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Abstract

Outperforming the markets through active investment strategies is one of
the main challenges in finance. The random movements of assets and the
unpredictability of catalysts make it hard to perform better than the av-
erage market, therefore, in such a competitive environment, the methods
designed to keep low transaction costs have a significant impact on the ob-
tained wealth. This thesis focuses on investing techniques to beat market
returns through Online Portfolio Optimization while controlling transaction
costs. Such a framework differs from classical approaches as it assumes that
the market has an adversarial behavior and no statistical characterization is
enforced, requiring frequent rebalancing of the portfolio. Within this con-
text, most of the existing algorithms neglect transaction costs; we show that
the one which provides bounded costs make unrealistic assumptions. To
deal with transaction costs, in the Online Portfolio Optimization setting, we
propose the use of the Online Gradient Descent algorithm. We show that
it has regret, considering costs, of the order O(

√
T ), T being the invest-

ment horizon, and has Θ(N) per-step computational complexity, N being
the number of assets. Furthermore, we show that this algorithm provides
competitive gains when compared empirically with state-of-the-art online
learning algorithms on real-world datasets.



Sommario

Una delle sfide più importanti in finanza è quella di avere prestazioni migliori
rispetto ad un approccio passivo agli investimenti. I movimenti casuali del
mercato e la difficoltà nel predirne i catalizzatori rendono molto complesso
battere il mercato, e quindi, in un ambito tanto competitivo, tecniche pro-
gettate per tenere bassi i costi di transazione possono avere un impatto
significativo sul guadagno finale. Questa tesi si concentra su tecniche di in-
vestimento basate su Online Portfolio Optimization controllando i costi di
transazione. Questo ambito si differenzia dal classico approccio poiché as-
sume che i mercati abbiano un comportamento avversario, ossia non richiede
delle assunzioni sul modello stocastico del processo, il che richiede quindi
che tali tecniche ridistribuiscano di frequente il loro portfolio. Molti degli
algoritmi in questo ambito non considerano i costi di transazione; mostr-
eremo che quelli che hanno delle garanzie teoriche sui costi lo fanno con
assunzioni irrealistiche. Si propone l’uso di Online Gradient Descent per
trattare il problema dei costi di transazione in Online Portfolio Optimiza-
tion. Mostreremo che questo algoritmo assicura un regret sul guadagno con
costi dell’ordine di O(

√
T ), dove T è l’orizzonte temporale. Inoltre mostr-

eremo che questo algoritmo ha complessità computazionale dell’ordine di
Θ(N), dove N è il numero di azioni nel portfolio. Infine verificheremo sper-
imentalmente le garanzie teoriche dell’algoritmo e che esso, quando testato
su dati reali, provvede a guadagni comparabili agli altri algoritmi nello stato
dell’arte. Abbiamo testato gli algoritmi scelti su tre datasets usati comune-
mente in letteratura e su un dataset raccolto per questo lavoro. Su tutti i
dataset otteniamo guadagni medi del portfolio comparabili agli altri algo-
ritmi per piccoli valori del tasso di transazione (guadagno annualizzato di
tra 8% e 15%, approssimativamente), e guadagni più grandi, rispetto agli
altri algoritmi, per quasi tutti i dataset utilizzati.
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Chapter 1

Introduction

Until the 50s, investing relied solely on the expertise of the managers. Af-
terwards, portfolio management became contaminated with ideas from eco-
nomics, which at that time was already based on a rigorous mathematical
formulation, stemming from statistics and probability. This led to the birth
of portfolio theory [Markowitz, 1952]. The problem of portfolio optimiza-
tion is paramount as the amount of assets managed by funds and private
investors is currently more than 85 trillion USD, a quantity comparable to
the global GDP.1

Classical investment techniques for portfolio management assign a sta-
tistical distribution to the returns of the assets. Then, once the statistical
model has been chosen, the problem is solved by optimizing the expected
value of the utility of some random variable (usually accounting for the
trade-off between risk and return) that describes the value of the portfolio
in some fixed time point in the future. This line of thinking has been pro-
posed and sustained by Markowitz, Samuelson and Fama [Markowitz, 1952],
and it is now called Modern Portfolio Theory (MPT).

This approach is the standard in academia and when designing portfolios
in practice, but it is known to be very susceptible to errors in the modeling
of the random variables that model the asset returns. Indeed, it is known
that markets have a non-stationary behavior, which means that any sta-
tistical assumption is ephemeral and unreliable [Schmitt et al., 2013]. This
techniques are also referred to as backward looking, i.e., they optimize w.r.t.
inferences made on past realizations. In the complex financial environment
of the past decades (and of present times) we saw how unpredictable cer-
tain events can be, and how any statistical assumption can be out-turned

1https://www.opalesque.com/671554/Global_assets_under_management_rose_
to155.html.
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overnight.

In this thesis, we present an orthogonal and lesser-known approach of
Online Portfolio Optimization that originated from the fields of information
theory at the Bell Labs in the 1950s, from the works of Shannon, Kelly and
Cover. These methods were included in the classical portfolio theory frame-
work, under the name of Capital Growth Theory [Hakansson et al., 1995],
[MacLean et al., 2011], and then got included in the machine learning litera-
ture under the framework of Online Learning [Cesa-Bianchi and Lugosi, 2006].
Only recently this field has been taken into the Online Optimization field
too [Hazan et al., 2016]. This formulation of sequential decision making has
interesting properties, such as stability in a game theory fashion (e.g., equi-
librium) and robustness versus adversarial manipulation. This approach
has been successfully applied to gambling and sports betting [Thorp, 1966],
[Hausch et al., 1981]. The fascinating story of these works can be found in
[Poundstone, 2010].

One of the most important points in favor of the techniques in Online
Learning are the strong theoretical guarantees provided by algorithms devel-
oped under this framework. These guarantees come from the game theory
concept of Regret, which is a form of dissatisfaction originated from having
taken an action, measured against the best actions taken by a class of ad-
versaries, called Experts. The guarantees, that algorithms in this framework
achieve, are of performing asymptotically as good as the best player in the
expert class.

Principal in this thesis will be the extension of the theoretical framework
of these methodologies to the presence of transaction costs in financial ap-
plications, and to provide strong theoretical assurance even in the presence
of transaction costs. Indeed, in many financial situations transaction costs
are not modeled and this can lead to over-optimistic findings. We think that
research in this direction can eventually bridge the gap between practical
applications and academic research in Online Portfolio Optimization.

To tackle this problem we propose the Online Gradient Descent algo-
rithm for the Online Portfolio Optimization framework. Furthermore, we
show that it has theoretical guarantees on the wealth and on the transaction
costs in which it incurs during the investment period. Finally we present
an experimental campaign to show that our proposed algorithm has good
empirical performances on the wealth obtained in the absence of trading
costs, and w.r.t. the transaction cost rate.
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1.1 Structure of the Thesis

In Chapter 2 we present the classical framework of Online Learning, starting
from the framework of Online Learning with Expert Advice. We then draw
the connections with more classical frameworks of Game Theory and present
the Online Convex Optimization framework, which is the most suited to
embed the problem of Online Portfolio Optimization.

In Chapter 3 we introduce the problem of probability assignment and
how this is a natural extension of the Prediction with Experts advice pre-
sented in Chapter 2. We then draw the connections of the problem of prob-
ability assignment to information theory, where the field of Online Portfolio
Optimization was originally developed. The main reason of Chapter 2 and
3 is to introduce the theory necessary to understand the algorithms used in
the Online Portfolio Optimization.

From Chapter 4 onwards, we will formally present our extended frame-
work of Online Portfolio Optimization with Transaction Costs, and intro-
duce the central concept of Total Regret, that we will use in throughout the
thesis. In Chapter 5 we will present the algorithms of state of the art of
the Online Portfolio Optimization framework, and explain their connections
to the theoretical framework presented in Chapter 2 and 3. In Chapter 6
we will extend the celebrated Online Gradient Descent algorithm to the On-
line Portfolio Optimization with Transaction Costs, and prove its theoretical
guarantees in this framework.

In Chapter 7 we present the numerical results of the Online Portfolio Op-
timization with Transaction Costs problem,on a variety of different datasets.
Finally, Chapter 8 summarizes the main contributions of this work, and de-
tails the possible future developments.
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Chapter 2

Online Learning

Online Learning is a theoretical framework to formalize a sequential decision
problem in which an agent has to take consecutive actions in an environ-
ment. Every time the agent takes an action, the environment returns a loss
signal (or reward depending on the sign convention). This framework is sim-
ilar to other sequential decision problems such as Reinforcement Learning
[Sutton and Barto, 2018], with the main difference that in Online Learning
there isn’t a concept of transition probability from one state to another. The
purpose of this section is to present the general framework of Online Game
Playing and to introduce the notation necessary for the development of the
theory for Online Portfolio Optimization. We define formally the framework
of Online Learning with Expert Advice, which is one of the most studied
frameworks of Online Learning, due to its ability to include many other
frameworks, such as Multi Armed Bandit [Bubeck et al., 2012] or Online
Convex Optimization [Hazan et al., 2016]. Then we present the concept of
Regret and the relationship of Online Learning to classical repeated games,
a classical framework coming from the field of Game Theory. We are inter-
ested in this framework in order to model repeated investments. Modern
finance has more and more the need for a Game Theoretic approach, which
is evident when looking at the field of On-venue Market Making, that can
be modeled naturally as a repeated game, or of Merger and Acquisition
that can be modeled as a normal-form game [Jiang et al., 2016].1 In addi-
tion we think these methods are a viable option to cope with the unknown
non-stationary nature of the financial markets. Finally, we introduce Online
Convex Optimization as a special case of Online Learning with expert advice
and we show its interesting relationship to theoretical statistical learning.

1For example, Jane Street (one of the biggest players in providing liquidity to the
markets) gives extensive training in game theory for its employees.
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The choice of this path, from Online Learning to Online Convex Optimiza-
tion, has been done to show how general and powerful Online Learning is
in its simplicity, and why Online Convex Optimization is the most suit-
able framework to present our contribution to Online Portfolio Selection, a
framework that will be presented in Chapter 3.

Indeed, even if we focus on the portfolio problem, the apparently simple
formulation of this framework is capable to encompass many other appli-
cations and problems, such as network routing [Belmega et al., 2018], dark
pool order allocation [Agarwal et al., 2010], e-commerce pricing ([Trovo et al., 2015],
[Trovò et al., 2018], [Paladino et al., 2017]) and advertisement ([Gasparini et al., 2018],
[Nuara et al., 2018], [Nuara et al., 2020], [Nuara et al., 2019], [Gatti et al., 2015]).
Moreover Online Learning has also been applied to the Game Theory field of
Security Games ([Jiang et al., 2013], [Bisi, 2017]). A thorough dissertation
of the techniques that have been developed in the field of Online Learning
can be found in [Cesa-Bianchi and Lugosi, 2006].

2.1 Online Learning

Definition 2.1.1. (Online Learning). Let Y be the outcome space, D the
prediction space, and f : D×Y → R is a loss function, an Online Game is the
sequential game played by the forecaster A and the environment, described
in Algorithm 1.

Algorithm 1 Online Learning
Require: Decision space D, outcome space Y, loss function f : D×Y → R

1: Set L0 = 0

2: for t ∈ RN do
3: The learner A chooses an element of the decision space xt ∈ D
4: The environment chooses the element yt ∈ Y, and subsequently de-

termines the loss function f(·, yt)
5: The agent A incurs in a loss f(xt, yt)
6: The agent updates its cumulative losses Lt = Lt−1 + f(xt, yt)

7: end for

In Online Learning an agent A has to guess the outcome yt based on
the past sequence y1, y2, . . . , yt−1 of events that are in the outcome space Y,
at each time step the agent will play (sometimes we will also say predict)
xt, that is an element of the prediction space D, and the environment will
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choose a loss function f(·, yt) by determining the outcome yt. The agent A
is essentially the identification of the functions that map the history of past
outcomes to the new prediction:

A ≡ {ht−1 := (y1, . . . , yt−1) 7−→ xt}t≥1 .

The simplest case is for Y = D and both of finite cardinality, meaning that
there are only a finite number of actions that the agent A can choose from.

We will sometimes refer to the environment defined in Section 2.1.1 as
“adversarial”, since no stochastic characterization is given to the outcome
sequence yt and the analysis of the regret is done assuming a worst case
scenario. Since the adversary knows the prediction xt before deciding the
outcome yt, designing an algorithm which tries to minimize the loss is an
hopeless task and so we have to set an easier scope. In Section 2.1.1 we will
also present the counterexample that explains why the absolute minimiza-
tion of the loss is an hopeless task, and show the suitable framework for
successful Online Learning in Adversarial Environment.

2.1.1 Regret and Experts

Agent: A

Environment

xtf(xt, yt)

Experts: E

xe,t f(xe,t, yt)

Figure 2.1: Online Learning with Expert Advice as Multi Agent-Environment interac-
tion.

We stated that the objective of absolute loss minimization is hopeless in
an adversarial framework, as the adversary can always choose the outcome
yt that maximizes the loss f(x, yt) regardless of the decision x ∈ D taken by
the learner. More formally, assume D to be the space of binary outcomes,
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i.e., |D| = 2, and that f is the absolute loss f(x, y) = |x − y|. Since the
adversary plays after the learner A, it can make the loss of the learner
LT = T by choosing y = 1 − x as the bit non predicted by the learner,
making f(x, y) = 1 at each time step. Notice that no assumption has been
made on the strategy followed by the learner A. From this example it is
clear that the learner has to set a less ambitious goal.

We do so by extending the theoretical formulation in Section 2.1 by
including a set E of other players, this setting is called prediction with expert
advice. At each time step of the prediction game, each expert e ∈ E predicts
an element xe,t ∈ D, and incurs in a loss f(xe,t, yt), just as the agent A,
creating a general multi-agent interaction as in Figure 2.1. The goal of the
learner is to obtain small losses with respect to the best expert in the class
E . This concept is captured by the definition of regret. Formally, we define
the regret Re,T for the agent A with respect to expert e ∈ E as follows:

Re,T = LT − Le,T . (2.1)

The regret observed by the agent A with respect to the entire class of
experts E is defined as:

RT = sup
e∈E

Re,T = LT − inf
e∈E

Le,T . (2.2)

The task agent A is to find a sequence xt, function of the information
obtained up to the time t in order to obtain small regret yT with respect to
any sequence y1, y2, . . . chosen by the environment.

In particular we aim to achieve sub-linear regret RT = o(T ), meaning
that the per-round regret RT /T will asymptotically vanish:

RT = o(T ) =⇒ lim
T→∞

RT
T

= 0, (2.3)

where o(T ) is the space of sub-linear affine functions. A strategy A that
attains sub-linear regret is called Hannan-Consistent [Hannan, 1957].

The regret is a measure of the distance between our online performance
and the best offline (in retrospect) performance among the expert class E ,
which is also called external regret since it is compared to the external set of
experts E . A surprising fact is that such algorithms do even exist. Indeed a
first result is that in general there are no Hannan-consistent strategies, and
just introducing the concept of regret is not enough by itself for successful
Online Learning.

A first simple counterexample can be found in [Cover, 1966]. If the
decision space D is finite, then there exists a sequence of loss function such
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that RT = Ω(T ). Again take D as a space of binary outcomes, absolute loss
as f(x, y) = |x − y|, and the class of experts is composed by two experts,
one predicting always 0 and the other always 1. Taking T odd, we have that
the loss of the best expert is Le,T < T

2 , and we have already shown that the
adversary can make the loss of the learner LT = T . It is now evident that
the regret is RT > T − T

2 , which does not allow RT /T → 0. This argument
is easily extended in the case of any finite decision space D.

To achieve sub-linear regret, the learner has to randomize its predic-
tions, and, at each turn t, the agent choose a probability distribution on
the decision space and plays xt according to this distribution. Clearly the
adversary has knowledge of the probability distribution of the learner A, but
has no knowledge of the random seed used by the agent A, i.e., does not
know the actual decision sampled from the distribution held by the agent.
If the original decision space was D, with |D| = N , after the randomiza-
tion of the decision, we effectively transformed the decision space D into the
∆N−1 ∈ RN probability simplex. By doing so we are formally extending the
game into its mixed extension, as will be discussed further in Section 2.4. It
can be viewed also as a covexification of the domain, pointing to the undeni-
ably necessity of convex geometry in this context, that will be discussed in
Section 2.5. Therefore, from now on the domain D will be convex, either by
the problem specification or by randomized convexification if the problem
has a discrete decision space.

2.1.2 Existence of No-Regret Strategies

In this section we will show the existence of Hannan-consistent strategies in
the case of finite experts and provide a general form to generate sub-linear
regret strategies. The general idea with a finite class of experts is given
by the Weighted Average Forecaster, which implements the natural idea of
playing as the weighted average of the experts predictions:

Definition 2.1.2. (Weighted Average Forecaster). For a finite class of
experts E = {E1, . . . , EN}, the weighted average prediction is defined as:

xt =

N∑
i=1

wi,t−1xi,t

N∑
i=1

wi,t−1

, (2.4)

where wi,t−1 > 0, and xi,t is the prediction of expert Ei ∈ E at round t.

Since D is convex we have that xt ∈ D. Then it is natural to assume that
the weights are a function of the cumulated regret suffered by the agent with
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respect to the experts, and also that the change in weight is proportional to
the change in a potential function. We can generalize the simple weighted
average prediction in Equation (2.1.2) in the following general form, intro-
duced in [Cesa-Bianchi and Lugosi, 2003]:

xt =

N∑
i=1

∂iΦ(Rt−1)xt,i

N∑
i=1

∂iΦ(Rt−1)

, (2.5)

where Φ(u) = φ

(
N∑
i=1

ϕ(ui)

)
is a function Φ : RN → R+ defined through

two increasing functions ϕ, φ : R → R+, φ, ϕ ∈ C2(R) concave and con-
vex, respectively, and RT = (R1,T , . . . , RN,T ). By specializing the two
functions φ, ϕ we can derive a large class of the algorithms for dealing
with prediction under expert advice. The reasons behind the general form
of Equation (2.5) are quite complex and an extended discussion can be
found in [Hart and Mas-Colell, 2001], [Cesa-Bianchi and Lugosi, 2003] and
[Blackwell et al., 1956], but the general idea is that the form of Equation
(2.5) has the following property:

Theorem 2.1.1. [Cesa-Bianchi and Lugosi, 2003] If xt is given by Equa-
tion (2.5) and the loss f(·, y) is convex in the first argument, then the
instantaneous weighted regret satisfies:

sup
yt∈Y

N∑
i=1

[f(xt, yt)− f(xi,t, yt)]∂iΦ(Rt−1) ≤ 0.

Proof. By convexity of f(·, yt) we have that:

f(xt, yt) ≤

N∑
i=1

∂iΦ(Rt−1)f(xi,t, Rt)

N∑
i=1

∂iΦ(Rt−1)

, ∀yt ∈ Y. (2.6)

And since Φ(x) = φ

(
N∑
i=1

ϕ(xi)

)
we have that:

∂iΦ(x) = φ′

(
N∑
i=1

ϕ(xi)

)
ϕ′(xi) ≥ 0.

Hence, we can rearrange the terms in Equation (2.6) to obtain the statement.
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Note that fixing the structure for the weights as in Equation (2.5) we
have that wt,i ∝ ϕ′(Ri,t) is an increasing function in Ri,t (since ϕ is convex
and increasing) that essentially states that we are increasing the probability
of playing actions on which we saw large regret Ri,t.

Definition 2.1.3. (Exponentially Weighted Algorithm) The Exponentially
weighted algorithm is obtained from Equation (2.1.2) by defining:

wi,t−1 = eηRi,t−1/
N∑
j=1

eηRj,t−1 . (2.7)

Note that, the exponentially weighted algorithm is also Equation (2.5)
where we defined φ(x) = 1

η ln(x) and ϕ(x) = eηx giving weights defined in
Equation (2.7).

It can be shown ([Cesa-Bianchi and Lugosi, 2006] Theorem 2.2) that the
algorithm defined by the update rule in Equation (2.1.3), and for a convex
loss function f(·, yt), gives the following guarantee on the regret:

RT ≤
log(N)

η
+
Tη

8
. (2.8)

By choosing η = O
(√

1
T

)
we obtain a sub-linear regret RT = O(

√
T ).

2.2 Experts

The theoretical framework described in Section 2.1 is very general and most
suited for a game theory analysis of the problem. This helps us to describe
many other frameworks, such as Online Optimization [Hazan et al., 2016],
or Multi Armed Bandit [Bubeck et al., 2012] as embedded into a Game Play-
ing framework with expert advice. It can then be specialized by fixing many
elements of the definition, in order to be applied to the specific problem we
are willing to solve. For instance, the class of experts E is most of the times
completely fictitious, meaning that the experts are not real players of the
game but they are simulable, meaning that the agent A is able to compute
xe,t for each expert e ∈ E and most of the times the class of expert is very
limited in its actions, e.g., E is the class of experts for which xe,t is constant
in t. In this case, which is the most studied class of experts, we are basically
just comparing our learner A to the best fixed action x∗ in hindsight. This
is a clairvoyant strategy that attains the minimum cumulative loss over the
entire length of the game T .
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2.2.1 Uncountable Experts

In the case of uncountable experts the Exponentially Averaged Prediction
cannot be applied directly, but it can be extended to a continuous mixture of
experts predictions. More specifically we need the case of the class E being
generated by a convex hull of a finite number of a base class of experts, EN .
With continuous class of experts E defined in this way, the regret definition
becomes:

RT = sup
q∈∆N−1

Rq,T := LT − inf
q∈∆N−1

Lq,T , (2.9)

where ∆N−1 ⊂ RN is the N -simplex, and

Lq,T =

T∑
t=1

f(⟨q,xe,t⟩, yt),

where xe,t = (x1,t, . . . , xN,t) ∈ RN is the vector of expert predictions at time
t.

2.3 Exp-Concave loss functions

Very important for the study of Portfolio Optimization is the exp-concave
class of loss functions. The reason is that the natural loss function used in
the Online Portfolio Optimization framework is 1 exp-concave, as we shall
see in Chapter 3.

Definition 2.3.1. (Exp-concave function). g(x) is said ν exp-concave if
e−νg(x) is concave.

When speaking about loss functions we are interested in concavity of the
function in its first argument. Therefore we will say that a loss function f

is ν exp-concave if f(·, y) is ν exp-concave ∀y ∈ Y.

Theorem 2.3.1. ([Cesa-Bianchi and Lugosi, 2006] Theorem 3.2). The Ex-
ponentially Weighted Average forecaster, for ν-exp concave loss functions,
has the following property taking η = ν:

Φ(RT ) ≤ Φ(R0),

where Φ(x) = φ

(
N∑
i=1

ϕ(xi)

)
is chosen as φ(x) = 1

ν log(x) and ϕ(x) = eνx.
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Proof. The weights are given by wi,t−1 = eνRi,t−1/
N∑
j=1

eνRj,t−1 . By exp-

concavity we have that:

e−νf(xt,yt) = exp

−νf


N∑
i=1

wi,t−1xi,t

N∑
i=1

wi,t−1

, yt


 ≥

N∑
i=1

wi,t−1e
−νf(xi,t,yt)

N∑
i=1

wi,t−1

.

(2.10)
This can be rewritten as:

N∑
i=1

eνRi,t−1eν[f(xt,yt)−f(xi,t,yt)] ≤
N∑
i=1

eνRi,t−1 . (2.11)

Applying φ(x) = 1
ν log(x) to both sides of Equation (2.11) we obtain that:

Φ(Rt) ≤ Φ(Rt−1),

that proves the thesis.

The case of exp-concave functions is very significant, since thanks to
Theorem 2.3.1 we can prove the regret bound for the Exponentially Weighted
Average very easily by:

RT ≤
1

ν
log

(
N∑
i=1

eνRj,T

)
= Φ(RT ) ≤ Φ(R0) =

logN

ν
. (2.12)

The case of exp-concave losses is also useful for the case of uncount-
able experts sketched in Section 2.2.1. This formulation will be of central
importance for the portfolio optimization problem.

It is natural to extend the Exponential Weighted Forecaster algorithm
described in Definition (2.1.3) into the case of uncountable expert class E
generated by the convex hull over the countable class EN , by:

xt =

∫
∆N−1

wq,t−1⟨q,xe,t⟩dq∫
∆N−1

wq,t−1dq
. (2.13)

Theorem 2.3.2. (Mixture forecaster for exp-concave losses)
([Cesa-Bianchi and Lugosi, 2006] Theorem 3.3).

Choosing wq,t−1 = exp

{
−ν

t−1∑
s=1

f(⟨q,xe,t⟩, ys)
}

in Equation (2.13), for a

bounded ν-exp concave loss function f(·, y), we obtain:

RT ≤
N

ν

(
log

(
νT

N

)
+ 1

)
.
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Even in the case of uncountable many experts, exp-concavity of the loss
function gives a better convergence rate of O(log T ) then the exponentially
weighted algorithm in Equation (2.8), which is O(

√
T ).

2.4 Regret Minimization in Games

In this section we explore the connection of the framework of Section 2.1
into a more classical repeated game framework. In the previous section we
looked at the adversary as a black box, without any specific model in mind.
The reason of this chapter is to clarify its role as a player in the game and
to show the game theoretical properties of Hannan-consistent agents. Since
in Online Learning the convention is to speak about losses, we shall speak
about losses (players are minimizing) also in the classical definitions of game
theory instead of payoffs (players are maximizing).

Definition 2.4.1. (Strategic Form K-Player Game). A Strategic form K-
player game is t a tuple ⟨K, {Xi}i∈K, {li}i∈K⟩ where:

1. K = {1, . . . ,K} is the finite set of players.

2. Xi is the set of actions available to player i ∈ K.

3. li :
K⊗
k=1

Xi → R is the loss observed by player i ∈ K.2

The game is called finite if |Xi| < +∞ for all i ∈ K.

2.4.1 Mixed extension

In Section 2.1 we saw that it is impossible to obtain sub-linear regret in
adversarial environment with finite decision space D. A first step to solve
this has been the randomized convexification technique, where finite action
spaces are extended into convex sets, given by their probability simplex.
Losses are to be interpreted as expected losses when the mixed extension is
applied to the formal game. More formally:

Definition 2.4.2. (Mixed-extension for finite games). A finite game ⟨K, {Xi}i∈K, {li}i∈K⟩
can be extended into the game ⟨K, {X̃i}i∈K, {l̃i}i∈K⟩, by defining:

1. X̃i = ∆|Xi|−1 ⊂ R|Xi| for all i ∈ K;

2we defined ⊗ as the Cartesian product.
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2. l̃ :
⊗
X̃i → R is defined as:

l̃(x1, . . . , xK) =
N∑
i1=1

· · ·
N∑

iK=1

pi1 · · · piK l(i1, . . . , iK).

Due to the impossibility result of Cover [Cover, 1966], we have to work
with the mixed extension formulation of the game. So from now on we take
this step implicitly. The taxonomy of game definitions is quite extended and
complex, thus we will focus on non-cooperative games [Nash, 1951] since
they are closely related to the setting tacked in the Online Learning field.
More specifically, we will need the model for Zero Sum Game.

Definition 2.4.3. (2-Players Zero-Sum Game). A Zero Sum game is a tuple
⟨{X1, X2}, l : X1 ×X2 → R⟩. As in Definition 2.4.1 X1, X2 are the action
spaces for Player 1 (row player) and Player 2 (column player) respectively,
and l(x1, x2) for xi, x2 ∈ X1 × X2 represents the losses for Player 1 and
profits for Player 2.

If this game is played for T turns, we can call it a repeated game, and the

losses for each player is defined L
(T )
1 =

T∑
t=1

li

(
x
(t)
i , x

(t)
2

)
and L

(T )
2 = −L(T )

1 .

2.4.2 MinMax Consistency

The field that tries to answer to questions of what guarantees do Hannan-
consistent strategies bring to the game theoretical formulation of the prob-
lem is referred in literature as Learning in Games. For formal games we can
define the values for the game as:

V1 = inf
x1∈X1

sup
x2∈X2

l(x1, x2), (2.14)

V2 = sup
x2∈X2

inf
x1∈X1

l(x1, x2). (2.15)

These are the values that the players can guarantee themselves, meaning
that, no matter the strategy of the columns player, the row player could
guarantee itself a loss of at maximum V2, the converse holds for the row
player. It can be interpreted as the minimum loss (best payoff) that a player
could achieve if it knows that the other player would play adversarially. It is
clear that V2 ≤ V1. In the case that the zero-sum-game is a mixed extension
of a finite game, then the Von Neumann theorem states that V1 = V2.

Now we will embed the framework of Online Game Playing of Section
2.1 in a two player zero sum game. Online Learning is a special form of Zero
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Sum Game (possibly considering its mixed extension described in Definition
2.4.1) where X1 ≡ D and X2 ≡ Y. The loss function l : X1 ×X2 → R can
be identified by the loss f : D × Y → R of the Online Learning Agent A.
Now we will explore interesting properties of Hannan-consistent strategies.
A surprising fact is that if the row player plays accordingly to a Hannan-
consistent strategy then it achieves the value of the game V1.

Theorem 2.4.1. Hannan-consistent agents in Online Game Playing reach
asymptotically the minmax value of the one shot game, formally:

lim sup
T→+∞

1

T

T∑
t=1

f(xt, yt) ≤ V.

Proof. Let us suppose that the game is a mixed extension, then from the Von
Neumann minmax theorem we have V = V1 = V2. Moreover, let us suppose
that player 1 plays an Hannan-consistent strategy and that y1, y2, . . . ⊂ Y
is a generic sequence played by the columns player. Then:

lim sup
T→+∞

RT
T
≤ 0, (2.16)

can be translated into

lim sup
T→+∞

1

T

T∑
t=1

f(xt, yt) ≤ lim sup
T→+∞

1

T
inf
x∈D

T∑
t=1

f(x, yt). (2.17)

Let us define ŷT as the empirical distribution played by player 2 up to
T :

ŷT =
1

T

T∑
t=1

yt.

By Equation (2.17) we just need to show that 1
T inf
x∈D

T∑
t=1

f(x, yt) ≤ V.

This follows from:

inf
x∈D

1

T

T∑
t=1

f(x, yt) = inf
x∈D

f(x, ŷT ) = sup
y∈Y

inf
x∈D

f(x, y) ≤ V, (2.18)

that concludes the proof.

We showed that regardless of the strategy of player 2, a player using an
Hannan-consistent strategy achieves lower losses than the value of the game
V . Clearly using an Hannan-consistent strategy means that if player 2 was
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not adversarial, then player 1 could potentially earn a significantly higher
average payoff than the value V of the game. By symmetry, if both players
play an Hannan-consistent strategy then they will asymptotically reach the
value of the game V .

Figure 2.2: Rock Paper Scissor Dynamics in the ∆2 simplex, generated by the Expo-
nentially Weighted Majority algorithm against an adversarial opponent.

In Figure 2.2 we present the path of the randomization probabilities
of the Rock Paper Scissor game represented in the ∆2 simplex, obtained
by the Exponentially Weighted Majority algorithm against an adversarial
opponent which plays the best response at each turn, knowing the prob-
abilities of the learner. Note that the algorithm learns to play the op-
timal strategy which is the randomization probabilities of (1/3, 1/3, 1/3)

over the action space. In general the specific dynamic of policies learned
with Hannan consistent strategies are very complex and not well understood
[Bailey and Piliouras, 2018].

2.5 Online Convex Optimization for Regret Mini-
mization

Let us compare this framework to an apparently unrelated problem, namely
optimization, that will turn out to be the most suited framework to embed
the Online Portfolio Optimization Problem. In online optimization an agent
A is designed to optimize a sequence of functions ft(x) where usually ft :

D → R is a real valued function from the set D ⊂ Rn. As a remark on
the notation, in Online Convex Optimization literature, the loss functions
are written as f(x, yt) ≡ ft(x), dropping the explicit dependence on the
outcome yt. The decision space D is assumed to be convex, as the functions
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ft : D → R. This framework was first devised in [Zinkevich, 2003], and
has been later wildly used in the machine learning community to engineer
optimization procedures [Shalev-Shwartz et al., 2012].

Convexity plays a central role in most of the analysis made in Online
Learning and Online Convex Optimization. Convexity of the domain D and
of the loss functions f(·, y) bound the problem geometry and let us derive
simple and efficient learning procedures.

In this chapter the decision space D is a convex subset of RN . As in the
case of uncountable experts discussed in Section 2.2.1, the best expert is the
one who plays at each round a fixed point x ∈ D. In Section 2.6 we will
discuss how this framework is well suited to optimize complex functions, as
Neural Networks, where we can think as x ∈ D as the set of parameters we
are trying to optimize. Indeed many state of the art optimization techniques
in the field of machine learning have been taking inspiration from the field
of Online Optimization [Duchi et al., 2011].

2.5.1 A General Algorithm for Online Convex Optimization

In this Section we will see an algorithm called Online Mirror Descent (OMD),
that generalizes many Online Convex Optimization algorithms. It is a first
order method (i.e., it uses only information from the gradient of the loss
function) that works in the dual space defined by the choice of some reg-
ularizator. The OMD algorithm is general and optimal in the sense that
every Online Convex problem can be learned online nearly optimally with
OMD. The precise definition of the optimality of the OMD algorithm is quite
complex to be summarized here and can be found in [Srebro et al., 2011].
OMD works with a class of regularizators called Bregman Divergences,
[Banerjee et al., 2005].3

Definition 2.5.1. (Bregman divergence). Given a differentiable convex
function ψ : D → R, the Bregman divergence is defined as an operator
dψ : D ×D → R+ defined for x,y ∈ D ×D as:

dψ(x,y) = ψ(x)− ψ(y)− ⟨x− y,∇ψ(y)⟩. (2.19)

Since ψ is convex we have that dψ(x,y) ≥ 0. We can see that by lin-
earization of ψ(x) around y ∈ D and thanks to convexity the other terms are
positive. However note that, since the operator defined in Equation (2.19)
is not symmetric in its arguments, it does not formally define a metric in
the space D.

3From now on we assume that D ⊂ RN as it is common in the majority of the academic
literature on Online Convex Optimization.
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Now we will present two example of Bregman divergences that we will
use to define specifications of the OMD algorithm in Chapter 5. For x,y ∈
∆N−1 ⊂ RN , consider ψ(x) = ||x||22, then the Bregman divergence becomes

dψ(x,y) = ||x−y||22, which is the Euclidean norm. For ψ(x) =
N∑
i=1

xi log(xi)

then dψ(x,y) =
N∑
i=1

xi log(xi/yi), which is the well know Kullback–Leibler

divergence [Van Erven and Harremos, 2014].
The OMD algorithm for Online Convex Optimization, described in Al-

gorithm 2, uses the regularization given by a Bregman divergence to follow
the best point in the convex set D up to now, but it is kept close to the
current one by the divergence operator. Formally:

Definition 2.5.2. (Online Mirror Descent). OMD for a Bregman Diver-
gence induced by the differentiable, convex real valued function ψ, and for a
set of learning rates {η0, . . . , ηT } has the following update rule:

xt+1 = arg inf
x∈D

{dψ(x,xt) + ηt⟨∇ft(xt),x− xt⟩} . (2.20)

Next we will show the idea for a general bound for the OMD algorithm,
which explains the geometric ideas behind the OMD algorithm. Note that,
in general, the analysis can be refined by fixing the loss function ft or the
convex function ψ. 4

Lemma 2.5.1. [Theorem 4.1 in [Beck and Teboulle, 2003]]. Let dψ : D ×
D → R the Bregman divergence associated to the convex smooth function ψ.
Moreover, assume ψ is α-strong convex w.r.t. || · ||. Then ∀x ∈ D we have:

ηt(ft(xt)− ft(x)) ≤ dψ(x,xt)− dψ(x,xt+1) +
η2t
2
||∇ft(xt)||2∗,

where we defined the dual norm || · ||∗ with respect to the norm || · ||.

Definition 2.5.3. (Dual Norm). Let x ∈ X, the dual norm || · ||∗ of a norm
|| · || is defined as:

||x||∗ = sup
y:||y||≤1

⟨x,y⟩.

The specific norm || · || in Theorem 2.5.1 can be chosen depending on
the specific Bregman divergence, in order to simplify the analysis. Indeed,
Theorem 2.5.1 can be used to prove a regret bound for the general OMD
algorithm.

4The convex function ψ is assumed to be differentiable in the domain D.
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Theorem 2.5.1. (Regret Bound for Online Mirror Descent). Together with
the assumptions of Theorem 2.5.1 and if ηt ≥ 0 is a decreasing sequence of
learning rates, then we have:

RT ≤ max
t≤T

dψ(x,xt)

ηT
+

1

2α

T∑
t=1

ηt||∇ft(xt)||2∗.

By choosing ηt =
D
√
α√

T∑
t=1

||∇ft(xt)||2∗

, where D = max
t≤T

dψ(x,xt), we have a

bound for the OMD algorithm of:

RT ≤
2D√
α

√√√√ T∑
t=1

||∇ft(xt)||2∗. (2.21)

Notice that, if the gradient under the dual norm is bounded by ||∇ft(xt)||∗ ≤
G ∀t ≤ T , then we have that:

RT ≤
2DG√
α

√
T , (2.22)

which is sub-linear in T .
If ηt = η > 0 is a constant sequence then Theorem 2.5.1 can be simplified

to give:

RT ≤
dψ(x,x1)

η
+

η

2α

T∑
t=1

||∇ft(xt)||2∗. (2.23)

The OMD algorithm is a general technique to exploit the geometric
convexity of the problem and gives rise to Hannan-consistent strategies in
the case of uncountable convex decision spaces. By specializing the loss
function and the Bregman divergences we can generate many algorithms
that are state of the art in the Online Convex optimization problem, and
achieve better theoretical guarantees than the general analysis we saw for
the OMD algorithm. We will show in Chapter 5 that the Online Newton
Step algorithm, even if it can be formulated as an instance of the OMD
algorithm, achieves O(log T ) regret rather than O(

√
T ) regret.

2.5.2 Mirror Version of the Online Mirror Descent Algo-
rithm

The reason why OMD works is not that we are following the gradient, that
points to the minimum of the function; indeed, the sub-gradient (Definition
2.5.5) of a loss function does not point to the minimum in general. An
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Algorithm 2 Online Mirror Descent for Online Convex Optimization
Require: learning rate sequence {η1, . . . , ηT }

1: Set x1 ← 1
M 1

2: for t ∈ {1, . . . , T} do
3: Observe ft(xt) decided by the adversary
4: Set gt(x) = dψ(x,xt) + ηt⟨∇ft(xt),x− xt⟩
5: Project xt+1 = arg inf

x∈D
gt(x)

6: end for

example of this phenomena in presented in Figure 2.3. In practice the reason
why OMD, and other first order methods, are effective is because of the
convexity of the loss function and because of the following inequality for the
instantaneous regret of convex loss functions:

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5
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-1.5
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-0.5

0

0.5

1

1.5
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2.5

Figure 2.3: Contour lines of f(x, y) = max{x2+(y−1)2, x2+(y+1)2}, together with
sub-gradient directions from (1, 0). All sub-gradient will point to increasing values of
the function.

ft(xt)− ft(x) ≤ ⟨∇ft(xt),xt − x⟩, (2.24)

and so to minimize the left hand side of Equation (2.24) we can min-
imize the right hand side of Equation (2.24). Minimizing strictly a linear
approximation of the instantaneous regret is not ideal since the environment
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is adversarial. Instead we minimize the linear approximation together with
a regularization term which is given by the Bregman divergence dψ.

In order to understand more formally the inner workings of the OMD
algorithm we have to introduce some concepts from optimization theory:

Definition 2.5.4. (Fenchel Conjugate). For a function f : RN → R we can
define the Fenchel conjugate as:

f∗(θ) = sup
x∈RN

⟨x, θ⟩ − f(x). (2.25)

Definition 2.5.4 can be interpreted as a generalized inf function as f∗(0)
is the classical inf function. For x ̸= 0 then we are looking for the infimum of
the function f when the axis of the function are rotated w.r.t. the hyperplane
H(x) = ⟨θ,x⟩, as illustrated in Figure 2.4. A complete dissertation of the
Fenchel duality can be found in [Rockafellar, 1970].

f(x)

⟨x, θ⟩

θ

−f∗(θ)

Figure 2.4: Fenchel Conjugate Function.

Definition 2.5.5. (Sub-Gradient). For a function f : RN → R we can
define the set of sub-differentials at x0 as:

∂f(x0) = {g : f(x)− f(x0) ≥ ⟨g, x− x0⟩,∀x}. (2.26)

For a differentiable at x0 function we have ∂f(x0) = {∇f(x0)}.
Finally, the following theorem explains the name of the OMD algorithm

and its real more interesting formulation:

Theorem 2.5.2. Let dψ be a Bregman divergence operator then we have the
following equality:

arg inf
x∈D

{dψ(x,xt)+ηt⟨∇ft(xt),x−xt⟩} = ∇ψ∗
D(∇ψ(xt)−ηt∇ft(xt)), (2.27)
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where ψD is the restriction of ψ to the convex set D, i.e., ψD(x) = ψ(x) +

I∞D (x), where we defined:

I∞D (x) =

{
0 if x ∈ D
+∞ otherwise

.

Theorem 2.5.2 shows the real nature of the OMD algorithm, which is
to update predictions using the gradient of the loss function, in the dual
space defined by the function ψ. For example if ψ(x) = 1

2 ||x||
2
2 then we have

∇ψ(xt) = xt and ∇ψ∗(x) = ΠD(x), and we obtain the Online Gradient
Descent algorithm, xt+1 = ΠD(xt − ηt∇ft(xt)), that we will explore with
detail in Chapter 6.

D

∇ψ

∇ψ∗

xt

xt+1

∇ψ(xt)

ηt∇ft(xt)

∇ψ(xt)− η∇ft(xt)

Figure 2.5: Online Mirror Descent as Mirror Updates.

The general procedure for the OMD algorithm is depicted in Figure 2.5.
We take the past prediction xt, we apply the operator ∇ψ(·), move a step
towards the gradient of the loss function ηt∇ft(xt) and then project back
to the set with the projection operator defined by ∇ψ∗(·).

2.6 From Online Learning to Statistical Learning

Now we explore the connection between the Online Optimization framework
and classical concepts of classical Statistical Learning techniques. The result
of this section is to define and then present a way of designing a whole class
of algorithms that are Agnostically PAC Learnable with Online Learning
Techniques. Classical statistical learning theory deals with examples (or
observations) and models of the phenomena. Then it uses the model to
predict the future observations [Bousquet et al., 2003]. Quite informally one
could say that we are trying to infer concepts from examples. A concept is
a map C : D → Y, where D is the domain space and Y is the set of labels
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for the examples. We then observe a sample from an unknown distribution
X such that (x, y) ∼ X . What we need to achieve is to learn a mapping
y : D → Y such that the error under the distribution X is small. The
loss function needed to define this error is not specific to the problem and
can be decided by the user. The error we are trying to minimize is called
generalization error, and for a loss function l : Y × Y → R it is defined as:

e(h) = E(x,y)∼X [l(h(x), y)]. (2.28)

The goal for an algorithm A is to produce an hypothesis h with small gen-
eralization error. In general, it is difficult to obtain small generalization
error and the difficulty is clarified by the following theorem called the No
free lunch theorem [Mitchell et al., 1997]. This restriction gives raise to the
concept of Probably Approximately Correct (PAC) learnability.

Definition 2.6.1. (PAC learnable). An hypothesis class H is PAC learnable
w.r.t. the loss l if there exists a learner A that given a sample SN of examples
learns an hypothesis h ∈ H s.t. for all ϵ, δ there exists Nϵ,δ such that for any
distribution X we have a generalization error s.t. PX [e(h) < ϵ] ≥ 1− δ.

Usually, we also require that the algorithm A learns the concept h in
polynomial time w.r.t. the parameter of the problem.

An example of such learning problems could be the classification of spam
emails. In this case D is the vectorial representation of the text and Y =

{0, 1}, indicating weather or not the email is a spam or not. If we choose as
a model a linear classifier then the hypothesis space is H = {h = I[⟨x,w⟩ ≥
1/2]} and the loss could be chosen as l(y1, y2) = |y1 − y2|.

PAC learnability intuitively requires the existence of an hypothesis h ∈
H with near zero generalization error, otherwise the class H is not PAC
learnable. But we can weaken the concept of PAC learnability by addressing
directly this issue.

Definition 2.6.2. (PAC agnostic learnable). Given the same definitions of
Definition 2.6.1, an hypothesis class H is PAC agnostic learnable if we have
a generalization error s.t. P

[
e(h) < inf

h̃∈H
e(h̃) + ϵ

]
≥ 1− δ.

Determining which hypothesis spaces H are PAC learnable (agnostically
or not) for specific spaces is an open and complex issue, but the case for
convex hypothesis class H ⊂ R can be solved by Online Learning tech-
niques, showing the versatility of the methods. Moreover, the approach to
prove such theorems gives a constructive methodology to solve agnostic PAC
learnable problems.
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Theorem 2.6.1 ([Lee et al., 1998]). For every hypothesis classH and bounded
loss function l : Y × Y → R, for which does exist a low regret algorithm A,
the problem is agnostic PAC learnable. In particular, these conditions are
satisfied if the hypothesis space H and the loss function l are convex.

Proof. (Sketch). Initialize the learner with the hypothesis h0 = H. For
every iteration t ≤ T : observe a sample (xt, yt) ∼ X and a loss function
lt := l(ht(xt), yt). Then update the hypothesis ht+1 = A(l1, . . . , lt).

At t = T return h̄ = 1
T

T∑
t=1

ht ∈ H.

The proof then continues by defining the random variableX(1)
T =

T∑
t=1

e(ht)−

l(ht(xt), yt). This is a martingale and E[X(1)
T ] = 0. Moreover |X(1)

T −X
(1)
T−1| <

K since the loss function f is bounded. We can normalize the losses so that
K = 1, and then apply the Azuma martingale inequality P[X(1)

T > c] ≤ e−
c2

2T

[Azuma, 1967].
For an appropriate choice of c we get:

P

[
1

T

(
T∑
t=1

e(ht)− l(ht(xt), yt)

)
>

√
2 log(δ/2)

T

]
≤ δ/2, (2.29)

defining h∗ = arg inf
h∈H

e(h) and X(2)
T =

T∑
t=1

e(h∗)− l(h∗(xt), yt) we can obtain:

P

[
1

T

(
T∑
t=1

e(h∗)− l(h∗(xt), yt)

)
< −

√
2 log(δ/2)

T

]
≤ δ/2. (2.30)

By the definition of regret RT we obtain:

1

T

T∑
t=1

e(ht)− e(h∗) = RT /T +X
(1)
T −X

(2)
T , (2.31)

and from inequalities in Equations (2.29), (2.30) and from Equation
(2.31) we have:

P

[
1

T

T∑
t=1

e(ht)− e(h∗) >
RT
T

+ 2

√
2 log(δ/2)

T

]
≤ δ. (2.32)

Now simply thanks to the linearity of the error operator e : H → R we
have that:
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P

[
e(h̄) < e(h∗) +RT /T + 2

√
2 log(δ/2)

T

]
≤ 1− δ,

and since RT /T → 0 we can find T large enough such that the thesis is
verified for any δ > 0.

This result has been presented since it is useful to prove the good behav-
ior of Hannan-consistent strategies in environments driven by any stationary
distribution.
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Chapter 3

Information, Prediction and
Investing

In Chapter 2 we described from an high level perspective the framework
for Online Learning in adversarial environment. Now we draw its connec-
tions with predictions and investments. It surely seems counter-intuitive to
speak about predictions in an adversarial framework, since we are used to
think about predictions only of stochastic processes, but the way to think
about predictions in adversarial environments is to think about probabil-
ity assignment and empirical frequencies. The roots of this formulation
are to be traced back to the Bell Laboratories in the 50s, from works of
Kelly [Kelly jr, 1956], linking sequential betting and concept from informa-
tion theory [Cover and Thomas, 2012]. This connection is of paramount
importance to understand sequential investing as an instance of sequential
decision problem. We will first draw the parallelism between probability
assignment over discrete events and Online Learning, and then extend the
discussion to sequential investments.

3.1 Probability assignment

In this section we will draw the parallelism between assigning probabilities
to outcomes, predictions, information theory and investments. In the case of
N possible bets the decision space D is the ∆N−1 ⊂ RN probability simplex
while the outcome Y space is the set {1, . . . , N}, representing the winning
bet at each turn. The loss function f(x, y) should have these natural prop-
erties: low when xy ≈ 1 and high when xy ≈ 0, where xy is the probability
assigned to the outcome y. The inverse log-likelihood seems a reasonable
proposal, not only because of the multiplicative additive property of the
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logarithm, (we need the loss to be an additive quantity) but also because it
has a deeper connection to information that we will discuss more formally
in Section 3.1.2.

Definition 3.1.1. (Self Information Loss). In the sequential probability
assignment problem the loss function f(x, y), x ∈ ∆N−1 and y ∈ [1, . . . , N ]

is defined as:
f(x, y) = − log

(
x(y)

)
,

where x(y) is the probability assigned to outcome y ∈ Y.

In the case of simulable experts, the prediction xt of the agent is a func-
tion of the history of outcomes yt−1 := {y1, y2, . . . , yt−1}. The cumulative
loss for the agent A is then given by:

LT =
T∏
t=1

f(xt, yt), (3.1)

and can be interpreted as the log-likelihood assigned to the outcome
sequence yT since:

LT =

T∑
t=1

f(xt, yt) = − log

(
T∏
t=1

x
(yt)
t

)
, (3.2)

where we can interpret
T∏
t=1

x(yt) as the probability assigned to the en-

tire outcome sequence yT . This is already very similar to the compression-
entropy rate one encounters in a classical lossless encoder, such as the arith-
metic encoder [Langdon, 1984]. We will explore the connections to informa-
tion theory later on in Chapter 3.1.2.

Similarly we can define the loss for an expert e ∈ E as:

Le,T =
T∑
t=1

f(xe,t, yt) = − log

(
T∏
t=1

x
(yt)
e,t

)
, (3.3)

and the regret for each expert e ∈ E is defined as:

Re,T = LT − Le,T = log

(
T∏
t=1

x
(yt)
t,e

/ T∏
t=1

x
(yt)
t

)
, (3.4)

and the regret w.r.t. a generic class E of experts is defined as:

RT = sup
e∈E

log

(
T∏
t=1

x
(yt)
t,e

/ T∏
t=1

x
(yt)
t

)
, (3.5)
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where the class of experts E can be finite or uncountable.
Moreover, the self information loss defined in Definition 3.1.1, is clearly

exp-concave with coefficient ν = 1 as defined in Chapter 2, and we know that
we have RT ≤ log(N) in the case of finite experts and RT ≤ N(log(T/N)+1)

in the case of uncountable experts, by Theorem 2.3.2. The case of the expert
class being identified with the simplex ∆N−1 can be interpreted as a convex
hull of experts and so the Theorem 2.3.2 gives a RT = O(log T ) regret bound
on the problem of probability assignment described in the previous section.

3.1.1 Laplace Mixture Forecaster

Fixing the log-loss we can show better regret bounds on the Mixture Fore-
caster for uncountable experts, introduced in Theorem 2.3.2. The Mixture
Forecaster with log-loss has regret bound ([Cesa-Bianchi and Lugosi, 2006]
Theorem 9.3):

RT ≤ (N − 1) log(T + 1), (3.6)

and it is called Laplace Mixture Forecaster [Weinberger et al., 1994]. The
improved constants for the Laplace Mixture Forecaster results from exploit-
ing both exp-concavity and the additive property of the log-loss.

3.1.2 Connection to Information Theory

The link between sequential predictions and information theory has been
observed in [Kelly Jr, 2011], and connects the concept of sequential betting
(or predictions) and entropy.

Kelly put himself in a setting where the bettor has to predict the out-
comes of binary events, given private information from an information chan-
nel prone to errors. The binary bet pays double for a correct prediction and
zero for an incorrect one. The input bits of the information channel are the
correct outcomes of the binary sequential event, but they reach the end of
the private channel with probability p of being correct and q = 1−p of being
wrong. Clearly the optimal strategy with p = 1 is to bet everything on each
turn reaching a final wealth, after T rounds, of WT = 2T . In case p < 1 it is
not clear which strategy is the best to follow, this is clearly related and still
under philosophical debate as the St. Petersburg paradox [Samuelson, 1977].
Kelly proposed to maximize the growth rate of the wealth by investing a
constant fraction of the current wealth. The growth rate G of the wealth
WT is defined as:

G = lim
T→+∞

1

T
E[log2(WT )].
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Calling v ∈ [0, 1] the fraction of the wealth invested in the bet we have
a capital after T rounds of:

WT = (1 + v)T−F (1− v)F ,

where F is the number of lost bets up to time T . Thus, the expected
growth rate becomes of WT :

G = p log2(1 + v) + q log2(1− v),

which is maximized for v = p− q giving Gmax = 1+ p log2(p) + q log2(q)

which is the rate of transmission for the communication channel, i.e., the
number of bits transferred for unit of time. This is the trivial case and can
be extended to arbitrary odds and number of bets.

The equivalent formulation in Online Learning can be obtained by ob-
serving that D = ∆0 and that we are betting a fraction vt on the event being
0 and a fraction 1− vt on the the outcome being 1. In that case the wealth
at time t will be Wt =Wt−1v

1−yt
t (1− vt)yt and, hence:

log(WT ) =
T∑
t=1

log(vt(yt − 1) + (1− vt)yt), (3.7)

which defines the cumulative loss

LT = −log(WT ) =

T∑
t=1

− log(vt(1− yt) + (1− vt)yt),

which is equivalent to the loss defined in Equation (3.2).
By defining the growth rate as GT = 1

T log2(WT ), we can observe that
LT = −TGT log(2), and so a learnerA that obtains sub-linear regretRT /T →
0, where the expert class is composed of constant experts for which vt =

const, is equivalent to obtaining a growth rate GT → Gmax.
This draws the connection to information rate as defined by Shannon

in terms of information bits and growth rate of a betting strategy, and the
fact that an Hannan-consistent strategy is able to converge to the maximum
growth rate.

3.1.3 Horse Races

In this section we will see how sequential investment is equivalent to the
problem of sequential betting discussed in the previous section. In the pre-
vious chapter we saw how to formalize sequential betting in the simple case
of doubling odds and binary outcomes into the Online Learning formulation.
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Now we will extend the model to account variable odds and multiple bets,
and how this is connected to investing.

Let us model horse races as a sequential betting process, in which we
have N horses each paying a payoff of ot,i ∀i ∈ {1, . . . , N}. The agent A
splits its total wealth into N separate bets by choosing an element of the
simplex ∆N−1.

The wealth of the agent A at time t will be Wt = Wt−1⟨xt,yt⟩, where
yt = oyteyt ∈ RN , i.e., the basis vector with 1 as the yt ∈ {1, . . . , N}
component, which represents the winning horse for the turn, and oyt is the
payout of the bet at time t, on the yt horse winning. As we did in the
previous section we can apply − log(·) so that we can embed the problem
into an Online Learning framework. By defining:

LT = − log(WT ) = − log(WT−1)− log(⟨xt,yt⟩),

that implies:

LT =
T∑
t=1

− log(⟨xt,yt⟩), (3.8)

we obtain exactly the same formulation presented at the beginning of
the chapter. Moreover, we note that the regret RT does not depend on the
value of the payout oyt .

We saw in Section 2.2.1 that Theorem 2.3.2 assures that we have a sub-
linear regret RT = O(log T ) in case that the expert class E is being generated
by the convex hull of finite basic experts EN , which in this case can be taken
as the N experts always predicting xt,j = ej , ∀j ∈ {1, . . . , N}. The convex
hull generated by EN is then composed by experts predicting a constant
element of the simplex xt,e = xe ∈ ∆N−1.

Theorem 2.3.2 is stating that we can obtain asymptotic wealth equivalent
to the one obtained by the best expert in hindsight, for all sequences of
outcomes.

A very similar formulation can be obtained for the case of sequential
investments. In the case of horse races we have just one winner for each
day, while in the case of stock investing we have a different payout for each
stock. In the following section we will present how to model sequential
decision problems in the Online Learning formulation.
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3.2 From Horse Races to Online Portfolio Opti-
mization

We can formulate the portfolio allocation as a sequential betting problem.
Let us imagine that there are no real life issues associated with trading
costs and liquidity (these issues will be discussed in the following Chapter
4). Then the best strategy would be to invest at each round t the entire
capital on one single stock, knowing that will be the best performance stock
at round t. But assuming an adversarial environment we have to randomize
our bet, or equivalently distribute our wealth into the N horses accordingly
to our randomization probabilities, as they are equivalent as Equation (3.8)
explains.

3.2.1 The Online Portfolio Optimization Model

The model consists in a sequential wealth allocation in N ∈ N stocks for
discrete rounds t ∈ {1, . . . , T}, where T is the investment horizon. Note
that the set of times is arbitrary, and could also be non-homogeneous, in
practice in the Online Portfolio Optimization case it is usually thought to
be in days. The price evolution of the stock i ∈ 1, . . . , N at time t, Pt,i,
defines the price relatives yi,t = Pi,t+1

Pi,t
, and we can define the price relatives

vector at time t as yt = (y1,t, . . . , yN,t) ∈ RN .
An investor dividing, at round t, its wealth Wt into a fraction xt ∈ ∆N−1

for each asset will get a wealth Wt+1 = Wt⟨xt,yt⟩ at round t + 1. As in
Section 3.1.2 we can define the growth rate for portfolios as:

GT = log(WT ) =

T∑
t=1

log(⟨xt,yt⟩).

As in the case of binary outcomes, i.e., horse races, we can redefine the
problem in an Online Learning framework, by defining the loss f(x,y) =

− log(⟨xt,yt⟩) and a cumulative loss as:

LT = −GT =
T∑
t=1

− log(⟨xt,yt⟩).

Exactly as in the previous Section, the expert class is generated by the
convex hull of the base class EN , composed by the experts always betting
on the win of the same horse i ∈ {1, . . . , N}, or, equivalently, allocating the
whole portfolio on the same asset, at every round. The convex hull of the
class is the class of experts E , so that at every turn t, the expert is allocating
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the whole wealth in a specific element x ∈ ∆N−1. In the Online Portfolio
literature this class of allocations is called Constant Rebalancing Portfolio

(CRP), and we will define its wealth as WT (x) =W0

T∏
t=1
⟨x,yt⟩.

As in every adversarial environment, we have to compare our losses with
the best expert in the expert class through the concept of regret:

RT = LT − inf
e∈E

LT,e (3.9)

=
T∑
t=1

− log(⟨xt,yt⟩)− inf
x∈∆N−1

T∑
t=1

− log(⟨x,yt⟩). (3.10)

The CRP attaining the minimum loss

x∗ = inf
x∈∆N−1

T∑
t=1

− log(⟨x,yt⟩)

is called Best Constant Rebalancing Portfolio (BCRP).
As we shall see in the next section, Constant Rebalancing Portfolios

(CRP) are a very powerful class of strategies and being competitive (in
terms of sub-linear regret) with respect to this class assures good theoretical
guarantees.

3.2.2 Effectiveness of Constant Rebalancing Portfolios

The CRP is a strategy that each round t redistributes its wealth into the
same distribution x ∈ ∆N−1. As we saw in the previous Section these
strategies can be identified as the ones generated by expert class E defined
previously. The Buy and Hold (BAH) is a strategy that holds on an alloca-
tion at the start of the investment period and holds on to it to the end of
the investment horizon T . The wealth of an BHA strategy can be written
as WT = ⟨x,

∏T
t=1 yt⟩.

A simple example can illustrate the effectiveness of the CRP strategies,
and the inherently difference that exists between the Modern Portfolio The-
ory and the Online Portfolio Optimization techniques. Imagine to have two
stocks, and the adversary can choose the value of the price relatives in the
set: y1,t, y2,t ∈

{
3
5 ,

8
5

}
. Imagine that the adversary picks a price relatives

in the set
{
3
5 ,

8
5

}
with equal probability. Every BHA allocation is exponen-

tially decaying E[WT ] = ⟨x, (2425 ,
24
25)⟩ =

24
25 and hence has decaying growth

rate GT < 0. Conversely, the equally allocated CRP x = (12 ,
1
2) has positive

growth rate and exponentially increasing wealth: E[WT ] = (11/10)T and
GT = T log(11/10) > 0.
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Historically, this example has been called Shannon Demon [Poundstone, 2010]
and being compared to the Maxwell’s Demon since, as in the thermody-
namics case, Shannon’s Demon is generating wealth (energy in the case on
Maxwell) from nothing since both stocks are martingales. Opponents to the
Capital Growth Theory used this argument to invalidate these ideas. In
reality there is nothing strange about this example, and it is just one of the
many techniques that exploits the existence of volatility and converts it into
wealth, as theoretically does a delta-hedged option in the Black and Scholes
model [Black and Scholes, 1973].
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Chapter 4

Problem Formulation

In this section we will extend the Online Portfolio Optimization model to
consider transaction costs. The resulting framework will be central in our
contributions. Indeed, the importance of the trading mechanism is usually
not taken into account in the models of Online Portfolio Optimization, no-
tably, the most important aspect left out of the analysis is transaction costs.
Including transaction costs into the Online Portfolio Optimization model is
non-trivial and complex. The reason why transaction costs are more difficult
to include into the model is that the inclusion of transaction costs change
significantly the loss function and, as we saw, the theoretical guarantees of
the algorithms do relay heavily on very strict conditions on the loss function,
such as convexity and exp-concavity. Note that an algorithm that guaran-
tees sub-linear regret without transaction costs is not guaranteed to have
sub-linear regret in the more realistic scenario in which trading costs are
present.

Very few works include transaction costs in the Online Portfolio Opti-
mization model. There exists a wide variety of heuristic methods that tried
to overcome this problem [Li et al., 2018a, Yang et al., 2018], but they do
not provide any guarantee on the regret in the presence of transaction costs.
To the best of our knowledge, there are only two studies that analyze transac-
tion costs theoretically: Universal Portfolio with Costs (UCP) [Blum and Kalai, 1999],
and Online Lazy Updates (OLU) [Das et al., 2013], but only OLU gives an
algorithm to implement. We will present the algorithm designed in these
works in Chapter 5. The principal contribution of this thesis is to give an
algorithm that has sub-linear regret in the Online Portfolio Optimization
problem with transaction costs.
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4.1 Online Portfolio Optimization with Transac-
tion Costs

Transaction costs are notably difficult to model or even define. In order to
model trading costs correctly, one would have to take into account many as-
pects of the trading mechanism and explore the mechanism of trading in its
minutiae; this field of research is called market micro-structure. Great start-
ing references can be found in [Harris, 2003] and [O’hara, 1997], in which the
authors explore the practical implementation of a trade and its analytical
formulation, respectively.

Conversely, we model transaction costs as in [Das et al., 2013]. We
showed how the model used by the authors can be recovered as an approx-
imation of the proportional transaction costs model, that will be discussed
in detail in the next section. Finally, we checked the consistency of the
empirical results in the used model and the model used in this thesis.

We also used this model for transaction costs to define a new concept of
regret to be used in the framework of Online Portfolio Optimization.

Following the approach previously used in the Online Portfolio Optimiza-
tion literature [Blum and Kalai, 1999], we use an approximation of the real
transaction costs considering them proportional to the difference in port-
folio allocation. Formally, the transaction costs, at round t, are implicitly
determined by the solution of the following equation:

Wt−1 = W̃t−1 + γs

N∑
i=1

(
xi,t−1yi,t−1

⟨xt−1,yt−1⟩
− xi,tW̃t−1

)+

(4.1)

+ γb

N∑
i=1

(
xi,tW̃t−1 −

xi,t−1yi,t−1

⟨xt−1,yt−1⟩

)+

,

where γs, γb > 0 are the proportional transaction fees for selling and
buying respectively, Wt−1 is the wealth before the trading costs are taken
into account, W̃t−1 is the wealth remaining after the trading costs, and (x)+

is defined as the positive part of x as (x)+ := max(x, 0). This model for
transaction costs is called proportional transaction costs. There is no work
in the scientific literature able to bound theoretically the wealth of an online
learning algorithm when this model of costs is adopted.

If we assume that in Equation (4.1) we have γ = γs = γb > 0 equal and
fixed both throughout the investment horizon T and for buying ans selling
and defining αt := W̃t−1

Wt−1
, we can rewrite Equation (4.1) as:
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αt = 1− γ||x′
t−1 − xtαt||1, (4.2)

where x′
t−1 = xt−1⊗yt−1

⟨xt−1,yt−1⟩ is the portfolio composition after the market
movement yt−1. With a ⊗ b we denote the element-wise product between
the two vectors a and b.

With this model, the wealth that takes into account transaction costs
can be written as:

W̃T =
T∏
t=1

αt⟨xt,yt⟩, (4.3)

where αt is the solution of Equation (4.2). We simplify further Equation
(4.2) to avoid having to work with a non-linear equation. Indeed, if we
assume that the components of yt are small, we can assume x′

t ≈ xt and
αtxt ≈ xt. Therefore, the ratio of the wealth remaining after the trading
costs can be approximated by:

αt ≈ 1− γ||xt − xt−1||1. (4.4)

We will now define a new concept of regret for the Online Portfolio
Optimization, compared to the one originated from the log-loss of Section
3.2. Formally, using the approximation of the cost provided in Equation
(4.4) we have:

log(W̃T ) = log

(
T∏
t=1

⟨xt,ytαt⟩

)
(4.5)

= log(WT ) + log

(
T∏
t=1

αt

)
(4.6)

≈ log(WT )−
T∑
t=1

γ||xt − xt−1||1. (4.7)

The approximation in Equation (4.7) is because γ ≪ 1 and log(1− x) ≈
−x.

Hence we can define the quantity:

WC
T :=WT exp

{
−γ

T∑
t=1

||xt − xt−1||1

}
, (4.8)

which is the wealth obtained by an algorithm assuming transaction costs
given by Equation (4.4).
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Note that by using Equation (4.4) we have that the BCRP pays zero
transaction costs, and this observation justifies further the use of the follow-
ing definitions:

Definition 4.1.1. (Regret on the costs) For the Online Portfolio Optimiza-
tion with transaction costs problem we define:

CT := γ

T∑
t=1

||xt − xt−1||1, (4.9)

as the regret on the costs paid by a learner predicting the sequence x1, . . . ,xT
of portfolio vectors.

Hence, under this model, the quantity CT can be interpreted either as
the costs paid by the learner or as the gap between the costs paid by the
learner and the best expert in the class, which is zero.

Using the previous definition we are now able to introduce the concept
of total regret.

Definition 4.1.2. (Total Regret) For the Online Portfolio Optimization
with transaction costs problem we define for an online learning algorithm A:

RCT (A) := RT (A) + CT (A), (4.10)

where RT (A) is defined as the log-loss regret introduced in Section 3.2 and
CT (A) is the regret on the costs defined in Definition 4.1.1.

We are mainly interested in algorithms that bound the total regret RCT ,
as we believe that this line of research might potentially start to close the
bridge between theory and practice in the Online Portfolio Optimization
framework.

4.2 Related Works in Online Learning and Switch-
ing Costs

Finally, it is worth noting that the problem of dealing with transaction
costs has also been tackled in sequential decision-making settings similar
to the Online Portfolio Optimization one, i.e., in the expert and bandit
learning [Li et al., 2018b, Cesa-Bianchi et al., 2013, Trovò et al., 2016] and
the Metrical Task Systems literature [Lin et al., 2012], where the notion of
regret has been extended to include the cost of changing the prediction of
the algorithm over time. These algorithms cannot be applied directly to the
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problem of Online Portfolio Optimization because their setting is notably
different. For example in [Li et al., 2018b] the authors are concerned with
Online Learning in applications where the outcomes are very predictable
(e.g., energy consumption) and hence they assume to have knowledge of the
n future outcomes. This assumption is clearly not met in general in financial
assets. On the other hand, the Multi Arm Bandit framework assumes that
the learning agent has knowledge of the loss function only for the action
taken at the previous step, and cannot compute the loss associated with
the other actions. Nonetheless, in [Ito et al., 2018] the authors suggested
that the partial observability of the Multi Armed Bandit framework could
be used to model illiquid assets such as the real estate market.
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Chapter 5

Algorithms for the Online
Portfolio Optimization
Problem

In this section we will review the state of the art algorithms for the Online
Portfolio Optimization problem and discuss their theoretical guarantees, and
how these algorithms can be generated by the theoretical framework of On-
line Learning with expert advice and Online Optimization we described in
Chapter 2.

The setting is the one described in Section 3.2.2, in particular ∆ =

∆N−1 ⊂ RN is the N -simplex, and an element xt ∈ ∆ describes the alloca-
tion over N stocks for the t-th period.

As is commonly done in the portfolio allocation literature [Agarwal et al., 2006],
we assume that the price of the assets does not change too much during two
consecutive rounds, or formally:

Assumption 1. There exist two finite constants ϵl, ϵu ∈ R+ s.t. the price
relatives yj,t ∈ [ϵl, ϵu], with 0 < ϵl ≤ ϵu < +∞, for each round t ∈ {1, . . . , T}
and each asset j ∈ {1, . . . , N}.

Notice that, under Assumption 1, it is possible to bound the L1, L2 and
the L∞ gradient of the loss as follows:

||∇ log(⟨xt,yt)⟩||1 ≤
Nϵu
ϵl

:= G1, (5.1)

||∇ log(⟨xt,yt)⟩||2 ≤
ϵu
√
N

ϵl
:= G2, (5.2)
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||∇ log(⟨xt,yt)⟩||∞ ≤
ϵu
ϵl

:= G∞. (5.3)

Since we will compare multiple algorithms, we introduce the notation
RT (A) when speaking about the regret at time T of an online learner A.
The same notation applies with the total regret RCT or the regret on the
costs CT , defined in Section 4.

5.1 Algorithm with regret bound

As already pointed out, most algorithms in the Online Portfolio Optimiza-
tion literature do not consider transaction costs and have guarantees only on
the standard regret RT . In this section we will summarize the most relevant
algorithms for the Online Portfolio Optimization problem that have been
proven to have only bounded regret RT .

5.1.1 Universal Portfolios

The Universal Portfolios (UP) [Cover and Ordentlich, 1996] algorithm has
been one of the first algorithms introduced in the framework of Online Port-
folio Optimization. The UP algorithm has the best theoretical guarantees
among the algorithms for Online Portfolio Optimization, as it can reach the
minmax value of the game between the adversarial environment and the
learning agent (Theorem 10.2 in [Cesa-Bianchi and Lugosi, 2006]).

Definition 5.1.1. (Universal Portfolios). The prediction of the UP algo-
rithm is the following:

xt+1 =

∫
∆ xWt(x)dx∫
∆Wt(x)dx

. (5.4)

Note that this algorithm is the Continuous Mixture Forecaster for exp-
concave losses, described in Section 2.3, since the logarithmic loss is exp-
concave with ν = 1, as described in the analysis of Section 3.1.1.

Hence, we have that:

RT (UP ) ≤ (N − 1) log(T + 1). (5.5)

Clearly the UP algorithm is computationally hard (the complexity is
Θ(TN )) as it involves integration over the N -simplex. Indeed, there is an
extensive research that looks into efficient implementations of the UP algo-
rithm [Kalai and Vempala, 2002].

Moreover, the update rule in Equation (5.4) can be generalized as follows:
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xt+1 =

∫
∆ xWt(x)µ(x)dx∫
∆Wt(x)µ(x)dx

, (5.6)

where µ(x) is a distribution over ∆N−1. The standard UP algorithm
is obtained by choosing µ as the uniform distribution over the probability
simplex, but there are choices of µ(x) for which we can obtain slightly better
constants for the regret bound.

5.1.2 Exponential Gradient

The Exponential Gradient (EG) algorithm is a specification of the OMD
algorithm described in Section 2.5.1, by using the Kullback–Leibler diver-

gence dψ(x,y) = KL(x,y) =
N∑
i=1

xi log(xi/yi) as the Bregman divergence,

and ηt = η as the constant sequence of learning rates. The update rule for
EG in this case becomes:

Definition 5.1.2. (Exponential Gradient). The EG algorithm is defined by
the following update rule:

xt+1 = arg inf
x∈∆N−1

{
KL(x,xt)− ηt

⟨
xt

⟨xt,yt⟩
,x− xt

⟩}
. (5.7)

The update rule in Equation (5.7) can be solved analytically [Helmbold et al., 1998],
giving the following closed update:

xi,t+1 =
xj,t exp (ηtyj,t/⟨xt,yt⟩)
N∑
j=1

xj,t exp (ηtyj,t/⟨xt,yt⟩)
, ∀i ∈ 1, . . . , N. (5.8)

This update rule is also a Weighted Average Forecaster as described
in Section 2.1.2, and, in particular, it is a special case of Exponentially
Weighted Forecaster of Definition 2.1.3. This is useful for proving the fol-
lowing theorem.

Theorem 5.1.1. (Regret Bound for the Exponential Gradient Algorithm).
The EG algorithm defined by the update rule in Equation (5.8) has the
following regret bound:

RT (EG) ≤
ϵu
ϵl

√
T logN

2
. (5.9)

Proof. We know that ψ(x) =
N∑
i=1

xi log(xi) is 1-strong convex with respect

to the L1 norm ||·||1 [Shalev-Shwartz and Singer, 2007], and so we have that
KL(x,xt) ≥ 1

2 ||x− xt||1.
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Moreover, we can bound the L1 diameter D1 of the simplex ∆N−1 as:

D1 = sup
x,y∈∆N−1

||x− y||1 ≤ 2.

Therefore, we can apply Theorem 2.5.1 with η = 1
G∞

√
2 logN
T and x1 =

(1/N, . . . , 1/N), giving as a result the thesis.

Note that one could also obtain a regret bound by using the fact that

the EG algorithm is a specialization of OMD with ψ(x) =
N∑
i=1

xi log(xi).

5.1.3 Online Newton Step

The Online Newton Step (ONS) [Hazan et al., 2007] algorithm is one of the
few algorithms, other than the UP one, that guarantees a logarithmic bound
RT (ONS) = O(log T ). The method uses second order information of the
loss function, but it can nonetheless be stated into first order method such
as OMD, as we will discuss at the end of this section.

Definition 5.1.3. (Online Newton Step). The ONS algorithm is defined by
the following update rule:

xt+1 = ΠAt
∆N−1

(
xt +

1

β
A−1
t

yt
⟨xt,yt⟩

)
, (5.10)

where
∏At

∆N−1
(·) is the non-standard projection onto the simplex ∆N−1 de-

fined as:
ΠAt

∆N−1
(x0) := arg inf

x∈∆N−1

⟨x− x0, At(x− x0)⟩, (5.11)

and the matrix At ∈ RN×N is defined as:

At =
t∑

s=1

∇ft(xt)∇ft(xt)T + ϵIN , (5.12)

where IN is the identity matrix in RN .

The idea for the ONS algorithm is originated from the concept of strong
convexity, that is defined as follows:

Definition 5.1.4. (Strong Convexity). A function f : D → R is said to be
µ-strong convex w.r.t. the norm || · || if:

f(y)− f(x) ≥ ⟨∇f(x), y − x⟩+ µ

2
||y − x||2, ∀x, y ∈ D, ∀x, y ∈ D.
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Usually there is the correspondence of convex-loss RT = O(
√
T ) and

strong-convex loss RT = O(log T ). The idea of the ONS algorithm is to
recover a weaker concept of strong convexity for exp-concave losses:
Definition 5.1.5. (Local Strong Convexity). A function f : D ⊂ RN → R
is said to be local-strong convex if ∀x ∈ D∃A ∈ RN×N such that:

f(y)− f(x) ≥ ⟨∇f(x), y − x⟩+ µ

2
||y − x||2A,

for a positive defined matrix A that defines the norm ||x||2A = ⟨x,Ax⟩.
Indeed, for any ν exp-concave function f : D → R with bounded gra-

dient, i.e., ||∇f(x)||2 ≤ G ∀x ∈ D, with D = sup
x,y∈X

||x − y||2, β =

1
2 min{ν, 1

4GD} and A = ∇f(x)∇f(x)T , we have that:

f(y)− f(x) ≥ ⟨∇f(x),y − x⟩+ β

2
||y − x||A, ∀x, y ∈ D. (5.13)

The main idea of ONS is exploiting the local-strong convexity of exp-
concave functions to recover O(log T ) regret bounds. The complete proof
can be found in [Hazan et al., 2007].

From Equation (5.13) we can see that the matrix A used by the ONS
algorithm is just a lower bound on the Hessian of the loss function. This is
also the reason why the projection onto the simplex of the ONS algorithm
is the non standard projection defined by the matrix At defined in Equation
(5.12).
Theorem 5.1.2. (Regret Bound for the Online Newton Step Algorithm).

By choosing β = α
8
√
N

in Equation (5.10), the regret bound for the ONS
algorithm becomes:

RT (ONS) ≤
10N3/2

ϵl
log

(
NT

ϵ2l

)
. (5.14)

ONS can also be seen as a specification of OMD [Luo et al., 2018] by
choosing an adaptive regularizer ψ(x) = ψt(x) = 1

2 ||x||
2
At

, where At is de-
fined as At = At−1+∇ft(xt)∇ft(xt)T for a positive defined A0. In this case
the gradient of the Fenchel conjugate becomes ∇ψ∗

t (x) = ΠAt
∆N−1

(x), defined
in Equation (5.11).

5.2 Algorithm with total regret bound

To the best of our knowledge there are only two works that bound the total
regret RCT defined in Chapter 4. We will present the works and discuss their
limitations, that we tried to solve with our approach.
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5.2.1 Online Lazy Updates

Online Lazy Updates (OLU) [Das et al., 2013] is an algorithm designed to
minimize explicitly the total regret RCT . The origin of this algorithm has
to be traced back to a generalization of the OMD algorithm discussed in
Section 2.5.1. Namely, the generalization of the OMD algorithm that we are
referring to is the Composite Objective Mirror Descent (COMID) algorithm
[Duchi et al., 2010]. The idea behind the COMID algorithm is to have a
composite loss function of the kind gt(x) = ft(x)+ r(x), then the algorithm
linearizes the first term ft(x) of the composite loss (as in OMD) but does
not linearize the second term r(x) of the composite loss gt(x). Both terms
of the loss function, ft and r, are assumed to be convex.

Definition 5.2.1. (Composite Objective Mirror Descent). The COMID
algorithm is defined with the following update equation:

xt+1 = arg inf
x∈∆M−1

{η⟨∇ft(xt),x⟩+ η r(x) + dψ(x,xt)} , (5.15)

where dψ is the Bregman divergence for a convex function ψ.

A lemma similar to Lemma 2.5.1 gives the following guarantees to the
regret of a learner using COMID:

Lemma 5.2.1. ([Duchi et al., 2010] Theorem 2.2) ∀x ∈ ∆N−1 and for a
sequence {xt}Tt=1 defined by the update rule in Equation (5.15), we have:

η
T∑
t=1

[ft(xt)−ft(x)+r(xt)−r(x)] ≤ dψ(x,xt)+ηr(x1)+
η2

2α

T∑
t=1

||∇ft(xt)||2∗,

(5.16)
where α is the parameter that ensures dψ(x,y) ≥ α

2 ||x− y||2.

This lemma implies a regret bound on RT . If we assume that the losses
ft have bounded gradient by G∗ under the norm || · ||∗, then we have that:

T∑
t=1

[ft(xt)− ft(x) + r(xt)− r(x)] ≤
1

η
dψ(x,xt) + r(x1) +

Tη

2α
G2

∗. (5.17)

Consequently, taking η = K√
T

, and assuming dψ(x,y) ≤ D ∀x,y ∈
∆N−1, and r(x1) ≤ D1, we obtain:

T∑
t=1

[ft(xt)− ft(x) + r(xt)− r(x)] ≤ KD
√
T +D1 +

√
T

2α
G2

∗. (5.18)
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The idea of OLU is to take r = rt(x) = γ||x − xt−1||1 [Das, 2014] and
ψ = ||x||22.

Definition 5.2.2. (Online Lazy Update). The OLU algorithm is defined by
the following update rule:

xt+1 = arg inf
x∈∆M−1

{
−η log(⟨x,yt⟩) + ηγ||xt − x||1 +

1

2
||x− xt||22

}
. (5.19)

Note that there are multiple definitions of the OLU algorithm, and we
reported a version in which the first term of the loss has not been linearized.
Linearization of the first term of the loss with ⟨∇ft(xt),x⟩ would result in
the same update rule and same analysis (since the loss ft is convex).

With these specifications we obtain the result from Equation (5.18):

T∑
t=1

[ft(xt)− ft(x) + γ||xt − xt−1||1 − γ||x− xt−1||1]

≤
(

1

K
+
NKϵ2u
2ϵ2l

)√
T .

(5.20)

Then, taking to the left hand side the terms γ||x − xt−1||1, and spe-
cializing ft(x) as the log-loss defined for the Online Portfolio Optimization
framework, we obtain:

RT + γ
T∑
t=1

||xt − xt−1||1 ≤
T∑
t=1

γ||x− xt−1||1 +
(

1

K
+
NKϵ2u
2ϵ2l

)√
T .

(5.21)
Now the left hand side is equivalent to our Definition 4.1.2 of total regret

RCT . Note that we do not have a sub-linear bound for the total regret yet. In
order to recover the sub-linear bound on the total regret RCT in [Das, 2014]
(Theorem 1) the authors assume γ = γ0√

T
. With this assumption we can

recover the following bound on the total regret for the OLU algorithm:

Theorem 5.2.1 (Total Regret of OLU [Das, 2014]). If Assumption 1 holds,
the OLU algorithm with η = K√

T
, ∀K ∈ R+, and γ = γ0√

T
has a total regret

of:

RCT (OLU) ≤ 2γ0
√
T +

(
1

K
+
NKϵ2u
2ϵ2l

)√
T . (5.22)

It is clear from our discussion on the model for Online Portfolio Opti-
mization with transaction costs described in Chapter 4 that γ > 0 is fixed
and independent on the time horizon T of the investment process.
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5.2.2 Implementation of Online Lazy Update

Due to the non-smooth L1 term in Equation (5.19), we need a special
optimization procedure. The authors proposed the Alternating Direction
Method of Multipliers (ADMM) scheme [Boyd et al., 2011], by decoupling
the non-smooth term ||xt − x||1 from the rest of the objective function.
Indeed, Equation (5.19) is equivalent to:

xt+1 = argmin
x∈∆,x−xt=z

{
−η log(⟨x,yt⟩) + ηγ||z||1 +

1

2
||x− xt||22

}
. (5.23)

The ADMM method is concerned with optimization problems of the kind

inf f(x) + g(z)

s.t. Ax+Bz = c
(5.24)

where x, z, c ∈ RN , and A,B ∈ RN .
Problem in Equation (5.24) has augmented Lagrangian:

Lρ(x, z,y) = f(x) + g(x) + ⟨y, Ax+Bz− c⟩+ ρ2

2
||Ax+Bz− c||22. (5.25)

Now ADMM solves the Lagrangian problem by iterating over minimiza-
tion on the primal variables and then doing a dual update (this justifies the
name alternating direction in ADMM) with the following update rules:

(xk+1, zk+1) = arg inf
x,z

Lρ(x, z,y(k))

y(k+1) = y(k) + ρ(Axk+1 +Bz(k+1) − c)
. (5.26)

If we define the residual r = Ax+Bz− c and u = 1
ρy as the scaled dual

variable, then the Lagrangian in Equation (5.25) turns into:

Lρ(x, z,u) = f(x) + g(x) +
ρ

2
||r+ u||22 −

ρ

2
||u||22. (5.27)

We can then rewrite the update Equations (5.26) as reported in Algorithm
3.

Algorithm 3 is know to converge (see [Boyd et al., 2011] Appendix A).
In order to use ADMM to solve the optimization of OLU in Equation

(5.19), we have do define the elements in the ADMM algorithm at each time
t as:
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Algorithm 3 Alternating Direction Method of Multipliers
Require: f, g, A,B, c,x0, z0,u0, ρ

1: while Stopping condition not met: do
2: Update the primal variables:

xk+1 = arg inf
x

{
f(x) +

ρ

2
||Ax(k) +Bz(k) − c+ u(k)||

}
zk+1 = arg inf

z

{
g(z) +

ρ

2
||Ax(k) +Bz(k) − c+ u(k)||

}
3: Update the dual variable:

u(k+1) = u(k) +Axk+1 +Bz(k+1) − c

4: end while
5: return xk, zk



f(x) = −η∇ft(xt)
g(z) = γη||z||1
z = x− xt

A = IN
B = −IN
c = xt

, (5.28)

and then use Algorithm 3 to solve Equation (5.19).

5.3 Heuristic Algorithms without Regret Bound

There are also heuristic algorithms designed to exploit some known phe-
nomena in markets. Among these heuristic algorithms we can find Anti-
cor [Borodin et al., 2004], PAMR [Li et al., 2012] and OLMAR [Li et al., 2015],
which in some cases outperform the algorithms described above in terms of
empirical performance.

Anticor (Anti Correlation) assumes a mean reversion principle and trans-
fers wealth from the stock who experienced highest increase in the past to
the one that experienced the least. PAMR (Passive Aggressive Mean Re-
version) exploits the mean reversion principle assumed for the stocks and
designed a loss function that is zero for small returns of the market and high
for large returns. Clearly, in a mean reverting market, minimizing such loss
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is equivalent to maximize the wealth. This is done by a Passive Aggres-
sive Online Learning approach [Crammer et al., 2006]. Similarly OLMAR
(Online Moving Average Reversion) exploits a multi-period mean reversion
principle to a moving average level. Remarkably, none of the above algo-
rithms provide guarantees on the regret, and so we will avoid an in-depth
description of their mechanism, since we are currently concerned with al-
gorithms that provide theoretical guarantees without assumptions on the
distribution of the marker vectors.
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Chapter 6

Online Gradient Descent for
Online Portfolio
Optimization with
Transaction Costs

The Online Gradient Descent (OGD) algorithm is one of the first algorithms
developed in the field of Online Convex Optimization [Zinkevich, 2003]. We
extended its use to the Online Portfolio Optimization framework and proved
that the OGD algorithm has many interesting properties, among which a
bound on the total regret RCT .

Algorithm 4 OGD in Online Portfolio Optimization with Transaction
Costs
Require: learning rate sequence {η1, . . . , ηT }

1: Set x1 ← 1
N 1

2: for t ∈ {1, . . . , T} do
3: zt+1 ← xt + ηt

yt

⟨yt,xt⟩
4: Select Portfolio xt+1 = Π∆N−1

(zt)

5: Observe yt+1 from the market
6: Get wealth log(⟨yt+1,xt+1⟩)− γ||xt+1 − xt||1
7: end for
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6.1 Using OGD for Portfolio Optimization

This section describes the adaptation of the OGD algorithm to the Online
Portfolio Optimization framework and provides a theoretical analysis of such
an algorithm in the presence of transaction costs.

6.1.1 The OGD Algorithm

The definition of the OGD update rule for a generic convex loss function
ft(xt) over a generic convex set D is the following:

xt+1 = ΠD (xt − ηt∇ft(xt)) , (6.1)

where ΠD(y) := arg inf
x∈D

||y − x||22 is the standard projection of the vector

y onto D, ηt > 0 is the learning rate at round t. This procedure is also
reported in Figure 6.1, where the point xt is updated to zt, by the gradient
of the loss, and then it gets projected onto the convex set D into the point
xt.

D

b

η∇ft(xt)
xt

ztb

xt+1

Figure 6.1: Online Gradient Descent.

Recalling that in the Online Portfolio Optimization framework the func-
tion to be minimized is the loss ft(xt) = − log(⟨xt,yt⟩), the portfolio update
rule becomes:

xt+1 = Π∆N−1

(
xt + ηt

yt
⟨xt,yt⟩

)
. (6.2)

The pseudo-code corresponding to the OGD algorithm is presented in Algo-
rithm 4. The algorithm starts with a portfolio x1 equally allocated among
the N available assets (Line 1). Then, for each round t ∈ {1, . . . , T}
it rebalances the assets according to Equation (6.2), observes the market
outcomes yt+1 (Line 3), and gains a per-round wealth, including costs, of
log(⟨yt+1,xt+1⟩)− γ||xt+1−xt||1 (Line 6). The projection in Line 4, can be

58



implemented very efficiently as we will discuss in Section 6.3 with Algorithm
5.

Note that OGD is an instance of the OMD algorithm described in Sec-
tion 2.5.1, with ψ(x) = ||x||22. Indeed the general update Equation (6.1) is
equivalent to:

xt+1 = arg inf
x∈∆

||x− xt + ηt∇ft(xt)||22 (6.3)

= arg inf
x∈∆

(
||x− xt||22 + η2t ||∇ft(xt)||22 + 2⟨∇ft(xt),x− xt⟩

)
. (6.4)

Moreover the following lemma is paramount to prove the regret bound
for OGD. This lemma establishes the non expansiveness of the projection
operator Π∆:

Lemma 6.1.1. (Generalized Pythagorean Theorem.) Let D ∈ RN a convex
set, and A ∈ RN×N a semi-positive defined matrix. Then, for any point
x ∈ RN , we have:

⟨x− x0, A(x− x0)⟩ ≥ ⟨z− x0, A(z− x0)⟩, ∀x0 ∈ D, (6.5)

where z = ΠAD(x) = arg inf
y∈D

⟨y − x, A(y − x)⟩.

In the case of A = IN×N , being IN×N the identity matrix in RN×N , we
have that ||ΠD(x)− x0||22 ≤ ||x− x0||22. Hence, the operator Π∆ : RN → D
is non-expansive. In Figure 6.2 we show that the projection ΠAD(x) is the
closest (in terms of the metric induced by the matrix A) to any point x0 ∈ D.

b

b

b

x

ΠAD(x)

x0

D

Figure 6.2: Generalized Pythagorean Theorem.
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6.2 Regret Analysis

In this section we will analyze both the regret and the total regret of the
OGD algorithm in Online Portfolio Optimization. Indeed, we are able to
recover sub-linear regret in both cases, without any assumption on the trans-
action rate parameter.

6.2.1 OGD Regret on the Wealth

We recall that, for a generic convex function ft(x), it has been shown
in [Belmega et al., 2018] that RT (OGD) = O(

√
T ) if the loss function ft(x)

is convex, as in our case. We follow the proof in [Zinkevich, 2003] to derive
the specific result for the regret of OGD in the Online Portfolio Optimization
framework:

Theorem 6.2.1. If Assumption 1 holds, the OGD algorithm with ηt = K√
t
,

∀K ∈ R+ has a regret on the wealth of:

RT (OGD) ≤
(

1

K
+
NKϵ2u
ϵ2l

)√
T .

Proof. Notice that the L2 diameter of a simplex ∆N−1 is D =
√
2 for any

N and that, under Assumption 1, it is possible to bound the gradient of the
loss as follows:

||∇ log(⟨xt,yt⟩)||2 ≤
ϵu
√
N

ϵl
:= G2. (6.6)

Given the update in Equation (6.2) for the OGD algorithm, we have:

||xt+1 − x∗||22 = ||Π∆N−1
(xt + ηt∇ log(⟨xt,yt⟩))− x∗||22

≤||x∗ − xt||22 − 2ηt⟨xt − x∗,∇ log(⟨xt,yt⟩)⟩
+ η2t ||∇ log(⟨xt,yt⟩)||22, (6.7)

where we used the fact that the projection operator Π∆N−1
(·) is non-expansive

(Lemma 6.1.1). Rearranging the terms, we have:

⟨x∗ − xt,∇ log(⟨xt,yt⟩)⟩ ≤
1

2ηt

(
||xt − x∗||22 − ||xt+1 − x∗||22

)
+
ηt
2
G2

2.

Using the above inequality and the convexity of the logarithm, we bound

60



the regret RT (OGD) as follows:

RT (ODG) =

T∑
t=1

log(⟨x∗,yt⟩)− log(⟨xt,yt⟩)

≤
T∑
t=1

⟨x∗ − xt,∇ log(⟨xt,yt⟩)⟩

≤
T∑
t=1

[
1

2ηt

(
||xt − x∗||22 − ||xt+1 − x∗||22

)
+
ηt
2
G2

2

]

≤ 1

2η1
||x∗ − x1||22 −

1

2ηT
||x∗ − xT+1||22 +

T∑
t=2

1

2ηt
||xt − x∗||22

−
T−1∑
t=1

1

2ηt
||xt+1 − x∗||22 +

T∑
t=1

ηt
2
G2

2

≤ D2

2η1
+
D2

2

T∑
t=2

(
1

ηt
− 1

ηt−1

)
+

T∑
t=1

ηtG
2
2

2

=
D2

2ηT
+

T∑
t=1

ηtG
2
2

2
≤
(
D2

2K
+G2

2K

)√
T ,

where, for the last inequality, we used that
∑T

t=1
1√
t
≤ 2
√
T . By plugging

the expression of the L2 diameter D and the L2 bound on the gradient G2,
we conclude the proof.

6.2.2 OGD Regret on the Costs

In the following theorem, using techniques similar to the ones in [Andrew et al., 2013],
we bound the transaction costs CT (OGD) of the OGD algorithm in the On-
line Portfolio Optimization framework:

Theorem 6.2.2. If Assumption 1 holds, the OGD algorithm with ηt = K√
t
,

∀K ∈ R+ has a regret on the costs of:

CT (OGD) ≤ 2NKγϵu
ϵl

√
T .

Proof. Recall that, in this setting, the regret on the costs CT (OGD) is
equivalent to the sum of the costs incurred by the OGD algorithm, since the
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best CRP incurs in no costs. Therefore, we have:

CT (OGD) = γ
T−1∑
t=1

||xt+1 − xt||1 (6.8)

≤ γ
T−1∑
t=1

√
N ||xt+1 − xt||2 (6.9)

≤ γ
T−1∑
t=1

√
N ||ηt∇ log(⟨xt,yt⟩)||2 (6.10)

≤ γ
√
NG2

T−1∑
t=1

ηt (6.11)

≤ 2γG2K
√
NT, (6.12)

where we used the equivalence of the norms in RN for the inequality in
Equation (6.9), the fact that the projection operator Π∆(·) is non-expansive
and the update formula for OGD to derive Equation (6.10), and the fact
that the gradient of the loss is bounded by G2 in Equation (6.11). Finally,
we conclude the proof by substituting the bound on the gradient in Equa-
tion (6.6) into Equation (6.12).

6.2.3 Total Regret

Summarizing the bounds derived in Theorems 6.2.1 and 6.2.2, we obtain the
following:

Theorem 6.2.3. If Assumption 1 holds, the OGD algorithm with ηt = K√
t
,

∀K ∈ R+ has a total regret of:

RCT (OGD) ≤
[
1

K
+
NKϵu
ϵl

(
ϵu
ϵl

+ 2γ

)]√
T .

If the investment horizon T is known in advance, the learning rate ηt
can be tuned to obtain a slightly better upper bound on the total regret:

Corollary 6.2.1. If Assumption 1 holds, the OGD algorithm with ηt = K√
T

,
∀K ∈ R+ has a total regret of:

RCT (OGD) ≤
(

1

K
+
NKϵ2u
2ϵ2l

)√
T + 2γ

ϵu
ϵl

√
T . (6.13)

Finally, knowing the value of ϵl and ϵu in Assumption 1, the parameter K
can be chosen to minimize the bound in Theorem 6.2.3, giving the following
result:
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Corollary 6.2.2. If Assumption 1 holds, the OGD algorithm with ηt =

1√
t

[
Nϵu
ϵl

(
ϵu
ϵl

+ 2γ
)]− 1

2 has a total regret of:

RCT (OGD) ≤ 2

√
Nϵu
ϵl

(
ϵu
ϵl

+ 2γ

)
T .

In what follows, we compare the theoretical guarantees of OGD in terms
of computational complexity and regret with OLU and UCP, the only algo-
rithms that provide upper bounds to total regret.

6.3 Implementation of the Online Gradient De-
scent Algorithm

The OGD algorithm can be implemented very efficiently, indeed all compu-
tations of Algorithm 4 are trivial and lightweight, except for the projection
operator Π∆N−1

onto the simplex ∆N−1. In [Duchi et al., 2008] the authors
propose the following algorithm to solve the following optimization problem:

Π∆N−1
(x0) = arg inf

x∈∆N−1

1

2
||x− x0||22. (6.14)

Algorithm 5 Near Linear Time Projection Onto The Probability Simplex
Require: z ∈ RN

1: Sort z into z1 ≥ z2 ≥ . . . ≥ zN

2: Set K ← max

{
j = 1, . . . , N

∣∣∣∣zj − 1
j

(
j∑

k=1

zk − 1

)
> 0

}
3: Set θ = 1

K

(
K∑
i=1

zi − 1

)
4: Set wi ← (zi − 1)+, ∀i ∈ 1, . . . , N

5: return w = (w1, . . . , wN )

The procedure is near linear since in Line 1 we need to sort the input
vector, that is known to be of O(N logN) complexity. Hence, Algorithm
5 is a Θ(N logN) procedure of projecting a RN vector onto the probabil-
ity simplex ∆N−1. Note that Algorithm 5 can be refined to be of Θ(N)

complexity if we avoid to sort the vector, that can be done as shown in
[Duchi et al., 2008]. This shows that OGD is able to handle data streams
that come at higher frequencies, e.g., the ones required by some specific
financial applications [Abernethy and Kale, 2013].
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6.4 Discussion on the Regret Bound

In this section we will discuss some advantages of the OGD algorithm among
the algorithms that bound the total regret RCT defined in Definition 4.1.2.

As discussed in Section 5.2.1, the OLU algorithm is the only algorithm
competing with OGD in terms of theoretical guarantees on the total regret.

Assuming to know a priori the time horizon T and under Assumption 1,
the authors of OLU provided the following guarantee on the total regret
described in Theorem 5.2.1. Notice that the OLU algorithm achieves a
regret of O(

√
T ) only if the transaction rate γ ∝ 1√

T
, i.e., if the transaction

rate decreases over time. We observe that the first term of the r.h.s. of
Equation (5.22) is the same as the corresponding one in Equation (6.13):
these terms correspond to the regret RT . Instead, if we focus on the second
term of the r.h.s. of Equation (5.22) and we assume that γ is constant
over the investment horizon T , we would have a total regret of the order
of O(T ) for the OLU algorithm. This does not happen to OGD, which,
even under these assumptions, would provide a total regret of the order
of O(

√
T ). Conversely, if we assume γ ∝ 1√

T
as in [Das et al., 2013], the

last term in Equation (6.13) would have constant regret on the costs, i.e.,
CT (OGD) ≤ 2ϵuNK

ϵl
= O(1), compared to an order of O(

√
T ) obtained by

OLU, which makes OGD strictly better then OLU in terms of total regret
bound.
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Chapter 7

Numerical Experiments

In this section we analyze the empirical performance of OGD, comparing it
with the algorithm from the Online Portfolio Optimization literature. We
compare it to OLU [Das et al., 2013], since it provides guarantees on total
regret as described in Section 5.2.1. We also consider UP [Cover and Ordentlich, 1996]
and ONS [Agarwal et al., 2006]. We selected UP (Section 5.1.1) because it
has the best theoretical guarantees on the regret RT , and ONS (Section
5.1.3) because it has good theoretical guarantees on the regret RT .1 ONS is
also known to provide good empirical results on the regret RT when analyzed
empirically.

Datasets
Name Market Year Span Days Assets

NYSE(O) New York Stock Exchange 1962 - 1984 5651 36
TSE Toronto Stock Exchange 1994 - 1998 1258 88

SP500 Standard Poor’s 500 1998 - 2003 1276 25

Table 7.1: Description of the main datasets used commonly in the Online Portfolio
Optimization literature.

Table 7.1 summarizes the datasets used for the experiments. All the
assets in the datasets have been anonymized to avoid common bias toward
specific assets. To compare the algorithms with previous results in the field
we selected the NYSE(O) dataset, a well-known benchmark that has been
previously used in several portfolio optimization research papers, and no-
tably, in all the works which propose the algorithms considered here as
baselines. The NYSE(O) dataset spans 22 years (between 1962 and 1984),

1 We used a naïve version of UP since the classic implementation required an unfeasible
amount of time for the experiments. Instead, we discretized the simplex with 104 points
and used the corresponding CRPs to approximate the integrals used by UP.
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for a total investment horizon of T = 5651 days (≈ 250 working days per
year). In each experiment, we sampled a set of N = 5 assets randomly
chosen among the 36 and ran the algorithms for the entire investment hori-
zon T . We ran 100 independent experiments for the NYSE(O) dataset, 50
and 50 for the TSE and SP500 dataset respectively, and, then, we aver-
aged the results. The choice of doing a larger number of experiments is
to stress the point that we are not concerned with the selection of assets
to invest in, but only with the behavior of the algorithms with respect to
transaction costs. We considered different values for the transaction rate
γ ∈ {0, 0.0005, 0.001, 0.003, 0.006, 0.01, 0.02, 0.04}, including large values of
γ to simulate highly illiquid markets.

To set the parameter K of OGD we used the learning rate ηt prescribed
by Theorem 6.2.3, with ϵl = 0.8 and ϵu = 1.2, for which Assumption 1 holds
in the dataset NYSE(O). For ONS, we used η = 0, β = 1, δ = 1/8, as
suggested by the authors in [Agarwal et al., 2006]. We used α = 0.12 and
η = 1.3 for OLU, which is the best combination of parameters according
to [Das et al., 2013]. All algorithms have been initialized with x1 =

1
N 1.

We used the Annual Percentage Yield (APY) as a metric, assuming 250

working days per year and one update per day. Formally, the APY for the
wealth W is defined as:

A(W ) =W 250/T − 1,

where W ∈ {WC
T , W̃T } which are defined in Equation (4.8) and (4.3) re-

spectively. 95% confidence intervals for the mean have been computed with
statistical bootstrapping and are depicted as semi-transparent areas.

7.1 Results on the NYSE(O) dataset

Figure 7.1 shows the evolution of the total wealth WC
t (A) of the different

algorithms over the investment horizon in two specific runs, one without any
cost (γ = 0) (Figure 7.1a), and one with a transaction rate of γ = 0.001

(Figure 7.1b). In these two specific runs, OGD obtains a cumulative wealth
larger than any other algorithm analyzed, suggesting that, in some settings,
it might provide the best performance. The results with γ = 0 suggest that
OGD might be a viable solution even in the absence of costs.

In Figure 7.2 we present the results for the average APY, with the cor-
responding confidence intervals. In particular, with no transaction costs
(γ = 0), all the analyzed algorithms give similar results. In this setting,
ONS is the algorithm with the largest APY. As we increase the transaction
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Figure 7.1: Wealth WC
T (A) on two runs of the NYSE(O) for γ = 0 (a), and γ = 0.001

(b).
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Figure 7.2: Average APY computed on the wealth WC
T assuming the costs given by

CT (A) for the NYSE(O) dataset.

rate γ, OGD gets the largest APY, while OLU and ONS seem to be penal-
ized by large transaction costs. Conversely, the fact that the APY decreases
from ≈ 0.15 to ≈ 0.14 suggests that OGD is effective at minimizing the costs
CT (A).

Figure 7.3 considers the wealth W̃T (A), i.e., the one defined in Equa-
tion (4.3). We notice that, comparing these results with the ones obtained
using WC

T (Figure 7.2), we have a smaller APY when γ ≫ 0. This suggests
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Figure 7.3: Average APY computed on the wealth W̃T (A) assuming the costs given by
Equation (4.2), for the NYSE(O) dataset.
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Figure 7.4: Average costs CT (A) with γ = 1, for the NYSE(O) dataset.

that, when applied to real-world cases, they might under-perform w.r.t. what
is expected from the theoretical results. In terms of W̃T (A), UP seems to
perform slightly better than OGD, but the difference is not statistically sig-
nificant for γ < 0.04. ONS and OLU provide negative profits (A(W̃T ) < 0)
for large values of transaction costs, e.g., for γ = 0.04 the APY becomes
negative and, thus, the accumulated wealth is completely canceled out by
the transaction costs. From Figure 7.3 we would be inclined to choose ONS
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for γ ≤ 0.003, and OGD for γ ≥ 0.003.
Figure 7.4 shows the averaged cost per round Ct(A)/t and the corre-

sponding confidence intervals, with γ = 1 (the value of γ has been chosen
to easily interpret how the regret on the costs behaves over time). OGD is
the algorithm that provides the lowest cost per round, which strengthens
the claim of this work that OGD keeps transaction costs low. The costs
per round for OLU are approximately linear, as expected from the theory
(see Section 5.2.1). Conversely, the results for ONS, while not having any
theoretical guarantee on CT (A)/T , suggest that it has a cost per round of
order O(

√
T ), but with a larger constant than OGD. Finally, the costs of

UP decrease slower than those of ONS and OGD.

7.1.1 Results on the TSE and SP500 dataset
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Figure 7.5: Average APY computed on the wealth WC
T assuming the costs given by

CT (A) for the TSE dataset.

In Figure 7.5 and 7.6 we present the results obtained on the TSE and
SP500 datasets respectively, using the same approach we used for the NYSE(O)
dataset. The results obtained are in line with the one presented with the
NYSE(O) dataset, i.e., the OGD algorithm performs better than the others
for transaction rate greater than 0.003, while it presents similar performance,
in terms of APY, for smaller values of the transaction rate. Notably, in the
SP500 dataset, ONS outperforms the other algorithms for small transaction
rate γ, while in the TSE dataset, it is out-performed by the other algorithms,
even for small values of the transaction rate γ.
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Figure 7.6: Average APY computed on the wealth WC
T assuming the costs given by

CT (A) for the SP500 dataset.

7.2 Results on the Custom Dataset

For the experiments carried out in this section, we collected a new dataset
to test further the algorithms.

Custom Data (03/29/2019 - 03/29/2020)
Ticker Description Market Category
SPY SPDR S&P 500 ETF Trust (SPY) Equity

BNDX Vanguard Bond Index Fund ETF Fixed Income
DAX Global X DAX Germany ETF Equity
VIX CBOE Volatility Index Derivatives

Table 7.2: Detailed description of the custom dataset.

Table 7.2 gives a description of the tailored dataset. We used data for
one year (from April 2019 to April 2020), including the period of December
2019 - March 2020 that shows a global decline in the global financial markets.
We included two Equity indices (SPY and DAX) as a proxy for the USA
markets and European markets, then we included a Bond index (BNDX)
and a volatility index (VIX) that simulate a Variance Swap, that allows
investor to profit from volatility in the markets [Bossu, 2006].

We are well aware that a back-testing procedure not rigid enough can
lead to over-fitting and biased results, which is an important problem in the
financial literature ([Bailey et al., 2016], [Harvey and Liu, 2015]). Nonethe-
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less, we found interesting to present these results, as these not only confirm
the findings of the previous section, but also give insight on the inner work-
ings of the algorithms.

To set the parameters of ONS and OLU for the experiments performed
on this dataset we used as a validation the first 1/4 of the dataset (cor-
responding approximately to the first 3 months of the dataset), performed
grid search algorithm and picked the parameters with the highest wealth
WT on the validation set. The results of the grid search are presented in
Figure 7.7. For the OGD algorithm we set the parameter K to minimize
the bound according to Theorem 6.2.3.
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Figure 7.7: Grid search for the parameters of ONS (a) and OLU (b) on the validation
set of the custom dataset.

Figure 7.8 shows the results for the algorithms run on the custom dataset.
The transaction rate was set to γ = 0.001 for all the algorithms. The reason
why UP and OGD outperform the other two algorithms in this dataset,
is the fact that they kept a larger portion of their allocation in the VIX
index throughout the investment period. This lead to larger gains in the
last two months. On the other hand, ONS and OLU had nearly none of
the VIX index in their allocations towards the end of the period, because
it was performing poorly during the previous months. This lead to great
losses in the last months of the trading period, due to the decrease of the
other assets.

In Figure 7.9 we show the dependency of the wealth achieved by algo-
rithms to the transaction rate parameter γ for the run on this dataset. We
see how OGD shows a near constant wealth in relation to the transaction
costs parameter γ, while UP only has a mild decline in wealth for large value
of γ. Conversely, we see how ONS and OLU have a rapid decline in wealth
w.r.t. the transaction rate γ.
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This strengthens the findings we provided on the other datasets, i.e.,
that when large transaction costs are present OGD outperforms the other
online algorithms.

0 50 100 150 200 250
t

1.0

1.2

1.4

1.6

1.8

W
t

UP
OGD
ONS
OLU

Figure 7.8: Wealth W̃t achieved on the custom dataset described in Table 7.2, with
γ = 0.001.
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Chapter 8

Conclusions

Automated trading systems are becoming increasingly more central in the
modern financial landscape [Treleaven et al., 2013]. We explored an orthog-
onal approach to classical portfolio optimization methods that relies on con-
cept of game theory and information theory. Since the most important
properties of these methods are their strong theoretical guarantees on the
wealth achieved by the algorithms, we extended the theoretical framework
to include transaction costs and to recover the analytical guarantees under
this, more realistic, framework.

Indeed, the focus of this thesis is to bound analytically transaction costs
in the Online Portfolio Optimization problem. We achieved this result by
adapting, for the first time, to this context an algorithm from the field of
Online Convex Optimization: Online Gradient Descent. At first, we showed
that OGD has a total regret of the order of O(

√
T ), and a per-step com-

putational complexity of Θ(N). Then we showed that the other algorithm
available in literature that provides theoretical guarantees in this context
relies on unrealistic assumptions (OLU). Finally, we compared the empirical
performance of OGD with state-of-the-art algorithms on real datasets, and
provided insights into the settings in which it is likely to provide a larger
cumulative wealth.

8.1 Future Developments

Future developments of this work are twofold. Firstly we think that it
would be possible to extend the transaction cost bound to a wider class
of algorithms, e.g., the ones derived from Online Mirror Descent (OMD),
in particular by exploiting the mirror interpretation of the OMD algorithm
that relies on the concept of Fenchel conjugate, described in Section 2.5.2.
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On the other hand, even if the OGD already keeps the transaction costs at
a pace, a possible extension would be to include costs as an explicit term
in the objective function, i.e., to develop cost-aware algorithms which still
provide strong theoretical results.

Moreover, it would be interesting to extend the transaction costs model
to include other kind of impediments encountered in a practical trading
environment, such as liquidity constraints and market impact.
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