
Politecnico di Milano
Department of Civil and Environmental Engineering

Doctoral Programme in Environmental and Infrastructure
Engineering

On the Development of a General
Undifferenced Uncombined Adjustment

for GNSS Observations

Doctoral Dissertation of:
Giulio Tagliaferro

Supervisor:
Prof. Fernando Sansò
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1

Introduction

This thesis describes the development of a general processing strategy for
GNSS observations and the corresponding software implementation. The
strategy was developed during a doctorate program conducted at Geo-
matics Research & Development (GReD) s.r.l, a company spin-off of the
geodetic school of Politecnico di Milano. The processing strategy has been
developed for the purpose of GReD applications, geodetic monitoring of
displacement and estimate of tropospheric parameters, but has a general
setup in basis to serve most purposes of the use of GNSS networks of re-
ceivers. The whole strategy has been developed with a focus on flexibility,
meaning that should be able to process all available GNSS signals with a
general as possible paramterization. The strategy has been implemented
in the framework of the goGPS project, an open source MATLAB based
GNSS processing software, with an important evolution in term of pro-
prietary software of GReD.
The strategy builds upon decades of research in the field that I hope I
was able to properly reference in the bibliography. Besides specific im-
plementation aspects, original parts are however presents. The first one
is more theoretical and consists of a general way to solve integer least
squares rank deficient problems. The second is more applied and consists
on the use of numerical methods to solve rank deficiencies in systems of
GNSS observation equation.
The document is organised as follows, after a few words on the notation
used the necessary mathematical foundations are presented. They con-
cern with least squares estimation theory and the presentation is split
in two chapters. The first one (Chapter 2) describes the theory and the
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6 1. INTRODUCTION

corresponding problems the second (Chapter 3) regards the methods to
solve such problems. Both chapters describe the cases of real and integer
parameters for both full rank and rank deficient systems. Then a chapter
(Chapter 4) is dedicated to the physical description of the GNSS system
and the relevant physical phenomena affecting it. The Least squares the-
ory previously presented is then applied to specific meaningful estimation
cases (Chapter 5). For each problems specific behaviour of the system
are highlighted. Particular attention is given to typical cases of mixed
integer real rank deficiencies and to the derivation of constraints leading
to integer estimates. Finally a chapter (Chapter 6) is dedicated to the
software implementation and to the presentation of two cases studies.

1.1 Notation

In this section all notations used in the thesis are presented.

1.1.1 Symbols Used

In this subsection we make a list of mathematical symbol used

Q set of rationals numbers
R set of real numbers
Z set of integer numbers
N () null space of
R() range space of
span() span of
rank() rank of
⊥ orthogonal
· matrix product
∈ belonging to
Aᵀ transpose
A−1 inverse
A+ pseudoinverse
be round to nearest integer
⊗ Kronecker product
I Identity matrix
e Column vector of ones
\ Least square operator
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1.1.2 Matrices, Vector, Scalars, Functions

The following conventions for variables in equations are used:

• Lower case greek letters (α, β ,...) for scalars.

• Lower case Latin letters(a, b,...) for vectors.

• Upper case Latin letters(A,B,...) for matrices.

• Upper case greek letters for functions (Γ(),P(),Φ(),...).

The previous convection will be broken only for very specific case of con-
stant that are almost always identify with a specific symbol in literature.
Such cases occurs only in chapter 4 and are clearly indicated, the most
clear examples is the use of Latin letter c for the speed of light in vac-
uum. Furthermore the previous convention does not apply to subscript
or superscript where lower case Latin letter should be expected, similarly
when speaking about the numerosity of a parameter in a sentence lower
case letter will be used. For instance we might write ”.... the matrx A
has n columns ...“ in this case the symbol ”n“ should be interpreted as a
scalar. To denote a matrix of integers A with m rows and n columns we
will say A ∈ Zm,n and similar notation will be used for real and rational
number.
To select specific rows and columns of matrices index of the rows and
columns (separate by semicolon) are put inside brackets after the variable
name. For instance A(1, n; k,m) indicates the submatrix composed by
rows 1 and n and columns k and m. If we want to express a range of
column or rows we will use horizontal dots . . .. For example sub matrix
of A composed by rows from 1 to n and column from k to m will be
denoted as A(1 . . . n; k . . .m). If we want to indicate simply one element
of a matrix the more succinct form Aij will be used.

1.1.3 Estimates

Regarding estimates we will use the following convention:

• x the unknown variable.

• x̂ the real/rational estimates of the variable.

• x̌ the integer estimates of the variable.
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• x́ the true value of the unknowns

Furthemore, we will use the breve sign (Ă) to indicate matrix or observa-
tions that have been reduced for some parameters.
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Least Squares Adjustment
Theory

Nothing is more practical than a good theory
– Kurt Lewin

This chapter deals with the least squares principle for the estimation
of unknown parameters. It is fundamental to make this introduction
since almost all GNSS estimations rely on such estimation principle. The
chapter will first illustrate the principle, discuss the case of estimation
of real variables with linear constraints and discuss the estimation in
case of rank deficiencies. Then the focus is moved to the case of integer
parameters, after a very brief introduction of lattice theory, estimation
cases of full and rank deficient systems are discussed.

2.1 Least Squares

Consider a sampling from of a random variable vector y, that we will
name observation, and a linear model A connecting them to some other
deterministic variable vector x called the unknown, we can then write:

y ≈ A · x; (2.1)

as y is extracted from a random variable the relation is not fulfilled exactly
so we have to add a term e called noise to account for that. The matrix
A of the system is often called “design matrix”; we will use this name
in the document. Being the noise a random term we can specify a mean

9



10 2. LEAST SQUARES ADJUSTMENT THEORY

E(y) = A · x, and variance covariance matrix Cyy. The equation then
becomes:

y = A · x+ e (2.2)
Having an estimated value of the unknown x̂, we can construct the fol-
lowing quantity called residual:

u = y − A · x̂ (2.3)

The principle of least squares consists in finding the value of x̂ for which
the quantity

uᵀ · C−1
yy · u (2.4)

is minimised. This estimation principle is called in different ways in geode-
tic literature, “least squares adjustment by observation only” [74] or “least
squares adjustment of Gauss-Markov Model” [66] and in non geodetic lit-
erature it is often called Generalized Least Squares (GLS) after the work
of [3]. Trough this document we will refer to it simply as Least Squares
(LS).
This estimation principle is central in our context because in case of
normally distributed error (a commonly used approximation for GNSS
observations, for instance see [54] Section 6.3.3) it guarantees that the
estimation is of minimum variance. Furthermore if the problem is linear
and not rank deficient (normality of error not required) it is also unbiased.
For this reason it is called Best Linear Unbiased Estimator (BLUE). For
normally distributed errors it is also the maximum likelihood estimator
i.e. the so to say most probable value for the unknown. The derivation
of the estimator is rather simple. Let’s write the Eq 2.4 explicitly:

(y − A · x)ᵀ ·W · (y − A · x) = (2.5)
= yᵀ ·W · y − yᵀ ·W · A · x− (A · x)ᵀ ·W · y + (A · x)ᵀ ·W · (A · x) =

(2.6)
= yᵀ ·W · y − 2 · xᵀ · Aᵀ ·W · y + xᵀ · Aᵀ ·W · A · x (2.7)

where we have substituted W = C−1
yy , assuming that the variance covari-

ance matrix is positive definite. A quadratic function, positive at infinity,
always has a minimum. To find it we can take the derivative with respect
to our unknown x and equate it to zero:

−2 · Aᵀ ·W · y + Aᵀ · A · x = 0 (2.8)
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Rearranging the terms we have:

Aᵀ ·W · A · x = Aᵀ ·W · y (2.9)
N · x = b (2.10)

This last equation is called “normal equation”, N is called “normal ma-
trix” , and b is called the “normal known term”. We will use this termi-
nology in the document. Now we just have to multiply the left and right
terms by N−1 and we are left with an expression to compute the least
square system.

x̂ = N−1 · b = (Aᵀ ·W · A)−1 · Aᵀ ·W · y = S · y (2.11)

Where we call S the matrix that solves the least square problem. Since
the least squares solution can in practice be computed in many other way
(Chapter 3) for simplicity we will denote the least square procedure as a
whole with the backslash sign \. For instance x̂ = A\y.
Once we have the estimates of the unknowns, we can then derive its
variance covariance matrix using the covariance propagation law:

Cx̂x̂ = S · Cyy · Sᵀ = (Aᵀ ·W · A)−1 (2.12)

We see that the variance covariance matrix of the estimates is the inverse
of the normal matrix. If we now write the full expression for the residual
we have:

u = y − A · x̂ = (I − A · S) · y = (I −H) · y = P · y (2.13)

The operator P is called a projector (in the general cas an oblique one),
and the matrix H is sometimes called the “hat matrix”; we will use such
names in the document. Like all projectors P is idempotent P · P = P ,
the same applies to the hat matrix; in fact H = I −P is idemepotent too
and so it is a projector. Furthermore, when W = I, P and H are also also
symmertric:

Hᵀ = (A · (Aᵀ ·A)−1 ·Aᵀ)ᵀ = A · ((Aᵀ ·A)−1)ᵀ = A · (Aᵀ ·A)−1 ·Aᵀ, (2.14)

meaning that they are orthogonal projectors in the euclidean metric. This
makes sense since once we are at the minimum of the quadratic expression
of Eq 2.5, if we apply the minimisation starting from the minimum we
will find it again.
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2.1.1 Reducing the Variance Covariance Matrix to Identity

Very often it is much easier to work without the variance covarince matrix
of the observation Cyy and its inverse W . To do that is very easy; in fact
we can modify both the A matrix and the observation vector y in the
following way:

A′ = R · A (2.15)
y′ = R · y (2.16)

where R is a matrix such that:

Rᵀ ·R = W (2.17)

Indeed such operation is particularly simple when W is diagonal from the
beginning. Often, specially in connection with the Cholesky algorithm, R
is chosen to be triangular. It is easy to verify that the least square solvers
will remain the same using the modified design matrix and observations.

2.1.2 Partial Parameters Elimination

In a least squares minimisation problem it is often useful to eliminate
some parameters and produce a new linear system whose least squares
estimates are identical to the original ones. Let’s assume we have the
system:

y = A1 · x1 + A2 · x2 =
[
A1 A2

]
·
[
x1
x2

]
(2.18)

whose least squares estimates we call x̂1 and x̂2; we would like to have a
system of the type:

y̆ = Ă1 · x1 (2.19)
in such a way that Eq 2.19 produces the same estimate of x̂1 as for the
original system. The system can be constructed as:

Ă1 = A1 − A2 · (Aᵀ
2 · A2)−1 · Aᵀ

2 · A1 = A1 − A2 · (A2\A1) = (I −H2) · A1
(2.20)

y̆ = y − A2 · (Aᵀ
2 · A2)−1 · Aᵀ

2 · y = y − A2 · (A2\y) = (I −H2) · y
(2.21)

Note that I − A2 · (Aᵀ
2 · A2)−1 · Aᵀ

2 is the orthogonal projector P2 on to
the range of A2. This means that to remove the parameters x2 one has to
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project both A1 and y on the orthogonal complement of the range of A2.
It is interesting to bring the problem to the normal form. The reduced
normal matrix and normal known term are:

N̆ = (A1 −H2 · A1)ᵀ · (A1 −H2 · A1) (2.22)
b̆ = (A1 −H2 · A1)ᵀ · (y −H2 · y); (2.23)

concentrating on the first term and developing the product we get

N̆ = Aᵀ
1 · A1 − (H2 · A1)ᵀA1 − Aᵀ

1 ·H2 · A1 + (H2 · A1)ᵀ ·H2 · A1 (2.24)

Let’s focus on the fourth term, bringing the transpose inside the paren-
thesis:

(H2 · A1)ᵀ ·H2 · A1 = Aᵀ
1 ·H

ᵀ
2 ·H2 · A1

From the properties of the hat matrix we know that Hᵀ ·H = Hᵀ = H;
the above expression then becomes:

Aᵀ
1 ·H

ᵀ
2 · A1 = (H2 · A1)ᵀ · A1,

which is exactly the second term of equation 2.24 with the sign inverted.
The two terms thus simplify and we are left with:

N̆ = Aᵀ
1 · A1 − Aᵀ

1 ·H2 · A1 (2.25)

Substituting the expression for H2 we get:

N̆ = Aᵀ
1 · A1 − Aᵀ

1 · A2 · (Aᵀ
2 · A2)−1 · Aᵀ

2 · A1. (2.26)

In the equation we can identify the blocks of the normal matrix, in fact

N =
[
N11 N12
N21 N22

]
=
[
Aᵀ

1 · A1 Aᵀ
1 · A2

Aᵀ
2 · A1 Aᵀ

2 · A2

]

So we can rewrite Eq 2.25 as:

N̆ = N11 −N12 ·N−1
22 ·N21 (2.27)

The same expression is also called “Schur complement” and is found in
the formula of the inversion in part [83].
If we now develop the product for the known term in Eq 2.23

Aᵀ
1 · y − (H2 · A1)ᵀ · y − Aᵀ

1 ·H2 · y + (H2 · A1)ᵀ ·H2 · y (2.28)



14 2. LEAST SQUARES ADJUSTMENT THEORY

For the same reasoning as before the fourth term becomes equal to the
second and thus cancels out. If we substitute the formula of the orthogonal
projector we are left with:

Aᵀ
1 · y − A

ᵀ
1 · A2 · (Aᵀ

2 · A2)−1 · Aᵀ
2 · y (2.29)

Considering the known term as:

b =
[
b1
b2

]
=
[
Aᵀ

1 · y
Aᵀ

2 · y

]
,

and the block notation used for the normal matrix, we finally have:

b̆ = b1 −N21 · (N22)−1 · b2 (2.30)

2.2 Rank Deficient Least Squares

Let’s consider the linear system:

A · x = y (2.31)

Where A ∈ Rm,n .

Definition 1 Given a matrix A we call the range space of A, R(A), the
set of all vector y that can be generated by a linear combination of the
columns of A, namely R(A) = {y; y = A · x, x ∈ Rn}

A regular basis for the range space of A, R(A) is a set of linear indepen-
dent vector that span R(A).

Definition 2 Given a matrix A we call the rank of A, rank(A), the di-
mension of any regular basis for the range space of A

The system is said to be rank deficient if:

rank(A) < n (2.32)

Such systems are know to have an infinite number of least squares solu-
tions. To analyse all the possible solutions the concept of null space is
introduced.

Definition 3 Given a matrix A, we call the null space of A, N (A), the
set of all vectors x for which A · x = 0; N (A) = {x;A · x = 0}
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N (A) is indeed a subspace of Rn.The null space can be used to generate
all the possible solutions of a rank deficient least squares problem. In
fact, calling Q a matrix with columns given by a basis of the null space
X, once we have a least squares solution for the system x̂ it is easy to
show that also x̂+Q · g is a least square solution, in fact:
y−A · (x̂+Q · g) = y−A · x̂−A ·Q · g = y−A · x̂− 0 = y−A · x̂ (2.33)

Identifying the symbols of the basis and the corresponding matrix, a gen-
eral regular basis Q for the null space X will be represented by a ma-
trix Q with dimensions m, d where m number of rows of A and d =
col(A) − rank(A). The range space of Aᵀ, R(Aᵀ), and the null space of
A, N (A), are orthogonal complements, in fact their direct sum spans the
whole Rn. Generally speaking, to solve a rank deficient linear systems
we can specify a set of linear constraints that fix the solution in the null
space. The constraints can be written as:

K · x = c (2.34)
where K ∈ Rd,n. The constraints do eliminate the rank deficiency if
K · Q = S has full rank (i.e. if the intersection of the two subspace
spanned by Kᵀ and Q is the 0 point and not a line, plane, hyperplane).

2.2.1 Minimum Norm Solution

A very popular choice to specify the constraint for a rank deficient least
squares system is to minimise the norm of the estimates,

Min(‖x̂‖) (2.35)
along all LS solutions. We will see that such solution can be produced
using as constraint:

Qᵀ · x = 0d,1 Q ∈ N (A) (2.36)
To show that, let’s write explicitly ‖x̂‖2. All possible solutions are given
by:

x̂ = x̂1 +Q · g (2.37)
where x̂1 is any specific least squares solution of the system. Keeping in
mind that the square of the norm can be written as:

(x̂1 +Q · g)ᵀ · (x̂1 +Q · g) (2.38)
x̂ᵀ1 · x̂1 + 2 · x̂ᵀ1 ·Q · g + (Q · g)ᵀ · (Q · g) (2.39)
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to find the minimum let’s take the derivative with respect to g and equate
it to 0:

2 · x̂ᵀ1 ·Q+ 2 · gᵀ ·Qᵀ ·Q = 0 (2.40)
g = −(Qᵀ ·Q)−1 ·Q · x̂1 (2.41)

if we put g in Eq 2.37 we have:
x̂mn = x̂1 −Q · (Qᵀ ·Q)−1 ·Q · x̂1 (2.42)
x̂mn = (I −Q · (Qᵀ ·Q)−1 ·Q·)x̂1 (2.43)

were we can recognise the orthogonal projector onto the span Q. So if we
project any solution on the orthogonal space to Q the projection of the
solution on Q will be zero proving Eq 2.36. A well known property of the
minimum norm solution is that it minimises the sum of the variances of
the estimates [13] [29].

2.3 Constrained Least Squares

Sometimes we would like to seek the x that minimizes:
(y − A · x)ᵀ(y − A · x) (2.44)

subject to a linear constraints:
K · x = c (2.45)

It has to be noted that since it is a constraint, the system in Eq 2.45 has
to be underdetermined, i.e. the number of rows must be lower or equal
than rank(Kᵀ). Since it has to fulfil Eq 2.45 exactly, x̂ can move only
in the null space of K. So if we have a basis X for N (K) and a basis Y
for R(Kᵀ), identifying them with the matrices of their columns, we can
decompose x as:

x = X · p+ Y · q (2.46)
The quadratic form in Eq 2.44 becomes:

(y − A ·X · p+ A · Y · q)ᵀ · (y − A ·X · p+ A · Y · q) = (2.47)
= yᵀ · y + (A ·X · p)ᵀ · (A ·X · p)− 2 · yᵀ · (A ·X · p)+

+(A · Y · q)ᵀ · (A · Y · q)− 2 · yᵀ · (A · Y · q) + 2 · (A ·X · p)ᵀ · (A · Y · q)︸ ︷︷ ︸
0

(2.48)
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adding and subtracting yᵀy to the previous expression one can write it as
sum of quadratic forms:
−yᵀy+(y−A ·X ·p)ᵀ ·(y−A ·X ·p)+(y−A ·Y ·q)ᵀ ·(y−A ·Y ·q) (2.49)

So our problem can be written as two separate least squares problem.
The solution then becomes:

x̂ = Y · ((A · Y )\y) +X · ((A ·X)\y) (2.50)
Lets now apply the decomposition also to the constraint:

K · (Y · q +X · p) = c (2.51)
we can see that the second term disappears since K ·X = 0 and that the
first term generates the least norm solution. So in the end we have:

x̂ = x̂mn +X · ((A ·X)+ · y) (2.52)
where x̂mn is the least norm solution of the system K · x = c.

2.4 Basics of Lattice Theory

In this section a very brief presentation of lattice theory is done.
Definition 4 Given a real matrix L ∈ Rm,n it is called lattice L(L) with
base L the set of all vectors generated by L · x where x ∈ Zn

The lattice is called full rank lattice if rank(L) = m.
Definition 5 Given a lattice L(L) with base L , we call fundamental
parallelepiped the set of all points p = L · x, x ∈ [0, 1]n

The volume of the fundamental parallelepiped is given by det(L). A full
rank lattice with determinant equal to ±1 spans the whole Zn. Fig 2.1
shows some examples of lattices.
Definition 6 A matrix U is called unimodular if U ∈ Zn and det(U) =
±1
A lattice spanned by U , is whole Zn. The following three elementary oper-
ations applied to an unimodular matrix will keep its unimodular property
[18] [105]:

• switch the order of the columns.
• invert the sign of a columns.
• subtract an integer number of columns to an other.



18 2. LEAST SQUARES ADJUSTMENT THEORY

(a) Lattice of not full rank. (b) Lattice of full rank.

(c) Lattice of full rank, spanning whole Z2

Figure 2.1: Three examples of lattices; arrows indicate R2 vectors that form the basis
of the lattice L.
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2.4.1 Lattice Reduction

Generally, the same lattice can be generated by different lattice bases. For
istance, it is easy to see that all lattice basis with determinant equal to
plus minus one spans the whole Zn. It can be shown that a lattice basis B
when multiplied by a unimodular matrix U becomes a new basis B′ that
spans the same lattice as B. For several reasons it is desirable to find a lat-
tice basis for which the magnitude of the columns are as small as possible
and as orthogonal as possible. Such procedure is called lattice reduc-
tion. A popular algorithm for such a task is the Lenstra–Lenstra–Lovász
(LLL) [72]. The algorithm is not going to be described here since the
procedure is similar to the LAMBDA decorrelation procedure [71] that
will be discussed in Subsection 3.2.4.

2.5 Integer Least Squares

In this section we are going to discuss a least squares problems whose
unknowns are integer. Consider a linear system of the type:

B · z = y (2.53)

Where B ∈ Rm,nand rank(B) = n and.z ∈ Zn, of course given B and
a general y in the observable space, Eq 2.53 can not be satisfied exactly,
so the problem is to find the integer vector ž that minimises the square
of the residuals. Such integer vector is called the Integer Least Squares
(ILS) estimator. Often the integer parameters are found together in a
system with real ones. Consider for instance the system:

A · x+B · z = y (2.54)

Where x ∈ Rn1,1 and z ∈ Zn2,1. This system can be reduced to a pure
integer problem by using the procedure described in sub section 2.1.2 1

Since the constraint for a vector to have integer values can not be ex-
pressed by a set of linear equations, the previously explained constrained
least square is of little use. Due to this fact, in general, to find the integer
least squares different integer vectors have to be tested individually. To
test the values a search space has to be defined and all the integer vectors

1In literature another procedure exists which basically dicretizes also the continuous parameters
and performs a search in such discretized space. This procedure is called “Ambiguity Function
Method” see for instance [23] [45].
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in it should be tested. A procedure to do that will be described in Sec 3.2.

2.5.1 Comparison of Integer L.S. with Real Value Estimates

Once we have the integer least squares solution we could ask our selves
how it compares with real least squares solution. One way to do that is
to compare the theoretical variance of the integer solution with that of
the float one.
For instance let’s consider a one dimensional case. In such a simple case,
to recover the integer least squares estimator it is sufficient to round
to the closest integer the float solution. Given the standard deviation
of the estimate σ, the variance of the integer least squares for the one
dimensional case can be written as:

σ̌2 =
∞∑
−∞

i2 ·
∫ i+1/2

i−1/2

e−
x2

2·σ2

√
2 · πσ

dx (2.55)

In figure 2.2 is possible to see the difference between the standard de-
viation of the float and integer solutions as a function of the standard
deviation of the float solution. It can be see that up to 0.5σ the variance
of the integer least squares solution is smaller than the float one but after
then it is bigger.
Since the integer solution is not always better than the real one we need
a criterion for accepting the integer solution. One popular choice is the
ratio test [33] revisited by [108]. The test checks whether the ratio be-
tween the objective function Ω() (the least squares principle) computed
using the ILS (ž1) and computed using the second best integer vector (ž2)
is greater than a certain threshold:

Ω(ž2)
Ω(ž1) > γ (2.56)

2.5.2 The Bayesian Solution

Instead of choosing one integer vector one can use a weighted linear com-
bination of all integer vectors with significant probability. Such approach
is called Bayesian approach [12] [28][42] and is also know as Best Inte-
ger Equivariant since it is the best (i.e. with minimum variance) in the
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Figure 2.2: Difference between the standard deviation of the float and integer solution
as a function of the standard deviation of the float solution.
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broader class of Integer Equivariant Estimators [110]. In the estimator
formula each integer vector is weighted by its posterior probability:

b =
∑
z∈Zn

wz · z (2.57)

where:
wz =

∫
Ωz

Γ(x)dx (2.58)

or in plain English the integral of the Probability Density Function (PDF)
Γ(x) over the so call pull in region Ωz i.e. the region in Rn for which real
valued estimates x are mapped to z by the integer least squares algorithm
[109].

2.6 Rank Deficient Integer Least squares

Let’s consider now a new linear system:

A · z = y (2.59)

Where z ∈ Zn.Let’s assume that the system is rank deficient. We can use
a basis Q for N (A). Taking an integer least squares solution ž0 where
ž ∈ Z we can generate a new solution ẑ1 as ž0 +Q · g. However, since in
general Q ∈ Qm,d, ẑ1 will be real too and thus not an admissible integer
solution. To generate admissible solution we have to introduce the concept
of integer null space.

Definition 7 Given a matrix A we call integer null space of A, I(A) = T ,
the set of all vectors t ∈ Z for which A · t = 0, T = {t; t ∈ Zn, A · t = 0}.

A basis L for the integer null space T is a system of vectors for which the
lattice L(L) spans the whole integer null space T . As we said before to
solve the problem we have to specify a set of admissible linear constraints;
in fact, not all constraints allow for the recovery of an integer least squares
solution. To show this let’s consider for a moment an integer least squares
problem for which the observations are errorless.

B · z = y (2.60)

Let’s assume that we know the true value of z that we will denote as ź.
To solve the problem we use an admissible constraint of the type ( 2.34).
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If we pick the entries of K as integers to obtain the true solution ź we
have to set c equal to:

ć = K · ź (2.61)
Since K, ź ∈ Zd,n,Zn also ć ∈ Z. To show that not all the constraints will
result in an integer solution we now can simply keep the same integer K
and choose a c whose entries are not integer. In this case obviously also
the estimated solution x̂ will not be integer.
Let’s now consider all solutions equivalent to ź, if we have a lattice basis
L for the integer null space, we can generate them as:

źe = ź + L · g, g ∈ Z (2.62)
Choosing again a K with integer entries , following Eq, 2.61, c has to be
set:

će = K · (ź + L · g) = ć+K · L · g = ć+ S · g (2.63)
Since normally we do not know the true value ź we can construct two
strategies to find an admissible će.

2.6.1 First Strategy

We know that if we pick a K ∈ Zd,n, i.e. made of integers, also će
has to be integer. However, in the general case, not all integer vectors
will satisfy Eq 2.63. Nevertheless, if we choose K wisely we can make
S to be unimodular.If this is the case S will span the whole Zd and
thus all g ∈ Zn will generate an admissible će. Generally speaking there
will be multiple K (infinite) that multiplied by the integer null space
will give a unimodular matrix. Having an admissible constraint K1 all
other admissible constraints can be generated by U · K1 where U is an
unimodular matrix.

2.6.2 Second Strategy

Another strategy can be used. Going back to Eq 2.63 we know that
the će is generated form the lattice spanned by S. From lattice theory
we know that given a lattice basis S the number of integers found in the
fundamental parallelepiped is n = det(S). So if we start from an arbitrary
c0 ∈ Zd, it is sufficient to examine the n, cs contained in the fundamental
parallelepiped to find an element of će 2 . To better understand the

2The GLONASS ambiguity resolution strategy used in the Bernese GNSS software [24] can be
roughly viewed in these terms (See [43] section 4.2)
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concept Fig 2.3 depicts the search space for the c values that is found in
the fundamental parallelepiped of L(S) for a two dimensional case.

Figure 2.3: Depiction of the search space for the c part of the constraint

2.7 Unitary Integer Rank Deficient Problems

Definition 8 An integer rank deficient problem is called unitary when
an admissible constraint for the problem can be constructed by simply
eliminating (constraining to zero) one or more parameters of the problem.

It will be shown that in GNSS estimations some rank deficient integer least
squares problem are of this kind and thus can be solved using common
algorithms for rank deficient problems.

2.8 Mixed Integer-Rational Least Squares

Let’s consider now a new linear system:

A · x+B · z =
[
A B

]
·
[
x
z

]
= C · p = y, (2.64)
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where x ∈ Rn and z ∈ Zp. Let’s assume that the matrix [AB] is rank
deficient. Having defined the integer null space, we can then define the
mixed integer null space.

Definition 9 Given linear system A · x+B · z = y we call mixed integer

null space of [AB], M([AB]), the set of all vectors p =
[
x
z

]
, x ∈ Rn, z ∈

Zp for which
[
A B

]
·
[
x
z

]
= 0

Having a basis G =
[
Q
L

]
for the mixed integer linear system null space

and a least squares solution for the problem p̂0 =
[
x̂0
ẑ0

]
all the admissible

solutions can be generated as p̂0 + G · h with the elements of h hi ∈ Z if
the ith column of the L matrix has non zero entries or hi ∈ R if the ith
column of the L matrix is made of zeros.
To chose a proper constraint we have to distinguish two cases for each
kind of rank deficiency:

• The rank deficiency is only between the column referred to real pa-
rameters. In this case we refer to Section 2.2.

• The rank deficiency is either between the columns referred to integer
parameters or between mixed columns in this case we consider only
the integer part of the null space and apply one of the two strategies
described in Section 2.6. This is because the constraint conditions
on the integers parameters are more stringent ans so any conditions
working for the integers parameters will be admissible for the real
parameters.

2.9 Tykhonov Regularization

Sometimes we have some prior information on part of the parameters (for
instance an approximate knowledge of its magnitude or its time/spatial
variation). One could express this information using a pseudo observation.
This procedure is called regularization in the sense that the estimation
procedure is obliged to follow the equations of the pseudo observations.
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This kind of procedure is called Tykhonov regularization3 due to the work
of Andrey Nikolayevich Tikhonov on the topic of inverse ill posed problems
[114]. Let’s consider the a linear system:

A · x = y (2.65)
G · x = r (2.66)

where often r is just a zero vector. Omitting the weight matrix for sim-
plicity, if we build the hat matrix from it we have:

Ht = A · (Aᵀ · A+Gᵀ ·G)−1 · Aᵀ (2.67)

If we try to compute Ht · Ht we see that the new hat matrix is not
idempotent anymore:

Ht ·Ht = A · (Aᵀ ·A+Gᵀ ·G)−1 ·Aᵀ ·A · (Aᵀ ·A+Gᵀ ·G)−1 ·Aᵀ (2.68)

This means that if the regularized least squares operator is applied to the
residuals of a first adjustment it will give a non zero correction to the
estimation. It is therefore interesting to study the convergence at infinity
of the regularised estimation. Calling as N = Aᵀ · A and O = Gᵀ ·G the
estimator becomes:

x̂1 = (N +O)−1 · Aᵀ · y (2.69)
then the correction to such estimation, when we apply the same procedure
again is:

δx̂ = (N +O)−1 · Aᵀ · (y − A · x̂1) = x̂1 − (N +O)−1 ·N · x̂1 (2.70)

So the new value of the estimation will be

x̂2 = 2 · x̂1 − (N +O)−1 ·N · x̂1 (2.71)

calling M = (N +O)−1 ·N , the estimation at iteration n+ 1 will be:

x̂n+1 = 2 · x̂n −M · x̂n = x̂n + (I −M) · x̂n (2.72)

and the correction at iteration n+ 1 will be:

δx̂n+1 = (I −M) · x̂n = (I −M)n · x̂1. (2.73)
3Although Tykhonov’s theory is much more general, we use it here only in the context of the use of

a quadratic regularising functional. In other field is also called ridge regression or L2 regularization,
see for instance [19] Subsection 2.4.1.1.
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The estimate after n iterations will be:

x̂n =
n∑
i=0

(I −M)n · x̂1; (2.74)

for n → ∞ since |M | < 1 the summation will converge to M−1,( [57]
proposition 1.5.38). So in the end we have:

x̂∞ = M−1 ·(N+O)−1 ·Aᵀ ·y = N−1 ·(N+O)·(N+O)−1 ·Aᵀ ·y = N−1 ·Aᵀ ·y
(2.75)

This means that the solution will converge to the non regularized solution.
If we want to keep the effect of the pseudo observation equation it is just
enough to iterate their residual together with those of the observations
equation. In this way it will be a regular least square solution. For this
reason when specifying the pseudo observation and their weight one has
always to care for the initial value from which the estimation is starting.

2.10 Robust Adjustment

Sometimes the set of observations we want to adjust are contaminated at
least partly by measurements that do not respect our stochastic assump-
tion. These observations are called outliers and if not properly treated
could result in biases in our estimation. An estimator that is relatively
insensitive to such wrong observation is called a robust estimator. A way
to make the estimator more robust than the simple least squares is to
minimise a function of the residuals that is not the sum of their squares,
but rather: ∑

i

P(ui); (2.76)

the function P(ui) is also called the loss function. These estimators are
called M-Estimator [58]. For general P(u), no closed form for the com-
putation of such estimator exist. To compute them one has to iterate
the least squares computation adjusting the weights of the observations
or the residuals of the estimation.
At each step the new weights w for the observations can be computed as:

w = Φ(u)/σ
u/σ

; (2.77)
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or if one would like to use the the modified residuals, the new observations
would be:

u∗ = Φ(u/σ) · σ (2.78)

where Φ(u) = dP(u)
du

and σ is the standard deviation of the observations.
The method of weights has a rate of convergence that should be faster that
the method of residuals ([59] Lemma 7.8). However, since the method of
residuals can fully reuse the solver of the step before it might be faster or
more convenient in practice.
A popular M-estimator is the so called Huber-estimator. Its loss function
is defined as:

P(u) =


1
2 · u

2, if |u| < γ

γ · (|u| − 1
2γ), if |u| > γ

(2.79)

if γ = 0 it is the least absolute estimator, if γ =∞ it is the least squares
estimator.
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Solving Least Squares
Problems

Plurality must never be posited without necessity
– William of Ockham

3.1 Algorithms for Least Squares Problems

This section will describe the different method to solve least squares prob-
lem. Four popular algorithm are presented, many more exists [56][41][101].

3.1.1 Cholesky Decomposition

The Cholesky method [11] works on the normal form. It works decom-
posing the normal matrix into two triangular matrix one the transpose of
the other:

N = L · Lᵀ (3.1)
where L is a lower triangular matrix. The element of the matrix can be
computed as:

L =


L11 0 . . . 0
L21 L22 . . . 0

... ... . . . ...
Ln1 Ln2 . . . Lnn

 =



√
N11 0 . . . 0

N21/L11

√
N22 − L2

21 . . . 0
... ... . . . ...

Nn1/L11 Nn2 − L21 · Ln1/L22 . . .
√
Nnn −

∑n−1
i=1 L

2
ni

 .
(3.2)

29
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Such a formula holds also in case the matrix N is partitioned, in this case
the square root of a symmetric matrix is the cholesky decomposition of
the block itself. Once the decomposition has been performed the linear
system can be solved in two step as:

p̂ = Lᵀ \ b (3.3)
x̂ = L \ p̂ (3.4)

Solving such system is easy given the triangular form of L. The complexity
of the Cholesky decomposition is around 1

3 · n
3 floating point operations

(See [115] Chapter 23). It is the fastest direct method to solve linear
systems.

3.1.2 LDL Decomposition

The LDL decomposition is a generalisation of the cholesky decomposition.
A symmetric matrix is decomposed as:

N = L ·D · Lᵀ (3.5)
where L is a lower triangular matrix with ones on the main diagonal, and
D is diagonal matrix. The elements of the matrix L are:

L =


1 0 . . . 0
L21 1 . . . 0

... ... . . . ...
Ln1 Ln2 . . . 1

 =


1 0 . . . 0

N21/D1 1 . . . 0
... ... . . . ...

Nn1/D1 (Nn2 −
∑n−1
i=1 (L2i · Lni ·Di))/D2 . . . 1


(3.6)

and the elements of matrix D are:

D =


D1 0 . . . 0
0 D2 . . . 0
... ... . . . ...
0 0 . . . Dn

 =


N11 0 . . . 0
0 N22 − L2

21 ·D1 . . . 0
... ... . . . ...
0 0 . . . Nnn −

∑n−1
i=1 L

2
ni ·Di


(3.7)

The same decomposition can also be performed in blocks. Once the de-
composition has been performed the linear system can be solved in three
step as:

p̂ = Lᵀ \ b (3.8)
q̂ = D \ p̂ (3.9)
x̂ = L \ q̂ (3.10)



3.1. ALGORITHMS FOR LEAST SQUARES PROBLEMS 31

3.1.3 Solving a Rank Deficient Systems Using the LDL Decom-
position

Let’s now consider a j columns rank deficient matrix where the jth column
is a linear combination of the first j − 1 columns.

A′ =
[
A A · f

]
. (3.11)

The normal matrix can then be written as

N ′ = A′ᵀ · A′ =
[

Aᵀ · A Aᵀ · A · f
fᵀ · Aᵀ · A fᵀ · Aᵀ · A · f

]
(3.12)

calling Aᵀ · A = N the Djj element of the LDL decomposition can be
written in block form as:

Djj = D22 = N ′22−L′21 ·D11 ·(L′21)ᵀ = N ′22−N ′21 ·N ′−1
11 ·N ′11 ·(N ′21 ·N ′−1

11 )ᵀ

= fᵀ ·N · f − fᵀ ·N · (fᵀ ·N ·N−1)ᵀ = fᵀ ·N · f − fᵀ ·N · f = 0
(3.13)

We see that if a particular parameter is a linear combination of the pre-
vious ones it will have a 0 at the corresponding element on the diagonal.
We can use this property to identify parameters that are in rank defi-
ciency with the previous ones. To solve the least squares problem then is
simply sufficient to eliminate the parameters (setting them to 0) that are
linear combination of the previous ones. The decomposition can be com-
puted permuting the columns and rows (so called pivoting strategy), as
this can improve the numerical accuracy of the factorisation (See [53] Sec-
tion 11.1). This would not change the strategy discussed above, the only
difference being that the elimination of parameters should be consistent
with the permutation of columns and rows.

3.1.4 QR Decomposition

Another popular decomposition used to solve linear systems , is the QR
decomposition[35]. The original matrix is decomposed as:

A = Q ·R (3.14)

with Q an orthonormal matrix and R a matrix of the form:

R =
[

U
0m−n,n

]
(3.15)
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where U is an n by n upper triangular matrix. A LS solution to the
system can ten be computed as:

p̂ = Qᵀ · y (3.16)
x̂ = R \ p̂ (3.17)

where the first system is easily solved, being upper triangular. One has to
note that the matrix R of the QR decomposition is equal to the Cholesky
decomposition of the normal matrix Aᵀ · A[40] and so it can be used to
compute the variance covariance matrix of the estimates or to obtain an
LS solution in a similar way to the cholesky decomposition. The QR
factorization algorithm has a complexity of 2 · m · n2 − 2

3 · n
3 floating

point operations when computed using Householder transforms method
(See [115] Chapter 10).

3.1.5 Solving a Rank Deficient Systems Using the QR Decom-
position

The decomposition can be seen as a Graam Schmidt orthogonalization 1

in particular the j, j element of the R matrix can be written as:

R(j, j) = ‖(A(. . . , j)−Q(. . . ; 1 . . . j)ᵀ · A(. . . , j)‖ (3.18)

or in plain English as norm of column j minus its projection onto the
previously orthogonalized columns. It is clear that if a column is a linear
combination of the previous ones such element will be 0. So we can once
again detect parameters that are in rank deficiency with the previous
ones, looking at the diagonal elements of R. To solve the system one can
then remove the parameters from the system. Another way to solve the
system would be to use the factorisation of A> instead. Given that:

Aᵀ = Q′ ·R′, (3.19)

the least norm solution to the system A · x = y can be computed as

p̂ = R′′ᵀ \ y (3.20)
x̂mn = Q′ · p̂′ (3.21)

where R′′ is the R′ matrix where rows corresponding to a 0 value on
the diagonal have been eliminated, and p̂′ correspond to the values of

1Although this is normally not used as a way to compute the QR decomposition due to bad
numerical rounding error properties, see [101] Chapter 3.
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p̂ augmented by zeros in place of the eliminated rows of R′. Similarly
to LDL decomposition a pivoting strategy can be used to improve the
numerical stability of the algorithm (See [53] Section 19.4).

3.1.6 SVD decomposition

Another decomposition used to solve least squares problems is the singular
value decomposition [10]. The matrix A ∈ Rm,n is decomposed as:

A = U · S · V (3.22)

where U is an m by m orthonormal matrix, V is an n by n orthonormal
matrix, and S is matrix of the form:

S =
[

D
0m−n,n

]
(3.23)

with D a diagonal matrix with non negative elements. The values on the
diagonal D are called singular values of D. For convention the singular
values are ordered in decreasing order. The solution of a regualar least
squares system can be produced as:

p = Uᵀ · y (3.24)
q = [D−10n,m−n] · p (3.25)

x̂ = V ᵀq (3.26)

3.1.7 Solving Rank Deficient System Using the SVD Decom-
position

Similarly to the other algorithms, rank deficiencies can be identified look-
ing at the elements of diagonal matrix D. If rank deficiencies are present
the last elements of the diagonal will turn to zero and the system can
simply be solved removing the corresponding rows and columns from D
and putting zeros at the same place in the vector q. The resulting solution
will be the least norm solution ([41] subsection 5.5.1). The complexity
of the SVD computation is on the order of 2 · m · n2 + 11 · n3 floating
point operations (See [115] Chapter 11), being more expensive that the
Cholesky/LDL and QR decomposition. However the algorithm is also
more numerically stable than the other two (See again [115]).
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3.2 Algorithms for Integer Least Squares Problems

In this section we will discuss the procedure to obtain an integer solution
to a non rank deficient least squares problem. All solutions start from
the float solution and from their variance covariance matrix. The integer
least squares estimator is the integer vector that minimises:

(y − A · z)ᵀ · (y − A · z) (3.27)

This can be seen as the point in the lattice L(A) closest to y [47]. In lattice
theory such problem a is called the Closest Vector Problem (CVP). The
same problem can also be viewed as the integer vector that minise:

(ẑ − z)ᵀ · C−1
ẑẑ (ẑ − z) (3.28)

the previous equation can be interpreted as the square of the distance
between the float solution and the integer solution, when the metric is
defined by the Cẑẑ matrix.

3.2.1 Round

The simplest way to obtain an integer solution from a float one is just
round the estimates to its nearest integer. However, this procedure does
not guarantee that the integer solution is the integer least squares solution.
Consider the simple example:

ẑ =
[
3.55
7.34

]
Cẑẑ =

[
5 4.9

4.9 5

]
(3.29)

the rounding to the next integer yields žr =
[
4
7

]
wile the ILS is ž =

[
3
7

]
in fact it is easy to verify that:

(ẑ − žr)ᵀ · Cẑẑ · (ẑ − žr) > (ẑ − ž)ᵀ · C−1
ẑẑ · (ẑ − ž) (3.30)

2.09 > 0.19 (3.31)

This is because the pull-in region of the rounding operator (Subsection
2.5.2) is different from the one of the integer least squares. The advantage
of the rounding operation rely on its extremely low computational cost.
For this reason it is interesting to know when it can be used safely. A lower
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bound for the success rate (The probability P that the rounding operator
will return the ILS) of the operator can be computed as follows[107]:

P(ẑr = ẑ) =
∏
i

(
1− 2 ·

∫ − 1
2

−∞
Ψ(x; 0, σ2

i )dx
)
, (3.32)

where Ψ(x; 0, σ2
i ) is the normal distribution centred in 0 and with variance

σ2
i , the latter being the diagonal elements of the Cẑẑ matrix. It has to

be noted that this success rates depend only on Cẑẑ and thus they are
sensible to errors in the stochastic model.

3.2.2 Bootstrap

In this section the bootstrap procedure is presented [1]. The procedure
simply rounds the first integer parameter and conditions the rest of the
integer parameters to the fixing of the first one. It then proceeds with all
the other parameters. If we have the variance covariance of the integer
parameters Czz and we compute the LDL decomposition we can see it has
a particular meaning for the integer bootstrapping. Looking at Eq 3.7 we
can see how the element of the diagonal are the variances of the integer
parameters given that the previous one have been fixed. Unfortunately
also the bootstrap estimator does not guarantee the estimation of the
ILS. For instance if we consider the example in Eq 3.29 if we apply the

bootstrap estimator we have ẑb =
[
4
8

]
that again it is different from the

ILS. Similarly to the rounding operator it has a very low computational
cost. For this reason it is also interesting to know when we can use it
safely. A lower bound for the success rate can be compute as [107]:

P(ẑr = ẑ) =
∏
i

(
1− 2 ·

∫ − 1
2

−∞
Ψ(x, 0, γ2

i )dx
)
, (3.33)

where γ2
i is the variance of the conditioned integer parameters. Such

variances are lower or equal to the variances of the original matrix (Eq
3.7). For this reason the success rate of the bootstrap estimator is never
greater to the one of the rounding operator, and normally is much smaller.
Again, like for the rounding it is very sensible to a correct stochastic
model.
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3.2.3 Search

To be sure to reach the integer least squares, ones has to perform a search
over different candidates. In this subsection we will see how to search
over such candidates. The strategy presented is taken from [117]. The
strategy works for the integer least squares or for the search of the n
closest integers vectors. Considering Eq 3.28 we would like firstly to list
all candidates at a distance smaller than χ. To do that, one could list for
all integer parameters, all integer numbers that are within χ from the float
solution. This would however result in a very large search space. Another
strategy could be produced by taking inspiration from the bootstrapping
procedure. The fist integer parameter is taken and all z1 for which z1 ·
C−1

11 · z1 < χ are listed. Then for each one of the listed z1 one can list
all the z2 for which z2 · C ′−1

22 · z2 < χ − z1i · C−1
11 · z1i where C ′22 is the

variance of the second integer parameter conditioned to the fixing of the
first one. The procedure can be repeated for all ambiguities producing
a tree of possible integer parameters (see Fig 3.1). Having defined the

Figure 3.1: Depiction of the search tree for a given χ2.

listing procedure one has to fix a value of χ. Instead of using a fixed
value the value can be changed while doing the search. Imagine we are
looking for n values one could start with the value of χ =∞ and start to
evaluate the first branch of the tree. Once the algorithm has evaluated n
solutions, χ is set to the maximal distance of the n solutions. Then the
search continues, and each time a integer set is found whose distance is
smaller then the current χ, the integer is stored in place of the current
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most distant value and the χ is set to the new current most distant value.
The procedure is continued till any more candidates inside χ are found.
Such a procedure is called search and shrink strategy [106][20].

3.2.4 Decorrelation

As we have seen the search space depends on the conditional variances
of the integer parameters. So if one finds a way to reduce such variances
the search would be much faster and also the success rate of the boot-
strap would increase. To try to reduce the variances we have to use a
transformation that preserves the integer character of the estimates. The
“integerness” should be preserved both in the in the forward and back-
ward transformation. In Sec 2.4 we have already presented one of such
transformations, performed by an unitary matrix. In particular if one is
able to reduce the variances of the first considered parameter (normally
the most precise) one can reduce from the beginning of the search pro-
cedure the number of branches to be evaluated itself . Since the first
parameter conditional variance is just its variance, the aim of the trans-
formation should be to reduce the variance of the parameter itself and of
the firsts subsequently conditioned parameters. Consider for instance a
variance covariance matrix of the form:

C =
[

α α− ε
α− ε α + ε

]
(3.34)

where α� ε if we take the unitary transformation:

U =
[
1 −1
1 0

]
(3.35)

applying the transformation to our variance covariance matrix we have:

U · C · Uᵀ =
[
3 · ε ε
ε α

]
(3.36)

where 3 · ε � α. We have to notice that the unitary transform has also
the effect to decorrelate the matrix, as one realises because the correlation
coefficient in Eq 3.34 tends to 1 when ε → 0, while it tends to 0 in Eq
3.36, whence the name decorrelation2. To produce such unitary matrix

2In lattice theory the procedure is called “eduction”, highlighting its computational purpose [17].
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for a general case the LAMBDA decorrelation method has been proposed
by [106]. To build a good decorrelating matrix matrix a chain of two
operations is used, a decorrelation and a permutation step:

R =
[

1 0
α 1

]
P =

[
0 1
1 0

]
(3.37)

where α has to be an integer. Consider a two by two submatrix of a
variance covariance matrix:

C =
(
σ2

1 σ12
σ12 σ2

2

)
(3.38)

If we apply the first operation we have:

R · C ·Rᵀ =
(

σ2
1 α · σ2

1 + σ12
α · σ2

1 + σ12 α2 · σ2
2 + 2 · α · σ12 + σ2

2

)
(3.39)

So if we want to minimize the bottom right term (the variance of the
second component) we have to take the derivative with respect to α and
put it to zero. Doing that and considering it has to be an integer, α
becomes:

α = bσ12

σ2
1
e (3.40)

Let’s compare it, for completeness, with the reduction step of the LLL al-
gorithm [18] that works on the design matrix A. The reduction parameter
there is computed as:

µ12 =
⌊
A(. . . ; 2)ᵀ · A(. . . ; 1)
A(. . . ; 1)ᵀ · A(. . . ; 1)

⌉
, (3.41)

and if we go to the normal matrix N = Aᵀ ·A we are left with a formula
very similar to Eq 3.40, namely:

µ12 =
⌊
N12

N11

⌉
(3.42)

The difference is that one works on the normal matrix (LLL) and the other
on its inverse (LAMBDA) [71]. The decorrelation and permutation step
are repeated on the various elements of the variance covariance matrix
till no more reduction is possible.
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3.3 Algorithms for Rank Deficient Integer Least Square
Problems

Having defined the integer null space in Section 2.6, we now need a way
to compute one of its basis. First of all we have to make two consider-
ations. The first one is that any real number can be approximated with
arbitrary accuracy by a rational number. The second is that any rational
number can be transformed into an integer number multiplying it by its
denominator. So if we have a matrix A of real entries, it can be trans-
formed into a rational matrix and subsequently into an integer matrix
AZ by multiplying it by the least common multiple of all the single ele-
ment denominators. The computed integer null space will be insensitive
to such scaling, in fact α · A ·X = 0 for any chosen α if A ·X = 0. We
will now introduce the Hermite Normal Form and then use it to compute
the integer null space of a rank deficient system.

Definition 10 3 Given a matrix of integers A ∈ Zm,n, its Hermite normal
form is the matrix H = U ·A, where U is an m by m unimodular matrix,
and H ∈ Zm,n is

• an upper triangular matrix

• its first non zero entry of each rows is always positive and to the right
of the first non zero entry of the row above.

• in the column of each first non zero row entry all elements above the
first non zero row entry are strictly smaller than it.

The hermite normal form H exist and is unique for each A ∈ Z, see [2]
Theorem 2.9 and 2.13 for a proof of this statement. Effective methods
to compute the normal Hermite form of a matrix A are presented e.g. in
[50]. Let’s now consider a rank deficient integer matrix A and compute
the Hermite normal form of Aᵀ. Following [18] we will show how the
Hermite normal form can be used to compute a lattice basis for the integer
null space of A. Since some columns of A can be presented as linear
combinations of the other columns the last rows of the Hermite form H
will be zero. Let’s now concentrate on the unimodular matrix U . Since
we know that the last d rows of H (d being the rank deficiency) are zero

3The definition of the Hermite Normal form is not always consistent in literature, for some con-
siderations on the matter see [102] Chapter 2.1.
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we can write:

H(n− d . . . n; . . .) = 0d,m = U(n− d . . . n; . . .) · Aᵀ = Ur · Aᵀ (3.43)

If we transpose the formula we have:

A · Uᵀ
r = 0 (3.44)

Thus the last d rows are a lattice basis for the null space of A. We
have now to show that the basis spans the whole integer null space, i.e.
no other integer vector is in the integer null space, outside the lattice
generated by Uᵀ

r . To show this we first have to remember that the matrix
U is unimodular and thus it spans the whole Zn. So any integer vector
not spanned by Uᵀ

r has to be spanned by U(1 . . . s; . . .)ᵀ = Uᵀ
s where

s = n − d − 1. On the other hand if it is spanned by Uᵀ
s it follows that

A ·Uᵀ
s · g 6= 0,∀g ∈ Zn, and thus does not belong to the null space. From

this we can conclude that, since all integers vector not spanned by Uᵀ
r

are not in the null space, and U spans the whole Zn, Uᵀ
r spans the whole

integer null space of A.
Once we have the Hermite normal from is it also easy to compute an
admissible constraint for the integer least squares. In fact, the inverse
of a unimodular matrix is unimodular. Calling V the inverse of U and
Vr the last d columns of V and taking the constraint K (Eq 2.63) as V ᵀ

r

transposed (K = V ᵀ
r )we have:

K · L = V ᵀ
r · Uᵀ

r = I (3.45)

and since the identity is clearly unimodular we have an admissible con-
straint.

3.3.1 Relationship Between Hermite Normal Form and Integer
Estimability

It is interesting to compare this derived constraint to the concept of integer
estimability introduced in [111] (Theorem 1). We prove equivalence on
condition that the equation y = A · x contains only the integer vector x
comparing with the formulation of the above theorem, this corresponds
to assuming B = 0, B⊥ = Im. in such a case the unbiased integer
estimability condition for a maximal vector F ᵀ · x with dimension s is:

F = Aᵀ ·M (Condition 1) (3.46)
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for some full rank M which is equivalent to span(F ) = span(Aᵀ) =
N (A)⊥, and:

F ᵀ · Z = [Is 0] (Condition 2) (3.47)
for some unimodular Z of dimension n.
To do so, we divide the the unimodular matrix resulting from the com-
putation of the Hermite Normal Form U as:

U =
[
Us
Ur

]
=
[

U(1 . . . s; . . .)
U(n− d . . . n; . . .)

]
. (3.48)

We also divide its inverse V vertically as:

U−1 = V =
[
Vs Vr

]
=
[
V (. . . ; 1 . . . s) V (. . . ;n− d . . . n)

]
. (3.49)

Then we can note that:

U · V = I V · U = I
Us · Vs = Is Ur · Vr = Ir V ᵀ

s · Uᵀ
s = Is V ᵀ

r · Uᵀ
r = Ir

Us · Vr = 0 Ur · Vs = 0 V ᵀ
r · Uᵀ

s = 0 V ᵀ
s · Uᵀ

r = 0

Now we can change the unknown parameters using the transformation:

x = Uᵀ · z (3.50)

from what follows
z = V ᵀ · x. (3.51)

Moreover, splitting z into zᵀ = [zᵀszᵀr ], we can write:

zs = [Is 0] · z = [Is 0] · V ᵀ · x = [Is 0] ·
[
V ᵀ
s · x
V ᵀ
r · x

]
= V ᵀ

s · x. (3.52)

We note that V ᵀ
s · x is integer estimable according to [111]. In fact re-

membering that the span of Uᵀ
r is N (A), and that V ᵀ

s · Uᵀ
r = 0, we that

span(Vs) = N (A)⊥ fulfilling condition 1. Furthermore, noting that:

V ᵀ
s · Uᵀ = [Is 0]. (3.53)

with U unimodular we see that also condition 2 is fulfilled.
Moreover, observing that:

zr = [0 Ir] · z = [0 Ir] · V ᵀ · x = [0 Ir] ·
[
V ᵀ
s · x
V ᵀ
r · x

]
= V ᵀ

r · x, (3.54)
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we see that the condition Ir · zr = zr = 0 is identical to the the previously
introduced admissible condition:

V ᵀ
r · x = 0 (3.55)

which results in the estimation of:

zs = V ᵀ
s · x (3.56)

that can be later on transformed back to x by:

x = Uᵀ · z = Uᵀ

(
zs
0

)
= Uᵀ

s · zs (3.57)

In other terms the condition:

V ᵀ
r · x = 0 (3.58)

provides the same x estimated by:

x = Uᵀ
s · zs (3.59)

and this links the proposed admissible constraint to the integer estimable
function V ᵀ

s .

3.3.2 Mixed Integer Real Case

To derive such admissible constraint for a mixed integer real rank deficient
model we can follow two ways.

First Strategy

The first one is simply to reduce for all non integer parameters using Eq
2.20. Then we are left with an all integer problems for which we can com-
pute the integer null space. However generally speaking the orthogonal
projector on the subspace spanned by an integer matrix, is not integer.
This latter consideration can make the passage from rationals to integers
more complex and thus an other strategy could be desirable.
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Second Strategy

To develop the second strategy we can have again a look at the mixed
integer null space, more specifically having a matrix J whose columns
spans the mixed integer null space we have:

0 = C · J = A ·X +B · T (3.60)
A ·X = −B · T (3.61)

As we said before we know that N (A) ⊥ R(Aᵀ). So, if we have a basis L
for N (Aᵀ) we can write:

Lᵀ · A ·X + Lᵀ ·B · T = 0 + Lᵀ ·B · T = 0 (3.62)

Since L can be computed in integer form by using the Hermite normal
form also, Lᵀ ·B will be done of integers. Then we can compute T using
again the Hermite normal form. Once we have T , the real part of the
mixed integer null space X can be computed by inverting 3.61:

X = A+ · (−B · T ) (3.63)

We have to highlight that this procedure will produce only the columns
of J that correspond to the rank deficiencies between real and integers
parameters. The ones that are either between integer parameters alone
or between real parameters alone should be analysed separately with the
methods discussed before.



44 3. SOLVING LEAST SQUARES PROBLEMS



4

GNSS Physics

Purus mathematicus, purus asinus
–

4.1 Introduction

This chapter deals with the physical processes and phenomena involved in
GNSS positioning. Its aim is not to provide and in-depth description or
understanding of the systems, rather to give a good enough introduction
in order to understand the quantities that we can model and the ones we
have to estimate.

4.2 Satellites and Signals

A GNSS system is composed mainly by two basic elements, satellites
transmitting ranging signals and receiver tracking them. Since the num-
ber of receiver types is countless we will restrict to describing the satellites.
Regarding the receivers it is enough to say that different kind of them are
able to track different satellites and signals and we will refer ideally to
a receiver capable of tracking any combination of them. A lot of differ-
ent GNSS are operative and transmitting ranging signal. They belong to
different families:

• Global Positioning System (GPS), first developed system of Ameri-
can origin.

45
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• GLObalnaya NAvigatsionnaya Sputnikovaya Sistema (GLONASS),
its Russian counterpart.

• Galileo, the European one.

• Běidǒu Wèix̄ıng Dǎoháng Xı̀tǒng, commonly known as BeiDou, the
Chinese one.

• The Quasi-Zenith Satellite System (QZSS), a satellite based augmen-
tation system that enhances and expands GPS over the Japanese and
Pacific area.

• The Indian Regional Navigation Satellite System (IRNSS), an Indian
regional navigation system.

• Several Satellite Augmentation Systems that also trasmit ranging
Singals such as Wide Area Augmentation System (WAAS), Euro-
pean Geostationary Navigation Overlay Service (EGNOS), Multi-
functional Satellite Augmentation System (MSAS), GPS-aided GEO
augmented navigation (GAGAN) and System for Differential Correc-
tion and Monitoring, SDCM.

The working principle of these systems is the same for all of them so from
a data analysis point of view they can be all treated in a similar way.
Their difference lays in their orbit, signal plan, and specific systematic
biases in their observation. Tab 4.1 presents a brief summary of the dif-
ferent GNSS orbital parameters. Each GNSS system transmits multiple
ranging signals on different frequencies. To distinguish between different
satellites signals from the same band most GNSS use a Code Division
Multiple Access (CDMA) scheme (Sometimes with in combination with
time multiplexing [51]) while GLONASS uses a Frequency Division Multi-
ple Access (FDMA) scheme for its principal ranging signals. Most signals
are either in the 1164-1350 MHz band or in the 1559-1610 MHz band, al-
located by the International Telecommunication Union (ITU) for satellite
radionavigation ([116] Chapter II), IRNSS transmits also a signal in the
2483.5-2500 MHz band. Tab 4.2 presents a list of the ranging signal and
carrier frequency for all GNSS. Different ranging codes can be tracked in
combinations, furthermore especially for encrypted signals, codeless and
semicodeless tracking strategy are possible [119]. A framework to cata-
logue the observables resulting from different tracking techniques can be
found in the definition of the Receiver INdependent EXchange (RINEX)
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N of satelites Orbit type Semimajor axis Inclination Orbital planes
GPS 33 MEO 26560 55 6 spaced by 60°
GLONASS 24 MEO 25440 64 3 spaced by 120°
Galileo 30 MEO 29600 56 3 spaced by 120°
BeiDou 27 MEO 27878 55 3 spaced by 120°

5 GEO 42164 0 1
3 GSO 42164 55 3

QZSS 3 GSO 42164 43 3
1 GEO 42164 0 1

IRNSS 3 GEO 42164 5
4 GSO 42164 29 2

Table 4.1: Orbital parameters summary for different GNSS. The following acronyms
are used: Medium Earth Orbit (MEO), GeoSynchronous Orbit (GSO), Geosyn-
chronous Equatorial Orbit (GEO).

format ([86] Subsection 5.2.17) . From a data processing point of view all
signals are processed in the same mode, the only variable part being the
choice of the parameters in the observation equations and the weights of
the observables.

4.3 GNSS Observables

GNSS receivers provide four types of observables:

• Phase measurement

• Pseudorange measurement

• Doppler measurement

• Signal to Noise Ratio (SNR) or Carrier to Noise Density (C/N0)

Phase and pseudorange measurements are derived by correlating the var-
ious GNSS signal with an internal replica in the receiver. As For the
pseudo range its value represents the travel time of the signal plus the
desychronization between the satellite and the receiver clock. The noise
of pseudorange measurement depends on the ranging signal and on the
tracking algorithm implemented in the receiver but it is of the order of a



48 4. GNSS PHYSICS

BAND RINEX 3.05 denomination Frequency Ranging code
GPS L1 1 1574.42 C/A, L1C (Pilot and Data), P(Y), M

L2 2 1227.60 L2 CM,L2 CL, P(Y), M
L5 5 1176.45 L5 I, L5 Q

GLONASS G1 1 1598.0625-16053.75 C/A,P
G1a 4 1600.25 L1OCd, L1OCp
G2 2 1242.9375-12486.25 C/A,P
G2a 6 1248.06 L2OCp, L2CSI
G3 3 1202.25 L3OCd, L3OCp

Galileo E1 1 1575.42 E1 OS (Data and Pilot), PRS
E6 6 1278.75 E6 CS data,E6 CS pilot, E& PRS
E5 8 1191.795
E5a 5 1165.45 E5a data,E5a pilot
E5b 7 1207.14 E5b data,E5b pilot

QZSS L1 1 1574.42 C/A,L1C (Pilot and Data), P(Y), SAIF
L2 2 1227.60 L2 CM, L2 CL
L5 5 1176.45 L5 I, L5 Q
L6 6 1278.75 LEX (Pilot and Data)

BeiDou B1 (Old) 2 1561.098 B1I, B1Q
B1 (New) 1 1575.42 B1C data, B1C pilot a, B1C pilot b
B2 (Old) / B2b 7 1207.14 B2I, B2Q
B2a 5 1176.45 B2a (Data and Pilot)
B2a+B2b 8 1191.795
B3 6 1268.52 B3I, B3Q

IRNSS L5 5 1176.45 SPS, RS (Data and Pilot)
S 9 2492.028 SPS, RS (Data and Pilot)

SBAS L1 1 1574.42 C/A
L5 5 1176.45 L5 I, L5 Q

Table 4.2: Summary table for GNSS frequencies and signals.
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few decimetres to a few meters. For the phase measurement since the sig-
nal repeats after each cycle, the travel time is known with the ambiguity
of an integer number of cycles. Once the first measurement is generated
the Phase Lock Loop (PLL) in the receiver is able to keep track of the
number of cycles from the first acquisition. The noise of the phase mea-
surement is less variable that the pseudorange one, and it is on the order
of 1

100 of the wavelength. The Doppler measurement represent the deriva-
tive of the phase measuremente and thus the derivative of the travel time
and clocks desyncrhonization. For a static receiver it is not very infor-
mative since the same information can be provided deriving the phase,
usually with a better accuracy. The SNR and C/N0 provides information
about the strength of the received signal and can be used in the context
of positioning to adjust the weights of the observables. A common format
to save and share the collection of such observables is the aforementioned
(RINEX) [86] format. Between these observations the pseudorange (ρ)
and the phase (φ, in unit of length) are the ones typically used for static
positioning. Their value can be expressed as:

ρ = %+ τ r + τ s + βr + βs + δζ + δι + ερ (4.1)
φ = %+ τ r + τ s + βr + βs + δζ − δι + λ · ν + εφ (4.2)

where % is the distance between the receiver and the satellite, τ r, τ s are
the receiver and satellite clock desynchronizations in unit of length, βr +
βs are instrumental biases specific to the type of observable in unit of
length, δζ is the tropospheric delay in unit of length, δι is the ionospheric
delay in unit of length, λ and ν are the wavelength of the phase and the
unknown number of cycles respectively and ερ, εφ are the pseudorange and
phase errors. In the following sections a way to correct or model these
parameters is going to be described.

4.4 Satellite and Receivers Parameters

In these section the aspects of GNSS satellites and receivers that are more
important for a GNSS data compensation, are described.

4.4.1 Satellite an Receiver Clocks

For a GNSS system to work it is fundamental to achieve the synchroni-
sation of satellite and receiver clocks. This in order to relate the travel
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time of the signal to distances. The word “clock error” is typically used to
speak of the desynchronization of receivers and satellites with respect to
a reference network time. In this document we will use the word desyn-
chronization instead, highlighting the fact that the clocks do not need in
principle to be correct with respect to a global time reference system but
just to be synchronised one with the others 1. The sysnchronization is
achieved in two main ways. The first is trough the use of very stable fre-
quency standards on both satellites and control stations. This guarantees
that the satellite signals stay synchronised in time. Of course this syn-
chronization is limited by the frequency stability of the satellite clocks.
The other way to achieve synchronisation is to estimate such synchroni-
sation as an unknown in the system. This is what is typically done for
commercial receivers (carrying low cost unstable oscillators) and also for
satellite clocks, in a network processing to estimate satellite clock drifts.
International GNSS service (IGS) analysis centers routinely provide clock
desynchronzation for all GNSS [69].

4.4.2 Signal Biases

Different signals are typically not emitted nor tracked synchronously. This
effect has to be taken into account when processing GNSS signals. Nor-
mally such biases are slowly varying in time [91], however sub daily cen-
timeters to decimetres variations have been observed in GPS Block II-F
satellites [76] and Beidou satellites [75]. Similarly temperature dependent
frequency dependent biases have been observed in the receiver equipment
[85][124]. To avoid biases in the estimates.They have to be modeled as
unknowns in the system of observation equations.

4.4.3 Satellite Orbits

Satellite orbits are another important factor in GNSS positioning. The
various GNSS broadcast ephemerides parameters, with meter like accu-
racy for operational use in their navigational message (Galileo should
start to broadcast an new service with decimetre accuracy in the near
future). IGS and commercial enterprises provide centimetre quality orbit
estimated in post processing [69]. Furthermore realtime services provide
orbit with centimetre sub-decimeter quality in realtime [63]. Finally MEO

1The Locata positioning system [8] makes an interesting use of this concept
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GNSS orbit can be predicted with accuracy of some decimetres for a one
day span [100].

4.4.4 Antenna and Multipath Effects

Antennas causes delays that are dependent on the elevation and azimuth
of the exiting incoming signals. This effect has been observed for both
receiver [97][39] and satellite [88] antennas. These effects are frequencies
dependent and are normally modelled as a sum of a translation of the
antenna center (the so called Phase Center Offset PCO) and a map of
elevation and azimuth dependent terms (so called Phase Center Variations
PCV). It has to be notices that the PCV could absorb also the PCO terms;
the separation is kept in order to be able to model a consistent part of the
signal with one translation only. Models for such delays can be computed
either on the field using a particular antenna model as reference [88], or
in the filed again rotating one of them in order to get absolute variations
of the rotated antenna [121], or using simulated signal in an anechoic
chamber [95]. The IGS provides antennas calibrations for most satellites
and receivers. Another phenomenon that causes effects and very similar
errors in the GNSS data is the multipath effect. In fact reflection and
refraction cause advancements or delays in the correlator output of the
receiver. Since the environment near the antenna is normally not changing
on short times, such an effect can be estimated using observation from
several days and modelled in a similar fashion as PCO and PCV [60].

4.5 Geophysical Effects on GNSS Observables and
Unknowns

Several geophysical effects, affect the measurable quantities in a GNSS
system. To be able to derive a correct information about our quantity of
interest we have to be able either to correct these effects or to estimate
them.

4.5.1 Atmosphere

The speed of a radiowave passing trough the atmosphere is not constant.
It is influenced both by neutral and ionized gases. The path of the ra-
diowave passing trough such a medium will not follow a straight line;
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instead, due to the Fermat Principle, it follows the path with the least
travel time. Once the path is determined the total time of travel can be
computed integrating the velocity:

τ = 1
c
·
∫
γ
N(l)dl (4.3)

where c is the speed of light, γ is the wave path, l is the integration variable
along the path and N(l) is the refractive index of the atmosphere along
the path. If the difference between the least time path γ and the straight
unperturbed path µ is a small fraction of the total length of the path, the
same difference in time of flight can be written as:

δτ ≈ 1
c
· (
∫
µ
(N(l)− 1)dl + ·

∫
γ
dl −

∫
µ
dl) (4.4)

In which the first term represents the integral of the refractive index
minus one integrated along the straight line and the second and third
terms represent the difference between the real and the straight path.
This difference is often called “bending term”, β, we will use the same
name in the following sections. Since the bending term is normally in the
order of few centimetres, this simplification is legitimate (comparing it to
the thickness of the atmosphere). We will now divide the delay into two
different components, the one caused by the neutral atmosphere and the
one caused by the ionized atmosphere.

Ionosphere

The atmospheric upper layers (above 80 Km) are ionized this cause the
refractive index to be significantly different from zero. The refractive in-
dex of an electromagnetic wave passing trough the ionosphere depends in
general on the frequency of the wave (for such reason is called dispersive),
the propagation direction of the wave and the local magnetic field vector.
The refractive index can be computed using Appleton-Hartree formula
([4] as cited in [62]). A simplified formula has been derived for the iono-
spheric induced delay (in meter) on a phase observation [9][62] (bending
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term excluded):

δι = −40.3
∫
µE(l) dl
ϕ2 − 1.1283 · 1012

∫
µE(l) ·B(l) · cos(Θ(l)) dl

ϕ3

− 812.37
∫
µE(l)2 dl

ϕ4 − 1.579 · 1022
∫
µE(l) ·B(l) · (1 + cos(Θ(l)))dl

ϕ4

(4.5)
where ϕ is the signal frequency E(l) is the electron density component
along the path B(l) is the strength of the magnetic vector along the
path and Θ(l) is the angle between the magnetic vector and the unit
vector of the incoming signal. The quantity

∫
µE(l) dl is often called

Total Electron Component (TEC). Sometimes the quantity is transformed
to the so called Vertical Total Electron Component (VTEC) diving it
by a mapping function. For both quantity the TEC Unit (TECU) is
tipically used. One TECU corresponds to 1016 electrons/m2. The term
that depends on 1/ϕ2 is called first order term, is constitutes around
the 99% of the delay and they are typically estimated if two or more
frequencies are present for the same satellite. The term that depends on
1/ϕ3 is called second order term, those depending on 1/ϕ4 third order
terms. The second and third terms are commonly referred as higher
order effects and they are typically mitigated by using the expression in
Eq 4.5. To do so the TEC is estimated from the observations or taken
from a model. The magnetic field vector and its angle with respect to the
incoming wave are typically taken constant and their value is computed
at the height of approximately 350 Km, where the ionosphere normally
has is peak electron density. The

∫
µE(l)2 dl term is either approximated

by 2.9148 · 10−6 · TEC2 [36] or computed more rigorously raytracing a
three dimensional ionospheric model [62]. For the computation of the
bending term one can again either use a raytracing approach or use the
approximate formula [79][46] :

β = 40.3
4 · ϕ4 · tan(ζ)2 · 2.9148 · 10−6 · TEC2, (4.6)

where ζ is the zenith angle of the satellite computed at the height of the
assumed thin shell. It is important to say that while the bending term is
the same for both phase and pseudoranges the others terms are not. For
the pseudorange normally only the first order term is considered, it reads:

δι = +40.3
∫
µE(l) dl
ϕ2 (4.7)
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Quantity Order of magnitude
VTEC 0-100 TECu
Thin shell MF at 5 degree ∼ 3
Thin shell MF at 10 degree ∼ 2.8
Thin shell MF at 30 degree ∼ 1.7
1st order term L1/E1/B2 ∼ 0.16 m

T ECu
1st order term L5/E5 ∼ 0.29 m

T ECu
Higher order and bending terms 0.01 cm

Table 4.3: Orders of magnitude for ionospheric parameters. The thin shell Mapping
Function (MF) represent a rough amplification coefficient (It is assumed that all elec-
trons are concentrated in a thin shell at 350 Km of altitude) for the inclined satellites.

which is exactly the phase first term multiplied by -1, this is because
of the group velocity (pseudorange measurement) is different from the
phase velocity (phase measurement)[55]. Some orders of magnitudes for
ionospheric parameters are presented in Tab 4.3.

Troposphere

There is also refraction term that is caused by the neutral part of the
atmosphere; since most of the atmospheric mass is contained into the tro-
posphere this term is normally labeled tropospheric delay. The coefficient
of refraction of the neutral atmosphere does not depend on the frequency
(in the GNSS frequency range), but in general it depends on the partial
pressure of all gases elements in the air mix. However, for simplicity, it
is normally approximated as a function of total pressure, temperature,
partial water vapour pressure and partial carbon dioxide pressure [89];
the term due to carbon dioxide is usually omitted. Another characteristic
of the air refraction is that in the area of the signal incoming into a GNSS
station (around 100 Km horizontally) it can be approximated by a strat-
ification of homogeneous horizontal layers. This allows the tropospheric
delay to be written as a function of the elevation θ :

δ(θ) = δ(π2 ) · T (θ) (4.8)

where T (θ) is the so called mapping function, and δ(π2 ) is the tropospheric
delay at the zenith normally called Zenith Total Delay (ZTD) or Zenith
Tropospheric Delay (ZTD), in the rest of the document we will refer toit
using the symbol ζ. The delay is normally measured using meters and
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so we will refer to it in this document as having unit of length. For a
flat earth with no bending the mapping function would be 1

sin(θ) ; since
this is not the case the mapping function is typically expressed with the
continued fraction form [73] normally using three parameters (a, b, c) [52]:

T (θ) = 1 + a/(1 + b/(1 + c))
sin(θ) + a

sin(θ)+ b
sin(θ)+c

(4.9)

Furthermore in order to partly account for anysotropy that is present in
the layers, also terms that depends on the sine and cosine of the azimuth
α are added: [38][7]:

δ(θ) = ζ · T (θ) + Γ(θ)cos(α) · ξ + Γ(θ)sin(α) · η (4.10)
where ξ and η are normally called north and east tropospheric gradient
components, as they can be interpreted as a tilting of the tropospheric
layers in north and east direction. The function Γ is normally called the
gradient mapping function and can be written as [21] 1

sin(θ)tan(θ)+C . Fur-
thermore, the tropospheric delay is normally divided into the hydrostatic
and wet components2, i.e.[52]:

δ(θ) = ζh · Th(θ) + Γh(θ)cos(α) · ξh + Γh(θ)sin(α) · ηh+
ζw · Tw(θ) + Γw(θ)cos(α) · ξw + Γw(θ)sin(α) · ηw

(4.11)

each one with different mapping functions and gradient mapping func-
tions. Models for both mapping functions, zenith delays and gradients
are available. Some of such models use global spatio-temporal parameters
that are estimated once and then kept fixed [78][16][70], some other use
local meteorological data [90][25].Finally other models use global coeffi-
cients that are periodically updated [68] [70] (typically fitting them to ray
traced delays from global weather numerical prediction models). Beside
that, a residual wet part is estimated from observations; this because the
wet correction that can be modelled with less accuracy. Since mapping
function for hydrostatic and wet delays are very similar, any mismodeling
in the hydrostatic part will be absorbed easily in the wet estimates. It
is worth mentioning that mapping functions that are satellite specific ex-
ists, that are not function of elevation and azimuth exist [126]. Yet they
are not as common in practice. Tab 4.4 reports some order of magnitude
for such effects. Other localised tropospheric phenomena ( hydrometeor ,

2It has to be noted that in theory this would not be legitimate since the problem is non linear and
thus the superposition of the effects is not valid. However, the deviations from linearity are small and
so this is a good approximation.
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Quantity Order of magnitude
Hydrostatic ZTD at sea level ∼ 2.2 m
Wet ZTD at sea level ∼ 0.5 m
ZTD gradients (wet and hydrostatic summed) ∼ 1 mm
Mapping function at 30 degree elevation ∼ 2
Mapping function at 10 degree elevation ∼ 5
Mapping function at 5 degree elevation ∼ 10
Gradient mapping function at 30 degree elevation ∼ 10
Gradient mapping function at 10 degree elevation ∼ 90
Gradient mapping function at 5 degree elevation ∼ 200

Table 4.4: Orders of magnitude for tropospheric parameters.

particulates, etc..) do affect the GNSS signals; [99] presents an overview
of these effects on the observations. Such effects are commonly simply
ignored.

4.5.2 Solid Earth

Receivers that are normally considered static at a local scale are not so
at global one. If we want to consider them as static in the processing, we
have to account for a series of geophysical phenomena that cause them to
move. Once we have a model for the point movement ∆x, for each pseu-
dorange/phase ω observation we can remove this effect by projecting it
along the Line Of Sight (LOS) unit vector l. The “corrected” observation
ω′ then will the become:

ω′ = ω − lᵀ ·∆x (4.12)

The choice about the various physical effects to be modelled depends
on the signal of interest. Generally speaking it is possible to divide the
movements into two broad categories: solid earth tides and loading phe-
nomena. The solid earth tides are movements due to a time variation
in the earth gravitational potential that, combined with the elasticity of
the earth, generates “stretching” and deformation of the planet. Loading
phenomena on the other hand, are deformations of the earth crust do to
the pressure exerted by several types of mass changes; more specifically
water due to sea tides, water due to hydrological cycle and atmosphere
density changes due to tides and large scale weather phenomena. When
applying corrections for such effects one has to check the consistency of
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reference frames [15]; this is especially true if one is using epeherides or
clocks from an external provider.

Tides

The displacement of a points is normally computed starting from the tidal
potential. Thhis is linked to the actual displacements by the so called Love
h and Shida l numbers relating the tidal displacement to vertical (υ) and
horizontal (ε η) displacement [61].∆υ

∆ε
∆η

 =


h
|g| ·Ψ

l
|g| ·

a
r·cos(φ)

Ψ
∂λ

l
|g| ·

a
r

Ψ
∂φ

 (4.13)

where φ is the latitude λ the longitude, r the distance form earth centre,a
is the mean earth radius, Ψ the tidal potential and |g| the mean gravity
force. The sun and moon contributions to the tidal potential are typically
expressed as a sum of Legendre polynomials function of the angle between
the celestial body and the receiver in earth fixed frame. The sum is usually
stopped at degree three. Love and Shida numbers vary depending on the
degree of the summation, on the latitude and on the tidal frequency (this
last applies to the computation done in frequency domain). A reference
procedure for the computations of such displacements can be found in
[81] Subsection 7.1.1. The change in the instantaneous axis of rotation of
the earth also creates a tidal potential; its effect can be approximated as:

Ψ(r, λ) = −ω
2, r2

2 · (ξ · cos(λ) + ν · sin(λ)) (4.14)

where ξ and ν are the cartesian coordinates of the instantaneous axis of
rotation with respect to the mean pole.

Loading Effects

Other displacements of the earth surface are caused by mass loading. This
loading causes the earth crust to deform. Its effect is normally computed
by integrating all loading masses around the point of interest, using a spe-
cific distance dependent “transfer” (from loading mass to displacement)
function[34]. The most important loading factors are the oceans. Most
variation of the ocean mass is due to the ocean tides. The loading effect
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Quantity Order of magnitude
Solid earth tides ∼ 0.5 m
pole variation induced tides ∼ 0.01 m
Atmospheric loading ∼ 0.02 m
Ocean loading ∼ 0.2 m
Hydrological loading ∼ 0.02 cm

Table 4.5: Orders of magnitude for solid earth effects.

of ocean tides on the coordinates of a station is typically described by a
sum of harmonics:

∆r =
∑
j

αjcos(χj(t)− φj) (4.15)

where αj is the amplitude of the harmonics, φj is the phase and χj(t)
is the astronomical argument. Online services such as [94] provide site
specific parameters that allows the computation of amplitude and phase
at receiver sites for the 11 main tide components [81]. Other components
can be interpolated in the frequency range from the main 11 mentioned.
Another source of loading is the atmosphere. To compute the loading,
data from a numerical weather prediction model are used [118]. Typically
the loading is divided into a tidal part (loading caused by the tides of the
atmosphere) and a non tidal part. Different online services are available
([118] Section 2.1.4) they provide coefficients for the tidal part of the
loading and world wide gridded maps of displacements for the non tidal
part. Another source of loading is the water present in the rivers, lakes,
glaciers and the soil; online services computing such loading starting from
hydrological global models exist [30]. Tab 4.5 presents some order of
magnitude for solid earths effects.

4.5.3 Relativity

All GNSS computations are normally done in Galilean physics. However
several relativistic effects are to be taken into account to assure that
the Galilean approximation does not introduce too large errors in the
measurements. The biggest effects due to the behaviour of clocks in space.
The constant term of time dilation due to satellite speed and gravitational
potential are accounted for adjusting the frequencies of the emitted signal.
However there are time varing effects that have to be taken into account.
These effects could be absorbed into the computation of the clock satellite
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desynchronisation and for some of them this choice is made. The first one
is the time dilation δτ due to the variation of the speed along the orbit.
Its can be computed as [67]:

δτ = −2 · v · s
c2 (4.16)

where s is satellite position vector,v is satellite velocity and c is the speed
of light. This correction is normally not absorbed by the satellite clock
estimates so it has to be applied in the stand alone positioning. There
is also a non negligible effect (few centimetres) due to the oblateness of
the earth gravity field, however this effect is normally absorbed in the
satellite clock estimates. Another important term for precise positioning
is the Shapiro signal propagation delay. This effect is due to the time
dilation caused by the earth along the ray path propagation. As it is path
dependent, it can not be absorbed in any of the clock desynchronization
estimates. Its expression in a spherical earth approximation is ([5] Eq
96):

δρ = 2 · µ
c2 · ln

(
|r|+ |s|+ |s− r|
|r|+ |s|+ |s− r|

)
(4.17)

where δρ is the Shapiro delay, r and s and the receiver and satellite
vectors respectively µ is the earth gravitational constant. Another cor-
rection terms arise from the fact the GPS signals are mostly circularly
polarized. This in combination with the relative rotation of the satellites
GNSS antennas with respect to that of the receivers ones create a phase
advancement/delay in the measurement [120]. This effect is commonly
know as phase wrap-up or phase wind-up effect. It can be computed as a
function of receiver and satellites attitude [48].
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5

Least Squares Adjustment
Theory Applied to GNSS

With three parameters, I can fit an elephant.
– William Thomson, 1st Baron Kelvin

It this chapter the GNSS stochastic model for a system of GNSS equa-
tion is presented. Selected examples are then showed to characterise the
behaviour of the system in different conditions.

5.1 Observation Equation and Resulting System

The linearised observation equation (Eq 4.2) for the carrier-phase pseu-
dodistance in unit of length of receiver r , satellite s, tracking channel c,
with frequency f at epoch t reads:

φr,s,c,t = −l̃ᵀr,s,c,t · xrt + τ rt − µf · ιr,s,f,t + T (θr,s) · ζt + Γ(θr,s)cos(α) · ξt + Γ(θr,s)sin(α) · ηt
+λf · ν + βrc,t + lr,s,c,t · xst + τ st + βsf,t

(5.1)
Similarly the linearised observation equation (Eq 4.1) for the pseudo-range
measurement reads:

ρr,s,c,t = −l̃ᵀr,s,c,t · xrt + τ rt − µf · ιr,s,f,t + T (θr,s) · ζt +G(θr,s)cos(α) · ξt +G(θr,s)sin(α) · ηt
+βrc,t + lr,s,c,t · xst + τ st + βsc,t

(5.2)

61
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Table 5.1: Unknowns. Abbreviations used: r number of receivers, s number of satel-
lites, e number of epochs, f number of frequencies, and c number of channels per
frequencies.

Parameter Description Number of unknowns
xr Coordinates of the receiver r · 3 (static) , r · 3 · e (dynamic)
xs Coordinates of the satellites s · 3 · e (kinematic orbit)
τ r Receiver desynchronization r · e
τs Satellite desynchronization s · e
ι Slant total electron component r · s · e
ζ Zenith troposphere delay r · e
η North gradient r · e
ξ East gradient r · e
ν Unknown number of cycles (Ambiguity) r · s · f · c (without cycle slips)
βr Receiver electronic bias r · f · c (constant),

r · f · c · e (time varying)
βs Satellite electronic bias s · f · c (constant),

s · f · c · e (time varying)

Table 5.2: Element of the design matrix

Parameter Description
l̃ Approximate unit vector from receiver to satellite
µ Ionospheric delay coefficient 40.3

f2

T Tropospheric mapping function
Γ Gradient tropospheric mapping function
λ Wavelength
θ Satellite elevation
α Satellite azimuth

Abbreviation Full formula
Γ Γ(θ)
υ cos(α) ·G(θ)
ψ sin(α) ·G(θ)
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The symbols used in Eq 5.1 Eq 5.2 are explained in Table 5.1 and 5.2.
When speaking about “clock errors”, “clock desynchronization”, “elec-
tronic bias” we have to realise that while they may have different physical
origin their effect on the observation is the same: a desynchronization of
the measurement. To discern the different effects we will use the expres-
sions “clock desynchronization” and “electronic biases”, all desynchro-
nization are in unit of lenght is the previous equation.

5.2 Processing Mode

Different processing modes are possible in the case of GNSS data. A very
broad division could be the processing of stand alone receivers versus the
processing of a network of receivers 1. Processing of a network of receivers
normally requires few auxiliary data in input since most of the parame-
ters are going to be estimated in the network itself. Stand alone receivers
processing, on the other hand, requires more data as input. Stand alone
processing at a global scale using phase data precise ephemerides and
most refined geophysical/physical corrections is normally called as Precise
Point Positioning (PPP) [125]. Corrections to perform precise point posi-
tioning are normally routinely provided (for free) by the IGS according to
a protocol of international collaboration between several analysis centres
[69][77]. Looking more carefully at these corrections we can see that they
are the same unknowns estimated in a network processing. So the same
procedure can be applied also to non global networks, these procedure is
called normally State Space Representation (SSR) [122][112], and in case
of kinematics positioning Precise Point Positioning Real Time Kinematics
(PPP-RTK).

5.3 Model Rank Deficiency

Several rank deficiencies are present in a system constructed from such
observations [80]; we list them individually highlighting the relative null
spaces. We say that a group of unknowns is “in rank deficiency” when the
corresponding columns in the design matrix are linearly dependent. By
applying this concept we can examine separate groups of variables,identifying
the specific deficiencies that are present due to the form of observation

1Processing of stand alone GNSS satellites is also done, but very seldom and for specific application.
The technique is commonly referred as reverse PPP [31]
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equations.

5.3.1 Clock Desynchronization - Electronic Bias

For both transmitter and receiver electronic biases the columns of the
design matrices referring to the clock unknowns Aτ are in rank deficiency
with the columns referring to the electronic bias unknowns Aβ . In fact:

Aτ · e− Aβ · e = 0 (5.3)

Where e is a column matrix with elements equal to one, and 0 is a ma-
trix made of zeros and n is the number of observations. The number of
such deficiencies is one per satellite and one per receiver, included in the
adjustment.

5.3.2 Cycle Ambiguity - Phase Electronic Bias

Similarly, for both the receiver and the satellite, the ambiguity term is in
rank deficiency with the phase electronic bias. Calling Aν the columns
referring to the ambiguities and λ1 . . . λf wavelength of frequency 1 to f ,
we can see how:

Aβ · e− Aν ·



1/λ1
...

1/λ1
...

1/λf
...

1/λf


= 0 (5.4)

For each continuous set of phase data (no Cycle Slip no loss of tracking)
the number of such rank deficiencies is one per phase bias per satellite
and one per phase bias per receiver. In case we have a non repaired cycle
slip on all signals tracked by a receiver or a satellite a new rank deficiency
appears.
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5.3.3 Ionosphere - Electronic Bias

Similarly we have a rank deficiency between ionospheric term and elec-
tronic bias for both the receiver and the satellite. In fact:

Aβ ·



µ1
...
µ1
...
µf
...
µf


− Aι · e = 0, (5.5)

where µ1 . . . µf are the entries for the ionospheric unknowns for observa-
tions of frequency 1 to f , and Aι are the columns of the design matrix
corresponding to the ionospheric unknown. The satellite related number
of such rank deficiencies is one per satellite. Regarding the receiver for
each one of them a rank deficiency is present for all the set of electronic
biases that share the same ionospheric unknowns. Typically these cor-
responds to the different constellations, but in the unfortunate case one
receiver would track different frequencies for different subsets of satellites
of the same constellation there would be a rank deficiency per set of satel-
lites. This time the number of the rank deficiencies is one per receiver
and one per satellite.

5.3.4 Cycle Ambiguity - Clock Desynchronization

This term is only present in case a phase only adjustment is performed,
in fact it is easy to see that:

Aτ · e− Aν ·



1/λ1
...

1/λ1
...

1/λf
...

1/λf


= 0 (5.6)

The number of these rank deficiency is one per receiver and one per satel-
lite. It is clear if ones introduced the pseudo-range measurements, since
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they have no entry in the ambiguity term the rank deficiency disappear.
However since most of the times a bias for the phase observation is added
we are still left with a rank deficiency of the type described in Subsection
5.3.2.

5.3.5 Cycle Ambiguity - Ionosphere

This term is only present in case a phase only adjustment is performed,
in fact it is easy to see that:

Aν ·



1/λ1 · µ1
...

1/λ1 · µ1
...

1/λf · µf
...

1/λf · µf


− Aι

n×m2
· e = 0 (5.7)

The number of this rank deficiencies is one per receiver and one per satel-
lite.

5.3.6 Receiver Clock Desynchronization - Satellite Clock Desyn-
chronization

Another rank deficiency exists between clock desynchronization of the
receiver and clock desynchronization of the satellite. In Fact:

Aτr · e− Aτs · e = 0 (5.8)
If all satellites are connected to all receivers the number of such rank
deficiency is just one.

5.3.7 Receiver Electronics Bias - Satellite Electronic Bias

Another rank deficiency exist between the electronic bias of the receivers
and those of the satellites. In Fact:

Aβr · e− Aβs · e = 0 (5.9)
If all satellites are connected to all receivers the number of such rank
deficiency is κ, i.e. the combined number of pseudoaranges and phase
trackings.
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5.3.8 Receiver Electronics Bias - Satellite Clock Desynchro-
nization

Another rank deficiency exist between the electronic bias of the receiver
and the clock desynchronisation of the satellite. In Fact:

Aβr · e− Aτs · e = 0 (5.10)

If all satellites are connected to all receivers the number of such rank
deficiencies is just one.

5.3.9 Satellite Electronics Bias - Receiver Clock Desynchro-
nization

Another rank deficiency exists between the electronic bias of the satellites
and the clock desynchronisation of the receivers. In fact:

Aβs · e− Aτr · e = 0 (5.11)

If all satellites are connected to all receivers the number of such rank
deficiency is one.

5.3.10 Summary Graph

To summarise all the rank deficiencies they have been put on a graph.
Each node is a set of unknowns. The rank deficiencies are represented
by using an arrow . The arrow is dashed in case the rank deficiency is
present for phase only adjustment. On top of each arrow the dimension
of the rank deficiency is reported. Same abbreviations are used as in Tab
6.1, moreover pb is used for the number of phase biases and x is used for
the number of constellations.
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r ·
x
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r
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1
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1

1

Figure 5.1: Summary graph for the rank deficiencies between GNSS unknowns. Sym-
bols used are the same of 5.1. To help the reader we report them here: βr and βs are
electronic biases for receivers and satellites respectively, τ r and τs are clock desynchro-
nization for receivers and satellites respectively, ι are the ionospheric unknown, and ν
are the ambiguities. Furthermore r is number of receivers,s is number of satellites, e is
number of epochs, f is number of frequencies, c is number of channels per frequencies,
pb is the number of phase biases and x is the number of constellations.

5.4 Geometric Rank Deficiencies

Beside the rank deficiencies that we discussed in the previous sections
there are also some involving the geometric parameters. In fact, when
estimating both the receivers and satellites coordinates, the estimates are
invariant (in term of the least squares minimisation) to both a translation
and a rotation of the network. To solve the problem the so called no-net-
rotation and no-net-translation conditions of the receiver coordinates can
be used. Among all possible conditions this one will minimise the variance
of the estimates of the receiver coordinates [65].
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5.5 Solving the Rank Deficiencies

Here we report possible choices to solve the rank deficiencies described.
The choice clearly depends on the type of parameter introduced. The
processing strategies discussed correspond to the use of pseudorange and
phase data with ionospheric parameters in the observation model. Other
estimation strategies will require some variations of the procedure.

5.5.1 Clock Desynchronization - Electronic Bias

First rank deficiency might easily be solved removing one whole set of
electronic bias unknowns (it might be constant or slowly time varying)
per receiver and per satellite.

βr

τ r ι

ν βs

τ s

1

r · pb

r ·
x
∗

s · pb

1s

1

c

1
1

It has to be highlighted that the ionospheric bias rank deficiency is not
affected by the removal of one of the biases, in fact considering the clock
synchronisation also one can find:

Aτ · e · µrem + Aβ ·



µ1 − µrem
...

µ1 − µrem
...

µf − µrem
...

µf − µrem


− ι · e = 0 (5.12)

where µrem is the ionospheric coefficient of the eliminated bias. Similar
considerations can be made for ambiguity. To avoid unnecessary compli-
cations when dealing with electronic bias ambiguity rank deficiency, the
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eliminated bias should belong to the group associated to the pseudor-
anges.

5.5.2 Electronic Bias - Ionospheric Delay

To remove this rank deficiency another electronic bias can be cancelled
for each set of biases insisting on the same ionosphere parameters (i.e.
per constellation). As before it is easier to eliminate such bias from the
pseudorange set. Care should be taken in removing such a bias, in fact it
can not be of the same frequency as one of the biases removed to eliminate
the clock desynchronization electronic bias rank deficiency.
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τ r ι

ν βs

τ s
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r ·
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1

c

1
1

This double elimination of parameters will remove also the rank defi-
ciency between the satellite and receiver electronic bias, the rank de-
ficiency between the the receiver electronic bias and the satellite clock
desynchronization and the satellite electronic bias and the receiver clock
desynchronization.
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5.5.3 Receiver Electronic Bias - Satellite Electronic Bias

This rank deficiency can be eliminated removing one electronic bias from
one receiver per each phase or pseudorange tracking considered. This
can be already be done in the removal of the previous rank deficiency
but this is not generally the case when pseudorange and phase jointly
compensated. Again care should be put in the sense that if one parameter
has already been removed for a tracking no additional one should be
removed.

βr

τ r ι

ν βs

τ s

1

r · pb

r ·
x
∗

s · pb

1s

1

c

1
1

5.5.4 Cycle Ambiguity - Phase Electronic Bias

A second rank deficiency might be solved removing one ambiguity un-
known per set of phase electronic bias unknowns for both the receiver
and the satellite. It must be noticed that every time a set of ambigu-
ities (insisting on the same electronic bias) experiences a cycle slip (or
loss of signal) on all the satellites a new rank deficiency is introduced in
the system. This means a new ambiguity unknown should be removed.
The choice of the ambiguity term to be removed can not be completely
arbitrary. In fact in removing the ambiguity unknown one should take
care that it does not belong to the same satellite and channel of the am-
biguity removed to solve the rank deficiency with respect to the satellite
parameters.
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5.5.5 Clock Desynchronization Rank Deficiency

The rank deficiency of clock desynchronization can be easily solved re-
moving one of the clock unknowns. While the choice of the clock makes
no difference from a mathematical point of view, the choice of a stable
clock will make the variation of all the other clocks unknowns smaller.
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5.6 Near Rank Deficiencies

In this section some near rank deficiencies that may arise are discussed.

5.6.1 Geometrical Terms (Small Networks)

In this section we will show how unknowns whose entries in the design
matrix depend on the geometry of the system (coordinates, tropospheric
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parameters) can become almost rank deficient. Consider for instance a
very short baseline; in such a case the line of sight vectors from the receiver
to the satellites will be almost identical. Similarly also the elevations and
the azimuths of the satellites will be very close one to the other. Consider
then a system made up by such geometrical parameters and by satellite
clock desynchronization.

A =



A′ 0


I1

...
In


0 A′′


I1

...
In




(5.13)

where A′ is the design matrix corresponding to the first receiver, A′′ is
the design matrix corresponding to the second receiver and I1 to In are
the identity matrices corresponding to clocks unknowns of satellites 1 to
n. As we said when the baseline is very short it is A′ ≈ A′′. If this is the
case we can see that a group of rank deficiencies arises. In fact, for each
column i of A′ we have:

A ·X =



A′(. . . ; i) 0


I1

...
In


0 A′′(. . . ; i)


I1

...
In




·

 1
1

−A′(. . . ; i)

 = 0 (5.14)

because A′ ≈ A′′.

5.6.2 Ambiguity Clock Near Rank Deficiency

In some particular situation it is possible that we encounter near rank
deficiencies arising from the same parameters we discussed above. As we
said in 5.3.2 if we have a non repaired simultaneous cycle slip on all signals
coming into a receiver (or exiting a satellite) a new rank deficiency arises.
Let’s now assume that the cycle slip is not simultaneous but occurs at
near epochs. This could happen for instance in case of high ionospheric
activity when scintillations cause cycle slips in phase tracking. Consider a
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simple system formed by two satellites seen from one receiver. The system
has 2 ·n epochs. On the first satellite we have a cycle slips between epochs
n and n + 1 on the second satellite we have a cycle slip between epochs
n + 1 and n + 2. For simplicity we will analyse only the part relative to
cycle ambiguity and receiver clock desynchronization; the design matrix
becomes

A =

λ ·


1n,1 0n,1 0n,1 0n,1
0n,1 1n,1 0n,1 0n,1

0n+1,1 0n+1,1 1n+1,1 0n+1,1

0n−1,1 0n−1,1 0n−1,1 1n−1,1


I

2·n,2·n

I2·n,2·n


 (5.15)

To simplify the equation we multiply all the ambiguity terms by 1/λ since
this does not affect the rank deficiency of the system. The normal matrix
then becomes:

N =




n 0 0 0
0 n 0 0
0 0 n+ 1 0
0 0 0 n− 1




1n,1 0n,1 1n,1 0n,1
0n,1 1n,1 0n,1 1n,1

1n+1,1 0n+1,1 1n+1,1 0n+1,1

0n−1,1 1n−1,1 0n−1,1 1n−1,1


ᵀ


1n,1 0n,1 1n,1 0n,1
0n,1 1n,1 0n,1 1n,1

1n+1,1 0n+1,1 1n+1,1 0n+1,1

0n−1,1 1n−1,1 0n−1,1 1n−1,1

 2 · I2·n,2·n


(5.16)

if we reduce for the clock desynchronization parameters using Eq 2.30 we
have:

N =


n 0 0 0
0 n 0 0
0 0 n+ 1 0
0 0 0 n− 1

−1
2 ·


n 0 n 0
0 n 1 n− 1
n 1 n− 1 0
0 n− 1 0 n− 1

 =


n
2 0 −n

2 0
0 n

2 −1
2 −n−1

2
−n

2 −1
2

n+3
2 0

0 −n−1
2 0 n+3

2


(5.17)

We can see that for n >> 1 we can approximate column three by taking
the opposite of column one and column four by taking the opposite of
column two. The relative error of this approximation with respect to the
magnitude of the vector, expressed as the difference of third and first
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column divided by the norm of the first, is:

o ≈
√

2
n


0
−1

23
2
0

 ; (5.18)

As we see for large enough n, it may fall under the computer numerical
precision.

5.7 Significant Examples

In the following sections examples of applications of the previously de-
scribed theory to GNSS problems are presented.

5.7.1 On the Equivalence Between Stand Alone Processing and
Baseline Processing (Small Baselines)

In this section we discuss an equivalence between stand alone processing
and baseline (relative) processing. We will show that processing the data
in stand alone mode and then differentiate them is equivalent to a baseline
processing under certain assumptions. Consider a baseline where the two
receivers are very close one to the other (few kilometres), in this case the
Line of Sight (LOS) vectors from the receivers to the satellites will be
very similar. So all the entries in the design matrix will be similar too.
Furthermore, if we are in clear sky conditions and the satellites seen by
the two receiver are the same, we will have:

A1 ≈ A2 (5.19)

where A1 is the design matrix for parameters of receiver 1 and the same
for A2. We can then call for both receivers the part relative to receiver
parameters A and the one relative to satellite parameters C. Removing
the columns relative to the first receiver parameters to solve the rank
deficiency we will have: (

0 C
A C

)
·
(
xr
xs

)
=
(
y1
y2

)
(5.20)
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If we then reduce for the the satellite parameters xs, computing the hat

matrix as H =
[
C · (2 · Cᵀ · C)−1C
C · (2 · Cᵀ · C)−1C

]
=
[

1
2 · I1
2 · I

]
, we have:

Ă =
[
−1

2 · A1
2 · A

]
(5.21)

y̆ =
[
−1

2 · (y1 − y2)
1
2 · (y2 − y1)

]
(5.22)

where the second term in both new design matrix, and new observation
vector is simply the first one multiplied by −1. Adjusting the sign, and
recognising that the least squares estimates are invariant with respect to
scaling both design matrix and observation vector, we are left with the
well known satellite differenced expression:

A · xr = (y2 − y1) (5.23)

where xr can be interpreted as the difference between the coordinates of
the two receivers:

δxr = xr2 − xr1, (5.24)

with δxr equal to xr of Eq 5.23. Now if we would like to compute xr2, xr1
in a stand alone processing we would have xr1 = S · y1 xr2 = S · y2.
where S is the solver for a system with A as design matrix. Putting this
expressions in 5.24 we have:

δxr = S · (y2 − y1) (5.25)

which is the solver for Eq 5.23. This show that for small baselines (in open
sky) it is equivalent to process the data in baseline or in stand alone mode
and difference them. This is of course true only for the float solution. To
have an equivalence in general case one needs to fix the ambiguities in the
stand alone mode. To do so one needs good corrections (global or local).
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5.7.2 On the Equivalence Between Network and Baseline Pro-
cessing (Small Networks)

A very similar reasoning can be made for small networks in case of network
processing. Rewriting Eq 5.20 we have :

0 0 . . . 0 C
A 0 . . . 0 C
0 A . . . 0 C
... ... . . . ... ...
0 0 . . . A C

 ·

xr2
xr3
...
xs

 =


y1
y2
y3
...
yn

 (5.26)

reducing for C we will get:
− 1
n
A − 1

n
A . . . − 1

n
A

n−1
n
A − 1

n
A . . . − 1

n
A

− 1
n
A n−1

n
. . . − 1

n
A

... ... . . . ...
− 1
n
A − 1

n
A . . . n−1

n
A

 ·

xr2
xr3
...
xrn

 =


y1 − 1

n

∑n
i=1 yi

y2 − 1
n

∑n
i=1 yi

y3 − 1
n

∑n
i=1 yi...

yn − 1
n

∑n
i=1 yi

 (5.27)

then if we build the normal matrix from such reduced matrix we have:

N̆ =


n−1
n
Aᵀ · A − 1

n
Aᵀ · A . . . − 1

n
Aᵀ · A

− 1
n
Aᵀ · A n−1

n
Aᵀ · A . . . − 1

n
Aᵀ · A

... ... . . . ...
− 1
n
Aᵀ · A − 1

n
Aᵀ · A . . . n−1

n
Aᵀ · A

 = (I − 1
n
· e · eᵀ)⊗ Aᵀ · A

(5.28)
we can now compute the inverse of such a matrix. The first term before
the Kronecker product can be written as:

G = (I + uᵀ · v), u = − 1√
n
· e, v = 1√

n
· e (5.29)

Computing its inverse using Sherman–Morrison formula ([82] Section 2.7.1),
we have:

G−1 = (I + uᵀ · v) = I −
− 1
n
· e · eᵀ

1− 1
n
· eᵀ · e

= I + e · eᵀ (5.30)

where e ∈ 1n−1,1. So the inverse of N̆ can be written as:

N̆−1 = (I + e · eᵀ)⊗ (Aᵀ · A)−1. (5.31)
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The element corresponding to a single receiver will be simply 2(Aᵀ ·A)−1.
Coming back to the normal equation if we would reduce for all receivers
but one we would have 1

2A
ᵀ ·A. Then we can compute the know term of

the normal equation:

b̆ = Aᵀ ⊗


y2 − 1

n

∑n
i=1 yi

y3 − 1
n

∑n
i=1 yi...yn − 1

n

∑n
i=1 yi

 (5.32)

Now we can reduce it for all receiver but one (called j). To do so we
need the term N̆(xj;x(i 6=j)) · N̆(x(i 6=j);x(i 6=j))−1 = L (See Eq 2.27). We
can reconstruct this term from the reduced normal equation that we have
already computed. In fact, we know that L·N̆(x(i 6=j);xj) = (n−1

n
− 1

2)·Aᵀ·A
so L = −1

2 · e ⊗ I where I is an identity matrix of the size of Aᵀ · A. So
computing the reduced know term, we have:

˘̆
b = Aᵀ·(yj−

1
n

n∑
i=1

yi+
1
2

n∑
i=2,i 6=j

yi−
n− 2

2n

n∑
i=1

yi) = Aᵀ·(y2−
1
2
∑

i={1j}
yi) = 1

2 ·A
ᵀ·(yj−y1)

(5.33)
That combined with the normal matrix ˘̆

N = 1
2A

ᵀ ·A (computed after Eq
5.31) gives the same result we obtained for the baseline processing.
This means that, under the previous assumptions, adjusting all receiver
together or adjusting them by baselines is equivalent. Furthermore, us-
ing the equivalence presented in the previous section, under the same
assumptions, adjusting a small network of receivers, is the same (in term
of estimates) than adjusting various stand alone receivers and then taking
the differences. For real data evaluation of this principle see [104].

5.7.3 Analysis of the Variance of the Estimates as Function of
Network Size

In this subsection we will characterise the variance of the estimates for
different network sizes. The purpose of doing so is to give a general idea
of the quality of the estimates we can achieve with different network sizes.
An analytic solution of this problem is quite challenging, for this reason
we follow a numerical strategy. To this purpose we simulated networks
of different sizes picking α stations that are within β kilometres from the
point with latitude and longitude equal to zero (Some example can be
seen in Fig 5.2). For the position of the satellites we used the positions
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of GPS satellites from IGS computed ephemerides at an arbitrary time.
In the simulation we consider the following parameters: clock desyn-

Figure 5.2: Examples of the generated random networks. Receivers in blue satellites
in red.

chronization for both satellites and receivers, receiver and satellites co-
ordinates, receiver tropospheric parameters. The simulation is done for
one epoch only. We randomly extract 50 receivers from an uniform dis-
tribution within β kilometres from the origin. Then, assuming a cut-off
angle of 7 degrees of elevation, all possible observations between receivers
and satellites are formed. To solve the rank deficiencies of the system
we set a no-net rotation and no-net translation condition on all receivers
coordinates, and a no-net translation condition on receivers clock desyn-
chronisation. For each observation we assume a standard deviation of one
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centimetre. The simulation is performed for networks radius ranging from
10 to 20000 Km. We performed two type of simulations one estimating
satellite coordinates and one without them. To avoid numerical problems
we regularise the satellite coordinates in Tykhonov sense using pseudo
observations with a standard deviation of 1000m. In Fig 5.3 it is possible
to see the the result of such analysis.

Looking at the results one can see that the variance of the satellites
geometrical terms it is much higher than the one of the receiver. This
is because we set the no net translation condition on the receivers. In
practices this means that while the system is ill posed in general this is
not too much of a problem for terrestrial positioning.
A rather obvious thing to observe is the fact that if we fix the satellite
coordinates, we significantly bring down the standard deviation of the
estimates. This is particularly true for receiver coordinates in a small
network. Beside that, it is interesting to notice that in this case the sys-
tem is so rank deficient that satellite clock desynchronization unknown
could absorb also orbit mismatch too. The rank deficiency that is nor-
mally unwanted becomes a good property in such case. Lastly we see that
there is a network size for which the quality of the troposphere estimates
improves dramatically. This size is around few thousands kilometres for
the case in which we are estimating satellites coordinates and around one
thousand kilometres for the case with satellite coordinates fixed. This
means that to have reliable absolute troposphere parameters estimates,
we have to process networks of at least such a size.

5.7.4 Network of GNSS Ambiguities

In this section we will analyse the problem of adjusting a small network
where we do estimate desynchronizations and ambiguities only. We will
derive the mixed integer null space from which we will see that problem is
unitary rank deficient. Then we will show how LDL or QR decomposition
can be used to solve the integer rank deficiency.2. Consider a simple
network made up of by 4 receivers and 3 satellites (See Figure 5.4). We
can write the design matrix for desynchronization and ambiguity only

2The same problem can be solved using graph theory [64]
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Figure 5.3: Variance of the estimates for a simulated network a function of network
size.
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Figure 5.4: A small network GNSS network.

as:

C = [AB] =



τr︷ ︸︸ ︷ τs︷ ︸︸ ︷

1 0 0 0 1 0 0
0 1 0 0 1 0 0
1 0 0 0 0 1 0
0 1 0 0 0 1 0
0 0 1 0 0 1 0
0 0 0 1 0 1 0
0 0 1 0 0 0 1
0 0 0 1 0 0 1



ν︷ ︸︸ ︷

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




(5.34)

where τr are receiver clock desynchronization, τs are receiver clock desyn-
chronization, and ν are the ambiguities. For simplicity the wavelength
has been fixed to 1 since this does not affect the reasoning. To compute
the mixed integer null space we can apply the strategy presented in Sub-
section 3.3.2. First we compute the integer matrix L of integer whose
columns form a basis for N (Aᵀ); this can be done computing the Hermite
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normal form of A:

U · A = H (5.35)

U =



0 0 1 0 −1 0 1 0
−1 1 1 0 −1 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 −1 1 1 0
1 0 −1 0 1 0 −1 0
0 0 0 0 1 0 −1 0
1 −1 −1 1 0 0 0 0
0 0 0 0 1 −1 −1 1


H =



1 0 0 0 0 0 1
0 1 0 0 0 0 1
0 0 1 0 0 0 1
0 0 0 1 0 0 1
0 0 0 0 1 0 −1
0 0 0 0 0 1 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(5.36)

we can see that the last two rows of U span N (A) so we will use them
to construct L. Then we can compute Lᵀ ·B and compute a basis for its
null space again using the Hermite normal form. The unimodular matrix
in this case will be:

U =



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0
−1 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 −1 0 0 1


. (5.37)

The matrix whose columns span the null space is then:

T =



1 −1 1 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 1 −1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(5.38)
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and the admissible constraint computed inverting U will be:

K =



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(5.39)

For which we can easily verify that K · T = I. We can then try to
solve the problem using LDL and QR factorization. Reducing for the
desynchronization parameters B becomes:

B̆ =



0.250 −0.250 −0.250 0.250 0.000 −0.000 0.000 −0.000
−0.250 0.250 0.250 −0.250 0.000 −0.000 0.000 −0.000
−0.250 0.250 0.250 −0.250 −0.000 0.000 −0.000 0.000
0.250 −0.250 −0.250 0.250 −0.000 −0.000 −0.000 0.000
0.000 0.000 −0.000 −0.000 0.250 −0.250 −0.250 0.250
0.000 0.000 −0.000 −0.000 −0.250 0.250 0.250 −0.250
0.000 −0.000 −0.000 −0.000 −0.250 0.250 0.250 −0.250
0.000 −0.000 −0.000 −0.000 0.250 −0.250 −0.250 0.250


(5.40)

If we compute the QR factorization of B̆ we have:

Q =



−0.500 0.274 −0.173 0.382 −0.000 −0.593 0.060 0.378
0.500 −0.222 0.182 0.642 −0.000 −0.203 −0.462 0.012
0.500 0.076 −0.826 −0.052 −0.000 −0.165 0.178 −0.008
−0.500 −0.420 −0.470 0.208 −0.000 0.225 −0.345 −0.374
−0.000 −0.610 0.115 −0.191 −0.500 −0.484 0.282 −0.118
−0.000 −0.563 −0.053 −0.076 0.500 0.120 0.108 0.631
−0.000 0.016 0.047 −0.474 0.500 −0.522 −0.425 −0.263
−0.000 0.063 −0.122 −0.359 −0.500 0.082 −0.600 0.486



R =



−0.500 0.500 0.500 −0.500 0.000 −0.000 0.000 −0.000
0.000 −0.000 −0.000 0.000 0.000 −0.000 0.000 −0.000
0.000 0.000 −0.000 0.000 0.000 −0.000 0.000 −0.000
0.000 0.000 0.000 0.000 0.000 −0.000 −0.000 −0.000
0.000 0.000 0.000 0.000 −0.500 0.500 0.500 −0.500
0.000 0.000 0.000 0.000 0.000 −0.000 −0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 −0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000


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we see that there are various elements on the diagonal of R whose value is
equal zero, considering numerical precision. If we construct a constraint
to fix them we have:

K =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(5.41)

which multiplied for T will give:

S =



0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


. (5.42)

The determinant of S is 1 showing that it is unimodular. This makes the
constraint admissible. Similarly if we compute the LDL factorisation of
B̆ᵀ · B̆ with pivoting we have:

L =



1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
−1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
−1.000 0.333 1.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
−0.000 −0.000 −0.000 −1.000 1.000 0.000 0.000 0.000
0.000 0.000 0.000 −1.000 −0.000 1.000 0.000 0.000
−0.000 −0.000 −0.000 1.000 −1.000 −1.000 1.000 0.000
1.000 −0.333 −1.000 −0.000 0.000 −0.000 −0.000 1.000



D = I ·



0.250
0.000
0.000
0.250
−0.000
0.000
0.000
−0.000


P =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0


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As we had before the element on the diagonal can be interpreted ad condi-
tional variances. Using this interpretation the elements whose conditional
variance is zero are the ones that are completely determined (with vari-
ance zero) by a combination of the previous ones i.e. the ones generating
the rank deficiency. Looking at D and doing the same reasoning we did
for QR we can set up a constraint matrix:

K =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


(5.43)

which multiplied for T will gives:

S =



0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 1 −1
0 0 0 1 0 0
0 0 0 0 1 0


. (5.44)

This time the determinant is −1 and again S is unimodular. This makes
the constraint admissible.

5.7.5 GLONASS Receiver Ambiguity Rank Deficiency

GLONASS satellites use a Frequency Division Multiple Access (FDMA)
scheme to distinguish the different satellite signals in the receiver. For this
reason the rank deficiency between the receiver clock desynchronization
and the ambiguity can not simply be solved by choosing one pivot ambi-
guity. The wavelengths of the 14 GLONASS frequencies can be written
as:

λj,i = c

γj
· 1

2840 + i
(5.45)

where c is the speed of light, γj (j ∈ [12]) is a constant depending on the
central frequency, and i is an index running from 1 to 14. The values of γj
is the greatest common divisor of each frequency group. Such a value is
563500 for the first frequency and 437500 for the second frequency. Lets
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pick one of the two frequencies and construct the design matrix for the
single frequency receiver problem. Calling α = c

γi
, the design matrix for

the ambiguities and the receiver clock desynchronisation can be written
as:

A =


α

2840+i1 . . . 0 1
... . . . ... ...
0 . . . α

2840+in 1

 . (5.46)

We can transform the matrix simply multiplying all ambiguity entry by∏in
i=i1

(2840+i)
α

. Once we do that we can find the mixed integer null space
constructed by a single vector. The result is:

J =


2840 + i1
2840 + i2

...
2840 + in
−α

 (5.47)

If there are at least two subsequent channel the admissible constraint will
be extremely simple, in fact:

K · J =
[
. . . 0 1 −1 0 . . .

]
·



...
2840 + i

2840 + i+ 1
...
−α

 = 1 (5.48)

or in words it is sufficient to set the difference of two subsequent channels
to 0. Otherwise if no subsequent channels are present one could simply
compute a generating vector for the greatest common divisor between the
entry of the integer null space and use it as constraint.
Let’s now consider another GLONASS single difference model where a
linear bias proportional to the wavelength has been added. This can be
the case if the tracking has not been set up correctly [98]. The observation
equation will be:

A =


α

2840+i1 . . . 0 α
2840+i1 1

... . . . ... ... ...
0 . . . α

2840+in
α

2840+in 1

 (5.49)
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If we look for the mixed integer null space for a such system, consisting
of two vectors, we get:

J =



2840 + i1 1
2840 + i2 1

...
2840 + in 1

0 −1
−α 0


(5.50)

We can then choose the first constraint similarly to the previous example
and, in addition, set one the two ambiguities to zero.

5.7.6 Codeless Adjustment with Ionosphere

In case we process GNSS observations without pseudorange measurements
and we include ionospheric delay in the observation model we have a
rank deficiency[113]. In fact if we analyse a simple system with only the
ambiguity and ionospheric unknowns we have:

A =


λ1 0 . . . 0 γ · λ2

1
0 λ2 . . . 0 γ · λ2

2... ... . . . ... ...
0 0 . . . λn γ · λ2

n

 (5.51)

Where λ are the GNSS wavelengths and γ = −40.3·1016

c2 . The mixed integer
null space in this case is generated by the vector:

J =



λ1
λ2
...
λn
− 1
γ

 (5.52)

The integer null space for all constellations and frequency combinations
are presented in Tables 5.3 5.4 5.55.6 5.75.8. To generate an admissible
constraint one could again compute the generating vector for the greatest
common divisor of the entries in the vector spanning the integer null
space.
If ones looks at the first line of the GLONASS table 5.8 one can recognise
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the estimable combination discovered by [6]. It is worth mentioning that
codeless processing is also useful in the case we want to estimate satellite
specific code biases [49][98]; in this case the pseudorange does not fix the
ionosphere and we are left with a rank deficiency similar to the one of
code-less processing.

Table 5.3: GPS ambiguity-ionosphere integer null space

L1 L2 L5
L1-L2 60 77 x
L2-L5 115 x 154

L1-L2-L5 1380 1771 1848
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Table 5.4: Galileo ambiguity-ionosphere integer null space

E1 E5a E5b E5 E6
E1,E5a 115 154 x x x
E1,E5b 59 x 77 x x
E1,E5 233 x x 308 x
E1,E6 125 x x x 154

E5a,E5b x 118 115 x x
E5a,E5 x 233 x 230 x
E5a,E6 x 25 x x 23
E5b,E5 x x 233 236 x
E5b,E6 x x 125 x 118
E5,E6 x x x 250 233

E1,E5a,E5b 6785 9086 8855 x x
E1,E5a,E5 26795 35882 x 35420 x
E1,E5a,E6 2875 3850 x x 3542
E1,E5b,E5 13747 x 17941 18172 x
E1,E5b,E6 7375 x 9625 x 9086
E1,E5,E6 29125 x x 38500 35882

E5a,E5b,E5 x 27494 26795 27140 x
E5a,E5b,E6 x 2950 2875 x 2714
E5a,E5,E6 x 5825 x 5750 5359
E5b,E5,E6 x x 29125 29500 27494

E1,E5a,E5b,E5 1580905 2117038 2063215 2089780 x
E1,E5a,E5b,E6 169625 227150 221375 x 208978
E1,E5a,E5,E6 669875 897050 x 885500 825286
E1,E5b,E5,E6 1718375 x 2242625 2271500 2117038
E5a,E5b,E5,E6 x 687350 669875 678500 632362

E1,E5a,E5b,E5,E6 39522625 52925950 51580375 52244500 48691874
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Table 5.5: Beidou ambiguity-ionosphere integer null space

B1 B1C B2a B2b B2ab B3
B1,B1C 110 109 x x x x
B1,B2a 575 x 763 x x x
B1,B2b 590 x x 763 x x
B1,B2ab 1165 x x x 1526 x
B1,B3 620 x x x x 763

B1C,B2a x 115 154 x x x
B1C,B2b x 59 x 77 x x
B1C,B2ab x 233 x x 308 x
B1C,B3 x 62 x x x 77
B2a,B2b x x 118 115 x x
B2a,B2ab x x 233 x 230 x
B2a,B3 x x 124 x x 115

B2b,B2ab x x x 233 236 x
B2b,B3 x x x 62 x 59
B2ab,B3 x x x x 248 233

B1,B1C,B2a 12650 12535 16786 x x x
B1,B1C,B2b 6490 6431 x 8393 x x
B1,B1C,B2ab 25630 25397 x x 33572 x
B1,B1C,B3 6820 6758 x x x 8393
B1,B2a,B2b 67850 x 90034 87745 x x
B1,B2a,B2ab 133975 x 177779 x 175490 x
B1,B2a,B3 71300 x 94612 x x 87745

B1,B2b,B2ab 137470 x x 177779 180068 x
B1,B2b,B3 36580 x x 47306 x 45017
B1,B2ab,B3 144460 x x x 189224 177779

B1C,B2a,B2b x 6785 9086 8855 x x
B1C,B2a,B2ab x 26795 35882 x 35420 x
B1C,B2a,B3 x 7130 9548 x x 8855

B1C,B2b,B2ab x 13747 x 17941 18172 x
B1C,B2b,B3 x 3658 x 4774 x 4543
B1C,B2ab,B3 x 14446 x x 19096 17941
B2a,B2b,B2ab x x 27494 26795 27140 x
B2a,B2b,B3 x x 7316 7130 x 6785
B2a,B2ab,B3 x x 28892 x 28520 26795
B2b,B2ab,B3 x x x 14446 14632 13747

B1,B1C,B2a,B2b 746350 739565 990374 965195 x x
B1,B1C,B2a,B2ab 2947450 2920655 3911138 x 3860780 x
B1,B1C,B2a,B3 784300 777170 1040732 x x 965195

B1,B1C,B2b,B2ab 1512170 1498423 x 1955569 1980748 x
B1,B1C,B2b,B3 402380 398722 x 520366 x 495187
B1,B1C,B2ab,B3 1589060 1574614 x x 2081464 1955569
B1,B2a,B2b,B2ab 15809050 x 20977922 20444585 20707820 x
B1,B2a,B2b,B3 4206700 x 5582108 5440190 x 5176955
B1,B2a,B2ab,B3 16612900 x 22044596 x 21760760 20444585
B1,B2b,B2ab,B3 8523140 x x 11022298 11164216 10488961

B1C,B2a,B2b,B2ab x 1580905 2117038 2063215 2089780 x
B1C,B2a,B2b,B3 x 420670 563332 549010 x 522445
B1C,B2a,B2ab,B3 x 1661290 2224684 x 2196040 2063215
B1C,B2b,B2ab,B3 x 852314 x 1112342 1126664 1058519
B2a,B2b,B2ab,B3 x x 1704628 1661290 1682680 1580905

B1,B1C,B2a,B2b,B2ab 173899550 172318645 230757142 224890435 227786020 x
B1,B1C,B2a,B2b,B3 46273700 45853030 61403188 59842090 x 56946505
B1,B1C,B2a,B2ab,B3 182741900 181080610 242490556 x 239368360 224890435
B1,B1C,B2b,B2ab,B3 93754540 92902226 x 121245278 122806376 115378571
B1,B2a,B2b,B2ab,B3 980161100 x 1300631164 1267564270 1283884840 1206230515

B1C,B2a,B2b,B2ab,B3 x 98016110 131256356 127919330 129566360 121729685
B1,B1C,B2a,B2b,B2ab,B3 x x x x x x
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Table 5.6: IRNSS ambiguity-ionosphere integer null space

L5 S
L5,S 1218 575

Table 5.7: QZSS ambiguity-ionosphere integer null space

L1 L2 L5 LEX6
L1,L2 60 77 x x
L1,L5 115 x 154 x

L1,LEX6 125 x x 154
L2,L5 x 23 24 x

L2,LEX6 x 25 x 24
L5,LEX6 x x 25 23
L1,L2,L5 1380 1771 1848 x

L1,L2,LEX6 1500 1925 x 1848
L1,L5,LEX6 2875 x 3850 3542
L2,L5,LEX6 x 575 600 552

L1,L2,L5,LEX6 34500 44275 46200 42504
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Table 5.8: GLONASS ambiguity-ionosphere integer null space

G1 G2 G3
G1,G2 7 9 x
G11,G3 32054 x 42615
G12,G3 16027 x 21315
G13,G3 32054 x 42645
G14,G3 16027 x 21330
G15,G3 32054 x 42675
G16,G3 16027 x 21345
G17,G3 32054 x 42705
G18,G3 16027 x 21360
G19,G3 2914 x 3885
G110,G3 16027 x 21375
G111,G3 32054 x 42765
G112,G3 517 x 690
G113,G3 32054 x 42795
G114,G3 16027 x 21405
G2,G31 x 32054 33145
G2,G32 x 48081 49735
G2,G33 x 96162 99505
G2,G34 x 16027 16590
G2,G35 x 96162 99575
G2,G36 x 48081 49805
G2,G37 x 32054 33215
G2,G38 x 48081 49840
G2,G39 x 8742 9065
G2,G310 x 16027 16625
G2,G311 x 96162 99785
G2,G312 x 1551 1610
G2,G313 x 32054 33285
G2,G314 x 48081 49945

G11,G21,G3 224378 288486 298305
G12,G22,G3 112189 144243 149205
G13,G23,G3 224378 288486 298515
G14,G24,G3 112189 144243 149310
G15,G25,G3 224378 288486 298725
G16,G26,G3 112189 144243 149415
G17,G27,G3 224378 288486 298935
G18,G28,G3 112189 144243 149520
G19,G29,G3 20398 26226 27195
G110,G210,G3 112189 144243 149625
G111,G211,G3 224378 288486 299355
G112,G212,G3 3619 4653 4830
G113,G213,G3 224378 288486 299565
G114,G214,G3 112189 144243 149835
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6

Software Implementation

In theory there is no difference between theory and practice - in
practice there is

– Yogi Berra

This chapter deals with the description of the implementation of a
GNSS processing strategy. The strategy does not make use of differen-
tiations between observables, for this reason it is generally called undif-
ferenced and uncombined 1 [27][80], we will use this terminology in this
document. The word undifferenced is used in the sense that observations
are not differenced in between satellites and receivers, while the word un-
combined refers to the fact no combination between phase/pseudorange
measurements from different frequencies is made. The strategy and the
resulting software have been developed starting from the open-source
goGPS project [84] and it has been recently re-engineered for geodetic
monitoring applications in the framework of the activity of GReD a spin-
off of Politecnico of Milano. The software has been produced originally
by using MATLAB programming language and it is this version that is
described in this thesis. Figure 6.1 presents the main processing steps.

1Sometimes the expression “raw observation approach” is used instead [103]
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Observations

Ephemerides Code only adjustment.

Geophysical/Atmospherical
models Observation Correction

Outlier rejections
cycle slips marking

Paramterization
and regularization System creation

Reduce for sparse unknown

Reduce for all but integer unknown

Ambiguity resolution

Compute reduced unknown
and residuals

Robust adjustment
data snooping

System re-weight
observations removal

Results

Figure 6.1: Summary graph of software processing operations

All operations before the creation of the linear system are called pre-
processing. Since they were not discussed before, the following sections
will discuss them. Finally some examples and results obtained from real
data are presented.

6.1 Preprocessing

In this section the preprocessing of the observations is discussed. The
term preprocessing is used to call all the operations that are done before
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setting up the linear system of equations.

6.1.1 Code Only Adjustment

This procedure is applied to have a good linearisation point for the obser-
vation equations, computing the satellite positions at the correct time and
most of the observation corrections (Chapter 4) for which an approximate
position of the receiver is needed. To do that a stand alone adjustment
of pseudoranges only is performed for the receiver. Particular care has to
be given to the time chosen for the computation of the satellite orbits.
This is because satellites move quite fast in an earth fixed frame. So it is
very important to compute the satellite position precisely at the time the
signal is emitted. The transmission time τtx can be computed as:

τtx = τrx − τtravel − τrec, (6.1)

where τrx is the nominal reception time, τtravel is the travel time of the
signal and τrec is the receiver desynchronization. Taking a semimajor axis
of 26000 Km and assuming a circular orbit the speed of the satellite will
be ≈ 26000 · 2 · π/(3600 · 12) = 3.8 Km/s; adding to that the velocity
due to earth rotation, we can compute a rough upper bound of satellite
velocity as 3.8 + 2 · π/86400 · 26000 ≈ 5.6 Km/s. With this quantity
we can then derive an accuracy requirement for travel time. In fact if
we want to compute the satellites positions with millimetre level error
the transmission time has to be known with an sccuracy better than
0.001/5600 ≈ 1.8 · 10−7 s. This means that all effects bigger than 1.8 ·
10−7·c ≈ 53 meters have to be considered in the computation of travel time
2. Finally one has to consider that during the flight of signals the earth
rotates (Sagnac effect); for this reason the computed satellite positions
have to be rotated for the angle swept during travel time. The whole
procedure has to be iterated till convergence at the meter level of the
receiver position. This is because the computation of both travel time
and transmission time depends on the current estimate of the positions
and receiver clock desynchronization.

2Observation from different frequencies have different travel times, so in principle different orbit
position should be computed for each frequency, fortunately even for high ionospheric activity such
difference as just below 50 m.
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6.1.2 Cycle Slips Detection

One of the operations needed before setting up the system of linear equa-
tion is the detection of the occurrence of cycle slips. A cycle slips occurs
when the phase tracking loop is interrupted, and the continuous count-
ing of phase cycles is broken. In such a case normally a new ambiguity
parameter is set up in the linear system.

Uniqueness of Cycle Slip

Before describing our approach to the cycle slips detection we discuss the
non uniqueness of cycle slips determination in an undifferenced uncom-
bined observation processing. We will see that multiple choices of cycle
slips are equivalent. Consider the case of a receiver seeing two satellites,
if one of the two signals slips it would be equivalent to set a cycle slip
on the first satellite or on the second. This is because the clock desyn-
cronization could absorb the jump of the satellite that slipped and was
not marked with a cycle slip. Similarly, if we have more than one satellite
and one of them slips, one could put either a cycle slip on the satellite
that slipped or a cycle slip on all the others. These two situations are
not equivalent because the second system would be less well conditioned
than the first one. There is then the very unlikely condition of multiple
satellites slipping by the same number of cycles, this would create a situ-
ation of indecision similar to the one of two satellites described before. If
the number of satellites that slipped for the same cycles number is bigger
that the one that did not slip, an even stranger situation could occur in
which putting the slip on the satellites that have not slipped would result
in a better conditioned system. Having that in mind we can formulate
the following criterion to choose the cycle slip in the phases:
Within all possible cycle slip sets that can explain jumps in the phase
measurements the one which involves less cycle slips is used. The above
discussion is indeed a reflection of the non estimability of all the ambigu-
ities due to the rank deficiencies.

Cycle Slip Detection Procedure

In this Subsection the procedure used by us to detect cycle slips is de-
scribed. Of course, there is a large literature on cycle slips detection and
repairing, see for instance [14] [27] [123] and many more. The cycle slip
detection procedure here presented assumes two things:
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• The receiver position is fixed or slowly varying in time.

• The sampling rate of the observations is not too large.

The procedure works by differentiating observations in time. The formula
for a generic phase observation differentiated in time reads:

δφ = δρ+ δτ r + δι+ δζ + δτ s + γ · λ+
√

2 · ε (6.2)

where δ stands for time differentiation, ρ is the geometric distance between
the satellite and the receiver, ι is the ionospheric delay of the observation,
ζ is the tropospheric delay for the observable , τ r and τ s are the receiver
and satellite clock desynchronizations respectively, γ is a variable that
is equal to 1 in case of a cycle slip and 0 otherwise, λ is the amount of
the cycle slip (an integer number of cycles) and ε is the measurement
noise assumed to be uncorrelated. Electronic bias are not present in the
equation since they vary slowly and thus their contribution is negligible.
For each component in the observation we have normally approximate
values. This approximate values can be removed from the observation
in order to reduce the magnitude of the effects. Let’s now analyse the
various terms of the equation and their orders of magnitude.
We can start from the geometric term. Taking two subsequent epochs
t1, t2 the geometric term can be written as:

δρ− δρ̃ = (|r − st1| − |r − st2|)− (|r̃ − st1| − |r̃ − st2|) (6.3)

where s is the satellite position vector, r is the receiver position vector,
and ˜ denotes an approximate value. We can then use the following ap-
proximations:

|r − st1| − |r − st2| ≈ (eᵀ · v) · τ (6.4)

where e is the unit vector from receiver to satellite, v is the satellite speed,
τ is the time passes from epoch t1 to t2. Our expression then becomes:

δρ− δρ̃ ≈ ((e− ẽ)ᵀ · v) · τ (6.5)

Looking at Fig 6.2 we can write an approximate upper bound for this
quantity. Assuming an error for the approximate position of 3 m, the
magnitude of the (e − ẽ) vector will be approximately 3/26000000 =
1.15 ·10−7. Looking at Fig 6.2 and taking as earth radius the approximate
value of 6700 Km the angle α between the two vectors can be at most
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Figure 6.2: Simplified satellite receiver geometry.

90◦ − atan(6700/26000) ≈ 75.5◦. Taking the previously computed upper
bound for satellites speed 5.6 Km/s and putting all together in the worst
case the geometric term will be:

δρ− δρ̃ ≈ 1.15 · 10−7 · 5.6 · 103 · cos(75.5) · τ = 1.6 · 10−4 · τ. (6.6)

Taking for instance a sampling rate of 30 seconds the maximum error
would be around 5 mm which is well below one cycle and thus negligible.
Second, we consider the tropospheric delay; its variations are typically
on the order of some cm per hour [32]. If we assume a high change in
tropospheric delay of 3 cm/h and a very low satellite (mapping function
of 10) we have a change in tropospheric delay of around 8.3 · 10−5 m/s
that for typical sampling rate of 30 s gives a change of around 2 mm which
again is far below one wavelength.
Last, we can consider the ionospheric delay. The ionospheric variations are
normally below 10 TEC/hour [37]. Using such value, assuming a satellite
at low elevation we have a mapping function of around 2.7, amd using
the frequency most affected by ionosphere (GPS L5), we have a variation
of ionospheric delay of around 2.3 mm/s. This multiplied by a typical
sampling rate of 30 second would give a difference of ionospheric delay of
6.75 cm which is significant with respect to the wavelength of 25.48 cm.
For this reason an external model for the ionospheric delay is needed in
order to reduce the delay to few cm and to not mark an non existing cycle
slip in high ionospheric activity cases (for istance the one provided by IGS
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under the IONEX format [92] can be used). Modern GNSS satellite clocks
have normally short term stability of around 10−12 for tenths of seconds
[87]. This gives at 30 seconds a stability of the order of few centimetres.
So for modern clock the term can be neglected; if one has to perform
a cycle slip detection on older satellites or at lower sampling rate the
satellite clock would have to be corrected (see for instance IGS precise
products [69]) or to be estimated in the cycle slip detection procedure.
Receiver clocks are normally too unstable so their differential effects have
to be estimated.
Neglecting all irrelevant elements Eq 6.2 becomes:

δφ = δτ r + δτ s + γ · λ+
√

2 · ε (6.7)

We can now concentrate on the cycle slip term; in this case the cycle slip
can be assimilated to an outlier. Thus it is sufficient to make a robust
adjustment of the clock drifts and then mark as outliers all observations
with residual greater than a certain threshold (for instance half a wave-
length). In the case we are using data from modern GNSS satellites or
correcting them using precise products we are left with one unknown per
epoch and we can thus use a very fast robust estimator such as the sample
median. At this point we have not still distinguished between outliers and
cycle slips in the observations. To distinguish them is necessary to look
at two subsequent time differences. In fact if we have an outlier we will
see a jump in the data with similar magnitude and reverse sign in the
second epoch, while this will not happen in the case of a cycle slip. This
latter concept is exemplified in Fig 6.3.

6.2 Parametrization

A lot of different parametrizations can be set up. In this section we
show a framework to describe such parametrizations and to create the
corresponding design matrix. The software can adjust different types of
unknowns:

• Receiver coordinates.

• Satellite coordinates.

• ZTD.

• ZTD gradients.
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(a) Phase measurements reduced by
known terms.

(b) Phase measurements reduced by
known terms and differentiated in time.

(c) Phase measurements reduced by
known terms, differentiated in time, me-
dian removed.

Figure 6.3: Cycle slip and outliers effect on phase measurements. Cycle slip in dark
blue line, outlier in light blue line. The sampling rate is 30 seconds.
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• Receiver clock desynchronization.

• Satellite clock desynchronization.

• Frequency specific biases.

• Observation specific biases.

• Biases linearly dependent on frequecies.

• Ionospheric delays.

• Cycle ambiguities terms.

In the software each unknown is catalogued in terms of 4 different group,
they are:

• Receiver parametrization.

• Satellite parametrization.

• Time parametrization.

• Observation parametrization.

In term of receiver parametrization each unknown can be classified as:

• Common to all receivers.

• One per receiver.

• Common to a set of receivers.

In term of satellite parametrization each unknown can be classified as:

• Common to all satellites.

• One per satellite.

• Common to a set of satellites.

In term of time parametrization each unknown is allowed to be classified
as:

• Constant in time.

• One per epoch.

• Piece wise constant, with arbitrary steps.
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• Piece wise constant, with regular steps.

• Piece wise linear.

• Piece wise cubic.

In term of observation parametrization each unknown is allowed to be
either:

• One per tracking.

• One per frequency.

• One per GNSS band.

• One per frequency bin.

One could argue that biases and desynchronizations are the same un-
knowns just paramterized in a different ways. Altough this is true we
use different names for them to better organise their signature in the ob-
servations which have different behaviour in practice. Furthermore, we
allow all parameters to be regularised either in their absolute values or
in their time difference with arbitrary weight in the pseudo observations.
A computer software has been developed such that for each parameter
an arbitrary parameterization can be chosen and a corresponding design
matrix constructed. The desing matrix is stored using a sparse matrix
(i.e. only the non zero values and their index in the matrix are stored) in
order to save memory. Since the rank deficiencies of such matrix would
vary according to different parameterization we choose to solve them with
the numerical methods presented in Section 3.1 to avoid the management
of all possible cases.

6.3 Number of Observables

In this section the number of unknowns in the system is analysed. The
number of unknowns depends in general on the chosen parametrization.
We will give the number for a typical case. Table 6.1 presents the num-
ber of unknowns in the system for a typical network processing static
receivers.

If we take as an example a network of 10 receivers, 60 satellites (of
which one third is visible), 3 frequency per satellite with one phase and
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Number of unknown
Ionosphere α · β · γ · η
Satellite clock desynchronization α · γ
Receiver clock desynchronization β · γ
Ambiguities α · β · η
Satellite bias α · η · 2
Receiver bias β · η · 2
Receiver coordinates β · 3
Receiver tropospheric parameters β · 3 · γ/τ

Table 6.1: Number of parameters for a typical processing. α is the number of visible
satellites, β is the number of receivers, γ is the number of epochs, η is the number of
frequencies and τ is the rate of tropospheric parametrization.

one pseudorange measurement each, 1 day of observations, 30 second sam-
pling rate for the observations and one hour sampling for the tropospheric
parameters we have the following numbers:

• Ionosphere: 1728000

• Satellite clock desynchronization: 57600

• Receiver clock desynchronization: 28800

• Ambiguity: 1200 (assuming 2 arcs per day)

• Satellite bias: 120 (assumed constant for simplicity)

• Receiver bias: 60 (assumed constant for simplicity)

• Receiver coordinate: 30

• Receiver tropospheric parameter: 720.

• Total: 1816530.
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Figure 6.4: Example of the dependence of sparseness on the reduction order.

It is clear from the above example that the ionospheric and the desynchro-
nization unknowns dominate in the total number and thus they require a
special attention in the solving process.

6.4 Strategy to Reduce

Since the system as is so large a strategy to exploit the sparseness of the
system has to be used. One possible strategy is to reduce the parameters
using equation 2.27 ([93]); the reduction has to be done in a way that the
reduced parameters are as sparse as possible3. Figure 6.4 presents a very
simple example highlighting how the sparseness of the reduced matrix
depends on the reduction order. In order to keep the system sparse the
reduction term (the term after the minus in Eq 2.27) should have non zero
elements in the same place of the part to be reduced (the term before the
minus in Eq 2.27).
To understand the best strategy we have to look at the structure of the

3General solvers that use the concept of graph theory to exploit the sparseness of a generic design
matrix exists (see for instance [26]). However, they have to analyse the sparseness of the matrix before
solving the system. Knowing in advance the structure of the matrix it is possible to program a faster
solution.
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normal matrix sparseness. In particular the element Nij of the normal
matrix will be zero if A(. . . , i)ᵀ · A(. . . , j) = 0 and this can happen only
if no observations have a non zero entry for both the parameters, i.e. if
there is no observation connecting the two parameters. Now let’s consider
the case of a reduced normal matrix N̆ that has been reduced by another
part of the normal matrix R and whose cross term (lower bottom) in the
original normal matrix is X.
The N̆ij element will be zero if the sufficient (but in general non necessary)
following conditions are met:

• The non reduced Nij element was zero.

• The product of the i and j column of the cross term X is zero,
X(. . . ; i)ᵀ ·X(. . . ; j) = 0. This means that the two parameter i and
j are not both linked to a third parameter by some observation.

• The cross element of the inverse of the matrix R corresponding to
non zero elements in columns i, j of the X matrix are also zero, i.e.
there is no observation connecting them directly or trough a chain
of other observations.

These three conditions can be resumed by saying that the two parameters
should not be connected by any observation. This connection could be
either direct or by a chain of observations that connect the parameters to
be reduced.
We have seen as the ionospheric parameters constitute the majority of
the unknowns, altough their entries in the normal form are also diagonal.
For these reason they are a good candidate in the list of parameters to
be reduces. A similar reasoning can be done with respect to receiver and
clock desynchronizations.
We will now discuss which is a better order to reduce such parameters. To
do that, we have to list the effects of reducing each of the three parameters
on the other two. The effect on the sparseness of the other parameters
could be assessed too, but since they are not so numerous it is less com-
pelling to do so. A single ionospheric parameter is connected trough ob-
servation to a single satellite clock desynchronization, and a single receiver
clock desynchronization. This means that reducing for ionosphere will not
decrease the sparseness of receiver and satellite clock desynchronizations.
On the other hand both single receiver and clock desynchronization un-
knowns are connected by observations to multiple ionospheric , satellite
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and receiver clock desynchronization unknowns. More specifically for each
epoch each receiver desynchronization is connected by observations to all
the desynchronisations of the satellites for the epoch and to all the iono-
spheric delays for the receiver for the epoch. The same applies for satellite
desynchronisations switching the terms “satellite” and “receiver” in the
previous sentence.This means that reducing one desynchronization for a
receiver or a satellite, would bind all desynchronizations of the satellite
and ionospheric delays for the same epoch. Again the same applies for
the receiver. Taking that in mind it is clear that the first parameters to
be reduced are the ionospheric ones since they are the most numerous
and their reduction does not affect the receiver and satellites unknowns.
The reduction of the second group of parameters depends however on the
ratio between receiver and visible satellites; the more numerous should be
reduced first. Normally the visible satellites are more than the receivers
and thus should be reduced first. Now we have to concentrate on the rest
of the parameters.
We see that the budget of remaining unknowns is dominated by ambigui-
ties. As they are integer parameters, they have also a very nice property:
if we can reliably estimate them as integer their variance will be 0 and
thus we can completely eliminate them from the estimation process. It is
then possible to use a subset of the network to estimate the satellite pa-
rameters and then use them to solve receivers ambiguities in stand alone
mode [22]. Then the whole network can be readjusted without ambiguity
terms.

6.5 Software Running Examples

In this section two examples of processing of real data are presented. One
is a very small network; it represents the case of geodetic monitoring.
The other one is a global network, it is presented in order to show the
numerical resolution of rank deficiencies and the estimation of bias that
allows ambiguity fixing in the PPP mode.

6.6 Small Network Low Cost Receivers

The first case is the adjustment of a small network of low cost geode-
tic receivers. In the framework of the H2020 GIMS project a network
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Figure 6.5: Location of the stations of the local network.

Observation used Gps (C1C,L1C,C2L,C2L) , Galileo (C1C,L1C,C7Q,L7Q)
Clock desynchronization Epoch-wise unconstrained
Satellite Inter Frequency Bias Cubic spline each 2h
Receiver Inter Frequency Bias Cubic spline each 2h
Observation Bias Constant
Ionosphere Epoch-wise common between receivers unconstrained.

Table 6.2: Processing settings for local network processing.

of low cost GNSS sensors were installed on a landslide in the Potoska
planina site near the village of Potoki Slovenia [96]. The network consists
of double frequency µblox ZED-F9P GNSS equipped receiver. Fig 6.5
shows the approximate positions of the stations on a satellite image. The
data have been processed using the station POT6 as reference. The pro-
cessing parameters are reported in Tab 6.2. PCO parameters have been
estimated for frequencies different from GPS L1/Galileo E1 , their val-
ues are reported in Tab 6.3. For comparison the observations have been
processed using Bernese software 5.2 [24], using E1 and L1 frequencies
only (processing courtesy of Stefano Caldera, GReD). Figure 6.6 presents
the evolution of the baseline in time. To compute the repetability of the
results the movement of the landslide has been modelled as cubic spline
with a spline each 28 days. The repetability is then computed as the
mean of the absolute values of the residuals with respect of the computed
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(a) POT6-POT1 baseline. (b) POT6-POT2 baseline.

(c) POT6-POT3 baseline. (d) POT6-POT4 baseline.

(e) POT6-POT5 baseline. (f) POT6-POT7 baseline.

Figure 6.6: Repetability of the computed baselines. goGPS solution coloured, Bernese
solution black.
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G02 E07
Station North East Up North East Up
POT5 -3.849 -3.041 -3.437 -6.436 -4.407 2.385
POT4 2.431 4.057 24.337 4.013 3.753 21.245
POT1 -2.100 -1.464 -1.220 -3.304 -1.836 -2.202
POT6 -5.207 0.610 -9.003 -5.817 0.044 -6.915
POT3 3.071 5.055 -3.298 4.478 6.709 -2.949
POT7 0.233 -4.392 3.512 0.377 -4.607 0.281
POT2 5.436 -0.769 -11.182 6.642 0.379 -12.056

Table 6.3: Estimated PCO, values in millimeters

East [mm] North [mm] Up [mm]
Baseline goGPS Bernese RMS goGPS Bernese RMS goGPS Bernese RMS

POT6-POT1 2.845 2.204 0.609 5.954 4.565 0.397 3.596 2.924 1.500
POT6-POT2 0.656 1.153 0.389 0.811 1.011 0.917 1.515 1.789 1.428
POT6-POT3 0.614 0.581 0.259 0.522 0.566 0.262 2.677 1.916 2.109
POT6-POT4 0.471 0.837 0.662 0.392 0.601 0.342 1.924 1.406 1.466
POT6-POT5 0.469 0.584 0.480 0.486 0.679 0.361 1.202 1.333 1.126
POT6-POT6 0.596 0.793 0.455 0.439 0.602 0.302 2.317 1.632 1.669

Table 6.4: Standard deviation of the coordinates with respect to a 28 day cubic spline
for both goGPS and Bernese solution and RMS of the differences. All statistics in
millimetres.

spline. In Tab 6.4 the repetabilities are presented along with the RMS
of the Bernese-goGPS difference. The repetability and RMS are on the
order of half a millimetre (planar component) and few millimetres (ver-
tical component) for most baselines confirming a good behaviour of the
produced software.

6.7 Large Network of Geodetic Receivers

In this example we present the processing of a global network of stations
for 1 day of observation (15 January 2020). The stations come from the
IGS network, a map of their position can be seen in Fig 6.7. The sta-
tions are equipped with Trimble NETR9 receivers and are processed using
GPS and Galileo observations , Tab 6.5 presents all the observations used
in the adjustment for each station. Furthermore Tab 6.6 presents the
processing settings for the network. Due to the various number of ob-
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Station Name Tracked Observations
DLF1 Galileo : C1X, C5X, C7X, C8X, L1X, L5X, L7X, L8X

GPS :C1C, C2W, C2X, C5X, L1C, L2W, L2X, L5X
MAYG Galileo: C1X, C5X, C7X, C8X, L1X, L5X, L7X, L8X

GPS: C1C, C2W, C2X, C5X, L1C, L2W, L2X, L5X
NIUM Galileo: C1X, C5X, C7X, C8X, L1X, L5X, L7X, L8X

GPS: C1C, C2W, C2X, C5X, L1C, L2W, L2X, L5X
PNGM Galileo: C1X, C5X, C7X, C8X, L1X, L5X, L7X, L8X

GPS: C1C, C2W, C2X, C5X, L1C, L2W, L2X, L5X
SEYG Galileo: C1X, C5X, C7X, C8X, L1X, L5X, L7X, L8X

GPS: C1C, C2W, C2X, C5X, L1C, L2W, L2X, L5X
SOLO Galileo: C1X, C5X, C7X, C8X, L1X, L5X, L7X, L8X

GPS: C1C, C2W, C2X, C5X, L1C, L2W, L2X, L5X
GMSD Galileo: C1X, C5X, C7X, L1X, L5X, L7X, L8X

GPS: C1C, C2W, C2X, C5X, L1C, L2W, L2X, L5X
TLSE Galileo: C1X, C5X, C7X, C8X, L1X, L5X, L7X, L8X

GPS: C1C, C2W, C2X, C5X, L1C, L2W, L2X, L5X
RGDG Galileo: C1X, C5X, C6X, C7X, C8X, L1X, L5X, L6X, L7X, L8X

GPS: C1C, C1X, C2W, C2X, C5X, L1C, L1X, L2W, L2X, L5X
PFRR Galileo: C1X, C5X, C7X, C8X, L1X, L5X, L7X, L8X

GPS: C1C, C2W, C2X, C5X, L1C, L2W, L2X, L5X
LPGS Galileo: C1X, C5X, C6X, C7X, C8X, L1X, L5X, L6X, L7X, L8X

GPS: C1C, C1W, C2W, C2X, C5X, L1C, L1W, L2W, L2X, L5X
LMMF Galileo: C1X, C5X, C6X, C7X, C8X, L1X, L5X, L6X, L7X, L8X

GPS: C1C, C2W, C2X, C5X, L1C, L2W, L2X, L5X
JCTW Galileo: C1X, C5X, C7X, C8X, L1X, L5X, L7X, L8X

GPS: C1C, C2L, C2W, C5X, L1C, L2L, L2W, L5X
CAS1 Galileo: C1X, C5X, C7X, C8X, L1X, L5X, L7X, L8X

GPS: C1C, C2W, C2X, C5X, L1C, L2W, L2X, L5X
CPVG Galileo: C1X, C5X, C7X, C8X, L1X, L5X, L7X, L8X

GPS: C1C, C2W, C2X, C5X, L1C, L2W, L2X, L5X
GODN Galileo: C1X, C5X, C6X, C7X, C8X, L1X, L5X, L6X, L7X, L8X

GPS: C1C, C1W, C2W, C2X, C5X, L1C, L1W, L2W, L2X, L5X
NYA2 Galileo: C1X, C5X, C6X, C7X, C8X, L1X, L5X, L6X, L7X, L8X

GPS: C1C, C1W, C2W, C2X, C5X, L1C, L1W, L2W, L2X, L5X

Table 6.5: Observation available for GPS and Galileo.
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Figure 6.7: Location of the stations of the global network.

Ephemerids CODE final MGEX solution
Tropospheric mapping function GMF (for compatibility with IGS solution)
Clock desynchronization Epoch-wise unconstrained
Satellite Inter Frequency Bias Cubic spline each 1h
Receiver Inter Frequency Bias Cubic spline each 3h
Observation type bias Constant
ZTD paramterization Cubic spline 1h
ZTD regularisation Absolute value (0.5 m), time difference (0.02 m/

√
h)

ZTD gradient parametrization Cubic spline 2h
ZTD gradient regularisation Absolute value (0.02 m), time difference (0.001 m/

√
h)

Ionosphere Epoch-wise unconstrained
Coordinates Costant

Table 6.6: Processing settings for global network processing.
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Figure 6.8: Singular values, elements of the diagonal computed from factorization of
normal matrix corresponding to bias elements.

servations used with their corresponding biases it is worth looking at the
performance of the numerical method for the resolution of both real and
integer unknowns. Fig 6.8 presents the singular values and the diagonal
elements of the LDL decomposition and the QR decomposition (all sorted
in descending order, LDL and QR of computed with partial pivoting). It
is possible to see that all three methodologies identify the same number
of rank deficiencies, and that we have a clear drop of the values below the
numerical tolerance after the last significant value. Similarly the analysis
is performed also on the reduced normal matrix corresponding to ambigu-
ities. In Fig 6.9 we plot the values of the diagonal elements of both LDL
and QR decomposition sorted in descending order, computed with partial
pivoting. Again we can see that the same number of rank deficiencies is
identified and that there is a clear drop below numerical tolerance. As an
indication that the constraint derived by the decomposition is correct we
show the histogram of the fractional part of the decorrelated ambiguities
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Figure 6.9: Elements of the diagonal computed from factorization of normal matrix
corresponding to ambiguities.
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Figure 6.10: Histogram of the fractional part of the decorrelated ambiguities, for the
network processing.

(Fig 6.10). The values are clearly dispersed around zero indicating a good
behaviour of the processing. The network has been processed using all sta-
tions but TLSE. This last station is used to verify the PPP procedure with
ambiguity fixing. After the processing of the other stations all clock and
bias unknowns referring to the satellites have been stored in the program
and applied to the observations. If we than apply the PPP processing
to the TLSE station, we see again that the decorrelated ambiguities are
clearly dispersed around zero (Fig 6.11). To validate the results we com-
pare them with the official IGS tropospheric products [44]. In Tab 6.7 we
present the mean and the standard deviation of the difference between
compute and IGS ZTDs sampled at observation rate. Fig 6.12 presents
the troposphere from both IGS and that computed for four stations; those
with lower bias and standard deviation and those with higher. Further-
more in Tab 6.8 the difference between IGS and computed coordinates
are presented. The TLSE ZTD and coordinate estimates (PPP process-
ing) are also included in Tab 6.7 and Tab 6.8. Generally speaking we see
an agreement between both the tropospheric and coordinates unknowns
better than the centimetre, thus proving a good behaviour of the software.
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Figure 6.11: Histogram of the fractional part of the decorrelated ambiguities, for the
PPP processing on TLSE station.

Station Mean [cm] Standard deviation [cm]
CHPG -0.27 0.45
DLF1 -0.27 0.37

MAYG -0.21 0.63
NIUM 0.26 0.79
PNGM -0.06 0.60
SEYG -0.14 0.54
SOLO -0.32 0.72
GMSD 0.41 0.54
TLSE -0.01 0.74
RGDG 0.59 0.44
LPGS 0.40 0.74
LMMF -0.30 0.60
JCTW 0.12 0.47
CAS1 0.98 0.29
CPVG -0.26 0.56
NYA2 -0.33 0.49
GODN -0.93 0.88

Table 6.7: Mean and standard deviation of the IGS and computed ZTDS.
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(a) DLF1 station. (b) CAS1 station.

(c) TLSE station. (d) GODN station.

Figure 6.12: Computed ZTD vs IGS ones, best and worst cases.
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Station X [cm] Y [cm] Z [cm]
CHPG -0.12 0.30 -0.56
DLF1 0.25 -0.36 0.61

MAYG -0.58 -1.32 0.52
NIUM 0.15 0.51 -0.19
PNGM 0.95 -0.86 -0.64
SEYG 0.37 -0.35 -0.01
SOLO 0.40 -0.77 -0.28
GMSD 0.44 -0.23 -0.45
TLSE 0.50 -0.13 0.86
RGDG -0.55 -0.24 -0.32
LPGS 0.60 -0.92 -0.19
LMMF -0.92 0.37 -0.19
JCTW 0.87 0.45 -0.31
CAS1 -0.34 0.98 -2.03
CPVG -1.13 -0.46 -0.36
GODN -0.13 0.88 -0.31
NYA2 -0.07 0.40 1.09

Table 6.8: Difference between IGS and computed coordinates
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7

Conclusions

A general strategy to adjust GNSS observables has been discussed and im-
plemented. The rank deficiencies present in a system of GNSS observables
and a list of general algorithms for their solution have been discussed. A
MATLAB based software has been produced following the developed pro-
cedure. The software is very flexible and capable of processing all GNSS
observables with very general user defined parametrizations. The soft-
ware operations have been described and some numerical examples have
been reported. The procedure contains few innovative parts namely, a
general theoretical framework for the solution of integer and real integer
mixed rank deficient problems, and the usage of numerical methods for
the resolution of the rank deficiencies. The software could be improved
and we will do that in the future. Two important future works will be the
estimation of variance components of the observations variance covari-
ance matrix, and the possibility to estimate orbital and earth rotation
parameters.
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ambiguity resolution in GPS theory and a bayesian approach,”
Manuscripta geodaetica, vol. 18, pp. 317–330, 1993.

[13] G. Blaha, “Free networks: minimum norm solution as obtained
by the inner adjustment constraint method,” Bulletin géodésique,
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