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Abstract

Having full autonomy in robotic surgery would revolutionize the quality of health-
care. However, one of the biggest challenges faced in automating a surgical pro-
cedure is the lack of data that can be used in statistical or Machine Learning
approaches. Another challenge stems from the high variability between patients,
and the differences between surgical techniques used for the same procedure. Cur-
rent approaches require large amounts of data to provide accurate predictions,
which is seldom available for surgery.

The aim of this study is to create an Al system that is able to generate a surgical
process. A Robotic Partial Nephrectomy is used as a prototypical implementa-
tion. First, Surgical Procedural Knowledge is extracted from articles written by
experts on the techniques of the procedure, and then formalized using Surgical
Process Modeling strategies. Using this formalized knowledge, Answer Set Pro-
gram (ASP) rules and constraints were created. ASP uses external atoms, and the
knowledge it is given a priori, to reason on the surgical process.

Real surgical video annotations were used for evaluation. Anatomies were ex-
tracted from these surgeries, and given as input to the ASP algorithm, to generate
the surgical process. Actual Steps and Actions were compared to those predicted
by the ASP system. The overall accuracy of the model in predicting Steps and
Actions was found to be 95.3%. Actions were predicted with a mean precision
of 97% with a standard deviation of 6.5%, a mean recall of 89% with a standard
deviation of 14.3%, and a mean F1-score of 92% with a standard deviation of 8.1%,
computed over all the annotations. Additionally, expert urologists validated the
correctness of the surgical workflow provided by the ASP system.

ASP allows for a robust, and flexible surgical process generation. This system
can be integrated with a situation awareness module, as well as a surgical robot,
to increase the level of autonomy in surgery.



Sommario

Avere piena autonomia nella chirurgia robotica rivoluzionerebbe la qualita dell” as-
sistenza sanitaria. Tuttavia, una delle maggiori sfide affrontate nell’automazione
di una procedura chirurgica ¢ la mancanza di dati che possano essere utilizzati
in approcci statistici o di Machine Learning. Un’altra sfida deriva dall’elevata
variabilita tra i pazienti e dalle differenze tra le tecniche chirurgiche utilizzate per
la stessa procedura. Gli approcci attuali richiedono grandi quantita di dati per
fornire previsioni accurate, che raramente sono disponibili per la chirurgia.

Lo scopo di questo studio é quello di creare un sistema di IA in grado di gener-
are un processo chirurgico. Una Nefrectomia Parziale Robotica viene utilizzata
come implementazione prototipale. In primo luogo, la conoscenza della procedura
chirurgica viene estratta da articoli scritti da esperti sulle tecniche della procedura,
e poi formalizzata utilizzando strategie di Modellazione del Processo Chirurgico.
Utilizzando questa conoscenza formalizzata, sono state create le regole e i vincoli
del Answer Set Program (ASP). L’ASP utilizza atomi esterni, e la conoscenza che
gli viene data a priori, per ragionare sul processo chirurgico.

Per la valutazione sono state utilizzate vere e proprie annotazioni video chirur-
giche. Le anatomie sono state estratte da questi interventi, e date come input
all’algoritmo ASP, per generare il processo chirurgico. I passi e le azioni reali sono
stati confrontati con quelli previsti dal sistema ASP. L’accuratezza complessiva del
modello nella previsione di Passi e Azioni & risultata essere del 95,3%. Le azioni
sono state previste con una precisione media di 97% con una deviazione standard
di 6.5%, un richiamo medio di 89% con una deviazione standard di 14.3%, e un
Fl-score medio di 92% con una deviazione standard di 8.1%, calcolato su tutte le
annotazioni. Inoltre, urologi esperti hanno convalidato la correttezza del flusso di
lavoro chirurgico fornito dal sistema ASP.

L’ASP consente di generare un processo chirurgico robusto e flessibile. Questo
sistema puo essere integrato con un modulo di consapevolezza della situazione,
cosi come un robot chirurgico, per aumentare il livello di autonomia in chirurgia.
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1 Introduction

1.1 Motivation

Over the last few decades, surgical autonomy has been extensively studied with
minimally invasive surgery (MIS). MIS provides tremendous benefits over open
surgeries in the reduction of infections [14], as well as a general improvement of
cosmetic outcomes, and a reduction in recovery time. With its increase in popular-
ity, and with the rise of surgical robots, autonomy in surgery became an important
field of research. Increasing the level of autonomy [I] in surgery can improve the
quality of healthcare. As described in [2], this autonomy can increase the level of
safety and reduce the patient’s recovery time. It can also reduce the chances of
mistakes that usually occur because of fatigued surgeons. Having full autonomy in
surgery can also help human kind in its quest for space exploration. It is expected
that in the early 2030s, longer space flights to the moon and mars will proba-
bly begin. The mars exploration is planned to last about two and a half years.
However, medical crew members might not have the proper training to treat all
the possible pathologies they may face [3]. For that, a fully autonomous surgical
approach might be useful, or even life saving. Semi-autonomous system can also
be used if fully autonomous ones are not yet available. Crew members without
full medical training can perform the incisions and closure parts of the surgical
procedure while having the robot do all the rest [4].

Artificial Intelligence (AI) research for autonomous robotic surgery includes all
aspects of a surgical procedure. This involves research that ranges from situation
awareness and scene understanding, safe and explainable surgical plan generation,
to dexterous trajectory generation. A lot of research has been successful in inter-
preting data from sensors to guide the execution of simple tasks such as knot-tying
[5] or drilling [6]. Others have been successful in proving greater dexterity by a sur-
gical robot in executing some simple surgical actions compared to humans. Some
examples include the studies 7], [8] and [9] further explained in Chapter 2 Current
AT such as machine learning (ML) raises many problems in applications such as
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surgery. For one, ML algorithms are often treated as a black box, where the predic-
tions generated are not explainable. Methods such as Convoluted Neural Networks
(CNN) have yielded exceptional results for image recognition. Other Al, including
Ontologies, Knowledge Representation, and probabilistic models have also been
shown to be useful for detection and diagnostics. However, a large amount of data
is needed to get accurate results. In surgery, this data is scarcely available, and
the intra-operable variations between surgeries increase this difficulty even more.

While there are significant advances in robotic surgery in terms of mechanical
abilities such as scene understanding with sensors, and having robotic arms that
provide greater dexterity, there is still opportunity for improvement to reach full
automation in surgery. Al systems are still limited in terms of their ability to judge
and plan surgical procedures. Being able to reason on information not known in
advance is a human cognition ability that Al is yet to perfect [1].

One of the greatest challenges in automating surgical planning is the lack of well-
defined rules on how to specifically perform a procedure [I]. Expert surgeons
usually do not all perform an operation in the exact same manner. There are too
many variables between patients and preferences in techniques, to have a consensus
on how to exactly perform a surgical procedure. This thesis attempts to use Al for
real-time surgical process generation. Our focus is to only deal with the decision
making portion of the surgery, using a knowledge representation language: An-
swer Set Programming (ASP). ASP is a declarative rule based logic programming
language that uses knowledge on the domain to reason on the surgical process.
ASP can reason in real-time on information about the environment from sensors,
by using the knowledge it is given a priori by experts.

1.2 Objective

This thesis attempts at providing a declarative reasoning approach to modeling a
surgical procedure. This Al system will also be able to adapt to environmental
changes by quickly re-planning the Surgical Process (SP). For that, we chose a
logic programming language: Answer Set Programming (ASP). ASP is a powerful
problem solving tool, often used for planning problems and robotics. The aim of
this work is to apply this AI method on a Robotic Partial Nephrectomy (RPN).
Surgical Procedural Knowledge is extracted from articles written by experts, on the
principles and techniques of this procedure. The RPN process is first formalized,

2 Masters Thesis, Politecnico Di Milano, 2020
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and then rules within the ASP program are created using common sense, from
surgeon’s description of the task. The ASP rules are high level knowledge extracted
from descriptions of the surgical technique. When combined with constraints, a
safe, explainable and reliable system is guaranteed.

1.3 Scope

One of the integral parts in surgical automation is the generation of safe and ex-
plainable plans. In this thesis, the rules and relations that govern the ASP system
are based on the descriptions of the robotic partial nephrectomy technique. In
these two articles |10, [IT], small differences in the order of steps can be seen.
However, the sequential understanding of the specifications of the procedure are
very similar. For this reason, the ASP algorithm should provide the conditions
necessary for a successful surgical process, while also leaving room for flexibility.

The main contributions of this work are described as follows:

e A robotic partial nephrectomy will be modeled using Surgical Process Mod-
eling strategies. This model will be generic enough to be expanded to other
robotic laparoscopic procedures.

e The ASP algorithm will give a justifiable surgical process that gives infor-
mation on the different granularity levels: Phase, Step, Instrument, Action
and Anatomy.

e Input for the ASP system will be assumed to come from sensors, acting as
external atoms, on the anatomies identified. Two types of outputs can be
achieved with this system: a complete surgical workflow generation, or a real
time surgical procedure that reflects a more realistic scenario.

e For this work, scene understanding and the actual executions of these actions
are not dealt with, but merely the decision making and reasoning part.

Finally, this work will be evaluated both quantitatively and qualitatively. Real
surgical video annotations will be used for the comparison between actual surgical
steps and actions, and those predicted by the ASP system. In addition, four
urologists will evaluate the provided workflow and give their expert opinion on
how the system as a whole can be improved and be applicable in real surgical
scenarios.

Masters Thesis, Politecnico Di Milano, 2020 3
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1.4 Outline

This thesis is divided into 7 chapters.

Chapter 2| 'Related Work’ describes some relevant research that has been done to
achieve autonomy in surgery. It takes the reader through some advances in mini-
mally invasive surgery and robot-assisted surgery, to different levels of autonomy
in surgery.

Chapter [3| 'Fundamentals’ explains some important concepts that need to be
understood for Surgical Process Modeling and Knowledge Representation in the
field of Surgery.

Chapter [4] 'Problem Description’ clarifies the difference between Machine Learn-
ing and Machine Reasoning, and how a combination of the two would could achieve
an ideal scenario.

Chapter |[5| 'Methodology’ describes the methods used in the thesis to achieve
the goal proposed in order to address some of the problems mentioned. The logic
behind the program is described as well as the exemplary surgical procedure being
modeled.

Chapter [6] 'Experimental Results and Validation’ portrays the effectiveness of
the program proposed, and evaluates it by comparing it to real surgical video
annotations. a qualitative analysis was also conducted with the help of four urol-
ogists.

Chapter [7|’Conclusion’ briefly summarizes this thesis, while recounting the prob-

lems faced and the reasons behind the results achieved. This will be followed by a
short description of potential future work.

4 Masters Thesis, Politecnico Di Milano, 2020



2 Related Work

2.1 Minimally Invasive Surgery, Automation and
the use of Artificial Intelligence

Let us first begin by giving some background in the field of robotic surgery and
autonomy.

2.1.1 Minimally Invasive Surgery

Minimally invasive surgery (MIS) has been a hot topic for decades. Researchers
have been trying to find ways to reduce the risk of surgical complications, postop-
erative pain, and recovery time [I2]. This approach has also allowed for a reduction
in hospital stays which led to a decrease in cost for healthcare organizations [12].

For these reasons, along with the improved cosmetic outcomes, minimally invasive
techniques have become widely used around the world in many fields of surgery
[12].

Surgical site infections (SSIs) are very common in patients who have just undergone
surgery, according to the Centers for Disease Control and Prevention [13], [14]. In
[15], the relation between SSIs, morbidity and rates of readmission after being
discharged from the hospital is presented. Furthermore, the effect of minimally
invasive surgery on the risk of SSIs has been studied in [I3] and [16]. Gandaglia
et al. [I6] evaluated the role of minimally invasive techniques on the risk of SSIs
after surgery. After some logistical regression analyses, they were able to show that
MIS significantly reduced the likelihood of SSIs. Another study by [17] evaluated
SSIs in minimally invasive urological surgery, and compared this approach with a
traditional open one. Their results showed that the risk of SSI for MIS was again
reduced, and that MIS yielded better perioperative outcomes as well as lower
complication rates [I7]. A plethora of research initiatives has been done showing
this significant improvement in surgical outcomes when using MIS compared with
laparotomy, as seen in [18] and [19].
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2.1.2 Robot-Assisted Surgery (RAS)

Minimally invasive surgery has incentivised the use of robotics in surgery. To per-
form MIS, surgeons used robots to improve precision during surgery, which also
lead to a reduction in recovery time for patients [20, 21, 22]. Robot-assisted surg-
eries have proven to be more advantageous over conventional ones [23], 24].

One of the most crucial roles that a robot may play in semi- or fully automated
surgery is the reduction of medical errors. Medical errors have been shown to be
the third leading cause of death in the United States of America in 2016, after
cancer and heart diseases [25] 26].

The da Vinci control system [27] was a revolutionary step towards achieving this
goal. Nowadays, it’s being used in many different fields including General surgery,
Urology, Cardio-Thoracic, Gynecology, Otolaryngology and Pediatrics [28]. Since
its inauguration, many different versions have been introduced [29] which resulted
in more sophisticated surgery. Over the years, the three-dimensional visual acuity
was improved, along with an increase in degrees of freedom. This was a big mile-
stone when it came to accuracy and accessibility in surgery [29].

Surgical Robots have also been able to help surgeons by taking over some tasks,
allowing them to focus on the more critical issues at hand. This lead to a reduction
in their fatigue during operation, and thus reducing the likelihood of them making
mistakes [20] [1].

For more complex tasks, surgical robots can improve the quality of surgical op-
eration performed by giving surgeons greater dexterity and visualization, which
ultimately leads to less errors [29, 24].

Advances in the surgical robot sensing capabilities improved the skills of surgeons
operating in confined or intricate environments [23]. Technologies for sensing and
actuation have seen a lot of progress in the past few decades, which has led to
much more effective and precise surgery [7].

In one recent study [30], Hwang et al. were the first to ever manipulate da
Vinci robotic arms with depth sensing. They used a Zivid One Plus RGB-+depth
(RGBD) camera. This camera provided images with 1920x1200 pixels at 13 frames
per second and a depth resolution of 0.5mm [30]. They used the example of the
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peg transfer task commonly used for surgical training [31]. Surgeons were able to
perform this task with eminent dexterity [32]. Their attempt at using this new
technology with the goal of achieving higher standards of surgery showed promising
results.

2.1.3 Autonomy in robotic surgery

The idea of automating surgery has been around for decades, and there have been
many attempts at using some kind of artificial intelligence to further advance the
field of surgery.

An example can be seen in the study led by Shademan et.al [§]. Robot-assisted
surgeries are still dependent on the skills of the surgeon handling the arms. How-
ever, this study of a supervised autonomous robotic surgery on soft tissue demon-
strated how this system outperformed a task such as suturing. A three-dimensional
and near-infrared fluorescent (NIRF) light-field camera directed by an autonomous
suturing algorithm was used in an open surgery setting. The latter named STAR,
Smart Tissue Autonomous Robot, seen in Figure[2.1] is comprised of a robotic arm
made of lightweight materials, and has a laparoscopic suturing tool attached to its
end [8]. Thanks to its eight-degrees of freedom (DOF), it is able to perform tasks
with great dexterity and accuracy. The combination of this NIRF techonology
with the plenoptic imaging system allows it to recognize NIRF markers on tissue
targets [§].

The study compared some of the ex-vivo sutures performed by STAR to those per-
formed by highly skilled surgeons with at least 7 years of experience. For a first
evaluation, STAR was found to perform better than hand-sewn suturing (OPEN),
laparoscopy (LAP) and current RAS with da Vinci Surgical System techniques.
STAR showed more consistent spacing between sutures leading to higher leak pres-
sure resistance. An in-vivo supervised surgery was also performed in pig intestines
through a laparotomy using STAR, and was compared with an OPEN control.
Anatomy evaluations showed similar leak pressures to those of the OPEN control
surgery.

The results of this study of supervised autonomous surgery have shown that STAR
is safer than other types of surgeries, and would give access to better surgical
techniques with higher efficacy, all while removing the human factor of surgeon
experience [§].

Masters Thesis, Politecnico Di Milano, 2020 7
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Figure 2.1: Smart Tissue Autonomous Robot (STAR) [33]

Another experiment was done with the STAR system evaluating its performance
in an electrosurgery for tumor resection [33]. Their experiments showed that, de-
spite taking more time than surgeons, STAR achieved more consistent results with
less deviation than any human modality [33]. They demonstrated how this robotic
system was able to outperform highly experienced surgeons in accurately complet-
ing the cutting and charring tasks. STAR was also able to successfully perform a
pseudo-tumor resection using visual servoiung. Again, a semi-autonomous robotic
system was demonstrated to be feasible and very promising [33].

Automating surgical tasks can provide important benefits for surgeons and clini-
cians. In this study, [9], researchers attempted to use a novel sensing modality at
the catheter tip for autonomous navigation inside one of the most complex human
organs, the heart. This haptic vision used machine learning and image processing
algorithms combined with intracardiac endoscopy to form a hybrid touching and
imaging sensor. The latter can identify what it is touching as well as how much
pressure is being applied [9]. Their in vivo experiments with this autonomous
navigation system were evaluated and compared with operator-controlled robot
motions that had manual navigation. Their results showed successful completion
of the intracardiac catheter navigation task, with similar efficacy and procedure

8 Masters Thesis, Politecnico Di Milano, 2020
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time when compared with expert manual navigation [9]. This work successfully
exhibited an alternative approach to robotic surgery.

One of the aspects of surgical autonomy that we have yet to discuss is the devel-
opment of a cognitive robotic system that is able to reason and to make decisions
intra-operatively, depending on real-time information acquired by sensors. This
has been one of the long-term goals in research relating to autonomy in surgical
robotics [34], 35]. In the following section, we discuss some of the most recent work
in autonomous surgical task planning.

2.2 State of the Art application of ASP

Answer Set Programming (ASP) can make explainable decisions by taking in in-
formation from sensors as well as prior knowledge given by experts on the task at
hand.

In a recent study done by Ginesi et. al., they used a da Vinci Research Kit
(DVRK) with ASP for task planning while integrating it with Dynamic Movement
Primitives (DMPs) for real-time obstacle avoidance and trajectory generation [36].
DMPs learn from a small dataset of gestures of surgeons to mimic their dexterity.

In their study, they focused their efforts on validating this framework using a
peg and ring task, since surgeons often use this example for training in surgery. In
this peg and ring example much like in a real surgery, robot arms must move while
avoiding obstacles. They are also required to grasp and precisely place small ob-
jects with great efficacy. Another similarity to a real surgery is having a dynamic
environment, meaning the information acquired from sensors can change in real
time. For this reason, the AI must be able to quickly re-plan in response to those
changes. It must also be ale to deal with failures in an explainable way. The Al
takes in these new conditions, and gives a new model in order to achieve the final
goal [36].

The main limitation of this work [36] is that the system assumed that the knowl-
edge the Al had of the situation and task was comprehensive. Surgical scenarios
are so complex that it is quite hard to have enough labeled training examples or to
encode a full picture of the domain knowledge. There are so many variations in pa-
tient’s anatomies that are simply not known in advance. The conditions that were

Masters Thesis, Politecnico Di Milano, 2020 9
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thought to be known before surgery can also change over time. This makes having
a comprehensive domain knowledge unrealistic in the field of robotic surgery [36].

For this reason, the team of Meli et. al [37] performed another experiment as
a continuation of this previous one. Their main focus was to have a formalism
that is able to learn the initial incomplete knowledge from a small number of hu-
man executions of this task. For that, they used Inductive Logic Programming
(ILP) where examples of task executions are labeled in order to learn the axioms
that govern the dynamics of the domain. They added that to the underlying ASP
system that is able to reason with incomplete domain knowledge. Their system
was in fact able to learn from this limited number of examples about the domain
knowledge.

Their experimental results showed to be a successful step towards learning and
automation in surgical robotics when compared with probabilistic approaches or
machine learning, where these black-box tools cannot perform well with a limited
number of examples to learn from.

In our study, we will use ASP on a more complex surgical task, that of a robotic
partial nephrectomy.

With all these efforts to automate robotic surgery, advances in the field would
be difficult without having re-usable knowledge (data) that can be easily shared
and understood [3§|. For that, an agreement on the language and definitions of the
terms are needed. This is where ontology languages come into play. For success-
ful knowledge representation, the data needs to be shareable and reusable among
different researchers [39]. This is further explained in Chapter [3

10 Masters Thesis, Politecnico Di Milano, 2020



3 Fundamentals

3.1 Surgical Process Modeling Strategies

Current advances in the field of surgical autonomy lean more towards machine
learning techniques. Some of these examples can be seen in [40] and in [41] using
Hidden Markov models. Others use Dynamic Time Warping techniques as seen
in [42]. Moreover, some research has used statistical analyses [43] and Random
Forests [44] as well. Combinations of some of these techniques can also be seen in
[45] and [46]. However, these methods don’t use standardized medical background
knowledge in a recoverable way. Conversely, some approaches can formalize this
medical knowledge generically. Examples of such formal methods include Unified
Modeling Language (UML) [47] or Description Logics [48] and ontological repre-
sentations [49].

Hence, Surgical Process Modeling (SPM) techniques need to be based on ontology
[50]. That way, different approaches can be coherent, interoperable and compara-
ble, which in turn increases the value of data. A four level translational approach
to SPM is described in [50]:

e Natural Language Level
The first level is the natural language level related to the users. It allows
them to include their knowledge and experience into the model and acts as
an interface for result communication and analysis.

e Conceptual / Ontological Level
The second level is the conceptual or ontological level and allows for domain
knowledge analysis with regards to ontology.

e Formal / Mathematical Level
The third is the formal level, and allows one to formalize domain knowledge
into mathematical formulations in order to determine its purpose.
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e Implementation Level
The final level is that of implementation and deals with the actual realization
of the formalization done in the mathematical level, in a machine-processable
language.

A surgical procedure was first described in [51] as a sequence of steps. The latter
can also be referred to as a workflow. For decades, researchers have been trying
to model surgical procedures using different modeling strategies. Each modeling
strategy is characterized by its own granularity levels, the methods with which
they acquire data, and modeling approaches [52]. However, in this thesis, we will
be focused on the modeling part of SPM as seen in figure |3.1

Surgical Process Modeling ]

Diata Acquisition Application

Modeling - Validation

ey

Data Analysis

—

Figure 3.1: General overview of Surgical Process Modeling [53]

The first step in surgical process modeling is defining the the modeling approach.
After that, we must illustrate the different granularity levels, and how the infor-
mation used for modeling is acquired.

3.1.1 Modeling Approach

Modeling a surgical procedure can be done in two different ways: top-down and
bottom-up [564]. When using a top-down approach, the procedure is described from
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highest abstraction levels to lowest, meaning, from lowest to highest granularity.
Contrarily, a bottom-up model goes from the highest level of granularity to the
lowest [52].

With the top-down modeling approach, the whole procedure is first described
with high abstractions before getting into more details, which makes it less likely
to make mistakes in identifying the lower abstraction activities [52]. In this the-
sis, we will be using a top-down approach for Knowledge Representation, where
information about the procedural technique is extracted from literature.

When using a bottom-up approach, low-level activities are first modelled, which
makes it more precise. The latter comes at the cost of having a complex process
with results that might be different from reality. An example of such an approach
is when speaking of Machine Learning (ML) methods, which will be further ex-
plained in section [3.2]

Before we can explain how these two modeling approaches are used in surgery,
we must understand how a procedure is described according to granularity levels.

3.1.2 Granularity Levels

Surgical process modeling is done by taking into account the concept of granular-
ity level. "A granularity level is defined as the level of abstraction at which the
surgical procedure is described” [53]. On a granularity axis, the lowest level is the
procedure itself, with the highest abstractions. The higher the granularity level,
the more detailed it is, and the lower the abstractions. The procedure itself, which
is the lowest granularity level, is then decomposed into Phases, Steps, Activities,
and Motions.

A surgery can be divided into main events called phases. These Phases are com-
posed of Steps. Each Step is a sequence of Activities. An Activity is a physical
task and consists of a list of Motions. Motions can be described as a surgical task
that involves the movement of only one hand [52], 53|. In this thesis, we focus on
the Phases, Steps and Activities. An Activity will be described by an Action, done
on an Anatomy, using an Instrument.

After understanding the different granularity levels, the next step would be to
define the different methods of acquiring information in surgery before beginning
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to model the procedure.

3.1.3 Information Acquisition

Information is acquired differently depending on the modeling approach. In this
thesis, a top-down approach for modeling is used for Knowledge Representation.
Correspondingly, the information about the procedural technique is extracted from
literature.

For bottom-up approaches such as ML methods, data is acquired according to the
methods described herein. In general, data acquisition can either be computer-
based, or be done manually. Having a complete and solid data set is essential for
surgical process modeling since it would affect the whole workflow study.

Manual data acquisition can be done online or offline. For online observation
of the surgical process workflow, data is recorded by the observer present in the
OR. In their papers, [51, 55, (6] used manual data acquisition methods. Some
of the advantages of this method include the fact that the observer can see and
interact with clinical team members.

However, human error is very high when trying to record large amounts of data in
the OR. Having offline data acquisition has been shown to overcome these limita-
tions, as done by [51], 56, 57], but the observer could no longer interact with the
clinical team since he or she is gathering the information through video recordings.
Another problem is that low-level data cannot always be provided by observations
in the OR.

The emergence of computer-based data collection technologies overcame some of
these limitations. Automated data acquisition was able to eliminate human error
by using sensors, image recognition and processing techniques [58, 59]. This track-
ing system can be used in the Operating Room (OR), or on videos of the surgical
procedure.

However, the surgical process modeling field is very complex, which renders this
data collection task challenging. Some of the limitations of the process include the
fact that some specific tasks in the procedure cannot be properly identified, i.e.,
the signal might not be able to show what the purpose of a certain instrument
is. It might not be able to detect the small differences between using an electrical
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surgical knife to dissect fat, or cut lesions.

Developing reliable sensors and optical tracking systems (OTS) is a challenge.
Both the optical and electromagnetic tracking systems (ETS) [60, [61] have draw-
backs. For the OTS, the tracking markers should always be visible to the tracking
systems, and they need to be attached to rigid materials. Therefore, the latter
cannot track flexible instruments or soft tissues. These problems can be elimi-
nated using an ETS, but unfortunately, when having metal objects nearby, the
performance of the ETS worsens.

With this data acquired, one must learn to represent the information in a compre-
hensible way.

3.1.4 Model Representation

The results of a surgical process model need to be represented in a way that is
easily understood before they can be interpreted. This can be done in two ways:

e Descriptive Representations
Where the description is done using text [41), 62].

e Numerical Representations
Where representation of the system is done using programming languages or
mathematical relations [63].

A lot of well known formal and semi-formal languages are numeric representa-
tions. Some examples include UML [64], BNPN [65], workflow diagrams [56, [66],
and YAWL, a workflow modeling language [63].

Descriptive representations are simple and easy to understand, but are not de-
tailed enough to have a proper analysis of the model since not all the relations
between the entities are represented. They usually need to be combined with a
numerical approach that provides these missing details. We are able to make qual-
itative analyses as well as simulations thanks to numerical representations. The
downside to this method is that it is not easy to achieve, and that once it’s done,
it leaves no room for flexible changes [52].

Finally, after acquiring the information with different granularity levels and repre-
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senting it, we can discuss the two main modeling approaches used in surgery, and
how Knowledge Representation exhibited a clear advantage.

3.2 Machine Learning Vs. Machine Reasoning

To achieve Autonomy in Robotic Surgery, there are five main parts to deal with:
Object Recognition, Navigation, Human-Robot interaction, Manipulation and De-
cision Making. In this thesis we will be dealing with the decision making portion of
surgery, as seen in figure [3.2] For that, we are using Answer Set Programming for
Knowledge Representation and task reasoning in robotic surgery, while assuming
a sensing module gives the Al system information on the environment.

Knowledge
Representation

Sensing

Decision Making

Action

Figure 3.2: Simplified Decision Making Process with an AI method

In many of the aforementioned research in Chapter 2/ and in [67], [68] and [30], the
AT relies on tasks described using finite state machines (FSM). In these works, the
environment is assumed to be static. In such cases, the Al is not aware and can-
not react to anomalous events such in dynamic environments. Machine learning
systems (ML) are bottom-up approaches to modeling. They are able to recognize
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patterns from large datasets and make predictions for similar scenarios. ML meth-
ods cannot predict on a new situation or solve a problem that it has never seen
before.

In [69] and [70], statistical (hidden Markov Model) and data-driven (neu-
ral networks) models are used in robotic surgery to overcome some of these
limitations and to improve situation awareness. However, to be able to achieve
accurate results with these methods, a great deal of data is required. Unfortu-
nately in surgery, this data is usually unavailable, which prohibits us from getting
accurate results with these machine learning systems.

Another problem that arises when speaking about machine learning (ML) is the
fact that they are black-box tools, as seen in figure This means that the pre-
dictions or plans that are generated cannot be explained or monitored. In [71],
they were able to prove how some explanations can be manipulated, which fur-
thermore impacts the appropriateness of this autonomous system in applications
where safety is prioritized, such as surgery. Al systems need to be explainable
to be trusted, and as mentioned in [72], Neural Networks in combination with a
Knowledge-based approach might be the answer. However, in this thesis, we will
attempt the latter.

Trainng
Dataset
BLACK BOX
— ML algorithm / . PREDICTIONS
Statistical Model
Test
Dataset

Figure 3.3: Black Box in Machine Learning

For the reasons mentioned above, researchers have switched their focus to Knowledge-
Based reasoning systems [73] [74], where in the context of surgical robotics, infor-
mation collected from surgeons’ prior expertise on surgical tasks are encoded. This
allows for a better understanding of the execution workflow [36].
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After understanding the different Modeling Approaches that can be used in surgery,
one must recognize how to represent the knowledge to be used in the modeling of
a procedure. The next section will cover some of the main types of Knowledge
Representation (KR) techniques, while focusing on Logical Representation and
Answer Set Programming.
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4 Knowledge Representation and
Answer Set Programming

In this chapter, we will describe the Knowledge Representation techniques, the
method used to achieve the objective of this research, and how ASP addresses
some of the limitations of current approaches.

4.1 Knowledge Representation and Logic
Programming

The goal of Knowledge Representation (KR) is to: "Develop formalism for pro-
viding high-level descriptions of the world that can be effectively used to build in-
telligent applications. "[75)]. Some keywords in this definition can be broken down
and further described:

e "Formalism:"
Having formal and unambiguous semantics where, if the word or phrase is
taken out of context, it has only one interpretation [76].

e "High-level descriptions:"
Representing information in an explainable and human readable way.

o "Intelligent applications:"
Where the Al is able to deduce new knowledge from what is given [77].

o "Effectively used:"
The reasoning approach should lead to usable execution.

There are four main types of KR techniques as seen in figure [4.1] In this thesis, we
chose to use a logical representation approach, with Answer Set Programming. In
the following sections, we will briefly describe those different techniques in order
to elucidate the reason for this choice.
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Knowledge
Representation
Techniques

Semantic Frame
Networks Representation

Figure 4.1: Four main types of Knowledge Representation Techniques

Logical Production
Representation Rules

4.1.1 Knowledge Representation Techniques

Before we talk about the four main types of knowledge representation techniques,
some important concepts need to be touched upon:

Ontologies

Ontology groups and makes relations between different entities [77]. It also or-
ganizes them by categorizing the information according to their differences and
similarities. In this way, the knowledge stored becomes more easily accessible and
understood by machines. Ontology is most helpful when the knowledge being rep-
resented is domain specific, such as in medicine [77]. It is useful for integrating
information, as well as retrieving it.

Description Logic

Description logics are often used in ontological modeling [76]. The most impor-
tant part of a Description Logic is the Concept Language. There are three main
categories: concept names, role names, and constructors [75, [7§].

In this example:
Mammal N 3 has — mother.Dog N Y drinks.Milk

"Mammal", "Dog" and "Milk" are concept names that assign a name to groups
of objects. "has-mother" and "drinks" are role names that define relationships
between objects. M, 4 and V are constructors that can relate concept names to

role names [7§].

Concept definitions would be in this form:
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Puppy = Mammal N 3 has — mother.Dog N Y drinks.Milk

To better explain some of the constructors used in these examples, table |4.1| shows
the main ones and their corresponding definitions. There are two atomic types:
"C" and "D" are concept names, while "r" is a role name [78].

Bayesian Network for distributed representation

On a different note, when knowledge is uncertain, a Bayesian network uses con-
ditional probability to reason and make prediction. This network is composed of
nodes representing variables connected to one another by links. These links have
different strengths of associations and/or dependencies, characterized by each con-
ditional probability [77].

Concept constructor | Definition

-C Negation

cnD Conjunction

cCuD Disjunction

dr.C Existential restriction
Vr.C Value restriction

T Top concept

4 Bottom concept

Table 4.1: Concept Constructors and their definitions [78§]

After briefly defining these important concepts, we will explain the different ways to
represent knowledge. KR can be done using Semantic Networks, Production Rules,
Frames, or Logic. In this thesis, knowledge will be represented using a logic-based
approach for reasoning. However, we must first establish the differences between
these techniques.

1. Semantic Network
Some early KR systems used Semantic Networks to represent declarative
knowledge. The formalism is a graph that models entities and their respec-
tive relations. FEntities are represented using nodes, and the relations are
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described using arcs or links that connect these nodes [79]. Semantic net-
works are generally simple and easy to understand and represent knowledge
in the natural language. However, since they depend on the creator of the
system and are not intelligent, some problems can arise from unclear seman-
tics when applied in automation. In figure [4.2] the links "is-a" and "has"
have more than one meaning, which is one of the drawbacks of these net-
works. Using logical formalism can overcome this issue.

Mammal

Fur Dog Puppies

Mother

Figure 4.2: Semantic Network example

2. Production Rules

This rule based system is also expressed in the natural language. When con-
ditions are met, the production rule is activated and leads to the execution
of an action. This system is mainly used for procedural knowledge comprised
of a library of rules [79].

An example of such a system is this ¢f and then statement:

1f the dog has puppies, then she must feed them.

This rule has has puppies as a condition, and if the former is met, then
she, (the dog) must feed them.
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3. Frame Representation
A frame representation can be seen as a mix between declarative and proce-
dural knowledge. It is mainly used for stereotypical scenarios, which emulates
human memory. Frames are used in many applications in AI where the data
(entities) is grouped according to attributes [79].

4. Logical Representation

As seen in figure 4.2 some ambiguities exist in the natural language. This
can be overcome using logical representations (LR). With LR, conclusions
are drawn using rules and conditions [79]. This logic-based system consists
of syntax and semantics that assure sound inference. Any sentence in the
natural language can be translated into logics using syntax and semantics.
Syntax determines what symbols can be used for knowledge representation
and how to write them, while semantics describe the rules that allow this
knowledge to be interpreted while assigning them meaning. This represen-
tation is what helps us perform logical reasoning [79].

For more details, please check the papers [76] and [79].

Our main focus in this chapter is to understand why we chose to use Answer
Set Programming, how it works, and what makes it is a powerful problem solving,
non-monotonic logical reasoning tool for knowledge representation.

4.1.2 Logical reasoning with Answer Set Programming

(ASP)

The framework proposed by [36] is based on ontology and is aimed at automating a
peg-and-ring task. Some limitations in their work were evidently due to ontologies,
since they are only able to reason with the prior representations of the situations
they had. Therefor, ontologies have been shown to be most useful in just aiding
the understanding of humans about the situation, as in [80].

On a different note, reasoning on knowledge that is changing or incomplete in
a dynamic system, such as one relying on the input from sensors, can offer better
flexibility for planning. This can be done with non-monotonic programming [81]
and has been shown to be useful in scenarios where safety is critical and where
the task itself is difficult, such as surgery. "Nonmonotonic reasoning was origi-
nally motivated by the need to capture in a formal logical system aspects of human
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commonsense reasoning that enable us to withdraw previous conclusions when new
information becomes available” [81]. This is one of the reasons why we chose to
use logic programming.

Answer set programming is a logical knowledge representation and reasoning ap-
proach. Knowledge is expressively represented as facts, rules and constraints
within a code, and the reasoning is executed by answer set solvers (ex: Clingo,
Clasp, DLV). ASP allows for commonsense reasoning [82], where failure to de-
clare a knowledge assumes negation, which is one the ways ASP accommodates
for non-monotonic reasoning. This form of reasoning has been shown to be useful
is safety critic situations such as aerospace [83], autonomous driving [84] and cog-
nitive robotics [85]. Similarly, ASP can be used in another scenario where safety
is of utmost importance: robotic surgery.

ASP has been successfully applied in robotic planning where it was able to rea-
soning on complete as well as incomplete knowledge [86]. This is particularly
important for applications where information cannot be fully given in advance,
such as in surgery. With incomplete knowledge of the domain, the planning prob-
lem becomes more difficult [86]. A solution to that is to have conditional planning,
where ASP is required to give a model of how a goal state can be reached, knowing
the initial state. It also does that in the presence of sensing actions.

4.1.3 Syntax and Semantics of Answer Set Programming

The rules and facts in ASP have predicates that represent static knowledge. Pred-
icates do not change within the program. Each predicate has an arity (>=0)
representing the number of atoms contained within that predicate [87].

An example can be explained simply with the predicate mammal. In mammal(cat)
and mammal(dog), where "cat" and "dog" represent the atoms within this pred-
icate. The fact that a cat is a mammal and a dog is a mammal doesn’t change
and is merely descriptive. Variables inside predicates always start with a capital
letter.

Rules In every ASP rule, there exists two parts: a head and a body. A head
of a rule is indicated by what is on the left of the "if" statement represented by
the symbol : —. The body of the rule is represented by the statements on the right
of this symbol.
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For example:
move(A, B) : — free(B), not attached(A), A! = B.

For an action mowve to be executed, all the preconditions stated in the body after
: — must be true in that given state of knowledge. In this example, we assume
that it is sufficient to not know that A is attached and that B is free to be able to
move A on B. Here, ! = stands for inequality and it is a built-in predicate.

Negation There are two types of negations in ASP: Default (weak) negation
and True (strong) negation. Default (or weak) negation is used when dealing
with knowledge that is incomplete. Strong negation is used when the statement
is known to be false. Weak negation in programs is written as not and strong
negation is written as —.

When there is strong negation in a body of a rule, it means that the head of the
rule cannot be executed unless that negated predicate is known to hold.
not a implies that a is not believed to be true, whereas —a means that a is believed
to be false.

Facts If the body of a rule is empty,
move(A, B).

the action stated always qualifies for execution. An empty body means that body
of the rule can be replaced with the "true" statement.

Integrity Constraints If the body head of a rule is empty,
: —move(A), attached(A).

this means that the conjugation of the literals in the statement cannot be simul-
taneously true. In the same state, it can’t happen that A is moved and attached.

External Atoms

Some atoms may be external, which means they can be defined by sensors, or by
manual input.
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Rules, Facts and Integrity Constraints are the main constituents in an ASP algo-
rithm. Any knowledge can be represented using these semantics described. The
succeeding section will briefly describe ASP solving.

4.1.4 Answer Set Solving

In this thesis, we use Clingo for grounding and solving. Clingo computes answer
sets by first grounding the external atoms. This is done by giving true values to
the variables. A variable-free atom is also said to be ground. This is then followed
by the having the solver check the preconditions within the rules, and see which
ones hold. If all the preconditions within the body of a rule hold, then the head of
the rule is said to be true. The time step is incremented until the goal is reached.
In this thesis, the goal specifies to display just the predicates that are true per time
step. In this way, the ASP system gives the Action(s) that should be executed,
per time step.

In this thesis, ASP is used for surgical process modeling of a robotic partial
nephrectomy. These previous two Chapters [2] and [3] provided the background
and fundamentals required to understand how this modeling was done. Using
the different granularity levels that can be seen in a surgical procedure, an ASP
system is meant to reason on knowledge given by expert surgeons on the surgical
technique. The predicates and terminologies within the algorithm must be unam-
biguous to allow for the proper reasoning and solving by the ASP solver. However,
before giving a detailed account of the ASP algorithm created for the surgical pro-
cess, we must first describe the problems being addressed in this thesis, and why
a knowledge-based reasoning approach is used for modeling a surgical procedure.

4.2 Problem Description

In this thesis we describe an application of a logic-based non-monotonic program-
ming language (ASP), in the context of surgical robotics. For that, as an example,
we will attempt to model a Robotic Partial Nephrectomy (RPN). The ASP model

is generalized, and can be extended to different laparoscopic surgeries.

This laparoscopic surgery consists of executing a certain number of actions, using
different instruments held by two robotic arms: PSM1 and PSM2. An Anatomy
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will be given in real-time to the ASP system by a sensing module, while the instru-
ments to be used in the procedure are assumed to be known. This sensing module
is out of the scope of this thesis, and so anatomies will be taken from [IT), [10].
ASP will then reason on the next action to be done on the given anatomy, while
also providing the phase and step of this action to be performed. A visualization
of the "big picture" can be seen in figure [£.3] Surgical procedure knowledge is ex-
tracted from [I1] and [10] to create the rules and constraints that govern the ASP
algorithm. The anatomy is assumed to come from a sensing module, and given as
input for the ASP model to general the Surgical Process. In a future work, Deep-
Onto neural networks [88] can potentially be combined with this ASP approach
for a better surgical workflow recognition system, with real-time task planning.
Deep-Onto combines deep learning networks (CNN + LSTM) with ontologies to
make high-level predictions on a surgical workflow.

( Surgical Procedural |
Knowledge

/ / \\
If Anatomy from I-"ASP model {rules +

\, Sensing Module |, constraints) f
S b ’/'}

/' Real-time Surgical

[ Process, or |

' Surgical Workflow /
b o

Figure 4.3: Surgical Process Generation by ASP given Anatomy and Knowledge
from experts (the sensing module is outside the scope of this thesis).
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5 Methodology

We begin with a high-level explanation of the ASP approach to Surgical Process
Modeling. This is followed by an illustration of the programming tools used in
this thesis. We then describe the surgical procedure that is meant to be modeled.
Next, we recount the logic behind the ASP encoding. Lastly, we illustrate how
we got a surgical process in real-time, and the feedback loop assuring a dynamic
system.

5.1 Overview

The goal of this thesis is to create a generic model of a specific laparoscopic robotic
surgery. To model a surgical process, we need to define the type of data available,
the knowledge that we assume to be known, and some relationships between enti-
ties.

First, we create the ASP logic program using common sense reasoning. Knowledge
is represented using a logical programming language (ASP) whereas the reasoning
is done using an answer set solver (Clingo). We used Jupyter Notebooks running
on a Python kernel for development. We also used popular python libraries such
as numpy and pandas. In a surgical context, variability between procedures is very
high, so the ASP program is required to reason with incomplete knowledge of the
domain to make decisions.

As an input for the logic program, we will use anatomies that are assumed to
come from sensors. This input will be incrementally added to the ASP code to
simulate a dynamic and real-time surgical procedure. Since performing an action
at one time step affects the decision about what can be done at the next time
step, the output from the ASP model will be sent back as an additional input for
the following action to be executed. Figure illustrates the general high-level
approach to surgical process modeling using ASP. First the SPM problem is iden-
tified, and ASP is used for the logic program. Anatomy is given as input to the
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ASP program, and Clingo solves the problem at hand.

SPM Problem

ASFP Modeling

Anatomy from
sensing —»1 Logic Program

module

[ Grounder + Solver ] Feedback-loop

taking output at
t=1 as input at =0 for
next action

CLINGO

ASP Solving

Surgical Process
Real-time Decisions

ateacht

Figure 5.1: High-level architecture of the ASP modeling approach

5.2 The surgical procedure: Robotic Partial
Nephrectomy (RPN)

The required surgical task to be performed by ASP is that of a RPN using the
da Vinci surgical robot as in [I1]. The objective is to perform an Action on each
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Anatomy given as input from the previous sensing step in order to complete the
goal of the surgery: removal of the kidney tumor. For this task to be completed, a
multitude of Surgical Steps needs to be performed to first reach the kidney and
the tumor inside the bowel. There are two da Vinci surgical robotic arms PSM1
and PSM2, replacing the right and left arms of the surgeon respectively. The
relationships between Instruments and the actors using them are assumed to be
known.

The procedure starts after small incisions are made in the patient’s abdomen for
port placements as seen in figure [5.2

_.-'---‘r-—’
L

>t

R — Robotic Ports
C—-Camera Port
A —Assistant Port

Figure 5.2: Port Placement for Robot-Assisted Partial Nephrectomy [10]

The operative technique for this RPN is modeled using the ones described in [10]
and [II]. As per the granularity levels described in [3.1.2] figure shows the
phases at the lowest granularity level required for the completion of this surgical
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procedure. We first began by formalizing the procedure into Phases, Steps, Ac-
tions and Instruments, using the description of the procedural technique seen in

[11].

PHASE 1 - Bowel
Mobilization

e
—Z__

PHASE 2 - Hilar
Dissection

T

PHASE 3 - Tumor
Exposure,
Identification &
Demarcation

PHASE 4 - Hilar
Control & Tumor
Resection

PHASE 5 -
Renorraphy

PHASE 6 -

Specimen Retrieval
& Closure

Figure 5.3: RPN Sequential Phases

In figure [5.3] we can see a sequential order of phases, starting from "Bowel Mobi-
lization" to "Closure". The steps within each phase are not necessarily sequential,
and different surgeons perform the surgical tasks a little bit differently. This is
taken into account within the ASP system by having the Al algorithm reason on
what steps should be done given the anatomy and the previous action, rather than

32 Masters Thesis, Politecnico Di Milano, 2020



Sara Sabry Surgical Process Modeling using Answer Set Programming

merely having a strict sequential workflow.

Not mentioned in figure but portrayed within the ASP algorithm are the
formalized Steps, Actors, Actions, Anatomies and Instruments. In each
Surgical Step within a Phase, there is at least one Action done by an Actor using
an Instrument on an Anatomy. Each Action performed in a time step affects the
choice of the next one. At each time step, we consider some knowledge to be true
in order to perform the Action. Such knowledge of the domain that we assume to
be known a priori are the relationships between each instrument and respective
actor, as well as which instruments are needed for the action to be performed.
This knowledge is easily acquired from studying the surgical procedure and under-
standing the techniques, much like the surgeon’s knowledge about the procedure
before performing it.

Hilar Dissection cannot be performed unless the bowel is mobilized to expose and
reach the kidney. Once the hilar (fascia and surrounding tissue) is dissected, the
tumor is exposed, and the margins, size and location of the tumor are identified
and demarcated. Once that is done, the hilar must be controlled by clamping
the artery and vessels coming and going from the key organ at play (where the
tumor is attached) to control bleeding. This is followed by the resection of the
tumor along the previously demarcated line. After separation of the tumor from
the kidney, renorraphy starts by suturing the open kidney as well as open vessels.
After renal reconstruction, the hilar clamps are removed. The specimen is then
retrieved in an entrapment sac placed inside the patient by the assistant. Finally
a drain is placed and the incisions are closed.

5.3 ASP Encoding

ASP is a non-monotonic reasoning tool in logic programming. This means that
the addition of more knowledge to our ASP domain in the form of statements or
relations can affect the outcome. ASP solvers can reason and plan the problem at
hand with either a large set of knowledge, or an incomplete one [37]. In surgery,
we assume that this domain knowledge is incomplete since it is very difficult to
predict every single variant inside the patient.

The ASP solving Algorithm [I] describes the general ASP program solving logic,
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Algorithm 1 ASP Incremental Solving Algorithm [36]

1: Input: ASP model with rules, constraints and external atoms (1 anatomy

from sensors)
2: Output: Surgical Action, Phase, Step
3: Ground external atoms
4: Plan = [], t = 1, Action = null
5: while not goal do
6: if Action ! = null then
7 Ground effects of Action
8 Check pre-conditions for actions at t
9 if action is possible then

10: Select Actions possible at t
11: Plan.append(Action(t))

12: else

13: return Unsatisfiable

14: return Phase, Step, Action

similar to the one done by Ginesi et al. in [36]. However, their goal was to generate
the plan with the shortest number of time steps possible. In this thesis, the goal
is different.

The goal is defined using a simple integrity constraint. It states that the ASP
program cannot generate more than one answer set per time step. This is done by
limiting the query on the time step t.

In this thesis, the goal defined within the program is to execute one action per time
step. This means that, every time the ASP gets a new external atom as input, in
this case, anatomy, the ASP provides the solution to what action needs to be done
on that anatomy. External atoms are received by the situation awareness module
[36], when there is change in the environment. For this surgery, we assume to have
sensors that are able to accurately detect an anatomy, and to give this information
to the ASP system.
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To describe the ASP domain, we need to define the different types of knowledge in
the domain. Statics are domain attributes that are always true. Fluents, on the
other hand, are domain attributes that can change over time. Actions depend on
the relations and rules described within the code. T'erms can either be variables
or object constants. Terms are ground if they have no variables [37]. A predicate
is a description or a relation between terms. Terms inside predicates called atoms
are literals, and the number of atoms within a predicate defines its arity.

Statics include:
e actors: robot Arm(psml), robot Arm(psm2) and the assistant
e objects: object(endobag) and object(drain)

e instruments: (monopolarCurvedScissors, prograspForceps, roboticNeedleDriver,
and carterThomasonDevice)

e tools: (lockingAllisClamp, ultraSoundProbe, bulldogClamp, vicrylSutureSH1,
vicrylSutureCT1 and hemolockClip).

Fluents are the descriptive predicates:
e with(Actor, Instrument) relates the instrument used by the actor.
e usingTool(Actor, Tool) relating an actor with the tool being used.

Actions describe the activities performed in each Step, and are characterized by
preconditions and effects. The action predicate relates the action done on the
anatomy using the specified instrument. Those performed by robotArm(psml)
using monopolarCurvedScissors:

e incise( Anatomy, monopolarCurvedScissors,t),

o dissect(Anatomy, monopolarCurvedScissors,t),

e mark _margins(Anatomy, monopolarCurvedScissors,t),
o resect(Anatomy, monopolarCurvedScissors,t).

Those performed by robotArm(psm1) using roboticN eedle Driver for renorraphy.
To better demonstrate this renorraphy phase, figure clearly shows the layers
of the kidney to be sutured. The action predicate relates the action done on the
anatomy using the specified tool:
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e deepLayerClosure(Anatomy, vicrylSutureSH1,t),

e outer LayerClosure( Anatomy, vicrylSutureCT1,t).

Figure 5.4: Deep and outer layers of the kidney to be sutured in the Renorraphy

phase [11]

Those performed by robotArm(psml) using carterThomasonDevice. The action
predicate relates the action done on the anatomy using the specified instrument:

e close(Anatomy, carterThomasonDevice, t).

Those performed by robot Arm(psm2) using proGraspForceps. Similar to the ones
mentioned above, these action predicates relate the action done on the anatomy
and the instrument:

e hold(Anatomy, proGraspForceps,t),
e put_in(Anatomy, Object, proGraspForceps,t),
e unclamp(Anatomy, proGraspForceps,t).

Those performed by robotArm(psm2) using proGraspForceps. These action pred-
icates relate the anatomy and the tool used to execute the action:

36 Masters Thesis, Politecnico Di Milano, 2020



Sara Sabry Surgical Process Modeling using Answer Set Programming

o retract(Anatomy, lockingAllisClamp,t),

o clamp(Anatomy, bulldogClamp,t),

o detect(Anatomy, ultraSoundProbe,t),

o secure suture(Anatomy, hemolockClip,t).

Those performed by the assistant. These action predicate are a little different than
the ones mentioned above. Not all the actions done by the assistant are modeled
in this thesis. However, the following ones are crucial for the logic of the program.
These decribe the insertion or placement of objects inside the patient, through the
assistant port:

e insert(Object,inPatient, assistant Port,t),
e place(Object,inPatient, assistant Port,t).

Now, in order to understand the preconditions for these action predicates, the
anatomies in the abdomen need to be categorized into different types: solid organ,
tissue or fascia, organ with attached tumor (key organ), arteries and veins, and
tumor. In this way, the ASP model can reason on what type of actions can be
executed on the anatomies according to their types. For example, the ASP model
knows that one should not clamp the tissue or fascia, but only arteries or veins.
For that, we have specific predicates indicating what type of action is allowed to
be executed on an anatomy:

e canBeDissected(Anatomy)
e canbeRetracted(Anatomy)
e canBelncised(Anatomy)

e canBeClamped(Anatomy)
e canBeResected( Anatomy)
e canBeRetrieved(Anatomy)

Other predicates decribe the different layers of the anatomy that is expected to be
dealt with in the procedure:

e deepLayer(Anatomy)
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e outLayer(Anatomy)

This knowledge stems from common sense reasoning and gives the ASP its rea-
soning power, and hence, intelligence. This also allows the ASP program to be
expanded onto other laparoscopic surgeries since the rules are general enough to
be applied for different procedures.

In order to understand what ASP uses for reasoning, an example of an action
predicate along with its preconditions and effects will be examined.

To execute the following action predicate:
mark _margins(Anatomy, monopolarCurvedScissors,t),

the preconditions within the body of the rule must be true first:
detect( Anatomy, ultraSoundProbe,t — 1),
with(psm1, monopolar CurvedScissors).

This means that to mark the margins on the tumor (given here as a variable)
using the monopolar curved scissors, the instrument needs to be with the robot
arm PSM1, and this anatomy needs to have been detected by an ultrasound probe
in the previous time step. However, not all surgeons use an ultrasound probe be-
fore marking the tumor margins. For this reason, the ASP system should allow
for such flexibility in the surgical procedure. This can be seen in a different rule,
where marking the margins on the tumor is allowed even if it has not been de-
tected with an ultrasound probe. This rule will have different preconditions than
the ones stated in this example.

The action predicate detect has its own set of preconditions that must be true
before it can be executed. In this thesis, the use of instruments and tools is as-
sumed to be known. In a later stage of the work, the system will be programmed
to give information on when the instruments or tools need to be changed. For now,
since it assumed to be always true, usingT ool(psm2, ultraSoundProbe) is true if
stated at the beginning of the program in the base section of the ASP program.
If it is not stated, then the ASP model will generate a process without this ultra-
sound detection step.

Furthermore, the anatomy must be reached before it can be detected. In this

ASP model, it is required that the renal capsule be dissected for the tumor to be
reached. It is also possible to dissect the gerota’s fascia covering the organ to reach
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the tumor.

To execute the following action predicate:

reached(Anatomy),
the precondition

dissect(renalCapsule, monopolarCurvedScissors,t — 1)

or dissect(gerotasFascia, monopolarCurvedScissors,t — 1)
needs to have been executed at the previous time step. Once the renal capsule or
gerota’s fascia is dissected, the anatomy is reached and can be detected, and then
the margins can me marked.

Flexibility in executing the steps need to be demonstrated since different surgeons
can choose to perform the procedure differently. Restrictions on what cannot be
allowed are stated, but the ASP must also allow for more than one workflow pos-
sibility. As we will see in the succeeding section, there are two possible way to
visualize the output from the ASP model. We can either have real time task
generation, or an entire surgical workflow.
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5.4 Surgical Workflow and Real-time Output

Before describing the types of surgical plans the ASP can generate, we must be
briefly reminded of the knowledge it understands. For an Action to be performed
at each time step (¢), ASP takes in the Anatomy from the sensors as input in
the form of an external atom, along with information on the previous action per-
formed, and the instruments and tools being used in the whole procedure.

The output from the ASP model gives each Action to be executed on the given
Anatomy, along with the current Phase and Step. Another program takes this
output from ASP, and sets t to 0. In this way, every output from the model shows
the previous action at £ = 0 and the next one at £ = 1. In some cases, there can be
more than one action happening at the same time step. However, this is only the
case for different actors. Every actor (robot arm) can execute one single action at
every time step t. For example, while PSM1 is incising, it can happen that PSM2
is holding that same anatomy. However, PSM1 cannot be incising and dissecting
an anatomy at the same time step ¢.

As portrayed in Algorithm [2] the system incrementally adds an anatomy as input
for the ASP program. The user can also manually add an anatomy and the pre-
vious action at t=0, to get the next action with phase and step. This is useful for
real-time task generation of the surgical procedure. This is shown in [6.1.1]

Algorithm 2 ASP solving with incremental addition of previous action to input

1: Input: A list of anatomies

2: Returns: Full surgical workflow

3: function GET SURGICAL WORKFLOW(list of anatomies)

4: previous actions = 7, workflow = ||

5 for anatomy in list of anatomies do

6 output = get asp output(anatomy, previous actions)

7 > Output contains phase, step, actions, instruments and anatomy.
8 workflow = update work flow(workflow, output)

9 previous actions = output|actions]

10: return workflow
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To generate a full surgical workflow given a list of anatomies, the system uses
common sense rules from surgeon’s description of the tasks. Another program
takes the ASP output containing information on the phase, step, action, and in-
struments on that given anatomy, and stores it. To get the next output, the latter
extracts the information on the previous action executed, along with the new
anatomy from the list. This is repeated until it reaches the end on the anatomy
list. In this way, the full surgical workflow can be achieved before beginning the
surgical procedure.

For real time surgical reasoning in a scenario where a sensor is directly communi-
cating with the ASP system, the information on the anatomy it detects affects the
output. Ideally, the ASP takes this anatomy, and decides what can be done on it,
depending on what the previous action was. To do that, the systems takes in this
information on the current anatomy and previous action, and generates the action
that should be executed on this given anatomy, as well as the information on the
phase, step, and instruments.

The next chapter will give examples of such outputs. The results of the ASP
system will be evaluated quantitatively. For that, a comparison between actual
steps from real surgeries will be compared to those predicted by the ASP system.
In addition, a qualitative analysis will be done with the help of experts in the field
or urology and robotic surgery.
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6 Results and Validation

In a first part of this chapter, the implementation of this logic program in a surgical
setting is described, as well as the generated surgical process. Next, two types
of validations are done for this work. First, a quantitative analysis using real
surgical video annotations is performed. And second, experts in the field or urology
and minimally invasive robotic urological surgery test out the program to give
qualitative feedback.

6.1 Surgical Process Modeling with ASP

In order to design the ASP code that can model a surgical process in real time,
a study on the surgical process was done. Since this thesis only deals with the
ASP reasoning part of surgical autonomy, we acquired the possible anatomies to
be expected from articles and textbooks on the surgical technique [111, [10].

In this thesis, we assume to have a list of possible anatomies, and an idea of
what the sensing module will see. The order of the Anatomies is not completely
random, since for instance, the kidney is not reached unless the organs and tissues
that surround it are retracted and incised, respectively. From the formalized pro-
cedural technique explained in these papers [I1} [10], the order of Phases are the
same, but the order of Steps, and hence Actions within these Steps, can slightly
differ. Just like in a real surgery, different surgeons can perform the same proce-
dure a little differently, but main events such as Phases, are inevitably sequential
since they give meaning to the procedure itself.

The methodology reported in this thesis can be used twofold:

e First, one anatomy at a time is given as input to the ASP system in real
time. This is assumed to be coming from a sensing module. The program
then gives an output for the action to be executed at t=1, on that given
anatomy. The output generated gives information on the Phase and Step,
as well as the Action performed on the Anatomy and the Instrument used.
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This application can be useful for monitoring purposes, but it will not be
evaluated within this research.

e The second method is to give the ASP system a list of anatomies. The order
of the anatomy list is to be expected in real surgery, and it is taken from
[11L T0]. This is more useful for planning, and it is a more general case of
the first method described. This will be validated in section [6.2

6.1.1 Real-time Surgical Process Reasoning

As described, a first report of the results of the model uses one anatomy at a time,
similar to what we can expect in a surgery in real time. A sensor would distinguish
an anatomy, and send it to the model as input. When that is done, the model
generates the action to be executed, and saves it as previous action. The ASP
solver Clingo takes from 0.100 to 0.150 seconds to generate each answer set. This
action is then sent back as an input for the next action to be executed. For every
output, the model displays the previous action (at t=0) and the next one (at t=1)
to be executed on the current anatomy. Some actions have a prerequisite action as
one of its pre-conditions, which means that a certain action needs to be executed
first before it can perform the next.

For example, to resect the tumor, a series of actions need to have been already
done before jumping onto this essential one. For more details on the logic behind
the program, please refer to section

For every output, the model displays the previous Phase, Step, Action, Anatomy
and Instrument at t=0, and the current ones at t=1. Some examples of outputs
will be presented in this section.

In the bowel mobilization phase, some connective tissues need to be incised before
we can reach the key organ with a tumor, in this case, the kidney. The order of
these incisions are not discrete, and depending on the anatomy seen by the sen-
sor, the robot arm should perform the action on what it is currently seeing. For
example, as seen in Figures [6.1], [6.2] and previous _action is empty because
the user does not need to input a previous action in order for the next one to
be executed. The logic behind this stems from the fact that if this anatomy is
seen by the sensor, there are no preconditions of previous action that needs to be
activated before this incision action becomes true. The robot arm can either start
by incising gerotasFascia, or lineofToldt, or posterior Mesocolon, depending on
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what the system receives from the sensor. The following figures bellow illustrate
the real time surgical process generation by the ASP system. The model takes the
anatomy as input, assumed to come from sensors, and generates the action to be
executed on it.

ANATOMY FROM SENSORS:
currentAnatomy(gerctasFascia).

Previous action:

MNEXT STEP:

phase(bowelMobilization,1).
step(medialMobilization,l1).
held(gerotasFascia,proGraspForceps,1).
incise(gerotasFascia,monopolarCurvedScissors,1).

Figure 6.1: Incising gerota’s fascia does not depend on a previous action

AMNATOMY FROM SENSORS:
currentinatomy(lineofToldt).

Previous action:

MEXT STEP:

phase(bowelMobilization,1).
step(medialMobilization,1).
held{lineofToldt,proGraspForceps,1).
incise(linecfToldt,monopolarCurvedScissors,1).

Figure 6.2: Incising line of Toldt does not depend on a previous action
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AMATOMY FROM SENSORS:
currentAnatomy(posteriorMesocolon).

Previous action:

NEXT STEP:

phase(bowelMobilization,1).
step(medialMobilization,1).
hold({posteriorMesacolon,proGraspForceps,1).
incise(posteriorMesocolon,monopolarCurvedScissors,1).

Figure 6.3: Incising posterior mesocolon does not depend on a previous action

However, this is not the case for most of the action predicates in the Answer Set
Program. In figure [6.4] the system allows for hilar dissection without having an
action predicate in previous action. This case is different than the one mentioned
above for incisions because the system assumes that the hilar vessels are reached
since they are given as input from the sensor. Once the sensor sees the hilar vessels,
it is presumed that the bowel mobilization phase is over since the sensors would
not have been able to see this anatomy if that wasn’t the case.

ANATOMY FROM SENSORS:
currentinatomy(hilarVessels).

Previous action:

NEXT STEP:

phase(hilarDissection,1).
step(hilarVesselsDissection,1).
dissect(hilarVessels,monopolarCurvedScissors,1).

Figure 6.4: Anatomy is presumed to be reached

A third type of action predicate reasoning is when it is necessary that a previous
action be executed for the next one to be true. Figures [6.5] and are some
examples of such a case. This means that, an action predicate has as one of its
preconditions, previous action, that is, another action predicate at t=0. When
the sensor reports current Anatomy(tumor), the system cannot reason on what
needs to be done next without being sure that the anatomy renalCapsule has
been dissected beforehand. However, as mentioned before, this is just an example
of this action predicate, and resection of the tumor can be executed given different
preconditions than the ones mentioned here.
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ANATOMY FROM SENSORS:

currentAnatomy (tumor).

Previous action: dissect(renalCapsule,monopolarCurvedScissors,® ).
NEXT STEP:

phase(tumorExposure_Demarcation,l1).

step(tumorIdentification,1).

detect(tumor,ultraSoundProbe,1).

Figure 6.5: Actions that depend on the the previous action: Detecting the tumor
after dissection of renal capsule

In Figure , dissect(renalCapsule, monopolarCurvedScissors,0) has to be true
before detect(tumor, ultraSoundProbe,1) can be executed. After detecting the
tumor at t=0, the sensor still sees the tumor, and sends this information as input
for the next action to be executed. The next predicate action then suggests the next
action to be mark _margins(tumor, monopolarCuvedScissors, 1) since the latter
has the action predicate detect(tumor, ultraSoundProbe, () as a precondition.

AMATOMY FROM SENSORS:

currentinatomy (tumor).

Previous action: clamp(renalVein,bulldogClamp,@).
NEXT STEP:

phase(hilarControl_tumorResection,1).
step(tumorResection,1).
resect(tumor,monopolarCurvedScissors,1).

Figure 6.6: Actions that depend on the the previous action: Resecting tumor after
clamping renal vein.

Similarly, the system will not allow for the tumor to be resected (at t=1), un-
less the renal vein has been clamped in the previous step at t=0, as seen in
figure [6.6] In this figure, it can also be understood that clamping the artery
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and vein is essential before resecting the tumor. In [10], it is specified that the
artery must be clamped before the vein. For this reason, the action predicate
clamp(renal Artery, bulldogClamp, 0) is a precondition for clamping the vein when
it is given as input for the program by the sensors.

Now that we have presented one of the ways to use the ASP system, we will
discuss another surgical process generation method in the succeeding section.
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6.1.2 Surgical Workflow generation

An alternative way to show the results is by giving the model a list of anatomies.

The order of anatomies is one that would be expected in a real procedure. An
example of such a list is depicted in table[6.1} For the model to generate a plan for
the whole procedure, an additional program takes the information of the executed
action, and then stores this information to be used for the next action. In this

way, the model does an incremental solving to execute the next action. The model

automatically gets all the information about the previous action, including phase

and step, as well as the current anatomy given from the list.

Anatomies to be expected on the Right

Anatomies to be expected on the Left

attachment to liver

attachment to spleen

liver

spleen

line of Toldt

line of Toldt

gerota’s fascia

gerota’s fascia

posterior mesocolon

posterior mesocolon

psoas muscle

psoas muscle

hilar vessels

hilar vessels

gerota’s fascia

gerota’s fascia

renal capsule

renal capsule

tumor

tumor

tumor

tumor

renal artery

renal artery

renal vein renal vein
tumor tumor
kidney kidney
kidney kidney
renal artery renal artery
renal vein renal vein
tumor tumor

gerota’s fascia

gerota’s fascia

kidney

kidney

Table 6.1: List of anatomies to be
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For every anatomy in the list, the model generates the surgical Phase, Step, as well

as which Instrument is used to execute the specific Action on the given Anatomy.
Figure is an example of the full workflow that can be generated by the model.
This table shows a sequential workflow that is dependent on the anatomies given.

This model represents a potential workflow for a partial nephrectomy done on the

right side of the patient.

Phase Step Instruments Action Anatomy
0 bowellobilization liverRetraction [monopolarCurvedsScissors] [dissect] [attachmentToLiver]
1 bowellobilization liverRetraction [lockingAllisClamp] [refract] [liver]
P e [proGraspForceps, 4
2 bowellobilization mediallMobilization monopolarCuvedscissars] [held, incise] [lineCfTolat, lineCfToldi]
I S [proGraspForceps, inci i
3 bowellobilization mediallMobilization MoNopOIaICUNVedscissors] [hold, incise] [gerotasFascia, gerotasFascia]
R E— [proGraspForceps, Fr [posterioriesocolon,
4 bowellMobilization medialtobilization MonopolarCuNVedscissors] [hold, incise] posteriorviesocolon]
S . [proGraspForceps, .
5 bowellobilization mediallobilization monopolarCuvedscissors] [held, incise] [psoasiuscle, psoashuscle]
6 hilarDissection  hilarVesselsDissection [monepolarCurvedsScissors] [dissect] [nilarvessels]
7 tumorExposure_Demarcation tumorExposure [monopolarCurvedScissors] [dissect] [gerotasFascia]
8 tumorExposure_Demarcation tumerExposure [monepelarCurvedsScissors] [dissect] [renalCapsule]
9 tumorExposure_Demarcation tumerldentification [ultraSoundProbe] [detect] [tumor]
10 tumorExposure_Demarcation markingTumorivargins [monopolarCurvedsScissors] [mark_margins] [tumor]
11 hilarControl_tumerResection hilarClamping [bullidogClamp] [clamp] [renalArtery]
12 hilarControl_tumorResection hilarClamping [bulldogClamp] [clamp] [renalVein]
13 hilarControl_tumorResection tumorResection [monopolarCurvedsScissors] [resect] [tumor]
: 9 - [deepLayerClosure, 0
14 renorraphy  suturingExcisionBed [vicrylSutureSH1, hemolockClip] secure_sulure] [kidney, kidney]
) . ; [outerLayerClosure, i
15 renorraphy  suturingRenalCapsule [vicrylSutureCT1. hemolockClip] secure_suture] [kidney, kidney]
16 renorraphy nilarUnclamping [proGraspForceps] [unclamp] [renalvein]
17 renorraphy hilarUnclamping [proGraspForceps] [unclamp] [renalArtery]
18 renorraphy  inspectingRenorraphy ] [inspectSutures] [kidney]
19 retrieval_closure refrieving Tumor [endobag] [put_in] [tumor]
20 retrieval_closure reconstruction [roboticNeedleDriver] [suture] [gerotasFascia]
21 retrieval_closure drainage [inPatient] [place] [drain]
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Figure 6.7: Surgical workflow generation with ASP (right side of patient)

Masters Thesis, Politecnico Di Milano, 2020



Sara Sabry

Surgical Process Modeling using Answer Set Programming

Phase Step Instruments Action Anatomy
[} bowelMobilization mediallMobilization [menopolarCurvedScissors] [dissect] [attachmentToSpleen]
I I [proGraspForceps i
1 bowelMobilization mediallMobilization MmonpolarCUNVatSCissors] [hold, incise] [lineOfToldt, lineCfToldt]
I ) S [proGraspForceps, " :
2 bowelMobilization mediallMobilization MonopolarCUNVeaSeissors] [hold, incise] [gerotasFascia, gerotasFascial
P " — [proGraspForceps : [posterioriiesocolon,
3 bowellMobilization mediallMobilization MonOpOIarCUNVedSeissors] [hold, incise] posterionviesocolon]
I . I [proGraspForceps, =
4 bowellMobilization mediallMobilization monopolarCurvedScissors] [hold, incise] [psoasiuscle, psoashuscle]
5 hilarDissection  hilarvesselsDissection [menopelarCurvedScissors] [dissect] [nilarVessels]
8 tumorExposure_Demarcation tumorExposure [menopolarCurvedScissors] [dissect] [gerotasFascia]
7 tumerExposure_Demarcation tumerExposure [menopelarCurvedScissors] [dissect] [renalCapsule]
8 tumorExposure_Demarcation tumorldentification [ultraSoundProbe] [detect] [tumor]
9 tumorExposure_Demarcation markingTumorivargins [monopolarCurvedScissors] [mark_margins] [tumor]
10  hilarControl_tumorResection hilarClamping [bulldegClamp] [clamp] [renalArtery]
11 hilarControl_tumorResection hilarClamping [bulldegClamp) [clamp] [renalvein]
12 hilarControl_tumorResection tumorResection [monopolarCurvedScissors] [resect] [tumor]
] . " [deepLayerClosure y
13 renorraphy  suturingExcisionBed [vicrylSutureSH1, hemolockClip] secure_sulure] [kidney, kidney]
[outerLayerClosure, 5
14 renorraphy  suturingRenalCapsule [vicrylSutureCT1, hemolockClip] secure_sulure] [kidney, kidney]
15 renorraphy hilarUnclamping [proGraspForceps] [unclamp] [renalvein]
16 renorraphy hilarUnclamping [proGraspForceps] [unclamp] [renalArtery]
17 renorraphy  inspectingRenarraphy [ [inspectSutures) [kidney]
18 retrieval_closure retrievingTumor [endobag] [put_in] [tumor]
19 retrieval_closure reconstruction [roboticNeedleDriver] [suture] [gerotasFascia]
20 retrieval_closure drainage [inPatient] [place] [drain]

Figure 6.8: Surgical workflow generation with ASP (left side of patient)

However, the model can also generate the surgical procedure done on the left side
of the patient. Since the output depends on the anatomies it receives from the sen-
sors, ie the list it is given as input, it will not execute the actions on the anatomies
that are exclusively on the right side, such as the liver. This can be seen in figure
0.3

The ASP model can also understand how to perform the procedure, when given
a different list of anatomies. In figure [6.9] the tumor is retrieved earlier than is
seen in the previous two workflows. This choice is possible when the endobag is
inserted, and the tumor is identified by the sensing module. Additionally, if the
ultrasound probe is not used, the ASP system allows for the margins to be marked
without the tumor identification step.
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Phase Step Instruments Action Anatomy

0 bowellMobilization medialiobilization  [proGraspForceps, monopelarCurvedScissors] [held, incise] [lineCfToldt, lineOfToldt]

1 bowellviobilization mediallviobilization  [proGraspForceps, menopolarCurvedScissors] [held, incise] [gerotasFascia, gerotasFascia]

2 hilarDissection  hilarvesselsDissection [monopolarCurvedsScissors] [dissect] [hilarVessels]

3 tumorExpesure_Demarcation tumorExposure [menepelarCurvedScissors] [dissect] [gerotasFascia]

4 tumorExposure_Demarcation markingTumoriviargins [monopolarCurvedScissors] [mark_margins] [tumor]

5 hilarControl_tumorResection hilarClamping [bulldegClamp] [clamp] [renalArtery]

6 hilarCentrol_tumorResection hilarClamping [bulldogClamp] [clamp] [renalVein]

7 hilarControl_tumorResection tumorResection [monopolarCurvedScissors] [resect] [tumor]

8 refrieval_closure retrievingTumor [endobag] [put_in] [tumor]

9 renorraphy suturingExcisionBed [vicrylSutureSH1, hemolockClip]  [deeplLayerClosure, secure_suture] [kidney, kidney]

10 renorraphy  suturingRenalCapsule [vicrylSutureCT1, hemolockClip]  [outerLayerClosure, secure_suture] [kidney, kidney]
11 renorraphy hilarUnclamping [proGraspForceps] [unclamp] [renalvein]
12 renarraphy hilarUnclamping [proGraspForceps] [unclamp] [renalArtery]
13 renorraphy  inspectingRencrraphy 1] [iInspeciSutures] [kidney]
14 refrieval_closure reconstruction [roboticNeedleDriver] [suture] [gerotasFascia]
15 refrieval_closure drainage [inPatient] [place] [drain]

Figure 6.9: Surgical workflow generation with ASP without ultrasound detection,
and with an earlier tumor retrieval

In these examples seen in figures 6.8 and [6.9] every row indicates a time
step. For each anatomy given by the sensing module, Action, Instrument, Step
and Phase are generated. Before moving on to the evaluation of the model, let us
first discuss some of the challenges faced when modeling such a surgical procedure.

6.1.3 Technical Challenges

Modeling a surgical procedure comes with many challenges. First, current meth-
ods find difficulty in modeling both right and left sided procedures simultaneously.
With the ASP system, external atoms are provided by the sensing module, and
so the algorithm will not predict an action to be executed on an anatomy that is
exclusively on one side of the patient, such as the liver or the spleen.

Before modeling such a complex procedure, care must be taken when making
technical choices. The technique of the surgery depends on how to get the best
exposure of the kidney to reach the tumor. This will affect how or in what way
the bowel is mobilized at the beginning of the procedure. This depends on the
size, location, and complexity of the tumor. Consequently, there are many ways to
perform a surgery. This makes the SPM process for a robotic partial nephrectomy
more difficult. For this reason, the ASP algorithm allows for some flexibility in
performing the procedure. This is achieved by having the possibility of generating
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the surgical procedure non-sequentially. However, the model is generalized enough
to only include the information that is to be expected in a standardized approach.
In a later stage of this work, the Renal score as well as the location and size of the
tumor will be taken into account to allow for a more detailed and realistic surgical
plan.

Moreover, in some cases, adhesions can be found after port insertion. This can
affect where the ports are placed. Adhesions must be released to allow for greater
freedom of the robotic arms. For this purpose, the model of the procedure as-
sumes to begin after port incisions are made and robotic docking. In this way, the
robotic arms are considered to be at the correct location and are ready to start
the dissection.

Another aspect that must be considered is the choice of hilar control. Some
surgeons prefer to clamp both the renal artery and the renal vein, while others
only clamp the artery. In a standardized approach, as seen in [I1] and [10], they
are both clamped. Some studies revealed that there are no differences in surgical
outcomes between only clamping the artery and clamping both artery and vein
[89, 90]. In this model, we are choosing to clamp both the artery and vein, which
provides a more complete and generalized approach.

As previously mentioned, the Renal score affects the surgical technique. If the
tumor is endophytic, an enucleation would be required. However, in this gener-
alized model of the procedure, only resection is suggested, which simplifies the
technique. In a later stage of this work, the Renal score, hence the complexity of
the tumor, will be taken into account, and it will be able to suggest an alternative
approach to dissecting the tumor.

In this thesis, many aspects of the procedure were simplified allowing for a more
generalized and high level approach of a robotic partial nephrectomy.

In the next section, we will evaluate the results of the ASP model both quan-
titatively and qualitatively.
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6.2 Quantitative Analysis with real Surgical
Procedures

For a quantitative evaluation of the results achieved by the ASP model, real sur-
gical video annotations are used. A comparison between actual and predicted
surgical steps is made, as well as actual and predicted actions. First, the surgical
data was manipulated in order to be used in this validation.

6.2.1 Surgical Video Annotations

In order to evaluate the results obtained by the ASP system in generating a sur-
gical plan, real surgical procedures were used. Videos of robotic partial nephrec-
tomies were manually annotated by a urologist and compiled by Dr. Hirenkumar
Nakawala. In these files, information was given at every time step, with the du-
ration of each Phase, Step and Actions done on each Anatomy seen. This data
was organized according to different granularity levels, providing information on
phases, steps, actions, anatomies, as well as all instruments used. Therein, differ-
ent instruments used by the surgeon’s right hand, left hand, and assistant were
distinguished.

For this data to be useful, the annotations had to be cleaned up to be made
comparable to the type of outputs we achieved with the ASP system. Conse-
quently, all instruments used by different actors in these annotations are merged
into one "Instrument" attribute. Repetitions of actions and instruments within a
step are also eliminated to clarify the output. Furthermore, in these video annota-
tions, certain terminologies are different from the ones the ASP uses or generates.
For instance, as seen earlier in this chapter, the renal artery must be clamped
before the tumor can be resected. In the video annotations, a distinction between
renal artery and renal vein is not made. In the annotations, it is said that the
renal artery is clamped, but there is no mention of it later being unclamped in the
procedure. Similarly, hilar vessels are said to be unclamped when there was no
previous mention of them being clamped in any of the previous steps. The sur-
geon who annotated these surgeries used vague terminologies that the ASP system
might find too ambiguous. For this reason, terminologies that are different from
the ones within the ASP program are modified, providing that they convey the
same meaning. Terminologies for the Phases, Steps, Anatomies and Actions that

were different from the ones used in [11, [10], follow these mapping tables [6.2]
6.4, 6.5
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Terminology from Annotations | Terminology in ASP from |11, 10] ‘

hilumDissection hilar Dissection

tumor Exposure tumor Exposure _Demarcation
tumor Resection hilarControl__tumor Resection
closure retrieval _closure

Table 6.2: Phase Mapping

’ Terminology from Annotations | Terminology in ASP from [IT], 10] ‘

mobilization medial M obilization
dissection hilarVesselsDissection
identi fication tumor Exposure
ultrasound tumorldenti fication
marking markingTumorMargins
clamping hilarClamping
resection tumor Resection
removal retrievingTumor
midollarSuturing suturingExcisionBed
cortical Suturing suturingRenalCapsule
unclamping hilarUnclamping

Table 6.3: Step Mapping
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Terminology from Annotations | Terminology in ASP from |11, T0] ‘

incise, cut, dissect incise, dissect
mark mark _margins
put put__in

suture deepLayerClosure
suture outer LayerClosure
suture secure__suture
suck suction

Table 6.4: Action Mapping

Terminology from Annotations

Terminology in ASP from [I1], [10] ‘

ligament BetweenSpleen AndKidney | attachmentToSpleen
ligament Between Liver AndKidney | attachmentToLiver
Mesocolon posterior Mesocolon
kidneyCapsule renalCapsule

renal Artery renal Artery
hilarVessels renal Artery
hilarVessels renal Artery

Table 6.5: Anatomy Mapping

After cleaning the annotations and adjusting the terminologies, only three surgeries

were complete and usable for this validation. In the next section, we will explain

how this validation was done, as well as the accuracy calculated for predicting steps

and actions by the ASP system. A confusion matrix for the predicted actions is

presented, as well as the variability in precision, recall and F1-score for each action,

across the three different surgeries used for this evaluation.

o6
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6.2.2 Predicting Surgical Steps

To begin evaluating the efficacy of the ASP system in generating a surgical process,
an algorithm takes the anatomy from the annotations and inputs it to the ASP
system. The ASP algorithm then uses this anatomy to generate a predicted step.
Once that is done, the action executed is stored, and later used with the next
anatomy from the annotations list to predict the next step. This is repeated until
the algorithm goes through the entire list of anatomies from the annotations. To
better illustrate this validation, let us refer to the results seen in the figures bellow.
In these figures, the numbering column on the left side reflects the time step t. At
each t, an Anatomy is extracted from the annotations, and given to the ASP system
as input, along with the previous action executed at t-1. The column "ActualStep"
are the Steps seen in the real surgery, while the column "PredictedStep" represent
the Steps predicted by the ASP system. For every "Anatomy" at each time step,
an "ActualStep" is compared with a "PredictedStep".

Anatomy ActualStep Predicted Step

0 ['gerotasFascia’, 'lineOfToldt, 'bowel] medialMobilization [medialMobilization, medialMobilization, medialMobilization]
1 ['hilarVessels] hilarvesselsDissection [hilarvesselsDissection]
2 ['gerotasFascial tumorExposure [tumorExposure]
3 ['tumor’] tumorldentification [tumorldentification]
4 [tumor] markingTumoriargins [markingTumariiargins]
5 ['renalArtery’, 'renalVein’] hilarClamping [hilarClamping, hilarClamping]
6 ['tumor] tumorResection [tumorResection]
7 [tumor refrievingTumear [retrievingTumor]
8 ['kidney’] suturingExcisionBed [suturingExcisionBed]
10 [kidney] suturingRenalCapsule [suturingRenalCapsule]
1 ['renalArtery’, 'renalvein’] hilarUnclamping [hilarUnclamping, hilarUnclamping]
12 ['kidney'] inspectingRenorraphy [inspectingRenorraphy]
13 ['gerotasFascia’ reconstruction [reconstruction]
14 ['kidney'] drainage [drainage]

Figure 6.10: Surgery 1 - Actual vs Predicted Steps

In figures [6.10] and we can observe that the predicted steps of Surgery 1 and
Surgery 2, perfectly match the actual steps in the annotations. The fact that some
"PredictedStep" is mentioned more than once is due to the number anatomies it
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is given. In these figures, at some time steps, more than one anatomy can be seen,
when only one was needed to make the prediction. Since the ASP system takes in
one anatomy per time step, it predicts the Step for each Anatomy. That is why, in
some cases, the "PredictedStep" is mentioned three times, if three anatomies were
seen in the annotations, as we can see at time step 0 in figure [6.10 This however
does not affect the comparison to be made with the "ActualStep". In these two
examples seen in figures [6.10] and [6.11] the order of anatomies are different which
can be expected in different surgeries. And yet, the ASP system was still able to
correctly predicted every step in the surgery. This demonstrates the flexibility and
robustness of the system in predicting surgical steps.

© @ N e e kW N =2 O

[gerotasFascia]
['tumor]

[tumor]

[renalArtery, renalvein]
[tumer]

[kidney']

['kidney']

[renalAriery. renalvein]
[kidney']

['tumor]
[gerotasFascia]

[kidney]

tumerExposure
tumorldentification
marking Tumortdargins
hilarClamping
tumorResection
suturingExcisionBed
suturingRenalCapsule
hilarUnclamping
inspectingRenorraphy
refrieving Tumer
reconstruction

drainage

Anatomy Actual$tep PredictedStep
[lineCfToldt, gerotasFascia, posteriorviesocolon. attachmentToSpleen] mediallobilization  [mediallMobilization, mediallobilization, mediallMobilization, medialMobilization]
[hilarvessels]  hilarvesselsDissection [hilarvesselsDissection]

[tumerExposure]
[tumorldentification]

[markingTumoriargins]

[hilarClamping, hilarClamping]

[tumorResection]
[suturingExcisionBed]

[suturingRenalCapsule]

[hilarUnclamping, hilarUnclamping]

[inspectingRenorraphy]
[retrieving Tumer]
[reconstruction]

[drainage]

Figure 6.11: Surgery 2 - Actual vs Predicted Steps

In figure [6.12] the tumor is not detected with an ultrasound since this step is not
essential for the correct completion of the procedure. ASP was able to skip the
detection since the use of the ultrasound instrument was deactivated at the begin-
ning of the model. When the anatomy given is the tumor, it correctly predicted
to mark the margins right away. This shows the flexibility of ASP’s in executing
the procedure.

After calculating the individual accuracy for each of the three surgeries, the overall
accuracy was found to be 100%. The ASP algorithm achieved high accuracy in
predicting surgical steps. This is due to the fact that it uses logic reasoning to
make decisions. When the ASP system receives a new anatomy as input, and with
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Anatomy ActualStep PredictedStep
0 [‘gerotasFascial) mediallobilization [medialiobilization]
1 ['hilarVessels]  hilarvesselsDissection [hilarvesselsDissection]
2 [gerotasFascial fumorExposure [tumorExposure]
3 [tumor]  marking Tumoriviargins [markingTumoriargins]
4 [renalArtery, renalvein] hilarClamping [hilarClamping, hilarClamping]
5 [tumor] tumorResection [tumorResection]
6 [kidney]  suturingExcisionBed [suturingExcisionBed]
7 [kidney'] suturingRenalCapsule [suturingRenalCapsule]
8 [renalArtery, renalvein] hilarUnclamping  [hilarUnclamping, hilarUnclamping]
] ['kidney'] inspectingRenorraphy [inspectingRenorraphy]

Figure 6.12: Surgery 3 - Actual vs Predicted Steps

its knowledge on the previous action executed in the previous step, it uses the
rules and constraints within its algorithm to decide what action should be done
next. The logic behind its reasoning capabilities allows for a more flexible process
generation by the AI. ASP integrates the understanding that there is more than
one way to execute a surgical procedure, and it is able to generate a surgical pro-
cess given anatomies. In the following section, predicted actions will be evaluated
in the same manner.

6.2.3 Predicting Actions

Similar to the experiment described in the previous section, actions predicted by
the ASP model are compared with actual ones. The model extracts the anatomy
from the annotations, and uses it to decide which action to be executed. It later
saves this action to be used in the reasoning of the next one. The same three
surgical procedures are used. An important matter to consider is that fact that
in the annotations, only the actions done by the dominant hand are displayed.
However, the ASP model gives information on both robot arms, and for this reason,
some differences can be seen.
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Anatomy ActualAction PredictedAction
0 [gerotasFascia] [incise] [hold. incise]
1 [hilarVessels] ['dissect] [dissect]
2 [gerotasFascial ['dissect] [dissect]
3 [tumor] ['mark_margins'] [mark_margins]
4 [renalArtery, renalvein] ['clamp] [clamp, clamp]
5 [tumor] [resect] [resect]
-] [kidney] [deepLayerClosurel [deeplLayerClosure, secure_suture]
7 [kidney] [outerLayerClosure] [outerLayerClosure, secure_suture]
8 [renalArtery, renalVein] ['unclamp [unclamp, unclamp]
9 ['kidney] [inspectSutures’] [inspectSutures]

Figure 6.13: Comparison between Actual and Predicted Actions for Surgery 3

Figure shows a case where the ASP model was able to perfectly predict the
actions to be executed, and yielded an accuracy of 100%. This is due to the flex-
ibility of the ASP model in understanding what actions should be executed on
the given anatomy, knowing what has been done in the previous step. In this
example, detection with an ultrasound is not done, and the ASP system was able
to correctly go from the dissection to marking the margins on the tumor when it
is received as input. However, as can be seen in some times steps, the ASP model
predicted two actions to be done, compared to only one seen in the annotations.
This is due to the fact that the ASP model takes into account the actions done
by both robotic arms, whereas the annotations are only displaying what is being
done by the surgeon’s dominant hand. For this reason, when the Predicted Action
is hold, incise and the ActualAction is incise, it is still considered correct. This
applies the rest of the actions predicted by the model.

Figure shows the results achieved by the ASP model in predicting actions
of Surgery 1. Anatomies were given to the model in the order seen in the video
annotations. The ASP was able to correctly predict 93.75% of the actions to be
executed in the procedure. The error was due to the fact that the model did not
anticipate inspecting the gerota’s fascia after suturing it, and before placing the
drain, as can be seen in time step 14. This is one of the limitations with the ASP
algorithm. Since it used the knowledge extracted from techniques that always
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Anatomy ActualAction PredictedAction

0 [line0fTaldt] incise [hold, incise]

1 [bowel] move [move]

2 ['gerotasFascia incise [hold, incise]

3 [hilarvessels] dissect [dissect]

4 ['gerotasFascia) dissect [dissect]

5 ['tumor] detect [detect]

8 ['tumar mark_margins [mark_margins]

7 [renalArtery’, 'renalvein’] clamp [clamp. clamp]

8 ['tumor] resect [resect]

9 [tumor] put_in [put_in]

10 [kidney'] deeplLayerClosure [deeplLayerClosure, secure_suture]
1 [kidney'] outerLayerClosure [outerLayerClosure, secure_suture]
12 [renalArtery, ‘renalvein’] unclamp [unclamp, unclamp]
13 ['gerotasFascia suture [suture]
14 ['gerotasFascia) inspect [inspect, suture, place]
15 ['kidney] place [place]

Figure 6.14: Comparison between Actual and Predicted Actions for Surgery 1
shows some of the limitations

presumed to inspect the sutures on the kidney, when it came to inspecting the
gerota’s fasica, it could not make a correct prediction, as seen at time step 14 in
figure [6.14] It attempted to inspect the anatomy given, but also to suture it as
well as to place it, which is incorrect.

Figures and show one of the important factors that affect the process
generation by the ASP system. These two experiments have only one difference
in the order of anatomies. In[6.15] the anatomies seen at time step 11, after deep
layer closure of the kidney, are the renal artery and vein. However, since the ASP
model understands that after deep layer closure, the outer layer of the kidney must
also be sewn, it does not allow for the completion of the procedure, although it
correctly predicted all the previous actions. The accuracy of the ASP system in
predicting actions when the order of anatomies are not to be expected is of 68.75%.
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Anatomy ActualAction PredictedAction

0 [lineOfToldt] incise [hold, incise]
1 ['posterioresacolon’] incise [hold, incise]
2 ['attachmentToSpleen] dissect [dissect]
3 [gerotasFascial dissect [hold, incise]
4 ['hilarvessels dissect [dissect]
5 [gerotasFascia’) dissect [dissect]
6 [tumor] detect [detect]
7 [renalArtery’, 'renalvein’] mark_margins [mark_margins, clamp]
g ['renalArtery’] clamp [clamp]
9 [tumor] resect [resect]
10 [kidney'] deeplayerClosure [deeplLayerClosure, secure_suture]
11 ['renalArtery’, 'renalVein'] unclamp 0
12 [kidney] outerLayerClosure 1]
13 [tumor] put_in 0
14 [gerotasFascia’) suture [held, incise]
15 ['kidney'] place 0

Sara Sabry

Figure 6.15: Comparison between Actual and Predicted Actions for Surgery 2

shows that the order of the anatomies matter for the flow of actions

executed

Anatomy

ActualAction

PredictedAction

0 [lineOfToldt, gerotasFascia, posterioriesocolon, attachmentToSpleen]
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[hilarVessels]

[gerotasFascia]

[tumor]

['tumor]

[renalArtery, renalvein]

[tumor]
[kidney]
[kidney]

[renalArtery, renalVein]

[Kidney']

['tumor]
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['kidney']
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['dissect]
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['mark_margins']
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['deepLayerClosure’]
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['suture’]
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[mark_margins]
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[resect]
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[put_in]
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Figure 6.16: Comparison between Actual and Predicted Actions for Surgery 2

In [6.16] if the order is adjusted, the model allows for the outer layer closure of
the kidney, and then proceeds by correctly predicting all succeeding actions, with
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an accuracy of 100%.

The results of this experiment showed the robustness of the ASP system, and
how it would not allow for some safety critical actions to be executed, if the pre-
vious one needed to be done first. It allows for some flexibility in executing the
steps and actions for non essential activities. However, some actions are highly
dependent on the previous ones. An example is shown in where the order
of anatomies taken as input is paramount. This makes sense in the flow of the
procedure. The ASP model was right in stopping the completion of the surgery
since the outer layer of the kidney must be sewn before unclamping the vein and
artery. This assures the correctness of the surgical technique, as well as the safety
of the patient.

6.2.4 Results of Quantitative Validation

To better understand the results achieved by the ASP model in predicting actions,
accuracy, precision, recall and Fl-score were calculated, and can be seen in ta-
ble [6.6] This is done by looking at the differences between Actual and Predicted
Actions, and noting the true positives, true negatives, false positives and false

negatives. These were calculated from figures [6.13] [6.14] [6.15] and [6.16]

Precision, also know as positive predictive value, is defined as true positives di-
vided by the sum of true positives and false positives. It answers the question of
how many of the predicted items are relevant. Recall is defined as true positives
divided by the sum of true positives and false negatives. It shows how many of the
relevant items are selected. Recall expresses how much of the true positives were
correctly identified. F1l-score is a combination of the two metrics. For example,
we predicted dissect correctly 10 out of 11 times. Hence, all 10 predictions are rel-
evant and the precision is equal to 1, but not all relevant instances were selected,
hence the recall is 0.91.

The overall accuracy of the system in predicting actions was found to be 90.6%.
This can be defined as the degree of correctness of the ASP system in predicting
actions when given anatomies. This is mostly due to the dependence of the ASP
model on the order of anatomies. Some actions cannot be executed unless others
were shown to be done at a previous step. This assures safety for the patient, as
well as making sure the procedure makes sense.
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Action Precision | Recall | F1-score
dissect 1 0.91 0.953
incise 0.83 1 0.907
mark margins 1 1 1
clamp 0.8 1 0.889
resect 1 1 1
deepLayerClosure | 1 1 1
outerLayerClosure | 1 0.75 0.857
unclamp 1 0.75 0.857
inspectSutures 1 1 1
place 1 0.6667 | 0.8
put_in 1 0.6667 | 0.8
suture 1 0.6667 | 0.8
move 1 1 1
detect 1 1 1

Table 6.6: Precision, recall and fl-score for each action.

Finally, when looking at both surgical steps and actions, 95.3% of the predic-
tions were correct. While considering only predicted actions, the model had a
mean precision of 0.97 with a standard deviation of 0.065, a mean recall of 0.89
with a standard deviation of 0.143, and a mean F1-score of 0.92 with a standard
deviation of 0.081, computed over all the annotations. This means that 97% of
the predicted actions were relevant, while 89% of these relevant predictions were
correct.

This validates the model, and shows the feasibility in using ASP for such an

application.

To better visualize the performance of our algorithm, a confusion matrix is pre-
sented in figure This shows the errors that were made by the system in
predicting actions.
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Figure 6.17: Confusion Matrix
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In the subsequent section, a qualitative analysis will be conducted. This will be

done with the help of four urologists who have previously performed this procedure,

and who have experience with minimally invasive robotic surgery.
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6.3 Qualitative Analysis - Expert Review

In this section, four urologist who are experts in robotic surgery were interviewed.
Since they have all previously performed robotic partial nephrectomies, their pro-
fessional inputs one the procedure was of crucial importance in the improvement
of the system. The video recordings of each talk can be presented with this thesis
upon request.

6.3.1 Dr.med. Alexander Heinze

Dr. Alexander Heinze is a staff urologist at the Marienkrankenhaus, one of the
largest denominational hospitals in northern Germany. After completing his gen-
eral surgery residency at Centro Medico ABC in Mexico, he moved to Belgium
where he received a fellowship in Urological Robotic Surgery. He then received
his promotion to Dr.Med. in Hamburg Germany at Martini Klinik. Dr. Heinze
specializes in minimally invasive treatments as well as robot-assisted surgeries,
specifically for the treatment of oncological diseases.

Being interested in innovations in Medical technologies, Dr. Heinze was kind
enough to help conduct a qualitative analysis of this project.

After briefly describing the logic behind the ASP algorithm and what type of
knowledge the systems uses to reason, the model generated by the ASP was pre-
sented. First, a full workflow of the surgery was described. The results were shown
to him in a clear table format as seen in figures [6.7] and [6.8 A second method of
using this project, the real-time process generation, was then presented.

Dr. Heinze first started by studying the workflow of the generated model. Af-
ter analysing it, he reported that the procedure in fact "follows the steps of a real
surgery, and it is correctly predicting what needs to be done at each step, with the
correct instruments". He also added that he believes that "this project could have
real applications, and that it has a lot of potential." In addition, he believes it to
be particularly useful for educational purposes, such as for "young surgeons who
are not yet experts in performing this procedure." The model could act as a virtual
checklist for the best way to achieve the greatest outcome. Another way that this
project could be used in practice is with the rise of new surgical robots that will
be using Al for decision making. He mentioned that he is currently working with
companies in Germany that are working on introducing these types of innovations,

66 Masters Thesis, Politecnico Di Milano, 2020



Sara Sabry Surgical Process Modeling using Answer Set Programming

and that when they come to the market next year, they could potentially find this
project very useful.

However, being an expert in his field, he had some ideas for future work and
some features that can be added to make this model more complete for practical
purposes. For instance, he believes it would be useful to have the system indicate
when an instrument should be changed. This is one of the limitations of this work,
and we will work on adding this feature at a later stage. On another note, he
mentioned the importance of accounting for intraoperative complications in the
proposed surgical system. In real surgery, "one needs to be prepared to deal with
complications, and it would be useful if the system can make decisions in case of
high stress or bleeding." For instance, the model should react to bleeding by post-
poning the next dissection scheduled, and performing stitches to stop the bleeding.
Another potential case would be if we reach the end of suturing the kidney and
bleeding is still detected, the system should be able to suggest performing more
stitches, or putting some material on the renal capsule that helps with healing,
such as hemostatics.

These suggestions were very useful in understanding how to improve this sys-
tem, and they will be taken into account at a later stage of this work. Dr. Heinze
is involved in innovation technologies at a university in Mexico, and he proposed
to add this project to his next talk because he believes it can help inspire others.

6.3.2 Dr.med. Hector Sandoval Barba

Dr.Hector Sandoval Barba is a urologist trained in Mexico and the UK. He is
currently a consultant in Mexico, performing open, laparoscopic and robotic surg-
eries. Dr.Barba has performed robotic partial nephrectomies numerous times, but
is currently specialized in oncology. His input was of extreme importance for the
future progress of this project. His suggestions will be taken into account in a
later work to improve this algorithm of the current system, and to make it more
applicable in real surgery.

After understanding what type of information the ASP algorithm is working with,
Dr.Barba suggested that it might be too simple to be applied in real surgery. There
are numerous aspects that need to be considered before choosing how to approach
the problem at hand. First, before docking the surgical robot, adhesion inside
the patient might have to be released. The current ASP model assumes to begin
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the procedure after the incisions are made and the robotic arms are in place. He
mentioned that before this step, port insertions can depend on these scar tissues
inside the patient. Since the start of the surgery will depend on the adhesions
found in the patient, Adhesiolysis should be considered before robotic docking.

Next, he mentioned that the model should consider the different techniques that
can be used to release the ligaments that hold the kidney in place. This is one
of the technical challenges faced in this project. For this reason, the ASP model
simply used a standard technique that was found to be most effective. However,
in a later phase of the study, the location of the tumor will have to be taken into
account. This will affect how the dissection will begin in the procedure. The tech-
nique would be different if the tumor was located in the posterior or anterior part
of the kidney. Dr.Barba added this statement: "for instance, if we are dealing
with a posterior tumor, the ligaments would be released laterally. However, if it
was an anterior tumor, they would have to be released medially." For this reason,
it would very important to consider the location of the tumor for modeling this
procedure since it would affect how the kidney will be dissected in order to reach
the tumor.

Additionally, the techniques to partial nephrectomy mainly depend on the sur-
geon’s criteria. Some choose to clamp the artery, others prefer increasing the
pressure on the peritoneum. Alternately, some surgeons selectively clamp only the
artery that is feeding the tumor. Since the ASP model is attempting to replace
the surgeon down the line, it will need to take all of these into account.

On a different note, dissimilar to what has been done in this thesis so far, he be-
lieves that the "renal vein should not be clamped since it will create more pressure
in the kidney, which will cause more bleeding, and hence less visibility". However,
in [90] and [89], it was was shown that there is actually no difference in the out-
come of the procedure if the renal artery was clamped alone, or if both artery and
vein were clamped. This emphasizes on how surgeons have different preferences
in how to perform the procedure, which is one of the main challenges of this thesis.

Another aspect of the procedure that needs to be considered is whether to per-
form tumor resection or enucleation. This choice depends on the complexity of
the tumor. If the tumor is endophytic, which means it grew inwardly, it would
not be easy to delineate its margins and one would have to completely remove
the mass without cutting into it with the help of an ultrasound probe. For this
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reason, classifying the complexity of the tumor is of crucial importance since it
would change the way the procedure is performed or planned. In a later stage of
this work, the complexity of the tumor will be assessed using renal score [91].

Finally, Dr. Barba concluded our talk by saying that "this is a very ambitious
project, but obviously one has to build a stone upon another stone". Even though
there are many improvements that need to be done for this to be applicable in
real operations , it is probably "the future of certain surgeries". He continued by
adding that he would like to continue helping this project move forward.

6.3.3 Dr.med. Alejandro Cumming

Dr. Alejandro Cumming works at one of the only private hospitals in Mexico that
have the da Vinci Surgical Robot. With his experience in robotic surgery, he found
that having a system that is able to generate the surgical process autonomously
would be useful.

Similar to Dr. Barba, he also finds that it is very important to consider the Renal
score when attempting to model the procedure. It is an essential instrument that
helps categorize the tumor, and to see how complex the procedure could get.

After inspecting one of the workflows generated by the ASP system, he was pleased
with the model being able to distinguish between being on the left or the right side
of the patient. The model simply reasons on the anatomies it is given as input,
therefor it would not try to execute an action that is observed exclusively on one
side. However, this is one of the limitations of this project. The ASP system
assumes the anatomy it is given as input is seen one at a time, and that each
anatomy is correctly identified.

Finally, Dr. Cumming believes that this system would be most useful for complex
tumors, and with its high accuracy, and given that robotic arms provide great
dexterity, the procedure can assure the highest preservation of nephrons in the
kidney when removing the tumor.

6.3.4 Dr.med. Karen Mendoza

Dr. Karen Mendoza is a urologist trained in robotic and minimally invasive surgery
in Mexico. After evaluating the workflow generated by the ASP system, she ap-

Masters Thesis, Politecnico Di Milano, 2020 69



Surgical Process Modeling using Answer Set Programming Sara Sabry

proved of its completeness. Dr.Karen declared that it correctly illustrates the
sequence of events "to be expected in a real procedure."

However, she was concerned about whether the size and location of the tumor
were taken into account by the ASP model since that would affect the procedural
technique. She also suggested that it would be useful to consider that patient’s
risk of complications. If the patient has had a previous surgery, or has been treated
with radiotherapy, this might affect the performance of the surgery. She believes it
would be beneficial to know in advance whether complications are to be expected
or not. Moreover, as previously mentioned, the ASP system in a later stage should
be able to account for complications during surgery in real time, which can allevi-
ate her concerns.

Finally, Dr. Karen was very impressed with the work involved in this project,
and added that "it is a very innovated way to see the procedure." She is looking
forward to seeing what the project leads to, and how it will benefit the decision
making process in surgery.

The next chapter will conclude this thesis, and give an outlook about the future
work.
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7 Conclusion

For a fully autonomous surgical robot, three main aspects of a procedure need to
be addressed: scene understanding and situation awareness, explainable and safe
generation of the surgical plan, and the execution of the surgical task by dexter-
ous robotic arms. In this thesis, we will only limit ourselves to the portion of
the procedure that requires reasoning, specifically the surgical process. Just as in
real surgery, environmental changes can be expected. For that, the system that is
generating the surgical process must be able to adapt to these dynamic conditions.
This was achieved using a declarative rule-based non-monotonic programming lan-
guage, ASP.

The surgical plan generated by the ASP system remains rather high level. The
procedure is assumed to begin after the incisions are made and surgical robotic
docking. The ASP algorithm uses knowledge given by experts about the proce-
dure, as well as information on the environment. This Al algorithm can generate
two types of surgical outputs: a full workflow of the procedure, or real-time rea-
soning about the surgical process. To get a full workflow, a list of anatomies can
be given to the ASP system. It then uses logic, with the knowledge it is given a
priori, to decide on what action should be executed on that given anatomy. The
generated procedure is explainable, and can be easily modified.

This thesis was successful in generating accurate surgical processes for a robotic
partial nephrectomy. When given information on different anatomies, as well as
the previous action, the ASP algorithm correctly generated the Action that should
be executed on that given Anatomy, as well as providing the Phase, Step, and In-
strument used. Real surgical video annotations of RPN were used to evaluate the
ASP model. It successfully predicted the steps and actions in the procedure, with
an accuracy of 95.3%. Actions were predicted with a mean precision of 97%, a
mean recall of 89%, and a mean Fl-score of 92%.

At present, some of the knowledge that ASP assumes to be always true are the
instruments used by the robot arms. However, during the procedure, the robot
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arms change instruments. This is currently not modeled by the ASP system. In a
later phase of this work, the system will be able to indicate when the instruments
need to be changed before executing the next action. This will be done by adding
actions that indicate the insertion of the new instrument to be used for the next
step. This change in instruments mainly occurs before the renorraphy phase, so it
can be integrated within the algorithm using this information.

Another limitation is when faced with complications. In real surgery, a surgeon
must always be ready to deal with possible difficulties. This will be added to the
system in future work. For instance, if the sensors detect bleeding, the system
should indicate to stop the dissection and to do some stitches where the bleeding
is coming from. Only once the bleeding has stopped can the dissection be con-
tinued. Another potential occurrence could happen after reaching the end of the
kidney suturing step. If bleeding is detected, the system needs to be able to sug-
gest adding more stitches, or to apply some material on the organ that supports
healing. This will be done by adding a supplementary action that has bleeding
within its preconditions. This bleeding literal will act as an external atom acti-
vated by the sensing module.

After speaking with Dr.Hector Barba who has performed this procedure numerous
times, several matters were brought to light. Firstly, the technique and extent
of mobilizing the bowel depends on the location of the tumor within the kidney.
Before beginning the surgery, a surgeon must know the RENAL Score [91] in or-
der to decide how to perform the procedure. This will help in deciding how much
medial mobilization should be carried out, and choosing which parts of the tis-
sues to incise first. Before being able to apply such a technology in real surgery,
information about the renal mass must be considered and integrated within the
ASP system. The algorithm will have to integrate this information and allow for
different possible plan generation depending on the RENAL score.

This project was found to be useful and promising by Dr.Alexander Heinze. He
believes that it can be used by young surgeons or trainees for the time being.
They can use the full surgical workflow as a virtual checklist when performing the
surgery, or to help them make decision during the surgery when uncertain about
what should be done next. In the future, this work can be combined with Deep-
Onto [88] for a more complete and accurate surgical workflow generation. It can
also be integrated with the da Vinci surgical robot with the goal of increasing the
level of autonomy in robotic surgery.
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List of Acronyms

CNN
LSTM
SSI
SPM
RPN
ML
ASP
NIRF
ILP
UML
OR
OTS
ETS
KR
FSM

Convoluted Neural Networks
Long Short-Term Memory
Surgical Site Infection
Surgical Process Modeling
Robot Partial Nephrectomy
Machine Learning

Answer Set Programming
Near-Infrared Fluorescent
Inductive Logic Programming
Unified Modeling Language
Operating Room

Optical Tracking System
Electromargnetic Tracking System
Knowledge Representation
Finite State Machines
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