
POLITECNICO DI MILANO

School of Industrial and Information Engineering Master of Science in

Mathematical Engineering

IMPACT OF SENTIMENT ANALYSIS ON

AUTOMATIC FINANCIAL TRADING

THROUGH REINFORCEMENT LEARNING

Supervisor: Prof. Marcello Restelli

Co-supervisor: Dott. Lorenzo Bisi

Dott. Luca Sabbioni

Candidate:

Paolo Bonetti

893082

Academic Year 2018-2019

A chi c’è sempre stato.

Contents

Ringraziamenti x

Sommario xiii

Abstract xv

1 Introduction 1

1.1 Outline of Contents . 2

2 Sequential Decision Making 4

2.1 Sequential Decision Making . 7

2.2 Markov Decision Processes . 10

2.2.1 Problem Definition . 10

2.2.2 Return . 12

2.2.3 Policy . 14

2.2.4 Value Functions . 14

3 Reinforcement Learning 20

3.1 Dynamic Programming . 21

3.1.1 Prediction: Policy Evaluation 21

3.1.2 Control: Policy Iteration and Value Iteration 22

3.2 Value-Based Reinforcement Learning 24

3.2.1 Model-free Prediction . 25

3.2.2 On-Policy Model-Free Control 28

3.2.3 Off-Policy Model-Free Control 29

3.2.4 Fitted Q-Iteration (FQI) . 31

3.3 Policy Search Reinforcement Learning 33

3.3.1 Policy Gradient Methods . 34

3.3.2 Trust Region Policy Optimization (TRPO) 37

i

3.3.3 Proximal Policy Optimization (PPO) 40

4 Natural Language Processing 42

4.1 Traditional Approach: Bag of Words Model 43

4.2 Deep Learning . 44

4.2.1 Artificial Neural Networks 45

4.2.2 Feedforward Neural Networks 45

4.2.3 Recurrent Neural Networks 50

4.2.4 Long Short Term Memory (LSTM) 52

4.3 Word Embedding . 57

4.3.1 Feedforward Neural Net Language Model (NNLM) 57

4.3.2 Recurrent Neural Net Language Model (RNNLM) 60

4.3.3 Word2vec . 62

4.3.4 Global Vectors for Word Representation (GloVe) 67

5 Datasets 70

5.1 S&P 500 Index . 70

5.2 Daily Sentiment . 74

5.2.1 Twitter Daily Sentiment . 74

5.2.2 Reuters Daily Sentiment . 76

5.3 Feature Extraction . 78

6 Feature Selection 82

6.1 Features and Target: Expanded Dataset 83

6.2 Random Forests . 86

6.3 Feature Selection with Random Forests 89

6.3.1 Random Forest Training . 90

6.3.2 Random Forest Results . 92

6.4 Regression of Sentiment on Residuals 95

6.4.1 The Procedure . 95

6.4.2 Training and Results . 96

7 RL Models and Results 99

7.1 MDP Models . 100

7.2 Algorithms . 103

7.2.1 The Procedure . 103

7.2.2 Trajectories and Parameters 104

7.2.3 Performance Measures . 105

7.3 Results . 106

7.3.1 Training . 106

7.3.2 Testing . 109

7.4 15 Minutes Data . 115

7.4.1 Datasets . 115

7.4.2 Feature Selection . 116

7.4.3 Reinforcement Learning . 121

8 Conclusion 123

8.1 Results . 123

8.2 Future Improvements . 124

Appendices 125

A Reinforcement Learning Performances 126

B 15 Minutes Results 133

B.1 Feature Selection Results . 133

B.2 Reinforcement Learning Results . 138

References 145

List of Figures

2.1 Supervised Learning mainly deals with problems of Regression (2.1a)

and Classification (2.1b): the first tries to predict a real value while

the latter tries to predict the group a feature belongs to. 5

2.2 Unsupervised Learning addresses the problem to group the input

data in classes where they are similar (Clustering, 2.2a) or to project

them in lower dimensional spaces (Dimensionality Reduction, 2.2b). 6

2.3 Scheme of the interaction between agent and environment at time t. 8

3.1 Scheme of Policy Iteration algorithm: it is a sequence of a policy

evaluation and a greedy policy improvement steps until the optimum

is reached. 23

4.1 Scheme of a neuron, the elementary cell of an Artificial Neural Net-

work. 46

4.2 An example of fully connected Feedforward Neural Network with

two hidden layers. 48

4.3 An example of Recurrent Neural Network with two hidden layers,

three-dimensional data and two-dimensional memory vector. 51

4.4 The unrolled version of a Recurrent Neural Network: at time t it

takes as input the memory signal of previous step ct−1 and the cur-

rent datum xt. Then, hidden layers (represented by the blue circle)

combine them producing the current signal, that is elaborated to

produce the output ht = f̂(xt) and the next memory signal ct. . . . 52

4.5 The unrolled version of LSTM: at time t it takes as input the mem-

ory signal of previous step ct−1, the previous prediction ht−1 and

current datum xt. Then, four specific hidden layers combine them

producing the current memory signal ct, and the prediction ht = f̂(xt). 53

4.6 The four gates of the LSTM network. 56

4.7 An example of NNLM with n = 3 context words. 59

iv

4.8 The network of the RNNLM. 61

4.9 Scheme of Skip-Gram model with n = 2. Different colours of arrows

are related to different context words. 63

4.10 Examples of regularities applying Word2vec algorithms. 66

5.1 Pie Chart of the sector subdivision of the index. 72

5.2 The first five market data. 73

5.3 The curve of the open value of the index in the available data. . . . 74

5.4 First five Twitter sentiment features referring to the two previous

days. 76

5.5 An extract of a Reuters Machine Readable News: every news is

equipped with a positive, negative and neuter sentiment score. More-

over, the tuple with key assetName encodes the asset the news is

referring to, which in this case is the NGEx Resources Inc. 77

5.6 First five Reuters sentiment features referring to the two previous

days. 78

5.7 The first five extracted features. 79

5.8 Five examples of proportional consecutive differences of open values

of the index among ten previous days. 80

5.9 Five rows of the dataset with all the available features derived both

from market and sentiment data. 81

6.1 One row of the dataset is transformed into nine different samples:

each one has a different combination of action and portfolio, leading

to a different target reward. 85

6.2 A Decision Tree with age and height as features and weight as tar-

get. Each set partitioning the data space is colored as the corre-

sponding leaf node. 87

6.3 An example of Random Forest with n = 3 Decision Trees. 89

6.4 The blue line in the figures is the value of the action in each sample,

respectively belonging to train and test set. The red points are the

corresponding predicted rewards. From their values is clear that

they are positive when the action is 1, negative when it is -1 and

slightly below 0 when the action is 0. 93

6.5 Confusion matrices show the number of samples whose sign has been

correctly predicted and the number of misclassified samples. 94

6.6 Histogram of importance of best 15 features (as ranked in Table

6.2) with standard deviations. 94

7.1 Training curves of PPO and TRPO algorithms. Each point of a

curve is the mean train return over 49 days: a value of 0.03 cor-

responds to a mean gain of the 3%. The data related to the year

reported in the legend of each plot are the test set referring to that

curve, while the data of other years from 2009 to 2018 are its train-

ing set. 107

7.2 Baseline: average daily reward in each year always performing ac-

tion “1”. 111

7.3 Confidence intervals for the mean daily reward computed in 5 dif-

ferent trainings of PPO algorithm for each of the 10 validations and

for the final test. 112

7.4 Confidence intervals for the mean daily reward computed in 5 dif-

ferent trainings of TRPO algorithm for each of the 10 validations

and for the final test. 113

7.5 Confidence intervals for the mean daily reward computed in 5 dif-

ferent trainings of FQI algorithm for each of the 10 validations and

for the final test. 114

B.1 The blue line in the figures represent the value of the action in

each sample, respectively belonging to train and test set, which

can be 1, -1 or 0. The red points are the corresponding predicted

rewards. From their values is clear that they are always negative

independently from the action. 134

B.2 Histogram of importances of best 15 features for each of the two

Random Forests with related standard deviations. 135

B.3 The blue line in the figures represent the value of the action in each

sample, respectively belonging to train and test set, which can be

1, -1 or 0. The red points are the corresponding predicted rewards

computed without considering transaction costs. 136

B.4 Histogram of importances of best 15 features with related standard

deviations for each of the two Random Forests which consider the

reward without transaction costs. 137

B.5 Three different baseline performance scores are reported in these fig-

ures: the green points are the best possible average rewards achiev-

able in the four validation sets and in testing, computed by always

selecting the best possible action. The red and blue points are the

mean rewards obtainable always performing respectively the trivial

actions -1 and +1. These two baselines are repeated in the second

figure, which focuses only on them, to show their trend which is

not clearly understandable in first figure since they have an order

of magnitude less than the other baseline. 138

B.6 TRPO 15 minutes mean reward in validation and testing, repeating

the same model five times and computing the related confidence

intervals. 139

B.7 PPO 15 minutes mean reward in validation and testing, repeating

the same model five times and computing the related confidence

intervals. 140

B.8 FQI 15 minutes mean reward in validation and testing, repeating

the same model five times and computing the related confidence

intervals. 141

B.9 TRPO 15 minutes mean reward in validation and testing, without

considering transaction costs. 142

B.10 PPO 15 minutes mean reward in validation and testing, without

considering transaction costs. 143

B.11 FQI 15 minutes mean reward in validation and testing, without

considering transaction costs. 144

List of Tables

4.1 Examples of co-occurrence probabilities and their ratio. 67

5.1 The 10 companies with largest market capitalization. 71

6.1 Parameters tuning: the best parameters and the related Accuracy

score. 92

6.2 Feature ranking and performance of the Random Forest. 95

6.3 First Random Forest: same best parameters of Feature Selection

and similar performance. 97

6.4 Second Random Forest: best parameters and related performance. . 97

7.1 Parameters selected for the Random Forest Regression in FQI. . . . 105

7.2 FQI daily train and validation average reward for each model and

for each validation set. In all iterations from 1 to 10 the value is

exactly the same, so only one is reported. 109

7.3 Best parameters and the related Cross-Validation performance; train

and test accuracy scores of the final Random Forest Regressions. . . 118

7.4 Regression of sentiment on residuals: accuracy score of the first

Random Forests on the two datasets and related performance of the

second Random Forest which tries to predict the residuals through

sentiment principal components. 119

7.5 Target reward computed without fees: best parameters and the

related Cross-Validation performance; train and test accuracy scores

of the final Random Forest Regressions. 120

A.1 PPO Validation and Test reward performance. 127

A.2 PPO Validation and Test return performance. 128

A.3 TRPO Validation and Test reward performance. 129

A.4 TRPO Validation and Test return performance. 130

A.5 FQI Validation and Test reward performance. 131

viii

A.6 FQI Validation and Test return performance. 132

B.1 Feature ranking and performance of the two Random Forests trained

using Reuters or Twitter fifteen minutes datasets. 135

B.2 Feature ranking and performance of the two Random Forests trained

using Reuters or Twitter fifteen minutes datasets computing the

target reward without considering transaction costs. 137

Ringraziamenti

Con questa tesi si conclude un lungo percorso da studente, con molti sacrifici e

soddisfazioni, per questo desidero ringraziare tutti quelli che hanno condiviso parti

di questo viaggio con me.

Il primo ringraziamento va al Professor Restelli, che mi ha trasmesso la passione per

il Machine Learning durante il suo corso e mi ha dato l’opportunità di partecipare a

questo progetto, seguendone gli sviluppi con attenzione e supporto. Ringrazio an-

che Luca e Lorenzo per l’aiuto puntuale e preciso che mi hanno fornito, mostrando

grande serietà nel loro lavoro ma anche capacità di sdrammatizzare quando nec-

essario. Un ringraziamento infine a Banca IMI per l’opportunità concessami e a

CGnal, in particolare nella figura di Mattia Pedrini, per aver condiviso con me il

loro progetto.

Vorrei poi ringraziare i miei genitori, che mi hanno dato la libertà e il sostegno di

intraprendere la mia strada, anche quando prevedeva di attraversare mezza Eu-

ropa in auto.

Grazie di cuore a Fabiola, per gli otto anni trascorsi insieme, per tutte le es-

perienze che abbiamo vissuto, per avermi reso quello che sono e per tutto l’aiuto

con questa tesi, non ce l’avrei fatta senza. Grazie anche alla sua famglia, che mi

ha accolto come un figlio.

Grazie a tutti gli amici di sempre: Povvo e Giulia che sono sopravvissuti a due

anni di convivenza con me, Pampe e Vitto con cui anche quando non ci vediamo

per mesi rimane la stessa complicità, Fede che è l’unica a non dare buca quando

organizzamo le vacanze, Marty che mi sopporta dall’asilo ed è la compagna di

banco che tutti vorrebbero, Verdi e i nostri tentativi di corsa che finiscono quasi

sempre con un aperitivo. Grazie anche a chi ha condiviso questi anni universitari

x

con me, voglio citare Anna che mi ha sopportato quasi ogni giorno (e soprattuto

nella preparazione di ARF), Chiara, Luca, Carolina, Martina, Federico, Paola.

Grazie infine a tutte le persone che non ho nominato ma che hanno fatto parte di

questo viaggio, perchè ciascuno è stato importante con il suo contributo.

Sommario

Il sentimento del mercato (market sentiment) è un indice della fiducia media degli

investitori sul mercato finanziario. Questo indice viene stimato ed utilizzato in

quanto strettamente legato alla predizione dell’andamento dei prezzi degli stru-

menti finanziari: ci si aspetta che, se la prevalenza degli investitori è fiduciosa, le

quotazioni azionarie avranno una tendenza al rialzo; se viceversa la maggioranza

degli investitori è pessimista, il trend sarà al ribasso. Tuttavia è in generale com-

plesso estrarre un indice di sentiment che sia robusto ed in linea con quello che

accadrà sul mercato, in quanto questo dipende da molti fattori, perciò svariati

metodi di calcolo sono presenti in letteratura. Con lo sviluppo delle Reti Neu-

rali e dell’Elaborazione del Linguaggio Naturale, uno dei possibili stimatori del

sentimento del mercato è basato su metodi di Sentiment Analysis. Esso consiste

nell’estrazione di un indice di sentiment a partire da news o testi riguardanti le

compagnie quotate o il mercato finanziario stesso.

In questo progetto vengono analizzati indici di sentiment estratti da news di

Reuters e tweets provenienti da Twitter riguardanti le compagnie che compon-

gono l’indice S&P 500. In particolare, nella prima parte della tesi si effettua

un’ampia analisi delle principali tecniche di Reinforcement Learning e di Natu-

ral Language Processing. Successivamente, dopo un’attenta analisi degli indici di

sentiment disponibili e delle serie storiche dell’S&P 500, il presente lavoro si focal-

izza in primo luogo sulla determinazione dell’efficacia di questi indici di sentiment

nella predizione del trend dell’S&P 500 mediante l’utilizzo di metodi di Supervised

Learning, con l’obiettivo finale di addestrare un agente di Reinforcement Learning

in grado di fare trading generando un profitto.

Parole Chiave: Machine Learning, Reinforcement Learning, Elaborazione del Lin-

guaggio Naturale, Reti Neurali, Sentiment Analysis, Trading Automatico

xiii

Abstract

Market sentiment is an index of investors attitude with respect to the financial market.

An estimate of this index can be useful to traders since it is correlated with the trend

of stock prices: if the majority of investors has a positive sentiment, stock prices will

probably have an increasing trend; on the other hand, if the common feeling of investors

is negative, a downward trend is expected. However, it is complex to design a robust

estimator of the market sentiment able to predict the market trend, since it depends on

many different factors, therefore several estimators are applied in the literature. In the

last decade, with the growth of the applications based on Artificial Neural Networks and

of Natural Language Processing algorithms, one of the methods introduced to estimate

the market sentiment is the application of Sentiment Analysis methods. In particular,

they are exploited to extract a sentiment index based on news and documents concerning

listed companies or the financial market in general.

This project analyses sentiment values extracted from Reuters news and from tweets

of Twitter regarding the companies belonging to the S&P 500 index. Specifically, in

the first part of this thesis an overview on main Reinforcement Learning models and

algorithms and on Natural Language Processing techniques is proposed. Then, after an

extensive analysis of the available sentiment features and of the historical series of the

S&P 500, the focus of the present work is firstly on the determination of the efficacy of

these sentiment features on the prediction of the trend of the S&P 500 index through

Supervised Learning methods, with the final purpose to train a Reinforcement Learning

agent able to profitably trade on the U.S. Stock Market.

Parole Chiave: Machine Learning, Reinforcement Learning, Natural Language

Processing, Artificial Neural Network, Sentiment Analysis, Automatic Trading

xv

Chapter 1

Introduction

Every second, on average, 6000 tweets are published on Twitter, which corresponds to

500 million tweets per day. Reuters provides one of the most advanced services for the

analysis of news, where each news is already encoded with a sentiment signal. Therefore

a reasonable idea is to elaborate the information coming from news and tweets related

to the U.S. Financial Market to try to predict the future trend of the Market itself. It is

indeed intuitive to state that if the overall sentiment of people or news is positive, stock

prices will increase since people are confident and they will buy on the Market, while if

the sentiment is negative, stock prices will decrease because people will tend to sell their

stocks.

In the last two decades, Machine Learning has experienced exponential growth thanks

to the improvement of the computing infrastructures, which made possible both to store

large amounts of data and to use them to train algorithms with improved computational

speed. Moreover, Machine Learning techniques are the most logical tools for the ex-

traction of information from texts and large amounts of tweets, which can be useful for

predicting Market trends.

Despite the enthusiasm due to the many outstanding results of the application of Machine

Learning algorithms on real problems, it is necessary to provide statistical evidence on

the effectiveness of the application of such algorithms on the specific problem. In par-

ticular, two questions arise regarding the application of Machine Learning to exploit

sentiment features from tweets or Reuters news with the purpose of predicting the Mar-

ket trend. The first question is about the cause-effect relationship between sentiment

and Market trend: is the sentiment from Twitter or news the cause of a future change in

the trend of a Market index or is the trend of the index affecting the sentiment of tweets

and news? The other question is whether the selected sentiment values are consistent

estimators of the real Market sentiment, which is a random variable that depends on

many factors. Indeed, it may be possible that the selected sources or the extraction

process produce an estimate that is not relevant for the prediction.

This thesis investigates the importance of peculiar sentiment features based on tweets

and Reuters news referring to a given U.S. Market index, the S&P 500. Specifically, the

present work is developed on top of a project of Banca IMI led by CGnal consultants.

The original project produces a daily signal that suggests traders to buy or sell finan-

cial instruments based on the S&P 500 index, using as features the sentiment signals

extracted from tweets and Reuters Machine Readable News through the application of

Supervised Learning algorithms. In this work, the significance of such features on the

prediction of the S&P 500 index is investigated, mainly through the application of Re-

inforcement Learning algorithms. This choice is due to the fact that, if the performance

of the algorithms is satisfactory, Reinforcement Learning allows trading stocks automat-

ically, designing an automatic trader able to buy and sell stocks profitably. This thesis

can be useful for exploring a different approach with respect to the one adopted in the

main project, studying the significance of the available sentiment features from another

point of view and designing automatic traders. In particular, this work compares the

results obtained by applying Reinforcement Learning algorithms to models that have as

features historical series of the index, the available sentiment features or both, in order

to conclude whether sentiment features add informativeness in predicting the index or

the same results can be produced just by observing its historical series.

1.1 Outline of Contents

The structure of the present thesis is explained in this section, which describes the topics

covered in each chapter. In particular, they can be divided into two groups: Chapter

2, 3 and 4 give a theoretical overview of the state of the art of Reinforcement Learning

and Natural Language Processing, also introducing Artificial Neural Networks, while

Chapter 5, 6 and 7 show applications of the described techniques on the available data.

Chapter 2 introduces Machine Learning in general, defining its three main subfields:

Supervised, Unsupervised and Reinforcement Learning. Then, the focus is on Reinforce-

ment Learning models: Sequential Decision Processes, in general, are introduced and

Markov Decision Processes (MDPs) in particular are largely discussed.

After the definitions of the processes that allow modeling problems in terms of MDPs,

Chapter 3 introduces the main algorithms designed to solve them. In particular, al-

gorithms based on Dynamic Programming are firstly explained, then Reinforcement

Learning algorithms are discussed, which describe both Value Search and Policy Search

methods, with a particular focus on the three algorithms applied in the thesis: TRPO,

2

PPO and FQI.

Chapter 4 theoretically introduces Word Embedding procedures (especially explaining

Word2vec and GloVe algorithms), which are methods designed to transform words into

vectors, so that they become understandable by computers. Furthermore, in this chap-

ter, Artificial Neural Networks are described: they are a powerful Supervised Learning

technique exploited by some Word Embedding algorithms and they are also useful for

understanding some applications performed in the following chapters.

Chapter 5 introduces the available datasets: historical series of the S&P 500 index

and daily sentiment from Twitter and Reuters. Some additional features are also ex-

tracted starting from the available ones.

In Chapter 6 Supervised Learning algorithms, specifically Random Forest Regression,

are applied to explore the importance of the available features for reward prediction. In

particular, two procedures are followed: a Random Forest that ranks all the available

features and another Random Forest-based procedure more focused on the sentiment

features.

In Chapter 7 three models are described as MDPs, the three selected Reinforcement

Learning algorithms are applied to them and testing results are shown and commented

on. Additional performance measures regarding the testing of these algorithms can be

found in Appendix A. Moreover, Section 7.4 presents an overview of the application of all

the techniques applied in Chapter 5, 6 and in previous sections of Chapter 7 on datasets

with data available every fifteen minutes, whose main results are reported in Appendix B.

Finally, in Chapter 8, the main conclusions drawn through the thesis are summarized

and some possible improvements are discussed.

3

Chapter 2

Sequential Decision Making

Machine Learning (ML) is a branch of computer science and a sub-field of Artificial

Intelligence, whose aim is to extract information from data that can be used in order to

make decisions on new data. In particular, ML can be divided into three main sub-fields:

• Supervised Learning: given a dataset D = {(xi, ti) | i = 1, 2, ..., n}, called

training set, where each element (sample) is a tuple (xi, ti), of which xi is the

vector of input features and ti is the related target output, the goal in Supervised

Learning is to estimate the unknown model (basically a function) that produces

the output ti from its related input xi. Estimating this function is useful in order

to produce the correct output given a new set of inputs (the test set).

The main problems of Supervised Learning can be divided into three groups:

1. Classification, where the target is one of K discrete classes and the goal is

to assign each input xi ∈ Rm to a class. An example of Classification between

two classes can be to decide if a human being is healthy or sick given some

medical tests, while a multi-class problem can be to decide the nationality

of a person given a picture of her face.

2. Regression, where the output is a continuous number ti ∈ R and the goal is

to learn a mapping from the input xi ∈ Rm to the target ti. Applications of

Regression can be predict Stock Market prices given some context features,

predict the age of a person given her picture, or predict the value of a house

knowing its location and dimension.

3. Probability Estimation, where the target is a probability distribution over

some possible events and the goal is to learn a mapping able to associate each

input xi ∈ Rm to a probability distribution over some possible events. For

example, if the purpose is to predict the next word in a sentence given the

n previous ones, it outputs a probability distribution over all words.

(a) An example of Regression: taking the

percentage of lower status population as

input, the algorithm predicts the median

value of houses in thousands of dollars.

(b) An example of Classification: given

the length and the width of the sepal of

iris flowers, the algorithm classifies each

flower in one of three different species.

Figure 2.1: Supervised Learning mainly deals with problems of Regression (2.1a)

and Classification (2.1b): the first tries to predict a real value while the latter tries

to predict the group a feature belongs to.

• Unsupervised Learning: given a training set D = {xi | i = 1, 2, ..., n}, made

only by a set of inputs xi ∈ Rm, the goal of Unsupervised Learning is to compute an

efficient representation of the inputs. This kind of approach is called unsupervised

since there is no target, the purpose is to learn something about the data and the

relationships among them. This is done in two main directions:

1. Clustering, where data are grouped by the algorithm in order to maximize

the similarity among data in the same group and to minimize it among data

in different groups. It is important to notice that this approach is very

different from Classification, since here the groups are not given by a target

but they are chosen by the algorithm exploiting the properties of the inputs.

There are some examples in medicine, where Clustering algorithms can group

images of tissues from health and sick people in order to find some unknown

features determining the illness, or in web advertising, where algorithms can

divide customers in different groups of people that probably like the same

products.

2. Dimensionality Reduction, that maps the input data into a lower dimen-

sional space, through a transformation that may be linear or not depending

on the method. The most famous example is Principal Component Analysis

(PCA), that projects the data in the directions that maximize their variance.

5

(a) An example of Cluster-

ing: some points form three

bubbles in the Cartesian plane

and a ten-groups clustering al-

gorithm identifies clearly the

three circles and other seven

single points that can be con-

sidered outliers.

(b) An example of Dimen-

sionality Reduction: applying

PCA to the dataset already

used in 2.1b where the inputs

are now four (width and length

of sepals and petals of the flow-

ers), data are projected in two

dimensions keeping the 96% of

the original variance.

Figure 2.2: Unsupervised Learning addresses the problem to group the input data

in classes where they are similar (Clustering, 2.2a) or to project them in lower

dimensional spaces (Dimensionality Reduction, 2.2b).

• Reinforcement Learning: it aims to find a function which outputs the action

leading to the best cumulative reward that an agent can take when observing

a dynamic environment (usually modeled as a Markov Decision Process, which

will be widely discussed in Section 2.1). In particular, the training set D =

{(si, ai, s′i, ri) | i = 1, 2, ..., n} is composed of 4-tuples where si represents the

current state, ai the chosen action, s′i the next state and ri the associated reward.

Therefore, the idea of Reinforcement Learning is to learn an optimal policy π∗(s)

that associates to each state the optimal action to be performed on it. Basically,

algorithms in this field learn the best actions that an agent can perform given the

current state in order to maximize the long term reward. Some examples can be

an algorithm that tells a robot how to move in a room in order to reach a certain

position, an algorithm that trades actions on the Stock Market, or an algorithm

able to win a chess game against a human.

More details and algorithms on Supervised and Unsupervised Learning can be found

6

in [7] and [47]. In this chapter and in Chapter 3 the focus is on Reinforcement Learning,

that is the core field of study of this thesis ([42] is the reference book regarding RL).

In particular, in Section 2.1, Sequential Decision Making (SDM) in general is presented.

Then, in Section 2.2, the focus is on Markov Decision Processes, that are a particular

and widely used class of SDM models. Finally, algorithms designed to solve known and

unknown processes modeled as MDPs will be discussed in next chapter.

2.1 Sequential Decision Making

The general problem studied by Reinforcement Learning is how to select actions in order

to maximize a numerical reward. The learner must decide the actions to perform based

on the current state, so it has to try many actions in different states in order to decide

which ones lead to better rewards. Moreover, actions do not affect only the next imme-

diate reward, but they also determine the next state, so they influence all subsequent

rewards and it may even happen that an action producing a little or negative immediate

reward is the best one because it leads to a state where it is possible to gain a huge

future reward. These two important aspects, long term consequences of actions (and the

focus on the cumulative rewards, not only on the immediate one) and the exploration of

many different states by performing different actions, make this kind of decision making

problem challenging and difficult to optimize.

Another main aspect of these kind of problems, that is not in common with Supervised

or Unsupervised Learning, is the trade-off between exploration and exploitation. In

order to discover actions that lead to a better reward it is necessary to explore different

state-action combinations, although trying actions never performed before may lead to

some loss; on the other hand, actions tried in the past that produced a good reward

might be preferred, so what is already known should be exploited. Many RL algorithms

address this problem by trying many different actions and repeating them many times

in order to have a reliable estimation of the expected reward of each action, then after

many iterations they progressively become less explorative and start to focus on actions

that appears to lead to best cumulative reward.

The basic structure of a Sequential Decision Making Problem is shown in Figure 2.3: at

each step t the learner, called agent, receives from the outside (the environment) the

observation ot of current dynamics of the process. Then, the agent performs an action

at and it finally observes the reward rt+1 and next observation ot+1. The basic idea is

that the most important features of the problem are summarized inside the observation,

so that the agent is able to perform an action among a set of available actions A by

observing ot and knowing what happened in past iterations. Then it observes the imme-

7

Figure 2.3: Scheme of the interaction between agent and environment at time t.

diate reward due to the performed action, remembering that is not sufficient to decide

whether the selected action is good or not, since it will influence all future observations

and rewards.

In this setting the history (ht) is defined as the sequence of observation-action-reward

at each timestep up to t: ht = {a1, o1, r1, ..., at, ot, rt}. This set is important since the

next rewards and observations may depend on what happened before. Indeed, the agent

will accordingly select next action and the environment will consequently produce next

observation and reward based on the history ht. The state st is the information used

to determine what will happen next, so it is formally a function of the history:

st = f(ht). (2.1)

In general, the environment has a private representation of the state set , that is what

it uses to produce the next tuple observation-reward. On the other hand, the agent has

another representation of current state sat , that is the information it uses to select the

next action based on the history. Moreover, the environment can be deterministic or

stochastic. In the first case the action performed by the agent univocally determines

the next state and the reward, while in a stochastic environment the action does not

uniquely determines the next state and reward, which may be different performing two

different times the same action in the same state.

Summing up, in a general Sequential Decision Making Problem, at, ot, rt are exchanged

between agent and environment at each iteration. They are added to the history of

8

the episode and both agent and environment have a private function that elaborates

the history producing their state. The agent uses its own (sat) to decide next action to

perform, while the environment uses it (set) to elaborate next observation and reward. In

order to simplify the problem, many Reinforcement Learning applications are designed

using the hypothesis of fully observable environment, which means that the agent

directly observes the environment state, so that:

ot = sat = set . (2.2)

This is the hypothesis that will be considered from now on in this thesis, since the discus-

sion of main aspects of RL is made easier, because all that is needed to make decisions is

explicitly given to the agent. However, in some problems it is not possible to impose the

environment to be fully observable: they are called Partially Observable Problems

and their complexity is that, since the agent does not know exactly the current state,

it must consider a probability distribution among all possible states at each iteration,

called belief [24].

In conclusion of this overview of Sequential Decision Making, that is the basic struc-

ture of a Reinforcement Learning Problem, there are some examples that show real

world applications which can be modeled as SDM problems:

• Rubik’s cube: it has a finite number of possible configurations (states) and each

action, that is a move of a side of the cube, leads to a deterministic state.

• Chess: it is deterministic and finite but the number of possible states is very huge,

so in practice it is not possible to explore every state-action pair.

• Blackjack : it is still a game with a finite number of states but the transition from

one state to the next one is stochastic, since it is not known what will be the next

card.

• Pole balancing : it is a deterministic problem but the possible states (that can

be modeled with position, velocity, angle of the pole, derivative of the angle) are

infinite, since position, velocity and angle are continuous variables.

The examples above are all problems where RL algorithms are useful. In fact the dynam-

ics of the environment are unknown (next card of a deck), difficult to be solved exactly

(the position of the pole is a system of partial differential equations) or the model of the

environment is too complex to be explicated (the game tree of chess is 10123, it is not

possible to enumerate all possible solutions in order to find the best one). The power

of RL algorithms is that they address this kind of problems by exploring some possible

solution and maximizing the expected value of the cumulative reward without the need

of the full knowledge of the problem.

9

2.2 Markov Decision Processes

In this section specific SDM problems called Markov Decision Processes (MDPs) are

explained [4]. They are a subset of Sequential Decision Making problems that have some

properties making them simpler. Moreover the majority of RL problems are modeled

as MDPs, so they are very important and all applications presented in this thesis are

modeled in this way.

2.2.1 Problem Definition

In an SDM problem the state signal st may contain all the information needed to choose

the action to perform at. This kind of state is said to have the Markov property, which

intuitively means that ”the future is independent from the past given the present”.

Hence, in order to make the next decision and to elaborate next state and the reward,

it is enough to use the information given by the actual state, without looking back to

past states.

Definition 2.2.1 (Markov Property). A stochastic process Xt is said to be Markovian

if:

P(Xt+1 = j|Xt = i,Xt−1 = kt−1, ..., X1 = k1, X0 = k0) = P(Xt+1 = j|Xt = i). (2.3)

The formal Definition 2.2.1 can be applied to SDM problems considering the state

signal to be a stochastic process St with a certain probability distribution defined over

all states to be in that state given the history, so if Markov property holds:

P(St+1 = s′|At, St, St−1, At−1, , ..., S1, A1, S0, A0) = P(St+1 = s′|St, At). (2.4)

This means that a state signal has the Markov property if it is enough to know last

state and the action performed in order to know the probability distribution over all

states about what will be the next one.

Moreover, the probabilities P(St+1|St, At) are called transition probabilities. A com-

mon assumption made on RL environments is that the transition probabilities are sta-

tionary.

Definition 2.2.2 (Stationary Transition Probabilities). Transition probabilities in a

Markovian stochastic process Xt are said to be stationary if they are time invariant. In

this case:

P(Xt+1 = j|Xt = i) = P(X1 = j|X0 = i) = pi,j . (2.5)

10

The Markov property in RL is particularly important mainly for two reasons. Firstly,

it is a mathematical property that simplifies real world situations, assuming they are

fully described by last state, but this simplification is usually reasonable and it allows

to formulate many theoretical results. The second reason is a memory issue: for a long

episode it is much faster and memory efficient to store and use the last state signal

without the need of all previous ones, which is possible if Markov property holds.

A Reinforcement Learning problem that satisfies the Markov property and it is fully

observable is called Markov Decision Process (MDP) and it is formalized in Defi-

nition 2.2.3 [34].

Definition 2.2.3 (Markov Decision Process). A Markov Decision Process (MDP) is a

Markovian stochastic process defined by the tuple < S,A, P,R, γ, µ >, where:

• S is the (finite) set of all possible states;

• A is the (finite) set of all possible actions;

• P is the stationary transition probability matrix defining P(s′|s, a);

• R is the reward function R(s, a) = E[r|s, a]. The reward in a state-action pair

(s, a) is defined as the expected value of the random variable r since in general the

reward can be stochastic, meaning that performing the same action in the same

state does not always lead to the same reward;

• γ is the discount factor γ ∈ [0, 1];

• µ is the probability distribution over all states modeling the probability of a state

to be the initial one (in the finite case µ is the set of initial probabilities µi =

P (s0 = i), ∀i ∈ S).

Remark. In the continuous case (or more generally when the MDP is not finite) the

transition matrix is generalized by a probability density function t(s, a, s′) and the initial

probability by another probability density function g(s), such that:∫
S′
t(s, a, s′)ds′ = P(st+1 ∈ S′|st = s, at = a), (2.6)

which denotes the probability that next state is in the region S′ given the state-action

pair (s,a); ∫
S0

g(s)ds = P(s0 ∈ S0), (2.7)

defining the probability that the initial state is in the region S0.

11

Summing up, the MDP is defined by: all the states and actions that the agent can

perform; all transition probabilities to move in a state given the previous state-action

pair; the reward function that associates to each tuple state-action the expected imme-

diate reward; the probability distribution that associates to each state the probability

to start an episode in it; the discount factor, which represents the idea that immediate

reward is better than waiting for it, whose importance is widely discussed in next sub-

section. Finally, if the sets of states and actions are finite the process is called finite

MDP.

2.2.2 Return

After the definition of the problem, it is necessary to precisely define what is the goal

of an agent. As already discussed, it is not enough to consider as goal the next scalar

reward. For example, there can exist an action with a little or negative immediate

reward leading to a state where it is possible to gain a huge reward at next iteration.

The easiest idea is to consider as goal for the agent the maximization of the cumulative

reward, that can be expressed as the sum of all the rewards received in an episode. In

RL there exist different reward functions used to measure the cumulative reward:

• total reward, that is exactly the sum of all rewards received during the episode:

V =
∞∑
i=0

ri+1; (2.8)

• average reward, that is the mean reward received in the episode:

V = lim
n→∞

r1 + ...+ rn
n

; (2.9)

• discounted reward, that is the sum of the rewards discounted by the discount

factor:

V =
∞∑
i=0

γiri+1, (2.10)

which has the advantage to be bounded by rmax
1−γ if the reward function R(s, a) is

bounded, so that there are no divergence issues in the sum when an episode is

infinite.

Among the possible cumulative reward functions, the most widely used in RL is the

discounted reward, since it considers all the rewards and applies the discount factor γ to

solve divergences of a sum in a more efficient way than the asymptotic mean. Moreover,

it is important to consider the discount factor not only for mathematical convenience

12

but also for several intuitive reasons. First of all, the transition between a state and an-

other is a stochastic process, so it is logical that the certain reward gained at the current

iteration has more value than the stochastic one that may be possible to gain some iter-

ations later, because there is more uncertainty on it. Another important reason is that,

for example in finance, immediate rewards can lead to more interest than delayed ones,

so it is particularly valuable in this field. More generally, animals prefer immediate re-

ward rather than a delayed one: having something valuable as soon as possible is always

preferred. These considerations highlight the importance of discounting the cumulative

reward as done in Equation 2.10. However, when the MDP is finite and an episode that

it generates is certainly finite too, it is also possible to use the undiscounted cumulative

reward of Equation 2.8. This is done when the purpose is to consider all rewards to have

the same importance. On the other hand, in applications where there can be infinitely

long episodes and there is no discount factor, the cumulative reward is modeled as in

Equation 2.9.

Taking inspiration from the discounted total reward, it is possible to introduce a key

element in RL, the return.

Definition 2.2.4 (Return). The return vt is the total discounted reward from time-step

t:

vt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑
k=0

γkrt+k+1. (2.11)

The return is important in evaluating the value of performing a certain action in a

state of an MDP. The idea is that the value of the action taken at time t are all the

rewards received from t to the end of the sequence, since the action influences all the

next iterations. Moreover, the sum is discounted since the value of receiving a reward r

after k + 1 iterations is less than receiving it immediately, in particular it is considered

to be γkr. By definition, the cumulative discounted reward is exactly the return from

iteration 0, v0, so the return is a generalization of the cumulative discounted reward

that can be computed at any step. Indeed, the return is often computed during the

learning process because it is possible to evaluate a different return in each time-step,

that is more informative than using just one cumulative discounted reward to extract

information from an entire sequence sampled following the MDP (this sequence is called

episode).

It is important to notice that, because of the stochasticity of the process, the purpose of

the agent is not simply to maximize the return vt, but the expected return E[vt|st = s]

because, as already explained, the return vt is a random variable since the model is a

stochastic process, so next states and returns may differ repeating the same actions mul-

tiple times.

13

Summing up, starting from the idea of considering as goal of the agent the cumula-

tive reward computed as sum of rewards it is often better to discount it. The discounted

cumulative reward also leads to the introduction of the return, that is almost the same

computation truncated from a certain time-step to the end of an episode. The return is

important to describe the value of each state, in particular the expected return is used to

take into account the stochasticity of the process, as will be explained in Section 2.2.4.

2.2.3 Policy

Once the problem has been defined in terms of MDPs and the goal of the agent as

(discounted) cumulative reward, it remains to formalize what is meant by solution of

the MDP. In ML the “result” is a policy function, that at any given state, outputs the

action to perform.

Definition 2.2.5 (Policy). A policy is a function π : S ×A→ [0, 1] such that, for each

state s ∈ S, it is a probability distribution over all possible actions:

π(a|s) = P(a|s), ∀a ∈ A. (2.12)

Remark. If the action space A of an MDP is continuous, in any state s, the policy π(s)

is generalized as a probability density function on the action space.

In a MDP it is possible to exclusively consider stationary and Markovian policies

(depending only on the current state and action) since it is demonstrated that it always

exists an optimal policy with these characteristics. Moreover, it can be stochastic or

deterministic depending on the problem, but it will be shown that there always exists

an optimal deterministic policy. Finally, a trajectory is a sequence of state-action pairs

{s0, a0, s1, a1, ..., sn, an} obtained following the policy.

2.2.4 Value Functions

Many RL algorithms are focused on estimating how good is to be in a state. This can be

done by knowing the expected cumulative reward (return) from that state to the end of

the episode. Since the future rewards depend on the actions that the agent will perform

in next states, the value of a state can be computed only with respect to a particular

policy to follow when choosing actions. Therefore the idea of value functions is that it

is possible to define the value of each state of the MDP given a policy π. This is logical,

since the value of a state is not absolute but it depends on the action that is performed

on it.

Definition 2.2.6 (State-Value Function). The state-value function V π(s) of an MDP

is the expected return from state s following policy π:

V π(s) = Eπ[vt|st = s]. (2.13)

14

Another possible approach is to evaluate the value of each action in each state with

respect to a policy π. In this way it is easier to understand what is the value of each

action in each state, which can be useful when the algorithm has to choose the actions

that are better to perform.

Definition 2.2.7 (Action-Value Function). The action-value function Qπ(s, a) of an

MDP is the expected return from state s performing action a and then following policy

π:

Qπ(s, a) = Eπ[vt|st = s, at = a]. (2.14)

State-value function and action-value function can be estimated from experience by

producing many episodes following the policy, computing all returns and applying the

law of large numbers that ensures the empirical mean to converge toward the expected

value. On the other hand this kind of approach becomes impractical when the number

of states and actions is huge.

Action-value function and state-value function satisfy particular recursive relationships

called Bellman equations that are used in some RL algorithms.

Theorem 2.2.1 (Bellman Expectation Equation for State-Value Function). The state-

value function can be decomposed into immediate reward plus discounted value of next

state:
V π(s) = Eπ[rt+1 + γV π(st+1)|st = s]

=
∑
a∈A

π(a|s)

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V π(s′)

)
.

(2.15)

Remark. In a continuous MDP the sums in Equation 2.15 become integrals and both

the policy π(a|s) and the transition probabilities P (s′|s, a) become probability density

functions, as explained in previous Remarks 2.2.1, 2.2.3. In the following, the focus is

on finite MDPs, therefore the theory is exposed using sums, keeping in mind that the

same results can be reformulated in the continuous case.

In the first equivalence of Equation 2.15 the return at time t is rewritten as the

immediate reward rt+1 plus the discounted value of the next state. In the second equiv-

alence the expected value is computed explicitly: it is the sum over all actions of the

probability to play a certain action in the current state π(a|s) of the immediate reward

R(s, a) plus the discounted value of next state, that is computed iteratively using value

functions.

A similar result holds for the action-value function.

Theorem 2.2.2 (Bellman Expectation Equation for Action-Value Function). The action-

value function can be decomposed as immediate reward plus the discounted value of next

15

state-action pair:

Qπ(s, a) = Eπ[rt+1 + γQπ(st+1, at+1)|st = s, at = a]

= R(s, a) + γ
∑
s′∈S

P (s′|s, a)V π(s′)

= R(s, a) + γ
∑
s′∈S

P (s′|s, a)
∑
a′∈A

π(a′|s′)Qπ(s′, a′).

(2.16)

As in Theorem 2.2.1, the expected value is decomposed into the sum of immediate

reward R(s, a) plus the discounted value of next state, that is the sum over all states of

their values weighted by transition probabilities. It is important to notice that, since the

action is a parameter of the function, there is not the sum over probabilities of taking

the action, so the equation is easier than the one for state-value function. Finally, this

can be rewritten substituting the values V π(s′) with the action-value function, consid-

ering that the value of the state s′ is the sum over all possible actions a′ ∈ A of the

action-value function Qπ(s′, a′) weighted by the probability of taking that action in s′,

which is π(a′|s′).

Bellman equations are important in MDPs because they introduce a recursive rela-

tionship between value functions, allowing to express the value of a state in terms of the

value of other states. This suggests the possibility to use iterative algorithms to compute

these values.

It is possible to introduce two operators for the two Bellman equations that are use-

ful to deduce some properties.

Definition 2.2.8 (Bellman Operator for State-Value Function). Bellman operator for

the state-value function is the linear operator T π : R|S| → R|S| such that:

(T πV π)(s) =
∑
a∈A

π(a|s)

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V π(s′)

)
. (2.17)

Definition 2.2.9 (Bellman Operator for Action-Value Function). Bellman operator for

the action-value function is the linear operator T π : R|S|×|A| → R|S|×|A| such that:

(T πQπ)(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)
∑
a′∈A

π(a′|s′)Qπ(s′, a′). (2.18)

Bellman operators map value functions in value functions following Bellman equation

recursive relationships, so it is possible to compactly rewrite the Bellman equations as:

T πV π = V π; (2.19)

16

T πQπ = Qπ. (2.20)

These equations imply that the value functions are fixed points of Bellman opera-

tors. Moreover, they are linked with linear Equations 2.19 and 2.20 that, knowing the

MDP, can be solved to find the value functions explicitly. Finally, if γ ∈ (0, 1) then T π

can be proved to be a contraction with respect to the maximum norm.

Optimal Value Functions

It is possible to repeat all steps shown for value functions in a particular state-value

function and a particular action-value function.

Definition 2.2.10 (Optimal State-Value Function). The optimal state-value func-

tion V ∗(s) is the maximum state-value function over all policies:

V ∗(s) = max
π

V π(s). (2.21)

Definition 2.2.11 (Optimal Action-Value Function). The optimal action-value func-

tion Q∗(s, a) is the maximum action-value function over all policies:

Q∗(s, a) = max
π

Qπ(s, a). (2.22)

These two value functions are particularly important since they follow the best pos-

sible policy and they evaluate the best possible value of each state in the MDP. This

is the reason why they are called optimal and, once the optimal value function and the

policy followed by this function are known, the MDP can be considered solved.

Value functions also define a partial ordering over policies, since:

V π(s) ≥ V π′(s) ∀s ∈ S =⇒ π ≥ π′.

Starting from this consideration it is possible to define the optimal policy (π∗) as the

policy that is always better or equal than any other policy. The optimal policy is not

unique in an MDP but all optimal policies share the same (optimal) value functions

V ∗(s), Q∗(s, a).

The properties of optimal policies are shown in the following theorem.

Theorem 2.2.3. For any Markov Decision Process:

• There always exists at least one optimal policy π∗ that is better or equal than any

other policy: π∗ ≥ π ∀π;

• All optimal policies share the optimal state-value function: V π∗(s) = V ∗(s);

• All optimal policies share the optimal action-value function: Qπ
∗
(s, a) = Q∗(s, a);

17

• There always exists a deterministic optimal policy.

In particular, a deterministic optimal policy can be found by maximizing over Q∗(s, a):

π∗(a|s) =

{
1 if a = arg maxa∈AQ

∗(s, a)

0 otherwise
. (2.23)

This is a very powerful result because it shows that there always exists a determin-

istic optimal policy, that is not only easier to perform but it is also easy to extract from

optimal action-value function just by selecting in each state the action providing the

most value. This result is applied in a large group of algorithms that focus their at-

tention on the optimization of the action-value function, knowing that, having the best

action-value function, it is straightforward to extract an optimal deterministic policy

called greedy policy.

As in Theorems 2.2.1 and 2.2.2 optimal value functions can be expressed through specific

Bellman equations.

Theorem 2.2.4 (Bellman Optimality Equation for State-Value Function). Bellman

optimality equation for the optimal state-value function is:

V ∗(s) = max
a∈A

Q∗(s, a)

= max
a∈A

{
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)

}
.

(2.24)

In the first equivalence of the theorem the best value associated to a state is trivially

equated to the maximum of the optimal action-value function in that state. Then the

optimal action-value function is substituted by the immediate reward plus the sum over

all states of the value of next one weighted by the transition probability of moving in

that state, as already done in Theorem 2.2.2.

Theorem 2.2.5 (Bellman Optimality Equation for Action-Value Function). Bellman

optimality equation for the optimal action-value function is:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)V ∗(s′)

= R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
a′∈A

Q∗(s′, a′).
(2.25)

The two equivalences are derived through the same substitutions done for state-value

function in Bellman optimality Equation 2.2.4.

It is important to notice that both Bellman optimality equations contain a maximization,

18

leading them to be nonlinear.

As done in Definitions 2.2.8 and 2.2.9 it is useful to introduce the Bellman optimality

operators.

Definition 2.2.12 (Bellman Optimality Operator for State-Value Function). The Bell-

man optimality operator for the optimal state-value function is T ∗ : R|S| → R|S| such

that:

(T ∗V ∗)(s) = max
a∈A

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)

)
. (2.26)

Definition 2.2.13 (Bellman Optimality Operator for Action-Value Function). The Bell-

man optimality operator for the optimal action-value function is T ∗ : R|S|×|A| → R|S|×|A|

such that:

(T ∗Q∗)(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
a′∈A

Q∗(s′, a′). (2.27)

These operators are nonlinear, hence solving the optimal Bellman equations is com-

plex and does not exist a closed form solution as in Equations 2.19 and 2.20. On the

other hand, V ∗(s) (respectively Q∗(s, a)) is still a fixed point of its operator T ∗. More-

over, T ∗ is again a contraction with respect to the infinity norm.

All Bellman operators discussed in this section are contractions and value functions

are their fixed points. Therefore it is possible to apply the Banach-Caccioppoli fixed

point theorem [3] to show that each Bellman operator admits a unique fixed point (that

is its related value function). Moreover the theorem states that considering a generic

vector f ∈ R|S| and a policy π:

lim
k→∞

(T π)kf = V π, (2.28)

lim
k→∞

(T ∗)kf = V ∗. (2.29)

This result shows that, starting with an arbitrary vector that assigns a value to each

state, it is enough to apply many times the Bellman (optimality) operator in order to

learn the state-value function related to the policy π. The same result also holds for

(optimal) action-value functions.

Summing up, in this section all the components of a Reinforcement Learning prob-

lem have been discussed. The problem has been formalized as an MDP, the goal of the

agent has been explained in terms of (discounted) cumulative reward and the result of

an algorithm as (optimal) policy has been discussed. Finally, value functions have been

largely presented since they are the starting point of many algorithms. It remains to

introduce algorithms designed to solve these problems, which are shown in next chapter.

19

Chapter 3

Reinforcement Learning

Algorithms designed for solving MDPs can be divided into two main categories. Algo-

rithms for prediction take as input the MDP < S,A, P,R, γ, µ > and a policy π and

their output is an estimate of the value function V π. Basically, prediction algorithms

are designed with the idea of evaluating a given policy. On the other hand algorithms

designed for control take as input the MDP < S,A, P,R, γ, µ > and they produce as

output an approximation of the optimal value function V ∗ and the optimal policy π∗.

The purpose of control algorithms is therefore to “solve” the MDP.

The most intuitive idea to find the best policy is a brute force approach. Indeed

it is sufficient to enumerate all deterministic policies (knowing that there always exists

an optimal deterministic policy from Theorem 2.2.3), then it is possible to use Bellman

equations to evaluate each policy and the best one is the optimal deterministic pol-

icy. The problem of this naive approach is that the number of policies is exponential

(#Policies = |A||S|), so it becomes impractical for non-trivial problems and more com-

plex algorithms are necessary.

In this chapter many different algorithms for prediction and control are introduced. In

Section 3.1 the first solving algorithms based on Dynamic Programming are shown. They

are useful but not much applicable in real problems, since they assume full knowledge of

the model, so in Sections 3.2 and 3.3 Reinforcement Learning algorithms are explained:

they address prediction and control problems without assuming the full knowledge of

the MDP.

3.1 Dynamic Programming

The algorithms presented in this section are generally called Dynamic Programming

(DP). The term indicates a group of algorithms that exploit the sequential nature of the

problem (Dynamic) trying to optimize a program, in this case a policy (Programming),

by breaking it down into a collection of simpler subproblems. It is a very general approach

to solve problems that can be applied if they have two main properties:

• problems must have an optimal substructure, so the optimal solution can be de-

composed into subproblems (MDPs satisfy this property since Bellman equations

give recursive decomposition);

• problems must have overlapping subproblems, so that they recur many times and

it is possible to store and reuse the same solutions (value functons store and reuses

solutions).

The main drawback of this approach, which makes DP algorithms impossible to be

applied in many cases, is that it requires full knowledge of the MDP, a strong hypothesis

since knowing all the transition probabilities and the reward function is difficult in

MDPs modeling real problems and sometimes it is impossible, because the number of

states and/or actions may be infinite or the dynamics of the process may be unknown.

Sometimes it is even impossible to store them in memory due to the magnitude of the

number of states. However, the importance of DP approach is that it is a starting point

for many RL algorithms.

As discussed at the end of Chapter 2, value functions are the unique fixed point of

their related Bellman operators, moreover it is easy to extract an optimal policy from an

optimal value function as shown in Equation 2.23, therefore the focus of these algorithms

for prediction and control is on estimating and improving value functions.

3.1.1 Prediction: Policy Evaluation

For a given policy π, the Policy Evaluation algorithm computes an approximation of

the state-value function V π, that is an evaluation of the policy as needed. Recalling

that Bellman equations for the state-value function shown in Equation 2.15 are a system

of |S| linear equations with |S| variables V π(s), it is enough to solve the system (with

complexity O(|S|3)) to find the state-value function. The solution can be expressed in

matrix notation:

V π = (I − γP π)−1Rπ. (3.1)

To avoid the computations needed to solve a system of linear equations, that are complex

with a huge number of states, Iterative Policy Evaluation algorithm is proposed. This

algorithm iteratively applies the contraction property of Bellman operator in order to

21

find its fixed point V π. Recalling Equation 2.28, starting with arbitrary values assigned

to V (s), it is possible to update the value of each state toward the correct V π(s) by

applying Bellman operator:

Vk+1(s)←
∑
a∈A

π(a|s)

[
R(s, a) + γ

∑
s′∈S

P (s′|s, a)Vk(s
′)

]
. (3.2)

Basically, the update exploits the fixed-point theorem to produce, starting from

arbitrary values, a sequence that converges to the unique fixed point V π of Bellman

operator. Schematically:

V0 → T πV0 = V1 → (T π)2V0 = V2 → ...→ (T π)kV0 = Vk → ...→ lim
k→∞

(T π)kV0 = V π.

(3.3)

This sequence is ensured to be convergent to V π, so the algorithm formally converges

at the limit. In practice it is typically stopped when the quantity maxs∈S |Vk+1(s)−Vk(s)|
is sufficiently small, meaning that two consecutive updates are sufficiently similar to say

that the approximate result is near to the fixed point V π.

3.1.2 Control: Policy Iteration and Value Iteration

The objective of control is to find an optimal policy. Considering a deterministic policy

π the main step to improve it toward an optimal policy π∗ with Dynamic Programming

is called policy improvement. In a state s it is possible to improve the current policy

by choosing an action a 6= π(s) that is greedily better, namely it is the action that

maximizes the action-value function in that state:

π′(s) = arg max
a∈A

Qπ(s, a). (3.4)

Applying this greedy update, the value of each state improves, since

Qπ(s, π′(s)) = max
a∈A

Qπ(s, a) ≥ Qπ(s, π(s)) = V π(s), (3.5)

and the following theorem holds:

Theorem 3.1.1. Let π, π′ be two deterministic policies such that

Qπ(s, π′(s)) ≥ V π(s), ∀s ∈ S, (3.6)

then the policy π′ is not worse than π:

V π′(s) ≥ V π(s), ∀s ∈ S. (3.7)

22

Figure 3.1: Scheme of Policy Iteration algorithm: it is a sequence of a policy

evaluation and a greedy policy improvement steps until the optimum is reached.

The theorem ensures that the greedily updated policy can not be worse than the

current one, hence it can be an improvement or have the same value (V π = V π′), that

means

Qπ(s, π′(s)) = max
a∈A

Qπ(s, a) = Qπ(s, π(s)) = V π(s), (3.8)

which is exactly the Bellman optimality equation, implying that an optimal policy

has been found:

V π(s) = V π′(s) = V ∗(s) ∀s ∈ S. (3.9)

This kind of reasoning produces the following sequence:

π0 → V π0 → π1 → V π1 → ...→ π∗ → V ∗ → π∗.

Summarizing, it is possible to design an algorithm following these theoretical results

where each iteration is made of two steps as shown in Figure 3.1: the first is the eval-

uation of the current policy that can be done performing a prediction algorithm (for

example Policy Evaluation algorithm presented in Subsection 3.1.1); the second is the

improvement of the policy (for example the greedy policy improvement), generating

π′ ≥ π . This prediction algorithm is called Policy Iteration.

The main drawback of Policy Iteration algorithm is that at each iteration there is

a policy evaluation step that is ensured to converge only at the limit, so it may be very

slow to approach the correct value function. This is the reason why Value Iteration

algorithm has been introduced. The idea of Value Iteration is to exploit the properties

23

of the optimal Bellman operator in order to update the value function. Indeed, as shown

in Equation 2.29, applying many times the optimal Bellman operator to any vector in

R|S| updates it toward the optimal value function and, at the limit, it will converge to

the unique fixed point that is exactly the optimal value-function V ∗(s).

The update rule of the algorithm is therefore:

Vk+1(s) = max
a∈A

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)Vk(s
′)

)
= T ∗Vk(s), (3.10)

and the scheme of Value Iteration is:

V0 → V1 → V2 → ...→ V ∗. (3.11)

In contrast to Policy Iteration, there is no explicit policy during the updates and

intermediate value functions may be vectors of R|S| not corresponding to any policy of

the MDP. They are simply recursive applications of the optimal Bellman operators that

ensure the convergence to the optimal value functions (their fixed points).

In conclusion, all the algorithms presented in this section are based on state-value

functions and they are exponentially faster than the brute force approach. On the other

hand, their complexity is polynomial in the number of states, so in practice they can be

applied to problems with a few millions of states at most.

Exploiting Bellman equations it is also possible to apply Linear Programming (LP)

rather than Dynamic Programming [14]. The Linear Programming approach consists in

an optimization problem whose constraints are V ≥ T ∗(V) in order to update the value

function toward the optimal. It is also possible to exploit Dual Linear Programming

for an explicit interpretation of the policy updates. In this thesis LP methods are not

explained in detail because they become impractical much sooner than DP methods.

3.2 Value-Based Reinforcement Learning

As explained in previous section, Dynamic Programming algorithms designed to solve

MDPs modeling complex real world problems are not applicable in practice because

they require the full knowledge of the MDP. Reinforcement Learning (RL) algorithms

address the problems of prediction and control of an unknown MDP. They learn di-

rectly from episodes of experience, estimating the value function or the policy through

the optimization of an approximation of the expected return. RL algorithms try to

find the optimal policy sampling episodes made of sequences action-state-reward. Since

24

they exploit these sequences with many different approaches, it is useful to classify RL

algorithms in macro-categories that summarize their main characteristics.

• Model-Free vs. Model-Based: Model-Based algorithms are related to DP,

indeed they use an initial number of iterations to estimate the parameters of the

MDP, then they perform prediction or control on the estimated MDP using DP.

Model-Free algorithms use directly the samples to approximate and update value

functions and policies. Since the estimate of the MDP could be inaccurate and

lead to learn something different from the real problem, most of RL algorithms

are Model-Free.

• Value-Based vs. Policy-Based vs. Actor-Critic: The other main differ-

ence between RL algorithms is about the entity the algorithms try to optimize to

learn. Value-Based algorithms use samples to estimate the (optimal) value func-

tions, from which is easy, at the end, to extract a deterministic policy as done in

Equation 2.23. Policy-Based algorithms directly learn the policy, without storing

information about value functions. Finally, Actor-Critic methods use both value

functions and the explicit policy in the learning process.

Moreover, RL algorithms present other peculiar characteristics.

• On-Policy vs. Off-Policy: an on-policy algorithm uses the same policy to learn

the optimal one and to generate episodes, while off-policy methods use a different

policy, called behavioral, to generate the episodes.

• Online vs. Offline: an online algorithm updates its parameters (value functions

and/or policy) during the generation of data, while offline algorithms need a full

static dataset to perform the learning.

• Episodic vs Non-Episodic: some algorithms need a full episode to perform an

update, while others are able to learn from incomplete episodes (and they are the

only ones applicable to MDPs where episodes can be infinite).

In this section many Value-Based algorithms with different characteristics are explained.

In particular, Subsection 3.2.1 focuses on prediction with RL, Subsections 3.2.2 and 3.2.3

present algorithms for control respectively on-policy and off-policy. Section 3.3, on the

other hand, will focus on Policy-Based algorithms.

3.2.1 Model-free Prediction

The two methods presented in this section are Value-Based methods designed to evalu-

ate a given policy π.

25

Monte-Carlo Policy Evaluation (MC)

Monte-Carlo Policy Evaluation uses the empirical mean return to estimate the expected

return, that is exactly the Definition 2.2.6 of value function. It is a model-free, online

episodic algorithm. It has two variants: First Visit, which for every episode evaluates

the return of a state as the return from the first time state s is visited to the end of the

episode; Every Visit, which computes a different return every time state s is visited.

Basically at iteration k, after sampling a full episode (s1, a1, r2, ..., sT) following the

policy π, the algorithm computes the returns using First Visit or Every Visit variants.

Then, each new sample vt of the return related to each state st visited during the episode

is added to its value applying an incremental update of the average:

V (st)← V (st) +
1

N(st)
(vt − V (st)), (3.12)

where N(st) is the number of returns available for state st.

Once many episodes have been performed, the average of the returns related to any state

st is an estimate of V π(st).

First Visit MC is an unbiased estimator of the expected return (basically the value func-

tion), so the law of large numbers ensures that it converges to the exact expected return

when the number of episodes is huge. On the other hand, it needs many episodes to

compute a consistent estimate of the value function, since it produces only one return

for each state visited in an episode. Every Visit MC is instead a biased estimator, but

it needs less iterations to produce a reliable estimate of the value function. The main

drawback of Monte-Carlo approach is that it is episodic so it needs a full episode to

perform an update, therefore it may be slow if the MDP produces long episodes and it

is even not applicable when the MDP produces infinite episodes.

Temporal Difference Policy Evaluation (TD)

This is an online Model-Free approach that is able to learn from incomplete episodes,

speeding up the updates of the value function with respect to MC approach and allowing

to use the method also for infinite episodes.

Starting from the MC update rule, TD substitutes N(st) with a generic parameter α

and the sample of the return vt with an estimate rt+1 + γV (st+1), that is the immediate

reward plus the discounted value of next state. In this way the update rule becomes:

V (st)← V (st) + α(rt+1 + γV (st+1)− V (st)). (3.13)

With the approximation introduced on the sample return, it can be immediately

computed at time t+ 1 of an episode, without waiting until it ends.

TD is faster than MC, it produces a biased estimator of V π(st) but it has much lower

26

variance, since the complete return depends on many random action-state-reward tuples

produced during the episode, while TD update depends only on one random action, the

following random state and the random immediate reward. It can be proved that MC

algorithm converges to the minimum mean-squared error solution, while TD converges

to the solution producing the maximum likelihood MDP estimation.

Variants

It is possible to introduce some variants to TD that consider a different approximation

of the sample return.

• TD(n) estimates the return as the discounted sum of next n rewards plus the

estimated value of the n-th state:

v
(n)
t = rt+1 + γrt+2 + ...+ γn−1rt+n + γnV (st+n). (3.14)

Then the update is, as usual in TD:

V (st)← V (st) + α(v
(n)
t − V (st)). (3.15)

This approach allows to compute a less biased return for an increasing n, but it

needs n following steps to be computed, which increases the variance.

• Average TD(n) consists in approximating the return with different n-step re-

turns (v
(n1)
t , v

(n2)
t , ...) averaging them. For example,

v
(n)
t =

1

2
v
(n1)
t +

1

2
v
(n2)
t . (3.16)

• TD(λ) computes an approximation of the sample return vλt combining all n-step

returns v
(n)
t using weights λn−1(1− λ). The estimated return becomes:

vλt = (1− λ)
∞∑
n=1

λn−1v
(n)
t , (3.17)

with usual update rule for the state-value function:

V (st)← V (st) + α
(
vλt − V (st)

)
. (3.18)

With this kind of estimate, weights of returns are decreased polynomially: imme-

diate reward has weight 1−λ, the next one (1−λ)λ, the third (1−λ)λ2, and so on

until the end of the episode. In this forward view of the TD(λ), the advantage of

the immediate possibility to update the value function of current state is lost, since

the update needs all the rewards until the end of the episode. This is the reason

why TD(λ) algorithm has a backward view formulation, which is the algorithm

27

applied in practice. This kind of update takes into account the number of times a

state has been visited in the past iterations, with an exponential decreasing weight

depending on how long ago the state was visited last. The value that stores this

information is called eligibility trace, and it is:

et(s) =

{
γλet−1(s) if s 6= st

1 s = st
. (3.19)

The resulting estimated returns are used in the usual update rule:

V (st)← V (st) + αet(st) (rt+1 + γV (st+1)− V (st)) . (3.20)

In conclusion, algorithms for prediction are building blocks for control, since they are

able to evaluate a policy. TD(λ) is the summary of all algorithms presented, since with

λ = 0 it becomes equivalent to TD(0) while with λ = 1 it is equal to Monte-Carlo value

function estimate. All these algorithms are based on the idea of updating the state-value

function in order to produce a more and more accurate estimate of the value of a given

policy π in any state V π(s). These algorithms can be similarly applied to estimate the

action-value function Qπ(s, a).

3.2.2 On-Policy Model-Free Control

In this section are described some Reinforcement Learning algorithms aimed to find

the optimal policy π∗. In particular, they are Model-Free algorithms and they take

inspiration on DP combining it with algorithms for prediction. They are all on-policy

algorithms, so they learn and update a policy π directly sampling episodes following

policy π itself.

On-Policy Monte-Carlo Learning

Policy Iteration algorithm, explained in Section 3.1.2, is made of a policy evaluation step

of current policy (estimating V π) and of a policy improvement step (greedy).

This kind of reasoning can be repeated in this framework by computing the action-

value function following Monte-Carlo Policy Evaluation explained in Section 3.2.1 for

the policy evaluation step. It is necessary to estimate the action-value function because

it is not enough to use the state-value function for a greedy improvement of the policy

without knowing the MDP. In fact the greedy rule applied in policy improvement step

is:

π′(s) = arg max
a∈A

Q(s, a). (3.21)

Iterating the two steps until two consecutive updates are sufficiently similar, thanks

to the uniqueness of fixed points of Bellman optimal operators, it is possible to assert

28

that the results found are good approximations of Q∗(s, a) and π∗.

A more efficient update rule to ensure continual exploration is to try all actions in every

state with non-zero probability, selecting with probability 1 − ε the best greedy action

and with probability ε a random action:

π(s, a) =

{
ε
m + 1− ε if a = arg maxa∈AQ(s, a)
ε
m otherwise

. (3.22)

It is possible to prove that this ε-greedy policy update is better or equal than the

previous one, so that the policy improvement step following this rule is consistent and

it is preferable to the deterministic greedy update, which explores too few actions by

always selecting only one of them.

On-Policy Temporal-Difference Learning

TD for prediction has many advantages with respect to Monte-Carlo, being online, with

less variance and applicable to infinite sequences. Therefore the natural idea that follows

also for control is to use TD instead of MC in the policy evaluation step of the algorithm.

This approach is called SARSA algorithm, its policy evaluation step is done estimating

the action-value function Q(s, a) with the TD algorithm for prediction, that has update

rule:

Q(st, at)← Q(st, at) + α (rt+1 + γQ(st+1, at+1)−Q(st, at)) . (3.23)

Then the policy improvement step can be again the ε-greedy policy improvement

shown in MC control. By properly choosing the learning rate α, SARSA algorithm can

be shown to be convergent to the optimal Q∗(s, a).

Variant

As done for prediction, it is possible to update the action-value function using vλt in

a forward view or to apply eligibility traces to the past in a backward view. The

algorithm that applies one of the two options (usually backward is performed since it

can be updated immediately) is called SARSA(λ).

3.2.3 Off-Policy Model-Free Control

The following algorithms are again model-free and designed in order to estimate the

optimal policy. They are off-policy, so they learn and update a target policy π using

episodes sampled following a different behavior policy π̄. This approach is inspired

by how animals learn: they keep in mind the experience generated from old policies or

observing actions taken by other animals. This is very different compared to on-policy

approaches discussed before, where the policy is updated and the generated experience

is completely discarded when starting a new policy evaluation step.

29

Importance Sampling for Off-Policy Monte-Carlo and SARSA

Importance Sampling is a general statistical technique for estimating properties of a

random variable following a certain distribution x∼P having only samples from another

random variable following a different distribution x∼Q.

The rule for estimating the expected value is:

Ex∼P [f(x)] = Ex∼Q
[
P (x)

Q(x)
f(x)

]
. (3.24)

Importance Sampling can be applied to Off-Policy Monte-Carlo to evaluate current

policy π, producing sample returns following policy π̄. In order to produce an estimate

of the return for the policy π to be evaluated, Importance Sampling correction must be

considered:

vµt =
π(aT |sT)

π̄(aT |sT)

π(aT−1|sT−1)
π̄(aT−1|sT−1)

...
π(at|st)
π̄(at|st)

vt, (3.25)

where vt is the return computed following policy π̄. Then the usual action-value

function update can be performed:

Q(st, at)← Q(st, at) + α(vµt −Q(st, at)). (3.26)

Finally, the policy improvement step can be computed with the usual ε-greedy up-

date.

It is also possible to apply Importance Sampling to build an Off-Policy SARSA algo-

rithm, using the TD update of action-value function with Importance Sampling correc-

tion:

Q(st, at)← Q(st, at) + α

(
rt+1 + γ

π(at|st)
π̄(at|st)

Q(st+1, at+1)−Q(st, at)

)
. (3.27)

MC Off-Policy algorithm may increase the variance by iterating the estimate of re-

wards from t to the end of the episode. Moreover it can not be performed if π̄ is zero

where π is not zero. Therefore, to avoid this situation, the target policy is assumed by

the algorithm to be absolutely continuous with respect to the behavioral. The off-policy

version of SARSA has much lower variance since it uses only one Importance Sampling

correction and policies only need to be similar over one step. Both approaches have the

advantage, with respect to their on-policy version, to use the same episodes in every

iteration for estimating the value function, since they are generated by a different fixed

policy. This is computationally more efficient and similar to biological process of learn-

ing, since humans does not learn from zero at any moment but they use what happened

before in their experience to infer how to behave in a new situation.

30

Q-Learning

All the algorithms for RL control explained so far take inspiration from Policy Iteration

approach in Dynamic Programming. In Section 3.1.2 has been presented also the Value

Iteration algorithm for DP control. Hence, Q-learning is an off-policy RL algorithm

that aims to learn the optimal policy from experience sampled by a behavior policy

π̄, estimating the action-value function Q∗(s, a) in the same fashion of Value-Iteration

algorithm. Indeed, at each iteration, it updates the value of the action-value function

in a state st performing action at applying Bellman optimal operator. The resulting

update rule is:

Q(st, at)← Q(st, at) + α

(
rt+1 + γmax

a′∈A
Q(st+1, a

′)−Q(st, at)

)
. (3.28)

In this way, the behavioral policy can be random, or ε-greedy, since the update is

not performed by looking at the action that this policy will perform in next state. This

is the main difference between SARSA and Q-learning: the latter may be seen as an

Off-Policy version of SARSA that uses the behavioral policy to generate samples but

it updates the value functions independently from the policy. The algorithm does not

have a target policy improvement step but it only updates the action value function.

This is not a problem, since at the end of the algorithm it is straightforward to extract

a deterministic policy from the action-value function by picking the best action in each

state as done in Equation 2.23.

The importance of Dynamic Programming is now clear: by taking the idea from

Monte-Carlo algorithms (that in practice are difficult to apply) of generating episodes

to overcome the fact that the MDP is unknown, TD learning applies the same update

scheme of Iterative Policy Evaluation, while SARSA applies an update similar to Policy

Iteration and Q-learning applies an update in Value Iteration fashion.

In next subsection a particularly important algorithm is discussed. It is one of the three

algorithms applied to the environments designed in this thesis. It is presented now since

it is an off-policy algorithm as the ones of this section and it is based on an idea similar

to Q-Learning.

3.2.4 Fitted Q-Iteration (FQI)

FQI [16] is a model-free, off-policy and offline algorithm. It is designed in order to

learn a good approximation of the optimal action-value function Q∗(s, a) by exploiting

Value Iteration idea as Q-learning does. The innovative approach of FQI consists in the

application of Supervised Learning techniques in doing this.

Since the algorithm is offline, it considers a full dataset F containing the information get

from experience. In particular, each row of the dataset represents an interaction with

31

the environment, and it consists in a 4-tuple containing the current state, the action

performed, the immediate reward and the next state:

F =
{

(sit, a
i
t, r

i
t+1, s

i
t+1) | i = 1, 2, ...,#F

}
. (3.29)

In FQI the agent is not directly interacting with the environment generating samples

and updating a policy or a value function that can be improved toward the optimal, but

the starting point is the dataset of 4-tuples F that represents all the experience the

agent has collected that is exploited to infer an estimate of the optimal action-value

function Q∗(s, a). In complex real problems the possible combinations of actions and

states is huge (or infinite in a continuous problem), hence the dataset does not contain

all possibilities. To overcome this issue FQI applies a Supervised Learning regression

algorithm trained on the 4-tuples dataset with the action-value function as the target

function that must be learned. Once the regressor is trained, it can predict the value of

any state-action pair, so that it fully estimates the action-value function needed.

Specifically, at each iteration of the algorithm, the horizon in which the optimization of

the action-value function is performed increases of a step. At first iteration it estimates

Q∗1(s, a), the action-value function that is optimal only with respect to the next step,

i.e. the immediate reward. An approximation of this function can be done by applying

the regressor to a training set with as input the current state and the action performed

(st, at) and as target the immediate reward (rt+1). In a general N-th iteration, the es-

timated function will be Q∗N (s, a), the optimal action-value function with respect to N

steps (that, with sufficiently large N , will be a good estimate of Q∗(s, a)). At this step

the training set will be once again the couple (st, at) of current state and action, while

the target will be iteratively computed as the immediate reward plus the discounted best

value over N − 1 steps of next state. Indeed, the first step is univocally determined by

the action while the following N −1 steps have optimal value given by Q∗N−1(st+1, at+1),

that is the function that was approximated in previous iteration. The FQI procedure

can be summarized as shown in Algorithm 1.

Among all the value-based algorithms presented in this chapter, FQI will be applied

to the environments designed in this thesis since the dataset F needed by the algorithm

as input will be computed and explored in the Feature Selection presented in Chapter 6.

Moreover, FQI estimates the action-value function of unseen state-action couples, which

is crucial in the MDPs presented in this thesis, since the state will be made of Stock

Market values and sentiment signals, that are continuous variables, so all states can

not be explored directly, a required condition for convergence for SARSA or Q-Learning

algorithms.

32

Algorithm 1: Fitted Q-Iteration

Inputs: set of 4-tuples F = {sit, ait, rit+1, s
i
t+1}i=1:#F and a regression

algorithm.

initialization:

N ← 0

QN(s, a)← 0 ∀s ∈ S,∀a ∈ A
Iterations:

while stopping condition not reached do
N ← N + 1

Build the training set TS = {(ik, ok)}k=1:#F such that:

ik = (skt , a
k
t),

ok = rkt+1 + γmaxa∈AQN−1(s
k
t+1, a).

Use the regression algorithm trained on TS to learn the function

QN(s, a).

end

3.3 Policy Search Reinforcement Learning

All the algorithms considered so far in Reinforcement Learning are designed to learn the

value function of a given policy for prediction or to improve it in control. These methods

are called Value Search (or Value Based) methods. In this section, instead, methods

learn directly the policy, without the use of value functions, but improving directly the

parametrized policy with respect to a certain loss function. These methods are called

Policy Search (or Policy Based) methods.

In particular, the policy depends on a parameter vector θ ∈ Rd′ , so π(a|s, θ) is the

probability to perform action a in state s with parameter θ. The policy in general can

be parametrized in any way, so it is possible to assume the policy to be any function

that, given state, action and parameters, assigns the probability of choosing that action.

In particular, in a discrete MDP, the natural idea is to give a preference expressed by

a preference function h(s, a, θ) ∈ R to every state-action pair, and to apply the softmax

distribution:

π(a|s, θ) =
exp(h(s, a, θ))∑

a′∈A exp(h(s, a′, θ))
. (3.30)

In this way the result is the probability distribution of performing action a in state

s that respects the preferences expressed by the preference function. The preferences

may be parametrized as any function h: a common choice is a Deep Neural Network

(discussed in Section 4.2) where the parameter vector θ are the weights of the network,

but it can also be a simple linear function.

33

The main advantage of this approach is that the optimization performed by the algorithm

can be done directly to the policy parameters. This allows to improve the policy directly,

without using value functions and greedy policies, that lead to an indirect optimization

of the policy through value functions producing more variance. Intuitively, an update in

Policy Search aims to maximize the performance of the policy. This can be done using

the gradient ascent with respect to a certain performance measure J(θ) to update the

parameters toward an optimal policy:

θt+1 ← θt + α∇̂J(θt), (3.31)

where ∇̂J(θt) is a stochastic estimator of the gradient of the performance measure with

respect to θt, which is introduced because it is usually impossible to compute exactly

the gradient.

Policy Search methods that perform this kind of update are called Policy Gradient

Methods, since they focus on the gradient ascent for updating the policy.

Another advantage of Policy Search is that, updating the parameters of the (differen-

tiable) parametrized policy, it makes the changes on action probabilities a smooth func-

tion. This is not guaranteed in value search algorithms with ε-greedy policy, where the

action probabilities may change a lot for an arbitrary small difference of the action-value

function estimate. Indeed, when the best action has a value slightly better than another,

a small variation of the action-value function may lead to change the best action. This is

a concrete drawback of Value Based methods, since the action-value function is always

an approximation of the real one, so this situation can happen.

In next Subsection 3.3.1 Policy Gradient approach is described in more detail. Then in

Subsections 3.3.2 and 3.3.3 the focus is on two important Policy Search methods, that

are widely applied this thesis.

3.3.1 Policy Gradient Methods

The main step in Policy Gradient Methods is the update of the parameters, already

shown in Equation 3.31. The core of the update rule is to compute the gradient of a

performance measure J(θ), since the aim of the methods is to find the parameter vector

that maximizes it. This can be done exploiting a strong result that is the starting point

of many Policy Gradient Methods. First of all, a natural measure of performance of

a policy is the expected return following the parametrized policy, that is exactly the

Definition 2.2.6 of state-value function. So it is logical to consider:

J(θ) = Vπθ(s0), (3.32)

assuming s0 to be the common initial state of every episode. It is now possible to

enunciate the Policy Gradient Theorem.

34

Theorem 3.3.1 (Policy Gradient Theorem). Defining the performance measure J(θ)

as in Equation 3.32, its gradient is directly proportional to the following quantity:

∇J(θ) ∝ Eπθ

[∑
a∈A

Qπθ(St, a)∇θπθ(a|St, θ)

]
, (3.33)

considering St the random variable expressing the current state.

The Policy Gradient Theorem provides an analytical expression of the gradient of

performance needed in the gradient ascent update. Policy Gradient algorithms provide

ways to estimate this expression (an expected value) shown in Equation 3.33 with infor-

mation from experience (coming from sampling episodes).

REINFORCE

Recalling that the first approach used to estimate the return in ML has been Monte-

Carlo, the first Policy Gradient algorithm introduced in this section is REINFORCE

[44], that is Monte-Carlo Policy Gradient. Starting from Policy Gradient Theorem

3.33, it is possible to derive:

∇J(θ) ∝ Eπθ

[
Qπθ(St, At)

∇θπ(At|St, θ)
π(At|St, θ)

]
= Eπθ

[
Gt
∇θπ(At|St, θ)
π(At|St, θ)

]
, (3.34)

where At and St are random variables representing the state-action pair and Gt is

the random variable of the return from them. In REINFORCE algorithm the expression

inside the second expected value of Equation 3.34 can be computed in an episode and

it is considered a sample estimate of the expected value itself. In practice an iteration

of the algorithm consists in generating an episode following the current policy π(a|s, θ),
then for each step t of the episode it updates the policy parameters from the rule derived

above:

θ ← θ + αγtvt
∇θπ(at|st, θ)
π(at|st, θ)

, (3.35)

where vt is the return of the episode from step t to the end as introduced in Definition

2.2.4.

This algorithm is Monte-Carlo because it needs the return from the current step to the

end of the episode to perform the updates, so it can only update parameters after the

exploration of a complete episode. This means that REINFORCE presents all the issues

of Monte-Carlo approaches: it is unbiased but it has a huge variance and it may learn

slowly; it can only be performed on episodic MDPs (with a sufficiently small number

of steps in the episodes to be efficient); it needs to wait until the end of the episode to

update the policy. These are the reasons why some improvements to REINFORCE can

be useful.

35

Variants

• REINFORCE with baseline [33]: it is possible to subtract a baseline term to the

sample return in the update rule. This variation gives more importance to returns

that are greater than a baseline value b(st) assigned to a state st. In this way it

is not considered just the value of the return in an episode but it is scaled vith

respect to the baseline. The update rule at step t becomes:

θ ← θ + αγt(vt − b(st))
∇θπ(at|st, θ)
π(at|st, θ)

. (3.36)

A natural choice for the baseline may be an estimate of the state-value function of

current policy V π(st), that can be computed with one of the Value Search methods

discussed in Subsection 3.2.1. This procedure is logical but not the most efficient

in order to minimize the variance, therefore more complex and efficient baselines

are introduced in [33].

• Actor-Critic Policy Gradient [13]: although REINFORCE with baseline computes

a value function, it is considered a Policy Search algorithm since the value function

is not optimized but it is only used as a fixed parameter in the update rule. In this

variant both the policy and the value function are actively used, so the method can

be classifies as an Actor-Critic approach. The idea is to improve the performance

of the algorithm by substituting the return vt with an estimate of it as done with

SARSA algorithm (3.23), so that the policy can be updated during the episodes.

This estimate reduces the variance and makes the algorithm applicable to infinite

or continuous MDPs. The update rule approximating the return at step t of the

episode becomes:

θ ← θ + α (rt+1 + γV πθ(st+1)− V πθ(st))
∇θπ(at|st, θ)
π(at|st, θ)

. (3.37)

As done with SARSA(λ), it is possible to use all the other approximations dis-

cussed for TD algorithm: n-step return (3.14), forward view of λ approximation

(3.17) or backward view with eligibility traces (3.19).

Summing up, Policy Gradient methods are the most intuitive Policy Search group of

methods that exploit the gradient of the parametrized policy and its analytical expres-

sion given by Policy Gradient Theorem, estimating the expected value appearing in the

formula with the usual MC or TD approaches. This kind of algorithms are the starting

point of more advanced Policy Search methods that have the advantage of optimize the

policy directly, without passing through the optimization of the parameter vector θ as

done with Policy Gradient approach.

36

3.3.2 Trust Region Policy Optimization (TRPO)

The algorithm explained in this section, called TRPO [39], updates the parameters of the

policy optimizing the performance measure J(πθ), meanwhile constraining the current

policy and its update to be close.

To simplify the notation, it is useful to introduce the advantage function.

Definition 3.3.1. The advantage function Aπ(s, a) is the difference between the action-

value function computed in (s, a) and the state-value function evaluated in s:

Aπ(s, a) = Qπ(s, a)− V π(s). (3.38)

This function represents the advantage of performing action a in state s (and then

follow policy π) with respect to the expected return of the state following policy π.

The starting point of the algorithm is inspired by a theoretical result (introduced in

[25]).

Theorem 3.3.2. Defining the performance measure J(π) as in Equation 3.32, it is

possible to express the expected return of another policy π̃ in terms of the advantage over

current policy π:

J(π̃) = J(π) + Eπ̃

[∞∑
t=0

γtAπ(st, at)

]
. (3.39)

Basically the theorem states that the performance of a new policy π̃ is equal to the

performance of current policy π plus the expected value with respect to the new policy of

the discounted advantage over π. It follows that, to have an improved policy, is enough

to update it so that the discounted expected value of the advantage is positive.

In Equation 3.39, the function J(π̃) depends on an expected value with respect to the

new policy π̃, that in practice is unknown. Therefore TRPO introduces a first order

local approximation L(π̃) of J(π̃) as follows:

Lπ(π̃) = J(π) +
∑
s∈S

ρπ(s)
∑
a∈A

π̃(a|s)Aπ(s, a), (3.40)

where ρπ(s) is the discounted sum of probabilities of visiting state s in each time-

step.

The problem of Equation 3.40 is that the function Lπ(π̃) is an approximation of the

expected return J(π̃), so there is no guarantee that a policy π̃ that improves it will also

improve the real expected return. Anyway, this can be proved to be true at first order,

so a sufficiently small update of the policy π → π̃ that improves Lπ(π̃) improves also

J(π̃).

Hence the core idea of the algorithm is to update the policy πnew so that it is not too

far from the previous one πold and, meanwhile, it improves the value of Lπold(πnew) as

37

much as possible.

The first way to perform this kind of update is to find the greedy policy that maximizes

the approximated performance measure:

πbest = arg max
πbest

Lπold(πbest), (3.41)

and then to update the policy ensuring that it is does not changes a lot:

πnew(a|s) = (1− α)πold(a|s) + απbest(a|s), (3.42)

with α ∈ (0, 1) and remembering that πnew is the updated policy and πold was the

previous one. This procedure guarantees the new real expected reward J(πnew) to be

better than the previous one minus a small constant (if α is set equal to a small value).

This means that in most cases the new policy improves the real expected return, while

in the worst case scenario the new policy slightly worsens the previous one.

The drawback of this update is that the new policy can only be of the form described

in Equation 3.42, limiting the policy in a restricted class, while it is preferable by an

update rule to be applicable to any policy. A better solution is therefore to constrain two

consecutive policies to be close enough with respect to a measure of distance between

them. The distance chosen in TRPO is the total variation divergence:

DMAX
TV (π, π̃) = max

s∈S

(∑
a∈A
|π(a|s)− π̃(a|s)|

)
. (3.43)

Intuitively, this is the largest possible difference between the probabilities that two

policies assign to the actions in the same state. Keeping the distance between two

consecutive policies close enough DMAX
TV (πold, πnew) ≤ α, it is possible to prove that the

same bound of the update rule 3.42 holds.

It is now necessary to find a way to implement the optimization of the approximated

performance as in Equation 3.41, keeping the total variation divergence small, under

an arbitrary parametrization θ of the policy π = πθ. A way to efficiently design the

algorithm is to transform it into a constraint optimization problem, approximating the

maximum in the total variations divergence with the mean, in order to decrease the

number of constraints. Therefore an update becomes:

max
θ

Lπθold(πθ)

s.t. Dmean
KL (πθold, πθ) ≤ δ,

(3.44)

with δ hyperparameter of the algorithm.

Finally, it is useful to equivalently reformulate this constrained optimization problem in

terms of expected values, expanding the elements of the Problem 3.44:

38

max
θ

Es,a
[
πθ(a|s)
πθold(a|s)

Aπθold(s, a)

]
s.t. Es [DKL(πθold(·|s)||πθ(·|s))] ≤ δ,

(3.45)

or:

max
θ

Et
[
πθ(at|st)
πθold(at|st)

Aπθold(st, at)

]
s.t. Et [DKL(πθold(·|st)||πθ(·|st))] ≤ δ.

(3.46)

In the first formulation (3.45) the expected value is computed with respect to the

probability of being in a state s and performing action a in it, while in the second (3.46)

the expectation is equivalently computed with respect to the time. It is possible to es-

timate the two constrained optimization problems through experience: after sampling a

trajectory of the MDP following the current policy πθold, the action-value function and

the expected values needed are estimated from samples, making the algorithm applicable

in real problems (for example with Monte-Carlo simulations).

It is possible to summarize the procedure as shown in Algorithm 2.

Algorithm 2: Trust Region Policy Optimization
Inputs: Number T of samples to collect in an iteration

initialization:

πθold(s, a) as any policy

Iterations:

while stopping condition not reached do
Simulate the policy πθold for T steps generating a trajectory:

C = {s0, a0, s1, a1, ..., sT−1, aT−1, sT }.
For each state-action pair (st, at) in the set C estimate Aπθold(st, at)

computing Qπθold(st, at) and V πθold(st) as discounted sum of future reward

along the trajectory.

Averaging over samples, build the objective function and the constraint of

the problem formulated in 3.46 (or 3.45).

Approximately solve the problem with conjugate gradient algorithm to

update the policy.
end

In conclusion, TRPO is a Policy Search RL algorithm that updates directly the

policy. It is based on the maximization of an approximation of the expect return through

a constrained optimization problem that forces two consecutive policies to be sufficiently

similar. The strength of this algorithm with respect to Policy Gradient methods is that

39

the bound δ of Equation 3.44 is directly in the policy space and not in the space of the

parameters of the policy as the hyperparameter α in Policy Gradient update (Equation

3.31). This is a powerful advantage not only because it is easier to tune the parameter

and give it an interpretation, but mostly because it directly controls the update of the

policy.

3.3.3 Proximal Policy Optimization (PPO)

Proximal Policy Optimization algorithm [38] is another Policy Search approach that fo-

cuses on simplifying the computations with respect to the nonlinear optimization prob-

lem of TRPO, keeping the core idea of proximality between the current policy and its

update.

Starting from TRPO formulation 3.46, it is possible to apply the Lagrangian multipliers

in order to move the constraints inside the optimization, transforming it into a Policy

Gradient problem. However, in TRPO hard constraints were preferred, since it is dif-

ficult to choose Lagrangian multipliers that are well performing in different updates of

the problem during the learning. The idea of PPO is to start from the maximization of

the same approximated performance measure of TRPO:

LTRPO(πθ) = Et
[
πθ(at|st)
πθold(at|st)

Aπθold(st, at)

]
, (3.47)

that without the constraint has the problem to lead to excessively large updates of

the policy. To overcome this issue, the approximated performance measure is modified

in a way that penalizes updates far from the current policy. In particular, calling:

rt(πθ) =
πθ(at|st)
πθold(at|st)

, (3.48)

the proposed performance measure is:

LPPO(πθ) = Et [min (rt(πθ)A
πθold(st, at), clip (rt(πθ), 1− ε, 1 + ε)Aπθold(st, at))] , (3.49)

with ε hyperparameter usually set equal to 0.2.

The two terms inside the minimum are respectively the same term of TRPO and its

“clipped” version that constraints the probability ratio between the policy and its up-

date to be in the range [1 − ε, 1 + ε], so that they are not much different. Taking the

minimum, the measure is a pessimistic choice: it allows to select much different policies

when their advantage is worse than the clipped version, while it denies huge update

steps when their performance is better. In this way, the final performance measure is a

lower bound of LTRPO(πθ), incorporating in a smart way the idea that in TRPO was

expressed by the constraints.

40

Finally, PPO algorithm can be implemented as shown in Algorithm 2, substituting the

problem formulation of Equation 3.46 with the objective function of Equation 3.49, so

that at each iteration the algorithm produces T samples and optimizes them using the

performance measure proposed by PPO.

Summing up, PPO is a Policy Search approach similar to TRPO, that faces the need of

proximality between a policy and its update in a way more similar to Policy Gradient.

It does not have constraints, but it optimizes directly the performance measure LPPO,

that is designed to update the policy parameters toward the direction of the best im-

provement of the estimated return, meanwhile penalizing too optimistic updates. PPO

has the same stability of TRPO with an easier implementation, keeping a comparable

overall performance.

In conclusion, after the introduction of the problems addressed by RL in terms of

MDPs, this chapter explains many different Reinforcement Learning solving algorithms.

In particular, Dynamic Programming is firstly introduced, since it is a starting point for

many successive algorithms. Then, the focus is on RL algorithms: they are divided into

Value Search methods, where FQI is the most appealing one, and Policy Search methods,

where, starting from Policy Gradient, TRPO and PPO are the two best performing

algorithms. For this reason, in Chapter 7, FQI, PPO and TRPO are the three algorithm

chosen to be applied on the models designed in this thesis.

41

Chapter 4

Natural Language Processing

Natural Language Processing (NLP) is a text mining approach that aims to extract

information from a text. The main question in NLP is: how can a computer extract

information from a string representing a sentence?

A language is made by humans in order to interact efficiently with each other, so it

is very difficult for a computer to interpret it. There are many levels of difficulty in

understanding a sentence.

• Morphological: the first problem is how to encode every word of a language

in order to be understandable by a computer. This is already very challenging,

since there exist some words that can assume different roles in the sentences (play

can be both a noun or a verb), there exist some words that have more than one

meaning (bank is both the financial institution and the land alongside a lake) and

there exist some words that are synonymous or have a similar meaning, pointing

out the necessity to keep track of similarities between words.

• Syntactic: a sentence must follow syntactic rules in order to have sense, so an

algorithm able to understand a sentence must understand the syntactic rules of a

language.

• Semantic: a word can not be evaluated without the semantic context, otherwise

it may even happen to understand the opposite of a sentence (not considering the

not before a verb makes the meaning of a sentence to be exactly the opposite).

• Contextual: a sentence with the same meaning can be formulated in very differ-

ent ways depending on the context (the same person in an official document will

use different words than on Twitter) and on the person.

Because of all these problems it is immediately clear that there is no optimum algorithm

to extract information from a text, but there exist some well performing algorithms that

are widely used in the literature and they are presented in the following sections. In

particular, computers only understand numbers, not characters or sentences, so the first

step to make a computer understanding sentences is to map each word of a text to a

real-valued vector in a certain vector space, in order to be understandable by a computer.

This kind of techniques are called Word Embeddings and they are based on the idea

to map each word to one vector, such that the information about the morphology, the

syntax, the semantics and the context can be taken into account by using the norm

between vectors defined in the vector space used.

4.1 Traditional Approach: Bag of Words Model

A popular and simple group of methods is called bag-of-words model. The bag term

is adopted because any information about the structure of the text is discarded and

the algorithm only focuses on the words appearing in a text, without considering any

relationship among them. So, a text can be considered a ”bag” where it is possible to

check if some important words are contained or not in order to extract information. The

easiest and most intuitive bag-of-words approach to the problem of transforming words

of a sentence into vectors is to use one-hot encoding. The basic idea is that each word

is equal to itself and different to all the others. Hence each word can be represented

with a sparse vector that has the same dimension N of the dictionary of the language

considered and it is composed with all 0s except for one cell that is 1, which is always

in the same position for the same word and in different positions for different words.

A variant to this model is to use the number of occurrences of a word into the consid-

ered sentence instead of 1, in order to give more importance to words more frequently

appearing.

Example 4.1.1. In this example the following sentences are considered:

• ”Trump speaks to journalists in Pennsylvania”;

• ”The President addresses the reporters in Philadelphia”.

A one-hot encoding of the most significant words can be:

speaks = [0010...0000]

addresses = [0000...0010]

Trump = [0000...0100]

President = [0001...0000]

Pennsylvania = [1000...0000]

Philadelphia = [0100...0000].

(4.1)

43

Every word is different, so the 1s are always in different positions. This example

shows the main problem of this approach: the words speak and address, Trump and

President, Pennsylvania and Philadelphia are highly related each other, in fact the two

sentences have a very similar meaning, but using a one-hot encoding, since every word

in the two sentences is different, will lead to the conclusion that the two sentences share

no similarity, which is wrong.

Starting from the considerations made in Example 4.1.1, two huge drawbacks of this

kind of approach are clear:

• the first one is that the representation of each word is very large dimensional and

it creates a huge sparse dataset with memory and time complexity issues;

• the second problem is that in this representation every word is considered inde-

pendently from the others, loosing all information about syntax, semantics and

context (two consecutive words are not considered linked in any way). Moreover,

also most of the morphological information is lost (two synonymous are considered

completely independent exactly as two antonyms).

These two problems make the most intuitive approach not very useful for represent-

ing efficiently a sentence in order to extract information. This is the reason why more

difficult approaches are discussed in this chapter. In particular, in Section 4.2 some

complex Supervised Learning techniques called Artificial Neural Networks are ex-

plained. They are significant because they constitute a building block for the most

important algorithms in this field, that are explained in Section 4.3. In particular, the

most famous algorithm in NLP is shown in Subsection 4.3.3: it is called Word2vec [28]

and it has been developed by researchers from Google in 2013. It is a Deep Learning

model that represents words in dense and lower dimensional vectors and it is able to

keep track of the semantic meaning between words from the same field. On top of this

algorithm other approaches based on this idea of similarity between words have been

developed. Among these, In Subsection 4.3.4, GloVe algorithm [32] is introduced: it is

an algorithm developed at Stanford University and it is the approach adopted in this

thesis for encoding words as vectors.

4.2 Deep Learning

Many algorithms that are shown in Section 4.3 are based on Deep Learning algorithms,

therefore to explain them it is necessary to give an overview of Artificial Neural Net-

works and Deep Learning (an introductory description can be found in [27]). Moreover,

Artificial Neural Networks need to be discussed since they are also applied many times

in next chapters of this thesis.

44

4.2.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are very powerful Machine Learning techniques. The

idea behind them takes inspiration on the model of the biological neural networks of

animals, which are composed by many elementary cells that interact with each other

through the propagation of signals that in the end are summarized into an output signal

of the network.

ANN are outperforming methods in Supervised, Unsupervised and Reinforcement Learn-

ing (the description of ANNs and applications on ML problems can be found in many

books, examples are [7], [35] and [42]). Their power is that they can learn much more

functions than traditional Machine Learning algorithms and, at the same time, they

require less specific information about the context of the problem they are applied on,

since they do not need any additional information than the data. Their main cost is

computational, since they can be very complicated networks, requiring many computa-

tions to be properly tuned. Moreover, since they are completely based on data, they

need data to be as much general as possible to avoid overfitting. For all these reasons,

ANN were not used a lot in Machine Learning when the computing infrastructures were

not much powerful, while they are very exploited nowadays. In next subsections some

different groups of Artificial Neural Network are explained. In particular in Subsection

4.2.2 Feedforward Neural Networks are shown and in Subsection 4.2.3 Recurrent Neu-

ral Networks are presented. Finally in Subsection 4.2.4 a particular kind of Recurrent

Neural Network called LSTM, that focuses on the concept of memory, is described.

4.2.2 Feedforward Neural Networks

Feedforward Neural Networks (FFNN) are the simplest form of ANN, which allow the

signal to propagate only from input to output, without the possibility to propagate

backward.

An Artificial Neural Network in general is made of many elementary cells called neurons

or nodes, that are combined into subgroups called layers.

A neuron can be outlined as shown in Figure 4.1. It is a predictor of the form:

g(x) = σ(wᵀx), (4.2)

which is the same structure of a simple algorithm used for Regression, called Percep-

tron [36]. This predictor takes a vector of inputs x, a vector of weights w and a bias b

and it applies them on a function σ : R→ R, called activation function, producing a

real number (the output signal of the neuron) as a result. The intuition behind a neuron

is that it takes the signals from some previous neurons as inputs and it elaborates them

using the activation function in order to produce its output signal. It is important to

point out that in Equation 4.2 the vectors x and w are supposed to have first element

45

Figure 4.1: Scheme of a neuron, the elementary cell of an Artificial Neural Network.

respectively equal to 1 and bias b, so that in the computations the bias term is always

incorporated in the scalar product wᵀx.

Since the activation function takes as input the weighted sum of signals, its main

role is to introduce non-linearity to the network, so that it can model complex non-

linear patterns in the data. Hence, the activation function of a neuron is always a

nonlinear function, otherwise the network can be shrunk into a Perceptron. Typically

the activation function is chosen among the following functions.

• Sigmoid Activation Function:

σ(z) =
1

1 + e−z
. (4.3)

It is used in particular when the aim is to predict a probability, since its output

is in the interval [0, 1]. Its main drawback is the vanishing gradient : when the

absolute value of the input is a big number the derivative saturates toward 0,

preventing the update of weights and the entire learning process.

• Hyperbolic Tangent (Tanh) Activation Function:

σ(z) = tanh(z) =
ez − e−z

ez + e−z
. (4.4)

The shape of the curve is similar to the sigmoid function but its image set is [−1, 1],

making it is mainly used in Classification between two classes. It is centered in

0, making it usually preferred to the sigmoid but it still presents the vanishing

gradient issue that saturates the derivative of large inputs to zero.

• Rectified Linear Unit (ReLU) Activation Function:

σ(z) = max(0, z) =

{
z if z ≥ 0

0 if z < 0
. (4.5)

46

It is easy to differentiate, its derivative is monotonic and it does not have the

problem of tanh and sigmoid with large numbers. It also deletes some signals

(all negative ones), reducing the variance and the risk of overfitting. The main

problem of ReLU are dying neurons: it does not learn properly data with negative

inputs, since they are immediately turned to zero.

• Softmax Activation Function: it is a multi-dimensional function, assigning a

value in the range [0, 1] to each element i of its m-dimensional output vector as

follows:

σ(z)i =
ezi∑m
j=1 e

zj
. (4.6)

By definition, the sum of the elements of its output is exactly 1. This is the reason

why this activation function is usually used in the output layer when the aim of

the network is to produce a probability distribution over m possible categories.

The choice of the activation function in a neuron is based on the problem faced and

on the kind of output expected from the network. In hidden layers the most commonly

used activation functions are the ReLU and tanh. Then the output layer is usually a

tanh if the problem is a Classification between two classes, a softmax if it is a Classifi-

cation among K different classes, a ReLU if the network performs a Regression.

A Feedforward Neural Network is a network made of many neurons, that in the end

is able to evaluate a function f : Rd → Rn, where d is the dimension of a datum of the

dataset (the number of features) and n is the required dimension of the output.

A FFNN can be represented with a direct acyclic graph as in Figure 4.2, since there are

no loops and the only allowed direction is the forward one.

It is possible to collect nodes into different layers, that are of three main types

depending on their location. The first layer is called input layer, it is the group of

nodes that take as input signal the data. In particular, the input of the node i of the

input layer is the i-th feature of the datum considered. Then, there can be one or more

hidden layers, groups of nodes taking as input the signals from the nodes of the layer

before. Finally, the last layer is the output layer that takes as input the signals from

the last hidden layer and produces as output the result of the ANN: it is made of n

nodes and the ordered outputs of each one of them produces the n-dimensional vector

required.

In general it is not necessary that every node is connected to all the nodes of the layer

before or that it sends its signal to all the nodes of the following layer. If two nodes i, j

are connected their edge is associated to a parameter wi,j ∈ R, that is a parameter of

the network representing the weight given to the signal sent from i to j. This weight is

used by node j in prediction, as expressed by Equation 4.2. Hence, given a node j and

47

Figure 4.2: An example of fully connected Feedforward Neural Network with two

hidden layers.

indicating with w(j) the vector of all the weights associated with the incoming signals in

the node and with v(j) the vector of all the incoming signals in the neuron, the function

evaluated by the Feedforward Neural Network is computed as follows:

1. every node in the input layer produces a signal vi = xi, where xi is the i-th

component of the input datum;

2. every node in the hidden layers produces a signal vj = σ(w(j)ᵀv(j));

3. the k-th node in the output layer produces fk = vk = σ(w(k)ᵀv(k)), the k-th

component of the n-dimensional function f .

Summing up, a FFNN takes as input a d-dimensional datum x, it propagates forward

the signal of the datum through the nodes of the network and it produces as output an

n-dimensional vector that computes f(x).

48

It is possible to prove that this kind of network is very significant, in fact it can be

the representation of many different functions f , as suggested by the following result.

Theorem 4.2.1. For every d ∈ N there exist a Feedforward Neural Network with d+ 1

nodes in the input layer, one hidden layer and one node in the output layer, so that the

network contains all the functions of the form f : {−1,+1}d → {−1,+1}.

Remark. It is possible to prove that the number of nodes needed to design a network able

to represent every function f : {−1,+1}d → {−1,+1} is exponential in the dimension d

of the input.

Remark. The theorem can be extended to all functions f : [−1, 1]d → [−1, 1] that are

Lipschitz continuous.

These theoretical results prove that the space of the functions representable using a

Feedforward Neural Network is huge, so this kind of network provides a wide hypothesis

space when it is used by Machine Learning algorithms. On the other hand, the cost of

using just one layer is to have an exponential number of nodes in it. In practice, it is

often preferred to have a huge number of hidden layers each with a relatively small num-

ber of nodes, since this kind of approach seems to be able to represent a greater number

of functions. This approach is called Deep Learning and these kind of networks are

called Deep Neural Networks.

After the explanation of the structure of the network and its usage, it remains to show

how to apply and train Feedforward Neural Networks in Supervised Learning algorithms.

Remembering that a FFNN is able to evaluate different functions with different weights,

the training of a Regression or Classification algorithm is based on tuning the weights

of the network starting with some random or user-defined values, with the purpose of

predicting the target of the training data using as input their features.

In particular, in a step of the training procedure, a random datum (or a mini-batch of

data) is selected to compute the loss between the prediction and the real value of the

target. Then, the weights of the network are updated in order to minimize that loss

through the application of the Stochastic Gradient Descent algorithm:

wi,j ← wi,j − αt
∂`xk(W)

∂wi,j
, (4.7)

where the stochasticity is due to the random choice of the sample (or the mini-batch) on

which evaluate the loss. In Equation 4.7, xk is the randomly selected datum, αt is the

time-dependent update coefficient of the Stochastic Gradient algorithm, W is the set of

all weights of the network and `xk(W) is the loss evaluated in the datum and depending

on the weights. Intuitively, each weight wi,j is updated in the opposite direction of the

gradient of the loss, which represents the direction of maximum growth of the error.

49

The application of the Stochastic Gradient Descent algorithm to train the network is

called Backpropagation ([37], [19] for a more extensive overview). Its name derives

from the fact that, to compute the update of Equation 4.7, it is necessary to compute

the partial derivative of the loss with respect to each weight. The computation of this

derivatives is mainly based on the chain rule used to compute the derivative of a compos-

ite function: starting from the nodes in the output layer it is possible to deduce the value

of the derivative of the loss with respect to the weights of nodes in the last hidden layer;

then it is possible to compute the gradient of the loss with respect to the penultimate

hidden layer; this can be (back)propagated until the first layer, so that the gradient of

the loss with respect to any weight of the network is computed and they can be updated.

Summing up, with Backpropagation and the application of Equation 4.7 it is possi-

ble to use the train set to update the weights of a network toward a (local) minimum

of the loss function, producing a network able to predict the target of data in the test

set. It is also important to notice that FFNN are a very general approach, which can

be applied in very different Supervised and Unsupervised Learning problems, with a

relatively small number of choices to make: the design of the network and the choice of

the activation functions.

4.2.3 Recurrent Neural Networks

The other main category of ANN is called Recurrent Neural Networks (RNN) and their

peculiarity is that they allow loops in their architecture (it is possible to find a detailed

discussion on RNN in [8]). They are important because, through the creation of loops

between nodes, it is possible to introduce a sort of memory of the signal produced in

previous iterations. Once again the idea behind RNN is inspired by biological neural

networks, since the brains of animals do not start from scratch every second but they

have memory, so that for example a human being can understand the last page of a book

because he remembers all the others, not needing to restart to read from the beginning.

This idea of memory is crucial in an ANN when data are not a plain dataset of rows but

a sentence, an image or a time series, where data are not just different samples but they

have a temporal or sequential order among them.

The basic structure of a RNN starts from the structure of a Feedforward Neural Network

and adds to the input of next iteration not only the datum xt but also an output signal

from previous iteration ct−1. In this way all next iterations have a signal related to

previous ones, keeping track of the context while training the network.

From Figure 4.3 it is possible to better understand the structure of a RNN: the input

layer, as usual, is made of one neuron for each feature {x1, ..., xd}, plus a certain num-

ber m of nodes {ct−11 , ..., ct−1m } that are the memory terms deriving from the previous

50

Figure 4.3: An example of Recurrent Neural Network with two hidden layers,

three-dimensional data and two-dimensional memory vector.

iteration. In the network all nodes propagate their signal forward, combining the input

datum xt with the memory signal ct−1. Moreover some nodes not only propagate their

signal to nodes of next layer but they also loop it to the additional nodes of the input

layer, producing memory terms {ct1, ..., ctm} that are used in next iteration. In this way

the output signal at time t is ht = f̂(x1, ..., xd, c
t−1
1 , ..., ct−1m), which is the prediction of

the function f(xt) obtained combining previous memory signals with current features.

Summing up, Recurrent Neural Networks process one sequential input datum at time,

keeping track of information about the history of all past elements of the sequence

through loops.

In the learning process exploiting training data, the update of weights and the eval-

uation of the overall loss can be still computed applying Backpropagation. Indeed the

network can be seen in its ”unrolled” version as in Figure 4.4, which makes the network

a sequence of the same Feedforward Neural Network repeated as many times as the di-

mension of the dataset. The inputs of the t-th network are the datum xt and the memory

signal of the previous network ct−1. In this way the Backpropagation algorithm can be

applied to update weights because the network becomes a Feedforward Neural Network.

However, for a big number of data the network becomes huge and it can be proved that

51

Figure 4.4: The unrolled version of a Recurrent Neural Network: at time t it takes

as input the memory signal of previous step ct−1 and the current datum xt. Then,

hidden layers (represented by the blue circle) combine them producing the current

signal, that is elaborated to produce the output ht = f̂(xt) and the next memory

signal ct.

the gradient with respect to weights becomes null [5]. Intuitively, this is due to the fact

that the activation function used in nodes that form loops is usually a tanh, which has

the advantage not to make the memory signal diverging since it is kept in [−1, 1] at any

iteration. On the other hand, when the network becomes deep due to many time-steps,

the input of the tanh activation becomes huge, saturating the derivative toward 0. This

is the reason why the main limitation of RNNs is long term memory: they are able to

properly update their weights when the sequence of the dataset is short, while they are

not efficient in doing so when the sequence is huge.

To conclude, this kind of network is necessary when data are sequential, but it can

only deal with dependencies that are short term, since its structure does not allow to

keep track of the information for many iterations, both for problems due to the Back-

propagation and for the architecture of the network. To solve this issue, when long term

memory is important, it is necessary another kind of approach that explicitly keeps track

of the memory in a specific vector, so that it does not influence the update of weights.

An algorithm based on this concept is explained in next subsection.

4.2.4 Long Short Term Memory (LSTM)

LSTM [20] is a specific Recurrent Neural Network since it is still based on loops to

represent the memory. Thinking about it in the unrolled version as done in Figure 4.4

for RNN, the structure of a LSTM can be seen as the repeating of the same network

that takes as input the datum at time t and a memory vector computed in iteration

t− 1. The particularity of LSTM is the peculiar way of combining the features with the

52

Figure 4.5: The unrolled version of LSTM: at time t it takes as input the memory

signal of previous step ct−1, the previous prediction ht−1 and current datum xt.

Then, four specific hidden layers combine them producing the current memory

signal ct, and the prediction ht = f̂(xt).

memory, since it uses specific hidden units in order to be able to remember inputs for

long time when necessary.

In standard RNN presented in Subsection 4.2.3 the network has a single (or multiple)

hidden layer combining the features of the datum with the memory terms using a user-

defined activation function, while LSTM is made of four specific layers as shown in the

unrolled version of LSTM in Figure 4.5. In particular, the line running on top of the

diagram is called cell state and it is the part of the network that propagates the memory

information from the previous network to the next one. Since in the current iteration

the memory can be enriched by information from the current computations, the four

layers of the LSTM determine what kind of information will be discarded or added to

the memory signal. Specifically, the four layers of the LSTM are called gates and they

perform four different tasks. The four gates of LSTM are shown in Figure 4.6 and they

are precisely explained in the following list.

1. Forget Gate Layer: it is the first layer and it determines how much memory

signal coming from the past will be discarded. It takes as input the current datum

xt and the output of previous network ht−1. Then it applies them on the sigmoid

function in order to generate a number in [0, 1] for each node of the layer, whose

size is equal to the dimension of the memory vector ct−1. In this way, if the output

of the sigmoid is near to 0 that memory component will be almost fully forgotten,

while if it is near to 1 that component of the memory will be mostly remembered.

The output of this gate is therefore the vector ft ∈ Rm such that:

ft = σ(Wf · [ht−1, xt] + bf), (4.8)

where Wf are the weights of the layer and bf is the bias term. The output ft

53

is successively multiplied component-wise by the memory signal ct−1, in order to

remember the percentage of each component of ht−1 as determined by ft. An

example where the prediction is the next word in a sentence makes more clear the

reason why some components of the memory are discarded depending on the new

input: if the datum xt is a verb, the old predicate kept in memory becomes not

important anymore and it can be discarded.

2. Input Gate Layer (first part): this layer and the following are responsible of

the new information to store in memory. In particular this layer is made of nodes

with sigmoid activation function, so that it determines for each component of the

memory how much information to add (since the sigmoid outputs a value in [0, 1]

as explained for the Forget Gate Layer). For example, if xt is a new male subject

and the previous one was a female, it is probable that the network will give a value

near to 1 to the component responsible for the gender, in order to save in memory

the change of information about it. The value of the output vector of the layer is

the vector it ∈ Rm computed as:

it = σ(Wi · [ht−1, xt] + bi). (4.9)

This vector has exactly the same function of ft but it is focused on the new

information.

3. Input Gate Layer (second part): this layer determines the value of new infor-

mation to save in memory. When forgetting a percentage of memory it is enough

to decide how much information to forget for each component, while for adding

information it is not enough to decide how much information to add for each com-

ponent. Indeed it is necessary to non-linearly scale and compose the input signal

making it compatible with the memory vector ct. This is the role of this layer,

that computes the vector c̃t ∈ Rm of value:

c̃t = tanh(Wc · [ht−1, xt] + bc). (4.10)

As usual, the activation function is applied to the weighted sum of components of

the input plus is a bias term. The activation function of these layer is a tanh, that

is responsible to determine the value of the signal computing a continuous value in

the range [−1, 1], ensuring this signal to be comparable to the one already stored

in ct.

The output it of the sigmoid Input Gate Layer is combined with the one produced

by this layer c̃t with a component-wise multiplication, producing for each compo-

nent the magnitude of the new information weighted by how much it is taken into

account.

54

Finally, the resulting m-dimensional vector is added to the memory signal from

previous iteration, which has already being filtered by Forget Gate Layer. The

result of this procedure is the new memory signal:

ct = ft · ct−1 + it · c̃t, (4.11)

that is the information that will be propagated to the next iteration.

4. Output Gate Layer: it is the last layer, the one responsible of the output of

this step of the network. Using the cell state ct, that is the updated memory (so

it contains both information about the memory and information of the current

input), it is non-linearly scaled in [−1, 1] by applying a tanh activation function.

Then, a sigmoid function is applied to the vector made of previous output and in-

put, producing an m-dimensional vector responsible of choosing what components

of ct are important for the output. Therefore:

ot = σ(Wo[ht−1, xt] + bo),

ht = ot · tanh (ct).
(4.12)

For example, if the input is a subject and last output was a comma, the current

output could be information about a predicate, underlying that it is probable that

next word of the sentence will be a predicate.

Summing up, LSTM is a particular kind of RNN with four layers that are responsible

to update the memory signal ct and to produce the output ht. The core idea of LSTM

is that the memory is not implicitly propagated through loops in hidden layers but

it is directly propagated through a specific memory cell, while hidden layers are only

responsible for updates. LSTM is a widely applied algorithm for sequential data, since it

has not many backpropagation problems as basic RNN and it is capable to keep track of

long term memory if needed. Many variants of LSTM have been proposed in literature

(Gated Recurrent Unit [12], Depth-Gated LSTM [46]) but they produce almost the same

empirical performances, so they will not be part of this essay.

Now that both Feedforward Neural Networks and Recurrent Neural Networks (with

focus on LSTM) have been largely discussed, it is finally possible to introduce efficient

Word Embedding algorithms such as Word2vec and GloVe.

55

(a) Forget Gate Layer. (b) Input Gate Layer (first part).

(c) Input Gate Layer (second part). (d) Output Gate Layer.

Figure 4.6: The four gates of the LSTM network.

56

4.3 Word Embedding

As already discussed in Section 4.1, the most intuitive approach to map words into vec-

tors is a one-hot encoding approach, that has two main problems related to the sparsity

and huge dimension of each vector (curse of dimensionality) and to the lack of consid-

eration to similarity and context between words.

Any technique mapping a word from a huge dimensional vector space, where it is repre-

sented in one-hot encoding fashion, into a dense lower dimensional vector space is called

Word Embedding, since it embeds the vector in a smaller dimension.

An efficient Word Embedding typically maps a word w from a vocabulary V (with di-

mension |V | ≥ 106)) in a much smaller vector space (with dimension usually in the

range [100, 500]). The huge decrease of dimension of the vector space solves the curse

of dimensionality issue. Also the problem regarding the lack of similarity can be solved

with a proper mapping. In particular, a continuous representation rather than a one-hot

encoding is preferable, since it allows the introduction of a distance between words, so

that the more they are similar the more they will be close in the vector space.

Example 4.3.1. The embedding of a word maps it from one-hot encoding to a much

smaller continuous vector:

house = [0 0 0 ... 0 1 0 ... 0 0 0] ∈ R106 ⇒ house = [0.12 0.22 ... − 0.78] ∈ R100.

In Subsections 4.3.1 and 4.3.2 are introduced two Word Embedding algorithms

respectively based on Feedforward Neural Networks and Recurrent Neural Networks.

Then, in Subsections 4.3.3 and 4.3.4 the two most important Word Embedding algo-

rithms presented in this thesis are discussed: Word2vec and GloVe.

4.3.1 Feedforward Neural Net Language Model (NNLM)

The first Word Embedding algorithm based on FFNN discussed in this thesis is called

Feedforward Neural Network Language Model (NNLM) [6]. As shown in Figure

4.7, it consists of four specific layers.

1. An input layer that, in the embedding of the t-th word wt, takes as input the n

previous words (wt−n, ..., wt−2, wt−1) in one-hot encoding fashion. The dimension

of this layer is the number n of previous samples considered (a common choice

is n = 10) times the dimension of each word, that in one-hot encoding is the

dimension of the dictionary of that language |V | ≈ 106.

2. A projection layer that maps every word from one-hot encoding (dimension

≈ 106) into a smaller dimension m (typically 500 < m < 2000) using a shared

projection matrix U ∈ R|V |×m. The dimension of this layer is the number n of the

context words considered times the dimension m of each projected word.

57

3. A nonlinear, typically with tanh activation function, hidden layer. It is respon-

sible of non-linear combinations between features and it has dimension h (usually

the number of nodes of the hidden layer is 500 < h < 1000).

4. An output layer that, applying the softmax activation function, outputs |V |
probabilities, one for each word in the dictionary of that language. They are a

probability distribution among all words of what will be the t-th word wt, based

on the context of n previous words.

The NNLM approach focuses its attention on predicting the next word wt given the

contest of n previous words. Once it is trained over an appropriately huge dataset of

sentences it implicitly performs a Word Embedding. Indeed, in the projection layer each

word is projected into a lower dimensional vector through the shared matrix U that,

once optimized, reduces the dimension of each word to m. In particular the mapping

of any word w can be performed by computing wᵀU that, since the word is encoded

in one-hot encoding, is equivalent to select the i-th row of the matrix U, where i is the

position of the 1 in the vector w.

The main problem of this approach is in the training complexity: the projection computes

n×m operations, the hidden layer computes n×m×h operations and the output layer

computes h× |V | operations. Total complexity Q is:

Q = n×m+ n×m× h+ h× |V |, (4.13)

where the projection step provides the minor effort on it.

To conclude, NNLM provides a major contribution on building an efficient Feedforward

Neural Network starting from words in one-hot encoding fashion. On the other hand, it

has too much computational complexity due to its final purpose of predicting the next

word, that is not the aim of Word Embedding. Hence, using this model just for obtaining

the m-dimensional word vectors is inefficient. The fact that the embedding is implicit

and it is not the main purpose of the network suggests that it is possible to design a

more efficient network.

58

Figure 4.7: An example of NNLM with n = 3 context words.

59

4.3.2 Recurrent Neural Net Language Model (RNNLM)

Recurrent Neural Networks are designed in order to keep in memory the previous infor-

mation, as largely discussed in Subsection 4.2.3. They have been introduced in Word

Embedding [29] to keep in memory the important information from previous words

instead of choosing a fixed number n of context words as in NNLM. RNN can store

temporary information about the context for an arbitrary long time (although it is very

difficult to keep long term information as explained in Subsection 4.2.3). In this kind of

approach, as shown in Figure 4.8, the network is designed as follows:

1. an input layer takes as input the previous word wt−1 and the memory signal

ht−1 coming from the neurons in the hidden layer whose output is in loop;

2. then an hidden layer, also called context layer, is made of m nodes (usually

m ∈ [30, 500]) with sigmoid activation function. It elaborates the information

from the context together with the new input wt−1, producing the current signal;

3. finally, an output layer takes as input the updated signal producing a probability

distribution (through a softmax activation function) over all words in the vocab-

ulary. Therefore the output is the probability distribution of next word given the

previous one and the context (coming from the memory loop).

Remark. Unlike NNLM, RNNLM has no projection layer, so there is not an explicit

Word Embedding, that is done inside the hidden layer depending on weights. Hence it

is not possible to recover a matrix to apply to any other word in order to embed it into

a smallest vector space.

The number of computations in the hidden layer is m×m and in the output layer it is

m× |V |, therefore the total complexity Q of the algorithm is:

Q = m×m+m× |V |. (4.14)

As in NNLM, most of the complexity comes from the hidden layer.

In conclusion, this approach improves NNLM because it designs a simpler Neural Net-

work, easy to implement and train, with a smaller complexity. Moreover, RNN are

specifically designed for sequences, so they do not need context words thanks to their re-

cursive structure. On the other hand, with this approach there is no explicit embedding

of the words through a matrix, so it is more complex to extract a Word Embedding rule

to apply to any word. Finally, the algorithm is again not efficient for Word Embedding,

since most of the complexity comes from the hidden layer, that is used for prediction

purposes.

60

Figure 4.8: The network of the RNNLM.

61

4.3.3 Word2vec

Word2vec is an efficient Word Embedding tool proposed by researchers from Google in

2013 [28]. It is composed by two different algorithms that focus on the context in order

to efficiently learn the embedding of a word based on the words around it in a sentence.

This approach aims to produce a distributed representation of words by the train of a

proper Feedforward Neural Network.

Starting from the FFNN designed in the NNLM, the main purpose of this approach is to

minimize the computational complexity producing an efficient representation of words.

The core idea is to achieve better performance by simplifying the network and train it

on more data. In particular most of the complexity in both the NNLM and the RNNLM

is due to the non-linear hidden layer, so Word2vec algorithms design networks without

hidden layers, leading to a speedup of thousand times.

This approach proposes two different algorithms to perform Word Embedding.

1. Continuous Bag-of-Words Model (CBOW): this network is similar to the

Feedforward NNLM shown in Figure 4.7 but the non-linear hidden layer is removed

and the projection layer is shared for all words. Moreover, the context words used

as input are not just n previous words but there are also n following words. There-

fore, choosing n = 2, the network that predicts the word wt consists of wt−2, wt−1
and also wt+2, wt+1. Both the projection matrix U and the projection layer are

shared, so each component is projected into the same node and basically averaged

with the components in same position of all context words. This is the reason

why the model is called Bag-of-Words, since it is not considered the order among

them but they are just considered a ”bag” of context words. Finally, the output

is the probability distribution over all words of the vocabulary in order to predict

the current word wt.

The complexity of projection layer is the number of context words N = 2n multi-

plied by the dimension m of the projected word vectors, while the computations

to perform to output the probability distribution are equivalent to the number

m of nodes in projection layer repeated one time for each word in vocabulary V.

Therefore the total complexity Q is:

Q = N ×m+m× |V |. (4.15)

This equation shows that the term producing a huge complexity in NNLM and

RNNLM is no longer present, making the algorithm much faster. At the same

time, the network is still equipped with a projection matrix U as NNLM so, after

a proper training of the network, U ∈ R|V |×m is able to project any word of the

vocabulary V into a much smaller dimensional space, performing the required word

embedding.

62

Figure 4.9: Scheme of Skip-Gram model with n = 2. Different colours of arrows

are related to different context words.

63

2. Continuous Skip-gram Model: it is the complementary network of CBOW. In-

deed, taking as input the current word wt in one-hot encoding fashion, it is trained

to predict the words around it. Considering as before n = 2, two words before and

two words later are the context, so the network predicts {wt−2, wt−1, wt+1, wt+2}
based on wt. In particular, as shown in Figure 4.9, the network is made of an input

layer that only receives the current word wt; then in a projection layer the vector

is projected in a lower dimensional vector space performing the Word Embedding;

finally an output layer outputs a probability distribution among all words in the

vocabulary V for each context word.

The training complexity requires m operations for the projection, then to output

a probability distribution on each of the N = 2n context words are needed m×|V |
operations as usual. Therefore the total complexity Q is:

Q = m+N ×m× |V |. (4.16)

Summing up, both the approaches are based on Feedforward Neural Networks, they

take inspiration from the NNLM presented in Subsection 4.3.1 removing its hidden layer.

In this way the two algorithms simplify the network in order to be faster to train (the

training speed is between 100000 and 5 millions of words per second). On the other

hand, the quality of word vectors significantly improves when using a huge dataset, so

the quality is also better than NNLM (that are too complex to be trained on millions of

data) despite of the semplification of the network.

The quality and speedness of this Word Embeddings can be shown through some exam-

ples. In particular in Example 4.3.2 complexity of the algorithms is explored training

them on a real dataset. Then the other Examples provide some evidences that the dis-

tributed representation of words obtained by these algorithms has remarkable regulari-

ties, since some intuitive semantic similarities are respected by word vectors, suggesting

that the Word Embedding is consistent. To visualize these regularities, in the word

vector space is applied a PCA keeping the first two components.

Example 4.3.2. Training the networks presented in this chapter on a Google news

corpus, containing six billion words and restricting the vocaboulary to one million most

frequent words, time for training has been:

• 2 days on 140 cores for CBOW with projection space of dimension m = 1000;

• 2.5 days on 140 cores for skip-gram with projection space of dimension m = 1000;

• 14 days for NNLM on 180 cores with projection space only of dimension m = 100;

• RNNLM was discarded in such a huge training since it was already performing

very poorly with easier datasets and weeks of training time.

64

It is clear from this example that the two proposed algorithms in Word2vec have a

similar complexity, while NNLM and RNNLM have a similar theoretical approach but

they are not possible to perform in practice.

Example 4.3.3. Simple operations between word vectors provide good results. As

shown in Figure 4.10a word vectors implicitly encode properly gender and number of

words:

• man is similar to woman as king is similar to queen. Also man is similar to king

as woman is similar to queen. This is caught in the vector space:

man− woman ' king − queen; (4.17)

• man is similar to men as king is similar to kings. Also man is similar to king as

men is similar to kings. In the vector space:

man−men ' king − kings. (4.18)

Example 4.3.4. As shown in the PCA plot of Figure 4.10b, another example of regu-

larity in word vectors are names of countries and the name of their capitals. Therefore,

for example:

Italy −Rome ' France− Paris. (4.19)

Not all pairs country-capital are exactly represented, but the overall result is satis-

factory.

Example 4.3.5. As shown in the PCA plot of Figure 4.10c, the paradigms of irregular

verbs have a clear common pattern.

All the examples discussed above show that the proposed algorithms are not only

fast to train but also well performing, since they recognize many regularities among

words. In conclusion, these two algorithms show that it is possible to extract good word

vectors with very simple networks, making them important and widely used tasks to

perform Word Embedding on sentences. The word vectors produced by Word2vec tool

can successively be used in many NLP approaches, like translation of sentences into

other languages or sentiment extraction.

65

(a) Example of gender and number regularities.

(b) Example of regularities between countries and their capitals.

(c) Examples of regularities between irregular verbs.

Figure 4.10: Examples of regularities applying Word2vec algorithms.

66

4.3.4 Global Vectors for Word Representation (GloVe)

The examples about Word2vec empirically show some syntactic regularities that are not

determined by some kind of constraint chosen in the model. This regularity is implicitly

gained by the methods due the optimization of the networks, showing the robustness

of the technique. On the other hand in Word2vec there is no certainty about the reg-

ularity among all words of the vocabulary. GloVe algorithm [32] is an Unsupervised

Learning method where the model is explicitly designed to exploit regularities, making

them emerge in the word vectors. In practice, GloVe algorithm is designed so that the

difference between two word vectors can represent as much as possible the semantic

difference between them. If, for example, man − woman should represent the gender

difference between the two words (they have the same meaning despite of the gender),

this difference vector is constrained by the model to be as much as possible equal to

king − queen, brother − sister, mum− dad and so on.

A more sophisticated kind of context is introduced in this setting: calling Xi,j the num-

ber of times word j occurs in the context of word i and Xi the total number of times

any word appears in the context of word i, it is possible to introduce a probability:

pi,j = p(j|i) =
Xi,j

Xi
, (4.20)

that is an estimate of the probability that word j appears in the context of word i.

The elements Xi,j are called word-word co-occurrence counts and they are stored

in the matrix X, while the probabilities pi,j are called co-occurrence probabilities.

Considering a practical example it is possible to understand how to proper use these

information to extract meaningful context signals.

k = solid k = gas k = water k = fashion

p(k|ice) 1.9× 10−4 6.6× 10−5 3.0× 10−3 1.7× 10−5

p(k|steam) 2.2× 10−5 7.8× 10−4 2.2× 10−3 1.8× 10−5

p(k|ice)/p(k|steam) 8.9 8.5× 10−2 1.36 0.96

Table 4.1: Examples of co-occurrence probabilities and their ratio.

Example 4.3.6. Considering i = ice and j = steam, it is expected that a word like

k = solid will often be in the context of i and much less in the context of j, while a

word k = gas is expected to be much more in the context of j than in the one of i. On

the other hand, a word like k = water should be almost equally linked to i and j, while

a word k = fashion should be almost never related to them. As shown in Table 4.1

(performed on a six billion words train document) the ratio between the co-occurrence

probabilities pi,k and pj,k shows better and easier than raw probabilities what is expected

67

to happen. Indeed a ratio much larger than 1 means that k appears much more in the

context of i, a ratio much smaller than 1 means that k is much more frequent in the

context of word j and a ratio near to 1 shows that k is almost equally frequent in the

two contexts.

Inspired from the Example above, the main idea of GloV e algorithm is to use ratios

of co-occurrence probabilities to train the Word Embedding. Hence the general model

F is:

F (wi, wj , wk) =
pi,k
pj,k

. (4.21)

The estimates of co-occurrence probabilities pi,k and pj,k can be derived from the

train document. Therefore knowing the function F that maps any triple of word vectors

wi, wj , wk ∈ Rm to their co-occurrence probabilities ratio, enables to extract the word

vectors, so to perform the Word Embedding.

It remains to estimate the function F , that in principle can be any function but it is

possible to select a unique choice by constraining it to have some properties.

• F must encode the information of
Pi,k
Pj,k

, that can be done using word vector differ-

ences. In this way Equation 4.21 is modified to:

F (wi − wj , wk) =
pi,k
pj,k

. (4.22)

• It has a vector input but a scalar output, so the most natural way to output a real

number is performing a scalar product:

F ((wi − wj)ᵀwk) =
pi,k
pj,k

. (4.23)

• The function must be invariant to exchanges between a word and a context word,

which leads to the following relation:

wᵀ
iwk + bi + bk = log(Xi,k), (4.24)

where bi, bk are bias terms and Xi,k is the word-word co-occurrence count between

word wi and context word wk.

Summing up, the general model of Equation 4.21 has been drastically simplified in

Equation 4.24. The objective of the training of GloVe algorithm is therefore to learn word

vectors such that their dot product is equal to the logarithm of their co-occurrence count

plus bias terms. In the algorithm the learning is performed through the optimization of

a specific Weighted Least Squares Regression where the loss function is given by:

J =

|V |∑
i,k=1

f(Xi,k)(w
ᵀ
iwk + bi + bk − log(Xi,k))

2. (4.25)

68

It is basically a Least Square problem that aims to learn the parameters wi, wk, bi, bk
best fitting the model of Equation 4.24 minimizing the sum of squares, weighted by a

proper weighting function f(Xi,j). This function is introduced to give more importance

to co-occurrences between words that appear frequently, without overweighting both rare

words that are noisy and give less information and very frequent words that may obscure

the others. Among many possible weighting function, the class of function adopted in

GloVe algorithm are the continuous functions that start from 0, reach 1 in a certain

value xmax and they have value 1 from that point on:

f(x) =

{
(x/xmax)α if x < xmax

1 otherwise
. (4.26)

In conclusion, GloVe is a different approach with respect to all Neural Network based

approaches shown before in this chapter, it is based on co-occurrences of words in a text,

and after a proper Weighted Least Squares optimization, it encodes the word vectors

as resulting parameters. GloVe uses both global and local statistics to make the Word

Embedding and not only the local statistics of n near words as Word2vec approach,

giving more generality to the word vectors obtained. Moreover, because of the nature

of the optimization, GloVe word vectors perform well on word analogy tasks as like as

Word2vec, but this is explicitly imposed by the optimization and it is not the result of

hidden computations like in Word2vec approach.

Despite the strong differences between the two approaches, both GloVe and Word2vec

are well performing and widely used tools for Word Embedding, so they are performed

as a starting point for almost any Natural Language Processing algorithm to convert

words into vectors in a way understandable by a computer.

69

Chapter 5

Datasets

In this chapter the datasets used in this thesis are introduced. In particular this work

compares the performance of Reinforcement Learning algorithms trained with the histor-

ical series of a financial instrument with the same algorithms trained adding sentiment

features to the training set. Indeed the final purpose is to investigate, through Super-

vised and Reinforcement Learning, whether the sentiment features add some information

to the historical series for the prediction of the value of a financial index. In particular,

in Section 5.1 the S&P 500 index and its historical series are presented. Then, in Sec-

tions 5.2 and 5.3, the sentiment dataset is respectively discussed and enriched with some

features extracted from the date and the historical series, leading to the final dataset

shown in Figure 5.9 that is the basis of all the applications in this work.

5.1 S&P 500 Index

This section presents the S&P 500 index and discusses the reasons why its historical

series are adopted in this thesis as representative of the trend of the U.S. Stock Market,

focusing on the shape of its curve to explain the first critical issues in dealing with these

data.

The Standard & Poor’s 500 (S&P 500) [21] is a Stock Market index composed by a

basket of the 500 U.S. companies with largest market capitalization, whose importance

in the index is weighted by this parameter. Market capitalization is indeed computed

as the stock price multiplied by the number of stocks on the Market so, basically, these

are the 500 most important American companies on the Stock Market. Therefore, the

S&P 500 index is considered one of the best indicators of the overall performance of

the American Stock Market, reporting the risk and the return of the most important

companies in it. The companies in the index have about the 80% of the total market

capitalization in the American stock market, so the S&P 500 captures most of the

market, making it a very reliable index.

A committee selects the companies to be included in the index, which is updated every

March, June, September and December of every year. To be in the S&P 500 index a

company must have some precise requisites [23]:

• it must be a U.S. company;

• its market capitalization must be at least $6.1 billions;

• at least the 50% of its stocks must be available to the public;

• it must have produced positive earnings in the last year;

• its stock price must be at least $1 per share.

The best companies (hence the most influential ones) in the index in September 2019

are reported in Table 5.1 [22]. Also the composition of the index in terms of economic

sectors reflects the Market, as reported in Figure 5.1 [21], with Information Technology

that is by far the leading sector, followed by Health Care and Finance.

Company Market Cap

Microsoft $1428 billion

Apple $1400 billion

Amazon $1035 billion

Alphabet $1017 billion

Facebook $605 billion

Berkshire Hathaway $555 billion

Visa $449 billion

JPMorgan $423 billion

Johnson & Johnson $398 billion

Walmart $330 billion

Table 5.1: The 10 companies with largest market capitalization.

The value of the S&P 500 index is the historical series of prices used in this thesis.

It has been adopted for different reasons: firstly, although it is not possible to directly

invest in the S&P 500 there exist some financial instruments able to replicate its trend,

so using the value of the index as if it were the price of a stock market on which it

is possible to invest can be practically performed on the Stock Market. Moreover, the

S&P 500 is chosen as reference price in this thesis because the purpose is not only to

directly invest but it is also to explore the meaningfulness of the sentiment on predicting

the trend of the U.S. Market and, as already explained, the S&P 500 index is a reliable

71

Figure 5.1: Pie Chart of the sector subdivision of the index.

index to capture it with good approximation. Finally, this index has been chosen because

it is the index adopted by applications already performed in the main project this thesis

is based on, therefore it is logical to use the same dataset already available and applied

in the project.

The Market dataset available is therefore the historical series of daily values of the S&P

500 index from 2009-02-02 to 2019-09-26, for a total amount of 2682 data. The historical

daily series of the index is available since 1980, but the composition and the value of

the index are very different from actual ones and the sentiment features described in

following sections are only available since 2009-02-02, therefore also the historical series

of the index is used from that date. As shown in Figure 5.2 the dataset is made of seven

features.

• referenceDate: it is the date corresponding to each datum, which are all opening

days of the U.S. stock market in the eleven considered years.

• ID : a unique ID identifying each datum (so each working day) is added to the

features to uniquely represent each row of the dataset with an integer number.

• close: it is the closing value of the index, which is the value of the S&P 500 at 4

p.m., the time when stock trading stops.

• high: it is the highest value the index assumes during the opening hours of the

stock market, i.e. the highest value registered from 9.30 a.m. to 4.00 p.m.

• low : it is the lowest value the S&P 500 assumes while the U.S. Stock Market is

72

Figure 5.2: The first five market data.

open.

• open: it is the opening value of the index, which is the value of the S&P 500 at

9.30 a.m., the time when stock exchanges start.

• volume: it is the total amount of shares of all companies belonging to the index

traded during the considered day.

The scatterplot of Figure 5.3 shows the shape of the trend of the open value of the

index during the period considered in the dataset. The curve is almost monotonically

increasing, hence it is immediately clear that there may be an issue complicating a non-

trivial learning: between two consecutive days it is probable that the index is increasing,

therefore the agent may learn the trivial policy to always buy stocks, performing always

the same action. Moreover, the value of the index in 2009 is around 800, while in 2019

it is around 3000. These values are very different and they make impossible to keep the

value of the index or the difference between two consecutive values as features, because

they have very different magnitudes. Hence, as explained in next sections, the value

chosen to balance the dataset is the percentage difference between two consecutive days,

so that the percentage does not take into account the values, scaling the data.

In conclusion, the S&P 500 index is the chosen historical series, it is a consistent

representation of the trend of the U.S. Stock Market and its historical series is adopted

in this thesis to represent the Market value. On the other hand, it presents a clear

increasing pattern, that may cover the other relations between the index and the features,

preventing the learning of more complex relations.

73

Figure 5.3: The curve of the open value of the index in the available data.

5.2 Daily Sentiment

In this section the datasets regarding the sentiment features are shown. The S&P 500

historical series presented in Section 5.1 and the sentiment features extracted in this

section are the starting point of all the features and targets of any algorithm applied in

this thesis based on daily data.

In particular, two daily sentiment signals are available from the project this work is

based on, which are the focus of the analysis that is performed in next chapters. These

sentiment signals are based on sentences and news coming from two different sources,

tweets from Twitter and Reuters news, and they have been extracted as explained more

in detail in the following subsections.

5.2.1 Twitter Daily Sentiment

Every day approximately 500 millions of tweets are sent by people coming from all over

the world with all possible kind of contents. Therefore Twitter is a very frequented vir-

tual public place where also investors and companies share their messages or opinions.

74

This is the reason why a sentiment extracted from the tweets published in a day regard-

ing the American Stock Market may be a relevant signal about the overall sentiment of

the components of the Market, suggesting if the Market will perform well or badly the

next day. On the other hand, it is also possible that the sentiment of tweets is not a

predictive signal of what will happen on the Market but a reaction signal to what al-

ready happened, making it not informative for predicting the future values. This is one

of the reasons why this work is focused on finding whether the sentiment is significant

for predicting the Market trend or not.

In this framework, the tweets considered to extract a daily sentiment signal are the ones

that present as hashtag or cashtag at least one of the assets in the S&P 500.

Then, to each selected tweet is associated a sentiment feature extracted through the

application of a Deep Artificial Neural Network. In particular, Word Embedding has

been performed applying GloVe algorithm (explained in Subsection 4.3.4). Then, an

Artificial Neural Network is designed and trained, with the aim to extract a sentiment

score from the word vectors. The hidden layers of the network are composed by two

Feedforward hidden layers (introduced in Subsection 4.2.2) responsible for combining

information from the word vectors extracted from the tweet, followed by two LSTM (ex-

plained in Subsection 4.2.4) able to exploit the sequentiality of the words in a sentence.

Finally, the output layer is made of a single fully connected node that maps all the

signals produced by the last LSTM layer into a single real number in the interval [0, 1],

that is the sentiment associated to the considered tweet. The training both of GloVe

algorithm and the Neural Network is performed using a set of sentences, labeled with a

sentiment value, made of 1.583.691 Tweets described in [18].

Once the trained Artificial Neural Network is exploited to associate a sentiment to any

of the selected tweets regarding the S&P 500 companies, it is necessary to summarise

them, producing a daily sentiment feature. Hence, for each company composing the

index and for every hour of a day, the tweets referring to that company are averaged,

producing the hourly sentiment score associated to each company. When there are no

tweets in an hour referring to a company a forward filling procedure is applied: the

last hourly sentiment value referring to that company is selected until a new tweet about

the company appears. A possible drawback of forward filling arises when there are no

tweets related to a company for a long period of time. In this case there is no information

about the actual sentiment of that company but the procedure still represents it with

an obsolete one, which may be substantially different.

The next step is to aggregate all hourly sentiments referring to the same hour of the same

day through a weighted average of hourly sentiment values of each company, weighted by

the market capitalization of the company, in a fashion similar to the one that is applied

by Standard & Poor’s to compute the S&P 500 index. In this way a sentiment signal

from tweets over the index is produced for every hour of the day, so it only remains to

75

Figure 5.4: First five Twitter sentiment features referring to the two previous days.

average the 24 hourly signals of a day to compute the estimated Twitter sentiment value

of that day over the S&P 500 index (that is considered to be a good approximation of

the sentiment over the U.S. Stock Market).

In conclusion, in the project this thesis is based on, a sentiment signal for each day has

been extracted from Twitter as explained above and the features selected to perform

algorithms are the sentiment of one day before and the one referring to two days before

the current date, as reported in Figure 5.4. Hence these are the two features initially

available in this work referring on tweets.

Unfortunately, this features are available only from 2017-04-03, for a total amount of

about 500 data, that are not enough to significantly perform Machine Learning algo-

rithms. For this reason Twitter daily sentiment is not used in the algorithms applied in

this thesis, that therefore focuses on Reuters sentiment explained in Subsection 5.2.2.

5.2.2 Reuters Daily Sentiment

Reuters Machine Readable News are financial news delivered by Reuters together with

some features that can be applied by algorithms. In particular, as shown in Figure 5.5,

each news is equipped with three signals which represent the probability for each news

to be positive, negative or neutral. Therefore, exactly as explained for Twitter sentiment

in Subsection 5.2.1, it is possible to extract a daily Reuters daily sentiment signal.

In particular, all news of a certain hour referring to a company are collected and the

sentiment signal referring to each news is computed as the difference between the posi-

tive and the negative sentiment signal of the news. Then, the hourly average sentiment

of each company is calculated, the hourly mean sentiment over the S&P 500 index

weighted by the market capitalization of each company is evaluated, and finally the

daily sentiment over the index is produced averaging the 24 hourly signals.

76

Figure 5.5: An extract of a Reuters Machine Readable News: every news is

equipped with a positive, negative and neuter sentiment score. Moreover, the

tuple with key assetName encodes the asset the news is referring to, which in this

case is the NGEx Resources Inc.

77

Figure 5.6: First five Reuters sentiment features referring to the two previous days.

This daily signal extracted from Reuters Machine Readable News can be considered

the Reuters sentiment referred to that day and, exactly as Twitter sentiment, in the

considered project the sentiment values referred to the two previous days are selected as

features, ad shown in Figure 5.6, therefore they are the two features initially available

in this work referring on Reuters news. Moreover, the Reuters data are available from

2009-02-02, making the dataset much larger than Twitter-based dataset (the number of

available days is 2682). For this reason, as already anticipated, the daily sentiment fea-

tures utilized in this thesis are only Reuters sentiment features, which allow to consider

more than ten years of daily data.

In conclusion, the data available at the beginning of this work are the S&P 500 index

historical series (shown in Figure 5.2) for what concerns U.S. Market prices and the daily

sentiment of Reuters Machine Readable News of the two previous days (shown in Figure

5.6) as regards sentiment features. Also daily sentiment from tweets is at disposal, but it

is discarded due to the short time window of its availability. The daily data considered

are therefore from 2009-02-02 to 2019-09-26, for a total amount of 2682 data made of

five market and two sentiment features.

5.3 Feature Extraction

The first purpose of this thesis is to evaluate the relevance of the sentiment features for

predicting the next value of the Stock Market. It may happen that sentiment signals

are correlated with other features not taken into account in the dataset, making the

sentiment to seem relevant because of the correlation with other significant features and

not for its own importance. Therefore, in this section, some basic features are gener-

ated from the data available, so that their significance can not be implicitly included

78

Figure 5.7: The first five extracted features.

in the sentiment importance. Specifically, some features are extracted from the date of

each day. Moreover, the historical series of values of the index are revised, as already an-

ticipated, to consider relative variations between consecutive days, instead of raw values.

Firstly, the date is considered: the day of the week and the month of the year are

extracted and encoded in a one-hot encoding fashion. Moreover, since in the most im-

portant investment fund based on the S&P 500 index (the SPDR S&P 500 trust ETF

[26]) coupon detachment happens on every Friday of the third week of March, June,

September and December of every year, two features are added to represent the distance

from last coupon detachment (PreviousPayment) and the distance to next coupon de-

tachment (NextPayment). They are represented by a real number in the interval [0, 1],

so that the more the value of the feature is next to 0, the nearer is that event, the more

the value is next to 1, the further is the event. In Figure 5.7 a sample of this extracted

features is reported.

The other elaboration of the dataset is made on the historical series of the S&P 500

index. Indeed, the open values of the index plotted in Figure 5.3 are in a too wide range

and should be normalized. The chosen procedure is to consider the proportional differ-

ences between two consecutive days as features. In fact, the highest and lowest values

of the index are not much reliable in a daily analysis because they always happen at

different moments of the day, that are unknown a priori, hence it is much more complex

to build a model based on them. Also the close value of the index is not the best choice

79

Figure 5.8: Five examples of proportional consecutive differences of open values

of the index among ten previous days.

for a daily-based strategy, because it is only available at the end of the day, when the

market closes and it is not possible to trade until the open of the next day, when the

index may have changed value. Therefore, the features based on the daily historical

series of the S&P 500 adopted in this thesis are the proportional differences between

two consecutive days within a certain time window of previous days. Specifically, the

lag is set to be equal to 10, so that many previous day are considered, in order to give

to Machine Learning algorithms the possibility to understand the trend, without going

back too much, since far events are not such relevant as close ones.

Summing up, the features extracted from the historical series of the index are the per-

centage differences between the open values of two consecutive days among the ten days

before, as shown in Figure 5.8 (for a better representation, the first ten data are not

reported in the figure, since they have missing values corresponding to the previous days

not present in the dataset, that are filled with 0s).

In conclusion, the complete dataset is made of daily data from 2009-02-02 to 2019-

26-09 for a total amount 2682 rows. Each sample of the dataset is made of 31 features

(plus the date, that is a string univocally identifying each datum) as reported in Figure

5.9: 10 of them derive from the historical series as percentage differences between two

consecutive values of the open of the S&P 500 index in the ten previous days; 19

features are extracted from the date representing the day, month and distance from

coupon detachments; finally, 2 features are the daily sentiment obtained by Reuters

news of the two previous days.

80

Figure 5.9: Five rows of the dataset with all the available features derived both

from market and sentiment data.

81

Chapter 6

Feature Selection

In this chapter Supervised Learning methods are applied to the dataset presented in

Chapter 5 in order to understand the importance on the prediction of the market trend

(represented by the S&P 500 index) of the available features, with a special focus on

the sentiment. The procedures applied in this chapter are essentially two.

• The first is a Feature Selection, so that the Reinforcement Learning algorithms

will be trained considering the features that result to be relevant in this chapter.

Moreover, the tuning and the performance of the Regression performed for select-

ing the features will already give some interesting results for the evaluation of the

sentiment.

• The other procedure is specifically focused on the sentiment features, allowing

to draw a first conclusion on their importance. In particular, it consists on per-

forming a first Regression without the sentiment features and a second Regression

algorithm with only the sentiment, having as target the residuals of the first Re-

gression. In this way it is possible to evaluate if the sentiment features are able

to extract something more than what already extracted from the other features

about the reward.

In particular, since the final purpose is to apply Reinforcement Learning algorithms, the

dataset is firstly elaborated in Section 6.1 so that each row is equipped with a target

value that allows to perform a Supervised Learning Feature Selection considering as tar-

get the reward of the agent, making it robust for choosing the features relevant in the RL

approach. Before any application, in Section 6.2 Random Forests are theoretically pre-

sented. They are a Supervised Learning method particularly useful for Feature Selection

because they naturally rank features in the learning process, producing a hierarchy over

them. Then, in Section 6.3, a Random Forest is tuned and trained, producing the first

relevant results of this work. Finally, in Section 6.4, the second procedure is performed

using again Random Forests to explore more specifically the influence of the sentiment

features over the learning of the target.

6.1 Features and Target: Expanded Dataset

Starting from the complete dataset presented in previous chapter and shown in Figure

5.9, the Supervised Learning algorithms presented in this chapter require an additional

elaboration. In particular, they need the addition of a target value to each datum to

be able to perform a Regression. Specifically, the purpose of all the approaches of this

chapter is to extract information useful for the application of Reinforcement Learning

techniques, therefore the target of interest is the reward.

The Markov Decision Processes modeled in this work will be described in Chapter 7,

but it is possible to anticipate the essential elements that compose the reward of a step

of the MDP. In fact, the possible actions that the agent can take at the beginning of

each day are three: buy, sell or do nothing, encoded as {1,−1, 0}. Intuitively, if the

agent predicts an increase of the value of the S&P 500 index it should choose to buy

(long position), with the idea of earn by selling the stocks that have increased their

value in next days. If it predicts a decrease of the value it should sell (short position),

which consists in sell stocks not owned with the idea to buy them later when they have

a decreased value. Introducing the short position, it is given the unrealistic possibility

to sell stock without owning them, which is illegal in the U.S. Stock Market, but it can

be performed with a more complex procedure which consists in borrowing them, so this

action is not completely impossible to perform in practice. Finally, if the prediction is

that the index will be almost constant the agent should do nothing.

The other element that influences the reward is the action taken the day before, that is

the actual portfolio, i.e. what the agent has in possession in current day before taking

an action. Indeed, it can decide to keep the same position or to change its position,

which implies transaction costs. If, for example, yesterday the agent with no open

position (portfolio = 0) chose to buy (1) and today it chooses to sell (-1), yesterday it

paid a fee for the transaction to bring its portfolio from 0 to 1, then today it has to pay

a fee for selling the stocks it owns (from 1 to 0) plus a fee for the short selling (from 0

to -1), with a total change of its portfolio from 1 to -1.

With the ideas of action and portfolio, it is finally possible to define the reward of a step

of the MDP. In fact, given the features, the action taken and the current position given

by the portfolio, the reward is:

rt = at ·
(opent+1 − opent)

opent
− |at − at−1| · fees. (6.1)

Basically, the first member of the equation is the percentage profit, computed as per-

centage increase of the open value of the index between current and next day, multiplied

83

by the action taken today at. In this way it is a positive profit if the correct action has

been chosen by the agent, negative if the market moves in the direction opposite to the

prediction, null if the chosen action is to do nothing. Then, the reward is computed sub-

tracting to the profit the transaction fees due to the change of position between current

portfolio (that is previous action at−1) and the chosen action (at). A modeling choice is

to consider the fees a constant value estimated as $7 for each $100.000 of stocks bought,

that can be refined as an improvement of current work by considering them proportional

to the asset or to the amount of money invested. Therefore in the unitary portfolio con-

sidered in this framework the constant is fees = 7× 10−5. The fees are not paid if

at−1 = at because there is no change of position, they are paid once if there is only one

change of position (from -1 to 0, from 0 to 1 or viceversa) and they are paid twice if

there are two changes of position (from 1 to -1 or from -1 to 1), as expressed by |at−at−1|.

Summing up, every row of the dataset is a day and it is made of 31 available fea-

tures. To evaluate their importance on the prediction of the reward of that day, it is

necessary to add it as target, remembering that it depends on the action taken that day

and on the portfolio inherited from previous day. Hence every day, depending on the

combination of action and portfolio, there can be 9 different rewards as target. To have

all possible scenarios all rows of the dataset need to be replicated nine times when per-

forming Supervised Learning approaches that have the reward as target, so that every

repetition of the same row (so the same day) has one of the nine possible combinations of

action and portfolio as features and the corresponding reward as target. The same day

repeated nine times with different action-portfolio combinations are actually 9 different

samples, and action and portfolio in Supervised Learning are two additional features,

that are included in the feature selection as all the others, since they influence the target

(i.e. the reward). Therefore, the dataset used to perform the feature selection of Section

6.3 is made of 33 features and it is composed by 24129 samples (the 2682 samples of the

original dataset repeated nine times, minus the last datum on which there is no next

open value so it is not possible to compute the reward). An example of the nine samples

extracted from the same day is reported in Figure 6.1, where it is possible to see that

all 31 original features are the same in the same day, but the different combinations of

action and portfolio lead to different target rewards.

84

Figure 6.1: One row of the dataset is transformed into nine different samples: each

one has a different combination of action and portfolio, leading to a different target

reward.

85

6.2 Random Forests

The Regression algorithm adopted to perform the Feature Selection are Random Forests

[9]. In this section they are theoretically explained, clearing also the reason why they

have been chosen.

A Random Forest is a combination of tree predictors, hence it is firstly necessary to

introduce Decision Trees [10], [47]. A Decision Tree is a Supervised Learning method

based on a tree model that in Regression problems predicts the value of the target yi,

given a datum xi ∈ Rd. Denoting with X the data space, a Decision Tree iteratively pro-

duces axis-parallel hyperplanes to recursively split the data space partitioning it, until

the points inside each set of the partition are relatively homogeneous in terms of target

yi. Once the tree is trained, X is partitioned collecting train data into subgroups. It

is then possible to assign each test point to one subgroup, so to a leaf of the tree, and

its target can be predicted as mean value of the targets of the train data belonging to

the same set. Summing up, as shown in Figure 6.2, a Decision Tree consists of internal

nodes that split the data depending on the value of a feature selected for that node,

and leaf nodes that represent a set of the partition of X and they are labeled with the

predicted value of the target of data in that set, computed in regression as the mean of

train targets.

As said, at each internal node, one attribute is selected to split training samples in two

subgroups, maximizing a measure of similarity of the targets among data in the same

subgroup and minimizing the similarity between them in different subgroups. Therefore,

it is necessary to select one splitting method able to choose the attribute on which the

splitting is based on and to determine the value of the selected attribute, that is the

threshold for the split. In Classification there are different methods to perform the splits,

like information gain or information gain ratio, that are based on entropy, or the Gini

index, that always produces binary splits. In Regression the mean squared error or the

standard deviation are the common indices of impurity used to determine the split, so

the best feature and its best threshold are selected as the ones that minimize the chosen

impurity measure. Independently from the split procedure adopted, they are all focused

on maximizing the purity among data so that in the same set their target values are as

much similar as possible. Clearly it is always possible to produce a Regression Decision

Tree that predicts exactly all the training target values by splitting until each leaf is

made by a single datum, but this is an evident example of overfitting, that will perform

very poorly in testing. To overcome this issue, the tree must be pruned:

• it is possible to adopt a prepruning approach so that the partitioning is stopped if

a certain depth of the tree is reached, if data in a group have a standard deviation

smaller than a chosen tolerance, or if the number of data in a subgroup is smaller

than a certain minimum number;

86

(a) An example of Decision Tree.

(b) The induced partition on data space.

Figure 6.2: A Decision Tree with age and height as features and weight as target.

Each set partitioning the data space is colored as the corresponding leaf node.

• another possibility is a postpruning approach, that once the tree is built starts

from last splits and removes them if there is no statistical evidence that they

increase the performance on the evaluation of the target.

In conclusion, a Decision Tree iteratively splits data into subgroups maximizing the

similarity among their target inside each subgroup, paying attention to splits, because

too many subgroups lead to overfitting. At the end, leaf nodes of the tree predict the

target value associated to each set of the produced partition of the data space, which is

87

computed as the mean of the target values of the training data in the set, assigning that

value to each test datum belonging to that group.

A Random Forest Regression algorithm is a Model Ensemble method consisting in

a large number of unpruned Decision Trees with a random selection of features at each

split. The idea is to use many weak learners as much uncorrelated as possible, that

together form a strong learner.

The correlation between Decision Trees (hence the variance of the model) is reduced in

two ways:

• each Decision Tree in the forest has training set composed by the same number

of data N of the original training set extracted with bootstrap technique, which

consists in sampling with replacement N data from the original set;

• at each split of a node, the feature on which the split is based on can be selected

only between m variables, randomly selected from the d available features.

Summing up, all Decision Trees of the Random Forest are trained in this way: the

training set is extracted with bootstrap, at each split only some features can be selected

and the trees are unpruned. Each one of them is a weak regressor, since its training is

not optimized and it will probably overfit, but they all together become a strong learner,

since their learning procedure, which singularly is not optimal, reduces the correlation

among trees, decreasing the variance. Moreover, since there is no pruning and at each

split a smaller number of features is available, Decision Trees in the Random Forest are

much faster to train. Finally, the prediction of the target of a test datum is computed in

the Random Forest Regression as the average value of the predictions of each Decision

Tree as shown in Figure 6.3.

A possible variant is called Extremely Randomized Trees [17], where randomness is

exploited a bit more. In particular, a third random procedure is performed to decrease

the variance: as in Random Forests, a random subset of m features is available at each

node to perform the split, but instead of looking for the best threshold, some values are

randomly chosen for each available feature and the best of these randomly-generated

thresholds is used to perform the split.

Random Forests also present two peculiar characteristics:

• The first is that it is possible to compute a validation error directly through the

training set. Exploiting the fact that not all data appear in all datasets, the Out

of Bag approach estimates the value of the target averaging only the output

of trees corresponding to bootstrap samples where does not appear the selected

88

Figure 6.3: An example of Random Forest with n = 3 Decision Trees.

datum. Repeating this for all data in the training set allows to measure the

performance of the learner in a more robust way than training error without the

use of a Cross-Validation set.

• Another important property of Random Forests, that makes them widely applied

to perform Feature Selection, is that they produce an estimate of the importance of

the features in predicting the target. Indeed Decision Tree methods calculate their

splits by mathematically determining which split will most effectively distinguish

groups of data with similar target. Therefore in Random Forests the importance

of a feature is measured as the sum of the improvements (in terms of Gini index,

information gain or mean squared error) in any node in which the feature is used

to split, weighted by the percentage of training data reaching that node.

In conclusion, to train a Random Forest is necessary to set the number of trees, to

decide the percentage of features available at each split and the minimum number of

data required in a node to be splittable. These parameters can be tuned using a Cross-

Validation approach as described in Subsection 6.3.1. They are a relatively small number

of hyperparameters and they are enough to be able to train the Regression model and

to extract the feature importances, as done in Subsection 6.3.2.

6.3 Feature Selection with Random Forests

In this section the first Supervised Learning approach is performed: it is a Random

Forest Regression implemented to find the importance of features on the prediction of

the reward. The resulting relevant features will be used to design the MDPs on which

RL algorithms are performed. Moreover, the tuning of the Random Forest parameters

performed in this section gives information about the features and it is also useful for

89

tuning the parameters of the Regression method inside the FQI algorithm that will be

applied in next chapter.

6.3.1 Random Forest Training

In this subsection all technical details on the Random Forest Regression performed for

Feature Selection over the dataset explained in Section 6.1 are reported. In particular

the chosen method are Extremely Randomized Trees, implemented in the Scikit-Learn

[31] tool called ExtraTreesRegressor [40].

The best values of the three parameters to tune in modeling a Random Forest (or its

variant) are obtained optimizing over a grid of reasonable values.

• The number of trees (‘n estimators’) should be as large as possible. However,

the following set of values is tested to empirically confirm this idea:

n estimators ∈ {50, 100, 200, 500, 1000, 2000, 3000, 4000, 5000}. (6.2)

The default number of trees in the Scikit-learn tool is set to 100, but since the

number of data available in the dataset is not very large it is possible to have

more trees without slowing down too much the algorithm. On the other hand, the

maximum selected number of trees is 5000, because the more the number of trees

increases the slower and more complex becomes the Regression.

• The percentage of features (‘max features’) to randomly consider when split-

ting is default set to 1, meaning that all features are considered. As already

explained, considering a smaller percentage reduces the correlation between the

Decision Trees of the Random Forest, therefore also smaller percentages are tried:

max features ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1}. (6.3)

Percentages under the 50% are not considered, so that a consistent number of

features is still available at any node.

• Finally, the minimum number of samples (‘min samples split’) necessary to

split a node is by default set equal to 2, since Random Forests are made of un-

pruned Decision Trees. However, different splits are tried, because a larger value

speeds up the algorithm reducing meanwhile the overfitting of each tree. In par-

ticular:

min samples split ∈ {2, 5, 10, 15, 20, 50, 100, 200, 400, 800, 1000, 2000, 5000, 10000}.
(6.4)

The total number of training data in each iteration of the Cross-Validation is about

20000, hence the maximum value of the minimum data necessary for splits is set

90

to 10000, about half of the training set. In this way a completely unpruned tree,

an extremely pruned tree and many pruning in-between these two extremes are

considered, giving to the Cross-Validation procedure a consistent variety of values

among which choose the best performing one.

To find the best parameters a 5-Folds Cross-Validation Grid Search is per-

formed. Namely, on every combination of the possible values considered for the three

parameters, a 5-Folds Cross-Validation is performed on data from 2009-02-02 to 2018-

12-31, not using the data of 2019, that are exclusively used for testing. In practice, at

first iteration data from 2011 to 2018 are used for training and data from 2009 to 2010

are used for measuring the performance; then data from 2009 to 2010 and from 2013

to 2018 are used for training and data from 2011 to 2012 are used for computing the

performance. This is repeated for all the data, producing five performance scores of a

Random Forest Regression with a certain combination of parameters, that are averaged

to compute the cross-validation performance of the forest with that parameters combi-

nation. This computation is iterated for all the combinations of parameters in the grid

and the combination leading to highest score is selected.

Although the Random Forest is performed for Regression, the measure selected for eval-

uating the performance is not the usual R-Squared but the Accuracy, that is the per-

centage of data in which the predicted reward has the same sign of the real one. This

choice is logical from the Reinforcement Learning point of view: if the predicted reward

has the same sign of the real reward, the agent will probably correctly choose the action

producing that reward if it is positive or it will not perform that action if the resulting

reward is negative.

The parameters leading to the best performance score among all the possible combi-

nations are reported in Table 6.1 and they are chosen to perform the Feature Selection.

From the best parameters it is possible to confirm that the greatest available number of

trees is selected by the grid search, confirming the fact that the higher is the number of

trees the more efficient is the learning performance.

Moreover, it is already possible to guess the poor significance of the features on

predicting the reward. Indeed the best percentage of features is the smallest available

and, most importantly, the minimum number of data needed for a split is chosen as large

as possible. This means that the selected combination of parameters leads basically to

a single split: it is best to only see randomly the 50% of features and when the number

of data in a node is half the dimension of the dataset the splitting is stopped, which can

happen after only one split if it halves the data. Therefore the Random Forest trained

with the selected parameters is made of many trees very much pruned, that basically

split the data once and stop without exploring particular patterns among features to

do that, and it works better than a forest exploring complex patterns among features

91

Table 6.1: Parameters tuning: the best parameters and the related Accuracy score.

Parameter Value

‘n estimators’ 5000

‘max features’ 0.5

‘min samples split’ 10000

CV-Accuracy 0.59420

CV-Standard Deviation 0.01190

to produce accurate subgroups, meaning that there are no complex efficient patterns

among features able to predict the reward, but it is better to do few random splits.

Finally, the produced Cross-Validation Accuracy score is satisfactory, because it is signif-

icantly different from the random guess (50%), it is robust since the standard deviation

between the scores produced by the five different validation sets is low and it is also

greater than the average score produced by this kind of Regression focused on predict-

ing the reward, that practitioners consider it to be about the 55%.

6.3.2 Random Forest Results

After the tuning of hyper-parameters performed in previous section it is possible to train

the Random Forest Regression with the best parameters on all data from 2009-02-02 to

2018-12-31. Then, the data from 2019-01-01 to 2019-09-26 are used as test set, produc-

ing the Accuracy test scores reported in Table 6.2, that is satisfactory and consistent

with respect to the performance obtained in Cross-Validation. Its value is also greater

than the training performance, which is not a usual behavior but its reason will be clear

by the end of this section. Moreover, train and test confusion matrices are reported in

Figure 6.5.

Then, as explained in Section 6.2, it is possible to extract the importance of each feature

directly from the Random Forest. In particular, the percentage importance of the best

fifteen features together with the related standard deviation is shown in Figure 6.6 and

this percentage importance is reported in Table 6.2. From these results it is possible

to conclude that the action has the most relevant part on the prediction performed by

the Random Forest. The percentage differences of prices are slightly important while

the sentiment and all the other features extracted from the date are not relevant. Re-

membering that the value of the index is mostly increasing (as shown in Figure 5.2),

the Random Forest predicts a positive reward when the action is 1, a negative reward

when it is -1 and a slightly negative reward when the action is 0. Indeed, the performed

Random Forest splits the data only depending on the action and computes the value of

the output as the mean reward of the group of samples having that action as feature.

92

(a) Train action and predicted reward. (b) Test action and predicted reward.

Figure 6.4: The blue line in the figures is the value of the action in each sample,

respectively belonging to train and test set. The red points are the corresponding

predicted rewards. From their values is clear that they are positive when the action

is 1, negative when it is -1 and slightly below 0 when the action is 0.

This pattern is clearly shown in Figure 6.4. Moreover, this is confirmed by the confusion

matrix: the signs of the majority of positive and negative rewards are correctly classified,

while for almost all null rewards (when both portfolio and action are 0) the predictor

considers them negative, leading to the misclassification of almost all of them. All these

evidences are in accordance and they show that the predictor is not able to sufficiently

exploit the historical series of previous days, the sentiment signal or any other extracted

feature to retrieve a more complex pattern predicting the reward, but it only refers to

the action assuming the value of the index to always be increasing. This explains the

best parameters values, the low importance of the features and the good performance

of the Random Forest in terms of Accuracy. Indeed the algorithm only focuses on the

action, therefore a more complex structure of the trees is not necessary, leading to a

number of samples in a node to be half the dataset. Moreover, the other features do

not add informativity to the prediction and when the action is not available to split

the historical series are preferred to the sentiment. Finally, the good performance score

depends on the fact that the trivial pattern followed in the Regression leads many times

to the prediction of the correct sign and the performance in testing is a little better than

in training only because the percentage of days when the index is actually increasing is

slightly greater.

In conclusion, the Random Forest Regression performed for predicting the reward fo-

cuses almost completely on the action, it has a good performance but this is due to

the clear increasing pattern of the index and it is a first evidence that the features are

not much relevant in predicting the value of the index. In particular, there is evidence

93

to discard the extracted features representing the day, the month or the distance from

coupon detachment and in the MDPs modeled in the following chapter they will not be

considered.

(a) The train confusion matrix. (b) The test confusion matrix.

Figure 6.5: Confusion matrices show the number of samples whose sign has been

correctly predicted and the number of misclassified samples.

Figure 6.6: Histogram of importance of best 15 features (as ranked in Table 6.2)

with standard deviations.

94

Table 6.2: Feature ranking and performance of the Random Forest.

Feature Importance

action 77.40%

R1 3.52%

R2 2.97%

R7 2.59%

R0 2.44%

R8 2.18%

R4 1.44%

R6 1.36%

R3 0.99%

R5 0.75%

R9 0.71%

portfolio 0.59%

sentiment d01 0.49%

PreviousPayment 0.36%

sentiment d02 0.32%

Train Accuracy (2009-2018) 0.59420

Test Accuracy (2019) 0.61708

6.4 Regression of Sentiment on Residuals

Similarly to Feature Selection, the purpose of the second Supervised Learning approach

explained in this section is to investigate the significance of the features. In particular,

this procedure focuses on the importance of the sentiment features in predicting the

reward. In Subsection 6.4.1 the procedure followed by this approach is described, that

is later applied in Subsection 6.4.2.

6.4.1 The Procedure

The chosen Supervised Learning algorithm is again Random Forest Regression. As ex-

plained in the discussion on the results of Feature Selection in Subsection 6.3.2, the

Random Forest is designed and trained for predicting the reward based on all available

features and has a good Accuracy score, but this is almost only depending on the in-

creasing trend of the S&P 500 index and exclusively the action feature is considered

when choosing the sign of the output. Therefore this approach tries to understand the

significance of the sentiment features after filtering the Regression from this most rele-

95

vant pattern between action and reward.

In practice, the procedure consists in training a Random Forest as done in Section 6.3,

without using the two sentiment features. Then, another Random Forest is optimized

and performed: the features of this second Random Forest are only the two sentiment

features of the two days before, while the target are the residuals of the first Random

Forest, that are the differences between real and predicted values of the target.

In this way, the first Random Forest regression predicts the value of the reward based on

all the features except the sentiment. Then, in the second Random Forest, the sentiment

is used to predict the residual of the first Regression so that, if this second Random For-

est has a positive performance score, the sentiment is significant in explaining something

more about the reward than what already explained by all the other features in the first

Random Forest. Hence, a good performance score of the second Random Forest is an

evidence of the informativity of the sentiment features, while a bad performance means

that the informativity of the reward is not more than all the other features.

The performance score considered for the first Random Forest is the Accuracy, in the

same fashion of what done in Feature Selection, because the target is again the reward,

so the prediction is accurate if the predicted sign is the same of the reward itself. In the

second Random Forest, on the other hand, the target are the residuals, real numbers

representing the prediction errors, therefore their importance is on their value and not

on their sign, which leads to the choice of the R-Squared as performance measure, that

is the classical score for Regression.

6.4.2 Training and Results

The first Random Forest is performed exactly like the one described in Subsection 6.3.1,

with the same best parameters found in that subsection and the same training set. This

is reasonable since all the features and the technique are exactly the same except the

removal of the sentiment features, that are shown in Subsection 6.3.2 not to be relevant

for the complete Random Forest, so there is no need to perform a new parameters tun-

ing.

The parameters of the Regression and the results are reported in Table 6.3. As expected,

the Accuracy scores both in training and testing are almost equal to those found in Fea-

ture Selection, because as said the only difference in the Random Forest is the absence

of sentiment features, that are proved not to be important for this Regression.

In the second Random Forest parameters need to be tuned. The approach adopted

for parameters tuning is again a 5-Folds Cross-Validation using training data from 2009

to 2018. As said, the features are the two sentiment signals of the two days before, while

the target is computed subtracting the predicted value of the reward produced by the

96

Table 6.3: First Random Forest: same best parameters of Feature Selection and

similar performance.

Parameter Value

‘n estimators’ 5000

‘max features’ 0.5

‘min samples split’ 10000

Train Accuracy (2009-2018) 0.59412

Test Accuracy (2019) 0.61707

Table 6.4: Second Random Forest: best parameters and related performance.

Parameter Value

‘n estimators’ 5000

‘max features’ 1

‘min samples split’ 10000

CV-R2 −2.6× 10−7

Train R2 (2009-2018) −5.9× 10−8

Test R2 (2019) −7.4× 10−7

first Random Forest to its real value. Since there are only two features it is better to

let them available at any split, so there is no need to tune the parameter ‘max features’,

representing the percentage of features randomly available at each split. Moreover, the

number of trees of the forest should be as big as possible, as theoretically said and em-

pirically shown in the first parameters tuning, so it is set equal to 5000, like in the first

Random Forest. Therefore, the only parameter that should be tuned is the minimum

number of data needed in a node to perform a split.

As reported in Table 6.4, the best parameter found is again equal to 10000, the maxi-

mum possible value in the grid. However, as possible to deduce from the results reported

in the table, the R-squared values obtained both in training and testing are negative,

meaning that the prediction through this second Random Forest is worse than assigning

to each predicted value the mean of train target (i.e. the train residuals). In practice, the

results obtained with this second Random Forest underline the fact that the sentiment

features does not add informativity to the interpretation of the reward, which

is a second evidence in accordance to what found in Feature Selection that the features

and in particular the sentiment features are not relevant in predicting the Market trend

represented by the S&P 500 index.

97

In conclusion, in this chapter Feature Selection over the available features brought

to the decision that for RL algorithms it is enough to consider historical series and

sentiment features, since there is no statistical evidence about the importance of the

extracted features in predicting the reward. Moreover, the main issue on daily data has

emerged: the clearly increasing trend of the S&P 500 index overrides any other relation

between the index and the features. The Supervised Learning approaches presented

in this chapter also produce two evidences about the low importance of the sentiment

features in predicting the reward, since they are not considered relevant features in

the Feature Selection and they are not meaningful on predicting the residuals. The

Reuters sentiment features are used anyway in Reinforcement Learning algorithms of

next chapter, to perform an exhaustive analysis of their behavior.

98

Chapter 7

RL Models and Results

In this chapter three Reinforcement Learning environments modeled as Markov Deci-

sion Processes (introduced in Section 2.2) are explained. The features considered in the

models are chosen starting from the complete dataset shown in Section 5.3 accordingly

to the results of Feature Selection (performed in Section 6.3). They are three different

models because each one considers different features, as justified in detail in Section 7.1.

After the explanation of the models, in Section 7.2 the three algorithms applied to each

model, already introduced in Chapter 3, are recalled and discussed specifically for the

models available. Moreover, in Section 7.2, technical details about training, validation

and testing procedures are addressed for each algorithm, extensively explaining all the

passages performed in the learning procedures. Then, in Section 7.3, the results of the

application of the three considered algorithms on the three designed MDPs are shown.

In particular the performance in train, validation and testing is illustrated, together with

some variability measures computed to make statistically robust the conclusions over the

obtained results.

Finally, in Section 7.4, all the procedures applied to daily data are repeated on fifteen

minutes data.

Models and algorithms designed in this chapter have been implemented using Python3.7.2

[43] as programming language. In particular, the algorithms have been performed

through a customized version of OpenAI Baselines [15], which is a set of implemen-

tations of RL algorithms and models. Specifically, the models have been implemented as

classes with methods required by Baselines algorithms. These algorithms already include

PPO and TRPO, while FQI is not present in Baselines but it has been implemented in

a similar fashion. Moreover, some modifications have been performed on the algorithms

already present in Baselines, as a customized training and testing procedure.

7.1 MDP Models

In the discussion on Reinforcement Learning (Chapter 2), the choice to model problems

as Markov Decision Processes has been justified. They have also been defined (Definition

2.2.3) as a tuple of six elements, that are described in this section specifically for the

problem addressed in this thesis.

In particular, as done with Supervised Learning approaches in Chapter 6, the aim of

this work is to investigate the importance of sentiment features in predicting the Market

trend represented by the S&P 500 index, compared with the capability to learn this

trend through its historical series. Therefore three different MDPs have been designed

to perform this analysis. These three environments are the same MDP except for the

state, which is different in each model. Specifically, the three processes are described

through the definition of their elements.

• The state is the only element which is different in the three models. Indeed in a

fully observable process the state is equal to the observation, which is different in

the three models to compare the performance of the features. In particular:

1. in the first MDP the state is made of eleven variables, that are the ten

percentage differences of open values of ten previous days and the current

portfolio (which corresponds to the action performed the day before);

2. in the second MDP the state is made of three variables, which are the two

daily Reuters sentiment features of the two previous days and the current

portfolio;

3. in the third MDP the state is made by all the thirteen variables of the

previous processes, i.e. the ten percentage differences of open values, the

two Reuters sentiment signals and the portfolio.

This choice is reasonable since RL algorithms applied in the first model learn the

optimal policy knowing only features related to historical series of the index, in

the second case they learn knowing the sentiment features and in the last one

they have at disposal both historical series and sentiment signals. In this way

it is possible to compare the performance of the three models, concluding if the

sentiment features are more informative than historical series or not and if they all

together lead to a better result than singularly. Finally, the portfolio is available

in any model so that the agent can evaluate the cost of changing its position in

terms of transaction costs.

It is also important to notice that the elements defining the state in the three

models are all continuous values except the portfolio, so in each MDP the set of

all states S is uncountable infinite.

100

• The set of actions A is made of three actions: {−1, 0, 1}, which correspond to

sell, do nothing or buy. A complication of the models could be to allow the action

to be a continuous value in [0, 1], so that it would represent the percentage of

stocks that should be sold or bought (with respect to all the available stocks, i.e.

the number of stocks that have value equal to all the money available to invest).

The modeling choice made in this work is to consider only the extreme values,

meaning that all the amount of the available money is invested. Hence the value

of the action could be figured as buy or sell the 100% of the available stocks, or

to invest on $1 of stocks, without loss of generality since it is always possible to

scale it by any different amount of money.

Considering the three actions, if the agent predicts with a sufficient confidence

that the value of the index will increase it performs action 1, which means it

buys stocks with the idea to earn selling them later when they have an increased

value. If it predicts that the value of the index will decrease it performs action

-1, so that it sells stocks borrowed and not owned with the idea of buying them

in the future when they will have a decreased value. Finally, if the agent is not

sufficiently confident about what will happen in the future given the observation

or it predicts a percentage change of the index value smaller than the fee it has

to pay for changing its position, it should perform action 0, which implies to close

the position and not invest on the Stock Market that day.

• The conditional transition probability P(s′|s, a) is the probability of moving

to state s′ given the current state s and the action a performed on it. The only

endogenous variable of the state is the portfolio, since it depends on the action,

but it is also deterministic given the action. Therefore, the probability to be in

state s′ is 0 if the value of the portfolio in s′ is different from the given action

a performed on s. On the other hand, the Reuters sentiment signals and the

value of the S&P 500 index are exogenous variables [11], since the action does not

affect their value. Indeed the value of the Market and the sentiment of Reuters

news depend on external factors, that the action of the agent can not influence.

These variables are stochastic and they determine the transition probability from

a state s to s′, that is a non-zero unknown probability density in any state s′

with portfolio equal to the action a performed on s. In conclusion the transition

probability is 0 when the portfolio of state s′ does not coincide with the performed

action a, otherwise it is a positive probability density depending on many external

factors. This makes not possible to properly model the transition probabilities,

justifying the choice of performing Reinforcement Learning approaches, since they

are applicable on MDPs with unknown transition probabilities.

• The reward function R(s, a) = E[r|s, a], computes the expected value of the

101

reward given the state s and the action a performed in it. The reward has already

been largely discussed in Section 6.1, since it is used as target for Supervised

Learning algorithms. As defined in that section, the reward at time t is:

r = at ·
(opent+1 − opent)

opent
− |at − at−1| · fees. (7.1)

The reward depends on the percentage increase between next and current open

values, which is available only at next iteration, making it depending on next state

s′. Therefore, the expected value computed by the reward function depends on the

transition probabilities P(s′|s, a), that are unknown since, as already discussed,

they depend on external factors. This means that also the reward function is

unknown, which is typical in MDPs modeling real problems.

• The discount factor γ is set to be equal to 1, making the problems undiscounted.

This choice is reasonable since there are no convergence issues on the reward, be-

cause in a reasonable amount of time the sum of the percentage increase or decrease

of the index does not diverge. Indeed this would mean that the index would have

become infinitely greater or smaller than the actual value. Moreover, except in

rare cases, the percentage change of the index is smaller than the 1%, meaning

that the sum of relative daily growth of the S&P 500, which mostly determines

the reward, is a relative small number, that does not need to be discounted. Also

practically, the discount can be interpreted as an index of how much an imme-

diate reward should be preferred by the agent with respect to moving to a state

that may lead to a better reward in the future. Since in the models presented in

this work the action does not influence the next state (except for the portfolio,

but it has a small impact on the daily reward), there is no need to compare long

and short term reward, giving the same weight to all rewards through selecting a

discount factor equal to 1.

• Finally, the initial probability distribution µ can be considered deterministic,

since the initial state is univocally determined by the values of its variables, that

are known given the date of the day that starts an episode of the MDP.

Summing up, an iteration of one of the three MDPs described in this section consists

in the following procedure. In ‘day 0’, the agent observes the percentage differences of

the open values of the index in the ten days before and/or the value of the Reuters

sentiment features of the two days before. Then it performs an action: to buy if it

expects an increase of the value index, to sell if it expects a decrease of it and it does

nothing if its expectation is that the index will be almost constant. Finally, the next

day starts next iteration, the agent gets a reward depending on what really happened

and on transaction costs and it has to decide the new action to perform.

102

The three models described in this section have been implemented as classes on which it is

possible to generate trajectories and apply different Reinforcement Learning algorithms.

The choice of algorithms and their implementation are discussed in next section.

7.2 Algorithms

After the definition of the models in previous section, the next step is to describe the

algorithms performed and the procedure followed to achieve the results described in

Section 7.3. In particular, three algorithms have been performed on each of the three

MDPs introduced in Section 7.1.

The first two algorithms are TRPO and PPO, two Policy Search methods already dis-

cussed in Subsections 3.3.2 and 3.3.3. In the state of the art, they are two of the most

efficient Policy-Based methods, since they have the advantage with respect to Policy

Gradient methods to optimize directly the policy, forcing two consecutive policies to be

sufficiently similar, respectively as a constrained optimization problem or directly inside

the loss function.

The other macro-category of algorithms are Value-Based algorithms, that focus on reach-

ing the optimal value function and to derive an optimal policy from it. Among all avail-

able Value-Based algorithms, FQI has been chosen to be performed. It is an offline

algorithm which exploits a Regression algorithm to update the value function as dis-

cussed in Subsection 3.2.4. Therefore it is a natural consequence to choose FQI in this

framework, where in Chapter 6 a Random Forest Regression has already been performed

using the reward as target, generating the extended dataset and having the parameters

already tuned. Moreover, as already discussed, FQI algorithm is able to predict the

action-value functions in state-action pairs not directly explored in the generated trajec-

tories, predicting their value through the prediction of the Regression algorithm. This is

not possible with SARSA or Q-Learning algorithms, and it is necessary in the problems

of this work, since the set of all possible states S is uncountable infinite, making not

possible to investigate all states directly generating episodes.

7.2.1 The Procedure

To perform the three selected algorithms, producing more consistent results, and to

optimize their hyperparameters, a Cross-Validation approach has been chosen. As done

in previous approaches, data from 2009-02-02 to 2018-12-31 are used as training data

and data of 2019 are used only for testing purposes. In particular, for every year from

2009 to 2018, each algorithm has been trained on the other nine years and tested on the

selected year. This is not a standard approach, since theoretically, when the training

set is made of historical series, training data should be prior to validation data that

103

should be in turn prior to test data. Indeed when, for example, 2009 data are used

for validation and data from 2010 to 2018 for training, the algorithm is trained on

future data with respect to the ones it predicts, which is not very realistic. However,

following the chronological sequentiality of data, results would have been based only on

the performance on 2019, making the conclusions not much robust, since the available

sample size is not sufficiently large. Therefore, a Cross-Validation approach has been

adopted to train and validate data from 2009 to 2018, knowing that the most reliable

result is the final testing, where all data from 2009 to 2018 are used for training and the

available data of 2019 are used for testing.

In addition, in order to take into account the stochasticity inside the optimization of the

algorithms, making the conclusions on the results more consistent, each training of the

algorithms is repeated five times. In this way, five optimal policies trained on the same

model using the same data are available, allowing to compute confidence intervals of the

performance of the learned policies on validation or test data, taking into account the

stochasticity of the learning process.

7.2.2 Trajectories and Parameters

Another issue to solve is how to sample trajectories starting from the models. Indeed,

an episode is theoretically infinite: every day, the agent performs its action, changing or

keeping its position, and in principle this can continue forever. However, the trajecto-

ries that are possible to sample are only the working days available in the training set.

Therefore, the choice is to sample trajectories of 60 days, where the first 10 days are

used to generate the state, since some of its variables are the ten percentage differences

of prices of the ten previous days, then in 49 days it is possible to perform actions and

get the related reward, while the last day is only used to generate the last reward. In

conclusion, each trajectory sampled from the MDPs is made of 49 iterations, correspond-

ing to 49 consecutive working days of performed actions and rewards depending on them.

The last issue about the algorithms is the parameters tuning. First of all, in PPO

and in TRPO the policy is parametrized by default as a fully connected Feedforward

Neural Network that takes as input the state, elaborates its signal through two fully

connected hidden layers, each made of 64 nodes with tanh activation function, and it

outputs the action to perform. The other parameter to tune in TRPO and PPO are

the number of iterations of the training process of the algorithm and the number of

trajectories to sample at each iteration, that are set respectively to be 1000 iterations

in PPO, 3000 iterations in TRPO and 2500 trajectories for both. Since the trajectories

start from a random day of the training set, the choice of 2500 trajectories is to have in

expectation one trajectory starting from each day at each iteration (remembering that

104

Table 7.1: Parameters selected for the Random Forest Regression in FQI.

Parameter Value

‘n estimators’ 5000

‘max features’ 0.5

‘min samples split’ 10000

the training data are approximately 2500). The number of iterations, on the other hand,

is empirically set, since from the learning curves of the algorithms reported in Figure

7.1 it is clear that the chosen values are reasonable to suppose the convergence of the

training procedures of the algorithms.

In FQI algorithm the policy is not parametrized, since it is derived from the action-value

function as described in Equation 2.23. Hence, the only parameters to tune are the choice

of the Regression algorithm and its parameters that, for continuity reasons with respect

to Chapter 6, is selected to be a Random Forest Regression with the same parameters

already tuned in that chapter and reported again in Table 7.1. Indeed, although the

Random Forest Regression of FQI performs a different prediction than the one trained

for Feature Selection, since it uses the same features but the target is no more the one-

step reward but the cumulative reward represented by the action-value function, it is still

possible to use the best parameters already found for Supervised Learning approaches as

a good approximation of the best parameters for the Random Forest Regression inside

any iteration of the FQI algorithm. Therefore, the only parameter to tune is the number

of iteration of the algorithm for each model, that is selected observing the performance

reported in next section on the validation set of the algorithm trained with a number

of iteration from 1 to 10 that basically, as explained in the description of the algorithm,

means that the action value function is optimized with respect to the cumulative reward

from 1 to 10 next days.

7.2.3 Performance Measures

The most intuitive performance measure considered is the average daily reward, which

is an estimate of the expected reward in a day. Another similar performance measure

is the cumulative reward computed in a trajectory, which can be considered as a sort

of return, assuming that an episode lasts 50 days. This assumption is not restrictive:

it implies, with respect to assuming an episode to last forever, that every 50 days the

position on the Market of the agent is closed independently from the action it would

choose.

In order to make a more robust analysis, also some measures of variability are taken

into account. The most common procedures used for measuring the variability are the

105

variance and the standard deviation, both of the reward and the return. Once they

are estimated through samples, it is possible to compute confidence intervals of the two

performance measures.

Finally, an estimate of the Expected Shortfall (CVaR) [2] is computed as the mean of the

5% worst rewards, together with its standard deviation. This scores allow to evaluate a

confidence interval on the expected value of the worst obtained rewards. This is impor-

tant because the agent is trading stocks using money and, since any Financial Market

participant is risk-averse, it is important not only to have an overall mean positive re-

ward in a year but also not to loose too much money in days when the performance is

poor, otherwise the model is not sufficiently stable to be applied in real world contexts,

since after a couple of huge losses people would stop to trust on the efficiency of the agent.

In conclusion, TRPO, PPO and FQI are the algorithms performed on the MDPs mod-

eled in this work. The only parameter tuned using the validation shown in next section

is the number of iterations of FQI algorithm, while the other parameters have been

naturally deduced by the nature of the problem and by the analysis already performed.

Finally, not only the mean return is evaluated as performance score, but also an accurate

analysis on scores based on the reward is performed, in order to have a more extensive

analysis that also considers the worst cases.

7.3 Results

In this section the results of the application of the procedure described in Section 7.2 are

shown. The performance of each of the three selected algorithms performed on the three

MDPs defined in Section 7.1 and repeated five times is provided. In particular, the train-

ing procedure, the parameters tuning, a baseline score, the validation and testing mean

and standard deviation scores and a final comparison of performances are presented.

7.3.1 Training

The first step is to train each algorithm on each available model. In Figure 7.1, the curves

displaying the performance through the learning process of PPO and TRPO algorithms

are reported: for each iteration, the corresponding average training return computed

on trajectories of 49 days is plotted. The figures have been drawn using a TensorFlow

[1] tool called TensorBoard, designed to provide visualization during Machine Learning

trainings, which is useful to understand the learning process. The training process of

the two algorithms is made of 1000 and 3000 iterations respectively for PPO and TRPO.

From the curves it is indeed possible to observe that in the end they keep almost the

same value for many iterations, so there is no need to further train the algorithms.

106

(a) Training curves of PPO algorithm with

only sentiment features in the state.

(b) Training curves of PPO algorithm with

only Market features in the state.

(c) Training curves of PPO algorithm with

sentiment and Market features in the state.

(d) Training curves of TRPO algorithm

with only sentiment features in the state.

(e) Training curves of TRPO algorithm

with only Market features in the state.

(f) Training curves of TRPO algorithm

with sentiment and Market features in the

state.

Figure 7.1: Training curves of PPO and TRPO algorithms. Each point of a curve

is the mean train return over 49 days: a value of 0.03 corresponds to a mean gain

of the 3%. The data related to the year reported in the legend of each plot are the

test set referring to that curve, while the data of other years from 2009 to 2018

are its training set.

107

Recalling that, for every year from 2009 to 2018 used as validation set and for 2019

data that are the test set, five repetitions of the training (that has as training set the

other available years) are performed to take into account the stochasticity inside the

algorithms, in each of the three considered MDPs and for each of the three selected

algorithm, eleven different trainings repeated five times for a total amount of fifty-five

trained models is computed. In each plot of Figure 7.1, only one training curve among

the five repetitions of the same algorithm learning on the same training set are reported

to make the plots clearer, since the four curves not reported are very similar to the one

that is shown.

From the curves in Figures 7.1a, 7.1b and 7.1c it is possible to conclude that the PPO

training performance is the same, independently from the features considered as vari-

ables of the state. The same conclusion can be drawn from Figures 7.1d, 7.1e and 7.1f

concerning TRPO algorithm. Moreover, comparing the training curves of PPO and

TRPO algorithms, TRPO seems to perform better than PPO, achieving higher return

values in the curves, but it is also much more noisy, so it is necessary a deeper statis-

tical analysis which takes into account the variability of the trained models to properly

compare the performances.

It remains to explore the training of FQI algorithm. As already explained, the Re-

gression algorithm chosen for FQI are Random Forests, with parameters reported in

Table 7.1. The only parameter left is the number of iterations to perform, which is

selected maximizing the validation performance of the training data from 2009 to 2018,

iteratively training on nine years, testing on the year not used for training and repeat-

ing the procedure five times to take into account the stochasticity of the algorithm, as

already done with PPO and TRPO. In FQI this Cross-Validation approach is not only

useful to have more results to compare but it is indeed necessary to decide the number

of iterations for the final model. Since the learning is slow and in a trajectory there

are 49 days, the number of iterations tried is from 1 to 10, which means optimizing the

cumulative reward from 1 to 10 future steps. Moreover, as explained in FQI Subsection

3.2.4, the dataset used for the Regression is the extended dataset with the reward as

target, that has already been discussed in Section 6.1. The mean daily train and valida-

tion rewards averaged over the five repetitions of the same model are computed, so that,

for every year, for any of the three MDPs and for all iterations from 1 to 10, one perfor-

mance score is evaluated. Then, the ten training scores and the ten validation scores are

averaged, producing one mean train score and one mean validation score for any model

and for each iteration from 1 to 10. As reported in Table 7.2, there is no difference in

the performance scores among the ten iterations. Moreover, fixing the training and the

validation set there is no difference even among the three different MDPs. This is due

to the fact that the algorithm is only learning the trivial pattern to always perform long

108

Table 7.2: FQI daily train and validation average reward for each model and for

each validation set. In all iterations from 1 to 10 the value is exactly the same, so

only one is reported.

Sentiment Prices Both

Train Validation Train Validation Train Validation

2009 0.000348 0.001577 0.000348 0.001577 0.000348 0.001577

2010 0.000572 0.000185 0.000572 0.000185 0.000572 0.000185

2011 0.000555 0.000555 0.000555 0.000555 0.000555 0.000555

2012 0.000587 0.000461 0.000587 0.000461 0.000587 0.000461

2013 0.000578 0.000954 0.000578 0.000954 0.000578 0.000954

2014 0.000561 0.000334 0.000561 0.000334 0.000561 0.000334

2015 0.000578 0.000279 0.000578 0.000279 0.000578 0.000279

2016 0.000602 0.000646 0.000602 0.000646 0.000602 0.000646

2017 0.000618 0.000648 0.000618 0.000648 0.000618 0.000648

2018 0.00056 -0.000275 0.00056 -0.000275 0.00056 -0.000275

Average 0.000556 0.000487 .000556 0.000487 0.000556 0.000487

position action (1), independently from the features or from the horizon on which the

cumulative reward is optimized, in accordance with the results of the Random Forest

Regression performed in Chapter 6. Moreover, the Random Forest performed by the

algorithm is composed by many Decision Trees, which provides a noticeable decrease on

the stochasticity inside the algorithm, so the action is exactly always the same, without

noise that may lead to perform a couple of different actions repeating different times the

same training.

7.3.2 Testing

The performance measures described in Subsection 7.2.3 have been applied to the algo-

rithms trained in previous section and they are reported in Appendix A. In particular,

in Table A.1 and A.2 the performance measures respectively related to the reward and

the return are shown for each model trained with PPO algorithm on the three MDPs.

The scores refer to each validation year from 2009 to 2018 and to the final model with

all data from 2009 to 2018 as training set and having 2019 data for the test. In Table

A.3 and A.4 the same results are reported for the models trained with TRPO algorithm.

Finally, in Table A.5 and A.6 they are shown for FQI algorithm.

Recalling that it is also important to take into account the stochasticity inside each algo-

109

rithm, the training of each model is repeated five times, so that it is possible to compute

the average performance score among the five models and a related confidence interval.

The average of the five mean rewards obtained repeating the training of the same model

five times and the approximated 95% confidence interval are reported in Figures 7.3,

7.4 and 7.5, respectively for models trained with PPO, TRPO and FQI. It is important

to notice that, in the plots, the estimated standard deviation is not depending on the

variability of the reward due to the different value it assumes in different days (as the

standard deviation reported in the tables in appendix) but it is an estimate of the vari-

ability of the mean reward depending on different trainings of the same model on same

data.

Finally, to compare the results with a baseline score, the average daily reward computed

performing always the same action (sell) is computed for each validation set and for the

test set and its values are reported in Figure 7.2.

Remembering that the same validation performance is obtained at any iteration of FQI

because the action selected by the agent is to always keep a long position, both from the

performance measures in Table A.5 and from Figure 7.5 compared with the baseline,

it is possible to conclude that models trained with FQI algorithm always perform this

action, with absence of variability among different trainings due to the large number of

Decision Trees used in the Random Forest inside the algorithm. From Table A.1 and A.3

and from the two Figures 7.3, 7.4 compared with the baseline Figure 7.2, it is possible

to observe that also policies optimized with PPO and TRPO algorithms learn to always

perform sell action, with some exceptions depending on the noise, which are a few in

PPO and a more consistent number in TRPO. This explains the training performance,

where TRPO seemed to perform better, but this was due to the fact that the algorithm

is slower to converge than PPO and it produces more noisy results. Finally, it is also

important to notice that the mean of the 5% worst rewards in the tables in Appendix

A is a loss never worse than the 3.3%, with a standard deviation never worse than the

0.7%, hence the days the algorithms perform badly bring to an acceptable loss.

In conclusion, all the three algorithms on each validation and on the test set always

tend to perform buy action independently from the features observed in the state, in

accordance with what already shown in the Supervised Learning algorithms performed

in Chapter 6. This can be explained through the clearly increasing pattern of the S&P

500 index but this also leads to the conclusion that both the historical series and

the Reuters sentiment features does not add important information able to

make Machine Learning algorithms capable to predict more complex patterns among

them and the reward, so only the clear increasing trend of the index is exploited by the

algorithms to optimize their performance.

110

Figure 7.2: Baseline: average daily reward in each year always performing action

“1”.

111

(a) Reuters sentiment features.

(b) Historical series of the S&P 500.

(c) Reuters sentiment and historical series features.

Figure 7.3: Confidence intervals for the mean daily reward computed in 5 different

trainings of PPO algorithm for each of the 10 validations and for the final test.

112

(a) Reuters sentiment features.

(b) Historical series of the S&P 500.

(c) Reuters sentiment and historical series features.

Figure 7.4: Confidence intervals for the mean daily reward computed in 5 different

trainings of TRPO algorithm for each of the 10 validations and for the final test.

113

(a) Reuters sentiment features.

(b) Historical series of the S&P 500.

(c) Reuters sentiment and historical series features.

Figure 7.5: Confidence intervals for the mean daily reward computed in 5 different

trainings of FQI algorithm for each of the 10 validations and for the final test.

114

7.4 15 Minutes Data

This last section summarizes the analysis performed applying on a different dataset all

the approaches introduced in Chapters 5, 6 and in previous sections of this chapter.

In particular, the new available data are sentiment features and historical series of the

S&P 500 index at intervals of fifteen minutes during the opening hours of the U.S. Stock

Market.

7.4.1 Datasets

As done in Chapter 5 for daily data, this section introduces and elaborates the available

datasets with fifteen minutes features.

The first available fifteen minutes dataset are historical series of S&P 500 index from

2017-05-02 to 2019-10-09, for a total amount of 16416 data. They are the 27 records

per day, every fifteen minutes from 9.30 a.m. to 4.00 p.m., in the 608 working days of

the considered time interval. Features are open, close, high, low and volume exactly

as explained in Section 5.1 for its daily version. Moreover, the referenceDate feature

includes the date as usual with the addition of the time each datum is referring to.

The other two available datasets are made of sentiment features: the ones extracted

from Reuters Machine Readable News and the ones extracted from tweets of Twitter.

In particular, it is not possible to simply consider the average sentiment score of last

fifteen minutes as a relevant feature, since it is too restrictive to only consider the senti-

ment of last fifteen minutes ignoring everything that happened before. Therefore, more

complex features are extracted from tweets and news applying two procedures, senti-

ment trend and sentiment shock, whose description can be found in [41]. In particular,

sentiment trend and shocks are computed on a selected rolling window using sentiment

scores averaged with respect to a chosen time frame. For example, if time frame and

rolling window are respectively set equal to 1 hour and 12 hours, the sentiment signals

used to compute sentiment trends and shocks are the means of the available sentiment

scores related to news or tweets available in one hour of the twelve previous hours.

Hence, 168 features are available in each of the two sentiment datasets, which are senti-

ment trends and shocks obtained combining different time frames and rolling windows:

time frames = [15M, 1H, 3H, 6H, 12H, 1D],

rolling windows = [1H, 3H, 6H, 12H, 1D, 3D, 7D, 15D, 30D],

where ‘M’,‘H’ and ‘D’ mean respectively ‘minutes’, ‘hours’ and ‘days’. Moreover, in

Reuters dataset, also TF-IDF procedure (further details can be found in [45]) has been

115

exploited as a variant to evaluate the sentiment in the chosen time frame, so in Reuters

dataset the 168 features are repeated two times: one time trends and shocks are eval-

uated on sentiment signals computed on the chosen time frame with the usual mean

of sentiment scores referring to each company belonging to the S&P 500, while in the

other one sentiment signals of each company are weighted applying a TF-IDF correction

which takes into account the importance of the company in the news.

Summing up, two sentiment datasets are available for the analysis of fifteen minutes

data from 2017-05-02 to 2019-10-09, one is made of 168 features referring to sentiment

from Twitter and the other one is made of 336 features based on sentiment from Reuters

news.

Because of the magnitude of the number of sentiment features, a dimensionality reduc-

tion technique has been performed. Specifically, Principal Component Analysis (PCA,

[30]) has been performed on Reuters dataset, keeping the eight principal components

explaining at least the 2% of the variability, for a total amount of the 78%. The same

has been done for Twitter dataset and such components are again the first eight ones,

explaining a total amount of 88% of variability.

In conclusion, the two available sentiment datasets are reduced to have 8 features each,

which are respectively the best principal components of the application of PCA on

Reuters original dataset and the best principal components resulting on applying PCA

to Twitter dataset.

Finally, as done in Section 5.3, some features are extracted from the date: day and

month are encoded in one-hot encoding fashion, introducing 17 features, and the Day-

time feature encodes a continuous value in [0,1] representing the percentage of working

hours from the opening of the stock market. Moreover, historical series of the values of

the index are modified as done in Section 5.3 for daily data, so that percentage differ-

ences of two consecutive open values among the four previous quarters of an hour are

the 4 features extracted from historical series of the S&P 500.

The complete dataset is therefore made of: 8 principal components of Reuters sentiment,

8 principal components of Twitter sentiment, 4 percentage differences of index opening

values, 18 features extracted from date and hour and 1 feature univocally representing

each sample containing its date and hour.

7.4.2 Feature Selection

In this section the same procedures explained in Chapter 6 are applied on fifteen minutes

data.

Firstly, Random Forest Regression for Feature Selection is performed. It is shown to

usually predict a negative reward, which is due to the large importance of the trans-

116

action costs in fifteen minutes framework. Then, the procedure which considers a first

Random Forest Regression without sentiment feature and a second one which tries to

learn the residuals exploiting sentiment features confirms the lack of informativity of

these sentiment. Finally the two procedures are repeated without considering transac-

tion costs. The aim of this variant is to explore more widely the importance of sentiment

features once the strong dependence from the portfolio is removed. The prediction made

by Random Forests with this approach still gives little importance to the sentiment. On

the other hand it is more interesting since it does not learn a trivial pattern as before,

although this is not realistic since transaction costs must be considered in practice.

Expanded Dataset

The first step is to generate the Supervised Learning dataset starting from the available

features, recalling that the target of interest is the reward, which is computed as in

Equation 6.1. In particular, Twitter and Reuters dataset are considered separately, so

that the effectiveness of each of them in predicting the reward can be explored training

two different Random Forests. Finally, each of these two datasets for Feature Selection

is made as usual of nine repetitions of each sample made of the eight sentiment features,

the four index percentage differences and the eighteen extracted features, with different

combinations of action and portfolio and the related reward as target, exactly as done

in Section 6.1.

Random Forests for Feature Selection

The first Supervised Learning procedure applied on the two described datasets are Ran-

dom Forests optimizing the accuracy of the prediction in order to rank the importance

of each feature, as done for daily data in Section 6.3. In particular, one Random Forest

Regression is optimized for the dataset with Twitter sentiment principal components

and another one is trained for the dataset with Reuters sentiment signals.

Firstly, parameters tuning is performed. The number of Decision Trees in the Random

Forest is set to 500 recalling that they should be as many as possible while, on the other

hand, a bigger number would slow down the training too much. Then, the percentage

of features available at any node and the minimum number of samples needed in a node

to perform a split are selected with a 3-Folds Cross-Validation of data from 2017-05-02

to 2018-12-31, choosing among the following alternatives:

max features ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1}, (7.2)

min samples split ∈ {100, 500, 1000, 5000, 10000, 20000, 50000}. (7.3)

Best parameters are reported in Table 7.3. From their value it is possible to deduce, as

for daily data, that each Decision Tree in the two Random Forests is splitting only one

or two times, using the minimum number of features, therefore it is learning a trivial

117

Table 7.3: Best parameters and the related Cross-Validation performance; train

and test accuracy scores of the final Random Forest Regressions.

Best Parameters Accuracy

n estimators max features min samples split CV Train Test

Reuters 500 20000 0.6 0.58383 0.58421 0.57789

Twitter 500 50000 0.5 0.58382 0.58382 0.57783

pattern. Specifically, for the Random Forest trained on Twitter data the biggest avail-

able number of samples to split and the smallest available percentage of features are

the best parameters, while for Reuters dataset a slightly smaller number of samples and

bigger percentage of data are chosen. However, performing an ANOVA procedure which

compares the average validation accuracy of the best parameters (max features=0.6,

min samples split=20000) with the one with the extreme parameters (max features=0.5,

min samples split=50000) demonstrates that there is no evidence to state that the two

means are different. Therefore also for Reuters dataset there is almost no difference

on selecting the best parameters obtained by the validation or the two extreme ones.

Moreover, another ANOVA procedure has been applied to compare the accuracy score

obtained by the best parameters of each of the two Random Forests with 500 Decision

Trees with the corresponding Random Forests having the same best parameters and

1000 Decision Trees. Since the ANOVA demonstrates that there is no evidence to state

that the Random Forests trained on 1000 Decision Trees has a better validation accuracy

score, the choice of selecting 500 Decision Trees is robust.

At this point, Random Forest regression is applied on each of the two datasets with the

best parameters just described, using as training set data from 2017-05-02 to 2018-12-31

and as test set data from 2019-01-01 to 2019-10-09, obtaining the accuracy scores shown

in Table 7.3. Moreover, in Appendix B are reported the plot of feature importances with

their standard deviations, the table ranking the features and the plot comparing actions

and predicted rewards, from which it is possible to understand that action, portfolio

and percentage differences of the index values are the most important features for the

prediction. However they are not much relevant, since in most cases the Random Forests

are predicting a trivial slightly negative reward independently from the action. A pos-

sible explanation of this behavior is that, considering fifteen minutes differences of the

index value, its percentage increase or decrease is not sufficiently large with respect to

the fee that the agent must pay to change its position. Therefore the predicted reward is

negative in most cases, since the available features are not sufficiently relevant to allow

the regressors to learn more complex patterns. Moreover, sentiment features are not

considered by the Feature Selection as relevant in predicting the reward, therefore this

118

Table 7.4: Regression of sentiment on residuals: accuracy score of the first Random

Forests on the two datasets and related performance of the second Random Forest

which tries to predict the residuals through sentiment principal components.

Accuracy of first Regression R-Squared of second Regression

CV Train Test CV Train Test

Reuters 0.58383 0.58420 0.57787 -0.00000047 -0.00000048 -0.00000112

Twitter 0.58381 0.58382 0.57783 -0.00000074 -0.00000061 -0.00000466

is a first proof that also these fifteen minutes sentiment features do not have a positive

impact on the prediction.

Regression of Sentiment on Residuals

The second Supervised Learning procedure, based on Random Forests and introduced

in Section 6.4 for daily data, has also been applied to fifteen minutes datasets. The

first Random Forests performed on each of the two datasets are tuned with the same

best parameters found in Feature Selection. The second Random Forests are made of

500 Decision Trees, while the other two parameters have been optimized with 3-Fold

Cross-Validation using the R-Squared as performance measure and using the same grid

of values of Feature Selection, shown in Equations 7.2 and 7.3. The best parameters

found are again the two extreme values 0.5 and 50000, and the related performances,

reported in Table 7.4, are a second evidence that the sentiment features are not adding

informativity on the prediction of the reward.

Procedures without Fees

The procedures explained above almost always predict a negative reward, which is largely

dependent on the transaction costs, indeed the portfolio is a relevant feature for the pre-

diction. For this reason, to better understand the importance of sentiment features,

the Feature Selection and the Random Forest of sentiment on residuals have been also

applied to the two available datasets, modified such that the target reward is computed

without considering the transaction costs. This is an unrealistic assumption, which is

made with the purpose to remove the trivial pattern predicted with transaction costs,

in order to explore the importance of sentiment features more on depth.

The best parameters obtained with the already explained 3-Folds Cross-Validation are

reported in Table 7.5, together with the accuracy scores of Cross-Validation, training

and testing. The number of Decision Trees is again set equal to 500, while the best

number of data to split and the percentage of features available at any node found are

119

Table 7.5: Target reward computed without fees: best parameters and the related

Cross-Validation performance; train and test accuracy scores of the final Random

Forest Regressions.

Best Parameters Accuracy

n estimators max features min samples split CV Train Test

Reuters 500 5000 1.0 0.34354 0.37049 0.32712

Twitter 500 10000 0.8 0.34259 0.36324 0.33137

intermediate values among the possibilities (that are still the values of Equations 7.2

and 7.3), from which a non-trivial prediction is expected. Indeed, looking at the plots

in Figure B.3 of the Appendix B, the predicted reward is close to 0 when the action

is 0 and it often has larger values when the action is 1 or -1. Therefore the Random

Forest is not predicting a trivial pattern and it seems to better predict the sign of the

Reward. The fact that the accuracy scores are low happens because, without fees, one

third of the actions is exactly equal to 0, reducing a lot the accuracy if the prediction

is slightly positive or negative. However, considering only the samples where the action

is 1 or -1 the test accuracy scores become 0.55839 and 0.54607 respectively for Reuters

and Twitter dataset, which are acceptable values. Moreover, the 92.7% of the predicted

rewards referring to samples from Reuters dataset having action different from 0 have

absolute value larger than 0.003 (the 87.68% for what concerns Reuters dataset), while

the 79.58% of samples having action equal to 0 have absolute value smaller than 0.003

(the 84.77% for Reuters). This means that when the action is 1 or -1 the accuracy is

a satisfactory score and when the action is 0 most of the predicted values are smaller

than the majority of predicted values with the other two actions, so the Regressions

are correctly learning the fact that they correspond to small rewards. Finally, from the

feature rankings reported in Table B.2 and in Figure B.4 of Appendix B, it is possible to

state that the percentage differences of two consecutive values of the S&P 500 index are

the most relevant features and the action is much less relevant than them. This is not

positive, because the values of the index affect the magnitude of the prediction but the

action should determine the sign, therefore a lack of usage of the action may correspond

to a difficulty to choose the best action in Reinforcement Learning framework. It is

also important to underline that the sentiment principal components both from Reuters

or Twitter data does not seem once again to be relevant for the prediction of the reward.

Also the second Supervised Learning technique has been applied to the datasets with

rewards computed without transaction costs: the Random Forest Regression without

sentiment features has a performance very similar to the one already explained, while

120

the second Random Forests predicting the residuals using the eight principal components

of sentiment features have again R-Squared scores approximately equal to 0, confirming

the lack of information added by the sentiment features on the prediction.

In conclusion, Feature Selection applied to the fifteen minutes datasets through Ran-

dom Forests almost always predicts trivial negative values of the reward and it is not

much promising for the leaning through Reinforcement Learning, while the one applied

without considering transaction costs seems to be more promising, since it learns a more

complex pattern, although it is an unrealistic model in practice, since transaction costs

must be paid.

7.4.3 Reinforcement Learning

The three Reinforcement Learning algorithms applied in previous sections of this chapter

(PPO, TRPO, FQI) have also been applied to MDPs designed on fifteen minutes data.

In particular, five different MDPs have been designed in this framework. Actions, tran-

sition probabilities, reward functions, discount factors and initial probabilities of these

five processes are the same described in Section 7.1. The difference is that an episode

coincides with one day: each step is every fifteen minutes, from the opening to the close

hour of a working day. In the first opening hour the first four values of the index are

produced, which are part of the first observation. Therefore, an action is taken every

fifteen minutes from one hour after the opening of the Stock Market to fifteen minutes

before the closing, for a total amount of 22 steps. Moreover, the variables in the state

differentiate the five different MDPs: all of them observe the portfolio; the first process

observes only the percentage differences of last four values of the S&P 500 ; the second

and third processes observe only the eight principal components respectively of Reuters

and Twitter sentiment features; the fourth and fifth models observe both percentage

differences of prices and sentiment principal components respectively of Reuters and

Twitter sentiment features. In this way it is possible to compare the importance of

sentiment features with respect to market prices but also to compare sentiment features

extracted from Reuters news with the ones extracted by tweets.

Algorithms have been applied using data from 2017-05-02 to 2019-04-30 as training

set and data from 2019-05-01 to 2019-10-09 for testing. In particular, training data have

been split in four folds: the first with data from 2017-05-02 to 2017-10-31, the second

from 2017-11-01 to 2018-04-30, the third from 2018-05-01 to 2018-10-31 and the fourth

from 2018-11-01 to 2019-04-30. As described for daily data in Subsection 7.2.1, a 4-Folds

Cross-Validation approach has been applied to the training set split in four groups in

order to have more robust results and not rely only on the performance of the final test

121

set. Moreover, each training has been repeated five times, so that the stochasticity of

the algorithms is taken into account.

Also the same Feedforward Neural Networks used in daily data has been adopted to

parametrize the policy. PPO and TRPO algorithms have been trained using 2000 iter-

ations, sampling 10000 episodes from them at each iteration. On the other hand, the

parameters of the Random Forest Regression performed by FQI are set equal to the

best parameters found on the datasets in Feature Selection procedures. Finally, the only

parameter to tune the number of iteration of FQI, that will be chosen from 1 to 10

depending on the best average reward obtained in Cross-Validation.

Results

PPO, TRPO and FQI average reward in the four validation sets and in the final test

set are reported in Appendix B.2. FQI best mean reward in validation is obtained with

1 iteration, which is an evidence of the fact that the agent is not learning a significant

policy but a trivial one. This is confirmed by all validation and testing results, which

have a mean reward very similar to the trivial baselines of doing the always same ac-

tion. Moreover there is clearly no significance on the fact that these mean rewards are

different from zero. Therefore it is possible to conclude that in all the five environments

and independently from the chosen algorithm, the agent does not learn a policy able to

earn money by trading.

As already introduced in the Feature Selection Subsection 7.4.2, it is interesting to

perform the algorithms also on the MDPs which compute the reward without consid-

ering transaction costs. Indeed, from the almost always negative prediction of Random

Forests it had already been guessed that the algorithms would have learned a trivial,

not profitable policy, while the prediction of the Random Forests considering the reward

without transaction costs seemed to be more promising. Therefore, the three algorithms

have been performed also on the five MDPs already introduced, without considering

transaction costs. The results are reported in Appendix B.2 and they show that the

validation and testing performances are not different from the ones obtained considering

the transaction costs, therefore it is possible to conclude that also in this framework the

agent is not learning a profitable policy.

In conclusion, fifteen minutes data confirm what largely discussed for daily data: the

results clearly show that both historical series of the S&P 500 and sentiment features

from Reuters news or tweets are not relevant in the prediction of the trend of the index;

moreover, the application of Reinforcement Learning algorithms on them does not pro-

duce a policy able to earn money on the U.S. Stock Market investing on the S&P 500

following the action suggested by the learned policy.

122

Chapter 8

Conclusion

This final chapter concludes the thesis resuming the main results found and proposes

some possible future development to improve the achieved performances.

8.1 Results

Most of the analysis performed in this work uses daily sentiment features from Reuters

news and daily historical series of the S&P 500 index.

The analysis of the S&P 500 historical series performed in Section 5.1 shows a strongly

increasing trend of the index, which could be a criticality in learning more complex pat-

tern between the available features and the index value.

After the elaboration of the available features and the addition in Section 5.3 of some of

them, a Feature Selection technique based on Random Forests performed in Section 6.3

shows that the only important feature to predict the reward is the action. Analyzing

the Feature Selection results it is clear that the predictor is learning the trivial pattern

to always predict a reward of the same sign of the observed action.

Another Supervised Learning technique, applied in Section 6.4 to specifically investi-

gate the informativity on the prediction added by the sentiment features, confirms that

the sentiment is not providing contribution to the prediction.

Then, three Reinforcement Learning algorithms are applied to three MDPs designed

in Section 7.1. In Section 7.3, comparing the resulting average daily rewards with a

baseline score obtained always performing buy action, it is clear that, except for a few

variations due to the noise inside the algorithms, the RL agent is always performing the

trivial action buy. This is due to the clearly increasing trend of the S&P 500, which

overcomes any other weaker pattern, so the agent learns that the index is mainly in-

creasing, implying that the optimal way to earn is to always keep a long position.

Finally, in Section 7.4 all the analysis is repeated with fifteen minutes data but, also

in that case, there is no evidence that the RL agent is learning a policy to trade on the

S&P 500 profitably.

8.2 Future Improvements

The work presented in this thesis shows the lack of informativity of the available features

for the training of a RL agent able to earn trading on the U.S. Stock Market. Therefore

future improvements should be focused on the revision and the addition of features.

Since the S&P 500 is composed by many different companies, the first possible im-

provement could be to consider the sentiment of each company as a different feature, or

to group them into smaller clusters and extract one sentiment feature for each of these

clusters. In this way many specific sentiment features would be available as features,

trying to improve their informativity.

Another possibility could be to efficiently add different features describing the condi-

tion of the U.S. Stock Market, so that more information about the Market could be

added to the variables observed by the agent, refining the description of the Market at

its disposal when it makes decisions.

Then, the natural focus should be moved to the fifteen minutes data, since it should

be easier to predict a short time value rather than the value after one day. The results

obtained applying PCA to the numerous available sentiment features lead to a poor

performance by the RL agent, therefore a more complex Feature Selection exploring the

importance of the Sentiment Features without projecting them applying PCA may lead

to more significant results.

Another improvement to the models designed with fifteen minutes data could be re-

view the transaction costs: as shown in the related section, the prediction considering

the same costs applied in daily-based models and the one without transaction costs are

very different, therefore the fees are a relevant issue in the prediction and more accurate

estimates of their value may be crucial for learning a profitable policy in fifteen minutes

framework.

124

Appendices

125

Appendix A

Reinforcement Learning

Performances

The purpose of this appendix is to report the performance measures described in Sub-

section 7.2.3, applied on the ten models trained in Cross-Validation fashion using data

from 2009 to 2018 and for the final model tested on 2019 data. The scores are reported

for the eleven models trained with PPO, TRPO and FQI algorithms.

Recalling that returns are computed on 49 consecutive days and the validation or test

data available are about 250 in each model, the average return and its standard devia-

tions are not very reliable estimate of the real expected return, since they are basically

averaged on five samples, so the daily reward is important and more robust to evaluate

the results.

Table A.1: PPO Validation and Test reward performance.

Year Environment Mean Variance (vola) Stddev CVaR Stddev CVaR

2009 Sentiment 0.00197 0.00025 0.01596 -0.03315 0.00497

Prices 0.00180 0.00025 0.01598 -0.03315 0.00497

Both 0.00178 0.00025 0.01598 -0.03315 0.00497

2010 Sentiment 0.00022 0.00012 0.01135 -0.02861 0.00449

Prices 0.00020 0.00012 0.01134 -0.02861 0.00449

Both 0.00022 0.00012 0.01135 -0.02861 0.00449

2011 Sentiment -0.00021 0.00019 0.01412 -0.03802 0.01207

Prices -0.00021 0.00019 0.01412 -0.03802 0.01207

Both -0.00041 0.00019 0.01412 -0.03802 0.01207

2012 Sentiment 0.00057 0.00006 0.00788 -0.01672 0.00358

Prices 0.00057 0.00006 0.00788 -0.01672 0.00358

Both 0.00057 0.00006 0.00788 -0.01672 0.00358

2013 Sentiment 0.00087 0.00004 0.00679 -0.01606 0.00397

Prices 0.00087 0.00004 0.00679 -0.01606 0.00397

Both 0.00087 0.00004 0.00679 -0.01606 0.00397

2014 Sentiment 0.00011 0.00004 0.00661 -0.01791 0.00328

Prices 0.00011 0.00004 0.00661 -0.01791 0.00328

Both 0.00011 0.B0004 0.00661 -0.01791 0.00328

2015 Sentiment 0.00016 0.00008 0.00913 -0.02268 0.00721

Prices 0.00021 0.00008 0.00910 -0.02268 0.00721

Both 0.00016 0.00008 0.00913 -0.02268 0.00721

2016 Sentiment 0.00073 0.00005 0.00745 -0.01728 0.00705

Prices 0.00073 0.00005 0.00745 -0.01728 0.00705

Both 0.00073 0.00005 0.00745 -0.01728 0.00705

2017 Sentiment 0.00068 0.00001 0.00393 -0.00994 0.00311

Prices 0.00068 0.00001 0.00393 -0.00994 0.00311

Both 0.00068 0.00001 0.00393 -0.00994 0.00311

2018 Sentiment -0.00002 0.00008 0.00926 -0.02574 0.00902

Prices -0.00001 0.00008 0.00926 -0.02574 0.00902

Both -0.00001 0.00008 0.00926 -0.02574 0.00902

2019 Sentiment 0.00114 0.00003 0.00610 -0.01249 0.00258

Prices 0.00109 0.00003 0.00614 -0.01249 0.00258

Both 0.00109 0.00003 0.00614 -0.01249 0.00258

127

Table A.2: PPO Validation and Test return performance.

Year Environment Mean Stddev

2009 Sentiment 0.08727 0.05035

Prices 0.08727 0.05035

Both 0.08727 0.05035

2010 Sentiment 0.01085 0.06281

Prices 0.00981 0.06187

Both 0.01122 0.06316

2011 Sentiment -0.01048 0.02913

Prices -0.01048 0.02913

both -0.02016 0.02913

2012 Sentiment 0.02841 0.08709

Prices 0.02841 0.08709

Both 0.02841 0.08709

2013 Sentiment 0.04308 0.01246

Prices 0.04308 0.01246

Both 0.04308 0.01246

2014 Sentiment 0.00586 0.02038

Prices 0.00586 0.02038

Both 0.00586 0.02038

2015 Sentiment 0.00819 0.01516

Prices 0.01058 0.01579

Both 0.00819 0.01516

2016 Sentiment 0.03609 0.02431

Prices 0.03609 0.02431

Both 0.03609 0.02431

2017 Sentiment 0.03337 0.01104

Prices 0.03337 0.01104

Both 0.03337 0.01104

2018 Sentiment -0.00132 0.04236

Prices -0.00097 0.04270

Both -0.00097 0.04270

2019 Sentiment 0.05613 0.03113

2019 Prices 0.05355 0.03445

2019 Both 0.05355 0.03445

128

Table A.3: TRPO Validation and Test reward performance.

Year Environment Mean Variance (vola) Stddev CVaR Stddev CVaR

2009 Sentiment 0.00178 0.00025 0.01598 -0.03315 0.00497

Prices 0.00032 0.00025 0.01607 -0.03721 0.01062

Both 0.00179 0.00025 0.01598 -0.03346 0.00463

2010 Sentiment 0.00022 0.00012 0.01135 -0.02861 0.00449

Prices 0.00009 0.00009 0.00990 -0.02302 0.00583

Both 0.00060 0.00012 0.01134 -0.02839 0.00521

2011 Sentiment -0.00038 0.00019 0.01412 -0.03654 0.01313

Prices -0.00021 0.00019 0.01412 -0.03802 0.01207

Both -0.00027 0.00019 0.01412 -0.03802 0.01207

2012 Sentiment -0.00001 0.00005 0.00754 -0.01743 0.00328

Prices -0.00016 0.00006 0.00791 -0.01744 0.00325

Both 0.00057 0.00006 0.00788 -0.01672 0.00358

2013 Sentiment 0.00087 0.00004 0.00679 -0.01606 0.00397

Prices 0.00057 0.00003 0.00605 -0.01490 0.00354

Both 0.00027 0.00004 0.00685 -0.01530 0.00328

2014 Sentiment -0.00047 0.00003 0.00585 -0.01735 0.00362

Prices 0.00011 0.00004 0.00661 -0.01791 0.00328

Both 0.00011 0.B0004 0.00661 -0.01791 0.00328

2015 Sentiment 0.00037 0.00008 0.00912 -0.02058 0.00641

Prices 0.00011 0.00008 0.00913 -0.02354 0.00671

Both 0.00019 0.00008 0.00908 -0.02255 0.00735

2016 Sentiment 0.00088 0.00004 0.00654 -0.01336 0.00313

Prices 0.00074 0.00005 0.00745 -0.01774 0.00675

Both 0.00030 0.00005 0.00707 -0.01751 0.00687

2017 Sentiment 0.00064 0.00001 0.00393 -0.00994 0.00311

Prices 0.00064 0.00001 0.00393 -0.00994 0.00311

Both 0.00066 0.00001 0.00381 -0.00956 0.00343

2018 Sentiment -0.00001 0.00008 0.00926 -0.02574 0.00902

Prices -0.00009 0.00008 0.00926 -0.02574 0.00902

Both -0.00049 0.00008 0.00916 -0.02684 0.00823

2019 Sentiment 0.00103 0.00003 0.00580 -0.01249 0.00258

Prices 0.00073 0.00003 0.00619 -0.01363 0.00240

Both 0.00096 0.00003 0.00616 -0.01316 0.00214

129

Table A.4: TRPO Validation and Test return performance.

Year Environment Mean Stddev

2009 Sentiment 0.08727 0.05035

Prices 0.01607 0.06528

Both 0.08719 0.07215

2010 Sentiment 0.01122 0.06316

Prices 0.00487 0.07136

Both 0.02966 0.02323

2011 Sentiment -0.01888 0.04999

Prices -0.01048 0.02913

both -0.01338 0.02935

2012 Sentiment -0.00088 0.05468

Prices -0.00807 0.04445

Both 0.02841 0.08709

2013 Sentiment 0.04308 0.01246

Prices 0.02817 0.01185

Both 0.01326 0.02345

2014 Sentiment -0.02349 0.02916

Prices 0.00586 0.02038

Both 0.00586 0.02038

2015 Sentiment 0.01823 0.00812

Prices 0.00577 0.01516

Both 0.00952 0.01339

2016 Sentiment 0.04346 0.03467

Prices 0.03640 0.03842

Both 0.01471 0.05059

2017 Sentiment 0.03155 0.01438

Prices 0.03337 0.01104

Both 0.03241 0.01650

2018 Sentiment -0.00097 0.04270

Prices -0.00441 0.05908

Both -0.02437 0.04461

2019 Sentiment 0.05079 0.02936

2019 Prices 0.03585 0.02038

2019 Both 0.04724 0.03530

130

Table A.5: FQI Validation and Test reward performance.

Year Environment Mean Variance (vola) Stddev CVaR Stddev CVaR

2009 Sentiment 0.00157 0.00024 0.01557 -0.03252 0.00502

Prices 0.00157 0.00024 0.01557 -0.03252 0.00502

Both 0.00157 0.00024 0.01557 -0.03252 0.00502

2010 Sentiment 0.00018 0.00012 0.01147 -0.02861 0.00449

Prices 0.00018 0.00012 0.01147 -0.02861 0.00449

Both 0.00018 0.00012 0.01147 -0.02861 0.00449

2011 Sentiment 0.00006 0.00020 0.01432 -0.03803 0.01207

Prices 0.00006 0.00020 0.01432 -0.03803 0.01207

Both 0.00006 0.00020 0.01432 -0.03803 0.01207

2012 Sentiment 0.00046 0.00006 0.00794 -0.01724 0.00319

Prices 0.00046 0.00006 0.00794 -0.01724 0.00319

Both 0.00046 0.00006 0.00794 -0.01724 0.00319

2013 Sentiment 0.00095 0.00004 0.00674 -0.01606 0.00397

Prices 0.00095 0.00004 0.00674 -0.01606 0.00397

Both 0.00095 0.00004 0.00674 -0.01606 0.00397

2014 Sentiment 0.00033 0.00004 0.00679 -0.01791 0.00328

Prices 0.00033 0.00004 0.00679 -0.01791 0.00328

Both 0.00033 0.00004 0.00679 -0.01791 0.00328

2015 Sentiment 0.00027 0.00008 0.00900 -0.02205 0.00764

Prices 0.00027 0.00008 0.00900 -0.02205 0.00764

Both 0.00027 0.00008 0.00900 -0.02205 0.00764

2016 Sentiment 0.00064 0.00005 0.00737 -0.01728 0.00705

Prices 0.00064 0.00005 0.00737 -0.01728 0.00705

Both 0.00064 0.00005 0.00737 -0.01728 0.00705

2017 Sentiment 0.00064 0.00001 0.00390 -0.00994 0.00311

Prices 0.00064 0.00001 0.00390 -0.00994 0.00311

Both 0.00064 0.00001 0.00390 -0.00994 0.00311

2018 Sentiment -0.00027 0.00008 0.00937 -0.02622 0.00868

Prices -0.00027 0.00008 0.00937 -0.02622 0.00868

Both -0.00027 0.00008 0.00937 -0.02622 0.00868

2019 Sentiment 0.00068 0.00004 0.00682 -0.01444 0.00181

Prices 0.00068 0.00004 0.00682 -0.01444 0.00181

Both 0.00068 0.00004 0.00682 -0.01444 0.00181

131

Table A.6: FQI Validation and Test return performance.

Year Environment Mean Stddev

2009 Sentiment 0.07726 0.06880

Prices 0.07726 0.06880

Both 0.07726 0.06880

2010 Sentiment 0.00906 0.07142

Prices 0.00906 0.07142

Both 0.00906 0.07142

2011 Sentiment 0.00299 0.09224

Prices 0.00299 0.09224

both 0.00299 0.09224

2012 Sentiment 0.02258 0.06081

Prices 0.02258 0.06081

Both 0.02258 0.06081

2013 Sentiment 0.04674 0.02493

Prices 0.04674 0.02493

Both 0.04674 0.02493

2014 Sentiment 0.01635 0.01994

Prices 0.01635 0.01994

Both 0.01635 0.01994

2015 Sentiment 0.01366 0.02119

Prices 0.01366 0.02119

Both 0.01366 0.02119

2016 Sentiment 0.03166 0.03962

Prices 0.03166 0.03962

Both 0.03166 0.03962

2017 Sentiment 0.03174 0.02045

Prices 0.03174 0.02045

Both 0.03174 0.02045

2018 Sentiment -0.01345 0.05734

Prices -0.01345 0.05734

Both -0.01345 0.05734

2019 Sentiment 0.03353 0.02841

2019 Prices 0.03353 0.02841

2019 Both 0.03353 0.02841

132

Appendix B

15 Minutes Results

This second appendix collects the results found in fifteen minutes framework. In partic-

ular in first section the results of Feature Selection procedure are reported, while in the

second one the results of Reinforcement Learning applications are shown.

B.1 Feature Selection Results

In this section the results of Feature Selection approach on fifteen minutes data described

in Section 7.4 are reported. In particular, in Figure B.1 the plots of the predicted train

and test rewards on the two datasets are shown, together with the action in order to

understand that there is no difference on the prediction depending on the action. Then,

Table B.1 presents the best fifteen features based on their percentage importance in

the corresponding Random Forests on the prediction of the reward; their importance,

together with the corresponding standard deviation, is also shown in Figure B.2. The

same figures and tables are repeated for the Random Forest Feature Selection procedures

designed considering the reward without transaction costs. The predicted rewards and

the corresponding actions are plotted in Figure B.3, while the best fifteen features to-

gether with their importances and standard deviations are ranked and plotted in Table

B.2 and in Figure B.4.

(a) Train action and predicted reward on fif-

teen minutes Reuters dataset.

(b) Test action and predicted reward on

fifteen minutes Reuters dataset.

(c) Train action and predicted reward on fif-

teen minutes Twitter dataset.

(d) Test action and predicted reward on

fifteen minutes Twitter dataset.

Figure B.1: The blue line in the figures represent the value of the action in each

sample, respectively belonging to train and test set, which can be 1, -1 or 0. The

red points are the corresponding predicted rewards. From their values is clear that

they are always negative independently from the action.

134

Table B.1: Feature ranking and performance of the two Random Forests trained

using Reuters or Twitter fifteen minutes datasets.

Reuters Feature Selection Twitter Feature Selection

Feature Importance Feature Importance

R0 20.54% action 19.70%

R1 16.96% R0 17.01%

portfolio 16.04% R1 15.47%

R2 13.85% R2 11.04%

action 13.50% portfolio 10.44%

R3 5.79% R3 5.11%

December 2.20% December 3.14%

PC1 2.16% Wednesday 1.95%

PC8 1.99% PC7 1.52%

Daytime 1.52% Tuesday 1.46%

October 0.86% Thursday 1.38%

April 0.69% PC1 1.30%

PC7 0.62% Friday 1.26%

March 0.58% March 1.20%

PC6 0.46% PC3 1.01%

(a) Feature importances in Reuter dataset. (b) Feature importances in Twitter dataset.

Figure B.2: Histogram of importances of best 15 features for each of the two

Random Forests with related standard deviations.

135

(a) Train action and predicted reward on fif-

teen minutes Reuters dataset.

(b) Test action and predicted reward on

fifteen minutes Reuters dataset.

(c) Train action and predicted reward on fif-

teen minutes Twitter dataset.

(d) Test action and predicted reward on

fifteen minutes Twitter dataset.

Figure B.3: The blue line in the figures represent the value of the action in each

sample, respectively belonging to train and test set, which can be 1, -1 or 0. The

red points are the corresponding predicted rewards computed without considering

transaction costs.

136

Table B.2: Feature ranking and performance of the two Random Forests trained

using Reuters or Twitter fifteen minutes datasets computing the target reward

without considering transaction costs.

Reuters Feature Selection Twitter Feature Selection

Feature Importance Feature Importance

R0 22.69% R0 24.42%

R2 19.15% R2 18.97%

R1 17.18% R1 18.54%

R3 12.75% R3 12.18%

Daytime 3.98% Daytime 3.22%

action 3.17% action 2.71%

PC8 3.12% PC1 2.54%

PC1 3.05% PC3 2.33%

December 1.93% December 2.24%

PC6 1.73% PC7 1.96%

April 1.58% PC8 1.57%

PC5 1.48% October 1.34%

October 1.24% PC5 1.12%

March 1.21% PC6 1.11%

PC7 1.11% April 1.08%

(a) Feature importances in Reuters

dataset.

(b) Feature importances in Twitter dataset.

Figure B.4: Histogram of importances of best 15 features with related standard

deviations for each of the two Random Forests which consider the reward without

transaction costs.

137

B.2 Reinforcement Learning Results

This section reports the results obtained in validation and testing applying PPO, TRPO

and FQI to the five MDPs designed in the fifteen minutes framework. In particular,

in Figure B.5 some baseline scores are shown to compare them with the results of the

algorithms. Then, in Figure B.6, B.7 and B.8 the results respectively of TRPO, PPO

and FQI are displayed. From the plots it is clear that the results are almost equal to the

trivial baselines and very smaller than the best possible performance, hence the learned

policy is not satisfactory to trade and earn on the stock market.

Finally, the validation and testing average fifteen minutes rewards are reported for the

models considering the same five MDPs without computing transaction costs in the re-

wards. TRPO, PPO and FQI scores are respectively plotted in Figure B.9, B.10 and

B.11. They are very similar to the ones found with transaction costs, therefore it is

possible to conclude that the agent is still not learning a profitable policy.

(a) Three different baselines. (b) Focus on the two trivial baselines.

Figure B.5: Three different baseline performance scores are reported in these fig-

ures: the green points are the best possible average rewards achievable in the four

validation sets and in testing, computed by always selecting the best possible ac-

tion. The red and blue points are the mean rewards obtainable always performing

respectively the trivial actions -1 and +1. These two baselines are repeated in the

second figure, which focuses only on them, to show their trend which is not clearly

understandable in first figure since they have an order of magnitude less than the

other baseline.

138

(a) Only Reuters sentiment features prin-

cipal components in the state.

(b) Only Twitter sentiment features prin-

cipal components in the state.

(c) Reuters sentiment features principal

components and percentage differences of

index values in the state.

(d) Twitter sentiment features principal

components and percentage differences of

index values in the state.

(e) Only percentage differences of index

values in the state.

Figure B.6: TRPO 15 minutes mean reward in validation and testing, repeating

the same model five times and computing the related confidence intervals.

139

(a) Only Reuters sentiment features prin-

cipal components in the state.

(b) Only Twitter sentiment features prin-

cipal components in the state.

(c) Reuters sentiment features principal

components and percentage differences of

index values in the state.

(d) Twitter sentiment features principal

components and percentage differences of

index values in the state.

(e) Only percentage differences of index

values in the state.

Figure B.7: PPO 15 minutes mean reward in validation and testing, repeating the

same model five times and computing the related confidence intervals.

140

(a) Only Reuters sentiment features prin-

cipal components in the state.

(b) Only Twitter sentiment features prin-

cipal components in the state.

(c) Reuters sentiment features principal

components and percentage differences of

index values in the state.

(d) Twitter sentiment features principal

components and percentage differences of

index values in the state.

(e) Only percentage differences of index

values in the state.

Figure B.8: FQI 15 minutes mean reward in validation and testing, repeating the

same model five times and computing the related confidence intervals.

141

(a) Only Reuters sentiment features prin-

cipal components in the state.

(b) Only Twitter sentiment features prin-

cipal components in the state.

(c) Reuters sentiment features principal

components and percentage differences of

index values in the state.

(d) Twitter sentiment features principal

components and percentage differences of

index values in the state.

(e) Only percentage differences of index

values in the state.

Figure B.9: TRPO 15 minutes mean reward in validation and testing, without

considering transaction costs.

142

(a) Only Reuters sentiment features prin-

cipal components in the state.

(b) Only Twitter sentiment features prin-

cipal components in the state.

(c) Reuters sentiment features principal

components and percentage differences of

index values in the state.

(d) Twitter sentiment features principal

components and percentage differences of

index values in the state.

(e) Only percentage differences of index

values in the state.

Figure B.10: PPO 15 minutes mean reward in validation and testing, without

considering transaction costs.

143

(a) Only Reuters sentiment features prin-

cipal components in the state.

(b) Only Twitter sentiment features prin-

cipal components in the state.

(c) Reuters sentiment features principal

components and percentage differences of

index values in the state.

(d) Twitter sentiment features principal

components and percentage differences of

index values in the state.

(e) Only percentage differences of index

values in the state.

Figure B.11: FQI 15 minutes mean reward in validation and testing, without

considering transaction costs.

144

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, et al. TensorFlow: Large-Scale Machine Learn-

ing on Heterogeneous Systems. Software available from tensorflow.org. 2015.

url: https://www.tensorflow.org/.

[2] Carlo Acerbi and Dirk Tasche. “Expected Shortfall: a natural coherent al-

ternative to Value at Risk”. In: Economic Notes 31 (2002), pp. 379–388.

[3] Stefan Banach. “Sur les opérations dans les ensembles abstraits et leur ap-

plication aux équations intégrales”. In: Fundamenta Mathematicae 3 (1922),

pp. 133–181.

[4] Richard Bellman. “A Markovian Decision Process”. In: Journal of Mathe-

matics and Mechanics 6.5 (1957), pp. 679–684.

[5] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. “Learning Long-Term

Dependencies with Gradient Descent is Difficult”. In: IEEE Transactions on

Neural Networks 5 (Feb. 1994), pp. 157–166.

[6] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin.

“A Neural Probabilistic Language Model”. In: Journal of Machine Learning

Research 3 (2003), pp. 1137–1155.

[7] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-

Verlag Berlin, 2006.

[8] Mikael Bodén. “A Guide to Recurrent Neural Networks and Backpropaga-

tion”. In: the Dallas project (Dec. 2001).

[9] Leo Breiman. “Random Forests”. In: Machine Learning 45 (2001), pp. 5–32.

[10] Leo Breiman, Jerom H. Friedman, Richard A. Olshen, and Charles J. Stone.

Classification and Regression Trees. Belmont, CA: Wadsworth and Brooks,

1984.

145

https://www.tensorflow.org/

[11] Rohan Chitnis and Tomas Lozano-Perez. “Learning Compact Models for

Planning with Exogenous Processes”. In: 3rd Conference on Robot Learning

(CoRL) (2019).

[12] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bah-

danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase

Representations using RNN Encoder-Decoder for Statistical Machine Trans-

lation. 2014. arXiv: 1406.1078 [cs.CL].

[13] Thomas Degris, Martha White, and Richard S. Sutton. “Off-policy actor-

critic”. In: Proceedings of the 29th International Conference on Machine

Learning (2012).

[14] F. D’Epenoux. “A probabilistic production and inventory problem”. In: Man-

agement Science 10 (1963), pp. 98–108.

[15] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias

Plappert, Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Pe-

ter Zhokhov. OpenAI Baselines. https://github.com/openai/baselines.

2017.

[16] Damien Ernst, Pierre Geurts, and Louis Wehenkel. “Tree-Based Batch Mode

Reinforcement Learning”. In: Journal of Machine Learning Research 6 (2005),

pp. 503–556.

[17] Pierre Geurts, Damien Ernst, and Louis Wehenkel. “Extremely Randomized

Trees”. In: Machine Learning 63 (2006), pp. 3–42.

[18] Alec Go, Richa Bhayani, and Lei Huang. “Twitter sentiment classification

using distant supervision”. In: CS224N Project Report, Stanford (2009).

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016.

[20] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”. In:

Neural computation 9 (Dec. 1997), pp. 1735–1780.

[21] S&P Dow Jones Indices. S&P 500. url: https://us.spindices.com/

indices/equity/sp-500 (visited on 03/03/2020).

[22] S&P Dow Jones Indices. S&P 500 Top 50. url: https://us.spindices.

com/indices/equity/sp-500-top-50 (visited on 03/03/2020).

[23] S&P Dow Jones Indices. S&P U.S. Indices Metodology. url: https:/ /

us.spindices.com/documents/methodologies/methodology- sp- us-

indices.pdf (visited on 03/03/2020).

146

https://arxiv.org/abs/1406.1078
https://github.com/openai/baselines
https://us.spindices.com/indices/equity/sp-500
https://us.spindices.com/indices/equity/sp-500
https://us.spindices.com/indices/equity/sp-500-top-50
https://us.spindices.com/indices/equity/sp-500-top-50
https://us.spindices.com/documents/methodologies/methodology-sp-us-indices.pdf
https://us.spindices.com/documents/methodologies/methodology-sp-us-indices.pdf
https://us.spindices.com/documents/methodologies/methodology-sp-us-indices.pdf

[24] Leslie P. Kaelbling, Michael L. Littman, and Anthony R. Cassandra. “Plan-

ning and acting in partially observable stochastic domains”. In: Artificial

Intelligence 101 (1998), pp. 99–134.

[25] Sham Kakade and John Langford. “Approximately Optimal Approximate

Reinforcement Learning”. In: Proceedings of the 19th International Confer-

ence on Machine Learning (2002).

[26] Carrel Lawrence. ETFs for the Long Run. John Wiley & Sons, 2008.

[27] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In:

Nature 521 (2015), pp. 436–444.

[28] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient Esti-

mation of Word Representations in Vector Space”. In: Proceedings of Work-

shop at ICLR (2013).

[29] Tomas Mikolov, Martin Karafiát, Lukáš Burget, Jan Černocký, and San-

jeev Khudanpur. “Recurrent Neural Network Based Language Model”. In:

Proceedings of Interspeech (2010), pp. 1045–1048.

[30] Karl Pearson. “On Lines and Planes of Closest Fit to Systems of Points in

Space”. In: Philosophical Magazine 2.11 (1901), pp. 559–572.

[31] Fabian Pedregosa, Gael Varoquaux, et al. “Scikit-learn: Machine Learning

in Python”. In: Journal of Machine Learning Research 12 (2011), pp. 2825–

2830.

[32] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. “GloVe:

Global Vectors for Word Representation”. In: Empirical Methods in Natural

Language Processing (EMNLP). 2014, pp. 1532–1543. url: http://www.

aclweb.org/anthology/D14-1162.

[33] Jan Peters and Stefan Schaal. “Policy Gradient Methods for Robotics”. In:

IEEE International Conference on Intelligent Robots and Systems (Nov.

2006), pp. 2219–2225.

[34] Martin L. Puterman. Markov Decision Processes. John Wiley and Sons, 1994.

[35] Bryan D. Ripley. Pattern Recognition and Neural Networks. Cambridge Uni-

versity Press, 2007.

[36] Frank Rosenblatt. “The Perceptron: A probabilistic model for information

storage and organization in the brain”. In: Psychological Review 65 (1958),

pp. 386–408.

147

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

[37] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning

representations by back-propagating errors”. In: Nature 323 (1986), pp. 533–

536.

[38] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg

Klimov. “Proximal Policy Optimization Algorithms”. In: arXiv (2017). arXiv:

1707.06347.

[39] John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp

Moritz. “Trust Region Policy Optimization”. In: Proceedings of the 31st In-

ternational Conference on Machine Learning (2015).

[40] Scikit-learn. 3.2.4.3.4. sklearn.ensemble.ExtraTreesRegressor. url: https:

//scikit-learn.org/stable/modules/generated/sklearn.ensemble.

ExtraTreesRegressor.html (visited on 03/03/2020).

[41] Qiang Song, Saud Almahdi, and Steve Y. Yang. “Entropy based measure

sentiment analysis in the financial market”. In: IEEE Symposium Series on

Computational Intelligence (SSCI) (2017).

[42] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An In-

troduction. edition 2. MIT Press, Cambridge, 2018.

[43] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Scotts

Valley, CA: CreateSpace, 2009.

[44] Ronald J. Williams. “Simple statistical gradient-following algorithms for con-

nectionist reinforcement learning”. In: Machine Learning 8 (1992), pp. 229–

256.

[45] Ho C. Wu, Robert W. P. Luk, Kam F. Wong, and Kui L. Kwok. “Inter-

preting TF-IDF Term Weights as Making Relevance Decisions”. In: ACM

Transactions on Information Systems 26.13 (2008).

[46] Kaisheng Yao, Trevor Cohn, Katerina Vylomova, Kevin Duh, and Chris

Dyer. Depth-Gated LSTM. 2015. arXiv: 1508.03790 [cs.NE].

[47] Mohammed J. Zaki and Wagner Meira Jr. Data Mining and Analysis: Fun-

damental Concepts and Algorithms. Cambridge University Press, 2014.

https://arxiv.org/abs/1707.06347
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html
https://arxiv.org/abs/1508.03790

	Ringraziamenti
	Sommario
	Abstract
	Introduction
	Outline of Contents

	Sequential Decision Making
	Sequential Decision Making
	Markov Decision Processes
	Problem Definition
	Return
	Policy
	Value Functions

	Reinforcement Learning
	Dynamic Programming
	Prediction: Policy Evaluation
	Control: Policy Iteration and Value Iteration

	Value-Based Reinforcement Learning
	Model-free Prediction
	On-Policy Model-Free Control
	Off-Policy Model-Free Control
	Fitted Q-Iteration (FQI)

	Policy Search Reinforcement Learning
	Policy Gradient Methods
	Trust Region Policy Optimization (TRPO)
	Proximal Policy Optimization (PPO)

	Natural Language Processing
	Traditional Approach: Bag of Words Model
	Deep Learning
	Artificial Neural Networks
	Feedforward Neural Networks
	Recurrent Neural Networks
	Long Short Term Memory (LSTM)

	Word Embedding
	Feedforward Neural Net Language Model (NNLM)
	Recurrent Neural Net Language Model (RNNLM)
	Word2vec
	Global Vectors for Word Representation (GloVe)

	Datasets
	S&P 500 Index
	Daily Sentiment
	Twitter Daily Sentiment
	Reuters Daily Sentiment

	Feature Extraction

	Feature Selection
	Features and Target: Expanded Dataset
	Random Forests
	Feature Selection with Random Forests
	Random Forest Training
	Random Forest Results

	Regression of Sentiment on Residuals
	The Procedure
	Training and Results

	RL Models and Results
	MDP Models
	Algorithms
	The Procedure
	Trajectories and Parameters
	Performance Measures

	Results
	Training
	Testing

	15 Minutes Data
	Datasets
	Feature Selection
	Reinforcement Learning

	Conclusion
	Results
	Future Improvements

	Appendices
	Reinforcement Learning Performances
	15 Minutes Results
	Feature Selection Results
	Reinforcement Learning Results

	References

