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Abstract

This thesis considers the problem of optimizing a continuous time portfolio of an
investor with a constant risk aversion coefficient, which maximizes the expected
utility of his final wealth. We study optimal investment strategies given investor
access not only to bond and stock markets but also to the derivatives market.
The problem is solved in a closed form through the stochastic control approach.
In the first analysis, the equivalence between Merton’s classic problem and a
buy-and-hold strategy that includes a possible investment in the options market
compared to the other problem is presented. Then we introduce the solution
of the problem in dynamic way when the derivatives are written on Stock that
introduces stochastic volatility and it takes into consideration the fact that the
price of the Stock can undergo great variations in short temporal instants (jump
risks in the stock market). Finally a solution is proposed in the case in which the
incomplete markets are completed by derivatives.

Keywords: Asset allocation; Portfolio optimization; Derivatives; HJB equation
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Sommario

In questa tesi si considera il problema di ottimizzazione di un portafoglio a
tempo continuo di un investitore con coefficiente di avversione al rischio costante,
che massimizza l’utilità attesa della sua ricchezza finale. Studiamo strategie
d’investimento ottimali dando l’accesso agli investitori non solo ai mercati ob-
bligazionari e azionari, ma anche al mercato dei derivati. Il problema viene risolto
in forma chiusa attraverso l’approccio di controllo stocastico.
In prima analisi viene presentata l’equivalenza tra il problema classico di Merton
e una strategia buy-and-hold che include rispetto all’altro problema anche un pos-
sibile investimento sul mercato delle opzioni. Viene poi presentata la soluzione
del problema in modo dinamico quando i derivati sono scritti su stock che pre-
sentano volatilità stocastica e tengono in considerazione il fatto che il prezzo del
titolo possa subire grandi variazioni in brevi istanti temporali (il rischio di salto
del titolo). Infine viene proposta una soluzione nel caso in cui mercati incompleti
vengano completati da strumenti derivati.

Parole chiave: Asset allocation; Portfolio optimization; Derivati; Equazione di HJB
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Introduction

Banks, investment funds and insurance companies are examples of investors that
invest money in the financial markets. They want to make as much money as
possible on their investments, but any serious investor also need to consider the
risk involved. An investor is to a certain degree risk-averse, i.e the investor is
reluctant to invest in an asset with high potential if this means that the risk of
losing money is also high. The aim of such investors is to maximize the expected
returns on their investments while at same time limiting the risk involved. One
way of modelling such behaviour is through the theory of stochastic control and
the maximization of expected utility.
The objects that are considered for a potential investment are divided into two
categories: risky assets, for example stock, real estate, commodities, derivatives,
which are assets with an uncertain future return and risk-free assets, for example
bond, which are considered safe because they have a known future return at the
time the investment starts. An investor can compose an investment portfolio by
choosing the weights to be assigned to risky and risk-free assets, to match the level
of risk the investor is comfortable with. In the problem dealt with in the thesis,
the degree of aversion is represented by the investor’s utility function. For such a
risk-averse investor, it is natural to ask: which allocation strategy or investment
strategy will maximize the expected utility of the portfolio? This is the question
that awarded the Nobel Prize to the American economist Robert C. Merton, who
addressed and solved it mathematically in 1969 using stochastic control. The
problem is popularly known as ”Merton’s portfolio problem”, which has become
a well researched problem in articles and literature.
The most basic version of the problem gives an investor the limited choice of in-
vesting her wealth in a risky asset (stock) and a risk-free asset (bond). Given
some additional assumptions, Merton found that the optimal allocation strategy
is to keep a constant fraction of the wealth in the risky asset and hence, a constant
fraction in the risk-free asset. This can be generalized to a situation with several
risky assets and one risk-free asset and the conclusion is basically the same. This
strategy is indeed a frequently used strategy among investors.
From a realistic point of view, the conclusion of ”Merton’s portfolio problem” is
based on rather stylized mathematics as well as stylized assumptions. For exam-
ple, one such assumption is that the dynamics of the risky assets are geometric
Brownian motions, implying normally distributed log returns.
Another assumption that simplifies the problem is that the conclusion is based on
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a continuous mathematical framework. It is also a fact that in today’s extremely
liquid financial markets, stocks and other risky assets change value almost con-
tinuously in time. This means that to follow the optimal strategy an investor
has to rebalance her portfolio at the same rate as the prices changes. This is
obviously not very realistic seen from a practical point of view. Also, transaction
costs would make such a behaviour extremely expensive.

In Merton’s portfolio problem the investor has the possibility to invest only in
stock assets. In the discussion of this thesis, we have tried to understand what
changes should be made to the solution in the event that the investor has the
opportunity to access both the stock market and the derivatives market.
As mentioned before, the investor’s aim is not only to gain as much as possible
but also to have a degree of risk in line with his nature. Derivatives were created
precisely with risk hedging objectives, and within the portfolio they provide an
additional investment opportunity. A derivative instrument is a financial instru-
ment that does not behave autonomously, since its performance is always linked
to that of another instrument, called the underlying instrument, and can be of a
different nature: it can be stock, bonds, financial indices, commodities such as oil
or even another derivative, but there are derivatives based on the most diverse
variables such as the amount of snow fallen in a given area. So, for example, an oil
derivative will follow a similar trend to that of physical oil, although with some
small differences. New derivatives are born every day, with different financial
profiles and different degrees of sophistication. Standard types are called plain
vanilla, while more complex types are called exotic. The most well-known and
widespread types are: futures, forward rate agreement, swap, and options. In our
discussion we primarily consider options and in the last part we define futures;
both these types of derivatives are defined as regulated derivatives because they
are traded on the regulated financial market.
An investor might ask: why include derivative instruments in the investment
portfolio if they are always linked to the underlying asset and not buy the latter
directly? The reasons for the attractiveness of derivatives are different and of
considerable importance: reduced capital use in the immediate future, there is no
need to store the products in the case of physical underlying assets and they have
the ability to hedge risks without cancelling out potential benefits at the same
time.

As mentioned above, the aim of this thesis is to understand how the solution to
Merton’s problem changes when in addition to the stock market we have the op-
portunity to invest in the derivatives market.
The first result found is based on the equivalence between Merton’s problem and
a static problem in which the risky assets that can be invested in are stocks and
derivatives. For this result we refer to The equivalence of the static and dynamic
asset allocation problems of R.V.Kohn, O.M.Papazoglu-Statescu [22] and to Asset
allocation and derivatives of M.B.Haugh, A.W.Lo [15].

9



The second important result found is based on J.Liu and J.Pan’s article Dynamic
derivative stategies [11]. We find the solution in closed form of the optimal dy-
namic investment strategy when the portfolio consists of bonds, stocks and deriva-
tives. In the analysis of this problem we considered that the stock dynamics do
not follow Geometric Brownian motion but consider stochastic volatility following
the Heston model and the risk of jumps.
The equivalence demonstrated above is based on the fact that any derivative in a
complete market can be replicated by a trading strategy involving just stock and
risk-free bond. So we wondered how the solution changes from Merton’s prob-
lem if we consider an incomplete market that is complemented by derivatives.
We achieve two great results with this framework. The first result of an optimal
allocation strategy is obtained from a market that considers a stock and a deriva-
tive written on an underlying asset that cannot be traded, both governed by two
random resources. Secondly, we find that there are infinite solutions to achieve
an optimal portfolio consisting of a stock driven by two Brownian motions and a
derivative written on the stock itself.

In particular, the thesis work is divided into 6 chapters:

• Chapter 1. Some theoretical notations necessary to understand the treat-
ment are introduced. In particular the concepts and the theorems of stochas-
tic analysis that are used during the discussion to succeed in resolving the
problems are presented, the theory of the stochastic optimal control is pre-
sented and in particular the equation of Hamilton Jacobi Bellman (HJB)
that allows to find the solution in closed form of the proposed problems.
Finally, the concept of utility function and risk aversion is introduced.

• Chapter 2. The concept of portfolio optimization, which was studied by
Merton, is introduced. In particular, the Black-Scholes model is presented,
which is the main assumption of Merton’s problem, and the solution of the
latter is provided in the simplest case where only a risky asset (stock) and
a risk-free assets are considered.

• Chapter 3. It is shown that the equivalence between the simple Merton
model presented in the previous chapter and a portfolio optimization in
which a buy-and-hold strategy is presented in which the investor also has
access to the options market. This equivalence is proved through a theorem
and illustrated by numerical example.

• Chapter 4. The solution is found with a dynamic strategy when the portfolio
consists of a stock, two derivatives and a bond. When the stock follows the
dynamics of B&S, investing in the derivatives market is similar to having
Merton’s problem, since in the case of a complete market each option is
redundant. In this chapter we present two solutions: in the first we relax
the assumption of the Black and Scholes model: we consider the stochastic
volatility. The second result, in addition to the stochastic volatility, we
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consider that there is the risk of jumps, i.e. that the risky security on which
the derivatives are written does not only have continuous trajectories.

• Chapter 5. The solution is found in a closed form in an incomplete market
that is completed by a derivative. First, we analyse the case where the
derivative is written on an underlying asset which is not traded; therefore
both the European index and a derivative on the American index are held
without trading the American index. We then consider the case where the
option is written on a stock on the market.

• Chapter 6. All the results found during the treatment are summarized.
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Chapter 1

Theoretical notions

Before starting the treatment of the problem of portfolio optimization, theoretical
notions is introduced that are useful for understanding the results of the different
applications of portfolio optimization.
In section 1.1 the concepts of stochastic process, martingale and stochastic integral
are defined to provide a series of results that are used during the treatment.
In section 1.2 we present the classical theory of stochastic optimal control, i.e.
we introduce the problem of optimal control in its generality and we describe
the solving approach characterized by the dynamic programming principle. In
particular, we show how the solution of the optimization problem is linked to the
resolution of a non-linear partial derivative equation, known as Hamilton Jacobi
Bellman equation. Section 1.3 introduces the concept of mathematical utility and
risk aversion of an individual and presents the main utility functions that are used
in economics.

1.1 Elements of stochastic analysis

1.1.1 Stochastic Process

A stochastic process is a mathematical object that is intended to model the evo-
lution of a random phenomenon.

Definition 1.1.1 (Stochastic process). A stochastic process is an object of the
form

X = (Ω, F , (Ft)t∈T , (Xt)t∈T , P)

where

• (Ω, F , P) is a probability space.

• T (the times) is a subset of R+.

• (Ft)t∈T is a filtration, i.e. an increasing family of sub σ-algebras of F : Fs

⊂ Ft whenever s ≤ t.

12



• (Xt)t∈T is a family of random variables on (Ω, F ) taking values into a
measurable space (E, E ) such that, for every t, Xt is Ft-measurable. This
fact is also expressed by saying that (Xt)t is adapted to the filtration (Ft)t.

A stochastic process can therefore be seen as a family of random variables (Xt)t∈[0,T ]

indexed over time. Alternatively, if we consider a ω realization of the process, the
trajectory X(ω) : t → Xt(ω) defines a function of time with values in E. Finally,
if we consider both t and ω as variables, a stochastic process can also be seen as
a function of the process X : [0,T] × Ω → (E,E ).

Definition 1.1.2 (Brownian motion). A Rm-valued process X = (Ω, F , (Ft)t,
(Xt)t, P) is a m-dimensional Brownian motion if

• X0 = 0 a.s.;

• for every 0 ≤ s ≤ t the random variable Xt - Xs is independent of Fs;

• for every 0 s ≤ t, Xt−Xs is N(0, (t-s)I)-distributed (I is the m×m identity
matrix).

Definition 1.1.3 (Stopping time). Let (Ft)t∈T be a filtration. A random variable
τ : Ω→ T ∪{+∞} is said to be stopping time if, for every t ∈ T , {τ ≤ t} = {ω ∈
Ω : τ(ω) ≤ t} ∈ Ft.

Martingales are stochastic processes that enjoy many important properties. When
studying a process X, it is always a good idea to look for martingales ”associated”
to X, in order to take advantage of these properties.

Definition 1.1.4 (Martingale). A real valued process M = (Ω, F , (Ft)t, (Mt)t,
P) is a martingale if Mt is integrable for every t ∈ T and

E[Mt|Fs] = Ms

for every s ≤ t.

We have that a process M is a supermartingale if E[Mt|Fs] ≤Ms, and respectively
a submartingale when E[Mt|Fs] ≥Ms.

1.1.2 Stochastic Integral

Let B = (B1
t , · · ·Bm

t )t∈T be a continuous standard m-dimensional Brownian mo-
tion fixed one for all, and X = (X1

t , · · ·Xm
t )t∈T an adapted d-dimensional process,

then ∫ T

0

Xs(ω) dBs(ω) (1.1)
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will be called a stochastic integral.
For instance, once the stochastic integral is defined, it is possible to consider a
stochastic differential equation: it will be something of the kind

dXt = b(Xt)dt+ σ(Xt)dBt, (1.2)

where b and σ are suitable function. To solve it will mean to find a process (Xt)t
such that for every t ≥ 0

Xt = X0 +

∫ t

0

b(Xs) ds+

∫ t

0

σ(Xs) dBs.

Definition 1.1.5. Let us consider Mp
loc([a, b]) as a space of equivalence classes of

real stochastic processes X = (Ω, F , Ft, Xt, P) such that X is progressive (i.e

adapted and right continuous) and
∫ b
a
|Xt|pdt <∞ a.s.

Instead, we define Mp([a, b]) space of equivalence classes of real stochastic pro-

cesses X such that X is progressive and E[
∫ b
a
|Xt|pdt] <∞.

From the definition of stochastic integral we can define a multitude of processes
that admit a particular differential representation, the processes of Ito.
Let X be a process such that, for every 0 ≤ t1 < t2 ≤ T ,

Xt2 −Xt1 =

∫ t2

t1

Ftdt+

∫ t2

t1

GtdBt

where F ∈ M1
loc([0, T ]) and G ∈ M2

loc([0, T ]). We say then that X admits the
stochastic differential

dXt = Ftdt+GtdBt.

It is clear that such X is continuous and therefore X ∈ Mp
loc([0, T ]) for every p ≥

0. A process admitting a stochastic differential is also called an Ito process.

Theorem 1.1.1 (Ito’s formula). Let X be a process with stochastic differential

dXt = Ft dt+Gt dBt

and let f: Rm
x × R+

t → R be a continuous function in (x,t), with continuous
derivatives ut, uxi , uxixj , i,j = 1,...m.
Then the process (f(Xt, t))t has stochastic differential

df(Xt, t) =
∂f

∂t
(Xt, t) dt+

m∑
i=1

∂f

∂xi
(Xt, t) dXi(t) +

1

2

m∑
i,j=1

∂f

∂xi∂xj
(Xt, t) Aij(t) dt

(1.3)
where A = GGT .

Proof. The proof can be found in chapter 7 Stochastic Calculus of the book by
P.Baldi [17].
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1.1.3 Stochastic Differential Equations

Let b(x, t) = (bi(x, t))1≤i≤m and σ(x,t) = (σij(x, t))1≤i≤m, 1≤j≤d be measurable func-
tions defined on Rm × [0, T ] and Rm- and M(m,d)-valued respectively.

Definition 1.1.6 (SDE). The couple of processes (X,B) = (Ω, F , (Ft)t∈[0,T ],
(Xt)t∈[u,T ], (Bt)t∈[0,T ], P) is said to be a solution of the Stochastic Differential
Equation (SDE)

dXt = b(Xt, t) dt+ σ(Xt, t) dBt,

Xu = x x ∈ Rm

if

• (Ω, F , (Ft)t,(Bt)t, P) is a d-dimensional standard Brownian motion

• (Ω, F , (Ft)t,(Xt)t, P) is an Ito process with respect to B such that

– Ft = b(Xt, t) ∈M1
loc([u, T ])

– Gt = σ(Xt, t) ∈M2
loc([u, T ])

– for every t ∈ [u,T] we have

Xt = x +

∫ t

u

b(Xs, s) ds+

∫ t

u

σ(Xs, s) dBs. (1.4)

We remark that the solution of a SDE as above is necessarily a continuous process.
In case we want to model some real life phenomenon with such a SDE, it is
important to realize that the model presented above does not fit a model with
jumps: discontinuous behaviors must be modeled using different SDE’s in which
the Brownian motion replaced by some more suitable stochastic process.
Terminology: b is a drift, σ is the diffusion coefficient.

Definition 1.1.7 (Strong solution). We say that SDE defined in definition (1.1.6)
has strong solutions if for every standard Brownian motion (Ω, F , (Ft)t, (Bt)t,
P) there exists a process X that satisfies equation (1.4).

Theorem 1.1.2 (Existence and uniqueness of strong solution). Let SDE defined
in (1.1.6) with b : Rm × [0, T ]→ Rm and σ : Rm × [0, T ]→M(m× d) such that

• measurable in (x, t);

• ∃M > 0 :

{
|b(x, t)| ≤M(1 + |x|)
|σ(x, t)| ≤M(1 + |x|) ∀x ∈ Rm, ∀t ∈ [0, T ]; (Linearity)

• ∃N > 0,∃LN > 0 :

{
|b(x, t)− b(y, t)| ≤ LN |x− y|
|σ(x, t)− σ(y, t)| ≤ LN |x− y| ∀ |x| , |y| ≤ N, ∀t ∈

[0, T ]. (Locally lipschitz)
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And let B = (Ω, F , (Ft), (Bt), P) be a d-dimensional continuous Brownian
motion and let X ∈ L2(Fu) Rm-valued, u ∈ [0, T ], then exists a strong solution
of SDE defined in (1.1.6) and we we will have uniqueness of the solution X from
x in t, i.e Xt = x. Moreover, exists a constant CT such that

E[ sup
t≤s≤T

|Xs|p] ≤ CT (1 + E[|xs|p]).

Proof. The proof can be found in chapter 8 Stochastic Calculus of the book by
P.Baldi [17].
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1.2 Stochastic Optimization Problems

In this section we describe the classic approach to a generic optimal control prob-
lem. For the totality of the theoretical results that are presented we refer to
H.Pham [7].

We consider a dynamic system characterized by its state at any time, and evolv-
ing in an uncertain environment formalized by a probability space (Ω, F , P). We
denote by Xt(ω) the state of the system at time t in a world scenario ω ∈ Ω.
The dynamics of the system is typically influenced by a control modeled as a
process α = (αt)t whose value is decided at any time t in function of the available
information. The control α should satisfy some constraints, and is called admis-
sible control. We denote by A the set of admissible controls.
The objective is to maximize (or minimize) over all admissible controls a func-
tional J(X,α). We shall consider objective functions in the form

J(X, t;α) = E
[ ∫ T

t

f(Xs, ω, αs)ds+ g(XT , ω)

]
(1.5)

on a finite horizon T<∞, and

J(X;α) = E
[ ∫ ∞

0

e−βt f(Xt, ω, αt)dt

]
(1.6)

on an infinite horizon. The function f is a running profit function, g is a terminal
reward function, and β > 0 is a discount factor. In some situation the controller
may also decide directly the horizon or ending time of this objective. The cor-
responding optimization problem is called optimal stopping time. The control
can be mixed, composed of a pair control/stopping time (α, τ), and the objective
functional is in the form

J(X,α, τ) = E
[ ∫ τ

0

f(Xt, αt)dt+ g(Xτ )

]
.

The optimization problem can be formulated as a search for the v, called value
function, defined respectively in the three cases as

v(X, t) = sup
α
J(X, t;α);

v(X) = sup
α
J(X,α);

v(X) = sup
α,τ

J(X,α, τ).

The main goal is a stochastic optimization problem is to find the maximizing con-
trol process and/or stopping time attaining the value function to be determined.
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1.2.1 Formulation

We proceed with the formulation of the problem described above in a more rig-
orous way. (Ω,F ,P) is a complete probability space on which we defined a d-
dimensional Brownian W = (W 1

t , ...,W
d
t )t∈T . Suppose now that our evolving

system is described through the stochastic differential equation with values in Rn

dXt = b(Xt, αt) dt+ σ(Xt, αt) dWt (1.7)

where the control α = (αt)t∈T is progressively measurable and it has value in A
⊆ Rm. The measurable functions b: Rn×A→ Rn and σ: Rn×A→ Rn×d satisfy
a uniform Lipschitz condition in A, i.e. ∃K ≥ 0 such that ∀x, y ∈ Rn and ∀a ∈ A

|b(x, a)− b(y, a)|+ |σ(x, a)− σ(y, a)| ≤ K |x− y| .

We assume also that the control α is a progressive measurable process such that

• E
[ ∫ T

0
|b(0, αt)|2 + |σ(0, αt)|2 dt

]
<∞ for problem with finite horizon

• E
[ ∫ T

0
|b(0, αt)|2 + |σ(0, αt)|2 dt

]
< ∞ ∀T > 0 for problem with infinite

horizon.

Under these hypotheses we can write that α ∈ A and in particular we will have
that for each initial condition (t,x ) ∈ T× Rn the SDE (1.7) admits one and only
one strong solution X to continuous trajectories.
We describe separately the problems of optimal control over finite and infinite
horizon.

Problem with finite horizon: In a problem with finite horizon, we define the
running profit function and terminal reward function respectively as the functions
f : [0,T]×Rn × A→ R and g : Rn → R measurable such that:

• g is lower-bounded and satisfies a quadratic growth condition |g(x)| ≤ C
(
1+

|x|2
)
, ∀x ∈ Rn, for some constant C independent of x.

• f is such that ∀(t, x) ∈ [0, T ] × Rn exists a subset of controls A (t, x) ⊂ A
called admissible controls such that

E
[ ∫ T

t

|f(s,Xs, αs)| ds
]
<∞.

We can define the objective functional like in (1.5) and value function like

v(t, x) = sup
α∈A (t,x)

J(t, x;α) = sup
α∈A (t,x)

E
[ ∫ T

t

f(s,Xs, αs)ds+ g(XT )

]
. (1.8)
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Given an initial condition (t,x ) we say that α̂ ∈ A (t,x) is an optimal control if
v(t,x ) = J(t,x ;α̂).

Problem with infinite horizon: We define the running profit function f for
problem with infinite horizon like f : Rn × A → R measurable such that, given
β > 0, exists a subset of controls A (x) ⊂ A called admissible controls such that

E
[ ∫ ∞

0

e−βs |f(Xs, αs)| ds
]
<∞.

We can define the objective functional like in (1.6) and value function like

v(t, x) = sup
α∈A (x)

J(x;α) = sup
α∈A (x)

E
[ ∫ ∞

0

e−βsf(Xs, αs)ds

]
. (1.9)

Given an initial condition x we say that α̂ ∈ A (x) is optimal control if v(x ) =
J(x, α̂).

1.2.2 Dynamic Programming Principle

The dynamic programming principle (DPP) is a fundamental principle in the
theory of optimal stochastic control and allows to reconstruct the value function
at the initial instant from the value function to a subsequent instant. In practice,
the optimal solution to the sub problem that starts at a later time can be used
to find the optimal solution to the entire problem. This allows, note the final
condition to reconstruct backwards the optimal control instant by instant.
Below are the finite and infinite horizon versions of the dynamic programming
principle.

Finite horizon problem

Theorem 1.2.1 (DPP with finite horizon). Let τt,T family of stopping time on
finite horizon [t,T] and v(t,x ) is a value function like (1.8), then fixed (t,x )∈
[0,T]×Rn

v(t, x) = sup
α∈A (t,x)

E
[ ∫ θ

t

f(s,X t,x
s , αs)ds+ v(θ,X t,x

θ )

]
∀θ ∈ τt,T . (1.10)

Proof. The proof can be found in chapter 3 of Continuous-time stochastic control
and optimization with financial application by H.Pham [7].

We can observe that ∀θ ∈ τt,T and ∀α ∈ A (t, x), we have

v(t, x) ≥ E
[ ∫ θ

t

f(s,X t,x
s , αs)ds+ v(θ,X t,x

θ )

]
.

The dynamic programming principle allows us to split the finite horizon optimiza-
tion problem into two sub problems:
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• Search for an optimal control starting from θ ∈ [t, T ] and the corresponding
value function v(θ,Xx,t

θ ),

• Search for an optimal control for a finite horizon problem described through
(1.10).

Infinite horizon problem

Theorem 1.2.2 (DDP with infinite horizon). Let τ family of stopping time on
infinite horizon and v(x ) is a value function like (1.9), then fixed x ∈ Rn

v(x) = sup
α∈A (x)

E
[ ∫ θ

0

e−βsf(X t,x
s , αs)ds+ e−βθv(X t,x

θ )

]
∀θ ∈ τ (1.11)

with e−β θ(ω) = 0 when θ(ω) =∞.

Proof. The proof can be found in chapter 3 of Continuous-time stochastic control
and optimization with financial application by H.Pham [7].

We can also observe that ∀θ ∈ τ and ∀α ∈ A (x) we have

v(x) ≥ E
[ ∫ θ

t

e−βsf(X t,x
s , αs)ds+ e−βθv(Xx

θ )
]
.

The dynamic programming principle allow us to split the infinite horizon opti-
mization problem into two sub problems:

• Search for an optimal control starting form θ ≥ 0 and the corresponding
value function v(X t,x

θ ),

• Search for an optimal control for a finite horizon problem described thought
(1.11).

1.2.3 Hamilton Jacoby Bellman equation

The Hamilton Jacoby Bellman equation (HJB) is the infinitesimal version of the
dynamic programming principle and describes the local behavior of the value
function when we send θ → t in (1.10) and θ → 0 in (1.11). The HJB equation is
also called dynamic programming equation.
A crucial step in the dynamic programming approach is to prove that given a
regular solution of the Hamilton Jacoby Bellman equation, it coincides with the
value function of the optimization problem. This result is known as the verification
theorem.
Below we heuristically derive the equation of Hamilton Jacoby Bellman in the
cases with finite and infinite horizon and we enunciate respectively the theorems
of verification.
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Finite horizon problem: Let h > 0, we consider the time θ = t + h and a
constant control αs = a in the dynamic programming principle, we have

v(t, x) ≥ E
[ ∫ t+h

t

f(s,X t,x
s , a)ds+ v(t+ h,X t,x

t+h)

]
.

By assuming that v is smooth enough, we may apply Ito’s formula between t and
t+h:

v(t+ h,X t,x
t+h) = v(t, x) +

∫ t+h

t

(
∂v

∂t
+ Lav

)
(s,X t,x

s )ds +

+

∫ t+h

t

n∑
i=1

∂v

∂x
(s,X t,x

s )(σ(X t,x
s , a))Ti dWs,

where the infinitesimal diffusion generator La is defined as follows

Lav(t, x) = b(x, a) Dxv(t, x) +
1

2
tr(σ(x, a) σT (x, a) D2

xxv(t, x)). (1.12)

Sending h → 0, if the stochastic integral is a martingale, we will have that

v(t, x) ≥ f(t, x, a) + v(x, t) +

(
∂v

∂t
+ Lav

)
(t, x),

thus simplifying for v(t,x ) and reordering the terms, we obtain

−∂v

∂t
(t, x)− Lav(t, x)− f(t, x, a) ≥ 0 ∀a ∈ A.

Since this holds true for any a ∈ A, we obtain the following inequality

− ∂v

∂t
(t, x)− sup

a∈A
(Lav(t, x)− f(t, x, a)) ≥ 0. (1.13)

On the other hand, suppose that α∗ is an optimal control then from the principle
of dynamic programming we have

v(t, x) = E
[ ∫ t+h

t

f(s,X t,x
s , α∗s)ds+ v(t+ h,X t,x

t+h)

]
.

By similar arguments as above, we then get

−∂v

∂t
(t, x)− Lα∗

t v(t, x)− f(t, x, α∗t ) = 0.

Which combined with (1.13), we have that v should satisfy the equality and we
can formulate the Hamilton Jacobi Bellman equation:{

−∂v
∂t

(t, x)− supa∈A[Lav(t, x) + f(t, x, a)] = 0 ∀(t, x) ∈ [0, T )× Rn

v(T, x) = g(x) ∀x ∈ Rn (1.14)
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Theorem 1.2.3 (Verification theorem in finite horizon). Let ω be a function in
C1,2([0, T ) × Rn) ∩ C0([0, T ] × Rn), and satisfying a quadratic growth condition,
i.e. there exists a constant C such that

|ω(t, x)| ≤ C(1 + |x|2), ∀(t, x) ∈ [0, T ]× Rn.

• Suppose that{
−∂ω

∂t
(t, x)− supa∈A[Laω(t, x) + f(t, x, a)] ≥ 0 ∀(t, x) ∈ [0, T )× Rn

ω(T, x) ≥ g(x) ∀x ∈ Rn

Then ω ≥ v on [0, T ]× Rn.

• Suppose further that ω(T,x ) = g(x ) and there is a measurable function
α̂(t, x) with values in A and with (t,x ) ∈ [0, T )× Rn such that

−∂ω
∂t

(t, x)−sup
a∈A

[Laω(t, x)+f(t, x, a)] = −∂ω
∂t

(t, x)−Lα̂(t,x)ω(t, x)−f(t, x, α̂(t, x)) = 0

and such that the SDE

dXs = b(Xs, α̂(s,Xs)) ds+ σ(Xs, α̂(s,Xs)) dWs Xt = x

admits a unique solution, denoted by X̂ t,x
s for which the process

{
α̂(s, X̂ t,x

s )
}
∈

A(t, x), then

ω = v on [0,T] ×Rn

is a value function and α̂ is an optimal Markovian control.

Proof. The proof can be found in chapter 3 of Continuous-time stochastic control
and optimization with financial application by H.Pham [7].

Infinite horizon problem: By using similar arguments as in the finite horizon
case, we consider θ = h and a constant control αs = a in the principle of dynamic
programming, we therefore have

v(x) ≥ E
[ ∫ h

0

e−βsf(Xx
s , a) ds+ e−βh v(Xx

h)

]
.

We suppose that v is smooth enough, we may apply Ito’s formula to the term
e−βtv(x) we have

e−βhv(Xx
h) = v(x) +

∫ h

0

(−βv+Lav)(Xx
s )ds +

∫ t+h

t

n∑
i=1

∂v

∂x
(Xx

s ) (σ(Xx
s , a))Ti dWs.

Sending h → 0 like before, if the stochastic integral is a martingale, we will have
that

βv(x)− Lav(x)− f(x, a) ≥ 0 ∀a ∈ A,
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and then we arrive at this inequality

βv(x)− sup
a∈A

[Lav(x) + f(x, a)] ≥ 0. (1.15)

Taking α∗ optimal control then we can show that

βv(x)− Lα∗
v(x)− f(x, α∗) = 0.

We can formulate the Hamilton Jacobi Bellman equation in case of infinite horizon

βv(x)− sup
a∈A

[Lav(x) + f(x, a)] = 0 ∀x ∈ Rn. (1.16)

Theorem 1.2.4 (Verification theorem in infinite horizon). Let ω be a function in
C2(Rn) and satisfies a quadratic growth condition, i.e. exists a constant C such
that

|ω(t, x)| ≤ C(1 + |x|2), ∀x ∈ Rn.

• Suppose that

βω(x)− sup
a∈A

[Laω(x) + f(x, a)] ≥ 0 ∀x ∈ Rn

and holds

lim
T→∞

sup{e−βT E[ω(Xx
T )]} ≥ 0 ∀x ∈ Rn, ∀α ∈ A(x)

then ω ≥ v on Rn.

• Suppose further that ∀x ∈ Rn, there exists a measurable function α̂(x ) with
values in A such that

βω(x)− sup
a∈A

[Laω(x) + f(x, a)] = βω(x)− Lα̂(x)ω(x)− f(x, α̂(x)) = 0

and such that the SDE

dXs = b(Xs, α̂(s,Xs)) ds+ σ(Xs, α̂(s,Xs)) dWs X0 = x

admits a unique solution, denoted by X̂x
s for which the process

{
α̂(s, X̂x

s )
}
∈ A(x),

and satisfying
lim
T→∞

inf{e−βT E[ω(X̂x
T )]} ≤ 0.

Then
ω = v ∀x ∈ Rn

is a value function and α̂ is an optimal Markovian control.

Proof. The proof can be found in chapter 3 of Continuous-time stochastic control
and optimization with financial application by H.Pham [7].
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1.3 Utility Function

The utility function represents a consumer’s preference ordering over a choice set.

1.3.1 Preference ordering

In the optimization problems that we will face in the treatment, the functions f
and g of (1.5)-(1.6) will have to be functions that represent the preferences of the
individual. Let (Ω, P ) a probability space and X ∈ Ω a random variable. The
level of satisfaction of an individual is based on a preference ordering R, i.e. given
two lotteries X,Y ∈ Ω we will say that the lottery X is at least as good as Y for
the individual if it is that XRY, that X and Y are indifferent if XIY, i.e. XRY
and YRX, and finally that X is strictly preferred to Y if XRY, but not YRX.
Let u be a utility function which represents the preference ordering if we are in
a risk-free environment. It is shown that if the preference ordering respects some
assumptions then it can be represented by the expected utility

U(X) = E[u(X)],

i.e. the expected value of the utility function. We set out below the assumptions
that must be satisfied for this result to be valid.

Assumption 1 (Rationality) The preference ordering R is rational if it satisfies
the following properties:

• Reflexivity: ∀X ∈ Ω, XRX;

• Completeness: ∀X, Y ∈ Ω, XRY or YRX;

• Transitivity: ∀X, Y, Z ∈ Ω, if XRY and YRZ then XRZ.

• Continuity: ∀Y ∈ Ω, {X ∈ Ω | XRY } and {X ∈ Ω | YRX } are closed set.

Assumption 2 (Continuity) The preference orderingR is continuous if ∀X, Y, Z ∈
Ω such that XRY and YRZ, there exists α ∈ [0,1] such that (αX+(1−α)Z) IY.

Assumption 3 (Independence) The preference ordering R is independent if
∀ X, Y, Z ∈ Ω and ∀α ∈ [0, 1], XRY if and only if (αX + (1−α)Z) R (αY + (1−
α)Z).

Finally, we observe that the assumption of independence is a rather strong hypoth-
esis because it assumes that the individual is always able to identify the common
part of two lotteries and evaluate them only for what they differ.
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1.3.2 Risk Aversion

The form of the utility function must be able to reflect not only the preferences
of the individual in terms of expected returns, but also in terms of risk appetite.
A lottery is said to be currently fair if it has an expected value of zero. Given a
level of wealth obtained with certainty, an individual is said to be:

• Risk averse if he does not accept or is indifferent to any currently fair lottery;

• Risk neutral if every currently fair lottery is indifferent to him;

• Risk loving if he accepts every currently fair lottery;

• Strictly risk averse if he rejects any currently fair lottery.

We can link an individual’s risk aversion to the characteristics of the utility func-
tion, i.e. an individual is (strictly) risk averse if and only if u is (strictly) convex.
In fact from the inequality of Jensen for X ∈ Ω and u concave we will have that

E[u(X)] ≤ u(E[X])

i.e the risk averse individual prefers to reject any lottery and to have with certainty
his expected value.

Figure 1.1: Behaviour of utility function in different case of risk aversion

The difference between the expected value and the certainty equivalent is called
the risk premium ρu (RP in the Figure 1.1). For risk averse individuals with
increasing u(·), the risk premium is positive, for risk neutral persons it is zero,
and for risk loving individuals their risk premium is negative.

u(E[X]− ρu(X)) = E[u(X)] (1.17)
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where the quantity E[X] − ρu(X) is called certainty equivalent. Assuming that
X = x + ε with x ∈ R, ε ∈ Ω random variable with zero mean and variance σ2

and u is twice differentiable, then we can write the Taylor series with respect to ε

u(x+ ε) = u(x) + εu′(x) +
ε2

2
u′′(x) + o(ε2).

Taking the expected value we obtain

E[u(X)] = E[u(x+ ε)] = u(x) +
σ2

2
u′′(x). (1.18)

We develop now at the first order u in correspondence of the certain equivalent

u(x− ρu(X)) = u(x)− ρu(X)u′(x) + o(ρu(X)) (1.19)

from (1.17) putting equal the right terms of (1.18) and (1.19), we obtain an
expression for the risk premium

ρu(X) ≈ −1

2

u′′(x)

u′(x)
σ2.

Thanks to this characterisation the risk premium can be broken down into an
objective factor given by the lottery variance and a subjective factor given by the
relationship between the second derivative and the first derivative of the utility
function. The latter is called the coefficient of absolute risk aversion

rAu (x) = −u′′(x)

u′(x)

and characterizes different classes of utility functions. Another indicator for clas-
sifying utility functions is the coefficient of relative risk aversion,

rRu (x) = −x
u′′(x)

u′(x)

which depends directly on wealth x.

1.3.3 Classification of utility functions

An initial classification of utility functions can be made from the behaviour of the
absolute risk aversion coefficient as wealth changes x. We will have the following
classes of utility functions:

• u ∈ DARA (Decreasing Absolute Risk Aversion) if drAu (x)
dx

< 0 ∀x ∈ R+,
rAu (x) decreasing as wealth grows;

• u ∈ CARA (Constant Absolute Risk Aversion) if drAu (x)
dx

= 0 ∀x ∈ R+, rAu (x)
constant as wealth grows;
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• u ∈ IARA (Increasing Absolute Risk Aversion) if drAu (x)
dx

> 0 ∀x ∈ R+, rAu (x)
increasing as wealth grows.

Let us list the main utility functions that are encountered in economic problems,
specifying the class of each of them.

Exponential utility function

u(x) = −1

a
e−ax

with a > 0, it belongs to CARA utility function, in fact its coefficient of absolute
risk aversion is

rAu (x) = −−ae
−ax

e−ax
= a

while the coefficient of relative risk aversion is increasing rRu (x) = ax.

Quadratic utility function

u(x) = x− b

2
x2

with b > 0, it belongs to IARA utility function, in fact its coefficient of absolute
risk aversion is

rAu (x) = − b

1− bx
.

We notice that for 0 ≤ x < 1
b

is positive in x while for 1
b
< x is negative but always

increasing. The coefficient of relative risk aversion is increasing in x rRu (x) = bx
1−bx .

Power utility function

u(x) =
1

1− γ
x1−γ

with γ > 0 and γ 6= 1, it belongs to DARA utility function, in fact its coefficient
of absolute risk aversion is

rAu (x) =
γ

x
.

We notice that the coefficient of absolute risk aversion is decreasing with respect
to x. The coefficient of relative risk aversion is constant rRu (x) = γ, this property
allows that often the power utility is also identified in the CRRA class (Constant
Relative Risk Aversion).

Logarithmic utility function

u(x) = ln(x)
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it belongs to DARA utility function, in fact its coefficient of absolute risk aversion
is

rAu (x) =
1

x
.

The coefficient of relative risk aversion is rRu (x) = 1, this property allows that
often the power utility is also identified in the CRRA class (Constant Relative
Risk Aversion).
We also note that the logarithmic utility function can be obtained from the power
utility function by sending γ → 1.

The mentioned utility functions belong to the broader category of HARA functions
(Hyperbolic Absolute Risk Aversion).
The HARA utility function is presented in the form

u(x) =
1− γ
γ

[
ax

1− γ
+ b

]γ
with b > 0, γ 6= 1 (sending γ → 1 we obtain a linear utility function). The
coefficient of absolute risk aversion is

rAu (x) = a

(
ax

1− γ
+ b

)−1

.

We note that for a HARA function, risk tolerance defined as

tu(x) =
1

rAu (x)

is a linear function of wealth: tu(x) = A+Bx with A = b
a

and B = 1
1−γ .
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Chapter 2

Portfolio Optimization

The optimization problem of a portfolio mainly consists in describing the invest-
ment choices of an individual whose degree of risk aversion is known, described
by the utility function. The model in its first version, assumes a market with a
certain number of risky securities and a security without risk. The individual has
an initial wealth to invest freely in the available assets and the objective function
to maximize is given by the function of expected utility of the wealth to a certain
future moment that represents the temporal horizon of the optimization problem.
This problem has been tackled by the American economist Robert C. Merton.
The main assumption of the Merton portfolio allocation problem is to be in the
framework of the Black-Scholes model.
In section 2.1 we will present the Black-Scholes model deriving the formula and
the equation of the dynamics of an option. In section 2.2 we provide the solution
of portfolio optimization studied by Merton, in which only a risk-free and a risky
assets are considered.

2.1 Black-Scholes model

The Black-Scholes is a pricing model used to evaluate option prices. The deriva-
tion of Black-Scholes formula does not use stochastic calculus, it is essential to
understand significance of Black-Scholes equation which is one of the most famous
applications of Itò lemma.

In finance, what is an option? An option is a contract which gives the buyer (the
owner or holder of the option) the right, but not the obligation, to buy or sell an
underlying asset or instrument at a specified strike price prior to or on a specified
date, depending on the form of the option. The strike price may be set by reference
to the spot price (market price) of the underlying security or commodity on the
day an option is taken out, or it may be fixed at a discount or at a premium. The
seller has the corresponding obligation to fulfill the transaction, to sell or buy, if
the buyer (owner) exercises the option.
The basic option are: the call option that conveys to the owner the right to buy
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at a specific price and the options that conveys the right of the owner to sell at
a specific price is referred to as a put option. There are numerous variants to the
basic definition of option, also called plain vanilla option, and they are represented
by exotic options.
We can define the European option which is a type of option that can be exercised
only on a specified future date.

In the following sub-sections we find the evolution and the formula that provides
the price of a Call option. The payoff of the Call option Ct written on an under-
lying St with strike price K is

Ct = max(St −K, 0).

2.1.1 Black-Scholes equation

The investors are often interested in predicting the future price of an option to
build a profitable portfolio.
Black-Scholes partial differential equation does the work by describing the price
of option over time.

Theorem 2.1.1 (Black-Scholes Equation). Let the value of an option be f(t, St),
standard deviation of stock be stock’s returns be σ, and risk-free interest rate be
r. Then the price of an option over time can be expressed by the following partial
differential equation:

∂f

∂t
+ r

∂f

∂St
St +

1

2
σ2 ∂

2f

∂S2
t

= rf. (2.1)

Proof. The proof can be found in section 5 of Stochastic Calculus and Black-
Scholes model by Younggeun Yoo [26].

By hedging away all randomness, we make sure that the portfolio has no risk, and
that allows us to use the assumption of risk-neutrality. If we did not do this, then
it seems very natural that the price of an option must take on the perceived risk
with which the investor views the stock.

In the proof of the Black-Scholes equation there is an intermediate step that is
useful to us in the discussion.
The evolution of the stock (risky asset) is described by a Geometric Brownian
motion, i.e.

dSt = µSt dt+ σSt dWt

and
dS2

t = µ2S2
t dt

2 + µσS2
t dt dWt + σ2S2

t dW
2
t = σ2S2

t dt.

Thanks to Ito’s formula (1.3) and the above properties of the stock, we are able
to find the dynamics of the Call option Ct in Black-Scholes framework.

dCt = µc dt+ σc dWt (2.2)
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where

µc =
∂Ct
∂t

+ µSt
∂Ct
∂St

+
1

2
σ2S2

t

∂2Ct
∂S2

t

,

σc = σSt
∂Ct
∂St

.

2.1.2 Black-Scholes Formula

Theorem 2.1.2 (Black-Scholes Formula). The value of an European call option
(C0) can be calculated given its stock price (S0), exercise price (K), time to expi-
ration (T), standard deviation of log returns (σ), and risk free interest rate (r).
Assume that the option satisfied the following conditions:

• The short-term interest rate is known and is constant thought time;

• The stock price follows a random walk in continuous time with a variance
rate proportional to the square of the stock price. Thus the distribution
of possible stock prices at the end of any finite interval is log-normal. The
variance rate of the return on the stock is constant;

• The stock pays no dividends or other distributions;

• The option is ”European”, it can only be exercised at maturity;

• There are no transaction costs in buying or selling the stock or the option;

• It is possible to borrow any fraction of the price of a security to buy it or to
hold it, at the short-term interest rate;

• There are no penalties to short selling. A seller who does not own a security
will simply accept the price of the security from a buyer, and will agree to
settle with the buyer on some future date by paying him an amount equal
to the price of the security on that date.

Then, the price can be calculated by

C0 = S0N(d1)−Ke−rTN(d2), (2.3)

where

d1 =
ln(S0

k
) + (r + σ2

2
)T

σ
√
T

, d2 =
ln(S0

k
) + (r − σ2

2
)T

σ
√
T

and N(x ) represents a cumulative distribution function for normally distributed
random variable x.

Proof. The proof can be found in section 4 of Stochastic Calculus and Black-
Scholes model by Younggeun Yoo [26].

31



The formula gave a good approximation, they found that the option buyers pay
prices consistently higher than those predicted by the formula.
In real market, real interest rates are not constant as assumed in Black-Scholes
model. Most stocks pay some form of distributions including dividends. Due to
such factors, volatility (σ) in Black-Scholes formula may be underestimated. Since
the price of an option (C0) is a monotonically increasing function of the volatility,
such a difference in volatility could be one for underestimation of option prices.
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2.2 Merton problem

The Merton problem is the first continuous time optimal investment model that
assumes a market with N risky and a risk-free assets. The dynamic of each risky
asset is described by a log-normal process.
Let (Ω,F , P ) be a complete probability space, W = (W 1

t , ...,W
N
t )t∈T N -dimensional

Brownian motion with T = [0, T ] which represents the time interval over which
the problem is defined, and (F )t∈T is complete natural filtration.
The dynamic of the risky asset (stock) is the following

dSit = µiSit dt +
N∑
j=1

σij Sit dW
j
t (2.4)

with the initial condition Si0 = si0.
i=1,..N, µ = (µ1, ..., µN) constant vector in RN and σ = (σij)i,j=1,..N a constant
matrix in RN×N . Let r > 0 be the interest rate that guarantees a non-risk
investment, for example a bank deposit, then the risk-free asset (bond) will have
dynamics

dBt = r Bt dt, B0 = 1. (2.5)

We introduce the vector process πt = (π1
t , ...π

N
t )t∈T that represent an amount of

wealth invested in risky securities, and (1−
∑N

i=1 π
i
t) amount of wealth invested in

the bond. We notice that the process vector is closely connected with the process
that describes the dynamics of wealth as we will see later and so it will often
be constructed through a measurable function π : [0, T ] × R → Rn of time and
wealth. More precisely we have that if X = (Xt)t∈T is the process that describes
the dynamics of portfolio wealth starting from an initial wealth X0 = 1, then the
process π is defined as πt = π(t,Xt).
Let us now formulate the optimization problem: given an utility function u :
R+ → R which describes the level of utility of the individual, the aim is to find
the optimal control given by the vector π̂, which maximizes the expected utility

v(t, x) = sup
π

E[u(X t,x
T )]

where v(t, x) is the value function of the problem. We study the case in which we
consider the power utility function, i.e. fixed γ > 0 and γ 6= 1, we have

u(x) =
1

1− γ
x1−γ.

2.2.1 Budget equation

We consider a portfolio in which, given an initial wealth, it is no longer possible
to deposit or withdraw money, and whose dynamics are therefore linked only to
fluctuations in the value of the assets that compose it. A portfolio of this type is
called self-financing. The dynamics of a self-financing portfolio is summarised in
the following proposition:
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Proposition 2.2.1. Let X be a stochastic process that described the wealth of a
self-financing portfolio. Given N risky assets {Sit}i=1,..N and a risk-free asset Bt,
the dynamic at time t of a portfolio investing a wealth πit on Sit risky asset with
i = 1, ...N and a wealth (1−

∑N
i=1 π

i
t) on risk-free asset Bt, is given by

dXt =
N∑
i=1

dSit
Sit

πit +
dBt

Bt

(
Xt −

N∑
i=1

πit

)
. (2.6)

Proof. For the proof we refer to Arbitrage Theory in Continuous Time by T.Björk
[23]. Let hi(t) the number of shares held by the i -th asset, i.e.

hi(t) =
πit
Sit

i = 1, ...N,

h0(t) =

(
Xt −

∑N
i=1 π

i
t

)
Bt

.

Let us assume that we can only re-balance the portfolio after an interval ∆t, then
the wealth at time t can be seen as

Xt =
N∑
i=1

hi(t−∆t)Sit + h0(t−∆t)Bt.

The budget equation at time t for a self-financing portfolio requires that the
value of the re-balanced portfolio is equal to the value of the portfolio before
re-balancing, i.e.

N∑
i=1

hi(t−∆t)Sit + h0(t−∆t)Bt =
N∑
i=1

hi(t)Sit + h0(t)Bt.

Thus, introducing the notation ∆f(t) = f(t)− f(t−∆t) we obtain

N∑
i=1

∆hi(t) Sit + ∆h0(t) Bt = 0.

Adding and subtracting the term
∑N

i=1 ∆hi(t) Sit−∆t + ∆h0(t) Bt−∆t in order to
have forward increments

N∑
i=1

∆hi(t) Sit−∆t + ∆h0(t) Bt−∆t +
N∑
i=1

∆hi(t) ∆Sit + ∆h0(t) ∆Bt = 0.

Sending ∆t→ 0, we obtain

N∑
i=1

dhi(t) Sit + dh0(t) Bt +
N∑
i=1

dhi(t) dSit + dh0(t) dBt = 0. (2.7)
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Let us consider the Ito differential in wealth

dXt =
N∑
i=1

hi(t)dSit+h
0(t)dBt+

N∑
i=1

dhi(t)Sit+dh
0(t)Bt+

N∑
i=1

dhi(t)dSt+dh
0(t)dBt,

using (2.7) we obtain the Budget equation for a self-financing portfolio

dXt =
N∑
i=1

hi(t) dSit + h0(t) dBt

which rewritten in terms of the percentage of wealth invested in assets, we obtain

dXt =
N∑
i=1

dSit
Sit

πit +
dBt

Bt

(
Xt −

N∑
i=1

πit

)
.

2.2.2 Hamilton Jacobi Bellman

Let us examine the particular case where there is only one risky and one risk-free
assets to simplify the handling. We consider W = (Wt, t ∈ T) a one-dimensional
Brownian motion, S risky asset and B a risk-free asset with the following dynam-
ics:

dSt = µSt dt+ σSt dWt, S0 = s0

dBt = rBt dt, B0 = 1

with µ, σ ∈ R and r ≥ 0 constant. An agent invests a portion πt of this wealth
in a stock of price S and (1-πt) in a bond of price B. His wealth process evolves
according to

dXt =
Xtπt
St

dSt +
Xt(1− πt)

Bt

dBt = Xt(πtµ+ (1− πt)r) dt+Xtπtσ dWt. (2.8)

We denote by A the set of progressively measurable process π valued in A, and
such that

∫ T
0
|πs|2ds < ∞ a.s. This integrability condition ensures the existence

and uniqueness of a strong solution to the SDE governing the wealth process
controlled by α ∈ A . Given a portfolio strategy α ∈ A , we denote by X t,x the
corresponding wealth process starting from an initial capital Xt = x > 0 at time t.
The agent wants to maximize the expected utility from terminal wealth at horizon
T. The value function of the utility maximization problem is then defined by

v(t, x) = sup
α∈A

E[u(X t,x
T )], (t, x) ∈ [0, T ]× R+.

The utility function u is increasing and concave on R+. Let us check that for all
t ∈ [0, T ], v(t,·) is also increasing and concave in x.
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We define the infinitesimal diffusion Lπ generator associated with equation (2.8)
as

Lπv(t, x) = (π(µ− r) + rx)
∂v

∂x
(t, x) +

1

2
π2σ2 ∂

2v

∂x2
(t, x). (2.9)

Following the principle of dynamic programming, given h > 0 we have that

v(t, x) ≥ E[v(t+ h,X t,x
t+h)]

since v ∈ C0([0, T ] × R) ∩ C1,2([0, T ] × R), for hypothesis we can apply the Ito
formula

v(t, x) ≥ E
[

v(t, x) +

∫ t+h

t

(
∂v

∂t
+Lπsv

)
(s,Xs)ds+

∫ t+h

t

πsσX
t,x
s

∂v

∂x
(s,X t,x

s )dWs

]
where Lπ is defined like in (2.9). Sending h→ 0 and if the last term of inequality
is a martingale, we have that

0 ≥
(
∂v

∂t
+ Lπv

)
(t, x).

In particular, the inequality above becomes an equality if I consider the control π̂
such that it achieved by supπ. Now, we are able to formulate the Hamilton Jacobi
Bellman equation

−∂v
∂t

(t, x)− sup
π
Lπv(t, x) = 0 (t, x) ∈ [0, T )× R,

v(T, x) = u(x) x ∈ R.

This is analogous to (1.14) in the case where the running profit function f is
identically zero and the terminal reward function is u.
Let’s assume that the solution of Hamilton Jacobi Bellman equation has the form
v(t, x) = ϕ(t) u(x) = ϕ 1

1−γx
1−γ with ϕ such that ϕ(T ) = 1 so that the final

condition is verified. We have that

∂v

∂x
(t, x) = ϕ(t)x−γ,

∂2v

∂x2
(t, x) = −γ ϕ(t) x−γ−1.

By replacing the derivatives in the Hamilton Jacobi Bellman equation and explic-
itly rewriting the infinitesimal diffusion generator we obtain

−ϕ′(t) x
1−γ

1− γ
− sup

π

{
[π(µ− r) + rx]ϕ(t) x−γ − 1

2
π2σ2ϕ(t)γx−γ−1

}
= 0

with (t, x) ∈ [0, T )× R.
From which, by collecting and simplifying for x1−γ

1−γ , we derive the ordinary differ-
ential equation

−ϕ′(t)− ϕ(t)(1− γ) sup
π

{
[π(µ− r) + rx]

1

x
− 1

2
π2σ2γ

1

x2

}
= 0 t ∈ [0, T ),
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ϕ(T ) = 1.

Searching now for the portfolio π that realizes the supπ, setting to zero the deriva-
tive with respect to π of the term between the curly brackets, we get

π̂ =
(µ− r)
σ2 γ

x.

We note that the portfolio at instant t is a function of wealth at the same time or
rather the optimal portfolio represents a Markovian feedback control in the sense
that the portfolio is automatically re-balanced by intervening on the dynamics of
wealth starting from the value of wealth at the last recorded moment. In these
cases we speak of closed-loop control. Replacing π̂ in the differential equation for
ϕ, we obtain

−ϕ′(t)− ρϕ(t) = 0 t ∈ [0, T ),

ϕ(T ) = 1

where

ρ = (1− γ)

(
r +

(µ− r)2

2σ2γ

)
.

The solution of the differential equation will be ϕ(t) = eρ(T−t) and therefore the
solution of Hamilton Jacobi Bellman equation can be written explicitly as

v(t, x) = eρ(T−t) x
1−γ

1− γ
.
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Chapter 3

Equivalence of the static and
dynamic asset allocation
problems

Our goal in this discussion is to extend Merton’s problem to the case where we
consider: an risky asset (stock), a risk-free asset (bond) and options written on
stock. For now we will consider the Black and Scholes framework (The assump-
tions are explained in section 2.1 of chapter 2).

A classic dynamic asset allocation problem optimizes the expected final-time util-
ity of wealth for an individual who can invest in a risky stock and a risk-free bond,
trading continuously in time. We want to consider the corresponding static asset
allocation problem in which the individual cannot trade but can invest in options
as well as the underlying. Surprisingly, however, for some market models the two
approaches are equivalent.
In section 3.1 we provide the necessary and sufficient conditions in order for the
static and dynamic approach to be equivalent, we refer to On the equivalence of the
static and dynamic asset allocation problems by R.V.Kohn and O.M. Papazoglu-
Statescu [22]. In section 3.2 we present the equivalence through a numerical
example.

3.1 Theoretical results of equivalence

The classic model is
Dynamic Asset Allocation Problem: Consider an individual who can invest
in a risky stock and a risk-free bond, trading continuously, in time. Suppose the
stock price follows a known diffusion process: dSt = µ(t, St)Stdt + σ(t, St)StdWt,
and assume there is no consumption.
Merton found the answer in 1969 using the method of dynamic programming and
we presented the solution in section 2.2 of chapter 2.
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Static Asset Allocation Problem: Consider an individual whose investment
opportunities include not only a risk-free bond and a risky stock, but also (Euro-
pean style) derivatives on the stock. However this individual cannot trade, he is a
buy-and-hold investor, who assumes an initial portfolio then holds it to maturity.

The optimal static asset allocation can do no better than the optimal dynamic one,
since the market is complete every option can be replicated by a trading strategy
involving just stock and the risk-free bond. Thus the static problem maximizes
the expected final-time utility over a restricted class of trading strategies, those
that replicate options.
When the two problems are equivalent or nearly so, the static strategy is clearly
preferable, indeed, it avoids exposure to market frictions such as transaction cost
and limited liquidity. Such frictions were ignored in formulating and solving the
dynamic asset allocation problem, but their effect can be significant in practise.
The static and dynamic approaches are equivalent when the underlying stock
process is log-normal.
The static investor can buy any option, i.e. he can buy an option with any payoff.
We consider portfolios with many call or put options since it is convenient because
permit us to use continuous methods.

The main assumption is that the market is complete and as noted above, the
static problem maximizes the expected final-time utility over a restricted class of
trading strategies. One can of course consider the static asset allocation problem
even when the market is incomplete but in this case there is no relation between
the static and dynamic problems. Options cannot be replicated, so they are
redundant for the dynamic investor, and it is natural to include them among the
admissible investments.

3.1.1 Conditions for completeness of the market

In this part of the treatment we require that the market be complete. This places
certain conditions on µ and σ, r. The main conditions involve the market price
of risk, defined by

θt =
µ(t, St)− r
σ(t, St)

.

It must satisfy ∫ T

0

θ2
t dt <∞

almost surely; moreover the associated local martingale

Z0(t) = exp

[
−
∫ t

0

θsdWs −
1

2

∫ t

0

θ2
sds

]

39



must be a martingale. A well-known sufficient condition is the Novikov criterion:

E
[
exp

(
1

2

∫ T

0

θ2
t dt

)]
<∞.

The martingale Z0 is the density of the risk-neutral measure with respect to the
subjective measure. In particular, the initial value of an option with payoff f at
time T is e−rTE[Z0(t)f(ST )].
For a more detailed discussion, and a proof that the preceding conditions imply
completeness, see chapter 1 of Methods of Mathematical Finance by I.Karatzas
and S.Shreve [9].

3.1.2 Martingale approach to Merton’s problem

In order to solve the Merton problem we can use alternative approach: Martingale
method, studied by Pliska, Cox and Huang in the 1980s, that provides the same
solution seen in chapter 2.
Consider, for any utility function u, the problem

max
π

E[u(Xπ,T )] (3.1)

where π ranges over all admissible trading strategies with fixed initial wealth X0

and Xπ,T is the time T wealth achieved by π. The martingale approach splits the
problem into two sub-problems:

• Find the optimal final-time wealth by solving

max
E[HTX]=X0

E[u(X)] (3.2)

over all time T measurable random variable X. We can define the state
price density by

Ht = exp

(
− rt−

∫ t

0

θsdWs −
1

2

∫ t

0

θ2
sds

)
.

• Find an admissible trading strategy π that achieves the optimal X identified
in step 1.

The first sub-problem derives from a reformulation of the objective function (3.1)
as a static optimization problem, with a constraint that the discounted portfolio
has to be equal to X0 to make it feasible.

max
π

E[u(Xπ,T )]

s.t. E[HTX] = X0 (3.3)

where the constraint (3.3) is widely referred to as the budget constraint in aca-
demic literature.
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Since the market is complete, the second sub-problem always has a solution.
Therefore to find the final optimal final-time wealth we need only consider the
first sub-problem. In order to find the solution of (3.2) we use the method of
Lagrange multipliers. The Lagrangian corresponding to (3.2) is

L(X,λ) = E[u(X)− λ(HTX −X0)].

The optimal X and the Lagrange multiplier λ are characterized by the first-order
optimality conditions of the Lagrangian. Taking the first variation with respect
to λ gives, as usual, the constraint we started with:

Lλ(X,λ) = X0 − E[HTX] = 0. (3.4)

Taking the first variation with respect to X gives

< LX(X,λ), δX > = E
[(
u′(X)− λHT

)
δX

]
= 0 (3.5)

for every perturbation δX; this implies u′(X) = λHT . There exists a unique solu-
tion of u′(X) = λHT , namely, X = (u′)−1(λHT ). This formula gives the optimal
XT . It remains only to specify the Lagrangian multiplier λ; it is determined by
(3.4) since

X0 = E[HT (u′)−1(λHT )] := F (λ) ⇒ λ = F−1(X0).

In solving for λ, we have used the fact that the inverse of F exists. One can see
that this is true by taking the derivative of F with respect to λ, using the fact
that HT is positive and the hypothesis that u (being a utility function) is strictly
concave. In conclusion: the optimal final time wealth is given by

XT = (u′)−1(F−1(X0)HT ). (3.6)

3.1.3 Necessary and sufficient condition for equivalence

Our starting point is the observation that the static and dynamic problems are
equivalent if and only if Merton’s final time wealth XT is path-independent,
i.e. XT is path-independent if and only if there exists a function f such that
Xt = f(t, St), for every t ∈ [0, T ]. Our goal is thus to understand when the right-
hand side of (3.6) is a path-independent function of the final-time stock price ST
for every T . By inspection, this amounts to asking when the state price density
Ht is a path-independent function of St for all t.
It will be convenient to work with the logarithm of the stock price

Pt = ln St.

Clearly Ht is a path-independent function of St if and only if there exists a deter-
ministic function g(t, Pt) such that Ht = g(t, Pt) for all t. The following theorem
gives a necessary and sufficient condition by identifying g (if it exists) as the so-
lution of a suitable PDE, allowing us to say that the static and dynamic problem
are equivalent (Theorem 1 of [22]).
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Theorem 3.1.1. Assume the market model satisfied the condition summarized
in subsection 3.1.1. Then the static and dynamic problems are equivalent if and
only if there exists a function g(t, Pt) with g(0, P0) = 0 such that the following
relations hold:

µ− r
σ2

= gP , (3.7)

µ− r
σ2

(
−µ− r + σ2

2

)
=

1

2
gPPσ

2 + gt, (3.8)

where gP = ∂g/∂P , gPP = ∂2g/∂P 2 and gt = ∂g/∂t.

Proof. Consider

ht =

∫ t

0

µ− r
σ

dWs +
1

2

∫ t

0

(
µ− r
σ

)2

ds.

Note that h0 = 0. From the definition of h we have

dht =
µ− r
σ

dWt +
1

2

(
µ− r
σ

)2

dt. (3.9)

As explained above, the static and dynamic problems are equivalent if and only if

ht = g(t, Pt) (3.10)

for some function g.
Suppose there is such a g. Then we can find an SDE for h by applying Ito’s lemma
to the right-hand side of (3.10). The SDE for Pt = lnSt is

dPt =

(
µ− σ2

2

)
dt+ σ dWt

so Ito’s lemma applied to g(t, Pt) gives

dht =

[
gP

(
µ− σ2

2

)
+

1

2
gPP σ2 + gt

]
dt+ gP σdWt. (3.11)

The SDE associated with the diffusion process is unique, so the corresponding
terms in (3.9) and (3.11) must be identical. The condition that the coefficients of
dWt match is precisely (3.7). The condition that the dt terms match is

gP

(
µ− σ2

2

)
+

1

2
gPP σ2 + gt =

1

2

(
µ− r
σ

)2

.

With the aid of (3.7), we can rewrite this as

µ− r
σ2

(
µ− σ2

2

)
+

1

2
gPP σ2 + gt =

1

2

(
µ− r
σ

)2
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or equivalently as

1

2
gPP σ2 + gt =

1

2

(
µ− r
σ2

)(
(µ− r)− 2

(
µ− σ2

2

))
.

Thus (3.8) holds too.
The preceding calculation is reversible. If (3.7) and (3.8) hold then the SDE
characterizing h is the same as the one solved by g(t, Pt). If in addition g(0, P0) = 0
then the initial conditions match as well, and it follows that ht = g(t, Pt) for all
t.

Remark: When the static and dynamic problems are equivalent, the proof of
Theorem 3.1.1 gives a formula for the optimal final-time wealth. Indeed, when
hT = g(T, PT ) we have HT = e−rT eg(T,PT ), so

XT = (u′)−1(λe−rT eg(T,PT )).

Simplified conditions when µ and σ depend only on t
Our necessary and sufficient condition simplifies dramatically when µ and σ de-
pend on time alone. This leads to a simple, explicit condition for path indepen-
dence of XT .

Theorem 3.1.2. Suppose the stock price process is dSt = µtSt dt + σtSt dWt

where µ and σ are deterministic functions of time alone. Assume the ”usual
conditions” hold. Then the static and dynamic problems are equivalent if and
only if

µt − r
σ2
t

= constant.

Proof. Assume (µt − r)/σ2
t is constant, and call its value a. We shall find the

associated solution of (3.7)-(3.8) explicitly. Remember that in (3.7) and (3.8), the
derivatives of g are taken with respect to Pt = ln(St).
From (3.7) we have that gP = constant = a which implies g(t, Pt) = aPt + ct.
Then from (3.8) we have

a

[
− µ

2
+
−r + σ2

2

]
= c′t ⇒ a

[
− aσ2 + r

2
+
−r + σ2

2

]
= c′t

⇒ c′t = a

(
σ2

2
(1− a)− r

)
⇒ ct = a

(
σ2

2
(1− a)− r

)
t+ constant.

Using this, we get g(t, Pt) = aPt + a((σ2/2) (1 − a) − r)t + constant. Using the
initial condition g(0, P0) = 0, we find that the constant is −aP0. Thus finally

g(t, Pt) =
µ− r
σ2

(Pt − P0) +
µ− r
σ2

(
−µ− r + σ2

2

)
t.
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One verifies by inspection that if (µt − r)/σ2
t = a then this g does indeed satisfy

g(0, P0) = 0 and our condition (3.7) and (3.8). Thus the static and dynamic
problems are equivalent in this case.
Conversely, if the static and dynamic problems are equivalent there must be a
function g which satisfies (3.7) and (3.8). Because µ and σ are functions of t
alone, (3.7) implies

g =
µ− r
σ2

Pt + At.

But then gPP = 0 and gt = ((µ−r)/σ2)′P +A′t. Since the left side of (3.8) depend
only on t this implies that ((µ − r)/σ2)′ = 0. Thus (µ − r)/σ2 is constant, as
asserted.
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3.2 Numerical results of equivalence

In this section we show the equivalence of the Dynamic Asset Allocation Problem
and Static Asset Allocation Problem based on numerical result; to do this we
follow the Asset allocation and derivatives by M.B.Haugh and A.W.Lo [15].

3.2.1 The model

The simplest formulation that we just presented in section (2.2.2), one without
intermediate consumption, consists of an investor’s objective to maximize the
expected utility E[u(XT )] of end-of-period wealth XT by allocating his wealth
between two assets, a risky security (the stock) and a riskless security (the bond),
over some investment horizon [0, T ]. The standard asset allocation problem is
then:

max
πt

E[u(XT )] (3.12)

subject to
dXt = (r + πt(µ− r))Xtdt+ πtσXtdWt (3.13)

where πt is the fraction of the investor’s portfolio invested in the stock at time t
and (3.13) is a budget constraint that wealth Xt must satisfy at all time t ∈ [0, T ].

The Static Asset Allocation Problem is a reformulation of the standard asset
allocation problem with two modifications: we allow the investor to include up to
n European Call Option in his portfolio at time t = 0 and we do not allow the
investor to trade after setting up his initial portfolio of stocks, bond and options.
Specifically, denote by Di the payoff of a European Call Option with strike price
equal to ki, hence:

Di = (ST − ki)+.

Then the buy-and-hold asset allocation problem for the investor is given by:

max
α,β,γ

E[u(XT )] (3.14)

subject to
XT = α + βST + γ1D1 + γ2D2 + ...+ γnDn, (3.15)

X0 = exp(−rT ) E[XT ] (3.16)

where α and β denote the investor’s position in bonds and stocks, and γ1, γ2, ...γn
the number of options with strike price prices k1, k2, ...kn respectively.
The budget constraint (3.16) is highly non linear in the option strikes ki. Moreover,
for certain utility functions, it is necessary to impose solvency constraints to avoid
bankruptcy, and such constraints add to the computational complexity of the
problem.
Assuming that the strike price ki are fixed, we reduce the problem to maximizing
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a concave objective function subject to linear constraints and we are able to find
a unique global optimum. This is done by discretizing the distribution of ST and
solving the Karush-Kush-Tucker conditions which, in this case, are sufficient.

We notice that CRRA utility function is not defined for negative wealth. In such
cases, the following n + 2 solvency constraints must be imposed along with the
budget constraint to ensure non negative wealth:

0 ≤ α

0 ≤ α + βk1

0 ≤ α + (β + γ1)k2 − γ1k1

...

0 ≤ α + (β + γ1 + · · ·+ γn−1)kn − (γ1k1 + · · ·+ γn−1kn−1)

0 ≤ β + γ1 + · · ·+ γn

0 ≤ k1 ≤ k2 ≤ · · · ≤ kn

In addition to this condition, we impose that the sum of the weights of all assets
in the portfolio must be equal to one.

α + β + γ1 + · · ·+ γn = 1.

3.2.2 Numerical example

We provide a numerical example to illustrate the practical relevance of our opti-
mal buy-and-hold portfolio. 1

The Stock price follows Geometric Brownian motion. We set the following pa-
rameters:

X0 = 1 e, S0 = 1 e, T = 5 years,

r = 0.05, µ = 0.06, σ = 0.30.

We use CRRA preferences under each of the three stochastic processes, so we have
the following utility function:

u(XT ) =
Xp
T

p

using the relative risk-aversion coefficient of 0.7 (i.e. p = 0.3).
The parameters have been chosen in a personal way, changing them you can notice
the same behavior of the portfolio.

1The codes written on Matlab that solve the Static Asset Allocation problem with different
number of options are reported in the appendix.
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A portfolio weight of 15.87% for the stock in the optimal dynamic asset allocation
policy, and a certainty equivalent of 3.60 e for X∗T . The solution to this problem
has been found in section 2.2.2 of this discussion.
Now we consider the problem of constructing an optimal buy-and-hold portfolio
containing stock, bond and options. In particular in the example we consider only
a Call options but considering a Put options we can notice that we obtain the
same behaviour of portfolio.

Number of call options 1 2 3
w∗0 for stock 44.02 % 51.07 % 51.45 %

w∗0 for call1 (k1=0.7) - 44.02 % -74.75 % -81.06 %
w∗0 for call2 (k2=1) 23.69 % 36.18 %
w∗0 for call3 (k3=1.3) -6.53 %

Value of optimal portfolio (e) 3.59 3.59 3.59

Remark. The strike price of the options are placed in the table and their unit of

measurement is e. Also this type of parameter is also chosen at pleasure.

With options, the optimal buy and hold portfolio yields 3.59 e, which is 99.87% of
the optimal dynamic asset allocation strategy, a strategy that requires continuous
trading over a 5-year period. The estimation error is due to the discretization of
the distribution of ST .
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Chapter 4

Dynamic derivative strategies
with stochastic volatility and
price jumps

In this chapter we find the optimal investment strategy including bonds, stocks
and derivatives. The problem is solved in a closed form. There are two differences
with respect to the problem analyzed in the previous chapter: the portfolio found
previously was through a static strategy, we build a buy and hold portfolio, i.e the
weights that are attributed to the different elements of the portfolio are chosen
at time t = 0 and are no longer traded, now we analyze the portfolio through
a dynamic strategy in which the weights are optimal at any time t. The second
change is that derivatives extend the risk and return trade-offs associated with
stochastic volatility and price jumps. So we adopt an empirically realistic model
for the stock market that incorporate three types of risk factors: diffusive price
shocks, volatility risks and jump risks.
In particular in section 4.1 we consider the case where the stock is subject only
to volatility risk. In section 4.2 we add the jump risk to the model just analysed.
We refer to Dynamic derivative strategies by J.Liu and J.Pan [11].

4.1 Derivatives with stochastic volatility

Why do we introduce stochastic volatility and not remain in the Black
and Scholes framework?
In the traditional theory of derivative pricing (B&S framework), derivative as-
sets like options are viewed as redundant securities, the payoffs of which can be
replicated by portfolios of primary assets. The market is generally assumed to
be complete without options, thus in a complete market setting, an exclusion of
derivatives is justified by the fact that derivatives are redundant.
When the completeness of the market breaks down, either because of infrequent
trading or the presence of additional sources of uncertainly, it becomes sub-optimal
to exclude derivatives.
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The non linear nature of derivative securities can serve to complete the market.
In particular the stock returns are not instantaneously perfectly correlated with
time-varying volatility. In this chapter we set the derivative securities written on
the stock as non-redundant asset, in this way they can provide differential expo-
sure to the imperfect instantaneous correlation and make the market complete.

4.1.1 The model

We assume that wealth comprises investments in traded assets only: a risk less
bond that pays a constant rate of interest r, its instantaneous return is

dBt = r Bt dt.

A risky stock that represent the aggregate equity market. Its instantaneous total
return dynamics are given by

dSt = St (rdt+
√
Vt dZs)

where St denotes the price of the risky asset at time t,
√
Vt is the time-varying

instantaneous standard deviation of the return on the risky asset, and dZs is a
Brownian motion. We assume that the short rate is constant in order to focus on
the stochastic volatility of the risky asset.
From the following setting, the investment opportunity is time-varying. We as-
sume that the instantaneous variance process is

dVt = k(v̄ − Vt)dt+ σ
√
Vt (ρ dZs +

√
1− ρ2 dZv).

The instantaneous variance process V is a stochastic process with long-run mean
v̄ > 0, mean-reversion rate k > 0, and volatility coefficient σ ≥ 0. This formula-
tion of stochastic volatility (Heston, 1993), allows the diffusive price shock Zs to
enter the volatility dynamics via the constant coefficient ρ ∈ (−1, 1), introducing
correlation between the price and volatility shocks; notice that Zs and Zv are
assumed to be independent.

We consider the class of derivatives whose time-t price Ot depends on the under-
lying stock price St and the stock volatility Vt thought Ot = g(St, Vt) for some
function g. At time t will have the following price dynamics

dOt = rOtdt+ (gsSt + σρgv)
√
Vt dZs + σ

√
1− ρ2 gv(λVtdt+

√
VtdZv) (4.1)

where λ determines the stochastic volatility risk premium, i.e it controls the ad-
ditional volatility risk Zv; gs and gv measure the sensitivity of the derivative price
to infinitesimal changes in the stock price and volatility, specifically:

gs =
∂g(s, v)

∂s

∣∣∣∣
(St,Vt)

gv =
∂g(s, v)

∂v

∣∣∣∣
(St,Vt)

.

A derivative with non-zero gs provides exposure to the diffusive price shock Zs,
and a derivative with non-zero gv provides exposure to additional volatility risk
Zv.
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Partial Differential Equation for Option price

In this subsection we explain how we are able to obtain the dynamics of a deriva-
tive presented in the formula (4.1). Indeed we have an alternative characterisation
of the option price when the stochastic volatility is also an Ito process, namely
as the solution of a parabolic partial differential equation similar to the Black-
Scholes pricing PDE, but with an extra dimension representing the dependence
on the volatility process. We try to construct a hedge portfolio of assets which
can be priced by the no-arbitrage principle. Unlike the Black-Scholes case, it is
not sufficient to hedge solely with the underlying asset, since the dZs term can be
balanced but the dZv term cannot. Then we try and hedge with the underlying
asset and another option which has a different expiration date.
Let O(1)(s, v, t) be the price of an option with expiration date T1, and try to find
processes (at, bt, ct) such that

O
(1)
T1

= aT1ST1 + bT1BT1 + cT1O
(2)
T1
. (4.2)

O
(1)
t , O

(2)
t are the price of a European options with the same properties but dif-

ferent expiration date T2 > T1 > t and Bt is the price of a riskless bond under
the prevailing short-term constant interest rate r. The right-hand side of (4.2)
is a portfolio whose payoff at time T1 equals almost surely the payoff of O(1). In
addition, the portfolio is to be self-financing so that

dO
(1)
t = atdSt + btdBt + ctdO

(2)
t . (4.3)

If such a portfolio can be found, for there to be no arbitrage opportunities, it must
be that

O
(1)
t = atSt + btBt + ctO

(2)
t

for all t < T1. Expanding (4.3) by Ito’s formula,(
∂O(1)

∂t
+ L1O

(1)

)
dt+

∂O(1)

∂s
dSt +

∂O(1)

∂v
dVt = (4.4)

(
at + ct

∂O(2)

∂s

)
dSt + ct

∂O(2)

∂v
dVt +

(
ctL1O

(2) + btrBt +
∂O(2)

∂t

)
dt

where

L1 =
1

2
vs2 ∂

2

∂s2
+ ρσvs

∂2

∂v∂s
+

1

2
σ2v

∂2

∂v2
,

and O(1), O(2) are evaluated at (St, Vt, t). The risk from the dZv terms can be
eliminated by balancing the dVt terms, which gives

ct =
∂O(1)/∂v

∂O(2)/∂v
,

and to eliminate the dZs terms associated with St, we must have

at =
∂O(1)

∂s
− ct

∂O(2)

∂s
.
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Substituting for at, ct and btBt = O
(1)
t − atSt − ctO

(2)
t and comparing dt terms in

(4.4) gives (
∂O(1)

∂v

)−1

L2O
(1)(St, Vt, t) =

(
∂O(2)

∂v

)−1

L2O
(2)(St, Vt, t) (4.5)

where

L2 =
∂

∂t
+ L1 + r

(
s
∂

∂s
− ·
)
.

That is, L2 is a classical Black-Scholes differential operator with volatility param-
eter
√
v, plus second-order terms from the Vt diffusion process.

Now, the left-hand side of (4.5) contains terms depending on T1 but not T2 and
vice versa for the right-hand side. Thus both sides must be equal to a function that
does not depend on expiration date. Denoting this function λV

√
1− ρ2σ−k(v̄−

v), the pricing function O(s, v, t), with the dependence on expiry date suppressed,
must satisfy the PDE

∂O

∂t
+

1

2
vs2∂

2O

∂s2
+ ρσvs

∂2O

∂v∂s
+

1

2
σ2v

∂2O

∂v2
+ (k(v̄ − v)− λV

√
1− ρ2σ)

∂O

∂v
+

+ r
(
s
∂O

∂s
−O

)
= 0.

To find the dynamics of the derivative we need to replace the PDE in the following
formula found through Ito formula

dO =

(
∂O

∂t
+

1

2
vs2∂

2O

∂s2
+ ρσvs

∂2O

∂v∂s
+

1

2
σ2v

∂2O

∂v2

)
dt+

∂O

∂s
dSt +

∂O

∂v
dVt =

=

(
∂O

∂t
+

1

2
vs2∂

2O

∂s2
+ ρσvs

∂2O

∂v∂s
+

1

2
σ2v

∂2O

∂v2

)
dt+

∂O

∂s
s(rdt+

√
vdZs)

+
∂O

∂v

(
k(v̄ − v)dt+ σ

√
v(ρdZs +

√
1− ρ2 dZv)

)
.

Now let’s replace the term ∂O
∂t

with the PDE found above

dO =

(
− 1

2
vs2∂

2O

∂s2
− ρσvs ∂

2O

∂v∂s
− 1

2
σ2v

∂2O

∂v2
− (k(v̄ − v)− λV

√
1− ρ2σ)

∂O

∂v
+

− r
(
s
∂O

∂s
−O

)
+

1

2
vs2∂

2O

∂s2
+ ρσvs

∂2O

∂v∂s
+

1

2
σ2v

∂2O

∂v2

)
dt+

∂O

∂s
s(rdt+

√
vdZs)+

+
∂O

∂v

(
k(v̄ − v)dt+ σ

√
v(ρdZs +

√
1− ρ2 dZv)

)
.

Adding up all the terms we get

dO = rOdt+

(
∂O

∂s
St+σρ

∂O

∂v

)√
Vt dZs+σ

√
1− ρ2

∂O

∂v
(λVtdt+

√
VtdZv). (4.6)

We found the dynamics of a derivative in case the stochastic volatility follows
Heston’s model.
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4.1.2 The investment problem

The investor starts with positive wealth X0. Given the opportunity to invest in
the riskless asset, the risky stock and the derivative securities, he chooses, at each
time t, 0 ≤ t ≤ T , to invest a fraction φt of his wealth in the stock St, and
fractions ψ

(1)
t and ψ

(2)
t in the two derivative securities O

(1)
t and O

(2)
t , respectively.

The investment objective is to maximize the expected utility of his terminal wealth
XT ,

max
φt,ψt,0≤t≤T

E
(
X1−γ
T

1− γ

)
, (4.7)

where γ > 0 is the relative risk-aversion coefficient of the investor, and where the
wealth process satisfies the self-financing condition

dXt = rXtdt+ θstXt

√
VtdZs + θvtXt(λVtdt+

√
VtdZv)

where θst , θ
v
t are defined, for given portfolio weights φt and ψt on the stock and

the derivatives, by

θst = φt +
2∑
i=1

ψ
(i)
t

(
g

(i)
s St

O
(i)
t

+ ρσ
g

(i)
v

O
(i)
t

)
; θvt = σ

√
1− ρ2

2∑
i=1

ψ
(i)
t

g
(i)
v

O
(i)
t

.

Effectively, by taking position φt and ψt on the risky assets, the investor invests
θs in the diffusive price shock Zs and θv in the additional volatility risk Zv. For
example, a portfolio position θt in the risky stock provides exposures only on the
diffusive price shock. Similarity, a portfolio position ψt in the derivative security
provides exposure both to the volatility risk Zv via a non-zero gv and to the
diffusive price shock Zs via a non-zero gs.

Before solving for this problem, we should point out that the maturities of the
chosen derivatives do not have to match the investment horizon T. For example, it
might be hard for an investor with ten-year investment horizon to find an option
with a matching maturity. He might choose to invest in options with a much
shorter time to expiration, which typically expire in one or two years, and switch
or roll over to the other derivatives in the future. For the purpose of choosing
the optimal portfolio weights at time t, what matters is the choice of derivative
securities Ot at that time, not the future choice of derivatives. At each point in
the future, there exist non-redundant derivative to complete the market.

To solve the investment problem in (4.7) we use the stochastic control approach.
We define the indirect utility function by

J(t, x, v) = max
φs,ψs,t≤s≤T

E
(
X1−γ
T

1− γ

∣∣∣∣Xt = x, Vt = v

)
, (4.8)

which, by the principle of optimal stochastic control, satisfies the following Hamilton-
Jacobi-Bellman (HJB) equation:

max
φt,ψt

{
Jt +XtJX(r + θvt λVt) +

1

2
X2
t JXXVt((θ

s
t )

2 + (θvt )
2) (4.9)
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+k(v̄ − Vt)JV +
1

2
σVtJV V + σVtXtJXV (ρθst +

√
1− ρ2θvt )

}
= 0

where Jt, JX , JV denote the derivatives of J(t,X, V ) with respect to t,X and V ,
and similar notations for higher derivatives.
To solve the HJB equation, we notice that it depends explicitly on the portfolio
weights θs, θv which, as defined before, are linear transformations of the portfolio
weights φt, ψt on the risky assets. Taking advantage of this structure, we first
solve the optimal positions on the risk factors Zs, Zv, and then transform them
back via the linear relation to the optimal positions on the risky assets.
This transformation is feasible as long as the chosen derivatives are non-redundant
in the following sense:

Definition 4.1.1. At any time t, the derivative O
(1)
t and O

(2)
t are non-redundant

if

Dt 6= 0 where Dt =
g

(2)
s St

O
(2)
t

g
(1)
v

O
(1)
t

− g
(1)
s St

O
(1)
t

g
(2)
v

O
(2)
t

.

The non-redundant condition guarantees market completeness with respect to the
chosen derivative securities, the risky stock, and the riskless bond since it does
not allow the two options to be linearly dependent. Without access to derivatives,
linear position in risky stock provide exposure only to diffusive risk, and none to
volatility risk. To complete the market with respect to volatility risk, we need to
bring in a risky asset that is sensitive to changes in volatility: gv 6= 0.

The solution

Proposition 4.1.1. Assume that there are non-redundant derivatives available
for trade at any time t < T . Then, for given wealth Xt and volatility Vt, the
solution to the HJB equation is given by

J(t,Xt, Vt) =
X1−γ
t

1− γ
exp(γh(T − t) + γH(T − t)Vt), (4.10)

where h(·) and H(·) are time dependent coefficients that are independent of the
state variables. That is, for any 0 ≤ τ ≤ T ,

h(τ) =
2kv̄

σ2
ln

(
2k2exp((k1 + k2)τ/2)

2k2 + (k1 + k2)(exp(k2τ)− 1)

)
+

1− γ
γ

rτ,

H(τ) =
exp(k2τ)− 1

2k2 + (k1 + k2)(exp(k2τ)− 1)
δ

where

δ =
1− γ
γ2

λ2;

k1 = k − 1− γ
γ

λσ
√

1− ρ2; k2 =
√
k2

1 − δσ2.
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The optimal portfolio weights on the risk factor Zs, Zv are given by

θ∗st = σρH(T − t) θ∗vt =
λ

γ
+ σ
√

1− ρ2H(T − t).

Transforming the θ∗’s to the optimal portfolio weights on the risky assets, φ∗t for
the stock and ψ∗t for derivatives, we have

φ∗t = θ∗st −
2∑
i=1

ψ
∗(i)
t

(
g

(i)
s St

O
(i)
t

+ σρ
g

(i)
v

O
(i)
t

)
;

ψ
∗(1)
t =

1

Dt

[
g

(2)
v

O
(2)
t

(
− θ∗st −

θ∗vt ρ√
1− ρ2

)
+
g

(2)
s St

O
(2)
t

θ∗vt

σ
√

1− ρ2

]
;

ψ
∗(2)
t =

1

Dt

[
g

(1)
v

O
(1)
t

(
+ θ∗st +

θ∗vt ρ√
1− ρ2

)
− g

(1)
s St

O
(1)
t

θ∗vt

σ
√

1− ρ2

]
.

Proof. The proof is an application of the stochastic control method. Suppose that
the indirect utility function J exists, and is of the conjectured form in (4.10).

J(t,Xt, Vt) =
X1−γ
t

1− γ
exp(γh(T − t) + γH(T − t)Vt).

Then the first-order condition of the HJB equation (4.9) implies the following
optimal portfolio weights.

X1−γ
t exp(γh(T − t) + γH(T − t)Vt) max

φt,ψt

(
1

1− γ
(−γh′(T − t)− γH ′(T − t)Vt)

+ (r + θvt λVt)−
γ

2
Vt((θ

s
t )

2 + (θvt )
2) + k(v̄ − Vt)

γ

1− γ
H(T − t) +

1

2
σVt

γ2

1− γ
H(T − t)2

+ σVtγH(T − t)(ρθst +
√

1− ρ2θvt )

)
= 0.

Now I impose that the derivative with respect to θst and θvt is null, in this way I
get the optimal weights.

∂

∂θst
= 0 ⇒ −γVtθs∗t + σVtγH(T − t)ρ = 0 ⇒ θs∗t = σρH(T − t).

∂

∂θvt
= 0 ⇒ λVt−γVtθv∗t +σVtγH(T−t)

√
1− ρ2 = 0 ⇒ θv∗t =

λ

γ
+σ
√

1− ρ2H(T−t).

Through a linear transformation of θ∗, we obtain the optimal portfolio weights on
the risky assets, φ∗t for stock and ψ∗t for derivatives.
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Then substituting this weights into the HJB equation, one can show that the con-
jectured form for the indirect utility function J indeed satisfies the HJB equation
if the following ordinary differential equations are satisfied:

dh(t)

dt
= kv̄H(t) +

1− γ
γ

r,

dH(t)

dt
=

(
− k +

1− γ
γ

λσ
√

1− ρ2

)
H(t) +

σ2

2
H(t)2 +

1− γ
2γ2

λ2.

The solution of these differential equations has the form of H, h proposed in the
proposition. 1

1All the calculations that are necessary to find the solution are reported in the appendix.
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4.2 Derivatives with stochastic volatility and price

jumps

In this subsection we relax another critical assumption. In Black-Scholes model
the underlying stock dynamics can be described by a stochastic process with a
continuous sample path. Now we consider the underlying stock returns are gen-
erated by a mixture of both continuous and jump processes.
In the presence of large, negative price jumps, the investor is reluctant to hold
too much jump risk regardless of the premium assigned to it. This is because
in contrast to diffusive risk, which can be controlled via continuous trading, the
sudden, high-impact nature of jump risk takes away the investor’s ability to con-
tinuously trade out of a leveraged position to avoid negative wealth. For investors
with a reasonable range of risk aversion, jump risk is compensated more highly
than diffusive risk.
For investors with a reasonable range of risk aversion, jump risk is compensated
more highly than diffusive risk.

4.2.1 The model

When we consider both volatility risk and jump risk, we assume the following
dynamics for the price process S of the risky stock:

dSt = (r + µ(ξ − ξQ)Vt)Stdt+
√
VtStdZs + µSt−(dNt − ξVtdt),

dVt = k(v̄ − Vt)dt+ σ
√
Vt (ρ dZs +

√
1− ρ2 dZv).

where Zs and Zv are standard Brownian motions, and N is a pure-jump process.
All the three random shocks are assumed to be independent.

The random arrival of jump of jump events is dictated by the pure-jump process
N with stochastic arrival intensity {ξVt : t ≥ 0} for constant ξ ≥ 0. The condi-
tional probability at time t of another jump before t + ∆t is, for some small ∆t,
approximately ξVt∆t.
ξQ is a constant coefficient capturing the component of the equity premium for
jump risk N .
We impose a condition to the jump amplitudes: the stock price jumps is multiplied
by a constant µ > −1, with the limiting case of -1 representing the situation of
total ruin. This specification of deterministic jump amplitude simplifies our anal-
ysis in the sense that only one additional derivative security is needed to complete
the market with respect to the jump component.

The price of derivatives Ot depends on the underlying stock price St and the
stock volatility Vt thought Ot = g(St, Vt) for some function g. Compared to the
dynamics of Ot found in the previous section where we used only the stochastic
volatility, we must add the term related to the risk of jumps. In fact, based on
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the theory of jumps, the part of continuous dynamics remains unchanged and
is analogous to the equation (4.6) of the dynamics of the option with stochastic
volatility. For the part of the jumps we refer to the results that are obtained in
J.Liu and J.Pan’s article [11]. At time t will have the following dynamics

dOt = rOtdt+ (gsSt + σρgv)
√
Vt dZs + σ

√
1− ρ2 gv(λVtdt+

√
VtdZv)

+ ∆g((ξ − ξQ)Vtdt+ dNt − ξVtdt)

where gs and gv measure the sensitivity of the derivative price to infinitesimal
changes in the stock price and volatility, respectively, and where ∆g measures the
change in the derivative price of each jump in the underlying stock price.

gs =
∂g(s, v)

∂s

∣∣∣∣
(St,Vt)

gv =
∂g(s, v)

∂v

∣∣∣∣
(St,Vt)

∆g = g((1 + µ)St, Vt)− g(St, Vt).

Letting γ be the relative risk aversion coefficient of the representative agent, the
coefficient for the jump risk premium is ξQ/ξ = (1 + µ)−γ. In the presence of
adverse jump risk (µ < 0), the investor fears that jumps are more likely to occur
(ξQ > ξ), consequently requiring the positive premium for holding jump risk.

4.2.2 The investment problem

Our goal is like the previous section: to maximize the expected utility of terminal
wealth XT . The investor starts with an initial wealth X0 and has the opportunity
to invest in the riskless asset, risky stock and derivatives.
At each time t, 0 ≤ t ≤ T , he chooses to invest a fraction φt of this wealth in the
stock St, and fractions ψ

(1)
t and ψ

(2)
t in the two derivative securities O

(1)
t and O

(2)
t ,

respectively.

max
φt,ψt,0≤t≤T

E
(
X1−γ
T

1− γ

)
where γ > 0 is the relative risk-aversion coefficient of the investor. The wealth
process satisfies the following dynamics

dXt = rXt dt+ θstXt

√
Vt dZs + θvtXt (λVtdt+

√
VtdZv)

+ θNt−Xt−µ ((ξ − ξQ)Vtdt+ dNt − ξVtdt)

where θst , θ
v
t , and θNt are defined, foe given portfolio weights φt and ψt on the stock

and the derivatives by,

θst = φt +
2∑
i=1

ψ
(i)
t

(
g

(i)
s St

O
(i)
t

+ ρσ
g

(i)
v

O
(i)
t

)
; θvt = σ

√
1− ρ2

2∑
i=1

ψ
(i)
t

g
(i)
v

O
(i)
t

;
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θNt = φt +
2∑
i=1

ψ
(i)
t

∆g(i)

µO
(i)
t

.

The investor invest θs in the diffusive price shock Zs, θ
v in the additional volatility

risk Zv, and θN in the jump risk N .So, now if we consider a portfolio position
ψt in the risky stock provides equal exposure to both diffusive and jump risks in
stock price; similarity, a portfolio position ψt in the derivative provides exposure
to the volatility risk Zv via a non-zero gv, exposure to the diffusive price shock Zs
via a non-zero gs and exposure to the jump risk via a non-zero ∆g.

We now proceed to solve the investment problem using the stochastic control
approach like before. The indirect utility function J(t, x, v) (5.4) now satisfies the
following Hamilton-Jacobi-Bellman (HJB) equation:

max
φt,ψt

(
Jt +XtJX(r + θvt λVt − θNt µξQVt) +

1

2
X2
t JXXVt((θ

s
t )

2 + (θvt )
2) + ξVt∆J

+ k(v̄ − Vt)JV +
1

2
σVtJV V + σVtXtJXV (ρθst +

√
1− ρ2θvt )

)
= 0

where ∆J = J(t,Xt(1 + θNµ), Vt)− J(t,Xt, Vt) denotes the jump in the indirect
utility function J for given jumps in the stock price, and where Jt, JX and JV
denote the derivative of J(t,X, V ) with respect to t,X and V respectively.

Even now we need the derivatives that we consider in our portfolio to be non-
redundant, which is why we have the following definition.

Definition 4.2.1. At any time t, the derivative securities O
(1)
t and O

(2)
t are non-

redundant if

Dt 6= 0 where Dt =

(
∆g(1)

µO
(1)
t

− g
(1)
s St

O
(1)
t

)
g

(2)
v

O
(2)
t

−
(

∆g(2)

µO
(2)
t

− g
(2)
s St

O
(2)
t

)
g

(1)
v

O
(1)
t

.

Compared to the considerations made in the previous section of the non-redundant
condition, we have that without access to derivatives, linear positions in the risky
stock provide equal exposures to diffusive and jump risks, and none to volatility
risk. To complete the market with respect to jump risk, we need a risky asset with
different sensitivities to infinitesimal and large changes in stock prices: gsSt/Ot 6=
∆g/µOt. Moreover, this condition also ensures that the two chosen derivative
securities are not identical in covering the two risk factor.

The solution

Proposition 4.2.1. Assume that there are non-redundant derivatives available
for trade at any time t < T . Then, for given wealth Xt and volatility Vt, the
solution to the HJB equation is given by

J(t,Xt, Vt) =
X1−γ
t

1− γ
exp(γh(T − t) + γH(T − t)Vt), (4.11)
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where h(·) and H(·) are time dependent coefficients that are independent of the
state variables. That is, for any 0 ≤ τ ≤ T ,

h(τ) =
2kv̄

σ2
ln

(
2k2exp((k1 + k2)τ/2)

2k2 + (k1 + k2)(exp(k2τ)− 1)

)
+

1− γ
γ

rτ,

H(τ) =
exp(k2τ)− 1

2k2 + (k1 + k2)(exp(k2τ)− 1)
δ.

where

δ =
1− γ
γ2

λ2 + 2ξQ
[(

ξ

ξQ

)1/γ

+
1

γ

(
1− ξ

ξQ

)
− 1

]
;

k1 = k − 1− γ
γ

λσ
√

1− ρ2; k2 =
√
k2

1 − δσ2.

The optimal portfolio weights on the risk factor Zs, Zv and N are given by

θ∗st = σρH(T − t), θ∗vt =
λ

γ
+ σ
√

1− ρ2H(T − t),

θ∗Nt =
1

µ

((
ξ

ξQ

)1/γ

− 1

)
.

Transforming the θ∗’s to the optimal portfolio weights on the risky assets, φ∗t for
the stock and ψ∗t for derivatives, we have

φ∗t = θ∗st −
2∑
i=1

ψ
∗(i)
t

(
g

(i)
s St

O
(i)
t

+ σρ
g

(i)
v

O
(i)
t

)
;

ψ
∗(1)
t =

1

Dt

[
g

(2)
v

O
(2)
t

(
θ∗Nt − θ∗st −

θ∗vt ρ√
1− ρ2

)
−
(

∆g(2)

µO
(2)
t

− g
(2)
s St

O
(2)
t

)
θ∗vt

σ
√

1− ρ2

]
;

ψ
∗(2)
t =

1

Dt

[
g

(1)
v

O
(1)
t

(
θ∗st − θ∗Nt +

θ∗vt ρ√
1− ρ2

)
+

(
∆g(1)

µO
(1)
t

− g
(1)
s St

O
(1)
t

)
θ∗vt

σ
√

1− ρ2

]
.

Proof. The demonstration is similar to that made in the previous section with the
addition of the term on jump risk.
θ∗st and θ∗vt values remain the same. The term θNt appears in the two terms we
have added in the rewrites in the HJB equation. I impose that the derivative with
respect to θNt is null

∂

∂θNt
= 0 ⇒ ∂

∂θNt
(−XtJXθ

N
t µξ

QVt + ξVt∆J) = 0.

Knowing that

∆J = J(t,Xt(1 + θNt µ), Vt)− J(t,Xt, Vt) =

=

(
X1−γ
t (1 + θNt µ)1−γ

1− γ
− X1−γ

t

1− γ

)
exp(γh(T − t) + γH(T − t)Vt).
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And so

−X1−γ
t µξQVt + ξVtX

1−γ
t µ(1 + θ∗Nt µ)−γ = 0 ⇒ −ξQ + ξ(1 + θ∗Nt )−γ = 0

⇒ θ∗Nt =
1

µ

((
ξ

ξQ

)1/γ

− 1

)
.

Then substituting this weights into the HJB equation, one can show that the con-
jectured form for the indirect utility function J indeed satisfies the HJB equation
if the following ordinary differential equations are satisfied:

dh(t)

dt
= kv̄H(t) +

1− γ
γ

r,

dH(t)

dt
=

(
− k +

1− γ
γ

σ
√

1− ρ2

)
H(t) +

σ2

2
H(t)2 +

1− γ
2γ2

λ2+

+ ξQ
[(

ξ

ξQ

)1/γ

+
1

γ

(
1− ξ

ξQ

)
− 1

]
.

The solution of these differential equations has the form of H, h proposed in the
proposition. The proof that shows how to obtain the values of H, h is shown in
the appendix and is analogous to the one proposed in the previous section where
we make the change that

δ =
1− γ
γ2

λ2 + 2ξQ
[(

ξ

ξQ

)1/γ

+
1

γ

(
1− ξ

ξQ

)
− 1

]
.
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Chapter 5

Completion of the incomplete
market through derivatives

In the previous chapter of the treatment the solution in dynamic strategy was
found when the underlying of the options was not in the Black and Scholes frame-
work. As mentioned above, adding an option in a complete market is not conve-
nient in fact every derivative is redundant and we can replicate the same strategy
with the use of assets only.
In this chapter we find the optimal investment strategy including bond, stocks and
derivatives in an incomplete market. Now the dynamic of stock remains within
the framework of Black and Scholes, and we break the completion of the market
by introducing more number of random sources than the number of stocks.
In particular in the first section 5.1 we present the model that we use in this
chapter of the discussion, for reasons of simplicity we consider at most two risky
assets.
In section 5.2 the classic Merton problem is quickly presented in which in a com-
plete market are considered two stocks and two Brownian motion. In section 5.3
we present a problem of optimal allocation in which we have a risky asset traded, a
derivative written on another stock that cannot be traded on the market and two
Brownian motions. In section 5.4 we find the optimal allocation solution when a
option written on a traded stock is introduced in an incomplete market.

5.1 Model

As we mentioned in the section 2.2, the Merton problem is the first continuous
time optimal investment model.
Let’s start by defining the market framework that we consider in this section.
Assumed a market with K risky assets and a risk-free asset. Let (Ω,F , P ) be a
complete probability space, W = (W 1

t , ...W
N
t )t∈T N -dimensional Brownian motion

with T = [0, T ] which represents the time interval over which the problem is
defined.
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When the market is complete and with absence of arbitrage? A complete market
is a market with two conditions: negligible transaction costs and therefore also
perfect information, and there is a price for every asset in every possible state of
the world. Derivatives are priced using the no-arbitrage or arbitrage-free principle:
the price of the derivative is set at the same level as the value of the replicating
portfolio, so that no trader can make a risk-free profit by buying one and selling
the other.
In chapter 8 ofArbitrage Theory in Continuous Time by T.Björk [23] we have a
general rule of thumb for quickly determining whether a certain model is complete
and/or free of arbitrage: ”meta theorem”.

Theorem 5.1.1. Let K denote the number of underlying traded assets in the
model excluding the risk-free asset, and let N denote the number of random
sources. Generally we then have the following relations:

• The model is arbitrage free if and only if K ≤ N .

• The model is complete if and only if K ≥ N .

• The model is complete and arbitrage free if and only if K = N .

For reasons of simplicity in our treatment we consider at most K = 2 stocks
and N = 2 Brownian motion which represented the random sources in the time
horizon [0, T ].
The dynamics of each risky asset is described by log-normal process and follows
the assumption of the Black and Scholes model.

dS
(1)
t = µ1 S

(1)
t dt+ σ11 S

(1)
t dW

(1)
t + σ12 S

(1)
t dW

(2)
t (5.1)

dS
(2)
t = µ2 S

(2)
t dt+ σ21 S

(2)
t dW

(1)
t + σ22 S

(2)
t dW

(2)
t (5.2)

where µ = (µ1, µ2) is constant vector in R and σ = (σij)i,j=1,2 a constant matrix
in R2×2. We also define, in order to simplify the calculations later on, with

α1 = σ2
11 + σ2

12, α2 = σ2
21 + σ2

22, β = σ11σ21 + σ12σ22. (5.3)

Let r > 0 be the interest rate that guarantees a non-risk investment, for example
a bank deposit, then the risk-free asset (bond) will have the following dynamics

dBt = rBt dt.

We want to find an amount of wealth invested in stocks, bond and after in deriva-
tives. We are able to find these quantities by solving a Stochastic Optimal Prob-
lem, the theory of which is proposed in section 1.2 of the discussion.
More precisely we have that (Xt)t∈T is the process that describes the dynamics of
portfolio wealth. The investment objective is to maximize the expected utility of
terminal wealth XT ,

max
φt,ψt,0≤t≤T

E
(
X1−γ
T

1− γ

)
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where γ > 0 and γ 6= 1 is the relative risk-aversion coefficient of the investor.
To solve the investment problem we use the stochastic control approach and we
define the indirect utility function by

J(t, x) = max
φs,ψs,t≤s≤T

E
(
X1−γ
T

1− γ

∣∣∣∣Xt = x

)
. (5.4)

For each of the problems that we have dealt with in the below sections we have
that the J function has the following form:

J(t,Xt) =
X1−γ
t

1− γ
eh(T−t)

where h(·) is time dependent coefficient that is independent on the state variable.
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5.2 Complete market with two stocks

In this section we quickly see the solution to Merton’s classic problem when con-
sidering two stocks. In this case we consider that our portfolio is composed of
S

(1)
t , S

(2)
t and the bond Bt. The dynamics of the two risky assets is the one re-

ported in equation (5.1)-(5.2); in this case we have that the market is complete
since the number of stocks (K = 2) equals the number of random sources (N = 2).
The dynamics of the portfolio wealth is

dXt =
2∑
i=1

φ
(i)
t Xt

dS
(i)
t

S
(i)
t

+

(
1−

2∑
i=1

φ
(i)
t

)
Xt

dBt

Bt

=

= rXt dt+
2∑
i=1

Xt

(
φ

(i)
t (µi − r)dt+ σi1dW

(1)
t + σi2dW

(2)
t

)
=

= rXt dt+

(
φ

(1)
t (µ1 − r) + φ

(2)
t (µ2 − r)

)
Xt dt+

(
φ

(1)
t σ11 + φ

(2)
t σ21

)
Xt dW

(1)
t +

+

(
φ

(1)
t σ12 + φ

(2)
t σ22

)
Xt dW

(2)
t .

The solution

To find the solution to the Merton problem in the two-dimensional case we followed
the same steps as in section 2.2. Obtaining the following results.
For given wealth Xt the solution to the HJB equation is given by

J(t,Xt) =
X1−γ
t

1− γ
eh(T−t)

where, for any 0 ≤ τ ≤ T ,

h(τ) = τ(1− γ)

(
r +

α2(µ1 − r)2 − 2β(µ1 − r)(µ2 − r) + α1(µ2 − r)2

2γ(α1α2 − β2)

)
.

The optimal portfolio weights on the risky assets S
(1)
t and S

(2)
t are given by

φ
∗(1)
t =

α2(µ1 − r)
γ(α1α2 − β2)

− β(µ2 − r)
γ(α1α2 − β2)

;

φ
∗(2)
t =

α1(µ2 − r)
γ(α1α2 − β2)

− β(µ1 − r)
γ(α1α2 − β2)

;

where the value of α1,2 and β are defined in (5.3).
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5.3 Incomplete market with derivative written

on non-traded stock

In this section, starting from a complete market like the one analyzed in the
previous section, we add a derivative written on one of the two stocks. We require,
however, that the stock on which the derivative is written is non-negotiable, so
we are in a situation where the investor takes the derivative written on it instead
of the stock.
We are therefore considering an incomplete market, because we have K = 1 traded
stock and N = 2 random sources. This market incomplete is completed by
the introduction of the derivative written on the other stock.

Our portfolio consists of a risky asset S
(2)
t , a bond Bt and a derivative written on

the other stock S
(1)
t . The dynamics of the two risky assets is the one reported

respectively in equation (5.1)-(5.2).

We consider that the derivative instrument is an option. The price of option
Ot depends only on the underlying stock price S

(1)
t , i.e Ot = g(t, S

(1)
t ) for some

function g. We can find the dynamics of the option through Ito’s formula.

dOt =

(
∂Ot

∂t
+

1

2
S

(1)2

t α1
∂2Ot

∂S
(1)2

t

)
dt+

∂Ot

∂S
(1)
t

dS
(1)
t .

Since the stock has a dynamic that respects the assumptions of the Black and
Scholes model, we can use the Black-Scholes equation (2.1) for a derivative defined
in chapter 2 to simplify the dynamics.

dOt =

(
− rS(1)

t

∂Ot

∂S
(1)
t

− 1

2
S

(1)2

t α1
∂2Ot

∂S
(1)2

t

+ rOt +
1

2
S

(1)2

t α1
∂2Ot

∂S
(1)2

t

)
dt+

+
∂Ot

∂S
(1)
t

S
(1)
t

(
µ1dt+ σ11dW

(1)
t + σ12dW

(2)
t

)
=

= rOt dt+ (µ1 − r)S(1)
t

∂Ot

∂S
(1)
t

dt+ S
(1)
t

∂Ot

∂S
(1)
t

(σ11dW
(1)
t + σ12dW

(2)
t ).

(5.5)

Our aim is to maximize the expected utility of terminal wealth XT starting with
an initial wealth X0. At each time t, 0 ≤ t ≤ T , the investor chooses to invest a
fraction φ

(2)
t of this wealth in the stock S

(2)
t , a fraction ψt in the derivative security

Ot written on the stock S
(1)
t that is no traded asset, i.e φ

(1)
t = 0 and a fraction

(1− φ(2)
t − ψt) in the bond.
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The wealth process is the following

dXt

Xt

= φ
(2)
t

dS
(2)
t

S
(2)
t

+ ψt
dOt

Ot

+ (1− φ(2)
t − ψt)

dBt

Bt

=

= φ
(2)
t (µ2dt+ σ21dW

(1)
t + σ22dW

(2)
t ) + ψtr dt+

+ ψt
S

(1)
t

Ot

∂Ot

∂S
(1)
t

(
(µ1 − r)dt+ σ11dW

(1)
t + σ12dW

(2)
t

)
+

+ (1− φ(2)
t − ψt)rdt.

So we obtain

dXt

Xt

= r dt+ ψt
S

(1)
t

Ot

∂Ot

∂S
(1)
t

(µ1 − r)dt+ φ
(2)
t (µ2 − r) dt+

+

(
φ

(2)
t σ21 + ψt

S
(1)
t

Ot

∂Ot

∂S
(1)
t

σ11

)
dW

(1)
t +

+

(
φ

(2)
t σ22 + ψt

S
(1)
t

Ot

∂Ot

∂S
(1)
t

σ12

)
dW

(2)
t .

When we describe the model, we define the indirect utility function by (5.4). This
function J(t, x) satisfies the following Hamilton-Jacobi-Bellman (HJB) equation:

max
φt,ψt

{
Jt+XtJX

(
r+ψt

S
(1)
t

Ot

∂Ot

∂S
(1)
t

(µ1−r)+φ
(2)
t (µ2−r)

)
+

1

2
X2
t JXXA

2

}
= 0 (5.6)

where

A2 = φ
(2)2

t α2 + ψ2
t

(
S

(1)
t

Ot

∂Ot

∂S
(1)
t

)2

α1 + 2 φ
(2)
t ψt

S
(1)
t

Ot

∂Ot

∂S
(1)
t

β (5.7)

where the value of α1,2 and β are defined in (5.3).

The solution

Assume that there are option and stock S
(2)
t available for trade at any time t < T .

Then, for a given wealth Xt the solution to the HJB equation defined in (5.6) is
given by

J(t,Xt) =
X1−γ
t

1− γ
eh(T−t)

where, for any 0 ≤ τ ≤ T ,

h(τ) = τ(1− γ)

(
r +

α2(µ1 − r)2 − 2β(µ1 − r)(µ2 − r) + α1(µ2 − r)2

2γ(α1α2 − β2)

)
.

66



The optimal portfolio weights on the risky asset S
(2)
t and on the option Ot, im-

posing that φ
(1)
t = 0 are given by

φ
∗(2)
t =

α1(µ2 − r)
γ(α1α2 − β2)

− β(µ1 − r)
γ(α1α2 − β2)

;

ψ∗t =

(
S

(1)
t

Ot

∂Ot

∂S
(1)
t

)−1
α2(µ1 − r)
γ(α1α2 − β2)

− β(µ2 − r)
γ(α1α2 − β2)

;

where the value of α1,2 and β are defined in (5.3).

Proof. The proof is an application of the stochastic control method. Suppose that
the indirect function J(t,Xt) exists, and we suppose that it has the following form

J(t,Xt) =
X1−γ
t

1− γ
eh(T−t).

Then the first-order condition of the HJB equation (5.6) implies the following
form.

X1−γ
t eh(T−t) max

φt,ψt

{
− h′(T − t)

1− γ
+ r + ψt

S
(1)
t

Ot

∂Ot

∂S
(1)
t

(µ1 − r) + φ
(2)
t (µ2 − r)−

γ

2
A2

}
= 0

where A2 is defined in (5.7).

Now we impose that the derivative with respect to φ
(2)
t and ψt is null, in this way

we obtain a system with two equations in two unknown variables.

∂

∂φ
(2)
t

= 0 ⇒ (µ2 − r)−
γ

2

(
2φ
∗(2)
t α2 + 2ψ∗t

S
(1)
t

Ot

∂Ot

∂S
(1)
t

β

)
= 0.

∂

∂ψt
= 0 ⇒ (µ1 − r)

S
(1)
t

Ot

∂Ot

∂S
(1)
t

− γ

2

(
2ψ∗t

(
S

(1)
t

Ot

∂Ot

∂S
(1)
t

)2

α1 + 2φ
∗(2)
t

S
(1)
t

Ot

∂Ot

∂S
(1)
t

β

)
= 0.

Simplifying, we get the following the systemφ
∗(2)
t β + ψ∗t

S
(1)
t

Ot
∂Ot

∂S
(1)
t

α1 = µ1−r
γ

φ
∗(2)
t α2 + ψ∗t

S
(1)
t

Ot
∂Ot

∂S
(1)
t

β = µ2−r
γ

By solving the system we get the values found above

φ
∗(2)
t =

α1(µ2 − r)
γ(α1α2 − β2)

− β(µ1 − r)
γ(α1α2 − β2)

;

ψ∗t =

(
S

(1)
t

Ot

∂Ot

∂S
(1)
t

)−1(
α2(µ1 − r)
γ(α1α2 − β2)

− β(µ2 − r)
γ(α1α2 − β2)

)
.
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Then substituting this weights into the HJB equation, one can show that the con-
jectured form for the indirect utility function J(t,Xt) satisfies the HJB equation
if the following ordinary differential equation is satisfied:

h′(τ) =
dh(τ)

dτ
= (1− γ)

(
r +

α2(µ1 − r)2 − 2β(µ1 − r)(µ2 − r) + α1(µ2 − r)2

2γ(α1α2 − β2)

)
.

The solution of this differential equation is very simple:

h(τ) = τ(1− γ)

(
r +

α2(µ1 − r)2 − 2β(µ1 − r)(µ2 − r) + α1(µ2 − r)2

2γ(α1α2 − β2)

)
.

Comment: We can see that the solution to this problem is similar to the solution
found in the previous section. The HJB equation in the two problems has the same
form and also the function h(·) which depends only on time is the same and we
obtain that the set of attainable wealth profiles is the same.
The optimal weight to invest in the S

(2)
t stock is the same in the two problems,

while the weight assigned to the option Ot differs from that assigned to the S
(1)
t

stock (when it was negotiable and the derivative was not considered) for the term(
S
(1)
t

Ot
∂Ot

∂S
(1)
t

)−1

.

We can see that in the Black and Scholes framework the term ∂Ot
∂St

corresponds to
the delta of the option. This term is equal to the slope of the curve that links
the option price to the price of the underlying asset. The delta of a call in B&S
model written on a security that does not pay dividends is ∆C = N(d1), while for
a put option it is ∆P = N(d1)− 1, where N(·) is the standard normal cumulative
distribution function

N(x) =
1√
2π

∫ x

−∞
e−x

2/2dz.

This similarity of the results is due to the fact that when we go looking for the
solution for this last problem, we start from a market that is complete in a similar
way to the problem we were dealing with in the previous section. The derivative
written on the S

(1)
t stock when added to an already complete market provides

only one more trade possibility.
In the solution of the Merton problem we find that the optimal allocation strategy
is to keep a constant fraction of the wealth in the various assets that the investor
the investor considers to build the portfolio, in fact the optimal weights depend
exclusively on the parameters of the dynamics of the assets. In this case the
fraction of wealth that is assigned to the option is composed of a constant part,
that coincides with the classic Merton problem, and a term that depends on time
t, on the value at time t of the stock on which the option is written and on the
price at time t of the option itself.

68



5.4 Incomplete market with one stock

In this section, we start by considering an incomplete market composed of a single
risky asset governed by two Brownian motion and a risk-free asset. To complete
the market we introduce a derivative instrument that is written on the traded
stock.
We find endless optimal allocation strategies that allow us to build an optimal
portfolio.

In Financial Economics by P.Ireland [19] we have a rule that allows us to continue
with the discussion: the following preposition ensures that in our framework with
the introduction of the derivative the market is completed.

Proposition 5.4.1. A necessary and sufficient condition for a creation of a com-
plete set of Arrow-Debreu securities is that there exists a single portfolio with the
property that options can be purchased and written on it and such that its payoff
pattern distinguishes among all future states.

Our portfolio consists of a stock St, a bond Bt and an option written on this
stock, so the price of option Ot depends only on the underlying stock price St.
The dynamics of the risky assets are the following

dSt = µStdt+ σ1StdW
(1)
t + σ2StdW

(2)
t ,

dOt = rOt dt+ (µ− r)St
∂Ot

∂St
dt+ St

∂Ot

∂St
(σ1dW

(1)
t + σ2dW

(2)
t ).

The dynamics of the option is obtained with the same steps made in the equation
(5.5).

Our aim is to maximize the expected utility of terminal wealth XT . At each time
t, 0 ≤ t ≤ T , the investor chooses to invest a fraction φt of this wealth in the
stock St, a fraction ψt in the derivative instrument Ot and a fraction (1−φt−ψt)
in the bond Bt.
The wealth process Xt has the following dynamics:

dXt

Xt

= φt
dSt
St

+ ψt
dOt

Ot

+ (1− φt − ψt)
dBt

Bt

=

= φt(µdt+ σ1dW
(1)
t + σ2dW

(2)
t ) + ψtr dt+ ψt

St
Ot

∂Ot

∂St

(
(µ− r)dt+ σ1dW

(1)
t

+ σ2dW
(2)
t

)
+ (1− φt − ψt)rdt =

= rdt+ φt(µ− r)dt+ ψt
St
Ot

∂Ot

∂St
(µ− r)dt+

(
φtσ1 + ψt

St
Ot

∂Ot

∂St
σ1

)
dW

(1)
t +

+

(
φtσ2 + ψt

St
Ot

∂Ot

∂St
σ2

)
dW

(2)
t .
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When we describe the model, we define the indirect utility function by (5.4) in
the following way

J(t, x) = max
φs,ψs,t≤s≤T

E
(
X1−γ
T

1− γ

∣∣∣∣Xt = x

)
.

This function J(t, x) satisfies the following Hamilton-Jacobi-Bellman equation:

max
φt,ψt

{
Jt +XtJX

(
r +

(
φt + ψt

St
Ot

∂Ot

∂St

)
(µ− r)

)
+

1

2
X2
t JXXA

2

}
= 0 (5.8)

where

A2 = (σ2
1 + σ2

2)

(
φ2
t + ψ2

t

(
St
Ot

∂Ot

∂St

)2

+ 2φtψt
St
Ot

∂Ot

∂St

)
. (5.9)

The solution

Assume that there are option and stock available for trade at any time t < T .
Then, for a given wealth Xt the solution of the HJB equation defined in (5.8) is
given by

J(t,Xt) =
X1−γ
t

1− γ
eh(T−t)

where, for any 0 ≤ τ ≤ T ,

h(τ) = τ
1− γ
γ

(µ− r)2

2(σ2
1 + σ2

2)
.

We obtain infinite optimal allocation strategies such that the weights that are
assigned to the stock St and option Ot respect the following equation

φ∗t + ψ∗t
St
Ot

∂Ot

∂St
=

µ− r
γ(σ2

1 + σ2
2)
. (5.10)

Proof. The proof is an application of the stochastic control method. Suppose that
the indirect function J(t,Xt) exists, and we suppose that it has the following form

J(t,Xt) =
X1−γ
t

1− γ
eh(T−t).

Then the first-order condition of the HJB equation (??) implies the following form

X1−γ
t eh(T−t) max

φt,ψt

{
− h′(T − t)

1− γ
+ r + φt(µ− r) + ψt

St
Ot

∂Ot

∂St
(µ− r)− γ

2
A2

}
= 0

where A2 is defined in (5.9).
Now we impose that the derivative with respect to φt and ψt is null, in this way
we obtain a system with two equations in two unknown variables.

∂

∂φt
= 0 ⇒ (µ− r)− γ

2

(
2φ∗tα + 2ψ∗t

St
Ot

∂Ot

∂St
α

)
= 0.
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∂

∂ψt
= 0 ⇒ St

Ot

∂Ot

∂St
(µ− r)− γ

2

(
2ψ∗t

(
St
Ot

∂Ot

∂St

)2

α + 2φ∗t
St
Ot

∂Ot

∂St
α

)
= 0.

We define with α = σ2
1 + σ2

2.
So we obtain the following system:{

φ∗t + ψ∗t
St
Ot

∂Ot
∂St

= µ−r
γα

φ∗t + ψ∗t
St
Ot

∂Ot
∂St

= µ−r
γα

We can notice that these two equations of the system is equal, and we are not
able to solve it, so we have an infinite optimal solution of φ∗t and ψ∗t . However,
the optimal weights must satisfy the following equation

φ∗t + ψ∗t
St
Ot

∂Ot

∂St
=
µ− r
γα

.

Replacing φ∗t as a function of ψ∗t within the HJB equation, one can show that
the form for the indirect utility function J(t,Xt) satisfies the HJB equation if the
following ordinary equation is satisfied:

h′(τ) =
dh(τ)

dτ
=

1− γ
γ

(µ− r)2

2α
.

The solution of this differential equation is very simple:

h(τ) = τ
1− γ
γ

(µ− r)2

2(σ2
1 + σ2

2)
.

Comment: We can note that the solution that we obtain takes up the solution
that is obtained in Merton’s problem where markets are complete and is considered
a single stock, the solution is given in section 2.2.2 of chapter 2 of the discussion.
In the problem just proposed, we find infinite optimal solutions such that the
weights satisfy the equation (5.10). The right-side of this equation is equal to the
fraction of wealth invested in the risky asset of the classic Merton problem, so the
sum that is invested in the risky securities in the two problems less than the term
St
Ot

∂Ot
∂St

is the same.
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Chapter 6

Conclusion

Let’s retrace the steps taken in this discussion. The objective of the thesis was
to understand how the optimal allocation strategy changes when derivatives are
added to Merton’s problem, i.e. when the investor has the possibility to choose
between risky assets not only equities but also options contracts. We want to find
the optimal strategy in order to maximize the expected utility of an investor with
constant risk aversion.
We start by considering the same framework of Merton’s problem where the mar-
ket is composed of a risky stock described by Geometric Brownian motion and the
non-risk asset characterized by its risk free interest rate r. We find a necessary
and sufficient condition for the Merton problem to be equivalent to a buy-and-hold
strategy in which derivatives are added to the market. A buy-and-hold strategy
means that the weights to be assigned to the different assets are chosen at time
t = 0 and cannot be changed. In the Merton problem we have instead a dy-
namic strategy, even if the fraction of wealth to invest in the assets is constant.
We have that the optimal static asset allocation can do no better that the op-
timal dynamic one since the market is complete every option can be replicated
by a trading strategy involving just stock and the risk-free bond. Since this two
problems are equivalent the static strategy is preferable since it avoid exposure
to market frictions such as transaction cost (e.g. settlement cost for the equities)
and limited liquidity.
Since remaining in the Black and Scholes framework each derivative is redundant,
we find a solution to the stochastic optimization problem by relaxing a model
hypothesis. We therefore consider that the volatility is not constant but the dy-
namics of the stock is characterized by stochastic volatility following the Heston
model. The portfolio includes one stock, one bond and two derivatives. We find
in closed form the optimal fraction of wealth that the investor allocates to each
of the assets.
The dynamics considered so far to describe the risky security is unrealistic, in fact,
it presents only continuous trajectories excluding the possibility of jumps in the
price of the risky security. In addition to stochastic volatility, we have added the
risk of jumps to the dynamics of the stock, finding an optimal allocation strategy
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for a portfolio composed of a risky stock, a bond and two derivatives.
In the view of the results seen in the first part, we try to ask ourselves what would
happen if derivatives were added to an incomplete market when the stocks follow
the Geometric Brownian motion.
The first result found is the case where we start from a complete market com-
posed of two stocks governed by two random resources. We consider a derivative
instrument written on one of the two stocks. In this case we would have an infinite
solution because we have an additional investment possibility represented by the
derivative, as we find in chapter 2. We place a greater restriction: the stock that
serves as the underlying of the derivative cannot be traded. In this way we started
from an incomplete market which we complete with the addition of a derivative.
We find an optimal allocation solution when the derivative is an option contract.
We get interesting results because in both cases they are comparable with the
solution of Merton’s problem when considering two stocks.
The latest result found is when we consider an incomplete market composed of
one stock and two random resources. To complete the market we add an option
written on the stock, we find infinite solutions of optimal allocation strategy.
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Appendix A

Proof

A.1 Proof of Proposition 4.1.1

In Chapter 4 we have found in closed form an optimal allocation strategy. The
portfolio consists of a stock, a bond and two derivatives written on the stock.
In section 4.1 the stock has stochastic volatility. After having found the ideal
weights to associate to the different assets, in order to verify that the indirect
utility function J(t, x) hypothesized is correct it is necessary to find the expression
of the functions H(·) and h(·).
We suppose in particular that for given wealth Xt and volatility Vt, the solution
to the HJB equation is given by

J(t,Xt, Vt) =
X1−γ
t

1− γ
exp(γh(T − t) + γH(T − t)Vt).

Here below we will illustrate all the steps to find the expression of these two
functions for Proposition 4.1.1.
We can do the same steps again for proposition 4.2.1, where the difference is that
the stock has both stochastic volatility and jump risk. The difference lies in the
definition of the term δ.

Starting from the equation of HJB (4.9), replacing the derivatives of the utility
function J , we obtain the following equation:

W 1−γ
t exp(γh(T − t) + γH(T − t)Vt) max

φt,ψt

(
1

1− γ
(−γh′(T − t)− γH ′(T − t)Vt)

+ (r + θvt λVt)−
γ

2
Vt((θ

s
t )

2 + (θvt )
2) + k(v̄ − Vt)

γ

1− γ
H(T − t) +

1

2
σVt

γ2

1− γ
H(T − t)2

+ σVtγH(T − t)(ρθst +
√

1− ρ2θvt )

)
= 0.

We collect the terms in which the volatility Vt appears and replace the optimal θ∗
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values found previously. We obtain:

− γ

1− γ
H ′(τ) + λ

(
λ

γ
+ σ
√

1− ρ2H(τ)

)
− γ

2

(
σ2ρ2H2(τ) +

λ2

γ2
+ σ2(1− ρ2)H2(τ)

+ 2σ
λ

γ

√
1− ρ2H(τ)

)
− γ

1− γ
kH(τ) + σγH(τ)

(
σρ2H(τ) +

λ

γ

√
1− ρ2+

+ σ(1− ρ2)H(τ)

)
+

γ2

2(1− γ)
σH2(τ) = 0.

Simplifying and adding up the terms we find

− γ

1− γ
H ′(τ) +

(
− k γ

1− γ
+ λσ

√
1− ρ2

)
H(τ) +

γ

1− γ
σ2

2
H2(τ) +

λ2

2γ
= 0,

H ′(τ) =

(
− k +

γ

1− γ
λσ
√

1− ρ2

)
H(τ) +

σ2

2
H2(τ) +

λ2

2γ2
(1− γ).

Defining

k1 = k − γ

1− γ
λσ
√

1− ρ2, δ =
λ2

γ2
(1− γ).

We obtain

H ′(τ) = −k1H(τ) +
σ2

2
H2(τ) +

δ

2
. (A.1)

Now we collect from the HJB the terms in which the volatility Vt does not appear.
We obtain:

− γ

1− γ
h′(τ) + r + kv̄

γ

1− γ
H(τ) = 0,

h′(τ) = r
γ

1− γ
+ kv̄H(τ). (A.2)

Let’s start by solving equation (A.1).
This is an ordinary non-homogeneous differential equation that is quadratic in the
unknown function. It is known as Riccardi’s equation.
We make the following replacement

H = − y′

y σ2/2
.

The derivative of H is

H ′ = −y
′′(y σ2/2)− y′(y′ σ2/2)

(y σ2/2)2
=

(y′)2σ2/2− y′′(y σ2/2)

(y σ2/2)2
.

By inserting this into the starting equation, a homogeneous equation of the second
order is obtained

y′′ + k1y
′ +

σ2

4
δy = 0. (A.3)
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The characteristic polynomial associated to equation (A.3) is

x2 + k1x+
σ2

4
δ = 0,

∆ = k2
1 − 4

σ2

4
δ = k2

1 − σ2δ := k2
2

x1,2 =
−k1 ± k2

2
.

The solution of (A.3) is
y = c1e

λ1τ + c2e
λ2τ

where

λ1 =
−k1 − k2

2
, λ2 =

−k1 + k2

2
.

Returning to the initial replacement where now we know the y function, H has
the following form

H(τ) = −c1λ1e
λ1τ + c2λ2e

λ2τ

σ2

2
(c1eλ1τ + c2eλ2τ )

.

We now impose the initial condition H(0) = 0

H(0) = 0 = −c1λ1 + c2λ2

σ2

2
(c1 + c2)

⇒ c1 = −λ2

λ1

c2.

So we have:

H(τ) = − −c2λ2e
λ1τ + c2λ2e

λ2τ

σ2

2
(−λ2

λ1
c2eλ1τ + c2eλ2τ )

= − λ2(−eλ1τ + eλ2τ )
σ2

2
(−λ2

λ1
eλ1τ + eλ2τ )

−eλ1τ +eλ2τ = −e
−k1−k2

2
τ +e

−k1+k2
2

τ = e
−k1
2
τ (−e

−k2
2
τ +e

+k2
2
τ ) = e

−(k1+k2)
2

τ (ek2τ −1)

−λ2

λ1

eλ1τ + eλ2τ = − λ2

λ1

e
−k1−k2

2
τ + e

−k1+k2
2

τ = e
−k1
2
τ

(
− λ2

λ1

e
−k2
2
τ + e

k2
2
τ

)
=

= e
−(k1+k2)

2
τ

(
− λ2

λ1

+ ek2τ
)

−λ2

λ1

+ ek2τ =
−k1 + k2

k1 + k2

+ ek2τ =
−k1 + k2 + k1e

k2τ + k2e
k2τ

k1 + k2

=

=
2k2 + (k1 + k2)(ek2τ − 1)

k1 + k2

−λ2(k1 + k2) =
k1 − k2

2
(k1 + k2) =

k2
1 − k2

2

2
=
k2

1 − k2
1 + δσ2

2
=
δσ2

2

H(τ) = − λ2e
−(k1+k2)

2
τ (ek2τ − 1)

σ2

2
e

−(k1+k2)
2

τ

(
− λ2

λ1
+ ek2τ

) = − λ2(ek2τ − 1)

σ2

2

(
− λ2

λ1
+ ek2τ

)
= − λ2(ek2τ − 1)

σ2

2
(2k2 + (k1 + k2)(ek2τ − 1))

(k1 + k2) =
ek2τ − 1

2k2 + (k1 + k2)(ek2τ − 1)
δ.
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Now that we have found the formula for H(τ), we can find the formula for h(τ)
by solving the equation (A.1).

h′(τ) = r
γ

1− γ
+ kv̄H(τ).

This is a differential equation with separable variables.

dh(t) =

(
r

γ

1− γ
+ kv̄H(t)

)
dt ⇒

∫ τ

0

dh(t) =

∫ τ

0

(
r

γ

1− γ
+ kv̄H(t)

)
dt

⇒ h(τ) = rτ
γ

1− γ
+ kv̄

∫ τ

0

H(t)dt.

Now we focus on solving the integral∫ τ

0

H(t)dt =

∫ τ

0

ek2τ − 1

2k2 + (k1 + k2)(ek2τ − 1)
δdt =

= δ

[
t(k1 + k2)− 2ln(k1e

k2t − k1 + k2e
k2t + k2

k2
1 − k2

2

]τ
0

=

=
δ

k2
1 − k2

1 + δσ2

[
τ(k1 + k2)− 2ln(k1e

k2τ − k1 + k2e
k2τ + k2) + 2ln(2k2)

]
=

=
2

σ2

[
ln

(
exp

(
τ(k1 + k2)

2

))
− ln(2k2 + (k1 + k2)(ek2τ − 1)) + ln(2k2)

]
=

=
2

σ2
ln

( 2k2exp

(
τ(k1+k2)

2

)
2k2 + (k1 + k2)(ek2τ − 1)

)
.

So the formula of h(τ) is

h(τ) = r τ
γ

1− γ
+

2kv̄

σ2
ln

(
2k2 exp(τ(k1 + k2)/2)

2k2 + (k1 + k2)(ek2τ − 1)

)
.
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Appendix B

Matlab

B.1 Numerical results of equivalence

In Chapter 3 we have defined a necessary and sufficient condition for the dynamic
problem in which a stock and a bond is considered to be equivalent to the static
problem in which the model is enriched with options. In particular in section 3.2
we show this equivalence through a numerical example.
Here below is reported the Matlab code that refers to the example reported in the
treatment.

1 c l c
2 c l e a r
3 c l o s e a l l
4

5 %% Parameters
6 r = 0 . 0 5 ; mu = 0 . 0 6 ; sigma = 0 . 3 ; T = 5 ;
7 Nsim = 1e6 ; W0 = 1 ; S0 = 1 ;
8 p = 0 . 3 ;
9

10 %% Simulat ion
11 % Simulate ST
12 ST = S0 ∗ exp ( (mu−sigma ˆ2/2) ∗T + sigma∗ s q r t (T) ∗ randn (Nsim

, 1 ) ) ;
13 [ p r i c e S , n , I ] = normf i t ( exp(−r ∗T) ∗ST) ;
14

15 % Simulate va lue o f the f i r s t Ca l l opt ion
16 CT= ones (Nsim , 1 ) ; K = 0 . 7 ;
17 f o r i = 1 : Nsim
18 CT( i ) = max(0 , ST( i )−K) ;
19 end
20 [ pr ice C , n , I ] = normf i t ( exp(−r ∗T) ∗CT) ;
21
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22 %% ONE Cal l opt ion
23

24 %Function that we want to maximise
25 f = @( x ) mean ( ( x (1 ) ∗ST + x (2) ∗CT + (1−x (1 )−x (2 ) ) ) . ˆ p/ p

, 1 ) ;
26

27 % Sta r t i ng po int o f the opt imiza t i on a lgor i thm
28 weights0 = [ 0 . 5 ; 0 . 5 ] ;
29

30 % Matr ices f o r i n d i c a t i n g the l i n e a r c o n s t r a i n t s o f
i n e q u a l i t y Ax <= b

31 A = [−1 −1 ; (−K+1) 1 ; 1 1 ] ;
32 b = [ 0 ; 1 ; 1 ] ;
33

34 % Equal i ty non l i n e a r c o n s t r a i n t
35 eq = @( x ) x (1 ) ∗ p r i c e S + x (2) ∗ pr i ce C + (1−x (1 )−x (2 ) ) ∗exp

(−r ∗T) − W0;
36

37 % Minimizat ion opt ions
38 opt ions = opt imset ( ’ La rge s ca l e ’ , ’ o f f ’ , ’ MaxFunEvals ’ ,

1000 , ’ GradObj ’ , ’ o f f ’ , . . .
39 ’ Tolfun ’ , 1e−9, ’TolX ’ , 1e−9, ’ TolCon ’

, 1e−6, ’ Display ’ , ’ i t e r ’ ) ;
40

41 [ xopt 1 , f v a l 1 , ex i tF l ag ] = fmincon (@( x ) −f ( x ) , weights0 ,
A, b , [ ] , [ ] , . . .

42 [ ] , [ ] , @( x ) non l in con (x
, eq ) , opt ions ) ;

43 %% BUY−and−HOLD P o r t f o l i o ( S t a t i c Asset A l l o ca t i on Problem
)

44 %% TWO Cal l opt ions
45

46 % Simulate va lue o f the second Cal l opt ion
47 CT1= ones (Nsim , 1 ) ; K1 = 1 ;
48 f o r i = 1 : Nsim
49 CT1( i ) = max(0 , ST( i )−K1) ;
50 end
51 [ pr ice C1 , n , I ] = normf i t ( exp(−r ∗T) ∗CT1) ;
52

53 %Function that we want to maximise
54 f = @( x ) mean ( ( x (1 ) ∗ST + x (2) ∗CT + x (3) ∗CT1 + (1−x (1 )−x (2 )

−x (3 ) ) ) . ˆ p/ p , 1 ) ;
55

56 % Sta r t i ng po int o f the opt imiza t i on a lgor i thm
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57 weights0 = [ 0 . 2 5 ; 0 . 2 5 ; 0 . 5 ] ;
58

59 % Matr ices f o r i n d i c a t i n g the l i n e a r c o n s t r a i n t s o f
i n e q u a l i t y Ax <= b

60 A = [ 1 1 1 ; 1−K 1 1 ; 1−K1 1−K1+K 1 ; −1 −1 −1];
61 b = [ 1 ; 1 ; 1 ; 0 ] ;
62

63 % Equal i ty non l i n e a r c o n s t r a i n t
64 eq = @( x ) x (1 ) ∗ p r i c e S + x (2) ∗ pr i ce C + x (3) ∗ pr ice C1 +

(1−x (1 )−x (2 )−x (3 ) ) ∗exp(−r ∗T) − W0;
65

66 % Minimizat ion opt ions
67 opt ions = opt imset ( ’ La rge s ca l e ’ , ’ o f f ’ , ’ MaxFunEvals ’ ,

1000 , ’ GradObj ’ , ’ o f f ’ , . . .
68 ’ Tolfun ’ , 1e−9, ’TolX ’ , 1e−9, ’ TolCon ’

, 1e−6, ’ Display ’ , ’ i t e r ’ ) ;
69

70 [ xopt 2 , f v a l 2 , ex i tF l ag ] = fmincon (@( x ) −f ( x ) , weights0 ,
A, b , [ ] , [ ] , . . .

71 [ ] , [ ] , @( x ) non l in con (x
, eq ) , opt ions ) ;

72

73 %% THREE Cal l opt ions
74

75 % Simulate va lue o f the th i rd Ca l l opt ion
76 CT2= ones (Nsim , 1 ) ; K2 = 1 . 3 ;
77 f o r i = 1 : Nsim
78 CT2( i ) = max(0 , ST( i )−K2) ;
79 end
80 [ pr ice C2 , n , I ] = normf i t ( exp(−r ∗T) ∗CT2) ;
81

82 %Function that we want to maximise
83 f = @( x ) mean ( ( x (1 ) ∗ST + x (2) ∗CT + x (3) ∗CT1 + x (4) ∗CT2 +

(1−x (1 )−x (2 )−x (3 )−x (4 ) ) ) . ˆ p/ p , 1 ) ;
84

85 % Sta r t i ng po int o f the opt imiza t i on a lgor i thm
86 weights0 = [ 0 . 2 5 ; 0 . 2 5 ; 0 . 2 5 ; 0 . 2 5 ] ;
87

88 % Matr ices f o r i n d i c a t i n g the l i n e a r c o n s t r a i n t s o f
i n e q u a l i t y Ax <= b

89 A = [ 1 1 1 1 ; 1−K 1 1 1 ; 1−K1 1−K1+K 1 1 ; −1 −1 −1 −1; 1−
K2 1−K2+K 1−K2+K1 1 ] ;

90 b = [ 1 ; 1 ; 1 ; 0 ; 1 ] ;
91
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92 % Equal i ty non l i n e a r c o n s t r a i n t
93 eq = @( x ) x (1 ) ∗ p r i c e S + x (2) ∗ pr i ce C + x (3) ∗ pr ice C1 + x

(4) ∗ pr ice C2 + . . .
94 (1−x (1 )−x (2 )−x (3 )−x (4 ) ) ∗exp(−r ∗T) − W0;
95

96 % Minimizat ion opt ions
97 opt ions = opt imset ( ’ La rge s ca l e ’ , ’ o f f ’ , ’ MaxFunEvals ’ ,

1000 , ’ GradObj ’ , ’ o f f ’ , . . .
98 ’ Tolfun ’ , 1e−9, ’TolX ’ , 1e−9, ’ TolCon ’

, 1e−6, ’ Display ’ , ’ i t e r ’ ) ;
99

100 [ xopt 3 , f v a l 3 , ex i tF l ag ] = fmincon (@( x ) −f ( x ) , weights0 ,
A, b , [ ] , [ ] , . . .

101 [ ] , [ ] , @( x ) non l in con (x
, eq ) , opt ions ) ;

102

103 %% MERTON Problem ( Dynamic Asset A l l o ca t i on Problem )
104

105 x opt = (mu −r ) / ((1−p) ∗ sigma ˆ2) ;
106

107 rho = p∗( x opt ∗(mu−r ) + r − 0 .5∗ x opt ˆ2∗(1−p) ∗ sigma ˆ2) ;
108 fval Dyn = exp ( rho∗T) ∗W0. ˆ p/p ;
109

110 %% Print the r e s u l t
111

112 di sp ( ’ Optimal problem with ONE c a l l opt ion ’ ) ;
113 di sp ( ’ Weights ’ ) ; d i sp ( xopt 1 ) ;
114 di sp ( ’ Value o f p t f ’ ) ; d i sp(− f v a l 1 ) ;
115

116 di sp ( ’ Optimal weights with TWO c a l l opt ions ’ ) ;
117 di sp ( ’ Weights ’ ) ; d i sp ( xopt 2 ) ;
118 di sp ( ’ Value o f p t f ’ ) ; d i sp(− f v a l 2 ) ;
119

120 di sp ( ’ Optimal weights with THREE c a l l opt ions ’ ) ;
121 di sp ( ’ Weights ’ ) ; d i sp ( xopt 3 ) ;
122 di sp ( ’ Value o f p t f ’ ) ; d i sp(− f v a l 3 ) ;
123

124 di sp ( ’ Merton optimal problem ’ ) ;
125 di sp ( ’ Weight ’ ) ; d i sp ( x opt ) ;
126 di sp ( ’ Value o f p t f ’ ) ; d i sp ( fval Dyn ) ;
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