model formulation.

In the following sections we propose an alternative decomposition paradigm aim-

ing at avoiding the resolution of the worker problem for each design candidate

(z̄D, ȳD) without adding any restricting assumption on the general problem structure

reported in eq. (3.18), thus ensuring the universality of the method.

3.2.2 Basic concept

The basic idea behind the novel hierarchical method lies in the concept of local

auxiliary problem P̄ Õ. In general, we define as auxiliary problem a modified version

of an original problem P which is easier to solve and that provides a valid lower

bound for the objective function of P (or for a part of it). Following this definition,

an auxiliary problem di�ers from a worker problem in that it is completely optional

(that is, it is not required to ensure the coherence between upper and lower level).

In a decomposition method, an auxiliary problem is thus an additional subproblem

that can be solved to provide useful cuts aimed at reducing the size of the combi-

natorial solution space, thus improving the overall computational performance of

the algorithm. In the context of a hierarchical decomposition of a MES problem, a

local auxiliary problem P̄ Õ is defined as an auxiliary problem whose original problem

P̄ is a worker problem (3.20). On the other hand, a global auxiliary problem P̌ Õ is

defined as an auxiliary problem whose original problem P̌ is the general problem

(3.18). Being its original problem a relaxed version of the worker problem (3.20)
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(due to the absence of constraints zD = z̄D and yD = ȳD), a global auxiliary problem

di�ers from a local one in that its solution does provide a valid lower bound for

both the general and all the possible worker problems. Conversely, a local auxiliary

problem provides a lower bound which is only valid for its original worker problem.

The critical problems (3.10) and (3.11) used in the decomposition algorithm by

Yokoyama et al. are an example of global auxiliary problems. In fact, they are

optional (thus they are not worker problems) and their solutions are used to derive

a set of global lower bounds
˜
fCD

D
and

˜
fCO

Ot
that are valid for all the worker problems

encountered during the search.

An important property of local auxiliary problems is that, being derived by a

restricted version of the general problem, their lower bounds are always higher

than those provided by a corresponding global auxiliary problem. This property

is not exploited by any of the decomposition methods previously discussed, and

represents the main original feature of the novel decomposition method here pro-

posed. In fact, by relying on a more e�ective generation of lower bounds in the

lower level (thanks to the definition of suitable local auxiliary problems), we are

able to overcome the trade-o� between universality and performance that makes

the two algorithms analyzed in section 3.1.2 complementary, thus going towards a

highly performing decomposition method which is also universally applicable. In

our case, local auxiliary problems are simplified operation subproblems obtained

from a corresponding worker problem by removing one or more constraints. In the

proposed decomposition method, they are specifically used to e�ectively prove the

sub-optimality or infeasibilty of a given integer design candidate (z̄D, ȳD) before

solving the associated complete worker problem (3.20).

3.2.3 Definition of the auxiliary problems

Following the search scheme reported in figure 3.1, when the hierarchical B&B

search algorithm reaches the entrance node, the integer design candidate (z̄D, ȳD)

(and so the value of f̄D) are fixed. At this point, instead of solving the corresponding

worker problem on the full time horizon and compute the optimized value of the
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remaining part of f , it is possible to define smaller auxiliary problems to separately

bound the contributions fDú and fOn given by the coupling variables xD and by

the MES operation in the di�erent typical periods. Being additional and optional,

auxiliary problems must have two main characteristics:

1. They must be very fast to solve;

2. They must provide valuable information to speed up the B&B search algorithm

(e.g. by generating useful integer cuts for the master problem).

The aim is to find the best trade-o� between the computational time required to

solve the additional subproblems and the reduction of combinatioral complexity

obtained through the information extracted from each auxiliary problem.

In general, for a MES problem, we can classify auxiliary problems on the ba-

sis of four main constraining features here defined:

Fixed integer design All the integer design variables of the master problem are

fixed to a certain integer value. It allows to reduce the number of integer

variables to branch and so the combinatorial complexity of the search tree.

This is an inevitable condition for all the worker problems defined in the lower

level, where the design candidate is set at the entrance node and represents

the actual di�erence between local and global auxiliary problems.

Continuity The problem is solved on the whole time horizon. This characteristics

is required if we want to obtain significant information about the contribution

given to the objective function by design variables, which need to assume

a unique value on the whole time horizon to maintain a physical meaning.

We can say they must respect a "continuity constraint". Nonetheless, both

global and local auxiliary problems used to bound the objective function of

the worker problems may take advantage of the subdivision in typical periods

to solve problems defined only on a single period, significantly reducing the

number of integer variables of the problem and thus its complexity.
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Integrity The problem is solved maintaining all the integrity constraints active.

This characteristic allows to obtain a value of the objective function well-

representing the one of the master problem, but can be removed on certain

variables of the worker problem to simplify the search tree and compute lower

bounds of the objective function very quickly.

Trade-o� The problem is solved optimizing the whole objective function. Of

course, in general all the di�erent part of the objective function are inevitably

interconnected, since design decisions influence the optimal operation strategy.

In order to extract precise information about a specific term of f , auxiliary

problems can be defined giving up the trade-o� and optimizing only a single

part of the objective function.

A local auxiliary problem can be properly defined starting from a worker problem

by keeping the fixed integer design constraint feature and by dropping one or more

between continuity, integrity and trade-o�. In fact, by also dropping the fixed

integer design constraining feature we obtain a global auxiliary problem. It must

be stressed out that the only way to obtain valid lower bounds for each term of

f separately is by dropping the trade-o� constraining feature (that is, by defining

local auxiliary problems in which each of the terms fD, fDú and fOn is optimized

on its own). This is a necessary requirement to e�ectively exploit the multi-period

structure of the problem and eventually avoid the solution of the UC on the whole

time horizon for a given integer design candidate.

Global auxiliary problems for fD, fDú and fOn

The global auxiliary problems (GAP) set up to obtain a set of valid global lower

bounds for fD, fDú and fOnare defined starting from the general problem (3.18) by

dropping the trade-o� and continuity constraining features and by neglecting the

coupling constraints h. We have then:
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GAP for fD

min fD

1
zD, yD

2

subjected to gn

1
zD, yD, xD, zOn , yOn , xOn

2
Æ 0

zD œ {0, 1}nz

yD œ Zny

xD œ Rnx

zOn œ {0, 1}mz

yOn œ Zmy

xOn œ Rmx

’n œ {1, ..., N}

(3.21)

GAP for fDú

min fDú

1
xD

2

subjected to gn

1
zD, yD, xD, zOn , yOn , xOn

2
Æ 0

zD œ {0, 1}nz

yD œ Zny

xD œ Rnx

zOn œ {0, 1}mz

yOn œ Zmy

xOn œ Rmx

’n œ {1, ..., N}

(3.22)

GAP for fOn

min fOn

1
zOn , yOn , xOn

2

subjected to gn

1
zD, yD, xD, zOn , yOn , xOn

2
Æ 0

zD œ {0, 1}nz

yD œ Zny

xD œ Rnx

zOn œ {0, 1}mz

yOn œ Zmy

xOn œ Rmx

’n œ {1, ..., N}

(3.23)
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Both the values of fD and fDú are optimized N times (once for each typical

period). Hence, since we are looking for a lower bound, only the highest among

all the solutions to problems (3.21) and (3.22) are considered. Being completely

independent of the specific values of zD and yD, all these problems can be solved

before starting the actual B&B search. Moreover, since they are obtained from a

relaxed version of the general problem (3.18), their solutions provide a set of global

lower bounds
˜
f̌D,

˜
f̌Dú and

˜
f̌On for fD, fDú and fOn valid both in the upper and in

the lower level that can be used to compute the following lower bounds for f and f̄ :

˜
f ¶ :=

˜
f̌D +

˜
f̌Dú +

ÿ

˜
f̌On Æ f (3.24)

˜
f̄ ¶ := f̄D +

˜
f̌Dú +

ÿ

˜
f̌On Æ f̄ (3.25)

where f̄ and f̄D are the values of f and fD associated with a given integer design

candidate (z̄D, ȳD).

Local auxiliary problem for fDú

The local auxiliary problem (LAP) set up to obtain a valid local lower bound

for the fDú term of the objective function associated with a certain integer design

candidate (z̄D, ȳD) is defined starting from the worker problem (3.20) by dropping

the trade-o� and the integrity constraining features. We have then:
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LAP for fDú

min fDú

1
xD

2

subjected to gn

1
zD, yD, xD, zOn , yOn , xOn

2
Æ 0 ’n œ {1, . . . , N}

h
1
zD, yD, xD, zO1 , yO1 , xO1 , ..., zON , yON , xON

2
Æ 0

zD œ {0, 1}nz

yD œ Zny

xD œ Rnx

zOn œ Rmz ’n œ {1, . . . , N}

yOn œ Rmy ’n œ {1, . . . , N}

xOn œ Rmx ’n œ {1, . . . , N}

yD = ȳD

zD = z̄D

(3.26)

Being dependent on the specific values of z̄D and ȳD, these problems can only be

solved in the lower level after each entrance node. Moreover, since they are obtained

from a relaxed version of the worker problem (3.20), their solution provides a local

lower bound
˜
f̄Dú for fDú only valid in the subtree associated with the integer design

candidate (z̄D, ȳD).

It must be noticed that problem (3.26) is not a restricted version of the global auxil-

iary problem for fDú , since it contains both a restriction (zD = z̄D, yD = ȳD and the

coupling constraint h) and a relaxation (zOn œ Rmz , yOn œ Rmy ’n œ {1, . . . , N}).

As a consequence,
˜
f̄Dú may be lower or higher than

˜
f̌Dú , depending whether the

prevailing e�ect is that of the restriction or that of the relaxation. In any case, we

can write that:

max
1

˜
f̌Dú ,

˜
f̄Dú

2
≠

˜
f̌Dú Ø 0 (3.27)

Local auxiliary problems for fOn

The local auxiliary problems (LAP) set up to obtain some valid local lower

bounds for the fOn terms of the objective function associated with a certain integer

design candidate (z̄D, ȳD) are defined starting from the worker problem (3.20) by
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dropping the trade-o� and the continuity constraining features (that is, by defining

one problem for each typical period) and by relaxing the coupling constraints h.

We have then:

LAP for fOn

min fOn

1
zOn , yOn , xOn

2

subjected to gn

1
zD, yD, xD, zOn , yOn , xOn

2
Æ 0

zD œ {0, 1}nz

yD œ Zny

xD œ Rnx

zOn œ {0, 1}mz

yOn œ Zmy

xOn œ Rmx

yD = ȳD

zD = z̄D

’n œ {1, ..., N}

(3.28)

Being dependent on the specific values of zD and yD, these problems can only be

solved in the lower level after each entrance node. Moreover, since they are obtained

from a relaxed version of the worker problem (3.20), their solution provides a local

lower bound
˜
f̄On for fOn only valid in the subtree associated with the integer design

candidate (z̄D, ȳD).

It must be noticed that problem (3.26) is actually a restricted version of the

global auxiliary problem for fDú , since it can be obtained from it by adding the

additional constraints zD = z̄D and yD = ȳD. As a consequence,
˜
f̄On is always

higher than
˜
f̌On :

˜
f̄On ≠

˜
f̌On Ø 0 ’n œ {1, . . . , N} (3.29)

At this point, thanks to the N + 1 eqs. (3.27) and (3.29) and to eq. (3.25), we

are able to write the following chain of inequalities providing N + 2 local lower

bounds for f̄ , in which the N + 1 ones indicated as
˜
f̄ (k) (with k œ {1, ..., N + 1})

are those obtained after solving k among the N + 1 local auxiliary problems defined
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in section 3.2.3 for a given integer design candidate:

˜
f̄ ¶ Æ

˜
f̄ (1) Æ

˜
f̄ (2) Æ · · · Æ

˜
f̄ (N+1) Æ f̄ (3.30)

where
˜
f̄ (k) is equal to

˜
f̄ (k) := f̄D + max

1

˜
f̌Dú ,

˜
f̄Dú

2
+

ÿ

nœU ˜
f̌On +

ÿ

nœS ˜
f̄On (3.31)

or to

˜
f̄ (k) := f̄D +

˜
f̌Dú +

ÿ

nœU ˜
f̌On +

ÿ

nœS ˜
f̄On (3.32)

depending on whether the local auxiliary problem for fDú is among the k local

auxiliary problems already solved or not. In the above definitions, S is the set of

indexes of the k (or k ≠ 1) local auxiliary problems for fOn already solved, while U

is the set of indexes of the N ≠ k (or N ≠ (k ≠ 1)) local auxiliary problems for fOn

still unsolved.

3.2.4 Description of the solution algorithm

The aim of the proposed algorithm is to e�ectively exploit the valuable infor-

mation provided by the global and local auxiliary problems previosuly defined to

periodically generate valid local integer cuts7. These cuts are used to prune the

subtree rooted at the node in which they are generated, thus significantly reducing

the total number of explored nodes both in the upper and in the lower level. A

local integer cut is enforced in the upper level every time a valid lower bound
˜
f for

f exceeds the current cuto� value f̃ . A local integer cut is enforced in the lower

level every time a valid lower bound
˜
f̄ for f̄ exceeds the current cuto� value f̃ . For

our purposes, an integer cut enforced at a node j is a linear constraint of the form:

f < (f ú)j (valid locally) (3.33)

where (f ú)j is the solution of the LP relaxation of node j. In this way, node j is

immediately fathomed due to violation of constraint (3.33), and the corresponding

subtree pruned. In figure 3.4 it is reported an illustrative example showing how the
7An integer cut is valid if it only cuts out sub-optimal or infeasible integer solutions. An integer

cut is local if it is only enforced for the subtree rooted at the node where the cut is generated.
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knowledge of a global lower bound
˜
f in a node in the upper level may determine

a premature pruning of the corresponding subtree, hence completely avoiding the

generation of an integer design candidate and the exploration of the associated

subtree in the lower level.

In the following sections, the algorithmic details of the proposed decomposition

method will be gradually introduced by separately analyzing its three main blocks:

(i) the pre-processing stage, (ii) the upper level of the B&B tree and (iii) the lower

level of the B&B tree.

1. Pre-processing stage

Being the global auxiliary problems independent of any type of information

acquired during the B&B search of the upper and lower levels, they are actually

solved once and for all in a preliminary phase (the so called pre-processing stage)

to obtain and store the values of the global lower bounds
˜
f̌D,

˜
f̌Dú and

˜
f̌On . In this

phase, the queue Q of the local auxiliary problems is initialized with an arbitrary

order.

2. Solution strategy in the upper level

Let’s consider a generic node j in the upper level (that is, belonging to the

search tree of the master problem). By relying on the information deriving both

from the global auxiliary problems and from the LP relaxation of the node it is

possible to compute the following lower bound for any possible integer feasible

solution associated with a design candidate generated in the subtree rooted at node

j:

˜
fj = max

1
(f ú

D
)j,

˜
f̌D

2
+ max

1
(f ú

Dú)j,
˜
f̌Dú

2
+

ÿ
max

1
(f ú

On
)j,

˜
f̌On

2
(3.34)

where (f ú
D

)j, (f ú
Dú)j and (f ú

On
)j are the values of fD, fDú and fOn evaluated for the

solution of the LP relaxation of node j. Hence, a sub-optimality check is performed

at each node j of the branching tree of the master problem by comparing
˜
fj with

the current cuto� value f̃ :
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Figure 3.4: Comparison between branching trees: with (right) and without (left) integer

cuts in the upper level. Black nodes are fathomed nodes, while the grey

node represents an entrance node to the lower level.



74
Chapter 3. A novel MILP decomposition algorithm allowing for mixed

integer and continuous MES design

- If
˜
fj < f̃ the search of the current tree branch is continued by branching on

node j;

- If
˜
fj Ø f̃ the search of the current tree branch is interrupted by fathoming

node j through a suitable integer cut.

In addition, an integrity test is always carried out on the values of (zú
D

)j and (yú
D

)j:

if all their elements have integer/binary values, then we have found an incumbent

of the master problem and node j is labeled as an entrance node. In this case, the

incumbent is immediately rejected and the lower level is entered with z̄D = (zú
D

)j

and ȳD = (yú
D

)j.

3. Solution strategy in the lower level

Each time an entrance node is found in the upper level, the lower level is entered

with the values of zD and yD fixed and equal to those provided by the solution of

the corresponding LP relaxation (that is, z̄D and ȳD). As a consequence, we can

immediately compute the associated values of f̄D and
˜
f̄ ¶ that can be immediately

used to make a preliminary check on the sub-optimality and feasibility of the current

integer design candidate. The very first check compares the value of f̄D with its

global lower bound
˜
f̌D:

- If f̄D <
˜
f̌D we are sure that the current integer design candidate will eventually

lead to an unfeasible solution. This is due to the fact that
˜
f̌D is a globally

valid lower bound for fD. In this case, the lower level is immediately exited

without solving any auxiliary/worker problem and the search of a new integer

design candidate in the upper level is resumed;

- If f̄D Ø
˜
f̌D then we can’t conclude anything about the feasibility of (z̄D, ȳD)

and the search algorithm remains in the lower level.

A second check, comparing
˜
f̄ ¶ with the current cuto� f̃ , is the following:

- If
˜
f̄ ¶ Ø f̃ we can conclude that, since

˜
f̄ ¶ Æ f̄ , the current integer design

candidate will surely lead to a sub-optimal solution: the lower level is exited
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prematurely without solving any auxiliary/worker problem and the search of

a new integer design candidate is resumed in the upper level;

- If
˜
f̄ ¶ < f̃ we can’t conclude anything on the final value of f̄ : the algorithm

sets up and solves the local auxiliary problem contained in the queue Q,

starting from the first.

In the second case, since a valid lower bound
˜
f̌On is always available for the objective

function
˜
f̄On of the n-th local auxiliary subproblem for fOn (with n = Q{k}

individuated by the k-th index of the queue Q), the following valid upper bound

can be computed before solving the corresponding problem:

f̃On = f̃ ≠
1

˜
f̄ (k≠1) ≠

˜
f̌On

2
(3.35)

At this point the local auxiliary subproblem is solved and a feasibility check is

carried out:

- If the local auxiliary problem is infeasible, we can then conclude that, being

it a relaxed version of the worker problem, also the latter will be infeasible.

In this case the lower level is exited prematurely without solving any further

auxiliary/worker problem and the search of a new integer design candidate is

resumed in the upper level;

- If the local auxiliary problem is feasible, then the new local lower bound
˜
f̄ (k) is

computed with the new
˜
f̄On or max

1

˜
f̌Dú ,

˜
f̄Dú

2
. At this point, a sub-optimality

check is done:

- If
˜
f̄ (k) is higher than the current cuto� value f̃ , then the lower level is

exited prematurely without solving any auxiliary/worker problem and

the search of a new integer design candidate is resumed in the upper

level;

- If
˜
f̄ (k) is lower than the current cuto� value f̃ , then the next auxiliary

problem in the queue is set up and solved by the algorithm;

If all the N + 1 local auxiliary problems are succesfully solved and the final value

˜
f̄ (N+1) of the local lower bound is still lower than the current cuto� f̃ , then the
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algorithm sets up and solves the worker problem to restore the coherence with the

upper level. By means of a dedicated callback, the lower bound of this problem is

continuously compared with the global cuto� at each node of the subtree: if it is

higher, then the solution of the worker problem is aborted and the corresponding

integer design candidate immediately discarded. A this point, as new cuto� value

may be found or not depending on the feasibility and optimality of the solution of

the worker problem. In any case, the algorithm resumes the search of a new integer

design candidate in the upper level.

Worker problem queue reordering and further considerations

At this point, we still need to specify how the queue reordering is carried

out during the solution procedure. Thanks to eq. (3.30) we are sure that each

time a local auxiliary problem is solved in the lower level, it determines an in-

crease
˜
f̄ (k) ≠

˜
f̄ (k≠1) or

˜
f̄ (1) ≠

˜
f̄ ¶ of the local lower bound for f̄ which is equal to

˜
f̄On ≠

˜
f̌On Ø 0 or to max

1

˜
f̌Dú ,

˜
f̄Dú

2
≠

˜
f̌Dú Ø 0, depending on the specifics type

of auxiliary problem. Similarly to what is done with the worker problems of the

algorithm by Yokoyama et al. [104], all these increases are stored in a list li indexed

on the N + 1 local auxiliary problems and are used to e�ciently re-order the queue

Q of local auxiliary problems each time the algorithm enters the lower level with a

new integer design candidate. This is simply done by prioritizing the local auxiliary

problems corresponding to the lists li characterised by the highest mean values of

their stored increases. In this way, we are solving first those problems who will most

likely provide the highest increase in
˜
f̄ (k), hence eventually leading to a faster proof

of sub-optimality/infeasibility of the given integer design candidate. The beneficial

e�ect of queue reordering is reported in figure 3.5, in which is shown the time

evolution of the lower bound
˜
f̄ (k) during the solution procedure in the lower level

for the two cases
˜
f̄ (N+1) > f̃ (case a) and

˜
f̄ (N+1) < f̃ (case b). In both cases the

initial lower bound is
˜
f̄ ¶ but, as evident in case (a), queue reordering allows to solve

only 3 auxiliary problems instead of 4, hence determining a lower time spent in the

lower level. When we are in case (a), solving the auxiliary problems always lead to

a premature proof of sub-optimality with respect to a traditional decomposition
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method directly solving the worker problem. Nevertheless, when we are in case

(b) (that is, when
˜
f̄ (N+1) < f̃), all the computational time spent in solving the

local auxiliary problems is additional with respect to a reference case without any

auxiliary problem (we are introducing an overhead). The same happens when the

integer design candidate entering the lower level leads to an integer feasible solution.

We name this situation as case (c). Hence, there exists a trade-o� between the

computational time saved in case (a) and the overhead introduced in cases (b) and

(c). In this sense an important observation is that the increase in computational

time associated with a higher number of local auxiliary problems associated to a

higher number of typical periods is approximatively linear (we are growing the

number of subproblems without varying the number of integer operation variables

in each one of them8). At the same time, by increasing N , the computational

time required to solve the complete worker may potentially explode due to the

combinatorial complexity of the problem (by linearly increasing the number of

integer operation variables of the problem we are exponentially growing the number

of possible discrete solutions). Considering this, we can reasonably expect that, for

problems defined over a su�ciently long time horizon, the time saved thanks to the

additional integer cuts deriving from the local auxiliary problems will eventually

prevail on the computational overhead introduced when
˜
f̄ (N+1) < f̃ , and that

the highest the number of typical periods, the highest the benefit. The numer-

ical results obtained in the case-study introduced in chapter 4 will help us prove this.

The table below compares the novel decomposition algorithm here introduced

with the previous methods by Iyer and Grossman and by Yokoyama et al. analyzed

at the beginning of this chapter. It is apparent that, mainly thanks to the introduc-

tion of the innovative concept of local auxiliary problem, we were able to extend the

applicability of the algorithm to MES models containing both coupling constraints

and mixed integer/continuous design variables without accepting the burden to

8Of course, we are also increasing the number of continuous operation variables xOn , but this

only slows the solution time of the LP relaxations, without a�ecting the size of the combinatorial

solution space.
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(a) Case (a). The dark green and light green

lines represent the time saved thanks to

the local auxiliary problems with and

without queue reordering, respectively.

(b) Case (b). The red line represent the

overhead time spent solving auxiliary

problems.

Figure 3.5: Graphical representation (qualitative) of the solution procedure in the lower

level for an integer design candidate leading to a feasible but sub-optimal

solution (4 typical periods)

systematically solve the complete working problem, hence overcoming the original

trade-o� between universality and performance that a�ected the two approaches.

Feature
Iyer and

Grossmann
Yokoyama et al. This work

Continuous design variables Yes No Yes

Coupling constraints Yes No Yes

Discrete capacities No Yes Yes

Solve complete operation Always Never Occasionally

Numerical implementation of the decomposition algorithm: main con-

siderations

As stated at the beginning of the chapter, one of the three main purposes of the

novel decomposition algorithm presented in this Thesis (beyond universality and
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performance) is usability, which basically means that the numerical implementation

of the decomposition method should be accessible to academics and professionals

with basic programming skills. This has been possible by exploiting the high

flexibility of the multi-language POLIMIP modelling environment introduced in

section 2.2. In fact, the only additional information required by the user to

implement the decomposition method starting from the algebraic formulation

a general MES problem is a set of flags indicating the integer design and the

integer operation variables. This is conveniently done by providing the additional

options set.design and set.intop to the dvar function already called in the script

dedicated to variable definition. This semplicity in the numerical integration of

the model is not a common feature in MES decomposition methods. In fact, many

e�cient algorithms do not found practical applications due to an unacceptable

complexity in their numerical implementation, which typically requires advanced

programming skills in low-level programming languages such The algorithm by

Yokoyama et al. [104] extensively analyzed in the previous sections is among

them. In fact, as stated by Yokoyama himself at the end of his paper: "[...] to

make the proposed method more practical, it will be inevitable to generate the

input data and program automatically". This feature has been implemented in

the POLIMIP modelling environment, which is able to automatically implement

and choose between the method by Yokoyama and the novel method presented in

this work depending on the absence/presence of continuous design variables and/or

time-coupling constraints in the original problem structure. A further advancement

with respect to the implementation proposed by Yokoyama et al. is the use of

CPLEX’s generic callbacks instead of legacy callbacks for the modification of the

search algorithm of solver in consideration of the decomposition strategy. Generic

callbacks are a recent feature of the CPLEX API (introduced in 2017 in version 2.18

[106]) as an improvement of legacy callbacks. In fact, with respect to the latters,

they are compatible with many advanced solver features (such as dynamic search)

and are characterised by path invariance [107]: "Using an empty generic callback

will yield the same solution path as using no generic callback. (This convention is

not true for CPLEX legacy callbacks.)".





Chapter 4

Assessment of the numerical

performances of the novel

decomposition algorithm on a real

case study

4.1 Description and modelling of the Bovisa case

study

In this section we will introduce the case study analysed to measure the perfor-

mance of the novel decomposition algorithm presented in chap. 3. The problem

regards the optimal design of a multi-energy system for the university campus of

Politecnico di Milano called "Bovisa" in Northern Italy. The campus is the seat of 5

research departments and includes 7 major buildings plus several minor buildings.

The MES must be designed to satisfy the demands of electricity, heat and cooling

for all the buildings and the laboratories during the year. It is an on-grid system,

so the electricity can be bought from the national grid. The system has been

modelled to include both integer and continuous design variables, being therefore

incompatible with both the methods by Iyer and Grossman [102] and by Yokoyama

et al.[104].

81
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4.1.1 Preliminary analysis of the microgrid architecture

The architecture of the system is presented in fig. 4.1. To satisfy the demand of

electricity, heating and cooling of the university campus, the components that can

be installed are:

Gas Turbine (GT) The system take advantages of cogenerative gas turbines,

which are one input-two output components. They consume natural gas and

produce simultaneously electricity and heating.

Auxiliary Boiler (AB) The available boilers are single input-single output com-

ponents, consuming natural gas and producing heating power.

Electric Chiller (EC) This is one of the two technologies available to satisfy the

cooling demand. Since they are based on a traditional thermodynamic cycle

based on compression-expansion processes, they consume electric energy and

produce cold water. The electricity required to run electric chillers can be

either produced by means of the gas turbines or bought from the grid.

Absorpion Chiller (AC) By means of thermodynamic and chemical processes,

absorption chillers allow to convert heat into refrigeration. Such a technology

is very common in multi-energy microgrids, since it allows to recover heat

power also during summer to feed the cooling system.

Each technology is available in the form of a catalogue that contains di�erent

models characterised by various performance parameters, sizes and costs. For each

technology is possible to select only a single model. Yet, for each model we can

install up to 4 units that can be operated separately. The optimization process will

choose if it is more convenient to install few large units to take advantage of the

improved conversion performances and economy of scale or if it is better to select a

high number of small units to leverage on flexibility of operation and reduce the

UC costs. The catalogue of the available models is reported in tab. 4.1. There are

ten di�erent available models of gas turbine and four models for each of the other

component. It means that the design problem counts 88 potential equipment units

that might be installed to optimize the microgrid. It means that, considering a
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time horizon of 14 days, the model will contain more than 29,500 binary variables

only to model the on-o� operation process of such units. The installation and

balance of plants costs associated to each technology are evaluated referring to [111].

The microgrid under analysis is an on-grid system. It has the possibility of

buying the electricity from the grid, but it does not have a contract to sell the

generated electricity on the market, so it is one-way connection. Moreover, it is also

connected to the distributed natural gas network to fuel gas turbines and natural

gas boilers. In both cases, it is necessary to stipulate two contracts with the relative

electricity and the natural gas providers, that also include a cost proportional to

the maximum electric power and natural gas rate required by the system during the

year. For this reason, the model has also to contain design variables to evaluate the

additional costs of such contracts. We assume a cost of the electricity connection

equal to 50Ä/MW/y, while for the natural gas network 70Ä/MW/y (referred to the

LHV of natural gas). For the cost of the single MWh of electricity and natural gas

we referred to historical real market prices, hence also considering typical hourly

variations during the entire year.

Clustering of the yearly profiles

The design problem of the microgrid under analysis is solved in three di�erent

cases, gradually increasing the length of the time horizon to test the performances

of the decomposition algorithm. The profiles for the demands of electricity, heating

and cooling are always generated clustering the yearly data directly collected on

field in a previous year.

Looking at fig. 4.2, we can extract some insights on the type of profiles we are

dealing with. Looking at heating and cooling profiles (fig. 4.2b and 4.2c), it is

possible to immediately notice the strong seasonality of the location, where there

are remarkable peaks of heating load during winter and equally notable peaks of

cooling demand during summer with much more attenuated values (more than

halved in some periods) in the intermediate seasons. In addition to that, there
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Figure 4.1: The microgrid architecture of the Bovisa case study
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Gas Turbine

Nominal Power [MW] 0.2 0.25 0.33 1 1.7 1.876 3.515 3.98 4.6 5.38

Heating Rate [MW] 0.295 0.376 0.45 1.299 3.233 3.945 8.92 8.80 9.56 10.91

E�ciency [-] 0.295 0.289 0.311 0.295 0.269 0.247 0.279 0.297 0.293 0.323

Cost [Ä/kW] 2001 1765 1716 1628 912 880 853 829 804 827

Auxiliary Boiler

Nominal Power [MW] 0.7 1 1.4 2

E�ciency [-] 0.92 0.92 0.92 0.92

Cost [Ä/kW] 19.43 16.9 15.29 14.35

Electric Chiller

Nominal Power [MW] 0.564 0.704 0,844 1,056

COP [-] 5 5 5 5

Cost [Ä/kW] 115 115 115 115

Absorption Chiller

Nominal Power [MW] 0,692 1,036 1,382 1,728

COP [-] 1.2 1.2 1.2 1.2

Cost [Ä/kW] 240 240 240 240

Table 4.1: Catalogue of the available models for the Bovisa case study
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are some peculiarities inherent to the university campus, such as long vacation

periods in which the energy demands is strongly reduced. It is possible to notice

for instance the drop in the electricity request during August (see fig. 4.2a) as well

as the reduction on the loads of both electricity and heating during winter holidays.

Moreover, we must consider the variations of the loads during the weekends and

the randomness of the consumptions related to laboratory activities.

It is evident that, in order to propose a robust optimal design solution for such

a system, it is necessary to run the simulation on a high number of representative

days. The hourly profile resolutions for the representative days are generated by

means of a traditional k-means algorithm, that allows to build average fictional

profiles representative of a family of real daily profiles. To each profile we associate

a weight on the basis of the cardinality of the cluster and we estimate the total

operational costs of the microgrid properly weighting the OPEX evaluated for each

single representative period.

The case study has been firstly analysed clustering only three representative

days, as typically done to simulate to main seasons (winter and summer) and an

intermediate one. It is clear that the 3-day design problem may produce a design

solution not robust to many operating conditions, since it is able to capture only

the seasonality of the location. To obtain a more representative solution we need

to move to a 7-day and, finally, to a 14-day design problem, in which the model

includes more than 3 representative days for each one of the four seasons. Of course,

extending the time horizon leads to a significant increase of the integer variables of

the model, resulting in a tough computational challenge.

4.1.2 Mathematical modelling of the design problem

Following a traditional set-oriented algebraic formulation of the problem, we

start the descripyion of the MES mathematical model by defining the sets on which

the main variables will be indexed.
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(a) Yearly profile of the electricity demand

(b) Yearly profile of the heating demand

(c) Yearly profile of the cooling demand

Figure 4.2: Yearly demand profiles of the Bovisa university campus
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Sets

I := {GT, AB, EC, AC} Available technologies

Ji := {M1i, M2i..MNi} Models in the catalogue for each technology i œ I

U := {1,2,3,4} Potential installable units for each model j œ Ji

TY P := {1,2,3,4....Ntyp} Typical days

T := {1,2,3,4...24} Hourly time step of each period

As we can notice, the model has been reported referring to a generic number Ntyp of

representative days that compose the overall time horizon for the unit commitment.

This is the case for our specific case study, but in general the reference typical

periods may also be weeks or months. To keep the model as general and flexible

as possible with respect to the addition of new technologies to the microgrid, we

defined a set I containing all the technologies and the group of indexed sets Ji

including all the catalogue models for the technology i œ I. This could be easily

implemented thanks to the new features integrated in the POLIMIP toolbox.

Let us now present the variables introduced in the model. We can organize them

highlighting the di�erent categories that will be used to decompose the problem. In

particular, integer/binary design variables constitute the high hierarchy, while inte-

ger/binary operation variable represents the low hierarchy that will not be branched

in the upper level. Also the objective function can be already decomposed in its

fundamental parts that will be used to define the global and local auxiliary problems.

Variables

Binary/Integer Design Variables

“̂i,j := Selection variable for the model j of the technology i

’j œ Ji, i œ I

Ï̂i,j,u := Investment variable for the unit u of the jth model

’u œ U, j œ Ji, i œ I
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Binary/Integer Operation Variables

ẑi,j,u,n,t := On-o� variable for uth unit at each time step t of the typical period n

’t œ T, n œ TY P, u œ U, j œ Ji, i œ I

”̂i,j,u,n,t := Startup variable for uth unit at each time step t of the typical period n

’t œ T, n œ TY P, u œ U, j œ Ji, i œ I

Continuous Design Variables

êlmax := Maximum power required to the national electric grid [MW]

f̂umax := Maximum fuel consumption rate required to the natural gas network [MW]

Continuous Operation Variables

ŷi,j,u,n,t := Primary energy output of the uth unit at each time step t of the typical period n

’t œ T, n œ TY P, u œ U, j œ Ji, i œ I

ŷ2
GT,j,u,n,t

:= Secondary energy output of the uth GT unit at each time step t of the typical period n

’t œ T, n œ TY P, u œ U, j œ JGT

x̂ty

i,j,u,n,t := Energy input of the uth unit at each time step t of the typical period n

’t œ T, n œ TY P, u œ U, j œ Ji, i œ I

x̂i,j,u,n,t := Energy input of the uth unit accounting for start-up consumptions

’t œ T, n œ TY P, u œ U, j œ Ji, i œ I

ˆouti,n,t := Total primary energy output from the ith technology

’t œ T, n œ TY P, i œ I

ˆout2
GT,n,t

:= Total secondary energy output from gas turbines

’t œ T, n œ TY P

îni,n,t := Total energy input for the ith technology

’t œ T, n œ TY P, u œ U, j œ Ji, i œ I

êln,t := Purchased electricity from the grid
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Objective Function

f̂D := Part of the objective function depending on integer design variables

f̂Dú := Part of the objective function depending on continuous design variables

f̂On := Part of the objective function depending on operation variables of the typical period n

’n œ TY P

It is worth saying that, despite the relative simplicity of the Bovisa microgrid

architecture, the accurate design model must include continuous design variable for

modelling the maximum electric power and fuel consumption rate required to the

external networks. As extensively reported in sec. 3.2, in a hierachical decomposi-

tion method continuous design variables act as coupling variables between the UC

representative periods, hindering the implementation of multiple worker problems,

as done by Yokoyama et al. in [104]. This shows that, even in relatively simple

MES, the need of a universal MES decomposition method like that introduced in

chap. 3 is crucial to implement an e�cient search algorithm without giving up

modelling accuracy.

First of all, dealing with a catalogue-based design with discrete equipment

capacities requires to define the relationship between investment variables for each

microgrid unit Ïi,j,u and its operation variables. In this case, the model must also

provide the possibility of selecting one of many available models for each technol-

ogy, so on the top of unit investment variables it is necessary to add also model

selection variables “̂i,j. Only one model can be chosen. The investment variables

corresponding to each unit Ïi,j̄,u belonging to a discarded model j̄ œ Ji must be set

to zero, constraining their value to the value of the selection variable “̂i,j. Finally,

unit investment variables are the one that define the possibility of switching on

a given potential machine unit. In particular, if the investment variable is equal

to one, then all the on-o� variables zi,j,u,n,t can be freely switched on or o� in the

di�erent time periods. Otherwise (that is, if the investment variable is zero), all

the zi,j,u,n,t are inevitably set to zero, meaning that the potential unit becomes

inoperable by the microgrid.
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Constraints

Catalogue Selection and Investment Decision

ÿ

i

“̂i,j Æ 1 ’j œ Ji, i œ I

Ï̂i,j,1 = “̂i,j ’j œ Ji, i œ I
ÿ

nœT Y P

ÿ

tœT

ẑi,j,u,n,t Æ Ïi,j,u · Nty · 24 ’u œ U, j œ Ji, i œ I

In order to avoid operation symmetries that might hinder convergence of the

optimization process, it is fundamental to prioritize the investment decision as well

as the unit starting process. Given four potential unit for each model, it is not

possible to invest on the second unit if the first unit has not be already selected, as

well as on the third with respect to the second and so on. Very similarly, we must

impose that if more than one unit can be switched on, the system must turn on

the units of the same model starting from the first one and following a cardinal order.

Constraints

Prioritization Constraints

Ï̂i,j,u Æ Ï̂i,j,u≠1 ’u œ U \ {1}, j œ Ji, i œ I

ẑi,j,u,n,t Æ ẑi,j,u≠1,n,t ’t, œ T, n œ TY P, u œ U \ {1}, j œ Ji, i œ I

As far as the characteristic curves of the machine are concerned, we decided

to model them with a simple linear relation based on the information available

from the catalogues. In general, it might be possible to approximate even more

complex o�-design curves (quadratic or cubic relations) by means of piecewise

interpolation that can be implemented introducing so-called SOS constraints avail-

able in CPLEX. Nonetheless, the di�erence in the performances is generally very

limited, as well as the impact on the design solution, such that the increase of

complexity of the model may not be justified [34]. We still decided to consider

the variation of the operational curves associated to the operating temperature Ë,
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because it does not a�ect at all the complexity of the model, but it may signifi-

cantly vary the performance of the machines, in particular for the refrigeration units.

Constraints

ŷi,j,u,n,t = mi,j x̂ty

i,j,u,n,t
+ (qi,j + mT

i,j
Ën,t)ẑi,j,u,n,t ’t œ T, n œ TY P, u œ U, j œ Ji, i œ I

xl

i,j
ẑi,j,u,n,t Æ xty

i,j,u,n,t
Æ xu

i,j
ẑi,j,u,n,t ’t œ T, n œ TY P, u œ U, j œ Ji, i œ I

ˆouti,n,t =
ÿ

jœJi

ÿ

uœU

ŷi,j,u,n,t ’t œ T, n œ TY P, i œ I

îni,n,t =
ÿ

jœJi

ÿ

uœU

x̂i,j,u,n,t ’t œ T, n œ TY P, i œ I

One of the main advantage of MILP optimization is the possibility of modelling

in the details the operation dynamics of the machines. In particular, we imposed a

minimum up time of 3 hours for all the machine and ramp limits equal to 30% of

the nominal output. In addition to that, we assumed an additional consumption

associated to start-up equal to 5% of the nominal input.

Constraints

Start-up, minimum up time and ramp limits

Start-up, minimum up time and ramp limits

”̂i,j,u,n,t Ø ẑi,j,u,n,t ≠ ẑi,,ju,n,t≠1 ’t œ T, n œ TY P, u œ U \ {1}, j œ Ji, i œ I

x̂i,j,u,n,t = x̂ty

i,j,u,n,t
+ SU ”̂i,j,u,n,t ’t œ T, n œ TY P, u œ U \ {1}, j œ Ji, i œ I

ŷi,j,u,n,t≠1 ≠ ŷi,j,u,n,t Æ rui + (1 ≠ ẑi,j,u,n,t)M ’t œ T \ {1}, n œ TY P, u œ U, j œ Ji, i œ I

ŷi,j,u,n,t ≠ ŷi,j,u,n,t≠1 Æ rdi + (1 ≠ ẑi,j,u,n,t)M ’t œ T \ {1}, n œ TY P, u œ U, j œ Ji, i œ I

tÿ

t≠tmin+1
ẑi,j,u,n,t Ø tmin”̂i,j,u,n,t≠tmin+1 ’t œ {tmin, . . . , T end}, n œ TY P, u œ U, j œ Ji, i œ I

Finally, it is necessary to impose the energy balance at each node of the mi-

crogrid. We can report the one for the electricity since it is more general. The

structure is always based on an input-output balance at the considered node.

Constraints

Energy balance at the electricity node
ÿ

iœOUT el

ˆouti,n,t ≠
ÿ

iœINel

îni,n,t Ø del

n,t
≠ êln,t ’t œ T, n œ TY P

OUT el and IN el represents the generic subsets of I including the technologies

that respectively generate and consume electricity. The last constraints are the one
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regarding the continuous design variables, that are used to evaluate the cost of the

supplying contracts with the providers of electricity and natural gas.

Constraints

Energy balance at the electricity node

Maximum fuel consumpiton and power from the grid

êln,t Æ êlmax ’t œ T, n œ TY P
ÿ

iœF U

îni,n,t Æ fumax ’t œ T, n œ TY P

FU is the generic subset of I composed by the machine consuming natural gas

as input. The only missing part is the one associated to the objective function. To

easily implement the MILP decomposition it is convenient to define the objective

function decomposing it in its main components from the beginning. The aim of

the optimization is to minimize the cost associated to the multi-energy microgrid

under analysis. For this reason, we decided to refer to the annuity as parameter to

be optimized. The annuity is the annual cost associated to the running microgrid,

including both CAPEX and OPEX. In order to turn the initial investments into an

equivalent annual expenditure we can use the so-called Capital Recovery Factor

(CRF) assuming a discount rate of 5% and a lifetime of 15.

Constraints

Objective Function

f̂D =
ÿ

iœI

ÿ

jœJi

ÿ

uœU

Ci,jÏ̂i,j,uCRF

f̂Dú = êlmaxCel + f̂umaxCfu

f̂On =
A

ÿ

iœF U

ÿ

tœT

îni,n,tc
fu

n,t
+

ÿ

tœT

êln,tc
el

n,t

B
8760
Hn

’n œ TY P

ˆObjective = f̂D + f̂Dú +
ÿ

nœT Y P

f̂On

4.2 Analysis of the numerical performances

The decomposition algorithm presented in chap. 3 has been tested referring to

the Bovisa design problem. After setting up the model for the microgrid architecture

reported in sec. 4.1, the problem has been solved gradually extending the number
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of representative days composing the time horizon, from 3 up to 7 and finally 14

typical days. The decomposition algorithm has been implemented by means of the

POLIMIP modelling environment, relying on IBM CPLEX 12.9 as low-level solver.

In particular, advanced solver features such as "root node processing" and "dynamic

search" have been disabled in the master problem to avoid any type of conflict with

the custom search logic implemented by means of the user-defined generic callbacks

called at each node of the upper level.

For each case, we also solved the problem by means of a conventional B&B algo-

rithm as a benchmark. All the solver parameters were left untouched to the default

values automatically set by CPLEX. The only exception concerns branching priority

orders: a higher branching priority was given to integer and binary design variables

in order to fairly compare the two solution approaches. In fact, a conventional

CPLEX instance without branching priority orders would not exploit at all the

hierarchical relationship between design and operation variables, hence performing

worse than what possible for a MES design problem. For all the simulations we

used a 4-core 2.9 GHz personal computer with a 16Gb RAM. The main purpose of

our test is twofold:

1. Assessing the e�ectiveness of the integer cuts implemented both at the upper

and at the lower level by the decomposition algorithm. This is necessary

to understand if the global and local auxiliary problems have been properly

defined and if they provide useful information to speed up the B&B tree

exploration;

2. Assessing the computational performance of the novel decomposition algorithm

referring to the conventional B&B algorithm enforced with branching priorities

as benchmark. In particular, we want to analyse the behaviour of the algorithm

with increasing length of the time of horizon and so the complexity of the

problem, when the conventional algorithm struggles for convergence.
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4.2.1 Performance analysis: 3-day design problem

The design problem presented in sec. 4.1 has been firstly solved clustering

the profiles in 3 representative days. The optimal design solution is reported in

tab. 4.3. It is worth saying that the very same solution is obtained if the problem

is solved either with the decomposition algorithm or with the conventional B&B

implemented by CPLEX, as expected.

As we can notice, all the technologies have been installed, in general with a high

number of units. Focusing on the gas turbines, the global optimization leads to

4 small turbines instead of a single large turbine model. This is probably related

to the fact that a high operation flexibility is required in such microgrid, where

many components interacts sharing inputs and outputs. Moreover, load profiles

are characterized by a significant variability too, not only because of the strong

seasonality of the location but also for the randomness of the heavy university loads

(mainly related to laboratory activities). Since in the model we introduce detailed

constraints regarding the unit commitment (ramp limits, minimum uptime, start-up

costs), the economy of scale of large models is not su�cient to counterbalance the

operation flexibility given by smaller units. Moreover, since the model well-describes

also o�-design condition of the machines and imposes a minimum load for each

unit, when the demand is extremely low (like the demand of cold water during

winter days) if small units are available it is possible to limit energy waste. More

detailed comments are provided at the end of this section.

Let us now focus on the performances of the novel decomposition algorithm.

First of all, it is necessary to verify if the auxiliary problems have been well-defined

and if the additional integer cuts introduced in the decomposition are e�ective. As

extensively discussed when presenting the decomposition algorithm in chap. 3, the

role of local auxiliary problems is to evaluate lower bounds of the global objective

function that allows to discard the corresponding integer design candidate before

solving the complete worker problem in the lower level. Looking at fig. 4.3, we can

state that the results are extremely promising. Considering 139 design candidates
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Design Solution

Selected Technology GT3 AB1 EC4 AC1

Number of Units 4 1 3 3

Maximum Power from the Grid 2.95 MW

Maximum NG Network Request 4.97 MW

Objective Function 2,642,976 Ä/y

Table 4.2: Design solution of the 3-day design problem

entering the lower level, only 51 complete worker problems are solved, while 128

are prematurely discarded thanks to local auxiliary problems (about two on five).

In addition to that, we can see that over 695 potential local auxiliary problems,

only 525 (around 75%) are actually solved in the lower level. This means that in

general is su�cient to solve the auxiliary problems referred to 2 of the 3 typical

periods to find the design candidate is infeasible of suboptimal. This percentage is

higher during the first branching operations and tends to decrease as the number

of design candidates entering the lower level increases. The reordering of the local

auxiliary problems allows the algorithm to gradually learn which are the typical

periods that favour infesibility or suboptimality. As a result, the decomposition

algorithm spends only 27.4% in the lower level (around 192 seconds), meaning

the computational burden introduced by the solution of the auxiliary problems

is acceptable if compared to the branching operations of the upper level. Finally,

the results are convincing also for what global auxiliary problems are concerned.

In spite they require around 45% of the overall solution time to be solved, they

contribute to discard 131 design candidates even before entering the lower level (in

addition to improving the e�ectiveness of the lower bounds in the lower level).

Now let us compare the computational performances of our decomposition

algorithm with the conventional default B&B algorithm implemented by CPLEX

and used as benchmark. As reported in fig. 4.4, the decomposition algorithm is

competitive also in a limited time horizon of 3 days. The solution time is halved

with respect to the traditional algorithm. Of course, this result seems not extremely
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Figure 4.3: Analysis of the e�ectiveness of the introduced auxiliary problems and cuts

in the 3-day design problem

remarkable, since the traditional algorithm takes a more than acceptable amount

of time to get to 1% gap (around 2,000s). Yet, it is clear that with such microgrid

architecture a time horizon of 3 days (72 operation hours) can be easily optimized

by a traditional branch and bound algorithm, that can also take advantage of

CPLEX advanced features like dynamic search and root node processing. In fact,

being the solution of the complete worker problem relatively easy, the additional

computational e�ort required by the decomposition algorithm to solve the auxiliary

problems requires only provides a limited advantage. Nonetheless, it is obvious our

decomposition algorithm is meant to be applied when the conventional B&B takes

long time to converge, so when the problem is su�ciently complex. It is interesting

to investigate what happens when increasing the time horizon from 7 to 14 typical

days.

4.2.2 Performance analysis: 7-day design problem

First of all, let us observe the design solution presented in tab. 4.3. As we can

notice, increasing the number of representative days the optimal design solution

includes a higher number of units for boiler and chiller and a larger model for the

absorption chiller, too. Performing a 7-day design optimization, the model is able to

better describe the peaks and the variability of heating and cooling demands, that
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Figure 4.4: Computational performances of the novel decomposition algorithm in the

3-day design problem

Design Solution

Selected Technology GT3 AB1 EC4 AC2

Number of Units 4 3 4 3

Maximum Power from the Grid 3.58 MW

Maximum NG Network Request 5.64 MW

Objective Function 2,716,181 Ä/y

Table 4.3: Design solution of the 7-day design problem

are strongly seasonal. It goes without saying that increasing the number of typical

periods for the simulation of the unit commitment allows to obtain a solution which

is more realistic, but also more robust to di�erent operative conditions that may

occur when operating the plant.

Let us focus more on the analysis of the performance of the decomposition

algorithm. fig. 4.5 shows that out of 133 design candidates entering the lower level,

only 9 (6.8%) are solved, and all of them have generated a new cuto� value for the

search algorithm (that is to say that the algorithm has not wasted time solving

a complete sub-problem that finally revealed itself for being suboptimal). As far

as the local auxiliary problems is concerned, only around 59% has been actually
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run in the lower level (with respect to 76% in the case of 3-day design), confirming

that the more auxiliary problems the algorithm has to solve the smarter it becomes

in recognizing which are the typical periods that might most likely generate an

infeasible or suboptimal result. Moreover, 83 design candidates are rejected at the

upper level relying on the information extracted by global auxiliary problems. The

ratio between time in the upper level and time in the lower level is still around

2-to-1, meaning that even when the number of auxiliary problems significantly

increases (long time horizon) the introduced integer cuts keep the computational

burden of the lower level relatively low.

In this case, the decomposition algorithm starts showing notable performances.

As expected, moving from 3 to 7 typical days, the complexity of the problem

has exploded and the search tree for the conventional B%B algorithm has grown

exponentially. CPLEX with default settings and branching priorities takes more

than 24,200 s (6 hours and 40 minutes) to reach a relative gap of 1%, while the

decomposition algorithm achieves the same gap in around 1,621 s (27 minutes),

outperforming the conventional one and being 15 times faster (see fig. 4.6). It is also

interesting to highlight that the decomposition algorithm requires only additional

500 seconds to reach full convergence, while the conventional one still needs more

than 20,000 s. A similar phenomenon occurs also in the 3-day design problem (see

fig. 4.4). Generally, the decomposition algorithm at 1% gap has already gathered a

lot of information from the solution of worker and auxiliary problems. Integer cuts

start being very e�ective and the full converge is achieved quite quickly.

4.2.3 Performance analysis: 14-day design problem

Finally, we tested our algorithm trying to further increase the complexity of the

problem, increasing the length of the time horizon to 14 typical days. Despite the

relatively simple architecture of the microgrid, the extension of the time horizon

introduced a very high number of binary variables to the problem, creating the

case which the decomposition algorithm has been thought for. Tab. 4.4 shows how

the increase of the number of representative days still have non-negligible impact
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Figure 4.5: Analysis of the e�ectiveness of the introduced auxiliary problems and cuts

in the 7-day design problem

Figure 4.6: Computational performances of the novel decomposition algorithm in the

7-day design problem
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Design Solution

Selected Technology GT3 AB2 EC4 AC4

Number of Units 4 4 4 3

Maximum Power from the Grid 4.35 MW

Maximum NG Network Request 6.33 MWh

Objective Function 2,799,185 Ä/y

Table 4.4: Design solution of the 14-day design problem

on the design of the microgrid, increasing the size of the system and changing the

contracts with the electric grid and the natural gas provider. Overall, moving from

3 to 14 representative days, we have an increase of the objective function of around

5.9%. And it is worth saying that the architecture of this microgrid is extremely

simple, as it does not include storage, unpredictable renewable sources or seasonal

constraints. In general, the impact of the extension of the time horizon might be

much higher.

All the considerations made in the previous cases still hold for 14-day design

problem (see fig. 4.7). The percentage of complete worker problems solved is

slightly increased, but it is still below 10%. Moreover, this might be caused by the

fact that upper level cuts in this case have become extremely e�ective, rejecting 342

design candidates at the upper level, and reducing the number of design candidates

entering the lower level. Extending the time horizon, and so the number of typical

periods, it is necessary to solve a higher number of global auxiliary problems, but

it is also more likely that the profile of a certain representative day leads to higher

global lower bounds
˜
f̌D and

˜
f̌Dú (see subsec. 3.2.4), hence favouring the rejection

of a higher number of design candidates in the upper level. It is worth recalling

that integer cuts in the upper level are the most e�ective in reducing the solution

space and improving computational performances.

The 14-day design problem is the one really demonstrating the e�ectiveness of

the decomposition algorithm. As reported in fig. 4.8, when increasing the time
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Figure 4.7: Analysis of the e�ectiveness of the introduced auxiliary problems and cuts

in the 14-day design problem

horizon from 7 to 14 representative days, the conventional B&B algorithm does

not converge in practical times. After 50,000s the relative gap is still above 5%

and the search procedure is stuck. Introducing additional information that allow to

prune extensive portions of the tree at the upper level, thus limiting the exploration

in the lower level, is the only way to obtain the global optimum solution in a

reasonable amount of time. The decomposition algorithm achieves 1% relative

gap in less than 7,200 s (2 hours) and reaches the default gap of 0.01% in only 7,654 s.

The results obtained in the three cases are summarized in fig. 4.9. The

presented graph finally enforces the theoretical discussion presented in chap. 3 with

numerical evidence and highlights the potentialities of the decomposition algorithm

developed in this work. Conventional B&B shows the typical exponential growth in

computational time when increasing the time horizon of the design problem, such

that in the 14-day design problem is not able to converge to the optimal solution

in an acceptable amount of time. Introducing the concept of auxiliary problems

and exploiting the multi-period nature of MES design problems, the decomposition

algorithm is able to e�ectively deal with an increasing number of integer operation

variables, thanks to a more intelligent exploration of the lower level. Increasing

the time horizon from 3 days to 14 days to obtain a more robust design solution,
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Figure 4.8: Computational performances of the novel decomposition algorithm in the

14-day design problem

the algorithm moves from being the most e�cient way to evaluate the optimum

solution (15 times faster the conventional one) to being the only possible way to

find the optimum design candidate in practical times.

Figure 4.9: Computational performance comparison increasing the time horizon
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Analysis of the design and of the corresponding economic dispatch solu-

tion

To complete the analysis, it is possible to extract some insights from the design

and operation solution obtained for the most representative case, that is to say the

design problem solved considering 14 representative days. Such analysis is necessary

to confirm the validity of the implemented model and to better understand the

main characteristics of the MES.

As already underlined at the beginning of this section, the optimal design

solution tends to select many smaller units instead of a large one, in particular

concerning gas turbines. Looking at the load profiles (see fig. 4.2) and at the

optimal design solution (see tab. 4.4), it is possible to observe that the catalogue of

gas turbines perfectly fits the size of the system. Many possible models of di�erent

size and with di�erent number of units can produce a feasible solution, introducing

many trade-o�s to the problem. The optimal solution includes a small model with

4 units (the maximum available), leveraging more on the flexibility of the system

instead of the economy of scale. Moreover, model GT3 is a relatively new model,

with very good e�ciency (considering a small gas turbine), but also a relatively

high cost per kW. Due to its high e�ciency, the gas turbine is used to satisfy both

the electric and thermal baseloads. Hence, it results particularly convenient to

invest on maximizing its performances even at a cost of a higher CAPEX.

Looking at fig. 4.10, we can make some more general considerations on the

operation strategy. As far as electricity is concerned, gas turbines are generally

operated following the heating demand and not the electricity request. In general,

given the yearly input data on the price of electricity and the price of natural

gas, the electricity generation from gas turbine seems very convenient when it is

possible to also recover waste heat. Once the waste heat is fully exploited, the

remaining electricity demand can be satisfied simply buying electricity from the grid.

For the very same reasons, auxiliary boilers are installed only to cover the winter
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peaks of the heating load, when the nominal heat rate of the installed gas turbines

is not su�cient (see fig. 4.10b). As far as the cooling is concerned, the optimal

solution makes an extensive use of absorption chillers, since they allow to make the

electricity generation through gas turbines more convenient also during summer,

when the heating demand is null (central part of fig. 4.10). Electric chillers are

mainly used to satisfy the cooling demand peaks during summer or to supply the

minimum base load required during winter (left-hand side of fig. 4.10) when all the

heat is consumed by the heating system and there is no way to feed absorption chiller.

Finally, we can notice that dynamics constraints such as minimum up-time

and start-up costs favour a regular exploitation of the di�erent units, without

continuous on-o� operations. This produce a solution that can be more easily

implemented on a real control system accounting also for faster dynamics of the

machines. The introduction of a minimum load for the machines highlights the

need for a dissipation system, mainly for the cooling system. In fact, there are days

in which the cooling demand is extremely low, but not inexistent (probably related

to research activities and laboratories) and, also operating the chillers at minimum

load, a significant amount of cooling energy still needs to be dissipated.
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(a) Electricity UC of three out of the 14 typical days of the problem

(b) Heating UC of three out of the 14 typical days of the problem

(c) Cooling UC of three out of the 14 typical days of the problem

Figure 4.10: ED solution of the 14-day design problem



Conclusions

In this Thesis work, starting from the legacy of Iyer and Grossman [102] and

Yokoyama [104], we introduced a novel MILP decomposition method exploiting the

inherent hierarchy beween design and operation in MES design problems and we

demonstrated its e�ectiveness with respect to conventional approaches by means of

a case study involving the design of a multi-energy microgrid for a university campus.

The main innovative elements of our proposed approach are both mathematical

and numerical. From a mathematical standpoint, our method does not introduce

any restricting assumption on the MES problem structure with respect to previous

decomposition algorithms, hence ensuring the universality of the approach without

sacrificing computational performance. Moreover, from a numerical perspective,

an e�ort was made to guarantee a high usability of the decomposition algorithm

for practical MES design purposes.

- Universality. Our method can be applied to MES problems not compatible

with previous state-of-the-art decomposition paradigms. In particular, the

MES model may contain both continuous and integer/binary design vari-

ables, as well as time-coupling constraints. This capability is particularly

important in solving MES designs with complex architectures requiring a

high modelling flexibility. In its absence, it is either impossible to model

some system arichitecture/operation dynamics or it is necessary to introduce

ad-hoc modelling strategy that eventually compromises the accurancy of the

model and might add unnecessary problem complexity. For instance, the

algorithm proposed by Yokoyama et al. allows to use only integer design

variables, thus requiring to discretize design choices that in principle should be
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modelled as continuous. Other than introducing a model approximation, this

fact considerably increases the numerical complexity of the problem adding a

high number of integer variables.

- Performance. Thanks to the introduction of the innovative concept of local

auxiliary problem we were able to mantain a high generality of the method

without giving up computational performances. This was demonstrated

through a real case study in which the novel approach has been compared to

the conventional MILP search strategy implemented in the commercial solver

IBM CPLEX. Gradually increasing the time horizon and so the complexity

of the design problem, conventional B&B showed an exponential growth in

convergence time, while the decomposition algorithm demonstrated is capa-

bility of taking advantage of the multi-period nature of the problem to reduce

complexity. In the case of a 7-day design problem, the decomposition algo-

rithm outperformed the conventional one reaching the same optimal solution

15 times faster. When moving to 14-day design problem, the decomposition

algorithm achieves convergence in around 2 hours, while the convetional

search strategy is totally uncapable to find the optimum design solution in

practical times. These results clearly highlight that the novel algorithm is

a method to optimally design complex energy system that will be otherwise

unsolvable with standard MILP optimization strategies when considering a

su�ciently representative time horizon. In general, for a given MES archi-

tecture the algorithm improves the quality the design solution allowing for

a higher complexity in operation modelling without an excessive increase in

computational time.

- Usability. The practical usability of the developed decomposition method is

a feature indipendent from the previous two. Nonetheless, it is not less impor-

tant. In fact, the implementation of MILP decomposition requires an in-depth

knowledge of commercial solver API and of the corresponding programming

language. Yet, MES desing is a field of interest for academics and profes-

sionals that do not necessarly have advanced programming skills. For this
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reason, we developed a dedicated code which automates the implementation

of the decomposition algorithm in the POLIMIP, the MATLAB modelling

environment developed in this Thesis work. Usability of the algorithm is

crucial also beacause it favours future applications to new case studies and

further developments.

Finally, we want to stress that the formal description of the novel decomposition

method proposed in this work has been carried out mantaining a general profile that

laid the ground for an actual decomposition framework for Multi-Energy Systems.

In fact, the high-level concepts of "auxiliary problem" and "constraining feature" can

be intended as mathematical tools that can be further expanded and/or modified

to create new decomposition methods for specific types of MES problems. Some

examples of possible future developments are:

- Assessment of the performances of the algorithm when applied to di�erent

MES architectures and operation models. The case study presented in the

present work is just an initial one aiming at proving the correctness and the

e�ectiveness of the proposed decomposition method. Similar benchmarks

must be carried out on longer time horizons and on di�erent MES models

such as microgrids containing thermal/electric storages, renewable sources

and seasonal constraints to better evaluate the actual competitiveness of the

algorithm.

- Implementation of an heuristic operation logic in the lower level (instead of a

predictive one). This aim can be pursued starting from the observation that

the predictive relaxed operation in the upper level always provides a lower

bound for an heuristic (sub-optimal) operation in the lower level. It must

be pointed out that, with respect to other two layer optimization paradigms

performing the same task (e.g. PSO in the upper level + heuristic in the

lower level), the advantage of a suitably defined MILP search method is its

guarantee of global optimality.

- Application of the decomposition framework to a multi-year design problem

for optimal investment planning considering yearly load variation scenarios.
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Today, this kind of problems are rarely tackled with MILP approaches due to

their unmanageable size. However, by relying on a modified version of the

decomposition method here presented (e.g. by adding a further hierarchical

level) we would obtain a more e�cient exploration of the combinatorial

solution space, thus increasing the feasibility of a multi-year MILP design

model for Multi-Energy Systems.



Appendix A

POLIMIP: an example of

implementation on a real case

study

In this appendix, the part of the matlab codes used to implement the case study

presented in 4 are reported. This represents a typical example of application of the

POLIMIP modelling environment to define and run a MILP optimization problem

eventually applying the decomposition algorithm developed in this work.

In order to implement MILP optimization in POLIMIP environment, it is

necessary to define six fundamental scripts: sets.m, variables.m, parameters.m,

constraints.m, objective.m and options.m. All these scripts are based on the

syntax presented in sec. 2.2 and here it is possible to find a practical example of

how to implement them. In addition to them, we might find 3 additional scripts:

- priorities.m for adding branching priorities to the conventional B&B algo-

rithm.

- preprocessing.m to insert input data in matrix form before indexing them

in parameters.m. In general, if input data are composed by 0-dimension or

1-dimension matrices it is possible to define them also in the parameters.m.

Yet, in case of multi-dimension matrices that may occasionally also be pre-
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processed and rearranged, it is a good practise to use the additional script

preprocessing.m.

- postprocessing.m to print the design solution and plot the ED solution.

After defining such script, the process of creating the MILP problem and solving it

either using a conventional B&B algorithm or the decomposition algorithm is fully

automated by the modelling environment, that relies on other hidden .m and .py

scripts. The user should only run createprob and solveprob on the MATLAB

command line, to respectively create and solve the optimization problem.

A.1 Sets

sets.m is generally the first script to be added as it defines the sets of the

problem and their cardinality. All the elements of the sets will be represented

through a cardinal number and saved in the structure s.

Listing A.1: sets.m

1 % Technologies

2 dset(’I’ ,4)

3 %Models

4 J = [10 4 4 4];

5 for i = s.I

6 dset(’J{i}’,J(i))

7 end

8 %Units

9 dset(’U’ ,4);

10 %Time steps

11 dset(’T’,TP_length )

12 % Typical periods

13 dset(’TYP ’,nclus)
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A.2 Variables

variables.m is the script used to define the problem variables, properly indexed

according to the defined sets. All the variables will be saved in the dedicated

structure v. As reported in list A.2, there are two ways to define a indexed variable:

1. Directly inserting the name of the set as a string vector in dvar function.

This is typically done when the we deal with conventional Cartesian sets.

2. Using for-cycles by means of the structure s. This is necessary when defining

variables indexed on non-Cartesian sets, that are generally represented by a

family of indexed sets with di�erent cardinality. Referring to our case study,

an example may be the family of sets of available models that are in turn

indexed on the set of the technologies.

During variable definition, it is also possible to insert the flags set.design and

set.intop for identifying design and integer operation variables, in order to auto-

matically implement the decomposition algorithm.

A.3 Parameters

parameters.m is the script used to define parameters of the problem properly

indexing the input data previously inserted in matrix form. All the parameters will

be saved in structure p. The syntax is very similar to the one used for variables (see

list A.3). It is important to ensure the coherence between the matrix dimensions of

input data and the dimensions of the indexing sets.

A.4 Constraints

constraints.m is the script used to define constraints of the problem. Taking

advantage of the structure s, v and p, it is possible to write constraints following

rigorously the mathematical formulation of the problem.
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Listing A.2: variables.m

1 %% INTEGER OPERATION VARIABLES

2 % On -off and startup variables

3 for i = s.I

4 for j = s.J{i}

5 dvar(’z’,’bin ’,"TYP","T",i,j,"U",’set.binop ’)

6 dvar(’delta ’,’bin ’,"TYP","T",i,j,"U",’set.binop ’

)

7 end

8 end

9 %% DESIGN VARIABLES

10 for i = s.I

11 for j = s.J{i}

12 dvar(’gamma ’,’bin ’,i,j,’set.design ’) % Catalogue

selection

13 end

14 end

15 for i = s.I

16 for j = s.J{i}

17 dvar(’phi ’,’bin ’,i,j,"U",’set.design ’) % Unit

selection

18 end

19 end

20 % Maximum electricity demand

21 dvar(’max_el ’,’real ’,’set.design ’)

22 % Maximum fuel consumption

23 dvar(’max_fuel ’,’real ’,’set.design ’)

24 %% REAL OPERATION VARIABLES

25 % Total input and output for the technology i

26 dvar(’in’,’real ’,"TYP","T","I")

27 dvar(’out ’,’real ’,"TYP","T","I")

28 dvar(’out2 ’,’real ’,"TYP","T","I(1) ")
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Listing A.3: parameters.m

1 %% Performance characteristics

2 % for each capacity j

3 % of each technology i

4 for i = s.I

5 for j=s.J{i}

6 dpar(’m’,i,j) % Slope

7 dpar(’q’,i,j) % Intercept

8 dpar(’m_T ’,i,j)% Temperature slope

9 dpar(’xl’,i,j) % Lower limit

10 dpar(’xu’,i,j) % Upper limit

11 dpar(’yu’,i,j) % Nominal output

12 dpar(’rampup ’,i,j) % Rampup

13 dpar(’rampdown ’,i,j) % Rampdown

14 dpar(’su’,i,j) % Surtup consumptions

15 dpar(’minup ’,i,j) % Minimum up -time

16 end

17 end

18 %% Energy input cost

19 % for each technology i at time t in T, of typical

period n in TYP

20 phi (: ,: ,1) = cost_ng ;

21 phi (: ,: ,2) = cost_ng ;

22 phi (: ,: ,3) = 0;

23 phi (: ,: ,4) = 0;

24 dpar(’phi ’,"TYP","T","I")
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Listing A.4: constraints.m

1 %% Performance characteristics

2 %input -output relationship

3 for i = s.I

4 for j = s.J{i}

5 for u = s.U

6 constr(’v.y(s.TYP ,s.T,i,j,u) == p.m(i,j) .*

v.xty(s.TYP ,s.T,i,j,u) + (p.q(i,j)+p.m_T

(i,j)*p.Temp(s.TYP ,s.T)).* v.z(s.TYP ,s.T,

i,j,u)’);

7 constr(’ p.xl(i,j) * v.z(s.TYP ,s.T,i,j,u) <=

v.xty(s.TYP ,s.T,i,j,u) <= p.xu(i,j)*v.z(

s.TYP ,s.T,i,j,u) ’);

8 end

9 end

10 end

11 %% Maximum fuel demand

12 constr(’v. max_fuel >= v.in(s.TYP ,s.T,s.I(1)) + v.in(s.

TYP ,s.T,s.I(2))’)

13 %% Maximum electricity demand

14 constr(’v.max_el >= v.el(s.TYP ,s.T)’)

Listing A.5: objective.m

1 Objective = v.fD + v. fD_star + sum(v.fO);
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Listing A.6: options.m

1 initialize

2 % Select solver

3 whatsolver = ’cplex ’;

4 % Absolute gap of the solver ( default is 1e -4)

5 %N.B. only applied if solved in MATLAB

6 gap = 1e -4;

7 % Number of periods

8 nclus = 14;

9 % Length of typical period [h]

10 TP_length = 24;

11 % User defined branching priorities

12 usepriority = 1;

13 % 0: Export conventional , 1: Export hierarchical

decomposition , 2: Export both conventional and

hierarchical decomposition

14 export = 2;

15 % 0: Conventional B&B, 1: Solve decomposed problem

calling Python from MATLAB

16 solve_decomposed = 1;

17 % Switch on opportunistic mode (0 for default , -1 for

opportunistic , 1 for deterministic )

18 parallel_opportunistic = 1;

19 % Set number of threads (0 for default )

20 N_threads = 1;





Appendix B

Complete mathematical model of

the Bovisa Case Study

Sets

I := {GT, AB, EC, AC} Available technologies

Ji := {M1i, M2i..MNi} Models in the catalogue for each technology i œ I

U := {1,2,3,4} Potential installable units for each model j œ Ji

TY P := {1,2,3,4....Ntyp} Typical days

T := {1,2,3,4...24} Hourly time step of each period

Variables

Binary/Integer Design Variables

“̂i,j := Selection variable for the model j of the technology i

’j œ Ji, i œ I

Ï̂i,j,u := Investment variable for the unit u of the jth model

’u œ U, j œ Ji, i œ I

119



120Appendix B. Complete mathematical model of the Bovisa Case Study

Binary/Integer Operation Variables

ẑi,j,u,n,t := On-o� variable for uth unit at each time step t of the typical period n

’t œ T, n œ TY P, u œ U, j œ Ji, i œ I

”̂i,j,u,n,t := Startup variable for uth unit at each time step t of the typical period n

’t œ T, n œ TY P, u œ U, j œ Ji, i œ I

Continuous Design Variables

êlmax := Maximum power required to the national electric grid [MW]

f̂umax := Maximum fuel consumption rate required to the natural gas network [MW]

Continuous Operation Variables

ŷi,j,u,n,t := Primary energy output of the uth unit at each time step t of the typical period n

’t œ T, n œ TY P, u œ U, j œ Ji, i œ I

ŷ2
GT,j,u,n,t

:= Secondary energy output of the uth GT unit at each time step t of the typical period n

’t œ T, n œ TY P, u œ U, j œ JGT

x̂ty

i,j,u,n,t := Energy input of the uth unit at each time step t of the typical period n

’t œ T, n œ TY P, u œ U, j œ Ji, i œ I

x̂i,j,u,n,t := Energy input of the uth unit accounting for start-up consumptions

’t œ T, n œ TY P, u œ U, j œ Ji, i œ I

ˆouti,n,t := Total primary energy output from the ith technology

’t œ T, n œ TY P, i œ I

ˆout2
GT,n,t

:= Total secondary energy output from gas turbines

’t œ T, n œ TY P

îni,n,t := Total energy input for the ith technology

’t œ T, n œ TY P, u œ U, j œ Ji, i œ I

êln,t := Purchased electricity from the grid
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Objective Function

f̂D := Part of the objective function depending on integer design variables

f̂Dú := Part of the objective function depending on continuous design variables

f̂On := Part of the objective function depending on operation variables of the typical period n

’n œ TY P

Parameters

Energy demand and weather prediction

del

n,t
:= Electricity demand ’t œ T, n œ TY P

dht

n,t
:= Heating demand ’t œ T, n œ TY P

dco

n,t
:= Cooling demand ’t œ T, n œ TY P

Ën,t := Temperature profile ’t œ T, n œ TY P

Hn := Yearly weight of the typical period n according to the clustering n œ TY P

Machine operation characteristics

mi,j := Performance slope ’j œ Ji, i œ I

qi,j := Performance intercept ’j œ Ji, i œ I

mT

i,j
:= Performance temprerature dependence ’j œ Ji, i œ I

m2
GT,j

:= Performance slope for the GT seconday output ’j œ JGT

q2
GT,j

:= Performance intercept for the GT seconday output ’j œ JGT

m2T

GT,j
:= Performance temperature dependence for the GT seconday output ’j œ JGT

xl

i,j
:= Minimum input ’j œ Ji, i œ I

xu

i,j
:= Maximum input ’j œ Ji, i œ I

yu

i,j
:= Nominal output ’j œ Ji, i œ I

rui,j := Rump-up limit ’j œ Ji, i œ I

rdi,j := Rump-down limit ’j œ Ji, i œ I

sui,j := Start-up consumption ’j œ Ji, i œ I
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Cost parameters

ICi,j := Investment cost ’j œ Ji, i œ I

CRF := Capital Recovery Factor

Cel := Cost of connection to the national electric grid

Cfu := Cost of connection to the natura gas network

cfu

i,n,t := Cost of the fuel per MWh ’t œ T, n œ TY P, i œ FU

cel

n,t
:= Market price of the elctricit ’t œ T, n œ TY P

Constraints

Catalogue Selection and Investment Decision

ÿ

i

“̂i,j Æ 1 ’j œ Ji, i œ I

Ï̂i,j,1 = “̂i,j ’j œ Ji, i œ I
ÿ

nœT Y P

ÿ

tœT

ẑi,j,u,n,t Æ Ïi,j,u · Nty · 24 ’u œ U, j œ Ji, i œ I

Prioritization Constraints

Ï̂i,j,u Æ Ï̂i,j,u≠1 ’u œ U \ {1}, j œ Ji, i œ I

ẑi,j,u,n,t Æ ẑi,j,u≠1,n,t ’t, œ T, n œ TY P, u œ U \ {1}, j œ Ji, i œ I

Input-output relationships

ŷi,j,u,n,t = mi,j x̂ty

i,j,u,n,t
+ (qi,j + mT

i,j
Ën,t)ẑi,j,u,n,t ’t œ T, n œ TY P, u œ U, j œ Ji, i œ I

xl

i,j
ẑi,j,u,n,t Æ xty

i,j,u,n,t
Æ xu

i,j
ẑi,j,u,n,t ’t œ T, n œ TY P, u œ U, j œ Ji, i œ I

ˆouti,n,t =
ÿ

jœJi

ÿ

uœU

ŷi,j,u,n,t ’t œ T, n œ TY P, i œ I

îni,n,t =
ÿ

jœJi

ÿ

uœU

x̂i,j,u,n,t ’t œ T, n œ TY P, i œ I

ˆout2
GT,n,t

=
ÿ

jœJi

ÿ

uœU

ŷ2
GT,j,u,n,t

’t œ T, n œ TY P
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Start-up, minimum up time and ramp limits

”̂i,j,u,n,t Ø ẑi,j,u,n,t ≠ ẑi,,ju,n,t≠1 ’t œ T, n œ TY P, u œ U \ {1}, j œ Ji, i œ I

x̂i,j,u,n,t = x̂ty

i,j,u,n,t
+ SU ”̂i,j,u,n,t ’t œ T, n œ TY P, u œ U \ {1}, j œ Ji, i œ I

ŷi,j,u,n,t≠1 ≠ ŷi,j,u,n,t Æ rui + (1 ≠ ẑi,j,u,n,t)M ’t œ T \ {1}, n œ TY P, u œ U, j œ Ji, i œ I

ŷi,j,u,n,t ≠ ŷi,j,u,n,t≠1 Æ rdi + (1 ≠ ẑi,j,u,n,t)M ’t œ T \ {1}, n œ TY P, u œ U, j œ Ji, i œ I

tÿ

t≠tmin+1
ẑi,j,u,n,t Ø tmin”̂i,j,u,n,t≠tmin+1 ’t œ {tmin, . . . , T end}, n œ TY P, u œ U, j œ Ji, i œ I

Energy balances

ÿ

iœOUT el

ˆouti,n,t ≠
ÿ

iœINel

îni,n,t Ø del

n,t
≠ êln,t ’t œ T, n œ TY P

ÿ

iœOUT ht

ˆouti,n,t + ˆout2
GT,n,t

≠
ÿ

iœINht

îni,n,t Ø dht

n,t
’t œ T, n œ TY P

ÿ

iœOUT co

ˆouti,n,t ≠
ÿ

iœINco

îni,n,t Ø dco

n,t
’t œ T, n œ TY P

Maximum fuel consumpiton and power from the grid

êln,t Æ êlmax ’t œ T, n œ TY P
ÿ

iœF U

îni,n,t Æ fumax ’t œ T, n œ TY P

Objective function

f̂D =
ÿ

iœI

ÿ

jœJi

ÿ

uœU

Ci,jÏ̂i,j,uCRF

f̂Dú = êlmaxCel + f̂umaxCfu

f̂On =
A

ÿ

iœF U

ÿ

tœT

îni,n,tc
fu

n,t
+

ÿ

tœT

êln,tc
el

n,t

B
8760
Hn

’n œ TY P

min f̂ = f̂D + f̂Dú +
ÿ

nœT Y P

f̂On





Acronyms

MES Multi-Energy System

Multi-Energy System consists in the integration of distributed energy resources and

multiple energy loads operating as a single, autonomous grid either in parallel to or

“islanded” from the existing utility grid.

[2]

RES Renewable Energy Sources

Renewable energy sources, also called renewables, are energy sources that replenish (or

renew) themselves naturally. Typical examples are solar energy, wind and biomass.

ec.europa.eu

CHP Combined Heat and Power

CHP is the production of both heat and electricity from the same device or power plant.

By capturing the excess heat, CHP allows a more total use of energy than conventional

generation, potentially reaching an e�ciency of 70-90 percent.

collinsdictionary.com

DH District Heating

District heating (also known as heat networks or teleheating) is a system for distributing

heat generated in a centralized location through a system of insulated pipes for residential

and commercial heating requirements such as space heating and water heating.

wikipedia.org

UC Unit Commitment

The unit commitment problem in electrical power production is a large family of mathe-

matical optimization problems where the production of a set of electrical generators is

coordinated in order to achieve some common target, usually either match the energy

demand at minimum cost or maximize revenues from energy production.

wikipedia.org
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ED Economic Dispatch

Economic dispatch is the short-term determination of the optimal output of a number

of electricity generation facilities, to meet the system load, at the lowest possible cost,

subject to transmission and operational constraints.

wikipedia.org

TL Two-layer (optimization)

Two-layer optimization frameworks are generally composed of two nested algorithms.

The outer loop generates potential design solution, while the inner loop optimize the UC

and estimate the operating expenses (OPEX) for the corresponding system configuration.

[23]

OS One-shot (optimization)

One-shot optimization frameworks make use of a single model containing both design

and operation variables. System sizing and dispatch are solved simultaneously in a single

optimization problem.

[23]

PSO Particle Swarm Optimization

Particle swarm optimization is a robust evolutionary strategy inspired by the social

behavior of animal species living in large colonies like birds, ants or fish.

sciencedirect.com

GA Genetic Algorithm

A genetic algorithm is a search heuristic that is inspired by Charles Darwin’s theory

of natural evolution. This algorithm reflects the process of natural selection where the

fittest individuals are selected for reproduction in order to produce o�spring of the next

generation.

medium.com

LP Linear Programming

Linear programming is a method to achieve the best outcome (such as maximum profit

or lowest cost) in a mathematical model whose requirements are represented by linear

relationships. Linear programming is a special case of mathematical programming (also

known as mathematical optimization).

en.wikipedia.org
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MILP Mixed-Integer Linear Programming

Mixed integer-linear programs are linear programs in which some variables are required

to take integer values, and arise naturally in many applications. The integer variables

may come from the nature of the products (e.g., a machine may, or may not, be rented).

www.ibm.com

B&B Branch and Bound

Branch and Bound is an algorithm design paradigm for discrete and combinatorial

optimization problems, as well as mathematical optimization. A branch-and-bound

algorithm consists of a systematic enumeration of candidate solutions by means of state

space search: the set of candidate solutions is thought of as forming a rooted tree with

the full set at the root.

en.wikipedia.org

API Application Programming Interface

An application programming interface (API) is an interface or communication protocol

between a client and a server intended to simplify the building of client-side software. It

has been described as a “contract” between the client and the server, such that if the

client makes a request in a specific format, it will always get a response in a specific

format or initiate a defined action.

en.wikipedia.org

ICE Internal Combustion Engine

Combustion, also known as burning, is the basic chemical process of releasing energy

from a fuel and air mixture. In an internal combustion engine (ICE), the ignition and

combustion of the fuel occurs within the engine itself. The engine then partially converts

the energy from the combustion to work.

energy.gov

PV Photovoltaic (panels)

Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials

that exhibit the photovoltaic e�ect, a phenomenon studied in physics, photochemistry,

and electrochemistry. A photovoltaic system employs solar modules, each comprising a

number of solar cells, which generate electrical power. PV installations may be ground-

mounted, rooftop mounted, wall mounted or floating.

wikipedia.org
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