
Politecnico di Milano
School of Industrial and Information Engineering

Master of Science in Computer Science and Engineering
Department of Electronics, Information and Bioengineering

Terry: a new software to
support the Informatics

Olympiad

Final thesis in
Software Engineering

Advisor
Prof. Giovanni Agosta

Candidate
William Di Luigi — ID: 864165

Academic Year 2018 – 2019

Contents

Introduction 1

1 The Informatics Olympiads 3

1.1 Algorithmic Problem Solving 4

1.1.1 APS versus traditional programming 4

1.1.2 The goal, in an APS competition 5

1.1.3 Asymptotic Complexity 6

1.1.4 APS and Programming Languages 8

1.2 The Contest Platform . 10

1.2.1 Notable Contest Platforms 11

1.3 Timeline of APS competitions 12

1.4 History of the OII . 12

1.4.1 Going “teams”: the OIS 14

2 OII: Software and Procedures 15

2.1 Human Resources . 15

2.1.1 Communication Channels 16

i

2.2 CMS: software architecture . 17

2.2.1 The EvaluationService process 18

2.2.2 The Worker process . 19

2.2.3 The ContestWebServer process 20

2.3 CMS: user experience . 21

2.3.1 Contestant: submitting a program 22

2.3.2 Admin: setting a task 24

2.3.3 Spectator: using the ranking 25

2.4 Using CMS in the Italian Olympiads 26

2.4.1 CMS in the national finals of the OII 26

2.4.2 CMS in the online rounds of the OIS 27

2.5 The district-level selection . 28

2.5.1 Task distribution . 28

2.5.2 Collection of the programs 29

2.5.3 Delivering Feedback 29

2.6 Using CMS in the district-level selection? 30

2.6.1 Strict time limits . 30

2.6.2 Not uniform server performance 31

3 Design of Terry 33

3.1 Functional Requirements . 33

3.1.1 Suboptimal complexity is fine 33

ii

3.1.2 Decentralized contest 34

3.1.3 Unstable or unreliable connectivity 35

3.1.4 Easy to setup . 35

3.1.5 Immediate feedback to users 35

3.1.6 Intuitive interface . 36

3.1.7 Remotely Inspectable 36

3.2 User Interface Requirements 36

3.3 Use Cases . 42

3.3.1 Contestant . 43

3.3.2 RT . 44

3.3.3 Contest Admins . 45

4 Implementation of Terry 47

4.1 Choices . 47

4.1.1 No-run Evaluation . 47

4.1.2 Distribution of Terry 48

4.2 Technologies . 48

4.2.1 Python . 48

4.2.2 Typescript . 49

4.2.3 SQLite . 50

4.2.4 ReactJS . 51

4.2.5 Bootstrap . 52

iii

4.3 Back-end implementation . 52

4.3.1 Web server . 52

4.3.2 Terry API . 53

4.3.3 Dynamic queue . 54

4.4 Front-end implementation . 54

4.4.1 The ContestView component 54

4.4.2 The TaskView component 55

4.4.3 The ModalView component 56

4.4.4 The SubmissionView component 57

4.4.5 The SubmissionListView component 57

4.5 Front-end screenshots . 57

Conclusion 61

iv

Introduction

In this thesis, we will give a brief overview on what the Informatics Olympiad
is and explain the reasons it exists. Then, we will explore how the national
selection for this olympiad takes place in Italy, looking at each selection phase
specifically to understand the issues and limitations we face at each step.

Significant space will be devoted to CMS, the most important software that
we currently use in the Italian Informatics Olympiads. We will see how CMS
helps us in running the Olympiads, and what its limitation are.

After discussing the various phases of the Olympiads where CMS is used, we
will shift our attention to an earlier phase: the district-level contest. This
contest comes usually 5 months before the national finals and is used to select
the best Italian students to invite to the final itself.

The district-selection is definitely “easier” than the national final from the
point of view of a participant, but from the point of view of contest admin-
istrators it is a much more delicate and intricate phase.

We will see in detail how the district-level selection is different from the
national final and why CMS turned out to not be the “right tool for the
job” for it. Finally, we will introduce Terry, the brand-new software that we
designed and implemented from scratch. Terry is the result of the careful
requirements analysis of the district-level selection, and the precious inputs
received by the experience with the CMS software as well as other notable
contest platforms.

1

2

1 The Informatics Olympiads

Most of us are familiar with the Olympic Games, a series of international
sporting events in which thousands of athletes from around the world par-
ticipate in a variety of competitions. The Olympic Games are held every
four years, and they are widely considered to be the world’s foremost sports
competition with more than 200 nations participating [1].

In a similar way, the International Science Olympiads are a group of world-
wide annual competitions in various areas of science such as mathematics,
biology, and many more [2]. Most of those Olympiads don’t require spe-
cial software to measure athletes’ results, except one: The International
Olympiads in Informatics.

The International Olympiads in Informatics (or IOI for short) is a worldwide
competition open to high-school students who excel in the skill of Algorithmic
Problem Solving [3]. The main difference between the IOI and the Olympic
Games is that the former involves a mind-activity rather than a physical one,
and, of course, that the latter is much older, having had its first edition in
18961 in Athens, Greece, when the first IOI ever held was in 1989 in Pravetz,
Bulgaria.

1The ancient Olympic Games ran from the 8th century BC to the 4th century AD, but
the modern Olympic Games were established in 1896.

3

1.1 Algorithmic Problem Solving

When we talk about Algorithmic Problem Solving (APS) we are referring
to a very specific activity: it’s a mind-sport in which athletes of all ages
compete by sitting in front of a computer writing programs. The “writing
programs” part of it might make APS sound like traditional programming
work, but it’s actually deeply different. In some contexts, APS is called
competitive programming and, like any activity pushed to a competitive level,
even programming acquires its own distinctive traits.

1.1.1 APS versus traditional programming

A significant difference between traditional programming and APS can be
found in the reasons for doing them: people usually write software for an
economic benefit (e.g. they are employed by a software firm that pays them
a salary); this is almost never true for APS since, most of the time, people
who participate in this activity have no economic incentive to do so. Athletes
usually participate for the glory, for showcasing their skills, and for the honor
of representing their country in a worldwide championship.

Another difference is that programmers write software that ultimately, in one
form or another, will be used by other people; on the other hand, algorithmic
problem solvers have no expectation of their program to ever be used by
other people. The main goal is to pass the test cases required by the contest
platform which they happen to be using: once that is done, the athlete
usually won’t use the source code again in the future.

These two differences are enough to tell APS apart from other software en-
gineering activities. In fact, most lessons and “best practices” which are of
critical importance in the software engineering field become simply superfi-
cial, useless and borderline dangerous when applied to APS. For example, it’s

4

universally accepted that, in traditional software engineering, code should be
well-commented and documented [4]. This usually includes adopting a ver-
bose coding style, using plenty of comments, and adequately separating the
codebase in different files or modules. In APS, following these rules would be
dangerous (over-commenting code means losing time, a very limited resource
in APS) or outright impossible (separating the codebase in different files is
not supported by many contest platforms: most of the times, a single file is
required).

Participants in APS generally compete alone. There are some team-based
competitions e.g. where each team represents a specific school or university
but, even then, the actual coding is done by a single person: the team splits
the problem set so that each person works on a separate task [5].

In the industry, on the other hand, working on the same codebase is the norm
for teams. Teamwork is not only encouraged, it’s non-negotiable. Since writ-
ing code is for now a human-only activity, the only way to scale software
development is horizontally: by adding more people. Version Control Sys-
tems (VCS) were invented specifically to help multiple people work on the
same codebase. Using a VCS in algorithmic problem solving, however, is
unheard of.

Moreover, in the industry, teams lose and gain new members frequently, so
it’s critical that new people make the least possible effort to understand an
existing codebase and quickly get up and running with it. This again leads
to why in traditional software engineering it’s a good idea to invest time in
documenting and properly splitting the codebase.

1.1.2 The goal, in an APS competition

During an Algorithmic Problem Solving competition, the participants are
faced with one or more “problems” (or “tasks”) to solve in the limited time
of the contest. The number of tasks can go up significantly if the contest is

5

team-based or in cases where the contest lasts for a long time, e.g. multi-day
online contests.

Regardless of how many tasks form a contest, each task requires participants
to write a program in order for them to solve it. The program will be tested
on some input data for which it will return some result. The criteria for
evaluating weather a participant solved a task are usually limited to the
following three:

1. The correctness of the result produced by the program.

2. The time it took for the program to report the result.

3. The amount of memory (RAM) used to calculate the result.

These three factors are measured and then used to judge whether the solution
proposed should be accepted or rejected (or, where applicable, if it should
receive a partial score).

Most of the time, in order to complete a task successfully, the solution is
required to implement an algorithm or data structure that produces cor-
rect results and that uses an asymptotically optimal amount of time and
memory.

1.1.3 Asymptotic Complexity

Given a program for which we measured the running time (in seconds) and
the memory used (in bits) during some computation, we can define the
asymptotic complexity of that program. This proves very useful in some
cases, e.g. when preparing new tasks, since we can make it so that a solution
with a “better” (i.e. lower) complexity will score higher, or so that a solution
with “worse” (i.e. higher) complexity won’t fit in the time limit.

6

Let’s denote with f(n) the seconds or bytes required by some solution when
the input size is n. We will say that f(n) belongs to the class of functions
O(f(n)) if and only if, as the input size approaches infinity, f(n) and g(n)
only differ by a multiplicative constant. In other words:

f(x) is O(g(x))

⇔

There exist c, x0 ∈ R+ such that f(x) ≤ c · g(x) for all x > x0

This definition helps us “categorize” the running time and the memory used
by solutions using their growth. For example: if program read some amount
N of 32-bit integers in an array, it would likely use somewhere around 32 ·N
bits of memory, which is O (N) with some multiplicative constant c > 32.

If the same program also sorted those numbers using a simple quadratic
procedure (e.g. repeatedly finding the “next maximum” and moving it to
the end of the array) then the total number of seconds would be something
like:

α · (N +N − 1 +N − 2 + · · ·+ 1) = α · N · (N + 1)
2

Where α indicates the number of seconds required to do a compare operation
and an assignment, in memory. This value depends on the machine used, but
we can expect it to be less than 0.0000001 in most cases. The sum is O(N2),
provided that we choose some multiplicative constant that is large enough
(even c = 1 would abundantly suffice).

This hypothetical program can thus be categorized as such:

• Time Complexity: O(N2)

• Space Complexity: O(N)

7

In APS, the optimal complexity is the lowest possible complexity of any
known program which correctly solves the same problem. In the case of our
hypothetical program, we can say that the space complexity is optimal since
any program will use at least O(N) bits to store and report N integers.
However, the time complexity is not optimal since there are known programs
which will sort N integers in O(N · logN) seconds.

1.1.4 APS and Programming Languages

It’s definitely possible to set up an APS competition where the participants
are required to write a detailed explanation in English (or some other nat-
ural language) of the procedure they would use in order to solve the tasks.
Doing this, though, would require a human judge who would be in charge
of reading each solution, understanding what it does, deciding whether the
procedure is correct, calculating its time and space complexity, and finally
grading it with some score or with a rejection. This might sound like a lot of
work, but it was actually (part of) how the first editions of the IOI worked.

Writing computer programs to solve these kinds tasks offers several ad-
vantages: there is no ambiguity in a formal language like C++, as opposed to
a natural language like English; moreover, being able to compile and execute
a program makes it much easier to test its correctness.

In the first editions of the IOI, the athletes were required to produce both
a solution expressed in natural language and one expressed in the form of a
computer program, saved on a floppy disk, so that the human grader would
test the program’s correctness by manually feeding input data on a keyboard
and checking that the output was correct [6].

Nowadays, with the increased automation of the grading process, it’s virtu-
ally always required from APS athletes to only write a program in a pro-
gramming language chosen between a fixed set of allowed languages. Some
automated system will take care of grading the program.

8

The set of programming languages which can be used in some APS contest
is usually chosen by the whoever sets up the contest, but it almost always
includes compiled languages such as C, C++, and Java. Less frequently we
see interpreted languages such as Python and JavaScript, despite being
some of the most popular ones in the software industry [7].

One of the reasons Python and JavaScript sometimes aren’t allowed in APS
competitions is that it’s harder to automatically judge the asymptotic com-
putational complexity of programs written in those languages. In fact, inter-
preted languages introduce an overhead [8] both in the execution time and
in the required memory: this overhead is not predictable and can sometimes
be so great that an optimal solution (i.e. a solution which would be in the
optimal complexity class) might be mistaken for a suboptimal solution when
using an automated grading system.

This problem can be addressed by increasing the size of the input data (which
is akin to choosing a larger x0 when evaluating the complexity class) and
increasing the time/memory limit of the task. In this way, the constant
factor introduced by the overhead of an interpreted language will become
less significant.

Even though in theory this would be possible, in practice we find that low-
level compiled languages (such as C, C++, Pascal) are still greatly favored
in this kind of competitions. With these languages the overhead is reduced,
which is akin to choosing a lower multiplicative constant c when evaluating
the complexity class, and this makes it easier to “automatically evaluate” the
complexity by testing the execution time and memory usage.

It’s worth noting that even with low-level languages it can sometimes be hard
to distinguish between, say, an O(N · logN) and a O(N) solution. That is,
there might be an exceptionally fast “suboptimal” solution whose running
time closely resembles that of an normal “optimal” solution. In general it
can be very hard to grade submissions correctly [9].

9

Oftentimes, this happens because the input size is significant. In some cases,
even just reading the input data and storing it into memory can take up a
nontrivial chunk of the execution time. When this happens, the task author
will usually adopt what is known as a “manager”, or “grader”.

By manager in an APS task we refer to a program that is compiled together
with the program submitted by the athlete. This allows the task author to
force certain behaviors of the submitted programs to be uniform (i.e. every
athletes will do “part of” the task in the same exact way). The way this is
implemented is that, when there is a manager, the problem does not tell the
participants to read data, but rather to implement some specific function.

1.2 The Contest Platform

We already talked about the “contest platform” without spending too much
time defining it, but this component truly represents the single most impor-
tant part of any APS competition. Even though in the past there have been
competitions with human graders, doing that every time requires a great
effort and doesn’t scale with the number of participants.

We define a contest platform as a software that is exposed to the contest
participants via some interface: usually, the interface is web-based, less com-
monly it’s terminal-based. A contest platform can have a range of duties,
but the most important one is to accept the programs submitted by the
participants, as long as the submission is made before the end of the contest.

Additional duties of a contest platform can include:

• Storing the program submitted by the participants (e.g. to make it
possible for the contest managers to inspect) in some folder in the file
system, or in a database

• Compiling the program into an executable, if it’s not one already

10

• Running the program (one or more times, with some input data) if
necessary

• Grading the program, that is, giving a grade or score to it (e.g. by
using a fixed set of known testcases to verify that the program behaves
like it should)

• Showing some kind of feedback (e.g. the score) after the participant
has made a submission

Moreover, a contest platform can provide support for features that may not
be meant to be used by participants. For example, providing a ranking that
may be open only to spectators (i.e. people who are not taking part in the
contest).

1.2.1 Notable Contest Platforms

As previously mentioned, in the early editions of IOI there used to be a human
grader who would manually input data into the program of the contestant
and judge whether the program was correct or not. This changed in the 1994
edition of IOI in Haninge, Sweden. In occasion of that IOI, an early version
of an automated grading system was introduced [10].

Since 1994 a lot has changed, numerous contest platforms were created, with
some notable ones becoming prominent in the APS community:

• DOMjudge: written in PHP, this software has been in use since 2004
in some regional contests, and since 2012 it has been used in the ICPC
World Finals [11].

• Contest Management System: usually shortened to CMS, this soft-
ware has been explicitly built to be used in the 2012 International
Olympiad in Informatics [12], and it has been used in virtually every
IOI since then [13]. It’s written in Python.

11

1.3 Timeline of APS competitions

One of the earliest APS competitions can be traced back to the year 1970,
when the “First Annual Texas Collegiate Programming Championship” was
held at Texas A&M University. There were 8 or 9 teams participating, and 3
tasks to be solved in the Fortran programming language. From 1977 on, the
contest evolved in what is known today as ICPC, a multi-tiered competition
with “regionals” leading up to a world final.

In May 1989, the UNESCO initiated and sponsored the first International
Olympiad in Informatics. That IOI saw the participation of 13 countries.
Since then, numbers have grown considerably: the IOI 2019 counted 87 par-
ticipating countries.

Among other more recent APS competitions that have risen to notability we
find the Google Code Jam (GCJ) which started in 2003 and the Facebook
Hacker Cup (FHC) which started in 2011. Both the GCJ and FHC are
multi-tiered: they consist of several online elimination rounds and one final
(offline) round. At the end of each online round the highest-ranking users
are selected for the next round, until some number of finalists is chosen and
invited to a final round that usually takes place in the company’s offices.

1.4 History of the OII

Some countries participated in the IOI since the very first editions. One
notable example is China, which actually had its own national competition
already in place in 1984, five years before the IOI even started: it’s not too
surprising then that China is currently the country with the highest number
of medals ever won in this competition.

In the case of Italy, clearly things went differently. Even though there are

12

records of sporadic participations of Italy in some pre-2000 IOIs, Italy only
started officially participating in the IOI in the year 2000. This participation
was sponsored by the government initially only as an experiment; this meant
that 2001 was the year when for the first time Italy set up a proper funnel
to select the 4 students that would go to IOI. That, was the year we finally
opened the doors to every Italian high-school student who wished to compete
and have a chance at representing the country at the IOI [14].

From 2000 to 2019 we can see that Italy has seen a fruitful participation in
this competition. In 20 editions we were awarded 2 gold medals, 20 silver
medals and more than 30 bronze medals.

In order to choose 4 students that would represent the country at IOI, the
Italian government sponsored a national competition called Olimpiadi Ital-
iane di Informatica (OII), a multi-tiered contest divided in three stages.

The first stage is a school-level selection, where students participate from
their own high-school: at this stage, the programming problems are very
simple and the students are usually not required to write any code, they
rather need to be able to just read and comprehend a simple program in
order to predict its behavior.

In its 2018/19 edition, the school-level selection was attended by a total of
13625 athletes.

The second stage, reserved to the highest ranked students from the school-
level selection, is a district-level selection, where for the first time students
are asked to write and submit programs, in a more “classic” APS setting. In
this early stage the students are not required to find optimal solutions, even
just working solutions are usually accepted.

Every year, a set of “districts” is chosen by the OII committee: at first, the
obvious way of splitting up the nation in districts was to simply consider
Italy’s 20 geographical regions; this worked well in the early editions but,
as the competition gained traction, it was changed to reflect the fact that

13

some regions consistently had a higher participation rate than others, or they
simply had a larger population.

In its 2018/19 edition, the district-level selection was attended by a total
of 1358 athletes. About 1 in 10 compared to the school-level selection.
The number of students invited to this stage was actually 1798, but since
the events are taking place months apart from each other, and since many
students decide to not attend, a significant percentage of students (24.5% in
this case) just doesn’t show up to the contest.

After this second stage is done, the best students are invited to a national
final contest that closely resembles the IOI, but at a smaller scale. As
opposed to the district-level contest, in this third stage of the competition,
the students are required to find the optimal solution for the tasks proposed.
If a solution is correct it will get some points, but not the full score (100
points) unless it is also optimal.

In its 2018/19 edition, the national final contest was attended by 95 athletes.

1.4.1 Going “teams”: the OIS

The Olimpiadi di Informatica a Squadre (OIS) aims to be a team-oriented
version of the already-existing Italian Olympiads in Informatics. A rela-
tively new project, the OIS introduces many differences with its “individual”
counterpart, one of the most important ones is the almost complete decen-
tralization of the contests: there are four completely online rounds that
lead to an onsite final.

The initiative started in February of 2010 in Italy as an idea by professor
Giulio Angiani: only 7 teams were participating but, as the initiative started
to catch on, more schools joined the project [15].

In the 2019/20 edition, 506 teams from 132 schools participated in the OIS.

14

2 OII: Software and Procedures

In the OII (Olimpiadi Italiane di Informatica) and in its team-based coun-
terpart OIS (Olimpiadi di Informatica a Squadre) we use a number of dif-
ferent procedures, as well as software systems, to perform various functions
throughout the phases of the competition.

2.1 Human Resources

In each participating school we identify aRS: “referente scolastico”, or school
representative. This person is usually a teacher in that school who will be
in touch with the support staff before the start of the contest to handle
the logistics and the distribution of the problem set to the students, and
who will be available for the whole duration of the contest to relay possible
clarifications (staff → students) or questions (students → staff).

At the next level, that is, for each district, we similarly identify a RT: “ref-
erente territoriale” (district representative). An RT is usually also a RS, but
on top of the school-selection held in November, he/she is additionally in
charge of the district-level selection which takes place in April.

During each contest, there are often questions coming from the students or
even the representatives themselves. For this reason, in each contest there is
always a group of support staff which is available for the entire duration
of the competition to answer questions.

15

2.1.1 Communication Channels

To relay information between the staff and the representatives, we mostly
make use of existing software:

• Chat Groups (Telegram, WhatsApp)

• Hosted Forum software (JForum)

Before and during the school-level contest, we keep a forum where RSs can
open new topics or reply to existing ones.

Figure 2.1: The support forum for the school-level contest

Before and during the district-level contest we keep a chat group with all the
RTs so that the technical staff can help them with logistics.

16

The main advantage of a forum over a group chat is that the information
is kept organized in threads which are less likely to be overlooked by others
who might be facing the same problems. For example, a thread could host
a discussion on the interpretation of a specific problem from the contest, or
about a common issue that many schools are facing, and so on. This helps
with reducing the amount of “same-questions”.

2.2 CMS: software architecture

The software that we use the most is undoubtedly CMS, the contest platform
that we already mentioned in 1.2.1 and that we use both in the national finals
of the OII and in all the rounds of the OIS.

Resource
Service

Proxy
Service

Scoring
Service

Evaluation
Service

Checker

Printing
Service

Contest
Web Server

Log Service

Admin
Web Server

Ranking
Web ServerDatabase

Figure 2.2: A diagram of the CMS components

This software is very versatile and, as we often find ourself doing, it can be
extended to serve new features and purposes. It’s written in the Python

17

programming language and it’s split in different executables that can be
easily distributed in a network and scaled up: for example, the throughput
of graded submissions can be improved by spawning more Worker processes,
which will handle more jobs at the same time.

We will now give a brief overview of the most important components of CMS.

2.2.1 The EvaluationService process

This component is tasked with orchestrating the evaluation of submissions
as they trickle in the system. Whenever a new submission is recorded in
the database, the EvaluationService process fires up and creates “batches”
of jobs which will later be performed by Worker processes.

Evaluation
Service

Worker 1 Worker 2

Worker N

.....

Figure 2.3: The EvaluationService process orchestrates jobs for Workers

18

2.2.2 The Worker process

The Worker component is the one in charge of running the actual grading
process of a submission, that is: running the correct compilation commands
depending on the programming language of the submission, executing the
untrusted program in a sandbox (enforcing time and memory restrictions)
and checking that the output produced is valid.

Worker processes are stateless, they receive everything they need (source
code, input data, and so on) from the EvaluationService process over the
network. In order to perform more efficiently, each worker keeps a cache
folder where files are indexed by their hash.

Worker 1

receive jobs

Safe Sandbox

File-system
Cache

return results

Figure 2.4: The Worker grades a submission, using a cache to reduce requests
to EvaluationService over the network

19

2.2.3 The ContestWebServer process

This component implements a web server, so it listens for HTTP connections
by clients (mostly the contestants’ browsers) and responds accordingly. The
role of this process is to accept submissions and provide feedback to the
contestants.

Contestants access this component to read task statements, to submit solu-
tion to tasks (and receive feedback) and to submit questions to admins (and
receive answers).

Similarly to Workers, this component can also be spawned multiple times in
order to serve a higher amount of contestants.

Contest
Web Server

Contestants

submit

Database

Evaluation
Service

Scoring
Service

feedback

Figure 2.5: The ContestWebServer process accepts submissions and shows
feedback to the contestants

20

2.3 CMS: user experience

In CMS there are three “actors”: contestants, admins, spectators. These
interact with the system via different interfaces such as the browser and the
command line.

What follows is an overall schema of the interaction between the actors and
the various components of the CMS system.

Contestants

Contest
Web Server

Admin

CLI to add/modify
users and tasks

Database
Admin

Web Server

Ranking
Web Server

Spectator

Figure 2.6: Actors interact with the CMS system

21

2.3.1 Contestant: submitting a program

The task statement page immediately shows to contestants the information
that they will most likely need: time limits, memory limits, the full com-
pilation commands. To access the actual statement, an additional step is
necessary: clicking the “Download statement” button.

Instead of embedding the statement in the page itself, CMS opts for requiring
a separate step. Downloading the statement means permanently storing it
on the device, which can be a wise thing to do in case of online contests
since the Internet connection could malfunction or the server could become
overloaded at some point during the competition.

Figure 2.7: Screenshot of the CMS task statement page

22

Since CMS was explicitly designed for a competition of International level,
when the average user (contestant) uses CMS, he or she is likely to have
experienced participating in a coding competition in the past, in their own
country.

Moreover, during the IOI there is always a “practice session” where the con-
testants can get accustomed to the contest platform, before the start of the
actual competition.

As for what concerns submitting a program for evaluation, the submission
page of CMS always shows the list of the submissions previously made by
the contestant. It also shows multiple options to submit (single files or zip).

Figure 2.8: Screenshot of the CMS task submission page

23

2.3.2 Admin: setting a task

Normally, the admin prepares a file-system representation of the task, which
will be then imported in the database using the CMS command-line interface.

Figure 2.9: The CMS file system representation of a task

24

After importing tasks in the database the admin can use the AdminWebServer
component to perform actions such as managing the task evaluation, enabling
or disabling Workers at run time, and so on.

Figure 2.10: Screenshot of the CMS administration page

2.3.3 Spectator: using the ranking

When a spectator wishes to get information on a running contest, he or she
can access the RankingWebServer component, which is usually exposed on
a public URL that anyone with an Internet connection can reach.

This component has a web interface that allows getting specific information
on the participating users, sorting them, searching for contestants belonging
to a specific country or team, “following” some contestants so that they are
highlighted in the ranking, and accessing the history of submissions for a

25

specific contestant.

Figure 2.11: Screenshot of the CMS ranking page

2.4 Using CMS in the Italian Olympiads

We use CMS, sometimes with slight modifications, both at the national finals
of the OII and in the online rounds of the OIS.

2.4.1 CMS in the national finals of the OII

In the national finals of the OII, as explained in 1.4, we normally have around
100 contestants and the contest is offline, so we have complete control over
the software environment that the users will be running during the contest.

In this setting, we are able to circumvent irregular behavior by adopting a

26

set of measures such as:

• Disabling USB ports of the contest workstations.

• Using a firewall to block communication outside the contest arena and
within the arena (i.e. the different workstations mustn’t be able to ping
each other).

• Use information on the contestants (e.g. the school where they come
from) to distribute them as far as possible from other contestants that
they might know.

The contestants get registered into the CMS database by using custom-made
scripts. The OII staff keeps all the scripts in a private git repository so that
they are always accessible to whoever is physically running the contest in
that year.

After all, the national final “setting” is very similar to the IOI one, so CMS
proves to be especially appropriate for this specific use-case.

2.4.2 CMS in the online rounds of the OIS

Online rounds present challenges that aren’t normally found in offline rounds.
Most evidently, there is the fact that when contestants are connected over
the Internet they implicitly have access to online resources that might not
be allowed in the contest (such as: pre-written code, or messaging systems
that allow contestants to interact with other people during the contest).

This made it sensible to put in place some reasonable “security measures” as
a way to discourage students from cheating.

Most notably, we operated some changes to the CMS software that are aimed
at detecting whether the user is connected to the Internet. On top of that

27

we also put in place a plagiarism-detection pipeline that, after the contest
has ended, analyzes the submissions to find similarities between programs.

In order to restrict access to the Internet while allowing traffic directed to-
wards the contest platform, we prepared a document called “Local Setup
Guide” aimed at RSs, in this document we explained in detail how to con-
figure the network in such a way that the only traffic permitted is towards
a single website. Enforcing this “whitelisting” proved to be extremely chal-
lenging: we haven’t reached full compliance and we don’t expect to reach it
soon.

2.5 The district-level selection

For almost two decades the district-level selection was held by delegating
most of the contest responsibilities to an external entity, a company, who
took care of all the logistic aspects of the competition, like: distributing
tasks, creating and distributing user credentials, collecting the submitted
programs, grading the programs, delivering the feedback.

This changed with the development of Terry. For now, let’s see in detail how
the contest used to be handled by this external entity.

2.5.1 Task distribution

The OII staff prepared the contest tasks, each with a fixed set of test cases.
This would then be sent to the company in charge of the actual task distri-
bution procedure.

In order to distribute the tasks to the students, the delegated company pre-
pared a virtual machine (VM) with a FTP server running in it. This virtual
machine was distributed to each district as a virtual application file. The
RTs would then boot up the VM and access an admin interface that acted as

28

a gateway between the external company and the school (i.e. the district).

This FTP server was used both for receiving the tasks, and for collecting the
programs submitted by the students.

2.5.2 Collection of the programs

The collection of the programs developed by the contestants was handled by
the same FTP server running on the server workstation. In order to submit
a program, a student was expected to access a specific IP address from his
or her browser, and then upload both the executable and the source code of
their program.

The server machine collected the file in a folder that, through the FTP server,
was accessible to the external company who would then (after the end of the
contest) collect the files remotely.

The server machine did not provide any feedback about the program’s results
to the contestants. Nothing was executed: the FTP server just collected the
files.

2.5.3 Delivering Feedback

Once the external company collected all the programs, well over the end of the
contest, the actual grading process started. This process would sometimes
take more than 2 weeks since there would be a lot of cleanup work involved
with the students’ submissions, and since among all those programs some are
bound to be wrong in the sense that they run forever (the rules stated that
a submission will be left running for up to 5 minutes for each testcase before
manually halting it).

After this time passed, the feedback would be published in the form of a
PDF file containing the students who passed to the national finals.

29

This feedback system was not comparable to CMS’s, since the latter allowed
contestants to immediately understand when their program was not correct.

It’s important to see that, without a proper feedback system, contestants
are left in the dark of any potential mistake in the input-output logic of
their programs. This means that any small typo (e.g. in the file name) or
insignificant mistake in reading or writing data (think about uppercase vs
lowercase) would greatly penalize a contestant that would otherwise have a
solution with the correct logic.

With a feedback system like CMS’s, the contestant has a good chance at
removing any of those bugs that aren’t related to the algorithms and data
structures of their programs.

2.6 Using CMS in the district-level selection?

The question that comes naturally is: why not use CMS in the district-level
selection? After all, we saw that it’s possible to slightly tweak this software
to serve new purposes, as we did in the OIS.

2.6.1 Strict time limits

The main reason for not using CMS in the district-level selection is its nature
of having strict time limits for the evaluation of each submission.

In fact, since in the district-level selection the participants are often facing
their first ever real APS competition, the tasks do not require an asymptot-
ically optimal solution to be solved: they rather require any correct solution
that is reasonably fast (e.g. not with an exponential complexity if the best
possible is linear).

Clearly, since there are only a finite number of Worker processes, it would be

30

detrimental to the throughput of EvaluationService to not enforce a strict
time limit: some contestant could submit a program that does not halt and
would permanently occupy a Worker.

Even having a “very large” time limit can be enough to completely clog the
evaluation queue and disrupt the live feedback for everyone.

2.6.2 Not uniform server performance

Another reason for not using CMS in the district-level selection is that having
a CMS instance in place of a simple FTP server can greatly exacerbate the
differences in performance between the workstations that are available in
each district.

If two districts use two server workstations that differ too much in terms of
performance, we might be giving an unfair advantage to the contestants in
the “faster” district.

31

32

3 Design of Terry

This chapter will be devoted to solving the problems identified in section
2.5 for what concerns the district-level selection of the Italian Informatics
Olympiads. We saw in 2.6 why CMS was not apt to being used for this
specific contest phase. We will now explicitly list all the requirements that
are needed in the district-level selection and we will see how we designed a
new software to overcome the limitations that we used to face in the past.

3.1 Functional Requirements

As we mentioned, the district-level selection of the OII is arguably the most
delicate phase because of its decentralized nature. We will now list the
specific requirements that we addressed in our new software design.

3.1.1 Suboptimal complexity is fine

Previously we said that in the district-level selection we usually do not
require that the programs submitted are optimal. Or, at the very least, we
expect that a suboptimal program should score all or nearly all points.

For this reason, as it was the case in the district-level contest until this point,
we should design a system that does not enforce strict time limits.

33

3.1.2 Decentralized contest

The district-level selection is held on the same day in more than 50 different
locations throughout Italy. In each of these districts, a whole contest is
organized by the RTs, high-school professors which are tasked with preparing
the workstations and other logistic things, like providing printing facilities
when necessary. The decentralized nature of this contest implies an inherent
difficulty in the management of it, since each location has a different situation
in regards to connectivity, computing power of the server workstation.

Figure 3.1: In its 2019 edition, the OII identified 51 districts

34

3.1.3 Unstable or unreliable connectivity

In Italy, connectivity can be slower or more unreliable compared to other
countries, this is true especially in the south. Even though the situation seems
to be improving as of late, we still can’t expect all districts to have a reliable
Internet connection, so we should take that into account when designing the
system. Requiring districts to use Internet could mean introducing some
unfairness factor in the competition.

It is true that the OIS makes use of an Internet connection but, as we already
pointed out, the OII holds a more important role as it is a funnel to the IOI.
For this reason, we should design a system that guarantees a fair contest to
the widest extent possible.

3.1.4 Easy to setup

Since this system is going to be set up by RTs, like the old one that was
provided by an external company, we need to make sure that the setup
process is easy enough as to be feasible by people that are likely to not be
comfortable using a command-line interface.

Having it seen working well in the past, we could opt for distributing a virtual
machine application and, instead of bundling just a FTP server, we could
bundle Terry inside the VM.

3.1.5 Immediate feedback to users

The main reason we developed Terry was to improve the current situation in
the district-level contest. The current situation was that students received
feedback on their performance up to two weeks after the end of the contest.
The new requirement in this direction is that the feedback should be given

35

immediately, similarly to what happens with CMS, that is, up to a few sec-
onds after the program is submitted in the system.

3.1.6 Intuitive interface

This might seem like an obvious requirement, since no one who would design
a non-intuitive interface on purpose. However in our case there is a very
specific need for an interface which guides the user into doing the right thing.

The students who successfully pass the school-level selection and reach the
district-level contest are likely to be in their first ever experience in a pro-
gramming contest. We decided for this reason to actively hide all the buttons
and “choices” that a user might have to make unless it made sense to show
them [16]. For example, the button to access the “list of all the submissions”
is not visible unless the user has made at least one submission.

This kind of discoverable interface has a good chance at reducing the confu-
sion that new participants might face.

3.1.7 Remotely Inspectable

Since, again, this is a critical part of the selection funnel for the Italian
participation in the IOI, we need to be extra safe. For this reason, another
requirement is to arrange some way to inspect the system and its data, for
any of the districts.

3.2 User Interface Requirements

In this section we will show the early mock-up graphical interfaces that we
produced as part of the initial design of the system.

36

Figure 3.2: The contest page seen by the student

Figure 3.3: After the students clicks on “Request input” two new buttons
become available: “Download input” and “Upload solution”

37

At this point the user can:

• Download the input file;

• Inspect it with a locally-installed text editor;

• Write a program to compute the correct output.

Computing the correct output “manually” is an option, but virtually always
unfeasible due to the nature of the problems and the input size.

Once the correct output has been computed, the solution can be submitted
to the system for grading. In order to do so, the user will click on the “Upload
solution” button.

Figure 3.4: After computing the output, the students can upload the solution
by clicking “Upload solution”

38

Figure 3.5: The upload of the source code is in progress

Figure 3.6: The source code is uploaded

39

Figure 3.7: The upload of the output file is in progress

Figure 3.8: The output file is uploaded

40

The form lets the user upload the source code and the output file, in any
order. Once both files are uploaded, the form will show an overview of the
testcases found in the output file: at this point the user can still change their
mind and re-upload one or both of the files.

If the user uploads a wrong output file (e.g. from a previously solved problem)
the mistake will be clear from the list of testcases so the user can still correct
the mistake.

If the user uploads a wrong source code (e.g. from a previously solved prob-
lem) the mistake will be clear from the timestamp (last modified) next to
the “Change output” button. In fact, the final implementation of this user
interface will show a relative time instead of an absolute one. This means
that the user will see the last modification time as a string that looks like “2
minutes ago” instead of a dull-looking “13:48:29”, thus making it noticeable
when the file is not the right one.

Once the user is satisfied with both files submitted, they can finalize the
submission by pressing the “Evaluate” button.

Figure 3.9: The evaluation result is presented to the user

41

An important requirement is: the input file must not be reusable. After the
feedback is given, the user will know for each testcase whether it was correct
or not; this means they could manually edit the output file to match the
feedback (think of problems where the output is either “YES” or “NO”).

For this reason, if the user finalizes the submission, then they will have to
request a new input in order to submit again.

3.3 Use Cases

We will now analyze the specific use cases by looking individually at the
various actors of the system.

<<includes>>

Monitor Logs

Attempt Task

Prepare
Workstations

Contestant

Staff / AdminsRT

Terry

Download Input<<includes>>

Request Input

Connect Remotely
to the VM

<<includes>>

Figure 3.10: Use case diagram of the system

42

3.3.1 Contestant

The contestant requests an input and uploads a solution. The following state
chart represents the possible actions that the contestant can perform:

Only "Request Input"
button is visible

Visit task page

Request Input Visible buttons:
"Download Input"
"Upload Solution"

Download Input

Upload Solution

Output is
uploaded

"Upload Solution"
modal is open

Source code
is uploaded

upload source upload output

change source change output

Testcase
Overview Page

upload output

change output

upload source

change source

Detailed
Feedback Page

confirm cancel

confirm

(from now, the
list of submission

is also accessible)

Figure 3.11: State diagram showing the “request input” flow

43

3.3.2 RT

Each RT will take care of setting up Terry in his or her district. Specifically,
an RT will access a reserved area of the OII website and download the virtual
application. Once the RT downloaded the file, they will boot up the VM on
some workstation that is visible from all the “contestant” workstations.

After the contest is finished, the RT will access a special page in Terry that
lets them download a zip file with the VM data. This zip file will then be
uploaded by the RT in the same reserved area of the OII website where the
VM was first downloaded.

Obtain "Results.zip"

Boot up VM

Contest

Reserved Area
in OII website

TERRY

 RT

Access the reserved area

Download the virtual application

 STUDENT

Access contest

Loop

Submit solution

Receive feedback

Upload results

Figure 3.12: Sequence diagram showing the operations

44

3.3.3 Contest Admins

The OII staff, i.e. the contest administrator, will produce a virtual applica-
tion where all the software dependencies of Terry are already installed. The
task data such as generator scripts and model solutions will be managed on
the file-system in a way that closely resembles the structure that CMS al-
ready uses (see 2.3.2) and then imported in Terry’s database before packing
the VM.

This VM will be then uploaded in the “reserved area” of the OII website,
accessible to RTs. At the end of the contest, in the same reserved area the
RTs will upload all the zip files obtained from Terry. After collecting the zip,
they will be merged to form the final ranking of the contest.

If the district has a working Internet connection during the competition, the
contest administrators will be able to remotely access and inspect the VM.
To do this, the VM will be equipped with a set of scripts that remotely
establish a tunneled connection to a single, central server.

45

46

4 Implementation of Terry

In this chapter we will see more in details how we actually implemented Terry,
focusing especially on the front-end code, where the author contributed to
the implementation.

4.1 Choices

Given the requirements in 3.1, we decided that Terry should be radically
different from CMS in the way in handles the evaluation.

4.1.1 No-run Evaluation

Similarly to what happens during some online competitions such as the pre-
2018 version of Google Code Jam which we already mentioned in 1.3, we will
implement a system that does not require to run the users’ programs in order
to perform an evaluation.

More specifically, the system will generate different input files at the user’s
request, and it will evaluate the correctness of the user’s solution by just
checking the output file produced for said input.

This choice, even though it lets us evaluate the correctness of the program,
won’t let us evaluate the optimality in terms of time and memory, since
someone can run their own program for a long time or they can use more

47

memory than we would otherwise allocate for them. These points, however,
don’t concern the district-level selection as we established in 2.6.1.

This choice allows us to forget about many of CMS’s complexity such as
Workers, since the evaluation step has a predictable and mostly very low
running time and memory footprint. There’s no need for a secure sandbox
either, since we don’t execute user’s code.

4.1.2 Distribution of Terry

In order to satisfy requirements about fairness, we won’t require district to
have Internet access and we will distribute Terry as a virtual machine, taking
inspiration from how the same contest used to be managed in the past.

4.2 Technologies

Since our team had extensive experience with CMS, it was only natural that
we would tend to use some of the same technologies in order to expedite the
development of the new software. In fact, we decided to use Python for all
the server-side code, and for the client-side we opted to use TypeScript.

4.2.1 Python

Python is a multi-paradigm programming language. We decided to adopt
it for our project because of its flexibility and for the fact that, being an
interactive language, it’s especially appropriate for easily testing code snip-
pets without the need for running an entire script every time. Moreover,
the Python standard library contains a wide range of tools that in other
languages might be available only as third-party libraries. For example, the
json and csv modules.

48

hello.py

print("Hello world!")

$ python hello.py
Hello world!

Listing 1: Execution of a simple “Hello world” in Python

On top of the standard library, Python puts at our disposal community-
driven tools and libraries that can be installed with the pip package manager.
To install a third-party Python package, it’s enough to run:
$ pip install packagename

4.2.2 Typescript

TypeScript is an open-source programming language developed and main-
tained by Microsoft. It is a strict syntactical superset of JavaScript which
adds optional static typing to the language. As TypeScript is a superset of
JavaScript, existing JavaScript programs are also valid TypeScript programs.

add.ts

function add(left: number, right: number): number {

return left + right;

}

$ tsc add.ts && cat add.js
function add(left, right) {

return left + right;
}

Listing 2: Transpiling TypeScript code down to JavaScript

49

The biggest selling point of TypeScript for us was that it helps removing a
wide range of logic errors that would otherwise go unnoticed in traditional
JavaScript. The simple fact that a TypeScript program compiles (more pre-
cisely: transpiles) is a guarantee that there cannot be errors of type mismatch
in the code.

4.2.3 SQLite

SQLite is a RDBMS written entirely in C and widely used as a database
system embedded directly inside other applications. It has its pro and cons,
for example: it can boast the fact that the database is completely contained
in a single file, but this means that it’s limited when it comes to concurrent
writes.

The SQL commands available are also limited (e.g. the ALTER TABLE com-
mands are not supported) but this is is not a problem for our use case since
Terry is not supposed to be run “indefinitely” so it doesn’t require schema
updates.

We chose SQLite as our database system because of its versatility and wide
compatibility with all the languages and frameworks that we were already
accustomed with.

$ sqlite3 sampledb.sqlite
SQLite version 3.22.0 2018-01-22 18:45:57
Enter ".help" for usage hints.
sqlite> SELECT count(*) FROM students;
26
sqlite>

Listing 3: Example of command line usage of SQLite

50

4.2.4 ReactJS

ReactJS is a JavaScript library developed and maintained by Facebook that
helps with the creation of complex web applications that need to dynamically
fetch and react to data changes. It is only one among many other frameworks
that solve the same problem, like AngularJS, VueJS, SvelteJS and others.

The reason we chose ReactJS over the other framework was purely because
we were already familiar with this particular library, so it made sense to
choose it in order to avoid having to learn a different one.

class HelloMessage extends React.Component {
render() {

return (
<div>

Hello {this.props.name}
</div>

);
}

}

ReactDOM.render(
<HelloMessage name="Taylor" />,
document.getElementById('hello-example')

);

Listing 4: Example of a React “component” that prints a greeting

In React, the application is usually split up in different components. Each
component has life-cycle callbacks that lets us control what happens right
after its creation, change of state, destruction and so on.

51

4.2.5 Bootstrap

Bootstrap is a popular CSS framework that we chose to use to build our
UIs. It contains CSS-based design templates for typography, forms, buttons,
navigation and other interface components.

The main reason we chose Bootstrap is because it let us quickly develop a
visually appealing UI that was also accessible and (even though not required
by this project) also mobile-ready.

4.3 Back-end implementation

The “back-end” component of Terry is a Python process that will act as both
a web server that receives HTTP requests from the contestants’ browsers, and
as a dynamic queue that will handle the generation of inputs and validation
of outputs, using SQLite and the file-system to store all the data about the
running contest.

4.3.1 Web server

The web server will provide:

• The static HTML of the front-end;

• The compiled JavaScript and minified CSS;

• All necessary icons and images required by the front-end;

• An API that the front-end code will use to read and write information
about the contest.

52

4.3.2 Terry API

The API that the contestant-facing web application frontend is going to
consume is shown in the following figure.

Figure 4.1: A subset of the API supported by the Terry backend.

53

4.3.3 Dynamic queue

As per requirements, we need to serve a different input file every time a
submission is finalized. To make this possible, Terry will manage a self-
replenishing pool of available inputs. The pool size is an implementation
detail: we saw that 64 seem to be working fine. As soon as one input is
requested, Terry will assign it to the contestant who made the request and
schedule the generation of a new input as a background process.

After boot, Terry will concurrently start serving HTTP requests and gener-
ating the initial pool of input files.

4.4 Front-end implementation

The front-end application code is split in components with the main one
being the ContestView component.

4.4.1 The ContestView component

This component includes a navbar at the top with user controls and a timer
that periodically checks for an Internet connection which, if detected, is
logged so that the contest administrators are aware of the misconfiguration
of the contestant workstation and can inform the RT about it.

It is formed by two sub-components: the SidebarView and the TaskView
component. The latter is dynamically reloaded when there is a change in the
URL that is being visited.

In order to obtain the list of tasks to show in the sidebar, the ContestView
connects to the backend API.

54

Browser

ContestView

"Detect Internet"
Timer

Internet
SidebarView TaskView

Terry
Backend

Figure 4.2: The ContestView component.

4.4.2 The TaskView component

The TaskView component includes the logic to choose the set of commands
that are available. Based on what the contestant has already done during
the contest, the TaskView will either show or hide some widgets.

The “Generate Input” button is visible if the user does not have an input al-
ready assigned for that task. Otherwise, the “Download Input” and “Upload
Solution” buttons are shown.

The “List of submissions" link is visible if the user has already one or more
submissions on that task. Otherwise, no link is shown.

Below those buttons, a TaskStatementView is included.

Moreover, the TaskView component will show a modal with other compo-
nents based on the URL that is currently being visited. This is to implement
the User Interface Requirements shown in 3.2 and to satisfy the requirement
of Intuitive Interface described in 3.1.6.

55

TaskView

Terry
Backend

"Generate Input", or
"Download Input" + "Upload Solution"

"List of previous submission", or
nothing

TaskStatementView

Figure 4.3: The TaskView component.

The choice of including the other “paths” (like the submission dialog, the list
of submissions and so on) in a modal makes sense because in this way the
users are always aware of how they reached that point in the application and
how to come back from it.

4.4.3 The ModalView component

The ModalView is a component that helps us with “wrapping” other compo-
nents inside a Bootstrap modal container.

We use this component from TaskView to make other components appear
when the user visits some specific routes.

56

4.4.4 The SubmissionView component

The SubmissionView wraps inside a ModalView the submission form for a
specific input. It effectively implements the same logic that we first described
in the state diagram shown in 3.3.1.

4.4.5 The SubmissionListView component

The SubmissionListView, again wrapped inside a ModalView, is a compo-
nent devoted to showing a sorted list of all submissions made by the contes-
tant on the task.

4.5 Front-end screenshots

Figure 4.4: The TaskView as it appears before requesting any input

57

Figure 4.5: The TaskView as it appears after requesting an input

Figure 4.6: The SubmissionView in a modal

58

Figure 4.7: The SubmissionView in a modal, after uploading a source

Figure 4.8: The SubmissionView in a modal, after submitting

59

Figure 4.9: Back to TaskView in a modal after having submitted

Figure 4.10: The SubmissionListView, now accessible from the TaskView

60

Conclusion

In this thesis we introduced the Informatics Olympiads, and the pipeline that
in Italy is put in place to select the best students that should represent the
country in this competition. We described the steps that this pipeline has
and we focused our attention on the software and procedures used by the
organizers to perform the various phases of the selection.

Having seen how CMS is not appropriate to be used in the district-level
selection, we then made a list of requirements that we wanted to satisfy and
we designed a new software: Terry.

The development of this software was carried out using technologies such as:

• Python

• SQLite

• TypeScript

• ReactJS

• Bootstrap

As of 2019 Terry has been used twice, both times successfully, in the district-
level selection of the Italian Olympiads in Informatics.

61

62

List of Figures

2.1 The support forum for the school-level contest 16

2.2 A diagram of the CMS components 17

2.3 The EvaluationService process orchestrates jobs for Workers . 18

2.4 The Worker grades a submission, using a cache to reduce re-
quests to EvaluationService over the network 19

2.5 The ContestWebServer process accepts submissions and shows
feedback to the contestants . 20

2.6 Actors interact with the CMS system 21

2.7 Screenshot of the CMS task statement page 22

2.8 Screenshot of the CMS task submission page 23

2.9 The CMS file system representation of a task 24

2.10 Screenshot of the CMS administration page 25

2.11 Screenshot of the CMS ranking page 26

3.1 In its 2019 edition, the OII identified 51 districts 34

3.2 The contest page seen by the student 37

63

3.3 After the students clicks on “Request input” two new buttons
become available: “Download input” and “Upload solution” . 37

3.4 After computing the output, the students can upload the so-
lution by clicking “Upload solution” 38

3.5 The upload of the source code is in progress 39

3.6 The source code is uploaded 39

3.7 The upload of the output file is in progress 40

3.8 The output file is uploaded . 40

3.9 The evaluation result is presented to the user 41

3.10 Use case diagram of the system 42

3.11 State diagram showing the “request input” flow 43

3.12 Sequence diagram showing the operations 44

4.1 A subset of the API supported by the Terry backend. 53

4.2 The ContestView component. 55

4.3 The TaskView component. 56

4.4 The TaskView as it appears before requesting any input 57

4.5 The TaskView as it appears after requesting an input 58

4.6 The SubmissionView in a modal 58

4.7 The SubmissionView in a modal, after uploading a source . . 59

4.8 The SubmissionView in a modal, after submitting 59

4.9 Back to TaskView in a modal after having submitted 60

4.10 The SubmissionListView, now accessible from the TaskView 60

64

Bibliography

[1] Overview of Olympic Games. url: http://www.britannica.com/
EBchecked/topic/428005/Olympic-Games.

[2] International Science Olympiads. url: http://olympiads.win.tue.
nl/.

[3] International Olympiads in Informatics. url: https://ioinformatics.
org/.

[4] Christian R. Prause and Zoya Durdik. “Architectural design and docu-
mentation: Waste in agile development?” In: International Conference
on Software and System Process (ICSSP) (2012).

[5] Borja Sotomayor Aaron Bloomfield. “A Programming Contest Strategy
Guide”. In: SIGCSE (2016).

[6] Final Report International Olympiad in Informatics 1992 Bonn / Ger-
many. url: http://olympiads.win.tue.nl/ioi/ioi92/report.
html.

[7] Rosalie Chan. “The 10 most popular programming languages, accord-
ing to the Microsoft-owned GitHub”. In: (2019).

[8] Compiled versus interpreted languages. 1990. url: https : / / www .
ibm . com / support / knowledgecenter / zosbasics / com . ibm . zos .
zappldev/zappldev_85.htm.

65

http://www.britannica.com/EBchecked/topic/428005/Olympic-Games
http://www.britannica.com/EBchecked/topic/428005/Olympic-Games
http://olympiads.win.tue.nl/
http://olympiads.win.tue.nl/
https://ioinformatics.org/
https://ioinformatics.org/
http://olympiads.win.tue.nl/ioi/ioi92/report.html
http://olympiads.win.tue.nl/ioi/ioi92/report.html
https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zappldev/zappldev_85.htm
https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zappldev/zappldev_85.htm
https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zappldev/zappldev_85.htm

[9] Wouter T. van Leeuwen. “A critical analysis of the IOI grading process
with an application of algorithm taxonomies”. In: (2005). url: https:
//pure.tue.nl/ws/portalfiles/portal/47048826/599683-1.pdf.

[10] The Sixth International Olympiad in Informatics: A Trip Report, 3 -
10 July 1994, Haninge, Sweden. url: http://olympiads.win.tue.
nl/ioi/ioi94/rprt-nl/index.html#Judging_the_Programs.

[11] DOMjudge at the ICPC World Finals. 2012. url: https : / / www .
domjudge . org / pipermail / domjudge - devel / 2012 - May / 000922 .
html.

[12] G. Mascellani S. Maggiolo. “Introducing CMS: A Contest Management
System”. In: IOI Journal 6 (2012), pp. 86–99. url: https://www.mii.
lt/olympiads_in_informatics/files/volume6.pdf#page=89.

[13] G. Mascellani S. Maggiolo. “CMS: a growing grading system”. In: IOI
Journal 8 (2014), pp. 123–131. url: http://www.mii.lt/olympiads_
in_informatics/files/volume8.pdf#page=125.

[14] La storia delle OII. Italian. url: https://olimpiadi-informatica.
it/index.php/oii/la-storia-delle-oii.html.

[15] Italian Team Olympiads in Informatics. url: https : / / squadre .
olinfo.it/about.

[16] The Psychology of choice: Why less is more. url: https : / / www .
keepitusable.com/blog/the-psychology-of-choice-why-less-
is-more/.

66

https://pure.tue.nl/ws/portalfiles/portal/47048826/599683-1.pdf
https://pure.tue.nl/ws/portalfiles/portal/47048826/599683-1.pdf
http://olympiads.win.tue.nl/ioi/ioi94/rprt-nl/index.html#Judging_the_Programs
http://olympiads.win.tue.nl/ioi/ioi94/rprt-nl/index.html#Judging_the_Programs
https://www.domjudge.org/pipermail/domjudge-devel/2012-May/000922.html
https://www.domjudge.org/pipermail/domjudge-devel/2012-May/000922.html
https://www.domjudge.org/pipermail/domjudge-devel/2012-May/000922.html
https://www.mii.lt/olympiads_in_informatics/files/volume6.pdf#page=89
https://www.mii.lt/olympiads_in_informatics/files/volume6.pdf#page=89
http://www.mii.lt/olympiads_in_informatics/files/volume8.pdf#page=125
http://www.mii.lt/olympiads_in_informatics/files/volume8.pdf#page=125
https://olimpiadi-informatica.it/index.php/oii/la-storia-delle-oii.html
https://olimpiadi-informatica.it/index.php/oii/la-storia-delle-oii.html
https://squadre.olinfo.it/about
https://squadre.olinfo.it/about
https://www.keepitusable.com/blog/the-psychology-of-choice-why-less-is-more/
https://www.keepitusable.com/blog/the-psychology-of-choice-why-less-is-more/
https://www.keepitusable.com/blog/the-psychology-of-choice-why-less-is-more/

	Introduction
	The Informatics Olympiads
	Algorithmic Problem Solving
	APS versus traditional programming
	The goal, in an APS competition
	Asymptotic Complexity
	APS and Programming Languages

	The Contest Platform
	Notable Contest Platforms

	Timeline of APS competitions
	History of the OII
	Going “teams”: the OIS

	OII: Software and Procedures
	Human Resources
	Communication Channels

	CMS: software architecture
	The EvaluationService process
	The Worker process
	The ContestWebServer process

	CMS: user experience
	Contestant: submitting a program
	Admin: setting a task
	Spectator: using the ranking

	Using CMS in the Italian Olympiads
	CMS in the national finals of the OII
	CMS in the online rounds of the OIS

	The district-level selection
	Task distribution
	Collection of the programs
	Delivering Feedback

	Using CMS in the district-level selection?
	Strict time limits
	Not uniform server performance

	Design of Terry
	Functional Requirements
	Suboptimal complexity is fine
	Decentralized contest
	Unstable or unreliable connectivity
	Easy to setup
	Immediate feedback to users
	Intuitive interface
	Remotely Inspectable

	User Interface Requirements
	Use Cases
	Contestant
	RT
	Contest Admins

	Implementation of Terry
	Choices
	No-run Evaluation
	Distribution of Terry

	Technologies
	Python
	Typescript
	SQLite
	ReactJS
	Bootstrap

	Back-end implementation
	Web server
	Terry API
	Dynamic queue

	Front-end implementation
	The ContestView component
	The TaskView component
	The ModalView component
	The SubmissionView component
	The SubmissionListView component

	Front-end screenshots

	Conclusion

