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Abstract

The PuRSUE (Planner for RobotS in Uncontrollable Environments) Frame-
work’s purpose is to make the programming and reprogramming of robot
applications easier. It also aims to deal with the programming of complex
real scenarios, like the ones that can include multiple mobile robots or the
presence of not controllable agents. Furthermore, another goal of the PuR-
SUE framework is to enlarge the number of people able to get in touch with
robotic applications even without having the specific background.
A new high-level language PuRSUE-ML (Modelling Language), with the aim
to model complexity, was developed in the previous work [1,2]. The PuRSUE
framework, through several translations, can automatically synthesize the
control strategy and generate the code ready to be deployed into one robot.
All the formal rules that define the new language and the parsing phase are
well explained in the previous work [1, 2]. Moreover, the PuRSUE framework
already presents features that make it suitable in some simple scenarios, for
example, a situation in which a single mobile robot is acting in a well-known
environment.
To know where to start the improvement, a complete analysis of the existing
code was done. The main processes are presented in Appendix B.
An improvement of the framework was studied and tested. This improvement
aims to make the framework suitable for distributed applications. Simple
scenarios with at least two robots are taken into consideration. In simulations,
these robots can be coordinate without knowing the complete control strategy.
So, the main idea behind the partition of the control strategy and the algo-
rithms used to make it feasible will be shown. The main results obtained from
the tests are also reported to show the actual behavior once the distributed
control strategy is applied. In the end, a more complex scenario was taken
into account to show the robots’ behavior in presence of a non-controllable
agent.
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Sommario

Il framework PuRSUE (Planner for RobotS in Uncontrollable Environments)
si propone di semplificare la programmazione e riprogrammazione di robot.
Cerca inoltre di ampliare il numero di persone che possono affrontare la sintesi
di strategie di controllo, anche per scenari complessi. Questi scenari possono
comprendere la presenza di più robot, che necessitano di coordinamento, e
di agenti non controllabili. Nonostante sia un framework ancora in via di
sviluppo presenta notevoli potenzialità che una volta implementate potreb-
bero portare ad un utilizzo di robot in nuovi scenari.
Un nuovo linguaggio ad alto livello PuRSUE-ML (Modelling Language), si
propone di a modellare tali complessità, é stato sviluppato nel lavoro di tesi
precedente [1,2]. Il framework, a seguito di varie traduzioni, riesce a generare
automaticamente il codice di controllo da implementare sul robot. Nella tesi
su cui si basa questo lavoro [1, 2], sono specificate tutte le regole su cui il
linguaggio è modellato e su cui si basano le traduzioni successive. Sono state
implementate alcune funzioni che lo rendono già utilizzabile per semplici
applicazioni che presentano un singolo robot controllabile che agisce in un
ambiente conosciuto.
Per poter sviluppare ulteriormente questo framework si è resa necessaria
un’analisi completa ed approfondita del codice esistente, riportata nell’ Ap-
pendice B. Un miglioramento del framework é stato studiato. Questo miglio-
ramento mira a renderlo distribuito e quindi implementabile su un sistema che
presenta più agenti controllabili. Permetterà quindi il coordinamento di più
robot mobili rendendoli capaci di perseguire un obbiettivo comune nonostante
ogni robot abbia una conoscenza parziale della strategia di controllo.
L’idea alla base della separazione della strategia del controllo e tutti gli
algoritmi volti a realizzare tale separazione sono presentati. Sono riportati
inoltre i principali risultati ottenuti dai test fatti. Questi test mostrano il
comportamento simulato in scenari che presentano più di un robot control-
labile, con complessità crescente. Infine è stato preso in considerazione uno
scenario più complesso che presenta anche un agente non controllabile.
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Chapter 1

Introduction

Since the second industrial revolution, people began to use machinery to
accomplish heavy and repetitive tasks. These machines became gradually
more and more complex and sophisticated. With the addition of electronics
and software a new category was born: robots. Robots can handle hetero-
geneous jobs but,with them, new challenges appeared. One of the most
complicated challenges to deal with turned out to be how to handle situations
with uncontrollable and unpredictable agents or time dependent actions.
We could better describe these general subjects as an increasing need to solve
coordination and communication issues among robots. Other difficulties can
emerge, for example, from the complexity of writing programs in low-level
languages. Although powerful, these languages has some drawbacks: they
are error-drown, make the robots not re-programmable, and always need a
well-trained programmer.
Some examples of these possible scenarios could be the so called Drug De-
livery Problem1, the Catch the Thief Problem, or any other application of
mobile robots in a protected environment (as in an airport). In this kind of
situations, it could be necessary to have a complete and real-time knowledge
of the entire system state and an overall control strategy.
People with less defined tasks have the possibility of being uncontrollable
agents in already present real circumstances. One typical real-life scenario
could be found in the residences for elderly, with robots acting as automated
medical carts carrying drugs. Driven by a nurse, who knows the medical as-
pects but does not need to know any informatics nor programming languages.
At the airport, for luggage transportation, logistic and transport coordina-
tion. A reprogrammable robot provides advantages in terms of flexibility and

1For more information see Appendix B
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reduced total cost: it could complete different duties under different needs or
different time frames. A robot working on internal luggage delivery could be
temporary engaged in porterage service for travelers during rush hours, or
dedicated to people with disabilities.
As an agricultural application: a robots’ distributed swarm which seeds or
plows, even in many different and distant fields. Actually, all the scenarios
presenting swarm structure are well suited to have reprogrammable features.
An ecological application: an EcoRobot [1, 2] able to dispose of the waste in
the right containers, managing priorities and different kinds of trash.
In all these cases, we could count on real economic advantages. Furthermore,
it is a reprogrammable solution and it is also able to manage priorities, e.g.,
if an automated medical cart is carrying drugs following a routine schedule,
it can suddenly leave its mission to provide help if an emergency occurs.
To create these no longer classic applications, robots have to be reprogrammed
by non-programming experts, as employees, nurses, doctors, patients, farmers,
etc. In this vision, being able to describe high-level scenarios becomes helpful.
A previous work [1, 2], on which the current thesis is based on, has designed
a Domain Specific Language, named Pursue-ML [1, 2], to specifically address
these problems and to describe complex scenarios in an easy way. Together
with the language, a framework has been created as well, to read and translate
these high-level descriptions into programs.
To better understand the context in which this work was carried out, let
us briefly introduce the PuRSUE Framework. The framework translates
scenarios described in the PuRSUE-ML language into the Timed Game
Automata formalism. This operation is possible through the use of already
existing technologies and, through the use of UPPAAL-TiGA [25] [24] [23],
the Framework is able to synthesize a control strategy, or plan, containing
the descriptions of the desired behavior of every controllable agent. The
complete control strategy is able to take into account also the decisions taken
by uncontrollable agents and, so, the behavior of the controllable one changes
accordingly. To make the strategy feasible, the intermediate .txt file, output
coming from TiGA and representing the control strategy has to be translated
again, this time in python, to make it actually runnable on the scenario’s
robots. The final output, i.e. the executable code, has then to be deployed
on each robot, to allow it to communicate both with its lower-level control
system, and with other robots.
In this work, we initially deeply examined the PuRSUE Framework in all its
main aspects, as well as the logic on which it is based, all the parts that make
it work, and how it works, to build a basis for subsequent improvements (the
results of this analysis are included in Appendix B).
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The two major limitations of the current version of the framework that
emerged from this study are the sending of a priori commands and the
generation of a single, centralized controller. The goal of this work is to
overcome these limitations. In particular, the designed and implemented
changes aim to improve the PuRSUE framework and make it able to handle
also distributed system scenarios.
We focus in particular on making the framework more efficient and more
intuitive. Even though the PuRSUE framework is at its very beginning, it
shows a great potential and it could even change some aspects of our future
lives. In this work, we will take into account only mobile robot scenarios, even
if PuRSUE could be used for other types of situations as well. To illustrate
the context in which this work was developed, next we present a significant
scenario.

The Catch the Thief Scenario

The Catch the Thief scenario is one of the most meaningful examples of a
possible application of the PuRSUE Framework.
Figure 1.1 reports a simplified map of a generic floor of a building. In this

Figure 1.1: Catch the Thief simple map

situation, there is an uncontrollable agent, the thief (we can think of a real
human being), who wants to escape from the aforementioned floor, and a
policeBot that has to catch him.
To accomplish its task, the policeBot has to immobilize the thief with a given
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Figure 1.2: Catch the Thief complex map

tool. This operation will be modeled as a collaborative event in PuRSUE-
ML2.
The policeBot, to operate, has to know the environment in which it moves.
For this purpose, we can assume that the policeBot is provided with a map
and/or perception and mapping algorithms. The low-level robot software
(e.g., for controlling the speed of the robot) is not significant for the framework
and we assume the robots will be provided with all the required low-level
control functions.
In PuRSUE-ML the environment is described through the Points Of Interest
(POI) and the distances between them and, through this information, the
framework can synthesize the control strategy which will bring the policeBot
to catch the thief, if possible. In this case, the environment is a floor where
we identify four POIs labeled as "a", "b", "c", "d". PuRSUE-ML is also
able to model other variables, such as the speed of the two agents or the
unfeasible robot movements.
This framework is able to describe and solve many variations of this simple
situation as well. Consider, for example, Figure 1.2 where the environment is
more complex and more policeBots are present.
It is also possible to consider the complete reverse situation, where the Bot

2For more information see [1, 2].
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is the thief and policemen are real people.

Structure of the thesis

The thesis is structured as follows:
Chapter 2 summarizes the state of the art of literature most closely relayed
to the present work, and gives a brief description of the main tools used for
developing and test our improvements.
Chapter 3 provides some details of the PuRSUE framework developed in [1,2],
i.e. the work on which this thesis is based.
Chapter 4 presents the main upgrades introduced in the PuRSUE Framework
to make it distributed and more efficient.
Chapter 5 evaluates the effectiveness of the introduced modifications through
experiments on four scenarios of increasing complexity, and also on a simple
Catch the Thief scenario.
Chapter 6 concludes with a summary of the main results obtained and a
discussion of the main limits that emerged from the experiments, and it
proposes some future works.
The appendices provide a brief user-guide of the PuRSUE framework and an
exhaustive description of the code developed in [1, 2].
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Chapter 2

Background

This section treats two main topics. In the first part, we present the state
of the art of some relevant issues for this work, in particular, the literature
related to the creation of plans through Timed Game Automata formalism
and the code generation starting from formal models. In addition, we present
the technical tools and the technologies used to achieve the robots Run-Time
infrastructure, in particular Ros and Docker (and Uppaal TiGA).

2.1 State of the art

Here a brief description of the state of the art related to the code generation
from a Timed Game Automata (TGA) formalism is presented.
The research starts with [11], where a "semidecision procedure for synthesizing
controllers for systems modelled as linear hybrid automata" is discussed. This
procedure is implemented and tested. The control problem is seen as a two-
person game, in order to win the plant, for its continuous variables, is allowed
to make uncontrollable discrete jumps or just follow the flow. Definitions,
theorems, lemmas, and proofs are provided, together with the definition of the
control problem. The supervisor control theory is extended and the algorithm
for discrete event system is generalized for a fully observable systems. For
systems with partial observability, the controller may be not found even if it
exists. A sufficient condition that affirms the requirements for an LHA to be
control-divergent is given, but this condition is not necessary.
The aim of [8] is to describe how to find the behavior that satisfies specific
properties. It is added the possible choice, for the automata, between tak-
ing an action or just leave the time pass. The basic system’s algorithm is
extended with the quantitative timing information and also the game theory
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is added to the TA formalism with the propose to find a winning strategy.
The definitions of Timed Automata, winning strategy, and safety are given in
order to define these entities. In the beginning, only the controller synthesis
for Automata is taken into consideration, together with the algorithm used
to find it. Then the results are expanded to considering the Timed Automata.
In the end, a run is defined as the sequence of joint steps. Together with this
definition theorems and corollaries are announced and proofs are presented.
In [4] it is introduced the characteristic of Dense Real-Time into a supervisor
control. It provides two main results, the "condition on the existence of
a controller" and the statement that the problem of the synthesis of the
supervisor in Timed Automata has exponential complexity.
This kind of complexity can generate problems for Timed Automata in a
target platform with restricted memory. So, in [10], it is exposed how to
generate code in a restricted memory condition. The timing specifications are
translated into a compilable C-code. The workflow is based on UPPAAL [25]
and presents two different types of synchronization through two different
types of channels. In the end, the results are compared with a traditional
thread-based implementation.
In [6] the problem of the controller synthesis for Metric Temporal Logic is
faced. Metric Temporal Logic is a Linear Temporal Logic with a timed exten-
sion, and [6] asserts that their controller synthesis is undecidable. To avoid
this problem it describes how to translate the MTL into a non-deterministic
Timed Büchi Automata passing through a Transition-based Timed Büchi
Automata and using an over and under-approximations of this last one.
A strategy to synthesize a decentralized control for a discrete-event system is
described in [3], with a focus on the possibility to present a priority structure.
To do that, the transitions related to an automaton can be dependent on
other systems. The overall system time is the same for every automaton in
order to maintain synchronism.
Referring to the "Model Interpreter For Timed Automata" document [9],
the model is directly executed without passing through a model-to-code
translation. The model interpreter can be used to model and verify real-time
systems, making the model verifiable and executable. While the code genera-
tion can present problems, the document explains how a virtual machine can
read and run the model avoiding such issues. The transitions are classified
in different types and the two main phases of the interpreter are described.
These two phases are the "Executable model generation" and the "Model
Execution". All the used algorithms are presented and tested.
Close work to PuRSUE is found in [5], where a network of interacting au-
tomata for model multi-robotic vehicles is described and the motion planning
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problems are solved at a high-level. Different approaches are suggested and
threaded Petri nets are used to simulate the concurrent robot behavior. The
hypothesis on the robot was that they have the feedback controllers already
implemented. The overall output is a sequence of control locations, and
the Computational Tree Logic (CTL) formalism is interpreted by the local
trajectories generator. The model, through synchronization channels, is
able to consider the environment, the robot, and the control. Anyway, for
exemplification, it is assumed that the robots can move only on a Cartesian
grid, and clocks are used to represent the motion time. All the proposed
properties are verified with UPPAAL.
Another interesting framework is presented in [7], the "framework for the
synthesis of robust and optimal energy-aware controllers". Here is defined
the Energy Timed Automata (ETA), on which the control problem is based,
with the adding of the timing constraints and the variable energy rates to the
Automata definition. The propose is to present an optimization on solving
the identification of the minimal upper bound. Theorems are enunciated and
some examples are presented to prove the improvement. Then also the En-
ergy Timed Automata with the addiction of uncertainties is considered. The
solution of this last further complexity is provided through the translation of
the ETA into a first-order linear arithmetic expression that is then simplified
with a quantifier eliminator and formula simplifier.
The [12] begins with a comparison, where are reported some of the limits
related to the programming languages, the Petri Nets and the temporal logic.
Therefore, a framework based on the Time Transition Model (TTM) and
Real-Time Temporal Logic (RTTL) is presented. The features of the TTM
and RTTL are exposed and it is verified that the generated controller, form
the framework, satisfies the required specification. The semantics is defined
and all the necessary definitions are provided together with examples. The
parallel composition of TTMs is discussed and, at the and, the framework’s
problems are displayed together with its good qualities. One of the most
meaningful aspects is that this framework can give an expression of qualitative
and quantitative properties and model the complex features of discrete event
systems.

A fast overview was made also on the following topics, to have a more
complete.
The article [16] shows the main aspects of a multi-robot system: the model on
which their behavior is based (biological inspirations), the communication, the
internal architecture, the algorithms of localization, mapping and exploration,
the object transport and manipulation and the motion coordination.
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Distributed intelligence was treated in [14], where is shown how it can be
applied on a multi-robot system through three different paradigms: the
bio-inspired paradigm, the organizational and social paradigm, taking into
account some variability, e.g. the robot can be similar or specialized in some
specific functions.
As a communication system, the use of the neural network is theorized in [13].
An infrastructure Genom3 [15, 17, 18], integrated with the Bip engine, can
manage all the execution and the synchronization of the inner robot functions.
In the future, can be developed an interface able to allow the communi-
cation between the PuRSUE framework and Genom3This can be possible
because Genom3 takes as input, the command addressed to the robot, and,
through the fact that is middleware independent, is able to work with Ros.
The [15,17,18] explains also how the automata are used to follow the evolution
of the robot situation.

2.2 Used Tools and Framework

The most important technical tools and the technologies used to achieve the
robots Run-Time infrastructure are here shortly introduced.

2.2.1 Uppaal-TiGA

The University of Uppsala (Sweden) and the University of Aalborg (Denmark)
cooperate to develop the Uppaal integrated tool environment. It aims to
help in the management of a timed automata’s network.These automata,
that model real-time systems, are submitted to validation and verification
processes [25].
The Uppaal integrated tool environment was upgraded with the TiGA ex-
tension in order to operate also on Timed Game Automata. An efficient
on-the-fly algorithm was added for solving games. A solution can be found
under the conditions of the satisfaction of reachability and safety proper-
ties. [23].
This tool is the basement of the framework. The scenario is, indeed, translate
into a Timed-Game-Automata to be processed from Uppaal-TiGA which
gives, as output, the complete control strategy. In addition, the satisfaction
of reachability and safety properties is really important otherwise, the control
strategy does not exist and the PuRSUE framework becomes worthless.
The version of the executable code can vary with the release, if problems in
the parsing phase arise, please check if a little change in the java code or in
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the grammar’s file1 is needed.

2.2.2 Ros

Ros, the acronym of Robot Operating System, is maybe one of the most
famous open-source middleware for robot application [28]. It is provided with
the implementation of commonly-used functionality, with tools and libraries
that can manage low-level tasks and also the communication across multiple
devices [29].
In the PuRSUE Framework, the Ros middleware is widely used, especially
in the Run-Time phase. It can put in communication all the agents acting,
both in the base framework and in the distributed proposal. Lots of tutorials
and documentation are available, the official one is [29].

2.2.3 Docker

Docker is the last tool used, but not for importance.
The main function of the Docker tool is to make a container, a simple isolate
part of the code. The containers can be seen as a lighter version of virtual
machines, they are based on the host operating system and, with the host, can
share only the OS with fewer additions. Once you operate inside a container,
aside from the OS, just the files inside a linked folder can be used or the
Dockers Images code as well. The Dockers Images provide a code package
over the given OS, in this case, we use the image of Ros-melodic [33].

1Generally needs a change from a space to a tab in a "when "condition in the UP2CO.g4
file (the grammar of the controller’s translation)
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Chapter 3

PuRSUE Background

In this chapter the structure of the PuRSUE Framework developed in [1] is
presented.
As anticipated, to achieve the purposes of this work the first thing was to fully
understand the functioning of the code generation of the current PuRSUE
Framework. We did a detailed reverse engineering of the framework both to
build a basis for its future development and to highlight the points on which
we will intervene to apply the improvements announced in the Introduction 1.
The macro operation is here explained, further details are given in Appendix
B.

This framework aims to convert a complex situation described in a high-level
language into a usable code that can be deployed on a robot to achieve the
mission. All the formal rules are well described in the previous thesis [1, 2].
The PuRSUE (Planner for RobotS in Uncontrollable Environments) frame-
work is developed with the purpose to make the synthesis of the controller
code easy and automatic to allow anyone to develop a robotic application
without getting in touch with the difficulties of coding at a deep level.
The framework allows us to model a wide range of scenarios, it can support
Robotic Applications with Uncontrollable Agent(RAUA) and applications
that require real-time control. The most interesting use of PuRSUE is on
modeling scenarios that involve a multi-mobile-robot system in presence of
one or more uncontrollable agents.
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Figure 3.1: Basic Idea scheme

3.1 Overview

The flow of the transformation of information is well exemplified in Figure3.1
taken from [1].
Everything begins with the PuRSUE Modelling Language (PuRSUE-ML), a
Domain Specific Language in which the scenario can be modeled. The file
written in PuRSUE-ML is then passed into a compiler that translates it into
a Time Game Automata (TGA). The rules of this translation are well defined
in the previous thesis [1, 2] and the result is a TGA that completely models
the scenario saving it into two files: one with extension .xml that contain all
the features of the TGA and another one with extension .q where is saved
the goal that the controllable agent(s) has(have) to reach.
To synthesise the control strategy the UPPAAL-TiGA tool is used, having as
input the complete TGA. As output UPPAALL-TiGA gives a file containing
all the instruction that the controllable agents have to follow to achieve
the goal. This file is written in an unusual computer language, so another
translation is needed to have a complete usable code. So the framework
parses the previous file with extension .xml and the last generated file with
extension .txt to have a python written code.
To be more precise, from the file with extension .xml is generated a so-
called Observer.py; the Observer is in charged to keep marked the overall
state of the system. From the file with extension .txt is generated the
Controller.py; the Controller, once it knows the overall update system
state, can identify the correct action that has to be taken and notified it to
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Figure 3.2: Code flow scheme

the robot. All these passages can be seen in Figure 3.2, taken from [1,2], where
is well highlighted the bifurcation of the parsing operation that converge at
the end of the main_pc-side. In Figure 3.2 the main_pc-side is shown as
the last operation but is the program that coordinates all the translation
processes.
Once the Observer.py and the Controller.py were obtained, they are sent
to a completely different context. Now the generated code is part of a complex
ROS environment that it is able to consider all the agents and the actions
that they can perform and also all the event that can happen. Despite it
is not largely represented in the Figure 3.2, the ROS environment phase is
important because is where it is seen the real contribution of the framework
(the robot moves!).
To avoid confusion between the three main phases, from now on, they are
indicated with: Design-Time, Rest2Ros and Run-Time respectively.

3.2 PuRSUE Implementation

The separation of the three phases is also reflected in the code’s folders
organization. Once the framework is downloaded it presents two main folders
that separate the Design-Time code from the Run-Time code, while Rest2Ros
has a mechanism that makes its code dislocated.
In Figure 3.3 is shown the separation between the three phases applied to
the scheme of the code flow. Before going into a deeper description of the
Framework, a schematic summary is given:
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Figure 3.3: How the Code Flow is split in the three main phases

• Design-Time: The light blue rectangular, in this phase all the trans-
lations take parts, as described before. The input is the PuRSUE-ML
written file (.pur) and the outputs are the Controller and the Observer
written in python.

• Rest2Ros: The brown rectangular, is composed of handwritten func-
tions [39] [40] that allow the communication between the Design-Time
and the Run-Time. It takes the generated Controller.py and the
Observer.py and sends them in the correct folder inside the robot’s
software.

• Run-Time: The blue square, once the Controller.py and the Observer.py
are obtained and correctly placed, a prepared Ros environment is ready
to run. In this way, the Observer_node knows whatever is happening
and the Controller_node can give the exact command to the robot. It
is assumed that the robot already has an internal code that allows itself
to complete the task.

In the following three sections is given a little more detailed description, for
deeper information see Appendix B.

3.2.1 Design_Time

Inside the Design-Time folder are present some subfolders, as shown in Figure
3.4, that completely reflects the parsing stages. Even if the number of the
folders can mislead, only the first four folders contain the code used for the
translation. The fifth and sixth ones contain particular files to develop other
structures, for this reason, these folders are left aside and briefly described
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Figure 3.4: Design-Time Subfolders

in Section B.5, in the Appendix B. In the end, the seventh folder is again
relevant for the design phase and will be analyzed. This last one is the result
of the previous four and the real one to be used for the parsing. Actually, the
folders from 1 to 4 are there to be written and tested, but to be able to work
their code has to be compressed and added into CompletePackage. For more
information on how use it see Appendix A. As said in the above paragraph,
here from the file written in PuRSUE-ML are generated the Controller.py
and the Observer.py. Each folder is in charge of one translation and is
developed separately for interacting only once in the CompletePackage.
Each subfolder has a complex structure since tools as Xtext [26, 27], Maven

Figure 3.5: The Design-Time translation flow with the respective fold number

[19, 20] and Antlr [21, 22] are used. These tools generate files for inner use
and testing.
The first folder is the most articulate, but beside it, all of them present more
or less the same arrangement. The code of interest is contained in the src
folder, and some other encapsulation till arrived at the Main.java.
Taking as reference the Figure 3.5 where is shown the correspondence between
the idea previously described and what is done: the created files are in the
slightly colored box, and the parsers in the white ones. The output files are
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grouped in the red rectangle.

• 1-parser DSL2UP and UPPAAL integration: Translate the PuRSUE-
ML input file into the equivalent Timed Game Automata. After that
the executable program of verifytga [23–25] is launched and the control
strategy is generated in the .txt extension.

• 2-parser2-UP2CO: the generated control strategy is translated into
a python file thought a java parser. Here are defined all the classes used
to define the Controller.py, so here it is decided how the Controller
will be.

• 3-parser UP2OB: from the file with the extension .xml who described
how the Automata is, it generates the bserver.py file. The same
strategy of 2-parser2-UP2CO is used, and here all the classes used for
the parsing are defined.

• 4-main_pc_side: here the sequence of parsing is managed. The
results are then sent to the next phases, invoking the MissionSender.

3.2.2 Rest2Ros

The Design-Time phase and the real implementation in Run-Time phase
occur in different moments and different environments. While the first one
takes place on a computer that can be anywhere, the Run-Time implementa-
tion needs to be inside a specific structure with parts on the robot and has
to perform in the real scenario. To put the generated file into the correct
folder, an ad hoc code was written [39, 40]. This code allows the sending
the part of interest via internet into the physical network, where the robot
interacts. In Figure 3.6 the part of the complete flow of information that is
treated, exactly the brown box is shown. In the blue box is represented the
real Run-Time environment described in the next paragraph. What is shown
in Figure 3.7 is a complex scheme of what this phase has to do. Starting from
the code generated in the previous section, they are sent via REST protocol,
so with the function GET and POST. This mechanism has to convert the
function of Rest into messages in ROS protocol, so in a mechanism of Publish
and Subscribe. To well understand this, it is suggested to have minimal
confidence with both, Rest and Ros.
The first agent is Mission_sender, it is invoked at the end of the Main.java
of 4-main_pc_side and it forwards the Controller.py and the Observer.py,
one at a time, to a dedicated server. The IP address and the port are spec-
ified with the invocation of the method. Once arrived on the server, the
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Figure 3.6: Communication flow scheme

mission will found the Communication_manager working on the given
port. The Communication_manager is the second agent, converts the ob-
tained information from the Http protocol to a message that will be published
on a topic, following the Ros rules. As the last step, the Pursue_reader
reads the messages published form the Communication_manager and places
them into the correct folder. To do that, three Ros topics are defined: two
on which the Communication_manager is subscribed (mission_action and
mission_location) and one on which the Communication_manager can
publish, local_mission.

3.2.3 Run_Time

In Figure 3.8 the Run-Time scheme is shown, it is composed of only one box
because it strongly depends on the situation. In this section the main agents
and the main structure, to make the description more general as possible, are
presented. In Figure 3.9, from [1], the architecture of the Run-Time phase
is represented. It takes place into the Ros workspace and uses the main
Ros tools for delivering messages. There are four main actors and four main
communication channels.
The PuRSUE_UI is used to notified external events and can publish on the
topic pursue_event.
The Observer_node, based on the Observer.py, keeps updated the system
state and the internal clocks. To do that, it listens on the pursue/events
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Figure 3.7: Rest2Ros scheme

Figure 3.8: Run-Time scheme

topic, where the Controller_node and the PuRSUE_UI are publishing. The
Observer_node can also publish on pursue\ system_state.
The third agent is the Controller_node, based on Controller.py an others
files. It is in charge to select the correct command and notify it to the robot.
The Controller_node reads from pursue\ system_state and publishes on
move_base_simple\goal, pursue\action and pursue\events.
The last agent is the robot itself, it can read the command from move_base_
simple\goal and pursue\action and execute command forwarded on them.
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Figure 3.9: Run-Time Ros scheme

Complex case: Controller_node

The Controller_node is one of the main agents of the Run-Time phase and,
for sure, is the most complex. As the main part derived from the control
strategy generated at Design-Time, some functions are not performed directly
from the Controller.py code. For this reason, the structure reported in
Figure 3.10, from [1] was implemented. The Controller.py file can read the

Figure 3.10: Controller_node’s composition

messages provided by the Observer_node, but relies on five other files to
select and forward the correct command.
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In pursue_library.py the functions used to compute the optimal waiting
time are contained.
The duty to select the correct topic, on which forwarding, is committed to
the Executor.py.
To send correctly the messages other three files are created, each one
can publish on a specific topic: move_command_sender.py on move_base_
simple\goal, action_sender.py on pursue\action and transition_sender
on pursue\events.

Run-Time interactions

It is shown how the actions take place. Once the agents are correctly placed
and started, they began to work. In Figure 3.11 is represented the Run-Time
sequence diagram between them, taken from [1]. The PURSUE_UI (the

Figure 3.11: Run-Time sequence diagram

Interface) launches the start signal, in this way the Controller_node and the
Observer_node are activated. This action is shown in the Figure 3.11 inside
the red box.
After that, as shown in the brown box, the Observer_node computes and
publishes the system state initial conditions. The initial conditions are seen
from both, the PURSUE_UI and the Controller_node.
Once the Controller_node has received the information, it begins the compu-
tation of the corresponding command related to the current system’s state.
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After it has found it, the Controller_node computes the optimal waiting
time and waits for it. Before sending the corresponding command, the Con-
troller_node asks the Observer_node to republish the updated system state
(Blue box).
The Observer_node re-publishes it and if the system state is not changed
the Controller_node sends the command to the robot through the specific
topic and on pursue\events (Black box).
The robot will execute the movement or the action, while the Observer_node
will update the system state. The updated data will be published, and the
Controller_node will begin the new research for the next instruction.
As an example, in Figure 3.12 is reported the complete Run-Time Ros
structure of the ecoBot problem solved in [1].

Figure 3.12: Run-Time Ros scheme for the EcoBot scenario

3.3 Considerations

The PuRSUE Framework already implements the features for a single robot
application and it is already tested with the use of TurtleBot [36]. This robot
provides free software for the low-level robot control (as speed, path planning,
obstacle avoidance, and so on), acting on the EcoBot scenario.
The Figure 3.13 shows the UML scheme related to the current composition of
the Run-Time phase. Each component is associated with a class, the scheme
also reports the main relationships between the classes themselves and expands
the composition of the more complex ones. Anyway, the framework presents
two important limitations.
The first one is that the control strategy, and so the Controller_node, provides
also the information of the end of a movement or an action. While this
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Figure 3.13: UML class diagram depicting the core elements of PuRSUE

information is important to compute a correct and feasible control strategy,
once in the real scenario it can becomes harmful. That is because they lead
the Observer_node to make the system evolve even if in the real situation
the robots can present delays and problems to accomplish their tasks.
The other one is that it provides the structure for a single robot system, while
it can be potentially used in a multi-robot system with distributed structure.
The next chapter shows how these limitations can be overcome.
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Chapter 4

Contribution of the thesis

In this section we describe the main idea to make PuRSUE framework suitable
for distributed applications and to make robot’s actions and movements not
decided a priori. In this way, we can coordinate more robots to pursue a
common goal and the Observer will compute a more realistic system state.
Another goal of this work is to make the code more efficient, to simplify the
execution and to speed up the command sending.

Hypothesis We made these hypotheses in order to be able to focus on
more specific scenarios.
The first assumption is that we have only mobile robots that are endowed
with computers, sensors, all the software for low-level controls (as localization,
mapping, path trajectory, collision avoidance algorithms) and everything they
need to complete their tasks. We also assumed that the robots can interface
to the Ros middleware, so they can recognize the given instruction and to
execute it.
The second assumption is that the environment where the robots act is limited
and presents the necessary sensors that allow the Observer to be aware of all
the system conditions.
We started to modify the Run-Time phase in order to overcome the limits
highlighted with the previous work (A priori decision and single generated
controller). To do this, we decoupled the design of the Run-Time components
from the translation phase in order to allow a simpler analysis of the individual
phases. To avoid a number of unnecessary and complex processes, we choose
to start identify the characteristics that needed to be modified respect to
the components already present. Otherwise, after completing the translation
phase, the obtained result may be not valid and would force us to start over
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again. With this choice, once identified the structure of the components,
the translation is focused and the subsequent tests will be more reliable. It
means that the development of parsing and deployment are neglected in this
work and will be done manually.

4.1 Idea

We aim to divide the controllers to spread the computation of commands
across all acting robots. So, we decide to move from a structure where there
is a single controller to one where there are many controllers. The goal is
to reach a configuration like the one shown in Figure 4.1, where, compared
with interaction scheme described in Chapter 3 and exemplified in Figure 3.9,
each robot has its own controller.
Therefore, we start analyzing the example of previous work to understand

Figure 4.1: Distributed scheme

how the components behave. In order to see how the framework works with
two robots, we have simplified the scenario and add the second agent (scenario
1, described in Chapter 5). This allowed us to have a simpler cases of if
structure. These if structures are a set of instructions that associate the
system state with the correct action that has to be taken. Generally, the
controller, as it is created 1, has a significant number of if structures, but

1See Appendix B for more information.
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the condition of having fewer commands has made it more readable. In this
condition, the problem of the a priori decisions in the control strategy has
become evident.
The a priori decisions introduce a problem because they notify the end of
actions or movements regardless of what the real conditions are. For example,
if it is the robot that reports that it has finished doing something, there is
a very high probability that it has actually finished and so this information
leads to having the correct representation of the real scenario. Instead, if
this information is provided by a component, e.g. the controller, but a priori
without checking the real situation but based only on the time passing, it can
lead to having the saved system state that does not correspond to the real
one. This mismatch can lead the controller (and therefore the robot) to take
completely wrong or misleading decisions that could be counterproductive, if
not harmful.
We, decided to eliminate these a priori decisions. To realistically provide
the information previously provided by these a priori decisions, we modified
the interface by inserting the appropriate commands while maintaining the
original structure.
We split the description of the possible strategy of the two robots into two
separate files by eliminating all the a priori conditions and maintaining the
conditions related to only one robot. Changes have also been made to other
components (described in the Implementation paragraph) which have led
to better efficiency of the entire system. Validation tests on this scenario
have been successful. We also verified that communication between the
various agents was possible even in an isolated context simulated through
the containers in Docker.
After some tests with increasing complexity, but which did not present any
uncontrollable agents, we tried to simulate a simple Catch the Thief case.
This scenario sees the presence of 2 bots and the thief (uncontrolled agent).
All the tested scenarios are reported in Chapter 5. This scenario, that presents
an uncontrollable agent, implies a higher degree of the overall complexity, due
to the wider range of action possibility introduced with that kind of agent.
This higher complexity is reflected also on the structure of the generated
control strategy. This because, not only the number of possible policeBot
decisions is greater, as are greater their ramifications, but especially because
they are more influenced by external events. Actually, the bot decisions
depend also on the timing of the events, e.g. if the thief changes direction
then the policeBot could also change direction and follow a new tactic (which,
however, is already planned in the control strategy). These new features have
led us to separate the commands more carefully and forced us to find a new
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condition able to separate the controllers in a general way.
Another feature that this scenario brought to light was the presence of an
inner variable in the mechanism, this variable can not be deleted since it
takes into account how close the system is to the goal. While in the first cases,
those that presented only controllable agents, this variable involved little
disturbance, in the last scenario its presence became more massive. This fact
has forced us to no longer be able to ignore how to manage it. Solutions have
been, therefore, identified in order to be able to take this variable into account
without weighing on the overall system. The tests made on the Catch the
Thief scenario, even if using only simple actions by the uncontrolled agent,
has given encouraging results for the simulation of the bots behavior that
are able to coordinate themselves and achieve their goal.
Now we will briefly show all the changes made taking into account the

complexity introduced by the last scenario, in the next Section 4.2 these
modifications will be examined more in detail.
Figure 4.2 reproduces the UML scheme of the new agents of the PuRSUE Run-
Time environment, for a better comparison take into consideration the scheme
of the previous features shown in Figure 3.13 in Chapter 3. Even though it
does not seem to be different from the previous conception, novelties have
been introduced. For example, the executor will implement also the functions
of the Action_sender, Transition_sender and Move_command_sender. In
this way, the controller_node presents fewer files and the execution will be
more fluid. For more information on the previous formulation see Appendix
B. In Figure 4.3 is reported an expansion of the UML scheme focused on the
controller_node.
Another change is about the relation between the Observer_node and the
Controller_node. In this case, the Observer_node can be associated with
more than one Controller_node. Each Controller_node is associated with
one controllable robot 2, so a single Observer_node can manage more than
one robot.
In Figure 4.4 is reported an expansion of the UML scheme focused on the
Run-Time agent that highlights this change.
The last important improvement is that the notification of the end of an

action or a movement will be provided by the robot through its sensors and
not by the controller_node.

2To be more precise the control strategy generated designs the behavior for every
controllable agent. But each human that collaborates with the robot to pursue the goal is
considered also as a controllable agent, for example the nurse in the Drug Delivery scenario.
But it is not realistic to write down code to instruct a human being, for this reason, it was
preferred to write "robot" instead of "controllable agent".
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Figure 4.2: UML class diagram depicting the improved structure of the
PuRSUE framework

In Figure 4.5 is reported an expansion of the UML scheme focused on the
addition of the sensor’s response.

4.2 Implementation

In this section we present the artifacts that we developed to improve the
PuRSUE Run-Time environment; in particular, we present their goals and we
highlight their differences with their previous version. The main components
that were modified are indicated in Figure 4.2 with a darker color, they are:
the Controller.py, the Executor.py, the Observer.py and the Interface.
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Figure 4.3: Executor UML scheme

Together with them, some changes on the PuRSUE-ML file and the Ros
infrastructure are presented.

4.2.1 Input_language.pur

Even though is not necessary for the control strategy generation, this pro-
posal can be useful in the Run-Time phases. As shown in Listing 4.1, the
idea is to specify the coordinates of the point of interest directly into the
input_language.pur file (written in PuRSUE-ML).
The coordinates will have the structure of the position (space coordinates)
and orientation (unitary quaternion) as prescribed from Ros type of Pose
variables. In this way, the information will be just forwarded in the Run-Time
file without having further transformations.

1 //locations
2 poi "a" //[x, y, z, nu, ex, ey , ez],
3 poi "b" //[x, y, z, nu, ex, ey , ez],
4 poi "c" //[x, y, z, nu, ex, ey , ez],

Listing 4.1: Input_language modified

This additional information will be completely ignored for the generation of
the Observer.py or of the Controller.py, but it will be added in another
parser to generate the Executor.py specific for the considered situation. So
the interpreters already existing will not need any changes, and the control
strategy will be generated with only the information on the travel time taken
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Figure 4.4: Run-Time components UML scheme

by each agent.
At the beginning was thought to add the POI dictionary to the Controller.py
to avoid adding another parser, but it would have resulted in a reformulation
of the mechanism of encrypting the commands. Also, in vision to realize a
distributed system, the Executor.py will be maintained the same for every
Controller_node, so just scenario dependant, while the Controller.py will
be strongly scenario and robot dependant.
So, once this feature will be implemented will be the way to avoid, for the
users, to open the Executor.py and enter manually the points’ coordinates.

4.2.2 Controller.py

This is the most modified code. The main idea is to create one Controller.py
for each controllable robot. In this way many advantages can be reached, for
example, the computation for the correct action will be faster.
As first action, the Run-Time controller generated ad Design-Time was copied
for every controllable agent. In this way, the agent will be completely inde-
pendent from the others and can decide independently the action that has to
begin based on the system state.
All the generated classes, the variables and the printed messages were re-
named. This is vital, if not a completely not univocal and not understandable
situation will be generated. For a more precise definition of how the elements
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Figure 4.5: Addition of sensor’s response UML scheme

have been renamed an example will be exposed in the next Subsection 4.2.2.
Just with that procedure, the framework will be able to sustain more than
one controller_node, but it was noticed that many improvements can be
provided to make the code less redundant and, of course, to make the events
of the end of action or movement not decided a priori.
It was noticed that only the if structures with the command for the considered
robot were necessary. It means, that the robot does not need to know the
complete control strategy to well behave. The information that it needs is
just relative to the part of the actions it can perform and the system state in
which it has to perform them. All the other information is useless and so can
be omitted.

1 #state header
2 if ( self.reachObj== "unlocked" and self.bot2== "a" and self.bot3==

"a" and self.Prule1== "2" and self.Pbot3== "1" and self.Pbot2
== "1" and self.rule1== "rule10" and self.Pbot1== "2" and self.
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bot1== "b" ):
3 temps=set()
4 temp0= optimal_wait([ 1 + self.TIMEUNIT−self.Cbot3, 1 + self.

TIMEUNIT−self.Cbot2 ] , [ ] , [])
5 if (temp0 >= 0):
6 temps.add(temp0)
7 if(temps):
8 wait = min(temps)
9 self.event_flag.clear()

10 self.event_flag.wait(wait)
11 self.exegg.ping_observer()
12 if (self.reachObj== "unlocked" and self.bot2== "a" and self.bot3

== "a" and self.Prule1== "2" and self.Pbot3== "1" and self.
Pbot2== "1" and self.rule1== "rule10" and self.Pbot1== "2"
and self.bot1== "b" ):

13 if ( (1<self.Cbot3 and 1<self.Cbot2 ) ):
14 #takes in agent ID, synchronizing action (or tau), and the states or

ogirin and target of transition
15 self.exegg.exeggute("bot2","bot2_ina!", "a", "

doing_bot2_ina_in_a")
16 else:
17 self.event_flag.clear()
18 self.event_flag.wait()

Listing 4.2: "If" deleted for the first reason

This thought is translated into the deletion of all the if structures that present
commands for other robots, so not for the robot instructed by the controller.
In Listing 4.2 is shown an example of an if that will be eliminated considering
the Controller1.py, so related to a hypothetical bot1. That is because
the command is referred to a hypothetical bot2. The command, in the if
structure, is identified in the lines that begin with self.exegg.exeggute().
This function invokes the Executor.py and passes them four parameres: the
agent that has to act, the encrypt name of the action that has to be done
(the trigger), the origin and the target. For further information see Appendix
B. The main result of this operation is that the Controller1.py will be
more reactive because the system options that has to check are significantly
reduced.
Another main change provided follows from the belief that the notification
of the end of an action or a movement, the so-called a priori decisions,
has to be provided from the robot, or external sensors, and not from the
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Controller.py itself. For this reason, other if structures are deleted and the
interface was modified, to be able to reproduce these events and allows the
simulation of the entire system.

1 if ( (1<self.Cbot3 and 0<self.Creach and 9<self.Cbot1 and 1<self.Cbot2
and self.Cbot1<=10 ) ):

2 #takes in agent ID, synchronizing action (or tau), and the states or
ogirin and target of transition

3 self.exegg.exeggute("bot1", "tau", "going_b_to_a", "a")
4 else:
5 self.event_flag.clear()
6 self.event_flag.wait()

Listing 4.3: "If" deleted for the second reason

In Listing 4.3 is shown an example of the if structure that will be eliminated
for the aforementioned reason. The example refers again to a hypothetical
bot1, and the if structure presents a command of an end of a movement.
This information is contained in the value of the parameter trigger (the
third) that begins with going. The other type of commands that has to be
deleted is the one that presents the trigger parameter starting with doing.
If in the PuRSUE-ML some rules or states-and-dependencies lines appear, it
can happen that in the complete Controller.py are present some instruction
about their change of states. These instructions can not be deleted because
they keep the information on the priority of the events that have to be
performed and can be identified because are referred to an inner variable
called reachObj. Some solutions can be adopted to maintain them and split
the controller anyway: they can appear in each sub-controller, or just in one
or,otherwise, can be created a ControllerObj.py dedicated to the evolution
of these rules, state and dependencies. To make all the variables update,
it was also necessary to change the Creach variable into CreachObj in the
__init__ function.
In Figure 4.6 are summarized the main steps for the creation of the distributed
controllers. The result is a set of sub-controllers, shorter and dedicated to a
single robot. Again is important that they present a unique name otherwise
they will be confused between each other.
To create a centralized Controller.py, that not presents the feature of the
decision of the end of an action or a movement, can be just deleted the second
presented type of if structure.
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Figure 4.6: Distributed controllers algorithm

Example of a single-robot Controller.py

Here is presented a hypothetical Controller1.py, commented in the main
changes performed, in terms of names, from the generated global controller.
In Listing 4.4, are shown how the controller class has to be renamed based
on which robot refers to it. In the same way, it has to change its name also
in the main correlated function to correct invoke the run method.

1 class controller1:
2
3 def if_start(self, event_string):
4 if (event_string.data == "_start_"):
5 self.startFlag = True
6 return
7 ...
8 def __init__(self):
9 rospy.init_node(’controller1_node’)
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10
11 self.TIMEUNIT = 0.1
12 self.startFlag= False
13 self.event_flag = Event()
14 self.event_flag.clear()
15 ...
16 def print_state(self):
17 print("controller1: the system state is:")
18 print("controller1: reachObj is ",self.reachObj)
19 print("controller1: bot3 is ",self.bot3)
20 print("controller1: bot1 is ",self.bot1)
21 print("controller1: Prule1 is ",self.Prule1)
22 print("controller1: bot2 is ",self.bot2)
23 print("controller1: rule1 is ",self.rule1)
24 print("controller1: Pbot3 is ",self.Pbot3)
25 print("controller1: Pbot2 is ",self.Pbot2)
26 print("controller1: Pbot1 is ",self.Pbot1)
27 print("controller1: Cbot2 is ",self.Cbot2)
28 print("controller1: Cbot3 is ",self.Cbot3)
29 print("controller1: Cbot1 is ",self.Cbot1)
30 print("controller1: Creach is ",self.Creach)
31 ...
32
33 def main():
34 controllore = controller1()
35 controllore.run()
36 if __name__ == "__main__":
37 controllore = controller1()
38 controllore.run()

Listing 4.4: Main changes

As the first thing, the name of the class is changed. It is important to
notice that also the name of the corresponding node is changed while all the
state’s and clock’s variables remain. The fact that the variables related to
other agents are not removed is really important because the Controller.py
computes the decisions based on the complete system state. It is vital that
it has complete access to all the system variables, if not it can not be able
to enter in any if structure and so it can not find any command that has to
execute.
In the function print_state, it is useful to add which controllers are printing.

36



This function does not notify anything to any of the Ros agents, it just gives
information on the prompt to make the users updated on what is happening.
So, the adding of the information of who is writing and the fact that all the
system’s variables are printed does not affect the system’s functioning.

A complex controller’s case

In some situations, the controller can be complex and presents more commands
for a single if structure. In Listing 4.5 is shown an example taken from the
Catch the Thief original controller, in the Chaprter 5 is presented the complete
scenario.

1 if ( (0<self.Creach and 1<self.CpolBot2 and self.Cthief<9 and self.
CpolBot1<1 and self.CpolBot1<self.Cthief ) or (9<=self.Cthief and
0<self.Creach and self.CpolBot1<=10 and self.CpolBot1<=self.
CpolBot2 and self.CpolBot2− self.CpolBot1<=1 and self.Creach<=
self.CpolBot1 and self.Cthief<self.CpolBot1 ) or (1<self.CpolBot2
and 0<self.Creach and self.CpolBot1<=10 and self.CpolBot2<self.
CpolBot1 and self.Cthief<self.CpolBot1 ) or (0<self.Creach and 9<=
self.CpolBot1 and 1<self.CpolBot2 and self.CpolBot1<10 and self.
CpolBot1==self.Cthief ) or (1<=self.CpolBot1 and 1<self.CpolBot2
and 0<self.Creach and self.Cthief<9 and self.CpolBot1<=self.Cthief
and self.CpolBot2<self.Cthief ) ):

2 #takes in agent ID, synchronizing action (or tau), and the states or
ogirin and target of transition

3 self.exegg.exeggute("polBot2", "polBot2_a2b!", "a", "
going_a_to_b")

4 if ( (0<self.Creach and 1<self.CpolBot2 and 10<self.CpolBot1 and
self.CpolBot1<=11 and self.Cthief<9 and self.CpolBot2<self.
CpolBot1 ) or (0<self.Creach and 9<=self.Cthief and 10<self.
CpolBot1 and 1<self.CpolBot2 and self.CpolBot1<=11 and
self.Cthief<10 ) or (0<self.Creach and self.CpolBot1<=11 and
self.Cthief<self.CpolBot2 and self.CpolBot2− self.CpolBot1
<=−10 ) ):

5 #takes in agent ID, synchronizing action (or tau), and the states or
ogirin and target of transition

6 self.exegg.exeggute("polBot1", "tau", "going_a_to_d", "d")
7 if ( (0<self.Creach and self.CpolBot2<=1 and self.CpolBot1<self.

Cthief and self.Cthief<=self.CpolBot2 and self.Creach<=self.
Cthief ) or (0<self.Creach and self.CpolBot1<=11 and self.
Cthief<9 and self.CpolBot1<=self.CpolBot2 and self.Cthief<=
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self.CpolBot1 ) or (0<self.Creach and self.CpolBot2<=1 and
self.CpolBot2<self.CpolBot1 and self.CpolBot1− self.CpolBot2
<10 and self.Cthief<=self.CpolBot2 ) or (0<self.Creach and
self.CpolBot2<=1 and self.CpolBot1<=11 and self.CpolBot2
<=self.Cthief and self.Cthief<=self.CpolBot1 and self.
CpolBot2<self.CpolBot1 and self.Cthief− self.CpolBot2<9 ) or
(0<self.Creach and 1<=self.CpolBot1 and self.Cthief<9 and
self.Cthief<=self.CpolBot2 and self.CpolBot1<self.Cthief ) ):

8 #takes in agent ID, synchronizing action (or tau), and the states or
ogirin and target of transition

9 self.exegg.exeggute("reachObj", "tau", "initial_location", "
unlocked")

10 else:
11 self.event_flag.clear()
12 self.event_flag.wait()

Listing 4.5: Controller’s if with a complex command structure

In Listing 4.5, a complete if structure of the controller is reported, in the first
place it controls the system state and calls a function of pursue_library
to compute the optimal time to wait. After the controller had waited the
optimal time and had checked that the system state is not changed, there
are other if constructs. Here the conditions on the clocks are checked. Can
happen that with the clock conditions can change the action to send, or that
more than one action can be selected.
In this case, it was separated as the if structure was a normal one, maintaining
the complete external structure and delete just the inner if s that are not
relative to the controller in issue.
Relatively to the example, for the hypothetical controller2 the external if and
the first inner one are maintained, while the inner if of the action relative to
the controller1 is deleted because is not relative to the bot2. The command
relative to reachObj is a completely different case, every action on it depends
on the strategy it was chosen to manage that kind of command. In the
following Paragraph 4.2.2 are described the main solutions, for now just
ignore it. So in the end, in the controller2 only the first if will be present.
Tacking into consideration the hypothetical controller1, no option will remain.
That is because the first one is relative to the bot2, the second one is relative
to an end of a movement and the third one is deleted due to a design choice.
In this case, where no inner if are maintained, there is no reason to maintain
all the external if structure, so it is completely deleted.
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The reachObj agent As seen, sometimes a command is relative to the
reachObj agent. ReachObj is related to an Observer’s class that helps to
take into account the automata situation, if there is a risk to lose or if it is
close to the win. So these commands are really important for the correct
system’s behavior and they can not be deleted. But they can be managed in
more than one way:

• Present in all controllers: The commands are left everywhere they
appear. In the phase of deletion, or as a parsing choice, all the if
structure in which the reachObj commands appear they are considered
good, even if a different controller is taken into consideration. This
solution is advisable for simple scenarios.

• Present in one controller: One bot is chosen as the one that will
maintain the reachObj commands. In the phase of deletion or parsing,
the reachObj command will be treated as a command of the bot with
the exception that all the command will be maintained even the ones
that will regress the system state. So, in all the other controller these
commands will disappear. This solution is advisable for simple/medium
scenarios.

• A dedicated controller: A controller is created just to take these
commands into account. It is called controllerObj and here are
present all and only the command related to the reachObj class. In the
phase of deletion or parsing, all the commands related to the other bot
will be deleted but not the command related to a regress of the system.
This solution is advisable for middle/complex scenarios. Due to the
aim of the framework, it is the most suitable solution to be adopted
and to be taken into consideration for the writing of the controllers
parser.

4.2.3 Executor

Here the different executor code is proposed. The first main change is that it
includes all the operative functions of the Controller_node. So the changes
brought to eliminate the three files: Action_sender, Transition_sender and
Move_command_sender. In Listing 4.6 is reported the beginning of the new
executor. It does not import anymore the previous mentioned files, but the
classes are directly declared inside it.

1 class Transition_sender:
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2 def __init__(self):
3 self.pub = rospy.Publisher(’pursue/events’, String, queue_size = 10)
4 sleep(1)
5 def send_message(self, transition):
6 self.pub.publish(transition)
7
8 class Move_command_sender:
9 def __init__(self):

10 self.pub = rospy.Publisher(’move_base_simple/goal’, PoseStamped,
queue_size = 10)

11 sleep(1)
12 def send_message(self, coordinates):
13 goal = PoseStamped()
14 goal.header.frame_id = "map"
15 goal.header.stamp = rospy.Time.now()
16 goal.pose.position.x = coordinates[0]
17 goal.pose.position.y = coordinates[1]
18 goal.pose.position.z = coordinates[2]
19 goal.pose.orientation.x = coordinates[3]
20 goal.pose.orientation.y = coordinates[4]
21 goal.pose.orientation.z = coordinates[5]
22 goal.pose.orientation.w = coordinates[6]
23 self.pub.publish(goal)
24
25 class Action_sender:
26 def __init__(self):
27 self.pub = rospy.Publisher(’pursue/actions’, String, queue_size = 10)
28 sleep(1)
29 def send_message(self, action):
30 self.pub.publish(action)
31
32 class Exeggutor:
33 def __init__(self, timeunit): # dovrebbe essere parsato dalla modifica

proposta del linguaggio .pur
34
35 self.location_dictionary = {
36 "a" : [3.0, 1.54, 0.0, 0.0, 0.0, 0.67 ,0.73],
37 "b" : [−0.57, 0.62, 0.0, 0.0, 0.0, 0.71 , 0.70] ,
38 "c" : [0.47, 2.89, 0.0, 0.0, 0.0, 0.76, 0.65],
39 "d" : [−3.19, 3.58, 0.0, 0.0, 0.0, −0.04, 1.0]
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40 }
41 self.move = Move_command_sender()
42 self.act = Action_sender()
43 self.transition = Transition_sender()
44 self.TIMEUNIT = timeunit
45 ...
46
47 if (trg[0] == "unlocked"): #per gestire gli unlocked
48 trigger_cleaned = "reachObj_going_initial_location2unlocked"
49 self.transition.send_message(trigger_cleaned)
50 ...

Listing 4.6: Executor

Another change brought is the removal of two of the cases in the method
executor.run(). Since the commands of the end of a movement or an action
are removed from the Controller.py, it has no sense to leave the cases that
check for those types of commands. Instead were added new cases.
These new cases aim to manage the commands of the reachObj class. Once
the controller sends the command, it is checked if the target is one of the
possible reachObj states and, in this case, it forwards the message that makes
the transition take place. For a comparison with the previous version or just
major information, the original code is reported in Appendix B.

4.2.4 Observer

This is the agent that requires fewer changes than others. If the class
ClassreachObj is present, into its function trigger, modified the line

if (trigger in self.machine.get_triggers(self.state):

into

if (trigger in self.machine.get_triggers(self.state) or
trigger=="reachObj_going_initial_location2unlocked"):

Even if this modification is minimal, makes possible for the Observer.py to
update the class state and recognize the winning. There could be problems
also for the Clock of the ReachObj because it could have a different name in
Observer.py and Controller.py.
It was tried a solution to split also the Observer_node to seek for possible
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modularity, but it results unfeasible. The conclusion of not feasibility is not
final, but due to the complexity of the identification of irrelevant variables
present where the controllers check the system state. All the system variables,
states and clocks, are present in the if instruction and is not immediate to
understand which one is not relevant and so erasable. This is the same reason
for which in the controllers are saved the complete system state.

4.2.5 Interface

In Listing 4.7 is shown the part of the interface code modified. For a
comparison with the previous version or just major information, the original
code is reported in Appendix B.
While the same mechanism is maintained to notify the uncontrollable event
and to test the path of an enemy strategy, he main differences are introduced
to notify the events of the finish of an action or a movement. This it was
necessary to be able to test automatically the overall functioning.

1 class Stater:
2 def callback_ev(self, data): #stampa a video gli eventi −> dopo il tempo

che serve vengono pubbliati gli eventi di fine spostamento o fine
azione

3 if (data.data == "_start_"):
4 self.startTime = time()
5 if (data.data != "_ping_"):
6 print("\n\non topic events:" + data.data + " at time "+str(time()−

self.startTime))
7 if (data.data== "bot2_c2b"):
8 sleep(3)
9 print("da interfaccia: bot2 in b.")

10 self.pub.publish("bot2_going_c_to_b2b")
11 if (data.data== "doing_bot2_ina_in_a" or data.data=="bot2_ina"):
12 sleep(6)
13 print("da interfaccia: bot2 in a DONE!.")
14 self.pub.publish("bot2_inaDONE")
15 if(data.data== "bot2_inaDONE"):
16 self.pub.publish("Finish!")
17 if (data.data== "bot2_b2c"):
18 sleep(3)
19 print("da interfaccia: bot2 in c.")
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20 self.pub.publish("bot2_going_b_to_c2c")
Listing 4.7: The change of the Interface code

Inside the function callback_ev are added more if, besides the preexisting
that checks if the data are _start_ or _ping_. The added instructions check
which event has taken place and waits for the respective time. After waiting,
it will be published that the event is finished with the correct syntax3.
Once in the real scenario, this task will be absolved by the system sensor or
by the inner sensors of the robot. In this case, is necessary to have the events
notified in this way to be able to simulate. In the way it was done before are
not more possible because the commands were deleted on the controllers.

4.2.6 Ros

In Figures 4.7 4.8 and 4.9 are presented the actions to do to prepare the Ros
environment. In Chapter 5, the new infrastructure is tested using also the
Docker Tool. This tool needs to operate on different folders to be effective
and that is another reason to separate the packages correctly. To correctly
start everything, the files have to be placed into the correct folders and all
the names have to correspond. Every node has to have a specific folder
containing the respective files, to create everything without problems is
necessary to proceed with order.
As first thing, it is copied a runtime folder4 for each node and immediately
renamed it with the node’s names.
Beginning with the Interface, it is just delete everything that is not the code
of interest (the Interface file).
Passing to the Observer_node, inside its folder are deleted the folders Devel
and Build if present. This operation is necessary because these folders
contain information related to the previously created environment. So, all
the folders ad files except the src folder will disappear. Now, inside the
remained folder it is again deleted everything except the Observer_node and
the ms2_kth packages. Inside src/ pursue_observer_node/src is located
the Observer.py generated and modified.
All previously described operations are repeated also for every generated
Controller.py, but for them a further step is needed. Every folder, every
file and some variables inside the files were renamed with the name of the
current Controller. In this way, an unambiguous characteristic is given to

3The syntax is described in Appendix B, in the Executor’s description.
4With the runtime folder, it is indicated the folder that contains the Run-Time envi-

ronment. It can have a different name, but here it is used runtime for exemplification.
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Figure 4.7: Ros adaption algorithm: part 1

the system and is solved also the internal reference problem.
The Ros environment is ready to be launched.

Idea for ros: The channels related to the movement and the action that
has to be forwarded to the robot has the same name for all the robots. To
have a major level of security on what is happening in the real world, a
different name can be given to each topic of each robot. In this way, every
robot will have a dedicated topic into which publish the action and the
location that it has to do or reach. In this way, the Ros interpreter, on robot
side, will be sure to not execute a wrong command.
For the topic that interacts with the interface and the Observer, is better
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Figure 4.8: Ros adaption algorithm: part 2

that they maintain their name, or it will become complex to manage all the
possible interconnections.

4.2.7 Interactions between the Run-Time agents

In Figure 4.10 is shown the new Time Line sequence Diagram. The basic
features are similar to the previous one but, instead of only one, there are n
controller_nodes and one robots. The start signal came from the Interface.
The Observer_node gives the information on the system state to the Con-
troller_nodes, as shown in the red box. The controllers now start the
computation of the commands and the commands are forwarded and exe-
cuted by the robots. The new feature is that the finish of an action or a
movement notification is given by the Interface or by the external world. Not
through the controllers, but by the robot as shown in the blue boxes.
While the conception is closed to the single robot design, more complications
can arise due to the overlap of events and due to the more frequent update of
the system state computed by the Observer_node. This complexity, anyway,
does not depends on the distributed proposal, but on the number of the
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Figure 4.9: Ros adaption algorithm: part 3

agents.

4.3 Idea of automation

Up to this point, we have explained the changes in the code. The intention,
however, is that the code should not be generated manually but automatically
and these changes should be done, not so much in the code itself but, in
the code generation mechanism. Unfortunately, in this work, there was
no opportunity to intervene in the automatic generation of the code. In
the following section we will explain, anyway, which changes would have
been made in the main mechanisms for generating the code to obtain the
modifications done. On a technological level, the PuRSUE language is
written, translated and interpreted through parsers. These parsers have the
descriptions of the grammar and, through Design-Time phase, are able to
read the PuRSUE specifications and generate the corresponding executable
code. To modify the automatic mechanism it is necessary to intervene in
some points of the flow of translations. The proposed flow is shown in Figure
4.11 where the created files, in the slightly colored box, and the parsers, in
white, are illustrated. The output files are grouped in the red rectangle. To
have a comparison refer to Figure 3.5 in Chapter 3. The main changes are
just two:
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Figure 4.10: Time Line with more agents

• From UP2CO to UP2SUBCO: for the parser related to the con-
troller that will now generate all the distributed one. It will take as
input the plan generated by UPPAAL-TiGA, as in the previous design
choice, but will give as output the divided controllers.

• A new UP2EX: a new parser is added, even at the end of the Design-
Time mechanism. The new parser will take as input the PuRSUE-ML
file and will synthesize the Executor.

4.3.1 UP2SUBCO

For the controllers are present slightly variant solutions for writing the parser.
These solutions lead to the same result, here are presented both, a design
decision has to be done in the next step.

1. The first thing to determine are the inputs, it has to read the input.pur
or the file UPPAAL_model.xml, to know which are the controllable agents.
It also has to read the UPPAAL_plan. txt to know the overall control
strategy.
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Figure 4.11: New Desing-Time tranlation flow

So in the Main.java related to the sub-controllers will begin with the
command:

System.out.println("Parser for subcontrollers started");
CharStream in1 = fromFileName("./UPPAAL_plan.txt");

Then there will be the command:

CharStream in2 =fromFileName("./input\_language/input.pur");

or ./UPPAAL/UPPAAL_model.xml. In this way, into in1, there will be
the information of the control strategy while, in in2, there will be the
information of the controllable agents. So, this information has to be
extracted.

2. For the input UPPAAL_plan.txt is better to clear the beginning as done
in the previous parser UP2CO.

3. The second step is to take the information about the controllable agents.
At this version there are no possibilities to distinguish between a robot
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and a human allay, so the sub-controllers will be generated for both.
There will be just a problem with the deployment on the human being,
in the future can be established a way to distinguish them and the
parser will be slightly modified.

Create an array of string, where save the name of the
controllable agents.

The agents names can be composed of alphanumeric characters, so all
combinations of them are acceptable, except for \ \ which is the sign
of comments in the PuRSUE-ML. From the input.pur: the agents
are declared after the rule section, so once read the file go after the
locations, connections, events and rule. A commented line determines
the beginning of the agents’ declarations:

//agents (must specify if controllable and/or mobile,
initial location action and reactions)

Until the commented line that announces the objective declaration,
there will be listed, one each line, an agent. In the second position
there is its name and in the third is specified if it is controllable or just
mobile. So, if the third information is "controllable" the agent’s name
has to be saved into the name’s array.
From UPPAAL_model.xml: At the beginning of the file, there are decla-
rations of events, movements, actions and agents. Ignore everything
till the comment:

//agents
//nota: rule and agents can not have the same name.

In the next line there is the declaration of the clock, ignore the word
clocks and saved into the name’s array the following name, deleting the
"C" character that they present at their beginning. Go further until
the \ \.

4. Now it has to create one controller for each name present into the
name’s array. Create a folder, named sub-controllers into which the
files will be saved.
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5. Begin a "for" cycle, for every name into the name’s array the following
action will be executed.
From UPPAAL_plan.txt: can be used the classes already existing of the
UP2CO parser. The input has to be cut, all the import has to be written
in the same way, but the class name has to have the structure:

controller_NAMEBOT

The functions if_start and update_state has to be the same. Just
before the end of update_state, on the subcontroller.java (the file
where the command will be written), add the line:

builder.append("\n\t\tcontroller_NAMEBOT end update");

The function __init__ is modified in the declaration of the node, from:

builder.append("\n\t\trospy.init_node(’pursue_controller_node’)");

becomes:

builder.append("\n\t\trospy.init_node(’controller_BOTNAME_node’)");

While in the function print_state the commands:

this.allstates.forEach(st->builder.append("\n\t\tprint(\""
+st+"is\",self."+st+")"));

this.allstates.forEach(st->builder.append("\n\t\tprint(\""
+cl+"is\",self."+cl+")"));

become:

this.allstates.forEach(st->builder.append("\n\t\tprint(\""
+controller_BOTNAME+": "+st+"is\",self."+st+")"));

this.allstates.forEach(st->builder.append("\n\t\tprint(\""
+controller_BOTNAME+": "+cl+"is\",self."+cl+")"));
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The run function begins in this way, but only the condition that sat-
isfy the over mentioned condition will be reported. Seeing how the
UPPAAL_plan.txt is structured, when begin the strategy to win, or not
to lose, the command structure presents: State, "When you are in ()"
(clock condition) and then:

take transition AGENT.WHERE_IT_IS-> AGENT.WHERE_IT_HAS_TO_GO

There could be more than one of the "When you are in ()" and "take
transition", then there are the conditions of the waiting.
For every "take transition" checks if satisfies the introduced requests,
if so use the already existing class to translate it and append them
into the run function. Use the same criteria for the multiple possible
transitions. If there are transitions of another bot or of the end of
an action or an end of a movement, ignore them. These transitions
can be identified in the AGENT.WHERE_IT_HAS_TO_GO and
AGENT.WHERE_IT_IS part. If the state passes from a doing to a
DONE, or from a going to a location, the relative instruction has to be
deleted.
In the main() has to be changed the name of the controller’s class, the
command in the java class has to change from:

builder.append("def main():\n\tcontrollore=Runtime_
controler()\n\tcontrollore.run()\nif_name __name__ ==
\"__main\":\n\tcontrollore =Runtime_controller()\n\t
controllore.run()\n");

becomes:

builder.append("def main():\n\tcontrollore=controler_BOTNAME()
\n\tcontrollore.run()\nif_name __name__ ==
\"__main\":\n\tcontrollore=controller_BOTNAME()
\n\tcontrollore.run()\n");

6. The lexer, token and parser variable will be initialized and called as
in the already existing parser, and the output will be translated into a
string type.
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7. Will be created a file where save the controller through the command:

BufferWriter writer = new BufferWriter(new FileWriter
(./subcontrollers/controller_BOTNAME));

writer.write(output);
writer.close();

8. Do this operation for each agent, so for each name in the name’s array.

9. Print on the prompt the end of the parsing.

System.out.println("Parser for subcontrollers finished");

4.3.2 UP2EX

Here is described how the new parser of the Executor.py can be written.
Again it presents some slight variability that can be evaluated in the designing
phases.

1. The only input that this parser need is the input.pur file, because it
contains all the information needed. This information is the name of
the POI and the corresponding positions.
Idea for Ros: in order to implement even this feature, the input.pur
is again enough but also the information related to the controllable
agent is needed.

2. The Main.java related to the Executor parser will begin with the
command:

System.out.println("Parser for Executor started");
CharStream in1 =fromFileName("./input_language/input.pur");

3. Create a variable into which saved the POI name and coordinates, so it
has to be an array of objects with a data structure of eight fields. The
first field is where to save the name of the P.O.I, the other seven are used
to save the three spatial coordinates and the four of the orientation.
Idea for Ros: for this idea is needed to create another array of
string where to save the name of the controllable agent. Even here is
maintained the problem for the distinction between a robot agent and
a human ally.
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4. Now the POI has to be identified. Here can be present a design choice,
the advisable one is to maintain the coordinate written in the input.pur
in the format:

poi "NAME" //[x, y, z, nu, ex, ey, ez]

In this way, the information is at the beginning of the document, after
the comment "//location" and the "//" are useful to avoid changes in
the DLS2UP parser. Until the comment "//connection" save the POI
into the array of objects just created.So can be identified as, after the
name, appear the characters "//[", the information is separated by a
",", the number can present some decimal, identified with the use of
the dot (e.g. 0.20), and they end with a "]". Save into the array every
location.
Idea for Ros: for this function is also needed to take the name of the
controllable agent, it can be used the strategy already described for the
controllers.

5. Create a string variable into which compose the Executor.py as de-
scribed in Section 4.2.3. So it has to have the same functions, just the
dictionary has to be changed for different scenarios. Everything before
the position’s dictionary has to be maintained, and then the position
dictionary has to be declared. The array of the coordinates has to be
written into the dictionary with a similar structure. The file has to end
in the already defined way.

6. Create a file, into the output_files or into the previously created
sub-controllers or into a dedicated folder, a file named exeggutor.py5.
Write inside it the string variable where all the Executor code is saved,
as did for the controllers:

BufferWriter writer = new BufferWriter(new FileWriter
(./output_files/Exeggutor));

writer.write(output);
writer.close();

5it has to have this name, written wrong.
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Idea for Ros: the previous two steps have to be iterated for every con-
trollable agent, and added some changes into the Move_command_sender
and Action_sender functions. Here the hypothetical command:

builder.append("self.pub = rospy.Publisher(’move_base_simple/goal’,
PoseStamped, queue_size = 10)");

builder.append(""self.pub = rospy.Publisher(’pursue/action’,
String, queue_size = 10)");

has to be replaced by:

builder.append("self.pub = rospy.Publisher(’"+BOT_NAME+"
_move_base_simple/goal’, PoseStamped, queue_size = 10)");

builder.append(""self.pub = rospy.Publisher(’pursue/"+
BOT_NAME+"_action’,String, queue_size = 10)");

A new file has to be created for each controllable agent.

7. End the Main.java with the notification of the end of the parsing.

System.out.println("Parser for Executor finish");

Other needed adaption: If the Res2Ros structure is maintained, also
the Main.java of the folder 4, main_pc_side 6, has to be modified. All the
new files have to be sent to MissionSender. It is advisable to create a for
cycle to send all files inside the correct folders: sub-controllers and the
Executor.py (or all of them).

6For more information see Chapter 3 or Appendix B
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Chapter 5

Evaluation

This section reports on the experiments that have been carried out to validate
the modified PuRSUE Run-Time mechanisms. First, to check whether with
the proposed modifications the system still works correctly, the new proposal
was tested on the Ros middleware. So, some simple scenarios have been
written in PuRSUE-ML and have been translated according to the framework.
The Controllers.py file is manually split into many separate files, according
to the approach presented in Chapter 4. Also, the created Observer.py
is modified and the Executor.py is created with the POI of the scenario
being created and obviously with the structure that includes the functions to
forward the commands.

Ros implements a Publish-Subscribe mechanism, in this way the nodes
can exchange the messages that contains the information. Initially, all the
code was contained in the same folder and, in these conditions, the Run-Time
mechanism was launched in Ros. All the nodes (the Controller_nodes, the
Observer_node and the Interface) were able to communicate providing, in
this way, the first positive feedback.
Subsequently, we decided to separate the node’s folders in order to verify
that the communication was not conditioned by the fact that all the code
was present in the same folder. So, one folder for each node was created and
the respective workspace was built. Even in these conditions, communication
has always taken place.
To be completely sure that the positive result was not conditioned by the
sharing of the same host system, and that therefore in some way the presence
of the other nodes was recognized, we decided to try to simulate the scenarios
through Docker containers. In this way, the code was completely isolated
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from all the contents of the host, in fact, through this technology, inside the
container it was possible to interact only with the (pure) operating system
and the generated image of Ros. In order to allow the communication, all the
containers have been added to the same network using the Docker command
that allows this simulation, of the connection to a common network. In these
conditions, we try to simulate as close as possible to the real situation, where
each node will run on a different device and does not share the Operative
System or any other physical components. Even in these conditions, the nodes
have been able to communicate and this was another important feedback.
Even in a completely isolated environment, communication happens.
In the end, for each scenario are reported two tables that shown the reduc-
tion in terms of if structure and lines of code (loc) to show the advantages
introduced by the distributed infrastructure.
Not only simple scenarios were taken into account, but at last, also a more
complex one (Catch the Thief) was tested to show that the introduced
artifacts are operative also in a scenario that presents a not-controllable
agent.

PC specification The framework, with the new proposed features, was
tested on a virtual machine with Ubuntu 18.04.4 LTS, disk of 60GB, 2GB of
memory and Intel® core™ i5-7200U CPU @ 2.50GHZ.
The used Ros version: rosdistro melodic, rosversion 1.14.5.
The used Docker version: 19.03.6, build 369ce74a3c.

Ros: Using only the Ros middleware the folders containing the node can
share the same workspace. Using only the Ros middleware the folders
containing the node can share the same workspace. To separate correctly the
files related to the different nodes, a procedure is presented in Chapter 4.
The processes followed to launch the Ros environment, in all the considered
configuration, are reported in Appendix A.

Docker: For the use of Docker, a pair of attentions have to be adopted.
The image of Ros has to be created as has to be created the container for
the ros master and the network on which all the robot has to connect on.
So, the first container, on which run the Ros master, is created through the
command:

$ docker run -it --rm --net pursue --name master ros
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For all other nodes, Docker has to have the possibility to see the folder inside
which the node’s code is written. To make it possible run the command:

$ docker run -it --rm \
--net pursue \
--name controller1 \
--env ROS_HOSTNAME=controller1 \
--env ROS_MASTER_URI=http://master:11311 \
-v "/home/runtime1/:/root/.ros/"
rosrun controller1_node controller1_node

All the node has to be connected at the same network to be able to commu-
nicate.
Inside the container of the Observer_node, the system needs the installation
of the transitions package before running the node. So, the commands were
run:

$ sudo apt update
$ sudo apt antrall python-pip
$ pip install transitions

For a more detailed report on how the environment was initialized in Docker
see Appendix A.

5.1 Tested scenarios

The tested scenarios present a limited number of possible system states since
the Run-Time agents are manually modified. This restriction does not affect
the general validity of the functioning. The last tested scenario is the Catch
the Thief problem, here the agents number is small but the corresponding
number of system states possibilities increases due to the presence of an
uncontrollable agent.
In all the tested scenarios the Run-Time components are able to communicate
with each other, and the final goal was almost always reached.

5.1.1 Scenario 1

The first tested scenario presents the interaction between two robots. The
first robot is named bot1, while the second one is named bot2. Both robots
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start in the same position, POI "c", the first one ha to go in place "b" and
do an action that lasts 3 time units. In the meanwhile the bot2 has to go
in place "a", once in place "a" it waits that the bot1 has finished its action.
Only when the bot1 has finished, bot2 can do its action, that last 6 time
units and it is also the final goal. In Figure 5.1 is reported one possible (but

Figure 5.1: A possible interpretation of the case 1 scenario

unrealistic) interpretation of the first scenario. It was thought for an academic
propose, to test easily the distributed proposal of the Run-Time phase, so
the interpretation in Figure 5.1 is just to give a general representation. A
more realistic interpretation of the scenario can suppose that the robots act
on a floor with three rooms.
In Listing 5.1 is reported the corresponding PuRSUE-ML file:

1 //locations
2 poi "a" //[x, y, z, nu, ex, ey , ez],
3 poi "b" //[x, y, z, nu, ex, ey , ez],
4 poi "c" //[x, y, z, nu, ex, ey , ez],
5
6 //connections
7
8 connect a and c distance 3
9 connect c and b distance 3
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10
11 //events
12 event "bot1_inb" location b duration 3
13 event "bot2_ina" location a duration 6
14
15 //Rule
16 rule "rule1": bot1_inb before bot2_ina
17
18 //agents (must specify if controllable and/or mobile, initial location

actions
19 //and reactions)
20 agent "bot1" controllable mobile 3 location c can_do bot1_inb
21 agent "bot2" controllable mobile 3 location c can_do bot2_ina
22
23 //objectives (only action reaction within time limit for now
24 reach_objective: do bot2_ina after 0

Listing 5.1: PuRSUE-ML of the Scenario 1

All the files are modified following the instruction of the previous chapter,
and all the instructions given to run it, are reported in Appendix A.
The infrastructure was started in all the Ros folder’s configuration, with
successful results. So we proceed to test the scenario also with Docker. Again
successful results were reached.
Not only the bots are able to communicate, also the final goal is reached.

To show that with Ros everything works correctly, in Figures 5.2 and 5.3
the node’s graph is reported. Show that even with the Docker containers
the system works is more difficult, but in Figure 5.4 is reported a picture of
the prompt with an extract of the controller2_node printing its system state
and of the messages exchanged on the pursue/events topic that notified the
reaching of the goal.
In order to have an idea of the advantages of the code, Table 5.1 reports the
number of the if structure of each Controller.py and the relative percentage
referred to the general controller. With General Controller we referred to
the Controller.py generated from the previous PuRSUE framework feature.
With Centralized Controller we referred to the General Controller without
the a priori decisions, so the Controller of a centralized configuration but
that leaves the notification of the end of an action or a movement to the
external world. With the enumerate Controllers we referred to the single
Controller related to a robot, so to the distributed version without the a
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Figure 5.2: Scenario 1: Ros node’s graph

priori decisions. While in Table 5.2 is reported the number of loc (lines of
code) and their relative percentage referred to, again, the General Controller.
To correctly interpret the values reported in the Tables 5.1 and 5.2, it is

Controller Number of "if" Percentage
General Controller 17 100%
Centralized Controller 9 52,9%
Controller1 4 23,5%
Controller2 5 29,4%

Table 5.1: Scenario 1’s comparative table: if structure

important to mention that the instruction related to the variable reachObj
is reported only on the Controller2.py file. For this reason, it has one if
structure more than the Controller1.py.
It is important to take into consideration also, for the Table 5.2, that the
initialization and the beginning function are recopied more or less like the
ones presented in the General controller. For this reason, the percentage
results higher of those relatives to the if structure.

5.1.2 Scenario 2

The second scenario is a small variation form of previous one. To test that
the artifacts will work even with more than two robots, another one is added.
Being the controllers split by hand the scenario is again simple, but it presents
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Figure 5.3: Scenario 1: Ros node’s graph

Controller Number of loc Percentage
General Controller 425 100%
Centralized Controller 278 65,4%
Controller1 182 43%
Controller2 203 48%

Table 5.2: Scenario 1’s comparative table: loc

three controllable robots interacting with each other. The added robot just
follows bot2 and helps it in doing its action, so the action they performed
together was modeled as a collaborative event.
In Listing 5.2 is reported the corresponding PuRSUE-ML file:

1
2 //locations
3 poi "a" //[x, y, z, nu, ex, ey , ez],
4 poi "b" //[x, y, z, nu, ex, ey , ez],
5 poi "c" //[x, y, z, nu, ex, ey , ez],
6
7 //connections
8
9 connect a and b distance 3

10 connect a and c distance 3
11 connect c and b distance 3
12
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Figure 5.4: Scenario 1 prompt’s screens

13 //events
14 event "bot1_inb" location b duration 3
15 event "bot2_ina" collaborative location a duration 6
16
17 //Rule
18 rule "rule1": bot1_inb before bot2_ina
19
20 //agents (must specify if controllable and/or mobile,
21 //initial location actions and reactions)
22 agent "bot1" controllable mobile 3 location c can_do bot1_inb
23 agent "bot2" controllable mobile 3 location c can_do bot2_ina
24 agent "bot3" controllable mobile 3 location c reacts_to bot2_ina
25
26 //objectives (only action reaction within time limit for now
27 reach_objective: do bot2_ina after 0

Listing 5.2: PuRSUE-ML of the Scenario 2

In Ros the system responds correctly, in all the separation levels.
In order to show the communication in the Ros environment, in Figure 5.5
is reported the corresponding Ros graph. It shows the nodes’ interaction
through the topics.
In this scenario the goal is reached, it was tested also with the Docker con-
tainers. Again the results were positive both for the communication and the
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Figure 5.5: Scenario 2: Ros node’s graph

reaching of the goal.
Screens of the prompt are reported in Figure 5.6, where is shown the Con-
troller3_node printing its state and the messages exchanged on the topic
move_base_simple\goal.
In order to have feedback also on the effectiveness of the split, in the Tables

Controller Number of "if" Percentage
General Controller 20 100%
Centralized Controller 10 50%
Controller1 6 30%
Controller2 3 15%
Controller3 2 10%

Table 5.3: Scenario 2’s comparative table: if structure

5.3 and 5.4, are reported the percentage of the if structure and the loc of the
distributed controllers referred to the General Controller. In this scenario,
the commands relative to the reachObj are reported in all the controller’s
nodes.
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Figure 5.6: Scenario 2 prompt’s screens

5.1.3 Scenario 3

This is again a little complication of the first scenario. Another robot is added,
but this time the third robot acts when the first two have finished. The action
of the third robot is also the goal of the scenario. So the bot1 begins and
does its action, then the bot2 performs its action and, after them, the bot3
begins its duty. In Listing 5.3 is reported the corresponding PuRSUE-ML
file:

1 //locations
2 poi "a" //[x, y, z, nu, ex, ey , ez],
3 poi "b" //[x, y, z, nu, ex, ey , ez],
4 poi "c" //[x, y, z, nu, ex, ey , ez],
5
6 //connections
7
8 connect a and b distance 3
9 connect a and c distance 3

10 connect c and b distance 3
11
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Controller Number of loc Percentage
General Controller 494 100%
Centralized Controller 307 62,1%
Controller1 233 47%
Controller2 176 35,6%
Controller3 152 30,8%

Table 5.4: Scenario 2’s comparative table: loc

12 //events
13 event "bot1_inb" location b duration 3
14 event "bot2_ina" location a duration 3
15 event "bot3_Finish" duration 2
16
17 //Rule
18 rule "rule1": bot1_inb before bot2_ina
19 rule "rule2": bot2_ina before bot3_Finish
20
21 //agents (must specify if controllable and/or mobile,
22 initial location actions and reactions)
23 agent "bot1" controllable mobile 3 location c can_do bot1_inb
24 agent "bot2" controllable mobile 3 location c can_do bot2_ina
25 agent "bot3" controllable mobile 2 location c can_do bot3_Finish
26
27 //objectives (only action reaction within time limit for now
28 reach_objective: do bot3_Finish after 0

Listing 5.3: PuRSUE-ML of the Scenario 3

This scenario presents more difficulties to be executed from the previous two,
but the system was able to reach the complete goals. The communication
works in all levels of isolation. The ros graph is reported in order to show
it, in Figure 5.7. In Figure 5.8 are reported the screens of the prompt, one
reporting the Controller1.py printing its system state and the second one
reporting the messages exchanged on the topic /pursue_events. Again it
was tested with the Docker’s containers with positive response. Also there
the complete goal is reached. In the Tables 5.5 and 5.6 are reported the
percentage of the if structure and the number of loc referred to the General
Controller.
Also here the instruction relative to the variable reachObj is reported in all
the controller_node code.
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Figure 5.7: Scenario 3: Ros node’s graph

Controller Number of "if" Percentage
General Controller 41 100%
Centralized Controller 19 46,3%
Controller1 7 17%
Controller2 5 12,2%
Controller3 9 22%

Table 5.5: Scenario 3’s comparative table: if structure

5.1.4 Scenario 4

This scenario is the combination of the second and the third ones. There are
four agents, the first has to go from the point "c" to "b" and do an action
that takes 3 time unit. After it, the bot2 and bot3 have to go from place "c"
to place "a" and do together an action that takes 6 time unit. In the end,
the bot4 has to do the last action, the main goal, and this action’s location is
not specified. In Listing 5.4 is reported the corresponding PuRSUE-ML file:

1
2 //locations
3 poi "a" //[x, y, z, nu, ex, ey , ez],
4 poi "b" //[x, y, z, nu, ex, ey , ez],
5 poi "c" //[x, y, z, nu, ex, ey , ez],
6 //connections
7
8 connect a and b distance 3
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Figure 5.8: Scenario 3 prompt’s screens

Controller Number of loc Percentage
General Controller 862 100%
Centralized Controller 447 51,9%
Controller1 248 28,8%
Controller2 205 23,8
Controller3 285 33,1%

Table 5.6: Scenario 3’s comparative table: loc

9 connect a and c distance 3
10 connect c and b distance 3
11
12 //events
13 event "bot1_inb" location b duration 3
14 event "bot2_ina" collaborative location a duration 6
15 event "bot4_Finish" duration 2
16
17 //Rule
18 rule "rule1": bot1_inb before bot2_ina
19 rule "rule2": bot2_ina before bot4_Finish
20
21 //agents (must specify if controllable and/or mobile, initial

67



22 //location actions and reactions)
23 agent "bot1" controllable mobile 3 location c can_do bot1_inb
24 agent "bot2" controllable mobile 3 location c can_do bot2_ina
25 agent "bot3" controllable mobile 3 location c reacts_to bot2_ina
26 agent "bot4" controllable mobile 2 location c can_do bot4_Finish
27
28 //objectives (only action reaction within time limit for now
29 reach_objective: do bot4_Finish after 0

Listing 5.4: PuRSUE-ML of the Scenario 4

The Ros environment is started and, but the results were just partially
positive. The robots are able to communicate but they can accomplish just
the second action, the one done by the bot2 and bot3, but not the final one.
Due to the fact that the bot are able to communicate with each other in all

Figure 5.9: Scenario 4: Ros node’s graph

the isolation levels, the theoretical feasibility is not disproved.
In Figure 5.9 is reported the ros graph in order to give a proof of the
functioning. Also, screens of the prompt reporting the communication through
the topics are reported in Figure 5.10.
This scenario was tested also in Docker as the previous ones. As expected it
was not able to reach the final goal neither there, the same results given with
Ros were reached. This confirms that the communication takes place even in
an isolated environment. In the Tables 5.7 and 5.8 report the percentage
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Figure 5.10: Scenario 4 prompt’s screens

of the if structure and the number of loc referred to the General Controller.
The command relative to the variable reachObj is again reported in all the
controller_node.

5.1.5 Simple Catch the Thief Scenario

This scenario is far more complex than the previous ones because provides
the presence of a not controllable agent.

It aims to model the simplest catch the thief scenario1 introduced in
the Introduction 1, which sums up also the main aim of the PuRSUE frame-
work proposal: to create an environment that can coordinate more robots to
achieve a common goal in presence of uncontrollable agents.
Here two polBot are present acting on an simpliefied floor’s map, reported
in Figure 1.1, both bots start in place "a" and have to catch the thief (the
uncontrollable agent) who starts in place "c".
In Listing 5.5 is reported the corresponding PuRSUE-ML file:

1This scenario is inspired by one proposed in the previous thesis [1, 2].
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Controller Number of "if" Percentage
General Controller 25 100%
Centralized Controller 13 52%
Controller1 4 16 %
Controller2 3 12 %
Controller3 2 8%
Controller4 7 28%

Table 5.7: Scenario 4’s comparative table: if structure

Controller Number of loc Percentage
General Controller 609 100%
Centralized Controller 402 66%
Controller1 212 34,8%
Controller2 193 31,7%
Controller3 171 28,1%
Controller4 266 43,7%

Table 5.8: Scenario 4’s comparative table: loc

1 //locations
2 poi "a" //[x, y, z, nu, ex, ey , ez],
3 poi "b" //[x, y, z, nu, ex, ey , ez],
4 poi "c" //[x, y, z, nu, ex, ey , ez],
5 poi "d" //[x, y, z, nu, ex, ey , ez],
6
7 //connections
8
9 connect a and b distance 3

10 connect b and c distance 6
11 connect c and d distance 3
12 connect d and a distance 6
13
14 //events
15 event "catch" collaborative
16
17 //agents (must specify if controllable and/or mobile,
18 initial location actions and reactions)
19
20 agent "polBot1" controllable mobile 1 location a can_do catch
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Figure 5.11: Catch the Thief simple map

21 agent "polBot2" controllable mobile 1 location a can_do catch
22 agent "thief" mobile 2 location c reacts_to catch
23
24 //objectives (only action reaction within time limit for now)
25 reach_objective: do catch after 0

Listing 5.5: PuRSUE-ML of the Scenario Catch the Thief

Here some of the system specifications can be noticed, as the assumption
that the thief is slower than the robots [1].

This General Controller is really huge, in order to take into consideration
all the necessary variation a dedicated controller of the inner variable reachObj
was created. This controller is the bigger one, this is because the reachObj
variable has many options to change its state, but they can not be merged
into a more inclusive one.
The Ros environment, again, allows the communication and the goal is
reached even with a simple enemy strategy given through the Interface.
In Figure 5.12 is reported the ros graph where is shown the connections

between the acting nodes. Also, the screens of the polBots and the messages
exchanged on the topic are provided in Figure 5.13. The scenario was again
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Figure 5.12: Scenario Catch the thief: Ros node’s graph

Controller Number of "if" Percentage
General Controller 779 100%
Centralized Controller 539 69,2%
polBot1 170 21,8%
polBot2 172 22,1%
controllerReachObj 195 25%

Table 5.9: Catch the thief’s comparison table: if structure

tested with Docker and positives results were achieved, even with the simple
enemy strategy simulation. In Tables 5.92 and 5.10 are again reported the

Controller Number of loc Percentage
General Controller 14697 100%
Centralized Controller 12706 86,5%
polBot1 5652 38,5%
polBot2 5795 39,4%
controllerReachObj 7070 48,1%

Table 5.10: Catch the thief’s comparison table: loc

number of the if structure and the loc referred to the General Controller.
The first thing that is noticed is that, even if is a relatively simple case, the
presence of an uncontrollable agent makes the control strategy explode.

2A note on Table 5.9: the if structure is computed as the number of commands presented,
so the number of the exeggute invocation. This because some if structure presents a double
command that depends on the clocks conditions. If the total number would have been
computed manually, it will have presented errors due to the huge commands’ number.
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Figure 5.13: Scenario Catch the Thief prompt’s screens

The positive results obtained from this scenario are really encouraging, the
communication happen in all the isolation levels and the bots are able to
adjust their strategy according to the thief’s decisions

5.1.6 Other simulations

Other tests were made to check other properties of the Run-Time components
with the distributed configuration. A scenario with a controllable agent
without any task was designed and to see if the conditions relative to its
variables are present on the control if structure. From this simulation was
deduced that the Observer.py can not be split, for now, and that the
in the command computation phase all the system variable are taken in
consideration.

5.2 Considerations

The experiments described above highlight a few crucial aspects, which are
discussed in the following.
First of all, the code has been simplified and this has led to an improvement
in the overall efficiency of the implementation. The computation of the
commands by the controllers is faster and this has brought the possibility
to truly succeed in some scenarios that previously were not manageable.
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Scenario Centralized Time [s] Distributed Time [s]
Scenario 1 N/A 37,8622498512
Scenario 2 N/A 32,0065710515
Scenario 3 67,8209280968 48,3055899143
Scenario 4 N/A N/A
Catch the Thief 7,7709290983 6,794880867

Table 5.11: Time comparison between the centralized and distributed con-
trollers

These scenarios were not performant because they required a processing
time that went beyond the inner conditions and the possibility of responding
to the stimuli of the outside world. This long processing time, therefore,
led to the stop of the system itself. In particular the removal of the a
priori notification of the end of an action or a movement leads to a more
reasonable approach for the Run-Time implementation. At the same time, the
distributed configuration brings the system to be more reactive and robust.
Reactive because each controller_node will be faster in the computation of
the correct command and robust because, if the strategy allows it, the goal
can be reached even if one robot does not respond rightly.
In order to give a more quantifiable idea of the benefits introduced with the
new configuration, Table 5.11 reports the time that the scenarios take to reach
their goals. The times are taken from both, the centralized and distributed,
versions in order to have a comparison between them. The notification of
the end of the actions and the movements are committed to the Interface, in
order to be comparable.
Some considerations can be deduced from these values. The times of the
centralized version of the first and the second scenario are not available
because the systems present errors on the clock conditions. This means that,
for simple examples, the framework is too rigid and the centralized proposal
is too slow to satisfy its constraints. On the other hand, this highlights the
improvement of the distributed proposal.
The times on the third scenario are the most significant because both the
structures are able to reach the goal and the time related to the distributed
one is meaningful less than the one relative to the centralized version.
The data are not available for the fourth scenario, since it can’t reach its goal,
while for the simple Catch the Thief one the results confirm the improvement.
In this last scenario, the time difference between the two proposals is not as
evident as for the third scenario but, to contain some errors introduced by

74



the simulation environment, the time was taken under the hypothesis that
the thief does not move.
Only the scenario 5.1.4 was only partially successful, highlighting the limits in
the simulation environment which will need to be further investigated. In the
case of more than three robots, the scenario needs to be simulated differently,
below we will give some indications for future developments, showing the
most probable cause of the problems.
The main problem related to the simulation phase is the Interface limitation.
As the Interface is designed, it presents a big issue in the management of
multiple but equal commands. In Figure 5.14 is reported a screen of the topic

Figure 5.14: The problem of the Interface

pursue/event of one of the tested scenarios (5.1.2). It can be taken as an
example of the problem of the logic behind Interface.
For how it is designed, once a command is written, by the Executor.py,
on the topic /pursue/events (for example bot1_c2a) the interface read it
and, after the corresponding time, it publishes the event that notified the
conclusion of that event (bot1_going_c_to_a2a). Problems arise once the
controller is fast and notifies more than once the command, so the Interface
publishes all the end of the commands. This is highlighted, in the Figure
5.14, by the two lines that linked the correlated events.
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For simple scenarios, this eventuality is absorbed by its reactivity, but for
a slightly more complex one that presents many agents, this causes great
confusion and leads to missing the goal. For this reason, before going ahead
to the development of the framework, is advisable to build a better testing
and simulation system.
A limited number of robots can be taken into consideration also due to the
complex computation on the translation phase. It was noticed that, if the
number of controllable agents is high, the relative automata present many
possible states and the computation on the Complete package becomes heavy
and slow.
Two singular things were noticed also on the code correlated to the scenario
5.1.4. To give clearer reasoning, take into consideration the comparative
Tables 5.7 and 5.8.
The first one is the strange distribution of the if structure inside of the single
controllers. The third controller has only two of them, and one is related to
the inner variable reachObj. It means that the bot3 has only one possible
system configuration to go from place "c" to place "a". On the contrary, the
bot4 has the major percentage of the if structure, it means is the bot with
the most number of instructions.
It is strange anyway how the instructions are spread because the total number
is seven, one is for the inner variable reachObj but only one is for the final
goal. The main result is that, while is modeled that the bot4 could do its
action wherever it prefers, but in the controller only when is in one location
(POI "b"). In this way, a lot of possibilities to reach the final goal are lost.
After this consideration, a suspect rises: is the control strategy more focused
on the bot that has to reach the final goal? Coming back to this example, the
control strategy is focused on the action of bot4 and the other comes in second
place, and this can be deducted by the disequilibrium on the distribution of
the if structure.
Another suspected problem is that the control strategy is more rigid than
the necessary and, due to the rigid TGA logic behind it, more constrain on
clocks and triggers of transition are more rigid. To make an example, again,
it can be found in this scenario. The real reason that prevents the reach of
the goal is a condition on the clocks that does not allow the triggering of the
action.
Another problem related to the control strategy can be linked to the fact
that only the possible cases that can emerge on the evolution of the TGA
system are taken into consideration. In the scenario where is present a not
controllable agent, the control strategy becomes more and more complex and
takes into consideration a lot of more possible system configuration. Instead,
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in scenarios where only controllable agents act, the control strategy is simpler
but does not present all the possible system configuration that will not be
reached by the given command. In this way, lots of flexibility is lost. If the
controllable system, due to an external factor, goes out from the expected
system state, the mechanism just blocks itself.
As last, it was noticed that, even if the number of instruction in the Scenario
5.1.5 are bigger, the percentages remain comparable with one of the simpler
scenarios. Even the ones related to the loc values. In the beginning, it was
expected that the percentage related to the lines of code will be lower in
a more complex case because the fixed lines of the initialization and the
updating function will have had less weight. Despite the prevision, the data
are similar because the more complex control strategy presents multiple-choice
commands relative to the same system condition. For this reason, the same
if condition is reported in more than one bot’s controller (the one split) and
these conditions become, also, more complex too.
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Chapter 6

Conclusion and Future Work

The goal of this work was to improve the code generation mechanisms of the
PuRSUE Framework. With respect to the stated objectives, we have identified
the general principles to make the code more efficient and distributed. We have
done the experiments that have allowed us to show the goodness of the results
obtained, however, it was not possible to complete the automation part of the
code generation. In particular, the first goal of this work was to define the
already present mechanisms and features of the PuRSUE framework. Even if
this goal was not directly concerned with producing tangible developments, it
was necessary to be able to identify the weaknesses of the existing framework
and lay down the basis for future improvements.
The second goal was to overcome the limitation of the real-system response
and the applicability of a distributed structure. New features were proposed to
reach these goals, and the experiments carried out showed their achievement.
The tested scenarios were principally simple for the reason that they have
to be split manually, but there is no reason to think that these limitations
can affect the validity of the presented principles. The idea still has general
validity.
In all the tested scenarios the robots are able to communicate. Moreover in the
scenarios that present less than three robots, they are able to reach their goals,
even in a strictly isolated environment (into the Docker’s container). This
means that the proposed changes on the Controller.py and the Executor.py
actually work.
Since the split controllers are shorter and with less if structure, they are
faster and this result is confirmed by, even if not many, by the time values
taken from the experiments.
The main limitation of the testing phase was described. The Interface
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introduces elements of chaos that bring difficulties to the coordination of
more than three bots. So it brings to not contemplated system state or to a
not feasibility on the constraints. A new system for simulating the external
sensors has to be developed before going ahead with the development of the
framework.
This situation has highlighted also a strange distribution on the commands
through the controllers, the basic idea behind the control strategy has to be
checked to determine the classification of the action’s priority to be able to
design correctly the scenario in the PuRSE-ML.
Another highlighted Run-Time feature that has to be taken into consideration
is the fact that every if structure takes into account all the variables of the
system. It means that even if a bot is not able to accomplish any action and
does not influence the decisions, its state is present when the controllers check
the system state and it can be translated into a major number of possible
cases to take into consideration.
Other small problems were in the automatic translation of the controllers,
the algorithm is not able to distinguish between an ally human agent and a
controllable robot.
It was also noticed a rigidity due to the clock’s constraints for the simple
scenario that does not present any uncontrollable agent. Even if this problem
may seem considerable, the Framework propose is to manage scenarios that
present at least one uncontrollable agent, so the problem is destined to
disappear.
Prepare the ros environment can be a long and accurate work, unluckily there
is not a way to make it automatic.
The work that the PuRSUE framework still need is considerable but can lead
to a very satisfactory result.
In the first place, safety function has to be added. Even just a small signal
that notified the end of the functioning of the Run-Time system.
Some functionalities are not still implemented, the features that have to be
included also at Design-Time are described in the previous thesis [1, 2].
Relative to the Run-Time phase some work ha to be done. The parser for
the Controller.py and the Executor.py has to be implemented and tested.
A new interface had to be thought of as a new system to simulate the sensors
and the event of the end of an action/movement.
A notification for the exit from the Ros-environment has to be added, in this
way the possible users can have feedback from the mechanism functioning.
The analysis of how the complexity change with the increasing of the agents
and the distance, and also with the possible action, has to be done. It can
be interesting maintaining monitored the variation of the number of the if
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structures and of the lines of code with the previously written variables.
Checking how is important the rigidity of the clocks present in the if to send
the commands. It can be interesting also check, in a simple scenario, which
is the control strategy and determinate its order of priority.
It means to establish if the UPPAAL_plan.txt gives more priority to the bot
that has to reach the final goal, so taking in less consideration the events of
the other robots, or to do more events as possible. This feature can be really
important in the phase of the modeling of the scenario in PuRSUE-ML in
order to give the correct priority to the more important event.
Figure out how to implement the connection between Design-Time and Run-
Time. So, if maintain the Rest2Ros infrastructure and generalized it or
completely developed a new one.
Another important task is deals with the correction of the difference, at the
parsing level, that leads to a misunderstanding between the Observer.py
and the Controllers.py for the updating of the reachObj variable.
The last idea is the possibility to make this framework scalable and hierarchic.
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Appendix A

User-Guide

In the following section, a brief guide for future users and developers is
written. it takes inspiration from [28,29].
It is needed a Linux host, if not it is enough a virtual machine as used in this
work.
Ros Middleware is widely used in Rest2Ros and Run-Time1 phases, make
sure to have a recent version installed.
Problems can arise if the rosnodes are continuously invoked and killed because
some can not be killed correctly and get in conflict with the master. In this
situation close all the Ros instances and relaunch everything, Ros master
included.
Through the folders, there are anyway files that give instruction, also form [1].

Users

The first thing to do is to download the code. In the next section, the
main instructions to use the PuRSUE Framework are written, both version:
centralized and distributed.

Design Time

Here is treated only the part relative to the translations that take place in
the Design folder.

1. Write in a text editor the system model in PuRSUE-ML, and save it
as input.pur

1Is indicated with runtime the folder in which the Ros environment code is, but it is
not necessarily its name
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2. Move the file into the package: CompletePackage/input_language.
Delete the old input.pur file if present.
Alternately modify the existing input.pur.

3. Come back on the root folder, in order to be in CompletePackage and
open it in the prompt.

4. Run the command:

$java -jar main_pc_side.jar

5. Check if it worked. It should have modified the UPPAAL_plan.txt and
the files inside the folder output_files.

If it does not work, there could be some reason. First of all, check if the
problem is the executable file of verifytga placed inside the folder UPPAAL. In
this case, just replace it with a new version, it can be downloaded from the
Uppaal-Tiga website [24].
A second problem could be due to a little wrong detail in the Main code of
the DSL2UP folder. See the section for Developers (few pages below), search
and modify:

"./UPPAAL/verifytga -t0 UPPAAL/UPPAAL_model.xml"

into:

"./UPPAAL/verifytga -w0 UPPAAL/UPPAAL_model.xml"

Or could be necessary to install the package transitions-0.6.4 [38].

Rest2Ros

See how to make the Rest2Ros operative. This phase is delicate since it takes
into account a well-defined server, IP-address and port2. Unluckily was not
possible had access to that server, so it is shown just how it theoretically
works.

1. Rest2Ros is automatically invoked at the end of the Main code of
main_pc_side.jar, so no command is needed to send the output files
to the server.

2This server is a pc of the Goteborg University, linked to the Co4Robots project

82



2. Download the communication manager from github [30] and move the
folder into the src folder of the runtime package.

3. Open a terminal and run the command:

$ roscore

4. Optionally open another terminal and execute the command:

$ rqt\_graph

5. Open another terminal and move into the runtime folder, it should be
prepared with all the needed files to support the Ros structure.

6. Run the command:

$ catkin\_make

7. Run the command:

$ source devel/setup.bash

8. Run the command:

$ source pursue_designtime.sh

It could be necessary to install the package:
ms2_kth-master-1fdf7d12f65a3bea235939e313e9811f189a647e, ask for it.
It has to be placed in the runtime folder.
Alternatively, it is possible to launch the Communication_manager_node
and the reader_node separately.
If it does not work, the output files can be moved manually. Copy the
Observer.py and paste it inside the folder:

runtime/src/pursue_observer_node/src
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replacing a possible existing one. Follow the same procedure for the Controller.py
into the folder:

run-time/src/pursue_controller_node/src

and check they have the same name as the previous file present.
Check anyway all the README file, the communication environment (Rest2Ros)
has to run before invoke the Design-Time code.

Run-Time: ROS Centralized version

1. Open a terminal and run the command:

$ roscore

2. Optionally open another terminal and execute the command:

$ rqt\_graph

3. Open another terminal and move into the runtime folder, it should be
prepared with all the needed files to support the Ros structure.

4. Run the command:

$ catkin\_make

5. Run the command:

$ source devel/setup.bash

6. Run the command:

$ source pursue_runtime.sh

7. For display the messages exchanged between the nodes, open another
terminal in the same folder and run the command:
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$ rostopic echo name_of_the_topic

for example:
$ rostopic echo pursue/actions

8. At least, it is important to launch the file that simulates the external
environment. It can be in a different level of the runtime folder, and
can have a slightly different name, as pursue_UI.py or UI_prova.py.
Look for it, then open a terminal in the same folder of the file and then
run the command:

$ python pursue_UI.py (or UI_prova.py)

9. More options will be displayed in the last terminal, choose the one
that more fits the proposal. A start signal should be sent to every
component, the structure is running.

If it is better to launch the single rosnode, instead of point 6 of the previous
list follow this procedure:

1. In the already open terminal, to launch the observer_node run the
command:

$ rosrun pursue_observer_node pursue_observer_node

2. Open another terminal in the same folder, execute the point 4 and 5 of
the previous list ("$ catkin_make","$ source devel/setup.bash").

3. To launch the controller_node run the command:

$ rosrun pursue_controller_node pursue_controller_node

It should work. If there are problems in launching the nodes, it is possible
to execute just the python file. Just go inside the node, into the src/N-
ODE_FOLDER/src folder and write on the prompt:

$ python controller.py (or the name of the file of interest)
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Run-Time: ROS Distributed version

This section is dedicated to run the distributed system, before following the
instructions make sure to have copied the runtime folder as many times as
the number of the nodes and put inside them once node-folder each. For
the pursue_UI.py (or pursue_UI.py) is not necessary to have the complete
runtime folder.
If the nodes are in the same runtime folder, follow the previous section
Run-Time: ROS Centralized version, launch the node separately or update
the file pursue_runtime.sh.

1. Open a terminal and run the command:

$ roscore

2. Optionally open another terminal and execute the command:

$ rqt\_graph

3. Open another terminal and move into one the runtime folder and run
the commands:

$ catkin_make
$ source devel/setup.bash
$ rosrun controller_node controller_node
(or anyone of the node of interest)

4. Repeat the previous step for each node being sure to open a new
terminal each time and change the contextual folder. If problems in
launching the node arise, see the end of ROS Centralized version for
alternative ways.

5. For display the messages exchanged between the nodes, open another
terminal in the same folder and run the command:

$ rostopic echo name_of_the_topic

i.g.:
$ rostopic echo pursue/actions
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6. To run the file that simulates the external environment, that can have
a slightly different name, as pursue_UI.py or UI_prova.py, open a
terminal in the same folder of the file and then run the command:

$ python pursue_UI.py (or UI_prova.py)

7. More options will be displayed in the last terminal, choose the one
that more fits the proposal. A start signal should be sent to every
component, the structure is running.

Run-Time: DOCKER Distributed version

In this phase is necessary to have installed Docker, moreover, the node has
to be divided into different runtime folders, as described in the chapter
Contribution of the Thesis and at the beginning of the previous section
Run-Time: ROS Distributed version. This is a quick list of instructions to
show how to use Docker in this specific case, for more information see the
specific documentation and tutorials as [34] [32], [35], [33] on which this is
based.

1. Create the Docker image of Ros through the command:

$ docker pull ros

2. And check if the image is created through:

$ docker images

3. In order to see the created container run the command:

$ docker ps -a

4. In order to see the running container run the command without "-a":

$ docker ps
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5. Create the network in which the node will interact thought the com-
mand:

$ docker network create pursue

6. Create the fist container on which run the Ros master through the
command:

$ docker run -it --rm --net pursue --name master ros

The addition of "-it" makes the container interactive; "- -rm" delete
it once it stops, it is important because the containers occupy a lot
of memory and if they are not removed at the end the memory will
run out fast. The addition "- -net pursue" adds the container to the
previously created network; "- -name master" gives an identification
name while "ros" is the images it takes. Inside this container, run the
Ros master.

7. Docker can ask for root user id, can be chosen between give it the
password every time or do it once and remain registered.

8. In order to run a node inside a container, it has to have the possibility
to see the folder inside which the node code is written. To make it
possible open another terminal and run the command:

$ docker run -it --rm \
--net pursue \
--name controller1 \
--env ROS_HOSTNAME=controller1 \
--env ROS_MASTER_URI=http://master:11311 \
-v "/home/runtime1/:/root/.ros/"
rosrun controller1_node controller1_node

See what does the additional specifications made, "- -env ROS_HOSTNAME"
gives a name at the host, so at the container. "- -env ROS_MASTER_URI"
gives to the current container the URI on which the master runs; "-v "
is the most important addition. It gives to the container the link to the
folder on which is written the node code, the structure is the following:
"/path/of/the/folder/in/the/pc"/:/"path/of/the/folder/on/the/container".
Then there is the instruction to run.
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9. Move inside the folder of interest and run the usual commands:

$ catkin_make
$ source devel/setup.bash
$ rosrun controller_node controller_node
(or anyone of the node of interest)

10. Create one container for each node with an analog procedure, with
access only to the node relative folder. All the node has to be connected
at the same network to be able to communicate between them.
Inside the container of the Observer, it needs to install the transitions
package before running the node. Run the commands:

$ sudo apt update
$ sudo apt install python-pip
$ pip install transitions

11. At last, create a container for pursue_UI.py (or UI_prova.py) and run
inside it:

$ python pursue_UI.py (or UI_prova.py)

As always options will be displayed in the last terminal, choose the
one that more fits the proposal. A start signal should be sent to every
component, the structure is running.

12. In order to see what happened in Ros, as the running node or the
messages exchanged on a topic some operation has to be done. In
another terminal run the command:

$ docker exec -it master bash
$ source /ros_entrypoint.sh

These instructions will make possible to run other commands inside
a container, in this case, the master one. Now run the command for
seeing what it is desired, for example:
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$ rostopic echo pursue/actions

If the node presents some problem, could be enough to move in the
src/NODE_FOLDER/src folder inside the node and run just the python file.

Developers

This section treats only the Design-Time phase because Res2Ros and Run-
Time phases are closely structured, changing a part of them will mean change
them substantially. For them, modifications are proposed and discussed in
all this work.

Design Time

Once downloaded the complete code, open the Design-Time folder, if it is
disorientating take the Appendix B of this thesis as a guideline. To modify
the code is necessary to work on the original folder, for this reason, they are
present next to the CommpletePackage.

1. Open the folder that needs to be modified, if more handy use an IDE.
The Main code of each folder is a bit encapsulated.

2. Modify whatever it is desired to.

3. Go back in the root folder (the one with the number) and open it in
the terminal.

4. Run the command3:

$ mvn package

5. Go back inside the root folder (the one with the number) and open the
folder named target.

6. Move the name_of_the_folder-jar-with-dependencies.jar into CompletePackage
and rename it with the name of the older one (and delete the older
one).

7. The previous point can be executed via graphical interface or via
terminal command.

3Could be necessary have installed Maven and Antlr
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Appendix B

PuRSUE Details

B.1 The PuRSUE framework

Here is reported the actual functioning of the framework, going into the
code’s details.In order to provide more grasp, a brief description of the used
tools is reported, then the analysis will follow the order of the over mentioned
phases: Design-Time, Rest2Ros and Run-Time.

Xtext

Xtext is an open-source software framework, it generates parser and class
model for the abstract syntax tree using a powerful grammar language. The
developer has to write a grammar in Xtext’s grammar language and a code
generator derives an ANTLR parser and the classes for the object model. A
great pro of Xtext is that it has a customizable Eclipse-base IDE. [1, 26,27]
It is used in the parsing phase of the process. It is the tool that masters all the
translation operation and flow of the control synthesis and its transformation
into executable code.

Maven

Maven is a tool used for building and managing Java-based projects based
on a Project Object Model (POM) [19,20]. It is used to manage the parsing
phases, in detail it is used to compress all the operations in file with .jar
extension. It makes possible to have all the step inside the Complete Package
simplifying the overall process.
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Antlr

Antlr’s name comes from "Another Tool for Language Recognition" [21] and
it is a parser generator. It is used for the parsing in the design phase of
the PuRSUE Framework, it generates the parser form the grammar and can
build and tun the parse tree [22].

TurtleBot

The TurtleBot is a real mobile robot with open-source software [36], it is able
to move in the environment and more software applications can be developed
or downloaded form http://wiki.ros.org/Robots/TurtleBot. On this site, the
complete code used and tutorials for the Ros framework are also available.
So, TurtleBot is a complete independent robot with all the necessary code to
make it move and with the possibility of developed more complex applications
that can include also actions [37].

Co4Robots project

It is a European project for the development of decentralized control for
coordination of interaction robots in whose contest the previous work was
developed.
Few parameters, as the communication ports in the communication phase,
are defined according to the Co4Robots project’s specifications. For more
information: http://www.co4robots.eu [31].

B.2 Design-Time: How it does it

In this section are analyzed the Main.java file of all the previously mentioned
folders. For a deeper level of knowledge please refer directly to the code.

4-main_pc_side

This one, once opened, seems to be the most simple structured package, as
shown in Figure B.1. There are not the folders for class files or tests, just the
Main.java. Despite that, is the folder that manages the coordination of the
translations. As first action is declared the package in which the application
is developed, followed by more or less twelve lines of import. The Main class
is declared and then the main function begins. The all process can be seen
in the Listing B.1.
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Figure B.1: Folders in "4-main_pc_side"

1
2 public class Main {
3 public static void main(String[] args) throws ClientProtocolException,

IOException, InterruptedException {
4 System.out.println("This method performs the complete parsing from

DSL to python controller, provided that the folder structure, file
names and .jar files provided are conform to what’s specified in
readme.txt");

5 String s = new String();
6 // FIRST process
7 System.out.println("///////running first parser and UPPAAL//////");
8 Runtime runt = Runtime.getRuntime();
9 ProcessBuilder p0 = new ProcessBuilder("java", "−jar", "DSL2UP.jar");

10 p0.redirectErrorStream(true);
11 Process processo0 = p0.start();
12 BufferedReader stdInput0 = new BufferedReader(new

InputStreamReader(processo0.getInputStream()));
13 p0.redirectErrorStream(true);
14 Process processo0 = p0.start();
15 BufferedReader stdInput0 = new BufferedReader(new

InputStreamReader(processo0.getInputStream()));
16 while ((s = stdInput0.readLine()) != null) {
17 System.out.println(s);
18 }
19 processo0.waitFor();
20 System.out.println("///////it finished////////");
21
22 //second process
23 System.out.println("///////running UP2CO///////");
24 ProcessBuilder p1 = new ProcessBuilder("java", "−jar", "UP2CO.jar");
25 p1.redirectErrorStream(true);
26 Process processo1 = p1.start();
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27 BufferedReader stdInput1 = new BufferedReader(new
InputStreamReader(processo1.getInputStream()));

28 while ((s = stdInput1.readLine()) != null) {
29 System.out.println(s);
30 }
31 processo1.waitFor();
32 System.out.println("///////it finished////////");
33
34 //third process
35 System.out.println("///////running UP2OB///////");
36 ProcessBuilder p2 = new ProcessBuilder("java", "−jar", "UP2OB.jar");
37 p2.redirectErrorStream(true);
38 Process processo2 = p2.start();
39 BufferedReader stdInput2 = new BufferedReader(new

InputStreamReader(processo2.getInputStream()));
40 while ((s = stdInput2.readLine()) != null) {
41 System.out.println(s);
42 }
43 processo2.waitFor();
44 System.out.println("///////it finished///////");
45
46 File controller = new File("./output_files/runtime_controller.py");
47 File observer = new File ("./output_files/runtime_observer.py");
48 String controller_as_string = FileUtils.readFileToString(controller);
49 String observer_as_string = FileUtils.readFileToString(observer);
50 MissionSender sender = new MissionSender();
51 String indirizzo = "192.168.1.140";
52 String porta = "13000";
53 sender.send(controller_as_string, indirizzo, porta);
54 sender.send(observer_as_string, indirizzo, porta);
55
56 System.out.println("finito!");
57 }
58 }

Listing B.1: Main in "4-main_pc_side"

It is printed in the prompt window that the aim is the complete translation
from the DSL to python, BUT all the files and all the packages are to be
placed correctly.
It is created a string type variable and it is printed in the prompt that it will
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start "the first parser and Uppaal".So from the PuRSUE-ML, it will generate
the control strategy. It is defined "runt", and "p0"; with p0 three parameters
are given. In this way, it is passed the command "java -jar DLS2.jar" that
put in execution the code contained in the folder 1-parser DSL2UP and
UPPAAL integration. It makes it run invoking the function start and
then saves its input. It is started a "while" cycle in which it prints the input
on the prompt, line by line. It waits for a while and prints on the prompt it
has finished the first translation. In this way, the user knows that everything
is working.
As for the other translations, the input and the results are taken and saved
in the correct folders, in such way once in Complete Package there will not
be reference’s problems.
The second parser is then begun and the procedure is close to the previous
one. It is printed "running UP2CO" and created a second variable "p1"
in which are passed similar parameters to execute the code contained into
2-parser2-UP2CO. It is invoked the start function, the result is saved into
"processo1" and it is printed, line by line, the input. It waits a while again
and then it prints on the prompt a message of the end of the translation.
In the next block of instructions are invoked the third and last parser, UP2OB,
where the Observer.py is created. It prints on the prompt the parser is
started. It is created "p2", similar to the previous variables, to which are
passed similar parameters in order to execute the code contained in the folder
3-parser UP2OB.
So, it is invoked the start function, saving the result into "processo2", the
input is printed line by line. It waits a while and then prints on the prompt
that it has finished.
It is starting a new phase in where the outputs are managed. Two File type
variables are created into which are respectively saved the Controller.py
and the Observer.py. They are read from an on-purpose file, created on
the parsing phase. Then are converted into a string type and it is created
a MissionSender class variable. Are initialized the variable of address and
port, with the values specified in the "Co4Robots" project. The address, the
ports, the Controller.py and the Observer.py are passes as parameters
of the function send, invoked two times. It is printed on the prompt that
everything is ended, because the parsing phase ends.

1-parser DSL2UP and UPPAAL integration

The code contented in this folder is responsible for the translation from the
PuRSUE-ML file into a Timed Game Automata and the synthesis of the
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complete control strategy. For this reason, this is the folder that presents
more substance, as shown in Figure B.2, because besides the parsing folder
for the TGA translation here are present also the files related to the Veri-
fyTGA. Despite the folder complexity, only the Main.java, contained into

Figure B.2: Folders in "1-parser DSL2UP and UPPAAL integration"

an encapsulate folder structure inside src, will be described. The all process
can be seen in the Listing B.2.

1 public class Main {
2
3 public static void main(String[] args) throws IOException,

MissingResourceException {
4 System.out.println("This method takes as input a .pur file specifying the

system and outputs a controller guaranteeing to always satisify the
goal");

5 //
6 //define timer variables
7 long startTime = 0;
8 long endTime =0;
9 long elapsedTime = 0;

10
11 //massi inizio timer qui
12 startTime = System.currentTimeMillis();
13 // inizializzo parser
14 Injector iniettore = new PursueStandaloneSetup().

createInjectorAndDoEMFRegistration();
15
16 // if file was specified use that one, otherwise use standard one
17 String file_location;
18 //if (args.length==0)
19 file_location = "./input_language/default_input.pur";
20 //else
21 // file_location = "./input_language/" + args[0];
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22 // check che funga, va la
23 System.out.println("considering source file:" + file_location);
24 // tirar fuori la risosorsa
25 // esco il resource set
26 XtextResourceSet risorsaSet = iniettore.getInstance(XtextResourceSet.

class);
27 // nel file d’esempio qeuesto c’era, togliendolo funge comunque... lo

ascio che
28 // si sa mai
29 risorsaSet.addLoadOption(XtextResource.OPTION_RESOLVE_ALL,

Boolean.TRUE);
30 // esco l’URI
31 URI resource_URI = URI.createFileURI(file_location);
32 // creo risorsa
33 Resource resource = risorsaSet.getResource(resource_URI, true);
34
35 // validation
36 IResourceValidator validatore = iniettore.getInstance(

IResourceValidator.class);
37 List<Issue> report =validatore.validate(resource, CheckMode.ALL,

null );
38 if (report.isEmpty()) {
39 System.out.println("validation succeded");
40 // creo generatore(usando il Delegate che mi facilita la vita)
41 GeneratorDelegate delegato = iniettore.getInstance(GeneratorDelegate.

class);
42
43 // creo FSA
44 InMemoryFileSystemAccess fsa = new InMemoryFileSystemAccess();
45 // generazione
46 delegato.doGenerate(resource, fsa);
47 /// manca la creazione vera del file xD
48 String[] nomi = new String[2];
49 nomi[0] = "UPPAAL_model.q";
50 nomi[1] = "UPPAAL_model.xml";
51 int i =0;
52 if (args.length != 0 && args[0].equals("custom_property")){
53 System.out.println("using custom property already positioned by user

in folder");
54 nomi[0] ="system_generated_property.q";
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55 }
56 for (Entry<String, CharSequence> file : fsa.getTextFiles().entrySet()) {
57 BufferedWriter writer = new BufferedWriter(new FileWriter("UPPAAL

/"+nomi[i]));
58 writer.write(file.getValue().toString());
59 i++;
60 writer.close();
61 }
62 endTime = System.currentTimeMillis();
63 elapsedTime = endTime − startTime;
64 System.out.println("UPPAAL model crated in "+elapsedTime+"

milliseconds");
65
66 // esecuzione di verifyTGA
67 String s = null;
68 String output = null;
69 boolean flag = true;
70 startTime = System.currentTimeMillis();
71 Process p = Runtime.getRuntime().exec("./UPPAAL/verifytga −t0

UPPAAL/UPPAAL_model.xml");
72 BufferedReader stdInput = new BufferedReader(new InputStreamReader

(p.getInputStream()));
73 while (flag && (s = stdInput.readLine()) != null) {
74 System.out.println(s);
75 output = output + s + "\n";
76 if (s.equals("Strategy to win:") || s.equals("Strategy to avoid losing:")) {

77 flag = false;
78 endTime = System.currentTimeMillis();
79 elapsedTime = endTime − startTime;
80 System.out.println( "plan created in " + elapsedTime +" milliseconds

");
81 }
82 }
83 startTime = System.currentTimeMillis();
84 while ((s = stdInput.readLine())!= null) {
85 output = output + s + "\n";
86 }
87 BufferedWriter writer = new BufferedWriter(new FileWriter("

UPPAAL_plan.txt"));
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88 writer.write(output);
89 writer.close();
90 endTime = System.currentTimeMillis();
91 elapsedTime = endTime − startTime;
92 System.out.println( "plan printed to file in " + elapsedTime+"

milliseconds");
93 //sender.send(messaggio, indirizzo, porta);
94 }
95 else {
96 System.out.println("input file not conform to grammar rules. Issues

detected:");
97 for(Issue problema: report) {
98 System.out.println(problema);
99 }

100 }
101 }
102 }

Listing B.2: Main in "1-parser DSL2UP and UPPAAL integration"

At first place, is specified the package in which the application refers to,
after it, there are around twenty lines of import command. The Main class
is declared, so the main function begins. As first action, it prints on the
prompt a string that informs on what it does. Then the time variables
(startTime, endTime and elapseTime) are defined and initialized at zero
value. The current time is saved in "startTime". Then is create a variable
named "iniettore" of Injector class, calling a function of a class defined in
src-gen/se/cth/pursue.
Is then defined a string variable called "file_location" inside which is saved
the path to find the input file, once inside the CompletePackage. These
instructions are surrounded by a commented if structure, this can allow the
file to take as input a file with a different name, but the new name has to be
specified in the "arg" variable.
In order to be sure that the path is saved correctly, the "file_location" vari-
able is printed on the terminal. Is then defined "risorsaSet" variable, of
"XtextResourceSet", in which is saved the result of the iniettore function
invoked. The URI of "file_location" is extrapolated and saved, so the input
file is saved into "resource", of Resource class.
To validate the process, a validator variable is created, into which is saved
the class "IResourceValidator". A "report" is created, where the result of
the validation function is saved. It has to check the properties of the input
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resource and, if there are problems, saves them into "report". Indeed, a big
if begin after it. If no errors are reported it create and solve the Automata,
otherwise instructions are given far below. Assuming there are no problems,
is printed on the prompt that the validation has been successful. It is cre-
ated "delegato", whose save an instance of "iniettore" and it is created a
variable "fsa" that will be passed as an argument to the delegato function
"doGenerate". So, it is declared a variable in which will be saved the FSA.
Is then created an array of two string, and allocates inside them the name
of the files that will be afterward created. So respectively UPPAAL_model.q
and UPPAAL_model.xml. It is checked a "args[]" variable and if at its first
place it has "custum_property", it is notified on the prompt that it is using
an already existing custom property, and the name of UPPAAL_model.q is
changed.
A for cycle begins, for every fsa.getTextFiles().entrySet(), creates a files UP-
PAAL_model and saves inside them the values converted into a string format.
Now in endTime is saved the current time, in this way it can compute the
elapsedTime and prints on the prompt that the ’UPPAAL model is created
in "elapsedTime" milliseconds’.
A block dedicated to verifyTga begins, some initializations are done and the
current time is saved in startTime. VerifyTGA is invoked through the process
"p". The input of p is saved in stdInput, then a while cycle begins. Until the
flag is true and there are lines in stdInput, it prints on the prompt the line
and saves them in "output". This is made to control if the control strategy
generated is a winning strategy, or at least a strategy for not losing. That is
because the output of verifyTGA could be a winning strategy, a not losing
strategy or a winning strategy for the opponent. Every time it checks if in
the selected line there is written "Strategy to win:" or "Strategy to avoid
losing".
If it finds one of these two strings, it exits from the while cycle and saves
the current time in endTime, to compute the elapsedTime. It prints in the
prompt that the plan is created in ’elaspsedTime’ milliseconds. Once out of
the while cycle it saves the current time in startTime and keeps saving line
by line stdInput in output, adding a new line each time (\ n).
It is created a variable named "writer", it will create a file named UPPAAL_plan.txt
and will write inside it the variable output. It means that the plan created by
verifyTGA, if it is not an opponent winning strategy, is saved into output and
written into the new generated file. So it saves the current time in endTime,
computes the elapsedTime and print on the prompt how much milliseconds
takes to print the plan.
As last thing, begin the else branch of the big if. If there are errors with the
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validation, it is printed on the prompt that the input does not respect the
grammar rules followed by all the problems found.

2-parser2-UP2CO

This folder takes as input the plan produced by verifyTGA and generates
the corresponding python code. It is easy to see that the Main file is written
to work, read and write, once in the CompletePackage because all the paths
and all the reference’s names are written to work in that conditions.
The Main.java is encapsulated into the folder UP2CO with all the folder

Figure B.3: Folders in "2-parser2-UP2CO"

needed to define all the necessary structure for the parsing, as the file with
extension .g4 that contain the specific grammar. What is missed are the
Lexer and Parser class that are used to begin the translations. In Figure B.3
are shown the files inside 2-parser2-UP2CO folder and all processes can be
seen in the Listing B.3.

1 public class Main {
2 public static void main(String[] args) throws Exception {
3 System.out.println("Parser UPPAAL to PYTHON started");
4 CharStream in = fromFileName("./UPPAAL_plan.txt");
5 int siz = in.size();
6 int i = 0;
7 boolean flag = true;
8 String check = "";
9 String checked = "";

10 while ( i < siz && flag ){
11 Interval intervallo = new Interval(i, i+2);
12 // System.out.println(intervallo);
13 check = in.getText(intervallo);
14 // System.out.println(check);
15 if (check.equals(":\n\n")){
16 Interval intervallo2 = new Interval(i+3, siz);
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17 checked = in.getText(intervallo2);
18 flag = false;
19 System.out.println("the total plan file is composed of "+

siz+" characters, we remove the first "+(i+2) );
20 }
21 else{
22 i++;
23 }
24 }
25 CharStream cleansedIn = CharStreams.fromString(checked);
26
27 UP2COLexer lexer = new UP2COLexer(cleansedIn);
28 CommonTokenStream tokens = new CommonTokenStream(lexer);
29 UP2COParser parser = new UP2COParser(tokens);
30 parser.setBuildParseTree(false);
31 Controller controller = parser.controller().contr;
32 String output = controller.toString();
33
34 //System.out.println(stampare);
35 BufferedWriter writer = new BufferedWriter(new FileWriter("

output_files/runtime_controller.py"));
36 writer.write(output);
37 writer.close();
38 System.out.println("Parser UPPAAL to PYTHON finished");
39 }
40 }

Listing B.3: Main in "2-parser2-UP2CO"

Now just analyze the Main.java: as first, thing it is declared the package
in which the application is developed. It imports the libraries, declares the
Main class and the main function. It prints on the prompt that the parsing
begins, and saves in the variable "in" the control strategy contained in the
file UPPAAL_plan.txt. There are lines of initialization, after them begins a
while cycle that runs the code with a step of two positions, saves the two
characters at the same time in "check" and verifies if they are two "\ n".
Once found these two characters, it copies the remaining text in a new variable
called "intervallo2" and exits from the cycle. It prints on the prompt it has
cleaned the file, actually the cycle has cut out all the begging part of the
file that is the loading percentage as shown in the Figures B.4 and B.5. It
copies the obtained file in a new variable, then creates a UP2CoLexer class
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Figure B.4: UPPAAL_plan.txt before

variable. This type of class is not defined in this folder but is located in the
"test" folder. That is because is a class that extends an already existing class
called Lexer, and there are defined all the headwords that are going to be
used for the identification of the text structure. Tokens are created with all
the keyword. It is defined a "UP2COParser" class variable, whose code is
located in the folder: target→generated-sources→antlr4, and here are defined
all the structure starting from the token.
It is invoked the function of the Parser object that start the translation.
The main subclass is the controller.class file. Here are contained the
definitions of the structure related to the code for every state and every event.
Are defined also the clock structure. For every line of UPPAAL_plan.txt it is
written a string with its corresponding python instruction, after the required
initialization and constructs.
This string is saved in the variable "output", it is created a text file in a
given folder with a given name. The text in output is then saved into the
just created file. This is the Controller.py.

3-parser UP2OB

This folder has a similar structure and functioning of the previous one. It
takes as input the automata model, so the file with extension .xml that is
the input also for verifyTGA, and translates it into the Observer.py. Even
in this folder, there are two subfolders. One is for the test and the other one
has the actual package for parsing, so the Main.java file encapsulated into
the src folder, with the other classes for the automata’s parsing. The inside
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Figure B.5: UPPAAL_plan.txt before and after

Figure B.6: Folders in "3-parser UP2OB"

structure of UP2OB is shown in Figure B.6 and the process is reported in the
Listing B.4.

1 import static org.antlr.v4.runtime.CharStreams.fromFileName;
2 public class Main {
3 public static void main(String[] args) throws Exception {
4 System.out.println("Parser UPPAAL to OBSERVER started");
5 CharStream in = fromFileName("./UPPAAL/UPPAAL_model.

xml");
6 UP2OBLexer lexer = new UP2OBLexer(in);
7 CommonTokenStream tokens = new CommonTokenStream(lexer);
8 UP2OBParser parser = new UP2OBParser(tokens);
9

10 parser.setBuildParseTree(true);
11 Model model = parser.model().mod;
12 String output = model.toString();
13
14 //System.out.println(stampare);
15 BufferedWriter writer = new BufferedWriter(new FileWriter("

output_files/runtime_observer.py"));
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16 writer.write(output);
17 writer.close();
18 System.out.println("Parser UPPAAL to OBSERVER finished");
19 }
20 }

Listing B.4: Main in "3-parser UP2OB"

As first thing is declared the package into which the application is developed,
followed by the import’s lines. Then the class Main and the function main
begin and it prints on the prompt that the parser starts. It copies the
automata model into the variable "in", the path is written referring to the
position the model has once in CompletePackage. It is created a variable of
class "UP2OBLexer", an extension of class Lexer, giving it the model as a
parameter. In a similar way of the folder 2-parser2-UP2CO, all the tokens
and lexers are defined to create a vocabulary. It is created the variable parser,
of a class that extends the Parser class. Both the classes, UP2OBLexer
and UP2OBParser, are located in the folder "antlr4" and both are based
on the grammar file UP2OB.g4 placed in the same folder of the Main. These
operations are necessary in order to prepare the components for the parsing.
It is launched the parser, the string version of the variable "model" is saved in
"output". It is created a new file, ("runtime_observer"), where the variable
"output" is written. In the end, it is notified the end of the translation via
prompt1.

COMPLETE PACKAGE

This is the last section of the translation phase, inside here there are all the
previous operations condensed. To start all the mechanism is enough to open
a prompt in the folder and write the command: "java -jar main_pc_side".
For more information see Appendix A. Making references to the Figure B.7,
it is shown the inside of the folder. Each element has a specific function and
has to have that precise name. More specifically:

• input_language: is the folder in which is contained the file written
in PuRSUE-ML, it is the input of all the translations.

• output_files: in this folder are contained the files runtime_controller.py
and runtime_observer.py, the output of the complete translations.

1To see how the Observer.py is written see the next section (Run-Time: Components)
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Figure B.7: Folders in "COMPLETE PACKAGE"

• UPPAAL: in this folder are contained the executable code of veri-
fyTGA and is where will be saved the automata files (UPPAAL_model.q
and UPPAAL_model.xml).

• jar(s): contain the code of the previous folders, they are invoked as
described before starting from main_pc_side.

• UPPAAL_plan.txt: is the control strategy generated by verifyTGA,
the input for 2-parser2-UP2CO.

B.3 Rest2Ros: How it does it

In this case, the code is not all in the same folder, so here is reported also
where the files are located.

Mission_sender

It is the first actor that takes place in the communication mechanism. It is
located in [39]:

https://github.com/claudiomenghi/NetworkCommunication/blob/
master/src/main/java/se/gu/MissionSender.java

1 public class MissionSender {
2
3 public void send(String mission, String ip, String port) throws

ClientProtocolException, IOException {
4
5 CloseableHttpClient httpclient = HttpClients.createDefault();
6 HttpPost httppost = new HttpPost("http://" + ip + ":" + port);
7
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8 List<NameValuePair> params = new ArrayList<NameValuePair>(1);
9 String sentMission = mission;

10 params.add(new BasicNameValuePair("mission", sentMission));
11
12 try {
13 httppost.setEntity(new UrlEncodedFormEntity(params, "UTF−8"));
14 } catch (UnsupportedEncodingException e1) {
15 // TODO Auto−generated catch block
16 e1.printStackTrace();
17 }
18 HttpResponse response;
19 response = httpclient.execute(httppost);
20 HttpEntity entity = response.getEntity();
21
22 if (entity != null) {
23 InputStream instram = entity.getContent();
24 instram.close();
25 }
26 }
27 }

Listing B.5: Main in "MissionSender"

In Listing B.5 is reported the Mission_sender code. The first thing done is
to declare the package where it is developed, then all the import commands
are written. The MissionSender class begins with the "send" function that
requires three parameters: mission, IP and port. The parameter mission
contains the main information, that could be the Controller.py or the
Observer.py, depends on the invocation. The IP address is the IP on whose
the mission has to be sent, in this case is 192.168.1.140. The same is for the
port, in this case is ’13000’, as specified on the "Co4Robot" project [31]. It
then creates a variable of ClosableHttpClient class, this is an abstract class
which implements java.io.Closeable on HttpClient. It saves the complete IP
address + port in a HttPost variable to correctly invoke the method ’post’,
and create a variable named "params" of type <NameValuePair>. It is a
special structure in which the data are organized in pairs, a key-value followed
by the corresponding value.
The imported parameter mission is saved into a local variable, this variable
became the filed value of a new NameValuePair, added with key "mission".
Then it tries to send the new pair, keeping the dictionary structure with
UTF-8. It is created a variable for saving the response of the execution of
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httppost, if the operation has had a good effort or not. If the entity contained
into response is not null, the instram is closed.
With this, the input "mission" is forwarded into the given "IPAddress.Port".

Communication_manager

This is the second and most complex agent in this phase. Its code can be
found in [40]:

https://gitc4r.pal-robotics.com:8060/claudiomenghi/
communication_manager/blob/master/src/communication_manager.py

but it has to run on the port where the mission is sent, so it could be necessary
to download it. In this specific case, the Communication_manager runs on
the port 13000 and writes on the port 13001 and the corresponding node is
situated in the src folder of the ros workspace. To execute it, the node has
to be launch on the prompt, through communication_manager.launch.2

In the folder, there are other files containing functions invoked by the main
one. Those functions aim to make the mechanism work.
In Listing B.6 is reported the Communication_manager code.

1 class Rest:
2 def __init__(self):
3 rospy.init_node(’communication_manager’,anonymous=False,

disable_signals=True)
4 pubsubport = rospy.get_param(’~pubsubport’)
5 self.publisher=Publisher(pubsubport)
6 thread = threading.Thread(target=self.publisher.run, args=())
7 thread.daemon = True # Daemonize thread
8 thread.start()
9

10 def publish(self,msg):
11 actions = msg.data
12 print ("Sending to the subscribers the set of actions %s" %str(actions)

)
13 self.publisher.send("actions %s" %str(actions))
14
15 def run(self):
16 for topic in rospy.get_param(’~forwardedtopics’).split(","):

2See Appendix A for more information.
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17 print ("Communication manager will forward messages regarding the
topic %s" %str(topic))

18 subtopic="~" + topic
19 rospy.Subscriber(subtopic, String, self.publish)
20
21 port = rospy.get_param(’~port’)
22 topicType = rospy.get_param(’~topicName’)
23 while not rospy.is_shutdown():
24 httpd = HTTPServer((’0.0.0.0’, port),Request_Handler)
25 print ("Waiting for a new mission on the port %s messages will be

forwarded on the topic %s" %(port,topicType))
26 httpd.serve_forever()
27
28 def main():
29 print "Running the communication manager"
30 rest=Rest()
31 rest.run()
32 if __name__ == "__main__":
33 rest=Rest()
34 rest.run()

Listing B.6: Main in "Communication_manager"

As first thing, there are introductory comments that explain the goal. It is
followed by the declaration of the package in which the application is developed
and by some import commands. Between all the import commands there is
one referred to ms2_kth.msg, they could make some problems arise. Lately is
defined the Rest class, with all its method: __init__, publish and run. So,
to see the main function, it has to go down in the code. After all the methods,
the first thing the file does is to print that the Communication_manager is
running. It is created an object of class Rest and invoked its method run.
The main present a double invocation, that is due to the fact the file can be
called also from the prompt.
As first thing, the variable is initialized running the method __init__; the
ros node communication_manager is defined and invoked. It saves the in
"pubsubport" the parameter of the number of the port, in this case is 13001,
defined in the launch file with the same name, so taken from the outside.
It is defined a redirection of self.publisher, so once this command is invoked it
is called a function Publisher, defined in another file, passing the parameter
of the port number just obtained. This external file notifies, to its subscribers,
that it is going to publish something and then it actually publishes the
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message. Port 13001 is where the subscribers are listening.
It is defined a thread for the self.publisher function. That thread is made
daemon, in this way the main program does not have to wait it to proceed,
and the daemon thread is launched. Since the __init__ is finished, the run
method can start.
It begins a for cycle, for each "forwardedtopics" defined into the launch file,
so tiago/mission_location and tiago/mission_action. Tiago is the name of a
robot used in the "Co4robot" project, not fundamental for the understanding
of the work. It is printed that the Communication_manager will forward
the messages it is reading, and it adds a ’~’ before the previously mentioned
topic names. It put itself on listening on the topic, waiting for a message of
string type and with self.publish as callback. The callback it is a function
that will be executed if something is listened, in this case it is printed that
the read message will be forwarded and it is called publisher.py.
From the file with extension .launch is also read the port number, in this
case 13000, and saved into a local variable and it is taken also the parameter
"topicName", local_mission. There is now the command that takes everything
active till Ros is on and it is defined a web server address. It actually creates a
socket where it listens, and then it writes to Request Handler the requests
that have to be managed. Then it is printed that it is waiting for a new
mission and, in the end, there is a command that avoids exiting from the
server.

Publisher.py :
At the beginning there are introductory comments that explain what the
Publisher does, it accepts new connection on a specific port, keeps trace of
the connected client and send them messages. Then there are few import
and the definition of the Publisher class that has three functions: __init__,
run and send. The main is declared after the methods, it prints that the
Communication_manager is running. It is defined a Publisher object and,
after it, it is invoked its method run. Even here there is the double invocation
of the main, the second one allows us to call the function from the prompt.
To create the rest object has to be executed the __init__ method, it creates
a variable that will take into account all the subscribers in an array of sockets.
It is initialized a sock variable as null and then it is taken the port number
from the launch file, in this case again 13001.
Once done the initialization, the method run can be executed. As first thing,
it creates a socket, and then a symbolic local host address is saved in HOST,
in this case as ’0.0.0.0’ and a bind function is invoked. The socket is putt in
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listening, waiting for a connection. It can listen just one at time. It begins
an infinite cycle where it prints on video that is waiting for a subscriber and
once the connection is accepted the parameters will be saved. It is printed
that a subscriber is added and then the server is added to socketset.
It begins the method send, it prints that the messages are been sending
and then begin a for cycle. For each socket presents in socketset, it prints
"sending the message to the first subscrber" and then the message is sent.

Request_Handler :
Here are described the function of Request_Handler. As always it begins with
the introductory comment and the imports, then the Request_Handler class
begins. There is not any main, are just defined the methods: _set_header,
do_GET, do_HEAD and do_POST.
The first method is _set_header, where are defined self.sen_response(200)
and self.send_header. These instructions are necessary for the following
functions because they allow the consideration of the response validation, so
to make the mechanism work. As the last thing, it invokes self.end_header.
The second one is do_GET, it invokes _set_header and then writes a heading
with an image in an XML format. The third is do_HEAD that simply invokes
_self_header.
Finally do_POST begins, this is the most complex method. It takes the size
of the data and then the real data is taken. It invokes a function that returns
the data organized in a vocabulary format. Then it saves the topic name from
the external, in this case local_mission. It prints that they are receiving, then
it is initialized a publisher, through the Ros infrastructure, passing the topic
name and the dimension of its queue. The mission is actually published on
the topic in the next line. It is print that the mission is sent and is written the
command self.send_responce(200). In the end, it is invoked self.end_header.

Pursue_Reader

As Communication_manager also pursue_reader is part of a Ros node that
has more ways to be launch. It can be done via pursue_desgintime.sh as
describe below or running directly the node or the file with extension launch.
Everything that is written here is used to place the files into the correct
folder.

1 class Reader:
2 def __init__(self):
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3 #si potrebbe mettere anonymous true se volessimo avere piu nodi alla
volta cheascoltano senza rischiare si picchino a vicenda

4 rospy.init_node(’reader’,anonymous=False,disable_signals=True)
5 self.counter = 0
6
7 def callback(self, data):
8 print("I received data")
9 input= data.data

10 #very unrobust check if it is controller or observer
11 if (input[31]== ’c’):
12 f=open("/home/co4robots/Desktop/received_components/

runtime_controller.py", "w+")
13 f.write(input)
14 print("file created in"+f.name)
15 f.close()
16 f=open("/home/co4robots/turtlebot/src/pursue_controller_node/src/

runtime_controller.py", "w+")
17 f.write(input)
18 print("file created in"+f.name)
19 f.close()
20 if (input[31]== ’o’):
21 f=open("/home/co4robots/Desktop/received_components/observer.py

", "w+")
22 f.write(input)
23 print("file created in"+f.name)
24 f.close()
25 f=open("/home/co4robots/turtlebot/src/pursue_observer_node/src/

observer.py", "w+")
26 f.write(input)
27 print("file created in"+f.name)
28 f.close()
29
30 def run(self):
31 print("listening")
32 rospy.Subscriber("local_mission", String, self.callback)
33 rospy.spin()
34
35 def main():
36 print "Running the PURSUE reader"
37 reader=Reader()
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38 reader.run()
39 if __name__ == "__main__":
40 reader=Reader()
41 reader.run()

Listing B.7: Pursue_Reader

In Listing B.7 is reported the pursue_reader code. As first things, the package
is declared then there are the introductory comments that explain what the
file does. There are the import lines, keep attention to ms2_kth.msg and it
starts the Reader class. This class includes three methods: __init__(self),
callback(self,data) and run(self). The main is declared as the last
thing, so really below, and it is written on the prompt "Running the PuRSUE
reader". It is created an object of class Reader and then it is invoked its
method run. As in many files, there is the double invocation to make the
main called also from the prompt. Before the method run can be executed,
the __init__ has to be run. So, it is initialized a ros node called Reader and
it is set to zero the inner counter. Once done the initialization, the method
run can be executed.
As first thing, it is printed "listening" and puts itself listening on the topic
"local_mission" with the callback written above.
After it, there is the command rospy.spin() which prevents that python exits
before it is stopped.
Seeing what Callback does: first of all, it prints "I received data" and saved
the data in the variable input. It is checked if the 31o character of the input
is a ’c’ (of controller). If so, it is opened a file called runtime_controller in
the folder received_components and the input is written inside it. And it
notified that it has created the file and repeats the writing operation into
another folder, in that case the specific folder to make the system work,
saving the Controller.py in pursue_controller_node. After that, there are
similar instruction that checks if the 31 character of the input is an ’o’ (of
Observer). If so, the Observer.py is saved into the "received_components"
and pursue_observer_node folders. In order to make this operation working
for different applications, the folder’s path has to be changed with the path
of the case.

Pursue_designtime.sh

It is a really simple file used for launch two nodes together, in order to
have fewer operations and fewer instructions. In this specific file, after the
workspace is built, it launches the communication_manager. Then it waits
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Figure B.8: Pursue_designtime.sh

five seconds and then launches pursue_reader. This is helpful for consecutive
use of these nodes 3.

B.4 Run-Time: Components

Here are presented the Run-Time component individually. With the only
exception of the Interface, all the components are contained into a Ros node.
So more files make the node able to run, for simplicity here are reported only
the main files.

Controller.py

This is for sure the bigger file of the Run-Time structure. The reason fof that
has to be found on how the Controller.py is conceived. Because to select
the correct command for the robot the controller has to check which is the
current system state. For this reason, it presents a long list of if command
each one corresponds to a possible system state. The Listing B.8 reports the
first functions of a Controller.py.

1 from threading import Event
2 class runtime_controller:
3
4 def if_start(self, event_string):
5 if (event_string.data == "_start_"):
6 self.startFlag = True
7 print("controller 1 start")
8 return
9

10 def update_state(self, state_string):

3for more information see Appendix A.
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11 if hasattr(state_string, ’data’):
12 all_updates=state_string.data.split("\n\n")
13 else:
14 all_updates=state_string.split("\n\n")
15 state_updates =all_updates[0].split("\n")
16 for st in state_updates:
17 state_and_value = st.split("=")
18 if (state_and_value[0]=="reachObj"):
19 self.reachObj=state_and_value[1]
20 if (state_and_value[0]=="bot1"):
21 self.bot1=state_and_value[1]
22 if (state_and_value[0]=="Prule1"):
23 self.Prule1=state_and_value[1]
24 if (state_and_value[0]=="bot2"):
25 self.bot2=state_and_value[1]
26 if (state_and_value[0]=="rule1"):
27 self.rule1=state_and_value[1]
28 if (state_and_value[0]=="Pbot2"):
29 self.Pbot2=state_and_value[1]
30 if (state_and_value[0]=="Pbot1"):
31 self.Pbot1=state_and_value[1]
32 clock_updates =all_updates[1].split("\n")
33 for cl in clock_updates:
34 clock_and_value = cl.split("=")
35 if (clock_and_value[0]=="Cbot2"):
36 self.Cbot2=float(clock_and_value[1])
37 if (clock_and_value[0]=="Cbot1"):
38 self.Cbot1=float(clock_and_value[1])
39 if (clock_and_value[0]=="Creach"):
40 self.Creach=float(clock_and_value[1])
41 self.event_flag.set()
42 self.print_state()
43
44 def __init__(self):
45 rospy.init_node(’runtime_controller_node’)
46
47 self.TIMEUNIT = 0.1
48 self.startFlag= False
49 self.event_flag = Event()
50 self.event_flag.clear()
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51 self.exegg = exeggutor.Exeggutor(self.TIMEUNIT)
52 self.Cbot2= 0
53 self.Cbot1= 0
54 self.Creach= 0
55 self.reachObj= ""
56 self.bot1= ""
57 self.Prule1= ""
58 self.bot2= ""
59 self.rule1= ""
60 self.Pbot2= ""
61 self.Pbot1= ""
62 rospy.Subscriber("pursue/system_state", String, self.update_state)
63 rospy.Subscriber("pursue/events", String, self.if_start)
64 sleep(1)
65 print("waiting for start signal")
66 print("controller 1 inizializzato")
67 while (not self.startFlag):
68 sleep(0.2)
69
70 def print_state(self):
71 print("the system state for controller 1 is:")
72 print("reachObj is ",self.reachObj)
73 print("bot1 is ",self.bot1)
74 print("Prule1 is ",self.Prule1)
75 print("bot2 is ",self.bot2)
76 print("rule1 is ",self.rule1)
77 print("Pbot2 is ",self.Pbot2)
78 print("Pbot1 is ",self.Pbot1)
79 print("Cbot2 is ",self.Cbot2)
80 print("Cbot1 is ",self.Cbot1)
81 print("Creach is ",self.Creach)

Listing B.8: Controller.py

After the import command lines, the Controller class is declared. This class
present five functions: _init_, if_start, update_state, print_state, and run.
The order of the definition of the function is different from the order in which
they are invoked. To maintain simplicity in the exposure, the function will
be presented in the same order on which they are written.
The first function is if_start and is a callback of an instruction in _init_.
If the read data is the string _start_ the startFlag variable is set to true
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and it is notified on the prompt that the controller has started. The second
function is update_state and it is a bit longer than the previous one. This
function is again a callback of instruction in _init_ and its goal is to update
the system state once receives the message from the Observer_node.
The data can contain information on the state and the clocks. These two types
of information are on the same messages but split by a \n \n character. So,
the first thing that the function does is to check the format of the information
and split it into the two types.
In first place, takes into consideration only the information on the state,
these kinds of information are separated by a single \n character. The single
information is added in an array. In order to update all the states, a big for
cycle begins. For every information is checked which state is referred to and
then its value is updated.
A similar approach is used for updates the clocks. The information about
them are saved into an array, split on the \n character. A for cycle begins, for
every information contained in clock_updates is checked the referred clock
and update its value.
Two methods are then called, one for change the value of the flag and the
other one to call the function print_state, which will be described below.
In the end, a string that notified the happened updating is written on the
prompt.
The third function is _init_ and has to initialize the controller. The node
is declared as all the internal variables. Two times is invoked a method that
puts the controller as a subscriber but on two different topics. In this way, if
on pursue/system_state is publish something the function update_state is
executed. Similarly, if something is written on pursue/events the function
if_start will be executed. On the prompt is written that the controller is
initialized and that is waiting for the start signal. The fourth function is
print_state that simply prints on the prompt the value of all the variables,
relative to the state and the clocks.

1 def run(self):
2 while(not rospy.is_shutdown()):
3 sleep(self.TIMEUNIT)
4 #state header
5 if ( self.bot2== "b" and self.rule1== "rule1_initial_location" and

self.bot1== "c" and self.Pbot1== "3" and self.reachObj== "
unlocked" and self.Pbot2== "2" and self.Prule1== "0" ):

6 temps=set()
7 temp0= optimal_wait([ 1 + self.TIMEUNIT−self.Cbot1, 0 + self.
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TIMEUNIT−self.Cbot2 ] , [ ] , [])
8 if (temp0 >= 0):
9 temps.add(temp0)

10 if(temps):
11 wait = min(temps)
12 self.event_flag.clear()
13 self.event_flag.wait(wait)
14 self.exegg.ping_observer()
15 if (self.bot2== "b" and self.rule1== "rule1_initial_location" and

self.bot1== "c" and self.Pbot1== "3" and self.reachObj== "
unlocked" and self.Pbot2== "2" and self.Prule1== "0" ):

16 if ( (1<self.Cbot1 and 0<self.Cbot2 ) ):
17 #takes in agent ID, synchronizing action (or tau), and the states or

ogirin and target of transition
18 self.exegg.exeggute("bot1", "bot1_c2a!", "c", "going_c_to_a")
19 else:
20 self.event_flag.clear()
21 self.event_flag.wait()
22
23 ...
24
25 def main():
26 controllore = runtime_controller()
27 controllore.run()
28 if __name__ == "__main__":
29 controllore = runtime_controller()

Listing B.9: Controller.py

The fifth function is the run, as reported in Listing B.9, this is the major one.
Here is present a long list of if function, one for each possible system state,
with associated the correct command. All the if structures are contained
into a while cycle. So while the Ros is active the system state a constantly
checked. For simplicity only one if is reported, but it does not lose generality.
If the condition on the if is satisfied it means the system state is been
recognized. In this case, a set variable named "temp" is declared. In another
variable is saved the returned value of the function optimal_wait. The
function optimal_wait is written in file pursue_library.
If the returned value is greater than zero, it is added to the temp set. In this
way even if there is more than one condition on the time value, they are all
taken into account. So, if the temps set is not empty, its minimal value is
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researched and waited a respective time unit.
After have waited, it is asked to the Observer_node to republish the system
state and, with another if, it is checked that the system is not changed.
In this case, is sent to the executor the action that has to be done. The
sent information is organized with its parameters: agent, trigger, origin and
target. On the contrary, if the system state is changed the research of the
corresponding if resumes.
The research resumes also when the command is sent to the executor.
The sixth and last function is main, but it is not part of the Controller class.
Actually here is defined an object of class Controller and its method run is
called. As in almost all other files, it is present the double invocation. This
is made in order to be able to invoke the controller also via prompt.

Executor.py

This is a big player into the Controller_node, it is in charged to distinguish
the action that has to be done and selects the correct topic into which for-
ward the action. In the beginning, there are the introductory comments that
explain the file functions. The import command lines follow and finally is
declared the Exeggutor class. The executor is composed of four functions:
_init_, ping_observer, start_observer and exeggute, as reported in Listing
B.10

1 class Exeggutor:
2 def __init__(self, timeunit):
3 #dictionary here brutally defined for simplicity, in the future it should

implemented so it is read form file
4 self.location_dictionary = {
5 "a" : [3.0, 1.54, 0.0, 0.0, 0.0, 0.67 ,0.73],
6 "b" : [−0.57, 0.62, 0.0, 0.0, 0.0, 0.71 , 0.70] ,
7 "c" : [0.47, 2.89, 0.0, 0.0, 0.0, 0.76, 0.65],
8 "d" : [−3.19, 3.58, 0.0, 0.0, 0.0, −0.04, 1.0]
9 }

10 self.move = Move_command_sender()
11 self.act = Action_sender()
12 self.transition = Transition_sender()
13 self.TIMEUNIT = timeunit
14
15 #this function sends an "impossible" trigger, this will result in no

transition taken but clocks updated and publishing of state
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16 def ping_observer(self):
17 self.transition.send_message("_ping_")
18 print("I pinged the observer")
19 sleep(self.TIMEUNIT)
20
21 def start_observer(self):
22 self.transition.send_message("_start_")
23 print("I started the observer")
24 sleep(self.TIMEUNIT)
25
26 def exeggute (self, agent, trigger, origin, target):
27 #first I check wether I’m triggering a movement
28 trg = target.split("_")
29 org = origin.split("_")
30
31 if (trg[0] == "going"):
32 #I send the coordinates to the bot andthe transition trigger to the

enviroment
33 self.move.send_message(self.location_dictionary[trg[−1]])
34 if(trigger[−1]==’!’ or trigger[−1]==’?’):
35 trigger_cleaned = trigger[0:−1]
36 else:
37 trigger_cleaned = trigger
38 self.transition.send_message(trigger_cleaned)
39
40 #print to screen
41 print("I send the trigger"+ trigger_cleaned+ "so I’ll go to

coordinates")
42 temp = self.location_dictionary[trg[−1]]
43 for p in temp : print p
44
45 #then i check for action with duration
46 elif (trg[0] == "doing"):
47 if(trigger[−1]==’!’ or trigger[−1]==’?’):
48 trigger_cleaned = trigger[0:−1]
49 else:
50 trigger_cleaned = trigger
51 self.act.send_message(trigger_cleaned)
52 self.transition.send_message(trigger_cleaned)
53 print("I do" + trigger_cleaned)
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54
55 #then I check if I finished a movement
56 elif(org[0] == "going"):
57 #I generate the trigger since as of right now the model doesn’t have

them for finishing movments
58 if (trigger == "tau"):
59 trigger_cleaned = agent+"_"+origin+"2"+target
60 else:
61 if(trigger[−1]==’!’ or trigger[−1]==’?’):
62 trigger_cleaned = trigger[0:−1]
63 else:
64 trigger_cleaned = trigger
65 self.transition.send_message(trigger_cleaned)
66
67 #then I check if I finished an action
68 elif(org[0] == "doing"):
69 if(trigger[−1]==’!’ or trigger[−1]==’?’):
70 trigger_cleaned = trigger[0:−1]
71 else:
72 trigger_cleaned = trigger
73 self.transition.send_message(trigger_cleaned)
74 print ("agent has finished action, trigger is "+ trigger_cleaned)
75
76 #finally, last remaining option is that the action was istanteneus
77 else:
78 if(trigger[−1]==’!’ or trigger[−1]==’?’):
79 trigger_cleaned = trigger[0:−1]
80 else:
81 trigger_cleaned = trigger
82 self.transition.send_message(trigger_cleaned)
83 print("agent has done instantaneuos action" + trigger_cleaned)
84
85 sleep(self.TIMEUNIT)

Listing B.10: Executor.py

The first function is _init_ and it is executed immediately. A dictionary
containing all the P.O.I coordinate is defined. The coordinates are organized
into an array of seven positions. The first three values are associated with
the space coordinates, while the last four are associated with the unitary
quaternion for the orientation.
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Then are three command lines, the instructions to call the respective method,
contained into the other Controller_node files. They are precisely Move_command_sender(),
Action_sender() and Transition_sender(). At last, the time-unit value is
saved into the respective local variable. The second function is ping_observer,
short but important. Is the first one to be called by the controller.py, a
"ping" message is delivered to the Observer due to this function. As conse-
quences of that, the clocks will be updated and the Observer_node will repub-
lish the system_state. All is done invoking the method "self.transition.send_message()"
with "_ping_" as argument. In order to notify the action, on the prompt is
written: "I pinged the observer" and is waited a time unit.
Start_observer is another short but important function, invoking again
"self.transition.send_message()" but with the argument "_start_" gives the
start impulse to the observer. The action done is again notified on the prompt
and it waits a time unit.
The last and major function is executor, which checks what type of command
the Controller.py has sent. In trg is saved the first part of the input pa-
rameter target, so it could be "going" or "doing". In org is instead saved
the first part of the input parameter origin, it could be "going" or one of the
POI.
Based on the values of these two variables, are identified five different cases
each one with different activities that have to be done.
Case one: the string saved into trg is "going". It means the command is "send
the robot to this position", so the coordinates of the given position are recalled
from the _init_ dictionary. Through Move_command_sender.send_message()
are forwarded the command to the robot. Before notified the action also at
the observer the trigger has to be cleaned. Trigger is a string that summarises
the command selected, but can present a character "!" or "?" at its end. Trig-
ger is used to notify to the observer what the robot will do, in order to have
the system state always update and. To be recognized, the special character
has to e removed and the valid trigger value is saved into trigger_cleaned.
Through Transition_sender.send_message(), trigger_cleaned is published
on pursue/events. A message with the trigger is printed also on the prompt,
followed by all coordinates of the POI.
Case two: the string saved into trg is "doing", so the command is an action
with duration. As first thing, the trigger is cleaned. The command has to
be forwarded on pursue/action and pursue/event so are respective call the
send_message() of act and transition. In this way, the trigger value is sent
both to the robot and the observer. At last, the trigger is also printed on the
prompt.
Case three: the string saved into org is "going", so a movement is finished.
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In this case, trigger is not always given. If trigger exists is just cleaned as
in the previous cases, if not it is generated. In order to know if the trigger
has to be generated, is checked if its value is "tau". If so trigger_cleaned is
composed of the formula: agent_origin2target.
Trigger_cleaned is notified to the observer in the same way: Transition_sender.
send_message().
Case four: the string saved into org is "doing", so the action is finished. The
trigger is cleaned, as always, and forwarded to the Observer_node. The end
of the action is notified also on the prompt.
Case five: if it is not one of the previous chases, has to be an instantaneous
action.
The trigger is cleaned, as always, and forwarded to the Observer_node. The
end of the action is notified also on the prompt.
In the end, it waits a time unit and the execute function is finished.

Transition_sender.py

After the introductory comments, are present the import instructions. The
Transition_sender class begins. It presents two methods: _init_ and
send_message. In __init__ it is defined a function that publishes a message
on the topic pursue_events with a queue of ten elements. In send_message is
called the function defined above passing the message that will be forwarded.

Pursue_library.py

As the name suggests, this file is used as a library for three functions: lis-
ten, optimal_wait and listen_and_wait, as reported in Listing B.11. This
function is important for the controller because returns how much time the
command has to wait before being sent.

1 def listen(TIMEUNIT, heard, queue):
2 while (True) :
3 time.sleep(TIMEUNIT) #It seems necessary to put this in order to

make the thing work
4 #print("mi chiedo se il Main mi ha scritto <3")
5 if not queue.empty(1):
6 item = queue.get(True, 1)#at every cycle, it controls wether the

main thread asked to quit
7 if item == "quit":
8 break
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9 with heard: #only enters this part if the method is unlocked
10 if (False):#read something from topic, da implementare
11 heard.notify()
12 return 0
13
14 def optimal_wait(clock_higher, clock_lower, clock_const):
15 wiggle = 0.5
16 print("I enter optimal wait, wiggle is "+str(wiggle))
17
18 for number in clock_const:
19 if number < (0−wiggle):
20 print("constant costraints dicono no causa di " + str(number))
21 return −1.0
22
23 highest_ch = 0.0 #smallest wait before a rising condition becoems true

(if all true, thus all negative, you wait zero)
24 for number in clock_higher:
25 if (number > highest_ch):
26 highest_ch = number
27
28 if clock_lower:
29 lowest_cf = clock_lower[0] #smallest wait before a falling condition

becomes false
30 for number in clock_lower:
31 if number > (0+wiggle):
32 print("clock lower costraints dicono no, a causa di " + str(

number))
33 return −1.0 #if a clock_lower condition is positive, the overall

condition shall never be true until some clock are reset
34 else:
35 if number > lowest_cf: #if it’s closer to zero
36 lowest_cf = number
37
38 if (highest_ch−wiggle) > (− lowest_cf):#remembering lowest_cf is

negative
39 print("final check costraints dicono no, a causa di " + str(

highest_ch− lowest_cf))
40 return −1.0 #a "C <= int " condition will become false before all

"int < C" condition can become true
41 print("tutto ok, ritorno"+ str(highest_ch))
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42 return highest_ch #return the time needed before all conditions
become true

43
44 def listen_and_wait(TIMEUNIT, wait):
45 q = Queue.Queue() # declare a queue, to communicate between

threads
46 change = threading.Condition() #define a condition
47 listener = threading.Thread(target = listen, args = (TIMEUNIT,

change, q,) ) #define a thread, with target function listen
48 change.acquire() #acquire the lock for the condition
49 startTime = time.time()
50 listener.start() #start thread
51 print("I+ll wait", wait)
52 change.wait(wait) #the method autohmatically releasos the lock
53 q.put("quit") #wether I quit because of timeout or condition, I ask the

thead to quit
54 listener.join() #wait for thethread to quit
55 endTime = time.time()
56 #status.update (con molti threadbisognera stare attenti che non succeda

nulla in contemporanea e abbia priorita, se dev dialgoare con altri
thread problemi)

57
58 elapsedTime = endTime − startTime
59 return elapsedTime

Listing B.11: Pursue_library

The first function is listen, begins with an always true cycle. After has
waited for one TIMEUNIT, checks if the queue is not empty. If there is at
last one element it saves it into a local variable and removes it from the queue.
If the get item is the string "quit" the cycle is broken. In the other case
invokes the method heard.notify and returns. Optimal_wait is the longer
function of the library; it takes as parameters clock_higher, clock_lower e
clock_const from the controller. They are values associated with the inner
clocks of the automata, and it is fundamental to respect the condition on
them. It is defined a variable, wiggle, that has the duty to take into account
the uncertainties on the time measure.
It is printed on the terminal that the function is starting and the current
value of the wiggle. A for cycle begins, pass every value of clock_const and
it is checked if is lower than the wiggle. If so it is notified the error, the time
is to short and return -1.0. If no problem occurs, there is another "for" cycle
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that research the highest clock value.
In the following instruction block, the clock_lowers, if there are, are checked.
If one of them is lower than the wiggle value, an error message is printed and
the function returns -1.0. Otherwise, the value of the lowest clock_lower is
saved into lowest_cf.
At the end of the last control, if the highest clock_higher is greater than the
lowest clock_lower, it prints an error message and returns -1.0 because there
will never be a waiting value that will satisfy the constraints.
If the execution survives, it is print an OK message and the highest_ch is
returned. This is the time the system has to wait before all the conditions
become true.
The third and last function is listen_and_wait. A FIFO queue is declared
thought of the queue.queue() command, this queue allows the threads to
communicate with each other. A thread.Condition() type variable is declared;
this type of return a condition variable that manages the thread execution.
Defines a thread, named "listener", as a thread with listener as the target
function.
Acquired the lock, saves the current time as StartTime and launch the thread.
It is written on the prompt the waited time and automatically releases the
lock after the wait time.
"Quit" is added to the thread queue, in this way the thread will terminate
itself for inactivity. All the other threads are blocked, so the listener can
expire its queue.
The current time is saved in endTime, the elapsedTime is computed and
returned.

Move_command_sender.py

After the introductory comments are present the import instructions. The
Move_command_sender class begins, it presents two methods:_init_ and
send_message, as reported in the Listing B.12.

1 class Move_command_sender:
2 def __init__(self):
3 self.pub = rospy.Publisher(’move_base_simple/goal’, PoseStamped,

queue_size = 10)
4 sleep(1)
5
6 def send_message(self, coordinates):
7 goal = PoseStamped()
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8 goal.header.frame_id = "map"
9 goal.header.stamp = rospy.Time.now()

10 goal.pose.position.x = coordinates[0]
11 goal.pose.position.y = coordinates[1]
12 goal.pose.position.z = coordinates[2] #always
13 goal.pose.orientation.x = coordinates[3]
14 goal.pose.orientation.y = coordinates[4]
15 goal.pose.orientation.z = coordinates[5]
16 goal.pose.orientation.w = coordinates[6]
17 self.pub.publish(goal)

Listing B.12: Move_command_sender

In __init__ it is defined a function that publishes a message on the topic:
move_base_simple/goal, with a queue of ten elements.
In send_message it is defined a variable of type PoseStamped, this type of
object is composed of nine fields. Two are of type header and are used by
Ros to interpret the others. The others are used for saving the position that
has to be reached. This is because the goal point is identified with the three
spatial coordinates and the unit quaternion.
Once the variable is initialized, is invoked the method self.pub.publish. In
this way, the position is published on the topic move_base_simple/goal.

Action_sender.py

After the introductory comments, are present the import instructions. The Ac-
tion_sender class begins, it presents two methods: _init_ and send_message.
In __init__ it is defined a function that publishes a message on the topic
pursue_action with a queue of ten elements.
In send_message is called the function defined above passing the message
that will be forwarded.

Observer.py

This agent is in charged to keep the system state update. The Observer_node
is composed of more files, but the main code is Observer.py, the one created
in the Design phase. Here is reported only the Observer.py.
In the first line, the package is defined, and the import instructions follow.
The file composition strongly depends on the scenario, because a class is
defined for each automaton of the model. So, each class is composed of four
functions: reset_clock, trigger, updateP and _init_, as reported in Listing
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B.13. The last class is Observer(), always present, it has different functions:
callback, _init_ and run, as reported on Listing B.14.

1 class Classstates():
2 def reset_clock(self):
3 self.need_reset = True
4
5 def trigger(self, trigger):
6 if (trigger in self.machine.get_triggers(self.state)):
7 if (trigger=="isPlastic"):
8 self.isPlastic()
9 self.SpaperOrPlastic="0"

10 if (trigger=="isPaper"):
11 self.isPaper()
12 self.SpaperOrPlastic="1"
13
14 def updateP(self, newP):
15 self.P = newP
16
17 def printStates(self):
18 stati = ""
19 stati = stati +"\nSpaperOrPlastic="+str(self.SpaperOrPlastic)
20 return stati
21
22 def __init__(self):
23 self.name="states"
24 self.need_reset = False
25 self.clock=0.0
26 self.P =0
27 self.SpaperOrPlastic=1
28 states =[’base’]
29 transitions = [
30 {’trigger’ : ’isPlastic’ , ’source’ : ’base’ , ’dest’ : ’base’ },
31 {’trigger’ : ’isPaper’ , ’source’ : ’base’ , ’dest’ : ’base’ }
32 ]
33 self.machine= Machine(model = self, states=states, transitions=

transitions, initial=’base’,auto_transitions=False)
Listing B.13: Observer.py

Without losing generality, only one class related to the state automata is
presented.
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Its first function is reset_clock that simply set True the variable need_reset.
The second function is trigger, which checks if the trigger is present in the
trigger array of the local automata. If the trigger is recognized, the respective
transition takes place and the automata evolve.
The next and third function is updateP, which simply saves the new value of
P.
The last function is _init_, that initialized the inner variables. There
are three specific variables, two arrays that save all the states and all the
transitions of the local automata, and machine, that through a java class,
actually creates the automata.
The part related to the "local" automata is ended, now is reported the
function present in Observer class.

1 class Observer():
2 def callback(self, data):
3 trigger = data.data
4 for automaton in self.automa:
5 automaton.trigger(trigger)
6 if trigger == "_start_":
7 self.startTime=time.time()
8 self.stopTime = time.time()
9 elapsedTime =self.stopTime − self.startTime

10 self.startTime = time.time()
11 for automaton in self.automa:
12 if automaton.need_reset:
13 automaton.clock = 0
14 automaton.need_reset = False
15 else:
16 automaton.clock += elapsedTime
17 state = ""
18 clocks = ""
19 for automaton in self.automa:
20 state +="\n"+ automaton.name + "=" + automaton.state + "\n"+"

P"+automaton.name+"="+str(automaton.P)
21 clocks += "\n"+’C’+automaton.name +"=" +str(automaton.clock)
22 state = state + self.automa[0].printStates()
23 print ("the following will be sent to state topic:\n"+state+"\n\n"+

clocks)
24 self.pub.publish(state+"\n\n"+clocks)
25
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26 def __init__(self):
27 self.automa = []
28 self.automa.append(Classstates())
29 self.automa.append(ClasspickingUp())
30 self.automa.append(ClassthrowingPaper())
31 self.automa.append(ClassthrowingPlastic())
32 self.automa.append(ClassmakingTrash())
33 self.automa.append(ClassecoBot())
34 self.automa.append(ClassplasticBin())
35 self.automa.append(Classhuman())
36 self.automa.append(ClasspaperBin())
37 self.automa.append(Classobj())
38 self.startTime = time.time()
39 self.stopTime = self.startTime
40 rospy.init_node(’pursue_observer’)
41 self.pub = rospy.Publisher(’pursue/system_state’, String, queue_size=1)

42 def run(self):
43 rospy.Subscriber("pursue/events", String, self.callback)
44 rospy.spin()
45
46 def main():
47 observer = Observer()
48 observer.run()
49 if __name__ == "__main__":
50 observer = Observer()
51 observer.run()

Listing B.14: Observer.py

This class is always present in every Observer.py and invokes all the other
classes.
Its first function is callback, which is a callback of one of the instructions
in the run function. The read data is saved and forwarded to each local
automata, calling the function trigger.
If the data is the string _start_, is saved the current time in startTime. Out
of the if command, the current time is saved into stopTime, and elapsedTime
is computed. The current time is saved again into startTime and all clacks are
updated. For every automaton, if the clock needs a reset is reset, otherwise
it is incremented by the value of elapsedTime.
Two variables are declared, state and clock. Into these variables are saved
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every state and every clock of every automaton separated by a \n character.
On the prompt is write that these two variables will be published and they
are actually published on pursue/system_state topic separated by a double
\n.
Now begin the function _init_. In this function, all the local automata
classes are declared. The current time is saved into startTime and stopTime
is initialized as startTime.
The pursue_node is declared and started. This node is put as a publisher on
the topic pursue/system_state with a unitary queue.
The last function is run that simply put the node as a subscriber on pur-
sue/events, and has callback as a callback. The method spin maintains the
structure active while Ros works.
In the end, the main is defined. It is declared an object of class Observer and
is invoked its function run. As in many cases before, is present the double
declaration.

Interface.py

This agent is used to communicate with the outside. With it the uncontrol-
lable event can be notified to the Observer, the start signal can be given and
simulation can be done. The main parts are reported in the Listing B.15.

1 class Stater:
2 def callback_ev(self, data):
3 if (data.data == "_start_"):
4 self.startTime = time()
5 if (data.data != "_ping_"):
6 print("\n\non topic events:" + data.data + " at time "+str(time()−

self.startTime))
7
8 def callback_act(self, data):
9 print("\n\non topic actions:" + data.data+ " at time "+str(time()−

self.startTime) )
10
11 def callback_state(self, data):
12 print("\n\non topic sysyem_state:" + data.data + " at time "+str(

time()−self.startTime))
13
14 def __init__(self):
15 rospy.init_node(’stater’)
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16 self.pub = rospy.Publisher("pursue/events", String, queue_size = 1)
17 self.mod= raw_input("select mode: (’f’ = all communication, ’e’= only

events ): ")
18 self.sim= raw_input("would you like to start the automatic enemy

strace?(traceID/n): ")
19 self.startTime = time()
20 print("initializing done")
21 def run(self):
22 rospy.Subscriber("pursue/events", String, self.callback_ev)
23 if (self.mod == "f"):
24 rospy.Subscriber("pursue/actions", String, self.callback_act)
25 if (self.mod == "f"):
26 rospy.Subscriber("pursue/system_state", String, self.callback_state)
27 events = ["_ping_",
28 "callBot",
29 "wait",
30 "waitDONE",
31 "isPlastic",
32 "isPaper"
33 ]
34 bin_mov =[ "bin_trashRoom2hallway",
35 "bin_going_trashRoom_to_hallway2hallway",
36 "bin_hallway2base",
37 "bin_going_hallway_to_base2base"
38 ]
39 while(not rospy.is_shutdown()):
40 #traccia EB1 −experimental
41 raw_input("press any key to start")
42 self.pub.publish("_start_")
43 sleep(0.5)
44 while (self.sim == "a" and not rospy.is_shutdown() ):
45 sleep(1.1)
46 self.pub.publish(events[1])
47 sleep(1.1)
48 self.pub.publish(events[2])
49 sleep(61.1)
50 self.pub.publish(events[3])
51 ...
52 act_code = int(raw_input("select action: "))
53 if (act_code < 0):
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54 i = 0
55 while (i < len(events)):
56 print("action #"+str(i)+" is "+events[i])
57 i= i+1
58 elif (act_code < len(events)):
59 self.pub.publish(events[act_code])
60 else:
61 print("input incorrect")
62 return
63
64 def main():
65 stater = Stater()
66 stater.run()
67 if __name__ == "__main__":
68 stater = Stater()
69 stater.run()

Listing B.15: PuRSUE_UI

After the import command, the Stater class is defined. This class present five
function: callback_ev, callback_act, callback_state, _init_ and run. These
functions will be presented in the same order on which they are written.
The first function met is callback_ev. As suggested from the name, it is a
callback function called by one of the run instruction.
The read data value is checked, if it is the string "_start_" the current time
is saved in startTime. Otherwise, if the data value is a string different from
"_ping_", a message that says that the data is written on the topic event is
written on the prompt.
The second function is callback_act. Even in this case is a callback function
called by one of the run instruction. It simply writes on the prompt that the
data were written on the topic action.
The third function is callback_state, completely analogous to callback_act,
only for the system_state topic.
The next, and fourth, function is _init_. This is an internal function that
has the duty to initialized all the inner variables. The first thing done is
to start the node Stater, then this node becomes a publisher on the topic
pursue/events. It reads, from the prompt, if a full communication is desired,
or it is preferred to just considering only the events. It is also asked if it has
to start an automatic event sequence (of the enemy), and in the case which
sequence. The time is saved into startTime and is notified on the prompt
that the stater is ready.
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The last function is run, this is the major one. As first thing, the node is
put as a subscriber on pursue/event, with callback_ev as callback. If the
communication is full, the node subscribes also on pursue/action and pur-
sue/system_state topics with callback_act and callback_state respectively,
as callbacks.
Are then defined two arrays, one containing all the possible events and the
other one for all the possible movements.
A while cycle begins, until the Ros mechanism is on, asks on the prompt to
"press any key to start". After has received confirmation, the start signal is
published on the topic pursue/events. Follows all the command for auto-
matically simulate the enemy strategy, take for example the "a", case used
on the ecoBot scenario [1]4 without losing generality. In this case, the enemy
strategy is composed of three instructions. At the beginning is published
the first event, "callBot" and wait 1.1 sec. Then is published the second
event, "wait", and waits for 61.1 seconds. At last, it publishes the third event,
"waitDONE" and resumes the while cycle.
If no one of the automatic sequences is selected, on the prompt is asked which
action has to be notified on the Observer. The act_code is saved and checks
if that action exists on the previously defined event array. Once is found, the
event is published on the pursue/events topic. Otherwise is printed on the
prompt "incorrect input".
In this way, the Stater class end. To complete the file there is the main. It
declares an object of class Stater and invokes its run function. As in many
other cases, the main has the double declaration.

Pursue_runtime.sh

Pursue_runtime.sh is a really simple file used for launch two nodes together,
to have fewer operations and fewer instructions. This specific file, used once
the workspace is built, launches the observer_node. Then it waits two seconds
and then launches the controller_node. This is useful for a consecutive use
of these node 5.

B.5 Other files

Corollary material is present in this framework version, these files are not
essential for the correct operation described before. They are supportive

4For more information see the previous work
5for more information see Appendix A
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files for development or testing, here are reported the main ones that can be
useful.

Folder 5-pursue_receiver-main_robot_side

If it is present, it is located into the Design Folder, contains the Ros files
used to run the reader_node.

Folder 6-controller generation components

If it is present, it is located in the Design Folder and contains the files
contained in the controller_node/src folder. Can be useful develop the
new version of these files inside this folder.

Eclipse code

Eclipse-code is a folder structure used in the Design-Time Development phase.
Inside this folder, there are other eight levels of encapsulated folders that end
with other three empty folders.

EclipseCode/cominicator/beacon/target/classes/org/xtext/thesis/
matt4->generator/scoping/validation.

Matteo_maps

It follows the path "turtleBot environment/PuRSUE/Matteo_maps" and
contains a folder with pictures and their description of an office’s maps. These
maps were used during the test on the real robot.
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The problem examples

Here are reported the most significant scenarios taken as reference for the
development of the PuRSUE Framework. These scenarios, also with small
variation, are modeled with PuRSUE-ML in [1, 2]

Catch the thief

(a) Catch the Thief simple map
(b) Catch the Thief simple map
with variation

(c) Catch the Thief complex map
(d) Catch the Thief complex map,
reverse role

Figure B.9: Catch the Thief Maps

For an exemplification, it is taken into account Figure B.9a. In this
situation, there is a policeBot that has to catch a thief, an uncontrollable
agent free to move, and that has to escape. To accomplish the task the
policeBot has to immobilized the thief with a tool it is provided with. This
operation will be modeled as a collaborative event in PuRSUE-ML.
The policeBot has to know the environment in which it moves, it could be
assumed that it has a map given and/or a perception and mapping algorithms.
In this case the environment it is shown in Figure B.9a as a room, where are
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identified four Point Of Interest (POI) labeled as a,b,c,d. In PuRSUE-ML
the environment is described by the POI and the distances between them,
through this information the framework is able to synthesize the control
strategy which brings the policeBot to catch the thief. Other variables have
to be taken into account, as the speed of the two agents or unfeasible robot
movement and the PuRSUE-ML can model all of them. A lot of variation of
this simple situation can be described and solved, e.g. consider Figure B.9b
where the policeBot has to take the baton from another room or Figure B.9c
where the environment is far more complex6. It is also possible to consider
the Bot as the thief and humans as policemen as shown in Figure B.9d.

Figure B.10: Drug Delivery and EcoBot Examples

Drug Delivery

This scenario has more agent, the medBot, a controllable mobile robot that
has the task to bring the medicine from the storage room to one of the three

6The map shown is the third floor of the Jupiter building of the Goteborg University
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tables inside the emergency room. The tables are located near one of the
three doors (correspondingly), the medBot has to cross the emergency room’s
door, but it can do that only if the door is open. If the door is close the
medBot has to try if another door is open or has to ask the nurse to open the
door and wait till the action is completed. The nurse can stay only inside
the emergency room she is able to open and close the doors, she is model as
a controllable agent because she works with the medBot and tries to help it.
An uncontrollable agent is a stretcher-bearer, he is free to move all over the
scenario, he can open and close the doors and the medBot has to avoid to
collide him and also to be in his way.

Ecobot

This scenario was used in [1] for an experiment with a real mobile robot
(TurtleBot) in the Jupiter building of the Goteborg University. In this scenario
the protagonist is the ecoBot, a controllable mobile robot located in a room
called Base. The uncontrollable agent is a human, who stay in the office, and
can call the robot when he has some trash to throw away. Once the ecoBot
receives the command pass through the hallway, it goes into the office and
collects the trash. Once it has done it, it returns in the hallway to reach
the trash room and put the trash into the bin. Also for this scenario some
variants are present.
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