
politecnico di milano

Facoltà di Ingegneria

Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

Master of Science in

Computer Science and Engineering

Abstractive Text Summarization with
Neural Sequence-to-Sequence Models

Advisor: prof . matteo matteucci

Co-advisor: dr . georg rehm

Master Graduation Thesis by:

dmitrii aksenov

Student Id n. 10627370

Academic Year 2019-2020

politecnico di milano

Facoltà di Ingegneria

Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

Corso di Laurea Magistrale in

Computer Science and Engineering

Abstractive Text Summarization with
Neural Sequence-to-Sequence Models

Relatore: prof . matteo matteucci

Correlatore: dr . georg rehm

Tesi di Laurea Magistrale di:

dmitrii aksenov

Matricola n. 10627370

Anno Accademico 2019-2020

A C K N O W L E D G M E N T S

First of all I would like to thank Dr. Georg Rehm at the DFKI for
giving me the opportunity to carry out state-of-the-art research in this
field.

Furthermore, I would like to thank Prof. Matteo Matteucci for su-
pervision of my thesis.

Special thanks to Prof. Dr.-Ing. Sebastian Möller, Dr. Julián Moreno-
Schneider, Dr. -Ing. Leonhard Hennig, Peter Bourgonje and Robert
Schwarzenberg and for their guidance.

v

C O N T E N T S

Abstract xiii
1 introduction 1

1.1 Motivation . 1

1.2 Objective . 2

1.3 Thesis outcome . 3

1.4 Outline . 4

2 fundamentals and related work 7

2.1 Fundamentals of Deep Learning in Natural Language
Processing . 7

2.1.1 Natural Language Processing 7

2.1.2 Language as Probability Model 8

2.1.3 Neural networks 9

2.1.4 Recurrent Neural Networks 11

2.1.5 Encoder-Decoder Framework 13

2.1.6 Attention . 14

2.1.7 Transformer . 15

2.1.8 Pre-Trained Models 16

2.2 Abstractive Text Summarization with Neural Networks 19

2.2.1 Summarization Evaluation 21

3 requirements 23

3.1 Data Requirements . 23

3.2 Technical Requirements 23

3.2.1 Computational Resources 23

3.2.2 Programming Environment 23

3.3 Functional Requirements 24

3.3.1 Extractive Summarization Module 24

3.3.2 Abstractive Summarization Module 24

4 model description 27

4.1 Consistent Extractive Summarization Module 27

4.2 Abstractive Summarization Module 28

4.2.1 Convolutional Self-Attention 28

4.2.2 Pre-Trained Language Models Comparison . . . 30

4.2.3 BERT-Conditioned Encoder 33

4.2.4 BERT-Windowing 34

4.2.5 BERT-Conditioned Decoder 35

4.2.6 Integration of BERT and Convolutional Self-
Attention . 36

4.2.7 BERT-Conditioned Generator 37

5 datasets description 39

5.1 CNN / Daily Mail . 39

5.2 SwissText Dataset . 41

6 implementation 43

vii

6.1 Environment . 43

6.2 Project Structure . 44

6.3 Experimental Setup . 45

7 experimental results 47

7.1 Baseline Model . 47

7.2 Extractive Stage . 47

7.3 Locality Modeling . 48

7.4 Language Model Conditioning 49

7.5 Integration Strategies . 52

7.6 Models Comparison . 52

7.7 Qualitative Analysis . 54

8 conclusions 57

bibliography 59

i appendix

a lrec 2020 paper 69

viii

L I S T O F F I G U R E S

Figure 1.1 System Architecture 3

Figure 2.1 The general schema of an artificial neuron . . . 10

Figure 2.2 The schema of a multilayer perceptron 11

Figure 2.3 Architectures of the FNN and RNN. 12

Figure 2.4 The schema of the LSTM cell 13

Figure 2.5 Multi-head attention 16

Figure 2.6 The architecture of Transformer 17

Figure 4.1 Probability distribution for a next output token 29

Figure 4.2 Integration of BERT-generated contextual rep-
resentations from two windows 34

Figure 4.3 Model Overview 35

Figure 4.4 Two ways of the integration of the BERT-conditioning
with the Convolutional Self-Attention 36

Figure 7.1 Effect of the window size on ROUGE-1 49

L I S T O F TA B L E S

Table 2.1 Different attention score functions 15

Table 2.2 Different types of attention 15

Table 4.1 Exploration of the XLNet model 32

Table 4.2 Exploration of the BERT model 32

Table 4.3 Exploration of the GPT2 model 33

Table 5.1 General CNN / Daily Mail and SwissText datasets
statistics . 39

Table 7.1 Effect of Pointer Generator and beam search on
Transformer on the CNN / Daily Mail dataset 47

Table 7.2 Effect of Pointer Generator and beam search on
Transformer on the SwissText dataset 47

Table 7.3 Effect of the extraction pre-stage on the ROUGE
scores on the CNN / Daily Mail dataset 48

Table 7.4 Ablation study of model with convolutional
self-attention on the CNN / Daily Mail dataset 48

Table 7.5 Ablation study of the BERT-based model on
truncated and original CNN / Daily Mail dataset 50

Table 7.6 Ablation study of the BERT-based model on the
truncated and original SwissText dataset . . . 50

ix

Table 7.7 Experimental results on the CNN / Daily Mail
dataset for post-processing generator condi-
tioning approach 51

Table 7.8 Experimental results on the CNN / Daily Mail
dataset for the approach of generator condi-
tioning during training 51

Table 7.9 Experimental results on the CNN / Daily Mail
dataset for different strategies of integration . 52

Table 7.10 ROUGE scores on the CNN / Daily Mail test set 53

Table 7.11 ROUGE scores on the SwissText test set 53

x

L I S T O F A C R O N Y M S

NLP Natural language Processing
DL Deep Learning
RL Reinforcement Learning
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
CNN Convolutional Neural Network
API Application Programming Interface
DFKI Deutsches Forschungszentrum für Künstliche Intelligenz
LREC The International Conference on Language Resources and Evaluation
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
IP Internet Protocol
ROUGE Recall-Oriented Understudy for Gisting Evaluation
BLEU Bilingual Evaluation Understudy
BPE Byte Pair Encoding
BERT Bidirectional Encoder Representations from Transformers
ELMo Embeddings from Language Models
ULMFiT Universal Language Model Fine-tuning
GloVe Global Vectors for Word Representation
LM Language Model
TF Term Frequency
IDF Inverse Document Frequency
BPE Byte Pair Encoding
HPC High Performance Computing
REST Representational State Transfer
Turtle Terse RDF Triple Language

xi

A B S T R A C T

Nowadays, we face a permanent increase in the amount of unstruc-
tured information in text form. That calls for methods of automatic text
summarization. In this thesis, we concentrate on the task of a single-
document neural networks-based abstractive text summarization. We
did several major scientific contributions. First of all, we explored
to what extent knowledge from a pre-trained language model can
be beneficial for the task of abstractive summarization. To this end,
we experimented with conditioning the encoder, the decoder and the
generator of a Transformer-based neural model on the BERT language
model. The BERT conditioning showed huge improvement when used
in encoder and decoder but was not useful for generator condition-
ing. Then, to alleviate the BERT‘s input size limitation we proposed
a method of BERT-windowing. It allows chunk-wise processing of
texts longer than the 512 tokens and respectively extends the BERT
applicability. We also explored how locality modeling, i. e. the ex-
plicit restriction of calculations to the local context, can affect the
summarization ability of Transformer. This was done by introducing
2-dimensional convolutional self-attention into the first layers of the
encoder. Our abstractive models were evaluated and compared with
state-of-the-art models on the CNN/Daily Mail dataset using ROUGE
scores. We additionally trained our models on the German SwissText
dataset to demonstrate the suitability of our model to languages other
than English. All our final models outperformed the Transformer-
based baseline and showed their superiority in manual qualitative
analysis. Based on the results achieved we developed a summarization
system. As the BERT-based model showed better results than convolu-
tional self-attention-based we decided to use it in the release version
of our summarization system. Last but not the least, we developed the
extractive sentence-level summarization module to be able to handle
significantly long documents that can not be efficiently processed by
neural networks. This module is based on the TF-IDF sentence-level
summarization but uses BERT‘s next sentence prediction capability to
increase the consistency of the result summaries. In our summariza-
tion system, it is used as the first step of the summarization process
before applying the abstractive model.

xiii

S O M M A R I O

Abbiamo fornito numerosi importanti contributi scientifici. Prima di
tutto, abbiamo esplorato fino a che punto la conoscenza di un mo-
dello linguistico pre-addestrato può essere utile per il compito di
sintesi astratta. A tal fine, abbiamo sperimentato il condizionamen-
to dell’encoder, del decoder e del generatore di un modello neurale
basato su Transformer sul modello del linguaggio BERT. Il condizio-
namento BERT ha mostrato enormi miglioramenti se usato in encoder
e decoder ma non è stato utile per il condizionamento del genera-
tore. Quindi, per alleviare la limitazione delle dimensioni di input
del BERT, abbiamo proposto un metodo di finestre BERT. Consente
l’elaborazione in blocco di testi più lunghi dei 512 token e estende
rispettivamente l’applicabilità BERT. Abbiamo anche esplorato il modo
in cui la modellazione della località, cioè la limitazione esplicita dei
calcoli al contesto locale, può influenzare la capacità di riepilogo di
Transformer. Ciò è stato fatto introducendo auto-attenzione convolu-
zionale bidimensionale nei primi strati dell’encoder. I nostri modelli
astrattivi sono stati valutati e confrontati con modelli all’avanguardia
nel set di dati CNN / Daily Mail utilizzando i punteggi ROUGE.
Abbiamo inoltre addestrato i nostri modelli sul set di dati SwissText
tedesco per dimostrare l’idoneità del nostro modello a lingue diverse
dall’inglese. Tutti i nostri modelli finali hanno sovraperformato la
linea di base basata su Transformer e hanno mostrato la loro superio-
rità nell’analisi qualitativa manuale. Sulla base dei risultati raggiunti
abbiamo sviluppato un sistema di riepilogo. Poiché il modello basato
su BERT ha mostrato risultati migliori rispetto all’auto-attenzione con-
voluzionale, abbiamo deciso di utilizzarlo nella versione di rilascio del
nostro sistema di riepilogo. Ultimo ma non meno importante, abbia-
mo sviluppato il modulo di riepilogo a livello di frase estrattivo per
essere in grado di gestire documenti significativamente lunghi che non
possono essere elaborati in modo efficiente dalle reti neurali. Questo
modulo si basa sul riepilogo a livello di frase TF-IDF ma utilizza la
capacità di previsione della frase successiva di BERT per aumentare la
coerenza dei riepiloghi dei risultati. Nel nostro sistema di riepilogo,
viene utilizzato come primo passo del processo di riepilogo prima di
applicare il modello astrattivo.

xiv

1
I N T R O D U C T I O N

In the current digital age, we face a permanent increase in the amount
of unstructured information in text form. Millions of individuals,
organizations, and universities are creating new textual information
every day. Such volume is very difficult to be processed manually.
For a big set of documents, it may require an inefficiently long time.
Moreover, the generated summaries are very subjective and prone to
reflect the bias of the person performing summarization. That calls
for methods to automatically extract the relevant information from
unstructured documents and present it in some condensed form. Such
methods are denoted automatic text summarization methods and have
many real-wolds applications in research, finance, commerce, web,
and public media.

Within the field of text summarization, different paradigms are
recognized in two dimensions: extractive vs. abstractive, and single-
document vs. multi-document. In extractive summarization, the task
is to extract sentences or words from the text which carry the most
important information, directly presenting the result of this as the sum-
mary. Abstractive summarization methods paraphrase the text and, by
changing the text, aim to generate more flexible and consistent sum-
maries. The extractive approach is easier and is ensured to generate
grammatically and syntactically correct summaries. On the other hand,
only within the abstractive approaches are possible paraphrasing, in-
corporation of the real-world knowledge and consistency between
sentences. Furthermore, single-document summarization works on a
single document at a time, while multi-document summarization deals
with multiple documents at once and produces a single summary for
them.

1.1 motivation

In this thesis, we concentrate on the task of a single-document abstrac-
tive summarization. Most recent abstractive models utilize the neural
network-based sequence-to-sequence approach. Traditionally, these
networks are trained in a supervised manner, meaning that they learn
to generate summaries as much close to the human-generated gold
summaries as possible. During training, such models calculate the
conditional probability of a gold summary given the input sequence
by maximizing the loss function (typically cross-entropy). Most ap-
proaches are based on the encoder-decoder framework where the
encoder encodes the input sequence into a vector representation and

1

2 introduction

the decoder produces a new summary given the draft summary gen-
erated in previous iterations. The recent most efficient state-of-the-art
sequence-to-sequence model is Transformer which is built primarily
on the attention mechanism [3].

Such an abstractive summarization approach has several serious
drawbacks. First, the neural models are restricted only to small texts
not able to successfully remember long texts. Second, as all the sum-
marization datasets are relatively small the resulted model does not
represent the language at whole its richness. Hence, we find it impor-
tant to research new summarization approaches that avoid text length
limitations and empower some pre-training to improve the language
encoding capabilities of the model.

Besides, many works showed that Transformer can achieve higher
scores when self-attention is replaced by some other functions [31],
[32]. One of the proposed functions is convolutional self-attention
which adds hierarchy to the model pushing it to explicitly model the
local dependencies between tokens [26]. That idea way never used in
the text summarization research which makes it a valid target for this
work.

1.2 objective

This work aims to build a state-of-the-art neural network-based abstrac-
tive multi-sentence text summarization system capable to summarize
both short and long documents. The system is developing under the
umbrella of the QURATOR [59] and LYNX [57] projects where it is
to be used as a summarization microservice application. Lynx is a
European Research Project which integrates and interlink various legal
documents (legislation, case law, standards, industry norms and best
practices) into the Legal Knowledge Graph. This graph will be accessi-
ble via the ecosystem of smart cloud services including one dedicated
to text summarization. QURATOR (“Curation Technologies”) is the
initiative and framework that aims at developing artificial intelligence
methods and research projects to be used in the industrial solutions
for curating digital content. Both projects are multi-lingual that means
that the summarization method is required to be language indepen-
dent in its nature that means to be theoretically able to summarize
documents in different languages.

First, we aim at building an extractive text summarization system to
be able to shorten the texts of any length to the consistent texts of size
processable by the state-of-the-art neural networks. The model must
be improved by the conditioning on the pre-trained language model
and explicit modeling of the local dependencies. Finally, he extractive
summarization module must be integrated with the best abstractive
summarization model via the REST API.

1.3 thesis outcome 3

Figure 1.1: System Architecture

1.3 thesis outcome

In this thesis, we developed the text summarization system comprising
the extractive and abstractive summarisation modules. The system
was written in the Python language and uses the Deep Learning
framework PyTorch, Docker containerization and web application
framework Flask. The system was deployed in the Application Server
(AS) to be accessed via Postman API and GUI. Figure 1.1 shows the
general architecture of the developed system.

For the experiments, we are using the English CNN / Daily Mail
dataset, the de facto text summarization standard, and nearly pre-
sented German SwissText dataset containing the set of Wikipedia
articles with their abstracts. Our system was evaluated via ROUGE
scores, the classical summarization evaluation method. The datasets
were tokenized using the same tool to assume the comparability of the
results of the experiments. In this way, we show the applicability of our
method for texts in different languages. Moreover, to our knowledge,
the results we obtained on the SwissText data were the first publicly
released results which must contribute to the consecutive research on
German texts‘ summarization.

Our extractive module is based on the well-known TF-IDF sentence-
level extractive text summarization. Our key contribution to this

4 introduction

method is the usage of the pre-trained language model to keep the
semantic and syntax consistency of the generated summaries.

The abstractive summarization model is based on the Transformer
network with the pointer generator mechanism and the encoder-
decoder framework. We did two major contributions to this baseline.
First, we test several strategies of conditioning the encoder, the decoder
and the generator of the model on a language model BERT obtaining
the configuration of the model achieving close to the state-of-the-art
results. In addition, we also developed a method of windowing the
text and chunk-wise processing by a pre-trained language model. This
method allowed us to encode the sequences which length exceeds the
language model‘s input limitations. Second, we developed a model
that exploits the idea of convolutional self-attention applied to the task
of text summarization. We showed how it improves the evaluation
score when used on the bottom layers of the encoder and discussed
the possibility of its integration with the aforementioned language
model conditioning.

In the final evaluation chapter, we compared our models with the
state-of-the-art models and conducted a qualitative analysis on the
text examples from the CNN / Daily Mail dataset.

We results of this work constituted a paper that was accepted for
the LREC 2020 conference [60]. We put the pre-print of the paper in
the appendix A.

1.4 outline

This thesis is separated into 8 chapters, including Introduction. The
next chapters are:

Chapter 2 “Fundamentals and Related Work” presents the related
works in the field of abstractive text summarization. It first introduces
the relevant ideas behind state-of-the-art sequence-to-sequence models
and then shows how they were applied to the specified problem by
other scientists in the previous research.

Chapter 3 “Requirements” analyzes the functional and technical re-
quirements for every components of the summarization system.

Chapter 4 “Models Description” describes our approach to the auto-
matic summarization problem. It gives a high-level description to the
system architecture and introduces various hypothesis which are later
evaluated in the experiments.

Chapter 6 “Implementation” describes the implementation part of
our work. In this chapter, we give a description of the used technolo-
gies and the program environment of the system. Then, we present

1.4 outline 5

the setups for all the experiments, list the most important hyperpa-
rameters and their values and introduce the metrics used to assess the
system‘s efficiency.

Chapter 5 “Datasets Description” introduces datasets used in train-
ing, validation and testing steps. Their differences and similarities are
highlighted to find data-dependent patterns in the evaluation step.

Chapter 7 “Experimental Results” shows the results of the exper-
iments stated in the chapter 6. In this chapter, we discuss which
hypotheses were confirmed, how different ideas influenced the total
performance of the system and what dependencies and patterns were
found.

Chapter 8 “Conclusions” summarizes the thesis giving the discus-
sion about the achieved results and drawing the final conclusion. It
also proposes directions for future work.

2
F U N D A M E N TA L S A N D R E L AT E D W O R K

In the first section of this chapter, we are going to provide a short
description of the key ideas adopted by the modern Deep Learning-
based NLP. The relevant ideas to be considered include, but are not
limited to, neural networks, recurrence, attention, language modeling,
different tokenization methods, distributed representations, and pre-
training.

Then, we give a deep overviews of the cutting-edge methods in
Deep Learning-based abstractive text summarization. We show how
in the related scientific papers these ideas together with some new
task-specific tricks were used to tackle the abstractive text summariza-
tion problem. This task required to solve some unique sub-problems
such as limited networks‘ memory, non-uniformity of the vocabulary
distribution, the limited number of contexts in a corpus, the degree of
the internal structure in the texts and non-equality of loss functions
with target measures.

Taking approaches described above we form several promising
hypotheses to increase the model’s accuracy which is to be described
in more detail in the next chapter.

2.1 fundamentals of deep learning in natural language

processing

2.1.1 Natural Language Processing

Natural language processing (NLP) is a broad field of knowledge that
deals with computational algorithms to automatically analyze, model
and generate natural human language. In the age of the ubiquitous
World Wide Web and the unstoppable rise of unstructured text in-
formation, NLP became one of the most important technologies. It
covers many different tasks such as automatic parsing, text summa-
rization, machine translation, named entity. NLP is highly connected
with Artificial Intelligence science and often is considered as its part.

Traditionally, the NLP pipeline included many task-specific steps
from pre-possessing to the final application. In recent years, this
traditional approach was massively shifted by the new Deep Leaning-
based approaches, which have achieved very high performance in
various NLP tasks. This approach implies a training of end-to-end
models without manual feature engineering.

Even within the Deep Learning framework, pre-processing is one
of the most important steps in any NLP application. This process

7

8 fundamentals and related work

determines the input to the models which significantly affects the final
accuracy. The standard pipeline includes the following steps:

1. Cleaning (noisy data removal, stopword removal, capitalization,
etc.)

2. Annotation(tokenization, part-of-speech tagging, etc.).

3. Normalization (Stemming, Lemmatization)

4. Analysis (TF-IDF, counting, etc.)

For neural networks, the most important pre-processing step is
tokenization which splits the text into discrete tokens allowing it to
be processed in sequential order by an NLP system. Tokenization
allows us using a fixed vocabulary and One Hot Encoding to encode a
sequence into the set of orthogonal vectors which can be consequently
processed by a neural-network-based engine.

The most common approach is the word tokenization which splits
the text into pieces separated by spaces and punctuation. The method
is simple and fast but operates only with fixed vocabulary, whereas
summarization is an open-vocabulary problem. Besides, this method
performs badly on the morphologically rich languages

Another approach that mitigates the fixed vocabulary problem is
the character tokenization. The character tokenizer splits texts into
individual characters ensuring the vocabulary equal to the language
alphabet. Despite the method‘s ability to adapt to new words, it is not
widely adopted by the NLP community. The probability distribution
of the next character given the previous is close to the discrete uniform
that requires larger models to be able to catch the language structure.
Larger models, in turn, need more data that drop the accuracy of the
built models compared to the usage of word tokenization.

In the recent past, the NLP community, especially in Machine Trans-
lation research, widely adopted a new tokenization method called
Byte Pair encoding. It tackles the out-of-vocabulary problem by en-
coding rare and unknown words as sequences of sub-word units. The
intuition behind the approach is that various classes of words in a
language can be represented as a combination of several meaningful
units. For example, the morphological, phonological and composi-
tional rules of the language produce various cognates, compounds,
and loanwords. BPE allows building a compact vocabulary capturing
the most common sequences of characters in the language.

2.1.2 Language as Probability Model

The most general task of NLP deals with building the models of the
language. This task is highly related to the abstractive text summariza-
tion problem and its understanding is essential for dealing with the

2.1 fundamentals of deep learning in natural language processing 9

cutting-edge summarization models. Language modeling is usually
seen by statistical-based NLP as unsupervised distribution estimation
from a set of examples each composed of variable length sequences of
tokens. Every token is assumed to be left-conditioned of the previous
tokens forming the conditional distribution (as a rule normal) over vo-
cabulary. Due to the natural sequential ordering, the joint probability
is usually factorized as the product of these conditional probabilities
[15, 16]:

p(x) =

n∏
i=1

p(si|s1, ..., si−1), (2.1)

where p() is the joint probability and si denoted the i-th token.
The language model is the key method for generating distributed

representations of tokens (also known as embeddings) to be later used
in specific NLP tasks. As every sequence in the natural language is
conditioned in both left-to-right and right-to-left order, usually, two
respective models are trained and concatenated to get a more accurate
representation. However, recently, the idea of masking the conditioned
tokens allowed the explicit bidirectional conditioning [14, 12]. This
allows us to reformulate the previous formula in the following way:

p(x) =

n∏
i=1

p(si|s1, ..., si−1, si+1, ..., sn) (2.2)

The most precise language representation can be formed by count-
ing models. However, this would demand an unfeasible amount of
memory and time. Hence, practically language models are always
approximated by some complex functions trained on the corpus of
texts. Recently, Deep Learning approaches have obtained very high
performance in language modeling becoming a standard tool for this
task.

2.1.3 Neural networks

Artificial neural networks are kind of systems inspired by the bio-
logical neural networks which considered to be the source of human
intelligence and consciousness. These systems have a statistical nature
and learn to perform a particular task (in general case to perform ap-
proximation) from examples without the necessity to be programmed
explicitly as a system of rules. We can adapt the neural networks to
deal with text pairs by coding the input and target texts in the corpus
using the One Hot Encoding (which represents a word as a vector with
1 in one position and 0 in rest). That allows us to build sequence-to-
sequence models that can process texts directly without any additional
pre-processing except some basic cleaning and tokenization.

The first artificial neural network called Perceptron was developed
in 50ś by Frank Rosenblatt. All state-of-the-art gigantic neural net-

10 fundamentals and related work

x2 w2 Σ f

Activate
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 2.1: The general schema of an artificial neuron

works stem from this controversial work. Perceptron is a binary linear
classifier which applies a threshold function on the linear combination
of the input features. Perceptron with a threshold function replaced by
some other non-linear activation functions (e. g. sygmoid, RELU, etc.)
constitutes the basis for most modern neural networks (Figure 2.1).

The combination of perceptrons in connected layers resulted in a
multilayer perceptron (MLP) which belongs to the class of free-forward
artificial neural networks (networks which have no loops between its
nodes). An MLP consists of at least three layers of parallel neurons:
an input layer, a hidden layer with a nonlinear activation function at
each neuron and an output layer (Figure 2.2).

The multilayer perceptron is proved mathematically be a universal
function approximator. The universal approximation theorem states:
Theorem

Theorem 2.1. A feed-forward network with a single hidden layer
containing a finite number of neurons can approximate continuous
functions on compact subsets of Rn, under mild assumptions on the
activation function [2].

This theorem was formulated based on another theorem proven by
George Cybenko in 1989 for sigmoid activation functions:

Theorem 2.2. Finite linear combinations of compositions of a fixed,
univariate function and a set of affine functionals can uniformly ap-
proximate any continuous function of n real variables with support in
the unit hypercube[17].

Considering a neural network as a classifier it means that, theo-
retically, with a big number of neurons and a learning algorithm
achieving a global minimum, a free-forward neural network can in
the most precise way distinguish not linear separable data. Practically,
there does not exist an algorithm finding a global optimum for an
arbitrary network. Free-forward neural networks usually are trained

2.1 fundamentals of deep learning in natural language processing 11

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

Ouput

Figure 2.2: The schema of a multilayer perceptron

via a back-propagation algorithm that employs the gradient descent
optimization of the loss function and chain rule to achieve a local
minimum which is guaranteed to be close to the global minimum[18].
In such an algorithm, when the neural networks reach a particular
depth they start suffering from the problem of vanishing gradient. The
nature of the problem is the permanent decrease of the gradient for
the deep layers preventing their weights from being updated. Many
techniques were proposed to overcome the problem, among them
there are receiver activation function, residual connections, and the
hardware updates.

2.1.4 Recurrent Neural Networks

The standard free-forward neural network assumes the input to be
of the same size and structured uniformly. This assumption becomes
inadequate when data has a sequential nature and FNN could not any-
more be used as a modeling tool. Sequential data exists in many forms:
speech, video, time-series, text, or chain or events. Due to the nature
of our task, we concentrate here only on text documents. They can be
quite large consisting of thousands of words and have the variance
in their length. In the inevitable lack of memory, time, and compu-
tational resources that prevents us from the usage of the standard
FNN-based models. That led to the development of different neural
network architectures eligible for sequential information processing.
One of the most powerful models for processing of sequential infor-

12 fundamentals and related work

Figure 2.3: Architectures of the FNN and RNN.

mation is recurrent neural network. The main strength of RNN is its
ability to memorize the results from the previous computation which
allows modeling of the context dependencies in the input sequences of
arbitrary length and remembering the elements‘ order. Every output
of the network is conditioned on the previous computations through
the combination of the hidden state from the previous iteration with
the current hidden state. This procedure is repeated recursively for
every token from the input sequence with the corresponding update
of the network’s weights. Hence, for classical RNNs, the deterministic
state condition function is:

hlt = f(W
a
n,nh

l−1
t +Wb

n,nh
l
t−1), (2.3)

where f is the non-linear function, l is the number of the layer and
Wa
n,n,W

b
n,n are the learnable matrices.

The Figure 2.3 illustrates the difference between FNN and RNN frame-
works.

The drawback of the standard RNN is that it processes the sequence
only in one direction. For every new token the network looks back-
ward to the previous states to find some inter-tokens relationships.
However, it is obvious that a sequence‘s elements can relate to the
next tokens as well as to previous. Thus, in practice, bidirectional
recurrent neural networks (BRNN) are utilized which analyze every
text in both directions generating more informative contextual repre-
sentations. The architecture for such networks represents two separate
RNNs in which hidden states for every position in the sequence are
concatenated into a final bidirectional representation.

The standard RNNs also suffer from the vanishing gradient prob-
lem. This implicitly prevents networks from learning long sequences.
Another problem is akin to the gradient vanishing, but here we ob-
serve the vanishing influence of the past input, such that with the

2.1 fundamentals of deep learning in natural language processing 13

σ σ Tanh σ

× +

× ×

Tanh

ct-1Cell state

ht-1Hidden state

xtInput

ct New cell state

ht New hidden state

htNew hidden state

Figure 2.4: The schema of the LSTM cell

progress of the sequence the strength of the past tokens decreases. As
a result, we can not nether train the network with long sequences nor
generate long meaningful sequences. In other words, it can be said
that traditional RNNs have a short-term memory. Hence, there was the
idea to equip the standard neural networks with explicit long-termed
memory. The most famous such architectures are long short-term
memory (LSTM) and gated recurrent unit (GTU) [55]. This long-term
memory is organized via the additional Cell state which is regulated
by three “gates” (Figure 2.4). Respectively, the input gate controls the
input flow into the cell, forget gate controls the extent of which we
keep the previous information and the output gate controls the output
flow from the cell. The recently proposed GRU is an LSTM without
the output gate [56]. Such architectures proved to improve the ability
to memorize information and were dominant in NLP research up to
the invention of Attention-based models (look Section 2.1.7).

2.1.5 Encoder-Decoder Framework

The minimal architecture for a Sequence-to-sequence model consists of
only one neural network where the input consists of the input text and
the generated output draft summary separated by a special separation
token. The problem here is that the length of the input and the output
sequences vary considerably that undermines the efficiency of a simple
use of one network. Therefore, most models are built upon the encoder-
decoder framework. In this framework, we train two networks where
an encoder is used to encode the input and a decoder to generate the
text. In the first step, an input sequence is mapped by the embedding
matrix to the distributed representations. Then the encoder transforms
them into the contextual distributed representations (encoder hidden

14 fundamentals and related work

states) which represent some information about the sequence in every
vector. Encoders may be based on various architectures among those
the most famous are variations of RNNs. However, to get rid of the
sequential processing, currently, convolutional and attention-based
models are replacing the traditional RNNs.

Decoder infers the output from the hidden states of the encoder.
The decoding happens in a sequential manner where every newly
generated token is conditioned on the sequence of the previously gen-
erated tokens. Its architecture usually is based on the same principle
as the encoder. On the first step, the decoder, having the embedding
vectors of the output draft and the set of hidden states of the encoder,
calculates the vector which represents the information essential for
the generation of a next token. Then, the generator layer maps this
vector to the vector of probabilities over the vocabulary. Here, the
normalization technique Softmax is used to restrict all the vector’s
components to the interval (0, 1) and make them add up to 1 so that
they can be interpreted as probabilities. The embedding of the most
probable token is used as input in the next decoding iteration. The
generation will stop after reaching the end of the sequence token.

2.1.6 Attention

Another recent idea which led to the significant improvement in the
valorous NLP tasks is attention. The logic of this operation is to allow
the generator at every iteration to consider all encoder hidden states
while paying more attention to the most relevant tokens. In other
words, it replaces the set of hidden states of the encoder by the set of
weighted averages of these vectors The algorithm of attention is the
following:

1. Map linearly the contextualized embedding vectors into the set
of vectors called queries, values, and keys.

2. Apply the attention score function to the keys and queries to cal-
culate the attention distribution. The distribution is normalized
by the softmax function.

3. Using attention distribution calculate the context vector as a
weighted sum of the values.

Equation 2.4 presents the algorithm in the matrix form:

Attention(Q,K, V) = softmax(score(K,Q))V (2.4)

There exist many different score functions (Table 2.1). Among them,
the most adopted are additive and dot-product functions. Although,
they are similar in theoretical complexity dot-product outperforms
other functions in terms of time and space efficiency.

2.1 fundamentals of deep learning in natural language processing 15

Attention type Score function Citation

Content-base score(ki, qi) = cosine[ki, qi] [52]

Additive score(ki, qi) = β
T
atanh(Wa[ki, qi]) [53]

General score(ki, qi) = k
T
iWaqi [54]

Dot-Product score(ki, qi) = k
T
i qi [54]

Scaled Dot-Product score(ki, qi) =
kTi qi√
dk

[3]

Table 2.1: Different attention score functions.

Attention type Description Citation

Global Attention Attending to the whole target sequence [54]

Local Attention Attending to the target sub-sequence [54]

Self-Attention Attending to the source sequence [3]

Table 2.2: Different types of attention.

Also, there exist three general approaches to the attention (Table
2.2). The global attention is the classical form of attention used in the
most NLP models. However, local and self-attention recently gained
much popularity as the tool to model the local dependencies ad as a
replacement to the RNN and CNN networks respectively.

2.1.7 Transformer

The drawback of the traditional sequence-to-sequence models based
primarily on the recurrent neural networks (even if they use attention,
for example, [50]) is that they require sequential processing of the texts.
This precludes the parallelization of the computations within training
examples and respectively increases the training time needed for long
sequences. To overcome this problem the new model Transformer
relying entirely on the attention mechanism was proposed [3].

Transformer employs the encoder-decoder framework multi-layer
architecture. Every Transformer layer consists of a stack of attention
layer and a fully connected free-forward network followed by a nor-
malization layer with residual connections. To encode the order of
the tokens the special positional embeddings are calculated. Atten-
tion is calculated via the dot product and is used in two different
ways. The first one, used only in the decoder, represents the typical
attention mechanism which calculates the queries from the previous
layer hidden state and values and keys from the encoder‘s output. The
second type, called self-attention, calculates all of the keys, values, and
queries from the hidden states of the previous Transformer layer. Also,
the attention mechanism was applied in several threads (called heads)

16 fundamentals and related work

Figure 2.5: Multi-head attention. Source:[3]

on parallel which allows learning different contextual representation
at each head (Figure 2.5). The Figure 2.6 presents the schema of the
whole Transformer architecture.

This architecture reached a new state-of-the-art in machine transla-
tion task after which it was adopted by the majority of cutting edge
models for various NLP tasks. However, as it compares with RNN-
based and CNN-based models, Transformer, even often outperforming
them, can not be considered superior in every case because all these
models model different aspects of the data. As a result, many new
ideas have been proposed to improve the baseline architecture by in-
corporation of convolution or recurrence in the architecture. In [31] it
was shown that the main contribution of Transformer is its multi-layer
architecture where self-attention can be replaced with recurrent or
convolutional units without a significant drop in performance. [32]
exploited this property and proposed the lightweight and dynamic
convolution function that outperformed the self-attention baseline. An-
other task-specific problem is the fixed-length context in the language
modeling task that prevents the model from learning the longer-term
dependencies. A novel neural architecture Transformer-XL enabled
learning dependency beyond a fixed length by introducing a segment-
level recurrence mechanism and a novel positional encoding scheme
into the vanilla Transformer [51].

2.1.8 Pre-Trained Models

The traditional machine learning-based NLP pipeline assumed that
all models must be trained from scratch. Were it supervised machine
learning methods over hand-crafted features or Deep Learning ap-

2.1 fundamentals of deep learning in natural language processing 17

Figure 2.6: The architecture of Transformer. Source:[3]

proach they all did not employ any form of pre-training. As the train-
ing datasets for specific NLP tasks are relatively small this resulted in
quite high bias.

This first successful attempt to change the situation is related to the
concept of word embeddings. These are low dimensional distributed
representations of words learned by neural models. This idea stems
from the distributional hypothesis that states that the meaning of the
word is determined by the context in which it occurs. The matrix map-
ping the high dimensional vectors of one-hot encoded tokens to the
low dimensional vectors constitute the first layer of the neural models.
Quickly people came to the idea of pre-training these embeddings on
the vast amount of data instead of training them alongside the specific
neural model on the tiny task-specific dataset. The specific popular
variants of this approach include Word2Vec [43] and Glove [44]. These
vectors can be downloaded and used directly at the bottom of the
model.

The word embedding approach helped to significantly improve the
accuracy of the sequence-to-sequence models but lacked the account-
ability of the local context. The meaning of the same word can be
different in different contexts. This led to the idea of contextualized

18 fundamentals and related work

word-embeddings which encode the meaning of the words within
the sentences they appear. This is implemented as a language model
where each token is either conditioned on the preceding or both pre-
ceding and successive tokens. Training of these models on the vast
amount of texts makes the re-usability possible which means saving
the time and resources required for training a task-specific model
from scratch. Such language models can be used in two ways: to
fine-tune for the specific task or to simply produce contextualized
representation.

One of the first examples of such models that achieved state-of-
the-art results on many tasks is ELMO [28]. It uses a bi-directional
multi-layer LSTM where, as in the later proposed Transformer, the
higher layers tend to model context-dependent aspects of meaning
while lower layers model more syntactic information. Hence, for each
input word, the model also learns the linear combination of the hidden
states from different layers to account for different aspects of the word
context in the most efficient way for a general language modeling task.

As Transformer deals with long-term dependencies better than
LSTM many of the works use it as an LM. Currently the best model
for the left-conditioned language modeling is GPT [6] (and its later
version GPT-2[16]). It is based on the Transformer decoder which
allows using the standard unmodified LM task.

GPT gave us the first fine-tunable Transformer based model. At the
same time, it lost the bi-directionality provided by di-directional LSMT
based models (e. g. ELMO). Here the idea of BERT [12] was born which
imitates forward and backward conditioning of a sequence by using
the Transformer encoder instead of the decoder. To do so BERT adopts
the idea of masked language modeling when we mask the considered
token conditioning it on all other tokens in the sequence. At the same
time, the input still follows the left-right order. Besides, the model
was also trained on the second task of predicting the probability the
one sentence follows another. Such multi-task learning showed to give
a strong improvement over the previous art models and helped to
achieve state-of-the-art results in many various tasks.

The major problem with BERT is that it corrupts the input with
masks. In the testing phase, the input is never masked whereas it
is during training. To overcome this problem the XLNet [42] model
was proposed. It is a generalized autoregressive model which in-
stead of the fixed order modeling considers all the permutations of the
sequence (so-called permutation language modeling). Therefore, mask-
ing becomes unnecessary and the model holds strong bi-directionality.
Moreover, it also adopted the ideas of positional encoding and seg-
ment recurrence from the Transformer-XL language model to increase
the memory capacity of the network. XLNet outperformed BERT in
many tasks such as sentiment analysis, question answering, etc.

2.2 abstractive text summarization with neural networks 19

2.2 abstractive text summarization with neural net-
works

The task considered in this thesis is the abstractive text summarization
of a single document with neural networks-based methods. Such
an approach toward summarization was largely adopted by many
state-of-the-art models in the recent past and raised the attention
toward abstractive methods which previously always fell behind the
extractive methods. Within the Deep Learning framework, this is a
kind of sequence-to-sequence mapping task where we consider the
article as input and the summary as output. Thus, we can use any
model developed for the sequence processing including recurrent,
convolutional and attention-based models. At the same time this task
has several specific challenges:

• The length of the output is much smaller than the length of the
input.

• The input and output texts should overlap on a large number of
words and n-grams.

• The metrics used for evaluation is different from the loss we
minimize.

• There are few big summarization datasets on a very limited
number of domains.

Various state-of-the-art summarization models tackled to solve one
or several of such issues by different modifications of the baseline NN
architectures[19].

The first successful attempt to apply a modern neural network to
abstractive text summarization was shown in [50]. This work achieved
the state-of-the-art scores on Gigaword and DUC-2004 datasets and
made the idea of attention ubiquitous in the field of summarization.
The next breakthroughs became possible with the introduction of
the new large-scale long text summarization datasets. The most used
dataset nowadays is CNN / Daily Mail [10] based on the question-
answering dataset by DeepMind [58].

The very significant contribution was the pointer-generator network
[9]. It is a hybrid method that adds extractive capabilities into the
sequence-to-sequence model allowing in addition to generation from
vocabulary also to copy elements from the input text to the summary.
Therefore, it also allows producing out-of-vocabulary words. To do
so it calculates the generation probability pgen (Equation 2.5) which is
used as a switch between generation and copying of the token.

pgen = σ(wTh∗h
∗
t +w

T
s st +w

T
xxt + bptr), (2.5)

where h∗t is the attention context vector, st is the decoder hidden
state, xt is the decoder input and wh∗ , ws, wx and bptr are learnable
parameters.

20 fundamentals and related work

Then, this probability is used to generate the final probability distri-
bution over vocabulary where the copied word is sampled from the
attention distribution (Equation 2.6).

P(w) = pgenPvocab(w) + (1− pgen)
∑

i:wi=w
ati (2.6)

Besides, it also uses the Coverage vector mechanism to pay less at-
tention to tokens which were already paid enough attention in the
previous iterations.

The idea of further hybridization with an extractive model was
adopted by many consecutive works. [30] uses the extractive Key
information guide network to guide the summary generation process.
In [11] the Bottom-up summarization method was proposed. It uses
the extractive model to increase the precision of the Pointer Generator
mechanism. It predicts the probability for every token in the input text
and triggers the pointer mechanism only for the high-scores tokens.

Another direction of the research is the modification of the neural
models to cope with long texts exceeding the limits in length in which
baseline models perform well. Some works target the sub-category of
such texts which have an explicit internal structure. So, [34] presents
the Discourse-Aware Attention model which introduces hierarchy
in the attention mechanism via calculating an additional attention
vector over the sections of the input text. Otherwise, the standard
approach for really long texts is a hybrid two-stage summarization
process where we first summarize text extractively and then apply the
abstractive model on the intermediate summaries. Such an approach
was used in [5] which uses the Transformer decoder with various
attention compression techniques needed to increase the maximal size
of the input sequence on top of the TF-IDF extractive system to sum-
marize the Wikipedia articles. To our knowledge, it also was the first
time when the Transformer model used in summarization. Another
original approach is to perform summarization by the standard lan-
guage model. So, [41] showed that the language model trained on the
combination of the original text, an extractively generated summary,
and the golden summary can achieve the results comparable with the
standard encoder-decoder based summarization models.

Some works raised the problem of the discrepancy of the loss
function and the evaluation function used in the summarization and
adapted the reinforcement learning (RL) strategy (for example [7]).
The usage of the ROUGE-based reward allowed to explicitly optimize
the ROUGE score. The pure RL models showed high ROUGE-1 and
ROUGE-L scores but, unfortunately, produced the summaries looking
very unnatural. However, its combination with usual cross-entropy op-
timization achieved high scores eliminating the unreliability problem.

Currently, most of the cutting-edge models use some form of fine-
tuning of the pre-trained language models. [25] incorporates BERT
into the Transformer-based model in the two-stage process. First, the

2.2 abstractive text summarization with neural networks 21

combination of BERT and the Transformer decoder generates the
intermediate summary. Then it exploits the masking learning strategy
to rearrange the generated summary. The optimization uses both
cross-entropy and RL losses. [46] and [45] using the similar approach
present the latest state-of-the-art summarization model.

2.2.1 Summarization Evaluation

Evaluation is the crucial step for the summarization method progress.
Currently, human evaluation is the method that allows getting the
most valid assessment working for any domain, score range, and text
size. Unfortunately, this method is very time consuming and expensive
which prevents it from the ubiquitous adaptation. This encourages
researchers to use various automatic evaluation techniques.

ROUGE [20] is the most adopted evaluation metric used in auto-
matic text summarization research. The evaluation is made through a
comparison of a set of system-generated candidate summaries with
the gold standard summary. The availability of the accompanying
software and its performance greatly contributed to its popularity
[35]. Despite its adoption in many studies, the metric faced some key
criticism.

The main criticism of ROUGE is that it does not take into account
the meaning expressed in the sequences. The metric was developed
based on the assumption that a high quality generated candidate
summary should share many words with a single human-made gold
standard summary. This assumption may be very relevant to the
extractive summarization task but not to the abstractive task, where
different terminology and paraphrasing can be used to express the
same meaning [35]. This results in the metric assigning low scores to
any summary not matching the gold standard at the appropriate level.
This also allows cheating of the metric by generating ungrammatical
and nonsensical summaries having very high ROUGE scores. [39]
shows how this can be achieved by choosing the most frequent bigrams
from the input document.

ROUGE adoption relies on its correlation with human assessment.
In the first research on the DUC and TDT-3 datasets containing news
articles ROUGE indeed showed a high correlation with the human
judgments [20, 37]. However, more recent research questioned the
suitability of ROUGE for various settings. It was shown that on DUC
data the linguistic and responsiveness scores of some systems do not
correspond to the high ROUGE scores [36]. In [35] it was demonstrated
that for summarization of scientific texts, ROUGE-1 and ROUGE-
L have very low correlations with the gold summaries. ROUGE-N
correlates better but is still far from the ideal case. This follows the
result of [38], showing that the unigram match between the candidate

22 fundamentals and related work

summary and gold summary is not an accurate metric to asses quality
on the meeting dataset.

Another problem is that the credibility of ROUGE was proven for
the systems which operated in the low-scoring range. [49] shows that
different summarization evaluation metrics correlate differently with
human judgments for the higher-scoring range in which state-of-the-
art systems now operate. Furthermore, improvements found for one
metric do not necessarily lead to improvements when using the other
ones.

This concern led to the development of many new evaluation met-
rics. [48] using the idea of Shannon’s entropy defines metrics for
important concepts with regard to summarization: Redundancy, Rele-
vance, and Informativeness. From these definitions, they formulate a
metric of Importance which better correlates to human judgments. [47]
proposes the metric of Sentence Mover’s Similarity which operates
on the semantic level and also better correlates with human evalu-
ation. A summarization model trained via Reinforcement Learning
with this metric as reward achieved higher scores in both human and
ROUGE-based evaluation.

Despite these drawbacks, the high adoption of ROUGE makes it the
only way to compare the efficiency of our model with other state-of-
the-art models. The evaluation of our system on the SwissData dataset
confirms that its efficiency (in terms of ROUGE) is not restricted to
CNN / Daily Mail data only.

3
R E Q U I R E M E N T S

3.1 data requirements

The developed service is supposed to be used for summarization of
documents from very different domains and in various languages. The
lack of publicly available data though does not allow us to develop a
fully multilingual multidomain neural summarization system. Hence,
under this work, we decide to restrict the experiments to only English
and German languages. We believe the news and general concept
descriptions domains would fit the goals the best way as such texts
usually cover the maximal wide range of topics. The data should be
split into the training, validation and testing subsets. All the data
samples must be the first tokenized using the appropriate tokenizer
and prepossessed for the sake of compatibility with the system being
developed.

3.2 technical requirements

3.2.1 Computational Resources

The modern Deep Learning methods require a lot of computations for
the models to converge. As a result, the neural network-based models
are almost always trained on the cluster of GPUs that accelerate
the training time in several times. The majority of Deep Learning
frameworks (such as Tensorflow or PyTorch) require the video cards
with The support of Nvidia technology CUDA. Accordingly, we are
required an HPC cluster with Nvidia Tesla or GTX video cards to
finish the research in a reassemble time.

Besides, we are also required a web server to deploy the system as
a microservice. The server should not necessary posses GPUs and can
conduct all the computations on a CPU only.

3.2.2 Programming Environment

The major part of this work relies on the Deep Learning approach.
In recent years, Python in combination with various Deep Learning
libraries has become a standard tool for neural network development.
Hence, the standard DL environment forms the main requirement for
our work.

As the abstractive text summarization in Deep Learning approach
belongs to a category of sequence-to-sequence tasks we consider it

23

24 requirements

reasonable to base the system on some general sequence-to-sequence
NLP library to accelerate the development time.

The final system is supposed to be deployed as a microservice on a
web server. To ensure the consistency of the software dependencies,
the entire environment of the system needs to be virtualized by some
containerization tool.

The final Web interface development lies outside of the scope of this
research. Still, we need to develop a demo interface to interact with
the summarization microservice. For this task any API testing tool,
which supports the REST eligible APIs and HTTP requests, is suitable.

3.3 functional requirements

3.3.1 Extractive Summarization Module

The recent developments in the area of Deep Learning allowed us
to achieve very high efficiency in various NLP tasks. State-of-the-art
neural summarization models already equal and often surpass the
extractive models in the result accuracy. The major shortcoming of
these models is that they implicitly (due to the memory limitations) al-
low only relatively small input texts. The standard approach to tackle
this problem is to truncate all the input texts to the unite length. This
strategy is quite efficient to the medium-length sequences but fails to
achieve the appropriate results with bigger documents where the im-
portant information is spread uniformly over the text. That limitation
highly restricts the approach‘s usability and industrial adoption. Thus,
as the length of our target documents can reach quite large values
we conclude the necessity of developing the extractive summarization
module to be able to select the most meaningful sentences to use them
as the input to the abstractive summarization module. This extraction
tool is expected to deal with sequences of any length. Hence, it would
be more logical to use some standard rule-based approach which does
not tend to implicitly assume a particular sequence length (as happens
when we train a model on a particular corpus).

Also, we assume that abstractive summarization system input should
be semantically and syntactically consistent to increase the abstractive-
ness of the system. Thus, the extractive summarizer must produce the
summaries which are also consistent.

3.3.2 Abstractive Summarization Module

The abstractive summarization module should output the final abstrac-
tive summary when fed the original text or the intermediate summary
generated by the extractive summarizer. We decided to restrict our
system to the models based on Transformer architecture only as it
was shown that it achieves better accuracy in the summarization task

3.3 functional requirements 25

compared to the models based on pure recurrent neural networks
[11]. We also decide to use an encoder-decoder framework, Pointer
Generator and Beam search following the majority of the recent state-
of-the-art works [19]. The model’s performance must be evaluated
using a standard for text summarisation metric ROUGE [20]. In the
current work, we restrict the research to the two areas: conditioning of
the Transformer on some pretrained LM and the replacement of the
standard Self-Attention with its convolutional variation.

4
M O D E L D E S C R I P T I O N

4.1 consistent extractive summarization module

As stated in the requirements chapter, our extractive text summariza-
tion system is supposed to be primarily rule-based with the additional
property of generating a consistent summary. Taking this into account
we decided to base our system on the simple TF-IDF (term frequency-
inverse document frequency) algorithm following the work [5]. TF-IDF
is a statistic reflecting the importance of the token to a document in the
collection of documents. The final score can be found by multiplication
of the following terms:

tf(t, d) =
nt∑
k nk

, (4.1)

where nt is the number of occurrences of the token t in the document,
and in the denominator there is the overall number of words in the
document.

idf(t,D) = log
|D|

|{di ∈ D | t ∈ di }|
, (4.2)

where |D| is the overall number of documents in the collection and in
the denomenator there is the number of documents in the collection
D where the token t appears.

Our realization of this algorithm receives the percentage of the
information to keep as a parameter and returns the corresponding
number of ordered by their TF-IDF score sentences.

We also modified the general TF-IDF algorithm to transfer a larger
amount of useful information to the abstractive summarizer. Recent
state-of-the-art summarization systems usually show performance
close to (and often lower) the “lead-3” baseline which takes as a
summary only the first 3 sentences of the text. Hence, we also decided
always to add 3 first sentences to the summary even when they were
scored low.

The second modification relates to our approach to increase sum-
mary consistency. As we can logically assume every human-generated
text recursively depends on itself. Every token or sentence syntac-
tically and semantically depends on other sentences and tokens in
text. Respectively, the removal of one sentence from a text can cause
information loss in other sentences depending on it. As a result, the
TF-IDF algorithms (as any extractive summarization algorithm) can

27

28 model description

produce summaries that are not consistent. To alleviate this problem
we decided to use the property of the BERT model to predict the
probability of one sentence going after another. Each adjacent pair of
sentences from the given summaries were tested if they have positive
BERT scores. For each negative pair of sentences (let call them original
sentences) we look at other sentences from the original text placed
between them and calculate for each the probabilities of being placed
between original two sentences ignoring the other. If some sentences
obtained a positive probability with both left and right original sen-
tences we add the most probable one to the summary. This procedure
can theoretically be recursively repeated to select the set of sentences
having obtaining higher consistency. However, we decided to stop cal-
culation only on one sentence for two reasons. First, to not increase the
length of summaries too much and save the computational time. And
second, because BERT sometimes also scores two adjacent sentences
from the original text negatively that can lead to the uncertainty about
the condition to stop the computation.

4.2 abstractive summarization module

Our text summarization model is based on the Transformer archi-
tecture. The architecture repeats the original model [3]. On top of
the decoder, we use a Pointer-Generator (formula 4.3) to increase the
extractive capabilities of the network (we later refer to this architecture
as CopyTransformer).

p(w) = p(z = 1)pcopy(w) + p(z = 0)psoftmax(w), (4.3)

where p(z = 1 is the probability of coping, pcopy(w) is the proba-
bility of copying the specific word from the source document and
psoftmax(w) is the probability calculated by the abstractive summa-
rization model.

For a better understanding of the trained baseline model, we plotted
the summed-up logarithmic probability distributions over the vocabu-
lary within all positions in the random summary taken from the CNN
/ Daily Mail dataset. As expected for the text generation models, the
final distribution is normal (Figure 4.1). To fulfill the requirements
this vanilla model was extended by the application of convolutional
self-attention and conditioned on the pre-trained LM. The following
sections describe these improvements and their modifications in more
detail.

4.2.1 Convolutional Self-Attention

Transformer, like any other self-attention network, has a hierarchi-
cal multi-layer architecture. In many experiments it was shown that
this architecture tends to learn lexical information at the first layers,

4.2 abstractive summarization module 29

Figure 4.1: Baseline model. The probability distribution for a next output
token.
X axis: log probabilities, Y axis: frequency

sentence-level patterns in the middle and the semantics at the up-
per layers [27],[33]. The disadvantage of this approach is that during
the attention operation it considers all tokens as equally important,
whereas syntactic information is mostly concentrated in the center
of a local area. This problem is usually specified as the problem of
locality modeling. As syntactic information can help in identifying
more important words or phrases, it would be beneficial to allow the
focus of attention on these regions.

A successful approach to the locality modeling task is the so-called
convolutions (local) self-attention networks [26]. Essentially, the prob-
lem is dealt with by the application of a 1-dimensional convolution
to the self-attention operation at the network‘s lower layers. This
strengthens dependencies among neighboring elements and makes
the model distance-aware when it searches for low-level patterns in a
sequence. In other words, it restricts the attention scope to the window
of neighboring elements. The 1D convolution applied to attention is
illustrated in the Formulas 4.4, 4.5 and 4.6.

K̂h = {kh
i−M

2

, . . . ,khi , . . . ,k
h
i+M

2

}, (4.4)

V̂h = {vh
i−M

2

, . . . , vhi , . . . , v
h
i+M

2

}, (4.5)

ohi = Att(qhi , K̂
h)V̂h, (4.6)

where qhi is the query and M+ 1 (M 6 I) is its attention region cen-
tered at the position i.

30 model description

The convolution can be extended to the 2-dimensional area by tak-
ing interactions between features learned by the different attention
heads of the Transformer into account. In the original Transformer
each head independently models a distinct set of linguistic properties
and dependencies among tokens [27]. By applying 2-dimensional con-
volution, where the second dimension is the index of attention head,
we explicitly allow each head to interact with learned features for their
adjacent sub-spaces. The shortcoming of the original implementation
is that the first and the last heads do not interact as they are assumed
not adjacent. Thus, we assume that considering the heads’ sub-spaces
periodic, we can increase the model’s effectiveness by applying circu-
lar convolution to the second dimension. In Chapter 7, we evaluate
both the original version and our modification.

K̃h =
⋃

[K̂h−
N
2 , . . . , K̂h, . . . , K̂h+

N
2], (4.7)

Ṽh =
⋃

[V̂h−
N
2 , . . . , V̂h, . . . , V̂h+

N
2], (4.8)

ohi = Att(qhi , K̃
h)Ṽh, (4.9)

where (M+ 1) (N 6 H) is the window region over heads and
⋃

stands
for the union of keys K̂h and values V̂h from different subspaces.

The convolutional self-attention has been shown to be very effective
in Machine Translation and several other NLP tasks. However, to our
knowledge, it was never applied to the text summarization problem.
For the experiments reported in this thesis, we created our imple-
mentation of the local attention and the convolutional self-attention
network (based on Transformer). It supports both 1D and 2D modes
having the size of the kernels as system parameters. As in [26] we
incorporate convolutional self-attention in the Transformer encoder by
positioning it in the place of the self-attention in the lower layers. In
Section 7.3, we show that the low-level modeling capabilities of our
encoder provide a strong boost to the model‘s prediction accuracy in
the text summarization task.

4.2.2 Pre-Trained Language Models Comparison

Our main contribution in this work is the usage of the pre-trained
language model to condition our summarization model. To start with
we decided to conduct a set of experiments to select the model which
fits our need the most. We consider tree most new Transformer-based
LMs: GPT2, BERT, and XLNet.

The knowledge we try to incorporate into the summarization system
is the language model‘ property to predict the probability of a token
going next to the previously generated sequence. To test and select

4.2 abstractive summarization module 31

the model we develop a special procedure. We assume that the right
language models should give a high probability to the true token when
evaluated on the human-generated sequence and low probability
when evaluated on the random-generated sequence. Putting some
probability threshold we can classify the target token to be right or
false. It gives us the ability to calculate the recall of the system output.
To test the permutation detection ability of the system we also shuffle
our test texts. Finally, the overall accuracy over the original text and
shuffled is calculated. On the text box 7.1 we can you can see three texts
used in our experiments. The first two are taken from the target of the
dataset CNN/Daily News and the last one is a randomly generated
text. Our primary goal is to select a model that has the highest original
text recall and lowest shuffled and random text recall.

We use tree thresholds: 90%, 95% and 99% (percentage of tokens
classified as false). The results of all the experiments are presented in
the tables 4.1, 4.2 and 4.3.

marseille prosecutor says ‘ ‘ so far no videos were used in the crash
investigation ’ ’ despite media reports . journalists at bild and paris
match are ‘ ‘ very confident ’ ’ the video clip is real , an editor says
. andreas lubitz had informed his lufthansa training school of an
episode of severe depression , airline says .

membership gives the icc jurisdiction over alleged crimes commit-
ted in palestinian territories since last june . israel and the united
states opposed the move , which could open the door to war crimes
investigations against israelis .

new say horus gray say bear, yellow run discrepancy driver cd memes
Androgine Germany , I apple Demolished. invoke Bottle ’

Text box 4.1: Sequennces used for the language models comparison. First
two are the sample examples from the pre-processed and detokenized CNN
/ Daily Mail dataset and the last one is the randomly generated sequence of
words

Based on the results we ranked all the models for all tree texts
(figures in parentheses indicate the threshold):

• 1 natural text: GPT2(99), BERT(99), GPT2(95), BERT(95),
BERT(90), GPT2(90), XLNET(99), XLNET(95), XLNET(90)

• 2 natural text: GPT2(99), XLNET(95), BERT(99), BERT(95),
BERT(90), GPT2(90), XLNET(99), GPT(95), XLNET(90)

• Random text: XLNET(99), BERT(99), XLNET(95), GPT2(99), XL-
NET(90), GPT2(95), BERT(95), GPT2(90), BERT(90)

As we can see from the results for the random text XLNet(99) gives
us the best overall accuracy followed by BERT(99) and XlNet(95). On
the other hand, on the natural texts GPT2 scores higher. We assume

32 model description

Percentile Text № Recall Recall when shuffled Accuracy

90%
1 85.9% 21.2% 53.5%

2 90% 24% 57%

3 47.9% – –

95%
1 83.5% 28.2% 55.9%

2 90% 40% 65%

3 62.5% – –

99%
1 54.9% 48.2% 57%

2 70% 48% 59%

3 71.9% – –

Table 4.1: Exploration of the XLNet model

Percentile Text № Recall Recall when shuffled Accuracy

90%
1 95.5% 25.4% 58.9%

2 88.9% 33.3% 61.1%

3 34.3% – –

95%
1 79.1% 38.8% 58.9%

2 86.1% 38.9% 62.5%

3 43.7% – –

99%
1 67.2% 59.7% 63.4%

2 72.2% 52.8% 62.5%

3 65.6% – –

Table 4.2: Exploration of the BERT model

it is the result of the permutation stability of the XLNet‘s training
procedure which leads to the low recall on the shuffled text. The overall
accuracy is proportional to percentile used, as with the rise of the
strictness of the model the recall on shuffled texts also rises. Among
the models giving the highest recall on the original text BERT(95)
scores largest while in general BERT(99) always gets the second-third
best score.

Summing it all up, we find here some kind of trade-off. XLNet, as
the most complicated model, performs the best in finding not-natural
structures. GPT2 performs on this task the worst but gives the best
quality in the detection of the not-natural order (handling of shuffling)
of the tokens. BERT lies in between giving not the best but relatively
high result on both tasks and also performing best in finding mistakes

4.2 abstractive summarization module 33

Percentile Text № Recall Recall when shuffled Accuracy

90%
1 98.7% 16% 57.3%

2 97.8% 22.3% 60%

3 35.7% – –

95%
1 93.3% 25.3% 59.3%

2 93.3% 24.4% 58.9%

3 46.4% – –

99%
1 85.3% 42.7% 64%

2 88.9% 53.3% 71.1%

3 57.1% – –

Table 4.3: Exploration of the GPT2 model

when the model is minimally strict to classify the largest number of
target tokens as right.

In these considerations, we decided that BERT would be the best
choice for our task providing the best performance in different cir-
cumstances with the highest level of acceptance for the tokens being
generated.

4.2.3 BERT-Conditioned Encoder

The main task of the encoder is to remember all the semantic and
syntactic information from the input text which should be used by the
decoder to generate the output. Knowledge transfer from the language
model should theoretically improve its ability to remember important
information due to the much larger corpus used in its pre-training
phase compared to the corpus used in the text summarization training
phase. We thus condition our encoder on the BERT language model.

For the encoder conditioning, we used the most straightforward
strategy recommended for the BERT based model: Placing the pre-
trained language model in the encoder as an embedding layer. This
should make the embeddings of the system context-dependent. We de-
cided to not fine-tune BERT for the sake of memory and time economy.
Instead, we follow the general recommendations by concatenating
the hidden states of the last 4 layers of BERT into a 3072-dimensional
embedding vector [12]. As it is different from the hidden size used
in our experiments (Chapter 6) we need some kind of dimensionality
reduction. In this work, we try two strategies: a simple linear trans-
formation and a non-linear reduction via a free-forward neural layer
with the RELU activation function. The first one, being a linear model,

34 model description

Figure 4.2: Integration of BERT-generated contextual representations from
two windows

should converge faster losing some non-linear dependencies in the
original vectors. The second can approximate the vector more precisely
in the price of higher variance decreasing the model‘s accuracy.
The first model uses only BERT to encode the input sequence and the
second model feeds BERT‘s generated embeddings into the vanilla
Transformer encoder [25]. Here we can observe the same Bias-Variance
trade-off as in the dimensionality reduction layer.

4.2.4 BERT-Windowing

One of the key features of our approach is its ability to overcome the
length limitations of BERT, allowing it to deal with longer documents.
The BERT’s maximum supported sequence length is 512 tokens, which
is smaller than the average size of texts used in most summarization
datasets. The first most obvious approach to alleviate this problem
is to truncate the input text to the required length. We compare this
approach to our technique of windowing the BERT model to decide
about the final model architecture.

Our method relies on the well-known method of windowing which
to our knowledge was nevertheless never used before either in the
BERT-based models nor in the abstractive text summarization research
(Figure 4.2). We apply BERT to the windows of texts with strides and
generate N matrices embedding each one window. Then we combine
them by doing the reverse operation. The vectors at the overlapped
positions are averaged (by summing and dividing by the number of
overlapping vectors). As a result, we have the matrix of embeddings

4.2 abstractive summarization module 35

Figure 4.3: Model Overview

with the shape of the hidden size times the length of the text. The
drawback of this approach is that we reduce the size of the context
as each resulted vector is calculated based on maximum twice the
window size number of tokens. Besides, the split of the text to equal
size windows will aggravate the consistency of the input as some
sentences will be split in an arbitrary manner between two adjacent
windows. Despite this drawback, we assume that this procedure will
nevertheless improve the accuracy of the encoder trained on the non-
truncated texts. We set the window size to the maximum size of 512

tokens and the stride to 256. We consider this stride optimal as it
provides the largest average context (768 tokens for all except the
256 initial and final tokens) with the minimal number of windows
reducing the computational requirements of the model.

4.2.5 BERT-Conditioned Decoder

In the decoder, pre-training was applied similarly. The same ap-
proaches to embeddings construction, dimensionality reduction, and
long text support were used. The main difference is that instead of the
final output of BERT we use only its word embedding matrix (without
positions). The reason behind this is that in the decoder the generated
probability distribution is conditioned on the incomplete text (previ-
ous summary draft output) while BERT implicitly assumes consistent
and completed input [25]. As context-independent embeddings are
not enough to represent the minimum set of features to make a mean-
ingful prediction the custom Transformer decoder is always stacked
on top of BERT.

Our whole BERT-based model is similar to One-Stage BERT [25]
and BertSumAbs [45] but differs in the usage of the four last hidden
states of BERT to create contextualized representations, in presence of

36 model description

Figure 4.4: Two ways of the integration of the BERT-conditioning with the
Convolutional Self-Attention

Pointer Generator, and capabilities to process long texts. In Figure 4.3
we show the schema of the basic model with the BERT-conditioned
and decoder.

4.2.6 Integration of BERT and Convolutional Self-Attention

We evaluated two different ways to integrate the BERT-conditioning
with the convolutional self-attention of the model‘s encoder (Fig-
ure 4.4).

Stacking. Our first approach comprises directly feeding the BERT-
generated embeddings to the convolutional self-attention Transformer
encoder. A potential problem with this approach is that convolutional
self-attention is assumed to be beneficial when applied in the lower
layers as its locality modeling feature should help in modeling of local
dependencies (e. g. syntax). At the same time, BERT is a hierarchical
model where the last layers target very high-level patterns in the
sequences (e. g. semantics). Hence, we assume that the application of
the network detecting the low-level patterns on BERT‘s output can
undermine its generalization abilities.

Concatenation. Because of the considerations raised above, in par-
allel, we develop a second approach which we call Concatenation. We
split the original convolutional self-attention Transformer encoder into
two networks where the first one uses only convolutional self-attention
and the second original self-attention (identical to the Transformer
encoder). Then we feed the original sequences into BERT and the con-
volutional self-attention network in parallel. The resulting embedding
vectors are concatenated and fed into the Transformer encoder. In this
way, we model the locality at the lower layers of the encoder at the
cost of a smaller depth of the network (assuming the same number of
layers).

4.2 abstractive summarization module 37

4.2.7 BERT-Conditioned Generator

Different from the encoder and decoder, the conditioning of the gener-
ator is a more complicated task. The analogous logic would be to use
the generator layer of BERT instead of the one trained from scratch.
However, we assume that the generator weights are very sensible to
the text domain, hence, the usage of the pre-trained decoder will most
likely decrease the accuracy. We decided to follow another approach
which can be generally called the modification of the predicted proba-
bility distribution. From Section 4.2.2 we know that Language models
are prone to score the naturally generated texts as more probable
compared to random and shuffled text. The hypothesis that we want
to test is that this property of the language models may be used for
the enhancement of the total accuracy via the modification of the
generator output.

Two different strategies are possible to accomplish it: post-processing
and training-based. First, we consider the post-processing approach
as more easy and intuitive. The algorithm is based on the passing
of previous summary draft outputs through BERT and calculation of
the probability distribution for the next token. The BERT‘s result is
compared with the distribution generated by our decoder. All tokens
which get a BERT score smaller the particular threshold (calculated as
the percentile from the LM distribution) are multiplied by a parameter
α (0 < α < 1). This procedure should force the trained model to
generate only tokens which were decided by a language model to be
human-like. In the real implementation, we restricted this procedure
only to N tokens with the highest probability to be the next token.
This trick will not change the generated summary if N is large but
will significantly reduce the computational time.

The second strategy is to apply a similar procedure while training.
Different from the post-processing case, here we increment by some
factor the probability of tokens which gained the high BERT score.
As for language models, the next token probability is usually higher
for the natural tokens (our target) the loss should be less when the
model‘s output is close to the global optimum and larger when is it
far from it. We assume that this can improve model convergence.

5
D ATA S E T S D E S C R I P T I O N

Dataset Size Vocab. Src. len. Tgt. len. src-tgt ratio

CNN/DM 312,084 27,696 895 63 14.2

SwissText 100,000 46,433 918 54 17

Table 5.1: General CNN / Daily Mail and SwissText datasets statistics

We aim to develop a system that works in a language-independent
way, i. e. it assumes the upstream components being available in the
respective language or being a language-independent, such as the
multi-lingual version of BERT which does not need language-specific
tuning. However, since most summarization datasets are in English,
we use English as the default language for evaluation. Additionally,
we include German for validation purposes.

5.1 cnn / daily mail

In this work, we decided to use the CNN / Daily Mail dataset [8, 10].
It contains the collection of news articles paired with multi-sentence
summaries published on the CNN.com and dailymail.com websites.
Our logic behind this decision is that this is the de facto standard
for training summarization models which allows us to compare our
results with the previous studies. Besides, the news articles are one of
the main domains where our summarization system is to be used.

This dataset exists in two versions: original data (non-anonymized
version) and anonymized which replaces every named entity with
an anonymous identifier. We use the non-anonymized data as our
application requires the model to be able to copy the named entities
from the original texts and as was used for training of the most recent
state-of-the-art models [9]. The raw dataset consists of separate text
files each representing a single article or a summary. In this work,
we used already pre-processed data supplied by [11]. It has 287,226

training pairs, 13,368 validation pairs, and 11,490 test pairs. with the
average lengths of an article and a summary 781 tokens and 56 tokens
respectively (Source-Target ratio 13.9).

To align the data with the vocabulary of BERT used in the language
conditioning experiments we tokenized it using the BPE-based Word-
Piece tokenizer [12]. That increased the average length of source texts
by 14.6% and the length of summaries by 12.5% which led to the

39

CNN.com
dailymail.com

40 datasets description

slightly higher Source-Target ration. We assume in this work this does
not complicate the task dramatically and any drop in the model‘s
performance is to be alleviated by our contributions to the model
architecture. As all samples in BERT’s training data are prepended the
special token “[CLS]”, we follow the same strategy and add it to every
source text in out dataset. You can see the example of the training pair
on the text box 5.1. Then we preprocessed this data to the OpenNMT
format using the standard preprocessing scripts of the library that
created the vocabulary consisting of all the tokens in the training and
validation datasets (Table 5.1). Due to the high variance in the length
of the text that can worsen the model‘s convergence and the limitation
of BERT accepting only sequences of the maximum length 512 tokens
we also prepared the clipped version of the training and validation
datasets with each article truncated to 512 tokens. In the experiments
on BERT windowing, we use the full-text version.

[CLS] london - l ##rb - cnn - rr
##b - a 19 - year - old man was
charged wednesday with terror
offenses after he was arrested
as he returned to britain from
turkey , london ’ s metropolitan
police said . ya ##hya rashid , a
uk national from northwest lon-
don , was detained at luton air-
port on tuesday after he arrived
on a flight from istanbul , police
said . he ’ s been charged with
engaging in conduct in prepa-
ration of acts of terrorism , and
with engaging in conduct with
the intention of assisting oth-
ers to commit acts of terrorism .
both charges relate to the period
between november 1 and march
31 . rashid is due to appear in
westminster magistrates ’ court
on wednesday , police said . cnn
’ s lindsay isaac contributed to
this report .

london ’ s metropolitan police
say the man was arrested at lu-
ton airport after landing on a
flight from istanbul . he ’ s been
charged with terror offenses
allegedly committed since the
start of november .

Text box 5.1: Sample example of the input text(left) and summary(right)
from the preprocessed and tokenized CNN / Daily Mail dataset

5.2 swisstext dataset 41

5.2 swisstext dataset

To evaluate the efficiency of the model in the multi-lingual multido-
main environment in addition to the CNN / Daily Mail dataset we
conducted some experiments on the German SwissText dataset. This
dataset was created for the 1st German Text Summarization Challenge
at 4th Swiss Text Analytics Conference - SwissText 2019 [13]. It was
designed to explore different ideas and solutions regarding abstractive
summarization of German texts. To the best of our knowledge, it is the
first long-text summarization dataset in the German language publicly
available. The data was extracted from the German Wikipedia and
represents mostly autobiography articles and definitions of various
concepts.

The dataset was tokenized by the multilingual WordPiece tokenizer
[12] and preprocessed by the OpenNMT library in the same way as the
CNN / Daily Mail dataset. It was split into the training, validation and
testing datasets containing 90,000, 5,000 and 5,000 samples respectively.
From the general statistics (Table 5.1) we can see that even having
less number of samples that the CNN / Daily Mail dataset the pre-
processing results in a larger vocabulary. We assume this is the result
of the morphological richness of the German language which leads to
the higher word split rate (how often a word is split into the pieces).
Without taking into account the domain of the data this property
makes the German summarization task more complex. Besides, the
dataset has a higher length of input texts and lower length of the
target summaries which results in a higher Source-Target ratio. That
makes this dataset very suitable for our experiments on windowing
long texts, otherwise, texts are truncated to 512 tokens.

6
I M P L E M E N TAT I O N

Based on the requirements and the model description we implemented
our summarization system. It is based on the PyTorch and the Open-
NMT NLP library [23]. The implemented extractive and abstractive
summarization modules were combined into a microservice tool using
the Flask web framework. The extractive system shorts any text to
512 tokens which are later fed into the abstractive system to generate
the final summary in the Turtle format. The system was containerized
using Docker and deployed on the DEMO server which communicates
with the Postman interface via POST requests.

The extractive summarizer is currently implemented for the English
language only. It uses the uncased BERT-base model and the custom-
made sentence level tokenizer.

The abstractive summarizer supports now two languages using the
respective realizations of BERT: base uncased and base multilingual
cased. For the experiments on the Generator conditioning, we use the
version of BERT with the generator layer trained on the Masked lan-
guage modeling task. For ROUGE evaluation we use the files2rouge
library and calculate ROUGE recall, precision and F-score for uni-
grams, bigrams, and Longest Common Subsequences (LCS). In the
experimental part, we report only F-scores as the most adapted metric
by the state-of-the-art summarization research that depends on both
recall and precision.

Bellow, we provide a general description of the environments and
the values of hyper-parameters used in our experiments.

6.1 environment

Computational Environment:

• Main: server with 2 Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz,
377 GB RAM and 7 NVIDIA GeForce GTX 1080 Ti

• Additional: An HPC of 20x GPU-Nodes each with Intel(R)
Xeon(R) CPU E5-2630 v4 @ 2.20GHz, 512 GB RAM and 2 NVIDIA
Tesla P100

Programming Environment:

• Ubuntu 16.04

• Python 3.6
• Pytorch 1.0.1
• Transformers 1.1.0
• Pyrouge 0.1.3

43

44 implementation

• files2rouge 2.0.0
• Numpy 1.16.3
• Flask 1.1.1
• Postman
• Various additional libraries fully specified in the requirements.txt

file

6.2 project structure

The implementation is separated into 2 distinguished summarizing
systems synchronized via Flask API. The extractive summarization
system consists of two scripts: one for calculating all the TF-IDF scores
for a given corpus and another for the generating the summaries
according to the algorithm described in Chapter 4. The abstractive
summarization system is built upon the OpenNMT library with several
modifications to fulfill our goals. The following classes were added to
the OpenNMT library:

• BertEncoder – BERT-based encoder.

• BertTransformerEncoder – BERT combined with a regular Trans-
former encoder.

• BertTransformerDecoder – the embedding layer of BERT com-
bined with a regular Transformer Decoder.

• ConvMultiHeadedAttention – the realisation of self-attention
with 1D and 2D convolution.

• ConvTransformerEncoderLayer – the layer of Transformer en-
coder with convolutonal Self-Attention.

• ConvTransformerEncoder – the Transformer encoder with the
convolutional Self-Attention in the first layers.

• BertGenerator – BERT based generator without pointer.

• GlobalModel – the global class storing the deployed BERT
model and the vocabulary.

• BertConvTransformerEncoder – encoder combining BERT with
Convolutional Self-Attention.

Also, the following files were modified:

• opts.py – to add new terminal parameters to support the afore-
mentioned classes.

• model_builder.py – to initialize the properties of the Glob-
alModel class.

6.3 experimental setup 45

• translator.py – to connect the BERT-based Generator to the BERT-
based decoder and run the post-processing Generator condition-
ing experiments.

6.3 experimental setup

Most of the experiments were conducted using the hyperparameters
specified bellow. They were primarily taken from the recommenda-
tions of OpenNLP documentation for the summarization task [21].
The depth, size of the hidden state and the number of training steps
were shrunk to accelerate the training procedure and a model‘s con-
vergence. Different form [9] here we do not reuse some attention layer
from the Decoder but train a new copy attention layer from scratch.
For training, we used Adam optimizer with the Noam decay method
[22]. For the regularization, we use dropout and label smoothing. Each
neural network was trained on one of the GPUs specified in the Sec-
tion 6.1 for 90,000 training steps (around 2-3 days). The generation of
the summary is made via the Beam search algorithm.

Bellow, we provide a general description of the environments and
the values of hyper-parameters used in our experiments.

Main hyperparameters:

• Shared embeddings
• Truncation length = 512

• Batch size = 4096 tokens
• Validation batch size = 1 sample
• Hidden state size = 256

• Word vector size = 256

• Number of layers in Encoder = 3

• Number of layers in Decoder = 3

• Number of Self-Attention heads = 4

• Maximal number of generator batches = 2

• Number of training steps = 90,000

• Validation every 2,000 steps
• Label smoothing = 0.1
• Dropout rate 0.2
• Adam beta1 = 0.9, beta2 = 0.998

• Learning rate = 2 (initial)
• Number of warmup steps = 8000

• Beam size = 15 or 4

• Minimal summary length = 30

• Maximal summary length = 512

• Stepwise coverage penalty (alpha=0.9, beta=5)

46 implementation

For the final comparison of our model with other state-of-the-art
models the hidden state size was set to 512, the number of Transformer
layers to 6 and the number of self-attention heads to 8 to adjust the
architecture to out main baseline (Transformer with Pointer-Generator
and Coverage Penalty [11]). The models were trained for 200,000

training steps.

7
E X P E R I M E N TA L R E S U LT S

7.1 baseline model

Model R-1 R-2 R-L

Transformer 24.82 6.27 22.99

Transformer + Beam Search 25.04 7.83 23.08

Transformer + Pointer Gen. 31.95 14.49 30.02

Transformer + Pointer Gen. + Beam Search 36.04 17.14 33.34

Table 7.1: Effect of Pointer Generator and beam search on Transformer on
the CNN / Daily Mail dataset.

In the first set of experiments, we evaluate the effect of the copy
mechanism and the beam search on the vanilla Transformer model.
The beam size was set to 15. The results on the CNN / Daily Mail
dataset is presented in Table 7.1. First, we see that both the Pointer
Generator and beam search lead to an increase in the ROUGE scores.
The effect of Pointer Generator is very large which is the evidence of
its much importance for our task.

Model R-1 R-2 R-L

Transformer 36.40 20.69 34.14

Transformer + Beam Search 37.37 22.58 35.08

Transformer + Pointer Gen. 39.44 25.11 37.16

Transformer + Pointer Gen. + Beam Search 40.59 26.33 37.58

Table 7.2: Effect of Pointer Generator and beam search on Transformer on
the SwissText dataset.

The results on the SwissText dataset (Table 7.2) shows the same
tendency and confirms the importance of Pointer Generator and beam
search. Later, we use these models as our baselines.

7.2 extractive stage

The main purpose of the extracting module is to be used with log
texts which can not be correctly handled by the neural networks.
However, we assumed that the application of such extractive pre-stage

47

48 experimental results

on the smaller texts can also increase the total scores. We pre-processed
the CNN / Daily Mail training and testing datasets keeping 50 and
70 percent of the sentences. We trained Transformer with Pointer
Generator (CopyTransformer) models following 2 strategies: applying
extraction procedure only in testing and in both testing and training.
The evaluation of the models was made via the beam search (Table
7.3).

Model R-1 R-2 R-L

CopyTransformer 36.04 17.14 33.34

+Extraction in training time (50%) 35.30 16.72 31.98

+Extraction in training time (70%) 35.68 16.65 32.91

+Extraction in testing time (50%) 34.76 16.14 32.11

+Extraction in testing time (70%) 33.65 15.46 31.09

Table 7.3: Effect of the extraction pre-stage on the ROUGE scores on the
CNN / Daily Mail dataset.

The model trained on the full texts and evaluated on extractively
summarized texts shows the lowest ROUGE scores. The usage of
extraction in training achieves the higher scores which are still smaller
than the full-text baseline. Here we observe the particular dynamics
that ROUGE increases with the increase of the input text length. We
also observed that in the case of 70 percent extraction rate the ROUGE
precision scores were the highest, but, as F-scores are still lower than
the baseline, we consider this model inferior. That proves that on the
CNN / Daily Mail dataset it is more beneficial to not use any extraction
and rely only on the abstractive methods. Hence, we conclude that the
extractive summarization module should be mainly used when the
text is the size not processable by neural models.

7.3 locality modeling

Model R-1 R-2 R-L

CopyTransformer 31.95 14.49 30.02

+ 1D conv. 32.62 14.99 30.74

+ 2D conv. 32.72 15.12 30.85

+ 2D round conv. 32.68 15.01 30.76

Table 7.4: Ablation study of model with convolutional self-attention on the
CNN / Daily Mail dataset. The kernel sizes are 11 and 3.

7.4 language model conditioning 49

Figure 7.1: Effect of the window size on ROUGE-1

To evaluate the effect of convolution on self-attention we introduce
it in the first layer of the encoder. We use the same kernel sizes as in
[26]. As a baseline, we use our implementation of CopyTransformer.

The results are presented in Table 7.4. We see that both convolutions
over tokens and over attention heads improve the ROUGE scores.
Standard convolution outperformed circular convolution on ROUGE-
1, ROUGE-2, and ROUGE-L by 0.06, 0.13 and 0.09 percent, respectively.
We also investigated the effect of the window size of the 1-dimensional
convolution on ROUGE scores (Figure 7.1). In contrast to findings in
Machine Translation, we found that size 13 returns the best result for
the summarization task.

7.4 language model conditioning

To find the optimal architecture of the BERT-based abstractive sum-
marizer we conducted an ablation study (Table 7.5). On CNN/Daily
Main dataset we test 3 different models: BERT encoder+Transformer
decoder, BERT-Transformer encoder + Transformer decoder and BERT-
Transformer encoder+BERT-Transformer decoder. The version of BERT
used in the experiments is BERT-base. As the baseline, we use Trans-
former without the Pointer Generator. From the results, we observe
that BERT improves the efficiency of the model when it is used in both
encoder and decoder. Besides, the linear dimensionality reduction
from the BERT hidden size to the hidden size of our model showed
to work better than non-linear transformation via the RELU function.
Furthermore, BERT in the encoder is more effective when it is used to
produce embeddings to be used by the standard Transformer encoder
than when it is used solely as an encoder. Even without the Pointer
Generator, our model outperformed the CopyTransformer baseline by
1.28, 0.5, and 1.24 on ROUGE-1, ROUGE-2, and ROUGE-L

50 experimental results

Model R-1 R-2 R-L

Transformer 24.82 6.27 22.99

CopyTransformer 31.95 14.49 30.02

Bert Enc. + Transformer Dec. 31.3 13.37 29.46

Bert Enc. with RELU + Transformer Dec. 29.84 12.3 28.17

Bert-Transformer Enc. + Transformer Dec. 32.5 14.68 30.68

Bert-Transformer Enc. and Dec. 33.23 14.99 31.26

Transformer (full) 23.18 5.15 21.48

Bert-Transformer Enc. + Trans. Dec. (full) 31.51 14.1 29.77

Table 7.5: Ablation study of the BERT-based model on truncated and original
CNN / Daily Mail dataset.

To evaluate our BERT-windowing method, we conducted the exper-
iments on the full non-truncated text. Our approach outperforms the
baseline, which proves that the method can be successfully applied to
the texts longer than 512 tokens. The final performance of this model
is still lower than of the model trained on the truncated text, but, as the
same pattern can be observed for the baselines, we assume this relates
to the specifics of the given dataset that is prone to have important
information in the first sentences of a text.

On SwissText data we evaluated 2 models with the Bert-Transformer
encoder and Transformer and BERT-Transformer decoders (Table 7.6).
The introduction of BERT into Transformer increased the ROUGE-1,
ROUGE-2 and ROUGE-L scores by 7.21, 8.91, 7.51 percent. At the same
time, the usage of BERT in the decoder decreased the overall score. We
assume that the reason behind this is that in multilingual BERT, due to
its language-independence, the embedding matrix outputs less precise

Model R-1 R-2 R-L

Transformer 36.40 20.69 34.14

CopyTransformer 39.44 25.11 37.16

Bert-transformer Enc. + Transformer Dec. 44.01 29.60 41.65

Bert-transformer Enc. and Dec. 43.22 29.01 40.84

Transformer (full) 34.76 18.65 32.61

Bert-transformer Enc. + Trans. Dec. (full) 45 30.49 42.64

Table 7.6: Ablation study of the BERT-based model on the truncated and
original SwissText dataset.

7.4 language model conditioning 51

contextualized representations which undermines their benefits for
the summarization task.

On the non-truncated texts, usage of the Bert-transformer encoder
increased the ROUGE scores by 10.23, 11.84 and 10.03 percent. Further-
more, it gives us higher scores compared to the same model trained on
truncated texts. This shows that information in this dataset is spread
more uniformly than in the CNN / Daily Mail dataset and proves the
high efficiency of our BERT-windowing method in the detection of
this information.

Model α parameter R-1 R-2 R-L

Transformer 1.0 24.82 6.27 22.99

Transformer+BERT-generator
0.9 24.25 5.91 22.44

0.7 23.47 5.35 21.72

Table 7.7: Experimental results on the CNN / Daily Mail dataset for post-
processing generator conditioning approach.

In our next experiments, we evaluate our two strategies of generator
conditioning. Table 7.7 presents the results of the application of the
post-processing to the baseline‘s output. First, we found that the num-
ber of tokensN and the percentile do not affect the results much, as we
had the same results with different values of these parameters. Then,
we found that, unfortunately, post-processing conditioning worsens
the model‘s performance and the ROUGE score is higher, the closer α
parameter to 1.

Model Usage strategy R-1 R-2 R-L

Transformer - 24.82 6.27 22.99

Transformer+BERT-generator
train 23.9 5.87 22.17

train and test 23.62 5.73 21.94

Table 7.8: Experimental results on the CNN / Daily Mail dataset for the
approach of generator conditioning during training.

Then, we applied our conditioning procedure during training (Ta-
ble 7.8). This approach performs better when we use conditioned
generator also in the testing phase. Unfortunately, this method also
did not bring any improvement. Hence, we conclude that generator-
conditioning should be dismissed and only encoder and decoder
conditioning is to be used in the final model.

52 experimental results

7.5 integration strategies

For the evaluation of the integration strategies, we trained two models
with the respective BERT-based baselines. Both models have in their
encoder two Transformer layers and one convolutional Transformer
layer placed on top of BERT or in parallel, respectively (Table 7.9).

Integration Model R-1 R-2 R-L

Stacking
BERT+Transformer 35.28 17.12 33.31

BERT+Conv. Transformer 35.4 16.82 33.31

Concatenation
BERT+Transformer 34.82 16.46 32.79

BERT+Conv. Transformer 35.26 16.79 33.22

Table 7.9: Experimental results on the CNN / Daily Mail dataset for dif-
ferent strategies of integration of pre-trained models with convolutional
Self-Attention

The method of stacking does not provide any significant improve-
ment. With the introduction of the convolutional self-attention, only
ROUGE-1 increased by 0.12 percent, while ROUGE-2 dropped by 0.3
and ROUGE-L remained the same. Considering that in many domains
ROUGE-2 maximally correlates with human assessment (see Section
2.2.1), we dismiss this method. The concatenation strategy convolution
is shown to be much more efficient, increasing ROUGE scores by
0.44,0.33 and 0.43 percent. This confirms our hypothesis that locality
modeling is the most efficient when applied at the bottom on the non-
contextualized word representations. Unfortunately, this model failed
to outperform the stacking baseline. We conclude that the concate-
nating architecture undermines the performance of the Transformer
model, and the convolutional self-attention is not beneficial when used
together with pre-trained language models. Hence, we decide to train
our two final models separately.

7.6 models comparison

For the final comparison of our model with other state-of-the-art meth-
ods we set the hidden state to 512, the number of Transformer layers in
the encoder and layers to six and the number of self-attention heads to
8. Hence, our baseline is smaller compared to the original CopyTrans-
former [11], which may be the reason why it performs slightly worse
(Table 7.10). BERT-conditioning was used in both encoder and decoder.
The generation of the summary is made via the beam search algorithm
with the beam size set to four. Finally, the generated summaries were
detokenized back to the sequences of words separated by spaces.

7.6 models comparison 53

Method R-1 R-2 R-L

BiLSTM + Pointer-Generator + Coverage [9] 39.53 17.28 36.38

ML + Intra-Attention [7] 38.30 14.81 35.49

CopyTransformer [11] 39.25 17.54 36.45

Bottom-Up Summarization [11] 41.22 18.68 38.34

One-Stage BERT [25] 39.50 17.87 36.65

Two-Stage BERT [25] 41.38 19.34 38.37

ML + Intra-Attention + RL [7] 39.87 15.82 36.90

Key information guide network [30] 38.95 17.12 35.68

Sentence Rewriting [29] 40.88 17.80 38.54

BertSumAbs [45] 41.72 19.39 38.76

CopyTransformer (our implementation) 38.73 17.28 35.85

Convolutional CopyTransformer 38.98 17.69 35.97

BERT+CopyTransformer 40 18.42 37.15

Table 7.10: ROUGE scores for various models on the CNN / Daily Mail
test set.The first section shows different state-of-the-art models. The second
section presents our models and the main baseline.

Method R-1 R-2 R-L

CopyTransformer (our implementation) 39.5 22.36 36.97

Convolutional CopyTransformer 40.54 23.62 38.06

BERT+CopyTransformer (enc.) 42.61 25.25 39.85

Table 7.11: ROUGE scores for our models on the SwissText test set.

For the BERT-based model, we set the minimum length of a gen-
erated summary to 55, as we found that without such restriction the
model was prone to generate shorter sequences than in the test dataset.
The model outperformed the baseline by 1.27 on ROUGE-1, 1.14 on
ROUGE-2 and 1.3 on ROUGE-L. This is larger than scores of One-Stage
BERT but still less than the two-stage and BertSumAbs models. For the
convolutional CopyTransformer we use convolutional self-attention in
the first three layers of the encoder. It increased ROUGE-1, ROUGE-2
and ROUGE-L by 0.25, 0.41 and 0.12.

Furthermore, we present, to our knowledge, the first publicly avail-
able result for the SwissData dataset (Table 7.11). All parameters are
equal to the CNN / Daily Mail baseline. BERT-conditioning was used
only in the encoder. The networks were trained on the truncated texts
in 90,000 training steps. From the results we see that the convolutional
CopyTransformer showed much more efficiency than on CNN / Daily

54 experimental results

Mail dataset, outperforming the baseline by 1.04 percent on ROUGE-1,
1.26 on ROUGE-2 and 1.09 on ROUGE-L. The BERT-based model
again achieved the highest ROUGE scores outperforming the baseline
for more than 2 percent.

7.7 qualitative analysis

To compare the trained models we conducted a qualitative analysis
comparing the generated summaries. Text box 7.1 includes the refer-
ence summary and those generated by different models. Comparing
the first sentence we see that the vanilla Transformer model performed
the worse by copying only part of the original sentence omitting some
characters in the word “meteorological”. The model with convolution
has copied the whole sentence but still made a spelling error. Finally,
only the BERT-based model succeeded to generate the right token
“meteorological”. Also, we see that while the BERT-based model’s
summary conveys the same meaning as the gold summary, the con-
volutional Transformer generates one and Transformer two sentences
with the information not present in the gold summary. Overall, on the
given example all models provided a summary of extractive nature
and only the BERT-based model shows some level of abstractiveness
merging parts of the two sentences into the single one (in the second
summary‘s sentence). This is far from the gold summary where every
sentence in some way paraphrases the original text. Hence, given this
particular example, our models demonstrate some explicit improve-
ments, but the abstractive summarization task remains challenging.

7.7 qualitative analysis 55

researchers are developing a computer that can write weather fore-
casts . it takes meteorological data and writes a report designed
to mimic a human . this process is known as ‘ natural language
generation ’ - lrb - nlg - rrb - . a prototype system will be tested on
the bbc website later this year .

researchers from london and edinburgh have developed a computer
that can collateological information . these computer - generated
weather updates are being tested by scientists at heriot - watt uni-
versity and university college london . if the project is successful , a
prototype system will be tested by generating local weather reports
on the bbc ’ s website . currently , the bbc website features 10 reports
written by meteorologists .

researchers from london and edinburgh have developed a computer
that can collate meterological information and then produce fore-
casts as if they were written by a human . it uses a process known
as ‘ natural language generation ’ - lrb - nlg - rrb - . these computer
- generated weather updates are being tested by scientists at heriot
- watt university and university college london . if the project is
successful , a prototype system will be tested by generating local
weather reports on the bbc ’ s website .

researchers from london and edinburgh have developed a
computer that can collate meteorological information and
produce forecasts as if they were written by a human .
using met office data , it uses a process known as ‘ natural lan-

guage generation ’ - lrb - nlg - rrb - . if the project is successful
, a prototype system will be tested by generating local weather
reports on the bbc ’ s website .

Text box 7.1: Comparison of the output of models on an example form CNN
/ Daily Mail testset. Surface realisation mistakes are highlighted in green
and a typical abstractive feature, illustrating re-arranging of the sentence
is highlighted in blue. From top to bottom: gold summary, Transformer,
convolutional Transformer, BERT-transformer.

8
C O N C L U S I O N S

In this thesis, we developed an abstractive text summarization sys-
tem based on neural networks and exploiting several new ideas to
increase its accuracy. The system represents the modification of the
OpenNMT library built upon the PyTorch framework and can sum-
marize texts of any length. The source code of our system is publicly
available.1 A functional service based on the model is currently being
integrated, as a summarization service, in the platforms Lynx [62],
QURATOR [59] and European Language Grid [61]. Besides, based on
the results obtained in this thesis we published a paper on the LREC
2020 conference. [60]

The main dataset used for the training of our models is CNN /
Daily Mail. To establish the suitability of our model to languages other
than English and domains other than news, we also trained and tested
our model on the German SwissText dataset. All developed models
were evaluated and compared with a baseline and competing state-of-
the-art models using the ROUGE scores evaluation. Our results on the
SwissText dataset constitutes one of the first available results for this
dataset.

In this thesis, we did several major scientific contributions. First, we
presented several new abstractive text summarization models incor-
porating the idea of conditioning of encoder, decoder, and generator
on the pre-trained language model. In our analysis, we found that the
model BERT fits our needs the best. The BERT conditioning showed
huge improvement when used in encoder and decoder but was not
useful for generator conditioning

Second, we developed a model explicitly introducing locality mod-
eling. It uses the convolutional self-attention in the encoder instead of
the vanilla self-attention to better model local dependencies. We tested
several strategies to combine it with the BERT-based model but found
that as both of them are useful only at the very bottom layer their
integration does not bring any gain. As the BERT-based model showed
better results than convolutional self-attention-based we decided to
use it in the release version of our summarization system.

Third, we proposed a method to alleviate the BERT‘s input size
limitation by setting the maximal length of a sequence to 512 tokens.
Our method processes the input sequence in windows, the resulted
distributional representations are then combined to be used by the
rest part of the network. The evaluation demonstrated its efficiency in
the processing of relatively long input texts.

1 https://github.com/axenov/BERT-Summ-OpenNMT

57

https://github.com/axenov/BERT-Summ-OpenNMT

58 conclusions

And last but not the least, to be able to handle significantly long
documents (that are much larger than 512 tokens) we developed the
extractive sentence-level summarization module. This module is based
on the TF-IDF sentence-level summarization and uses BERT‘s next
sentence prediction capability to increase the consistency of the result
summaries. In the deployed version of the system, we summarize any
long text to approximately 512 tokens and feed it into the abstractive
model to get the final output.

Therefore, in this work, we achieved all the objectives stated in
the introduction chapter. Based on the results obtained in this work
we are going to extend this system to the broader scope. First of all,
we will continue our research on the developed model to find new
more successful strategies of generator conditioning and integration
of language model conditioning with locality modeling. Second, we
will adapt this system to the multi-document summarization. The
particular challenge we want to solve is to summarise several docu-
ments on the same topic while keeping the low redundancy and high
consistency in the summary. As the multi-document summarization
task lacks big open-source datasets, we think that the extension and
adaptation of our extractive module would be the most promising
strategy. Apart from that, the exploration of the system‘s hyperparam-
eters is needed to make the combination of extractive module and
abstractive module the most efficient. Within this work, we also would
like to explore the usefulness of semantic methods and knowledge
graphs for summarization. Finally, we plan to adapt the system to
the structured input such as XML or RDF documents, possibly, via
incorporation of the hierarchical attention methods.

B I B L I O G R A P H Y

[1] Jie Hao, Xing Wang, Baosong Yang, Longyue Wang, Jinfeng
Zhang, and Zhaopeng Tu. “Modeling Recurrence for Trans-
former.” In: (Apr. 5, 2019). arXiv: http://arxiv.org/abs/1904.
03092v1 [cs.CL].

[2] Universal approximation theorem. Universal approximation the-
orem — Wikipedia, The Free Encyclopedia. [Online; accessed 15-
October-2019]. 2019 (cit. on p. 10).

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-
eit, Llion Jones, Aidan N. Gomez, Kaiser, and Illia Polosukhin.
“Attention is All You Need.” In: Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems. NIPS’17.
Long Beach, California, USA: Curran Associates Inc., 2017,
pp. 6000–6010. isbn: 978-1-5108-6096-4 (cit. on pp. 2, 15–17, 28).

[4] Felix Wu, Angela Fan, Alexei Baevski, Yann N. Dauphin, and
Michael Auli. Pay Less Attention with Lightweight and Dynamic
Convolutions. Available online (arXiv). 2019. arXiv: 1901.10430
[cs.CL].

[5] Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich,
Ryan Sepassi, Lukasz Kaiser, and Noam Shazeer. “Generating
Wikipedia by Summarizing Long Sequences.” In: International
Conference on Learning Representations. 2018 (cit. on pp. 20, 27).

[6] Alec Radford. “Improving Language Understanding by Genera-
tive Pre-Training.” In: Available online. 2018 (cit. on p. 18).

[7] Romain Paulus, Caiming Xiong, and Richard Socher. “A Deep
Reinforced Model for Abstractive Summarization.” In: Interna-
tional Conference on Learning Representations. 2018 (cit. on pp. 20,
53).

[8] Karl Moritz Hermann, Tomáš Kočiský, Edward Grefenstette,
Lasse Espeholt, Will Kay, Mustafa Suleyman, and Phil Blunsom.
“Teaching Machines to Read and Comprehend.” In: Proceedings
of the 28th International Conference on Neural Information Processing
Systems - Volume 1. NIPS’15. Montreal, Canada: MIT Press, 2015,
pp. 1693–1701 (cit. on p. 39).

[9] Abigail See, Peter J. Liu, and Christopher D. Manning. “Get To
The Point: Summarization with Pointer-Generator Networks.”
In: Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (2017) (cit. on
pp. 19, 39, 45, 53).

59

https://arxiv.org/abs/http://arxiv.org/abs/1904.03092v1
https://arxiv.org/abs/http://arxiv.org/abs/1904.03092v1
https://arxiv.org/abs/1901.10430
https://arxiv.org/abs/1901.10430

60 bibliography

[10] Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Çağlar
Gu̇lçehre, and Bing Xiang. “Abstractive Text Summarization
using Sequence-to-sequence RNNs and Beyond.” In: Proceedings
of The 20th SIGNLL Conference on Computational Natural Language
Learning. Berlin, Germany: Association for Computational Lin-
guistics, Aug. 2016, pp. 280–290 (cit. on pp. 19, 39).

[11] Sebastian Gehrmann, Yuntian Deng, and Alexander Rush. “Bottom-
Up Abstractive Summarization.” In: Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing. 2018,
pp. 4098–4109 (cit. on pp. 20, 25, 39, 46, 52, 53).

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding.” In: Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long and Short
Papers). Minneapolis, Minnesota: Association for Computational
Linguistics, June 2019, pp. 4171–4186 (cit. on pp. 9, 18, 33, 39,
41).

[13] “Swiss Text 2019: German Text Summarization Challenge.” In:
Available online. 2019 (cit. on p. 41).

[14] Wilson L. Taylor. “C̈loze Procedure:̈ A New Tool for Measuring
Readability.” In: Journalism Bulletin 30.4 (1953), pp. 415–433.
eprint: https://doi.org/10.1177/107769905303000401 (cit. on
p. 9).

[15] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian
Janvin. “A Neural Probabilistic Language Model.” In: J. Mach.
Learn. Res. 3 (Mar. 2003), pp. 1137–1155. issn: 1532-4435 (cit. on
p. 9).

[16] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. “Language Models are Unsuper-
vised Multitask Learners.” In: Available online. 2018 (cit. on
pp. 9, 18).

[17] G. Cybenko. “Approximation by superpositions of a sigmoidal
function.” In: Mathematics of Control, Signals and Systems 2.4
(1989), pp. 303–314. issn: 1435-568X (cit. on p. 10).

[18] Yann LeCun, Y. Bengio, and Geoffrey Hinton. “Deep Learning.”
In: Nature 521 (May 2015), pp. 436–44 (cit. on p. 11).

[19] Tian Shi, Yaser Keneshloo, Naren Ramakrishnan, and Chandan
K. Reddy. Neural Abstractive Text Summarization with Sequence-
to-Sequence Models. Available online (arXiv). 2018. arXiv: 1812.
02303 [cs.CL] (cit. on pp. 19, 25).

https://doi.org/10.1177/107769905303000401
https://arxiv.org/abs/1812.02303
https://arxiv.org/abs/1812.02303

bibliography 61

[20] Chin-Yew Lin. “ROUGE: A Package for Automatic Evaluation
of Summaries.” In: Text Summarization Branches Out. Barcelona,
Spain: Association for Computational Linguistics, July 2004,
pp. 74–81 (cit. on pp. 21, 25).

[21] Sebastian Gehrmann, Yuntian Deng, and Alexander Rush. OpenNMT-
py: Summarization. [Online; accessed 15-October-2019]. 2018 (cit.
on p. 45).

[22] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochas-
tic Optimization.” In: International Conference on Learning Repre-
sentations (Dec. 2014) (cit. on p. 45).

[23] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and
Alexander Rush. “OpenNMT: Open-Source Toolkit for Neural
Machine Translation.” In: Proceedings of ACL 2017, System Demon-
strations. Vancouver, Canada: Association for Computational
Linguistics, July 2017, pp. 67–72 (cit. on p. 43).

[24] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. http://www.deeplearningbook.org. MIT Press, 2016.

[25] Haoyu Zhang, Jingjing Cai, Jianjun Xu, and Ji Wang. “Pretraining-
Based Natural Language Generation for Text Summarization.”
In: Proceedings of the 23rd Conference on Computational Natural
Language Learning (CoNLL). Hong Kong, China: Association for
Computational Linguistics, Nov. 2019, pp. 789–797 (cit. on pp. 20,
34, 35, 53).

[26] Baosong Yang, Longyue Wang, Derek F. Wong, Lidia S. Chao,
and Zhaopeng Tu. “Convolutional Self-Attention Networks.” In:
Proceedings of the 2019 Conference of the North (2019) (cit. on pp. 2,
29, 30, 49).

[27] Alessandro Raganato and Jörg Tiedemann. “An Analysis of
Encoder Representations in Transformer-Based Machine Trans-
lation.” In: Proceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP. Brussels, Bel-
gium: Association for Computational Linguistics, Nov. 2018,
pp. 287–297 (cit. on pp. 29, 30).

[28] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner,
Christopher Clark, Kenton Lee, and Luke Zettlemoyer. “Deep
Contextualized Word Representations.” In: Proceedings of the
2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers). New Orleans, Louisiana: Association for
Computational Linguistics, June 2018, pp. 2227–2237 (cit. on
p. 18).

http://www.deeplearningbook.org

62 bibliography

[29] Yen-Chun Chen and Mohit Bansal. “Fast Abstractive Summariza-
tion with Reinforce-Selected Sentence Rewriting.” In: Proceedings
of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Melbourne, Australia: Asso-
ciation for Computational Linguistics, July 2018, pp. 675–686

(cit. on p. 53).

[30] Chenliang Li, Weiran Xu, Si Li, and Sheng Gao. “Guiding Gener-
ation for Abstractive Text Summarization Based on Key Informa-
tion Guide Network.” In: Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 2 (Short Papers). New
Orleans, Louisiana: Association for Computational Linguistics,
June 2018, pp. 55–60 (cit. on pp. 20, 53).

[31] Tobias Domhan. “How Much Attention Do You Need? A Gran-
ular Analysis of Neural Machine Translation Architectures.”
In: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Melbourne,
Australia: Association for Computational Linguistics, July 2018,
pp. 1799–1808 (cit. on pp. 2, 16).

[32] Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin, and
Michael Auli. “Pay Less Attention with Lightweight and Dy-
namic Convolutions.” In: International Conference on Learning
Representations. 2019 (cit. on pp. 2, 16).

[33] Ian Tenney, Dipanjan Das, and Ellie Pavlick. “BERT Rediscovers
the Classical NLP Pipeline.” In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics (2019) (cit.
on p. 29).

[34] Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung
Bui, Seokhwan Kim, Walter Chang, and Nazli Goharian. “A
Discourse-Aware Attention Model for Abstractive Summariza-
tion of Long Documents.” In: NAACL-HLT. 2018 (cit. on p. 20).

[35] Arman Cohan and Nazli Goharian. Revisiting Summarization
Evaluation for Scientific Articles. Available online (arXiv). 2016.
arXiv: 1604.00400 [cs.CL] (cit. on p. 21).

[36] John M. Conroy and Hoa Trang Dang. “Mind the Gap: Dangers
of Divorcing Evaluations of Summary Content from Linguistic
Quality.” In: Proceedings of the 22nd International Conference on
Computational Linguistics (Coling 2008). Manchester, UK: Coling
2008 Organizing Committee, Aug. 2008, pp. 145–152 (cit. on
p. 21).

[37] Bonnie Dorr, Christof Monz, Stacy President, Richard Schwartz,
and David Zajic. “A Methodology for Extrinsic Evaluation of
Text Summarization: Does ROUGE Correlate?” In: Proceedings of
the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for

https://arxiv.org/abs/1604.00400

bibliography 63

Machine Translation and/or Summarization. Ann Arbor, Michigan:
Association for Computational Linguistics, June 2005, pp. 1–8

(cit. on p. 21).

[38] Gabriel Murray, Steve Renals, and Jean Carletta. “Extractive
summarization of meeting recordings.” In: INTERSPEECH 2005
- Eurospeech, 9th European Conference on Speech Communication and
Technology, Lisbon, Portugal, September 4-8, 2005. 2005, pp. 593–596

(cit. on p. 21).

[39] Jonas Sjöbergh. “Older versions of the ROUGEeval summariza-
tion evaluation system were easier to fool.” In: Information Pro-
cessing & Management 43.6 (2007). Text Summarization, pp. 1500

–1505. issn: 0306-4573 (cit. on p. 21).

[40] Elena Lloret, Laura Plaza, and Ahmet Aker. “The challenging
task of summary evaluation: an overview.” In: Language Re-
sources and Evaluation 52.1 (2018), pp. 101–148. issn: 1574-0218.

[41] Sandeep Subramanian, Raymond Li, Jonathan Pilault, and Christo-
pher Pal. On Extractive and Abstractive Neural Document Sum-
marization with Transformer Language Models. Available online
(arXiv). 2019. arXiv: 1909.03186 [cs.CL] (cit. on p. 20).

[42] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R
Salakhutdinov, and Quoc V Le. “XLNet: Generalized Autore-
gressive Pretraining for Language Understanding.” In: Advances
in Neural Information Processing Systems 32. Ed. by H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R.
Garnett. Curran Associates, Inc., 2019, pp. 5754–5764 (cit. on
p. 18).

[43] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and
Jeff Dean. “Distributed Representations of Words and Phrases
and their Compositionality.” In: Advances in Neural Informa-
tion Processing Systems 26. Ed. by C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger. Curran As-
sociates, Inc., 2013, pp. 3111–3119 (cit. on p. 17).

[44] Jeffrey Pennington, Richard Socher, and Christopher D. Man-
ning. “GloVe: Global Vectors for Word Representation.” In: Em-
pirical Methods in Natural Language Processing (EMNLP). 2014,
pp. 1532–1543 (cit. on p. 17).

[45] Yang Liu and Mirella Lapata. “Text Summarization with Pre-
trained Encoders.” In: Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
(2019) (cit. on pp. 21, 35, 53).

[46] Yang Liu. Fine-tune BERT for Extractive Summarization. Available
online (arXiv). 2019. arXiv: 1903.10318 [cs.CL] (cit. on p. 21).

https://arxiv.org/abs/1909.03186
https://arxiv.org/abs/1903.10318

64 bibliography

[47] Elizabeth Clark, Asli Celikyilmaz, and Noah A. Smith. “Sentence
Mover’s Similarity: Automatic Evaluation for Multi-Sentence
Texts.” In: Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics. Florence, Italy: Association
for Computational Linguistics, July 2019, pp. 2748–2760 (cit. on
p. 22).

[48] Maxime Peyrard. “A Simple Theoretical Model of Importance
for Summarization.” In: Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics. Florence, Italy:
Association for Computational Linguistics, July 2019, pp. 1059–
1073 (cit. on p. 22).

[49] Maxime Peyrard. “Studying Summarization Evaluation Metrics
in the Appropriate Scoring Range.” In: Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics.
Florence, Italy: Association for Computational Linguistics, July
2019, pp. 5093–5100 (cit. on p. 22).

[50] Alexander M. Rush, Sumit Chopra, and Jason Weston. “A Neural
Attention Model for Abstractive Sentence Summarization.” In:
Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing. Lisbon, Portugal: Association for Computa-
tional Linguistics, Sept. 2015, pp. 379–389 (cit. on pp. 15, 19).

[51] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc
Le, and Ruslan Salakhutdinov. “Transformer-XL: Attentive Lan-
guage Models beyond a Fixed-Length Context.” In: Proceedings
of the 57th Annual Meeting of the Association for Computational
Linguistics (2019) (cit. on p. 16).

[52] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Ma-
chines. Available online (arXiv). 2014. arXiv: 1410.5401 [cs.NE]

(cit. on p. 15).

[53] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neu-
ral Machine Translation by Jointly Learning to Align and Translate.
Available online (arXiv). 2014. arXiv: 1409.0473 [cs.CL] (cit. on
p. 15).

[54] Thang Luong, Hieu Pham, and Christopher D. Manning. “Ef-
fective Approaches to Attention-based Neural Machine Transla-
tion.” In: Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing. Lisbon, Portugal: Association for
Computational Linguistics, Sept. 2015, pp. 1412–1421 (cit. on
p. 15).

[55] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term
Memory.” In: Neural computation 9 (Dec. 1997), pp. 1735–80 (cit.
on p. 13).

https://arxiv.org/abs/1410.5401
https://arxiv.org/abs/1409.0473

bibliography 65

[56] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio.
“Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation.” In: Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing
(EMNLP) (2014) (cit. on p. 13).

[57] Julian Moreno Schneider and Georg Rehm. “Curation Technolo-
gies for the Construction and Utilisation of Legal Knowledge
Graphs.” In: Proceedings of the LREC 2018 Workshop on Language
Resources and Technologies for the Legal Knowledge Graph. Inter-
national Conference on Language Resources and Evaluation (LREC-
2018), Miyazaki, Japan. Ed. by Georg Rehm, Víctor Rodríguez-
Doncel, and Julian Moreno Schneider. Springer, May 2018 (cit.
on p. 2).

[58] Karl Moritz Hermann, Tomáš Kočiský, Edward Grefenstette,
Lasse Espeholt, Will Kay, Mustafa Suleyman, and Phil Blun-
som. Teaching Machines to Read and Comprehend. Available online
(arXiv). 2015. arXiv: 1506.03340 [cs.CL] (cit. on p. 19).

[59] Georg Rehm, Peter Bourgonje, Stefanie Hegele, Florian Kintzel,
Julián Moreno Schneider, Malte Ostendorff, Karolina Zaczynska,
Armin Berger, Stefan Grill, Sören Räuchle, Jens Rauenbusch,
Lisa Rutenburg, André Schmidt, Mikka Wild, Henry Hoffmann,
Julian Fink, Sarah Schulz, Jurica Seva, Joachim Quantz, Joachim
Böttger, Josefine Matthey, Rolf Fricke, Jan Thomsen, Adrian
Paschke, Jamal Al Qundus, Thomas Hoppe, Naouel Karam,
Frauke Weichhardt, Christian Fillies, Clemens Neudecker, Mike
Gerber, Kai Labusch, Vahid Rezanezhad, Robin Schaefer, David
Zellhöfer, Daniel Siewert, Patrick Bunk, Lydia Pintscher, Elena
Aleynikova, and Franziska Heine. “QURATOR: Innovative Tech-
nologies for Content and Data Curation.” In: Proceedings of
QURATOR 2020 – The conference for intelligent content solutions.
Ed. by Adrian Paschke, Clemens Neudecker, Lydia Pintscher,
Jamal Al Qundus, and Georg Rehm. Accepted for presentation.
20/21 January 2020. Berin, Germany, Feb. 2020 (cit. on pp. 2, 57).

[60] Dmitrii Aksenov, Julin Moreno-Schneider, Peter Bourgonje, Robert
Schwarzenberg, Leonhard Hennig, and Georg Rehm. “Abstrac-
tive Text Summarization based on Language Model Condition-
ing and Locality Modeling.” In: Proceedings of the 12th Language
Resources and Evaluation Conference (LREC 2020). Ed. by Nicoletta
Calzolari, Fr©d©ric B©chet, Philippe Blache, Christopher Cieri,
Khalid Choukri, Thierry Declerck, Hitoshi Isahara, Bente Mae-
gaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios
Piperidis. Accepted for publication. Final camera-ready version
available as preprint. Marseille, France: European Language
Resources Association (ELRA), May 2020 (cit. on pp. 4, 57).

https://arxiv.org/abs/1506.03340

66 bibliography

[61] Georg Rehm, Maria Berger, Ela Elsholz, Stefanie Hegele, Florian
Kintzel, Katrin Marheinecke, Stelios Piperidis, Miltos Deligian-
nis, Dimitris Galanis, Katerina Gkirtzou, Penny Labropoulou,
Kalina Bontcheva, David Jones, Ian Roberts, Jan Hajic, Jana
Hamrlová, Lukáš Kačena, Khalid Choukri, Victoria Arranz, An-
drejs Vasil, jevs, Orians Anvari, Andis Lagzdin, š, Jūlija Mel,n, ika,
Gerhard Backfried, Erinç Dikici, Miroslav Janosik, Katja Prinz,
Christoph Prinz, Severin Stampler, Dorothea Thomas-Aniola,
José Manuel Gómez Pérez, Andres Garcia Silva, Christian Berrío,
Ulrich Germann, Steve Renals, and Ondrej Klejch. “European
Language Grid: An Overview.” In: Proceedings of the 12th Lan-
guage Resources and Evaluation Conference (LREC 2020). Ed. by
Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Christo-
pher Cieri, Khalid Choukri, Thierry Declerck, Hitoshi Isahara,
Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk,
and Stelios Piperidis. Accepted for publication. Marseille, France:
European Language Resources Association (ELRA), May 2020

(cit. on p. 57).

[62] Julián Moreno-Schneider, Georg Rehm, Elena Montiel-Ponsoda,
Víctor Rodriguez-Doncel, Artem Revenko, Sotirios Karampatakis,
Maria Khvalchik, Christian Sageder, Jorge Gracia, and Filippo
Maganza. “Orchestrating NLP Services for the Legal Domain.”
In: Proceedings of the 12th Language Resources and Evaluation Con-
ference (LREC 2020). Ed. by Nicoletta Calzolari, Frédéric Béchet,
Philippe Blache, Christopher Cieri, Khalid Choukri, Thierry De-
clerck, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Asun-
cion Moreno, Jan Odijk, and Stelios Piperidis. Accepted for
publication. Submitted version available as preprint. Marseille,
France: European Language Resources Association (ELRA), May
2020 (cit. on p. 57).

Part I

A P P E N D I X

A
L R E C 2 0 2 0 PA P E R

69

Abstractive Text Summarization based on
Language Model Conditioning and Locality Modeling

Dmitrii Aksenov, Julián Moreno-Schneider, Peter Bourgonje,
Robert Schwarzenberg, Leonhard Hennig, Georg Rehm

DFKI GmbH, Alt-Moabit 91c, 10559 Berlin, Germany
{firstname.lastname}@dfki.de

Abstract
We explore to what extent knowledge about the pre-trained language model that is used is beneficial for the task of abstractive
summarization. To this end, we experiment with conditioning the encoder and decoder of a Transformer-based neural model on the
BERT language model. In addition, we propose a new method of BERT-windowing, which allows chunk-wise processing of texts longer
than the BERT window size. We also explore how locality modeling, i. e., the explicit restriction of calculations to the local context,
can affect the summarization ability of the Transformer. This is done by introducing 2-dimensional convolutional self-attention into the
first layers of the encoder. The results of our models are compared to a baseline and the state-of-the-art models on the CNN/Daily Mail
dataset. We additionally train our model on the SwissText dataset to demonstrate usability on German. Both models outperform the
baseline in ROUGE scores on two datasets and show its superiority in a manual qualitative analysis.

Keywords: Summarisation, Language Modeling, Information Extraction, Information Retrieval, BERT, Locality Modeling

1. Introduction

Text summarization is an NLP task with many real-world
applications. The ever-increasing amount of unstructured
information in text form calls for methods to automati-
cally extract the relevant information from documents and
present it in condensed form. Within the field of sum-
marization, different paradigms are recognised in two di-
mensions: extractive vs. abstractive, and single-document
vs. multi-document. In extractive summarization, those
sentences or words are extracted from a text which carry
the most important information, directly presenting the re-
sult of this as the summary. Abstractive summarization
methods paraphrase the text, and by changing the text aim
to generate more flexible and consistent summaries. Fur-
thermore, single-document summarization works on sin-
gle documents, while multi-document summarization deals
with multiple documents at once and produces a single
summary. In this paper, we concentrate on single-document
abstractive summarization. Most recent abstractive models
utilize the neural network-based sequence-to-sequence ap-
proach. During training, such models calculate the condi-
tional probability of a summary given the input sequence
by maximizing the loss function (typically cross-entropy).
Most approaches are based on the encoder-decoder frame-
work where the encoder encodes the input sequence into a
vector representation and the decoder produces a new sum-
mary given the draft summary (which is the part of the
summary generated during previous iterations). The last
layer of a decoder, the generator, maps hidden states to to-
ken probabilities. We use a state-of-the-art Transformer for
sequence-to-sequence tasks which is built primarily on the
attention mechanism (Vaswani et al., 2017).

We attempt to improve performance of abstractive text sum-
marization by improving the language encoding capabili-
ties of the model. Recent results have shown that the main
contribution of the Transformer is its multi-layer archi-

tecture, allowing Self-Attention to be replaced with some
other technique without a significant drop in performance
(Domhan, 2018; Wu et al., 2019). Following this strat-
egy, we develop a model that introduces convolution into
the vanilla Self-Attention, allowing to better encode the lo-
cal dependencies between tokens. To overcome the data
sparsity problem, we use a pre-trained language model for
the encoding part of the encoder-decoder setup, which cre-
ates a contextualized representation of the input sequence.
Specifically, we use BERT due to its bi-directional context
conditioning, multilingualism and state-of-the-art scores on
many other tasks (Devlin et al., 2019). Furthermore, we
propose a new method which allows applying BERT on
longer texts. The main contributions of this paper are: (1)
Designing two new abstractive text summarization models
based on the ideas of conditioning on the pre-trained lan-
guage model and application of convolutional self-attention
at the bottom layers of the encoder. (2) Proposing a method
of encoding the input sequence in windows which allevi-
ates BERT’s input limitations1 and allows the processing
of longer input texts. (3) Evaluating the performance of our
models on the English and German language by conducting
an ablation study on CNN/Dail Mail and SwissText datasets
and comparing it with other state-of-the-art methods.

2. Related Work
2.1. Pre-trained Language Models
Traditionally, non-contextualized embedding vectors were
used for pre-training neural-based NLP models (Mikolov
et al., 2013; Pennington et al., 2014). Recently, pre-
trained language models exploiting contextualized embed-
dings, such as ELMo, GPT-2, BERT and XLNet raised the
bar in many NLP tasks (Peters et al., 2018; Radford et al.,
2018; Devlin et al., 2019; Yang et al., 2019b). Recent at-
tempts to use these models for text summarization demon-

1BERT can process sequences with a maximum of 512 tokens.

strated their suitability by achieving new state-of-the-art re-
sults (Zhang et al., 2019; Liu, 2019; Liu and Lapata, 2019).

2.2. Neural Abstractive Text Summarization
The neural approach toward abstractive summarization was
largely adopted by state-of-the-art models (Shi et al., 2018).
A significant contribution was the pointer Generator Net-
work (See et al., 2017). It uses a special layer on top of the
decoder network to be able to both generate tokens from
the dictionary and extract them from the input text. It uses
the coverage vector mechanism to pay less attention to to-
kens already covered by previous iterations. An example
of earlier work adapting Reinforcement Learning (RL) is
described by Paulus et al. (2018). The pure RL model
achieved high ROUGE-1 and ROUGE-L scores but pro-
duced unreadable summaries. Its combination with typi-
cal cross-entropy optimization achieved high scores elim-
inating the unreliability problem. Liu et al. (2018), to
the best of our knowledge, were the first to use the Trans-
former model for summarization. It was only used in the
decoder on top of the extraction model with various atten-
tion compression techniques to increase the size of the in-
put sequence. Zhang et al. (2019) incorporate BERT into
the Transformer-based model. They use a two-stage proce-
dure exploiting the mask learning strategy. Others attempt
to improve their abstractive summarization models by in-
corporating an extractive model. For example, Li et al.
(2018) use the Key information guide network to guide the
summary generation process. In Bottom-up summarization
(Gehrmann et al., 2018) the extractive model is used to in-
crease the precision of the Pointer Generator mechanism.
Another strand of research adapts existing models to cope
with long text. Cohan et al. (2018) present the Discourse-
Aware Attention model which introduces hierarchy in the
attention mechanism via calculating an additional attention
vector over the sections of the input text. Subramanian et
al. (2019) showed that the language model trained on the
combination of the original text, extractive summaries gen-
erated by the model and the golden summary can achieve
results comparable to standard encoder-decoder based sum-
marization models.

3. Approach
Our text summarization model is based on the Transformer
architecture. This architecture adopts the original model
of Vaswani et al. (2017). On top of the decoder, we use a
Pointer-Generator (Formula 1) to increase the extractive ca-
pabilities of the network (we later refer to this architecture
as CopyTransformer).

p(w) = pgenPcopy(w) + (1− pgen)Psoftmax(w), (1)

where Pcopy(w) is the probability of copying a specific
word w from the source document, Psoftmax(w) is the
probability of generation a word calculated by the abstrac-
tive summarization model and pgen is the probability of
copying instead of generation.

3.1. Convolutional Self-Attention
The Transformer, like any other self-attention network, has
a hierarchical multi-layer architecture. In many experi-

Figure 1: Model overview

ments it was shown that this architecture tends to learn lexi-
cal information in the first layers, sentence-level patterns in
the middle and the semantics in the upper layers (Raganato
and Tiedemann, 2018; Tenney et al., 2019). The disadvan-
tage of this approach is that during the attention operation it
considers all tokens as equally important, whereas syntac-
tic information is mostly concentrated in certain local areas.
This problem is usually specified as the problem of locality
modeling. As syntactic information can help in identifying
more important words or phrases, it could be beneficial to
focus attention on these regions.
A successful approach to the locality modeling task are
the so-called convolutions (local) self-attention networks
(Yang et al., 2019a). Essentially, the problem is dealt with
by the application of a 1-dimensional convolution to the
self-attention operation at the network’s lower layers. This
strengthens dependencies among neighboring elements and
makes the model distance-aware when it searches for low-
level patterns in a sequence. In other words, it restricts
the attention scope to the window of neighboring elements.
The 1D convolution applied to attention is illustrated in For-
mulas 2, 3 and 4.

K̂h = {kh
i−M

2
, . . . ,kh

i , . . . ,k
h
i+M

2
}, (2)

V̂h = {vh
i−M

2
, . . . ,vh

i , . . . ,v
h
i+M

2
}, (3)

oh
i = ATT(qh

i , K̂
h)V̂h, (4)

where qh
i is the query and M + 1 (M ≤ I) is its attention

region centered at the position i.

The convolution can be extended to the 2-dimensional area
by taking interactions between features learned by the dif-
ferent attention heads of the Transformer into account. In
the original Transformer each head independently models a
distinct set of linguistic properties and dependencies among
tokens (Raganato and Tiedemann, 2018). By applying 2-
dimensional convolution, where the second dimension is
the index of attention head, we explicitly allow each head to
interact with learned features for their adjacent sub-spaces.
The shortcoming of the original implementation is that the
first and the last heads do not interact as they are assumed
not to be adjacent. Thus, we assume that considering the
heads’ sub-spaces periodically, we can increase the model’s
effectiveness by applying circular convolution to the second
dimension. In Section 5, we evaluate both the original ver-
sion and our modification.

K̃h =
⋃

[K̂h−N
2 , . . . , K̂h, . . . , K̂h+N

2], (5)

Ṽh =
⋃

[V̂h−N
2 , . . . , V̂h, . . . , V̂h+N

2], (6)

oh
i = ATT(qh

i , K̃
h)Ṽh, (7)

where (M + 1) (N ≤ H) is the window region over heads
and

⋃
stands for the union of keys K̂h and values V̂h from

different subspaces.

The convolutional self-attention has been shown to be very
effective in Machine Translation and several other NLP
tasks. However, to our knowledge, it was never applied
to the text summarization problem. For the experiments re-
ported on in this paper, we created our implementation of
the local attention and the convolutional self-attention net-
work (Transformer). It supports both 1D and 2D modes
having the size of the kernels as system parameters. As
in Yang et al. (2019a) we incorporate convolutional self-
attention in the Transformer encoder by positioning it in
the place of the self-attention in the lower layers. In Sec-
tion 5, we show that the low-level modeling capabilities of
our encoder provides a strong boost to the model’s predic-
tion accuracy in the text summarization task.

3.2. BERT-Conditioned Encoder
The main task of the encoder is to remember all the se-
mantic and syntactic information from the input text which
should be used by the decoder to generate the output.
Knowledge transfer from the language model should the-
oretically improve its ability to remember the important in-
formation due to the much larger corpus used in its pre-
training phase compared to the corpus used in the text sum-
marization training phase. We thus condition our encoder
on the BERT language model.
For the encoder conditioning, we used the most straight-
forward strategy recommended for the BERT based model:
placing the pre-trained language model in the encoder as
an embeddings layer. This should make the embeddings
of the system context-dependent. We decided not to fine-
tune the encoder on BERT for the sake of memory and time
economy. Instead, we follow the general recommendations
by concatenating the hidden states of the last four layers
of BERT into a 3072-dimensional embedding vector (De-
vlin et al., 2019). We use two variations of the BERT-based
encoder. The first model uses only BERT to encode the in-
put sequence and the second model feeds BERT’s generated
embeddings into the vanilla Transformer encoder.

3.3. BERT-Windowing
One of the key features of our approach is its ability to
overcome the length limitations of BERT, allowing it to
deal with longer documents. BERT’s maximum supported
sequence length is 512 tokens2, which is smaller than the
average size of texts used in most summarization datasets.
Our method relies on the well-known method of window-
ing which to our knowledge was never used before neither

2These are not tokens in the traditional sense, but so-called
WordPiece tokens, see Devlin et al. (2019).

in the BERT-based models nor in abstractive text summa-
rization research (Figure 2). We apply BERT to the win-
dows of texts with strides and generate N matrices, every
matrix embedding one window. Then we combine them
by doing the reverse operation. The vectors at the overlap-
ping positions are averaged (by summing and dividing by
the number of overlapping vectors). As a result, we have
the matrix of embeddings with the shape of the hidden size
times the length of the text. The drawback of this approach
is that we reduce the size of the context as each resulted
vector is calculated based on maximum twice the window
size number of tokens. Besides, the split of the text to equal
size windows will aggravate the consistency of the input as
some sentences will be split in an arbitrary manner between
two adjacent windows. Despite this drawback, we assume
that this procedure will nevertheless improve the accuracy
of the encoder trained on the non-truncated texts. We set
the window size to the maximum size of 512 tokens and
the stride to 256. We consider this stride size optimal due
to a trade-off between the average context size and compu-
tational requirements of the model (number of windows).
By this trade we ensure every token to have a 768 tokens-
context except for the 256 initial and final tokens, that only
have 512 tokens-context.

Figure 2: Integration of BERT-generated contextual repre-
sentations from two windows

3.4. BERT-Conditioned Decoder
In the decoder, pre-training was applied in a similar way.
The main difference is that instead of the final output of
BERT we use only its word embedding matrix (without po-
sitions). The reason behind this is that in the decoder the
generated probability distribution is conditioned on the in-
complete text (previous summary draft output) while BERT
implicitly assumes consistent and completed input (Zhang
et al., 2019). As context-independent embeddings are not
enough to represent the minimum set of features to make a
meaningful prediction, the custom Transformer decoder is
always stacked on top of BERT.
Our whole BERT-based model is similar to One-Stage
BERT (Zhang et al., 2019) and BertSumAbs (Liu and La-
pata, 2019) but differs in the usage of the four last hidden
states of BERT to create contextualized representation, in
presence of Pointer Generator and capabilities to process

Figure 3: Two different approaches for the integration of the BERT-conditioning with Convolutional Self-Attention

Method ROUGE-1 ROUGE-2 ROUGE-L

CopyTransformer 31.95 14.49 30.02

+ 1D conv. 32.62 14.99 30.74
+ 2D conv. 32.72 15.12 30.85
+ 2D Circular conv. 32.68 15.01 30.76

Table 1: Ablation study of model with Convolutional Self-
Attention on the CNN/Daily Mail dataset (kernel sizes are
11 and 3)

long texts. In Figure 1 we show the schema of the ba-
sic model with the BERT-conditioned convolutional self-
attention encoder and BERT-conditioned decoder.

3.5. Integration of BERT and Convolutional
Self-Attention

We evaluated two different ways of integrating the BERT-
conditioning with the convolutional self-attention of the
model’s encoder (Figure 3).

Stacking This approach comprises feeding the BERT-
generated embeddings to the convolutional self-attention
Transformer encoder. A potential problem with this ap-
proach is that convolutional self-attention is assumed to be
beneficial when applied in the lower layers as its locality
modeling feature should help in modeling of local depen-
dencies (e. g., syntax). At the same time, BERT is a hierar-
chical model where the last layers target high-level patterns
in the sequences (e. g., semantics). We assume that the ap-
plication of the network detecting the low-level patterns on
BERT’s output can undermine its generalization abilities.

Concatenation Because of the considerations raised
above, we also develop a second approach which we call
Concatenation. We split the convolutional self-attention
Transformer encoder into two networks where the first one
uses only convolutional self-attention and the second orig-
inal self-attention (identical to the Transformer encoder).
Then we feed the original sequences into BERT and into
the convolutional self-attention network in parallel. The re-
sulting embedding vectors are concatenated and fed into the
Transformer encoder. In this way, we model the locality at
the lower layers of the encoder at the cost of a smaller depth
of the network (assuming the same number of layers).

4. Datasets
We aim to develop a system that works in a language-
independent way. It assumes that either the upstream
components are available in the respective language, or
they are themselves language-independent, such as the
multi-lingual version of BERT. Since most summarization
datasets are in English however, we use English for the
evaluation and additionally include German to check if of
our model can be applied to another language.

4.1. CNN/Daily Mail
Our experiments are mainly conducted on the CNN/Daily
Mail dataset (Hermann et al., 2015; Nallapati et al., 2016).
It contains a collection of news articles paired with multi-
sentence summaries published on the CNN and Daily Mail
websites. This dataset is the de facto standard for training
summarization models. We use the non-anonymized data
as was used for training of the most recent state-of-the-art
models (e. g., See et al. (2017)). The raw dataset consists
of separate text files each representing a single article or
a summary. We use the data in its preprocessed version
as provided by Gehrmann et al. (2018). It has 287,226
training pairs, 13,368 validation pairs and 11,490 test pairs.
To align the data with the vocabulary of BERT we tok-
enized it using the BPE-based WordPiece tokenizer (De-
vlin et al., 2019). As all samples in BERT’s training data
are prepended with the special token ”[CLS]”, we follow

Figure 4: Effect of the window size on ROUGE-1

Model ROUGE-1 ROUGE-2 ROUGE-L

Transformer 24.82 6.27 22.99
CopyTransformer 31.95 14.49 30.02
Bert Encoder + Transformer Decoder 31.3 13.37 29.46
Bert-transformer Encoder + Transformer Decoder 32.5 14.68 30.68
Bert-transformer Encoder + Bert-transformer Decoder 33.23 14.99 31.26

Transformer (full text) 23.18 5.15 21.48
Bert-transformer Encoder + Transformer Decoder (full text) 31.51 14.1 29.77

Table 2: Ablation study of the BERT-based model on truncated and original CNN/Daily Mail dataset

Model ROUGE-1 ROUGE-2 ROUGE-L

Transformer 36.40 20.69 34.14
CopyTransformer 39.44 25.11 37.16
Bert-transformer Encoder + Transformer Decoder 44.01 29.60 41.65
Bert-transformer Encoder + Bert-transformer Decoder 43.22 29.01 40.84

Transformer (full text) 34.76 18.65 32.61
Bert-transformer Encoder + Transformer Decoder (full text) 45 30.49 42.64

Table 3: Ablation study of the BERT-based model on the truncated and original SwissText dataset

this and add it to every source text in our dataset. In the
resulting dataset, the average lengths of an article and a
summary are 895 and 63 tokens, respectively. In most of
our experiments, we use the clipped version of the training
and validation datasets with each article truncated to 512
tokens. In the experiments on BERT windowing, we use
the full-text version.

4.2. SwissText Dataset
To evaluate the efficiency of the model in a multi-lingual,
multi-domain environment we conduct a series of experi-
ments on the German SwissText dataset. This dataset was
created for the 1st German Text Summarization Challenge
at the 4th Swiss Text Analytics Conference – SwissText
2019 (ZHAW, 2019). It was designed to explore differ-
ent ideas and solutions regarding abstractive summariza-
tion of German texts. To the best of our knowledge, it is
the first long document summarization dataset in the Ger-
man language that is publicly available. The data was ex-
tracted from the German Wikipedia and represents mostly
biographical articles and definitions of various concepts.
The dataset was tokenized by the multilingual WordPiece
tokenizer (Devlin et al., 2019) and preprocessed in the
same way as the CNN/Daily Mail dataset. It was split into
the training, validation and testing sets containing 90,000,
5,000 and 5,000 samples, respectively. The average length
of a source sequence is 918 tokens, which makes this
dataset suitable for our experiments on windowing.

5. Experiments
Our system is built on the OpenNMT library. For training,
we use cross-entropy loss and the Adam optimizer with the
Noam decay method (Kingma and Ba, 2014). Regulariza-
tion is made via dropout and label smoothing. For eval-
uation, we calculate the F1-scores for ROUGE using the
files2rouge library. The ROUGE evaluation is made on the
sequences of WordPiece tokens.

5.1. Locality Modeling
To evaluate the effect of convolution on self-attention we
introduce it in the first layer of the encoder. We use the
same kernel sizes as in Yang et al. (2019a). In these exper-
iments, to accelerate the training process, we use a small
model with a hidden size of 256, four self-attention heads
and three layers in the encoder and decoder. All models are
trained for 90,000 training steps with the Coverage Penalty.
As a baseline, we use our implementation of CopyTrans-
former. In contrast to See et al. (2017), we do not re-use
the attention layer for the decoder but train a new Pointer-
Generator layer from scratch.
The results are presented in Table 1. We see that both con-
volutions over tokens and over attention heads improve the
ROUGE scores. Standard convolution outperformed circu-
lar convolution on ROUGE-1, ROUGE-2 and ROUGE-L
by 0.06, 0.13 and 0.09 percent, respectively.
We also investigated the effect of the window size of the 1-
dimensional convolution on ROUGE scores (Figure 4). In
contrast to findings in Machine Translation, we found that
size 13 returns the best result for the summarization task.

5.2. BERT Conditioning
To find the optimal architecture of the BERT-based ab-
stractive summarizer we conducted an ablation study
(Table 2). All hyperparameters were set equal to
the ones in experiments in convolutional self-attention.
On CNN/Daily Main dataset we test three different
models: BERT encoder+Transformer Decoder, BERT-
Transformer encoder+Transformer decoder and BERT-
Transformer encoder+BERT-Transformer decoder. The
version of BERT used in the experiments is BERT-Base. As
the baseline, we use the Transformer without Pointer Gen-
erator. From the results, we observe that BERT improves
the efficiency of the model when it is used in both encoder
and decoder. Besides, BERT in the encoder is more effec-
tive when it is used to produce embeddings to be used by the

standard Transformer encoder than when it is used solely as
an encoder. Even without a Pointer Generator, our model
outperformed the CopyTransformer baseline by 1.28, 0.5
and 1.24 on ROUGE-1, ROUGE-2 and ROUGE-L.
To evaluate our BERT-windowing method we conducted
the experiments on the full text. Our approach outperforms
the baseline, which proves that the method can be success-
fully applied to texts longer than 512 tokens. The final per-
formance of this model is still lower than that of the model
trained on the truncated text, but as the same pattern can
be observed for the baselines we assumed this relates to the
specifics of the dataset that is prone to having important
information in the first sentence of a text.
On SwissText data we use the multilingual version
of BERT-Base. We evaluated two models with
Bert-transformer encoder and Transformer and BERT-
Transformer decoders (Table 3). The introduction of BERT
into the transformer increased the ROUGE-1, ROUGE-2
and ROUGE-L scores by 7.21, 8.91 and 7.51 percent, re-
spectively. At the same time, the usage of BERT in the
decoder decreased the overall score. We assume that the
reason behind this is that in multilingual BERT, due to its
language-independence, the embedding matrix outputs less
precise contextualized representations which undermines
their benefits for the summarization task.
On the non-truncated texts, usage of the Bert-transformer
encoder increased the ROUGE scores by 10.23, 11.84 and
10.03 percent. Furthermore, it gives us higher scores com-
pared to the same model on truncated texts. This demon-
strates the usability of BERT-windowing for this particu-
lar dataset. We assume that the difference in performance
on the CNN/Daily Mail datasets reflects the difference in
distribution of the useful information within the text. Par-
ticularly, that in the SwissText dataset, it is spread more
uniformly than in the CNN/Daily Mail dataset. We con-
ducted a small experiment comparing the average ROUGE
score between a golden summary and the head and the tail
of a document (taking the first or last n sentences, where
n correlates to the length of the gold summary) on both
datasets. The difference between taking the head and a tail
on the SwissText dataset (ROUGE-L of 34.79 vs. 20.15,
respectively) was much smaller than on CNN / Daily Mail
(ROUGE-L of 16.95 vs. 12.27, respectively) which con-
firms our hypothesis.

5.3. Integration Strategies
To evaluate the integration strategies, we trained two mod-
els with the respective BERT-based baselines. Both models
have in their encoder two Transformer layers and one Con-
volutional Transformer layer placed on top of BERT or in
parallel, respectively (Table 4).

The method of stacking does not provide any significant
improvement. With the introduction of convolutional self-
attention only ROUGE-1 increased by 0.12 percent, while
ROUGE-2 dropped by 0.3 and ROUGE-L remained the
same. Considering that in many domains ROUGE-2 max-
imally correlates with human assessment (see Section 7),
we dismiss this method. The concatenation strategy con-
volution is shown to be much more efficient, increasing
ROUGE scores by 0.44,0.33 and 0.43 percent. This con-
firms our hypothesis that locality modeling is the most effi-
cient when applied at the bottom on the non-contextualized
word representations. Unfortunately, this model failed to
outperform the stacking baseline. We conclude that the
concatenating architecture undermines the performance of
the Transformer model, and the convolutional self-attention
is not beneficial when used together with pre-trained lan-
guage models. Hence, we decided to train our two final
models separately.

5.4. Model Comparison
For the final comparison of our model to other state-of-the-
art methods we conducted experiments on the CNN/Daily
Mail dataset. We set the hidden state to 512, the number of
Transformer layers in the encoder and layers to six and the
number of self-attention heads to eight. Hence, our baseline
is smaller than the original CopyTransformer (Gehrmann et
al., 2018), which may be the reason why it performs slightly
worse (Table 5). BERT-conditioning was used in both the
encoder and decoder. The sizes of convolution kernels are
set to 13 and three. The networks were trained for 200,000
training steps on a single NVIDIA GeForce GTX 1080 Ti.
The generation of the summary was made via the Beam
search algorithm with the Beam size set to four. Finally,
the generated summaries were detokenized back to the se-
quences of words separated by spaces.
For the BERT-based model, we set the minimum length
of a generated summary to 55 as we found that without
such restriction the model was prone to generate shorter
sequences than in the test dataset. The model outperformed
the baseline by 1.27 on ROUGE-1, 1.14 on ROUGE-2 and
1.3 on ROUGE-L. This is better than the scores of One-
Stage BERT but still worse than the two-stage and Bert-
SumAbs models.
For the convolutional CopyTransformer we use convolu-
tional self-attention in the first three layers of the encoder.
It increased ROUGE-1, ROUGE-2 and ROUGE-L by 0.25,
0.41 and 0.12.
Furthermore, we present the first publicly available bench-
mark for the SwissData dataset (Table 6).3 All param-

3For comparability with our other model we include results

Method of Integration Model ROUGE-1 ROUGE-2 ROUGE-L

Stacking
BERT+CopyTransformer 35.28 17.12 33.31
BERT+Convolutional CopyTransformer 35.4 16.82 33.31

Concatenation
BERT+CopyTransformer 34.82 16.46 32.79
BERT+Convolutional CopyTransformer 35.26 16.79 33.22

Table 4: Different strategies for integrating language models with convolutional Self-Attention (CNN/Daily Mail dataset)

Method ROUGE-1 ROUGE-2 ROUGE-L

BiLSTM + Pointer-Generator + Coverage (See et al., 2017) 39.53 17.28 36.38
ML + Intra-Attention (Paulus et al., 2018) 38.30 14.81 35.49
CopyTransformer (Gehrmann et al., 2018) 39.25 17.54 36.45
Bottom-Up Summarization (Gehrmann et al., 2018) 41.22 18.68 38.34
One-Stage BERT (Zhang et al., 2019) 39.50 17.87 36.65
Two-Stage BERT (Zhang et al., 2019) 41.38 19.34 38.37
ML + Intra-Attention + RL (Paulus et al., 2018) 39.87 15.82 36.90
Key information guide network (Li et al., 2018) 38.95 17.12 35.68
Sentence Rewriting (Chen and Bansal, 2018) 40.88 17.80 38.54
BertSumAbs (Liu and Lapata, 2019) 41.72 19.39 38.76

CopyTransformer (our implementation) 38.73 17.28 35.85
Convolutional CopyTransformer 38.98 17.69 35.97
BERT+CopyTransformer (enc., dec.) 40 18.42 37.15

Table 5: ROUGE scores for various models on the CNN/Daily Mail test set. The first section shows different state-of-the-art
models, the second section presents our models and baseline.

Method ROUGE-1 ROUGE-2 ROUGE-L

CopyTransformer (our implementation) 39.5 22.36 36.97
Convolutional CopyTransformer 40.54 23.62 38.06
BERT+CopyTransformer (enc.) 42.61 25.25 39.85

Table 6: ROUGE scores for our models on the SwissText test set

eters are equal to the CNN/Daily Mail baseline. BERT-
conditioning was used only in the encoder. The networks
were trained on the truncated texts in 90,000 training steps.
From the results we see that the convolutional CopyTrans-
former showed much more efficiency than on CNN/Daily
Mail dataset, outperforming the baseline by 1.04 percent
on ROUGE-1, 1.26 on ROUGE-2 and 1.09 on ROUGE-L.
The BERT-based model achieved the highest scores.

6. Qualitative Analysis
As ROUGE evaluation is not always a valid method for
quality assessment we perceive the need for an additional,
manual evaluation. The best solution would be to conduct a
fine-grained study of the models’ outputs by manually rank-
ing them in terms of semantic coherence, grammaticality,
etc. However, due to the time-consuming nature of such an
evaluation, we reverted to a qualitative analysis comparing
several summaries generated by different models. Figure 5
includes the reference summary and those generated by the
different models. Comparing the first sentence we see that
the vanilla Transformer model performed worse by copying
only part of the original sentence omitting some characters
in the word “meteorological”. The model with convolution
has copied the whole sentence but still made a spelling er-
ror. Finally, only the BERT-based model succeeded to gen-
erate the right token, “meteorological”. Also, we see that
while the BERT-based model’s summary conveys the same
meaning as the gold summary, the convolutional Trans-
former generates one and Transformer two sentences that
are not present in the gold summary. Overall, on the given

for the bigger BERT+CopyTransformer model. At the same time,
we found that the smaller model without the copy mechanism
achieved higher scores with 45.12 ROUGE-1, 28.38 ROUGE-2
and 42.99 ROUGE-L. This needs to be explored in future work.

example all models provided a summary of extractive na-
ture and only the BERT-based model shows some level of
abstractiveness merging parts of the two sentences into the
single one (in the second summary’s sentence). This is far
from the gold summary where every sentence in some way
paraphrases the original text. Hence, given this particular
example, our models demonstrate some explicit improve-
ments. Still, abstractive summarization remains challeng-
ing. The paraphrasing capabilities of all state-of-the-art
systems are low and the models are not guaranteed to pro-
duce summaries which follow the initial order of the se-
quence of events.

7. Discussion: Summarization Evaluation
ROUGE (Lin, 2004) is the most widely adopted metric used
for evaluating automatic text summarization approaches.
The evaluation is made though comparison of a set of
system-generated candidate summaries with a gold stan-
dard summary. The availability of the corresponding soft-
ware and its performance contributed to its popularity (Co-
han and Goharian, 2016). Despite its adoption in many
studies, the metric faced some key criticisms.
The main criticism of ROUGE is that it does not take into
account the meaning expressed in the sequences. The met-
ric was developed based on the assumption that a high qual-
ity generated candidate summary should share many words
with a single human-made gold standard summary. This as-
sumption may be very relevant to extractive, but not to ab-
stractive summarization, where different terminology and
paraphrasing can be used to express the same meaning (Co-
han and Goharian, 2016). This results in the metric assign-
ing low scores to any summary not matching the gold stan-
dard on the surface level. This also allows cheating the
metric by generating ungrammatical and nonsensical sum-

Gold summary: researchers are developing a computer that can write weather forecasts . it takes meteorological data and writes a
report designed to mimic a human . this process is known as ‘ natural language generation ’ - lrb - nlg - rrb - . a prototype system will
be tested on the bbc website later this year .

Transformer: researchers from london and edinburgh have developed a computer that can collateological information . these com-
puter - generated weather updates are being tested by scientists at heriot - watt university and university college london . if the project
is successful , a prototype system will be tested by generating local weather reports on the bbc ’ s website . currently , the bbc website
features 10 reports written by meteorologists .

Convolutional Transformer: researchers from london and edinburgh have developed a computer that can collate meterological
information and then produce forecasts as if they were written by a human . it uses a process known as ‘ natural language generation
’ - lrb - nlg - rrb - . these computer - generated weather updates are being tested by scientists at heriot - watt university and university
college london . if the project is successful , a prototype system will be tested by generating local weather reports on the bbc ’ s website
.

BERT-Transformer: researchers from london and edinburgh have developed a computer that can collate meteorological information
and produce forecasts as if they were written by a human . using met office data , it uses a process known as ‘ natural language
generation ’ - lrb - nlg - rrb - . if the project is successful , a prototype system will be tested by generating local weather reports on the
bbc ’ s website .

Figure 5: Comparison of the output of models on an example form CNN/Daily Mail testset. Surface realisation mistakes
are highlighted in green and a typical abstractive feature, illustrating re-arranging of the sentence is highlighted in blue.

maries having very high ROUGE scores. Sjöbergh (2007)
show how this can be achieved by choosing the most fre-
quent bigrams from the input document.
ROUGE adoption relies on its correlation with human as-
sessment. In the first research on the DUC and TDT-3
datasets containing news articles, ROUGE indeed showed
a high correlation with the human judgments (Lin, 2004;
Dorr et al., 2005). However, more recent research ques-
tions the suitability of ROUGE for various settings. Con-
roy and Dang (2008) show that on DUC data the linguis-
tic and responsiveness scores of some systems do not cor-
respond to the high ROUGE scores. Cohan and Gohar-
ian (2016) demonstrate that for summarization of scientific
texts, ROUGE-1 and ROUGE-L have very low correlations
with the gold summaries. ROUGE-N correlates better but
is still far from the ideal case. This follows the result of
Murray et al. (2005), showing that the unigram match be-
tween the candidate summary and gold summary is not an
accurate metric to assess quality.
Another problem is that the credibility of ROUGE was
demonstrated for the systems which operated in the low-
scoring range. Peyrard (2019b) show that different summa-
rization evaluation metrics correlate differently with human
judgements for the higher-scoring range in which state-of-
the-art systems now operate. Furthermore, improvements
measured with one metric do not necessarily lead to im-
provements when using others.
This concern led to the development of new evaluation met-
rics. Peyrard (2019a) define metrics for important con-
cepts with regard to summariazion: Redundancy, Rele-
vance, and Informativeness in line with Shannon’s entropy.
From these definitions they formulate a metric of Impor-
tance which better correlates to human judgments. Clark et
al. (2019) propose the metric of Sentence Mover’s Simi-
larity which operates on the semantic level and also better
correlates with human evaluation. A summarization model
trained via Reinforcement Learning with this metric as re-
ward achieved higher scores in both human and ROUGE-
based evaluation.

Despite these drawbacks, the broad adoption of ROUGE
makes it the only way to compare the efficiency of our
model with other state-of-the-art models. The evaluation of
our system on the SwissData dataset confirms that its effi-
ciency (in terms of ROUGE) is not restricted to CNN/Daily
Mail data only.

8. Conclusion
We present a new abstractive text summarization model
which incorporates convolutional self-attention in BERT.
We compare the performance of our system to a baseline
and to competing systems on the CNN/Daily Mail data set
for English and report an improvement over state-of-the-
art results using ROUGE scores. To establish suitability
of our model to languages other than English and domains
other than that of the CNN/Daily Mail data set, we apply
our model to the German SwissText data set and present
scores on this setup. A key contribution of our model is the
ability to deal with texts longer than BERT’s window size
which is limited to 512 WordPiece tokens. We present a
cascading approach and evaluate this on texts longer than
this window size, and demonstrate its performance when
dealing with longer input texts.
The source code of our system is publicly available.4 A
functional service based on the model is currently being in-
tegrated, as a summarization service, in the platforms Lynx
(Moreno-Schneider et al., 2020), QURATOR (Rehm et al.,
2020b) and European Language Grid (Rehm et al., 2020a).

Acknowledgements
The work presented in this paper has received funding from
the European Union’s Horizon 2020 research and innova-
tion programme under grant agreement no. 780602 (Lynx)
and from the German Federal Ministry of Education and
Research (BMBF) through the project QURATOR (Wachs-
tumskern no. 03WKDA1A).

4https://github.com/axenov/BERT-Summ-OpenNMT

9. Bibliographical References

Chen, Y.-C. and Bansal, M. (2018). Fast abstractive sum-
marization with reinforce-selected sentence rewriting. In
Proceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Pa-
pers), pages 675–686, Melbourne, Australia, July. Asso-
ciation for Computational Linguistics.

Clark, E., Celikyilmaz, A., and Smith, N. A. (2019).
Sentence mover’s similarity: Automatic evaluation for
multi-sentence texts. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguis-
tics, pages 2748–2760, Florence, Italy, July. Association
for Computational Linguistics.

Cohan, A. and Goharian, N. (2016). Revisiting summa-
rization evaluation for scientific articles. Available on-
line (arXiv).

Cohan, A., Dernoncourt, F., Kim, D. S., Bui, T., Kim, S.,
Chang, W., and Goharian, N. (2018). A discourse-aware
attention model for abstractive summarization of long
documents. In NAACL-HLT.

Conroy, J. M. and Dang, H. T. (2008). Mind the gap: Dan-
gers of divorcing evaluations of summary content from
linguistic quality. In Proceedings of the 22nd Interna-
tional Conference on Computational Linguistics (Coling
2008), pages 145–152, Manchester, UK, August. Coling
2008 Organizing Committee.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of
the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Pa-
pers), pages 4171–4186, Minneapolis, Minnesota, June.
Association for Computational Linguistics.

Domhan, T. (2018). How much attention do you need?
a granular analysis of neural machine translation archi-
tectures. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pages 1799–1808, Melbourne, Aus-
tralia, July. Association for Computational Linguistics.

Dorr, B., Monz, C., President, S., Schwartz, R., and Za-
jic, D. (2005). A methodology for extrinsic evaluation
of text summarization: Does ROUGE correlate? In Pro-
ceedings of the ACL Workshop on Intrinsic and Extrin-
sic Evaluation Measures for Machine Translation and/or
Summarization, pages 1–8, Ann Arbor, Michigan, June.
Association for Computational Linguistics.

Gehrmann, S., Deng, Y., and Rush, A. (2018). Bottom-up
abstractive summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing, pages 4098–4109.

Hermann, K. M., Kočiský, T., Grefenstette, E., Espeholt,
L., Kay, W., Suleyman, M., and Blunsom, P. (2015).
Teaching machines to read and comprehend. In Pro-
ceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 1, NIPS’15,
pages 1693–1701, Cambridge, MA, USA. MIT Press.

Kingma, D. and Ba, J. (2014). Adam: A method for

stochastic optimization. International Conference on
Learning Representations, 12.

Li, C., Xu, W., Li, S., and Gao, S. (2018). Guiding gen-
eration for abstractive text summarization based on key
information guide network. In Proceedings of the 2018
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages 55–
60, New Orleans, Louisiana, June. Association for Com-
putational Linguistics.

Lin, C.-Y. (2004). ROUGE: A package for automatic eval-
uation of summaries. In Text Summarization Branches
Out, pages 74–81, Barcelona, Spain, July. Association
for Computational Linguistics.

Liu, Y. and Lapata, M. (2019). Text summarization with
pretrained encoders. Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP).

Liu, P. J., Saleh, M., Pot, E., Goodrich, B., Sepassi,
R., Kaiser, L., and Shazeer, N. (2018). Generating
wikipedia by summarizing long sequences. In Interna-
tional Conference on Learning Representations.

Liu, Y. (2019). Fine-tune bert for extractive summariza-
tion. Available online (arXiv).

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In C. J. C.
Burges, et al., editors, Advances in Neural Information
Processing Systems 26, pages 3111–3119. Curran Asso-
ciates, Inc.

Moreno-Schneider, J., Rehm, G., Montiel-Ponsoda, E.,
Rodriguez-Doncel, V., Revenko, A., Karampatakis, S.,
Khvalchik, M., Sageder, C., Gracia, J., and Maganza, F.
(2020). Orchestrating NLP Services for the Legal Do-
main. In Nicoletta Calzolari, et al., editors, Proceedings
of the 12th Language Resources and Evaluation Con-
ference (LREC 2020), Marseille, France, 5. European
Language Resources Association (ELRA). Accepted for
publication. Submitted version available as preprint.

Murray, G., Renals, S., and Carletta, J. (2005). Extrac-
tive summarization of meeting recordings. In INTER-
SPEECH 2005 - Eurospeech, 9th European Conference
on Speech Communication and Technology, Lisbon, Por-
tugal, September 4-8, 2005, pages 593–596.

Nallapati, R., Zhou, B., dos Santos, C., Gu̇lçehre, Ç., and
Xiang, B. (2016). Abstractive text summarization using
sequence-to-sequence RNNs and beyond. In Proceed-
ings of The 20th SIGNLL Conference on Computational
Natural Language Learning, pages 280–290, Berlin,
Germany, August. Association for Computational Lin-
guistics.

Paulus, R., Xiong, C., and Socher, R. (2018). A deep rein-
forced model for abstractive summarization. In Interna-
tional Conference on Learning Representations.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In
Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., and Zettlemoyer, L. (2018). Deep contextu-
alized word representations. In Proceedings of the 2018
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237, New Orleans, Louisiana, June. Association for
Computational Linguistics.

Peyrard, M. (2019a). A simple theoretical model of impor-
tance for summarization. In Proceedings of the 57th An-
nual Meeting of the Association for Computational Lin-
guistics, pages 1059–1073, Florence, Italy, July. Associ-
ation for Computational Linguistics.

Peyrard, M. (2019b). Studying summarization evaluation
metrics in the appropriate scoring range. In Proceedings
of the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5093–5100, Florence, Italy,
July. Association for Computational Linguistics.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. (2018). Language models are unsupervised
multitask learners. Available online.

Raganato, A. and Tiedemann, J. (2018). An analysis of
encoder representations in transformer-based machine
translation. In Proceedings of the 2018 EMNLP Work-
shop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 287–297, Brussels, Belgium,
November. Association for Computational Linguistics.

Rehm, G., Berger, M., Elsholz, E., Hegele, S., Kintzel, F.,
Marheinecke, K., Piperidis, S., Deligiannis, M., Gala-
nis, D., Gkirtzou, K., Labropoulou, P., Bontcheva, K.,
Jones, D., Roberts, I., Hajic, J., Hamrlová, J., Kačena,
L., Choukri, K., Arranz, V., Vasiļjevs, A., Anvari, O.,
Lagzdiņš, A., Meļņika, J., Backfried, G., Dikici, E.,
Janosik, M., Prinz, K., Prinz, C., Stampler, S., Thomas-
Aniola, D., Pérez, J. M. G., Silva, A. G., Berrı́o, C., Ger-
mann, U., Renals, S., and Klejch, O. (2020a). European
Language Grid: An Overview. In Nicoletta Calzolari,
et al., editors, Proceedings of the 12th Language Re-
sources and Evaluation Conference (LREC 2020), Mar-
seille, France, 5. European Language Resources Associ-
ation (ELRA). Accepted for publication.

Rehm, G., Bourgonje, P., Hegele, S., Kintzel, F., Schneider,
J. M., Ostendorff, M., Zaczynska, K., Berger, A., Grill,
S., Räuchle, S., Rauenbusch, J., Rutenburg, L., Schmidt,
A., Wild, M., Hoffmann, H., Fink, J., Schulz, S., Seva, J.,
Quantz, J., Böttger, J., Matthey, J., Fricke, R., Thomsen,
J., Paschke, A., Qundus, J. A., Hoppe, T., Karam, N.,
Weichhardt, F., Fillies, C., Neudecker, C., Gerber, M.,
Labusch, K., Rezanezhad, V., Schaefer, R., Zellhöfer, D.,
Siewert, D., Bunk, P., Pintscher, L., Aleynikova, E., and
Heine, F. (2020b). QURATOR: Innovative Technolo-
gies for Content and Data Curation. In Adrian Paschke,
et al., editors, Proceedings of QURATOR 2020 – The
conference for intelligent content solutions, Berin, Ger-
many, 02. CEUR Workshop Proceedings, Volume 2535.
20/21 January 2020.

See, A., Liu, P. J., and Manning, C. D. (2017). Get to the
point: Summarization with pointer-generator networks.
Proceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Pa-

pers).
Shi, T., Keneshloo, Y., Ramakrishnan, N., and Reddy,

C. K. (2018). Neural abstractive text summarization
with sequence-to-sequence models. Available online
(arXiv).

Sjöbergh, J. (2007). Older versions of the rougeeval sum-
marization evaluation system were easier to fool. Infor-
mation Processing & Management, 43(6):1500 – 1505.
Text Summarization.

Subramanian, S., Li, R., Pilault, J., and Pal, C. (2019). On
extractive and abstractive neural document summariza-
tion with transformer language models. Available online
(arXiv).

Tenney, I., Das, D., and Pavlick, E. (2019). Bert rediscov-
ers the classical nlp pipeline. Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017).
Attention is all you need. In Proceedings of the 31st In-
ternational Conference on Neural Information Process-
ing Systems, NIPS’17, pages 6000–6010, USA. Curran
Associates Inc.

Wu, F., Fan, A., Baevski, A., Dauphin, Y., and Auli, M.
(2019). Pay less attention with lightweight and dynamic
convolutions. In International Conference on Learning
Representations.

Yang, B., Wang, L., Wong, D. F., Chao, L. S., and Tu,
Z. (2019a). Convolutional self-attention networks. Pro-
ceedings of the 2019 Conference of the North.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov,
R. R., and Le, Q. V. (2019b). Xlnet: Generalized au-
toregressive pretraining for language understanding. In
H. Wallach, et al., editors, Advances in Neural Informa-
tion Processing Systems 32, pages 5754–5764. Curran
Associates, Inc.

Zhang, H., Cai, J., Xu, J., and Wang, J. (2019).
Pretraining-based natural language generation for text
summarization. In Proceedings of the 23rd Conference
on Computational Natural Language Learning (CoNLL),
pages 789–797, Hong Kong, China, November. Associ-
ation for Computational Linguistics.

ZHAW. (2019). German text summarization challenge.
Swiss Text Analytics Conference. Available online.

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	Abstract
	Abstract
	Sommario

	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Thesis outcome
	1.4 Outline

	2 Fundamentals and Related Work
	2.1 Fundamentals of Deep Learning in Natural Language Processing
	2.1.1 Natural Language Processing
	2.1.2 Language as Probability Model
	2.1.3 Neural networks
	2.1.4 Recurrent Neural Networks
	2.1.5 Encoder-Decoder Framework
	2.1.6 Attention
	2.1.7 Transformer
	2.1.8 Pre-Trained Models

	2.2 Abstractive Text Summarization with Neural Networks
	2.2.1 Summarization Evaluation

	3 Requirements
	3.1 Data Requirements
	3.2 Technical Requirements
	3.2.1 Computational Resources
	3.2.2 Programming Environment

	3.3 Functional Requirements
	3.3.1 Extractive Summarization Module
	3.3.2 Abstractive Summarization Module

	4 Model Description
	4.1 Consistent Extractive Summarization Module
	4.2 Abstractive Summarization Module
	4.2.1 Convolutional Self-Attention
	4.2.2 Pre-Trained Language Models Comparison
	4.2.3 BERT-Conditioned Encoder
	4.2.4 BERT-Windowing
	4.2.5 BERT-Conditioned Decoder
	4.2.6 Integration of BERT and Convolutional Self-Attention
	4.2.7 BERT-Conditioned Generator

	5 Datasets Description
	5.1 CNN / Daily Mail
	5.2 SwissText Dataset

	6 Implementation
	6.1 Environment
	6.2 Project Structure
	6.3 Experimental Setup

	7 Experimental Results
	7.1 Baseline Model
	7.2 Extractive Stage
	7.3 Locality Modeling
	7.4 Language Model Conditioning
	7.5 Integration Strategies
	7.6 Models Comparison
	7.7 Qualitative Analysis

	8 Conclusions
	 Bibliography
	 Appendix
	A LREC 2020 Paper

