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Abstract

Strongly correlated electron systems are typically compounds consisting of transition
metals or rare earths, with partially filled d or f bands. The electron-electron interaction
within the d or f shell is far from being negligible and the one-electron approach fails at
grasping the behaviour of these compounds. Hybridization may exist between localized
d or f electrons and the electrons of other bands, such as the wide conduction bands in
a metal.

In cerium based intermetallic compounds the low-temperature physics is driven by
the interaction of lattice of f electrons with the itinerant conduction electrons. Such
materials show a plethora of different ground-states, ranging from antiferromagnetic
to unconventionally superconducting and Fermi liquid behaviour with a huge enhance-
ment of the electrons’ effective mass. This thesis focuses on the prototypical compound
CeCu2Si2. It was the first unconventional superconductor to be discovered in 1979
and still arouses interest in the scientific community as theoretical and experimental
efforts are trying to unveil the superconducting pairing mechanism. Since the inter-
esting properties of the material ultimately stem from the interaction between the f
and conduction electrons, knowledge of the f states is of great interest. Polarization
dependent soft x-ray absorption spectroscopy has proven to be a powerful tool to obtain
information about the symmetry of the 4f ground-state. In this work, we investigate
the crystal-field ground-state wave-function of CeCu2Si2 looking at the linear dichroism
of polarization dependent soft x-ray absorption spectroscopy at the Ce M4,5 edge. In
particular, this is done in the temperature range from 250 mK to 250 K, i.e. from well be-
low the superconducting temperature (Tc = 0.6 K) to well above the Kondo temperature
(TK ≈ 10 − 20 K), in order to probe the ground-state wave-function in the mK regime
and assess the impact of hybridization as a function of temperature. The experimental
data are supported by full-multiplet calculations based on a single-ion crystal-field ap-
proach. The overall temperature trend of the linear dichroism is well explained in terms
of thermal occupation of excited crystal-field states. Small deviations are discussed in
terms of hybridization of f electrons and conduction bands.

We also focus on another compound, YFe2Al10, where Kondo physics originating
from the presence of f electrons is absent. The Fe, however, carries a magnetic moment
that does not order down to 0.1 K. This compound has recently attracted interest since it
is naturally poised on the verge of ferromagnetic order happening at 0 K and undisguised
quantum critical behaviour has been observed. We report an explorative spectroscopical
investigation of the role played by the Fe atoms in YFe2Al10. The valence band soft
photoemission spectrum is measured and compared with preliminary density functional
theory and dynamical mean-field theory calculations, performed by P. Hansmann at the
Max Planck Institute for Chemical Physics of Solids (MPI CPfS), in order to evaluate
the role played by correlations in the compound. The x-ray absorption spectrum at the
Fe L2,3 edge is measured and compared with reference Fe oxide samples in order to assess
the valence of Fe in YFe2Al10. The magnetic moments of the Fe atoms and the magnetic
susceptibility are measured by x-ray magnetic circular dichroism at the Fe L2,3 edge.
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The valence band is better fitted by the calculations when including a modest amount of
Coulomb interaction strength between the Fe 3d electrons. The difference between the
valence of Fe predicted by dynamical mean-field theory and the one suggested by the
comparison of the x-ray absorption spectra with oxide references can be interpreted in
terms of quite large charge fluctuations. Furthermore, x-ray magnetic circular dichroism
data confirm the saturation of the static susceptibility with increasing applied fields
and the values of the effective moment of the Fe atoms, in accordance with what has
previously been measured with a susceptometer.
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Sommario

I sistemi con elettroni fortemente correlati sono tipicamente composti che consistono in
metalli di transizione o terre rare, con bande d o f parzialmente piene. L’interazione
elettrone-elettrone è lontana dall’essere trascurabile e l’approccio a singolo elettrone
fallisce nel cogliere il comportamento di questi composti. Ibridizzazione può esistere
tra elettroni localizzati d o f e gli elettroni di altre bande, come le ampie bande di
conduzione in un metallo.

Nei composti intermetallici basati sul cerio la fisica a basse temperature è diretta
dall’interazione del reticolo di elettroni f con gli elettroni itineranti di conduzione.
Questi materiali esibiscono una serie di stati fondamentali diversi, che vanno da antifer-
romagnetico a superconduttivo non convenzionale e comportamento di liquido di Fermi
con un enorme aumento della massa efficace degli elettroni. Questa tesi si concentra
sul composto prototipico CeCu2Si2. Fu il primo superconduttore non convenzionale a
essere scoperto nel 1979 e suscita ancora interesse nella comunità scientifica in quanto
approcci teorici e sperimentali cercano di svelare il meccanismo di accoppiamento super-
conduttivo. Poichè le proprietà interessanti del materiale discendono fondamentalmente
dall’interazione tra gli elettroni f e quelli di conduzione, la conoscenza degli stati f è di
grande interesse. La spettroscopia a raggi x soffici dipendente in polarizzazione si è di-
mostrata uno strumento efficace nell’ottenere informazioni circa la simmetria dello stato
fondamentale. In questo lavoro, investighiamo la funzione d’onda dello stato fondamen-
tale di campo cristallino in CeCu2Si2 guardando al dicrosimo lineare della spettroscopia
a raggi x soffici dipendente in polarizzazione alla soglia M4,5 del cerio. In particolare,
questo è svolto nell’intervallo di temperature da 250 mK a 250 K, cioè da molto al di
sotto della temperatura critica superconduttiva (Tc = 0.6 K) a molto al di sopra della
temperatura di Kondo (TK ≈ 10 − 20 K), allo scopo di sondare la funzione d’onda di
stato fondamentale nel regime dei mK e valutare l’impatto dell’ibridizzazione in funzione
della temperatura. I dati sperimentali sono supportati da simulazioni a multipletto com-
pleto basati su un approccio a singolo ione. L’andamento complessivo in temperatura
del dicroismo lineare è ben spiegato in termini di occupazione termica degli stati eccitati
di campo cristallino. Piccole deviazioni sono discusse nei termini di ibridizzazione tra
elettroni f e bande di conduzione.

Ci concentriamo anche su un altro composto, YFe2Al10, dove la fisica Kondo che
origina dalla presenza di elettroni f è assente. Il Fe, tuttavia, presenta un momento
magnetico che non porta a ordine per temperature fino a 0.1 K. Questo composto ha
recentemente attratto interesse dal momento che è naturalmente in procinto di ordinarsi
ferromagneticamente a 0 K ed è stato manifestamente osservato comportamento critico
quantistico. Riportiamo un’indagine spettroscopica esplorativa del ruolo svolto dagli
atomi di Fe in YFe2Al10. Lo spettro di fotoemissione con raggi x soffici della banda
di valenza è misurato e comparato con calcoli preliminari di teoria del funzionale della
densità e di teoria di campo medio dinamico, svolti da P. Hansmann presso l’Istituto
Max Planck per la Chimica Fisica del Solidi (MPI CPfS), con lo scopo di valutare il
ruolo delle correlazioni in questo composto. Lo spettro di assorbimento di raggi x alla
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soglia L2,3 del ferro è misurato e comparato con gli spettri di referenze di ossidi di ferro,
con lo scopo di valutare la valenza del Fe in YFe2Al10. I momenti magnetici degli atomi
di Fe e la suscettività magnetica sono misurati tramite dicroismo magnetico circolare a
raggi x alla soglia L2,3 del ferro. La banda di valenza è meglio riprodotta dai calcoli se
si include un modesta entità di interazione coulombiana tra gli elettroni 3d del Fe. La
differenza tra la valenza del Fe predetta dalla teoria di campo medio dinamico e quella
suggerita dal confronto degli spettri di assorbimento di raggi x con ossidi di referenza
può essere interpretata in termini di fluttuazioni di carica. Inoltre, i dati di dicroismo
magnetico circolare a raggi x confermano la saturazione della suscettività statica con
campi crescenti e i valori del momento magnetico effettivo degli atomi di Fe, in accordo
con quanto precedentemente misurato tramite un suscettometro.

xx



Chapter 1

Introduction

When dealing with matter from a quantum point of view, a single particle approach,
where the constituents of the quantum system under consideration are effectively treated
as independent and non-interacting entities, has proved successful in a wide variety of
cases. Strongly correlated electron systems, on the other hand, have proved a much
harder nut to crack. They are typically compounds of transition metals or rare earths.
The electron-electron interactions are large compared to the one-electron band widths
and the charge distribution of the partially filled d or f band is far from the statistical dis-
tribution of one-electron theories. A true many-body approach is needed to describe the
behaviour of correlated electrons [19]. Strongly correlated systems make up a large class
of insulators and electronic materials showing exotic electronic and magnetic properties,
such as spin-charge separation, metal-insulator transition and heavy-fermion behaviour.

Interactions even exist between localized d or f electrons and the electrons of other
bands, such as the wide conduction bands in a metal. The interplay between localized
and itinerant electrons leads to a number of interesting consequences. In this Chapter,
a short introduction to magnetic impurities in a metal is presented. First, the case
of an isolated impurity leading to the Kondo effect is treated; then, the situation of
impurities sitting regularly on lattice sites, the so-called Kondo lattice, is considered,
along with the ensuing exotic behaviour leading for example to heavy-fermion or mixed-
valence systems. A more detailed presentation can be found in Chapter 13 of Ref. [3]
and references therein, upon which this introduction is based. Here we just report a
phenomenological and qualitative introduction.

1.1 The Anderson impurity model

Let us consider a transition metal impurity in an ordinary metal. It turns out the
impurity may loose or retain its magnetic moment. The former possibility can be qual-
itatively explained in the following way: when the localized electron level, that is for
example the d level of the impurity Ed, overlaps with the continuous spectrum, electrons
on this level may acquire a finite lifetime due to the possibility for, e.g., a d electron with
spin ↑ to escape into the conduction band, whereby in its place a conduction electron
comes, possibly with opposite spin ↓. As a result the moment is reduced or completely
quenched.

The situation gets more complicated once we consider the possibility that the local-
ized d level lies deep below the Fermi level, thus hindering the previous mechanism. The
problem of the appearance of magnetic moments at impurity sites in metals was treated
by P. W. Anderson [20]. The Hamiltonian he considered can be written as:

1
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H =
∑
k,σ

εkc
†
k,σck,σ + εd

∑
σ

d†σdσ + Und↑nd↓ +
∑
k,σ

(Vkc
†
k,σdσ + c.c) (1.1)

where the first term considers the energy of the conduction electrons, the second that of
the d impurity electrons, the third term accounts for the repulsive interaction between d
electrons and the last term models the correlation between d and conduction electrons
through a d−c hybridization matrix Vk. The simplistic outcome of the so-called Ander-
son impurity model can be stated in the following terms. If the impurity state Ed with
spin ↑ is well below the Fermi level and is occupied, then an energy U is needed to put
another electron in the same level with opposite spin ↓. One may think that the second
electron is to be placed in a state at energy Ed +U , which for large U will lie above the
Fermi level and be unoccupied. This is the case of an impurity possessing a magnetic
moment. On the other hand, if the d− c correlation, which is modelled as hybridization
within the model, is strong, then the number of spin ↑ electrons at Ed decreases and so
does the energy of the spin ↓ state located at Ed+Und↑. These two levels will effectively
move towards each other by approaching the Fermi level. If the hybridization is strong
enough and U low enough, a non-magnetic state can ensue.

1.2 The Kondo effect

The Anderson model is still based upon a mean-field assumption: when one goes beyond
mean-field it turns out that the magnetic impurity is screened and eventually disappears
as T → 0. This is the essence of the Kondo effect. Historically, it dates back to 1934
when de Haas et. al [1], by measuring the resistivity of a gold wire with a small amount
of impurities, found a minimum at about 4 K, followed by an unexpected increase below
that temperature (Fig. 1.1). An explanation was provided by Kondo in 1964 [21], when
he considered the scattering of electrons with magnetic impurities in the framework of
the Anderson impurity model, and predicted an antiferromagnetic exchange interaction
between the localized impurity moment and the itinerant electrons in a metal. The
application of third order perturbation theory shed light on a term in the scattering
rate due to the magnetic impurities having a logarithmic dependenc on 1

T , thus causing
the resistivity to increase at very low temperature. The resistivity can be written as:

R(T ) = R0(T ) +RK

(
1 + c log

(εF
T

))
(1.2)

where besides the usual scattering term R0(T ) a new logarithmic term also appears.
Here J is the exchange coupling constant between conduction and d electrons, RK and
c are constants. The onset of the Kondo effect is reached around the Kondo temperature
TK , giving the typical temperature scale for the behaviour of the system. The resistivity
does not diverge as T → 0 since the perturbation approach is no longer valid well below
TK . The results of Kondo may also be interpreted as the formation of a singlet bound-
state because of the antiferromagnetic interaction of the conduction electrons with the
localized moments. The magnetic impurity is screened by the tendency of conduction
electrons with opposite spin with respect to the impurity to come closer to it and form a
screening cloud. At high temperatures the process is not effective and the system behaves
as a localized magnetic impurity but as T < TK the screening becomes relevant. The
process is depicted in Fig. 1.2.
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Figure 1.1: Figure from [1]. Au re-
sistance in the temperature range from
1 K to 5 K. The minimum is located at
TK ≈ 4K.

Figure 1.2: Pictorial representation
of a magnetic impurity in the sea of
conduction electrons above TK (top)
and below TK (bottom), where the
Kondo screening is active, the impu-
rity is screened by the conduction elec-
trons and the antiferromagnetic cou-
pling gives rise to a Kondo singlet state.

Figure 1.3: Figure from [2]. Temperature dependence of the resistivity of a CeAl3
single crystal. The increase of ρ(T ) at low temperature can be seen, followed by its
decrease.
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1.3 Kondo lattice materials

So far only an isolated magnetic impurity in a metallic host has been considered, with
energy Ed lying well below the Fermi level and thus having an occupancy close to integer.
It is interesting to extend the picture to systems where multiple impurities are present
on a lattice structure and where the energy of the impurities lies closer to εF . This is
the case for heavy-fermion (HF) compounds. They are typically lanthanide- or actinide-
based intermetallic compounds chacterized by a partially filled f shell, typically Ce or
Yb compounds (having respectively one f electron and one f hole in their ground state)
or other materials based e.g. on U, Pr, Sm and Pu [22, 23]. It is a well known fact
that the f wave-functions are radially well localized, so that overall the scenario is that
of a lattice of localized f impurities. Again, the physics is driven by the interaction
of the impurities, or rather of the f electrons, with the sea of itinerant conduction
electron. Also in intermetallic heavy-fermion compounds the resistivity ρ(T ) increases
as the temperature decreases, in analogy to the Kondo effect of an impurity in a metallic
host. The resistivity of CeAl3 as a function of temperature is reported in Fig. 1.3 as an
example. Besides the increase with decreasing T, however, another trend is also evident:
as T decreases, ρ(T ) goes through a maximum before starting to decrease again at very
low T. This is due to coherence effects that f electrons (impurities) experience when
sitting on a lattice with translational symmetry.

The extension of the Anderson model to the case of a lattice of impurities leads to
the so-called Anderson lattice Hamiltonian:

H =
∑
k,σ

εkc
†
k,σck,σ + εf

∑
σ,i

f†σ,ifσ,i + U
∑
i

f†i↑fi↑f
†
i↓fi↓ +

∑
i,k,σ

(Vi,kc
†
k,σfσ,i + c.c) (1.3)

Eq. 1.3 is analogous to Eq. 1.1, with the first two terms considering the energy of
conduction and f electrons respectively, the third term accounting for f − f electron
interactions and the last term modelling c − f hybridization. However, it should be
noted that a new index i is now being considered, running over all lattice sites. A
similar approach was followed by Doniach in 1977 [24] to extend the Kondo formulation
of the problem to a Kondo lattice. Once the lattice nature of the problem has been
implemented, one may turn the attention to the influence of the difference between
the energy of the impurity Ef and the Fermi level εF , starting from the case where
Ef << εF .

The competition between two opposing effects governs the system:

1. An inter-site interaction, where the conduction electrons can mediate the coupling
between the f electrons via the Rudermann-Kittel-Kasuya-Yoshida (RKKY) in-
teraction, leading to a magnetically ordered ground-state.

2. An on-site interaction, whereby the conduction electrons screen the local f mag-
netic moments and lead to a non-magnetic ground-state, as given by Kondo effect.

Both effects share a magnetic origin and crucially depend on the exchange coupling
J and on the density of conduction electrons N(0). Nevertheless, their outcome is
different: the latter favours a non-magnetic ground state, where localized singlet states
arise from the antiferromagnetic coupling between f and conduction electrons, while the
former induces a magnetically ordered (usually antiferromagnetic) ground-state, where
the conduction electrons mediate the interaction of the f moments via the oscillation of
their spin density. The ordering temperatures below which the two effects are relevant
also exhibit a different behaviour. The Kondo temperature scale is characterized by an
exponential dependence
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TK ∝
1

N(0)
e−

1
N(0)J (1.4)

The RKKY interaction, instead, scales quadratically with the exchange coupling:

TRKKY ∝ J2N(0) (1.5)

On the whole then, for small J the RKKY interaction dominates and magnetic order is
formed, while for larger J the Kondo lattice screening favours the formation of a para-
magnetic ground-state of strongly correlated electrons. The exchange coupling constant
can be written as [3]:

J =
2V 2

εF − Ef
(1.6)

where V is the hybridization strength. If Ef << εF , the system possesses magnetic
order at low temperature. As Ef gets closer to the Fermi energy the Kondo scale starts
becoming predominant. Contextually, the occupation of the f levels is close, but not
equal, to unity, with only partial delocalization of the f electrons. The presence of the
Kondo effect can be linked to the appearance of a Kondo resonance peak in the density
of states near the Fermi level. In this regime, then, the system may be described as a
Fermi liquid, but with huge enhancement of the electron effective mass m∗. This is the
heavy-fermion regime: the partial delocalization of f electrons due to hybridization leads
to the formation of heavily-dressed quasi-particles, with m∗ ≈ 103m0, where m0 is the
free electron mass. Experimentally, this was first observed by Andres et al. in 1975 [25]
by measuring a specific heat coefficient of CeAl3 about a thousand times larger than that
of usual metals. However, it should be noted that this is true only at low temperature,
since at high T the screening is no longer effective, leading to a paramagnetic response
of the localized moments and a Curie-Weiss-like dependence of the susceptibility. Fig
1.4 shows what is known as Doniach phase diagram, plotted for T as a function of the
energy of the f impurity Ef .

Figure 1.4: Figure adapted from [3]. T − Ef Doniach phase diagram illustrating
the phases that can develop in heavy-fermion systems depending on the energy of the
impurity level Ef .

Looking at the left-hand side of Fig. 1.4 it can be seen that as Ef gets closer to
the Fermi level, the magnetic ordering critical temperature TC starts to decrease due to
Kondo screening of the moments. This can lead to TC reaching zero and the formation of
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a so-called quantum critical point (QCP) at the transition between magnetically ordered
and heavy-fermion regimes.

A few more words need to be spent on this matter. A QCP relates to a quantum phase
transition, that is a phase transition happening at 0 K in whose vicinity the coherence
length of the quantum fluctuations increases greatly. In non-zero temperature classical
phase transitions the fluctuations at the critical point are governed by classical physics,
the size of quantum fluctuations being much smaller than the thermal energy scale of
the system kBT . Even more outstanding among the characteristics of zero-temperature
quantum phase transition is that, unlike classical finite-temperature phase transitions,
the fluctuations and critical behaviour are extended to a wide portion of the phase-
diagram and actively influence the properties of the system. This is because, at zero
temperature, the critical fluctuations are quantum mechanical in nature, in the sense
they stem from Heisenberg’s uncertainty principle. As a consequence, it is of particular
interest that close to the QCP the system can no longer be described as a Fermi liquid.
Quantum criticality was first observed in Au-doped CeCu6 [26]. It may also occur
that unconventional superconductivity happens in the proximity of the QCP, possibly
and usually resulting from a magnetically mediated pairing mechanism. This was first
observed for CeCu2Si2 by Steglich et al [12] in 1979, paving the way for reasearch into
unconventional superconductivity and proving that magnetism and superconductivity
are not irreconcilable. Other examples are CeCu2Ge2 [27], CeCoIn5 [28], CeIn3 [29] and
many others like CePd2Si2 [30] or CeRh2Si2 [31].

On the whole, it is clear that the class of materials under consideration exhibits a
rich variety of ground-states, leading to a multitude of fundamental and exotic physical
phenomena and posing the experimental and theoretical challenge to gain insight into
them. Tuning J it is possible to move from a magnetically ordered ground-state to the
heavy-fermion regime. In between the two, one may also find a QCP, possibly surrounded
by a superconducting dome, below which unconventional superconductivity is observed.
The interplay derives from the magnitude of the exchange coupling constant J , whose
magnitude depends on the energy difference between the f levels Ef and the Fermi level
εF , as given by Eq. 1.6. When εF − Ef becomes small, then Jex gets larger and the
system moves from an AFM ground-state to a heavy-fermion behaviour (see Fig. 1.4).
The tuning of J is practically achieved by some external control parameter δ, which
can be pressure, chemical substitution or a magnetic field, intervening in influencing the
lattice density and therefore the degree of hybridization. This is summarized in the T−J
Doniach phase-diagram, reported in Fig. 1.5, where the rich physics of heavy-fermion
systems is displayed.

Nonetheless, this is not the end of the story. Looking again at Fig. 1.4, if Ef gets
very close to εF , hybridization effects become very strong and the occupation of the f
shell varies noticeably from integer. This is the mixed-valence regime. The ground-state
wave-function can be written as a superposition of states accounting for the different f
electron configurations. Usually Ce adopts the valence 3+, so that the 4f configuration
is f1. For an intermediate valence Ce compound, however, as e.g. CePd3 [32], the
ground-state is a mixture of 4fn configurations and can be written as:

|ψground〉 = c0
∣∣f0
〉

+ c1
∣∣f1L

〉
+ c2

∣∣f2L
〉

(1.7)

where, besides the usual trivalent contribution f1, the tetravalent and bivalent contri-
butions f0 and f2 coming from hybridization to the conduction electrons is also present.
L and L denote the number of ligand holes. The f1 configuration is still the dominating

one, but there are now sizeable contributions of f0 and also f2. The total valence of Ce
in CePd3 is ≈ 2.8 [33].

Finally, if the f levels come even closer to εF to the point of going above it, the
f electrons will spill into the conduction band and the system will be a non-magnetic
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Figure 1.5: Figure from [4]. Doniach phase diagram illustrating the competition be-
tween the the RKKY and Kondo interactions, as a function of the exchange coupling
Jex or of an external control parameter δ. If TRKKY < TK the ground-state is localized
and antiferromagnetic, if TK > TRKKY the ground-state is a Fermi liquid, with partial
delocalization of the f electrons and heavy-fermion behaviour. In the region between the
two regimes a quantum critical point may be found, where the system can be described
as a non-Fermi liquid and unconventional superconductivity may appear.

normal metal with empty f levels.

1.4 Crystal-field

When a magnetic ion sits within a lattice, not only are the f electrons affected by the
hybridization with the surrounding conduction electrons, but they also experience the
crystal-field that originates from the surrounding atoms and which reflects the local
point symmetry. The ensuing wave-function of the crystal field states shows a strong
anisotropy, which may affect their interaction with the environment. For example, in
case of hybridization of 4f and conduction electrons, symmetry aspects are important.
For the introduction of the crystal-field formalism it is useful to start from the con-
sideration of the localized electrons in an hypothetical free atom and to progressively
consider the interactions adding up to a satisfactory description of the localized states
located in a crystalline environment.

1.4.1 From an isolated atom to the crystal-field

Seeing an atom as a system with N electrons of mass m and charge -e and a nucleus with
a very large mass compared to that of the electrons and charge Ze, the Hamiltonian for
an atomic system can be written as:

H = H0 +HSO +Hee (1.8)
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where H0 comprises the kinetic energy of the electrons and their interaction with the
nucleus:

H0 =
∑
i

p2
i

2m
−
∑
i

Ze2

ri
(1.9)

HSO takes the spin-orbit interaction into account:

HSO =

N∑
i

ζi(r)li · si (1.10)

and Hee considers the interaction between electrons:

Hee =
1

2

∑
i 6=j

e2

rij
(1.11)

The summations above run over all electrons. pi and ri are the electrons momentum and
position, ζi the spin-orbit coupling constants, li and si the angular and spin momenta.

One may now consider the atom as sitting in a crystalline environment. The attempts
at this endavour by the so-called crystal-field theory date back to the 1930s [34, 35] and
are based upon the following assumption: in a purely electrostatic model, the attention
is drawn on a single atomic site within the crystal and the crystalline environment is
modelled by an electrostatic potential exerted by the neighbouring atoms, seen as point-
charges, on the outer electron shell of the ion in the atomic site under consideration. This
is an effective model, in an actual crystal structure atoms are kept together by various
and complex bonding mechanisms. However, the 4f shell in the lanthanide series (see
Fig. 1.6) is particularly well-localized, so that the overlap with orbitals from neighboring
ligands is very small. In this sense the wave-functions have atomic-like character and
the ionic picture upon which crystal-field theory is based does indeed work well.

Figure 1.6: Radial part of the wave-function of 4f , 5s, 5d and 6s electrons as calulated
by the Hartree-Fock method for Ce3+ [4].

A crystal-field Hamiltonian HCF = −eVCF is added to the Hamiltonian for an
atomic system, where VCF is the crystal-field or Madelung potential exerted by the
surrounding point-like charges on the central ion under consideration. In order to assign
the good quantum numbers to the problem it is useful to compare the magnitude of
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the crystal-field potential with the other terms of the free-atom Hamiltonian. For rare
earths systems one finds HCF < VSO < Hee, while for transition-metal complexes
VSO < HCF < Hee [36].

1.4.2 Parametrization of the crystal-field

In order to provide an adequate mathematical description of the crystal-field potential,
we consider the eigenfunctions of the free-atom Hamiltonian Ψnlm(r, θ, φ) = Rln(r)Y ml (θ, φ),
written as the product of a radial and an angular part following the usual notation for
the quantum numbers n, l and m. We then apply an analogous separation to the
crystal-field potential by expanding it in spherical harmonics Y ml (θ, φ):

VCF (r, θ, φ) =

∞∑
k=0

k∑
m=−k

Amk r
k

√
4π

2k + 1
Y mk (θ, φ) =

∞∑
k=0

k∑
m=−k

Amk r
kCmk (θ, φ) (1.12)

where Y mk are the renormalized spherical harmonics:

Y mk (θ, φ) =

√
(k −m)!

(k +m)!
Pk(cos θ)eimφ (1.13)

and Pk(cos θ) are the Legendre polynomials. The matrix elements 〈Ψp|HCF |Ψj〉 of the
crystal-field Hamiltonian are given by:

HCF
p,j = −e

∞∑
k=0

k∑
m=−k

Amk

〈
Rlpnp(r)

∣∣∣ rk ∣∣∣Rljnj (r)〉
√

4π

2k + 1

〈
Y
mp
lp

(θ, φ)
∣∣∣Y mk (θ, φ)

∣∣∣Y mjlj
(θ, φ)

〉
(1.14)

The integrals over the radial part
〈
R
lp
np(r)

∣∣∣ rk ∣∣∣Rljnj (r)〉 can be calculated for a free

atom in the Hartree-Fock approximation using Cowan’s code [37]. The integrals over

the angular part
〈
Y
mp
lp

(θ, φ)
∣∣∣Y mk (θ, φ)

∣∣∣Y mjlj
(θ, φ)

〉
can be calculated analytically. This

leaves us with the Amk to be determined experimentally to fully characterize the crystal
field. However, since the radial wave functions in a free atom may be different to those of
an atom in a solid, it is convenient to redefine such parameters by including the integral
over the radial part:

Ãmk = Amk

〈
Rlpnp(r)

∣∣∣ rk ∣∣∣Rljj (r)
〉

(1.15)

All the summations above involve an infinite number of k values. Fortunately, several
constraints intervene in limiting the number of parameters to a finite and manageable
set.

Constraints on the crystal-field parameters

In this paragraph the constraints limiting the number of necessary crystal-field param-
eters are schematically reported:

• The integrals over the angular part in equation 1.14 can be expressed using the
3j symbols [37]. From a mathematical viewpoint, a triangular inequality holds,
involving that only those matrix elements with k ≤ lp + lj can be non-vanishing.
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• it can be seen that k + lp + lj must be even, since otherwise the angular term〈
Y
mp
lp

(θ, φ)
∣∣∣Y mk (θ, φ)

∣∣∣Y mjlj
(θ, φ)

〉
in 1.14 would involve the integration of an odd

function, which vanishes.

• Since the Hamiltonian matrix has to be hermitian, that is Hpj = H∗pj , we must

have Amk = (−1)mA−mk . This means that it is only sufficient to determine the
parameters Amk with m ≥ 0

• The crystal-field potential must be invariant under symmetry operations of the
point group relating to the symmetry of the cluster. If there is a Cqz symmetry
axis, then the crystal-field potential itself must comply to that:

VCF (r, θ, φ) = VCF

(
r, θ, φ+

2π

q

)
Since the φ dependence in 1.14 is contained in the eimφ factor of the spherical

harmonics, this implies eimφ = eim(φ+ 2π
q ), which is true if

m = Nq

where N is an integer. In turn, it follows that the crystal-field can only mix states
that differ in the Jz quantum number by the order of the rotational symmetry,
given this the symmetry axis is chosen as the quantization axis:

∆Jz = q (1.16)

1.4.3 Ce3+ in tetragonal crystal-field

In this section, we deal with the derivation of the crystal-field states of the rare-earth
Ce3+ ion in tetragonal crystal-field as an example. In Chapter 3 the crystal-field of
CeCu2Si2 was studied.

For rare-earths HCF < VSO < Hee with these three terms being of the order of
10 meV, 100 meV and 1 eV. The Coulomb repulsion has to be considered first and
since the eigenstates of the Coulomb operator are also the eigenstates of the spin and
angular momentum operators, the resulting multiplets can be described by the quantum
numbers S and L. Spin-orbit is weaker than the Coulomb repulsion; thus, the LS
coupling scheme (or Russel-Saunders) can be applied, leading to the coupling of L and
S to the total angular momentum J and a further multiplet splitting of different J .
Since the coupled spin and angular momentum are in principle no longer conserved
independently, whereas J = L + S is, J is the appropriate quantum number, L and S
only to a good approximation. Each J level is (2J+1)-fold degenerate. The introduction
of the crystal-field breaks the spherical symmetry of the system and J is not rigorously
a good quantum number any longer. Nevertheless, since for rare earths the crystal field
splitting is usually small compared to the spin-orbit splitting it is still reasonable to use
J as a quantum number. The (2J + 1)-fold degeneracy of each spin-orbit split level is
lifted by the crystal field. Let us now focus on the Ce3+ ion and apply the considerations
reported above to this specific case of a crystal-field with tetragonal symmetry.

The starting point is the 4f1 configuration, whose LS terms are perturbed and split
by the spin-orbit interaction first and by the crystal-field then. The Hund’s rule ground
state has L = 3 and S = 1

2 . Because of spin-orbit coupling, states with different J are
split (J = |L± S| = 5

2 ,
7
2 ) and since the shell is less than half-filled, the ground state

is the J = 5
2 multiplet. The further (2J + 1)-fold degeneracy of the Jz states within

the two multiplets is then lifted by the crystal-field. However, since those Jz states are
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generally not eigenstates of the crystal field Hamiltonian too and do not comply to its
symmetry, they are not simply split but also intermixed.

As for the parametrization of the crystal field acting on 4f electrons, lp = lj = 3,
meaning that because of the constraints mentioned in Section 1.4.2 the allowed values
for k are k = 0, 2, 4, 6. The expression of the crystal-potential 1.12 reduces to:

VCF = A0
0r

0C0
0 +

2∑
m=−2

Am2 r
2Cm2 +

4∑
m=−4

Am4 r
4Cm4 +

6∑
m=−6

Am6 r
6Cm6 (1.17)

The tetragonal symmetry of the crystal-field is described by the D4h point group. The
presence of a four-fold rotational symmetry allows for a reduction of the values of m to
m = 0, 4. The crystal-field potential can then be written as:

VCF = A0
0r

0C0
0 +A0

2r
2C0

2 +A0
4r

4C0
4 +A4

4(C4
4 +C−4

4 )+A0
6r

6C0
6 +A4

6r
6(C4

6 +C−4
6 ) (1.18)

Furthermore, since we can only consider Amk terms with positive m, we are now left
with six parameters to characterize the crystal-field. These parameters, however, are
the mere coefficients of an expansion, with no straightforward physical interpretation.
In order to get a better insight into the physics, it is useful to look at the at crystal-field
Hamiltonian matrix, written in the basis of the J, Jz states that are the eigenstates of
the spherical Hamiltonian. Without entering into the details of its composition, I just
report its overall structure here:[

HJ= 7
2
(Amk , ζ) Hmix(Amk )

Hmix(Amk ) HJ= 5
2
(Amk , ζ)

]
(1.19)

It is made up of four submatrices: the two on the diagonal describe the J = 7
2 and J = 5

2
multiplets respectively, while the off-diagonal submatrices refer to the mixing between
them. The presence of these off-diagonal terms is due to the fact the the J, Jz states
are no longer the eigenstates of the crytal-field Hamiltonian, which induces a mixing
between them. Off-diagonal terms are also present in the J = 5

2 and J = 7
2 sub-matrices

for the same reason, involving a mixing of pure Jz states within the same multiplet.
However, one should consider that the mixing between the Jz states from the the J = 5

2
multiplet with the Jz states from the the J = 7

2 multiplet can be neglected, since in
rare earths the spin-orbit coupling is much larger than the crystal-field. In other words
the Hmix sub-matrices in eq 1.19 are unimportant. Furthermore, the parameter A0

0 is
only present on the main diagonal of the Hamiltonian matrix and thus only involves an
energy shift of all crystal-field states, without implying mixing between them. From a
physical point of view such a term represent the monopole, isotropic part of the crystal-
field expansion. The same is true for the spin-orbit coupling constant ζ. In the following
we may as well neglect these two terms and consider the J = 5

2 submatrix, since we are
only interested in the ground-state and first excited states:



1
21 (−6A0

2 +A0
4) 0 0 0 1

3

√
2
7A

4
4 0

0
2A0

2

35 −
A0

4

21 0 0 0 1
3

√
2
7A

4
4

0 0
8A0

2

35 −
2
21A

0
4 0 0 0

0 0 0
A0

28
35 −

2
21A

0
4 0 0

1
3

√
2
7A

4
4 0 0 0

2A0
2

35 −
A0

4

21 0

0 1
3

√
2
7A

4
4 0 0 0 1

21 (−6A0
2 +A0

4)


(1.20)
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Notice that only three parameters (A0
2, A0

4 and A4
4) are now needed to characterize the

crystal-field. As mentioned in the previous section, only those states differing in their
Jz quantum number by the order of the rotational symmetry axis in the quantization
direction can mix. In the present case, the four-fold rotational symmetry axis of the
tetragonal crystal-field imposes ∆Jz = 4, meaning that the Jz = ± 1

2 state can only mix
with the Jz = ∓ 7

2 states, so that the Jz = ± 1
2 is a pure state in the J = 5

2 multiplet.
Furthermore, Jz = ± 5

2 can mix with Jz = ∓ 3
2 . This is also immediately evident from

1.20: the matrix is written on the basis of the Jz states and its colomns, from left to
right, and lines, from top to bottom, correspond to Jz = + 5

2 ,+
3
2 ,+

1
2 ,−

1
2 ,−

3
2 ,−

5
2 . It

can be seen that the Jz = ± 1
2 of the J = 5

2 multiplet state does not mix indeed.
Finally, we come to the eigenstates of the tetragonal crystal-field written in terms of

the
∣∣J = 5

2 , Jz
〉
≡ |Jz〉 pure states:

|1〉 = Γ−7 = α

∣∣∣∣±5

2

〉
− β

∣∣∣∣∓3

2

〉
(1.21)

|2〉 = Γ6 =

∣∣∣∣±1

2

〉
|3〉 = Γ+

7 = β

∣∣∣∣±5

2

〉
+ α

∣∣∣∣∓3

2

〉
with energies E1, E2 and E3, which are functions of the Amk parameters and of either α
or β. The last two parameters have to comply, because of normalization, to:

α2 + β2 = 1 (1.22)

Plots of the charge density of the pure Jz states within the J = 5
2 multiplet are reported

in Fig. 1.7 and a schematic illustration of the energy levels scheme for Ce 3+ in a
tetragonal crystal field is reported in Fig. 1.8.

The Amk parameters do not have any direct physical meaning. For this reason, again,
we prefer to consider more physical quantities and describe the states in equation 1.21
in terms of α (also known as mixing parameter) and the crystal field splittings ∆E21

and ∆E31, instead of A2
2, A0

4 and A4
4. Upon diagonalizing matrix 1.20 one finds the

relation between the Amk , ∆E21, ∆E31 and α:

∆E21 =
1

105

(
36A0

2 + 15A0
4 −

√
(4(9A0

2 − 5A0
4)2 + 350(A4

4)2)
)

(1.23)

∆E31 = −
2
(

624A0
2 + 260A0

4 + 53
√

4(9A0
2 − 5A0

4)2 + 350(A4
4)2
)

11025

α = − 1√
1 +

−18A0
2+10A0

4+
√

324(A0
2)2−360A0

2A
0
4+100(A0

4)2+350(A4
4)2

350(A4
4)2

and

A0
2 =

5

12
((−5 + 6α2)∆E21 + 4∆E32) (1.24)

A0
4 =

(
3

2
− 6α2

)
∆E21 + 3∆E31

A4
4 = −3

√
7

2
α
√

1− α2∆E21
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Figure 1.7: Charge densities of the crystal-field split J = 5
2 multiplet pure Jz states.

Figure 1.8: Energy levels scheme of Ce 3+ in a tetragonal crystal-field. The spin-orbit
interaction splits fourteen degenerate states into the six-fold degenerate J = 5

2 and eight-
fold degenerate J = 7

2 multiplets. The crystal field lifts the (2J + 1)- fold degeneracy of
these two multiplets. The charge density of the lowest crystal-field states is also plotted,
in the case of a mixing parameter α = 0.3.
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1.5 Aspects investigated in this thesis

When considering a magnetic moment in a metallic host, the interaction between the lo-
calized moment and the conduction band gives rise to a multitude of interesting physical
phenomena. Therefore, the study and characterization of the states at the moment sites
plays a central role in the understanding of these systems. The symmetry and degener-
acy of the ground-state is influenced by the crystal-field, so that the knowledge of the
crystal-field states is of great importance. Other interesting aspects may be the valence
and magnetic properties of the impurity, and how these are affected by the environment.

In this thesis, the aspects mentioned above are investigated by means of x-ray spec-
troscopies. The experimental and theoretical techniques utilized in this work are de-
scribed in Chapter 2. The two compounds under investigation are the following.

• CeCu2Si2 The first unconventional superconductor to be discovered, it is a pro-
totypical example of heavy-fermion compound, where Ce Kondo lattice interacts
with the conduction electrons. Chapter 3 is dedicated to the examination of the
crystal-field ground-state wave-function of CeCu2Si2.

• YFe2Al10 Y does not belong to the lanthanide series and 4f electrons are absent
in the unit cell. The Fe atoms, surrounded by an Al host, are the protagonists
of the physics and the focus of analysis. Their magnetic properties, valence and
degree of correlation are investigated in Chapter 4.



Chapter 2

Experimental techniques

X-ray spectroscopy is used for the investigation of the electronic structure of molecules,
liquids and solids. Especially core-level spectroscopy, as a local probe, has been very
successful in determining the valence and orbital character of d or f elements in solids.
When light is shone on a sample, photons can be scattered, absorbed or annihilated
via the photo-electric effect. The last two processes are the basis of x-ray absorption
spectroscopy (XAS) and photo-electron spectroscopy (PES) respectively. These are the
techniques utilized in this thesis and are the focus of the present chapter.

2.0.1 Synchrotron radiation

XAS experiments, as well as PES ones, require very brilliant light in the x-ray regime.
Such a requirement is met by modern synchrotrons.

The term synchrotron radiation refers to the electromagnetic radiation emitted by
charged particles moving at relativistic speed on a circular orbit. Modern synchrotrons
usually make use of electrons. In general, any charged particle, when moving on a
non-linear trajectory, emits light. However, the radiation emitted by a charged particle
moving at low speed (v << c) resembles that of a classical dipole, whereas a charged
particle travelling at very high speed (v ≈ c), as is the case for electrons in a synchrotron,
emits light in a narrow cone tangentially to its orbit. This is pictorially illustrated in
Fig. 2.1 .

Besides the peculiar emission divergence, synchrotron light is characterized by many
further impressive aspects. A broad range of energies is available, ranging from the
infrared to hard x-rays and a photon flux of up to 1019 photons per second can be
reached, compared to the 1010 per second of a common laboratory x-ray lamp.

Fig. 2.2 shows what a modern synchrotron looks like. Electrons are created by an
electron gun and then fed into a linear accelerator, which accelerates them to energies of
several MeV. They then enter the booster ring, where they are accelerated to energies
of the order of the GeV, before entering the storage ring. In both these rings the
electrons are kept in a circular orbit by bending magnets. Radio-frequency cavities
along the storage ring make up for energy losses of the electrons. The broad spectrum
of radiation generated during the bending of the electrons’ trajectory is guided towards
the beamlines, where the beam is optimized by monochromators, focusing mirrors, slits
or other optical devices before reaching the end-stations, where the sample is located.
In third generation synchrotrons, other so-called insertion devices are used to improve
the intensity and brightness of the beam. These are collocated in the linear sections of
the storage ring and are made of a periodic structure of magnets. In a wiggler, magnets
with alternating polarities are placed to form a multipole magnet. Upon going through

15
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Figure 2.1: Qualitative depiction of radiation emitted by a charged particle travelling
on a circular orbit at low speed (left) and at relativistic speed (right). Figure taken from
[4]

Figure 2.2: Layout of a modern synchrotron. Figure taken from [5]

the device, the electrons wiggle in an oscillatory trajectory in the plane of the orbit, and
such additional bends intensify the radiation. The more common undulators rely on the
same mechanism, but smaller wiggling angles are used, so to exploit interference effects
in order to get a very intense and monochromatic beam. The undulators may also allow
to produce linearly and circularly polarized light at the same time.
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2.1 X-ray absorption spectroscopy

2.1.1 Theoretical background

An absorption experiment consists in irradiating a sample and measuring the amount
of radiation absorbed by it. In x-ray absorption spectroscopy, one excites a deeply
bound core electron into an unoccupied valence state by means of a photon. The energy
of the photon is tuned to an absorption edge, that is to the binding energy of a core
level, so that a steep intensity minimum can be registered when the process occurs. On
top of that, the fact that synchrotron radiation is used guarantees very high spectral
intensities. Since the binding energies depend on how strongly the electrons are bound
to the nucleus, or in other words to the number of protons in it, XAS is an element-
specific technique. In the nomenclature used in XAS to label the peaks in the spectra
the principal quantum number of the photo-excited electron is replaced by the letters K,
L, M , ..., and the orbital quantum number is expressed starting from the energetically
lowest core-hole sub-shell by numbers (1,2,3,...). So, for example, the excitations from
the spin-orbit split 2p 3

2 ,
1
2

sub-shells into the 3d shell are labelled L2,3, the excitations
from the spin-orbit split 3d 5

2 ,
3
2

sub-shells into the 4f shell are called M4,5. In the case
of rare-earths, the M4,5 absorption edge, located between 800 eV and 1700 eV, is of
particular interest.

Let us concentrate on the theoretical description of the absorption process and spec-
trum, following Ref. [38]. The Hamiltonian for an atomic system interacting with
radiation reads:

H = Hrad +Hatom +Hint (2.1)

Hatom is the atomic Hamiltonian, comprising the electrons-nucleus, spin-orbit, electron-
electron interactions and the crystal-field. Hrad is the radiation Hamiltonian:

Hrad =
∑
kλ

~ωk

(
nkλ +

1

2

)
(2.2)

where k is the wave-vector and λ the polarization. The interaction Hamiltonian Hint

can be approximated in perturbation theory and its first term, neglecting the spin, can
be written as:

H
(1)
int =

e

mc

∑
i

pi ·A(ri) (2.3)

Here A is the vector potential, pi are the electrons momenta. Hint
1 describes resonant

processes like x-ray absorption. The probability Wfi of a transition between two states
induced by the absorption of a photon with energy ~ω is given by Fermi’s golden rule:

Wfi =
2π

~

∣∣∣〈ψf | T̂ |ψi〉∣∣∣2δ(Ef − Ei − ~ω) (2.4)

Here ψf and ψi are the final and initial states, respectively, and T̂ is the transition
operator. The full derivation is reported in Ref. [38]. Only the first order term of Hint

is considered, since we are dealing with a resonant process. Here we only underline that
the transition operator can be written in the following way:

T̂ = ei
ω
c n̂·rê · p (2.5)

Here ê and n̂ are the light polarization and propagation vectors, r and p describe the
position and momentum of the excited electron. The exponential factor in Eq. 2.5 can
be expanded in a power series. Since the wavelength of the radiation is considered to
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be much larger than the spatial extension of the electron orbital scale in the soft x-rays
regime only the first-order term is relevant. This is the dipole approximation. The
transition operator can then be written as:

T̂ ≈ p · ê ≡ D̂ (2.6)

The spectral intensity I of an absorption experiment is proportional to the transition
probability:

I ∝
∑
f

|〈ψf |p · ê |ψi〉|2δ(Ef − Ei − ~ω) (2.7)

Throughout this Chapter we will refer explicitly to the M4,5 edge of rare-earth com-
pounds, and in particular the absorption process of a Ce3+ ion in a tetragonal environ-
ment, of which data are presented in Chapter 3. For a rare-earth system the M4,5 absorp-
tion edge is given by the transition between a |ψi〉 =

∣∣3d104fn
〉

and a |ψf 〉 =
∣∣3d94fn+1

〉
state. In the case of Ce3+ we have n = 1. The final state configuration

∣∣3d94f2
〉

con-
sists of 10 · 14 · 13/2 = 910 different states. Which of these states are accessible in the
absorption process is determined by dipole selection rules. These and the interpretation
of XAS spectra are the topic of the following section.

2.1.2 XAS spectra

As an example, let us consider the absorption spectrum of CeCu2Si2 (Fig. 2.3). It is
useful to consider the selection rules governing the absorption process and the physical
interaction leading to the multiplet structure in Fig. 2.3, in order to gain a better
understanding of the features present in a spectrum.

Figure 2.3: XAS spectrum of CeCu2Si2 at 250 mK acquired with the electric field vector
E ‖ c, being c the tetragonal axis with four-fold rotational symmetry. The spectrum is
characterized by the presence of the M5 and M4 absorption edges, each made up by a
multiplet structure. Continuum edge jumps occur right after the main absorption edges,
symbolized by the dashed line.

Selection rules

The spectral intensity is proportional to
∣∣∣〈ψf | D̂ |ψi〉∣∣∣2, where D̂ is the dipole transition

operator. The integral 〈ψf | D̂ |ψi〉 is non-vanishing only if the integrand is even: since
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the dipole transition operator T̂ is odd, transitions are allowed only if the final state
has different parity compared to the initial state. The dipole selection rules follow from
these symmetry considerations and the conservation of spin and angular momentum.
The selection rules are:

∆l = ±1;

∆j = 0,±1;

∆ml = 0,±1;

∆ms = 0;

∆L = 0,±1;

∆S = 0;

∆J = 0,±1

where l is the orbital, mj the magnetic, ms the spin and j the total angular momentum
quantum numbers of the electron, while capital letters refer to the atom.

Multiplets

The spectrum in Fig 2.3 has two main features: the large splitting between the M5 and
M4 edge and the multiplet structure within each edge.

The former is due to the large spin-orbit coupling of the 3d core hole in the final
state. In an XAS experiment at the Ce 3+ M4,5 edge, the initial state is the crystal-field
ground-state of the 3d104f1 configuration when measuring at low enough temperatures
so that only the ground-state is populated. A photon with energy ≈ 900 eV is shone on
the sample and an electron is excited from the 3d subshell to the 4f subshell, leaving a 3d
core hole behind. The hole can be in the 3d 3

2
sub-shell, lower in energy and producing

the M5 edge, or in the 3d 5
2

sub-shell, higher in energy and producing the M4 edge,

i.e. we have two possibilities: the 3d4
3
2

3d6
5
2

4f1 → 3d4
3
2

3d5
5
2

4f2 transition (M5) and the

3d4
3
2

3d6
5
2

4f1 → 3d3
3
2

3d6
5
2

4f2 transition (M4).

The one-electron picture is the simplest approach to describe the spectral features
of either edge in Fig 2.3. In this framework, we should expect the XAS spectrum to be
made up of two peaks, relative to the 3d 3

2
and 3d 5

2
sub-shells. Moreover, the ratio of

the integrated intensities of the M4 and M5 edges should be 6
4 , because the 3d 3

2
state

is 4-fold, whereas the 3d 5
2

is 6-fold degenerate. In reality, the spectrum is characterized

by a complex multiplet structure (see again 2.3), since in correlated materials electron-
electron and electron-hole interactions are far from being negligible. The electron-hole
pair in the final state, in particular, is a strongly interacting system and is known as
an exciton. A comparison between the simulation with and without interactions is
reported in Fig 2.4. The importance of electron-electron and electron-hole interactions
is evident there. The one-electron approach usually works for K edges (1s to 2p), but
for transitions into the d or f shell (L2,3 edges of transition metals and M4,5 edges of
rare-earths) the great overlap of the core and valence wave-functions in the excitonic
final state hinders the single particle approach: the system can only be understood as a
many-body wave-function. Excitons are highly bound and localized, meaning that they
give rise to a sharp and distinct multiplet structure. A schematic representation of the
absorption process at the Ce M4,5 edge is depicted in Fig. 2.5.
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Figure 2.4: Simulation of the XAS spectrum of CeCu2Si2 for light polarized parallel
to the c tetragonal axis (a) without accounting for electron-electron and electron-hole
interactions and (b) with the full interactions considered.

Figure 2.5: Schematic representation of the absorption process at the M4,5 Ce3+ edge.
The initial state is the crystal-field ground-state. A photon excites an electron from the
3d subshell into the 4f subshell. The final state multiplet structure is made up by two
sub-structures. They are set apart by the spin-orbit interaction on the 3d core-hole and
give rise to the M5 and M4 edges.
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Finally, the background of the experimental spectrum (see arrows in Fig. 2.3) is due to
non-bound final states. It shows as continuum edge jumps right after the M4 and M5

edges.
The multiplet structure visible in a XAS spectrum can provide a lot of information

about the valence state, since different valence states yield different multiplet structures
and energy positions of the peaks. Besides, sensitivity toward orbital occupation, spin
state and crystal-field ground and excited states can also be achieved by considering the
polarization dependence of absorption, as explained in the next section.

Polarization dependence

The dipole operator D̂ governing the absorption process can be decomposed into its
three cartesian components and written as D̂ = D̂x + D̂y + D̂z, with each component
referring to the polarization direction of light.

The so-called isotropic spectrum can be obtained either by summing up spectra mea-
sured with different polarization on a single crystal or by performing a measurement on
a powder sample. The use of linear or circular polarized light on a single crystal can
provide useful information. In general, linear dichroism (LD), probed with linear polar-
ized light, provides information about the orbital occupation, whereas x-ray magnetic
circular dichroism (XMCD), measured with circular polarized light, provides knowledge
about the spin and orbital moments [39, 40, 41, 42, 43, 44, 45, 46, 47, 48].

X-ray linear dichroism (XLD) and the determination of the crystal-field
ground-state

In 2008 Hansmann et.al [49] showed for CePd2Si2 that low temperature linear polarized
XAS is an effective probe for the 4f charge distribution of the ground-state, that is for
the crystal-field ground-state wave-function. The core hole created in the absorption
process has a typical lifetime of 1 fs, meaning that the lifetime broadening of the final
states is around 0.5 eV. This is much larger than the splitting between these states.
The experimental resolution is typically around 0.5 eV as well. Because of such large
broadening, XAS is not able to resolve the splittings of the final states. and it may seem
that the access to crystal-field information, and thus to the ground-state, is hindered.
However, it is the use of linear polarized light and its dipole selection rules that allows
to effectively probe the ground-state and its symmetry in particular.

Let us look at the matrix element 〈ψf | D̂ |ψi〉. It depends on the polarization, con-
tained in the dipole operator, and on the initial state, i.e. the ground-state wave-
function. These two dependencies directly affect the shape of the spectra. Let us
consider a pure Jz = 5

2 ground-state. If light is shone on the sample with polarization
parallel and perpendicular to the c tetragonal axis, the two acquired spectra are dif-
ferent: IE‖c and IE⊥c. If the ground-state is now a Jz = 3

2 instead the two recorded

spectra will be different compared to those of the Jz = 5
2 . The same holds for the

remaining pure Jz = 1
2 . The absorption process for different pure Jz ground-states is

schematically shown in Fig. 2.6 (a) and the corresponding simulated spectra in Fig.
2.6 (b). The linear dichroism is defined as the difference of two spectra measured with
different linear polarization: LD = IE‖c− IE⊥c. The bottom part of Fig. 2.6 (b) shows
the simulated LD of pure Jz states: it is clear that each state has its characteristic
LD so that, by looking at it, we are effectively probing the ground-state wave-function
symmetry.
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Figure 2.6: (a) Schematic representation of the absorption process from pure Jz
ground-states with light polarized in two directions, parallel (red) and pependicular (blue)
to the c tetragonal axis.(b) Simulation of the polarized XAS spectra for pure Jz ground-
states (top) and corresponding LDs (bottom).



2.1. X-ray absorption spectroscopy 23

The Γ7 states are given by an admixture of the pure Jz = 5
2 and Jz = 3

2 of the Hund’s
rule J = 5

2 ground-state multiplet, according to:

Γ±7 = α

∣∣∣∣±5

2

〉
±
√

1− α2

∣∣∣∣∓3

2

〉
(2.8)

The top part of Fig. 2.7 shows the linear polarized XAS simulation for a Γ±7 ground-
state. By varying the mixing parameter α, the Jz admixture in the ground-state changes.
Since each pure Jz state has its own LD, the overall LD of the Γ±7 changes as well, as
shown in the bottom part of Fig. 2.7.

Figure 2.7: (top) Simulated linear polarization dependent XAS spectra of the Ce3+

M4,5 edge for different α2 values of the Γ±7 ground-states wave function and (bottom)
corresponding dichorism. Spectra are simulated with light parallel (red) and perpendicu-
lar to c (blue). The insets also show the corresponding charge density.

On the whole, linear polarized XAS can effectively probe the crystal-field ground-
state symmetry in rare-earths, without being impaired by the large lifetime broadening
of the states and by the experimental resolution. It should be noted that this is rigorously
true only if the temperature is low enough, so that only the ground-state is populated.
If the temperature rises, then excited crystal-field states are populated as well, resulting
in an LD given by a Boltzmann weighted sum of the LD of the single states. This can
also be exploited as a way to shed light into excited crystal-field states.

A drawback of polarized XAS is the impossibility to resolve rotational symmetries
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higher than two-fold symmetries. The infeasibility stems from the fact that such pro-
cesses are governed by dipole excitations. This is why the + and the − sign cannot be
determined although the two signs refer to two orbitals that are rotated by 45◦ one with
respect to the other. If one wanted to determine the orientation of the ground-state wave
function, one should then resort to techniques relying on higher multipole excitations,
such as non-resonant inelastic x-ray scattering (NIXS). From a mathematical point of
view, dipole-limited techniques are sensitive only to |α| or equivalently α2, but not to its
sign. In other words, linear polarized XAS is only sensitive to the relative Jz admixture
in the ground state (given by |α|).

X-ray magnetic circular dichrosim (XMCD) and spin state of the system

The absorption excitations are spin-sensitive if the experiment is performed with right
and left circular polarized light. If the system possesses a net magnetic moment (due
to magnetic order or an applied magnetic field) along the direction of the Poynting
vector, then the XMCD, defined as the difference of two spectra measured with different
circular polarization, contains information about the magnetic state. On the one hand,
one can simulate the spectra and get the information by fitting the experimental data.
However, useful sum rules were derived. The first sum rule, derived by Thole et al. [46],
relates the integrated spectral intensity to the expectation value of the z-component of
the angular momentum < Lz >. If we consider the L2,3 edge it reads:

< Lz >=
2l(l + 1)(4l + 2− n)

c(c+ 1)− l(l + 1)− 2

∫
L2+L3

(µ+ − µ−)dE∫
L2+L3

(µ+ + µ− + µ0)dE
(2.9)

where l is the orbital quantum number of the valence state, c is the orbital quantum
number of the core state, n is the number of electrons in the valence state, µ+(µ−) is
the XAS spectrum for left (right) polarized light, µ0 is the XAS spectrum for linearly
polarized light, without polarization parallel to the quantization axis. The integrals are
extended over the whole L2 + L3 edges energy range. Carra et al. [47] later derived
a sum rule to obtain the z-component of the spin < Sz > and intra-atomic magnetic
dipole moment < Tz >:

c1(n) < Sz > +c2(n) < Tz >=

∫
L3

(µ+ − µ−)dE − c+1
c

∫
L2

(µ+ − µ−)dE∫
L3+L2

(µ+ + µ− + µ0)dE
(2.10)

where:

c1(n) =
l(l + 1)− 2− c(c+ 1)

3c(4l + 2− n)

c2(n) =
l(l + 1)[l(l + 1) + 2c(c+ 1) + 4]− 3(c− 1)2(c+ 2)2

6lc(l + 1)(4l + 2− n)

An example of application of sum rules to the Fe L2,3 edge is reported in Appendix ??.
It is important to underline that XMCD, unlike common magnetization measure-

ments, is element specific, since the photon energy is tuned to the absorption edge of
the element under investigation.

2.1.3 Detection modes

An absorption experiment aims at measuring the change of the intensity before the
sample I0(ν) and after the sample I0(ν, d), where d is the thickness of the sample. The
absorption coefficient µ(ν) is recovered from the law:
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I(ν, d) = I0(ν)e−µ(ν)d (2.11)

This particular way of performing absorption is known as transmission mode, it is bulk
sensitive and works well for extremely thin samples (<< 1 µm) or hard x-rays (~ω ≥ 3
keV). Due to the practical difficulties of having such thin samples, this method is not
common in the soft x-ray regime.

The absorption cross-section can also be measured in an indirect way with the so-
called yield modes. Indeed, the absorption process causes the formation of a core hole,
which is then bound to decay. This may happen through emission of fluorescence or sec-
ondary electrons of lower binding energy. The crucial assumption is that the absorption
cross-section is proportional to the number of core holes and that the decay processes
can be also linked to the number of core holes [38]. The fluorescence yield mode mea-
sures the photons emitted from the sample as a result of the fluorescent recombination
of the excited electrons with the core holes. Typically the total fluorescence yield (TFY)
method is used, where the measured signal is taken by summing over a broad range of
photon energies. The typical penetration depth of soft x-rays is of the order of 100 nm,
meaning that the technique is bulk sensitive. However, due to self absorption effects,
the spectra can be distorted. In the total electron yield mode (TEY), on the other hand,
the sample is grounded and its drain current is measured. As a matter of fact, after
absorption, an excited electron can decay into the core hole leaving the energy differ-
ence between its original energy and the energy of the core hole to another electron,
which is emitted via the Auger effect. This electron may not directly escape from the
sample but scatter inelastically with other electrons and trigger a cascade of secondary
electrons. An amount of electrons then leaves the sample, which is grounded. in order
to re-establish charge neutrality, electrons from ground come into the sample and are
measured as a drain current: this can be relatively large (10−10 A). The sensitivity of
this method is around 4 to 20 nm although the mean free path of the electrons first
emitted is much smaller. The short escape depth of the primary Auger electrons may
be seen as a limit; however, saturation effects can be neglected because of the large
difference between the x-ray penetration and the electron escape depth [50]. The TEY
mode was used for the measurements reported in this thesis.

2.1.4 Atomic full multiplet theory and single-ion calculations

In order to simulate an XAS spectrum one should compute the intensity as in Eq. 2.7.
A precise knowledge of the eigenstates of the system is then needed to compute the

transition matrix elements
∣∣∣〈ψf | D̂ |ψi〉∣∣∣. Atomic full-multiplet theory, based either on

crystal-field or ligand-field theory, aims at identifying a suitable Hamiltonian to describe
the system, taking into account the electron-electron and electron-hole interactions in
full. This is crucial in order to capture the correct spectral features of materials with
correlated electrons. Both crystal-field theory and ligand-field theory concentrate on
a single ion surrounded by its neighbours, a structure known as a cluster, but neglect
the full translational symmetry of the crystal. The highly localized nature of the final
excitonic state of the absorption process makes this assumption reliable. However, while
crystal-field theory is a purely electrostatic model where these neighbours are thought
of as point charges acting on the outer shell of the central ion, ligand-field theory also
considers covalency with the neighbours.

In a full-multiplet calculation one builds an adequate Hamiltonian on a many-electron
basis starting from single-electron wave functions. The dimension of the basis depends on
the configuration we are considering. If we assume these single-electron wave-functions
to be atomic-like, then they can be written as a product of an angular and radial part
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ψ(r, θ, φ) = Rln(r)Y ml (θ, φ), where the quantum numbers follow the usual convention.
The correctly anti-symmetrized many-electron wave-function ψ(r1, ..., rN ) can then be
constructed from a Slater determinant of one-electron wave-functions:

ψ(r1, ..., rN ) =

∣∣∣∣∣∣∣
ψ1(r1) · · · ψ1(rN )

...
. . .

...
ψN (r1) · · · ψN (rN )

∣∣∣∣∣∣∣ (2.12)

The Hamiltonian that we have to define to solve the for the eigenstates in the initial and
final configurations of the absorption process should contain the terms in the following
list. A more detailed presentation of the matter can be found in Ref. [51].

• The crystal-field potential, whose parametrization is described in Chapter 1.

• The spin-orbit interaction, described in first quantization by the term:

HSO =

Ne∑
j=1

ζ(rj)lj · sj (2.13)

where Ne is the number of electrons in the shell under consideration, ζ are the
spin-orbit coupling constants, lj and lj are the angular momentum and spin.

• The electron-electron and electron-hole Coulomb interaction, central to reproduce
the multiplet structure in materials with correlated electrons. It is described by
the scattering between the two two-electron states |ij〉 and |i′j′〉 via the potential:

HC(ri, rj) =
e2

|ri − rj |
(2.14)

As in the case of the crystal-field potential in Chapter 1, this potential can also be
expanded in spherical harmonics as well, thus factorizing into an angular and into
a radial part. The angular term is made up of integrals of spherical harmonics,
which can be solved analytically. The radial part consists of the so-called Slater
integrals:

Rk(iji′j′) = e2

∫ ∞
0

∫ ∞
0

rk<
rk+1
>

Ri(ri)Rj(rj)Rj(ri)Ri(rj)r
2
i r

2
jdridrj (2.15)

where k refers to the multipole order of the interaction. The integrals are not
analytically solvable, but are numerically calculated and tabulated.

• A magnetic field term, in case a magnetic field is also present, written as:

Hmagn. = B · (L + 2S) (2.16)

• Covalency, stemming from the hopping of electrons between the central ion and
the surrounding ligands, not treated any longer as mere point charges acting on the
outer shell of the central ion. This is the central further step of ligand-field theory
with respect to crystal-field theory. Since the 4f electrons are so well localized,
hopping is not a prominent feature in that case. All calculations done in this work
were performed in the purely ionic picture of crystal-field theory. Nevertheless, one
may resort to consider covalency to identify from which specific valence state of the
Ce ion the further peaks not expected by ionic calculations were coming from. The
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addition of covalency mimics the presence of different valences due to hybridization
in the Kondo regime. To appreciate this one could look at Fig. 2.3 and 2.4 (b): the
main absorption edges due to the 3d104f1 → 3d94f2 transition are well reproduced
by the simulation. However, the little satellites right after the main absorption
lines of the M4 and M5 edges are not predicted by the calculation: by including
covalency, one could tell that these features are due to the 3d104f0 → 3d94f1

transition.

Once the Hamiltonian has been set up, both for the initial and final states, it can
be diagonalized to calculate its eigenstates and eigenenergies. The spectrum is then
calculated as explained at the beginning of this paragraph. As a final step, the calculated
spectrum needs to be convoluted with a Gaussian and Lorentzian functions to account
for the experimental resolution and lifetime broadening respectively.

All calculations in this thesis were performed with the code Quanty by M. Haverkort
[52]. The atomic values for the spin-orbit coupling constants and the Slater integrals were
taken from Cowan’s code [37], based on the Hartree-Fock approximation. However, the
values are not usually accurate for ions in a solid, particularly as far as Slater intergrals
are concerned. This is mainly due to the fact that the presence of other charges in a
solid partially screens the electron-electron and electron-hole interactions. Therefore,
the atomic Slater integrals have to be reduced to account for this effect.

2.1.5 Simulation and fitting of linear polarized XAS spectra

In Chapter 3 full-multiplet calculations are used to simulate the Ce M4,5 edge XAS
spectra of CeCu2Si2. The simulation is based on a purely ionic crystal-field model: Ce
only has a pure f1 configuration (3+ valence).

Let us consider the list of interactions listed above in the Ce3+ case we are cond-
sidering here. For the initial state configuration 3d104f1 the Hamiltonian contains the
crystal-field (A0

2, A0
4 and A4

4 parameters) and the spin-orbit interaction of the f electron
(ζinitial4f ). For the final state configuration 3d94f2 the Hamiltonian contains the crystal-
field (which we assume to be equal to that of the initial state), the spin-orbit interaction

of the f electrons (ζfinal4f ) and of the d core hole (ζfinal3d ), the f -f electron-electron and
f -d electron-hole interactions.

The aim of Chapter 3 is to obtain information about the crystal-field ground-state
of CeCu2Si2. In order to do so, it is crucial to find the A0

2, A0
4 and A4

4 parameters by
fitting calculated spectra to experimental ones.

Reduction of the Slater integrals

Firstly, all interactions in the Hamiltonian other than the crystal-field need to be known.
In particular, we have to determine the reduction factors for the atomic Slater integrals.
This is done by fitting the experimental isotropic spectrum to the simulated one. We
recall that tetragonal symmetry is characterized by two equivalent a and b crystallo-
graphic axes and a longer c axis. The isotropic spectrum is then defined, in general, as

Iiso =
2IE⊥c+IE‖c

3 , where IE⊥c and IE‖c are the intensities for the polarization perpen-
dicular and parallel to the c axis. The optimization of the Slater integrals is done on
the isotropic spectrum since it does not show polarization dependence: the ground-state
symmetry only influences the LD. Figure 2.8 shows the simulated isotropic spectrum for
different pure Jz ground-states and they indeed look nearly identical.

Moreover, the isotropic spectrum is not influenced by the crystal-field. Figure 2.9
compares two simulations: the isotropic spectrum obtained from a Γ±7 ground-state
and the isotropic spectrum obtained by removing the crystal-field in the simulation and
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Figure 2.8: Simulated isotropic spectra for pure Jz ground-states. Spectra for light
polarized parallel and perpendicular to c are shown in red and blue respectively. The

isotropic spectra are calculated as Iiso =
2IE⊥c+IE‖c

3 .

summing the spectra for the pure Jz states of the lower J = 5
2 multiplet. It can be

seen that they look identical. A variation of, for example, 10% of the Slater integrals
reductions would entail a much bigger effect on the spectrum instead.

Figure 2.9: Simulated isotropic spectrum obtained for a Γ±7 ground-state as Iiso =
2IE⊥c+IE‖c

3 (black) and simulated isotropic spectrum obtained by removing the crystal-
field from the simulation (orange).

The crystal-field is unknown at the beginning of the fitting procedure. Hence, the sim-
ulated isotropic spectrum is practically obtained as in the orange curve of Fig. 2.9, by
removing the crystal-field in the simulation and summing the spectra for the pure Jz
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states of the of the lower J = 5
2 multiplet. Since the crystal-field does not influence the

isotropic spectrum, the optimized Slater integrals will also be good when the crystal-
field is added to the simulation. The fit is mainly done on the M5 edge. The reason is
that the continuum edge jump is not included in the simulations and it is smaller right
after the M5 edge compared to the M4 edge.

Determination of the mixing-parameter

From this point onwards the fit of the simulation to the experiment is mainly done
looking at the LD, rather than at the spectra themselves, since the subtraction performed
to obtain the dichroism eliminates continuum edge jumps and the parts of the spectra not
included in the simulation (such as the spectral weight coming to the 4f0 contribution
which, having J = 0 and being spherically symmetric, shows no dichroism). If the
ground-state is a Γ7 the knowledge of the mixing parameter α is needed to characterize
it. This is not the case for a Γ6 state, which is essentially a pure-state. Whether the
ground-state is one or the other can be determined from the exhibited dichorism, as
explained in section 2.1.2.

If the ground-state is a Γ7 state, it is crucial to determine the adequate mixing
parameter α in order to fit the spectrum. We still do not consider the complications
of including the crystal-field in the simulation and construct the simulated spectrum as
an incoherent superposition of pure Jz = ± 5

2 and Jz = ∓ 3
2 states. In this sense the

spectrum is given by:

I = α2IJz=± 5
2

+ β2IJz=∓ 3
2

(2.17)

The best fit gives the value of α.
Let us understand why this is a legitimate approach. As explained in Section 1.4.3,

for a 4f1 system in a small tetragonal crystal-field (the influence of the J = 7
2 multiplet

can be neglected), the Γ7 ground-state is given by:

α

∣∣∣∣J =
5

2
, Jz = ±5

2

〉
+ β

∣∣∣∣J =
5

2
, Jz = ∓3

2

〉
(2.18)

The XAS spectrum is proportional to
∑
f |〈ψf |D |ψi〉|

2
, where in our present case ψi is

the ground-state wave-function. The intensity can then be written as:

I = α2IJz=± 5
2

+ β2IJz=∓ 3
2

+ 2αβIint (2.19)

where IJz=± 5
2

is the spectrum of the pure Jz = 5
2 state, IJz=∓ 3

2
that of the pure Jz = 3

2
state and Iint is an ”intereference” term, given by

Iint = M 5
2 ,

3
2

(2.20)

where

Mj,j′ ∝
∑
f

〈ψf |D |ψj〉 〈ψf |D |ψj′〉 δ(Ei + hν − Ef ) (2.21)

The interference term is then non-zero only if both matrix elements in 2.21 are non-
zero, i.e. if there are final states that can be reached by both ground-state components
Jz = 5

2 and Jz = 3
2 . Let us consider our 4f1 system in D4h tetragonal crystal-field and

the dipole selection rules:

∆J = 0,±1; (2.22)
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∆Jz = 0 for z − polarized light

∆Jz = ±1 for x(y)− polarized light

If we assume the crystal-field to be absent in the final state, so that the final state
is made up of pure

∣∣J = 5
2 , Jz

〉
states, we can write down the following table, relating

the initial state components to the possible final states according to the selection rules
mentioned above.

Initial state component
∣∣J = 5

2 , Jz = + 5
2

〉 ∣∣J = 5
2 , Jz = − 3

2

〉
final state

〈
J = 5

2 , Jz = + 5
2

∣∣ 〈
J = 5

2 , Jz = − 3
2

∣∣ no
via ∆Jz = 0 and ∆Jz = 0

〈
J = 3

2 , Jz = + 5
2

∣∣ 〈
J = 3

2 , Jz = − 3
2

∣∣ matches〈
J = 7

2 , Jz = + 5
2

∣∣ 〈
J = 7

2 , Jz = − 3
2

∣∣
final state

〈
J = 5

2 , Jz = + 3
2

∣∣ 〈
J = 5

2 , Jz = − 5
2

∣∣ no
via ∆Jz = ±1 and ∆Jz = ±1

〈
J = 7

2 , Jz = + 3
2

∣∣ 〈
J = 7

2 , Jz = − 5
2

∣∣ matches〈
J = 3

2 , Jz = + 3
2

∣∣ 〈
J = 3

2 , Jz = − 1
2

∣∣〈
J = 7

2 , Jz = + 7
2

∣∣ 〈
J = 5

2 , Jz = − 1
2

∣∣〈
J = 7

2 , Jz = − 1
2

∣∣
It can be seen that no combination of J, Jz yields a final state accessible from both

ground-state components.
Therefore, the XAS spectrum can indeed be described as an incoherent superposition

of pure Jz states as in equation 2.17. This holds true as long as the crystal-field in the
final state is neglected. If this is not the case the pure |J, Jz〉 are mixed in the final
states. For example, if we consider Γ±7 final state (mixing of the

∣∣J = 5
2 , Jz = + 5

2

〉
and∣∣J = 5

2 , Jz = − 3
2

〉
pure states, as in the first line of the table above) via ∆Jz = 0 and

∆Jz = 0, then the final state is accessible from both ground-state components. In
any case, the interference term arising from the presence of the crystal-field in the final
state is very small and the incoherent sum approximation may still be used. Figure
2.10 shows the comparison between a Γ±7 ground-state spectrum simulated with crystal-
field included in both initial and final states and one where the spectrum is built as an
incoherent superposition of Jz states. The differences are neglgible.

Figure 2.10: Γ±7 ground-state spectrum simulated with crystal-field included in both
initial and final states (green) and one where the spectrum is built as an incoherent
superposition of Jz states (red).
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Using the crystal-field Hamiltonian

Once the mixing parameter has been determined, the crystal-field is finally added to
the simulation. Its parameterization is achieved by specifying the crystal-field splittings
∆E21 and ∆E31, since we already know α. This is totally equivalent to the set of
parameters A0

2, A0
4 and A4

4.
If temperature effects are taken into account, the crystal-field excited-states should

be populated according to thermal statistics. In polarized XAS the excited crystal-field
states contribute only indirectly via thermal occupation. The simulated spectrum is
then obtained by summing up the spectra of the excited-states, in addition to that of

the ground-state, and weighing them according to their Boltzmann factor e
− ∆E
kBT . Here

∆E is the energy difference between a given excited state and the ground-state. The
crystal-field scheme is then influencing the spectrum as these splittings are varied. A
correct determination of the splittings should be able to fit the experimental spectrum
at different temperatures.

One should also consider that thermal population is not the only effect modifying the
spectrum (and dichroism). In addition the hybridization to the conduction electrons,
which in the pure crystal-field picture is not included in the simulations, will alter the
spectra. Hybridization may lead to the presence of some excited crystal-field state
character into the ground-state and this clearly influences the dichroism. Still sticking
to a crystal-field picture, one could consider such effects by simply constructing the
simulated dichroism as a linear combination of the dichorism calculated for the ground-
state and for the excited-states, summed up with given weights. In the case of a Γ+

7 /Γ−7
mixing, for example, the dichroism can be expressed in terms of a weight a as:

aLDΓ−7
+ (1− a)LDΓ+

7
(2.23)

If one expresses the LD of the states as an incoherent sum of pure Jz states the last
expression can be written as:

a[α2LD 5
2

+ (1− α2)LD 3
2
] + (1− a)[(1− α2)LD 5

2
+ α2LD 3

2
] (2.24)

2.1.6 DEIMOS beamline in synchrotron SOLEIL

In this section we will briefly describe the layout of a XAS beamline, referring in particu-
lar to the DEIMOS beamline in synchrotron SOLEIL (Saint-Aubin, France). A detailed
description of the beamline can be found in Ref. [6]. The beamline is dedicated to
polarized XAS measurements in the soft x-rays regime. The scheme of the DEIMOS
beamline is reported in Fig. 2.11.

The DEIMOS straight section before the beamline is equipped with two undulators.
An Apple-II HU-52 undulator with 52.4 mm period allows to reach all linear (horizontal
to vertical) and circular polarizations from 350 eV to 2500 eV. A variable diaphragm is
located at 13.09 m from the middle of the straight section and allows to select the useful
part of the polarized light, first or higher harmonics. A second EMPHU-65 undulator
supplements the HU-52 undulator by enhancing sensitivity. The use of an electromagnet
to generate the vertical magnetic field allows to switch rapidly (5 Hz repetition rate)
from right to left circular polarization.

The first optical chamber, still located in the radiation protected hutch, allows to
choose between two optical paths: M1a-M1b or M1a-M1c in Fig. 2.11, by translating in
and out of the beam the M1b mirror. The mirrors M1b and M1c differ in their coatings,
platinum and rhodium, respectively. The M1a-M1b path is optimized for high energy
harmonics rejection below 1300 eV due to a working angle of 2.53◦, whereas M1a-M1c
is used for higher energies with a working angle of 1.20◦. M1a is a flat mirror, while
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M1b and M1c are toroidal. The horizontal deflecting toroidal mirror (M1b or M1c)
focuses the light in the horizontal plane to a point located 200 mm after the M3 mirror
(inside the monochromator chamber) while in the vertical direction light is collimated
in an almost parallel beam. The power coming to the first optical chamber (maximum
of 160 W on an angular acceptance of 0.2×0.2 mrad2) is dissipated using a water cooled
mirror.

The monochromator is equipped with two plane gratings, Gra and Grb (Gr in Fig.
2.11), which are respectively a variable groove depth grating with 1600 lines/mm, and
a Mo2C/B4C alternate multilayer grating with 2400 lines/mm. The first grating is
optimized for the energy range 240–1500 eV while the second grating is optimized for
the energy domain 1000–2500 eV. The dispersed light is vertically deflected onto the M2
plane mirror and then deviated in the horizontal plane by a cylinder mirror M3 which
focuses the beam on the exit slit.
The refocussing chamber contains a spherical mirror M4 and a toroidal mirror M5
(Wolter mirror combination). The two successive reflections in the horizontal plane
are used to cancel the coma aberration in this plane. Two toroidal mirrors (M5a and
M5b) are available and can be switched under vacuum in order to produce two different
beam sizes in the end-station located 3 m downstream. The beam size on the sample is
≈ 80× 80 µm2 for M5a to ≈ 800× 800 µm2 for M5b.

Finally the beam comes to the end-station. The end-station consists in a supercon-
ducting magnet providing ±7 T along the x-rays beam or ±2 T perpendicular to the
beam. The magnet is equipped with an inset allowing the cooling of the sample down to
250 mK. Below 1 K, the cooling is achieved by a 3He-4He dilution refrigerator from the
company CryoConcept. A pressure of ≈ 10−10 mbar is present in the sample chamber.
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Figure 2.11: Schematic layout of the DEIMOS beamline in synchrotron SOLEIL
(Saint-Aubin, France). Figure adapted from [6] and [7].
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2.2 Photoelectron spectrosocpy

In a photoelectron spectroscopy experiment photons with sufficiently high energy im-
pinge on the sample exciting electrons from occupied energy states into the vacuum
via the photoelectric effect. The process involves a transition from an N -particle initial
state to an (N − 1)-particle final state.

2.2.1 Theoretical description

The photon energy ~ω required in a photoemission experiment has to be higher than
the binding energy Eb of the electrons in the sample. Only then the excited electrons
are able to leave the sample with a certain kinetic energy Ek. Such a quantity is related
to the binding energy of the electrons in the sample by famous Einstein’s equation,
basically stating the conservation of energy in the process:

Ek = ~ω − |Eb| − φsample (2.25)

Here φsample is the work function, that is the potential barrier at the surface that has
to be overcome in order for the electrons to escape into vacuum. However, the analyzer
which performs the measurement also has its characteristic work function φanalyzer, so
that the measured kinetic energy can be written as:

Ek = ~ω − |Eb| − φanalyzer (2.26)

Knowing φanalyzer one can recover Eb from the measurement of Ek and obtain the PES
spectrum. The work function of the analyzer is usually determined by measuring the
Fermi edge of a gold or silver sample.

A typical PES spectrum is characterized by the presence of some characteristic fea-
tures.

• Sharp peaks due to the electrons elastically leaving the sample after the excitation.
The lineshape is broadened by the finite experimental resolution (Gaussian broad-
ening) and by the limited life-time of the excited states (Lorentzian broadening).
Moreover, metallic samples tend to exhibit asymmetric lineshapes, as described
by Doniach and Sunjic [53].

• A superimposed background of secondary electrons, due to electrons inelastically
scattering and losing energy on their way out of the sample. A procedure to
subtract the background was described by Shirley [54].

• Peaks coming from Auger electrons, whereby the decay of an electron into the core
hole created in the photoemission process leaves its energy to some other electron,
which can then escape from the sample. Since this process is independent of the
photon energy, Auger lines always appear at the same kinetic energy.

• Lastly, in metals, plasmons can be excited by the Coulomb interaction between
conduction electrons and a photoelectron, during its journey to the sample surface.
The photoelectron excites plasmons losing a characteristic energy ∆Eplasmon =
~ωplasmon, leading to the appearance of plasmon peaks at binding energy intervals
of N∆Eplasmon (N is an integer) above the main elastic peak.

A complete and satisfactory theoretical description of the photoemeission process can
be found in Ref. [38]. For the scope of this thesis, however, a single-particle approach
based on Eq. 2.26 is sufficient. An illustration is given in Fig. 2.12. The PES spectrum
can be thought as a representation of the occupied density of states of the sample.
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Nonethelss, one should keep in mind that such an approach cannot be trustworthy
when dealing with strongly correlated systems. If one considers a magnetic material
with partially filled d or f shells, for example, the strong coupling between the electrons
in these shells and the core hole leads to characteristic multiplet structures which are not
predicted by the one-electron picture and satellites due to different valences, similarly
to XAS.

Figure 2.12: One-electron interpretation of the relation between the PES spectrum as
a function of the photoelectrons kinetic energy and the density of states of the sample.
Figure adapted from [4].

2.2.2 Experimental aspects and setup

The energy of the incoming photons can belong to the ultraviolet regime (UPS, 5-
100 eV), to the soft x-ray range (XPS, 100-2000 eV) or to the hard x-ray domain
(HAXPES, >2000 eV). UPS probes valence state with great resolution and surface
sensitivity whereas XPS and HAXPES are better suited for core-levels and have higher
bulk sensitivity. In this thesis radiation in the soft x-ray domain was used to perform
PES.

The outcoming electrons are analyzed according to their kinetic energy Ek or their
momentum p. Here we distinguish two modes. In transmission mode the electrons are
sorted out according to their kinetic energy, whereas in angle-resolved mode also the
direction of emission is considered. We just focus on what is used in this thesis, that is
transmission mode.

PES is a versatile technique and can provide a lot of information on the sample. To
mention a few aspects, the chemical composition can be recovered from the core level
peaks positions and their intensities since every element has its specific set of binding
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energies and photo-ionization cross-sections. Valence changes can be detected as shifts
or as multiple peaks. In angular-resolved PES it is possible to reconstruct the dispersion
E(k) of the electrons bands from the energy and momentum distributions.

Photoionization cross-sections

The probability of emission of an electron from a certain electronic (sub-)shell upon ab-
sorption of a photon is given by the photoionization cross-sections, tabulated in [17, 18].
There exists a strong dependence on the (sub-)shell considered and on the photon en-
ergy. As a consequence, spectra recorded at different photon energies may show different
features due to different cross-sections.

The analyzer

The electron analyzer is made up by a system of electron lenses and of the analyzer
itself, where the electrons are sorted with respect to their kinetic energy. The analyzer
is made up by two concentric hemispheres, in between which a deflecting electrostatic
field is set and builds up the so-called pass energy, that is the center of the narrow energy
window acceptance of the incoming electrons. The electron lenses focus the electrons
onto the analyzer’s entrance slit and accelerate/decelerate them from their kinetic energy
to the pass energy. Once the electrons enter the analyzer, they are guided through the
hemisphere by the static field and follow different trajectories according to their kinetic
energies. Upon exiting the analyzer, they hit the detector in different spots. Just
before the detector, micro-channel plates amplify the signal. The setup is schematically
represented in Fig. 2.13.

Figure 2.13: Figure taken from [8]. Schematic representation of a hemispherical PES
analyzer.



2.2. Photoelectron spectrosocpy 37

Surface sensitivity

The probing depth of PES is limited by the escape depth of the excited photoelectrons.
This quantity is claimed to be independent of the elements the electrons have to traverse
and is only influenced by the electrons kinetic energy, as illustrated in the universal curve
[55] in Fig. 2.14.

Figure 2.14: Figure taken from [4]. Universal curve for the inelastic mean free path
of electrons as a function of their kinetic energy (orange lines). The dots indicate the
values for certain metals.

The escape depths for usual PES experiments, working in the 15 to 1500 eV energy
range, is about 3 to 20 Å, so that the technique is very surface sensitive.
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2.3 Sample preparation

Soft x-rays are absorbed by air. Besides, the short mean free path of electron in air
would prevent electron from reaching the analyzer in a PES experiment so that the
beamline components are typically kept in a vacuum environment (P ≈ 10−7 mbar).

XAS in the TEY mode and PES experiments are very surface sensitive so that the
samples have to be cleaved in situ in UHV. The measurement has to be performed
in UHV to assure clean sample surfaces and to avoid surface aging while taking data.
Ideally the sample chamber has a vacuum of the order of 10−10 mbar. The cleaving of
the samples in this work was achieved with two alternative methods:

• In the post cleaving method a post is glued on top of the sample. By breaking it
off a clean sample surface is recovered.

• In the knife cleaving method the sample is mounted so that it has a flat lateral
surface exposed. This surface is then placed against an anvil and a knife, coming
from the opposite side with respect to the anvil, cuts the sample leaving a clean
surface exposed.

As far as XAS is concerned, since the signal is measured with the total electron
yield mode, the sample has to be mounted on the sample holder in such a way that
good electrical contact is guaranteed. The sample is then first of all glued to the sample
holder with a thin layer of epoxy silver glue (EPO-TEK H21D), which is conductive,
applied on the surface of the sample in contact with the holder. Then, to provide
the stability necessary to withstand the cleaving process, TorrSeal (Loctite EA 1C) is
applied to fix the sample. The cooling of the sample is achieved by cooling the sample
rod and a good thermal contact is needed between sample and holder in order for this
mechanism to work. The layer of silver glue helps to achieve this as well. Silver glue
needs to be cured for 14 minutes at 150 ◦C, while TorrSeal needs to be cured for two
hours at 60 ◦C or one hour at 80 ◦C or 20-30 minutes at 120 ◦C. Fig. 2.15 shows a
drawing of a sample mounted for post cleaving for a XAS experiment.

Figure 2.15: Schematic drawing of a sample mounted for post cleaving for a XAS
experiment. The post is attached to the top of the sample: the sample is cleaved by
breaking it off. The sample is glued to the sample holder (an Omicron plate in this case)
with silver glue and firmly attached to it with TorrSeal.
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In contrast to XAS, where the fact that TorrSeal is insulating can be exploited so
that only the drain current coming from the sample is measured, in PES, any charging
around the sample would ruin the measurement. As a consequence, in order to mount
a sample for photoemission, first a droplet of TorrSeal is applied to the surface of the
sample in contact with the sample holder, then the sample is fixed in place by silver-
glue, which is conductive. Care must be taken so that the application of silver glue
guarantees electrical contact with the sample holder, otherwise the sample will charge
up when photoelectrons leave it. Since photoemission is very surface sensitive, particular
care is deployed when cleaning the sample. Isopropanol is used to remove any residual
dirt left by the aceton used to previously clean the sample, which would disturb the
vacuum of the experiment. Fig. 2.16 shows a schematic drawing of a sample mounted
for knife-cleaving for a PES experiment.

Figure 2.16: Schematic drawing of a sample mounted for knife cleaving for a PES
experiment. The sample is mounted on a podium, with a flat surface right on the edge
of the podium: this surface can adhere to an anvil so that the knife can come from the
other side and cleave the sample. The sample is glued to the sample holder with TorrSeal
and firmly attached to it with silver glue.

For XAS, in order to correctly probe the sample on specific directions, a precise
alignment is crucial. The samples were aligned by the Laue method, which will be now
described very briefly. A stationary single crystal is illuminated with a beam of “white”
radiation, usually coming from a target metal with high atomic number (e.g. tungsten).
Being the sample a single crystal, Bragg’s condition for different wavelengths is satisfied
by different crystallographic planes, giving rise to a diffraction pattern recorded as a
transmission or back-reflection photograph. The Laue pattern indicates the orientation
of the crystal in the given direction it sits in front of the Laue camera. By analyzing and
fitting the Laue image, one can align the sample along a given crystallographic direction
with high precision.
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Chapter 3

CeCu2Si2

The focus of this Chapter is the investigation of the crystal-field ground-state wave
function of CeCu2Si2 by means of linear polarized XAS in the temperature range from
250 mK to 250 K, thus covering the superconducting (Tc = 0.6 K) and Kondo transitions
(TK ≈ 10−20 K). First, a general introduction to the material and the motivation behind
the work is given. Then, the results and discussion are presented.

3.1 Introduction

3.1.1 Physical properties of CeCu2Si2

Unconventional superconductivity was first discovered in CeCu2Si2 by Steglich et al.
[12] in 1979, paving the way to a whole new field of research, where superconductivity
occurs on the brink of magnetism.

CeCu2Si2 crystallizes in a tetragonal structure (space group I4/mmm, see Fig. 3.1)
and is a prototypical heavy-fermion compound.

Figure 3.1: Tetragonal unit cell of CeCu2Si2.

41
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The coefficient γ of the low temperature specific heat C = γT is of the order of
1 Jmol-1K-2 [12]. Fig. 3.2 shows the low temperature specific heat of CeCu2Si2 di-
vided by temperature as a function of temperature, measured in different magnetic
fields. The valence of Ce in this compound is close to 3+, i.e. the f -electron occupation
is a bit smaller than 1; it is 0.96 according to Rüff et al. [56]. The single crystalline
static susceptibility, shown in Fig. 3.3, shows a strong anisotropy and testifies to the
existence of crystal-field effects, as expected in a tetragonal Ce compound with an fn≈1

configuration. The resistivity ρ(T ) amounts to (5-10)10−7 Ωm at 300 K, which is a
typical value for a metal. In CeCu2Si2, however, in contrast to a metal, ρ(T ) rises as
the temperature decreases and goes through a maximum at about 10 K, which is symp-
tomatic for a heavy fermion material with a Kondo temperature of 10-20 K. Fig. 3.4
(a) shows the resistivity of CeCu2Si2 up to 300 K. Fig. 3.4 (b) shows the decrease of
the resistivity below 1 K, upon entering the superconducting phase.

Figure 3.2: Figure adapted from [9].
Temperature dependence of the specific
heat for a CeCu2Si2 single crystal in
different magnetic fields. The critical
field is about 2 T. Below this value, a
jump of the specific heat is observed at
Tc = 0.6 K.

Figure 3.3: Figure from [10]. In-
verse magnetic suseptibility of two
CeCu2Si2 single crystal samples along
the two principal crystallographic direc-
tions. Circles refer to crystals grown
from a Cu solvent, triangle to crystals
grown from an In solvent.

Figure 3.4: (a) Figure from [11]. Temperature dependence of the resistivity for two
CeCu2Si2 single crystals: one measured without annealing (circles) the other after 4
days of annealing at 1000 ◦C (squares). Closed (open) symbols refer to current parallel
(perpendicular) to the tetragonal c axis. In both case the increase of ρ(T ) at low tem-
perature can be seen, followed by its decrease. (b) Figure adapted from [12]. Drop of the
resistivity of CeCu2Si2 below Tc = 0.6 K.
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In 1979 Steglich et al. found a superconducnting transition at 0.6 K at ambient pressure,
despite the presence of the paramagnetic Ce. It turned out that CeCu2Si2 is close to
a magnetic quantum critical point. Fig. 3.5 reports the phase diagram of CeCu2Si2 as
T against some external parameter g, which can be pressure or the Si stoichiometry for
example.

Figure 3.5: Figure adapted from [13]. Phase diagram of CeCu2Si2 plotted as T versus
some external control parameter, such as the Si stochiometry.

Very small variations of the Si stoichiometry lead to an antiferromagnetic (A-type sam-
ple) or superconducting (S-type sample) ground-state, and in a small region close to the
QCP both phases may coexist. Already in 1979 it was clear that superconductivity was
unconventional, and there had been increasing consensus that spin fluctuations are the
glue for the formation of Cooper pairs [13], whereby the symmetry of the superconduct-
ing phase must be d-wave [57, 13, 58].

Applying pressure to CeCu2Si2 shows that there are two superconducting domes
in the P-T phase diagram, whose maxima are at PC1 = 0.45 Gpa, TC1 = 600 mK
and PC2 = 4.5 Gpa, TC2 = 2 K. Substitution of Si with Ge leads to a separation
of the domes, thus suggesting a different origin of the two superconducting phases,
whereas in stoichiometric CeCu2Si2 and CeCu2Ge2 the two domes merge into a single,
wide superconducting region [27]. Some theories suggest that these are two different
superconducting phases, the one close to ambient pressure mediated by spin fluctuations
and the one at 4.5 GPa mediated by valence fluctuations. For the latter, however, there
is so far no proof [56].

Very recently the nature of the superconducting phase of CeCu2Si2 at ambient pres-
sure has been contested: still accepting its unconventional nature, some suggest that
the symmetry is rather s+ + or s−− instead of d-wave [59, 60, 61].

3.1.2 Motivation to study the ground-state wave-function of CeCu2Si2

Some groups have brought forward ideas about the formation of the superconducting
phase where the hybridization of 4f and conduction electrons has an impact on the
ground-state wave function of Ce in CeCu2Si2, so that one or the other scenario be-
comes more or less favorable. For example, Qimiao Si from Rice University, USA and
F. Steglich from Max Planck Insitute for Chemical Physics of Solids in Dresden [private
communication, unpublished ] propose a model where a hybridization induced intermix-
ing of the Γ6 state into the Γ7 ground-state would support the d-wave scenario. Another
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group (Pourovskii et. al [14]) investigated the electronic structure of CeCu2Si2 by means
of local density approximation (LDA) plus dynamical mean-field theory (DMFT), as a
function of pressure and temperature. Upon considering hybridization, which due to
the different spatial orientation is stronger for the Γ−7 than for the Γ+

7 , a strong P-T
dependence of the occupation of the crystal-field states appears, as shown in Fig. 3.6.

Figure 3.6: Occupancies nΓ+
7

(red circles) and nΓ−7
(blue squares). The large, medium

and small symbols refer to 58, 14 and 7 K respectively. Figure adapted from [14].

It can be noticed that:

• at ambient pressure a reoccupation occurs from about 60% of Γ+
7 and 40% of Γ−7

at 7 K to 20% of Γ+
7 and 80% of Γ−7 at 58 K.

• Above 4 GPa, the occupaton of the Γ+
7 is about 80% for all temperatures.

Overall then, the Γ+
7 is mostly occupied, apart from low temperature and pressure,

where the Γ−7 dominates.
On the whole, this was the motivation for us to measure the ground state wave

function of CeCu2Si2 through the superconducting transition and through the Kondo
regime in order to obtain results with high accuracy. XAS has been the method of choice
since it allows to detect small changes as function of temperature.

3.1.3 What is known about the crystal-field in CeCu2Si2?

The Ce atoms in CeCu2Si2 sit in a tetragonal crystalline environment (point group D4h

for the Ce sites). The resulting tetragonal crystal-field splits the Hund’s rule ground
state of Ce3+ with J = 5

2 into three Kramer’s doublets (for more details see Section 1.4.3).
The crystal-field scheme and Hamiltonian are fully determined by the two crystal-field
transition energies and the mixing parameter α. The three Kramers doublets can be
written as:
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Γ+
7 =

√
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2

〉
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Figure 3.7: Unit cell CeCu2Si2 with the Ce Γ−7 (lobes pointing in the [110] direction,
on the left) and Γ+

7 orbitals (lobes pointing [100] direction, on the right) at the body
center of the unit cell. Besides the different orientation, the two orbitals also have a
different shape because of the different amounts of Jz =

∣∣± 5
2

〉
and Jz =

∣∣∓ 3
2

〉
in the

wave-function (see Eq. 3.1 ). In the figure, the value α = 0.58 is used for the mixing
parameter, as will be clarified in section 3.3.1.

Fig. 3.7 shows the unit cell of CeCu2Si2 where at a Ce site the Γ−7 and Γ+
7 orbitals are

plotted.
The crystal-field transition energies have been determined by inelastic neutron scat-

tering by Goremychkin et al. [62] on polycrystalline samples. Inelastic neutron scat-
tering is the ideal tool to determine the level splittings, but the combination of phonon
scattering and broad magnetic excitations in the same energy window prevents the
unambiguous determination of the magnetic intensities. Two strongly broadened and
almost degenerate crystal-field excitations were found at about 30 meV in CeCu2Si2 dis-
proving previous neutron scattering results that found a magnetic transition at about 12
meV [63]. Therefore, still in Ref. [62], the ground-state wave function was determined
with single crystal susceptibility measurements and the crystal-field parameters which
reproduce the susceptibility yield |α| = 0.88 and a Γ+

7 or Γ−7 ground-state. The sign
+ or − cannot be determined in inelastic neutron scattering because the technique is
dipole limited. By means of directional dependent non-resonant inealstic x-ray scat-
tering (NIXS), which overcomes the dipole limitations, Willers et.al established a Γ−7
ground-state at 20 K [64]. However, the degree of Jz admixture in the Kondo regime,
i.e. the value of |α|, was not determined there.
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3.2 Experiment and analysis

The method of choice for the measurement of the crystal-field ground-state wave-function
was XAS at the rare earth M4,5 edge (3d104f1 → 3d94f2 transition), in particular the
LD. As explained in detail in Sec 2.1.2, the LD can effectively probe the ground-state
symmetry when working at low temperatures and is very sensitive to small changes.

Two effects can modify the LD of the ground-state, namely hybridization to the con-
duction electrons, and contribution from excited crystal-field states according to their
thermal population. In case of hybridization we may either see a reduction of LD due to
some contribution of the f0 configuration and/or due to a hybridization induced inter-
mixing of excited crystal-field states into the ground-state. The latter can be understood
in terms of an effective temperature Teff = T + TK , TK being the Kondo temperature.
The latter effect can lead to a reduction or enhancement of the LD depending on which
state mixes into the crystal-field ground state. A hybridization induced reduction of
LD has been observed, for example, in CeRu4Sn6 [65] and CeCoIn5 [66]. Disetangling
thermal population and hybridization effects may be tricky, but for CeCu2Si2 the crystal-
field splittings (≈ 30 meV) are much larger than TK (≈ 10 − 20 K). It should then be
possible to separate hybridization effects from changes due to the thermal population of
excited crystal-field states, despite the logarithmic scale of the Kondo effect.

The experiment was performed at the DEIMOS beamline at synchrotron SOLEIL,
in France. The peculiarity of this beamline is the presence of a cryomagnet with an inset
that allows XAS to be performed in the mK regime. Below 1K, by 3He-4He dilution
refrigeration, a sample temperature of 250 mK can be reached. Temperature stabil-
ity was guaranteed within a few percent. The temperature difference between sample
and thermocouple may vary between 50 and 100 mK, depending on how good thermal
contact is. The energy resolution at the Ce M4,5 edge (hν ≈ 870-910 eV) was about
0.4 eV. The samples were cleaved in situ with the post-cleaving method along the ac
plane under UHV conditions (P≈ 10−10 mbar) and then transferred under UHV to the
insert of the main chamber, where the cryomagnet is located. A picture of a CeCu2Si2
sample after post cleaving is reported in Fig. 3.8.

Figure 3.8: Pictures of the sample, as mounted on the sample holder after the cleave
and the experiment. The post and the sample, previously glued, can be distincly seen.

Spectra were recorded with the total-electron-yield method, that is by measuring the
drain current of the sample. This signal was then normalized to the incoming photon
flux measured from the current I0 at the focussing mirror. The measurement was done
for the two linear polarizations E ‖ c and E ⊥ c, where c is the four-fold tetragonal
axis; the LD is defined as the difference between the two: ILD = IE‖c − IE⊥c. Spectra
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for the two polarizations were scaled such that their backgrounds match. This scaling
is justified by the fact that a change of the polarization requires a different ondulator
harmonic, which may lead to the beam hitting the focussing mirror in a different spot
and therefore the measured I0 may change for different polarizations. Several so-called
sandwiches of IE‖c − IE⊥c − IE⊥c − IE‖c were taken at each temperature at different
sample spots and then normalized to the integrated intensity.

The data analysis was performed with the full multiplet code Quanty [67]. The
atomic parameters for the 4f -4f, 3d -4f Coulomb interactions and of the spin-orbit cou-
pling constants were determined with the Cowan code [37]. Such parameters need to be
reduced to account for configuration interaction effects not comprised in the Hartree-
Fock scheme. The reductions of about 21% for the 4f -4f and 39% for the 3d -4f in-
teractions were determined by optimizing the simulation without crystal-field to the

experimental isotropic spectrum Iiso =
IE⊥c+2IE‖c

3 . Fig. 3.9 (a) shows the experimental
isotropic spectrum at 250 mK and Fig. 3.9 (b) the simulation with optimized reduction
factors. The reduction factors should not vary with temperature, so that the same val-
ues were used for the simulations of the data at other temperatures. The simulation in
Fig. 3.9 (b) reproduces the data reasonably well, only the edge jumps (see Chapter 2,
Fig. 2.3) and the small satellites on the high energy tail of the main absorption lines
are not captured. These satellites are a result of cf -hybridization and they represent
the amount of f0 in the initial state. The simulation, however, is based on a pure ionic
single-ion crystal-field model, with only the Ce f1 configuration. The f0 satellite peaks
(3d104f0 → 3d94f1 transition) are not present in the simulation, whereas the main ab-
sorption lines of the M4,5 edges coming from the f1 contribution in the ground-state
(3d104f1 → 3d94f2 transition) are well reproduced. The f0 spectral weight, however,
does not contribute to the dichroism so that its presence does not affect the crystal-field
analysis.

Figure 3.9: Optimization of the simulated isotropic spectrum (a) to the experimental
isotropic spectrum (b), in order to obtain the reduction factors of the 4f-4f and 3d-4f
Coulomb interactions. The experimental data are those at 250mK. The orange arrows
in (a) highlight the f0 satellite peaks in the experimental spectrum.

The detailed procedure utilized in the simulation and analysis of spectra is described in
Section 2.1.5. The ground-state wave-function is determined by simulating the linear
dichroism LD = IE‖c − IE⊥c, because edge jumps as well as the f0 satellites cancel
out in the LD signal. The temperature dependence of the dichroic signal has then been
reproduced by taking into account the thermal occupation of excited crystal- field states,
weighting the spectra of each crystal-field state by the corresponding Boltzmann factor.
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3.3 Results

3.3.1 Ground-state wave-function from mK data

Figure 3.10 (a) shows the experimental XAS spectra of CeCu2Si2 at 250mK linear for
polarization parallel (E ‖ c, red) and perpendicular (E ⊥ c, blue) to the c tetragonal
axis.

Figure 3.10: (a) XAS data at 250mK, (b) simulation with Γ7 ground-state wave-
function and mixing parameter |α| = 0.58 and (c) linear dichroism LD = IE‖c − IE⊥c,
showing the agreement between data (light green dots) and simulation (dark green line).
The inset of (b) shows the charge-density for a Γ7 orbital with |α| = 0.58.



3.3. Results 49

There is a clear linear dichroism and the comparison with the XAS simulations of the
pure Jz states in Fig. 2.6 excludes immediately the Γ6 as the ground-state because it
would have the opposite polarization dependence. Hence, the ground-state symmetry is
determined by the Γ7.

Now the problem has been reduced to determining the mixing factor |α|. |α| was
obtained by fitting incoherent sums of the XAS spectra of the pure Jz = 3

2 and Jz = 5
2

states (for more details see Section 2.1.5). Willers et. al found that the ground-state is
the Γ−7 at 20K. Under this assumption, the ground-state wave function can be written
as:

|gs〉 = Γ−7 = 0.58 ·
∣∣∣∣±5

2

〉
− 0.81 ·

∣∣∣∣∓3

2

〉
By looking at the definition of the states 3.1 it is clear that the Γ+

7 excited state is also
determined:

|ex〉 = Γ+
7 = 0.81 ·

∣∣∣∣±5

2

〉
+ 0.58 ·
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2

〉
The Γ6 is a pure state, without any free parameter to adjust. Hence, the determination
of the ground-state allows for the determination of all crystal-field levels.

3.3.2 Temperature dependence of the linear dichroism

In this section the variation of the LD within the temperature range from 250 mK
to 250 K is discussed. We recall that the thermal occupation of higher crystal-field
states upon rising the temperature results in a superimposed LD signal, adding to the
one from the ground-state. If all three doublets are equally thermally populated, the
dichorism becomes zero, since the electron distributions of the crystal-field split Hund’s
rule ground-state add up to a sphere.

Figure 3.11 (a) and (b) show the experimental LD from 250 mK to 250K. Starting
from 250 mK, upon rising the temperature, the LD remains unchanged up to 5K. At 25
K a slight increase is registered (see inset of Fig. 3.11 (a)). It is then slightly reduced
at 150 K and even more so at 250 K.

Fig. 3.11 (c) and (d) show the simulated LD. The simulations take into account the
thermal population of the excited states Γ+

7 at 29 ± 1 meV and Γ6 at 33 ± 1.5 meV.
The experimental decrease of the LD with rising temperature is grasped fairly well by
just considering the thermal occupation of the excited states. The only thing that the
simulation seems to fail to capture is the slight increase of the LD at 25K.

The reduction of the dichroism at 150 and 250 K can overall be ascribed to the
population of the higher crystal-field states, captured by our simulated dichroism. For
completeness, Fig. 3.12 also shows the experimental XAS data and the simulations for
the whole range of temperatures. There as well, the only noticeable change of the spectra
happens at high temperature because of thermal population of higher crystal-field states.
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Figure 3.11: Temperature dependence of the linear dichroism at the M5 and M4 edges:
(a) and (b) are the experimental data, (c) and (d) the simulations. In the inset of (a)
a zoom into the M5 edge LD is represented. In that of (d) the crystal-field level scheme
is reported.
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Figure 3.12: Experimental (a) and simulated (b) XAS spectra from 250 mK to 250 K.
The experimental spectra show some change at high temperature. The simulations, by
only taking into account the thermal population of the crystal-field state, reproduce the
data well.



52 Chapter 3. CeCu2Si2

3.3.3 Temperature dependence of the 4f0 electron count

In this paragraph the relative 4f shell electron count is investigated. Fig. 3.13 shows
the experimental isotropic spectra at different temperatures. They fall well on top

of each other, since by construction (Iiso =
IE⊥c+2IE‖c

3 ) the isotropic spectra show
no polarization dependence. At a closer look, however, it can be seen that the small
bumps at slightly higher energies than the main absorption edges show a temperature
dependence. These satellite peaks are due to hybridization and the presence of some f0

contribution in the ground-state.
Fig. 3.13 (b) and (c) show an enlargement of the f0 satellite peaks in the isotropic

spectra as a function of temperature, for the M5 and M4 edges respectively. The data
from 250 mK to 5 K show very little variation and a decreasing trend is then established
when rising the temperature to 25K, even more so at 150 and 250 K.

Figure 3.13: Experimental isotropic spectra and their temperature dependence (a). (b)
and (c) are enlarged regions corresponding to the small black rectangles in (a). The
bumps in those regions are due to 4f0 intensity.
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3.4 Discussion

At 250 mK the temperature is so low that only the ground-state is significant to the
spectra: it is then clear that the Γ±7 ground-state reproduces well the experiment with
|α| = 0.58. The sign + or - cannot be determined because XAS is a dipole limited
technique. However, we can identify such a state with a Γ−7 because of what was found
in Ref. [64].

Looking at the temperature dependence of the LD and the corresponding simulations
exclusively based on a single ion crystal-field model it is clear that the overall trend of
the LD is explained in terms of thermal occupation of the excited-crystal field levels: as
the temperature rises the quasi-quartet at ≈ 30 meV gets populated and the dichroism
decreases. The ground-state wave-function as determined by the mK LD is showing
no change, other than the effect coming from thermal population of excited crystal
field-states.

The only aspect eluding the explanation of the temperature dependence of the dichro-
ism in terms of thermal population of excited crystal-field states is the slight increase of
the LD at 25K. Its origin might be trivial and could be due to some experimental arti-
fact, although not clearly identified. A possibility could be that there are small shifts in
energy. It should be noted that the beamline DEIMOS at SOLEIL does not work with
reference samples in the beam, that could be used for aligning the spectra in energy.
However, it could also be the physical fingerprint of the presence of hybridization we are
expecting to see in one way or the other. In order to prove this it will be necessary to
acquire data on a finer temperature mesh between 5 and 150 K. Such an experiment is
already allocated for the end of December.

In the following potential fingerprints of hybridization in the present XAS data are
discussed. The activation of hybridization at low temperature is clearly visible from
the temperature trend of the f0 satellite peaks in the isotropic spectrum (see Fig. 3.13
(b) and (c)). The absolute f occupation of the initial state can be deduced from the
measured spectral weights only by performing a configuration interaction calculation (as
described in Ref. [68]). However, it would involve the combination of a full-multiplet
as well as configuration interaction calculation because the M -edges show a pronounced
multiplet structure. Nevertheless, the temperature trend may be used as an estimation of
the Kondo temperature. This is based on the ideas of Bickers, Cox and Wilkins [69], who
have shown a correlation between the Kondo temperature and the f -shell occupation.
Tjeng et al. applied it to YbAl3 [15]. Figure 3.14 shows the f -shell occupation nf (T )
of YbAl3 against log(T) whereby the inflection point denotes TK .

Accordingly, the temperature dependence of the f0 spectral weight of CeCu2Si2 has
been determined by subtracting a linear background from the satellite peaks highlighted
by the little rectangles in Fig. 3.13 (a) for the M5 and M4 edge. The linear backgrounds
in these ranges were chosen in order to pull to zero the f0 intensity at 882.3 and 884.7
eV for the M5 edge and at 899.8 to 902.5 eV for the M4 edge, at all temperatures. Fig.
3.15 shows the f0 satellite peaks of the isotropic spectra at different temperatures, once
linear backgrounds have been subtracted.

Then, the integrated intensities ñ of the spectra in Fig. 3.15 are taken as the relative
f0 contributions to the ground-state and in Fig. 3.16 the f -shell occupation (1 − ñ)
is plotted against log(T). The temperature dependence is reminiscent of Fig. 3.14, but
it does not show an inflection point, probably due the increasing population of excited
crystal-field states. Such an issue in determining the Kondo temperature by means of
the f0 spectral weight has been pointed out by Kummer et al. [70]. Nonetheless, here,
the f0 spectral weight starts to decrease above 10 K, which is in agreement with a Kondo
temperature of 10-20K.
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Figure 3.14: Figure from Ref. [15]. f -shell occupation nf (T ) of YbAl3 against log(T),
as obtained from the 4f13

7
2

PES intensities. Circles and triangles indicate different meth-

ods of estimating the bulk PES intensity. The solid line is a calculation done with the
Anderson impurity model,in the noncrossing approximation (NCA).

Figure 3.15: f0 satellite peaks of the isotropic spectra at different temperatures, once
linear backgrounds have been subtracted, for the M5 (a) and M4 (b) edge.

Figure 3.16: Integral of the f0 intensity highlighted by the small rectangles in Fig. 3.13
(a) plotted against log T .
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The temperature dependence of the f0 spectral weight shows the diminishing impact
of the Kondo effect as temperature rises and how XAS is sensitive to it. Hence, we now
look again at the temperature dependence of the LD and consider the singular data
point at 25 K, that cannot be explained with thermal occupation of excited crystal-field
states only. We discuss different possible scenarios justifying the increased LD at 25 K:

• In the Kondo regime the LD is diminished due to presence of the f0 spectral
weight. Some f0 spectral weight would suggest some loss of f1 spectral weight
and hence some loss of LD, since the f0 state does not give rise to dichroism. As
temperature rises the Kondo effect is less effective: only then the undisguised LD
due to the crystal-field anisotropy shows up. Possibly, this is the effect we see at
25K, i.e. at T < 25 K the LD is diminished and it starts to recover at T > 25 K.
A solid proof of this scenario requires more temperature points between 5 and 150
K.

• An excited crystal-field state could mix into the ground state and lead to a decrease
of LD as long as the Kondo effect is effective. The simulated dichorisms of the
single crystal-field states are plotted in Fig. 3.17.

Figure 3.17: Individual simulated linear dichroism of the three crystal-field doublets
Γ−7 (dark green), Γ+

7 (orange) and Γ6 (light blue) at the M5 (a) and M4 (b) edges. The
experimental data are fitted well by the Γ−7 dichroism. Notice that the sum is not exactly
zero because of the impact of the crystal-field in the final state of the absorption process.

The LD of the Γ6 is opposite in sign to that of the Γ−7 ground-state, whereas the
LD of the Γ+

7 is of the same sign and much larger than that of the ground-state.
An intermixing of the Γ+

7 into the ground-state at low T can therefore be excluded
since it would lead to a wrong temperature dependence. The LD would not be
reduced at low T. On the other hand, an intermixing of the Γ6 can lead to the
correct reduction of the LD. We construct a simulation by summing the dichroisms
of the Γ−7 and Γ6 states with given weights to fit the experimental dichroism at
low temperature:

LD = aLDΓ−7
+ (1− a)LDΓ6

(3.2)

It turns out a a = 3% admixture of the Γ6 into the ground-state can account for
the experimental data.
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We can now look at the conjecture of Pourovskii et. al [14] in the light of the
measured dichorism. What can be compared to the experiment is the theorized orbital
reoccupation happening at 0 GPa, from a 60 % Γ+

7 and 40 % Γ−7 at 7 K to a 20 % Γ+
7

and 80 % Γ−7 at 60 K. The dichroism at 7 K can be simulated as

LD7K(α2) = 0.6LDΓ+
7

+ 0.4LDΓ−7
(3.3)

which, as explained in Section 2.1.5, can be interpreted in terms of incoherent sums of
pure Jz states as:

LD7K(α2) = 0.6[(1− α2)LD 5
2

+ α2LD 3
2
] + 0.4[α2LD 5

2
+ (1− α2)LD 3

2
] (3.4)

If α is optimized to reproduce the experimental dichroism, it turns out that the best fit
is obtained with α2 = 1:

LD7K(α2 = 1) = 0.6LD 3
2

+ 0.4LD 5
2

(3.5)

The red dashed line in Fig. 3.18 shows how LD7K(α2 = 1) compares to the data. If the
same α value is used to calculate the dichroism for the suggested mixing at 60K

LD60K(α2 = 1) = 0.2LDΓ+
7

+ 0.8LDΓ−7
(3.6)

a much higher dichroism (dashed blue line in Fig. 3.18) than the one experimentally
observed is obtained.

Figure 3.18: Simulated dichroism based on the Γ7 admixture by Pourovskii et al. [14]
at 5 K (red dashed line) and 60 K (blue dashed line). The best fit, giving the smaller
dichroism, is obtained for α = 0.

To summarize, the temperature dependence of the linear dichroism of CeCu2Si2 is
well reproduced by taking into account the thermal occupation of excited crystal-field
states at 30 meV. Only the LD at 25 K seems unusually larger. Although the reason
could be trivial, since of experimental origin, scenarios have been discussed on how
this could be explained in terms of the presence of hybridization of 4f and conduction
electrons. On the basis of the unchanged dichroism below 150 K, an orbital reoccupation
happening between the Γ7 states seems unlikely.



Chapter 4

YFe2Al10

In this chapter the electronic structure of Fe in YFe2Al10 is characterized by means of
x-ray absorption (XAS) and photoelectron spectroscopy (PES).

Strongly correlated electron systems show a plethora of different ground-states, as a
consequence of the interplay between competing interactions. The presence of a quan-
tum critical point, which is a zero temperature phase transition, is ubiquitous in their
phase diagrams, where an infinitesimal modification of composition, pressure or field can
drive the system into one of its phases. As a consequence, quantum critical behaviour
is often hidden by the onset of different phases near the QCP, making it difficult to
univocally address it. YFe2Al10 does not order magnetically down to 0.1 K [71], al-
though an effective magnetic moment of the order of 0.5µB has been determined from
the slope of the static susceptibility in the temperature range 150 to 750 K [72, 73].
Detailed measurements of magnetic susceptibility, specific heat and resistivity suggest
that YFe2Al10 is on the verge to ferromagnetism at 0 K whereby applied magnetic fields
tune the system away from the QCP [16].

4.1 Introduction

YFe2Al10 crystallizes into an orthorhombic structure, described by the symmetry group
Cmcm (no. 63). The material has a layered structure with nearly square nets of Fe
atoms on the ac planes [74], as shown on the left in Fig. 4.1.

Figure 4.1: Figure adapted from Ref. [16]. Layered crystal structure of YFe2Al10 (left)
and local octahedral Al-Y structure surrounding a single Fe atom (centre) and represen-
tation of several octahedral structure (right), one tilted with respect to the other. The
unit cell is indicated by gray lines.

The middle of Fig. 4.1 shows how each Fe atom is surrounded by a distorted octahedron

57
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of Al atoms, capped with Y atoms, and the right-hand side of Fig. 4.1 points out how
the Al octahedra are tilted one with respect to the other. Also other Fe aluminides like
CeFe2Al10 and YbFe2Al10 have been investigated but in that case the Ce and Yb ion
carry large effective moments of 3-5 µB . In YFe2Al10 the magnetism that gives rise to the
effective moment can only come from the the Fe ions since Y is a non magnetic ion. It is
puzzling that the Fe sublattice does not order magnetically so that the natural question
is: what prevents the Fe sublattice from ordering? It has been speculated that the
correlations that drive the system to the brink of ferromagnetic order are derived from
the hybridization of the Fe-based d-electrons with conduction electrons [16] in analogy
to the Kondo effect in f -electron systems. Alternatively, the hopping of Fe d-electrons
could be so strong that the valence state of Fe is ill defined. Disorder effects are known
to be minimal, since single crystal x-ray diffraction measurements exhibit no evidence
of deviations from stoichiometry or site disorder [74].

YFe2Al10 could offer the possibility to experimentally access and gain insight into
the undisguised quantum critical behaviour without corruption of other phases. The
quantum critical behaviour of YFe2Al10 has been investigated with magnetic suscepti-
bility, specific heat and electrical resistivity measurements in Ref. [16] and with mag-
netization, magnetic nuclear resonance and nuclear quadrupole resonance in Ref. [75].
All experiments observe a crossover from quantum critical behaviour to ordinary Fermi
liquid behaviour with increasing magnetic field. As an example, the dc suceptibility
of YFe2Al10 below 30 K is shown on a double logarithmic scale for applied fields from
0.05 to 6 T in Fig. 4.2. It shows that the susceptibility is showing saturation effects
with applied field; it actually seems to diverge for B→ 0 T whereas it amounts to only
≈ 10−3 emu/mol Fe for applied fields between 2 and 6 T [16, 75, 71].

Figure 4.2: Figure adapted from Ref. [16]. Temperature dependence of the dc suscepti-
bility at different fixed fields.

4.1.1 Motivation

Fe is the only magnetic atom in YFe2Al10 so that the magnetism most likely comes from
it. PES, XAS and also XMCD are element specific probes that not only will confirm or
disprove that the magnetism comes from the Fe and not from impurities, but will also
give insight into the valence state of Fe in YFe2Al10.
In a one-electron picture the weight given to a given configuration is purely statistical
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whereas correlations tend to favour some configurations over the others. The character-
ization of YFe2Al10 was started with density functional theory (DFT) and dynamical
mean field theory (DMFT) calculations 1 by Philipp Hansmann at MPI-CPfS. Figure 4.3
shows the theoretical expected d-shell filling of the Fe ions for U = 0 and 4 eV, U being
the d-d Coulomb repulsion. It turns out that for U = 0 eV the d-electron filling is an
almost Gaussian distribution very much centered around 7, i.e. suggesting a Fe d7. For
U = 4 eV the distribution becomes narrower and the centering around 7 becomes more
pronounced.

Figure 4.3: Configuration distribution calculated from DMFT for U = 0 eV (yellow)
and U = 4 eV (blue).

In a d6 low-spin configuration 3 electrons would have spin ↑ and the remaining 3 spin
↓, meaning that the total spin is minimized, thus giving rise to a rather low magnetic
moment. Conversely, a d7 configuration could hardly support the absence of moments,
unless the magnetic moment is somehow screened by the conduction electrons.

Experiments were set up with the aim to spectroscopically investigate:

• the electronic structure of YFe2Al10, in particular the role played by correlations,
with valence band PES.

• The valence state of Fe with XAS,

• The magnetic moment carried by the Fe atoms with XMCD.

The high resolution valence band PES data are compared with results from DFT and
DMFT calculations. The XAS data are compared with data of oxide references of which
the valence states are known. The susceptibility and magnetic moments are calculated
from XMCD.

1DFT and DMFT are methods to calculate the electronic structure of materials. DFT is based
on a single-particle approach and determines the properties of the system by using functionals of the
spatially dependent electron density. DMFT is the method of choice for strongly correlated materials.
It maps the many-body lattice problem to a many-body local problem, called impurity problem.
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4.2 Experiment

Single crystals of YFe2Al10 were provided by Meigan Aronson’s group at the University
of British Columbia, Vancouver, Canada.

The valence band PES measurements were performed at liquid nitrogen tempera-
ture at the TPS 45a beamline of the Taiwan Photon Source in Hsinchu, with 664.2 eV
photon energy, and in the XPS lab at the MPI-CPfS in Dresden, with 1486.7 eV photon
energy coming from an Al Kα source. In both cases the samples were cleaved in situ
just before measuring and the energy resolution was 87 meV in Taiwan and 300 meV
in Dresden. The work function of the analyzer was determined by measuring the Fermi
edge of a gold reference sample. The measured valence bands were compared to DFT
and DMFT calculations. The calculations incorporate the presence of on-site repul-
sion between electrons expressed in the parameter U . Calculations were performed for
U = 0 eV and for U = 4 eV, in order to estimate the degree of correlation of the systems.
The calculations were done for 230 K. In order to compare the experimentally measured
VB with the DFT and DMFT results, the calculated single particle spectral functions
for Al3p, Al3s, Y4d, Y5s and Fe3d, making up the valence band, were manipulated in
the following manner:

• they were multiplied by the Fermi function at the temperature of the experiment.

• They were convoluted by a Gaussian lineshape having full width at half maximum
equal to the experimental resolution. This was not done for the DMFT calculations
since they already exhibit a large inherent broadening.

• They were multiplied by the corresponding photoionization cross-sections at the
photon energy used in the experiment. Cross-section are tabulated in Ref.s [17, 18].

• They were finally summed up to give the simulated valence band.

XAS data were recorded at the TPS 45a beamline of the Taiwan Photon Source
in Hsinchu, while XMCD data were recorded at the BOREAS beamline at ALBA syn-
chrotron in Spain, where a static magnetic field can be applied along the beam direction.
In both cases the photon energy was tuned to the Fe L2,3 absorption edge. The energy
resolution was around 0.4 eV. The samples were cleaved in situ under UHV conditions
(P≈ 10−10 mbar) in dedicated chambers with the knife-cleave method and then trans-
ferred under UHV to a main chamber, where the measurement was performed at liquid
nitrogen temperature. A picture of a YFe2Al10 sample mounted for knife-cleaving for
an absorption experiment is reported in Fig. 4.4.

Figure 4.4: Picture of a YFe2Al10 mounted on a sample holder for knife cleaving. The
glue is covering the sample to fix it, the top part of the sample is left with no glue to
allow the cleave.
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Spectra were recorded with the total-electron-yield method (TEY), that is by measuring
the drain current of the sample. This signal was then normalized to the incoming
photon flux measured from the current I0 at the focussing mirror. As far as the XAS
measurement is concerned, the sample was not oriented along any specific direction,
whereas for the XMCD the measurement was performed for two circular polarizations
C+ and C− with crystals having the c and b axis parallel to the field (and beam). Spectra
for the two polarizations were scaled such that their backgrounds match. The XMCD
is defined as the difference of spectra taken with different polarization: XMCD =
IC− − IC+ .

4.3 Results

4.3.1 Valence band PES and comparison with DFT and DMFT
calculations

Fig. 4.5 shows a comparison between the valence band (VB) PES spectra of YFe2Al10

measured with 664.2 eV photon energy (87 meV resolution) and measured with 1486.7
eV photon energy (300 meV resolution). Apart from the inherent larger broadening
of the 1486.7 eV photon energy data, the main difference between the two spectra is
manifested as a shift of the main peak of about 0.1 eV.

In order to clarify the possible reason of such a shift, the results of DFT and DMFT
can be addressed. Fig. 4.6 shows the density of states (DOS) as calculated from DFT.
It can be seen that Fe 3d is the main contribution to the VB. Fig. 4.7 shows the single
particle spectral functions as calculated by DMFT with U = 0 eV and U = 4 eV. Upon
including the repulsive interaction between electrons U 6= 0 eV, the simulated valence
band exhibits a shift of the spectral weight from the region near the Fermi level to
incoherent excitations at higher binding energies.

Figure 4.5: Valence band PES spectrum measured at 664.2 eV and 87 meV resolution
(black) and 1486.7 eV and 300 meV (green) photon energy.
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Figure 4.6: DFT density of states.

Figure 4.7: DMFT single particle spectral functions for U=0 eV and U=4 eV.



4.3. Results 63

The main Fe 3d contribution, in particular, looks less broad and is shifted towards the
Fermi level. The VB is dominated by the Fe 3d contribution just below the Fermi level,
determining the main peak observed in the experiment. The Al 3p and 3s contribu-
tions become more relevant at slightly higher binding energies, while the Y 5s and 4d
contribute very little to the valence band.

The impact of the photoionization cross-sections could be responsible for the observed
shift since the energy dependence of the cross-sections is different for the respective
elements. This will be investigated below. Table 4.1 reports the photoionization cross-
sections of the Al, Fe and Y sub-shells considered here, as taken from Ref.s [17, 18].
The Al cross-sections at 1487 eV, as compared to the Fe ones, are indeed much higher
than at 664.2 eV. One can then, for example, consider the DMFT single particle spectral
functions, multiply them by the different cross-sections at different photon energies and
see how the Al contribution is affecting the spectra at different photon energies. Fig.
4.8 shows the DMFT valence band (with U=0 eV) corrected with the cross-sections,
at 1486.7 eV and 664.3 eV photon energies. The stronger Al contribution at 1487.6 eV
photon energy does cause a higher intensity at binding energy higher than 2 eV. However,
the position of the main peak seems to be shifted of only about 0.02 eV.

Photoionization cross sections σ per electron [kb]
sub-shell hν = 664 eV hν = 1487 eV
Al 3s 1

2
2.628 0.362

Al 3p 1
2

0.816 0.046

Fe 3d 3
2

9.124 0.379

Fe 3d 5
2

8.981 0.370

Y 5s 1
2

1.027 0.210

Y 4d 3
2

5.254 0.428

Table 4.1: Photoionization cross-sections at 664 eV and 1487 eV for the Al 3s and 3p,
Fe 3d, Y 5s and 4d sub-shells. The values have been obtained via linear interpolation
from the values given in [17, 18].

Figure 4.9 shows the comparison between the measured VB PES spectra at 664.2 eV
(a) and 1486.7 eV (b) photon energy with the DFT calculations, corrected by the cross-
sections. Figure 4.10 shows the same comparison with the DMFT calculations, corrected
by the cross-sections: the 664.2 eV data are compared to the U = 0 eV and U = 4 eV
calculation in (a) and (b) respectively, while the 1486.7 eV data are compared to U = 0 eV
and U = 4 eV calculation in (c) and (d).

The DFT calculation yields a DOS that peaks at binding energies that are slightly
too high, more evidently for the 664.2 eV photon energy data (Fig. 4.9 (a)) than from
the 1486.7 eV photon energy data (Fig. 4.9 (b)). Moreover, the shape of the calculation
is broader than the experimental data.

As for the DMFT calculation, the calculation with U = 4 eV gives rise to a narrower
peak that reproduces the data better but the main part of the DOS is shifted more
towards the Fermi edge so that it overlaps worse with the experimental VB curves.
Despite an excessively large inherent broadening, the U = 0 eV DMFT calculation seems
to fit better the experiment for both photon energies. The main calculated peak of
the DMFT (U = 0 eV) calculation, if we compare to the high-resolution data (664.2 eV
photon energy, see Fig. 4.10 (a)), is still slightly shifted towards higher binding energies.
This is in accordance with the DFT calculation, which should indeed coincide with the
DMFT (U = 0 eV) calculation, apart from the broadening. A smaller value of U than
4 eV, e.g. U = 1 or 2 eV, should be able to fit the peak position correctly.
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Figure 4.8: Valence band calculated from the DMFT (U=0 eV) single particle spectral
functions, weighed by the corresponding sub-shell cross-section at 664.2 eV (black) and
1486.7 eV (green). In the inset a blow-up of the main peak of the valence band at roughly
0.9 eV binding energy is shown.

Figure 4.9: Comparison between the DFT calculations and the measured VB PES
spectra, (a) with 664.2 eV y and (b) with 1487.6 eV photon energy. In all the graphs the
contribution from the single sub-shells, weighted by the cross-sections, are also reported.
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Figure 4.10: Comparison between the measured VB PES spectra and the DMFT calcu-
lations. (a) 664.2 eV data and U = 0 eV simulation, (b) 664.2 eV data and U = 4 eV sim-
ulation, (c) 1487.6 eV data and U = 0 eV simulation and (d) 1487.6 eV data and U = 4
eV simulation. In all the graphs the contribution from the single sub-shells, weighted by
the cross-sections, are also reported.
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4.3.2 XAS and comparison with reference samples

XAS is a powerful technique to probe the valence state, since even small changes in
the valence have a high impact on the core hole potential and significantly modify the
multiplet structure [39, 40, 41, 42, 43, 44, 45, 46, 47, 48].

The XAS Fe L2,3 spectrum of YFe2Al10 is plotted In Fig. 4.11, along with the spectra
of three different iron oxide references. The three reference spectra of Fe2O3, Fe3O4 and
FeO were provided by Zhiwei Hu from MPI-CPfS. The respective configurations of Fe
are d5, d5.33 and d6, corresponding to valence states of 3+, 2.66+, and 2+. Figure 4.11
shows that the spectra are shifted towards lower photon energies for larger d-shell fillings
(smaller valences). A clear multiplet structure cannot be observed in YFe2Al10, as
compared to e.g. Fe2O3, because of its metallic nature. Furthermore, the L3 edge of Fe
in YFe2Al10 peaks at higher photon energies than the one of the d6 but at lower energies
than the d5.33 configuration. Hence, the comparison to the references suggests that the
valence of Fe in YFe2Al10 is larger than 2+, but closer to 2+ than in Fe3O4. The peak
position of the L3 edge does not not suggest a d7 configuration. However, the energy
distribution of the L3 edge of YFe2Al10 is fairly broad, thus allowing the possibility of
a distribution of several configurations centered close to d6.

Figure 4.11: Fe L2,3 XAS spectra of YFe2Al10 (red) and reference samples: Fe2O3

(blue, (d5) 3+ valence), Fe3O4 (orange, (d5.33) 2.66+ valence) and FeO (green, (d6) 2+

valence). Spectra of the references are courtesy of Zhiwei Hu.
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4.3.3 XMCD analysis and determination of the Fe magnetic mo-
ments

The XMCD measurement was performed with the field B parallel to the c and to the b
crystallographic axes at temperatures of 3, 12, 30 K and with fields of 2 and 6 T.

We will now describe the application of sum rules to the Fe L2,3 absorption edge. The
discussion is based on what is reported in Ref. [48], where the authors experimentally
confirmed the sum rules derived in Ref.s [46, 47] and reported in Sec. 2.1.2.

As an example, we will consider the Fe L2,3 edge of YFe2Al10. Fig. 4.12 shows the
spectrum recorded with a magnetic field of 6 T and beam parallel to the c tetragonal
axis for both circular polarization C+ and C− (a), along with the XMCD = IC− − IC+

(b).

Figure 4.12: (a) YFe2Al10 Fe L2,3 XAS spectrum with circular right and left polarized
light. The field of 6 T is applied parallel to the c crystallographic axis and to the beam.
In the inset a blow-up of the peak of the L3 edge is shown, since the difference between
the spectra recorded with different polarization is very small. (b) Corresponding XMCD
at the L2,3 edge.

In order to apply the sum rules, one should calculate the following integrals.

• The integral q of the XMCD over the whole energy range of the L2,3 edge.

• The integral p of the XMCD extended over the L3 edge alone. The XMCD and
its integrals q and p are reported in Fig. 4.13.

• The integral r of the L3 and L2 white lines area, which is obtained by integrating
the linear polarized spectrum after the subtraction of the edge jumps, extended
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over the whole L2,3 range. The linear polarized spectrum is obtained as the sum
of the spectra for the two polarizations IC+ + IC− . The edge jumps are obtained
as the sum of two arctan functions. The threshold of the two functions is set to
the peak positions of the L3 and L2 edges. The heights of each arctan is set to
2
3 and 1

3 of the average intensity of the last 15 eV of the spectrum, according to
their quantum degeneracy (2j + 1). The linear polarized spectrum, background
and integral r are shown in Fig. 4.14.

Figure 4.13: XMCD (green) and its integral (purple). The values of q and p are
highlighted by arrows.

Figure 4.14: Linear polarized spectrum (orange), edge jumps (black) and integral of
the linear polarized spectrum once the edge jumps are subtracted (purple). The value of
r is highlighted by the arrow. The inset shows the linear polarized spectrum and the edge
jumps alone.
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The integration of the L3 edge alone is done up to about 717 eV photon energy, while
the integration over the whole L2,3 range is done up to about 732-733 eV. Once these
integrals have been computed, the angular and spin magnetic moments in units of Bohr
magnetons per atom can be calculated as:

morb =< Lz >= −4q
10− n3d

3r
(4.1)

mspin = 2 < Sz >= − (6p− 4q)(10− n3d)

3r

where the intra-atomic magnetic dipole moment expectation value < Tz > has been
neglected and n3d is the number of electrons in the 3d sub-shell. The total moment
along the field direction in Bohr magnetons per atom and the magnetic susceptibility
are given by:

mtot = morb +mspin (4.2)

χ[emu/mol] =
mtot

B[Oe]
· (6.0221415 · 100 · 9.27400899) (4.3)

We recall that the results of sum rules depend on the number of electrons in the 3d
shell. As this is not entirely clear, we at first assume the Fe to be in the d6 configuration.
The results of the application of sum rules are reported in Table 4.2. If we assumed
Fe to be in a d7 configuration, as suggested by DMFT, the sum rules yield the values
tabulated in Tab. 4.3. The XMCD analysis shows that the Fe magnetic moment is
indeed very small for applied fields of 2 and 6 T. As a matter of fact, looking at Tables
4.2 and 4.3, the total moment along the direction of the field mtot = mspin + morb is
between about 0.005 and 0.05 µB per Fe atom. At 6 T and 3 K the susceptibility is flat
(see Fig. 4.2) and the moments saturated: from XMCD we get 0.04 and 0.03µB , for
n3d = 6 and n3d = 7 respectively. The saturation moment in units of µB is in general
given by:

msat = gjJ (4.4)

Here gj is the Landé g-factor. The so-called effective moment, instead, is given by:

meff = gj
√
J(J + 1) (4.5)

For simplicity, let us consider the case of J = S, so that meff = 2
√
S(S + 1). Since

the values mtot of the moment determined at 6 T and 3 K are the saturated ones, we
can say mtot = msat = 2S. An effective moment of 0.3-0.4µB has been determined in
Ref.s [73, 71]. This would entail a value of the saturated moment mtot = 0.044-0.077µB ,
which is in agreement with our values at 6 T and 3 K (0.04 and 0.03µB).

Figures 4.15 and 4.16 show the susceptibilities for 6 and 2 T as obtained from the
XMCD data, one calculated for n3d = 6 and one for n3d = 7. The slightly smaller χ
values that correspond to the calculation with n3d = 7 are in better agreement with
the susceptibility as measured with a susceptometer, so that XMCD points towards a
d7 configuration, in agreement with the DMFT calculation. There is no evidence of
anisotropy between the b and c axis from the XMCD derived susceptibility.

However, XMCD confirms that the magnetic moments come from the Fe atoms in
YFe2Al10 and that the saturation of the magnetic susceptibility with applied magnetic
field is indeed a feature of the Fe ions.
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B = 6 T, n3d = 6
T [K] χ [10−3emu/mol] morb [10−3µB/atom] mspin [10−3µB/atom]
3 4.1 7.7 36.3
12 3.9 7.1 35.1
30 2.4 5.1 20.2
3 4.5 7.1 40.9
12 2.5 6.6 19.9
30 1.7 1.6 17.1

B = 2 T, n3d = 6
T [K] χ [10−3emu/mol] morb [10−3µB/atom] mspin [10−3µB/atom]
3 8.1 5.1 23.9
12 4.5 1.8 14.5
3 7.4 8.4 18.1
12 2.8 0.47 9.7
30 2.1 0.93 6.4

Table 4.2: Results of the application of sum rules to the Fe L2,3 edge assuming an
occupation n3d = 6 of the 3d shell. The susceptibility χ, the orbital morb and spin mspin

magnetic moments are reported, for B parallel to the c (in red) and b (in blue) axes.

Figure 4.15: Magnetic susceptibility as derived from the sum rules for applied fields of
6 T (a) and 2 T (b) parallel to the c (red) and b (blue) axes. An occupation n3d = 6 of the
3d shell was assumed. The green points in (a) and magenta points in (b) represent the
susceptibility as measured with a susceptometer in Ref. [16] for 6T and 2T respectively
(they are also plotted in Fig. 4.2).
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B = 6 T, n3d = 7
T [K] χ [10−3emu/mol] morb [10−3µB/atom] mspin [10−3µB/atom]
3 3.1 5.8 27.3
12 2.9 5.2 26.2
30 1.8 3.8 15.1
3 3.4 5.3 30.8
12 1.9 5 14.9
30 1.3 1.2 12.7

B = 2 T, n3d = 7
T [K] χ [10−3emu/mol] morb [10−3µB/atom] mspin [10−3µB/atom]
3 6.1 3.8 18
12 3.4 1.3 10.8
3 5.6 6.3 13.6
12 2.1 0.35 7.2
30 1.5 0.7 4.8

Table 4.3: Results of the application of sum rules to the Fe L2,3 edge assuming an
occupation n3d = 7 of the 3d shell. The susceptibility χ, the orbital morb and spin mspin

magnetic moments are reported, for B parallel to the c (in red) and b (in blue) axes.

Figure 4.16: Magnetic susceptibility as derived from the sum rules for applied fields of
6 T (a) and 2 T (b) parallel to the c (red) and b (blue) axes. An occupation n3d = 7 of the
3d shell was assumed. The green points in (a) and magenta points in (b) represent the
susceptibility as measured with a susceptometer in Ref. [16] for 6T and 2T respectively
(they are also plotted in Fig. 4.2).
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4.4 Summary

In this section we briefly summarize our findings on the magnetic character of the Fe
atoms in YFe2Al10 and their role in the electronic structure.

DMFT provides a reasonable fit of the experimental VB spectrum. However, the
width of the calculated main Fe 3d peak is too broad. A U values of 4 eV produces a
smaller peak width than the calculation with U = 0 eV, but the peak position is too close
to the Fermi edge. A U value of e.g. 1 or 2 eV may provide a better fit. Nevertheless,
the issue of an excessively large peak width still has to be resolved.

The comparison of the Fe L2,3 XAS data of YFe2Al10 with oxide reference samples
suggests that the configuration (valence) of Fe in YFe2Al10 is close to d6 (2+) but not
to d7.

The magnetic field dependence of the low temperature susceptibility in YFe2Al10 has
been confirmed; by increasing the field the static susceptibility becomes smaller. XMCD
even reproduces the size of the static susceptibility accurately by assuming a d7 configu-
ration, thus proving that its saturation with applied field is a feature of Fe in YFe22Al10.
The conclusion of the experiments could be that the Fe is very much like a d6 configu-
ration according to XAS but that there seems to be quite charge fluctuations so that it
is possibly effectively a d7 and therefore the susceptibility calculated by assuming a d7

configuration fits better than the d6 one. The high field (6 T) and low temperature (3 K)
calculated moments are in accordance with the effective magnetic moments determined
in e.g. neutron scattering or by fitting the high-temperature susceptibility.

The results of these measurements have stimulated further DMFT calculations, aim-
ing at reproducing the PES valence band data.
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Conclusions

In this thesis aspects of the crystal-field of CeCu2Si2 and of magnetism, valence and
correlations of YFe2Al10 have been investigated. In the following we summarize our
findings and suggest possible future developments.

The ground-state wave-function of CeCu2Si2 in the mK regime has been probed
with linear polarized soft XAS at the Ce M4,5 edge and determined as a Γ7 state with
mixing parameter |α| = 0.58, by fitting the experimental LD with full-multiplet single-
ion calculations. The knowledge of the − character of the Γ7 ground-state from previous
NIXS measurements [64] and of the crystal-field splittings from INS (≈ 30 meV) [62]
allow for the complete determination of the crystal-field scheme in the mK regime:

ground− state : Γ−7 = 0.58

∣∣∣∣±5

2

〉
− 0.81

∣∣∣∣∓3

2

〉
1st excited : Γ+

7 = 0.81

∣∣∣∣±5

2

〉
+ 0.58

∣∣∣∣∓3

2

〉
2nd excited : Γ6 =

∣∣∣∣±1

2

〉
The experimental LD is unchanged from 250 mK to 5 K, then shows a slight in-

crease at 25 K and decreases as temperature is raised to 150 and 250 K, due to thermal
population of excited crystal-field states. The full-multiplet single-ion simulated LD
reproduces well the experimental behaviour by just taking into account thermal pop-
ulation of excited-crystal field states: the overall trend of the LD can be explained in
these terms and the ground-state wave-function is not subject to major changes in the
temperature range considered here.

The small deviation from thermal occupation that possibly exists at 25 K has been
discussed in terms of hybridization of f and conduction electrons. The smaller LD at
temperatures below 25 K could be due to the larger amount of f0 at low temperature or
be explained in terms of a 3% intermixing of the excited Γ6 state into the Γ−7 ground-
state, although it seems unlikely in view of a Kondo temperature of only 10 to 20
K. The intermixing of the Γ+

7 excited state can be excluded, since it would yield the
wrong temperature trend of the linear dichrosim. Finally, a possible Γ−7 -Γ+

7 orbital
reoccupation at low temperature seems unlikely, since the measured LD below 150 K
exhibits no substantial change.

More temperature points between 10 and 100 K are needed to accurately monitor
the effect of hybridization around 25 K. The higher 25 K LD could be an artifact of ex-
perimental origin. Future new experiments are already scheduled. Nevertheless, linear
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polarized soft XAS has proven a powerful method to probe the crystal-field ground-state
with high precision. The technique was also applied to CeCoIn5 during the same beam-
time at the DEIMOS beamline in synchrotron SOLEIL, but a bad cleave did not allow
for the acquisition of good enough data. In the future, it will be interesting to probe the
ground-state wave-function and the impact of hybridization for other Ce heavy-fermion
compounds, such as CeCoIn5.

The VB PES spectra of YFe2Al10 have been acquired at 1486.7 and 664.2 eV photon
energies, and compared with DFT and DMFT calculations, performed by P. Hansmann
at MPI CPfS. In spite of an excessively large inherent broadening of all calculations,
the position of the main peak in the VB is better reproduced when considering no
correlations (DMFT with U=0 eV). The DMFT with U=4 eV has a smaller width of
the main peak, bu its position is shifted towards the Fermi edge. A value of U of about
1 or 2 eV should be able to fit the peak position correctly. This is a recently started
project, where all calculations are still at a preliminary stage. Further refinements of
the calculations, in order to correctly fit the peak position and width of the PES VB,
are currently object of theoretical efforts at MPI CPfS.

The XAS spectrum at the Fe L2,3 edge, compared to iron oxide references, suggests
that the valence of Fe in YFe2Al10 is slightly larger than 2+ (d6 configuration), but
smaller than 2.66+. This does not comply to the configuration distribution given by
DMFT (d7), but there seems to be quite large charge fluctuations.

The Fe L2,3 XMCD analysis reveals a susceptibilty that saturates at high magnetic
fields in accordance with previous susceptometry measurements, even as far as its size
is concerned if we assume n3d = 7. Very small magnetic moments per Fe atom are
predicted by XMCD (0.005 to 0.05 µB). The effective magnetic moments, estimated
on the basis of the high field and low temperature measured saturated moments, are in
accordance with the effective magnetic moments determined in e.g. neutron scattering
or by fitting the high-temperature static susceptibility.
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